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ABSTRACT 
Today’s market place is being continually bombarded 
with game-releases. It is hoped to illustrate how 
immersion in the context of computer games, is an 
important ingredient in the success of these games, 
and which elements in a computer game combine to 
create an effective immersive experience for the 
gamer. Final comments relate to current research 
involving enhancing immersion in isometric tile-based 
strategy games, by allowing the user more control 
over their game environment.  

INTRODUCTION 
I lose count of the number of times I have gone to my 
local cinema to sit through a movie and two hours 
disappear in a seemingly much shorter time. Then, at 
other times, watched another movie with a big budget, 
famous action stars and “state of the art” special 
effects, and continually looked at my watch wondering 
how much longer the movie had left to go. The first is 
an example of an immersive experience: the fact that 
the viewer was so absorbed in this fictional world that 
time didn’t matter and the second is an example of a 
non-immersive experience, where for some reason the 
“world” didn’t captivate the viewers, who stay to 
merely get their moneys worth. 

So why, when a famous star is signed up, and 
a mega budget is allocated, do some movies fail to 
provide an immersive experience for the viewer? Why 
do moviegoers sometimes walk away feeling 
disappointed with a film? Let’s rephrase these 
questions with the computer games industry in mind 
to: Why do some games fail to provide an immersive 
experience for the gamer?  Why do some gamers feel 
disappointed after watching a “cut scene” from the 
latest action game, then wait possibly months to buy 
the game before discovering to their expense that the 
game does not live up to their expectations or the 
hype? Surely these game buyers will become 
disillusioned with that particular game or games 
company in a similar way that action stars lose favour 
in movies that do badly at the box office, and what of 
the studios/publishers who have other titles under 

development based on these games? According to 
Foster, Karlov, Kay and Thoma1 the top 20 games 
take 90% of all profits, with the next 20 titles taking 
5% leaving only 5% to all others, indicating that many 
games may fail to make a profit or even, break even 
which could mean the end of the developer involved. 
This leads to the purpose of this paper: to examine the 
elements involved in computer games that combine to 
maximise the chances of commercial success. 

 

IMMERSION? 
Let’s begin by looking at three words that have been 
noted from recent conferences: ‘addiction’, 
‘absorption’ and ‘immersion’. 
  
The Cambridge International Dictionary of English2 
has the following related definitions. 
 
Addictive: Addictive could be used of any activity that 
you cannot stop doing once you have started.  
Absorb: to take (something) in, esp. gradually  
If someone's work, or a book, film, etc. absorbs them, 
or they are absorbed in it, their attention is given 
completely to it.  
Immerse: to involve completely in something 
 
The term “addictive game” could indicate some kind 
of unhealthy preoccupation with a video game, maybe 
at an extreme a gamer playing 24 hours a day, missing 
work/school, and generally exhibiting anti-social 
behaviour when the stimulus of the game is removed. 
But more positively, a gamer who gets immersed in 
the game environment and wants to see the game 
through to the end, or the office worker playing 
solitaire daily could be described by some as being 
addicted. 
Absorption is the initial part of the game, when the 
user is absorbed by the characters and plot, is slowly 
drawn into a world created for them by the designers, 
and let loose to explore and interact with that 
environment, leading to immersion when the player 
eventually comes to feel in control of the game, and 
begins exhibiting signs of emotional attachment to a 
base they build or an enemy that they have taken some 
time to defeat.  
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A POSSIBLE IMMERSIVE 
WALKTHROUGH 
What are the key elements that combine to create an 
immersive experience? 
• The cinema goer/games buyer gets a teaser trailer 

of the up and coming movie/game to whet their 
appetite. (The Introduction)  

• They wait anxiously then buy a ticket for their 
local multiplex, or buy the game. (The Purchase) 

• Now comes the crunch: the titles come up and the 
movie starts. The first 15 minutes of the movie will 
determine whether or not the other elements of the 
experience have a chance to further immerse the 
viewer. With a computer game, the first 15 
minutes (including the loading) of the game have a 
similar effect: can a plot be formed, characters 
introduced, and is the game easy enough for the 
gamer to get into within 15 minutes, so that they 
are hooked and become absorbed in the fictional 
world. (The First 15 Minutes – The Hook) 

• Success so far: the gamer has brought the game, 
and within 15 minutes is hooked. Now the next 
important element of immersion is needed, the 
story. Does the story unfold in a logical manner 
and take the user from section to section, from 
scene to scene. Can the gamer follow the plot? 
Does the gamer get emotionally involved with 
characters enough to feel more when the player 
beats the end-of-level bad guy, or the villain gains 
the upper hand? Does each section of cut scene 
following the completion of a level fit in with the 
story and involve characters the gamer has already 
encountered or are they just added “eye-candy” for 
the gamer? (Emotional Involvement) 

• What good is a dramatic scene in a movie or 
game without the music that helps create emotional 
involvement? When you near the bad guys lair 
does the music go deep and foreboding, and when 
you complete the level is the music uplifting. Does 
a gun sound like a gun, a dog bark as it should, and 
does the gunfire reverberate as in an empty room? 
(Sound) 

• Do the in-game graphics live up to the initial hype 
of the trailer? Mainstream gamers want to be awed 
by spectacular special effects and cutting-edge 
graphics (Graphics). 

• Villains that challenge the hero: what use is John 
Connor without the brutal Terminator foe always 
one step ahead.  The aliens against the marines in 
Aliens Vs Predator. Do the aliens in the game react 
as in the movies; are they cunning and sly, then 
can you mow down a room-full with your assault 
rifle, or do they behave against your 
preconceptions, thus spoiling your fun? (Artificial 
Intelligence). 

• How much figuring will the gamer have to do to 
get started? Is the interface in the style of the rest 
of the game? Is the user “pushed out” to a DOS 
screen or new window in order to change options, 
thus breaking the immersive game experience? 

Avoiding frustration is the key here. (The 
Interface) 

• Finally the ‘fun factor’, the romance aspect in a 
love story, and the aliens in space movies each is 
expected by the viewer, so why disappoint them. 
In first person shooters (FPS) its always the guns 
the user can collect, in isometric tile-games it’s the 
build options. But what use these options without 
well designed, challenging worlds and villains to 
use them on. (Level Design). 

 
 
THE HOOK: FIRST 15 MINUTES 
It has been said many times that the start of a film is 
important, the first 15 minutes must draw in the 
audience and woe them with the hero’s plight against 
some kind of adversary, putting the hero in harms 
way. Only after the initial 15 minutes does the story 
and background fully unfold. So what of a parallel 
with gaming?  “With gaming a player must be actively 
engaged by a new game within 15 minutes of starting 
play or we risk losing that player forever”3 Shelley. So 
what is the typical format of the first 15 minutes in a 
computer game: the loading of the game, the initial 
screens, and the introduction to the game, usually non-
interactive video, that sets the scene ready for the 
gamer to get started with some action. 
Introductions are sometimes video such as in Red 
Alert 2 (Westwood) or alternatively use game graphics 
like Half Life (Sierra) and Halo (Bungie). Both 
methods are effective if they help to immerse the 
player in the world, and then introduce characters that 
the player will encounter in the game. Some games try 
to build a feeling for the world during the titles, such 
as Unreal (Id) which takes the gamer on a tour of a 
castle with some very effective music included for 
atmosphere building. 
With all the thrilling video is there a risk that the 
gamer can become too immersed in the video? This 
must be a concern because if the game isn’t as good 
visually as the introduction then the user might be 
disappointed. After the introduction, the game should 
be easy and straightforward to get into and allow the 
user to have some fun, not overly complicated or non-
intuitive, leaving the user with a failed purchase. 
 

SETTING THE SCENE: VIDEO 
Video can help to increase the realism and add to the 
immersion of a computer game, but beware of going 
too far. During the early 90’s a wave of games came 
that were almost entirely video such as Ripper (Take 
2), Black Dahlia (Interplay/Take 2) and Gabriel 
Knight: The Beast Within (Sierra) didn’t do that well. 
Many of these games featured stars such as Dennis 
Hopper and Christopher Walken, and allowed limited 
interaction by the user, but what developers failed to 
grasp at that time was that most games players don’t 
like limited plots that don’t allow much freedom of 
movement i.e. the gamers do not feel in control. 



Many of the top 20 games feature “cut 
scenes” to seemingly boost the stories a prediction 
come true from David Stripins of Factor 5 made at the 
GDC 2001. They occasionally feature famous stars, 
such as Michael Biehn in Tiberian Sun (Westwood) 
but again if players have to sit through endless cut 
scenes then they are going to get bored and the 
immersion is reduced. Also “cut scenes” that seem to 
build up characters in plots that are then not seen 
anywhere in the actual game are common, and affect 
the players’ involvement in the story. As to the 
direction these introductions and scene changes take, 
be it video or using in-game graphics, this is difficult 
to predict, especially with the advent of new features 
on graphics cards, such as “Cine FX” on the next 
generation of Nvidia graphic cards that promise “real-
time cinematic effects in real-time”4 Freeman and 
Nvidia’s CG programming language. 

CAPTURING THE IMAGINATION: 
THE STORY 
The story or plot of the game should be easily 
identifiable; games such as Command and Conquer 
(Westwood) have self-explanatory titles so the user 
can quickly understand what is expected of them. 
Many FPS are simply getting from one side of a level 
to the other with hazards placed in the path of the 
gamer, complemented with encounters with bad guys. 
Games in this mould are Tomb Raider, Quake, and 
Unreal. Others have more difficult objectives to 
understand. Most of the successful and addictive 
games of all time have simple easy to understand 
plots, such as Tetris and Pac Man. Games with overly 
complicated plots will probably be played very little 
and end up being traded in for the next version of 
Doom. 
 

CREATING EMOTION: SOUND 
The use of sound as a medium for aiding immersion 
can be seen in movies where music is used to enhance 
dramatic scenes of romance or danger, thus adding 
emotional content  
One of the major success stories of 2002 (on the X-
Box) was Halo. Halo utilises music and sound to help 
immerse the player, the goal being that the audio sets 
the mood and gives the player information about what 
is happening (Marty O’Donnell, Bungie, GDC2002). 
Music can enhance a player’s experience of a game, 
but too much music playing constantly can seriously 
lessen the impact, as in Age of Empires 2 and to an 
extent in the Command and Conquer games that 
feature ongoing music. Technology in sound cards is 
nearing the sophisticated level of movies, with Dolby 
5.1 being featured on most new sound cards such as 
Creative Labs Audigy and Extigy range, indicating 
that immersive sound from the hardware vendor’s 
point of view, may help boost sales, and hopefully 
games developers will incorporate the new technology 
into more games. 

 

THE AUDIENCE GASPS: GRAPHICS 
Graphics in games are said by many to be the 
important selling point on games. Games buyers flip 
the box over in the games store and are dazzled by the 
screen shots of the games, they watch the videos 
showing at games stores promoting the latest 
action/adventure game, and see stunning screenshots 
in magazines so no wonder they buy the games. 
 
So what have developers been delivering between 
1998 and 2002?  

Graphics in FPS haven’t seemingly changed 
in quality since Unreal (Epic) and Quake 3(Id) simply 
because many subsequent games have used the 
reusable engines created during the development of 
these titles i.e. Half Life (Quake 2 engine) and Deus 
Ex (Unreal engine).  This is simply the tip of the 
iceberg with Aliens VS Predator, Medal of Honour 
Allied Assault (Quake 3) and many more. 
 
What could developers be doing? 

With Unreal being released in 1998, and 
Quake 3 1999 gamers have been presented with reused 
engines continually, whilst at the same time the movie 
industry has moved on in leaps and bounds in 
animation and computer-based visualisation effects. 
Benchmarking software such as 3D Mark 2001/SE 
features some polygon-rich graphics rendered on the 
PC platform that I personally haven’t seen the likes of 
in any games (except for the Max Payne section of 
course). Many gamers have been left waiting for those 
cutting edge graphics always promised on boxes or in 
adverts until now. 
 
What are developers now promising? 

There are 2 significant events due in late 
2002 early 2003, Doom 3 (id Software/Activision) and 
Unreal 2 (Legend Entertainment/Infogrames), which 
promise to take FPS into a new dimension by utilising 
much of the technology available over the last 2 years 
especially in the area of graphics card acceleration and 
features. Whether they will or won’t is yet to be seen, 
though initial videos and screen shots do look 
encouraging. We should bear in mind that the engine 
for Unreal 2 will also be used for Thief 3 and Deus Ex 
2 (PC Gamer February 2002). 
Other genres of games, such as strategy sports games, 
must certainly follow suit with improved graphics to 
satisfy the avid gamer. Games like Sim City 4 
(Maxis/EA) and Colin McRae 3(Codemasters) look 
likely to move their respective style of games forward 
and satisfy the hungry gamer for the present time. 
 
 
 



CHALLENGE: ARTIFICIAL 
INTELLIGENCE (AI)  
Players are increasingly moving to multiplayer on-line 
games because AI is getting increasingly less of a fun 
prospect. Why don’t the AI engineers repair bridges in 
Red Alert 2, where an easy win is achieved on island-
based maps when player’s can cut themselves off from 
the AI in order to build up unit numbers before wiping 
out the opponent. Why, in games like Unreal, doesn’t 
the AI use sniper weaponry? These are obvious 
features gamers expect but are overlooked by 
developers. Improved AI is promised, with many new 
single-player games, but so far not many offer any real 
challenge, Doom 3 and Unreal boast improved AI as a 
key feature in the single-player versions of these 
games. 
 

SECOND NATURE: THE INTERFACE 
Many will remember the days of Doom and 
Wolfenstein where the user had limited options on 
screen, and only a few keys to get going in the game. 
Using arrow keys and the space bar you can run 
around and have some fun without having to wade 
through manuals to find out what key ‘z’ does. These 
games may have other options that the user can use 
such as “strafe” and “run” but the user doesn’t need 
them to begin with. 
Features to be avoided include cryptic options, and 
cluttered and intimidating interfaces5 (Versluis).  

ROCKETS AND GUNS RATHER THAN 
ARROWS AND STICKS: LEVEL 
DESIGN 
Look at the differing commercial success of strategy-
based games that have 20th century technology 
compared to those utilising feudal technology i.e. 
Total Annihilation Kingdoms (Cavedog) against its 
predecessor. There are those that do well that are more 
adventure such as Baldur’s Gate, but Command and 
Conquer style games seem to be more popular with 
newer technological weaponry. 
So Level design has not always got to offer a lot of 
freedom for the player, as in FPS, but it has to be a 
little interesting consider Daikatana by John Romero 
of Doom fame: the game starts with interesting levels 
then soon becomes repetitive and boring, so that the 
player quickly loses interest.  
Put interesting things in to perk the users’ interest, let 
them explore a little, blow up trees if they want to, but 
don’t allow them to wander for miles without a quick 
way back, else they will get bored and stop playing. 
An interesting addition to many FPS is the easy to 
find, hidden chamber or level: this adds interest to 
these styles of games but is missing from many recent 
FPS. Remember, it is the challenge to the gamer, to 
beat the designer in their world, which spurs them on. 
There must be no villain that can’t be beaten, no route 

that cannot be traversed, no secret button that can’t be 
found. 
 

BLAST AWAY: HAVING FUN 
What’s the point of a “Physics enhanced” game that is 
realistic and has real world models, if the player can’t 
have fun? Games players like to enjoy doing things 
that they are not supposed to do, such as killing 
friendly non-player characters (NPC), shooting toilets 
as in Duke Nukem, or crushing blast doors as in Deus 
Ex, which was incidentally found to be fun in play test 
and retained in the final release (Smith). Non-plot 
additions, such as in Duke Nukem and others, add a 
fun factor for some gamers, so they should not be 
overlooked in development. Wouldn’t it be nice to be 
able to kill that first bad guy in Unreal when you first 
pick up the blaster? Killing friendly characters and 
have their friends shoot at you as in Deus Ex might be 
classified as a little anti-social to many, but can still 
add to the gamers’ fun, and let’s them feel more in 
control in this virtual environment. Surely a fun game 
once completed can be replayed and the user can 
spend some time looking for hidden things and 
exploring areas of the map that they originally didn’t 
notice, searching for all those hidden features, or 
switch on “God Mode” found in many games, and 
decimate everything in sight. 

ENHANCING AN IMMERSIVE 
ENVIRONMENT 
A typical isometric-tile based strategy game such as 
“Command and Conquer” (Westwood) involves the 
user collecting resources from maps that are 
subsequently used to create offensive and defensive 
units. The gamer then uses these attacking units to 
defeat an opposing computer or real human opponent.  
Because of the nature of this style of game one or even 
hundreds of units can be sent from one side of the map 
to the other meaning that the elevated isometric 
perspective is well suited to large-scale battles. But 
what of the single unit sent on a scouting mission to an 
enemy base or the spy sent in to steal technology? 
Wouldn’t it be interesting if the player could zoom in 
on these characters and almost turn an isometric tile 
based game into a first person shooter simply by 
zooming in on the unit? What of large battles where 
the user could zoom in on troops to watch the action 
close up.  Would these kind of additional features 
improve the immersive experience for the gamer? On 
the flip side what design and development difficulties 
underlie such a crossing of game genres?  
The most obvious difficulty is that traditionally 
isometric based games uses 2D sprites/graphics to 
generate both terrain and units, which means that 
zooming in is difficult and certainly the user would 
not be able to look behind a 2D building. The only 
solution to allow a game to be scaled in this way is to 
utilise a 3D API (Application Programming Interface) 
such as Direct 3D or OpenGL to render meshes with 



textures created from a suitable package such as 3ds 
max (versions 4 or5) or MAYA. Then create detailed 
maps, units and buildings with full 3D scalability 
achieved through a combination of Hardware 
acceleration, 3D modelling packages and optimised 
code. 
Utilising the Direct 3D 8.1 the following features were 
identified as easily attainable with suitable 3D models: 
• Creation of an isometric map using meshes and 

textures. 
• Allow gamer to zoom right into a unit or building.  
• Allow the gamer to see behind buildings by 

allowing them to rotate freely in the game world. 
  
The next logical step would be that at a predefined 
magnification the view would become a first person 
shooter allowing a whole new experience for the 
gamer. The gamer could then play the engineer 
infiltrating a base to steal or destroy it or even a spy 
sneaking into a base to steal new technology. When 
they have had enough or completed the task the view 
can be returned to a typical isometric view, combine 
this with an interesting plot idea concerning monsters 
in the 1920’s trying to take over the world and some 
detailed graphics and several of the elements 
identified to improve immersion are in place. 
  

CONCLUSIONS 
The initial development of a 3D mesh based approach 
for creating a tiled world rather than 2D tiles 
highlighted 2 initial issues: The first was a 
performance issue which would prevent the game 
being played on lower performing PC’s (Less than 
PIII 866Mhz + no Hardware graphic accelerator). The 
second was the additional development time needed to 
design and code 3D models. But the obvious 
advantages is, allowing the gamer far more control 
over their game environment and thus enhancing an 
aspect of immersion in the game world. 
 

 
 

 

Previous images show initial development of a 3D tile 
based game that allows the player to zoom into the 
map. 

LAST WORDS 
The mixing of game genres is not altogether new, in 
Halo; the gamer can change from a FPS to a driving or 
flying game almost seamlessly. 
 
Does an immersive environment necessarily mean 
commercial success? 
The simple answer is “not necessarily”. With a mass 
of games being released on a weekly basis the 
publishers must entice the gamer to at least try the 
game via shareware or a free “cover disk” demo, with 
the hope that the released game isn’t a commercial 
failure and so subsequent titles are put at risk. What is 
certain is that a well-balanced, immersive and fun 
game is more likely to succeed. 
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ABSTRACT 
 
This paper investigates a selection of artificial intelligence 
methods that are applicable to board games. In particular it 
focuses on the ancient oriental game of Go, a subtly 
complex game, which so far computers have found very 
difficult to play well. Amongst the techniques looked at 
here are neural networks, alpha-beta type tree search 
algorithms, temporal difference methods and rule based 
expert systems. The balanced combination of these and 
other techniques provide a promising avenue of research. 
Several programs are looked at including Honte, Many 
Faces of Go, NeuroGo and work done by Martin Muller 
towards Explorer in the combinatorial game theory field. 
We look some experiments with these techniques and how 
they can be used for particular situations. 
 
INTRODUCTION 
 
The topic of artificial intelligence techniques for games is 
an increasingly popular subject. Since the success of a 
variety of AI methods, such as alpha-beta pruned minimax 
search, neural networks and genetic algorithms, in the 
realms of chess, Othello, checkers and many other zero-
chance games, research has been leaning towards a game 
considered by many to be the most challenging of these 
types of games; Go. 
 
Go is a board game with its origins in China. It is played on 
a 19x19 grid, stones being placed in turn by each player, 
one black and one white, on the intersections. The aim is to 
surround your opponent’s stones to capture them whilst 
attempting to secure areas of empty intersections, known as 
territory. Figure 1 shows an example position on a 7x7 
board, note that games are usually played on a 19x19 board. 
Due to the large board size and the simple unrestrictive rule 
set the game can yield very complex situations. In terms of 
search space it is many times larger than that of Chess, so 
much so that even the most sophisticated game tree search 
methods available at the moment have failed to produce 
even an average human equivalent Go playing computer 
program. There are quite a lot of resources available on the 
internet concerning computer Go and a worldwide 

community of programmers, some of whom actually make 
a living from writing and selling their programs. A mailing 
list where computer Go enthusiasts can exchange thoughts 
and discuss new ideas is available [13] and the Computer 
Go Ladder [1] exists for programmers to test their programs 
against one another in an ongoing league. 
 

 
Figure 1 - An Example Go Position 

 
TECHNIQUES 
 
A variety of techniques are available for programmers to 
choose from, mix and match, or hybridise in novel ways. 
 
Basic game tree searching is the simplest of these 
techniques and simply means using a method to analyse 
possible board positions to some given or dynamic number 
of moves ahead in the game to find the most favourable one 
immediately reachable from the current position. Arguably 
the most popular search algorithm used by computer 
programmers when tackling board games is the minimax 
algorithm [9]. This algorithm constructs and analyses a 
game tree, given the assumption that each player will 
always be trying to increase their score as much as possible 
whilst reducing their opponent’s score. Of course this 
requires a reliable method of scoring a board position (an 
evaluation function), which it turns out is quite a challenge 
in the case of Go. 
 
Genetic algorithms are based on the genetic evolutionary 
process. Sets of genes, sometimes termed chromosomes, 
each encode a possible solution to a given problem. They 
can be combined and mutated if the algorithm specifies and 
at each evolutionary step will have a fitness value 



calculated for each potential solution. This allows biased 
population reproduction as in the survival of the fittest 
principal and for the best available solution to be selected 
when required. 

 
Artificial neural networks are modelled on the brain. An 
artificial network is constructed using neurons and 
connections between them, which have assigned weights 
that affect the transmission of impulses between the 
neurons. The weights can be modified by a variety of well-
known algorithms to ‘teach’ the network to recognise 
patterns of input and associate appropriate output responses. 
Probably the most important quality of ANNs is their 
ability to generalise over sets of training patterns so that 
given a never before seen input pattern, an appropriate 
output response can be generated. 
 
THE CONTENDERS 
 
Neural networks have a handful of papers representing 
efforts in that direction including evolutionary methods to 
generate weight sets for networks. Richards et al. [11] 
discuss their experiments in using the SANE method to 
evolve networks to play Go and Donnelly et al. [3] explore 
the use of genetic algorithms and neural networks for 
positional evaluation and the problems with encoding 
neural network structures for use with genetic algorithms.  
 
Honte 
 
A program called Honte by Fredrik Dahl [2] has achieved 
some success using neural networks for a variety of 
purposes. It uses conventional AI methods, such as alpha-
beta game tree search, in conjunction with three neural nets, 
the first of which was trained by supervised learning to 
score potential moves given the local contents of the board 
surrounding the move. A second one was trained to 
estimate the safety of groups of stones with the Temporal 
Difference learning algorithm and the third uses TD 
learning again, to estimate territory. 
 
NeuroGo 
 
Probably the most impressive result from the neural 
network field so far has been from Enzenberger’s program 
NeuroGo [5] which, through it’s public participation in the 
Computer Go Ladder [1], has shown itself to be a 
consistently well performing program, lending weight to the 
scientific methods used in the program. NeuroGo uses the 
Temporal Difference algorithm, self-play and a 
dynamically connected network, which allows the structure 
of the network to change to better represent the spatial 
attributes relating stones to each other and to empty points 
on a Go board. 
 
Schraudolph et al. and Temporal Difference 
 
Schraudolph et al. [12] have previously carried out similar 
work to Enzenberger in an attempt to capture some 
essential but elusive properties of human evaluation of Go 

board positions. The effect of placing a stone can have 
repercussions right to the very end of the game, so the fate 
of future board positions are directly linked to previous 
ones. This is true not only through time, but through space 
also, where a stone may affect another one or a group of 
stones later in the game, but in a seemingly unconnected 
area of the board when the stone was placed. A prime 
example of this is how occasionally in games of Go a 
formation of stones occurs that is referred to as a ladder. 
This structure will sometimes occur when one player is 
fighting to save some stones from capture and the other is 
trying to capture the said stones. This race to capture may 
run across the board and the move sequence can be read out 
precisely until either a board edge is hit or some other 
stones are run into. These other stones may have the effect 
of allowing the player being chased to escape or to allow 
the chaser to capture and are called ladder breakers because 
they disturb the ladder formation causing it to stop. For 
anyone but a novice Go player these ladder breaker stones 
are obvious when the path of the ladder is clear and so often 
the fate of a ladder is decided by a single stone that may be 
on the other side of the board and without even having to 
start the ladder running. Schraudolph et al. used the 
Temporal Difference training algorithm to try to capture 
some of the relationship between successive board states in 
a neural network that represented a board state evaluation 
function. It was found that an undifferentiated network, one 
with a raw input representation of the board state took 
significantly longer to train and did not reach such a level 
of play as an appropriately structured network with a 
carefully considered input representation. The networks 
produced managed a good level of play on a small board 
(9x9), enough to beat Many Faces Of Go set to a low skill 
level. 
 
Golem 
 
Another attempt at incorporating neural network techniques 
into a Go program came from Enderton [4] called Golem. 
The paper describes a fairly standard process of identifying 
groups of stones (not directly connected, but may be 
connected given some conditions) and then using a hard 
coded territory estimation algorithm to give an evaluation 
value for a position. Golem used a one-ply search to find 
the best move and also used two neural networks to give 
estimates of how good a particular move is. One was for 
speed and was used in move ordering within the search tree, 
the second was used to prune the initial set of moves 
considered in the one-ply search. 
 
Many Faces of Go 
 
One of the leading programs in the computer go arena for 
many years, Many Faces of Go uses a combination of 
techniques such as a rule based expert system, low to high 
level abstract knowledge about board positions and the 
relationships between stones, updated incrementally, a 
joseki database storing standard corner patterns of play and 
a pattern database of 8x8 patterns with partial move trees 
attached. The program uses hard coded algorithms to 



determine the relative score for examined board positions, 
which is linked to the move suggesting rule based system, 
for instance if the program knows it is many points behind 
it will play more risky moves. 
 
Explorer and Combinatorial Game Theory 
 
Combinatorial game theory was and is becoming an 
increasingly popular topic, particularly when considering 
end game positions. Mueller’s thesis [8] contains some 
important work with the game of Go in this area. 
 
GNUGo 
 
A popular open source program called GNUGo [7] is a 
participant in the Computer Go Ladder [1] and provides an 
example of a Go playing program with no machine-learning 
element to it. It uses extensive hard coded knowledge and 
databases and follows the standard procedure of 
information gathering, move generation and move 
selection.  
 
An important point noted from this survey was that whilst 
most researchers have achieved a degree of success, albeit 
mostly against trivial opponents, they have only 
infrequently approached the level of play that commercial 
programs are currently operating at. These programs, such 
as Many Faces of Go [6] and Michael Reiss’ Go4++ [10], 
nearly all use extensive expert knowledge in the form of 
move sequence databases and hard coded rule systems that 
have been finely tuned over many years. Even these 
however, are far from reaching a professional level of play. 
At present one of the best programs around, Many Faces Of 
Go version 11.0 claims it’s hardest playing level to be 
around 8 Kyu. This is 15 grades below professional level 
given a beginner starts at 30 Kyu and after 1 Kyu you start 
counting Dan grades at 1 Dan upwards to 7 Dan for 
amateurs. Professional grades go from 1 Dan to 9 Dan by 
smaller increments. 1 Dan professional is roughly 
equivalent to 7 Dan amateur and at 9 Dan the scales 
roughly coincide. Personal familiarity must also be taken 
into account, for instance a human 8 Kyu would reliably 
beat Many Faces at it’s hardest level after a short exposure 
time, so adaptability to opponents and the ability to learn 
from game to game must be a feature considered for future 
Go programs. 
 
EXPERIMENTS AND METHOD DEVELOPMENT 
 
Following on from the work done during my MSc project, 
which provided a basis for this work, I have developed a 
suite of programs to allow a range of experiments to be 
conducted. The software is flexible enough to allow easy 
adaptation to new ideas and methods that may be developed 
and may need to be tested and experimented with. Some 
initial experiments have been carried out already in an 
attempt to find a fruitful path for the research to follow.  A 
fair amount of time has been spent on training neural 
networks to discover how they could best be used within a 
Go playing program and to find out the limits of such 

methods within this problem domain. Amongst the 
experiments run to date are the varying of parameters to the 
learning algorithms, in particular game specific parameters 
which affect the way training data is generated for the 
networks to learn, encoding and presentation of the training 
data to the neural networks and a brief look at temporal 
difference methods for incorporating temporal knowledge 
of the game of Go into a static board evaluation function. 
 
An exploration of intelligent search techniques has been 
made to see what might be appropriate to implement or 
expand upon in this research. Within the area of hard AI the 
minimax variant MTD(f) [9] has been investigated and 
implemented in conjunction with machine learning 
methods, in the present case neural networks, to control the 
size of the search tree. This method of tree pruning has 
shown itself to be very worthwhile, even if only used at its 
simplest level, which is to order nodes in a search tree, 
rather than using the nets as an pruning heuristic. It would 
be considered inadmissible as opposed to alpha-beta 
pruning because it may yield a small chance that the 
optimum solution will be missed. Increasing the nets move 
ordering/pruning accuracy can reduce this chance, but the 
risk will never be completely removed, only limited. 
 
A recent development has led to research efforts in the area 
of genetic algorithms with a view to use genetic algorithm 
methods to tackle the search tree depth problem which has 
proven to limit the effectiveness of game play even with 
neural network additions, for pruning and move ordering, to 
the MTD(f) algorithm. At present developing an 
appropriate algorithm to make good use of the benefits of 
the genetic paradigm to evolve partial game trees is the 
focus of the research. 

 

Figure 2 - Move Selection Process 

 
Figure 2 shows the move selection sequence from an initial 
board position to a final choice of move that the program 
makes every time a new move is requested. 
 
A further stumbling block encountered was the difficulty in 
developing a good quality, reliable evaluation function for 



the game tree search to use. For Go, there is no obvious 
suitable function. Much work has been done by other 
researchers involving training neural networks and using 
evolutionary methods to find a viable evaluation function 
with some reasonable results being found [3,11]. Initially 
some experiments were done with the temporal difference 
neural network training method but the results were not 
really relevant to the research and more interesting 
directions had presented themselves by this point. 
Preliminary investigations were made into evolutionary 
techniques to evolve an evaluation function, in particular 
competitive co-evolution of a neural network, rather than 
the gradient descent method used by the standard neural 
network training techniques. However taking previous 
research and the likely complexity of a good Go evaluation 
function, time and resources may become a limiting issue. 
 
 
Move Finder networks 
 
After experimenting with various network designs, a class 
of networks termed ‘move finder networks’ were 
developed. The intended use for this category of nets was to 
aid game tree pruning and search by allowing us to 
immediately discard low scoring moves or pick a selection 
of moves that achieved a boundary score or higher and to 
order nodes in the search tree to enable algorithms such as 
alpha-beta search to run more efficiently. To begin with 
simple 3 layer networks using one input neuron per board 
intersection and symmetric input values to represent the 
contents of the intersection were used.  
 
The networks were centred on each legal move in a board 
position and produced a score from their single output 
neuron to indicate the plausibility of the suggested move. 
The size of the receptive area around the legal move had to 
be considered since that would dictate the size of the input 
layer, for instance with a 9x9 area of board around the 
move, 81 input neurons would be required. At this point it 
seemed the more board area that could be input to the net 
the better and training and testing was carried out with 5x5, 
7x7, 9x9, 11x11 and 13x13 input area sizes. Reasonable 
results were obtained up to 9x9, after which the training 
time was found to be to long to realistically train anything 
useful. The training data for these networks was extracted 
from a collection of professional tournament games in SGF 
format acquired from the Internet. 
 
Apart from changing the input area size some nets were 
trained to see if the skill level of the players who played the 
training games had an affect on the quality or speed of 
training. Little information was gained from these particular 
experiments however they were repeated for later 
generations of move finder network. 
  
 
Non-Repeating Training Data 
 
For the next phase of experiments it was thought that non-
repeating training data, as opposed to the standard 

repetition of a training set, would fare better for this 
particular problem. The move finder networks produced so 
far had shown that they performed well on their own 
training sets however did not adapt very well to unseen 
input. The solution to this was to use one of the Internet Go 
Servers to acquire game records.  
 
The server actually used was called NNGS and many 
thousands of games from all skill levels were found there 
and of course with each day more games are played and so 
more game records produced with which to train the 
networks. There were further problems concerning training 
time and quality of the networks output that I felt might be 
improved by finding more appropriate input 
representations.  
 
Initially the receptive area was set to 9x9 and the input 
representation involved separating the possible intersection 
states to give the network extra degrees of freedom, so we 
had 3 input units for each board intersection, each 
representing one of the possible intersection states our 
colour, their colour and empty. Using the notions our colour 
and their colour helped to remove some redundancy in the 
training set due to colour symmetry in the training patterns 
and so meant that a concept learnt for the black player was 
also learnt for the white player. A further thought that had 
cropped up whilst experimenting with the first phase of 
networks was that due to the limited local area the networks 
would perform badly when near an edge that was just out of 
sight of it’s receptive field.  
 
One solution to this is simply include the whole board as 
input, however this had already been discounted as 
unfeasible due to the previous experiments revealing that 
the time and resources it had taken to train those networks 
was substantial. An alternative solution was to include two 
input units to indicate the distance to the two nearest board 
edges. This combined with symmetry handling for the 
board states in the training database code allowed the 
networks to minimise the amount of training required to 
learn edge and symmetrically related concepts. 
 
Refining the Net 
 
This particular architecture learnt a lot faster and to a higher 
standard than the first phase, so much so that the networks 
were now reliable enough to use for pruning game trees and 
ordering moves in a proper Go playing program. Now the 
task was to refine the nets as much as possible and to look 
at other factors that may further improve performance. The 
training set contained much redundancy, effort to remove as 
much symmetry duplication as possible lead to the surprise 
discovery concerning the use of the training set. From the 
first set of experiments and partly due to the small amount 
of available training data at the time, the training sets were 
used in an unusual fashion.  
 
For each move, in each training example game, the 
following 5 moves were also assigned scores on a sliding 
scale but with the same board state as the initial move. This 



gave 6 times the amount of training data available and also 
appeared to speed up the training. As an experiment in this 
second phase some networks that had been trained to their 
apparent capacity had the move look ahead switched, which 
was 6 by default, to 0 so only the actual move for each 
board position was used. This immediately produced a 
distinct increase in output quality by 3-4% and then settled 
again.  
 
The same immediate increase was seen when changing the 
training set contents from games from all levels of player to 
only those played by Dan rank amateurs (high level 
players) but the increase was not cumulative when using 
both modifications at the same time. An attempt was made 
to train nets starting on only Dan rank and also to start with 
no look ahead as each of these conditions had proven to be 
beneficial before however all of these nets failed to make 
any significant progress through training, appearing to have 
very quickly got stuck in a local minima. Unfortunately the 
reasons for this are not clear at the moment but I hope to 
find a reason behind this apparently odd behaviour. 
  
 
Architecture Problems 
 
There were still evident and emerging problems with the 
network architecture as the network design moved into its 
third phase. When the move being scored was near to the 
edge, units that represented points off the actual board were 
simply all set to 0. However, as mentioned before, the edge 
of the board is very important in Go, so as well as 
extending the 2 units previously used to encode the board 
edge distances to 18 units (9 per edge, indicating distance 
of between 1 and 9) an extra state neuron per board point 
was added to represent off board points. Yet again the 
training time was reduced and the quality of results 
increased even though the number of neurons in each 
network had steadily gone up and so the number of 
calculations required had gone up also. Time was still a 
problem though, if not in training then in practice. Whilst 
the networks helped speed up the game tree search for the 
actual Go playing program they were still taking up a lot of 
processor time and the trade off between resources and 
results was reaching its optimum. By analysing the 
networks in operation I found that I had allowed too many 
hidden units to be used in each net. The training was run 
again, after a better estimate as to the necessary number of 
hidden units required and the training and operation speed 
was increased by a large factor. In fact this led on to trying 
larger local areas as input to the nets, now that extra 
resources were freed up. The most successful network to 
come out of this research so far has been a third phase 
13x13 input area network. As figure 2 shows this network 
(newBPN13x13b.bpn) edged past the 9x9 version 
(newBPN3b.bpn) at around 100,000 epochs and stabilised 
just after. In general the 13x13 network plays better in Go 
test games, but occasionally the 9x9 version picks up the 
correct move where the 13x13 doesn’t. It can only be 
assumed that due to the difference in local receptive field 
size, the networks are learning mostly similar concepts with 

a few unexpected but possibly important differences. It 
would certainly be interesting to find out why one performs 
better than the other in these situations and is relevant to 
improving the playing ability of the Go program.  
 
Amongst some of the latest ideas for input representation 
have been to include more pre-processed Go specific 
knowledge. To make an adaptable, useful and easily 
generalized system the training has so far avoided any real 
specific knowledge from the problem domain. Other 
researchers have used specific knowledge to train networks 
with moderate success [5,12] so a network with extra 
information about the status of stones surrounding the 
proposed move was developed. This showed no 
improvement over the best networks trained to date. 
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Figure 3 - Training Performance of NNs 

 
CONCLUSIONS  
 
One of the most obvious problems with computer Go 
playing programs at present is that after a human opponent 
has played against the program a handful of times, they can 
very easily identify and exploit weak spots in the programs 
play. A method to rectify this computer Go hurdle would 
most likely involve machine-learning techniques such as 
neural networks to allow the program to adapt its tactics to 
the opponents style of play. This in itself opens up many 
complex problems such as how to define tactics for this 
game, where often there will be many moves in a game that 
are played for reasons involving indistinct, abstract Go 
concepts such as shape.  
 



A good review of research in the computer Go arena has 
been published which considers some of these issues and 
proposes more possible lines of research [14]. All in all Go 
is a very challenging game for computers and humans alike 
and looks set to push the boundaries of artificial 
intelligence in the coming years and certainly warrants 
greater consideration by the AI community as a whole. 
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Abstract 
In this paper, we describe the design of a 
networked, multiplayer game designed for 
first year students taking a flexible learning 
course in “Introduction to Multimedia 
Coding” at London Metropolitan University.  
The game aims to motivate students, to 
help them consolidate their knowledge, to 
introduce them to teamwork, to provide 
them with peer support and to give them 
the opportunity to make social contacts.  
The prototype version of the game has been 
successful in meeting some of these 
objectives and feedback from students has 
clear implications for future developments.   
 

Introduction 
In Higher Education, there is currently a 
strong emphasis on the development of 
flexible learning courses which can be 
delivered online.  Such courses facilitate 
government and institutional aims of 
widening participation by producing an 
alternative means of learning.  There is also 
a potential marketing advantage.  When a 
course has been developed and proved itself 
to be successful, institutions may choose to 
offer it nationally or internationally, thus 
attracting a more diverse range of students 
and extending their traditional geographical 
limits.   
 
Collis and Moonen (2001) maintain that the 
key idea in flexible learning is to provide 
learner choice.  Areas that could potentially 
become more flexible include location, 
delivery of resources, types of 
communication and interaction within the 
course, programmes of study and methods 
of assessment.  From the students' point of 
view, online courses provide the opportunity 
to access materials from home at convenient 
hours and to combine study more easily 

with full-time or part-time work.  Learning 
becomes self-directed, rather than 
structured by teacher-led sessions, which 
should promote autonomy.   
 
Brookfield (1995) suggests that adults 
engaged in self-directed learning “...use 
social networks and peer support groups for 
emotional sustenance and educational 
guidance.”   However, a potential 
disadvantage of distance learning is the lack 
of opportunity for teamwork, as it is likely to 
be difficult to arrange meetings with other 
students if there are no scheduled lectures 
or tutorials.  This is particularly a challenge 
for first year students, who need 
opportunities to socialise and network.    
The designers' intention was to counteract 
this problem by introducing a playful, team-
based activity to complement the online 
learning resources. 
 
The Game has been designed as an ice-
breaker for first year undergraduates taking 
a flexible learning course in “Introduction to 
Multimedia Coding”.  The game itself is 
simple and in its prototype phase.  As an 
optional component of a flexible learning 
package, it introduces the concept of 
teamwork to first year students, by giving 
them the challenge of taking part in a 
multiplayer competition which requires them 
to work together to complete levels of the 
game.   
 

Team Play 
Play is traditionally a social activity and this 
is an aspect that has been missing from 
many computer games.  Recent 
improvements in networking technology and 
hardware have given rise to a renewed 
potential for networked multiplayer games, 
and this is revitalising the gaming industry.  
Smith (2001) acknowledges that MPGs are  



the future of game design, noting out that 
at present they rely on the agency of other 
players to provide the majority of their 
excitement and interest.  The next 
generation of gaming consoles (PS2, X-Box) 
has built-in internet connectivity, allowing 
players to become involved in online games.  
Mobile devices, such as the GBA,  may soon 
be seriously challenged by mobile phones 
that can play java games and have colour 
displays and internet access.   
 
The current climate suggests that social 
gaming will involve competing against other 
players in an open arena.  While this may be 
more stimulating and less predictable than 
trying to beat a computer program, it 
reveals limited possibilities for collaboration 
between players and associated practise of 
communication skills, such as negotiating, 
turn-taking, presenting information and 
seeking resolution, all of which are qualities 
that make games attractive to educators.    
 
McGenere (2000) categorises games as 
cooperative, competitive and individualistic, 
and points out that cooperative games 
provide opportunities for teamwork, which in 
itself can be a highly motivating factor for 
players.  Kirriemuir (2002) indicates five 
distinct benefits that can be associated with 
the use of computer games in a relevant 
educational context:  (i) hand-eye 
coordination;  (ii) developing strategic skills;  
(iii)  developing team, social, communication 
and resource sharing skills;  (iv)  
encouraging curiosity and experimentation;  
(v)  familiarity with technology. 
 
Bekoff's observations (2002) of pack animals 
lead him to believe that a sense of fairness 
is innate, because social play could not exist 
without it.  Animals who are active in 
playing with each other bond better with the 
pack and are less likely to be forced to go 
off as lone hunters.  From a biological point 
of view, being a good player aids longevity 
and the potential to reproduce.  Bekoff 
concludes that morality has evolved through 
play because it helps animals, including 
humans, to flourish in a social environment. 

Real teams and virtual teams 

Multimedia students need to learn how to 
work successfully together, so that they can 
complete team-based assignments.  
Teamwork also provides them with essential 
training for work within their industry.   
 
McGrath's taxonomy for group activities 
(1984) includes conflict, power struggles 
and competitions as part of the ritual 
leading towards performance.  These kinds 
of interactions have all been evident in the 
performances of multimedia students trying 
to work together, but the most successful 
and creative teams are almost always made 
up of students who enjoy each others' 
company and learn to collaborate.  Panitz 
(1996) defines collaboration as: “...a 
philosophy of interaction and personal 
lifestyle,”  contrasting it with cooperation, 
which is defined as: “...a structure of 
interaction designed to facilitate the 
accomplishment of an end product or goal.”   
Students must learn to cooperate with each 
other, or their team will fail;  if they learn to 
collaborate, they will probably have some 
fun, be motivated to succeed and gain 
tremendous satisfaction from participating in 
groupwork. 
 
Research has been done into the 
pyschological profiles of people working in 
teams in a real environment (Belbin, Myers-
Briggs, McGrath) and also in the field of 
computer-supported collaborative work, 
both in an educational and a work context 
(Davis, Brookfield, Chandler, Nunamaker).  
Certain phenomena seem to be recurrent, 
such as the tendency for team members to 
slip into familiar roles, and for some to 
participate actively while others “lurk.”  
 
Davis (1997), writing about virtual 
communities, points out that under normal 
social conditions, certain expectations have 
to be fulfilled in order for someone to be 
accepted as part of a community.  In 
cyberspace, however, many people are not 
willing to engage in social exchanges.  
Nunamaker (1997) highlights the difficulty of  



getting users of online systems to maintain 
their engagement over time.  Interaction 
between players in online games has been 
investigated by Manninen (2001), who noted 
that the majority of communication took 
place outside the game system.  However, 
from an educational perspective, this is not 
necessarily a disadvantage, as the purpose 
of including a multiplayer game is to actively 
encourage social contact between players 
away from the computer screen. 

 

Description of The Game 
Playing the game is optional.  Students who 
wish to participate email their tutor for a 
login and password to the game 
environment.  They are assigned to a team 
of four players and given email contact 
details for the other team members.  
Students are encouraged to make real 
contact with their team, so that they can 
cooperate during play and help each other 
gain high scores. 

The game consists of a number of levels, 
loosely related to the content of the course.   
Some levels require the players to recycle 
information they should have acquired 
during the course.  These could be 
interpreted as a type of self-assessment 
activity, where the player has an opportunity 
to practise before submitting a final score.   
Other levels of the game are experiential 
and aim to simulate for players the 
experience of, for example, sensory 
deprivation.  These are linked to course 
components dealing with accessibility and 
cognitive processing.  Examples of game 
levels are described below. 
 
All team members need to achieve a 
minimum score in order for the team to 
move on to the next level.   Each player's 
score is added to the total.  There is a score 
screen that shows how each team is 
progressing and reveals which teams are in 
the lead. 

 
 

“Scoreboard” screen 

Level 1 – Team log-in 

The initial challenge for the team is to meet 
each other, exchange information and input 
relevant data to the game, such as choosing 
a team name and a representative icon.  
The point of this exercise is to initiate  

 
conversation and promote cooperation 
between team members, who may not have 
previously met.  Only when all team 
members have successfully completed the 
task with identical information does the 
team gain access to Level 2. 



Level 2 – Know your enemy 

This is a version of the ubiquitous shoot-em-
up, with course tutors for targets.  The twist 
is that players can be awarded plus or minus 
points, depending on who they hit.  The  

intention is to ensure that students know 
which members of staff to contact about the 
course and that they know their tutors' 
names and can recognise them. 

“Know your enemy” screen 
 

Level 4 – Hit the Spot 

This is the first of a series of games that 
explore perception.  For example, some 
variables, such as colour, can be recognised 
very quickly, but are limited in range.  It 
takes longer to distinguish between different  

 

shapes that are the same size, and yet the 
range of possibilities is infinite.  Players gain 
a high score if they have a fast reaction 
time.  They have to match the object 
revealed behind a sliding screen with a 
moving miniature button.   

“Hit the Spot” screen 

Level 6 – Treasure Hunt 

In this level, players are gradually deprived 
of visual data and have to rely on audio 
effects in order to navigate the game 
environment.  There are practice games, 
which train the player to recognise particular 
sounds and interpret their meaning, 
followed by a scoring game which only 
shows a black screen.  Players have to avoid 
mines and find golden cups, guided by 

 
 different sounds that indicate their relative 
position and proximity to danger or buried 
treasure. 

 

Evaluation of prototype 
The prototype game was tested in a 
workshop environment, where it was easy 
for team members to meet face-to-face and  



exchange ideas and information.  The 
session was timetabled and organised, but 
not mandatory, allowing disinterested 
parties to continue with alternative activities.  
The players were second year students who 
were familiar with many but not all of their 
colleagues.  They were put into teams with 
students with whom they did not normally 
work.  It was clear that most of the students 
enjoyed the experience of playing 
synchronously and sitting together to 
discuss the game.  This led to the decision 
that in future implementations, a scheduled 
introductory session would be preferable to 
leaving novice players to make their own 
arrangements to form teams.   
 
Manninen (2001) suggests that co-operative 
incentive structures that reward individual 
group members based on the performance 
of the group can stimulate peer pressure 
and lead to participation and coordination of 
effort.  This was found to be the case during 
gameplay, when team members helped 
each other to complete levels so that the 
whole team could continue.  During the 
session, the atmosphere was loud and 
enthusiastic.  One student commented:  “It 
was a very good way of helping build 
communication and spirit.”   
 
Of the eleven teams, each consisting of four 
players, the scoreboard revealed one clear 
winning team (623 points), four potential 
challengers and five teams who did not 
progress past level 1.  Some players gave up 
if they encountered any technological 
hitches.  They were easily bored and 
unwilling to test an imperfect application. As 
the game was designed to be persistent and 
tackled by players in turn at different times, 
the player status was tied to the log-in 
mechanism.  This meant that players were 
obliged to log in again at the end of every 
level in order to proceed, which was quickly 
revealed to be a flaw.    
 
Observation of players and feedback from 
students was useful and constructive.  Some 
levels were  difficult to complete.  It could 
be argued that the application provided 
insufficient feedback for novice users.  
However, this was often treated as a 

problem-solving activity, which promoted 
communication.   
 

Conclusion 
The game seemed to meet the immediate 
objectives of promoting teamwork and 
providing opportunities for social contact 
between students.   It would be an 
interesting activity to use at the start of a 
first year course.  Large classes can be 
intimidating and this could be a friendly and 
fun method for helping students to break 
the ice, as well as practise their computer 
skills.   
 
Consolidation of knowledge was not 
assessed in this evaluation, although some 
of the levels were quizzes that related to 
course material.  Self-assessments are often 
popular with students, as feedback is 
computer-generated and therefore 
immediate, performance is private and 
exercises can be repeated at the student's 
own pace.  While it would be useful to know 
if quizzes helped students to recycle course 
material, it would be a pity to tarnish the 
game with the label “edutainment,” 
condemned by Jenkins (2001) as having “... 
all of the entertainment value of a bad 
lecture and the educational value of a bad 
game...” 
 
It will be interesting to discover whether 
teams persist over a semester in the gaming 
environment and whether they manage to 
transcend the typical obstacles facing 
groups in a collaborative virtual 
environment.   
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ABSTRACT 
 
This paper proposes a real-time, video based motion capture 
system using one video camera and simulates its use as an 
intuitive interface for interactive 3D games.  Since 
conventional video based motion capture systems need many 
cameras and take a long time to deal with many video 
images, they cannot generate motion data in real time.  
Therefore they cannot be used as a real-time input device for 
a standard PC. To deal with this problem, the authors have 
already proposed a motion capture system using one video 
camera (Akazawa et al, 2002a).  It takes video images of the 
upper part of the body of a person and generates upper body 
motion data, e.g., x, y, z position of hands, a face rotation, 
etc..  Since the system employs a very simple motion-
tracking algorithm, so it generates such upper body motion 
data in real time.  This paper especially focuses on the 
tracking of hands motion on the top of a desk, and proposes 
the use of its motion data as 3D game input data instead of 
that from a mouse device. 
 
 
1. INTRODUTION 
 
This paper treats a video-based motion capture system using 
one video camera.  Many researches on the motion capture 
system have been made so far because motion data has 
become in great demand for CG animation productions and 
3D game productions.  Conventional video based motion 
capture systems use many video cameras to obtain accurate, 
desired motion data so they cannot generate motion data in 
real time since it takes a long time to deal with many video 
images.  Consequently it is impossible to use them as a real-
time input device for human motion.  Moreover such 
systems are very expensive so they are not suitable for an 
input device of a standard PC.  To overcome this problem, 
we have already proposed a real-time, video based motion 
capture system using only one video camera to be used as an 
input device for a standard PC (Akazawa et al, 2002a).  
Since our system uses a very simple motion-tracking 
algorithm based on color and edge distributions, it is capable 
of tracking the upper part of the body of a person, e.g., 

hands, a face, etc, and generates their motion data in real 
time.  Our system is easily extended to track the lower part 
of the body of a person as well as the upper part of the body 
and to generate more accurate 3D motion data by using two 
video cameras (Akazawa et al, 2002b). 
This paper mainly describes the characteristics of our 
proposed motion capture system consisting of one video 
camera as an input device to be used instead of a mouse 
device for intuitive 3D game interface.  The focus is on the 
tracking of hands motion.  The system takes video image of 
the hand from one video camera and extracts its x, y z 
position data.  This information can be used as an input data 
like that from the mouse-device motion.  Furthermore, the 
system recognizes specified shapes of the hand, e.g., a paper 
or a stone shape.  This information can be used as an input 
data like the mouse-device button press or release.  In this 
way, our motion capture system can be used as an intuitive 
interface in place of a mouse device for various application 
software including games.  In this paper, we also clarify its 
usefulness by showing some 3D games. 
 
[Related work] 
Many works on the video based motion capture system have 
been made so far (Gravrila, 1999).  Recently motion capture 
systems without using any markers have been studied (Wren 
et al, 1997).  Their standard method for tracking the human 
motion is based on the construction of a 3D shape as voxel 
data from several silhouette images (Snow et al, 2000).  
However, this process needs huge computation time.  Some 
particular techniques and other constraints are necessary to 
reduce this computation time.  Weik and Liedtke proposed a 
hierarchical method for 3D pose estimation (Weik and 
Liedtke, 2001).  Luck et al. proposed a real-time algorithm 
by reducing joints of a human body and their degrees of 
freedom (Luck el al., 2001).  These systems use four video 
cameras at least and need a huge performance space.  Our 
system uses only one video camera.  Already some methods 
that use one video camera are proposed, but our method is 
simpler than those.  Musse et al. proposed hand sign 
recognition method using a neural network.  This system can 
recognize many hand signs.  However the system has to use 
data glove while our system uses only one video camera. 
 
The remainder of this paper is organized as follows.  Section 
2 explains system overview.  Section 3 explains tracking 
algorithm.  Section 4 shows example games.  Finally, 
Section 5 concludes the paper. 
 



 

 

2. SYSTEM OVERVIEW 
 
First of all, as an overview of the system, this section briefly 
describes its hardware architecture and software architecture 
separately. 
 
2.1 Hardware architecture 
 
The system hardware consists of a standard PC, a video 
capturing board, and a video camera.  If there are two 
systems connected with each other through the network as 
shown in Figure 1, they communicate with each other and 
work collaboratively.  This hardware generates motion data 
by extracting person's image from each frame of video 
camera images and by computing the difference between 
two adjoining person's images.  This motion data is used as 
an input data for other applications.  Using the network 
communication facility (network thread in Figure 2), this 
motion data is sent to other applications running on another 
computer through the network. 
 
2.2 Software architecture 
 
The software architecture has two main threads, i.e., tracking 
thread and application thread, as shown in Figure 2.  
Tracking thread tracks the person's motion, generates motion 
data and sends it to a 3D graphics application, i.e., 
application thread.  Visualization thread displays a person 
image as animation according to the motion data on a 
display screen.  This is used for checking the motion 
tracking.  Finally network thread is a network 
communication facility itself.  Tracking thread sends motion 

data to other 3D graphics applications running on a different 
computer through this tracking thread.   
 
 
3 TRACKING METHOD 
 
This section explains how to track the person's motion.  
Before tracking, the system requests an initializing process.  
And then the system starts the tracking process. 
 
3.1 Initializing process 
 
As previously mentioned, the system tracks the person's 
motion by extracting person's image from each frame of 
video camera images and by computing the difference 
between two adjoining person's images.  First of all the 
system needs to store a background image excluding a 
person as an initial treatment. 
After storing the background image, the system starts to 
track the motion.  For each video frame in the tracking 
process, the system extracts the silhouette of a person by 
subtracting the stored background image from the current 
video image, and extracts a person’s image using this 
silhouette as shown in Figure 3. 
As explained in the next subsection, since the motion 
tracking is based on the color information, the system needs 
to store an initial state of the color information of the 
person's image.  The system requests the user to perform 
his/her initial pose in order to obtain the color information of 

Figure 1: Hardware architecture 

Figure 2: Software architecture 

Figure 3: Image extraction process 

Figure 4: Initial pose setting 



 

 

each tracking area of the user’s body as shown in Figure 4. 
 
 
3.2 Tracking hands 
 
The motion tracking is mainly carried out based on the color 
information of each specific area of the body.  Strictly 
speaking, the median point of the color information is used 
as the center of the corresponding focus area.  It is calculated 
using Equation 1. 
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where Xc, Yc are the centroid coordinates of the color 
distribution.  Xc(i), Yc(i) are the X, Y coordinates of the i-th 
color point, and m  is the number of color points. 
 
However, practically the color information is insufficient for 
robust motion tracking.  For example, the color of the skin is 
uniformly distributed over the arm as shown in Figure 5.  If 
the user wants to track his/her hands, its color centroid is 
influenced by the arm color and it moves to the center of the 
arm area gradually.  Consequently the system will loose the 
focus area.  To compensate this weakness, we employ new 
measure concerning the edge distribution in addition to the 
color information.  Similar to the color information, the 
median point of the edges, which are the contour pixels of a 
focus area, is used as the center of the area.  It is calculated 
using Equation 2. 
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where Xe, Ye are the centroid coordinates of the edge 

distribution. Xe(i), Ye(i) are the X, Y coordinates of the i-th 
edge point and n  is the number of edge points. 
 
The edge centroid is always located on the upper part of the 
hand.  So the system does not loose the focus area.  However, 
the edge centroid is strongly influenced by the change in the 
shape of hand.  Therefore, we use weight values for both the 
color centroid and the edge centroid.  As a result, the focus 
area becomes stable.  The centroid of the focus area is 
calculated using Equation 3. 
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where Xp,Yp are the centroid coordinates of the focus area. we 
is the weight of the edge and wc is the weight of the color. 
 
3.3 Motion data 
 
As described in the previous subsection, our system 
generates x, y location data for each tracking area.  This is 
enough for most applications.  Especially when using our 
motion capture system as a mouse device, this is enough.  
However, for some cases it is not enough.  For example, in a 
virtual reality application, usually we need 3D position data 
for manipulating a 3D object.  Therefore, we employ another 
measure concerning the depth. 
The depth value is determined by the size of a focus area as 
shown in Figure 6.  This reason is easy to understand 
because the size of an object far from the camera position is 
smaller than that of the near one. 
 

Figure 5: Computing focus point 

Figure 6: Depth values based on their focus area size 
Figure 8: Edge distribution: two typical histograms
of a stone shape and a paper shape 
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3.4 Shape recognition 
 
Furthermore the system recognizes some shapes of a specific 
object besides generating motion data.  Currently the system 
can recognize the hand shapes, e.g., a stone and a paper.  To 
recognize a requested hand shape, the system has to 
calculate the difference between a current hand image and a 
candidate hand shape image.  We employ a very poplar 
method; to calculate the difference between two images, the 
system compares the histograms of their edge distributions.  
A histogram is generated from the following Set D .  This set 
means how each point of the edge is distributed from the 
centroid of the hand image as shown in Figure 7. 

           { }nDDDD ,,, 21 L=                         (4) 
 
where Di is i-th edge distance from the centroid of the focus 
calculated by the following equation. 

( ) ( )22 YyXxD iii −+−=                    (5) 
where X and Y are centroid coordinates of the focus area 
calculated by Equation 3.  xi and yi are the coordinates of the 
i-th edge. 
Figure 8 shows two typical histograms of a stone shape 
image and a paper shape image.  Since their images of 
different shapes of hand have different histograms, therefore, 
by calculating the error between the histograms of a current 
hand image and a candidate stone shape image, and the error 
between the histograms of the current hand image and a 
candidate paper shape image, and then finding them 
minimum, the system recognizes the current hand image to 
be a stone shape image or not. 
 
Histograms comparison 
 
To calculate an error between the histograms of a current 
hand image and a candidate shape image, i.e., a stone shape 
or a paper shape, we have to prepare histograms of such 
candidate shape images in advance.  Figure 9 shows the two 
candidate histograms of a stone shape and a paper shape.  
These candidate histograms were calculated from the data 
actually captured by our motion capture system.  Strictly 
speaking, each of these candidate histograms is obtained 
through some processes.  First process is to generate ten 
histograms from ten different sets of capture data of the 
same hand shape.  Second process is to normalize each of 

these ten histograms.  Normalization is adjusting the 
maximum rank size and the total amount.  Final process is to 
calculate the average of these ten normalized histograms and 
to take it as a candidate histogram.  Each candidate 
histogram is represented as the following Set H . 

{ }nHHHH ,,, 21 L=                           (6) 
 
where n is the number of ranks.  Hi is i-th rank value. 
Then our motion capture system calculates errors between 
each of these candidate histograms and the histogram of the 
current hand image actually captured.  We employ Euclidean 
distance as an error metric.  Each error is calculated using 
the following equation.   
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where Hi is i-th rank value of the histogram of a current 
video image.  Hi is i-th rank value of the candidate histogram 
of a stone shape image or a paper shape image. 
 
Finally, the system outputs a symbol value according to the 
result of calculated errors.  Currently the system recognizes 
only two hand shapes.  However, it is possible to recognize 
more other shapes by preparing corresponding candidate 
histograms.  In this way, this shape recognition method is 
very simple and useful.  However, this method is insufficient 
to recognize more complex hand signs.  So, we will 
implement more efficient technique to enable our system to 
recognize more hand signs (Cui and Weng 1996).  
 
Noise removal about hand shape symbol 
 
As previously mentioned, our system generates position data 
as the center of the hand image in real time.  However such 
position data does not match the true center position of the 
hand.  Especially when the user moves his/her hand quickly, 
its error between the generated position data and the true 
center position come to be bigger as shown in Figure 10.  In 
this case, the system calculates the incorrect histogram of a 
hand shape distribution, and outputs an incorrect symbol 
value.  This data becomes a noise.  To recognize the hand 
shape correctly, the system removes this noise as follows: 
The following Set S is a sequence of symbols that the system 
outputs as the result of hand shape recognition. 

( )1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0=S  (8) 
 

Figure 9: Base histograms of two shapes  
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where 0 and 1 indicate a paper shape and a stone shape 
respectively. 
 
As is easily understood, there are two noise values in S.  The 
ninth symbol 1 is the first noise value and the 28th symbol 0 
is the second noise value.  It is easy to remove these noise 
values because if the length of a subsequence of the same 
symbols is less than, for example, five, the subsequence 
must be noise.  In this way, our system removes noise values 
and outputs the correct Set S’ as follows. 

( )1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0'=S   (9) 
 
As explained in this section, our system outputs 3D motion 
data of each hand and a symbol value corresponding to its 
shape.  This data is almost similar to the one output by a 
mouse device.  Next section introduces some 3D game 
examples that use our motion capture system as an input 
device instead of a mouse device. 
 
 
4. EXPERIMENTS 
 
4.1 3D game examples 
 
In this section, we introduce two board game examples, i.e., 
chess and reversi games as shown in Figure 11 and Figure 
12.  These games are developed using IntelligentBox (Okada 
and Tanaka, 1995, Okada and Itoh 2000), which is a 
constructive visual 3D software development system.  

IntelligentBox provides various software components as 3D 
visible, manually operable reactive objects called boxes.  For 
example, as shown in Figure 11, each chessman rides on a 
XYMoverBox.  This box moves along left-right direction and 
forward-backward direction according to the user’s mouse 
device operation.  As shown in Figure 12, each reversi chip 
is also attached to a XYMoverBox.  The user moves each 
chip by his/her mouse device operation.  Although, in this 
way, a mouse device is originally the input device for these 
games, our motion capture system also becomes the input 
device for these games as follows. 
Figure 13 shows a composite box that communicates with 
the motion capture system and handles a mouse device.  
Strictly speaking, a VMCBox communicates with the motion 
capture system and reads hand motion data.  A 
VirtualMouseBox handles a mouse device according to the 
hand motion data.  Three StringBoxes represented in wire 
frame are attached to the VirtualMouseBox.  These boxes 
display a mouse-device X, Y position and left-button click 
information.  Using this composite box, the user can move a 
chessman or a chip by his/her hand motion as shown in 
Figure 14.  When the user wants to grasp an object, he/she 

Figure 11: Chess game 

Figure 12: Reversi game 

Figure 13: A composite box that communicates 
with the motion capture system and handles a 
mouse device 

Figure 14: User control 



 

 

takes a grasp action and simultaneously mouse device left-
button click information becomes true.  Then, he/she moves 
the object to where he/she wants to place, and releases it by 
his/her release action.  In this way, the user can feel 
immersion as if he/she played the real board game. 
In the actual case, you play a chess or reversi game with 
your opponent.  Network collaboration environment for this 
case will be build as follows.  IntelligentBox also provides a 
network communication facility as a particular box called 
RoomBox (Okada and Tanaka 1998).  Multiple RoomBoxes 
on a different computer share specific user-operation events 
with each other.  Therefore those RoomBoxes virtually 
provide multiple users with a shared 3D space.  Then using 
the RommBox, it is possible to build network collaboration 
environment rapidly and easily.  Needless to say, technically 
it is possible to use RoomBox on Internet.  However, if you 
want to build actual playable network games using RoomBox 
on Internet, IntelligentBox has to employ advanced network 
technology, e.g., client-server mechanism, particular 

Figure 16: The change of position in three video 
frames 

Figure 17: The changes of x, y position and the 
corresponding smooth data 
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network protocol and so on since RoomBoxes on different 
computers communicate with each other by a standard peer-
to-peer socket connection. 
 
4.2 Performance 
 
As for the performance of our system, the sampling rate, 
when its resolution is 320x240 pixels, is around ten fps on 
the standard PC (Pentium IV 2.0 GHz, 1.5GB) with one 
video camera.  In this experiment, both the motion capture 
system and IntelligentBox ran on the same PC.  Generally 
ten fps is enough for most interactive 3D applications. 
 
4.3 Discussion 
 
As described in the previous sections, our system generates 
motion data from the information of video images.  
Generally speaking, since the video camera is very sensitive 
to the light and easily affected by photo-noise, so video 
images can undergo change.  As a result, as shown in Figure 
16, even if hand in three different video frames has almost 
the same shape and position, corresponding calculated focus 
points are different from each other and then position values 
generated by the system vibrate as shown in the upper chart 
of Figure 17.  This becomes serious problem when using our 
system as an input device that generates absolute position 
values.  To solve this problem, we will make motion data 
smoother as shown in the lower chart of Figure 17. 
 
 
5. CONCLUDING REMARKS 
 
This paper proposed the real-time, video based motion 
capture system as intuitive 3D game interface.  Since 
conventional video based motion capture systems use many 
video cameras and take a long time to deal with many video 
images, they cannot generate motion data in real time.  
Therefore they cannot be used as a real-time input device for 
a standard PC.  On the other hand, our proposed system uses 
only one video camera and generates motion data in real 
time since our system employs a very simple tracking 
algorithm based on color and edge distributions of tracking 
focus areas.  So our system can be used as an input device 
for a standard-PC.  In this paper, especially we clarified 
usefulness of our system as intuitive input interface for 3D 
games by showing some example games. 
As a future work, the very common problem concerning 
motion capture systems is an occlusion problem.  Although 
we did not mention it in this paper, we have already 

proposed one solution for it and we will report it in 
MVA2002 conference (Akazawa et al, 2002c).  Furthermore, 
we will develop more example games and evaluate their 
performance to improve our algorithm. 
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ABSTRACT 
 

Conventional modelling in games development is based 
on a top-down approach, in which the developer determines 
all possible states of the model. However, with an increase 
of the number of components of the modelled system, this 
approach becomes inefficient and incapable of describing 
complex phenomena, such as animal movement in 
biological systems and behaviour of complicated 
mechanisms in technological systems. As everything in the 
top-down approach depends on the developer, it is also 
more difficult to achieve a wide range of different scenarios 
and different outcomes of the game using this approach. At 
the same time, the top-down approach demands a lot of 
expertise from the developer in intricate details of systems 
they model, which can only be obtained by studying the 
theory of these systems in detail.  
 

Emergent modelling, however, is based on the creation 
of simple models of components, so that the system model 
is obtained spontaneously, as result of interactions of these 
components, without explicit programming. The paper 
describes principles of emergent modelling and its potential 
in games development in comparison with top-down 
modelling. 
 
INTRODUCTION 
 

This paper investigates the concept of emergent 
modelling and its role in games development. It draws a 
contrast between top-down modelling and emergent 
modelling, and demonstrates advantages of the latter from 
the function and resources point of view. Using examples of 
student work, it discusses how emergent modelling can 
provide performance and resource advantages. 
 
Two Modelling Paradigms 
 

The concept of top-down modelling originated in 
parallel with the development of the digital computer and 
was well suited for procedural programming, where the 
code was developed for strictly sequential operation. On the 
basis of this approach, the developer models the system as a 
whole and determines all states of the model.  

The inspiration for top-down modelling goes back much 
further than the invention of the digital computer and 
procedural languages. It is believed that an extensive use of 
traditional mathematics had led to models that could not 
reproduce much more than the simplest behaviour in natural 
systems (Wolfram, 2002).  
 

Conversely, emergent or bottom-up modelling was 
made possible through the invention of object oriented 
programming. However, this was only a necessary but not a 
sufficient condition for emergent modelling. Simple rules 
on a component level and component interaction 
architecture produce a self-organised model of the system 
as a whole that emerges without explicit programming.  
  

We discuss the origins and the notion of emergence in 
the next section. 
 
THE ORIGIN AND NOTION OF EMERGENCE 
 

Although the phenomenon of emergence was already 
evident in 1940’s, in early cellular automata models (von 
Neumann, 1966), no attempt to establish a formal 
framework was made until recently (Holland, 2000). 
Although Holland’s work established basic principles of 
emergence, a more formal investigation of the subject is 
needed before a theory can be developed.  
 

Despite the absence of a formal theory, many authors 
have recognised emergence as a necessary condition for 
complex behaviour. Conway’s Game of Life (Berlekamp et 
al., 1985) relied on emergence to create self-sustaining 
patterns in cellular automata, while others used emergence 
to create life-like flocking behaviour of artificial agents 
named “boids” (Reynolds, 1987). 
  

Numerous works in the field of cellular automata relied 
on emergence to achieve complex behaviour and, based on 
emergence, four classes of complex behaviour of cellular 
automata were established (Wolfram, 1986). Subsequently, 
emergence was used as one of pre-requisites to establish a 
new field of Artificial Life (Langton, 1992). 
 

Emergent behaviour occurs as result of interaction of 
system components driven by simple rules on a component 
level. Through this interaction, the system will self-organise 
and exhibit behaviour that cannot be predicted on the basis 
of rules acting on individual components. It can be said that 
in systems with emergent behaviour the whole is more than 
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the sum of parts. None of the components are aware of the 
behaviour of the system as a whole and they do not take it 
into account in their behaviour. 
 

Emergence is therefore a phenomenon of self-organised 
system behaviour that occurs as result of interaction of 
components driven by simple local rules acting on a 
component level, where no component is aware of the 
behaviour of the system as a whole. 
 
EMERGENT MODELLING PRINCIPLES 
 

We explain here some basic principles for achieving 
emergent behaviour of computer models.  
 
Interaction Framework 
 

A basic requirement for emergent behaviour is 
component interaction. Individual components need to 
supply outputs to and receive inputs from other components 
(Figure 1a).  
 

These inputs and outputs must be of matching types, so 
that, for instance, a Boolean output channel from one 
component can only be received into a Boolean input 
channel of another component. If these components all 
originate from the same class, then the class needs to have 
pairs of inputs and outputs of the same type so that in some 
instances only inputs and in some instances only outputs 
will be used, after instantiation into its working copies. 
 

However, this direct connectivity between individual 
components does not allow for an easy expansion and 
maintenance of the model, as addition of new components 
requires additional hard coding. 

 

 

A much more efficient architecture of emergent models 
has a common communication line between all components 
(Figure 1b), so that new components can simply be added 
into the model by instantiation and without any additional 
hard coding. However, it was found to be much more 
practical to convert this communication line into a more 
elaborate container environment that provides infrastructure 
for operation of the emergent model (Figure 1c). 
 

Within this container environment there are several 
connectivity topologies between the components that will 
depend on the nature of the modelled phenomenon and will 
also influence the computational intensity of the model. 
These different topologies are discussed below. 
 
Full Connectivity 
 

Full connectivity of system components may be required 
when modelling systems such as groups of animals, where 
each component needs to be aware of each other component 
(Figure 2). 

 
This connectivity is still local, as components are 

connected to each other one pair at a time.  However, as 
Figure 3 shows, this does not come without a computational 
cost. As each of the N components is at all times influenced 
by each other of the N-1 components, the computational 
intensity of this type of connectivity is proportional to N2. 
This means that the execution speed of the model will 
reduce considerably, with a factor of 1/N2, as the number of 
components increases.  
 
Neighbourhood Connectivity 
 

Neighbourhood connectivity is suitable for models with 
rigid spatial structures, such as mechanisms, or cellular 
structures (Figure 4). This type of connectivity does not 
allow the components to change their spatial relationship 
with reference to other components, and therefore the scope 
of application is limited to systems that do not require 
spatial flexibility.  

 
 

Figure 1: Component Interaction: a) Direct; b) Through a 
Common Interface; c) Through a Container Environment 

 
Figure 2: Emergent Model of a Shoal of Fish 

a) 

b) 

c) 



 

 
Figure 4: Emergent Model of a Mechanism 

 
However, as Figure 5 shows, the interaction of the entire 

system of components can be calculated in one pass, 
making the computational intensity proportional to the 
number of components N. 
 

 
Figure 5: Neighbourhood Connectivity 

– N computational intensity 
 

Component to Component Connectivity 
 

Component to component connectivity lies between the 
full connectivity and neighbourhood connectivity, and it has 
advantages of both topologies (Figure 6). As components 
can be spatially distant, this topology does not have the 
rigidity of neighbourhood connectivity. And as the 
interaction of the entire system can be calculated in one 
pass, its computational intensity is proportional to the 
number of components N.  
 

Depending on the application, the components are 
connected either statically or dynamically, and in the latter 
case they do not have a fixed spatial relationship and may 
be connected on demand.  
 

 
Figure 6: Component to Component Connectivity 

– local interaction between spatially distant components 
created either statically or dynamically produces 

computational intensity proportional to N 
 

This can create a very efficient and flexible model. 
However, the algorithm that creates the connectivity 
topology, such as component vision or component 
connectivity demand rules, may add to the overall 
computational intensity of the model.  
 
IMPACT ON CAPABILITIES AND RESOURCES 
 

In this section we compare top-down modelling and 
emergent modelling from the point of capabilities of models 
and impact on development resources.  
 

In top-down models, the entire state-space of the model 
is determined by the developer. It is therefore conceivable 
that this state-space cannot be infinitely large.  
Consequently, the state-space of a game developed using 
the top-down approach will have a limited number of 
situations, scenarios, and outcomes, and the size of the 
state-space will be directly proportional to the resources 
used for the development process.  
 

In emergent models, as only models of components are 
developed, and the system model is created through self-

 
Figure 3: Full Connectivity 

-interaction of each node with each other gives N2 
computational intensity 

0 1 2 3

4 5 6 7

8 9 … n

1 2 

3 4 

5 6 



organisation of interacting components, there is a lot less 
reliance on the developer. And as the state-space of the 
model depends on component interactions alone, it can 
become infinitely large. Consequently, a game developed 
using the emergent approach will have an infinitely large 
state-space and an unlimited number of scenarios and 
outcomes. 
 

As top-down models are based on classical theories of 
the modelled systems, they have a prerequisite of a 
considerable expertise in specific fields of science and 
engineering. For instance, to model the human body using 
the top-down approach, the developer needs to have 
expertise of inverse kinematics. Yet when such model is 
developed, not only that the underlying code would be 
much more extensive, but the behaviour of the model will 
have severe limitations concerning the number of 
components, connection topology, and degrees of freedom 
that these components can have.  
 

These restrictions do not apply to emergent models. 
Modelling the human body will not require any special 
underlying theory and can be done without inverse 
kinematics. The developer will therefore not need to be an 
expert in this particular field. The underlying code will not 
be as extensive as in the top-down approach, and the 
behaviour of the model will not have limitations concerning 
the number of components, component topology, and 
degrees of freedom. 
 
EMERGENCE IN GAMES 
 

In this section we discuss some examples of student 
work on games development based on emergent modelling. 
The examples do not represent fully developed games. 
They were produced as Virtual Reality coursework by 
Computer Science students at the University of 
Birmingham, and were restricted to mini-projects 
(Jankovic, 2000). All models were developed in VRML, 
Java, and JavaScript. 
 

Figure 7 shows a helicopter with physics based flight 
model, implemented on a component level. Running the 
model feels realistic as it involves inertia, whilst a laser 
beam searches for targets automatically. 

 
Figure 8 shows a pool game that has physics based 

collision rules for the balls. Multiple collisions between the 
balls, the table, and the cue, and the resultant angles and 
velocities of the movement of balls make this model feel 
very realistic, and game play infinitely varied. 

 
Figure 7: Emergent Model of a Helicopter Using Principles 

of Physics on a Component Level 

 
Figure 8: Emergent Model of a Pool Game 

 
Figure 9 is an illustration of a driving game, where each 

car is modelled as an independent component, roaming 
freely in the modelled environment. The user controls one 
car and is given random driving instructions on the fly. 
Success and failure scores are recorded after each action. 

 
Figure 9:  Emergent Driving Game  

– it enables the user to take the role of one of the agents in 
the model 

 
Figure 10 shows a golf game, in which principles of 

physics integrated on the component level create realistic 
behaviour of balls, as consequence of collisions with the 
club, ground, and forces and angles used to hit the ball. This 
is an analogue model of the game of golf, and the situations 
in the model resemble those in the physical game. 

 
Figure 10: Emergent Golf Game 

– it uses principles of physics on a component level to 
create realistic behaviour of golf balls 

 
Figure 11 shows emergent tanks which roam around an 

urban battlefield. The tanks try to increase their fitness by 
destroying other tanks, and can do so on their own, but the 
user can take control of one of them and play the game. 



 
Figure 11: Emergent Behaviour of Tanks in an Urban 

Battlefield Game - a bird-eye view 
 
All of the above games have several things in common: 

they were developed in relatively short time, but still 
comprise immensely complex models; the model behaviour 
is very realistic and convincing; the state space of the 
models is unlimited; there is an unlimited number of 
scenarios and outcomes; the developers were not experts in 
relevant fields, such as physics, flight mechanics, traffic 
modelling, or others; only the first principles were used for 
component modelling; the system behaviour was not 
explicitly programmed, but emerged by itself. 
 
LIMITATIONS 
 

However, there are some limitations of emergent 
models. Certain types of architectures of emergent models 
are very sensitive to the number of components. In cases 
where full connectivity between system components is 
required (Figure 3), the computational intensity of the 
model is proportional to the square of the number of 
objects, thus considerably reducing the execution speed of 
the model with an increase of the number of components. 
This can be overcome by partitioning the space into sub-
regions, and providing a dynamic connectivity on demand. 
 

Also, in cases where extreme inputs are applied on the 
system components, a mismatch between a discrete time 
step required and the achievable frame rate can occur 
(Jankovic and Dumpleton, 2000). The resultant 
unpredictable behaviour can be overcome by reducing the 
time step, but with a detrimental effect on speed. 
 
CONCLUSIONS 
 

The paper compared top-down modelling and emergent 
modelling in the context of games development. As the top 
down modelling requires all states of the model to be 
determined by the developer, the scope of such models is 
limited, as they can produce only simple behaviour.  

 

Emergent modelling is based on creation of simple 
component models, which through special interaction 
architectures gives rise to system model behaviour without 
explicit programming.  As the state space of the system 
does not depend on the developer, emergent games have 
unlimited number of situations and outcomes that are not 
explicitly programmed. Unlike in the top-down modelling, 
the developer only needs to apply simple rules on a 
component level, and does not require a special expertise of 
the theory of the modelled systems. This can result in 
savings of development resources, both in terms of 
developer training and the development process. 

 
Student projects that involved development of simple 

games confirmed these issues. The models described 
involved golf and pool games, combat helicopter 
simulation, car driving instruction and an urban battlefield 
for tanks. Although the games were developed in relatively 
short time as mini-projects, they still had an immense 
complexity and an unlimited number of outcomes. The 
students were not experts in the fields of traffic simulation, 
flight mechanics, and object dynamics, but were still able to 
implement first principles on a component level and get 
very realistic behaviour, reminiscent of real systems. 

 
Although there are some limitations of emergent 

modelling related to full connectivity of large number of 
components and also to extreme inputs applied in discrete 
time steps, emergent modelling can make games more 
realistic and more fun, as well as save on development 
resources. Future work will involve the analysis of winning 
strategies in games based on emergence. 
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ABSTRACT

For creating real-time animations of 3D characters we intro-
duce motion models, which model a certain kind of motion like
walk or wave. Each motion model has its own set of parame-
ters controlling the specific characteristics of a motion. These
parameters can be changed while a motion model is executed,
thus this allows a change of the characteristics of a motion in
real-time. The motion models produce animations by applying
operators on short clips of animation and blending the results
together. The parameters of the motion model determine the
operators and the animation clips which are used to create the
appropriate animation.

1. INTRODUCTION

Real-time animation of 3D characters is often done by blending
or masking short clips of motions produced by motion captur-
ing or keyframe-animation (Theodore, 2002). The clips for are
short animations which can stand for their own like e.g. a high
foot-kick a low foot-kick, a slow walkloop, a fast walk loop
and so on. If in the real-time application a clip is played (for
example the walk look) and then the user switches to another
movement (e.g. a run loop), then either a short transition from
one movement to the other is calculated or there is a a third
connecting clip between these two motions. Furthermore dif-
ferent clips not concerning the same joints of the character can
be mixed by masking, i.e. if we have e.g. a wave motion and
a walk motion, then the arms are animated by the wave motion
and the feet and the pelvis by the walk motion.

The main drawback of considering motion as a small pieces
of unchangeable animations is that in reality every human
movement can be done in a great variety. For example, a walk
movement can be described by its style (e.g. happy, aggres-
sive, John Wayne), by its speed or by the frequency of the feet
touching the ground. A jump movement can be characterised
by the hight and the width of the jump.

Furthermore, motions often can be divided into parts which
played consecutively, build the whole animation. These parts
also are dependent on the style or the special way the motion is
executed.

Motivated by the above points we adopted the notion of
the motion models which was introduced by Grassia (Grassia,

2000). Motion Models denote motions like walk or wave which
produce their animation depending on given parameters. We
expanded this concept for real-time animation, where the pa-
rameters of a motion model can be changed during its anima-
tion is played. The advantage is, that this results in an abstract
interface for each motion, which can create a motion in high
varieties.

2. PREVIOUS WORK

(Badler et al. , 1993) specify motions in the Jack System by
control parameters which describe bio-mechanical variables.
They also introduce motion goals, which are low level tasks
their animation system can solve. A similar approach is stud-
ied in (Hodgins et al. , 1995).

Within the Improv-System (Perlin & Goldberg, 1996) hu-
man motions are described and parametrised by so called Ac-
tions. These Actions can be combined by blending them or
building transitions between them. Their parameters denote
possible perturbations of the original motion data by coherent
noise signals. Perlin and Goldberg also state, that it is not al-
ways possible to combine every given motion with any other
at the same time. For example it makes no sense to combine
a stand pose with a walk motion. Taking this into considera-
tion, they divide Actions into different groups, like Gestures,
Stances etc. These groups provide the necessary information
about the allowed combinations with other motions.

In (Sannier et al. , 1999) and (Kalra et al. , 1998) a real-
time animation system VHD is presented which allows users
to control the walking of a character with simple commands
like walk faster.

Grassia (Grassia, 2000) introduces the term motion model,
which we adopt. Motion models represent elementary tasks
which can not be divided further. The level of abstraction of the
motion models resembles the approach in (Perlin & Goldberg,
1996). The idea is that every human motion belongs to a certain
category e.g. walk, run, wave with hands, throw, which can
stand for itself. Each motion model has its own parameters
which controls the process of motion generation.

3. SYSTEM ENVIRONMENT

Before going into the details of the motion models we first
present the current system environment for the animation of
characters. Each character is represented by an animation en-
gine (cf. Figure 1) which creates the animations in real-time.
The animation engine receives commands controlling the char-



acter like e.g. start or stop a walk movement or positioning the
character at an arbitrary position. The animation engine sends
the produced animation data to the trick 17 render engine.

animation engine

motion controller
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trick_17 render engine
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Figure 1: The System Environment.

The animation engine consists of three components each
running in a separate thread. Time is discretized in frames by
the time controller and the animations of the character are pro-
duced with a fixed frame rate.

The motion controller receives commands for the animation
engine and produces the overall animation of the character. The
motion buffer reads and buffers the animation data from the
motion controller and finally the submitter interface send the
data to the trick 17 rendering engine. For each frame a com-
plete posture of the skeleton of the character is send to the ren-
der engine. The trick 17 renderer then calculates the mesh de-
formation of the character according to the posture and renders
the picture.

4. THE SCOPE OF MOTION MODELS

Though there exists no definition which motions should be
modelled as motion models and which not, there are some ba-
sic rules.

The purpose of a motion model is to produce motions which
can stand for their own. This means it should be able to recog-
nise that the resulting movement of the body has started, ex-
ecuted and finally finished. Thus one has to think about the
complexity and the purpose of the movement a motion model
describes. The movements should not be too elementary like
the rising of the left foot at the beginning of a walk movement.
But they also should not be too complex. An example for a
too complex motion would be the task to take a chair from one
room and bring it to another room. For this purpose one has
to localized the chair, then grasp it, doing path planning for
finding the way to the next room and so on.

Motion Models describe on the one side basic fundamental
movements like walking, running, jumping. On the other side
motion models also describe motions which need various infor-
mations to make adjustments of the environment (e.g. throwing
a ball, grasping a bottle). Complex tasks (like the chair exam-
ple above) which are too complex for modelling them as a mo-
tion model can be divided into subtasks. Then each of these
subtasks can be animated by a motion model.

Method Description
getActiveJoints() Returns the joints for which

there is actual data available
getFrame(Frame

�
) Returns for frame

�
for each ac-

tive joint the rotation or transla-
tion values if available

start() Returns the start frame of the
clip

length() Returns the length of the clip

Table 1: The AbstClip Class

5. BUILDING BLOCKS OF MOTION MODELS

Each instance of an animation engine represents one character.
The character is defined by a tree structure (called character
model) describing its skeleton. Because the mesh deformation
of the character is done by the trick 17 renderer by the posture
of the skeleton, we do not store the mesh data in the animation
engine.

Motion models are a very simple common interface, the Ab-
stMotionModel class. Every motion model is derived from this
class. Motion Models get initialised by a character model and
a source of the pre-produced animation clips. They have a
doCommand-method which is used by the motion controller to
control the generation of animation sequences within a motion
model. At present, the motion controller receives commands
like start, stop and stop hard. The start command contains pa-
rameters which further describe the resulting motion. These
parameters are motion model specific. E.g. the walk motion
model has parameters controlling the style (happy, sad, etc.)
and the speed of the walk. The parameters of a motion model
have to be chosen in such a way, that the important character-
istics of a motion can be influenced. The stop command just
advises to motion model to correctly stop its motion at the ac-
tual state. If in a walk motion the stop command arrives at the
motion model during the left foot is still in the air, the motion
model correctly finishes this last step. The stop hard method
just finishes the motion immediately, i.e. as soon as the motion
model receives this command it stops producing the animation
which can result in an (for the observer) incorrect movement
of the left foot. Although the visual result in the last case is in
general not convincing, this effect is sometimes needed.

The building blocks of motion models are base motions and
clips. The idea is that each motion model creates a certain mo-
tion by modifying and blending motion data according to the
given parameters. As a basis each motion model has small se-
quences (base motions) of pre-produced animations which are
used for mixing and blending.

The abstract AbstClip class (c.f. Table 1 and Figure 2) is the
common interface for animation data. By start() the start frame
and by length() the length of the animation is returned. The
getActiveJoints method returns the joints of the skeleton for
which the clip actually produces animation data. The getFrame
method returns for each valid frame two arrays of data. The
first array represents translation values for the joints (given by
3D vectors) and the second the rotation values (given by unit
quaternions). Played one after another, the array for each valid



frame builds the animation of the skeleton.

AbstClipAggregate

AbstClip

ClipPrimitive

Filter Loop Revert
��� �����	��
���
� �

eShift

Blend Embed

Figure 2: The Clip Classes.

The class ClipPrimitive actually holds pre-produced anima-
tion data. These animations are manipulated by the classes de-
rived from the AbstClipAggregate (cf. Figure 2). These de-
rived classes are operators on clips. Because every operator is
an AbstClip, it can also be used for the input to other operators.

Here we give a brief description of the implemented opera-
tors.
� TimeShift(Frame nShift, AbstClip *pkClip)

Shifts a clip on the timeline by nShift frames.

� Filter(FilterCoef *pkFIR, AbstClip *pkClip)
Filter the animation data with a FIR filter (cf. (Mallet,
1999), (Lee, 2000)). The impulse response coefficients
of the filter are given by pkFIR. This can be used e.g. to
smooth noisy animation data.

� Loop(int nLoops, AbstClip *pkClip)
Repeats pkClip either nLoops-time if nLoops ��� or re-
peats the clip an infinte times otherwise. This is the only
operator which can produce infinite length clips from fi-
nite ones. If pkClip has infinite length nothing is done.

� Revert(Frame nNewStart, AbstClip *pkClip)
Reverts pkClip in time at the frame nNewStart.

� TimeWarp(Array � TimeWarpKeys � *pkWarpKeys, Abst-
Clip *pkClip)
Applies a time warp on the underlying clip (cf. (Witkin
& Popović, 1995), (Grassia, 2000)), which squeezes or
stretches the animation over time.

� Blend(Frame t0, Frame t1, Frame A, Frame B, AbstClip
*pkFirst, AbstClip *pkSecond)
Blends the pkFirst clip to the pkSecond clip.

���
and

� � set
the start frame of the first resp. second clip. � denotes the
frame where we start to interpolating from the first to the
second clip, B the frame where we blended completely to
the second clip.

t0 t1A B

First Clip

Second Clip

Frame

Resulting Clip

� Embed(Frame t0, Frame t1, Frame A, Frame B, Frame C,
Fame D, AbstClip *pkFirst, AbstClip *pkSecond)
Blend from the pkFirstClip to the pkSecond clip and back
to the pkFirstClip. The parameters

����� � � � � and � are
the same as in Blend. At frame � pkSecond is blended
back to pkFirst, and at � only the animation of pkFirst is
played.

t0 t1A B

First Clip

Second Clip

Frame

Resulting Clip

DC

Note that often the algorithms within the operators for infi-
nite length clips are different from the finite length clips. E.g.
for finite length clips the algorithms in the Filter clip can be
highly optimized (cf. Wickershauser (Wickershauser, 1994)).
Special care is also needed if two clips are blended or embed-
ded with different sets of active joints.

By so far we have not implemented any operators, which ef-
fect a given ClipPrimitive such that the resulting clips has a new
style. One could think for example of noise functions applied
on certain joints or the techniques used in (Perlin & Goldberg,
1996). But this could be a very promising approach to create
variations of the motions without exchanging ClipPrimitives.

6. CREATING MOTION WITH MOTION TREES

Motion models create animations by combing ClipPrimitives
with the clip operators described in the previous section.

As an example we consider the walk motion model. Walking
can be divided into three phases: the start phase, where we start
to walk from a standing posture, the walk loop and the stop
phase ending again in a standing posture. As the motion model
walk gets the command to start at a specific frame

���
with a

specific speed � � , it creates the following term,

�"!$#&%('*)$+-,/.0#�1324,�5 � ) � � �7698 !;:41 ��8=< ��>?�@BA�ADC )$+-,/.0# 698=< C ) 6 � �D698 !E:��GFIH?!$# >J>�>LK (1)

This term can be visualized in the operator tree (which we call
motion tree) shown in Figure 3 (A).

The two ClipPrimitives WalkStart and WalkCycle contain
the animations for first and the second phase of the motion.
The WalkStart gets time-shifted to the start frame

���
of the ani-

mation. The WalkCycle is time-warped with warp-keys
6 � re-

sulting from � � for controlling the speed of the animation. The
result is looped for an infinite time producing an infinite-length
clip and is blended with the end of the time-shifted WalkStart
clip. The result is a clip which lets the character start walk-
ing. If the motion model started and the current animation is in
the WalkCycle loop (i.e. the animation is produced by the right
branch in tree of Figure 3 (A)) one can simply change the speed
of the character. As the motion model receives the command
to change the speed to �-M , it replaces expression (1) by
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Here
� � is

� �
plus the time passed since the last full pass of

+-,/.0# 698=< C ) 6 � �D698 !E:��GFIH?!$# > , and
6 M are the appropriate

keys which are derived from the speed � M .
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Figure 3: Walk Motion.

The style of the motion can be easily altered by changing
the underlying ClipPrimitives. As an example, assume that the
ClipPrimitives WalkStart and WalkCycle represent neutral mo-
tions, and we also have a WalkCycle happy, representing a mo-
tion which expresses more joy and dynamic. If we currently are
in the WalkCycle phase of the walk motion then the style of the
motion can be changed by creating the motion tree as in Figure
3 (B), which is a visualization of the following expression:
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There the WalkCycle clip is played to its end and then blended
with the looped WalkCycle happy clip.

For correctly blending and manipulating these ClipPrimi-
tives additional information is need. E.g. for blending the
WalkCycle into the WalkCycle happy it is important to know
the frame, when the feet of the character touch the ground and
when they lift off. These information is used to determine the
correct parameters for the Blend clip.

Thus each ClipPrimitive object within a motion model be-
longs to a base motion (cf. (Grassia, 2000)). Base motions
consist of ClipPrimitives and Annotations, which hold the ad-
ditional information for the animation data. These are on the
one hand informal annotations, like the style of the motion (e.g.
aggressive, tired, happy) and on the other hand special spatio-
temporal relations.

Thus a motion model can hold several records of base mo-
tions each representing the movement in a different style. The
commands from the motion controller determine the special pa-
rameters which are used for the construction of the motion tree
with the help of the Annotations.

7. THE MOTION CONTROLLER

The motion controller receives commands from the animation
engine, controls the motion models and produces the overall
animation of the character.

The command set of the animation engine is fairly simple.
There are two classes of commands. The first class controls
the behaviour of the animation engine (e.g. resetting or posi-
tioning the character). The second class of commands (motion
commands) is used for starting, stopping or changing the an-
imations of motion models. The motion commands also hold
parameters which are specific for the motion model. To keep an
overview over the active motion models the motion controller
administers the motion commands in a command list. Only
those commands are kept in the list for which the correspond-
ing motion model still produces animation data.

The motion controller also holds a motion tree which is build
from the motion trees of the active motion models. This is
done by passing through the command list and getting for each
command the motion tree of the appropriate motion model.
Then the motion trees from the motion models are blended and
mixed together with the help of the clip operators from Section
5.

A rebuild of the motion tree is only necessary, if a new com-
mand is appended to the control list or the state of an active
motion model is changed (e.g. by changing parameters or by
stopping the motion model). In both cases, the concerned mo-
tion model builds its motion tree anew. The motion trees of the
other motion models stay unchanged. The motion controller
then deletes its old motion tree and builds a new one by pars-
ing through the command list and composing the motion trees
from the motion models.

At a first glance this seems to be an expensive operation. But
practical experience shows that only very few motion models
are active at the same time. Every human has only a finite
number of parts of the body, thus this defines a natural limit
of the number of motions a character can do simultaneously.
Thus besides the cost of building the motion tree of the changed
motion model, we only have to blend a few motion trees.

The hard task for the motion controller is to find the right
operators for mixing the motion trees of different motion mod-
els together. Before starting a new motion model the motion
controller first checks if the joints the motion model needs are
in use by other motion models. Each motion model contains
a list of the joints and parts of the body which are crucial for
the motion. The animation of these joint can not be blended
with other animations without destroying the task of the motion
model. If these joints are currently blocked by another active
motion models then the motion command is rejected. Other-
wise the animation of the corresponding joints are blended to
the new animation. As an example consider Figure 4 where we
started the wave motion model while the walk motion model
is executed. At the moment we only have few motion models
thus the parameters for the mixing operators between motion
models are prescribed for each combination of motion models.
Because for a growing number of motion models the complex-
ity increases geometrically, automatic methods for mixing mo-
tion models have to be explored. First approaches can be found
in (Grassia, 2000).



Figure 4: Blend of the motion model walk and wave.

8. EXPERIMENTAL RESULTS

We have implemented an experimental version of the anima-
tion engine with Visual C++ under Windows 2000 and Gnu
gcc under Linux on a PC with 1100MHz AMD processor. For
graphical output we use our trick 17 renderer, which runs with
minor changes both under Windows 2000 and Linux by using
OpenGL and GTK+. For test purposes we used a character
with about 9000 Polygons and 3.6Mb texture, which was cre-
ated in Maya and exported into the proprietary file format of
the trick 17 renderer. We use the computer’s keyboard to inter-
actively steer the character. The base motions were generated
by keyframe animation in Maya and sampled at 30 frames per
second.

The performance of the animation engine is promising: we
have not found delays or a break in the continuity of the ani-
mation which could come from creation of the motion trees in
the motion models or in the motion controller.

9. CONCLUSION

To summarise, motion models create movements which can
stand for their own. They provide a high level interface for
each motion and allow to change a movement during it is exe-
cuted by the character. Multiple Motion models can be played
at the same time.

For creating the transition of a higher number of motion
models, further research has to be done. Also the use of clip op-
erators which can change the characteristics of animation clips
has to be investigated.
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ABSTRACT 
 
In order to make efficient use of video memory, game 
developers often use image compression techniques for 
textures used in 3D environments. A disadvantage of most 
widely used image compression methods is that they require 
a significant amount processing to reconstruct compressed 
images. In this paper, we propose a vector quantisation 
method using the Scale Invariant Map, which allows fast 
decompression of textures. Combining this algorithm with 
wavelet decomposition, we show that our method is 
particularly suited to mip-mapped textures. 
  
INTRODUCTION 
 
The capacity of video RAM in most games consoles and PC 
graphics cards is something that often restricts artists and 
programmers. Although hardware capabilities have grown 
in accordance with Moore’s law, games software tends to 
push hardware to its limits, making the game developer’s 
job a difficult one. The vast amount of artwork in many 
modern 3D games requires programmers to use image 
compression techniques in order to allow more storage 
capacity for textures, and to maintain a reasonably high 
image quality. 
 
Some widely used lossy compression algorithms make use 
of a transform coding method such as block discrete cosine 
transform (DCT) or discrete wavelet transform (DWT), 
followed by a coefficient quantisation stage, and finally, 
predictive entropy coding is used to optimise the resulting 
bitstream. This strategy has been used with great success, 
and has formed the basis of the JPEG standard, and also, the 
more recent JPEG2000 standard.  
 
Despite the widespread adoption of compression algorithms 
such as JPEG, these algorithms are not particularly suitable 
for use in games, where decompression has to be carried out 
very quickly in real-time. (Ivanov 2001) Therefore, other 
methods  

have been proposed as alternatives that are more 
suitable for use in games, many of which use 
implementations of vector quantisation (VQ). VQ 
algorithms rely on training a set of codebook vectors on 
an image, then transforming the image into a set of 
codebook indices. These indices are then stored along 
with the codebook vectors. VQ compression of images 
is an iterative process, and it can be computationally 
expensive, but it has the important advantage of 
allowing very fast decompression.   
 
When developing an image compression method for 
use at run-time in video games, we propose that the 
primary aim is that decompression of images should be 
fast. High quality of decompressed images is very much 
a secondary goal. The method that we propose in this 
paper allows very fast decompression, and also supports 
progressive decompression for mip-mapped textures. 
Therefore, when the smallest mip-mapped level of a 
texture is required, only a small amount of 
decompression is necessary. If the same texture is later 
required at a higher mip-map level, then some more 
decompression can be performed, which builds on the 
decompression already done. This is in contrast to some 
existing methods that require an entire texture to be 
decompressed. If mip-mapping is required, then 
reduction of the texture into various mip-map levels is 
an additional processing requirement. Experiments 
show that our method also produces decompressed 
images of a reasonably high quality, and without the 
“blocky” effect often seen with other VQ methods. 
 
VECTOR QUANISATION 
 
VQ aims to approximate vectors by transforming them 
from a continuous distribution into a finite set 

{ }KV www ,...,, 21=  of K  discrete values (a 
codebook) whilst minimising the distortion of the data. 
Each vector x  in the data set  can then be coded as 
an index q

D
V∈)(x  of the codebook, which normally 

has a far smaller storage requirement than the original 
vector.  The coded value can then be used to reconstruct 
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the original vector, albeit with some distortion  (equation 
1). 
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Over an entire data set with N vectors, the mean squared 
error (MSE) is given by equation (2). 
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The main problem with VQ is finding an optimal set of 
codebook vectors, such that the MSE is minimised. There 
are many different approaches to this problem, but amongst 
of the most common are the k-means clustering algorithm 
(MacQueen 1967), the EM algorithm (Bishop 1995), and 
the Self-Organizing Map (Kohonen 1997). 
 
It is common practice when compressing images by VQ, to 
use fairly small vectors, such as a 4x4 block of pixels. Any 
attempts to increase the size of this block result in 
reconstructed images that are noticeably blocky. This 
problem can be alleviated to some degree by increasing the 
number of reference vectors in the codebook. However, this 
adds to the storage overhead of the codebook, and also 
increases the computational cost of training. Our method 
does not have this limitation, and we shall show that larger 
vectors can be used with no noticeable degradation in the 
reconstructed images.  
 
THE SCALE INVARIANT MAP 
 
Another common method for finding an optimal set of 
codebook vectors is Kohonen’s Self Organising Map 
(SOM) (Kohonen 1997). The scale invariant map (Fyfe 
1996, McGlinchey and Fyfe 1997) is an unsupervised 
artificial neural network based the SOM. Kohonen’s SOM 
is a biologically inspired artificial neural network that learns 
an ordered set codebook of vectors from a data set. The map 
consists of a set of nodes arranged in a low-dimensional 
space (normally one or two dimensions). Each node has a 
weight vector (or codebook vector) associated with it, which 
maps the node to a point in data space. The data space 
normally has a much higher dimensionality than that of the 
map, so the SOM forms a non-linear mapping from a high-
dimensional data space onto a low-dimensional manifold. 
After training of the network, the distribution of the 
codebook vectors in the data space should reflect the 
distribution of vectors in the training data. The SOM is a 
special case of VQ, with an additional topology-preserving 
property – nodes that are close together on a SOM map to 
points in data space that are also close together. 
  
A scale invariant map also consists of a regular array of 
nodes arranged on a lattice. Due to computational 

tractability considerations, maps normally have few 
dimensions (three or fewer). Each node i is connected 
to an array of sensory nodes x via a set of weights, 

.  The map is trained on a set of training data, and 
the result is an ordered set of codebook vectors. During 
training, input vectors  are randomly selected from a 
training set. For each training vector, a winning node, 

, is chosen , according to some competition criteria. 
The criteria that we recommend for this application is 
to select the node whose weight vector has the closest 
orientation to the input vector (equation 3). 
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The next step is to update the weight vectors of the 
winning node and the other nodes close to it, such that 
their orientation is becomes closer to that of the input 
vector. The neighbourhood of the winner, , is the set 
of nodes that are deemed to be close enough to the 
winner for the winner to affect them. A neighbourhood 
function  can also be used such that nodes closer to 
the winner are affected more than nodes further away. 
The weight update rule is given by equation 4. 
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This training method is based on the negative feedback 
network (Fyfe 1993), but with a neighbourhood 
function applied to it. 
 
After sufficient training, this network will form a 
mapping based on the distribution of orientations held 
in the training set. This is the crucial difference between 
the scale invariant map and the SOM. Our motivation 
for using the scale invariant map for VQ compression 
of images is that often, images have similar patterns 
that repeat, but with varying intensities. A scale 
invariant method allows these similar regions to be 
grouped under the same class, saving the requirement in 
codebook size. The scale invariant map has already 
been used in remote sensing applications. (MacDonald 
et al. 1999). 
 
WAVELET DECOMPOSITION 
 
The Daubechies 2D wavelet transform refers to a set of 
basis functions defined recursively from a set of scaling 
coefficients and functions. The transform is applied as a 
series of decomposition levels. At the first 
decomposition level, the source image is separated into 



four sub-bands – LL (low-pass vertical and low-pass 
vertical), HL (high-pass vertical and low-pass horizontal) 
and similarly for the LH and LL sub-bands. The LL sub-
band represents a downsampled low-resolution version of 
the original image, and the other sub-bands represent 
downsampled residual versions of the original image. Using 
the Daubechies 5/3 wavelet, the process is reversible, and 
each of the four subbands can be used to reconstruct the 
source image. At the next decomposition level, the LL sub-
band of the first decomposition level is then decomposed 
into the four sub-bands. This recursive procedure is iterated 
for as many decomposition levels as necessary. Figure 1 
illustrates this procedure for two decomposition levels. For 
a more complete description of this procedure, the reader is 
referred to (Antonini et al. 1992). 
 
Some image compression algorithms such as JPEG2000 
(JPEG 2000) use this method, followed by a rate allocation 
algorithm such as EBCOT (Taubman 2000) to select parts 
of the sub-bands to discard, such that the mean squared error 
of the image decreases monotonically as the size of the 
coded image decreases. For our purposes, fine tuning the 
quality of reconstructed images is not a primary concern, 
and we can therefore perform lossy compression on the sub-
bands using VQ. 
 
Reconstruction of the image from the sub-band tree is 
simply a case of reversing the decomposition process. Note 

that if a smaller version of the original image is 
required, then less processing is necessary. For low 
decomposition levels, the processing overhead is very 
small. This method is particularly suitable for fast re-
composition of mip-mapped images, since the image 
only needs to be reconstructed as far as the required 
mip-map level. 
 
COMPRESSION METHOD 
 
Our proposed method is to perform wavelet 
decomposition on textures, using as many 
decomposition levels as required to support the required 
level of mip-mapping, and then use VQ to compress the 
HL and LH sub-bands. It may also be beneficial to 
compress the HH sub-band; however, this sub-band can 
often be discarded with very little degradation of the 
reconstructed image.  The LL sub-band could also be 
compressed using VQ; however, this sub-band 
represents the lowest mip-map level and will normally 
be a very small image. For this reason, we recommend 
storing the LL sub-band in an uncompressed format. 
Errors introduced to low frequency components have a 
more significant effect on the degradation of 
reconstructed images, so any lossy compression on the 
LL sub-band will adversely affect higher mip-map 
levels. 
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Figure 1: Wavelet Decomposition of an Image into Sub-bands Using the Daubechies 5/3 Wavelet (Two Decomposition 
Levels) 



We have used the scale invariant map to quantise vectors 
according to their orientation, rather than spatial location. 
For adequate reconstruction of the image, this requires that 
each input vector is recorded as a codebook index, and also 
a magnitude. Whilst this method adds to the storage 
overhead, it allows us to reduce the size of the codebook, 
and also adds significantly to the quality of reconstructed 
images.   is the set of all vectors that are to be VQ 
coded. Each member of this set is then coded as a 
codebook index and a magnitude (equation 5). The 
function gives the winning node according to 
equation 3. 
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The most significant computational cost at the compression 
stage is in training the scale invariant map. However, for 
this application, the computational cost of compression is 
unimportant, and it is the cost of decompression that we 
are most interested in minimising.  
 
Images are decompressed by first reconstructing the image 
from the set of quantised vectors. The reconstruction, x′  is 
given by scaling the appropriate codebook vector by the 
magnitude component of . Note that this only has to be 
done for sub bands up to the required mip-map level. From 
the reconstructed sub-bands, a wavelet re-composition is 
done to restore the required image. 

dq

 
RESULTS 
 
To demonstrate the effectiveness of this method, we 
present results of two types of images using different 
compression parameters. An image of a tiling steel floor 
texture (256x256 pixels) was wavelet transformed to one 
decomposition level, and then the HL and LH sub-bands 
were VQ compressed using 10 code book vectors, each of 
size 8x8. The storage requirement of the original 8-bit 
greyscale image was 65536 bytes. The compressed version 

occupied 16384 bytes for the LL sub-band, 1024 bytes 
for the codebook indices and magnitudes, and 640 
bytes for the codebook, giving a total of 18048 bytes, 
and a compression ration of 0.2754. The results for 
this experiment are shown in Figure 2, along with 
another example of compressing the “lena” image 
using 2 levels of decomposition and 10 16x16 
codebook vectors. In both cases any degradation in 
image quality is barely noticeable. Higher 
compression rates are also possible, albeit with more 
degradation of the reconstructed images. 
 
Although VQ compression is a widely adopted 
technique of fast lossy compression, it is well known 
that it produces a blocking effect around the edges of 
the vectors. This method, however, produces no 
blocking effect, even when parameters are set to use a 
high compression rate.  The reason for this is that with 
wavelet compression, any errors introduced into the 
decomposed sub-bands are distributed across many 
pixels in the re-composed image. Even when the 
compression is very lossy, no blocking effect is 
visible, due to this distribution of error. Careful 
inspection of  Figure 2(e) reveals a slight blocking 
effect in the HL and LH sub-bands of the “lena” 
image, but this effect is not apparent in the re-
composed image (f).  
 
CONCLUSION 
 
We have presented a new method of texture 
compression that allows very fast decompression of 
images, and is therefore suitable for real time 
decompression of images in video RAM in high 
performance graphics applications such as video 
games. We have shown that the method is particularly 
suitable when used in conjunction with mip-mapping 
because low-resolution versions of textures require 
very little processing time to decompress. As higher 
resolutions of textures are required, images can be 
progressively decompressed. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure2: (a) Original Steel Floor Texture (b) Reconstructed Image after VQ Compression of HL and LH Sub-bands with 10 
8x8 Codebook Vectors, Before Inverse Wavelet Transform. (c) Reconstructed Image. Similarly with (d), (e) and (f) for 
“Lena” using 10 16x16 Codebook Vectors. 

(b) (c) (a) 

(d) (e) (f) 
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ABSTRACTS 
 
This paper discusses two new methods of rendering 
fractures in a virtual environment in real-time. The first is 
based on a diffusion limited aggregation algorithm, which 
allows extremely random and natural patterns to be 
formed. The second works by assuming any surface has a 
number of random weak points; a crack can be propagated 
through the material, selecting weak points based on a 
probability value. The fracture may also split, forming a 
more realistic representation of a crack. 
 
 
INTRODUCTION 
 
In the field of computer graphics it is often the goal to 
reproduce various phenomena that occur in the real world, 
to various degrees of realism on a computer screen. This 
can include anything from simulating a human talking, to 
explosions, to plants growing – the list is practically 
endless. Research into numerous methods has been going 
on for many years to varying degrees of success.  
 
There are two main schools of graphics in relation to this 
project –  
 - real-time graphics, 
 - pre-rendered graphics.  
 
Real-time graphics, as the name suggests, means that the 
graphics being displayed on screen are being generated as 
you see them. This allows for dynamic environments 
which users can move around in and effect. To produce 
such environments takes a great deal of processing, and 
affords a very limited time in which graphics can be 
generated. This restricts the quality of image that can be 
produced.  
 
Pre-rendered graphics are generated offline and can later 
be displayed. Due to the fact that they do not have to be 
generated in real time they can be of a far higher quality 
that real-time generated graphics. Each object or frame can 
have as much time as is necessary devoted to its 
generation. However this approach has its disadvantages. 
The scenes generated in this way are very inflexible as the 
objects are not dynamic. You can not walk around a pre-
rendered object unless the game dictates that the player 
must do so. Such scenes can be used in virtual 

environments such as games, but are usually limited. Pre-
rendered graphics are frequently used as backgrounds in 
games as they allow for very realistic representation of 
various environments, though they are essentially just that 
– backgrounds. Any interactivity with the world must be 
handled completely separately from the background itself. 
This generally means objects and characters interacted 
with are specifically modelled and placed in the world, 
with no connection to the background. 
 
Pre-rendering also affords the opportunity to heighten 
realism in other areas such as physics. Again, real-time 
applications must deal with a number of processes, 
including generating graphics and handling physics. This 
unfortunately means the quality and realism of the 
graphics and physics must be sacrificed to an extent.  
 
The quality of pre-rendered graphics can be seen in many 
recent films such as Final Fantasy: The Spirits Within, the 
Toy Story films, and the new Star Wars films. They 
demonstrate that pre-rendering can produce extremely 
realistic results. Real-time rendering however, can not; 
with advances in graphical hardware (such as nVidia’s 
GeForce range of cards) this is just beginning to become a 
possibility. Part of the problem is that to simulate lifelike 
effects requires a great deal of complex processing. To be 
able to do this in real-time much of this processing is 
simplified or approximated to give what appears to the eye 
to be a convincing representation. 
 

 
Figure.1 – Pong [PON72] 

 
In most real-time generated environments, specifically 
games, interaction with the game world is one of the 
highest priorities. To make a convincing world there 
should always be an appropriate reaction to any action the 
player takes in that world. This can be traced back even to 
the earliest games such as Pong. 



Essentially a tennis game, having a bat on each side of the 
screen, and a ball bouncing between the two, the player 
moved the bat to stop the ball from going off the screen. It 
would bounce off the bat towards the other bat. This is 
what a player would expect. If the ball went straight 
through the bat, or stuck to it, it would strike a player as 
somewhat unusual. This destroys the player’s perception 
of interaction with the game world and can affect 
enjoyment of a game in varying degrees, related to how 
significant the lack of reaction was or how obviously the 
error.  
 
Many developers are seeking to correct such problems, 
attempting to enhance interactivity within their virtual 
worlds. One of the most apparent inconsistencies in most 
game worlds is the alteration of environmental structures 
in response to interaction in the form of impacts such as 
bullets or explosions. Generally, bullet holes or cracks are 
simulated using small static images called decals which in 
this case would be a small texture that looks like a hole. 
When bullets hit a wall these decals are pasted over the 
wall at the point of impact. The problem with this is that 
every impact looks exactly the same. One way around this 
could be to have a variety of bullet hole decals used under 
different circumstances, or generate the decals 
procedurally. Neither of these solutions offer much in the 
way of flexibility however. Producing a large number of 
decals is impractical, especially when considering the fact 
there are usually a variety of weapons each requiring 
unique decals. Procedurally generated textures are 
generally hard to control. It is hard to produce a particular 
shape or pattern repeatedly, so again, this becomes 
impractical.  
 
Scope 
 
The goal of this project is to construct a method of 
producing realistic damage effects in real-time. Such 
effects will need to be produced quickly, and with some 
degree of randomness to ensure a natural appearance.  
 
There are a number of benefits a successful new approach 
may potentially wield. Having a more realistic and natural 
looking simulation of any real-world phenomenon is 
always an important goal in the graphics field. Little time 
has been given over to fractures and cracks other than in 
terms of pre-rendered graphics, or larger scale simulations 
such as that of earthquakes. This would be the first step in 
bringing better depictions of such a phenomenon to the 
world of real-time graphics. 
 
 
CURRENT TECHNIQUES 
 
There is little research specifically focused on the topic of 
this paper, but there are examples of non-real-time fracture 
rendering, and other related topics which could form the 
basis of an appropriate algorithm. 
  
Fractals are one area that could provide some useful 
insights. Fractals can reproduce natural phenomena very 
realistically, and as such may be a way forward in 
generating natural looking cracks. More information 

concerning fractals and their history can be found in texts 
such as “The Fractal Geometry of Nature” [MAN84], and 
“Fractals for the Classroom” [PEI92]. There are countless 
sources of information relating to fractals; some of the 
more relevant of which are discussed here. 
 
O’Brian et al (1999) provide very realistic modelling of 
fractures under different circumstances and on different 
materials. The approach is based on a particular set of 
mechanics, including the use of various strain and stress 
variables. This models the object to a higher level of detail 
than will be necessary (or possible) for this project. The 
authors state how they “are interested in graphical 
appearance rather than rigorous physical correctness” 
though the basis of their research is still far more intricate 
and detailed than required here. The modelling is based on 
more realistic and therefore complex physics than are 
currently possible to simulate in real-time. In fact the 
modelling alone would prove impractical for a real-time 
renderer as the number of polygons involved in just one 
object would be far greater than is practical in a scene 
consisting of a number of objects. This can be seen from 
the pictures taken from the paper: 
 
The wall is initially made up of a number of polygons 
(usually a simple wall would be made up of 2 triangles in a 
game): 
 

 
Figure.2 - Wall made from polygons 
 
In the simulation the wall is hit by a wrecking ball. The 
wall reconstructed after collision looks like so: 

 
Figure.3 - Reconstructed wall 
 
This produces a number of extra polygons so there are 
already a far greater number than is necessary to create a 
wall, however, this is just the front of the wall. As the wall 
is in fact a 3D object it would be necessary to reconstruct 
the entire wall to show the actual make-up of the wall after 
fracturing. This is shown below: 
 
We now have an enormous number of polygons just to 
model a simple wall. Just rendering a simple building with 
a number of fractures could potentially require thousands 
of polygons. In a world containing a number of objects 



each made from thousands of polygons, this becomes 
impractical. 

 
Figure.4 - Destroyed wall 

  
Wirtz (2001) website describes in an informal but 
informative manner the basis of diffusion-limited 
aggregation (DLA) and how it is simulated, along with 
some examples of where it can be seen in nature: “It takes 
place in non-living (mineral deposition, lightning paths) or 
living (corals) nature”. Pictorial examples of the 
simulation results show some quite intricate and 
interesting results. 
 

 
Figure.5 - A DLA Fractal 

 
This displays a complex phenomenon modelled using a 
computer. Many natural phenomena are modelled with 
similar methods using computers, with widely varying 
results. These in particular are usually applied to 
simulation of trends such as formation of mineral deposits 
or urban growth. In general the nature of DLA give shapes 
that are more complex than needed to represent a relatively 
realistic fracture, but is clear that this could be used as a 
basis and modified to produce similarly random, but less 
elaborate results. 
 
Steven (1990) covers a great deal of information regarding 
various types of fractals and their implementation in Turbo 
Pascal. Much of the detail is basic background on the 
various fractals and their history, though some methods 
may be applicable to this project as all the examples in the 
book run in real-time. Some of the algorithms could be 
used, perhaps in conjunction, to form the basis of the crack 
tracer, particularly with the use of the Koch Curve.  
 
The Koch Curve will be discussed in more detail in 
chapter 3. If more information is needed regarding the 
basics of the Koch Curve, there are many sources of 
reference describing them in further detail, including the 
two used in the development of this project. (Please refer 
to the bibliography for details). 
 
Deloura (2001) covers a number of topics are covered in 
this book ranging from artificial intelligence to optimising 

floating point calculations, one of the more relevant 
chapters is titled ‘Programming Fractals’. This section, 
written by Jesse Laeuchli, includes sections on plasma 
fractals, fault fractals and fractal Brownian motion (FBM). 
Only the latter is covered in any real detail, but the idea of 
the fault fractal is of particular interest. 
 
Laeuchli describes a simple implementation of FBM based 
on noise functions which can be used for producing clouds 
and fractal landscapes.  
 
The applications of plasma fractals and fault fractals will 
be discussed further in Chapter 2. 
 
Lee et al (2001) deal with Fractal Brownian Motion. The 
paper explains the history of Brownian motion (“based on 
a process in plants discovered by Robert Brown in 1827” ). 
He described how particles floating in a liquid were in fact 
constantly moving, a notion which he named Brownian 
motion. Sometime later Einstein became interested in the 
subject and it subsequently found a basis in physics, 
thereby receiving greater attention. 
 
Einstein produced a paper  - the 'Elementary theory of 
Brownian motion' – which described Brownian motion as 
“the irregular and unceasing movement of solid 
microscopic particles when suspended in a fluid medium” 
[LEE]. At the simplest level this means that those particles 
will have an apparently random trajectory.  
 
Lee and Hoon then go into some depth concerning various 
applications of Brownian motion including medical 
imaging, robotics and market analysis. These topics are 
beyond the scope of this paper and therefore will not be 
detailed here. 
 
 
NEW TECHNIQUES 

 
This section discusses various ideas and concepts 
including modified versions of those discussed in the last 
section. Not all ideas examined here will be used in the 
final implementation of the application, but more than one 
may be used in conjunction, or developed separately for 
comparison purposes. 
 
Koch Curve Generator (KCG) 
 
The Koch Curve is a widely known and well researched 
fractal. It has one facet which offers potential with regards 
to this project; the “curve has much of the complexity 
which we would see in a natural coastline” [PEI92]. This 
‘natural complexity’ may provide an ideal basis for 
forming cracks.   
 
This technique is founded on generating a number of 
random lines which then have added complexity 
introduced through the use of a KCG. Given a starting 
point (the red point in Figure.6) a crack could be 
propagated outwards by producing a set of random points 
(the black points in Figure.6) representing the vertices of a 
number of lines: 
 



 
With these lines in place, complexity can be added to 
enhance their appearance. By taking each line segment and 
replacing it with another section (which would typically be 
made up of say, 4 other lines in a particular arrangement) 
the lines become more intricate. 
 

  
Figure.6 - Randomly 
generated vertices 
These would be joined 
producing something 
similar to Figure 3.2. 

Figure.7 - Crack formed 
from random vertices 

 
One initial problem with this overly simplistic approach is 
that it allows for the possibility of lines overlapping or 
circling back round on themselves. When separate cracks 
overlap in reality, what actually happens is that the two 
cracks join up. However lines rarely circle back on 
themselves; when a material is hit with a force that cracks 
it, the force is propagated outwards in a wave from the 
impact point. The path of the crack will tend to follow 
weak points in the material, but will rarely double back on 
itself due to the expanding wave. 
 

 

 
Figure.8 – Crack 
Propagation (a) 

 

 
Figure.9 – Crack 
Propagation (b) 

 

 
Figure.10 – Crack 

Propagation (c) 

 

 
 

Figure.11 – Crack 
Propagation (d) 

 
The basic concept can be extended to stop undesirable 
effects like this (or to enhance desirable ones). One 
method would be to ensure that every point generated for a 
particular line can only be generated in a particular area. 
For example, if the space in which the crack was occurring 
was divided into quadrants, points may be only generated 
in a 90 degree quadrant in the direction the crack is 
propagating. 

 
As in the series of figures above the crack is moving up 
and to the right, each new point is then generated up and to 
the right of the prior. However, this may be too simple as 
cracks generated in this manner may not look particularly 
natural. It would make it impossible to generate cracks 
such as the one depicted in Figure.12. 
 

 
Figure.12 - A vertical 
crack 

 
A crack such as this, which essentially crosses into two 
quadrants, could not be described using this approach.  
 
Alternatively instead of simple quadrants overlapping 
sections could be used which would give a greater range in 
which the crack could expand. The problem with either of 
these approaches is that they put unnatural limits on the 
development of the crack.  
 
 
Modified DLA 
 
A simple DLA algorithm alone gives results that look 
similar to cracks. By releasing particles from predefined 
areas, and allowing them to walk randomly around this 
area until they come into contact with other particles, a 
pattern is formed. This can be implemented by producing a 
new ‘particle’ at one of a set of locations, then moving it 
(within certain boundaries) one pixel (or arbitrary 
distance) in a randomly selected direction per iteration of 
the algorithm, until it hits another particle. When this 
occurs another particle is released. Over time this process 
will build up a pattern consisting of these particles. 

 
Figure.13 - DLA using a bias 

 
Under closer scrutiny however these patterns are too 
intricate and organic looking. The illusion that they can 
look like cracks suggests under different circumstances, or 
with certain modifications they could be made to look a 
great deal more like cracks.  
 
A number of alterations could be performed to enhance the 
fracture-like nature of results from DLA. One possibility 



would be to bias the particles such that they were more 
likely to stick in certain areas. This could be done by pre-
placing a number of particles in certain areas. This would 
have the effect of biasing lines or clusters of particles to 
gather around those areas. 
 
Probabilistic Weak Point Propagation (PWPP) 
 
This approach is similar to the method discussed in 3.1 in 
that it partly relies on a number of randomly generated 
points. It is however less simplistic and seeks to model the 
fracture behaviour of a material more realistically, 
potentially offering better results than the approach of 3.1. 
 
The method starts by assigning a point on a wall – 
generally where the user is looking, or aiming their virtual 
weapon. This is the point of impact for the projectile fired 
from the weapon. Now a number of random points around 
the impact point are generated, up to a maximum distance 
from the impact point, depending on the force of the 
projectile. So points generated by a bullet hitting the wall 
may only stretch as far as 10 pixels from the impact point, 
while the points generated by a rocket hitting the wall may 
stretch for 100 pixels. These points represent weak points 
in the wall. As the projectile hits the wall a force is fed in 
corresponding to the power of the projectile, this force 
dissipates as the crack propagates. So, we link random 
points nearer the impact point, to the impact point itself, 
then link these points to points further out and so on. Each 
point we link (thereby creating a small section of a crack) 
we decrease the force that is left. Also, at random points 
we allow the crack to split (each part of which again takes 
part of the force that is left). This happens recursively, but 
becomes less likely to happen after each split. When the 
force is entirely dissipated the crack stops propagating. 
 
There are a number of ways this method can be 
implemented. One would be to simply generate the weak 
points, then link up a number of them randomly. This 
however would be unlikely to produce realistic looking 
fractures as points on opposite sides of the impact point 
could easily link up together. 
 

  
Figure.14 - Randomly linked vertices 

 
Figure.14 shows how by simply linking up random points 
the crack can easily double back on itself and even cross 
back over the impact point. This looks more like a bad 
‘join-the-dots’ picture than a crack. 
 
Another approach would be to draw an ellipse from the 
impact point oriented in the direction of the force 

propagation. This ellipse would encompass a number of 
the randomly generated weak points. By generating a 
probability value for each of these points we can calculate 
which one the crack would propagate to. So we draw a line 
from the impact point to the most probable point, then 
draw another ellipse from this point, again oriented in the 
direction of the force propagation. The use of ellipses 
limits the weak points that can be joined up which 
eliminates the possibility of occurrences such as that 
illustrated in Figure.14. It also keeps the cracks 
propagating in the same general direction once started. 
This is done in a number of directions from the impact 
point to generate a number of lines emanating from it. 
As with the other approaches, for each line generated we 
deduct a certain amount of the initial force until there is no 
force left and randomly split secondary cracks from the 
primary ones. 
 
Calculating the probability values 

Each of the weak points in the wall needs a value 
representing the probability that the crack will propagate to 
it next. These values are recalculated each time a crack 
section is drawn, and only for the points that fall within the 
current ellipse. 
 
The process for calculating the values is as follows: 
 
- Compute distance from last weak point to current weak 
point  as 1/distance2 
- Take two vectors – one being the direction in which the 
crack was last propagating, the second being the direction 
from the last weak point to the current weak point. 
- Take the dot product of these vectors and add it to the 
distance. This represents the probability value for the weak 
point. 
 
This can be represented as  
Probability = 1/d2  + v1  v2 
Where d is the distance from the last weak point to this 
one, v1 is the normalised vector the crack was last 
propagating along, and v2 is the normalised vector from 
the last weak point to this one. 
 
These values are entered in ascending order into an array. 
They are stored cumulatively, such that the first value is 
entered as normal, the second value entered is the second 
value added to the first, the third is the third value added to 
the second and so on. 
 
To select which weak point to propagate to next a random 
number is generated between 0 and the sum of all the 
probability values (which is the last value in the array). 
The value closest to the random number is selected and the 
point it represents is connected to the last weak point. 
 
Branching 
 
At random instances, any part of the crack may branch into 
more than one line. This can be simulated by generating a 
random number and if it is even the crack splits, otherwise 
it does not. However, this may produce too many branches 



and so should be limited. Another approach could be to 
generate a number between 0 and 100, and if it is under 
(say) 75 then allow it to branch. This essentially means 
there is a 75% chance of it branching. The decision 
boundary can be altered to find a suitable percentage 
chance of allowing the crack to branch. The probability 
can also be a function of the force of impact. The less force 
there is, the lower the likelihood of the crack being able to 
split. 
 
Overlap Prevention 
 
An addition which would also assist in prohibiting cracks 
from overlapping would be to add a weight to the 
probability such that the next vertex to be selected will be 
‘repelled’ from any vertices that have already been picked. 
This would have the effect of making cracks avoid each 
other to an extent.  
 
Crack Amalgamation 
 
Even with the added weighting during the selection of 
weak points, it is still possible that cracks will overlap; if 
this is the case, they should join into one crack. To do this 
will require finding the point of intersection between the 
two lines, and clipping one of the lines to this 
point. Given two lines, one going through the 
points P0 and P1, the other going through the 
points Q0 and Q1, this can be done by defining 
one line explicitly as: 
 
P = P0 + t(P1 - P0) 
 
and the other implicitly as 
 
dot(N, Q0 - P) = 0  
 
where N is the normal to the line. 
 
 
Substituting the first equation into the second, solving for t 
gives: 
 
t = dot(N, Q0 - P0) / dot(N, P1 - P0) 
 
By substituting t back into the explicit equation the 
intersection point P can be discovered.  
 
From this the line can either be clipped entirely, or can be 
made to follow the crack it has joined. If the first crack 
then stops, the second may begin to propagate randomly 
once again. 
 
 
RESULTS AND DISCUSSION 
 
Each of the approaches implemented met with varying 
degrees of success. The only way to assess this success is 
visually as there is no quantitative method applicable to 
such measurement. Evaluation entails simply looking at 
the patterns produced, and comparing them to real cracks, 
and existing graphical methods of rendering them. 

DLA Algorithm 
 
The DLA approach certainly displayed potential towards 
fulfilling the project’s goals. Unfortunately, its merits were 
outweighed by the relative disadvantages. 
 
The fundamentally random logic behind the algorithm 
itself lends a natural tendency to the output. Based as it is, 
on Brownian motion, organic patterns can be formed 
easily using DLA. The patterns formed in Figure.16 to 5.3 
illustrate the random nature of the method. They possess 
some of the basic characteristics required to render a 
realistic representation of a crack. These include 
branching, and random propagation. However, when 
viewed close up they are too intricate to look like realistic 
cracks. The algorithm as implemented so far is just the 
basic DLA algorithm. As such it will always produce this 
kind of result. To generate anything more appropriate 
would necessitate certain modifications. By adding in a 
bias factor for example, it should be possible to predispose 
the pattern towards certain shapes.  
 

  
Figure.15 - DLA output 
with bias 

Figure.16 - DLA output 
after 5 seconds 

  
Figure.17 - DLA output 
after 10 seconds 

Figure.18 - DLA output 
after 20 seconds 

 
Through simply adding a number of particles to the scene 
before releasing the random particles, the areas where 
particles will congregate is effectively biased to a degree. 
Though this was experimented with, it was not taken very 
far for reasons explained below. One problem that did 
arise was that if particles were initially placed too far from 
the impact point, most released particles would only 
congregate around the bias particles. If a line of particles 
was placed into the scene, only a straight line would be 
formed from the impact point, until clusters began to form 
further out. If more time were spent testing the effects of 
biasing a solution to this problem would likely present 
itself. 
 



Such modifications were not undertaken to a greater 
degree as they were seen to be unwarranted in the face of 
(execution) time factors. As mentioned earlier the time it 
takes to produce a presentable result is too protracted to be 
used in a real-time application. As it takes a number of 
seconds to produce a reasonable image rather than a 
number of split-seconds it reduces the possibility of 
running in real-time (or at least quick enough to be used in 
a fast moving virtual environment). The implementation 
used is inherently slow as for every step a particle takes its 
position must be checked against all existing particles. As 
time advances execution will become slower from having 
to check a progressively greater numbers of particles. 
 
The series of figures above show examples of patterns 
formed over time. 
 
A possible alteration that could be made to enhance speed 
would be to instead check the background colour at each 
step. When the background colour is the same as the 
particle colour, it should stick. However, though this may 
work in the current application which uses only 2 colours, 
it is far less likely to function correctly in a world using 
textures and multiple colours. Also, the crack itself would 
not be composed entirely of a single colour since this 
would appear totally false, thereby defying its own 
purpose. It would have to be composed of a similar 
material (texture) to the surface it was propagating through 
as essentially it would be part of the surface (or to simulate 
it even more realistically, a volume removed from it).  
 
Another potential speed enhancement would be rather than 
releasing one particle per frame, to release a number of 
particles per frame. This would have the overall effect of 
producing a pattern faster, though it would also make it 
develop jerkily. It would be possible to make the entire 
crack appear in one frame if enough particles were 
released in that one frame, however this would have a 
detrimental effect on the frame rate.  
 
What is more, is that in a game environment the rendering 
of the crack will be one of a multitude of things that need 
processing. The sounds, other graphics and artificial 
intelligence among other things all require processor time 
too. Bearing this in mind the speed of this method is 
completely prohibitive for practical use unless 
significantly enhanced. This project demonstrates that 
there is potential in the approach, but only after a great 
deal of effort spent on optimising the algorithm, as well as 
making modifications which simplify the resulting 
patterns.  
 
Probabilistic Weak Point Propagation (PWPP) 
 
This approach gave the best results overall. The DLA 
method was fundamentally too slow to currently be 
implemented for real-time use, and the KCG method was 
overly simplistic. The weak point method gives a better 
representation of a crack in a short time frame. Producing 
very random patterns, and with convincing branches from 
the main shafts, it gives the most realistic results of the 
implemented approaches. It has the potential to add an 
extra element of realism to today’s games. 

 
The solution is more efficient than DLA as it works on a 
line-by-line basis rather than a pixel-by-pixel basis, thus 
providing a fundamentally faster technique. Speed is very 
important if the technique were implemented in a virtual 
environment, though as mentioned in chapter 6 it would 
require a more efficient design to enhance the current 
speed. As it is currently, this method works fast, but with a 
noticeable lag between pressing a key and a crack 
appearing. This is at least in part due to the experimental 
nature of its development. With the feasibility proven a 
more robust and more efficient design could be devised. 
With this more fundamental issue addressed, the code 
could also be optimised a great deal. This is another matter 
neglected at this time as it was considered irrelevant. With 
these two concerns dealt with the code should run a great 
deal faster, and could potentially be implemented into 
some form of real-time virtual environment application. 
Also, considering the rapidly advancing speed of 
processors, along with today’s graphics hardware taking 
more of the burden from the CPU, more resources are 
becoming available for processing such tasks. In six 
months, even this un-optimised version may be fast 
enough to run with a number of other things (graphics, 
sound, artificial intelligence) being processed as well. 
 

 
Figure.19 - A decal from Quake 3 [QUA99] 

 
Compared to existing methods of simulating bullet holes 
and similar forms of damage, the results are encouraging. 
Where normal decals are all the same, this method 
produces different ‘damage’ every time.  
 
 
Not only that, but where decals must be drawn for each 
type of weapon or damage available, here nothing needs 
altering. Each weapon can simply pass in a different set of 
parameters, resulting in different types of crack. Currently 
this is limited to the size of crack and number of branches 
it has, but other differences are discussed in the further 
work section.  
 
A more recent advance in damage effects is Volition’s 
GeoMod engine in ‘Red Faction’ [RED01]. Though decals 
were still used for smaller effects like bullet holes, damage 
produced by more destructive weapons (such as a rocket 
launcher) was modelled using a constructive solid 
geometry engine. This allowed them to perform Boolean 



operations on geometry. As such they could effectively 
remove ‘chunks’ from walls. Though this offers a higher 
level of interaction with the world, the results are 
frequently simplistic or unrealistic.  
 

 
Figure.20 - Red Faction [RED01] 
 
The above image shows how certain parts of the scenery 
have been removed. The area directly in front of the player 
looks somewhat unusual. The damage effect present is not 
entirely convincing. This is partially due to the simplistic 
nature of what has been removed. The blocks of geometry 
that have been removed are made up of a fairly low 
number of polygons. The technique presented in this paper 
provides a more complex and realistic representation of 
impact effects, though currently they are purely aesthetic.  
 
The results are not as realistic as those non-real-time 
systems may render, but as observed earlier, there is no 
limitation on the time taken to render graphics, and as such 
they can use extremely complex physics models to create 
phenomena like cracks.  
 
If the viewer is aware of their purpose, a crack’s 
appearance in the basic application is obvious. However, 
to someone who was unaware of this, it may not be so 
apparent. This is partly down to the abstract quality of the 
environment. Each wall is made up of one colour so it may 
not be immediately apparent what they are meant to 
represent. Bearing this in mind, the lines do form some 
natural looking cracks. To give them a more practical 
setting, the walls and floor were textured. Setting them 
into context immediately gives them more credibility than 
in an abstract world. Anything viewed out of context can 
be hard to recognise. 
 

 
Figure.21 - A crack demonstrating branching, and 
amalgamation 
 
Figure.21 shows an example of amalgamation, where one 
crack joins with another. It is also an example of a larger 
crack. Amalgamation was not entirely successful. It does 

not occur at every intersection. As explained earlier, there 
is only a limited amount of intersection checking, however 
the concept is proven to work and to produce good results. 
 

 
Figure.22 - Small crack 

 
This is an example of one of the smaller cracks. Due to the 
smaller force it does not propagate as far, and though it has 
small branches, it does not have the opportunity to branch 
as much as a crack produced from a large force. 
 

 
Figure.23 - Medium crack 

 
This crack was produced from an impact with a greater 
force. Not only does it span a greater distance than the one 
in Figure.8, it has a greater number of branches, each of 
which also propagate farther than the branches of the 
previous one. 
 
Even set in context there are negative aspects to the cracks. 
In their current state they may be considered too thin. In 
reality cracks generally split the material they are 
propagating through. This means a volume of the material 
is removed or that areas have their shape altered, which 
from a distance may look like a thick line through it. The 
lines in the application though representing the shape of a 
crack do not actually split the material, or remove anything 
from it. This issue is further addressed in the future work 
section. 
 
 
CONCLUSIONS 
 
The proposed method certainly shows promise. It succeeds 
in its primary goal of producing realistic looking cracks in 
real-time. Some of the secondary goals were not entirely 
successful due to insufficient time to complete them, but 
are demonstrated to be feasible. There are a number of 
avenues for further research as discussed in the preceding 
sections. Hopefully at least some of these will be 
investigated in the future. 
 
As Steven Poole says “If you’re going to raise the retinal 
stakes to a photorealistic degree, a comparable increase in 
game play coherence will be necessary” [POO01]. As 



graphical realism improves people will expect the same 
kind of improvement in realism regarding interaction.  
 
Conversely, it is sometimes desirable to have realism in 
terms of interaction with a world, but not in terms of 
graphics (and in some cases physics). Either way, 
interaction needs to be described in some form. Modelling 
interaction between all objects in a world is an impractical 
way to do this; a more generalised approach is needed. The 
technique presented here is a step towards this goal. With a 
damage system that is easily generalised to any material, it 
could be applied widely, from scenery to objects (such as 
windows, rocks, ceramics – in its current state it is 
unsuitable for metal objects as under normal circumstances 
metal does not crack). No extra work would be necessary; 
impacts with a wall would be modelled with the same 
system that modelled impacts with a vase for example. 
There would be no need to describe what happened to each 
and every object and surface explicitly when they were 
shot. 
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ABSTRACT: This paper reports on a project whose aim is to 
model a realistic motion blur phenomenon for computer-
generated images.  There are many applications for this, but the 
one chosen for this paper is for a first person perspective roller 
coaster simulator.  In this case, the surroundings will either be 
completely still or have such a low velocity with respect to the 
viewer, sat on the roller coaster, that they may be said to be 
completely still. 
 
INTRODUCTION 
 
The Depth of Field Phenomenon: Blurred retinal images of 
observed objects are stimuli for accommodation Rokita [1].  This 
is caused by the tension of the ciliary muscles and the resulting 
curvature of the eye lens that allows the object to become 
focused.  Accommodation is believed to be a weak source of 
information about depth.  The brain converts certain types of 
information including depth cues, giving the sensation of depth 
and distance.  In real life, depth cues influence the human mind’s 
perception of space and reality.  These include occlusion, 
perspective, and light and shade to name but a few.  To develop 
high levels of realism in virtual reality, any depth of field problem 
solutions should reproduce all depth cues. 
 
When an object is defocused due to the object being far from the 
plane on which the optical system is focused, each point of the 
object produces a circle (blur circle) on the retina, rather than a 
single point.  The depth of the observed point dictates the 
diameter and intensity distribution of the blur circle.  The image 
of a defocused object is composed from the superposition 
of these blur circles from all the visible points of 
the observed scene. 
 
A lens equation may be used to find the eye’s state of 
accommodation because the eye will automatically adjust its focal 
length to the distance of the object where the view is directed. 
 
Accommodation cues in computer graphics are implemented in 
the following way: 
 
Eye tracking devices find out where an eye is focused at a given 
moment (in computer hardware it will be the screen pixel 
coordinate).  This allows the z distance to be found which is the 
distance from the eye to the object being viewed (in computer 
hardware this is retrieved from the z-buffer). The diameters of the 
blur circle for a given state of the eye’s accommodation will be: 
 
Cd = |Vd – Vf| (F/(n.Vd)  eq 1 
 
where 

Cd = diameter of blur circle 
n = aperture number 
F = focal length of lens 
Vd = F.d / (d – F) where d > F 
Vf = F.df / (df – F) where df > F 
 
Since the pupil diameter varies depending on the amount of light, 
an average is taken (F/n = effective lens diameter = 4mm).  
Further complications occur because the focal length of the eye is 
also variable.  This is because the lens will alter its shape to 
change the eye’s refractive power, thus allowing a sharp image to 
be projected onto the retina.  The focal length can be found from 
the lens equation below: 
 
1/D + 1/V = 1/F   eq 2 
 
where 
D = object distance 
V = image distance 
F = focal length of lens 
 
The focal distance can be found by equation 3 below and by 
knowing the distance between the lens and object, and the 
distance between the lens and image projected in equation 2. 
 
F = 1 / (1/D + 1/V)   eq 3 
 
The distance between the lens and the retina (projection screen) is 
not variable and in an adult is typically 24mm.  The object 
distance is the same as df in equation 1, which is taken from the z-
buffer. 
 
Equation 1 reformed: 
 
Cr = |Vd – Vf| (E/Vd)  eq 4 
 
where 
Vd = F.d / (d – F) where d > F 
Vf = F.df / (df – F) where df > F 
d = point distance 
F = 1/((1/df) + (1/dr)) 
dr = distance between eye lens and retina 
E = effective lens diameter 
 
Now the diameter of the on screen blur circles needs to be 
calculated.  This is proportional to the diameter of the retinal blur 
circles: 
 
Cs = (ds/dr) Cr   eq 5 
 
where 
ds = distance between eye and display screen 
dr = distance between eye’s lens and retina 
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Cr = diameter of the retina’s blur circles, from equation 4 
 
Rokita generates the defocus effects by taking the intensity of 
each pixel and applying a convolution filter with an appropriate 
point spread function.  A 3 x 3 convolution mask is used to 
generate the blur circles because this type of filter is cheap and 
simple. 
 
One of the main advantages of the above method is that it is very 
quick and efficient and it also can be easily implemented in an 
existing rendering system because of its post-processing position. 
 
2.2 Motion Blur Attempts 
Potmesil and Chakravarty [2] were probably the first to attempt to 
recreate the motion blur phenomenon in computer graphics.  
Below is a brief description of their methods and conclusions: 
 
Motion blur is caused by two main reasons: the movement of 
objects, and the movement of the shutter. 
 
The movement of objects is the movement solely of the camera, 
solely the objects in the scene, or a mixture of the two. 
 
The movement of the shutter is the movement of the shutter 
across the film plane.  The direction of movement of the shutter, 
finite opening and closing times of the shutter and the changes in 
the shape of the aperture can all have an effect on the final motion 
blurred image. 
 
Potmesil and Chakravarty constructed motion blurred images in a 
two-stage process whereby: (1) a hidden-surface program 
generates intensity sample points of an image.  This identifies 
which points are in motion and also gives the image path of the 
projected motion; (2) a post-processor will then blur the moving 
points by convolving them with derived optical system-transfer 
functions and merges these with a stationary image to give a final 
image.  The optical system-transfer functions are derived from the 
image path in stage (1). 
 
For the hidden surface removal stage the system produces an 
image using a ray tracing pinhole camera model.  The intensity 
and z value are then computed and stored for each point and the 
intensity for each pixel is calculated. This is found from the 
weighted average of the intensities in the blur circles that overlap 
the pixel.  The blur circle intensities for different values of z are 
stored in lookup tables.  This technique uses far too much 
memory and takes too much time to be useful.  Since the image is 
formed from a single point, some light rays are lost.  Therefore, 
the image will only be an approximation. 
 
The motion blur processor is passed samples of an image frame 
with all the paths of the individual objects, time of the frame 
exposure and the exposure duration.  The actual blur is generated 
from a raster image consisting of sample points of a moving 
object of the same path.  The motion blur is computed from the 
object path, exposure time and exposure length.  This forms 
another raster image and the two images are merged to give the 
final effect. 
 
As mentioned before, this technique takes too long and uses up 
too much memory.  Further more, the technique does not solve 
the motion blur problem completely because object occlusions 
occurring during the exposure time cause complications. 
 
A large amount of improvements have been made for spatial 
aliasing (e.g. [3], [4], [5] and [6]) and many graphical programs 
integrate antialiasing procedures as standard.  However, very little 

work has been done on temporal aliasing which is essentially 
motion blur.  Korein and Badler [7] published work on this in 
1983 using different strategies to Potmesil and Chakravarty. 
 
They understood that it was important to find out which object 
projects onto a given pixel, but also when it does so.  From this, a 
temporal intensity function of high resolution may be derived on 
the basis of visible object qualities.  From here, the function is 
convolved with an appropriate averaging function.  Paper [7] 
describes the two methods for finding out the high-resolution 
function. 
 
The first method approximates object movement with continuous 
functions and calculates the precise periods during which each 
pixel centre is sheltered by an unoccluded object.  The intensity 
function resulting from this is then derived using uninterrupted 
approximations of the object qualities necessary for the shading 
routines. 
 
The second method uses a typical rendering algorithm which 
undergoes a continuous iteration to super sample the moving 
scene.  It will also work out a discrete estimation of the required 
pixel intensity function. 
 
Both of these methods suffer from large processing times; 
rendering an object multiple times is bound to be prohibitive.  
Furthermore, if the number of temporal sample points is finite and 
constant, the estimation will not be very accurate. 
 
To combat the time consuming methods used previously, Wloka 
and Zeleznik [8] developed a new algorithm for use with 
interactive real-time motion blur applications.  Without motion 
blur, fast moving object often appear stilted and jerky, a typical 
stroboscopic effect.  An example of an interactive application 
where this effect is not appropriate is when the user wants to 
select a moving object.  The user has difficultly in predicting 
future object positions making it difficult to click on the object.  
With a blurring effect, the path of the object becomes easier for 
the user to follow and, therefore, the object can be selected 
without difficulty. 
 
Wloka and Zeleznik’s algorithm blurs individual objects onscreen 
rather than the whole images.  This means that the generation of 
the blurring effect is fast enough to operate in real-time, but 
interobject relations cannot be addressed.  The given example of 
this is for two moving objects.  The first object always occludes 
the second which in real life means that the viewer never sees the 
second object and its blur.  Their algorithm, however, shows both 
objects and their corresponding blur patterns which is not 
realistic. 
 
A not wholly unrelated piece of work is that of deep shadow 
maps [9].  A deep shadow map is a rectangular array of pixels 
where each pixel stores a visibility function.  This is a 
representation of the fractional visibility through a pixel at all 
possible depths. 
 
Placing a camera at the light source origin generates shadow 
maps.  The light will intercept a set of objects which in turn will 
cast shadows.  The visibility function is simply a fraction of the 
beam’s initial power that penetrates to that depth.  Each visibility 
function starts off as 1, and decreases with depth.  It will become 
0 should all the light be blocked.  From this, a deep shadow map 
can be produced. 
 
With regard to motion blur, deep shadow maps can be used by 
associating a random time with every shadow image sample and 



its corresponding transmittance function.  These samples are then 
averaged into visibility functions accounting for the average 
coverage over time and image plane, thus creating a blurring 
effect.  Deep shadow maps probably fall short of the mark with 
regard to solving the motion blur problem in the same way as the 
other papers mentioned.  This is due to the interobject relations, 
otherwise known as occlusions, not being taken into account.  
Taking these into account increases the complexity of the 
problem. 
 
A rather insightful paper written by two employees of the Silicon 
Graphics Computer Systems company [10] explains how four 
computer graphics problems (aliasing, depth of field, motion blur, 
and soft shadows) can be solved at once using the Accumulation 
Buffer.  Accumulating a series of discrete still images by allowing 
the geometry to move as the image is being accumulated, is how 
Haeberli and Akeley solve the motion blur problem.  There are 
defects with this method, however.  The primary defect is that 
when multiple images are convolved, the resulting picture will 
often be found to have ‘ghost’ outlines around each object.  This 
is a typical result of multiple image convolution when used to 
give a blurring effect. 
 
 
THE MOTION BLUR ALGORITHM 
 
As mention before, motion blur is a phenomenon that is caused 
by: 
 
1 – movement of objects in the scene, 
2 – movement of the viewer/camera observing the scene, 
3 - a mixture of the above. 
 
For simplicity in this project, the movement creating the blurring 
effect is due to the movement of the viewer/camera in the scene.  
This particular scenario is also appropriate for the application of 
the motion blur effect where the viewer/camera is positioned on a 
roller coaster train.  The train will often move so fast that other 
object movement, such as passers by, will be negligible. 
 
A further assumption in this project is that the viewer/camera is 
always facing ahead, i.e. in the direction of the roller coaster’s 
movement.  This means that objects in the field of view will move 
radially outwards with respect to the perspective of the 
camera/viewer.  The objects will, therefore, blur along their line 
of movement.  This makes the mathematical calculations a lot 
easier. 
 
The final assumption is that the train and, therefore, the 
camera/viewer only moves in a forward direction and never 
reverse.  This ensures that objects move radially outwards and 
towards the train, not inwards and away from the train. 
 
Factors Contributing to Motion Blur 
 
There are three major factors that will affect how much blurring 
an object on screen will subjected to: 
 
 1 – velocity of the viewer/shutter, 
 2 – the object to viewer/shutter distance (depth), 
 3 – the radial distance of the object from the centre of view. 
 
The first factor is dependant upon the speed of the roller coaster 
train because the viewer/camera will be positioned on the train 
and, therefore, will move according to its motion. 
 

The second factor creates more blurring when the object is close 
to the viewer/camera and vica versa. 
In the third factor, for simplicity, the screen is imagined to be 
circular (figure 3).  In this case the centre of view will be the 
centre of the screen, C, and the radial distance, r, is the distance 
from C to object O. 

 
Figure-3 

 
The overall 3-Dimensional view is show below from a side 
perspective in figure 4.  The actual view is conical, if a circular 
screen is assumed, with the centre of view running all the way 
down the middle of the cone. 
 

 
 
Simple Perspective Calculations 
 
The blurring algorithm is found by determining values for 
primary factors, r and z. 
To work out this out, simple perspective mathematics is used 
(figure 5). 
 

 
 

 



 
 
In the above figure an object in space, represented by an ‘O’, can 
be represented on screen, o, using a simple similar triangles 
calculation: 
 
O / Z = o / z 
o = Oz / Z 
 
where: 
z is the distance between the lens/shutter and screen in metres. 
Z is the distance between the object in space and the lens/shutter 
in metres. 
 
This is the simplest case scenario in which the object and 
viewer/camera is completely stationary.  It is a good way to see 
how an object in space will be represented on the screen.  
However, what happens when the viewer/camera moves a certain 
distance? 
 
Introducing Motion Perspective Calculations 
 
By using two triangles similar to the one in figure 5 the 
viewer/camera movement scenario can be solved.  One of the 
triangles represents the original position of the camera/shutter 
(figure 6), and the other represents the camera/shutter after it has 
moved towards the object a certain distance (figure 7).  Therefore, 
the latter triangle’s Z distance will be shorter than the former’s 
and this is shown by subtracting the distance travelled from the 
original Z distance. 
 
Furthermore, the factors in section 4.2 should now be taken into 
account.  If the object in space in figure 5 is viewed from above 
and if it is assumed to be one pixel in size, the object in space 
length, O, will now become the object in space radial distance 
from the centre of view, R.  Therefore, the object on screen 
distance, o, will become the object on screen radial distance from 
the centre of view, r (in pixels). 
 
The velocity of the camera/viewer determines how far it will 
move per frame on the screen.  This will be worked out in due 
course but, for now, the distance moved per frame will be 
represented as ∆. 
 

 
 
 

Both triangles will be found to have R as the radial distance of the 
object in space to the centre of view.  This is because this radial 
distance will not change when the roller coaster train moves 
forwards.  However, the radial distance of the object pixel 
position will change.  Therefore, this allows a simplification by 
taking away the larger triangles in both figure 6 and figure 7: 
 

 
 
 

 
 
Similar triangles can now be used to solve the equation in terms 
of z: 
  
r / z = (r - δr) / (z - ∆) 
r (z - ∆) = z (r - δr) 
rz - r∆ = rz - zδr 
r∆ = zδr 
z = r∆ / δr  
 
Rearrange equation 1 to solve equation in terms of r: 
 
zδr  = r∆ 
zδr / ∆  = r  
 
Determining Sharp and Blurry Boundaries 
 
Motion blur can be simulated on a computer screen by 
determining a set of boundaries that relate to the r distance 
(measured in pixels) and the z distance. 
These boundaries split the virtual 3-Dimensional screen into areas 
with different blurring factors.  The blurring factors will be 
explained in more detail shortly but first of all the boundaries 
need to be calculated. 
 
At this point the distance travelled per frame, ∆, must be found. 
Since, roller coasters are always changing velocity, a fairly 
average speed has been chosen for the purpose of this calculation: 
55Km/hr.  This is roughly 15m/s. 
 
The frame rate of the human eye is approximately 25 frames per 
second.  Since the camera represents a persons view on the roller 
coaster, this will be the frame rate of the camera. 
 
From the velocity and frame rate, the distance moved per frame 
can be found: 
Velocity / frame rate = distance moved per frame 
15.28 / 25 = 0.61m / frame 
∆ = 0.61m/frame 



 
Assuming a circular screen, the maximum value of r will be the 
radial distance from the centre of view to the edge of the screen.  
This means that r will be half of the resolution used.  For the 
purpose of the following determination, the resolution will be 
1024, making r equal to 512 pixels. 
 
The next important point to make concerns δr.  This is the change 
in distance of r in pixels that occurs when the viewer/camera 
moves a distance ∆.  This value can be any value from 1 to the 
maximum value of r, 512.  Essentially, this value determines the 
amount of blurring to which the pixel is subjected. 
 
From equation 1: by keeping r at a constant maximum, keeping ∆ 
at 0.61mpf (metres per frame) and changing the value of δr, the z 
boundaries can be found.  Section 1 of appendix 1 shows the 
values of the z boundaries when r = 512, and δr changes by the 
sequence shown below: 
 
1,2,4,8,16,32, ……. 264, 512 To find which area in which a pixel will lie, a polar coordinate 

system is used.  This is based on the x, y and z Cartesian 
coordinate system and will be looked at in the next section.  

N.b δr is represented by dr. 
 
Using these z values, equation 2, and yet again changing δr in the 
same way as before, the r boundaries can be found (section 2 of 
appendix 1).  The row across the top of section 2 of appendix 1 
holds the changing δr values. 
 
By plotting r vs. z the actual blurring boundaries are shown 
(appendix 2).  However, it should be noted that some of the r 
values are greater than 512.  Since 512 pixels is the maximum r, a 
new table can be drawn up where r does not exceed this (section 
3, appendix 1).  A renewed plot of this table can be seen in 
appendix 3. 
 

 
Not all the boundaries are shown on the graphs because some of 
them are so close together at this scale that they appear to merge 
and overlap.  Furthermore, the graph needs a reflection in the x-
axis to be added so that it represents the boundaries below the 
centre of view as well as above.  In three dimensions, this would 
form a conical shape (figure 4).  Figure 10 shows these 
boundaries from a front view perspective: 
Figure 11 below shows the boundaries with their associated blur 
parameters.  The ratios are, simply, screen resolution ratios where 
1:1 will be equal to full screen resolution, 2:1 will be half of the 
full screen resolution, 4:1 a quarter of the screen resolution, and 
so on.  This is very similar to the depth of field algorithm. 
The view directly ahead, δr ≤ 1, will always form a sharp image, 
hence the 1:1 ratio.  The area beyond this, 1 < δr ≤ 2 (2:1) gives a 
slight level of blur.  The 4:1 area will give twice a much blur as 
the 2:1 area, the 8:1 area 4 times as much as the 2:1 area, etc. 
 
It should be noted that the boundaries continue outwards until 
they reach the edge of the screen (r = 512 pixels) as shown below. 

 
 

 
 

 
Conversion of Cartesian Coordinates to Polar Coordinates 
 
 

 
 
Polar coordinates (r,θ, z) can be found in terms of Cartesian 
coordinates (x, y, z), where: r is the radial coordinate; and θ is the 
angular coordinate (figure12).  The equations are shown below: 
 
 x = r.cos θ  
 y = r.sin θ  
 
r is the radial distance from the origin and can be found from 
Pythagoras’s theorem: 
 r = √(x2 + y2)  
 
and θ is the anticlockwise angle from the x-axis: 
 θ = tan-1 (y/x)  
 
z will be the same in the polar system as it is in the Cartesian 
system. 
 
Location of Blur Area with δr: Equations 1 and 2 can be 
rearranged to solve in terms of δr: 
δr = r∆ / z   
 
From the Cartesian coordinates of each pixel polar coordinates 
can be found from section 4.6.  Now that r and z have been found 
and assuming ∆ = 0.61mpf, δr can be found.  This allows each 
pixel to be assigned to a blur area (screen). 
 
Occupancy Weighting: A pixel is essentially a coloured spot on 
the screen.  It is made up of the primary colours: red, green, and 
blue (rgb).  When a pixel shines on a screen it will have been 
assigned an appropriate value for each of its primary colours.  To 
cause a blurring effect, a factor must influence these rgb values 



and change them accordingly.  This factor is known as occupancy 
and, it works in a similar way to the depth of field algorithm. 
 
If a pixel lands exactly on a boundary it will be blurred by the 
factor of the boundary that it lands upon.  For example, if the 
boundary is 2:1 the pixel will be blurred by a factor of 2:1, and 
this is done from the resolution being half that of the sharp 1:1 
area (section 4.5). 
 
However, what happens if the pixel doesn’t exactly land on a 
boundary?  In this case scenario an occupancy weighting is found.  
For example, if the pixel is the same distance from the 4:1 
boundary as the 2:1 boundary, the pixel will receive a 50% 
contribution from the 4:1 area and a 50% contribution from the 
2:1 area.  Should the pixel be nearer to the 4:1 boundary, it would 
receive a larger contribution from the 4:1 area than the 2:1 area 
relative to its distance from each boundary.  This method is 
known as linear interpolation and it should be familiar as it works 
on the same principles as used in section 3.2. 
 
The Algorithm 
 
The blurring algorithm will be as follows: 
 
For each layer: 
For each pixel: 
- Get coordinates. 
- Find r and z from Cartesian coordinates. 
- Calculate δr. 
- if pixel not in 1:1 area (screen): 
- Find polar coordinates. 
- Find occupancy weighting for subject pixel. 
- Store occupancy in memory at a point relating to correct 
coordinates of pixel and layer. 
Retrieve pixel values for each layer. 
Combine layers from front to back to form final blurred image. 
 
Pixels that have the same z value but different x, y coordinates 
form layers.  This is very similar to the Depth of Field algorithm 
only now, instead of each layer having a different resolution 
depending on how far it is from the point of focus layer, they are 
split into areas (screens) from their blur boundaries as mentioned 
earlier.  These screens will, therefore, each have different 
resolutions relating to their blur parameters, e.g. 8:1.  Figure 13 
shows these layers and their corresponding screens.  It is based on 
figures 10 and 11. 
 

 
 
By finding the occupancy weighting for each pixel in each layer 
and then combining all the layers together from front to back thus 

performing hidden surface removal, a final blurred image is 
formed.  Front to back means from the layer nearest to the 
view/camera back to the farthest. 
 
 
IMPLEMENTATION 
 
Implementing the algorithm involves using the existing depth of 
field code and modifying it to perform motion blur.  One of the 
main differences is the fact that the depth of field code uses two 
sets of memory for near and far screens.  This near screen is from 
the front layer to the centre of focus and the far screen is from the 
centre of focus to the final layer.  For the motion blur 
implementation there will not be a near or far screen, just one that 
works from the nearest layer to the layer at the rear. 
 
The occupancy (rgb value) is worked out for each pixel using the 
linear interpolation method mentioned in section 4.8.  This value 
needs to be stored for each pixel and is achieved by calculating 
perimeter values.  By knowing the perimeter value for a pixel 
with a known r, the layer in which this pixel lies can be found.  
Perimeter values are worked out from the pixels r value.  These 
can be seen in appendix 4 where they have been calculated from 
2*Π*r.  The perimeters are then rounded to the nearest pixel. 
 
N.b. Not all of the perimeter values are shown because a list of all 
512 would take up too much space.  The appendix has been 
supplied, simply, to illustrate how r is used to give perimeter 
values. 
 

 

 
Picture 1 

 
 
As well as knowing the perimeter value for each r, θ is needed to 
show where on the layer the pixel lies. θ is found from equation 
6, and once obtained with the perimeter value, the exact location 
of the pixel is known.  This location is stored in an array as 
‘perimeter*θ’. 
 



Each pixel now has a different location in memory to store its 
own occupancy weighting.  Figure 14 shows how the occupancy 
value, θ value, and r value for each pixel arrives for the former to 
be stored in memory.  An array of pointers exists for each r value.  
When the pixel values arrive, r is checked and it is sent to its 
appropriate point in the perimeter memory.  When it arrives at the 
perimeter memory θ is checked and its occupancy (rgb value) is 
stored in the area of memory equal to θ*perimeter. 
 
After all the occupancies are stored, they are recalled layer-by-
layer and merged together to give the final blurred image.  This is 
done starting at the front layer and working down to the back 
layer which ensures that hidden surface removal is successful. 
 
An example of a real life motion blurred image, taken from a 
moving car, is shown below in picture 2. 
 
 
EVALUATION 
 
Some steps that may improve the accuracy of the blurring effect 
would be to use a bilinear interpolation method as opposed to a 
simple linear one.  In the linear case, the occupancy value of a 
subject pixel is splatted onto itself rather than spreading the value 
out over the neighbouring pixels.  The bilinear method will spread 
the value out and, hence, would create a more realistic blurring 
effect. 
 
The above could be taken even further by using a trilinear 
interpolation method, which is the bilinear method and the linear 
method combined together.  However, it is quite possible that the 
rewards in this method maybe small considering the amount of 
processing time it would require. 
 
An enhancement for the future could be to allow object 
movement as well as the camera/viewer.  More simple than this 
and, therefore, something that should be done beforehand, is to 
allow objects to move while keeping the camera/viewer 
stationary. 
 
One greatly limiting problem in this paper is that the 
camera/viewer has a fixed view directly ahead. This is obviously 
not the case when people are on a roller coaster because they will, 
generally, look around.  The reason for using this fixed view 
directly ahead was to simplify the motion blur by having all 
blurring occur in a radial direction.  Should the camera/viewer 
adjust its/his/her view so that it is 90 degrees clockwise to the 
original position, objects will blur along the horizontal axis.  
However, should the view be adjusted so that it is 45 degrees 
clockwise to the original position, there will be some blurring in 
both the radial and horizontal directions.  There is, obviously, a 
considerable amount of scope for the investigation and simulation 
of blurring in these and their analogous cases.  An algorithm 
should eventually be researched and developed to solve the 
blurring for every viewing perspective with respect to the 
direction of the roller coaster. 
The final limiting problem with this investigation is to do with the 
direction of movement of the roller coaster.  Not all roller 
coasters move in a forward direction only; many move 

backwards.  An algorithm could also be developed to enhance the 
present one so it accounts for reverse motion. 
 
As mentioned previously, there was not enough time to test the 
algorithm described in the previous chapter.  Therefore, whether 
this algorithm is efficient or whether it would perform correctly 
is, currently, unknown. 
 
CONCLUSION 
 
Overall, the motion blur phenomenon seems as though it could be 
simulated by the algorithm discussed in this paper with respect to 
the conditions set.  The theory has been supported by 
mathematical proof and, therefore, should provide a realistic 
simulation. 
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Abstract 
In this paper we attempt to prove that 
speech control is better suited to some 
video game styles. After a brief research 
review we describe our experiments on 
two prototype systems we built and their 
results. A discussion and description of 
further work concludes our paper. 

1. Introduction 
Speech for most of us has been an essential 
part of our daily lives since we were 
children. Speech is communication; it is 
expressive and conveys intentions clearly. 
Conversations employ a range of 
interactive techniques to make possible 
mutual understanding and ensure clarity.  
Despite the effectiveness of speech 
communication, relatively little use is 
currently made of speech in computing 
environments. In most work places voice 
synthesis and recognition are relegated to 
specific industrial applications or aids to 
the disabled; it is not a part of the computer 
interface based on a display, keyboard and 
mouse. Although present workstations 
have become capable of supporting more 
sophisticated voice processing, the most 
thriving speech application to date is still 
the telephone. 
As speech technologies and natural 
language understanding are established in 
the coming decades, more potential 
applications will become reality. However, 
much more than raw technology is 
required to bridge the gap between human 

conversation and computer interfaces. An 
understanding of the assets and liabilities 
of voice communication is a necessary 
prerequisite to determining under which 
circumstances it will be valuable to end-
users. 
Conversational systems must speak and 
listen, but they must also understand, pose 
queries, take turns, and remember the topic 
of conversation. Understanding how 
people communicate informs development 
of better models for interacting with 
computers by voice. But speech is not a 
very easy medium to employ effectively, 
and unless user interaction techniques are 
chosen with great care, voice applications 
tend to be slow and awkward to use. 
(Schmandt, 1994) 

In this paper we review some previous 
work on speech recognition in command 
and control applications and in virtual 
environment. We next describe our 
experiments on two prototype systems we 
created using the Unreal Tournament 
engine and the Age of Empires engine, to 
test the effects achieved when introducing 
speech into an interface. The experiments 
were aimed to find whether speech could 
influence the game play of a video game 
and enhance the interaction. The results of 
the experiments are outlined. We then 
discuss these results and we conclude our 
paper with future work. 

2. Previous Work 
In the early 1980s, experiments of speech 
input in computer interfaces focused on the 
differences in performance when the 
keyboard and the mouse input were 
replaced by speech input in applications. 



The results of formal comparisons between 
keyboard and speech are often 
contradictory and ambiguous. In some 
cases, speech input yields faster and more 
efficient entry; in other cases it does not. 
The quality and cost of the speech 
recognition technology used may be one 
factor responsible for the variable results. 
With very high quality speech recognition 
systems, used in optimal environments, 
speech input often gives low error rates 
relative to keyboard input; whereas the 
reverse occurs in other situations. Hence, 
these results do not verify the claim that 
speech is a faster human response channel 
than typing. There is a great deal of 
relevant work in this area (Pock 1982), 
(Nye 1982), (Haller, Mutshler & Voss 
1984), (Gould, Conti & Movanyecz 1985), 
(Damper, Lambourne & Guy 1985), 
(Martin 1989). 

Adding a speech interface to a virtual 
environment changes the relationship 
between the user and system. With direct 
manipulation, the system is relatively 
transparent; the user is directly embodied 
as an actor in the virtual world. Speech, 
however, requires a dialogue partner; 
somebody or something the user will talk 
to. 

Combining a speech interface with a direct 
manipulation interface results in a 
multimodal interface where the user can 
act upon the world by issuing physical or 
speech commands and, conversely, the 
system can respond by speaking and/or by 
making changes in the virtual world. 
Examples exist of such systems 
(McGlashan 1995), (Karlgren et al. 1995), 
(Everett et al. 1998), (Cavazza and Palmer 
1999), (Cavazza, Bandi & Palmer 1999), 
(Everett 1999). 

2.1. Benefits of Speech Interface 
in Virtual Environments 

Speech offers a way of issuing commands 
while allowing hands and eyes to remain 
free. Operations normally carried out 
through the direct manipulation modality, 

such as transportation, change of view, 
object creation and deletion, etc., can be 
effected without tying up another modality. 
Thus multiple actions can be 
simultaneously carried out using different 
modalities. This is particularly useful in 
cases when hands/eyes are already busy; 
for example, when direct manipulation is 
used to drive a car, speech can be used to 
control the radio. 

Users can refer to objects, which are not 
present in their current view of the virtual 
world. In a direct manipulation interface, 
actions can only be applied to objects that 
are visually present. In a multimodal 
interface though, the user can use speech to 
select and manipulate objects, which are in 
visual focus or will be in visual focus. 
(McGlashan, 1995). 

Finally, speech is natural, or more 
precisely, familiar. Users are familiar with 
using language to act in the world. 
However, virtual worlds do not necessarily 
obey the conventions of the physical 
world, so the standard conventions of 
language used do not necessarily apply 
when interacting with the computer. The 
speech needs to be a restricted language, 
which the system can recognise and 
understand. 

2.2. Efficient interaction 
A multimodal interface combining speech 
and direct manipulation can provide more 
efficient interaction than a single modality 
interface, and give the user benefits of both 
modalities. It also allows one modality to 
compensate for limitations of the other; a 
direct manipulation interface can 
compensate for limitations of speech by 
making immediately visible the effects of 
actions upon objects and indicating 
through the display which objects are 
currently most important for the system. In 
addition, the user is free to decide which 
modality to use for the actions; the user 
may use direct manipulation for 
transportation within the virtual world, but 



the speech modality for manipulating 
objects. (McGlashan, 1995). 

Although the motivation for the choice of 
modality is frequently unreadable, various 
factors, apart from personal preference, are 
important such as the naturalness of an 
action in a modality and the difficulty or 
complexity of carrying out the action in the 
other modality. 

3. Experiments on speech 
multimodal interfaces 
3.1. Introduction 

Prototype systems were built to test the 
effects achieved when introducing speech 
into an interface. Computer games were 
created using the Unreal Tournament and 
Age of Empires, The Age of Kings 
engines. The experiments aimed to find 
how speech influenced the different types 
of game play and whether it enhanced the 
interaction. Hence, the hypothesis guiding 
the study can be formulated, as “Speech 
control will be better suited to some video 
game styles”. 

3.2. Method 
The thirty right-handed participants (12 
female, 18 male) were undergraduate and 
postgraduate students at Bradford 
University and lecturers in the EIMC 
Department of School of Informatics at 
Bradford University and Trinity and All 
Saints College at Leeds. They were not 
paid to attend a half hour session on 
successive days. All had some experience 
with pc and familiarity with video games. 

A mini DV camera was used to record 
screen activity and reactions from the 
participants. Computing hardware 
comprised a 1GHz Pentium III Processor 
and 256Kbytes of RAM. Microsoft’s 
hardware SideWinder was used for ASR 
processing with a noise-canceling, head-
mounted microphone. For Experiments 1 
and 2 a number of different vocabularies, 
containing from 6 to 18 commands 
respectively, were invoked. 

To make tasks relevant to participants, they 
were given a booklet of instructions and 
vocabulary for the voice commands they 
would use. A questionnaire was used to 
assess participants’ preferences of 
modality throughout each experiment. 

4. The prototype system design 
4.1. Unreal Tournament 

This video game belongs to the “action – 
shoot-em up” category. The system allows 
the user to select objects and move about 
in the environment using spoken English. 
The language used was restricted to low-
level commands. That means that the 
system was not able to understand general 
language but only language appropriate to 
the particular task. The subjects were 
required to use limited vocabulary and 
syntax for a successful interaction with the 
system.  Figure 1 shows the system being 
used. 
 

 
Figure 1: Unreal test system in use 

4.2. Age of Empires, The Age 
of Kings 

This video game belongs to the “real time 
strategy” category. The system allows the 
user to select, add and remove objects in 
the environment using spoken English. The 
language was not as restricted as in the 
previous environment described above. 
That means that the system was able to 
understand general language in small 
sentences, appropriate to the particular task 
Figure 2 shows the test system in use. 
 
 
 



 
Figure 2: Age of Empires test system in use 

5. Results 
The questionnaire (see Appendix A) aimed 
to examine two conditions; (1) How much 
participants are familiar with up-to-date 
technology input devices in computers, i.e. 
keyboard, joystick (questions 1-2), and (2) 
How much participants are willing to 
accept new technological ideas, which will 
replace the already existing ones.  
(questions 3-8). 

Efforts were made to convert the 
qualitative to quantitative characteristics to 
avoid errors (Figures 3 & 4). 

Question 1 

4,700 > 3,000 

Question 2 

4,600 > 3,000 

Question 3 

1,300 < 3,000 

Question 4 

4,300 > 3,000 

Question 5 

1,100 < 2,000 

Question 6 

2,200 > 2,000 

Question 7 

1,300 < 3,000 

Question 8 

3,600 > 3,000 

Figure3: Results based on the average ranking 

3,000 

4,700 4,600 

-  

1,000 

2,000 

3,000 

4,000 

5,000 
R

a

n

k

i

n

g

Total

Average Quest. Nbr 1 Quest. Nbr 2

3,000 

1,300 

4,300 

-  

1,000 

2,000 

3,000 

4,000 

5,000 
R

a

n

k

i

n

g

Total

Average Quest. Nbr 3 Quest. Nbr 4

2,000 

1,100 

2,200 

-  

0,500 

1,000 

1,500 

2,000 

2,500 
R

a

n

k

i

n

g

Total

Average Quest. Nbr 5 Quest. Nbr 6

3,000 

1,300 

3,600 

-  

1,000 

2,000 

3,000 

4,000 
R

a

n

k

i

n

g

Total

Average Quest. Nbr 7 Quest. Nbr 8

 
Figure 4: Charts based on the average ranking 



6. Discussion 
Participants were conscious of the speech 
interface in both situations, when playing 
Unreal Tournament and Age of Empires, 
the Age of Kings. Delays in recognition in 
Unreal Tournament made the game slow, 
boring, awkward and uncomfortable to 
play. Speech was not the right interface for 
this particular game since it gave another 
level of interface for them to deal with. In 
Age of Empires, the Age of Kings, speech 
changed the level of interface of the game 
from being in control when using the 
mouse and keyboard to being in command 
when using speech. Speech recognition 
appeared faster and more accurate in this 
game and on more than one occasion 
convenient in saving mouse clicks and 
time to choose from the icons in the menu. 

Many participants made inadvertent noises 
(thinking aloud) when deciding their next 
action. The microphone would still pick up 
the discourse and would try to match it into 
a command. It would be a great step to 
speech recognition if the machine could 
distinguish between what is “noise” and 
what is a “command”. The hardware used 
for the experiment, Microsoft’s 
SideWinder, gives the option to switch off 
the microphone while the user would want 
to say something other than a command 
and switch it on back again. However, this 
adds more artificiality to the interface. 

Of great importance was the feedback of 
participants who said that when using 
speech they felt like talking to an ‘empty 
room’. Many said that they would have 
liked if the system could give them voiced 
feedback of the process of the games. It 
was also stated that because speech 
interfaces are in their infancy teething 
problems are expected. 

The results of the experiment have shown 
that speech interfaces are practical and 
desirable but only in certain type of games. 
Thus, the hypothesis that “Speech control 
will be better suited to some video game 
styles” is true. 

7. Conclusions and Future Work 
At his stage of the research we focused on 
two video game genres; action and 
strategy. For future work we will 
concentrate on First Person Shooter (FPS) 
action games. Only this time instead of 
single-player mode we will be working on 
a team multi-player mode. There will also 
be a transition from low-level commands 
to high-level commands using Natural 
Language Processing (NLP). 

Although it has been suggested (Spyridou, 
2002) that First Person Shooter (FPS) 
games are incompatible with simple low 
level speech recognition, NLP allows 
recognition of complex structed sentences. 
Such commands (Spyridou, Palmer, 
Williams, 2002) are more common in 
3Dimentional gaming environments. 
Therefore it is considered that NLP should 
offer greater and more advanced control 
for the user in an FPS game. 

The concept of a team multi-player game is 
that you have at least two teams with at 
least two players each. To play with a team 
means you have to work as a team; one 
player depends on the other. 

We are preparing to conduct experiments 
using a team multi-player FPS game using 
Natural Speech (NS), not Automated 
Speech Recognition (ASR), to test what 
are the most common and most frequent 
vocal commands used in the game by the 
users. Because the subjects will use 
Natural Speech (NS), the commands issued 
are expected to be lengthy and of high 
complexity. 

After collecting and evaluating the data, 
we are planning to conduct a new set of 
experiments based on the previous results 
using this time speech recognition and 
introducing Natural Language Processing 
(NLP). High frequency spoken words 
(Jurafsky, Martin, 2002) are accessed 
faster or with less information than low 
frequency words. They are successfully 
recognised in noisier environments than 



low frequency words, or when only parts 
of the words are presented. 

In this set of experiments we will test how, 
if at all, the game-play perception changes 
from the users point of view. And 
investigate how the users’ relationship with 
the game (spectator/director) changes with 
the ability to issue vocal high level 
commands. It has been suggested (Bolter, 
Grusin, 1999) that natural language control 
would shift the game experience towards 
tactics rather than immediate action. 

Imagine playing a multimodal multi-player 
game where you could not tell if your 
partner is a bot or a human. 
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Appendix A (questionnaire)
1. How easy was it to use the keyboard and/or mouse to control Unreal Tournament? 

1. Very easy 2. Easy 
3. So and so 4. Difficult 
5. Very difficult 
  

2. How easy was it to use the keyboard and/or mouse to control Age of Empires (Age of Kings)? 
1. Very easy 2. Easy 
3. So and so 4. Difficult 
5. Very difficult 
  

3. How easy was it to use speech to control Unreal Tournament? 
1. Very easy 2. Easy 
3. So and so 4. Difficult 
5. Very difficult 

 
4. How easy was it to use speech to control Age of Empires (Age of Kings)? 

1. Very easy 2. Easy 
3. So and so 4. Difficult 
5. Very difficult 

 
5. Did using speech to control Unreal Tournament affect the game play in a positive way? 

1. No 2. A little bit 
5. A lot 

 
6. Did using speech to control Age of Empires (Age of Kings) affect the game play in a positive way? 

1. No 2. A little bit 
3. A lot 

 
7. How fast was Unreal Tournament to respond to your voice? 

1. Very fast 2. Fast 
3. So and so 4. Slow 
5. Very slow 
  

8. How fast was Age of Empires (Age of Kings) to respond to your voice? 
1. Very fast 2. Fast 
3. So and so 4. Slow 
5. Very slow 
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ABSTRACT 
 
In this paper, we present a fully implemented prototype of 
real-time cinematic control for character-based interactive 
storytelling approaches, where story diversity emerges from 
dynamic interaction between characters. We describe the 
specifities of real-time cinematic control within a dynamic 
virtual environment, where events occur at different locations 
at the same time. We also present results based on a situation 
of interaction between characters in the unfolding of a story. 
 
INTRODUCTION 
 
Our interactive storytelling system (Cavazza et al., 2002) is 
based on the interaction between characters’ behaviours 
during the unfolding of the main characters’ plans 
representing their role-play. The (active) spectator can 
intervene with situations at any time throughout the story, 
though not at all time. 
Because of spatial and temporal constraints, there is a need 
for a real-time cinematic system that will present to the 
spectator the on-going situations that are most relevant to the 
story at the time. 
In traditional film production, the director is responsible for 
the overall decision-making process. He ensures that the 
narrative is conveyed effectively using the film techniques at 
his disposal. In our system, the virtual director has a similar 
role. The virtual director will query the client narrative 
application and determine in real-time which idiom will best 
fit the scene, based on the events specifications. To do this, 
the director requires some information from the application, 
namely the type of event, number of participants, and 
emotional or affective context of the story at the current point 
in its telling. 
This paper refers to the specificities of real-time cinematic 
sequences, being the dynamic nature of stories instantiated 
from independent representations of character-based roles, 
and the difficulties in producing a meaningful montage of on-
stage events generated in real-time, opposed to scripted film 
sequences. 
In the next sections, we will introduce the important concepts 
of character-centred storytelling as well as a brief description 
of our interactive storytelling system. Then, we describe the 

traditional cinematographic elements used in automatic 
camera control systems. Finally, we give an overview of the 
implementation of our camera system, illustrated by an 
example based on a typical situation of a conversation 
between characters.  
 
CHARACTER-CENTRED NARRATIVE 
REPRESENTATION 
 
We have chosen to use plans to represent individual roles for 
the characters, rather than the global narrative structure. Each 
character is associated a plan corresponding to its role or, 
more precisely, the set of possible role instantiations 
according to a given storyline. It can be seen as a resource 
for story generation. Each plan corresponds to the character’s 
role in a given story instantiation: it represents the plot 
through a character’s behaviour (Figure 1). The plot itself 
consists in the on-stage integration of the various roles 
through the situations created by the interactions between 
characters.  
The on-stage performances of characters are the translation 
of each sub-task element of the character’s plan, called 
primitive actions, and perceived from the spectator’s point of 
view as a sequence of meaningful events. These actions are 
formally represented as syntactic triples (subject, verb, 
object). The subject represents the protagonist (the actor), the 
verb corresponds to the action to carry out, and the object 
represents either a physical object or another character. 
Though the action can not exist without the subject (actor), it 
may be performed without the specification of an object. 
 

 
 

Figure 1: Plan Representation of Character Behaviour 
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While there are no straightforward rules to convert high-level 
narrative functions into characters’ plans, we have attempted 
to devise specific rules that could be applicable in the context 
of the simple genre (sitcoms) with which we are 
experimenting. The basic hypothesis is that the final story 
will emerge from the relations that exist between the various 
characters’ plans, these relations being determined from the 
story genre.  

 
SPACE, TIME AND CAUSALITY 
 
Narrative is a way of comprehending space, time, and 
causality. Since in film there are at least two important 
frames of reference for understanding space, time, and 
causality, narrative in film is the principle by which data is 
converted from the frame of the screen into a diegesis - a 
world - that frames a particular story, or sequence of actions, 
in that world; equally, it is the principle by which data is 
converted from story onto screen (Branigan 1992). 
An important concept in interactive storytelling is causality 
as a story is defined as a sequence of causally related events. 
The editing must assure that the consistency of such causal 
chain of events remains (Raskin, 1998). Causality supports 
the consequences of interaction, whether it be character-
character interaction or spectator intervention. Some 
interactive storytelling systems make causality explicit in 
their representations (Young, 2000). However, in a task 
network representation based on actions and sub-goals, 
causality is not explicitly represented. One form of implicit 
causality is the enabling of further actions by their 
predecessors in the task network ordering, but it is not related 
to interaction and dynamic generation. Other forms of 
causality are implicit, illustrated by the interplay of choice 
and causality in the narrative, which has been described by 
Raskin (1998). 
Many on-stage objects have an intrinsic narrative 
significance as being resources for characters’ actions. In 
modern narratology (Barthes, 1966), they refer to as a 
“dispatcher”: a dispatcher is an object to which choice is 
associated, triggering narrative consequences. 
In the previous section, we described characters’ actions as 
represented by triples (subject, verb, object). The potential 
influence of action resources on the unfolding story will 
emphasise the narrative implication of certain object 
instances. For instance, a knife or a gun hold a stronger 
narrative value. 
In a plot-based approach (Young, 2000) causality can be 
explicitly represented whereas in a character-based approach, 
the anticipation of an action's resolution is dominant. The 
character-plot duality has thus a translation in terms of causal 
representations.  
Editing rules are meant to preserve and reinforce the 
narrative continuity of a story. The several parts of the story 
need to refer sufficiently to each other, allowing the spectator 
to integrate them into a single chronological sequence of 
events. 
 

FILM IDIOMS 
 
Perhaps the most significant cinematographer invention is a 
collection of stereotypical formulas to capturing specific 
scene as sequence of shots. While there are an infinite variety 
of idioms, film directors have learnt to rely on a small subset 
of these. Traditional books (Metz 1974) (Arijon, 1976) 
provide an informal compilation of formula, along with a 
discussion of the various situations in which the different 
formula can be applied. 
For example, in a dialogue between two people, a filmmaker 
might begin with an apex view of both actors, and then 
alternate views and each following the actor’s speech 
direction, at times using internal placement and at times 
using external placement. 
Expert cinematographers have used cinematic idioms for a 
long time to direct the flow from frame to frame by 
representing common shots such as the establishing shot and 
two shot of conversing players (Mascelli, 1965). Virtual 3D 
cinematography systems adopted idioms to help generate 
sequences of prototypical shots to film actions such as 
conversations between a small group of virtual players 
(Drucker and Zeltzer, 1995) (He et al., 1996). Other systems 
(Christianson et al., 1996) (Lu and Zhang, 2001) extended 
the concept of idiom, a sub-unit of cinematographic 
expertise, as a means of capturing the essence of a scene. 
 The concept developed a means of encoding techniques for 
conveying certain scenarios effectively. By creating an 
assortment of fairly rigid structure to shoot different kinds of 
scenes, the Virtual Cinematographer paradigm  [5] is limiting 
itself in two ways. Firstly, the system is limited to create 
effective shots for scenarios that it is familiar with. Secondly, 
each transition between two idioms will break the continuity 
of the scene, creating a rupture in the narrative, hence not 
adapted to real-time generation. 
More recently, Amerson and Kime (2001) have proposed a 
system for real-time camera control in interactive narratives 
called FILM (Film Idiom Language and Model). This 
system, inspired from the Virtual Cinematographer, 
considerably completes and improves it. The FILM model 
uses the common cinematographic techniques to construct 
camera placement based on input from the narrative planner. 
Information about common film idioms is encoded in a scene 
tree using the FILM Language. Objects within the FILM 
system use this knowledge in conjunction with the planner 
input to constrain the location and orientation of the camera 
for viewing a given action at execution time. 
Similar to the FILM system, we propose a  “hybrid” system 
that uses abstractly defined idioms as constraints to choose 
the best camera placement for any shot at any moment in the 
unfolding of the on-going story. However, unlike in 
(Amerson and Kime, 2001), where the narrative planner 
generates the information that must be conveyed to a 
spectator during a given scene, the Virtual Director gets its 
information from the action recognition module which 
reports all on-going actions in the interactive environment 
based on each characters’ point of view. 
In section 4, we describe a fully implemented prototype 
developed for the Unreal™ engine using its scripting 
language (UnrealScript). 
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PARALLEL ACTIONS 
 
Though our interactive storytelling paradigm guarantees 
meaning to the story unfolding, via cause and effect duality 
in the interactions of characters’ roles, interactions may 
occur at different locations, but within the same time space.  
A parallel action is defined as a device of narrative 
construction in which the development of two pieces of 
action is presented simultaneously. 
The task of relating two storylines, or two characters, or two 
different events, or a larger number of storylines, characters 
and events, is assigned to parallel film editing.  These types 
of parallel editing could be defined as follows:  

• The lines of interaction are close together, in the 
same space.  

• The lines of interaction are far apart, in different 
places, and only a common motivation provides the 
link.  

Therefore, the concepts of parallel film editing are important 
to consider for our system, when the scaling-up of the 
characters’ roles will bring simultaneous storylines. As each 
storyline develops separately, the cinematic camera control 
must account for the information contributing to either 
separate or concurrent storylines, arising from the characters’ 
roles independence or not. 
 
SYSTEM OVERVIEW 
 
The cinematography expertise encoded in the system is 
captured in two main components: The Virtual Director and 
the Virtual Cinematographer. Each of those abstract 
components is composed of two types of modules: low-level 
module (platform/domain dependant) and high-level module 
(platform/domain independent) (Figure 2). 
In our narrative paradigm, the current state of the world is 
“wholly” determined, though the director does not have 
control on its changes over time, unlike (real-world) cinema 
directors. The director selects scenes based on the subject 
nature of the shot, e.g. a character going to a café or two 
characters having a conversation. 
For example, we know where a character is going, though the 
director can not influence or modify its course. The 
modification of such behaviour would come from the 
interactive nature of the system. Another character passing 
by could stop momentarily the characters to have a mundane 
chat or the spectator could influence his behaviour by telling 
him that another character knows where what he is looking 
for is. 
Due to the real-time and dynamic natures of the application, 
the camera control system must constantly reason on the 
current state of the world. Events (also called tasks) are 
recorded using the following template (subject, verb, object), 
as described in the Virtual Cinematographer (He et al., 
1996). The subject is always an active character, while the 
object maybe another character, a fixed object (book, gun, 
etc…) or null. The verb represents a type of typical action 
(move, pickup, talk, idle). Hence, there are as many events as 
the number of active characters. Each of the variables for the 
three template components is associated static heuristic 
value, called story weight. The value of this weight is 
proportional to the narrative importance of the object it is 

associated with. For example, if an object (e.g. a gun) is 
judged strategic, it will be gratified with a higher story 
weight than a banal object. The same principle applies for the 
allocation of weights for actions, as talking is more 
meaningful to the narrative than walking. This judgment 
seems rather artificial and subjective, and is in accordance to 
the subjective decisions of the film director. Optimally, the 
system should gather enough information to reason at a 
higher narrative level. Using this information, the system 
performs a heuristic classification of the events and extracts 
the most significant event and so selects the idiom associate 
to it. This method works upon the assumption that to any 
typical type of event, there is an appropriate attached idiom. 
It also selects an adapted pre-set of visual preferences to 
apply. Once the scene is selected, the system binds any 
unbound variables in the idiom specification and passes the 
information to the Virtual Cinematographer (He et al., 1996). 
During this process, the system may query the application for 
additional information, such as the specific 
location/orientation and dimensions of the various characters. 
Moreover, the system will constantly analyse the screen 
contents to immediately correct the camera settings if 
occlusions are detected. The scene is then rendered using the 
animation parameters and descriptions of the current 
environment sent by the application, and camera 
specifications (position/orientation) sent by the camera 
control system. 
 

 
 

Figure 2: System Architecture 
 
RESULTS 
 
Arijon (1976) states that basic techniques for the coverage of 
two-or-three person static dialogues are also valid for larger 
groups. Rarely do four people carry on a dialogue 
simultaneously. There is always a leader, conscious or 
unconscious, acting as moderator, and shifting attention from 
person to person. 
The example, presented in Figure 1, illustrates this particular 
feature. It was introduced within our prototype using a 
hierarchical finite state machine that handles dialogues 
between three characters (idiom_3_talk). The finite state 
machine is based on similar characteristics to a lower-level 
idiom that handles dialogues between two characters 
(idiom_2_talk). The considered idiom includes four states. 
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The initial state uses an establishing shot (establish_shot) of 
all three characters, while the second state relies (a_b_talk) 
on the lower-level idiom idiom_2_talk. The other two states 
(c_talks) and (c_reacts) capture the reactions from the 
remaining character. 
Following further tests, the camera control prototype 
confirmed its capabilities in dealing with dialogues of four or 
more characters, though hardly ever encountered in plot 
instantiations from our interactive storytelling system. 
 
CONCLUSION 
 
We have presented the specificities of cinematic control in 
interactive storytelling where a story is generated 
dynamically in real-time, and described a fully implemented 
prototype of cinematic camera control. Future works will 
include extending the abilities of the system to manage 
separate storylines unfolding at the same time and providing 
the virtual director with the ability to choose between styles 
of montage according to different movie genres. 
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Figure 3: Idiom of a Dialogue Between Three Characters. 
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ABSTRACT 
 
This paper reviews progress in story visualization and 
describes a novel methodology that enables non-
professionals to generate a 3D Virtual Story Environment 
(3DVSE) by using a simplified story-based natural 
language input. The proposed architecture is described 
and the paper focuses on how to integrate the natural 
language processing and 3D computer graphic techniques 
by using Java, XML and VRML to generate a 3DVSE.  
 
 
1. INTRODUCTION 
 
Storytelling for enhancing our imagination and 
communication is an essential part of education and 
entertainment. Basic plots do not change very much but 
the way that we tell them does. Story visualization 
describes techniques by which a storyteller composes 
visual pictures to tell a story, evoke emotions, and shape 
the entire experience, Seger (1994), Block (2001), Murray 
(2001). It focuses on the use of visual metaphors to 
represent non-visual story contents and relationships. The 
ongoing development of the multimedia computer, with 
its capacity for handling text, sound and images has a 
profound effect on this process (Alborzi et al 2000). 
Crucial to this is the concept of interactive media and 
numerous computer researchers have highlighted the role 
of the user in influencing the progress and outcome of the 
story (Brooks 1997, Barry 2000).  
 
Computer games that use new forms of interactive and 
narrative storytelling have been discussed by many 
researchers (see review by Zeng et al 2002). There is 
particular interest in games that incorporate mainstream 
media to create new genres, which have become more 
story-oriented Flanagan & Arble (1998), Barwood 
(2000)& Young (2001). For instance, the game Myst 
(1993) was significant in its ability to use the immersive 
nature of storytelling to express adventure, time and 
history. Producing such a game requires both computer 
expertise and storytelling artistry. Computer graphic 
techniques have already played a major role in computer 
games development and advances in 3D graphics have 

made it possible to produce 3D animation movies, such as 
Shrek or Final Fantasy. Computer games rely more on 
images and interaction and 3D game environments offer a 
wide variety of commands, 3D landscapes and objects. 
This enables computer game producers to produce more 
engaging and attractive games and storylines than before. 
These advances can be easily observed by comparing 
early “shoot-em-up” game, such as Wolfenstein 3D (1992), 
Doom (1993), Quake (1996) and Tomb Raider (1996/7) to 
Project IGI (2000) and Return to Castle Wolfenstein 
(2001). However, these techniques still lie in the domain 
of highly skilled professionals and require expensive 
software. There is a lack of low cost and easy use tools for 
non-professionals to create their own interactive 3D 
virtual environments. There is thus a need to develop an 
interactive, semi-automated approach that will aid the 
creative artist to move more readily from scripts to 
rendered 3D realizations.  
 
In this paper we introduced a methodology to enable non-
professionals to generate 3D scenes based on 
storyboarding. This complements research previously 
undertaken on designing and implementing behavioural 
based games characters (Gough et al 2000; Suliman et al 
2001,2002; Mehdi et al 2000,2001; Wen et al 
2000,2001,2002). The novelty of this work lies in the 
bridging of the gap between scripting/storyboarding by a 
non-technical creative writer and rendering characters and 
scenes by a graphics specialist. The proposed 
methodology combines advances in computer graphics 
and text-to-visualization technology to generate a 
behaviour based AI (BBAI) 3DVSE. This should make it 
easier and faster for non-professionals to create 3D story 
environments compared to using traditional 3D design 
packages. After introducing interactive storytelling tools 
in section 2, section 3 reviews research on using text to 
visualization in character-based animation and behavior 
virtual environments. Section 4 investigates the 
possibilities of applying NL in computer games design. 
Section 5 proposes a novel methodology and architecture 
for developing an interactive storytelling system. We 
focus on how to incorporate NLP and 3D computer 
graphic techniques by using XML (Extensible Markup 
Language), VRML (Virtual Reality Modeling Language) 
to generate a 3DVSE. Section 6 gives a simple example 
and the final section draws conclusions and mentions 
future work.  
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2. INTERACTIVE STORYTELLING TOOLS 
 
Recently, there has been an explosion in the number of 
commercial software applications for creating 3D story 
environment, including Maya, SoftImage, Lightwave, 
3dMax. However, even the most expert 3D animators 
devote considerable time to collaboration with 
programmers to create 3D interactive environments that 
could be described in a few sentences from a story. 
Several of the more popular games, including Quake 2, 
Unreal Tournament, Half-Life, Homeworld and Descent 3 
provide applications programming interfaces (APIs) that 
allow users to have sophisticated control over the 
dynamics of the game world. (Amanr & Young 2001). 
Whilst these powerful tools enhance the concepts of story, 
characters and narration, they use scripting languages 
such as C/C++, Java and their use is restricted to 
specialists.  
 
In contrast, some researchers have developed easy-to-use 
tools aimed at non-professionals. These tools are all 
centered on the stories three main aspects: Environment 
is where and when the story happens, the setting and stage 
for the story. Character identifies who have the roles in 
the story, which make the story happen, bring life to the 
story; perform actions and interact with each other or the 
environment. These roles have three features viz. 
appearance, personality and actions. Plot is what is 
happening in a story, a strategy for the story including 
beginning, climax and end. In the early part of the story, 
the plot is established, the characters are introduced and 
some sort of problem or clue is presented. The complexity 
then builds up, usually with events that challenge the 
characters in unexpected ways. And finally the story ends 
with some sort of pay-off.  
 
AgentSheets is authoring tool that combines agents to 
create sophisticated interactive simulations and models. 
AgentSheets is used to create interactive games, virtual 
worlds, training simulations, information gathering, 
personalizing agents, and other interactive content. 
Erasmatron, a story engine developed by Crawford, 
includes all of the software and artwork necessary to 
create an entire interactive story-telling world. He seeks to 
balance character-based and plot-based approaches by 
program actors who carry out any action that can be 
specified as a verb with a subject and a direct object. He 
then assigns them options in response to actions, and 
allows them to choose among their options based on their 
personalities, relationships, moods, and histories. 
PuppetTime is a new 3D storytelling system for the 
Internet that puts the user in control of self-animating 
digital actors. Puppets are plug-ins that know how to 
respond to high-level stage directions such as “Say Hello”, 
“Be Happy” or “Wave goodbye” and that automatically 
generate their own lip-synchronisation and animation 
sequences based on the script. Spazz3D allows the user to 
design and build 3-D scenes, and bring them to life by 
animating the geometry and defining rules of interactivity, 
which can trigger lights, sounds and animations. Sgouros 

et al (1997) describe a novel dynamic dramatization 
method for narrative presentations by inputting the 
original story material, along with a plot written in a 
special-purpose language. It analyzes the plot to identify 
interesting dramatic situations and displays corresponding 
images. Graphic StoryWriter is an interactive system that 
enables users to create structurally complete stories 
through the manipulation of graphic objects in a simulated 
storybook. Through the simple interface and story-writing 
engine, it provides an environment for early readers to 
learn about story structures, to experience the relationship 
between pictures and text, and to experiment with causal 
effects (Steiner & Thomas 1998). Such systems allow 
non-programmers to create agents with limited or 
preprocessed behaviors and missions in a 3D environment, 
but they are limited to 2D still images, do not permit the 
user to “walk through”, do not allow users to create more 
flexible 3D environments, and do not allow real-time 
generation of some behaviours. Charles et al (2001) 
described a prototype for interactive storytelling by using 
Unreal engine. They presented an evaluation of the 
concepts of how the dynamic interactions between 
character and the user influence the generation of story. 
Swartout et al (2001) integrated graphics, sound, character 
and story to generating a holodeck-like interactive story 
environment in order to training users how to deal with 
the circumstances of real world. 
 
 
3. TEXT TO VISUALIZATION TECHNOLOGY  
 
Text and images are ubiquitous in human communication 
and there are deep connections between the uses of these 
two modalities (Wahlster 1998). We often convert images 
to text (e.g. describe a painting by text) and vice versa 
(e.g. paint a picture from a story), but this presents a 
considerable challenge for computer systems. NL is 
potentially an effective medium for allowing non-
specialists to describe visual ideas and NLP is an active 
AI research area that attempts to reproduce the human 
interpretation of language. One goal of NLP is to enable 
communication between people and computers without 
memorising complex commands and procedures. NLP 
methodologies assume that patterns in grammar and 
conceptual relationships between words in language can 
be articulated scientifically. Most interface designers use 
pointing devices such as mouse or joysticks for navigation 
and interactions. There is now a growing awareness of the 
possibilities for integrating NLP and computer graphics 
by incorporating knowledge of human-to-human 
interaction.  
 
Compared with traditional menu-based interfaces, NLP 
has many advantages: It is the easiest medium for HCI 
and does not require substantial formal training. Its 
availability makes the virtual human interface more 
closely mimic real-life interpersonal communication. It 
can simplify and speed up real-time applications 
involving navigation or commands. A character’s actions 
in a Virtual Environment (especially in computer games) 



are much more limited than those in real life, but NL 
should enable the user to carry out actions that would 
otherwise have been very difficult with traditional 
pointing devices, such as gesture and facial interaction. 
For example, if you ask your avatar to wave its hands, you 
only type the request instead of clicking the right mouse 
button and choosing “wave hands” from a menu.  
 
Generation of visual scenes based on NL input has been 
investigated by several researchers and can be roughly 
divided into two classes of models:  
 
Character behaviour and animation based models 
 
Anima NL enables users to input NL instructions as high-
level specifications to guide animated figures through a 
task. It interprets simple instructional texts as intentions 
that the agent should adopt, desired constraints on the 
agent’s behavior and expectations about what will happen 
(Badler et al 2000). Bindiganavale et al (2000) introduced 
a prototype for inputting immediate or persistent 
instructions using NL and viewing the agents’ resulting 
behavioural changes. Allbeck et al (2000) explore an 
architecture for authoring the behaviors of interactive, 
animated agents using NL instructions with capability to 
dynamically alter agent behaviors in real-time. Ulysse 
comprised a conversational agent embodied in the 
representation of a user in the virtual world. The user asks 
the agent using spoken NL to carry out motion commands 
(Bersot et al 1998). Piesk & Trogemann (1997) presented 
an architecture for interactive storytelling using state-of-
the-art-technology in NL processing, speech synthesis and 
3D character animation. A conversational 3D-character is 
used to tell nonlinear stories interactively. They 
implemented in a framework for synchronizing speech 
with facial movements, gesture and body posture by 
combining findings from linguistics and psychology. The 
Behavior Expression Animation Toolkit (BEAT) allows 
animators to embody expressive behaviors by entering 
text and exporting appropriate nonverbal behaviors and 
synthesized speech in a form that can be sent to a number 
of different animation systems (Cassell et al 2001). 
 
Scene and sequence based models 
 
Improv is a system, implemented using an “English-style” 
scripting language and a network distribution model, that 
enables artists to create powerful interactive scenarios 
(Perlin & Goldberg 1996). Put is language-based system 
that focuses on spatial relationships, such as in, on, and at, 
parameterized by a limited number of environmental 
variables for object manipulation (Clay & Wilhelms 
1996). Mukerjee et al (2000) used multi-dimensional 
fuzzy functions called “continuum fields” by matching the 
linguistic description to present scene reconstruction from 
conceptions of 2D urban parks. WordsEye is as a new 
system for automatically converting text into 
representative 3D scenes that relies on a large database of 
3D models and poses to depict scenes and actions (Coyne 
& Sproat 2001). Egges et al (2001) and Nugues (1999) 

constructed a system called CarSim to processes formal 
descriptions of accidents and recreate corresponding 3D 
simulations. Although there have been many such efforts 
to apply NLP to virtual environments to enable interesting 
and easy-to-use systems, most of them focus on the 
character’s behaviours and animation, or represent the 
still images or scenes without creating a true real-time 
interactive 3D environment.  
 
 
4. APPLICATION OF NLP IN COMPUTER GAMES 
 
Narrative is a powerful tool for game producers to create 
more attractive games. NL is the basic resource for scenes 
script and game plots. Level designers transform the 
meaning of the words into game environments. An 
example for the computer game Max Payne is given by 
Määttä (2002). Throughout the history of computer games, 
from the 1970s Dungeons and Dragons to the 1980s 
popular Internet-based adventure format gaming 
environments such as MUD (Multi-User Dungeon), NL 
has played an important role. Players immerse in a 
common virtual environment by typing in real time the 
words that describe the scenes, commands and actions 
displayed on the each player’s screen.  As with adventure 
books, the language here not only conveys the words into 
a virtual environment in the mind, but also gives the 
capability to interact with the dynamic plot and various 
players. A good example is the computer-based adventure 
game of Zork, which begins as follows (Lebling et al 
1979):  
  
Welcome to Zork. 
West of House. 
Your are in an open field west of a big white house with a 
boarded front door. 
There is a small mailbox here. 
>GO NORTH 
North of House 
You are facing the north side of a white house. There is no door 
here, and all the windows are barred. 
>EAST 
Behind House 
You are behind the white house. In one corner of the house there 
is a small window which is slightly ajar. 
>OPEN THE WINDOW 
etc 
 
In Zork the player interacts conversationally with the 
“Master of the Dungeon,” who provides for each 
proposed action. The players move around the dungeon 
by typing the navigational commands (e.g. go north, up) 
and interacting with objects by typing appropriate 
commands (e.g. open window, move cover).  
 
The results depend on the design of the game, its 
architecture and furnishings. Murray (2001) comments 
that the first step in making an enticing narrative world is 
to script the interactor. There are a few projects that apply 
NLP in computer games, such as Badler et al (1999) who 
introduced a prototype for building a strategy game. A 
player can control and modify the behavior of all the 



characters in a game, and introduce new strategies, 
through the powerful medium of NL instructions. They 
describe a Parameterized Action Representation (PAR) 
designed to bridge the gap between natural NL and the 
virtual agents who carry them out. Cavazza et al 
(1999,2000) investigated the integration of NLP 
techniques into the video game DOOM to control the 
characters’ actions. They described the implementation of 
a command interpreter and discussed the generation of 
appropriate system actions from spoken commands.  
 
 
5. DESIGN METHODOLOGY 
 
Unlike text, which is abstract and inherently non-spatial, a 
story contains a rich source of information that can be 
understood and analyzed by people. For instance, James 
is eating, gives no idea where and what James is eating, 
which presents a problem for a graphic depiction. A 
sentence should thus have a detailed description in a story, 
like James is eating a hamburger in the classroom. Hence, 
a story is the prime potential source for applying 
visualization techniques. It portrays the temporal and 
spatial events clearly and in detail. It includes constraints 

and context, which helps to avoid ambiguity. This section 
proposes a novel architecture for 3DVSE systems and 
introduces the techniques that will be used. The main 
challenges are to encapsulate the creative designs of the 
scriptwriter, incorporate motions and AI behaviors, and 
generate appropriate graphical output. All NL based 
graphical applications that generate 3D virtual 
environments from story descriptions-can be divided into 
the NLP and virtual scene representation tasks. NLP is 
still an immature method. Clay & Wilhelms (1996) 
therefore suggested that when dealing with graphical 
complexities, it is necessary to restrict both the input 
language and the conceptual domain of the systems. The 
form of the language created restricts the concepts than 

can be expressed and, ultimately, the scenes that can be 
described. This constraint helps us avoid the general 
complexities of NL understanding. As a Chinese proverb 
says:  
 
Keeping things simple, even simplest things can go further. 
 
Hence we may start with a childrens’ picture book to 
understand the context and construction of stories, as it 
contains simple but effective information (e.g. objects, 
temporal and spatial relationships, events) to generate a 
3D virtual environment without the complications of 
unconstrained vocabulary and grammar. 
 
5.1 Architecture of 3DVSE System 
 
Creating a storytelling system for use by non-
professionals is simplified because every story has the 
same features, environment, character, plot. Technically, 
the system is built in two levels as shown in Fig. 1. Once 
this has been created with a suitable high-level interface, 
the user interacts only with the high-level interface to 
dynamically create the 3DVSE. The architecture of this 
system is built by several modules: A knowledge-based 
database extracts the output from the text input via a 

language tagging module and this is used by the graphic 
engine to create the 3DVSE. The main system is written 
in Java, XML and VRML. Java facilitates writing and 
running applications on a Java Virtual Machine and the 
application should run on multiple devices. Java also 
ensures faster development time, being easier to develop 
than C++ (Melissionos 2002). In addition, VRML 
encourages the use of components to construct complex 
3D scene descriptions.  Certain parts of a VRML scene 
description are stored in external files with different 
formats (images, textures, sounds, movies or Java classes). 
It has all of the elements needed to author animations and 
virtual environments and offers cross-platform 
compatibility. The multi-level system comprises a NL 
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Figure 1    3DVSE system architecture



parser in XML and Java, the VRML world, and a Java 
applet to form the input interface and finally create links 
between NL and the VRML world.  
 
Representing the 3DVSE from a story requires 
environment, character, plot and events. For the 
environment, additional constraints are added (time to 
place, object to its parts static scenes to dynamic 
episodes). When a user inputs a sentence from a story, it 
is first translated by a parser into tagged XML data; the 
output is a tree data structure, which is then converted into 
a set of 3D object representations, spatial relations, and 
attributes.  This is then matched to an existing KB 
database that generates the final environment.  
 
5.2 Application of XML in NLP 
 

Virtual Environment 

Object 1 Object 2 Object 3 

Part1 Part2 

Materials Colors Sizes

Part3 Object4 Object6Object5 

Figure 2 Construction of Virtual Environment

Because the main goal is to represent 3D graphics by text 
input, currently available computer linguistic techniques 
need to be adapted to solve the problem of semantic 
presentation. In particular this involves concepts 
developed in Fellbaum (1998) and Hiyakumoto et al 
(1997) and the methodology requires an extension to that 
of Clay & Wilhelms (1996) and Coyne & Sproat (2001). 
We use NL templates as our solution. As with picture 
books, constructing virtual environments and characters 
for computer games is different from arbitrary NL texts 
because it does not involve complicated descriptions. 
XML (Bradley 2002) is used to provide a natural way to 
represent simpler texts. It is not limited to Web 
applications but is used increasingly in databases. Data 
independence, separation of content and its presentation 
are its essential characteristics. It is text-based, so anyone 
can create an XML document with even the most 
primitive text processing tools (Deitel et al 2001). Cassell 
et al (2001) used it as the primary data structure and the 
knowledge bases were also encoded in XML so that they 
can be easily extended for new applications. This will 

facilitate modularity and extensibility by allowing users to 
add their own tags to the parse tree at any stage of 
processing. Wilcock (2001) discussed ways in which 
XML can be used in NLP, including XML-based pipeline 

architectures, templates, and tree-to-tree transformations. 
Because XML data is easy for computers to read and 
convert between formats, it can be used as middleware to 
integrate legacy systems with other applications. As XML 
can be extended and embedded in Java, objects of 
different data types can be passed between them. This 
allows conditions to return the various test results as 
either a Boolean type or a Java string. In our system, 
XML and Java based language engine have two tasks: one 
is to find matched VRML objects in text and the other is 
to transport object depictions (e.g. adjectives, prepositions 
and verbs) into Java strings to manipulate VRML objects 
or scenes (i.e. objects’ attributes, spatial relationships and 
actions or events) by Java or Java Script.  
 
5.3 Generation a Reusable VRML Format Object 
Database 
 
Since all 3D virtual environments are built from separate 
and independent 3D objects, a large visual database of 
objects and actions is required, along with set of 
constraints corresponding to default dependencies in the 
domain. Most NL-based graphic applications have 
involved some appropriate words corresponding to 3D 
objects or actions, and it is important to design and 
validate a large extensible database or library, which 
includes a 3D Objects Library and Animations Library.  
 
3D Objects Library 
 
To design and validate the 3D objects library, an example 
is generated using several software packages (3D Studio 
Max4.0, Character Studio3.0, Poser4.0, Photoshop, etc) 
to create 3D objects and texture maps. Currently, the 
database includes a great number of 3D objects, such as 
cities, buildings, cars, plants, characters, etc. that 
correspond to noun phrases. The objects are all created in 
VRML format and their attributes are neutral in order to 

further operation.  We divide the 3D objects into two 
types: static objects and dynamic objects. All objects are 
relatives and can be transformed from one to another 
(Egges et al 2001). In general, static objects are more 



stable in their locations, e.g. grounds, mountains, 
buildings, plants, etc. Dynamic objects have a relatively 
unstable location or can move, e.g. human characters, cars. 
Objects are classified into different libraries by their 
function e.g. chairs, desks belong to furniture. These 
properties are required by the routine that determines how 
the object is used.  This also helps the user to add new 
models to the library. All 3D objects are made using 
separate parts with their own attributes e.g. a desk is made 
of top, drawers and legs. The part attributes also include 
materials (e.g. wood, glass, metal, colours, sizes). The 
objects corresponding to relative describable adjectives 
are then converted to Java Strings. Figure 2 illustrates the 
tree construction of the 3D virtual environment.  
 
Animations Library 
 
Designing the animation library requires discriminating 
between normal animation and autonomous behaviour. 
When the behaviour is pre-programmed, it can save much 
time to redefine character interaction within the 
environment. This type of motion corresponds to verbs 
such as walk, sit and wave hands. Because of the 
complexity of rendering motions related to behaviours in 
3D, this involves a complex hierarchy and simplifications 
to the kinetics are sought where appropriate. Inverse 
Kinematics is applied to human characteristics, such as 
posture, body movements, facial expressions and lip 
movements/speech. In addition, some actions are not 
isolated but are composite e.g., James walks to the door 
and opens it contains two actions, walk and open door. To 
deal with this, the system concatenates actions in time and 
defines when the action should be completed. To solve 
these problems, we refer to real-time actions and allocate 
times for each action. This allows a different time 
schedule for each character attribute.  

5.4   3D Graphic Representation 
 
VRML is used here as the primary object format and 
rendering engine. It is a text based file format constructed 
by a group of nodes (e.g. Texture nodes, Shape nodes, 
Appearance node.) describing 3D objects and virtual 
worlds. These nodes are organized in a hierarchical 
structure of parent-child relationships that describe 
location, shape, size and appearance and are used to 
perform rendering by a browser. There are other nodes 
such as Fog node (that specifies colour and intensity of 
fog depending the distance from viewer), Background 
node (that specifies sky and ground color profiles, and 
texture), Viewing node (applies different viewpoints to 
navigation) and Sound node, that greatly enhance the 
feeling of realistic effects and navigation.  TimeSensor 
and Animation Interpolators, etc. provide Events and 
dynamic scenarios. VRML allows the storage of custom-
tailored node descriptions in a library and a VRML scene 
file to build another more complex VRML scene file, 
integrating geometry, animation, interaction behavior, and 
multimedia description. Thus a VRML scene file may be 
created in a fast and cost-effective way, using predefined 
components and taking advantage of the benefits of 
reusability (Soetebier et al 1999). In spite of it is powerful 
3D visualization language, VRML is very limited in terms 
of interactivity and does not allow users to modify it in 
real-time. VRML is not a general-purpose programming 
language and Java is not a 3D presentation language.  
However it has the ability to access VRML worlds. Hence 
integrating the two languages gives interactive 3D 
graphics, complete programming capabilities and 
extensive support for building large-scale virtual 
environments. Script nodes appear in the VRML file, 
encapsulating the Java code and providing naming 
conventions for interconnecting Java variables with field 

Figure 3   Field interface between VRML and Java.



values in the scene. Interfaced Java classes import the 
vrml.* class libraries to provide type conversion between 
Java and VRML. Figure 3 presents the script node 
interface between VRML and Java, showing how nodes in 
the VRML scene are first defined and then passed as 
parameters to the Java class (Brutzman 1998).  
 
 
6. EXAMPLE  
 
We present a simple 3DVSE example, adapted from a 
picture book, which is constructed by using the method 
described above: 
 
It is a sunny summer mid day. In a green field, there is a 
big tree on the ground. A blue caravan is right beside the 
tree; the caravan has red door. 

The sentences of the story are represented by the 
following semantic objects: 
 
A. Time when the story takes place: 
Time: <Summer>  
           Attribute: sunny  
                            mid day 
This helps to define the main attributes of time, season, weather, 
intensity of the light, and other relevant attributes 
B. Place where the story happens e.g. In a green field 
Place: <Field>  
          Attribute:  
                  Material:  grass 
                  Colour: green 
which indicates the kind of place where the story takes place. 
B1. Sub-Objects in the field e.g. a big tree on the ground 
Object1: <Tree>  
                Attribute:  
                          Size: big 
C. Objects on the field:  
Object3: <Caravan> A blue caravan is right beside the tree.  
                Attribute:  

                           Color: blue 
This indicates where to put the caravan in relation to the tree.  
              Parts of the caravan:  the caravan has red door 
                           <Caravan_Door> 
                                   Attribute:  
                                              Color: red  
From this description we can ascertain what are the attributes of 
the caravan.  
 
Using the above methodology, this is rendered as shown 
in Fig. 4. 
 
7. CONCLUSIONS AND FUTURE WORK 
 
This paper has proposed a novel methodology for creating 
a 3DVSE by story-based NL input. We believe that story 
visualization is a powerful way to integrate NLP and 3D 

computer graphics to represent interactive 3DVSEs. The 
novelty of this work lies in the bridging the gap between 
scripting/storyboarding by a non-technical creative writer 
and rendering characters and scenes by a graphics 
specialist. This should make it easier and faster for non-
professionals to create 3D story environments compared 
to using traditional 3D design packages. We expect this 
new approach will have a wide range of applications, such 
as games, 3D Chatrooms, Interactive picture books, 
Screenplays, etc. Currently, the 3DVSE software is still 
under development. Our next tasks will be to evaluate and 
compare VRML with Java3D to evaluate which is more 
suitable for creating realistic and interactive virtual 
environments. An improvement of NLP techniques for 
more complex NL descriptions may be made for future 
work. Research will also take place on how to design and 
embed a BBAI (behavioural-based AI) character and 
event engine to facilitate the generation of dynamic and 
interactive virtual environments.  

Figure 4   Example of visualization story from a picture book
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ABSTRACT

The goal of this work is to provide more autonomy for virtual
actors by endowing them with a learning ability by imitation.
While acting in his virtual world, our virtual actor uses
prototypic behaviors defined by Fuzzy Cognitive Maps (FCMs)
to simulate other actors’ behavior in his imaginary world. This
simulation allows him to carry out predictions and choices
of strategies. We propose a method allowing virtual actor to
adapt a prototypic behavior of FCMs to a model by simple
observation. Prototype adapts itself to its model and simulation
of other actors’ behavior in the imaginary world comes closer
to reality. This method uses meta-knowledge about learning
allowing to preserve a "personality" and emotions.

INTRODUCTION

Our study takes place in the framework of Interac-
tive Fictions where autonomous entities improvise with
avatars [Hayes-Roth 96]. The idea is to provide the abil-
ity for virtual actors to adapt his representation of other
actors’ behavior, and therefore to carry out accurate pre-
dictions by simulating.

EachAnimat[Meyer 91] has its own behavioral culture
implemented in a library of behavioral prototypes. This
culture gives it self-perception and perception of others.
While reacting in virtual world, it can simulates in its
imaginary world its vision of other entities in order to
choose a strategy according to the prediction of the sim-
ulation [Maffre 01]. We propose to endow theseAnimats
with learning by imitation [Mataric 01]. By observing an-
other entity or avatar, ourAnimatmodifies one behavioral
prototype from its library in order to imitate the observed
model with more accuracy, increasing the relevance of its
predictions. It can also imitate another agent preserving
its own “personality”.

Fuzzy Cognitive Map (FCM) [Kosko 86] can specify
and control emotional and perceptive (not only sensitive)
Animatsbehavior [Parenthoën 01]. FCM is declarative

and explanatory, it can therefore be specified by a non-
specialist in computer science.Animatsbehavioral cul-
ture consists in a library of prototypic FCMs allowing it
to simulate and to anticipate agents’ behavior in its imag-
inary world. We propose to adapt prototypic FCM by
learning process in order to imitate an observed behavior.

Applications are implemented in the multi-agent en-
vironmentoRis[Harrouet 02] showing a sheepdog gath-
ering sheep. The learning mechanism allows the dog to
adapt its prey prototype to a given sheep in real time.

Next section explicits the context in which our learning
algorithm is situated . We will justify the choice of the
FCMs as foundation of the behavioral library, explain the
notion of imaginary world and explain how we envisage
the learning mechanism. Next, we will present the
learning algorithm. Finally, we will apply this algorithm
on the example of the sheepdog and explicit the obtained
results.

CONTEXT

FCMs are graphs of influences allowing to specify and
to control anAnimatbehavior. FCM is a dynamic system
constituted by nodes and links. Nodes represent concepts
and links causal connexions between concepts. Every
concept has semantics. Information relating to the per-
ception of anAnimatare fuzzyfied to activate sensor con-
cepts, while activations of motor concepts are defuzzy-
fied to determine its effectors. FCM is not only sensory
but also perceptive thanks to self-excitator links and to
links from internal to perceptive concepts.

We consider that anAnimathas sensors allowing it to
perceive its environment, effectors to perform, and also
a library of prototypic behaviors specified by FCMs. A
FCM is not only declarative, it is an explanatory graph
fitting to behavior specification. Thus, an expert in col-
laboration with an ergonome will be able to develop a li-
brary of prototypic behaviors. This library represents the
behavioral culture of theAnimat. For example the library
of an animal can be constituted of a prototypic behavior
of prey, and a prototypic behavior of predator.

In parallel to the virtual world, anAnimathas also an



imaginary world, where it can simulate its own behav-
ior and also other actors’ behavior. This imaginary world
corresponds to an approximate representation of the envi-
ronment fromAnimatperception and to a representation
of other actors’ behavior. In Fact, anAnimat uses pro-
totypic behaviors in order to simulate other actors’ be-
havior. It imagines its behavior in simulating its own de-
cisonal mechanism and imagines other actors’ behavior
with prototypic FCMs. It can use its imaginary world to
choose a strategy between several possibilities, not by a
logical reasoning but by a behavioral simulation. Thus, it
will be able to make predictions on the future.

We want to provide the ability for anAnimat to
adapt its representation of other actors’ behavior and
consequently its predictions become more pertinent.
Thus, we propose to endow anAnimat with a learning
ability by imitation. AnAnimatmust be able to modify
a behavior to mime an observed behavior of a model
that could be another actor or an avatar controlled by a
human operator [Stoffregen 99]. By simple observation
of the imitated model, the virtual actor must adapt its
representation of the model behavior. The mechanism
used to control the model behavior to imitate is indepen-
dent of learning. Thus, imitated model can be piloted
by any decision-making mechanism. The idea here is
to modify prototypic FCMs representing other actors’
behavior in comparing the result of the simulation in the
imaginary world and the result of the virtual world. Thus
we incorporate a third level to anAnimat that we name
“adaptative mode” (learning), adding to the reactive
mode (virtual world) and to the “predictive mode”
(imaginary world). These three modes represent the
three levels used in cognitive psychology [Morineau 02].
The three methods are in communication, but they evolve
in parallel.

LEARNING THROUGH IMITATION

In this section, we present a method allowing an adap-
tation of prototypic behavior by imitation in real time. An
Animat observes its environment (other agents), allow-
ing it to simulate other entities’ behavior in its imaginary
world with prototypic FCMs. The idea is to provide a
more pertinent simulation by adapting prototypic FCMs
by imitation. The modification of prototypic FCMs re-
duces the difference between predictions of the imaginary
world and reality. We made the asumption that anAnimat
has sensors to estimate the information relating to proto-
typic FCMs, means an estimation of sensors and effector
values that will allow to fuzzyfy sensors values and to
compare the result of defuzzyfication of motor concepts
activations with the effector values of the model.

The learning mechanism consists in getting back the
result of the simulation in the imaginary world, compar-
ing it to what happened in the virtual world, and deduct-
ing an adaptation of prototypic FCMs. We will limit our
study to the learning of the weights of the causal connec-
tions between concepts in a prototypic FCM in order to

imitate a given behavior, by modifying neither the struc-
ture of the influence graph of a FCM, nor the fuzzyfi-
cation of the sensors, nor the defuzzyfication of the con-
cepts motors. This modification of the causal connections
between concepts uses meta-knowledge about learning
(the expert certifies notably structures of FCMs and the
sign of links).

Kosko has proposed two different Hebb type meth-
ods [Hebb 49] for an expert given limit cycle learning
by FCM [Kosko 88]. One is based on the correlations
between activations [Kosko 92], the other on a corre-
lation of their variations (differential hebbian learning)
[Dickerson 94]. The differential learning modifies only
the associated links to correlated variations of the con-
cepts activations, while the non differential correlations
learning risk to modify all links in a non pertinent way.
Kosko’s differential learning is based on the knowledge
of a limit cycle including all concepts and provided by an
expert. However, we can’t have such a limit cycle, be-
cause only estimated model sensors and effectors can be
observed and FCM having generated them is not avail-
able. In addition, Kosko’s differential learning makes the
assumption that external activations are constant. How-
ever, the virtual world is a dynamic system and external
activations evolve in time. Thus, we will modify Kosko’s
hebbien differential learning to our case.

The algorithm of adaptation that we propose is an iter-
ative cycle in four stages:

1. Model estimation:
by simple observation theAnimatestimates model-
sensors and model-effectors,

2. Simulation of the prototypic behavior:
sensors are fuzzyfied into perceptive concept exter-
nal activations, calculation of the FCM dynamics,
then image-effectors are obtained by motor concept
inner activation defuzzyfication,

3. Calculation of calling into question:
comparison between image-effectors and model-
effectors is performed, generatation of a set of de-
sired pseudo-activations obtained by going up the
influence graph from motor concepts towards per-
ceptive concepts without modifying links and by us-
ing meta-knowledge about learning,

4. Update causal links:
FCM causal links are updated by applying discrete
differential hebbian learning to the sequence corre-
sponding to the passage from FCM activations to-
wards desired pseudo-activations.

More precisely :

1. In the first stage, imitator measures features about
the model, which are necessary for model-sensor
and model-effector estimations.

2. The second stage corresponds simply to the usual
use of a FCM for the control of a virtual actor, and



determines image-actor FCM activations at moment
t + δt ≈ t in the imaginary world, according to
model-sensor estimation and FCM dynamics with
N iterations:

a(t+ I
N δt) = S

(
G(f(t), LT · a(t+ I−1

N δt))
)

for I = 1, · · · , N ; δt << 1 (1)

N equals the length of the longest acyclic path
added to the length of the longest cycle in the influ-
ence graph, in order to make sure that sensor infor-
mation is spread to all nodes;n being FCM concept
number,f = (fi)iJ1,nK external activations coming
from sensor fuzzyfication,a=(ai)iJ1,nK innner acti-
vations,L=(Lij)(i,j)J1,nK2 link matrix,G : (<2)n →
<n a comparison operator andS a standardization
function transforming each coordonate by the sig-
moidal function: σ(x)= 1+δ

1+e−ρ(x−a0) − δ, with pa-
rameters(δ, ρ, a0) ∈ {0, 1}×<+

∗ ×<. FCM motor
concept defuzzyfication at momentt + δt ≈ t pro-
vides image-effectors. For more clearness, we note
a the resulting inner activationsa(t + δt) in next
paragraphs.

3. The third stage recursivly generates sets of pseudo-
activations(Pi)i∈J1,nK translating an orientation for
FCM dynamics. The principle consists in going up
the influence graph from motor concepts towards
perceptive concepts proposing pseudo-activation
values according to meta-knowledge about learn-
ing and bringing image-effectors closer to model-
effectors estimation. We did not use the method of
gradient backpropagation [Rumelhart 86]. FCM is
a cyclic process and its topology is not organized
in layers (recurrent links). In addition, the method
of gradient backpropagation does not hold graph
semantic and we wished to have the possibility to
apply specific meta-knowledge to a specific node.
Let’s detail the recursive process:

Initialisation m = 0: entering into the FCM from
effectors. A setI0 represents indices of concepts de-
fuzzyfied onto image-effectors. For eachi ∈ I0, we
apply the decision learning meta-knowledge: two
potential pseudo-activationsp±i = σ(a0± 2αi

ρ ) sim-
ulate an active/inactive conceptCi, αi ≥ 1 translat-
ing choise radicality. With theai value, that makes
3 possible pseudo-activationspi = ai, p+

i or p−i
for eachCi. The3CardI0 combinations are defuzzy-
fied, compared to model-effector estimation and the
best combination(p0,{}

i )i∈I0 is kept (the 0 deals
with defuzzyfication and the{} is a set of future la-
bels). ∀i ∈ I0, Pi = {p0,{}

i }. The other pseudo-
activations sets(Pi)i∈(J1,nK\I0) are empty.

Progression fromm to m + 1: Let Im ⊂ J1, nK
be the index set of concepts whose desired pseudo-
activation set is not empty. Fori ∈ Im, noteai

(reps. fi) inner (resp. extern) activation of con-
ceptCi, Pi = {pk1,{··· }

i , · · · , p
kL,{··· }
i } its desired

pseudo-activation set which cardinal equalsL and
J ⊂ J1, nK the index set of concepts which are
causes for the conceptCi (i.e.:Lji 6= 0) and such
that the arc fromCj to Ci has not been studied:
∀λ ∈ J1, LK, j 6= kλ. We will calculate pseudo-
activationsPj for j ∈ J as follows:

• For eachj ∈ J , we apply the decision learn-
ing meta-knowledge: two potential pseudo-
activationsp+

j andp−j are calculated (2) so that
their influence onai causes a clear choise be-
tween an activeCi or an inactiveCi, taking
into account external activations, withα ≥ 1
translating the choice radicality:

p±j =


a0 ± 2αj

ρ
− fi −

∑

l 6=j

Llial


 /Lji

(2)

• Then we randomly select aλ ∈ J1, LK.
That gives a p

kλ,{··· }
i ∈ Pi and we

choose among the3CardJ possible combina-
tions pi

j = aj , p+
j or p−j for j ∈ J , the

one p
i,{··· ,kλ}
j which gives aCi activation

σ
(
Gi(fi,

∑
j Ljip

i
j)

)
the nearest topkλ,{··· }

i ,

• Thus we obtain a new set of concept indices
with a not empty desired pseudo-activation set:
Im+1 = Im∪J with Pj = Pj∪{pi,{··· ,kλ}

j }for
j ∈ J .

Termination: if for eachi ∈ Im, the corresponding
J set is empty, every arc belonging to paths arriving
into (Ci)i∈I0 has been studied.

We use a discrete method by proposing three
pseudo-activations. We choose a discrete method al-
lowing us on one hand to limit the calculations and
on the other hand to translate a radical choice. We
argue that to learn semantic purpose, proposed mod-
ifications have to correspond to radical choices and
not to light modifications.

4. The fourth and last stage modifies FCM link
weights, in order to direct its dynamics towards a
behavior approaching the model. Contrary to Kosko
who uses a cycling cycle and a learning rate decreas-
ing with time (see [Dickerson 94] page 186), we
make only one stage from inner activationsa to link
corresponding desired pseudo-activationsp for the
weight modification without cycling and preserve a
constant learning rater(t) = R, in order to ensure a
strong adaptivity for our virtual actor. Formally, not-
ingA ⊂ J1, nK2 the arc set of the FCM,β ∈]0; 1+δ[
a sensitivity level ands : < → {−1, 0, 1} the dis-
crete functions(x) = −1, 0 or 1 if respectively
x ≤ −β, −β < x < β or x ≥ β, the learning



algorithm follows the equations:

∀(i, j) ∈ A, if ∃k ∈ J0, nK, p
k,{··· ,i,··· }
j ∈ Pj ,

we take such a k and :



∆i = s(pj,{··· }
i − ai), ∆j = s(pk,{··· ,i,··· }

j − aj)

Lij (t+1)=
∣∣∣∣
Lij (t) + R(∆i∆j − Lij (t)) , if ∆i 6= 0
Lij (t) , if ∆i = 0

else Aij 6∈ {path to effectors} : Lij (t+1) = Lij (t)

(3)
It is to note that we preserve a coherence in our
modification of links according to the initial pro-
totype furnished by the expert. Thus, the follow-
ing possibilities are forbidden: link emergence, link
suppression, or modification of the sign of a link.
We also keep some link weights inside given bon-
dariesBij = [Lmin

ij , Lmax
ij ] so that the adapted be-

havior remains believable according to the expert:
if Lij (t+1) < Lmin

ij then Lij (t+1) = Lmin
ij and if

Lij (t+1) > Lmax
ij then Lij (t+1) = Lmax

ij . More-
over, the expert can decide to immobilize the weight
of one or several links, therefore they will not be
modified during the learning process. To immobilize
links or to impose limits allows to adapt prototypic
FCMs while preserving a "personality".

The complexity of this algorithm is a polynomial func-
tion of the numbern of concepts given by the expert,
and even aO(n). For an expert, the causes of a concept
are always in a very limited number (seldom more than
seven), therefore the number of arcs arriving on each
concept is rised byM (M ≈ 7). CardJ ≤ M . 3CardJ is
thus raised in practice, whatever the number of concepts
implied in the FCM. The same applies to the calculation
of FCM dynamics which complexity is aO(n) whereas
could seem to be aO(n2), thanks to the great number of
zeros in the link matrix; the number of not null links in
a column being no more thanM , whatever could ben.
This algorithm can thus be implemented for a use in real
time.

RESULTS

Our applications show a sheepdog gathering sheep.
During the simulation one or several sheep can move
away from the gathering zone. When approaching a
sheep, the dog frightens it and obliges it to regain this
zone. The dog simulates in its imaginary world several
strategies to gather sheep. We have implemented three
applications showing a sheepdog gathering sheep. First,
the dog learns a way of gathering sheep by the imitation
of a human operator or another dog. In that case, the pro-
totypic FCMs used is its own FCMs. Second, an adap-
tation of dog’s prey prototype to a given sheep occurs in
real time. This application is described in this section.
Third, a paranoiac sheep learns how to be surrounded by
other sheep remains frightened but does not flee any more
when viewing a dog. To immobilize paranoiac links al-
lows to adapt sheep behavior while preserving a paranoid

“personality”.
To simulate sheep behavior, the dog uses prototypic

FCMs of prey from its behavioral library. Actually, the
dog represents each sheep behavior by prototypic FCMs
of prey in its imaginary world. Each sheep is associ-
ated with its own prototype. Thus the dog can simulate
sheep behavior and can do predictions. Prototype will be
adapted to a sheep by imitation. A FCM controls the pro-
totype’s speed and another controls the prototype’s angle.

The comparison between the result of the imaginary
world and the virtual world allows an adaptation of proto-
typic FCMs in real time by learning. The figure (1) illus-
trates the modification by imitation of prototype’s speed
that defined the representation of one sheep’s speed used
the imaginary world. We imposed the learning period.
Such a period allows the convergence of the process.
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Figure 1: FCM of perceptive prey is coming from the
library of prototypic FCMs and adapts itself by learning.

The dog observes the sheep to imitate. It adapts the
prototypic behavior of prey allowing it to simulate the
sheep’s behavior in its imaginary world. By simple ob-
servation of the sheep to imitate, it estimates information
necessary to the fuzzyfication for the prototype. The esti-
mation of sensors values are fuzzyfied in activation of the
concepts “Enemy close” and “Enemy far”. The dynamic
of the prototype occurs and by defuzzyfication of the ac-
tivation of the effector motor “Escape envy” we get the
image effector. Its corresponds to the representation that
the dog has of prey’s speed. This image effector from pro-
totype is compared to an estimation of sheep’s effectors.
This comparison allows to calculate a set of pseudo ac-
tivations that define desired modifications of FCM links.
The prey prototype adapts itself to a sheep by reiterating
the learning process. In pratice, the congercence occurs.

On figure (2), we compare the simulation of sheep
behavior from prototype in the imaginary world (“Prey
image”) and the sheep behavior in the virtual world
(“Sheep Model”), before and after learning while the dog
performs the same trajectory (“Dog”). We note that the
simulation is closer to reality after learning.

CONCLUSIONS AND FUTURE WORKS

Our Animat possesses a behavioral library composed
by prototypic FCMs. While acting in the virtual world,
the prototypic FCMs allows him to simulate other actors’
behavior in its imaginary world. It simulates different
strategies, allowing him to carry out predictions. We use
FCMs because they represent an explicit knowledge and
provide perception and emotions to theAnimat. We have
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Figure 2: Learning by imitation allows to get more perti-
nent predictions from the imaginary world.

presented a learning algorithm allowing an adaptation of
the prototypic FCMs to imitate a given actor. This adapta-
tion provides a more pertinent imaginary world and there-
fore theAnimat carries out predictions closer to the re-
sults of the virtual world. Our learning by imitation uses
meta-knowledge from description of the prototypes by
an expert, allowing to preserve the "personality" and the
emotions of the prototype. In addition, our learning is
based on a behavioral prototype allowing to simulate the
model behavior to imitate. Moreover, we do not have to
modify the structure of the influence graph of the FCM,
the fuzzyfication of the sensors, and the defuzzyfication
of the concept motors. Future works will try to set up
a process that selects a prototype in the library by sim-
ple observation of the model behavior to imitate. Also,
we work on the the adaption of the fuzzy transformations
associated to the fuzzyfication and defuzzyfication.
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ABSTRACT 

Artificially intelligent opponents in commercial computer 
games are almost exclusively controlled by manually-
designed scripts. With increasing game complexity, the 
scripts tend to become quite complex too. As a consequence 
they often contain “holes” that can be exploited by the human 
player. The research question addressed in this paper reads: 
How can evolutionary learning techniques be applied to 
improve the quality of opponent intelligence in commercial 
computer games? We study the off-line application of 
evolutionary learning to generate neural-network controlled 
opponents for a complex strategy game called PICOVERSE. 
The results show that the evolved opponents outperform a 
manually-scripted opponent. In addition, it is shown that 
evolved opponents are capable of identifying and exploiting 
holes in a scripted opponent. We conclude that evolutionary 
learning is potentially an effective tool to improve quality of 
opponent intelligence in commercial computer games. 

INTRODUCTION 

The aim of opponents in commercial computer games is to 
provide an entertaining playing experience rather than to 
defeat the human player at all costs. The quality of the 
opponent intelligence in games such as computer role-
playing games (CRPGs), first-person shooters (FPSs) and 
strategy games, lies primarily in their ability to exhibit 
human-like behaviour. This implies that computer-controlled 
opponents should at least meet the following four 

requirements: (1) they should not cheat, (2) they should 
exploit the possibilities offered by the environment, (3) they 
should learn from mistakes, and (4) they should avoid clearly 
ineffective behaviour. Opponents in today’s computer games, 
however, have not yet reached this level of behaviour. The 
appeal of massive online multi-player games stems partly 
from the fact that computer-controlled opponents often 
exhibit what has been called “artificial stupidity” (Schaeffer 
2001) rather than artificial intelligence. 
   In early CRPGs and most of present-day FPSs and strategy 
games an opponent’s behaviour is usually determined by a 
straightforward script such as “attack the target if it is in 
range, else move towards the target in a straight line.” 
However, more advanced games contain opponents 
controlled by large scripts comprising hundreds of complex 
rules. As any programmer knows, complex programs are 
likely to contain bugs and unanticipated features. As a 
consequence, intelligent opponents intended to pose a 
considerable challenge to a human player often suffer from 
shortcomings that are easily recognised and exploited. For 
example, in the CRPG SHADOWS OF AMN (2000; illustrated 
in figure 1) the dragons, the supposedly toughest opponents 
in the game, could be easily defeated by taking advantage of 
holes in the extensive scripts controlling their actions. 
Evidently, such artificial stupidity spoils the playing 
experience. 
   State-of-the-art artificially intelligent opponents lack the 
ability to learn from experience. Therefore, the research 
question addressed in this paper reads: How can evolutionary 
learning techniques be applied to improve the quality of 
opponent intelligence in commercial computer games? We 
discuss two main ways of applying machine learning to 
games: off-line learning and on-line learning. We introduce 
the strategy game PICOVERSE and outline the duelling task 
for which we evolve opponent intelligence off-line. We then 
describe the environment and techniques we have used for 
our initial experiments. We present the results of our 
experiments and discuss them. Finally, we draw some 
conclusions and point out future research. 

OPPONENT INTELLIGENCE LEARNING 

We distinguish two main ways of applying machine learning 
to improve the quality of opponent intelligence in 
commercial computer games: on-line learning and off-line 
learning. 

On-line Learning 

Examples of on-line application of machine learning are 
some of the opponents developed for the popular FPS 
QUAKE. The artificial player in QUAKE III (commonly called 
a “bot”) uses machine learning techniques to adapt to its 
environment and to select short-term and long-term goals 

Figure 1: A dragon in SHADOWS OF AMN. 



 

(Van Waveren and Rothkrantz 2001). John Laird has 
developed a bot that predicts player actions and uses these 
predictions to set ambushes and to avoid traps (Laird 2001). 
Of the four requirements we mentioned in the introduction 
for opponent strategies that exhibit high entertainment value, 
these bots address the first two, namely managing to avoid 
cheating and using their environment effectively. However, 
they can not learn from mistakes or generate completely new 
tactics to overcome ineffective behaviour. They mainly adapt 
to the world they find themselves in, rather than to the tactics 
of the human player. Still, these bots are a first step towards 
the creation of human-like opponents by on-line adaptation. 
   Machine learning techniques are rarely used in commercial 
computer games. Presumably, the widespread dissatisfaction 
of game developers with machine learning (Woodcock 2000) 
is caused by the bold aim of creating intelligent opponents 
using on-line learning. Machine learning techniques require 
numerous experiments, generate noisy results, and are 
computationally intensive. These characteristics make 
machine learning rather unsuitable for on-line adaptation of 
opponents in computer games. 

Off-line Learning 

In the off-line application of machine learning techniques the 
disadvantages mentioned for on-line learning do not pose an 
insurmountable problem. However, to our knowledge, 
developers of commercial games have never used machine 
learning for off-line learning. In our view the two main 
applications of off-line learning in games are: (1) to enhance 
intelligence of opponents by training them against other 
(scripted) opponents and (2) to proof opponents against 
unforeseen player tactics by detecting “holes” in the scripts 
controlling the opponents. The next three sections describe 
the experiments supporting our view on the off-line 
application of machine learning in games. 

DUELLING SPACESHIPS 

In our experiments, we apply off-line learning for optimising 
the performance of opponents in a strategy game called 
PICOVERSE. This section discusses the game and the learning 
task to be used in our experiments. Figure 2 shows three 
screenshots of the game. PICOVERSE is a relatively complex 
strategy game for the Palm (handheld) computer. Our 
intentions with the development of this game are twofold: (1) 
we use it to support and illustrate our views on the design of 
complex Palm games (Spronck and Van den Herik, 2002), 
and (2) in the present context, we use it to investigate the off-
line application of machine learning to improve opponent 
intelligence. 
   In PICOVERSE the player assumes the role of an owner of a 
small spaceship in a huge galaxy. Players act by trading 

goods between planets, going on missions and seeking 
upgrades for their spaceship. During travel, players 
encounter other ships and combat may ensue. The ships are 
equipped with laser guns to fight opponent ships. They are 
protected from destruction by their hulls. Modelling ship 
damage, the strength of the hull decreases when hit by laser 
beams. The duels in PICOVERSE are more strategically 
oriented than action oriented. While the relative attack power 
and hull strengths of the spaceships are important factors in 
deciding the outcome of a fight, even overpowered players 
have a good chance to escape unharmed if their ship is 
equipped with fast and flexible drives or specific defence 
measures. To enhance immersiveness of the game, we permit 
opponents, who have access to the same equipment as the 
player, to escape from a duel that they are bound to lose, 
rather than to continue fighting until being destroyed. This 
feature makes the opponent intelligence non-trivial, despite 
the relatively low level of complexity of the game (as 
compared to state-of-the-art PC games). 

OFF-LINE LEARNING EXPERIMENTS 

In our experiments, the performance of a neural-network 
controlled spaceship is optimised using off-line learning in a 
simplified version of PICOVERSE. For both the evolved and 
opponent ships, lasers fire automatically when their enemy is 
within a certain range and within a 180-degree arc at the 
front of the ship. If a ship bumps head-on into the other ship, 
its speed is reduced to zero. The neural controllers are 
trained using evolutionary algorithms. The fitness is 
determined by letting the evolved spaceships combat against 
scripted opponents in a duelling task. Below, we discuss the 
duelling task, the neural network controlling the spaceship 
and the evolutionary algorithm. 

The Duelling Task 

Figure 3 is an illustration of the duelling task. We refer to the 
scripted ship as “the opponent” and to the ship that is 
controlled by a neural network as “the evolved ship”. The 
scripted behaviour of the opponent is implemented as 
follows. The opponent starts by increasing its speed to 
maximum and rotating the ship’s nose towards the centre of 
the evolved ship. While the opponent ship is firing its laser, it 
attempts to match its speed to the speed of the evolved ship. 
If the hull strength of the opponent is lower than that of the 
evolved ship, the opponent ship attempts to flee by turning 
around and flying away at maximum speed. This simple yet 
effective script mimics a basic strategy often used in 
commercial computer games. 

The Neural Controller 

The neural network controlling the (to be) evolved ship has 
ten inputs. Four inputs represent characteristics of the 
evolved ship: the laser power, the laser range, the hull 
strength, and the speed. Five inputs represent characteristics 
of the opponent ship: the location (direction and distance), 
current hull strength, flying direction, and speed. The tenth 
input is a random value. The network has two outputs, 
controlling the acceleration and rotation of the evolved ship. 
The hidden nodes in the network have a sigmoid activation 

Figure 2: PICOVERSE. 



 

function. The outputs of the network are scaled to ship-
specific maximums. 
   We studied two types of neural networks, namely 
feedforward and recurrent networks. The feedforward 
networks include fully-connected networks (every neuron 
may be connected to any other neuron, as long as a 
feedforward flow through the network is guaranteed) and 
layered networks (neurons are only connected to neurons in 
the next layer). The recurrent neural networks are layered 
networks in which recurrent connections are only allowed 
between nodes within a layer. Recurrent connections function 
as a memory by propagating activation values from the 
previous cycle to the target neuron. 

The Evolutionary Algorithm 

An evolutionary system, implemented in the ELEGANCE 
simulation environment (Spronck and Kerckhoffs 1997), was 
used to determine the neural network connection weights and 
architecture. All simulations are based on the following 
settings: a population size of 200, an evolution run of 50 
generations, real-valued weight encoding, size-2 tournament 
selection, elitism, Thierens’ method of dealing with 
competing conventions (Thierens et al. 1993) and size-3 
crowding. As genetic operators we used biased weight 

mutation (Montana and Davis 1989), nodes crossover 
(Montana and Davis 1989), node existence mutation 
(Spronck and Kerckhoffs 1997), connectivity mutation 
(Spronck and Kerckhoffs 1997), and uniform crossover. In 
addition, we added randomly generated new individuals to 
prevent premature convergence. 
   The fitness is defined as the average result of fifty duels 
between the evolved ship and its opponent. Each duel lasts 
fifty time steps. Each duel in which the ships started with 
different characteristics was followed by a duel in which the 
characteristics were reversed. At time step t the fitness is 
defined as: 
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where PHt is the hull strength of the evolved ship at time t 
and OHt is the opponent hull strength at time t. The overall 
fitness for a duel is determined as the average of the fitness 
values at each time step. 
   Determining the fitness in this way has the following 
properties. If the evolved ship and its opponent both remain 
passive the fitness is equal to 0.5. If the opponent ship is 
damaged relatively more than the evolved ship, the fitness is 
larger than 0.5 and if the reverse is true (or when the evolved 
ship is destroyed) the fitness is smaller than 0.5. Therefore, 
the fitness function favours attacking if it leads to victory and 
favours fleeing otherwise. 

RESULTS 

Table 1 presents the results of the two types of networks 
tested in the experiments. Evidently, the layered feedforward 
neural networks with two layers outperforms all other 
networks in terms of average and maximum fitness value. 
The network with five nodes in each hidden layer scored 
only slightly better than the network with ten nodes in each 
layer. 
   At first glance the best fitness results achieved are not very 
impressive. A fitness of 0.5 means that the neural controller 
results are as effective as the manually-designed algorithm. A 
fitness of 0.579 (the best result obtained in the experiments) 
may be taken to indicate that the evolved opponent scores 
only slightly better than the scripted opponent. Since the 
scripted opponent employs a fairly straightforward tactic, one 
would expect the neural controller to be able to learn a far 
more successful tactic. However, a controller that remains 
passive reaches a fitness of 0.362. Given that a scripted 

Figure 3: Sequence illustrating the duelling task. The duelling
spaceships are represented by the small circles. A ship’s direction
is indicated by a line inside the circle, its speed by the length of the
line extending from the ship’s nose. The dotted arc indicates the 
laser range. The evolved ship is fixed to the centre of the screen
and directed to the right. In the sequence the evolved ship is
stationary. From left to right, top to bottom, the six pictures show
the following events. (1) Starting position. (2) The opponent moves 
towards the evolved ship and (3) bumps into it. Both ships are
firing their lasers. (4) The opponent has determined it should flee
and turns around. (5) The opponent flees and (6) escapes. 

Neural network type Exps Average Lowest Highest 
Recurrent, 1 layer, 5 hidden nodes 5 0.516 0.459 0.532 
Recurrent, 1 layer, 10 hidden nodes 5 0.523 0.497 0.541 
Recurrent, 2 layers, 5 nodes per layer 7 0.504 0.482 0.531 
Feedforward, 7 hidden nodes 5 0.472 0.382 0.527 
Feedforward, 2 layers, 5 nodes per layer 5 0.541 0.523 0.579 
Feedforward, 2 layers, 10 nodes per layer 8 0.537 0.498 0.576 
Feedforward, 3 layers, 5 nodes per layer 7 0.515 0.446 0.574 

Table 1: Experimental results. From left to right, the columns indicate the type of neural network 
tested, the number of experiments performed with the neural network, the average fitness, the
lowest fitness value and the highest fitness value. The best results are typed in boldface. 



 

opponent performs better 
than a stationary ship, a 
fitness of 0.638 is a 
theoretical upper bound to 
the maximum the neural 
controller can reach. From 
that point of view, a fitness 
of 0.579 is not bad at all. 
   From the perspective of 
playing experience, the 
fitness rating as calculated 
in our experiments is not as 
important as the objective 

result of a fight. A fight can end in victory, defeat, or a 
“draw”. For the best controller, we found that 42% of the 
encounters ended in victory for the evolved ship, 28% in 
defeat, and 30% in a draw. This means that 72% of the 
encounters ended in a situation not disadvantageous to the 
evolved ship, which achieved 50% more victories than the 
opponent ship. Clearly, the evolved ship performs 
considerably better than the opponent ship. 

DISCUSSION 

Our results show that machine learning (i.e., off-line 
learning) can be used to create intelligent opponents that 
outperform scripted ones. Analysing the behaviour of the 
best-performing spaceship, we observed that it showed 
appropriate following behaviour when it overpowered the 
opponent. In these experiments, such following behaviour 
can never be detrimental to the performance. The reason for 
this is that the opponent’s script ensures that it will only turn 
around to attack again if the hull strength of the attacker 
becomes less than its own hull strength, which does not 
happen as long as the evolved ship stays behind the 
opponent. As we expected the evolved ship avoided bumping 
against the opponent while following it. Avoiding bumping is 
appropriate behaviour because bumping reduces the evolved 
ship’s speed to zero while leaving the opponent’s speed 
unaffected, potentially allowing it to escape. However, 
contrary to our expectation the evolved ship did not avoid 
bumping by reducing its speed when approaching the 
opponent, but by swerving as much as needed to keep a 
constant relative distance to the opponent. 
   We further noticed that the evolved ship did not try to flee 
when losing a fight. The probable reason is that for a 
spaceship to flee, it must turn its back toward the enemy. The 
fleeing ship then becomes a target that does not have the 
ability to fight back (since lasers only fire from the front of 
the ship). As a result, fleeing ships are almost always 
destroyed before being able to escape. Such  attempts to 
escape seem therefore of little use. From this observation we 
conclude that a better balance between the power of the 
weapons and the versatility of the ships is required to enable 
effective escape behaviour,. 

Improving the Opponent 

A surprising form of behaviour was observed when the 
opponent ship started behind the evolved ship, as illustrated 
in figure 4. In that case, often the evolved ship attempted to 
increase the distance between the two ships, up until the 

moment a draw would occur if it would continue to increase 
the distance. At that point, the evolved ship turned around 
and either repeated the behaviour or started to attack. Figure 
5 illustrates this sequence of events.  
   An explanation for the success of the observed behaviour is 
that if the distance between the two ships is maximal, the 
evolved ship will have a maximal amount of time to turn 
around and face the opponent before it gets within the 
opponent’s laser range. Since facing the opponent is required 
to counter-attack, the observed behaviour is beneficial to the 
evolved ship’s strategy. Therefore, improving the script of 
the opponent accordingly may improve its quality 
considerably. 

Detecting Shortcomings in the Script 

By using off-line learning, we could also detect shortcomings 
in the scripted opponent. Although we did not specifically 
design our experiments for this purpose, we found a 
considerable hole in the script controlling the opponent by 
observing the behaviour of the two duelling ships.  
   The opponent bases its decision to flee on a comparison 
between the relative hull strengths (e.g., if the opponent’s 
relative hull strength is lowest, it concludes that it will most 
likely lose the fight and will attempt to escape). The 
opponent’s script does not take into account that it is its own 
turn to act when it makes this decision. If the comparative 
hull strengths are close to each other, this certainly becomes 
an important consideration. For instance, if on the initial 
approach the opponent ship came within the range of the 
lasers of the evolved ship before being able to fire its own 
lasers, it would be damaged while the evolved ship would 
still be undamaged. Regardless of its own power, this would 
cause the opponent’s initial reaction to be to flee. Since in 
most cases the opponent would still be able to fire its lasers 
once, this behaviour had little influence if the opponent 
significantly overpowered the evolved ship, because it would 
start to attack again on the next turn. However, if the 
strengths of the ships were about equal, we found the evolved 
ship to exploit this weakness of the opponent, by attempting 
to manoeuvre into a position from which it could fire the first 

Figure 5: The right panel displays a trace of the movements of the 
evolved ship up to the moment that it fires its first shot. The 
opponent is overpowered and tries to flee, but the learning ship 
follows, as shown in the left panel. In this case the opponent is not 
able to escape. 

Figure 4: Opponent is behind the
evolved ship. 



 

shot. Plugging this hole in the opponent’s script will be a 
major improvement to its behaviour. 
   It is noteworthy that in many commercial turn-based games 
we have observed holes in the opponent AI similar to the 
hole we discovered in our script. For instance, in many 
games it is a good tactic for the player to pass game turns 
until the enemy has approached to a certain distance so that 
the player can initiate the first attack. Game designers will 
seldom let computer opponents employ such a tactic because 
it could lead to a stalemate where both the player and the 
computer refuse to move, because whoever makes the first 
move is at a disadvantage. Similarities with trench warfare 
are striking. 

Generalisation to Other Games 

We have shown how machine learning can be used to 
improve opponent intelligence in PICOVERSE. Of course, it 
remains an open question whether our findings generalise to 
the far more complex commercial PC games. Even the 
detection of holes in scripted AI, which is obviously much 
simpler than developing a whole new tactic, may prove to be 
too difficult if the number of choices at each turn and the 
number of turns in an encounter are very large. However, we 
expect for most games that encounters do not last “too long” 
(to avoid boredom) and the number of choices is not “too 
large” (to avoid confusion). Even for commercial PC games 
it should therefore usually be possible to detect AI 
shortcomings by machine learning. 
   Employing machine learning to design completely new 
tactics, however, is probably severely limited in its uses. 
John Laird warns that while neural networks and 
evolutionary systems may be applied to tune parameters, they 
are “grossly inadequate when it comes to creating synthetic 
characters with complex behaviours automatically from 
scratch” (Laird 2000). For a relatively simple game as 
PICOVERSE machine learning techniques by themselves can 
be useful in designing strong tactics. The combination of 
machine learning with more structured techniques, such as a 
subsumption architecture (Brooks 1991) or a technique 
inspired by Laird’s Soar Quakebot (Laird 2001), is likely to 
lead to more reliable good results within a shorter time, and 
may therefore also be suitable for more complex 
environments. 

CONCLUSIONS AND FUTURE WORK 

By applying off-line learning in the computer strategy game 
PICOVERSE we were able to improve opponent intelligence 
and to detect shortcomings in the scripted opponent. We 
conclude that machine learning can be applied off-line to 

improve the quality of opponent intelligence in commercial 
computer games. We expect the application of off-line 
learning to detect holes in commercial computer game scripts 
to be feasible. 
   Our future research will build upon our results with 
PICOVERSE. The release version of PICOVERSE will be more 
complex than the simulation we used, and we will run similar 
experiments on the more complex opponents in that version. 
For creating new opponent tactics, we intend to explore other 
machine learning techniques in combination with, for 
instance, subsumption architectures. In the long run, we hope 
to apply our techniques to improve opponent intelligence in 
commercial computer games. 
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ABSTRACT

This paper investigates to what extent learning methods
are beneficial for the Lines of Action tournament pro-
gram MIA. We focus on two components of the program:
(1) the evaluation function and (2) the move ordering.
Using temporal difference learning the evaluation func-
tion was improved by tuning the weights. We found
substantial improvements for three weights. The move
ordering was enhanced by the Neural MoveMap (NMM)
heuristic, which is based on learning. The two learning
techniques improved both the playing quality and the
speed of the program. Test results are given. The new
evaluation function improved the program with a win-
ning ratio of 1.68. The speed up of the NMM heuristic
is 17 percent.

1. INTRODUCTION

The standard framework of the αβ search with its en-
hancements offers a good start position for building
a strong game-playing program. For Lines of Action
(LOA) we built the game-playing program MIA (Maas-
tricht In Action) by carefully composing its “hand-
crafted” evaluation function and implementing the αβ
variant PVS (Principal Variation Search) with iterative
deepening, transposition tables, quiescence search, killer
moves, history heuristic, etc [9]. MIA so equipped, came
second on the 2001 and 2002 Computer Olympiads [3, 4].
Further improvement of the program is expected to be
achieved mostly from fine-tuning the components men-
tioned. One approach is to fine-tune them by hand.
However, the program is playing at such a high level
that the effect of the changes in most of the components
are beyond human understanding. The alternative ap-
proach is to use automatic tuning by various learning
techniques. In this paper we focus on improving two
components: the evaluation function and the move or-
dering. To improve the evaluation function we employed

temporal difference learning. This learning method was
first used for checkers by Samuel [13] and was essential
for building the world-champion-level Backgammon pro-
gram by Tesauro [16]. For move ordering similar learn-
ing techniques were designed recently, of which the Neu-
ral MoveMap heuristic [7] seems particularly promising.
The remainder of this paper is organised as follows. Sec-
tion 2 explains the game of Lines of Action and describes
the tournament program. In section 3 the temporal
difference learning and the Neural MoveMap heuristic
are explained. The results of using these learning algo-
rithms are presented in section 4. Finally, in section 5
we present our conclusions.

2. MIA AND LINES OF ACTION

MIA (Maastricht In Action) is a LOA-playing tour-
nament program. It is written in Java. The
program can be played at the following website:
http://www.cs.unimaas.nl/m.winands/loa/. Below we
describe some details of MIA. In the first subsection we
explain the rules of Lines of Action. We give an overview
of MIA’s evaluation function in the second subsection.
The search engine is briefly described in the third sub-
section.

Lines Of Action

Lines of Action (LOA) [12] is a two-person zero-sum
chess-like connection game with perfect information. It
is played on an 8 × 8 board by two sides, Black and
White. Each side has twelve pieces at its disposal. The
starting position is given in figure 1a. The players al-
ternately move a piece, starting with Black. A move
takes place in a straight line, exactly as many squares
as there are pieces of either colour anywhere along the
line of movement (see figure 1b). A player may jump
over its own pieces. A player may not jump over the
opponent’s pieces, but can capture them by landing on
them. The goal of a player is to be the first to create
a configuration on the board in which all own pieces
are connected in one unit (see figure 1c). In the case
of simultaneous connection, the game is drawn. The



connections within the unit may be either orthogonal
or diagonal. If a player cannot move, this player has to
pass. If a position with the same player to move occurs
for the third time, the game is drawn.

a b c

Figure 1: (a) The Initial Position of LOA (b) An Exam-
ple of Possible Moves in a LOA Game (c) A Terminal
LOA Position

Evaluation Function

The evaluation function used in MIA consists of seven
features, whose weights will be tuned in section 4. Fea-
ture 1 is the concentration, which is computed in four
steps. First, the centre of mass of the pieces on the board
is computed for each side. Second, we compute for each
piece its distance to the centre of mass. The distance
is measured as the minimal number of squares the piece
is remote from the centre of mass. These distances are
summed together, called the sum-of-distances. Third,
the sum-of-minimal-distances is calculated. It is defined
as the sum of the minimal distances of the pieces from
the centre of mass. This computation is necessary since
otherwise boards with a few pieces would be preferred.
For instance, if we have ten pieces, there will be always
at least eight pieces at a distance of 1 from the cen-
tre of mass, and one piece at a distance of 2. In this
case the total sum of distances is minimal 10. Thus, the
sum-of-minimal-distances is subtracted from the sum-of-
distances. Fourth, the average distance towards the cen-
tre of mass is calculated and the inverse of the average
distance is defined as the concentration. Feature 2 is the
centralised centre-of-mass. Positions with a somewhat
more centralised centre of mass are preferred. Feature 3
is the centralisation. Pieces in the centre are preferred
above pieces at the edges. Feature 4 is the quad feature.
This feature looks at solid formations in the neighbour-
hood of the centre-of-mass by using quads. Details of
this feature can be found in [17]. Feature 5 is the mo-
bility. A bonus is given for the number of moves one
has. Feature 6 is the wall feature. A wall is a group of
pieces, which blocks the opponent’s pieces at the edge.
Position with walls are favoured. Feature 7 is the side
to move.

Search Engine

MIA performs an αβ depth-first iterative-deepening
search. Several techniques are implemented to make the
search efficient. The program uses PVS (Principal Vari-
ation Search) to narrow the αβ window as much as pos-
sible [10]. A two-deep transposition table [5] is applied
to prune a subtree or to narrow the αβ window. Next,
a null move [6] (equivalent to passing) is performed be-
fore any other move and it is searched to a lower depth
than we would do for other moves. The reason for doing
a null move is that it enables to produce cut-offs. For
move ordering, the move stored in the transposition ta-
ble, if applicable, is always tried first. Next, two killer
moves [1] are tried. These are the last two moves, which
were best or at least caused a pruning at the given depth.
All the other moves are ordered decreasingly according
to their scores in the history table [14]. These scores are
collected in the following way. At every interior node
in the search tree the history table entry for the best
move found is incremented by 2d, where d is the depth
of the subtree searched under the node. Finally, in the
leaf nodes of the tree a quiescence search is performed.
This quiescence search looks at capture moves, which
form or destroy connections [17].

3. LEARNING METHODS

In this section we present the learning methods em-
ployed in MIA. These include temporal difference learn-
ing for tuning the weights of the evaluation function and
the Neural MoveMap heuristic to improve the move or-
dering.

Temporal Difference Learning

An attractive approach to learn an evaluation function
is temporal difference (TD) learning (see [15]). Using
this approach, each state s has associated a value V ,
representing the estimation of the expected outcome of
the game. The state value can be used as an evaluation
function in the search tree.
In the learning phase, the state values are updated so
that they approach a target value. Let us consider a
sequence of game positions s0, s1, . . . , sT . The target
value for the final position, sT , is given by

V target(sT ) =





1, if sT is a win for Black,
0, if sT is a draw

−1, if sT is a win for White
(1)

The target values for the non-terminal positions
s0, s1, . . . , sT−1 are given by

V target(st) = V (st+1) (2)

To speed up TD learning, we can use TD(λ), which



averages towards future target values:

V target(st) = (1−λ)
T−t−1∑

k=1

λk−1V (st+k)+λT−t−1V (sT )

(3)
λ taking values between 0 and 1.
In game programs using TD learning, V is typically
represented by a parameterised function. To tune the
weights of this function, we minimise the mean square of
the TD error (i.e., V target(st)−V (st)) with the following
gradient updating rule:

∆wt = α(V (st+1)− V (st))
t∑

k=1

λt−k ∂V (sk)
∂wi

(4)

The gradient updating rule given above suggests a
‘plain’ back-propagation-like adaptation, but some of
the improvements developed for supervised learning are
likely to work for TD learning too.
To employ TD learning, we need to generate sequences
of positions. Game sequences can be generated using
game databases or games played by the learning pro-
gram itself. In the latter case, a further choice can be
made on the opponent. Possible options include using
an already existing game program, playing against play-
ers with similar strength on the Internet, playing against
itself, or using more learning players which improve their
skill by playing against each other.

The Neural MoveMap Heuristic

The Neural MoveMap (NMM) heuristic [7] is a recently
developed learning method for move ordering. In the
NMM heuristic a neural network is trained to estimate
the likelihood of a move being the best in a certain po-
sition. During the search, the moves considered more
likely to be the best are examined first. The essence
of the heuristic is rather straightforward. However, the
details of the heuristic are crucial for the heuristic to be
effective, i.e., to be fast and to result in a small search
tree. The details include: the architecture of the neu-
ral network, the construction of the training data, the
training algorithm and the way the neural network is
used for move ordering during the search.
A comparison of different architectures for the neural
network is given in [7]. The authors found that the
best architecture encodes the board position in the in-
put units of the neural network and uses one output unit
for each possible move of the game. This architecture
is illustrated in figure 2. When encoding a position we
assign one input unit to each square of the board, with
+1 for a black piece, −1 for a white piece and 0 for an
empty square. An additional unit is used to specify the
side to move. A move is identified by its origin and des-
tination square (i.e., the current location and the new
location of the piece to move). The activation value of
an output unit corresponding to a move represents the

a1-a1

a1-b1

a1-c1

h8-h8

Figure 2: Architecture of the Neural Network for Move
Ordering

score of that move. The resulting network has 65 in-
put units and 4096 (64×64) output units. Although the
network is very large, the move scores can be computed
fast, since we have to propagate only the activation for
the pieces actually on the board, and to compute only
the scores for the legal moves. To increase the speed
further, we do not use hidden layers. This way, the
resulting move ordering requires just a little extra com-
putation during the search, namely a summation over
the pieces on the board.

A training instance consists of a board position, the le-
gal moves in the position and the move which is the
best. Of these three components, determining the legal
moves by an algorithm poses no problem. The choices
for the other two components are more difficult. In
games where large game databases are available, an at-
tractive choice is to use positions from these databases
and to consider the one played in the game as the best
move. In LOA, such databases are not available. The
alternative is to generate positions by self-play, and to
consider the one suggested by the game program as the
best move.

The neural network described above performs a linear
projection, and any training algorithm should thus be
reasonably fast. Consequently, we can use any of the
existent learning algorithms for neural networks without
influencing significantly the training.

When the neural network is used during the search the
moves are ordered according to the network’s estimation
of how likely a certain move is the best. The move order-
ing has to be placed in the context of the move orderings
already existent in the game program. The solution em-
ployed in MIA is to replace in every node of the search
tree the move ordering of the history heuristic by that of
the neural network. A slightly better solution that com-
bines the neural-network scores with history-heuristic
scores is described in [8]. The solution employed in MIA
is chosen for simplicity of implementation.



4. EXPERIMENTAL RESULTS

In this section we test the improvement in MIA caused
by the learning methods described in the previous sec-
tion. The first subsection deals with tuning the evalu-
ation function and the next subsection with the move
ordering.

Tuning The Evaluation Function

We have seen that the evaluation function E(st) of MIA
is a parameterised function consisting of seven features.
These features are already multiplied with weights to se-
cure reasonable play. All the board positions occurring
in a game are recorded and evaluated by E(st). These
raw values are converted to state values V(st) by passing
them to the hyperbolic tangent function [2]:

V (st) = tanh(βE(st)) (5)

where the constant β is chosen to ensure a not too steep
evaluation function (i.e., β = 0.0005). In each position
st the ∆wt is computed according to formula 4. ∆wt

is accumulated over 1000 games (an epoch), after which
the weights are updated (i.e., batch learning). As up-
date rule for the weights we used RPROP [11]. In for-
mula 4, λ is set to 0.8 because the evaluation function
is already somewhat reliable (cf. [2]); α is replaced by
the adaptive learning rates of RPROP.
To obtain results rather quick, the learning was per-
formed by self-play using a four-ply deep search. One
player changed its weights by TD learning, the other
used the original weights. To avoid repeatedly the same
play a small random factor was used in the evaluation
function during the search. After each game the players
switched side (to avoid overtuning). In figure 3 we plot
the development of the weights during training. We see
that the weights stabilise after approximately 60 epochs.
The initial weight of the dominating centre-of-mass (w1 )
is decreasing to one tenth of its original value, indicating
that this feature was overestimated. Interestingly, the
weight for the centralised centre-of-mass feature (w2 ) is
changing its sign, which means that opposite to expec-
tations it is good to have the centre-of-mass closer to
the edge instead of in the centre. If the centre-of-mass
is in the centre, it is possible that pieces are scattered
over the board (e.g., the initial position). If the centre
of mass is at the edge, pieces have to be in the neigh-
bourhood of each other, otherwise they would lie outside
the board. The weight of the centralisation component
(w3 ) grows the most, indicating that this feature was
underestimated.
After tuning the weights we tested the benefit of the
new weights. A player with the new weights played 200
games against a player with the old weights, switching
sides halfway. Each player had 60 seconds per move,
simulating tournament conditions. In the second row of
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Figure 3: Development of the Weights

table 1 we give the match results. We observe that the
modified version outplayed the original with a winning
ratio of 1.68 (i.e., scoring 68% more winning points than
the opponent).

Table 1: 200-Game Match Results

Score Winning ratio
New Eval. vs. Old Eval. 125.5-74.5 1.68

NMM vs. History 102-98 1.04

Optimising Move Ordering

In this subsection all experiments were performed with
the original weights of the evaluation function. In or-
der to use the NMM heuristic, we needed a training set.
We used MIA to generate 600,000 position through self-
play. During the games the program searched to a depth
of four ply with a random component in the evaluation
function. For each position the move played by the pro-
gram was stored as the best move for that position. For
training the neural network with the above generated
training set we employed the RPROP algorithm [11].
The neural network obtained was included in MIA by
replacing the history heuristic.
We compared the new move ordering, including the
NMM heuristic, with the old move ordering that in-
cluded the history heuristic. We used a set of 322 posi-
tions, which appeared in tournament play. In figure 4 we
plot the relative performance of the two heuristics as the
size of the search tree investigated using the new move
ordering divided by the size of the search tree using the
old one. We observe that the performance is decreasing
until depth 5. After depth 6 the relative performance of
NMM is improving with the depth. This pattern of the



results was also noticed in [7]. At depth 11 (which is the
regular search depth under tournament conditions) the
reduction in tree size is 22 percent. The overhead of the
NMM heuristic is 6 percent. Consequently, the effective
time reduction is 17 percent.
A player using the NMM heuristic played 200 games
under the same conditions as in the previous subsec-
tion against a player using the history heuristic. In the
third row of table 1 we give the match results. The win-
ning ratio of the NMM version was 1.04. Testing the
combination of the NMM heuristic and the improved
evaluation function will be part of future research.
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Figure 4: The Performance of the NMM Heuristic Rel-
ative to the History Heuristic

5. CONCLUSIONS

This paper investigated the benefits of learning methods
for the LOA tournament program MIA. We draw two
conclusions based on our experimental results. First,
TD learning is very beneficial for tuning the weights
of the evaluation function. We found that three of our
handcrafted components of the evaluation function were
“wrong”. By learning these were adjusted properly.
Using the new evaluation function the program outper-
formed its previous version with a winning ratio of 1.68.
Second, using the NMM heuristic the search of MIA was
sped up with an effective time reduction of 17 percent,
which led to a small improvement of play.
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ABSTRACT 
 
This paper examines reinforcement learning in game 
agent design. Multiagents are viewed as a basis for game 
scenarios involving cooperation and competition. 
Conditions for a game to be treated as an n-person 
prisoner dilemma are considered. An iterated prisoner 
dilemma example is presented using a Q-learning 
algorithm agent against a tit-for-tat agent and results 
suggest that the methodology may help to provide more 
sophisticated and less predictable game play. 
 
1 INTRODUCTION TO REINFORCEMENT 

LEARNING 
 
Reinforcement learning (RL) involves an agent that is 
able to take several actions and learns which actions are 
most preferable at each stage (Sutton & Barto 1998). 
However, in contrast to supervised learning, the agent 
does not require training by a domain expert. It explores 
different actions and receives feedback from the 
environment—the reinforcement or reward—which it can 
use to rate the success of its own actions. For game 
playing, actions are typically legal moves in the current 
state of the game, and feedback is the result of the game. 
 
An early example was MENACE (Matchbox Educable 
Noughts And Crosses Engine), which learned to play the 
game of tic-tac-toe by reinforcement. A weight was 
associated with each of the 287 different positions for the 
first player to move. In each state, all possible actions 
were assigned a weight. The next action was selected at 
random, with probabilities corresponding to the weights 
of the different choices. Depending on the outcome of the 
game, the moves played were rewarded or penalized by 
increasing or decreasing their weights. However, the 
reward was not received after each move. If it made a 
good move was not immediately clear, as a delayed 
reward was deferred to the end of the game. Positions 
were then rewarded or penalized by increasing or 
decreasing their associated weights. The main problem to 

be solved was the credit assignment problem i.e. the 
problem of distributing the reward to the actions that were 
responsible for it. In a lost game, there may be only one 
bad move that should be penalized fully, while all other 
moves might have been good moves. However, it is 
usually not known which move was the mistake. One 
approach simply gives all moves in the game equal credit. 
Another assumes that positions in later stages have more 
impact on the outcome than earlier positions. A 
disadvantage of this simple technique is that good 
positions may receive negative feedback or bad positions 
may receive positive reward. Feedback is often available 
after each individual move and this can be used this for 
training an evaluation function that predicts the number of 
points that will be made by a particular play. However, in 
this case it may be difficult to distinguish between 
supervised learning and reinforcement learning. Usually 
the reward has to be delayed because it may not be clear 
immediately after a stage, whether the points are positive 
or negative. After many steps, good positions will have 
received more positive than negative reward and vice 
versa, so that the evaluation function may eventually 
converge to a reasonable value. Convergence theorems 
for reinforcement learning have been found that confirm 
this (Sutton and Barto 1998). MENACE made continuous 
progress and after many games, the program produced 
near-expert play but it had several problems including use 
of a lookup table. For more complex games such as chess, 
this is unsatisfactory. Also training is very slow and a 
large number of steps are needed before evaluations 
converge to acceptable values. 
 
In our previous work we have examined various 
approaches for creating more believable characters that 
can be applied in computer games (Mehdi et al 2001; 
Wen et al 2001; Suliman et al 2001,2002) and the need 
for agents that can collaborate was established. This paper 
examines the suitability of RL as a complementary tool 
for designing cooperating agents in complex 
environments such as those found in strategy computer 
games. Section 2 reviews multi-agents systems.  In 
section 3 we examine cooperation and show that the 
prisoner dilemma problem is relevant to games design. 
Section 4 looks at multi-agent reinforcement learning. In 
section 5 we propose a methodology. Section 6 gives an 
example and conclusions are drawn in the final section. 
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2 MULTI-AGENT SYSTEMS 
 
Multi-agent systems (MAS) involve the concepts of 
cooperation and competition. Clearly they are not 
necessarily required when designing all complex systems 
and there are some situations when the appraoach is 
particularly appropriate and others when it is not. MAS 
may be used in cases where there are different people or 
organizations with different (possibly conflicting) goals 
and proprietary information. Take for example a 
manufacturing scenario in which company X produces 
one component, but subcontracts production of a second 
component to company Y. Neither company wishes to 
relinquish information or control to the other. A feasible 
solution is to allow both companies to create their own 
agents that represent their own goals and interests and 
then combine them into a MAS.  
 
Multiple agents could also speed up a system's operation 
by providing a method for parallel computation. For 
instance, a domain that is easily broken into several 
independent tasks that can be handled by separate agents 
could benefit from MAS. Furthermore robustness can be 
achieved by an MAS that has redundant agents. If control 
and responsibilities are sufficiently shared among 
different agents, the system can tolerate failures by one or 
more of the agents. This results in systems that can 
degrade gracefully. Another benefit of MASs is their 
scalability. They are inherently modular and hence it is 
easier to add new agents. Systems whose capabilities and 
parameters are likely to need to change over time or 
across agents can also benefit from this advantage of 
MAS. From a programmer's perspective the modularity of 
MASs can lead to simpler programming. Rather than 
tackling the whole task with a centralized agent, 
programmers can identify subtasks and assign control of 
those subtasks to different agents, which can improve 
program efficiency.  
 
Finally, MASs can be useful for their elucidation of 
intelligence . As Gerhard Weiß put it: ``Intelligence is 
deeply and inevitably coupled with interaction'' . In fact, it 
has been proposed that the best way to develop intelligent 
machines at all might be to start by creating ”social” 
machines . This is based on the socio-biological theory 
that primate intelligence first evolved because of the need 
to deal with social interactions.  Agent-based systems 
technology is thus regarded in AI research as an important 
paradigm for conceptualising, designing, and 
implementing software systems. Programmed agents act 
autonomously on behalf of their users across open and 
distributed environments, to solve complex problems. 
Increasingly, however, applications require multiple 
agents that can work together to solve problems that are 
beyond the individual capacities or knowledge of each 
problem solver. Hence a MAS distributes computational 
resources and capabilities across a network of 
interconnected agents; allows for the interconnection and 
interoperation of models problems in a more natural way 
of representing task allocation, team planning, user 

preferences, open environments, and so on; efficiently 
retrieves, filters, and globally coordinates information 
from sources that are spatially distributed; provides 
solutions in situations where expertise is spatially and 
temporally distributed; and enhances overall system 
performance in terms of computational efficiency, 
reliability, extensibility, robustness, maintainability, 
responsiveness, flexibility, and reuse.  
 
3 COOPERATION AND THE PRISONER’S 

DILEMA 
 
In life a person tries to benefit from a situation regardless 
of the outcome for the others involved and hence it seems 
almost impossible for cooperation to exist. However, 
cooperation does occur and this raises the questions: How 
does this develop in situations where each individual has 
an incentive to be selfish and not cooperate?  How much 
assistance would be offered to someone who never helps 
in return?  People will usually cooperate with others if it 
they stand to gain. But will they cooperate if they know 
that nothing will be gained? How much do people fail to 
cooperate if they they can outsmart an opponent? 
 
3.1 The prisoner’s dilemma 
 
Cooperation arises when the pursuit of self-interest by all 
agents results in a bad outcome for all. The basic concepts 
are exemplified by the famous Prisoner’s Dilemma (PD) 
game. There are two players each with two choices: 
cooperate or defect. Each must make a choice without 
knowing what the other will do, and no matter what the 
other player does; defection gives a higher payoff than 
cooperation. The dilemma lies in that if both defect, both 
do worse than if they had just cooperated.  
 
Action of A\Action of B Cooperate (C) Defect (D) 
Cooperate (C) Fairly good [+ 3] Bad [- 1] 
Defect (D) Good [+5] Mediocre [0]
 

Table 1:  Two-player prisoner dilemma 
 
Table 1 shows a 2-agent game in which one player 
chooses a row entry, either defect or cooperate. The other 
player, at the same time, chooses a column entry, either 
defecting or cooperating. This results in one of four 
possible outcomes each outcome having different scores. 
If both players cooperate, both have good outcomes. They 
get 3 points as a reward for mutual cooperation. If one 
player cooperates and the other defects, the defecting 
player gets the maximum reward, while the other gets the 
sucker’s payoff, 5 and -1 points respectively. When both 
players defect, neither scores points, the punishment for 
mutual defection. Hence to be assured of gaining points, if 
you think the other player will cooperate; it is sensible to 
cooperate and get a modest reward for mutual 
cooperation. However if you are tempted to defect, you 
may have a better outcome. The dilemma occurs when 
one player is selfish and greedy and only wants the 5 



points. This person will have the temptation to defect in 
the hope that the other cooperated. But since neither 
player knows what the other will do ahead of time, it 
makes it difficult to decide whether to defect or not. This 
becomes even more complicated in games that involve a 
sequence of decisions and computer programs have been 
developed to devise a good strategy taking into account 
the history from the previous moves. For example the 
strategy known as Tit-For-Tat (TFT) gives good results 
whereby it starts with cooperation and thereafter involves 
doing what the other player did on the previous move. 
The PD problem also involves the fact that the players 
cannot get out of their dilemma by taking turns to exploit 
one other. This means that an even chance of exploitation 
and being exploited is not as good of an outcome for a 
player as mutual cooperation. It is therefore assumed that 
the reward for mutual cooperation is greater than the 
average of the temptation and the sucker’s payoff. 
 
In a games setting, agents will meet on many occasions 
and the agent’s policy covering an unknown number of 
stages is known as the iterated prisoner dilemma (IPD) 
problem (Potkay et al, 2002). A pure IPD uses a 
deterministic whereas a mixed IPD uses a stochastic 
strategy. 
 
3. 2  The n-person prisoner’s dilemma 
 
The n-person prisoner's dilemma (NPD) is basically the 
Prisoner's Dilemma with more than two players. It 
emerged in the early 1970s and became popular among 
social theorists and economists. At this time, problems 
such as inflation, voluntary wage restraint, the energy 
crisis, and environmental pollution were pressing issues. 
Furthermore increasing international tension between the 
superpowers created a threat to the existence of the entire 
world and brought the issue of multilateral disarmament. 
These social, political, and economic tensions can be 
modelled by the NPD, indicating the remarkable range of 
real-world problems that NPDs can simulate.  
 
NPD can also be used to model the labour market: Every 
trade union's self-interest is to negotiate wages that 
exceed the rate of inflation. However, if all trade unions 
negotiate solely through self-interest, the prices of goods 
and services go up and everyone is worse off than if they 
had all exercised restraint. This results in a "social 
contract" designed to encourage collective rationality in 
wage bargaining over individual rationality. Another NPD 
is commonly encountered in situations where resources 
are scarce e.g. water or energy must be conserved. An 
individual only benefits from restraint if everyone else 
restrains as well. However, if everyone else restrains then 
it does not make much difference if you do not restrain. 
On the other-hand, if you restrain and no one else does, 
then your attempt at conservation is futile. Therefore, it 
appears to be in every individual’s self-interest not to 
conserve, even though, if everyone acts selfishly, all are 
worse off.  These example show that the NPD is a theme 
that commonly arises in strategy games scenarios. All 

multi-person prisoners’ dilemmas share a common 
underlying strategic structure and any game that satisfies 
the following criteria is an NPD by definition:  
 
• Each player has two options: cooperate or defect  
• Defecting is the dominant strategy for each player 

(i.e. each player is better off choosing to defect than to 
cooperate no matter how many other players choose to 
cooperate)  

• The dominant strategies (to defect) intersect at a 
deficient equilibrium point (if all players choose to 
defect, the outcome is worse than if each player had 
chosen non-dominant strategies (to cooperate)) 

 
 
4 MULTI-AGENT REINFORCEMENT LEARNING 
 
The issue of learning and adaptation in multi-agent 
systems has been given increasing attention in AI 
research. It is clear, given the dynamic environments in 
which teams of agents interact, that behavioural patterns 
and activities cannot simply be defined in advance. Our 
approach to multi-agent learning, unlike the top-down 
model of assuming an agent's state in advance, is similar 
to the types of learning exhibited by lower animal 
societies. Prior work in multi-agent RL can be 
decomposed into work on competitive models vs. 
cooperative models. Littman (1994) and Hu & Wellman 
(1998) among others studied the framework of Markov 
games for competitive multi-agent learning.  Cooperative 
learning can be further classified on the extent to which 
agents need to communicate with each other. Studies such 
as those by Tan (1993) require communication of states 
and actions at each step. Conversely in approaches such 
as that of Crites and Barto (1998), agents share a common 
state description and a global reinforcement signal, but do 
not model joint actions. Some studies of multi-agent 
learning such as Balch and Arkin (1998) do not model 
joint states or actions explicitly. In such behaviour-based 
systems, each agent maintains its position depending on 
the locations of others, so there is some implicit 
communication or sensing of states and actions of other 
agents. Makar et al (2001) used another approach 
involving explicit task structure to speed up cooperative 
multi-agent RL. Hierarchical methods constitute a general 
framework for scaling reinforcement to large domains by 
using the task structure to restrict the space of policies. 
Also there is a further advantage of the use of hierarchy in 
multi-agent learning: it makes it possible to learn co-
ordination skills at the level of abstract actions.  
 
Using independent agents as a benchmark, Tan (1993) 
studied cooperative agents that shared sensations, 
episodes and learned policies. He shows that additional 
sensation from another agent is beneficial if it can be used 
efficiently, sharing learned policies or episodes among 
agents speed up learning at the cost of communication, 
and for joint tasks, agents engaging in partnership can 
significantly outperform independent agents although they 
may learn slowly in the beginning. In his work, each RL 



agent can incrementally learn an efficient decision policy 
over a state space by trial-and-error, where the only input 
from an environment is a delayed scalar reward. The task 
of each agent is to maximize the long-term discounted 
reward per action. RL was extended straightforwardly to 
multiple agents by supposing they are all independent. 
Together they outperform any single agent due to superior 
resources and a better chance of receiving rewards. He 
compares the performance of n independent agents with 
that of n cooperative agents to identify their tradeoffs. 
There are three ways of agent cooperation: (i) 
communicate instantaneous information such as 
sensation, actions, or rewards (ii) communicate episodes 
that are sequences of (sensations, action, reward) triples 
experienced by agents (iii) communicate learned decision 
policies. Case studies show that if cooperation is done 
intelligently, each agent can benefit from other agents’ 
instantaneous information, episodic experience, and 
learned knowledge. 
 
Makar et al (2001) investigate the use of hierarchical RL 
to speed up the acquisition of cooperative multi-agent 
tasks. They extend the MAXQ framework to the multi-
agent case. Each agent uses the same MAXQ hierarchy to 
decompose a task into sub-tasks. Learning is 
decentralized, with each agent learning three interrelated 
skills: how to perform subtasks, which order to do them 
in, and how to coordinate with other agents. Using joint 
actions at the highest level(s) of the hierarchy learns 
coordination skills among agents. The nodes at the highest 
level(s) of the hierarchy are configured to represent the 
joint task-action space among multiple agents. In this 
approach, each agent only knows what other agents are 
doing at the level of sub-tasks, and is unaware of lower 
level (primitive) actions. This approach allows agents to 
learn coordination faster by sharing information at the 
level of sub-tasks, rather than attempting to learn 
coordination taking into account primitive joint state-
action values. They apply this algorithm to a complex 
AGV scheduling task and compare its performance and 
speed with other learning approaches. 
 
Several authors note that RL in MAS suffers from 
limitations that can make learning nearly impossible: 
combinatorial explosion -  the computational burden of 
RL algorithms grows exponentially with the number of 
states and actions; hidden global state -  agents can only 
rely on an imperfect, local and partial perception of their 
environment; and the credit assignment problem. They 
use a decentralized adapted incremental algorithm based 
on Q-learning - a classical RL algorithm for which 
convergence has been proven for stationary Markov 
Decision Processes (MDP). To converge, Q-learning 
requires knowledge of the actual state. In the modified 
version, observations for states and policies are stochastic. 
They also help agents to incrementally learn their policies. 
Learning begins with a very simple version of the task to 
be executed. Then, as learning progresses, the task is 
made harder by giving more freedom of action to the 
agents. Learning starts with a small number of agents. 

Then more agents are added, with initial policies taken 
from the original agents and then refined through 
learning. See also Abramson & Wechsler 2001; Mataric 
1994; Rosenschein & Zlotkin 1994; Stone. & Veloso. 
1999. 
 
5 DESIGN METHODOLOGY FOR RL IN GAMES 
 
The most common AI technologies for Non Player 
Characters (NPCs) specification are based on Finite State 
Machines (FSMs) (Gough et al, 2000) that are strictly if-
condition-then-action rules. In developing modern 
computer games, there is a need to consider how to apply 
more intelligent technology to allow agents to make their 
own decisions.  Here RL is investigated as a suitable 
approach. It is considered important to distinguish 
between the game agent and the game AI that is 
incorporated to make the game more believable. The ideas 
examined here are studied in a simple PD test bed. The 
system architecture comprises several parts as shown in 
Fig. 1.  For a particular game such as “Escape”, the game 
player interacts with several agents. At each iteration, data 
about the agents’ states is fed into an RL database.  The 
game engine then uses this data in conjunction with an RL 
algorithm (e.g. Q-learning) to determine future agent 
actions. 
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1. From the current state s, select an action a. This will 
cause a receipt of an immediate payoff r, and arrival at 
a next state s'.  

2. Update Q(s,a) based upon this experience as follows:  
          Change in Q(s,a) = α[r + y maxQ(s',b) - Q(s,a)] 
          where α is the learning rate  
         and 0 < y < 1  is the discount factor  
3.  Go to 1.  
 
This algorithm is guaranteed to converge to the correct 
Q-values with probability 1 if the environment is 
stationary and depends on the current state and the action 
taken (Markovian).  A lookup table or neural network 
must used to store previous Q-values, every state-action 
pair continues to be visited, and the learning rate is 
decreased appropriately over time. This exploration 
strategy does not specify which action to select at each 
step. In practice, a Boltzmann distribution strategy is 
usually chosen that will ensure sufficient exploration 
while still favouring actions with higher value estimates. 
Experiments with Q-learning agent have been carried out 
with favourable results. For example Littman (1994) 
describes experiments with Q-learning agents that try to 
learn a mixed strategy that is optimal against the worst 
possible opponent in a zero-sum 2-player game.  

 
6  EXAMPLE 
 

 
Figure 2:    3D Model of Game “Escape” 

 
Figure 2 shows a simple test scenario for a game 
“Escape” which is a direct analogy of a pure n-player IPD 
problem.  A character is tasked by the player with the 
problem of escaping from the environment within a 
limited timeframe before its energy (a function of time) is 
used up. It has the ability to search the maze, which is 
occupied by other characters that may be friend or foe and 
whose intentions are unknown. On encountering a 
potential ally, the character could choose to cooperate 
with the other character in the maze. High-level decisions 
about how to escape are made by an RL agent based on 
the plot of the game. For example the agent could decide 
whether the character should actively search the maze for 
objects that will aid in the task (e.g. map, key) or else seek 
out another character to cooperate (e.g. may share some of 

the objects already collected). It is assumed that the 
characters can communicate effectively and the only 
possible interactions between them are cooperate (C) or 
defect (D). The agent therefore has two possible actions 
on each encounter with another character, and its state is 
determined by the state of the energy. Each action is a 
play, and the reward is extra time to effect an escape. The 
reward might be zero most of the time, but then become 
positive when the character makes successful moves, or 
large and negative if the energy runs all the way down. 
Through repeated plays the available time is used wisely 
by concentrating plays on the best options. Each action 
has an expected or mean reward given that the action is 
selected, referred to as the value of that action.  
 
Consider a simple method for estimating the values of 
actions and for using the estimate to make action selection 
decisions. This is termed the action-value method. We 
denote the true (actual) value of action a as Q*(a) and the 
estimate value at the tth as Qt(a). At the tth play, action a 
has been chosen ka times prior to t, with rewards r1, r2,..  
and the Q-value is estimated to be 

 Qt(a)=
a
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In our simulations, agents A and B can choose different 
policies such as Q-learning, tit-for-tat (TFT) or Pavlov. In 
the TFT policy, the opponent starts off by cooperating and 
then repeats the Q-learners last move. In Pavlov, the 
opponent cooperates if both players chose the same action 
in the previous iteration. Otherwise, Pavlov defects. 
 

     Agent B  
    C  D 
Agent A C  R=0.3  S=0.0 
  D  T=0.5 P=0.1 

 
Table 2:  Reward matrix for each agent 

(C: cooperative, D: defect); T>R>P>S, 2R>T+S>2P 
 
Suppose for example, we choose to play a Q-learner 
against one playing a TFT strategy. The Q-learner adopts 
a learning strategy using the algorithm given in section 5. 
The conditions for setting the parameters for this type of 
problem are detailed by Sandholm & Crites (1995). A 
suitable reward matrix is assigned as in Table 2, noting 
the requirement that T>R>P>S, 2R>T+S>2P. In the 
simplest case, both players are assigned the same reward 
matrix. Q-values at the present iteration depend on the Q-
values at the last iteration and these are denoted (CC, CD, 
DC and DD). The discounted return varies according to 
the strategies chosen and the values of parameters α and 
γ. Suppose that we choose a learning rate α=0.2 and 
discount factor γ= 0.95. Figure 3 shows typical results for 
the q-values as the game progresses. It can be seen that 
the expected discounted reward values increase at each 
stage, although convergence towards the optimal Q* is 
relatively slow. 



7    CONCLUSIONS AND FURTHER WORK 
 
The issue of learning and adaptation in multi-agent 
systems has received increasing attention in AI research 
and has matured to a stage where it can be considered for 
use in games engines. It is becoming clear, given the 
dynamic environments in which we want our agent teams 
to interact, that behavioural repertoires and activities 
cannot simply be defined in advance. The spirit of RL is 
learning from experience and hence it was considered to 
be an applicable methodology. The aim of the research 
described here is to improve the communication and 
cooperation ability of agents in multi-agent system 
through RL. We believe a multi-agent architecture could 
be widely used in a range of computer games genres and 
particularly strategy games in which agents must form 
teams to progress. Our research attempts to fill the gap 
between traditional RL algorithms and games application 
software. The n-person IPD describes many 
cooperative/competitive team situations found in modern 
games. The example given - limited here to the pure 2-
person problem - shows how this could be used to 
advantage, ensuring that agents’ actions arise in 
unpredictable and believable ways, through learning by 
experience and by varying the strategies used. The 
software needed to explore this approach in greater detail 
is still under construction. Future work will expand on the 
present findings, to include play against a variety of 
opponents, to handle the stochastic case (mixed strategy), 
to devise ways of storing the previous history and 
improving convergence speed.  
 
Iterations  q(CC,C) q(CC,D) q(CD,C) q(CD,D) q(DC,C) q(DC,D) q(DD,C) q(DD,D)

0 0 0.1 0 0 0 0 0 0
1 0.079 0.14 0.019 0 0.01 0.01 0.02 0.02
2 0.1498 0.1739 0.0455 0.0019 0.1116 0.1118 0.0364 0.0396
3 0.2129 0.2204 0.0694 0.0228 0.1979 0.1907 0.1332 0.0492
4 0.3122 0.2739 0.0974 0.0562 0.2715 0.2829 0.1397 0.0847
5 0.3691 0.3346 0.1372 0.1004 0.3357 0.3529 0.1503 0.1163
6 0.4254 0.3947 0.3378 0.1474 0.4118 0.2083 0.1663 0.1416
7 0.4811 0.438 0.3511 0.1962 0.2901 0.2982 0.2172 0.1649
8 0.5363 0.4671 0.3723 0.2136 0.3388 0.3598 0.2605 0.1932
9 0.5909 0.502 0.3997 0.2392 0.4418 0.4373 0.2991 0.2241

 
 

TFT with alpha=0.2 and gamma=0.95
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Figure 3:  Typical results for Q-learner vs TFT 

α=0.2 and γ= 0.95 
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ABSTRACT 
 
Coevolutionary algorithms (CEAs) have been widely 
explored in the last years. Cooperative and competitive 
methods were proposed and evaluated, and many 
theoretical studies have been made about them and 
important results have been achieved, however few works 
have been published about a real-time approach to CEAs, 
with online agent evolution. The goal of this work is to 
explore this field of application of CEAs, proposing some 
methods and strategies for online evolution in an action 
(real-time) game. In this game, a human player interacts 
with computer-controlled agents, which begin with very 
naive or random behaviour and gradually get “smarter”, 
resulting in improved difficulty levels of gameplay. We 
present four different methods to do online evolution of the 
agents: using game specific information; merging offline-
evolved data with online evolution; using online data only; 
and using them together. We will, finally, present some 
results and a brief discussion of the advantages and 
disadvantages of each one of the methods proposed, based 
upon these results. 
 
INTRODUCTION 
 
There are a lot of published works dealing with 
coevolutionary algorithms (CEAs), which are usually 
defined by its interaction-driven fitness.  That is, an 
individual fitness is determined based upon the interaction 
with other individuals in the population. That interaction 
can be cooperative, which means that individuals are 
evolving towards a common goal, or it can be competitive, 
which means that individuals are competing among 
themselves to win some sort of resource. In brief, as noted 
in (Wiegand et al. 2002), competitive CEAs are suitable for 
problems in which external fitness functions are very 
difficult to determine but have a natural way to define 
competitive success fitness; whereas cooperative CEAs are 
more suitable for problems which can be naturally 
decomposed in subproblems that coevolve and that have 
their fitness based upon how well they work together with 
the other subspecies in the context of the whole problem. 

It has been shown that CEAs can be successfully 
applied in many areas (Angeline and Pollack, 1993; 
Wiegand et al., 2001) and even in games (Reynolds, 1994). 

The goal of this work, however, is to explore the potential 
of CEAs to create a user-driven evolution of agents. In 
other words, we want the agents to evolve and get smarter 
by the same proportion that the human gets better himself 
playing the game. 

We truly believe that the challenge of beating the 
opponent(s) gives the human player a great fun when 
playing a game. So, if we manage to create games in which 
the difficulty of beating the computer-controlled agents 
increases together with the player’s ability to beat them, we 
will be designing very challenging games to beat and thus 
very fun games to play as well. On ideal conditions, instead 
of trying to find the best all-around overall player for some 
game, we want to find the best player against a given 
opponent in a given time step.  

But the task of evolving the agents according to 
the human player’s ability to play the game is a very 
difficult one. In order to evolve online (while the game is 
being played) we must deal with: very few data (for the 
agents only use what one player does for its fitness 
calculations); very few time to evolve (the player won’t 
wait minutes or even some seconds while the CEAs are 
evolving) and with the fact that the evolution must happen 
much quicker than offline evolution (we can’t expect the 
agents to get smarter after 1000 generations and hundreds 
of thousands of individuals, because the player will be 
bored with the “easiness” of beating them much sooner 
than that). 

We propose in this work some methods and 
strategies for online coevolution of agents for an action 
game. We have chosen this kind of game because it 
requires real-time interaction, in opposition to board 
games, card games etc. which have a strictly discrete turn 
of play and does not have true urge for real-time evolution. 
 
GAME DESCRIPTION 
 
In order to implement the proposed methods we will use as 
an example a simple action game that we describe in this 
section. 
 The game scenario is a square room (480x480 
pixels) where a man (which is controlled by the human 
player) must survive against some “killer eyes” (16), which 
are little monsters that pursue the player (if one of them 
touches him, he gets killed). In order to beat those eyes, the 
man has a gun. For each eye killed, another one enters the 
room, so there are always 16 eyes alive (the eye killed is 
replaced by a new one in the room borders, not where the 
former was destroyed). The man’s gun has limited shots 



 

(he begins with 20). Every 15 seconds, a new cartridge 
with 20 shots appears somewhere in the room (the location 
is chosen randomly by the game).  The man must get it in 
order to earn the extra shots. The man has also a defensive 
maneuver: he can teleport from its local position to another 
one (chosen randomly) in the room. This resource is also 
limited, for the man can teleport only once for every 30 
seconds of play (it’s not cumulative).  Man and eyes have 
the same “speed” (i.e. they can move the same number of 
pixels). The eyes can move only in 4 directions (up, down, 
left, right), and the man can walk in any one of the 8 
directions (he can walk in diagonal). He can also shoot in 
any one of these directions. The human player has 3 lifes, 
once all lifes are lost the game is over (a life is lost when an 
eye touches the player). The final score is equal to the 
number of eyes destroyed. 
 
AGENTS OVERVIEW 
 
The agents were divided in two subgroups of 8 individuals 
each. Thus, there are two subspecies that will have to 
cooperate among themselves in order to beat the human 
player. Both subspecies have the same chromosome, so the 
big difference between them will be the way they act 
during the game. 
 Each agent has two simple “inborn” algorithms: 
chase and evade. So, given a target and one of the 
algorithms, they act chasing or evading it. The target can be 
the human player, the cartridge or a shot. In each game step 
the agent has the information about the relative distance of 
the human player, the cartridge and the closest shot. This 
distance, in pixels, is given as the Manhattan Distance 
between the centres of the agent and the target. Given xa,ya 
and xt,yt then: 
 

d = |xa–xt| + |ya–yt| (1) 
 

This information is translated into three degrees, 
according to the distance of the target to the agent. The 
degrees are: near (0 ≤ d < 150), medium (150 ≤ d < 300) 
and far (d ≥ 300).  

So, the agents “perceive” the targets’ positions 
only in three discrete degrees. As there are three targets and 
three degrees of distance for each one, we can have a total 
of 27 (33) combinations of rules in the form: if target1 is at 
distance1 and target2 is at distance2 and target3 is at 
distance3 then do something. It may look like a fuzzy 
rule, but it’s not, for we defined the degrees of distance 
“crisply”. But we could, of course, use fuzzy definitions 
and thus, fuzzy rules, but we think it’s not the most 
important thing at this stage. 

So, the genetic code of each agent contains the 
information of the action to be done for each one of those 
27 rules. If we combine the three targets and the two 
algorithms, we would have six possible actions to be 
chosen by the agents. In order to simplify, though, we 
excluded the possibility of chasing a shot or evade a 
cartridge (it would not make any sense) and to evade the 
human (the agent must not fear him). It may seem strange, 
at first thought, to think that the agent would chase a 
cartridge. Well, they may chase a cartridge to be very close 

to it and to make it very difficult to the player to get it (we 
will see more on this later). 

So, until now, there are three possible actions to 
be chosen by the agent (chase player, chase cartridge and 
evade shot). We will add one more possibility: a random 
move (i.e. the agent chooses randomly if it goes up, down, 
left or right). The agents have, therefore, four possibilities 
of action for each rule. As this can be coded in two bits, the 
genetic code of each agent if formed by 54 bits (= 27 rules 
* 2 bits for each action).  

 
DEFINITIONS 
 
First of all, we need to define the target, the “ideal” 
individual that every single agent must achieve at the 
greatest stage of evolution (i.e. the hardest to beat) or in 
some intermediate stage, as we are going to see later. 
 We also need a degree of easiness. In few words, 
the easiness is how well the human player is doing in the 
game in a given moment (i.e. how easy is the game for him, 
or how easy he manages to beat the agents). 

This can be defined in a lot of ways. One of them 
is to calculate the easiness as the number of agents killed in 
the last s seconds, where s is some constant (lesser values 
of s will mean a more instantaneous measure). Using this 
definition, the more agents are beaten in a constant interval 
of time, the easier is the game. Another definition would be 
for a given interval s (the last s seconds played), calculate 
the number of agents killed divided by the number of shots 
made. By this definition, the less shots missed for a given 
period of time, the easier will be the game. 

A modifier can be added for whichever definition 
of easiness used: lifes lost by the player. For every life lost, 
we can subtract a number from the agents killed (if the 
player died, then it can’t be too easy). Another modifier to 
be used could be the use of the teleport (of course, with 
lesser importance than the lost of a life). 

Even though we still didn’t use the easiness so far, 
it is clear that we can adjust the value, whichever the 
definition we are using, to make the game evolve faster or 
slower. It would be like adjusting its “sensitivity”. 

It is very important that, besides being reliable and 
giving trustable results, the easiness function does not 
require a lot of computation time. In few words, it must be 
simple. As we are dealing with real-time interactive games 
and we already have some overhead for the agents 
evolution, it is not desirable that we spend a lot of time 
calculating the easiness, and this is a calculation we will do 
very often. So, some times it is best to use a much simpler 
function that yields a lesser accurate result, than a very 
accurate function that requires a lot of computation. It will 
depend on the problem one is facing and what is more 
important for that case (quickness or precision). 

The easiness function can also be seen as the 
fitness function for the opponent (i.e. the human player). 
So, the most fitted the player is, the easiest is the game. Of 
course we are not going to evolve the human player, but 
this opponent’s fitness can be used so we can evaluate how 
good he is against the current agents. In brief, it is, 
somehow, the inverse of the fitness function for the whole 
population of agents. 
 



 

METHOD 1: ONLINE EVOLUTION USING GAME-
SPECIFIC INFORMATION 
 
The first method we will discuss is coevolving online using 
game specific information. For the game we have 
described, we use some simple information we gathered 
playing the game a little. 

As we are using two subspecies, we are going to 
specify two ideal individuals, one for each subspecies. 
 For the hardest stage of the game, we want one 
subspecies to chase the player and the other to chase the 
cartridge while the player is not close and to chase the 
player if he is close. This way, we will have half of the 
agents always chasing the human and the other half 
guarding the cartridge, attacking the man only if he gets 
close. 
 Coding these two individuals is not too hard. The 
first one is filled with “chase human” action (we can use 
“evade shot” for the three rules that state that shot is near). 
The second is filled with “chase cartridge” in all rules but 
the ones with “human is near”, which are filled with “chase 
human” action (here we can also “evade shot” as we stated 
before). 

Now that we have our targets, we can discuss how 
to perform evolution. We start, as usual, with a population 
filled with randomly created agents. Another option, for 
this particular case, is to start all the population with the 
“random” algorithm for every rule. This would lead, of 
course, to little diversity. We can overcome this situation, 
for instance, with mutation and/or initialising half of the 
population this way and the other half with the former way. 
Now we must decide how the individuals will evolve 
towards the target. 

 
 
First Approach – Hamming Distance 
 
The first approach we explore is to use the Hamming 
Distance (i.e. the number of different bits) between the 
individual and the target one. 
 When an agent gets killed, we calculate the 
hamming distance between him and the target for his 
subspecies. We must, also, establish some boundaries for 
the easiness of the game. If the easiness reaches some 
threshold t, we create the new individual with a 
decremented hamming distance (i.e. we choose one random 
bit that is different and flip it). If the easiness is lesser than 
t, we just replicate the individual. 

One of the questions that can arise is that 
individuals will have different hamming distances and they 
will evolve towards the target in different speeds. That is, 
the ones with lesser distances will reach the target sooner. 
While this can be a problem in some cases, it can also be 
desirable, as we would have different styles of agents 
living together. 

When replicating individuals, we can add some 
interesting genetic operations as well. For instance, we can 
calculate a bit-mutation probability, so we can have slower 
or faster learning individuals. Another possibility is to add 
some randomly created individuals for, say, every 16 

agents (in this way, even with evolving towards the ideal, 
we assure we will have some diversity). 
 This approach leads to some kind of discrete 
evolution of the individuals based upon how well the 
human is playing. For our game we would have a 
maximum of 54 stages (the number of bits of the agents’ 
genetic code) of evolution.  
 For bigger genetic codes, using just one target can 
be very chaotic before the agents get to do something really 
useful. So, we can also define intermediate targets. For 
instance, let’s say we define 4 targets for each subspecies. 
We do the same thing we would do with just one for the 
first targets of each subspecies. When an agent reaches the 
target, we just start to calculate the distance using the next 
target. This way we can have more control over the stages 
of evolution. Of course the more intermediate stages we 
add, the more information about the problem we must 
have. 
 Besides the necessity of having to design the 
target individuals, this approach also has the disadvantage 
of a somewhat chaotic evolution that, in some cases, can 
just seen to be random, until the agents get too closer of the 
targets’ chromosome. The great advantages are its 
simplicity of implementation and little computing power 
necessary to calculate the evolutions. In brief, it’s very 
simple and very fast, and so it can be very inexact and yield 
some unpredictable results. But for games with simple 
strategies, it can achieve interesting results. 
 
Second Approach – Crossing Over 
 
In order to overcome some of the disadvantages of the first 
approach, we just change the way new individuals are 
created. 
 While the easiness is below the threshold, we 
create new individuals crossing them over. This can be 
implemented keeping record of, say, the last 8 individuals 
for each subspecies and choosing randomly the parents 
from this group. We can, also, define a fitness function and 
use the roulette wheel method to choose the parents. The 
fitness would be naturally defined by how well the agent 
did against the human (competitive fitness), giving points 
for time lived and a great reward for touching (i.e. killing) 
him. This fitness should be also cooperative between the 
two subspecies, meaning that if the player is doing very 
well, all the agents are penalised, even the ones that 
manage to survive more than the others, because on overall 
the whole population is not doing well). As used in the first 
approach, we can add mutation and some fresh randomly 
created individuals as well. 
 When the easiness reaches the threshold, we 
create the new individuals crossing them with the target 
ones. This would give us an improved population. The 
number of individuals created this way can also be defined. 
Just one agent (replacing the one killed) would result in a 
slower evolution, whereas about the next ten agents (a 
whole population) would result in a much quicker 
evolution. 
 As stated in the first approach, we can also use the 
intermediate targets. Using a whole population crossing 
with the targets will probably yield better results using 
intermediate targets, as the evolution will occur faster 



 

towards each one, but not so discrete (“jumping” from one 
target to another), giving a smooth transition from each 
intermediate targets. 
 The great disadvantage of this approach is, as the 
first one, the necessity of having to design the target (and 
the intermediate targets). But unlike the former, this one 
has a potential smooth transition between the targets, and 
also has a more “genetic-like” implementation. It does not 
require much computer power, and it’s easy to implement, 
even though a little harder than the first one. An 
inconvenience can be the correct choice of the number of 
new agents created crossing them with the targets. 
However, if a good number of intermediate targets is used 
(which will depend of the nature of the game), one can 
easily use the whole population. 
 
METHOD 2: ONLINE EVOLUTION USING 
OFFLINE EVOLVED DATA 
 
The second method we present is very similar to the last 
one, at least the main idea and the implementations. The 
major difference is how the final and the intermediate 
targets are obtained. 
 Instead of using some heuristic or gameplay-based 
way of designing the targets, we use the help of offline 
evolved agents. When we have the results of the generated 
agents, we will have plenty of targets to choose from. We 
can even analyse the data we have at hand to decide how 
many intermediate targets we will need, or at least how 
many would be worth of using. 
 When evolving offline we must keep in mind that 
it is very important to define, as it was said before, a 
cooperative fitness function. As we are dividing this game 
population in two subspecies, it’s very important that they 
coevolve in a proper manner. As this paper is neither about 
the advantages of CEAs nor about a theoretical discussion 
(for our goal is to propose and implement methods for 
online use of CEAs), we recommend references (Wiegand 
et al. 2001; Wiegand et al. 2002) for further details on 
CEAs and their theoretical aspects. 
 
First Approach – Another AI Agent 
 
The first approach would be to create an AI agent to play 
the role of the human player and use it on a conventional 
offline evolution system (which can run for hours or even 
days until it reaches some desirable winning ratio). 
 The advantage of this approach is that it does not 
need a great number of collaborators. A disadvantage, of 
course, is the need of creating another AI agent. It is 
slightly different from the need of designing the targets 
directly as on the former method, after all, the goals are 
different, and in some cases the human player may just 
need to be fast and skilled. For oriented strategy-based 
games, however, this approach is not very useful. 
 
Second Approach – Human Internet Data 
 
 The other way would be to use humans to play 
against the agents. But it would be necessary a lot of them. 
It could be done the way it was done in (Funes et al. 1998), 
using internet to reach a great number of opponents, and 

taking advantage of having a great quantity of data about 
the game to evolve the agents. 
 This approach has the clearly disadvantage of 
needing a great quantity resources (servers, fast 
computers). But it also has some interesting advantages, 
because playing against a great number of human players 
can yield some pretty good results (Funes et al. 1998). And 
better of all it is the fact that it produces great number of 
agents and diversity. This can be very useful when 
choosing the targets for the evolution. 
 
METHOD 3: PURE ONLINE EVOLUTION  
 
The third method is also the most difficult one. If we can 
not design the targets based upon game-specific knowledge 
and can not evolve offline the agents, our only solution is 
to evolve everything online, using only the current game 
data.  
 First, we use a “pool” of the best-fitted individuals 
for a given subspecies. This pool can have about 16 
individuals (double of the population). As in the last 
method (second approach), we are going to cross the killed 
agents with the best fitted from the pool, using the roulette 
wheel method to select the parents. The difference is that 
now we keep, as we said, the best fitted individuals 
instead of the last individuals in the pool. The fitness can 
be calculated as stated in the last method. When an agent 
earns a higher fitness than the worst yet in the pool, then 
the worst fitted gets out and the new one enters it. When 
creating the new individuals, we can also use mutation 
and/or randomly generated individuals at some rate. 
 As it can be noted, this can result in a very slow 
evolution, which certainly is not desirable. In order to 
speed things up, one can give a high priority to agents that 
beated the player (a very high fitness, or something like 
that). Of course, this is not always good, for there can be 
reasons for the player loss other than just what that single 
agent did (it can even happen because of a player’s 
mistake).  

Games where there’s a high throughput of agents 
(i.e. agent’s replacement occurs very often) will likely have 
a good probability of evolving smoothly, as there are a 
good numbers of individuals and, thus, greater diversity. 
While it can be “painful” to work only with the current 
game data (which can be reasonable small comparing to 
offline obtained data), in real-time applications where the 
fitness landscape is too unpredictable and the probability of 
generalisation is somehow low, online evolution algorithms 
can even do better than offline ones. (Agogino et al. 2000) 
and are a very good option. 
 
METHOD 4: JOINING THEM TOGETHER 
 
The last method we present is a hybrid one. The basic idea 
is to add the third method after the first or the second. For 
instance, we can define some targets (and intermediate 
targets) and after the individuals reach this evolutionary 
level, they proceed from that moment on with online 
evolution. This method is similar to the one used in 
(Agogino et al. 2000). 
 We can see this method as having an 
“introductory” stage, where the player must beat some 



 

increasingly basic strategies we could figure out for the 
game. The second stage will be like a “master” stage, and 
from that point on the agents will be “free” to evolve 
(online) to more complex strategies and more adapted to 
the player’s game style. 
 This method can be good for situations where we 
have some natural basic strategies that work well with 
beginner or less experienced players but can’t figure out a 
“best” strategy In some cases, there can be even no best 
strategy at all, as there can be strategies that do well with 
some and badly with others. This method can also be good 
if we don’t want or don’t have enough computer power or 
resources to do a better offline evolution (take, for instance, 
the second approach of the second method). Or even if the 
best solution we found is not good enough to beat the 
human player. We can, therefore, evolve to some desirable 
level offline, use this information with the second method 
and when the player reaches this level, start to evolve 
everything online. 
 
IMPLEMENTATION 
 
In this section we present the implementation details of the 
methods proposed for the game described and the 
implementation of the game itself. 
 We left one small (but still very important) detail 
of the game to this section because it makes more sense to 
present it when talking about the implementation and also 
because it is important to all methods. It was stated earlier 
that the agents killed are replaced with possibly more 
evolved ones. That is not the whole truth. We noticed that 
when the player gets used to the way the game evolves its 
agents, he perceives that just the opponents killed get 
better. So, he starts to kill the same agent. This killed agent 
will be often replaced by evolved ones and eventually will 
reach the target and the greater stage of evolution. But all 
the others won’t! So, the game will be still easy. This can 
be easily noted when we look at the cooperative fitness 
(which will be constantly low) and the easiness of the game 
(which will be constantly high). 
 We decided, therefore, to give each agent a “time 
to live” (ttl). When this time is over, it evolves in the same 
way it would do if it was killed. Thus, the fitness of the 
population will also increase, as we put away the 
possibility of having one very good agent while the others 
are very bad ones. The implementation of the methods 
followed straightforwardly the description given for each 
one. We are going to list here the details and parameters 
values that were used. 
 The easiness function ef was calculated for every 
2 seconds of gameplay and was defined as: 
 

ef = (r + d) / 2   (2) 
 

Where r is the number of agents killed divided by 
the number of shots made (r = 1 if no shot was made, so 
we have no division by zero), and d is 1 if the player did 
not lose a life in that time span (2 seconds) and 0 otherwise 
(i.e. if he lost a life). For instance, if in the last 2 seconds 
the player killed 3 agents with 4 shots, then r = 3 / 4 = 0.75. 
If the player did not lose a life, that ef = (0.75 + 1) / 2 = 
0.875. If he did lose a life, then ef = (0.75 + 0) / 2 = 0.375. 

So, we can easily see that 0 ≤ ef ≤ 1 and that 0 
means the hardest and 1 is the easiest. This is a simple 
function and may have some imperfections, but it can be 
calculated very quickly, which is a very desirable 
advantage as we saw before, and it has also the advantage 
of being normalized. The threshold t we used was 0.6. So, 
when the easiness drops bellow this value, the new agents 
stop evolving (i.e. they evolve while t ≤ 0.6). 
 The fitness function f of the agents was defined as: 
 

f = tl + dist +  d * K (3) 
 

Where tl is the total seconds that the agent lived, 
dist is how far he got from its initial point, d has the same 
meaning as for ef and K is a constant (we used K = 30). 
This function was used for both the offline algorithms and 
for the online ones (for the parents’ selection criteria). 
 The genetic algorithms (offline e online) were 
implemented using one point crossover, roulette wheel 
selection (based on fitness proportion), fitness function f 
(defined above) and bit flip mutation (0.1% probability per 
bit). Also, 10% of new individuals were randomly created 
(to assure some diversity). The offline evolution algorithm 
used was pretty similar to the online. We just implemented 
a few simple AI algorithms to control the human player as 
to guarantee some possible diversity of strategies (more 
offensive, more defensive etc.), but we found out that this 
was not a critical issue (at least in this case). The targets 
obtained were slightly different from the ones we created 
without offline evolution, but the final results were quite 
similar. 
 
Software Implementation 
 
The game was implemented using ANSI-C. The compiler 
used was a gcc port to DOS/Windows, the DJGPP 
compiler (http://www.delorie.com/djgpp). The Allegro 
game library was also used 
(http://www.talula.demon.co.uk/allegro). A 2D game 
engine designed for our research on games and evolution 
was also used. 
 The game source code had a continuous trace of 
the main game variables (easiness, fitness, lives, agents 
killed etc.) and dumped them in a text file in constant time 
intervals (every 2 seconds) for each time the game was 
played. This text file was later used to collect the data used 
for the methods evaluation (as it will be presented in the 
next section). 
 Timers were used to handle the time dependant 
functions (like the easiness) and to control the game 
environment, like creating a new cartridge for each 15 
seconds etc, new teleport each 30 seconds etc.  
 The human player is represented by a structure 
that contains the number of lives left, points (i.e. number of 
agents killed), shots left and teleports. There are also some 
data for the position on the screen, the frames used to 
animate the character, etc. The agents are represented by a 
structure that contains their genes (coded as a string of 
bits). They also have, as the player structure, variables to 
control their position on the screen, their current state 
(alive/dead), frames used to animate them etc. 



 

The main game loop can be described with a 
pseudo-code algorithm as follows: 

 
While(player.lives > 0) 

Read input from the player 
Move the player 
For each killer eye alive 
 Move eye 
End for 
For each shot in the screen 
 Move shot 
End for 
Detect collisions 
If (time mod 2 = 0) then calculate easiness 
If (time mod 30 = 0) then player.teleport = true 
If (time mod 15 = 0) then create cartridge 
Draw everything 

End while 
 
 First, it reads the input from the use, which is done 
with the keyboard, the arrow keys are used to move the 
player, the alt key is used to shoot and the control key is 
used to teleport. Then, the new position for the killer eyes 
are calculated (more details, see bellow). 
 The new positions of the shots in the screen are 
then calculated (it is simple, for the shots follow a straight 
line until it gets out of the screen or it hits a killer eye). 
 After moving the player, the eyes and the shots, 
the program checks whenever collisions occurred and treats 
them. For instance, if an eye collide with the player, then 
the player loses a life. When it happens, the eyes and the 
player return to their initial positions, which are,. 
respectively, in the borders of the screen and in the centre. 
Other possibilities are if a shot hits an eye (both are 
destroyed and a new eye is generated), if two eyes collide 
(in this case, they both return to their previous positions) or 
if the player collides with a cartridge (in this case he earns 
20 shots and the cartridge is destroyed).  
Then the time checks are done. For each 2 seconds the 
easiness is calculated (and dumped to the text file). For 
each 30 seconds the player earns a teleport (it is a boolean 
variable because it is no cumulative). And for each 15 
seconds a new cartridge is created in a random position of 
the screen. After all this is done, everything is finally 
drawn to the screen. 
 The move for the eyes can be described by the 
following pseudo-code algorithm: 
 
Move eye 
 d1 = distance between the eye and the player 
 d2 = distance between the eye and the cartridge 
 d3 = distance between the eye and closest shot 
 r = rule(d1,d2,d3) 
 else if (r = 0) then chase cartridge 
 else if (r = 1) then chase player 
 else if (r = 2) then random move 
 else if (r = 3) then evade shot 
 if (ttl = 0) then evolve and reset ttl 
end 
 
 This function first calculates the distances used by 
the rules as described in the “Agents Overview” section 

earlier in this paper, using equation (1), and then find out 
which algorithm the agent must use to move (based on 
those distances, as it was also described before). If there is 
no cartridge nor shots in the screen, then the distances (d2 
and/or d3) are set to “infinity”, which is just a very large 
number. 

The function also checks for the ttl of the agent, 
and if it is over, then it evolves the agent (and resets the 
ttl). The ttl is not decremented in this function. As it must 
be done for each second elapsed, the ttl is actually the time 
(in seconds) when the agent was created and it is compared 
with the time elapsed since its creation. If its equal or 
greater than the ttl limit (in our case, 5 seconds) then the 
agent evolves (and the ttl is reseted not to zero, but to the 
current time). So, if the agent is created with 27 seconds of 
game play, then its ttl will be over when there is 32 seconds 
of game play (of course, if it is killed before that it will 
evolve before the ttl is over and it will be reseted anyway). 

As it was already stated, the time count is done 
with timer functions, which are handlers to system calls. 
Those functions are called every time a fixed time interval 
is elapsed. For instance, there is a function (time_handler) 
which is called every second that increments the variable 
time that stands for how much seconds were elapsed since 
the beginning of the game (this variable is used to control 
the agents’ ttl, for instance). 

The agents evolve just like it was already stated in 
the descriptions of the methods. Depending upon which 
method and algorithm  is being used, the program does the 
corresponding evolution. The evolving function is called 
when an agent is killed (and thus replaced by a new, 
evolved one) or when its ttl is over (as shown above). 

Except for the pure online evolution method, there 
are also data structures that hold gene information of the 
targets, which are used for the creation of evolved agents 
(as it was also already explained). 

Bellow we show screenshots of the game being 
played. The first one is the initial position of the game, 
with the player on the centre and the eyes on the borders of 
the screen. The second one is the middle of a game (the 
explosions are agents being killed). 

 
Figure 1: Initial Position 

 
 



 

Figure 2: Middle of the Game 

 
 
 
RESULTS 
 
 The results obtained with each method are given 
bellow (Table 1). Only the best effort by each player was 
used. It could be misleading using all results, for example, 
because during  the first games played the human usually is 
still learning the game and its controls. So, those numbers 
are not worth analysing. 
 

Table 1: Methods Results 

Method IT GP T1 T2 T3 NK AE 
1.1 0 25 75.7 101.5 124.3 144.5 0.8055
1.2 0 25 45.8 96.9 116.9 149.1 0.7905
2.1 4 25 84.1 106.8 130.3 146.5 0.8199
3 N/A 25 36.2 51.3 60.5 80.1 0.7968
4 (2.1 + 3) 4 25 79.4 102.9 126.2 143.2 0.8076

 
The method used is given as its number and the 

corresponding approach following a dot. IT is the number 
of intermediate targets used. GP stands for  “games 
played”. T1 is the average time (in seconds) before the 
player lost his first life (T2 and T3 are analogous). NK is 
the average number of agents killed. AE stands for 
“average easiness”. 

The first approach of the second method was 
implemented using crossover and not Hamming Distance. 
It could be done either way, or even both. But as it was 
shown before, when using crossover and the easiness 
function is bellow the threshold, new individuals are crated 
(crossing them with other individuals from the population) 
instead of just replicating it. Even though we do not have 
yet enough information to conclude that this is better, we 
strongly feel that it gives a smoother flow to the game. The 
second approach of the second method was not 
implemented because it requires a lot more effort in order 
to obtain the results and it would lead to another separated 
work on its own. And we feel that for the particular game 
we are using as an example it would not give us much 
better results than we got using the first approach.  

 
DISCUSSION AND FUTURE WORK 
 

As a whole, we can see that the differences between T1, T2 
and T3 show that the agents get harder to beat, because the 
time intervals which the player manages to survive 
decreases as the agents evolve. For instance, the values for 
the first method are T1 = 75.7, T2 = 101.5 and T3 = 124.3. 
It means that the player plays the game for about 75 
seconds before he loses his first life, but just about 26 
seconds before he loses his second (T2 – T1 = 101.5 – 75.7 
= 25.8) and just about 23 seconds before he loses his third 
(T3 – T2 = 124.3 – 101.5 = 22.8). The following table 
shows the time differences of T1, T2 – T1 and T3 – T2 for 
each method. 
 

Table 2: Differences Between Each Player’s Life Lost 

Method T1 T2 –T1 T3 – T2 
1.1 75.7 25.8 22.8 
1.2 45.8 51.1 32.2 
2.1 84.1 22.7 23.5 
3 36.2 15.1 9.2 
4 (2.1 + 3) 79.4 23.5 23.3 

  
Except for the method 1.2, we can see a clear 

decrease of the time the player manages to play without 
losing a life. For the method 1.2, however, the significant 
decrease only occurs for the third life, which shows that 
this method, at least for this particular game, has a 
somehow slower evolution. Method 2.1 used, as method 
1.2, crossover to generate the new individuals and it 
showed a more constant transition from the second to the 
third life lost (about 23 seconds), whereas for method 1.2 it 
was from the first to the second life lost. Those patterns are 
somewhat alike, and we tend to think that the crossover 
may be causing it and the populations to get stuck on few 
diversity for some time. Another difference between 
method 1.2 and 2.1 is that the former uses intermediate 
targets, which probably is causing the “switch” of the 
stagnation from T1 and T2-T1 to T2-T1 and T3-T2. They 
clearly require a more detailed study with other kind of 
action game (and even with this same one, but with more 
data) to conclude if this is a natural pattern showed by the 
methods or just some kind of coincidence in the players’ 
data used. Method 4 also showed this pattern, but as it is a 
hybrid implementation using method 2.1, this is quite 
logical to happen. 

As this was a simple strategy-game, the use of the 
particular method was not a critical issue. A simple 
empirical analysis, however, lead us to feel that using 
intermediate targets gave us clearly a much more smooth 
difficulty evolution of the game. Also, the best method to 
use is a game-dependent choice. As we used a very simple 
game, we could show all the methods we implemented 
working efficiently. 
 Method 1, besides its simplicity, can do very well 
in situations when we somehow know strategies of 
increasing level of difficulty. Many games have some 
“difficult level” choice (like “beginner”, “intermediate” 
and “advanced”, for instance). The first method can be 
used to provide some smooth change from one degree to 
other. 

Using method 2 with intermediate targets can be a 
very good choice for a game for which is not difficult to 



 

build some AI to evolve offline or if there is the possibility 
of using internet interaction (second approach). 

The third method is best suitable for games that 
have a lot of “freedom” when choosing strategies, or even 
for games in which different strategies do well against 
some players and bad against others. In general, when there 
is a high degree of uncertainly, using just online evolution 
can yield pretty good results, especially when compared to 
offline evolution. We can also see that this method was the 
“hardest” one: players lost their lives earlier and killed 
lesser agents. This method, indeed, evolved faster than any 
of the others. 

Method 4 was found to make little difference, 
since the individual targets were good enough to beat the 
player in this particular game. It would be more useful if 
the targets of the first stage were not  (or could be not) the 
best ones, then there would room for the agents to evolve 
even further after the targets were reached. 

The next step would be testing the proposed 
methods with different games and styles of games to see 
how well each method does with them. We will also add 
the use of fuzzy logic rules together with genetic 
algorithms for more complex game, trying to achieve better 
strategies and even smoother evolution and behavior of the 
agents. 
 
CONCLUSIONS 
 
 This work proposed some methods for online 
coevolution of agents. The real-time environment gives us 
a naturally competitive nature, where the fitness function 
can be easily defined by how well the agents do against 
their opponent. It was also shown that those agents can 
coevolve online in order to cooperate and reach a better 
strategy against the human player. We presented some 
experimental results obtained with the implementation of 
the methods proposed in a simple action game. 
 The results indicated that online evolution (and in 
particular, coevolution) is a great field to be explored, for 
online adaptation of agents can yield good results for 
applications which require real-time interaction and that are 
unpredictable at some degree. 
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ABSTRACT 
 
Classifier systems (CS) are used as control 
architectures for simulated animals or robots in order 
to decide what to do at each time. We will explain 
why these systems are good candidates for action 
selection mechanisms of Non Player Characters. 
After having described different classifier systems, 
we will introduce a new CS architecture, acting in a 
multi-agent environment, which is adapted to the 
specific constraints of the ‘Massively Multi-players 
Online Role Playing Games’ . 
 
INTRODUCTION 
 
A new Artificial Intelligence approach focuses on 
the synthesis of adaptive simulated animals or real 
robots (called animats), the inner mechanisms of 
which being as much inspired from biology and 
ethology as possible (Guillot and Meyer 2000). An 
animat has both sensors – which provide information 
about its environment or internal states - and 
effectors – which make it possible to change its 
environment. In order to be able to survive, it is 
endowed with a control architecture that connects its 
sensors to its effectors, such architecture being 
occasionally adapted to changing circumstances 
through unsupervised learning. 
Massively Multi-players Online Role Playing Games 
(MMORPG) are new games in which thousands of 
players interact with each other and with non-player 
characters (NPC) in the same continuous and 
persistent world (e.g., Everquest ©Verant 
Interactive, Asheron’s Call ©Turbine Games, or 
Dark Age of Camelot ©Mythic Entertainment). 
NPCs behaving in these games are comparable to 
animats, because these artificial creatures have to 
adapt on line to dynamically changing environments, 
to new goals assigned by game-designers, and to 
unpredictable actions from the players. 
 
The control architectures developed by the animat 
community are useful to afford adaptive behaviours 
to a NPC. In particular, one kind of model - the so-
called Classifier Systems (CS) - is especially 

convenient to design architectures able to efficiently 
select which actions the NPC should perform. A CS 
is a population of 'condition-action' rules called 
classifiers (Holland 1986). A CS can learn which 
classifier is better suited than another to achieve a 
given task. New rules can also be discovered 
through the creation of new classifiers. 
In this paper, we will introduce different categories 
of CS used in the animat approach that could prove 
to be applicable to NPC action selection in video 
games. We also propose a new architecture, based 
on hierarchical CS and specifically tailored to 
Ryzom, a MMORPG developed by Nevrax.  
 
CLASSIFIER SYSTEMS 
 
A CS contains a classifier list, i.e. a pool of 
'condition-action' rules, the classifiers (Figure 1). At 
initialization time, this list is generally hand-
designed. Three parts characterize a classifier. The 
first one, the condition part, corresponds to the 
environmental information received by the animat 
sensors, and expressed as a string defined by a 
ternary alphabet { 0,1,# : false, right, don’ t care} . 
The second part is an action command. The last part 
is a ‘ fitness’  value, a quantitative measure of the 
classifier’s past successes or failures. 
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Figure 1.  A Classifier System (see text for 
explanation) 

 



When an animat detects some environmental 
features (1), it encodes this information into a 
‘string’  of { 0,1, #}  that it deposits on the message 
board, together with other possibly internal 
messages (e.g. motivation) For example, if an 
animat is near a river and a dragon, its three sensors 
specific for water, food and predator will send the 
message { 1,0,1}  (2). This message is compared to 
the condition part of each classifier in the classifier 
list (3). A selection algorithm chooses one classifier 
among those whose condition part matches to the 
current message (4). The corresponding action 
command is either directly sent to the effectors, or 
deposited on the message board (5). In the latter 
case, the corresponding action message may be 
matched to the condition part of other classifiers, 
and the process returns to step (3). In the former 
case, the behaviour corresponding to the activated 
effectors is displayed in the environment (6).  
A CS has two adaptive mechanisms. On the one 
hand, each time an action command is executed, the 
fitness value of the corresponding classifier is 
incremented or decremented relative to the resulting 
positive or negative outcome (7). If, at step (3), 
several classifiers are selected at the same time, the 
classifier with the highest fitness value has the 
greatest probability of being activated. This 
reinforcement learning process - well-known in 
ethology - allows an animat to efficiently associate 
given classifiers to given tasks. On the other hand, 
new classifiers may be created by an evolutionary 
algorithm (e.g. a genetic algorithm, see Holland 
1975), according to so-called mutations and 
crossovers operators acting on classifiers with high 
fitness values. Other classifiers may be removed 
from the list if they are associated with low fitness 
values (8). 
 
Mac Namee and Cunningham (2001) have asserted 
that a good action selection mechanism for a video 
game must be reactive (i.e., agents behave by means 
of event-action rules), proactive (i.e., agents exhibit 
goal-directed behaviour), and autonomous (i.e. 
agents do not call upon player or game master 
intervention), as well as configurable and extensible 
by a non-programmer, like a game-designer. It turns 
out that a classifier system affords these specific 
properties. Indeed, with such control architecture, an 
animat is reactive, as some classifiers are simple S-R 
rules. An animat is proactive, as the classifiers can 
code internal needs and desires. An animat is 
autonomous, as it can empirically build, through 
learning or evolutionary process, an efficient 
classifier list. Finally, a game designer can easily 
configure, change or extend the behavioural 
repertoire of the animats, because a classifier is 
written in a classical video game formalism, i.e., “ if 
condition then action”  rules.  

A huge variety of CSs has been proposed in the 
animat literature (see Kovacs 2002, for a review). 
We will introduce here the main systems only. 
The best known CS are called ZCS (Zeroth level 
Classifier System), that has been developed by 
Wilson (1994). This CS does not have a message 
board. Sensor and motor messages are directly 
linked to the condition and action parts of the 
classifier list. Wilson also designed XCS (Wilson 
1995). Here, the fitness is split in two values, its 
strength - that evaluates the efficiency of the 
classifier - and its quality – that assesses the 
precision of the strength’s evaluation. A classifier’s 
overall fitness depends on the latter value. ZCS and 
XCS have been tested with success on animats, 
which had to survive in a dynamic environment, like 
woods with different kind of trees, foods, traps and 
predators.  
The ACS (Anticipatory Classifier System) of 
(Stolzmann et al. 2000) adds an anticipation part to 
each classifier. This part is a string describing what 
the sensors should detect in the environment after 
the activation of this classifier. The fitness of a 
classifier is based on its capacity to well anticipate 
the consequence of its action in the environment. In 
a maze, for example, an animat is able to learn that it 
will reach a dead-end after turning right at a 
particular location. 
In any given CS, the possibility of creating new 
classifiers – by hand, or with genetic algorithms - 
clearly increases the matching process time and 
entails a risk of combinatory explosion. Barry 
(1996) accordingly suggested the use of hierarchical 
CSs, in order to reduce the search space. This has 
been done by Donnart (1996) within the framework 
of animat navigation. Basically, his architecture 
relied on three interconnected CSs, a first one 
responsible for reactive behaviour, the second one 
responsible for planning behaviour, and the third one 
being in charge of building a cognitive map of the 
environment.  
The different CSs just described were used in 
markovian environments only - i.e., in environments 
where a given sensory input corresponds to a given 
environmental state. However, a MMORPG is 
definitely a non-markovian environment, especially 
when it is implemented as a Multi-Agent System. 
The corresponding worlds are indeed continuously 
changing, according to the numerous actions of the 
NPCs and players. Such changes may well not be 
detected by the primitive sensors of NPCs, nor by 
humans themselves.  
 
CS IN MULTI-AGENT ENVIRONMENTS 
 
When a CS is embedded within a Multi-Agent 
System, every CS is seen as an agent that tries to 
satisfy its own goals and shares the same 
environment with other CS agents. The agents can 



communicate, in order to improve their 
performance.  
On the one hand, some animats acquire information 
about other animats indirectly, i.e., through the 
environment. This is the case, for example, of the 
so-called ”El Farol bar problem” , in which an agent 
has to decide whether or not it will enter into the bar, 
on the basis of the frequency of consumer visits over 
the last weeks (Hercog and Fogarty 2001).  
On the other hand, other animats communicate 
explicitly, i.e., by exchanging classifiers or rewards. 
For example, in OCS (Organisational Classifier 
System), several CSs cooperate to solve a collective 
task, the design of an electronic circuit (Takadama et 
al. 2000). Each OCS represents an electronic 
component. By exchanging good rules with the 
others OCSs, the agents can collectively decide how 
they should be arranged in a spatially optimal 
circuit. In another work that simulates soccer, the 
players have to decide at each time what to do, on 
the basis of both an individual fitness value and a 
collective reward, the latter being evaluated 
relatively to the efficiency of the whole team (Sanza 
et al. 2000). 
 

 
 

Figure 2.  A snapshot of Ryzom 
 
MHiCS, A PROTOTYPE FOR AN ACTION 
SELECTION ARCHITECTURE OF NPC IN 
MMORPG 
 
All the above-mentioned CSs were not especially 
dedicated to NPCs in MMORPG. This is why we are 
developing a specific architecture, inspired from 
previous works, in order to fit the different needs 
and constraints of these new games. It will be 
applied to Ryzom, a MMORPG developed since 
2000 by ©Nevrax (Figure 2). 
Ryzom is a MMORPG elaborated with NeL (Nevrax 
Library), a free software library developed under 
General Public License. Like others MMORPG, 
Ryzom is a game playable only through Internet, in 
which players incarnate a character in a huge virtual 
world. The game is persistent and will be shared by 

thousands of players simultaneously. The player’s 
goals may be concrete - like exploring the world, 
killing monsters, searching for food - or more 
abstract - like increasing his competencies, being 
member of a community, becoming famous, etc. The 
NPCs will be merchants and craftsmen, making and 
selling artefacts, they will be people animating 
towns, wild animals living in forests and deserts, 
tribes and monsters that provide challenge to 
players, etc. They will manage multiple goals that 
may be conflicting, like sleeping, eating, hunting, 
protecting territory, finding resources and the like. 
Finally, they must be endowed with an appropriate 
action selection system, able to manage different 
goals in a massively multi-agent environment. 
 
MHiCS is a Modular and Hierarchical CS 
architecture dedicated to these NPCs (Figure 3). The 
modularity of the architecture will allow the design 
of various kinds of NPCs, in which modules could 
be assembling in different ways. These modules will 
correspond to different CSs, distributed in two 
hierarchical levels. At level I, several CSs will 
manage the motivations of the NPC. At level II, 
other CSs will refine the action commands of level I. 
Various motivations in the system may have some of 
these CSs in common. Two lower levels (III and IV) 
do not include any CS, but concern the execution of 
the final action.  

 
The Motivation level 
Each NPC owns different motivations - like self-
protection, hunger, flocking. Each motivation is 
associated with a specific CS that is not shared by 
other motivations - but different specific CSs can 
have similar action commands.  
A motivation is associated with two values, its 
Relative Power (RP) and its Motivation Value 
(MV). Through the RP values, the programmer can 
attribute a ‘personality’  to the NPCs. For instance, if 
a given individual has a hunger RP of 4, while 
another has a hunger RP of 10, the latter will have, 
during its whole life, a stronger tendency to practice 
all the actions linked to hunger than the former one. 
MV is a value between 0 and 1, giving the current 
strength of the motivation. If a NPC is eating, its 
hunger MV decreases to 0, otherwise it increases to 
1.  
Several CS belonging to motivation of level I can be 
triggered at the same time. Their activation values 
depend on their RP and MV values. Several action 
commands belonging to different CS can then be 
selected. These action commands will trigger the CS 
of level II. 
 
The Common CS level 
Each CS of level II can be activated by more than 
one motivation of level I. If a CS is selected by a  



         M V : M otivation Value MI : Motivation Intensity EI : Execution Intensity

If  x threats me and I  am stronger => A TTA CK (1)
If  x threats me and I  am as strong => A TTA CK (0.5)
If  x threats me and I  am less strong => FLEE (0.9)

Self-protection (Relative Power : 10)
M V : 0.8

If  ... => TRA CK  (0.75)
If  ... => A TTA CK (0.9)
If  ... => EA T  (1)

Hunger (RP : 4)
MV : 0.3

I f ... => ... (0.6)
I f ... => ... (0.75)
I f ... => ... (0.1)

Flocking (RP : 6)
MV : 0.65

If  I am as st rong => light hit (0.7)
If  I am less strong => strong hit (0.9)
If  I am at shooting range => shoot (0.8)
If  I am good at hand-to-hand and not at  short range => run to (1)

ATTACK
M I : 0.4 Self-protection + 0.27 Hunger

If  ... => look around (..)
If  ... =>... (..)

TRACK
MI : ...

Animation

Light hit
EI : -

State : inactive

Run to
EI : 5.08
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Figure 3. An illustration of MHiCS (see text for explanation). For the sake of clarity, the CS are only depicted by 
their classifier list, and the condition and action parts of the classifiers are not translated in strings of { 0,1,#} .

single motivation only, it inherits a Motivational 
Intensity (MI) value, which is function of both the 
MV of the motivation and the fitness value of the 
level I classifier which has triggered the CS of level 
II. If a CS (e.g. on Fig.3, Attack) is activated by 
several motivations, its MI value depends on the 
MV of all the motivations (e.g. on Fig. 3, Self-
protection 0.8 and Hunger 0.3), and on the fitness 
values of all the level I classifiers that have 
triggered this CS (on Fig. 3, bold classifiers at level 
I: 0.5 and 0.9). A classifier that is activated by 
several motivations will have more chances to be 
triggered than a classifier activated by a single 
motivation. 
 
The Action level 
All motivations diffuse their MI in the CS involved 
at level II. As a consequence, several classifiers can 
be selected at the same time, and several action 
commands can be executable at level III. Each 
action command is associated with an Execution 
Intensity (EI), depending on the fitness value of the 
corresponding classifier, the MI of the 
corresponding CS(s), and the RP of the 
corresponding motivation(s). For example (see 
Fig.3), the action command ‘Run to’ , ordered by a 
classifier with a fitness value of 1 (bold classifier at 
level II), belonging to a CS with a MI of 0.4 
(through Self-protection, RP=10) + 0.27 (through 
Hunger, RP=4), will have an EI of 
1[(0.4*10)+(0.27*4)] = 5.08. 
 
The Action Resources level 
Level IV provides resources for action execution. In 
particular, it supplies resources for behavioural 
animations (for eating, running, etc.), and for the 

management of motion speed, attraction forces 
from X, repulsion forces from Y, etc. 
The action command with the highest EI value has 
the primacy to recruit the needed resources. Other 
executable actions cannot require these already-
used resources, but have only access to free ones. 
The behaviour that will be displayed by the NPC in 
the environment will be a combination of all the 
activated resources.  
 
Evaluation and creation of CSs 
The CS fitness values are computed on line and 
depend on the executed actions. If these actions 
satisfy the motivations that have triggered them at 
level I, all the classifiers that were implied in the 
action execution, at whatever level, will have their 
fitness value increased. In the opposite case, their 
fitness value will be decreased. If there are no 
classifiers matching to a particular environmental 
context, new ones will be discovered off line by a 
genetic algorithm. 
 
The MAS environment 
Each NPC equipped with MHiCS will be 
considered as an agent in a MAS environment. It 
will be able to communicate with other NPCs, for 
example to indicate the value of its internal 
variables (MV, MI, EI), in order to influence the 
motivations or the EI of other agents. It will also be 
able to exchange efficient classifiers or modules 
with other NPCs, in order to increase its learning 
process or its intrinsic skills.  
Communication will be also possible between 
NPCs and players. On the one hand, players could 
train NPCs to achieve a given task, through the 
reinforcement of some classifiers. On the other 



hand, through the players’  actions, NPC could learn 
to detect the players’  motivations or personalities, 
and decide to cooperate or to compete with them. 
 
A preliminary test of MHiCS 
Such a complex architecture must be tested step by 
step, in order to check the operational efficiency of 
each mechanism.  
The first step – the only one already done –checked 
the diffusion of the motivations through a small 
number of CSs, in a simplified environment having 
the same characteristics as Ryzom. The 
corresponding experiments involved the simulation 
of prey, predators and ‘preydators’  – which behave 
either as predators or prey – in a closed 
environment. Each MHiCS included 2 motivations 
at level I, 4 CSs at level II, 4 actions at level III. 
Level IV was not implemented, the actions being 
simulated directly with their resources (see Robert 
2002, for the detailed results).  
In such conditions, we observed how easy it was to 
attribute a personality to NPCs thanks to RP values. 
Actually, significant differences in the duration of 
the displacements were exhibited by our three kinds 
of NPCs, characterized by different Exploration RP 
values. More importantly, we observed that the 
diffusion of the motivations entailed a correct 
chaining of actions for all NPCs. It also turned out 
that bad parameter fitting could induce unwanted 
effects, like dithering, i.e., a rapid oscillation 
between two actions. This issue - a classical one in 
action selection – could easily be solved at level IV, 
by locking by hand undesirable motions. But, for 
the design of autonomous NPCs, an adaptive 
solution has to be designed. 
Such issues are being tackled in the second series of 
check tests that are under current development. 
Additionally, learning and evolutionary processes 
are implemented in the same experimental 
conditions as above. Future extensions will concern 
several NPCs in a Multi-Agent system, with the 
implementation of interaction mechanisms between 
NPCs and real players. 
 
CONCLUSION 
 
In this paper, we argue that classifier systems are 
particularly appropriate to be used as action 
selection architectures for autonomous NPCs. They 
are written in a classical video-game formalism and 
they integer adaptive capacities that allow NPCs to 
behave without human intervention. CSs have 
provided many sophisticated cognitive abilities in 
animats, like generalisation, specialisation, latent 
learning or planning (Lanzi 1999; Gérard 2002). To 
our knowledge, only a single video game – a 
classical one – currently integrates such a model 
(Conflict Zone, ©Masa). The aspiration of MHiCS 
is to demonstrate its relevance for more promising 
kind of games, the MMORPG. 
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ABSTRACT 

Recent highly successful games have shown that there is a 
demand for the personalities, moods, and relationships of 
Non Player Characters' (NPCs) to be made the focus of 
game-play. In order for this shift of focus to take place, 
agent architectures used to create NPCs must be augmented 
with models of these aspects of a character's persona, which 
must then be used to drive characters' behaviour. This paper 
will present a system which uses an Artificial Neural 
Network (ANN) to simulate social behaviour amongst NPC 
agents using quantitive psychological models of the aspects 
of NPCs’ personas mentioned above. 

INTRODUCTION 

The success of games such as The Sims (thesims.ea.com) 
and Black & White (www.bwgame.com) have shown that 
there is a demand for the personalities, moods, and 
relationships of Non Player Characters' (NPCs) to be made 
the focus of game-play. In order for this shift of focus to 
take place, agent architectures used to create NPCs must be 
augmented with models of these aspects of a character's 
persona which must then be used to drive characters' 
behaviour. 

Psychology offers a number of quantitive models of 
personality, mood and inter-personal relationships which 
can be used to capture these important aspects of a 
character's persona. In order to use these models to drive 
character behaviour we can turn to connectionist AI 
techniques, and in particular Artificial Neural Networks 
(ANNs). This paper will describe the µ-SIC system which 
does just this. 

The purpose of the µ-SIC system is to choose which social 
interactions characters should engage in when placed within 
a virtual environment with other characters. When a 
moment within a simulation arises where a character is free 
to engage in an interaction, the µ-SIC system is queried 
with the character's personality and mood details, and their 
relationship details to each of the other characters in the 
same location who are also available for interaction. From 

these queries a particular interaction with a particular 
character is chosen. 

This paper will begin with a short overview of a larger 
project of which the µ-SIC system is a part. Following this, 
a description of the psychological models used by µ-SIC 
will be given. The actual implementation details of the 
system will be described next, along with a short 
description of a simulated situation which uses the µ-SIC 
system. Finally, a discussion of the benefits and drawbacks 
of µ-SIC will be given, along with some pointers as to how 
the system can be improved. 

PROJECT OVERVIEW 

Although games are becoming ever more engaging, there is 
a trend in current adventure and role-playing games for the 
behaviour of computer controlled NPCs to be very 
simplistic. Usually, no modelling of NPCs is performed 
until the player reaches the location at which an NPC is 
based. When the player arrives at this location, NPCs 
typically wait to be involved in some interaction, or play 
through a pre-defined script which can lead to very 
predictable, and often jarring behaviour. In order to 
overcome these limitations new models are required for 
implementing game characters. 

Although such models have not been widely used in 
computer games, a number of architectures for creating 
realistic characters have been developed. For example, 
work led by Thalmann (Caicedo & Thalmann 2000) and the 
Oz project (Mateas 1997) based on interactive drama have 
both developed virtual human architectures. As part of the 
TCD Game AI Project (Fairclough et al. 2001) the 
Proactive Persistent Agent (PPA) (Mac Namee & 
Cunnningham 2001) architecture is being developed for the 
creation of NPCs which overcome the limitations typically 
associated with computer game characters. 

Agents based on the PPA architecture are proactive in the 
sense that they can take the initiative and follow their own 
goals, irrespective of the actions of the player.  Persistence 
refers to the fact that at all times, all NPCs in a virtual 
world are modelled at least to some extent, regardless of 
their location relative to that of the player. 
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This paper will focus on the PPA architecture's social unit 
(implemented using the µ-SIC system) which is used to 
drive characters' social behaviour and maintain their 
relationships with both players and other NPCs. 

USING PSYCHOLOGY TO MODEL NPCS' 
PERSONAS 

This section will describe quantitive models taken from 
psychology which are used to model NPCs' personalities, 
moods and relationships. However, before discussing the 
models used, it is worth taking a moment to discuss the 
criteria used for selecting suitable models. 

The first selection criterion worthy of note is that the 
models chosen need not necessarily represent the current 
state of knowledge in cognitive science in all its aspects. 
Our goal is to create characters which behave plausibly at 
all times within a simulation, so models which achieve this 
are enough. 

The second important criterion for model selection is that 
the models used should be as simple as possible. In order 
for game designers to successfully use the PPA architecture 
to place characters within their games, the models involved 
must be simple enough so that the designer can understand 
how they work, and more importantly how changing a 
model's parameters might affect a character's behaviour. 

In addition to the concern for usability, any system for use 
in games must be efficient both in terms of memory usage 
and computation required. 

Personality Model 

The first important factor of an NPC's persona which needs 
to be modelled is personality, which will allow the creation 
of characters with personality types, such as aggressive, 
sociable, moody etc. From the whole myriad of 
psychological models of personality available we have 
chosen Eysenck's two dimensional classification of 
personality (Eysenck & Rachmann 1965). 

The Eysenck model plots a character's personality across 
two orthogonal axes, introversion-extroversion and 
neuroticism-stability. From (Lloyd et al. 1984), the 
extrovert is said to be sociable, impulsive and open to new 
experiences, while the introvert is quiet, serious and prefers 
solitary experiences. The neurotic is contrasted with a 
stable person by suffering from tension and interpersonal 
difficulties. An illustration of the model, which shows the 
positions of a number of the possible personality types, is 
shown in figure 1. 

It is worth noting that psychologists generally accept that 
two axes is not enough to accurately model the whole 
gamut of human personality types. Currently the most 
sophisticated models, such as the OCEAN (McCrae & 
Costa 1996) personality model, operate across five axes. 
However, the use of more axes was deemed overly complex 
for the purposes of game simulation, and the Eysenck 
model was chosen as it remains one of the most respected 
and well established personality models in psychological 
theory (Lloyd et al. 1984). 

 

Figure 1 The Eysenck Personality Model which Measures 
Personality Across the Introvert-Extrovert and Neuroticism-

Stability Axes 

Mood Model 

The second psychological model used, simulates a 
character's mood as it changes over time through 
interactions with other characters or players. Again, 
simplicity is key and a model (shown in figure 2) which 
works across two axes has been chosen. An agent's mood is 
measured according to valance and arousal, where valance 
refers to whether the mood is positive or negative, and 
arousal refers to the intensity of the mood. 

 

Figure 2 The Lang Mood Model which Plots Mood 
According to Valance and Arousal 

This model has been used in computing applications before 
(Picard 1995), and is originally due to Lang (Lang 1995). 
Over the course of Lang's work, this model was used in 
experiments wherein subjects were shown a number of 
pictures with their reactions to these pictures plotted 
according to the two axes. Some of these reactions are 
shown in figure 2. 



Relationship Model 

The third model we use (shown in figure 3) simulates 
agents' relationships with each other and players. The 
model has been used in a number of other entertainment 
projects, namely the Oz Project (Scott Neal Reilly 1996), 
TALE SPIN (Meehan 1976), and UNIVERSE (Lebowitz 
1985), and has its psychological basis in (Wish et al 1976). 
Traditionally, four values are used to characterise the 
relationship of one character to another. These are the 
amount that a particular character likes another character, 
how physically attracted one character is to another, 
whether the characters are dominant or submissive towards 
each other and how intimate the characters are. 

To facilitate conversation, we have augmented this model 
with a value indicating how interested one character is in 
another. Conversation within the µ-SIC system is based on 
a very simple model in which each character has a list of 
subjects in which they are interested. When characters 
engage in a conversation they simply pass these subjects 
back and forth. Thus, characters are interested in one 
another if they share a number of common subjects of 
interest. 

 

Figure 3 The Relationship Model Used which Plots a 
Character's Relationship to Another Character 

IMPLEMENTING THE µ-SIC SYSTEM 

In order to use the psychological models just described to 
drive social behaviour, we need a technique which can take 
the current values of these models, and determine whether 
an interaction should be started, and if so which one. An 
ANN has been chosen to perform this task. 

ANNs (Russell & Norvig 1995) are a class of machine 
learning technique which is based on the manner in which 
neurons in biological brains operate. ANNs can be used to 
perform classification tasks in which a set of inputs 
describing a particular problem case are presented to the 
network, which then outputs its class. 

The structure of the ANN used within the µ-SIC system is 
shown in figure 4. The network used is a multi-layer 
perceptron (MLP) network, with just a single hidden layer. 
The network's input layer has nodes for the personality and 
mood of the character who is attempting to instigate an 

interaction, and their relationship to the current character 
being considered for interaction. The output layer has nodes 
for each of the possible interactions which the characters 
can engage in. 

Before an ANN can be used to perform classification, it 
must be trained to recognise the different classes involved. 
Training a network involves presenting a number of known 
examples of the problem case to the network and adjusting 
the network's internals based on how well the network can 
recognise these training examples. In order to train the 
network used in the µ-SIC system the back propagation of 
error (or more succinctly BackProp) algorithm (Bishop 
1995) was used. 

 
Figure 4 The Structure of the ANN Used to Drive NPCs' 

Social Behaviour 

For training, a data set describing the problem space must 
be acquired. Data acquisition is often a difficult problem, 
and is particularly so for the µ-SIC system, as there are no 
databases available which contain information on how 
people interact. For this reason, an artificial data set was 
created. A number of simulation situations were created and 
populated  with characters whose personalities were set 
using the Eysenck model. Relationships between these 
characters were then initialised and a group of people 
determined which interactions these characters would 
engage in as their moods changed over time. 

Based on this initial data set (consisting of approximately 
100 data elements) a number of interaction exemplars (data 
items considered to be particularly fine examples of when 
an interaction would take place) were identified. These 
exemplars were used to determine the ranges of each input 
value which would cause each possible interaction. Using 
these ranges, a set of 2000 random data points covering the 
set of possible interactions was created. 

To determine the accuracy of the network a five-fold cross 
validation was performed in which the network achieved an 
accuracy of 85%, indicating that the output of the network 
was consistent and coherent. Further to this high accuracy, 
when the system produces incorrect predictions these are 
rarely significantly incorrect. For example, the system may 
produce a CHAT interaction rather than a JOKE interaction, 



but will never produce an ASSAULT interaction instead of a 
KISS interaction. 

 

Figure 5 An illustration of how the µ-SIC System is 
incorporated into a Virtual World 

Only one copy of the µ-SIC system is stored within the 
game engine, with NPCs querying this each time they are 
free to begin a new interaction. For this reason the system 
can be considered an oracle that advises NPCs on how to 
behave (see figure 5). 

 

Figure 6 A Screenshot of the Demonstration System 
Developed 

To determine the success of the µ-SIC system a simulation 
example has been constructed in which a number of 
characters have been placed within a bar environment, free 
to interact with one another. A screen-shot of this 
simulation is shown in figure 6. The simulation successfully 
demonstrates the full range of possible interactions and how 
relationships between the characters within the simulation 
evolve as the simulation progresses. 

CONCLUSIONS 

The purpose of this work is to develop a system which can 
be used within a larger agent architecture to allow NPCs 

within computer games perform social interactions with 
other NPCs or players, based on their personalities, moods 
and inter-personal relationships. The system achieves this 
by simulating these aspects of a character's persona using 
quantitive models from psychology. These models are used 
as inputs to an ANN which determines which interactions 
the character should engage in, with which other characters. 
This ANN has been trained with a data set generated from a 
small set of hand coded interactions. The µ-SIC system 
successfully performs a comprehensive range of social 
interactions based on the data set produced, and a 
simulation example has been created to demonstrate this. 

Although the system is quite successful in its present state, 
one addition to the system has been identified which could 
improve the system considerably. At present characters 
engage in simple interactions wherein one character 
performs an interaction, and the other character reacts, thus 
ending the interaction. In order to more accurately model 
the cut and thrust of conversation, an extra input node 
indicating the previous interaction which the characters 
were involved in could be added to the network. 

In this way context would be explicitly added to the 
interaction model, allowing interaction sessions to evolve 
through different interaction modes. So, for example, two 
characters might start by chatting, find they have little in 
common and so start to insult each other, and finally end 
their interaction by assaulting one another. Although this is 
possible in the current system it would be spread across a 
number of interaction sessions. The major drawback to this 
extension to the model is that an order of magnitude more 
data would be required for training. As previously 
discussed, data acquisition is difficult although the 
techniques discussed previously could be used. 
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ABSTRACT 
 
We propose a novel physics-based motion-optimisation 
algorithm called Adaptive Dynamic Points of Visibility 
(ADPV) for navigation of vehicles or moving agents in 
dynamical un-configured environments, which computes a 
collision-free, time-optimal motion track for the moving 
objects.  Our approach is able to deal with the obstacle-
space unknown or partly unknown to the moving agent. It 
therefore solves the drawbacks of traditional obstacle-space 
configuration methods. A physical model of moving agents 
such as a vehicle or an aircraft is also developed, which is 
addressing the manoeuvring capabilities of the moving 
agents, while the moving agents' accelerations and 
velocities are always continuous and bounded. The 
generated motion path is constituted smoothly and has 
continuous curvature on the whole state space of the 
motion thus satisfying the major requirements for the 
implementation of such strategies on physically-real game 
or VR systems.  
 
INTRODUCTION 
 
Path finding and motion control has received considerable 
attention in recent years, the basic problem of which is 
about performing navigations: moving from one place to 
another by co-ordination of planning, sensing and control. 
Navigation may be decomposed into three sub-tasks: 
mapping and modelling the environment; path planning 
and selection; and path following and collision avoidance 
[1]. Path-finding is properly the most popular and 
frustrating—game AI problem in computer game industries 
[2] [3]. Early works were concentrated on offline planners; 
the planner uses the map of the environment to produce a 
path. These algorithms have the common ground in which 
the system has full information about the environments [4] 
[5].  
 
Conventional approaches for virtual moving agents in 
computer game applications or VR environments are to 
solve path-planning problems. Path planning for 
autonomous moving agents for example, a vehicle, is 
typically stated as getting from one place to another. The 
vehicle must successfully navigate around obstacles, reach 
its goal and do so efficiently. A number of approaches to 
the problem of path-finding have been reported. Most of 
the successful approaches lead to some sort of graph search 

problem [6]. An approach called line intersection was 
proposed when the data consist of only geometrical objects. 
The objects here cannot be passed through and all the space 
not occupied by an object were considered unobstructed 
with no variation in vehicle speed or other parameters. The 
idea was to construct the convex hull of all objects using 
vertices and connect all vertices with edges. These edges 
are then been filtered for finding the shortest valid path 
between source and destination along a series of edges 
using standard graph algorithms. These methods suffer 
from the problem of rapidly increase in computational time 
and memory for large and complex maps [7] [8]. Another 
popular approach is called weighted graph [9], which 
divides search space into a number of discrete regions, 
called cells, and restrict movement from a particular space 
cell to its neighbour. Neighbouring cells are those that can 
be directly reached from a particular cell. A weight 
function is defined by a cost to the connection between 
neighbour cells [9] [10]. A* is the most popular algorithm 
of this kind, which uses the weighted graph idea. Recently 
an approach called path planning algorithm D* [11] [12] 
has been reported, which resembled the A* algorithm for 
applications in partially known environments, and only 
achieved limited success [12].  
 
Inspired by the research achievements above, we propose a 
new approach for motion modelling for autonomous 
moving agents such as a vehicle or aircraft in virtual 
environments. Our method is based on path-finding A* 
algorithm. We modify the conventional method by 
developing a dynamical point detection and creation 
system, which allows the system to update its optimised 
node system based on the viewed vision field rather than 
the pre-configured environments.  Our method is capable 
of dealing with dynamic unknown environments and is 
very efficient in terms of computational cost.  The aim is 
not only to move from one place to a targeted place but 
also how to move to the targeted place. 
 
CONTROL ARCHITECTURE OF OUR APPROACH 
 
The task is the motion control for self-controlled moving 
agents to move through a field of obstacles to a goal. There 
are two subtasks: to find and predict an optimised path 
through the field of obstacles in terms of obstacles or path 
nodes; to control the motion parameters of movable agents, 
such as a vehicle, to let it move following such the track 
path predicted. We use the information from the virtual 
vision sensor to identify the key obstacle points and edges, 
then create and add the obstacle nodes and path nodes to 
the vision system. One of the advantages of our approach is  
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Figure 1: The architecture of the motion control system 

 
that the generated desired or predicted track path is 
dynamic but it is not necessarily the ones the movable 
agent must pass exactly at a given time and the actual 
motion track is therefore smoother in terms of curvature. 
The position errors between exact desired path nodes and 
the actual motion track are then used to modify the motion 
parameters. Another advantage over other methods is that 
our approach is quite robust with respect to measure errors 
and external disturbances. If both errors and the 
disturbances are within certain bounds, the algorithm can 
still work properly. The architecture of the system is shown 
in Figure 1. 
 
There are a number of key issues related to the 
development of our control system; we will discuss them 
respectively in the following sections. 
 
ENVIRONMENTAL CONFIGURATION 
 
The first issue is concerned with map representation. 
Approaches for environment representation to path 
planning for moving agents can be broadly classified into 
two categories: using exact representations of the world 
and using a discrete representation. The computational 
complexity is a function of the number of obstacles and the 
number of obstacle facets, which we can not normally 
control. In contrast discrete representation is that adjusting 
the cell size can control the computational complexity. 
There are several ways of partitioning the state space. They 
all have merits and disadvantages, such as using regular 
grid, quadtree and etc. [12] [13]. The method of using 
points of visibility was reported however it was concerned 
mainly with obstacle avoidance [13]. Methods that use 
uniform grid representations must allocate large amounts of 
memory for regions that may never be traversed or contain 
any obstacles and the resulting path can be suboptimal. 
Another problem of regular grid is the resulting path, which 
only has several directions. (8 directions in 2D and 26 
directions in 3D)  Quadtree and framed quadtree can 
remedy these problems, quadtree allow efficient 
partitioning of the environment since single cells can be 
used to encode large empty regions. Framed quadtree add 
cells of the highest resolution around the perimeter of each 
quadtree region. But either quadtree or points of visibility 

are static configuration methods. They can hardly work 
under real-time unknown environments.  
 
In order to overcome the problems confronted, our 
approach uses a new method called Dynamic Points of 
Visibility (DPV), which allocates the points of visibility 
dynamically. It is a dynamic configuration method, which 
does not only choose the key visible points beyond vertex 
of obstacles (because such strategy has the tendency to 
make the moving agent move closer to the obstacle and 
lose optimal when obstacles are only sparsely distributed). 
In each step during detection, we uniformly decentralise 
the view angle and build state node corresponded. 
 
VISION FIELD AND OBSTACLE DETECTION 
 
The Visual sensor System 
 
In our system the "visual sensor" captures the information 
about the environment. In fact, it is a simple method to 
compute which parts of objects could be seen from the 
location of the AGA (autonomous guided agent), not really 
calculate the distance from the sequence of images. As 
imaging system of a camera and human eye performs 
perspective projection, all points along a line pointing from 
the optical centre towards the location of AGA are 
projected to a single point. Use the co-ordinates of the 
point, which is nearest to the AGA to denote the projected 
point. We assume all the obstacles are not transparent, so 
mutual occlusion of objects and self-occlusion play a key 
role. We also define the maximum detection distance and 
view angle. All the obstacles out of the maximum detection 
distance or view angle would be supposed to be invisible. 
If in one direction there is no obstacle within the maximum 
detection distance, we can use the point at the end of the 
detection distance as the flag in this direction. Below we 
will give some simple examples. 
 
Figure 2 illustrates the mutual occlusion and self-occlusion. 
As shown in the figure above. As shown in the figure, from 
the current viewpoint, we could see obstacle A and part of 
obstacle B. 
 
 

 



THE DYNAMICS OF MOVING OBJECTS AND THE 
MOTION CONTROL STRATEGY 

        
 
 
             
 
 
 
 
 
 

 
 
 
 

 
Capturing all the motions of a movable object into 
analytical equations can be quite difficult, although using 
more elements in the model may increase the model’s 
accuracy. In our work, we use a simple lumped moving 
object as an example for illustrating the method as shown 
in figure 3.  

View field     B 

 

       A 

 
The moving agent model developed has six degrees of 
freedom. The dynamics of the model can be represented as 
a set of motion parameters in terms of mass, accelerations 
and steering angles as well as external force conditions, 
such as air resistance or ground frictions. The dynamics of 
a moving autonomous agent must follow the basic law of 
motion, which may be represented as a set of general 
ordinary deferential equations in the form: 

Viewpoint  
 
 

Figure 2: An example of vision field  
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Adaptive dynamic points of visibility is implemented to 
partite the obstacle-space and choose A* algorithm to 
complete the optimal search. At any location of the 
environment, we could find the points of visibility that are 
concerned with the co-ordinate of the vehicle. The 
information perceived is analysed and resultant key points 
are recorded and used to construct memorised path nodes. 
Use the angle to partition the obstacle-space, keeping a safe 
distance from the point of intersection if in some direction 
there are obstacles. The cost function is formed to consider 
three factors: the distance from the current location to the 
state node, the heuristic distance of the state node and the 
distance between current location and obstacles. Use 
penalty to make the state node with no obstacles gain 
higher priority. Then choose the lowest cost state as the 
local goal; keep iterating until reach the destination. 

 
where, X ∈ ℜ which is the state space of the moving agents, 
and δ  is the motion control input. We can recast the 
equation for our motion optimisation problem in the form 
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where, X̂& , â  and θ̂  are approximate values of motion 
velocity, acceleration and moving direction (i.e. a steering 
angle) respectively, and the motion control δ  is a function 
of acceleration a and moving direction θ. A desired or 
predicted motion state of the moving object is pre-
estimated at a time by a set of approximate functions 
according to the state of moving object and the 
environment conditions related to the surrounding 
obstacle–space, and the actual motion track is then 
computed. The difference between the predicted motion 
and the actual motion will be used for estimating the 
control input to the motion system above.  

 
ADPV is a dynamic configuration method; it could satisfy 
the request of working under unknown environments. The 
advantages of this map representation method are: firstly 
this representation permits as many angles of direction as 
required, instead of just eight angles as in the case of 
regular grids. The second advantage of this representation 
is that it is dynamic and independent on the size of the 
obstacles. We do not need to think about the size of 
obstacles. For example, if there is a big difference between 
obstacles, we can choose big cell to partition the obstacle 
space.  The generated path will stay far away from optimal 
paths, if we choose the small cell to partition the obstacle 
space, the memory needed will be high and the safety 
distance from obstacles will be small. Another advantage is 
that we also have the information about the distance 
between current location and obstacles in each direction. 
Not like uniform grid, the preview distance is a fixed 
constant. This is useful in motion control. In other words, 
the paths generated and the motion character approximates 
more closely optimal one. 
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Figure 3: Motion dynamics 
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SIMULATION RESULTS 
 

 
 

 
 

 
Figure 4: A simulation of aircraft navigation 

 
 
We have implemented the algorithm in a 3D virtual 
environment and completed a number of simulation tests. 
Figure 4 is a simulation of a low flying aircraft, which 
conducts a collision-free navigation in a virtual obstacle-
space. 
 

 
 

Figure 5.1: Path generated using uniform grid map 
representation (A* algorithm 

 

 
 

Figure 5.2: Path generated by the new method, using small 
velocity value while steering 

 

 
 

Figure 5.3: Path generated by the new method, using large 
velocity value while steering 

 



 
Figures 5.1, 2 and 3 show the 2-D simulation results using 
uniform grid map representation (the A* Algorithm, using 
the new method and small velocity values while steering 
and using large velocity values whilst steering 
respectively).  It clearly demonstrates the power of the new 
method using DPV based algorithm. 
 
CONCLUSION  
 
A physics-based motion modelling algorithm for automatic 
control of the motions of vehicles or moving agents in a 
dynamical unconfigured environments is proposed, which 
provides a collision-free, time-optimal motion tracks for 
the moving objects in real time. The simulation result is 
promising. Adaptive Dynamic Points of Visibility (ADPV) 
is implemented for representing the obstacle-space, which 
provides more motion options for moving agents, such as 
vehicles or air crafts, and is independent on the size and 
co-ordinates of the obstacles. Together with the physics-
based agent motion model, the motion track generated has 
continuous second derivation, guaranteed the steer angle 
and yaw rate is continuously changed and thus satisfying 
the major requirements for the implementation of such 
strategies on physically-real game or VR systems.  The 
next step for our research is to refine the algorithm and to 
implement it in applications of complex games or VR 
environments. 
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ABSTRACT 

In semi-concurrent games, each player simultaneously 
moves a set of agents, the object of the game being to tacti-
cally coordinate these movements to maximise the winning 
chances. In this paper, we present such a game, discuss the 
problem it poses and report the use of our MARECHAL 
framework to model the tactical expertise, which deals with 
fighting moves. The results show that our AI opponent can 
globally play at an experienced human player level.   

INTRODUCTION 

Semi-concurrent games are an interesting research field that 
has received less attention than alternated games. In semi-
concurrent games, each player can program several actions 
at the same time. For example, he can move each agent he 
owns instead of moving one piece at a time like in chess. At 
a tactical level, the problem is then to coordinate the agents’ 
moves by planning a coherent solution in order to maximise 
caught enemy pieces and minimize the chances of his own 
pieces being caught. While movement coordination prob-
lems in RTS games are more concerned with collisions and 
formation movements (Pottinger 1999), we put emphasis on 
deep tactical combinations, when losing a single agent can 
lead to immediate defeat. Turn-based semi-concurrent sys-
tems are often used in board games or military simulations 
because they are more realistic. But they are not frequent in 
computer games, probably because of the difficulty to de-
sign an AI opponent. Theses systems pose an interesting 
challenge to AI researchers, because they cannot be tackled 
by classical search methods. 

In this paper, we will be dealing with building an AI oppo-
nent for the “StrateGE” game. Following a description of 
this game, the second section of this paper will discuss the 
problem and explain why it cannot be tackled by classical 
methods. To build an AI opponent, we have used our 
MARECHAL framework, which is described in section 3. 
This system contains original features, which have been 
essential for this application. In section 4, we describe the 
knowledge we have given to the system concerning the 
tactical part of this game and in section 5 we report the 
results we have achieved.  

THE PROBLEM 

“StrateGE” is a two player game of strategy where the 
objective is to plan paths for a set of pieces on a discrete 
board in order to catch enemy pieces and control some 
predefined locations (cf. Fig 1 for a screenshot). StrateGE 
(with the AI opponent) is distributed as a freeware and the 
beta-version can be downloaded at www-
poleia.lip6.fr/~pannerec/stratege/ (the game can be played 
with all Windows systems). In this section, we will first 
summarize the rules of the game and then briefly discuss 
the difficulties of the problem and present our approach.   

Fig 1: Screenshot of the Game with a Solution

Game Rules 

The game is played on a 3D board where each
one of the three following types: normal, bonus
den, with some squares being marked as obje
piece is defined by a colour (black or white, d
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The game is played during a fixed number of turns. Each 
turn unfolds as follows: the black player programs paths for 
all his pieces and then activates the automatic resolution of 
the moves (the computer simultaneously moves the pieces 
according to the programmed paths and applies catch rules 
when it is required). The white player then plays in the 
same way. When the game ends, the winner is the player 
that controls (by owning the closest piece) the maximum 
number of objectives. The initial and final conditions are 
not predefined: the size of the board, the number of in-
volved pieces, the type of each piece, the type of each 
square and the locations to control can be defined for each 
new game and initial positions of pieces are usually set 
randomly. 

Depending on their type, the pieces can move two or four 
squares in any of the eight directions. Only square pieces 
can enter bonus squares and no piece can move in a forbid-
den square. When two enemy pieces become adjacent, they 
stop and cannot move until one of them is destroyed.  

When the player has finished his moves, the program stud-
ies the possibilities of capture. When a triangle or round 
piece is adjacent to an enemy square situated in a bonus 
square it is automatically caught. Except in this case, a 
piece is caught if it is adjacent to an enemy piece with (at 
least) a rank higher than two levels. For the capture process, 
we consider virtual ranks with the following conditions 
modifying the basic ranks:  

Non moving triangle:  +1 
Moving round:  +1 
Square on bonus:  +1 
For each ground level:  +1 
For each adjacent enemy piece: -1 ( mass principle) 

Difficulties 

The game we have just described is an interesting applica-
tion for research in methods allowing to deal with semi- 
concurrent games. This is a two-player game that falls in 
the deterministic and zero-sum games categories and is a 
kind of link between classical games like chess and military 
simulation games. But, in some aspects, this combination 
leads to a more difficult problem.  

Compared to simulation games, there is no random factor 
and results are binary. This means that the depth of the 
game is reinforced and that most precise anticipations and 
optimisations are necessary. In particular, the exact amount 
of force needed to catch a piece has to be precisely antici-
pated because under- and over-affectations result in penal-
ties. Thus in the tactical part of the game, players face a 
complex discrete optimisation problem. In the strategic 
part, they have to foresee the long term control of the objec-
tives.   

Due to these particularities, the problem cannot be tackled 
by existing methods for classical games or simulation 
games. The branching factor (from 950 to 9250) prevents the 
use of classical game tree search (Allis 1994) and classical 
AI approaches for video game (such RTS games) do not 
address this problem (Woodcock 2000; Nareyek 2001).  

The problem is theoretically the generation of a distributed 
plan (Durfee 2001). However, it contains an abstract level: 
we can first search a target location for each piece and then 
compute a path toward this location. The pathfinding phase 
can easily be tackled by an A* algorithm (some conflicts in 
the set of paths have to be managed but it can be done by a 
basic backtrack process). As the core problem is then to 
define target locations, it belongs to the class of non-
constrained affectation problems. Classical metaheuristic 
approaches for optimisation problems (Yagiura and Ibaraki 
2000), like Genetic Algorithms, Tabu search or simulated 
annealing are usually applied to this kind of problem, but 
they do not fit well with problems where the evaluation 
function is time-consuming and they cannot take into ac-
count complex expertises when they are available to limit 
the exploration.  

A decentralized problem solving approach could also be 
used in our case (Durfee 2001) and has been initially ap-
plied with poor success: it was impossible to convert the 
expert centralised expertise to a decentralised expertise and 
no efficient coordination emerged.  

Specific work on tactical movement coordination in TBS 
(turn-based systems) includes B. Stilman’s Linguistic Ge-
ometry (Stilman 2000), which uses negation trajectories, 
but this concept does not apply in our game. Few other 
academic research has been carried out on semi-concurrent 
TBS. 

OUR APPROACH: THE MARECHAL SYSTEM 

The MARECHAL system is a generic framework that al-
lows one to integrate complex domain-specific knowledge 
with automatic search processes for combinatorial optimi-
sation problems. Excluding the “StrateGE” game, it is cur-
rently applied to several industrial problems like time-
tabling or automatic component placement in printed circuit 
board layout.  

The first principle of the system is to extensively use spe-
cific knowledge, which is declaratively defined in a particu-
lar language. Thus, one can give problem decomposition 
knowledge, solving plans, rules bases and heuristics. With 
this knowledge, the system is able to estimate choice possi-
bilities, to work at abstract levels and to quickly produce 
good solutions. An example of a solving plan (to issue 
operational order, cf. section 4) is given in Fig 2 and Fig 3 
contains a simplified rule (to evaluate counter-attack possi-
bilities).  

// Operational assignment of pieces for  
// attack intention of target ($x $y) 
#sub-problem IntentionAtk($x $y $o) 
Method: 
( // init : $v <- amount of force to send 
 INST_MATCH[ForceAmount(Intention( 
  attack(point($x $y))) val($v))] 
 LET[$n current_session] 
 LET[$m current_sp] 
 
   // Assignment 
 WHILE BEST_FACT[PossOpOrder(piece($g) 
  attack(point($x $y)))) 



  option(loc_res($g))] 
 DO 
 ( ADD_FACT[OpOrder(piece($g)  
    attack(point($x $y)))] 
       IF ($o != 0) THEN 
      ADD_FACT[meta_info( 
    r_seg($m)  
    r_seg($n)  
    choice(Assign(piece($g)  
     Objectiv($o))))] 
    RM_FACT[PossOpOrder(piece($g) ?0))] 
 
    LET[$v ($v-((Quality($g)-1)/2))] 
       IF ($v < 1) THEN 
   RM_FACT[PossOpOrder(piece(?0)  
    attack(point($x $y))))] 
 ) 
). 
#end 

Fig 2: Example of solving plan 

//---------------------------------------
// Base-49: Compute attack interest for  
//    a counter-offensiv 
//--------------------------------------- 
#rules-base BaseOffens($h $s $a) 
 
(FOR_ALL[Engaged(piece($u))] 
 (Side($u) == (3 - $s)) 
 (Ratio(sit($h) piece($u)) < Threshold) 
 LET[$x PosXi(sit($h) piece($u))] 
 LET[$y PosYi(sit($h) piece($u))] 
 (OnFrontLine($x $y $h) > 0) 
 LET[$b NbNCAdj($x $y $h (3 - $s))] 
 ($b > 0) 
 LET[$d Degree($h $x $y $s)] 
 LET[$f Force(piece($u))] 
 LET[$r ((MaxAtkFactor($s) - $f)  
  + (2 * ($b - $d)))]  
 ($r > 3) 
 HIGH_R[$r 2 10 decrease 100] 
)GOOD (100) TO_DO  
 ADD[study(point($x $y))]. 
#end 

Fig 3: Example of rule 

But the system is not the slave of this knowledge, which 
can never be perfect. The sub-problems are given with 
goals and criterions and an iterative search process is real-
ized for each sub-problem, because the first produced solu-
tions are often not the best ones. Specific (meta-) knowl-
edge can then be given to control and limit the need for 
search (Pannérec 2002b), but the system can also use do-
main-independent mechanisms.  

The system is based on a meta-level architecture consisting 
of two parts. The first part is responsible for constructing 
solutions by using the normal knowledge (Pannérec 2002a). 
The second part observes the first part (Pitrat 1991), allo-
cates time resources for each sub-problem and sends orders 
to cancel choices and regenerate the solutions to explore 
new areas. By means of constraints it thus directs the first 
part towards good solutions. In particular, domain-
dependant heuristics can be given to this level to select and 
evaluate improvement possibilities for a current (partial) 

solution (Pannérec 2001). These heuristics can be based on 
an analysis of the current solution and the reasoning that 
has produced the solution. Thus, the system reasons at a 
meta level on its own reasoning to control it in the best 
way. 

THE TACTICAL EXPERTISE 

To build an AI opponent for the “StrateGE” game, we have 
designed decomposition, construction, evaluation and im-
provement knowledge for the MARECHAL system. These 
expertises are large: about 30 solving plans, 285 rules be-
longing to 80 bases and more than 300 concepts, which 
totalises 7000 lines of declarative knowledge and 11000 
lines of C++ for the perception/interface functions. These 
expertises are also complex: some plans have 100 instruc-
tions and some rules have 50 premises. With sometimes 
recursive plans and an improvement mechanism, which 
continually leads to choice cancelling and partial new exe-
cutions, the emergent reasoning is very complex. For these 
reasons, it is outside the scope of this paper to describe 
precisely the given knowledge and the resulting solving 
process.  We will just give a brief and informal overview of 
the tactical expertise, which deals mainly with fighting 
moves.   

As for many mind games, the destruction of the enemy 
forces is the first mean to win the game and mastering the 
capture aspect is thus the first required capability to play 
the “StrateGE” game. So, the system puts an emphasis on 
close, friendly and enemy pieces and study friendly/enemy 
possibilities of capture, pieces protections etc. For this 
tactical expertise, the horizon of anticipation does not run 
over two half-turns and the goal is simply to maximize the 
difference between enemy and friendly numbers of caught 
pieces. To achieve this, the system uses three sub-problems 
as shown in Fig 4.  
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phase by using attack moves. The “Defences” sub-problem 
tries to minimise friendly caught pieces after the friendly 
movement phase by adding moves to defend threatened 
pieces. The “Counter-offensives” sub-problem does the 
same thing but after the enemy movement phase. That is, it 
anticipates enemy moves against weak friendly pieces and 
tries to prevent them.  

Each of these three sub-problems function roughly on the 
same basis: the system evaluates pieces to attack/defend 
(abstract level choice) and eliminates a priori impossible 
catches (too strong pieces or unfavourable local environ-
ment). It then calls another sub-problem for each selected 
piece. For example, the “Catching a piece” sub-problem 
searches for a set of paths which allows to catch the given 
piece and to optimise some secondary objectives such as 
fixing the maximum number of enemy pieces and minimiz-
ing the involved friendly pieces. 

Although our system is mainly knowledge-based, it con-
tains a powerful search mechanism, which prevents imper-
fections in the knowledge. We can actually never give a 
perfect knowledge so that the system will always reach the 
optimal solution. Thus, for each sub-problem, the system 
studies the generated solutions and runs iterative improve-
ment cycles. For example, in Fig 5, the first constructed 
solution does not allow to catch the white piece because B8 
cannot intervene (we use the notation Bx to designate the 
black piece #x and Wx for the white piece #x). The system 
understands this during the evaluation of the solution and 
after one improvement cycle, the good solution is found.   

       

Fig 5: Example of Improvement Results for the Sub-
Problem « Catching a Piece » 

At a higher level, for the “Offensives” sub-problem, the 
system tries different attacking methods to allow captures 
that were impossible before. An example is given in Fig 6, 
where the use of B8 instead of B2 against W31 allows 
catching W33 after the first improvement cycle. For the 
“Counter-offensives” sub-problem, taking into account of 
the incoming opponent’s moves greatly complicates reason-
ing.  

 

     

Fig 6: Example of Improvement Result for the Sub-
Problem « Offensives » 

In addition to local sub-problem improvements, the system 
manages the dependencies between the sub-problems. For 
example, at the “Fights” sub-problem level, the system tries 
to optimise the global result of all sub-problems. It can, for 
example, cancel the capture of one enemy piece to prevent 
the resulting capture of two friendly pieces. It can also 
change moves to minimize enemy pressure on friendly 
pieces as in the situation seen in Fig 7: sending B7 to “A” 
instead of “B” maintains the capture of W42 and prevent 
the white counter-attack. 

Fig 7: Example of Impro
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generations out of a population of 70 individuals. GA-10 
had ten minutes, which allowed 100 generations out of a 
population of 200 individuals. Several different coding 
methods have been tested and we report only the best re-
sults obtained with GA. We then compared the system with 
several human players : BH (a beginner human player), EH 
(experienced human player) and XH (expert human player). 
We have also run tests between the complete system 
(MRC) and without the improvement process (MRC-NI). 
Tests have been run on ten turns games with a set of 25 
pieces of all types for each side and six different boards 
(with different size, terrain and objectives positions).  

For each game, we considered the score in terms of con-
trolled objectives and compute averaging scores on all 
games. The results have been summed up in Fig 8 by using 
“MRC” as a reference. These results should be read as 
follows: when MRC plays versus GA-1, it will control in 
average four times more objectives than GA-1 at the end of 
a game. 
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Fig 8: Global Playing-level Comparison 

 
The results show that our system plays nearly at an experi-
enced human player level, which is a good result if we 
consider the difficulty of the problem, the numerous miss-
ing concepts in its knowledge base and the rapidity of its 
play. When an expert human player needs at least two min-
utes (5 for an experienced human and sometimes 10 for a 
beginner), the MARECHAL system plays on average in 2.3 
seconds on a Duron 700Mz (1.4 seconds without the im-
provement process). For the moment, the system is clearly 
below an expert human player, mainly because of its con-
struction expertise, which is very incomplete (no use of the 
immobilisation concept…), and because of its strategic 
anticipation function, which is also very imperfect. 

CONCLUSION 

In this paper, we have described a semi-concurrent game 
and the underlying difficulties posed by such a problem to 
design an AI opponent. We have then reported how the 
MARECHAL framework has been applied to this game and 
how the required domain-dependent knowledge has been 
defined to coordinate tactical fighting moves. Experimenta-
tions have showed that the system plays at an interesting 
level, although it is for the moment below an expert human 
player. Its level is still lacking in knowledge. Our approach 

could easily be adapted to deal with move planning and 
coordination in simulations such as military training tools 
or simulation games that involves numerous agents moving 
or acting simultaneously. 
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Abstract 
 
In this paper we present experiments with 
search-based planning as the most generic 
description of intelligent behaviour for virtual 
actors.  Using a MinMin heuristic search-based 
planner (HSP), we demonstrate how this can 
be used to generate efficient plans (in terms of 
plan length), and how the production of these 
minimum length plans is performed in times 
suitable for the real-time 3D virtual 
environments.  Using an extension to the 
classical 'dinner-date' problem, we illustrate 
the planning and action execution undertaken 
by the virtual actor. 
 
1. Introduction 
 

Planning is the most generic AI 
technique to generate intelligent 
behaviour for virtual actors, in 
computer animation or computer 
games.  In such domains, planning 
capabilities consist in finding a suitable 
sequence of actions that let an agent 
achieve pre-defined goals.  Each action 
generated can be played in the 
environment to produce animation.  
Hence, entire animations can be 
generated from first principles, by 
defining a set of actions and allocating 
high-level goals to the character.  It is 
not only possible to generate intelligent 
behaviour, but also to explore the 
diversity of courses of action.  In 
recent years, several researchers have 

described the use of planning systems 
to control characters’ behaviours. 

Geib [5] has proposed the use of 
refinement planning following a 
detailed study of animation 
requirements [5][9].  Funge has used 
situation calculus to generate 
intelligent behaviours for virtual actors 
[4], and Cavazza has approached this 
problem with Hierarchical Task 
Networks (HTNs) for storytelling 
[2][3], considering the knowledge 
intensive nature of this kind of 
applications. 

The planning requirements for virtual 
actors depend on the specific 
application, however we can identify 
these essential requirements: 
 
• The domain representation should 

be appropriate to virtual actors in 
their environments and identify 
both goals and physical actions. 

• Solution plans should be computed 
efficiently, considering the time 
scale of a virtual actor. 

• In some cases when the virtual 
actor evolves in a dynamic 
environment, there is need to 
interleave planning and execution 
as well. 

 
This paper will present the domain 
representation and the behavioural 
animation problem proposed to 
integrate planning to drive character 
behaviour.  Then a review of the key 
points associated to HSPs, and finally a 



discussion of the results obtained by 
this integration describing a classical 
planning problem, which is also 
relevant to a character animation. 
 
2. Planning for virtual actors 
 
In animation domains, planning 
capabilities will consist in finding a 
right sequence of actions that let an 
agent achieve its goals, with the ‘added 
value’ of seeing the solution-plan 
carried out by it.  Considering this, 
planning systems will provide actors 
with a general method to drive their 
intelligent behaviours, and visualized 
within the virtual environment in order 
to see how the agent can solve their 
virtual planning problems. For 
instance, intelligent agents in 
simulation systems could compute 
solution plans in response to user's 
instructions. 

In the context we describe, plan 
optimality will not be an essential 
requirement, however we will be 
normally interested in minimum length 
plans, that is, the minimum sequence 
of actions that let the virtual actors to 
achieve their goals.  The visualization 
of these minimum-length plans will 
display efficient and intelligent 
behaviour. 

 

 
Table 1 - Planning problem example 
 
Experimenting with a Heuristic 

Search Planner (HSP), we provide an 
example using an extension to the 
classical dinner-date planning problem 
(funny-dinner-date - see Table 1).  The 
actor must undertake a set of tasks in 
order to prepare a dinner date, such as 
removing the garbage, wrapping a 
present, etc. We have extended this 

problem with more operators (watch-
tv, computer-work...) but also with new 
goals and preconditions, such as to 
having the house clean and to be in 
appropriate mood for cooking (in our 
example fun). 

Moreover, this scenario has 
similarities with the storytelling 
application as described in [3] and 
gives us an opportunity to investigate 
with a (non-decomposable, non-empty 
delete-lists) planning problem on a 
similar application. 

 
HSP domains are mainly represented 

by three elements: 
i. The domain representation of the 

problem. 
ii. The search algorithm. 

iii. The heuristic function: In the 
next subsections, we will review 
the integration of these tree key 
elements in our behavioural 
animation domains. 

 
2.1 The domain representation 
 
Our agent-centred approach is based 
on the typical state-model 
representation for planning domains 
[1].  Each state contains a set of atoms 
representing the agent state (see Figure 
1, e.g. (cleanHands, not garbage, not 
work...)).  To complete the problem 
formulation the agent will require a set 
of operators that will represent its 
effectory capacity, mapping states to 
successor states according to its 
preconditions.  The states can be 
represented using a STRIPS-like 
formulation, which will also be used in 
the computation of heuristics for the 
search process.  

As we introduced before, the quality 
of the agent plans will be directly 
related to their lengths, such that, 
longer plans are often non-optimal in 
their action sequence. For instance, an 
agent who washes his hands before 
carrying out the garbage will have to 



wash his hands again.  To achieve this 
we are managing at search time a depth 
bounding criteria, which will prune all 
the plans beyond the maximum length 
plan allowed d.  Considering that the 
virtual actors should achieve their 
goals through plans with no actions 
repeated, we have initialised d as the 
total number of operators the agent can 
apply.  In this way, the depth level 
reached by a goal state of any plan-
solution will represent its plan length 
and this will be the necessary 
information to consider in the final 
agent decision taking. 

 

Figure 1. Initialisation of the start and goal 
states 

 
Taking into account the domain 

representation introduced, the next 
subsection will present MinMin as an 
adequate search algorithm to supply 
the planning requirements for our 
virtual actors. 
 
2.2 Planning with MinMin 
 
MinMin [6] has been proposed as a 
search algorithm for real time decision 
taking. It has the advantage of 
searching forward from the current 
state to a fixed depth horizon and then 
computes the heuristics values for the 
frontier nodes. Furthermore, MinMin 
provides a forward search method able 
to interleave planning and action 
execution, and to extract the minimum-
length plans required. 

As Geffner pointed out [1], the 
heuristics calculation associated to 
every node in classical HSPs, is the 
most expensive computational step 
associated to HSPs, and MinMin 
reduces this calculation to the search 
horizon nodes. 
MinMin is capable of refining its 
solutions during the search using a 
dynamic depth-bounding criterion.  As 
the plan-search progresses, a bounding 
factor d is maintained to keep track of 
the last best plan extracted (i.e. that 
with the minimum plan length). This 
bounding is also useful to overcome 
the main problem of MinMin, that of 
cycling. A secondary bounding 
criterion has been introduced to 
MinMin in order to improve its 
efficiency.  This second bounding (2-
B) simply detects the creation of a new 
state with no new effects and thus 
prunes it (e.g. S0- Carry - Suseless, S0 - 
Relax - Suseless).  The performance of 
the whole planning system at the 
funny-dinner-date problem introduced 
will be shown, as the rest of tests, in 
the results section. 

 
Figure 2. Environment actions as operators 

in the MinMin search 
 

MinMin control is also adequate to 
extract the shortest-length plans, 
though not always the optimal one, as 
each node will select the child with the 
minimum cost  (i.e. the node which 
could be part of a minimum length-
plan solution). In this way, at the root 
node tree the agent can perform an 
informed action selection mechanism, 
deciding at each plan step the shortest 



strategy or sub-plan which let him to 
achieve his goals.  Figure 2 
demonstrates the feedback from the 
environment as operators are carried 
out on stage by the virtual actor. 
We are using the independent domain 
heuristics presented by Bonet&Geffner 
in [1], which can be easily adequate to 
MinMin search domains.  Heuristics 
are computed from the horizon nodes 
by ignoring delete-list and expanding 
the atomic facts that belong to post-
conditions until all the atomic facts 
corresponding to the goal are met. 
Then the depth-level reached by this 
goal node will be treated as the 
necessary information to help MinMin 
in its decision taking. 
 
3. Results 
 
The system has been fully 
implemented and tested over a number 
of initial configurations, in a graphic 
environment corresponding that to the 
funny dinner-date problem.  The 
Unreal™ engine performs low-level 
animation (movement, orientation, 
etc…) and visualization, however the 
animation system is under direct 
control of the planner.  The planner 
and Unreal communicates via UDP, 
interfaced by the engine’s scripting 
language UnrealScript™. 

In this problem, the overall 
performance obtained by MinMin 
(search horizon = 3) has been 
adequate to 3D real time graphics 
environments. Furthermore, restricting 
at S0 the maximum plan length (d = 
13), MinMin finds 6 plan length 
solutions in a suitable time frame for 
the real-time performance 
requirements. 

The agent will start searching from 
its initial state S0 using MinMin, and 
will obtain solutions or plans from 13 
to 8-length. Then at the top of the tree 
it will try to apply the first operator 

associated to the last minimum plan 
calculated (e.g., S0 - wrap – S1). 

 

  
(a) Start (s0) (b) Dolly 

  
(c) Watch TV (d) Computer Work 

  
(e) Shopping (f) Cook dinner 

  
(g) Clean house (h) Take bath 

 
(i) Wrap present 

(Sgoal) 
Figure 3. Integrating search-based planning 

in 3D virtual environments 
 
As shown in Figure 3, once the 

virtual actor has executed an action, it 
should update its own internal state  
(eg.  S1 = (S0) + dolly) performing 
future searches from this (S1), 
interleaving in this way planning and 
action execution, and achieving finally 
an intelligent autonomous behaviour 
able to reduce the distance to its goals. 
Figure 4 illustrates the search-plan 
carried out by MinMin to solve the 
funny dinner-date problem as 
presented previously, where the 
solution-vector associated to each 
search state indicates the total number 



of solutions or plans extracted by 
MinMin in several depth levels. 
 

 
Figure 4 – Solution vector for plan 

 
4. Conclusions 
 
We have described a specific approach 
to integrate fully search based planning 
behaviour for virtual actors. 
Performance of the planning system 
has shown good potential for scaling-
up on simulation tests. Our future work 
will be oriented to include enlarging 
the set of operators available and 
uncertain information from the 
environment in a more complex visual 
planning problem, so that, a complete 
intelligent virtual agent architecture 
could be tested in 3D virtual 
environmental simulations. 
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ABSTRACT 
 
Emotion is a key component for sound design in 
movies and videogames.  We believe that it is also a 
key component in virtual environments and simulation.  
The following paper summarizes work at the MOVES 
Institute’s Immersive Audio Laboratory which 
demonstrates the emotional impact of sound in 
interactive media and also shows that emotionality 
evoked in a simulation has a positive impact on 
learning for events that occur in the simulation.   Our 
research methods employ objective measures such as 
physiological recordings and memory recall testing 
rather than the more commonly used subjective 
questionnaires and surveys.  It is our belief that these 
objective measures are more easily replicated and 
generalized to a wide variety of simulations and 
situations.  We discuss our research in terms of the 
parallel development in the MOVES Institute of the 
videogame “America’s Army: Operations,” which we  
use as an experimental test bed and tool.  Applications 
of this research are discussed in terms of high-end 
simulation projects like the Virtual Technologies and 
Environments (VIRTE) program sponsored by the 
Office of Naval Research. 
 
INTRODUCTION 
 
Both in videogames and movies, the entertainment 
industry has long recognized the role of emotion in 
immersing viewers in the story portrayed on the screen.  
However, military simulation has focused almost 
entirely on improving the quality and accuracy of 
visual representations to the exclusion of producing an 
engaging and emotional experience.  The philosophy 
has been that emotion is irrelevant and is not 
instrumental to the learning process. 

 
We believe that emotion is a critical component of 
learning in virtual environments.  We have been 
working with the entertainment industry to adapt 
techniques used in movies and videogames to produce 
systems that engage users on the visceral level as well 
as the intellectual.  We also believe that it is critical to 
produce simulations that participants want to use and 
enjoy using.  In addition, research conducted in our 
laboratory is showing that emotional arousal has a 
positive impact on learning, performance, and sense of 
immersion in virtual environments.  This research has 
been aided by the development of America’s Army: 
Operations (AA:O), a professional videogame created 
and developed at the MOVES Institute at the Naval 
Postgraduate School in Monterey, CA. It is managed 
by the U.S. Military Academy’s Office of Economic 
and Manpower Analysis at West Point.  The current 
paper will summarize the techniques used in AA:O to 
produce emotion as well as the research conducted in 
parallel to determine the importance of emotion in 
training and to measure emotional response provided 
by different audio techniques.  Our research differs 
from most previous lines of research, because we rely 
on objective rather than subjective measures for 
determining emotion and immersion in simulation. 
 
AMERICA’S ARMY: OPERATIONS 
 
America’s Army: Operations (AA:O) is a multiplayer 
online first person shooter videogame developed in-
house by the MOVES Institute.  AA:O was built on 
Unreal’s latest engine technology and designed by a 
group of professional game developers,  simulation 
researchers, and graduate students.  AA:O was not 
designed to be a training system, but rather a tool for 
introducing people to the goals and values of the U.S. 
Army.  The development team’s goal is to balance 
realism and entertainment in ways that are not seen in 
either traditional military simulation or videogame 
communities.   
 



For instance, in order to produce realism in the game, 
the development staff visited over 19 Army bases 
during the construction of the game.  The artists, level 
designers and programmers have fired weapons, 
participated in training exercises and taken detailed 
photographs, films and recordings of training facilities 
and weapons platforms.   Actual soldiers were used in 
the motion-capture sequences.  As a result of this 
attention to detail, weapons are modeled with extreme 
accuracy.  Players must proceed through detailed 
reloading and jam clearance sequences.  Weapon 
accuracy changes depending on whether the weapon is 
used in the supported or unsupported position.  
Accuracy is impacted by a combination of player 
experience, health, if they are under fire and whether 
the player is walking or running.  
  

 
 

Figure 1. Screenshot from America’s Army: Operations 
 
Prior to commencing multiplayer games, participants 
must complete Army basic training, which is modeled 
directly from the actual training bases used by the U.S. 
Army.  Training includes obstacle courses, rifle and 
sniper ranges, weapons instruction and the U.S. 
Airborne School, complete with 250 ft jump tower.  
Players also proceed through Military Operations in 
Urban Terrain (MOUT) training complete with the 
Multiple Integrated Laser Engagement System 
(MILES), the military’s version of laser tag.  Thus, in 
AA:O, even the simulators are simulated. 
 
SOUND DESIGN AND EMOTION 
 
One of the primary ways of introducing emotion into a 
movie, simulation, or videogame is through the proper 
use of audio cues and ambiences.  In conversations 
with experts at THX, Lucasfilm Skywalker Sound, and 
Dolby, we were repeatedly told, “sound is emotion”.  A 
game or a simulation without an enriched sound 
environment is emotionally dead and lifeless.  
 

The film industry has allocated significant resources to 
developing techniques for the design of sound effects 
and ambient sounds that evoke a sense of realism and 
manipulate the emotional response of the viewer.  It is 
difficult to imagine that all sound heard in the battle 
scenes of Saving Private Ryan  were added in layers 
after the film was shot. Yet, in the opening scenes 
depicting the Normandy invasion, the audio effects, 
including the actors’ voices, are completely synthetic; 
added to the film after it was shot.  The audio effects 
were spatialized using a surround-sound system to 
immerse the audience in the sound field.    
 
Using this philosophy, the sound design for AA:O is 
incredibly rich and textured.  Weapons sounds are 
modeled for a combination of sonic accuracy and 
emotionality.  However, flat recordings of weapons fire 
were not used.  Traditional recording and sound 
reproduction methods cannot capture the full dynamic 
range of high decibel weapons fire.  A flat recording is 
not only emotionally flat; it also sounds unrealistic 
(Yewdall, 1999).  Instead, flat recordings were mixed 
with other explosive sounds to compensate for the 
weaknesses of the reproduction media.  Great care was 
taken when creating sounds to correspond with weapon 
animation sequences to make the sounds of jam 
clearance and reloading as accurate and compelling as 
possible.  Since there is no tactile response involved in 
handling weapons in a videogame, it is important that 
the sound convey the feeling and emotion of handling 
the weapon in lieu of touch and feel. 
 
In order for sound to impart emotion in a combat 
scenario, you need to capture the wide variety of 
sounds which are present in combat.  Hence, we 
modeled the sounds of bullets whizzing by your ears, 
the sounds of bullet impacts in different types of 
materials (wood, metal, concrete, etc), and the sounds 
of debris resulting from bullet impacts.  Thus, it is 
common to have bullets cracking by your ear and 
ricocheting or impacting on a concrete wall or wooden 
frame behind you.  Meanwhile, the sounds of wood and 
concrete fragments shower down around your feet. 
Additionally, footsteps and other impacts have texture 
specific sounds associated with them.   You hear your 
own footsteps and the footsteps of the players around 
you.  We employed the movie sound designer’s creed 
“see a sound, hear a sound” when we were designing 
the environment (Holman, 1997).  Within the 
limitations of the game engine, if you see an action on 
the screen, you hear a corresponding sound.  These 
details are crucial for immersing a player in the scene. 
 
Finally, AA:O is a Dolby Digital certified game using 
the NVIDIA Nforce platform and is 5.1 and 6.1 
compliant on non-Dolby sound applications as well.  



Environmental effects are created using Creative Lab’s 
EAX 3.0, an API used to induce numerous types of 
audio effects, including reverberation, occlusion, 
obstruction, and exclusion.  The goal of the API is to 
mimic effects that approximate modeling the acoustics 
of rooms, buildings, and other audio environments.  It 
does this without the expensive CPU requirements of 
actually modeling geometry and audio ray tracing.  
Future efforts in our lab will concentrate on using real-
world interactive acoustic models to see how these 
impact users’ perceptions of the environment. 
 
The overall result of these many audio details is a 
highly immersive auditory experience which enhances 
the gaming experience and draws the player into the 
action.  The first question becomes, can we prove that 
entertainment audio actually increases emotionality or 
is this folklore? 
 
PHYSIOLOGICAL RESPONSE MEASURES 
 
In order to determine the role audio plays in evoking 
emotion in videogames, we measured physiological 
responses during videogame play while subjects were 
playing a combat sequence with and without sound, 
using headphones or a THX certified 5.1 surround 
speaker system.  Speakers and headphones were 
compared because of the hypothesis that a system 
employing a subwoofer might evoke more of an 
emotional response than a system using headphones 
alone (Shilling & Shinn-Cunningham, 2002).  
Temperature, Electro Dermal Response (EDR), and 
heart-rate measures were collected during action 
sequence game play.  Results indicated increased 
physiological responses on all measures in the sound 
versus no sound condition.  There was only an 
increased temperature response in the speakers versus 
headphone condition.  These results clearly indicate 
that the audio component of a videogame or simulation 
contributes significantly to the emotional response of 
the participants (Scorgie & Sanders, 2002).  The 
increased physiological response between speakers and 
headphones is probably due to the increased bass 
response derived from a subwoofer system that 
provides a more dynamic and “whole body” response 
to the sound.  However, the effect may not be great 
enough to justify the increased footprint of a speaker-
based system for simulations that must be placed in 
spaces with a small footprint (Shilling & Shinn-
Cunningham, 2002). 
 
EMOTION AND TRAINING 
 
Given that audio design boosts emotionality, can we 
prove that emotionality actually is an important aspect 
of training in simulation?  To answer this question we 

turned to physiological models of human memory.  
Adrenalin is a key hormone in emotional arousal and 
fight-or-flight responses.  In animals, it has been shown 
that injections of adrenalin (a key hormone in 
emotional arousal) can enhance memory (McGaugh, 
2000).  It stands to reason that emotional arousal (in 
moderation) may also have a positive impact on human 
learning.  After all, the limbic loop in the human brain 
modulates both emotional response and memory 
consolidation.  The purpose of this research was to 
attempt to create a “virtual injection” of adrenalin to 
enhance learning in virtual environments.   
 

 
 

Figure 2. Screenshot from memory experiment using AA:O 
 
An experiment was conducted to observe learning 
differences in low-arousal conditions and high-arousal 
conditions (Ulate, 2002).  AA:O was used as the virtual 
environment (Figure 2).  In the low-arousal condition, 
participants wandered peacefully through a scenario, 
memorizing objects encountered while searching 
buildings on a mission to free POWs.  High-arousal 
participants wandered through the same environment, 
but were required to fight their way through the 
scenario.  Immediately after finishing the game, 
participants were tested for their memory of objects 
inside the buildings.  An additional test was given 24 
hours later.  Results indicated that participants in the 
“high-arousal” condition were significantly better at 
encoding and recalling objects presented in the virtual 
environment immediately after experiencing the 
videogame and 24 hours post exposure.  Thus, 
memories for events in a virtual environment are 
enhanced in situations where there are moderate levels 
of arousal.  These findings also indicate that simulators 
used for mission rehearsal should not be dry, 
emotionless systems, but should elicit an emotional 
response from the user rather than a purely intellectual 
response.  Further research is needed to determine if it 
is possible to over stimulate a user in a simulation, thus 
negating the positive effects. 



CONCLUSIONS 
 
What does this mean for the design of simulators and 
mission rehearsal systems? Since, emotional response 
has traditionally been an overlooked detail in the 
construction of simulations and virtual environments; 
we need to consciously consider emotion when 
designing simulations.  Mission rehearsal systems 
which allow pilots to fly through terrain maps might be 
more effective if the pilot is engaged in combat while 
flying though the map.  This needs further study. 
 
These findings also impact research and development 
on other projects being pursued at the MOVES 
Institute.  For instance, the Office of Naval Research 
sponsored Virtual Technologies and Environments 
(VIRTE) program envisions a multi-user multi-
platform simulation for the Marine Corps.  The 
simulation will include squads of Marines interacting 
in MOUT environments. Based on this research, we 
know that audio design is critical for creating the 
emotional context and arousal needed for optimal 
human performance in simulation.  In fact, we have 
recently conducted task analyses to determine which 
cues are necessary for both accurate performance in 
MOUT situations and also for producing emotion 
(Greenwald, 2002).  Our research has concluded that 
these tasks require more auditory cues than can be 
provided by most videogame engines or VE systems.  
For instance, MOUT tasks probably require accurate 
room acoustics and physics instead of approximations.  
We also believe that care must be taken to ensure that 
sounds like footsteps and body noises (clothing, 
breathing, etc) are modeled accurately in terms of the 
distances at which they can be heard.   
 
Live voice communication is also a problem for high-
end simulation that has not been adequately solved by 
the gaming industry.  Traditional techniques used in 
gaming (VoIP) have latency rates exceeding 200 msec.  
One solution we devised is to combine the strengths of 
low-cost OpenAL and DirectSound3D systems with 
high-end servers used specifically for simulation.  One 
such system is the AuSIM GoldServer.  The 
GoldServer provides non-networked spatialized live 
audio over headphones with exceptionally low-latency 
(Krebs, 2002).  Of course, this is only a solution for 
headphone-based systems.  
 
 During the upcoming year, we will continue to 
develop new strategies for creating detailed audio 
environments and implement our findings in our 
videogame work and in our simulation programs.  At 
the same time, we will continue to validate our work 
with objective measures of performance.  Ideally, the 
research we are conducting will benefit both the 

entertainment and simulation community by helping to 
create environments that are more immersive and 
emotionally engaging.  
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ABSTRACT 

One of the key areas for the application of Artificial 
Intelligence to the game domain is in the design of 
challenging artificial opponents for human players. 
Complex simulations such as historical wargames can be 
seen as natural extensions of classical games where AI 
techniques such as planning or learning have already 
proved powerful. Yet the parallel nature of more recent 
games introduce new levels of complexity which can be 
tackled at various levels. This paper focuses on the question 
of finding good representations for the AI design, which 
implies finding relevant granularities for the various tasks 
involved, for a popular historical wargame. This work is 
based on the partially automated use of the rules of the 
game, as well as some common sense and historical 
military knowledge, to design relevant heuristics. The 
resulting gain in representation complexity will help the 
application of techniques such as Reinforcement Learning. 

INTRODUCTION 

A type of computer games that has been gaining significant 
popularity over the years lets 2 or more opponents confront 
each other via the manipulation of a number of units on a 
given terrain. Sounds familiar? Of course, this description 
is so general that it encompasses age old games such as 
chess. What we are interested in here are strategy games 
which range from real time action-oriented games such as 
Age of Empires (Microsoft) to intricate historical 
simulations and wargames such as Sid Meier’s Gettysburg 
(Firaxis) or Talonsoft Battleground series. The innovation 
in this new type of games, from the point of view of AI and 
complexity, is both quantitative as well as qualitative. 

Quantitatively, they show an increased complexity by 
letting players manipulate high numbers of units (typically 
in the hundreds, if not thousands). Additionally, these units 
have open to them a high number of possible actions, 
depending on their characteristics, which fall in various 

categories such as movement, combat, or building activities 
for some of them. 

Moreover, the physical space on which they move is much 
larger. While chess has 64 positions, and backgammon 24, 
the new games we are interested in involve 2-dimensional 
grids which extend over hundreds of squares (or hexagons) 
in each direction, so the total number of positions is in the 
tens of thousands. 

Despite the huge quantitative scale-up required to use 
existing AI techniques on these new problems, the main 
source of complexity is actually elsewhere. While 
traditional games usually let the player select one (or a very 
small number of) unit(s), and then select an action for it, 
large modern simulations replicate the parallel nature of the 
system they simulate: each turn, all of the units can be 
moved (or take other actions) simultaneously. Therefore, 
while the branching factor of most traditional games 
increases linearly with the number of units, its increase is 
exponential in our games. In practical terms, that means 
that the standard versions of popular AI techniques (such as 
planning or learning) [Newell & Simon, 1965, Samuel, 
1959, Lenat 1983, Meyer et. al., 1997, Sutton & Barto, 
1998] are rendered irrelevant because of the complexity 
involved here. In this paper, we investigate how a careful 
examination of a game, good choices of representation (as 
well as possible innovations in the algorithms themselves), 
can help to circumvent these limitations. 

In the remaining of this paper we will focus on one specific 
commercial game series named Battleground (Talonsoft®, 
designer John Tiller). It is a turn-based game considered as 
one of the best simulations of Napoleonic battles. On this 
application, we will expose a number of research directions 
under investigation, all aiming at dealing with the 
complexity of the game so as to make it amenable to 
efficient AI techniques. This paper focuses mainly on the 
issue of finding good representations, using available 
sources of knowledge about the problem, Its intended 
impact is therefore on the initial stage of AI design. It can 
be seen as a complement to other active research directions 
in the field of machine learning which work on the learning 
algorithms themselves to deal with higher complexities, e.g. 
work on learning within a hierarchy of goals [Dietterich, 



2000] or work on using function approximators such as 
multi-layer perceptrons to deal with large state spaces 
[Tesauro, 1995]. 

THE NAPOLECTRONIC PROJECT FOR AI DESIGN 

The Battleground (Talonsoft®) series of wargames is a 
turn-based game considered as one of the best simulations 
of Napoleonic battles. It aims at a good historical accuracy, 
with detailed maps, orders of battles, combat resolution, 
etc. while retaining some gameplay value (though it would 
certainly not be a hit among “action oriented” players). The 
environment provided by this simulation constitutes the 
testbed of our Napolectronic project, an AI endeavour to 
provide human-level computer opponents to 
strategy/simulation game players (Corruble, 2000). 

The battleground series reproduces the historical order of 
battle. It models units at the level of battalions, and 
organizes each game turn in two parts composed of a 
number of phases. The attacking side can move all of its 
units, then the defendant can fire defensively, the attacker 
fires, then the attacker’s cavalry can charge, then the 
attacker can melee the defender’s units which are in 
contact. Then for the second part of the turn, the attacker 
and defendant switch roles. Each scenario is defined by a 
fixed number of turns (10 to 52), each turn simulating 15 
minutes of real time. The units move on a historical map 
composed of hexagons (each hexagon representing 100 
meters) and can assume different tactical formations (line, 
column, limbered or unlimbered for artillery,…). Moreover, 
each unit is also characterized by its quality, fatigue level, 
ammunition level, etc. 

Each sides aims at controlling a number of key positions by 
the end of the scenario. A number of points is associated 
with each one of these key positions, and the final scores 
are calculated based on these points and the losses suffered 
by each army. 

The success of many simulation games results from the 
feeling of immersion into a complex world that they 
provide for the user. In order to obtain this feeling, the 
game designer must balance two notions which could seem 
contradictory. The player needs to have a lot of control on 
the evolution of the simulated world (so that he can feel 
engaged in it) yet he/she must be somewhat overwhelmed 
by its complexity and should be unable to grasp its entire 
depth all at once. This necessary combination of high 
controllability and richness/depth justifies the evolution 
toward highly complex simulations, which have also, for 
the player interested in history, the advantage of becoming 
more realistic. This highly complex modelling is a given of 
the game and a natural approach to the design of an AI for 
such games is to use this highly detailed model of the 
system being simulated as the basic representation to do 
some automated reasoning, some planning, or some 
learning. Yet, because of the complexity involved, typical 
methods (let’s say for example Reinforcement Learning) 
cannot obtain satisfactory results based on this 

representation. So a first step in the design of the AI is to 
find a granularity of representation which suits well the task 
at hand. There are a number of difficult points to address in 
that respect: 

• For a complex game, there are a number of tasks which 
involve reasoning at various levels (strategic vs. tactic; 
long-term resource management vs. short-term timing 
of low-level actions,…). A good AI should therefore 
have various representation granularities, each one 
adapted to the task at hand. This issue of representation 
is also directly linked to the issue of whether decisions 
should be taken centrally or in a distributed manner. 
We will not explore directly this issue in this paper. 

• A representation with an appropriate granularity, 
needed for strategic (or “high-level”) reasoning, has to 
be constructed automatically or semi-automatically, as 
an abstraction of the low level representation of the 
simulation. This is in itself a complex problem, maybe 
actually the central problem for the building of a 
complex AI for games. Fortunately, because of the 
historical simulation aspect of the game, we can use 
some knowledge about the domain (here military 
decision-making in Napoleonic times), a detailed 
analysis of the rules of the game, or indeed simple 
common-sense, to guide us toward that goal. In the 
next section, we will present briefly work done to 
partially automate this process of building a relevant 
abstract representation, both in the action space (what 
can be done?), and in the state space (what is the 
situation?). 

CONSTRUCTING HIGH-LEVEL 
REPRESENTATIONS 

Abstraction in the Action Space 

As we saw earlier, most powerful AI techniques such as 
learning or planning are very sensitive to the size of the 
action space. Because the number of low-level actions 
available to each unit in our game is huge, one can naturally 
understand that any reasoning at a tactic or strategic level 
needs to be tackled at a higher, more abstract level. This is 
particularly true in the field of movement. A commander 
should not have to specify the exact path of every given 
unit. Instead it should be able to give a position as a goal, 
and to specify a mode for this movement reflecting the 
tactical situation. We carried out some experiments 
following this approach. The modes that we have 
experienced with are: 

• Speed only: minimize the time taken to reach the goal 

• Stealth: minimize the risk of being spotted and fired at 
by the enemy  

• Safety: minimize the risk of being intercepted by the 
enemy 



Speed is an easy problem to treat, since we know of the 
movement cost associated with each terrain type and unit 
type combination. The straight application of A* using the 
straight line distance as admissible heuristics, works 
perfectly well. 

An interesting challenge here is for the AI to discover how 
to implement the other movement modes. This has been 
done first by characterizing the static version of these 
concepts, then by applying A*, with a heuristic function 
that covers both the geographic distance the static cost of 
the mode. 

Stealth is obtained when a unit moves through locations 
which are out of sight of enemy units. Therefore knowing 
for sure whether a potential path guarantees that a unit will 
be stealthy would require that all enemy units are visible. 
The fog-of-war option of the game, which makes for a 
much more realistic simulation, has as a result that this is 
not the case. Therefore, we defined statically that there is a 
heuristic stealth cost associated with each location which is 
proportional to the number of other locations from which it 
can be seen (these are susceptible to be occupied by enemy 
units). For example, going through a forest is very stealthy 
since there a unit can only be spotted, or fired at, from 
adjacent positions. 

Safety is obtained by keeping a distance from enemy units. 
The bigger distance the less likely this enemy unit is from 
moving to intercept. Moreover, the cost associated takes 
into account the strength of the threatening units, because 
the stronger units are more likely to attack, and more likely 
to cause serious problems if they do.  

Lastly, initial work has been done to combine these various 
modes of movement. So far this has been done simply by 
proposing a heuristic function which is a linear combination 
of the previous ones. Later, we envisage using some more 
subtle combination of modes, which would be the product 
of strategic reasoning and consider the motion of unit as a 
multi-objective decision problem. 

In the examples of Figure 1, one can see the paths 
suggested for a single basic movement order, but with 
distinct movement modes. The speed mode favors a direct 
movement avoiding the forest hexagons, the stealth mode 
encourages motion through the relatively hidden valley, the 
safety mode favors remaining away from the enemy units 
and going through the forest, and the combined mode 
encourages an even wider circle going through the forest 
and using another valley for stealth. 

Abstraction in the State Space 

Any significant and tractable tactical or strategical 
reasoning needs to be able to refer to locations or situations 
at an appropriate level of abstraction. Hence a leader should 
be able to tell a subordinate to “take his troops to Village V 
using the road going through forest F to the south of the 
body of enemy troops E. To facilitate this process, we have 

used simple algorithms inspired from the field of Artificial 
Vision to automatically define relevant regions, which are 
group of adjacent hexagons which share a relevant 

Figure 1: Paths obtained for the same basic movement 
order (initial and goal positions), first with the 3 basic
modes, then with a simple combination mode. The 
initial position is circled in red. The proposed path is 
given by the numbers appearing on some hexagons. 
Each number shows the cumulative cost associated. 

Speed

Combination

Safety

Stealth



property, such as terrain type (e.g. forest), altitude, or in 
tactical terms (group of friendly, or enemy troops, waiting 
or moving together). Figure 2 show an example of tactical 
regions symbolizing the zones of control of the French 
troops (in blue) and of the Russian troops (in green). 

Additionally, these abstract regions can be used to carry out 
some intelligent reporting describing in high level terms the 
major events and the evolution of the situation at each turn. 
This is the first application of this work that we are now 
developing. 

 

Figure 2: Inferring each side’s zones of control 

Going further than the description of a situation, it is 
interesting to go deeper into the automated terrain analysis 
with the idea of discovering interesting tactical concepts. 
We have first focused on an important subproblem: where 
one should locate artillery units for defence or attack. This 
is particularly crucial since artillery movement is very 
limited and cannot therefore be easily readjusted while in 
the thick of the action. 

We have taken the approach of applying local heuristics 
directly making use of the rules of the game. In a fashion 
similar to the one used at the beginning of this paper, each 
heuristic function reflects a different concern or goal a 
leader should have in locating his artillery, the most 
important idea is that the chosen location must balance the 
effectiveness of the artillery fire and the protection to the 
unit. In Figure 3, we show a part of the map where each 
hexagon is covered by a coloured dot. The “warmer” the 
colour, the better field of fire the location has. Hence the 
inside of forests are in blue (bad field of fire) while the top 
of a hill is red (excellent field of fire). It is important that 
the colour (the heuristic function) is calculated directly 
through the application of the rules of the games: the 
system was not given any a priori military knowledge. 

Figure 4 shows the same type of picture but the colour 
represents the amount of protection offered by the local 
terrain. Here ridges appear as good locations because their 
elevated position offer defence bonuses according to the 
combat rules, and moreover, infantry units can be placed in 
front of these positions, where they can protect the artillery. 
According to this heuristic function, hexagons inside forests 

would be good locations for artillery (because they are 
indeed well protected from enemy fire). 

In Figure 5, basic heuristics (including the 2 previously 
presented) are combined to provide a global evaluation 
showing which positions are interesting candidates for 
locating artillery. We can see with the green dots that ridges 
are always sensible locations. This is a very interesting 
result because it is perfectly consistent with well known 
military knowledge. So we can expect that applying the 
same approach to other subproblems will let us find 
automatically some other tactical concepts relevant to this 
simulation. 

 

Figure 3: Hexagons in the field of fire 

 

Figure 4: Protection offered by local terrain 

 

Figure 5: Combination of basic heuristics 



CONCLUSION 

In this paper, we have presented some experimental work 
aiming at finding good representations for a strategy game 
simulating Napoleonic battles. This is seen as an essential 
step to be able to use mainstream AI techniques, such as 
learning and planning, for the design of a human – level AI 
opponent. We have explored how abstraction in the 
representation can be carried out along the dimension of the 
action space, so that leaders can give high-level, tactically 
meaningful orders, and along the dimension of the state 
space, so as to be able to describe situations in concise and 
meaningful terms. We are now completing this work on 
representation before we start on applying and adapting 
techniques such as Reinforcement Learning and Planning. 
In parallel, we work on abstraction along the temporal 
dimension, so as to provide meaningful game summaries, 
and to obtain insights on the key events and tactical turning 
points of a scenario. 
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ABSTRACT 

U.S. military forces are increasingly called upon to 
engage in Operations Other Than War (OOTW).  As 
opposed to war operations that focus on “large-scale, 
sustained combat operations”, OOTW concentrates on 
“deterring war, resolving conflict, promoting peace, 
and supporting civil authorities”.  A major component 
of OOTW is the prevention of and defense against 
terrorist actions.  Achieving this objective is quite 
complex, however, due to the unpredictable and 
asymmetric nature of the terrorist threats and the 
difficulty in training individual soldiers to counter 
those potential threats.  This paper proposes the 
behavioral architecture needed to support individual 
dynamic behaviors within a synthetic virtual 
environment to better prepare the individual soldier for 
unpredictable asymmetrical operations.   
 
INTRODUCTION 

The simulation training community has emphasized 
training the soldier through constructive simulations 
for war, typically force on force warfare where the 
objective of the game is to fight and win to achieve 
national objectives and protect national interests.  (e.g. 
Constructive simulations are those systems that 
involve people operating the simulation and 
stimulating the simulation with various attributes, but 
are not actively engaged in determining the simulation 
outcome.)  However, the post cold war era has changed 
the military’s focus on its’ operations.  The military is 
now called upon more frequently to perform OOTW.  
This encompasses deterring war, resolving conflict, 
promoting peace, and supporting civil authorities in 
response to domestic crises.  All OOTW must consider 
all aspects of the operation’s political objectives, 
which restricts the rules of engagement.   One of the 
principles of OOTW is security, which entails the right 
of defense against hostile intentions or actions, and the 
protection of citizens. (JP 3-07)  These operations 
include the prevention of and the defense against 
terrorist attacks. 
 
Currently, the simulation community has not kept up 
with the new and challenging requirements for OOTW 
regarding virtual simulations (Rose 1998), those 

systems that immerse the user into the environment in 
which he plays.  Many quality constructive simulations 
exist that aid the military planner in understanding 
urban warfare, peacekeeping operations, and disaster 
relief.  However, it has become increasingly necessary 
to train the individual soldier because the military’s 
contemporary operating environment (COE) exposes 
changes to its current operating environment.  To 
effectively train the individual soldier, a virtual 
simulation system should be developed that exhibits 
realistic behaviors that are more representative of 
asymmetric warfare.  Due to the unique nature of 
terrorist behaviors, the simulation system needs to 
represent those virtual entities individually. 
 
OOTW SIMULATIONS 

Several constructive simulations exist today that 
facilitate the military’s effort to grasp the complexities 
associated with OOTW.  A couple of tools are 
Deployable Exercise System (DEXES), Spectrum, and 
Joint Conflict and Tactical Simulation (JCATS). 
 
DEXES is a training and analysis tool developed by 
US Southern Command to analyze and understand 
complex contingency operations (CCO) for peace 
keeping operations, civil affairs, and humanitarian 
assistance/disaster relief exercises. (Barry 2001)  
DEXES was designed to utilize a human-in-the-loop 
and is often used with other simulation systems by 
creating the scenario and processing the events from 
the scenario and/or human-in-the-loop   
 
Spectrum is the most widely known simulation system 
developed to support the commanders and staff 
members to train within a digitized OOTW scenario.   
According to (Barry 2001), “Spectrum portrays a 
thinking and reacting civilian population which allows 
U.S., coalition, and combined forces, non-
governmental agencies, and other groups to conduct 
CCO”.  The simulation system enables the audience to 
create and analyze a political, economic, and 
sociological environment.  It requires role-players to 
portray the threat or opposing force behaviors. 
 
JCATS is an entity-level simulation that is used to 
model urban warfare and can model up to 60,000 
entities.  It can model entities at different levels 
depending on the current execution needs of the 
simulation.  It can aggregate entities into units and 
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model those collective entities as a single unit, such as 
a platoon, company, or brigade.  JCATS also has the 
capability to disaggregate those units and model the 
entities individually.  However, the soldier is not 
immersed within the game and can only affect the 
simulation by initializing the parameters to determine 
the outcome. 
 
When one army has advantage over another army by 
either a large number of troops, or superior weaponry, 
then there is an asymmetry between the conflicting 
groups.  Typically, in this case the inferior group will 
do whatever is necessary to gain advantage over the 
superior group.  This type of combat is designated at 
asymmetric warfare.  It is often considered “non-
traditional” because it does not employ equal force on 
force strength to fight one another, but seeks to 
challenge the superior force’s weaknesses to gain the 
advantage.  (Allen 1997)  During the American 
Revolutionary War, the united American colonies 
employed asymmetric warfare tactics to gain the 
advantage over the superior British Army by using 
guerilla warfighting techniques learned from the 
Native Americans.  This lesson has been forgotten in 
the last 200 years as the U.S. military has grown in size 
and in power, but leaves the country vulnerable to less 
powerful enemies who focus on weaknesses.  Our 
soldiers need preparation for unpredictable tactics and 
behaviors that are now present within the COE.  A 
virtual environment in which each entity is represented 
individually with its own emotions and memory will 
greatly aid in the training of a soldier preparing for 
these varying threats. 
 
Each of the previously mentioned systems facilitates 
the military within a warfare environment and focuses 
it’s training objectives at the commander level.  They 
do not assist the individual soldier in understanding 
how to manage conflict when neither the enemy nor 
their objectives are clearly known and understood.  A 
simulation architecture that models interactive 
behaviors that stress human decision processing, 
variable behaviors, and realistic opposing forces that 
are affected by their own social, economic, political, 
cultural, and religious environment is needed. (Barry 
2001) 
 
MODELING ASSYMETRIC THREATS WITHIN 
A SYNTHETIC ENVIRONMENT 

Because of the events of September 11th, 
responsiveness to terrorist actions on our homeland has 
become increasingly important.  Therefore, AT&T 
constructed a scenario that recognizes the variability of 
individual behaviors and how those behaviors could 
potentially interact and force the development of 
different sub-conflicts branching off from the main 
conflict. 
 
Background:   Based on increasingly reliable and 
substantiated reports of possible terrorist activities targeted 

against many of the nation’s international airports, the 
President has federalized the Army National Guard.  The 
President has issued an Executive Order directing the 
National Guard Bureau to temporarily assume control of 
overall airport security while maintaining coordination with 
local airport officials, FAA, FEMA, and other applicable law 
enforcement agencies.  In support of this larger national 
level operation, the 1st Platoon, A Company, 2nd Battalion, 
99th Infantry Brigade was tasked, and is now providing 
security for JFK International Airport in New York City.      
 
Situation:  A suspected cell of terrorists disguised as airport 
baggage handlers has gained entrance to JFK airport.  The 
terrorists are equipped with pressure/altitude sensitive, 
exploding packages containing a highly developed and stable 
strain of anthrax.  Their intentions are to emplace these 
devices with other baggage on departing aircraft.  The 
altimeter sensors are designed to detonate the explosive 
device at low altitude killing the passengers and dispersing 
the anthrax and burning aircraft remains over the highly 
populated areas surrounding the destination city.  At the time 
the terrorists gain access to the airport, the airport 
population is comprised as follows:   

• A tour group of 100 Islamic passengers returning 
home to Pakistan 

• A tour group of 100 middle-school children with 20 
adult chaperones departing for Egypt 

• A tour group of 100 senior citizens departing for 
Israel 

• 1000 individuals/families both arriving and 
departing on various scheduled flights 

• Organic airport personnel and infrastructure 
 
At 0900 hours, the 3rd squad observation post observes and 
reports to the Platoon operations center that they have 
witnessed a group of baggage handler’s 
retrieving/distributing packages from the truck bed of one of 
the airport food services vehicles and then disperse.  Based 
on their situational awareness and experience, the 3rd squad 
feels this activity is suspicious and warrants investigation. 
 
Mission:   1st Platoon/A Company/2nd Battalion/99th Infantry 
Brigade secures JFK International Airport. 
 
Implied Tasks: 

1. Coordinate with airport officials and security 
to close down the airport 

2. Secure airport exits as well as passengers on 
grounded aircraft 

3. Begin search for suspicious packages 
4. Maintain order until additional resources 

arrive 
5. Apprehend the suspected terrorists and their 

packages 
 
This scenario demonstrates both planned operations 
and the unpredictability of the situation.  To support 
this uncertainty, each entity must be modeled 
individually and has a direct impact on the overall 
resultant simulation system.  Since each entity has an 
individual model, the complexity and processing needs 
of the simulation increase.  To account for the resource 
demands without sacrificing performance, the 
processing must be distributed across multiple 
workstations.  For this reason, a parallel discrete event 



simulation (PDES) engine is the likeliest candidate to 
support distribution and increased performance.  
AT&T has developed a PDES engine that currently 
serves as a test bed for our behavior development.    
 
HUMAN BEHAVIOR MODELING 

DARPA and the military have expended a tremendous 
effort in populating the virtual battlefield with valid 
friendly and opposing forces.  However, the typical 
architecture employed for behavior development has 
consistently included the behavior processing as an 
integral part of the simulation environment.  Examples 
of these simulation systems are Modular Semi-
Automated Forces (ModSAF), OneSAF Testbed 
(OTBSAF), and Close Combat Tactical Trainer (CCTT 
SAF).  However, as with the other simulation systems 
previously mentioned, these systems are inadequate 
when focusing on training the individual soldier for a 
variable threat.  When the trainee is immersed in the 
virtual gaming environment, she will encounter 
individual entities.  Those entities must appropriately 
respond to the trainee.  Therefore, the behavior 
processing must be decoupled from the simulation 
environment to promote the most accurate possible 
human representation and increase the realism that the 
trainee encounters. 
 
However, because of the underlying architecture used 
to develop human decision-making models, 
inadequacies of the behaviors within the current 
computer generated forces (CGF) systems exist. 
(Lyons et al 1999, Stytz et al 1999, Willis 2000) 
Current CGF system behaviors assume an ideal 
situation on both friendly and opposing sides.  The 
determination of cause and effect is based on the 
firepower of the simulated entities and statically 
encoded command and control for those entities.  The 
decisions made currently within the CGF systems do 
not reflect cultural, sociological and psychological 
values, which influence an individual’s decision-
making process.  In addition, the current CGF systems 
cannot easily represent actions at differing echelon 
levels. (Franceschini 2000, Willis 2000) 
 
Human behavior psychologists have identified a 
generic model, though slightly varied to enhance their 
own personal views, as shown in Figure 1.  This 
Modified Stage Model (Pew et al 1998) demonstrates 
the general idea of how a human receives, perceives, 
and reacts to stimuli, and decides the next course of 
action.  The Modified Stage Model was adapted in 
1992 from the Classic Stage Model of human 
information processing.  (Broadbent 1958)  This high-
level view of human behavior is a good starting point 
at which to create a behavior architecture within a 
gaming / simulation environment to support the same 
sort of cognitive model. 
 

 

 
Figure 1. Modified Stage Model 

The individual’s sensing and perception is stimulated 
by events within the battlefield.  That information is 
stored both within his working memory (short-term) 
and long-term memory, if the situation calls.  An 
individual’s long-term memory contains the actual 
plans or tasks that the individual must complete, or in 
other words, the goals.  Based the stimuli from the 
environment, the individual’s goals, and the 
individual’s perception of what is occurring, the 
individual is able to develop a response to events 
within the immediate environment. 
 
ARCHITECTURE TYPES 

The Artificial Intelligence Laboratory at the University 
of Michigan has identified various views of how an 
intelligent system may be constructed.  Those 
architectural types that are important to an individual 
behavior processor within the simulation only are 
listed below. 
 
Asynchronous Components   
The architecture is organized into asynchronous 
components.  Each layer, or subset, of the architecture 
has a specific function, thus reducing the complexity of 
the overall system.  This type of architecture is 
pertinent for robotic entities.  However, when 
developing adaptable behaviors that represent the 
variability of terrorist behaviors, the individual 
behavior processor must manage the varying stimuli to 
accomplish the main goal. 
 
Interruptible   
For an architecture to be categorized as interruptible, it 
must quickly respond to events within the 
environment.  The architecture needs to process those 
events within its system, handle the current event, 
resume its previous operation and if necessary, replan 
to achieve its goal objective.  From the scenario stated 
above, the terrorists have an goal of planting devices 
within the baggage of departing aircraft.  Because each 
could individually encounter obstacles that deviate 
them from their planned objective, the architecture 



must support the events the terrorist encounters and 
enable the individual to replan to still achieve its goal. 
 
Layered   
Layered architectures enable the developer to vary the 
complexity of the different levels.  An initial layer may 
be continually sensing and reacting to its environment 
while still passing the necessary events to a higher 
level if further processing is required.  Another layer 
could coordinate the stimuli with the response and an 
even higher level could manipulate the planning 
algorithms.  Each level has access to the model of the 
world, however, the knowledge is distributed amongst 
the layers.  This is similar to how humans react to their 
environment.  If a human encounters a closed door, the 
person does not think about how to open the door. 
Instead, the person just opens the door.  Unless the 
human discovers that the door is locked, it is not 
necessary to replan or develop a higher strategy for 
opening the door. 
 
Modular   
This architecture type enables construction of the 
intelligent system by integrating independent 
components.  These components could consist of 
emotional or physiological aspects of behaviors, or it 
could consist of learning algorithms.  For the scenario 
mentioned above, each individual entity would 
experience a different emotional aspect and would 
incorporate the varying emotions in different ways. 
 
Multi-Component   
Within this architecture type, each component within 
the intelligent system is designed as its own piece.  
Each component affects the overall system and is 
affected by the system and can operate independently 
of the other component pieces.   
 
Plan then Compile   
For a system to have some degree of intelligence it 
must have the ability to plan or to replan based off 
stimuli from the environment.  Because we are 
modeling human behavior, planning does need to exist 
and, within the scenario, the individuals must replan 
based on the situations they encounter. 
 
INDIVIDUAL BEHAVIOR 

To be effective, the synthetic environment must 
present the training audience with realistic and 
unpredictable scenarios and challenges.  This can be 
accomplished with role players and/or automated 
behaviors representing the threat.  An example of the 
role player approach is for these individuals to initiate 
terrorist attacks on a variety of infrastructure targets 
such as communication centers, power plants, 
transportation networks, etc.  This approach is costly, 
however, as it necessitates the use of exercise support 
personnel to perform the threat role in the simulation.   
 

A more appropriate solution is to automate the threat 
forces that the individual will fight against.  From the 
architectures mentioned, AT&T has incorporated them 
into the Figure 2.  The “Physical & Emotional State” 
and “Memory & Contextual Information” are modular 
and do not inhibit the layered architecture of the 
Deliberator, Sequencer, and Controller, but only affect 
it when included.  Individual behaviors are dynamic 
and act upon the stimuli that are received from the 
gaming environment, therefore the architecture allows 
for interrupts and each component within this system is 
asynchronous. 

 
Figure 2. Individual Behavior Architecture 

This architecture is based on the research that AT&T 
has performed under STRICOM’s Advanced Robotics 
STO effort. The modeling of robotic entities is similar 
to the modeling of individual entities.  For a robot to 
be autonomous, the robot must be able to move within 
its environment, plan, and re-plan based on changes to 
the environment, and react to situations which at first 
are not within its’ world model.  The main components 
of the Robotic STO’s behavior engine are the 
controller, sequencer, and deliberator.  These 
components are based off of Gat’s three-layer 
architecture. (Gat 1988)  AT&T has extended this 
robotic behavior architecture to more accurately model 
an individual entity.  The additional components are 
the physical and emotional state and the memory and 
contextual information. 

At the lowest layer of Figure 2 resides the controller 
layer that couples tightly to the physical world and 
contains the basic behaviors, such as move, fire, 
communicate, etc.  This layer acts on the 
environmental data and feeds that into both its 
emotional state and its world knowledge or memory. 

The sequencer layer coordinates the basic behaviors 
the controller can initiate at any given time and 
supplies parameters to those behaviors. 

Finally, the deliberator layer contains all of the time-
consuming computations, which include planning and 
exponential search algorithms.  The deliberator layer 
affects its planning based off previous experience, 
recalled through its memory, and its current physical 



and emotional state.  Once the plans are produced, they 
are sent to the sequencer for execution. 
 
PARALLEL DISCRETE EVENT SIMULATION 

Finally, individual behavioral modeling requires 
immense processing power without performance 
degradation.  We have addressed this discrepancy by 
using a PDES foundation to support our behavior 
development and execution.  Unlike a time-stepped 
simulation that allocates time to all components of the 
simulation regardless of importance or need, a discrete 
event simulation (DES) responds only to time-stamped 
events.  This architecture results in three major 
advantages. 
 
To begin, DES focuses its computational resources on 
areas that are relevant to the outcome of the 
simulation.  By contrast, time-stepped simulation 
delegates resources to every component of the 
simulation regardless of the importance.  This waste of 
computational resources is avoided with a DES 
approach. 
 
A second advantage is the presence of exercise 
repeatability, correctness and causality.  Because time 
is a logical construct separate from the system clock in 
DES, both repeatability and correctness in the model 
can be guaranteed. (Beeker et al 2001)  However, 
because time-stepped simulation models are driven by 
the system clock, repeatability and model correctness 
can not be guaranteed.  This makes the accurate 
determination of causality through deduction 
impossible. 
 
The most important advantage for the purpose of this 
work, though, focuses on the added power that a 
parallel approach brings to a DES.  Considering the 
complexity and amount of data to be processed for 
asymmetrical behaviors, implementing a parallel 
discrete event simulation architecture will create a 
scalable system that can grow to meet the needs of 
those behaviors.  AT&T envisions that as the 
complexity of the behaviors increases, the simulation 
will need to be distributed across multiple processing 
nodes.  This parallel approach will augment the 
system’s ability to maximize model fidelity while not 
overloading the processing resources.  In short, any 
performance enhancement beyond an increase in 
computation speed or available memory relies on a 
PDES approach. 
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ABSTRACT 
In this paper we describe our approach to a situation 

recogniser system that currently is being developed for a 
flight simulator environment. The situation recogniser is 
part of a context-aware system and can be seen as a first 
step to an artificial intelligent pilot bot. We will address our  
explorative data study (PCA analysis), our attempt to 
recognise and predict situations with an Elman neural 
network, and our choice to use a knowledge-based 
production system. 

INTRODUCTION 
Ever since the first airplane was built by the Wright 

brothers the capabilities of aircraft have continuously been 
improved. For example, the maximum speed of the average 
military fighter plane has gone from approximately 100 
Mph in 1920 to over 1500 Mph currently. These high 
speeds are responsible for the little time available to pilots 
to process information and make decisions. In addition, the 
improved range of weapons in military aircraft (missiles can 
be fired from 20 km away) reduces the pilot’s decision time 
even more. Also, the amount of information available to a 
pilot today and the complexity of the contents have 
increased significantly.  Where earlier planes only had a few 
meters, modern aircraft have several hundreds of meters or 
information displays, providing the pilot with a wealth of 
different information sources. 

 
To help the pilot deal with information processing and 

decision-making, and to avoid cognitive overload, a crew 
assistant system or intelligent pilot-vehicle interface (PVI) 
has been proposed [Mulgund and Zacharias 1996]. The idea 
is that such a system would present relevant information to 
the pilot at the right moment, depending on the situation, the 
status of the aircraft, and the workload of the pilot. 

 

The Data and Knowledge Systems group at the Delft 
University of Technology is currently working on a project 
called Intelligent Cockpit Environment, or ICE for short. 
The main objective of this project is to investigate new 
interface techniques and technology for intelligent PVIs. 
Part of the ICE project is to design a context-aware system 
that can automatically recognise the current situation of the 
pilot and aircraft. The first step towards this context-aware 
system is to create a situation recogniser module. The 
situation recogniser module should be able to determine the 
status of the aircraft and the corresponding phase in the 
flight plan.  

 
Although the ICE project does not explicitly focus on 

creating an A.I. pilot bot capable of reasoning and 
recognizing situations in a flight simulator, it should be 
possible to use the context-aware system for these purposes. 

THE FLIGHTGEAR SIMULATOR 
Many sophisticated flight simulator software packages are 

available on the market, but most programs are commercial 
software that cannot be extended. For the purpose described 
above we want to be able to manipulate input data and 
adapt our cockpit environment. Therefore, we chose the 
open-source FlightGear flight simulator as our experiment 
platform (see also Figure 1).  

 

 
Figure 1: Screen shot of the FlightGear program 
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The FlightGear simulator project is an open-source, 
multi-platform, cooperative flight simulator project. The 
idea for FlightGear was born out of dissatisfaction with 
current commercial available PC flight simulators. The goal 
of the FlightGear project is to create a sophisticated flight 
simulator framework for use in research or academic 
environments, for the development and pursuit of other 
interesting flight simulations ideas, and an good and 
extendable end-user application [Perry and Olson 2001]. 
The FlightGear platform is open to be expanded and 
improved upon by anyone interested in contributing. For 
more information on FlightGear visit the website 
http://www.flightgear.org 

EXPLORATIVE DATA ANALYSIS 
We started our research with an explorative data analysis. 

The FlightGear simulator allows us to log almost all internal 
variables (e.g. altitude, airspeed, gear position, etc). For our 
explorative data analysis we selected four variables: pitch, 
throttle, acceleration and roll. Figure 2 shows the time graph 
of the flight data generated on a sample flight. Note that the 
straight flight (part C) was flown using the auto-pilot. 

 

 
Figure 2: Time graph of selected flight variables during 

annotated sample flight 

PCA Analysis 
The goal of the PCA analysis was to investigate the 

possibility to give an automated interpretation of recorded 
data; what was the planned action of the pilot and what was 
his goal. As a proof of concept we limited ourselves to the 
following set of actions: going up, regular (straight) flight, 
turning right, turning left, going down, stand still (on the 
ground), and taxiing. 

 
Applying principal component analysis (PCA) or 

Sammon mapping we were able to project the logged data 
and cluster the data in the 7 selected action states. Figure 3 
shows two projections of variables’ tracks during our 
sample flight. From this figure we conclude that in principle 
it should be possible to define states, which will result in 
distinct clusters in the space of logged data. By tracking the 
(projected) flight we can label the position with the 
corresponding label of the cluster. This way we are able to 

give an automated interpretation of the flight behaviour 
based the logged data as is shown in Figure 4. 

 

 
 

 
Figure 3: Clustering in two PCA projections 

 

 
 

 
Figure 4: Tracking path in the two PCA projections 
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Elman neural network 
We found similar results using recurrent neural networks. 

We selected an Elman neural network with one hidden layer 
as is shown in Figure 5. As test input we used the same 
logged data as before and as output the earlier-mentioned 7 
states. We were able to train the neural network for the 
automatic recognition of the 7 states. The error rate on a set 
of test data was 13.5 %.  

 
We also used neural networks to predict the future values 

of the logged parameters. As displayed in Figure 6, for 
every variable X, we used at every point k the previous 
values (Xk,…Xk-p) to predict X’s future values (Xk+1, Xk+2). 
In Figure 7 we show the results using a feed forward 
network of two hidden layers (4-5-5-2 architecture) using 
window size 5.  

 

 
Figure 5: Architecture of used Elman neural network 

 

 
Figure 6: Model of prediction 

More results about the PCA analysis and the prediction 
with Elman neural networks can be found in [Capkova, Juza 
and Zimmerman 2002]. 

 

 
Figure 7: Results of neural network state prediction with 

window size 5 

KNOWLEDGE BASE 
After the explorative data study, we decided to take a 

knowledge-based production system as the basis for our 
real-time and on-line situation recogniser module. The 
advantage of a knowledge based system is that it is much 
more transparent how the system makes a decision, 
compared to the neural network approach. In addition, it is 
possible to make changes to the knowledge base and adapt 
the system to new circumstances or environments (e.g. other 
aircrafts). 

A simple prototype 
For our prototype program, we started with designing a 

set of rules to recognise situations that can occur while 
flying a Cessna 172, the default airplane in FlightGear. We 
made rules for the following situations; start-up, taxiing, 
hold-short, take-off, aborted take-off, set course to 
waypoint, in flight, start-landing, aborted landing, final 
approach, touchdown and shutdown. All situations can be 
recognised based on a number of parameters such as 
airspeed, vertical speed, throttle, brakes status, gear status, 
etc. For each state we tried to use as much of the available 
variables as possible, since this allows us to still get an 
accurate indication of the situation, even if one of the 
parameters is not normal for that situation. For example, if 
the pilot lowers the gear, it is obvious that he is trying to 
land. However, if for some reason the pilot forgets to lower 
the gear, we are still able to determine that the pilot is 
landing by looking at his airspeed, flaps, vertical speed and 
altitude. This allows us to provide feedback to the pilot 
about possible mistakes or malfunctions in a latter stage. 

 
To reduce the amount of rules that have to be checked, we 

devised a state-transition diagram and implemented this in 
the prototype program, which is shown in Figure 8. 
 



 

 

 
Figure 8: Screen shot of the prototype situation recogniser 

In almost all on-line test cases, our prototype program 
was able to recognise the correct situation in real-time. 
However, in some cases the recogniser was a little late in 
detecting that the pilot was initiating landing procedures. 

Expanding the prototype 
Our next step is to expand the prototype situation 

recogniser program to accommodate a military aircraft such 
as the F16. Not only will this provide us with a more 
challenging and interesting domain with other situations, we 
also expect that the usage of an intelligent interface, which 
is our end goal, will have much more added value in a 
military aircraft than in a civilian airplane. 

 
Rules and procedures about flying an F16 are well 

documented in two official F16 manuals available on the 
Internet [USAF 1996], [USAF 1995] and in the user 
manuals of the commercial flight simulator Falcon 4 
[Microprose 1998], [Falcon unified team 2001]. These 
documents describe many situations that can occur during a 
military mission, as well as the actions that should be taken 
by the pilot in those cases. In order to have a more generic 
recogniser that can be used with multiple airplanes, we 
chose to encode the F16 rules and procedures in XML. The 
following situations have been described in our XML 
knowledge base [Mouthaan 2002]: start-up, taxiing, taking 
off, aborted takeoff, normal flight, dogfight, visual attack, 
non-visual attack, guided attack, harm attack, taking evasive 
action, deep stall, air refuelling, normal landing, flame-out 
landing, aborted landing, and shutting down. Since we now 
have to recognise a larger number of situations compared to 
the Cessna, we decided to use a slightly different approach. 
For every situation we designed a set of rules that produce a 
probability that that particular situation is occurring. The 
probability is calculated based on the state of the aircraft 
(FlightGear variables) or the recent events (pilot or 
environment). An event can have three sources: 

 
Pilot: Pilot events are actions taken by the pilot, for 

example pushing a button or adjusting the throttle.  
 
Aircraft: Aircraft events are changes in the aircraft’s 

state, for example a change in altitude or speed. 
 
Environment: An event from the environment can be a 

missile that is launched at the aircraft by an enemy SAM 
site. 

 
Besides these three sources there is another source of 

information that can be used to determine the current 
situation, which is the flight plan. The flight plan contains 
information about the steer points the pilot should reach 

during the flight, but it also contains information about 
possible situations that will occur at those steer points (e.g. 
attack ground target). If the flight plan is entered in our 
system before the actual flight the system should be able to 
more accurately predict the current situation. 

The rules 
The rules are grouped according to the situation they 

relate to. Every rule has a value that indicates the 
probability that the rule accurately identifies the situation. 
When data (FlightGear variables) is passed to the 
knowledge base some rules will fire and some will not. A 
probability calculator will combine all the probabilities that 
are the result of the rules that fire and calculate a new 
probability for each situation. The probabilities that are 
stored in the knowledge base are fuzzy values from a fuzzy 
set. Once the probability calculators have produced a 
probability for every possible situation, an overall controller 
will evaluate all probabilities and determine if it can decide 
with enough certainty that one of the situations is taking 
place.  

 
For every situation there are several types of rules: 

 
Action rules: an action rule is a rule that states that a 

pilot has to or might perform a certain action during this 
situation. 
 

Visual check rules: a visual check rule states that the 
pilot should check a certain instrument during the situation. 
 

Conditional rules: the conditional rules can be used to 
determine if a situation has been started or if a situation has 
been finished. 
 

Additional rules: rules that do not fit in any of the 
categories above. 

 
Below we show an example of the XML code describing 

a dogfight situation:  
 

<situation name=”Dogfight” timewindow=”30”> 
<actions> 

<phase name=”ingress”> 
<action name=”fcr” priority=”0/1” probability=”vsp”>&ACM;</action> 

</phase> 
<phase name=”engage”> 

<action name=”master arm” priority=”1” 
probability=”BP”&MASTER_ARM;</action> 

……….. 
</actions> 
<visualChecks> 

<instrument name=”HUD”/> 
<instrument name=”radio/> 

…. 
</visualChecks> 
<constraints startProbability=”SP” end Probability=”BP”> 

<constraint name=”IFF” start=”&OFF;” /> 
<constraint name=”RWR” start=”&ON;” /> 

……… 
</constraints> 
</situations> 



 

 

CONCLUSIONS AND FUTURE WORK 
We have presented some results of work in progress on an 

automatic situation recogniser in a flight simulator. We 
experimented with PCA analysis and neural networks to 
automatically recognise 7 states. The results were fairly 
good, but because of flexibility we decided to implement 
the situation recogniser as a knowledge-based production 
system. We devised a prototype situation recogniser that 
can detect the most common situations when flying a 
Cessna airplane. The prototype system also performed very 
well, except in some cases it was slow in detecting landing 
events. We have also shown our ideas about extending the 
existing recogniser to detect more complex situations  
(flying an F16) and adding probability values to the 
reasoning process. 

 
The situation recogniser is part of a context-aware system 

that will be used in future research on intelligent interfaces 
in the cockpit. After our implementation of the F16 
knowledge base and improved reasoning system, we plan to 
add a pilot-state recogniser module that should be able to 
assess the pilot’s activities and workload. 

 
Since our experiment platform, the FlightGear simulator, 

does not support multiple aircrafts yet, we are currently 
working on a multiplayer extension for FlightGear. Once 
the multiplayer extension, knowledge base, and pilot state 
recogniser are finished we plan to start experimenting with 
different intelligent interface strategies. 
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ABSTRACT

The TiM project focuses on creating games for visually
impaired or blind children. In this context, the TiM plat-
form is designed to help the creation of such games. For
the modeling of games, we usedactive objects. This ar-
ticle deals with the benefits and specificities of this ap-
proach. Most game creators will not be computer pro-
grammers, and to facilitate the use of our tools (pro-
vided under the form of Java programming libraries) we
define both a higher level and very simple language, and
then above it a graphical tool. This framework provides
facilities to create both very simple games when the au-
thor has no programming skills, or to develop advanced
games for more advanced computer users.

THE TIM PROJECT

The overall aim of the TiM project is to offer visually
impaired children the possibility to play with multime-
dia computer games. They will be intended to severely
visually impaired children (blind and partially sighted),
with different levels of physical and psychological dis-
ability, so that they can use them in an autonomous way,
without assistance of a sighted person.

This work will be completed by parallel tasks like an
evaluation by educators of children behavior confronted
to these games. An evaluation and study of cognitive
process and educational potential, in the continuation of
this work will be done.

Those studies will be oriented toward visually im-
paired children’s capacity to space and cognitive orien-
tation in the game. They will generate a feedback to
the software developers and game content designers in
order to improve the games.

THE TIM PLATFORM

The approach is to build authoring tools that allow to
conceive games from the ground up, or to adapt exist-

ing games, that can be played using specialized or nor-
mal devices. The parts developed here are:

game engineThe game engine is in charge of running
the game, managing active objects, and driving
the I/O layer. At this level, only the semantic of
the game is described. This means for example
that we know that characters exist but we do not
know how they will look like to the player. Iden-
tically, for inputs we know the player can go left,
right, up or down, but we do not know how these
orders will be given to it.

I/O layer Its role is double: It transparently outputs a
game according to the current hardware of the
user, and it must input player orders sent via spe-
cialized peripherals to present them to the game
engine under a generic form.

game programming language TL (TiM Language)
This part allows to program a game more eas-
ily than simply using the provided API in Java,
providing dedicated constructs.

graphical authoring tool This tool add an higher level
tool to develop games. It is limited to predefined
games but allows to derive them very quickly and
easily.

Figure 1: The game creation process

The game engine

Active objects are at the core of the TiM platform.
An active object[3] adds a life-cycle to the usual object-
oriented approach. It allows them to work in parallel.
They own a behavior[2], acting according to rules and
beliefs, and "live" in an environment that restrain their
acts.

The use of active objects was motivated by a main
reason: most of actual games define characters inside



an environment, and active objects directly map on such
a concept. Nowadays games uses engines based on this
model or close to it. Even games usually implemented
sequentially can be easily transcribed using active ob-
jects.

In our model, active objects are constrained by an
environment that influence their behavior and impose
them rules. This is a general view: environments are
not necessarily physical. An environment can be 1D,
2D or 3D, in the case of a one dimensional game, the
environment is sequential as for example in card games,
where it only describe a set of game rules (role, turn,
etc.). In 2D or 3D games, at the contrary, the environ-
ment is used as a playground in addition to describing
game rules.

Active objectare notobjects. This means that ac-
tive objects are never forced to follow orders of another
object. They communicate using messages. They can
choose not to respond to a message. They can also be-
have differently to the same message according to their
current environment.

Messages are organized instreams. Streams are dis-
tinct and every interaction in the system is based on
their use. For example there exist streams for vision, or
streams for mere inter-object communication, etc. An
object never sends the internal representation of what
it perceives. It only sends a symbol and the other ana-
lyzes it and reacts to it. Some communication streams
cannot be ignored by active objects. For example vi-
sion streams cannot be canceled. However each object
is constrained by its ability to analyze such an input
stream. For example some active objects can only see
at a given distance.

All in the system is modeled as active objects, com-
prising the environment. Games or environments are
specific derivations of active objects but the base and
the relationship between them are the same. This unifies
the model.

The I/O layer

To provide games for blind children an input output
software has been developed. This part of the platform
is then interfaced with a game engine that handles ac-
tive objects. The input output layer had to be able to
use various peripherals. But such devices are often non
standard (e.g. braille terminals or sensitive tablets) and
the I/O layer must providemultimodality[1] to hide this
complexity. Multimodality means that it will automat-
ically recognize peripherals and provide the appropri-
ate I/O drivers. For example, both the keyboard arrow
keys and a joystick can be used to control a character
in a game, or a character can be rendered as sounds for
blinds or on a display with high contrast for visually
impaired people, and this transparently for the game de-
signer.

The language

Basically the engine is provided as an API (Applica-
tion Programming Interface) in the Java language. We
then designed a very simple language to allow rapid cre-
ation of games for people that do not know Java or are
not acquainted with computer programming.

The developed language[4] provides specific con-
structs and directly maps on the active object model
defined by the engine. Here are the main entities: a
gamelinking severalscenes, in turn managing several
actorsor classes.

The distinction between actors and classes resides in
the fact that classes have no actions or perceptions.

An active object of the game engine is represented
by an actor of the language. Such an entity has sev-
eral states, and a behavior. The behavior defines the
messages it understands and what to do according to the
current situation when these messages arrive. Further-
more, the actor defines two blocksperceptionandac-
tion that allow it to estimate its situation and act accord-
ingly when not receiving messages.

Scenes define the environment of actors. They are
also active objects, but have no perception or action. A
scene can be one dimensional, two dimensional, or three
dimensional. When defined as a single dimension, a
scene describes the steps of the games: turns for play-
ers, etc.

A game is defined by a set of scenes and a behavior
block that lists the messages that will switch from one
scene to another. Like scenes, the game has no action or
perception.

Here is a simple example of a player in a labyrinth.
The user must find a treasure. We define five entities: a
game, a scene, an actor and two classes.

The game only defines the scene. This scene is acti-
vated when the game receives the automatically gener-
ated"init" message. We will send the"end" mes-
sage ourself when the actor will have found the treasure.

game
TreasureHunter

states
scene laby: Labyrinth;

behaviours
on "end" do exit; end
on "init" do activate( laby ); end

end

The scene is initialized when it receives the au-
tomatically generated"init" message. The(2)
specification creates a 2D scene:

scene
Labyrinth(2)

states
actor p: Player;

behaviours
on "init" do



read_repr( "labyrinth.txt" );
end

end

An actor is created only according to a scene hence
the(Labyrinth) added after the actor name. It sends
the"end" message to the predefinedgame entity.

actor
Player(Labyrinth)

behaviours
perception do

if same_location( "Treasure" ) do
game.comm( "end" );

end
end
action do

player_movement();
end

end

The classes are empty:

class
Wall

end

class
Treasure

end

We provide a rich set of predefined functions like
read_repr() that creates a 2D environment from a
simple description file or aplayer_movement()
that change the location of an actor using the I/O layer.

The graphical interface

Above the language, a GUI (Graphical User Inter-
face) has been defined that allows to create predefined
kinds of games. It takes care of the game hierarchy
(game, environment, active objects), and automatically
handles messages (streams), rules and behaviors. It also
provide development methods guiding the game author
through the creation steps. Figure 2 shows screenshots
of it.

CONCLUSION

We developed several arcade games like PacMan,
Doom, but also board games like card games that are
readily playable. However the platform still needs de-
velopment in several areas:

• Automatic detection of deadlocks between active
objects,

• I/O improvements,

• streams are currently not completely imple-
mented,

• new kind of games should be developed to test the
active objects concept,

• improve our game development methodology.

Figure 2: Snapshot of the GUI
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ABSTRACT 
The goal of the project was to develop a robot and a 

multimodal user interface. The robot, designed as a digital 
cat, can show complex behaviours such as move, speak, 
touch, listen, and read. The input command interface is 
based on text, icons, and speech. A prototype of the robot is 
implemented using the Lego Mindstorms™ System. The 
design and implementation of the robot are presented in this 
paper. 

INTRODUCTION 
At Delft University of Technology there is a project on 

multimodal communication. At the moment research topics 
focus on automatic recognition and generating of facial 
expressions, and automatic speech recognition. To develop 
new ways of human-computer interaction a test environment 
was created: AMAELIA (A Multimodal Application for 
Extensible Lego Intelligent Agent). The robot is similar to 
the well-known Aibo robot developed by Sony, but unlike 
the Aibo we wanted to create an open-source and open- 
development environment. To implement the robot we used 
Lego Mindstorms ™ System. 

 

 
Figure 1: The AMAELIA activity diagram 

AI Aspect 
AMAELIA is an environment for editing, executing and 

saving behaviors with a Lego Robot Cat. It can be called an 
AI environment because the core of the system is designed 
as an intelligent agent, according to the PAGE definition 
(Percepts, Actions, Goals, Environment). 

Entertaining Aspect 
The main use of the application is to interact with a Lego 

Robot Cat equipped with Lego Camera, which can move, 
play sounds and music, speak, take pictures and capture 
videos, but it can also see, watch, touch, listen, read. You 
can also teach AMAELIA how to react when it is running, 
and all these things can be done at the same time. After 
getting used with the Cat Command Language, you can 
easily edit more complex behaviors, from the funniest to the 
most useful, from the most stupid to the most intelligent. 
When your new behaviors are ready for use, you can 
demonstrate them by using the speech command. 

Components Aspect 
AMAELIA has a lot of advanced features like infrared 

communication, image processing for color and movement 
detection, speech recognition and generation, etc. We used 
existing components for most of these advanced features. 
The used components are ActiveX components for 
Windows operating systems. The AMAELIA program was 
written in Visual Basic, which is very efficient for ActiveX 
reuse, graphic user interface design and quick development. 

ARCHITECTURE OF AMAELIA  
The architecture of AMAELIA is designed according to 

an object-oriented approach; there are seven main entities, 
all of them embed one or several existing ActiveX 
components (see also Figure 2). 
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Figure 2: Architecture of AMAELIA 

 
The architecture can be divided into 3 layers: 

1. Body components (low layer), which owns three 
entities. 

2. Brain (middle layer), which is one entity. 
3. Commands (high layer), which owns three entities. 
 

The Brain layer has only one entity, which is the core of 
the system. All the entities in a same layer (1 or 3) are 
equivalents in terms of role in the system. 

Body Components layer 
The entities in this layer can access the hardware to 

produce a physical action: RobotCat is in charge with the 
Lego Robot, EyesCat with the Lego Camera, and VoiceCat 
with speech generation. These components are also sources 
of events (contactPushed, objectSeen, endOfSpeech...). The 
events are sent to the BrainCat which is the only entity 
allowed to trigger actions on the Body entities. 

Brain layer 
The Brain entity organizes the execution of the cat 

behaviors (structured as a tree) that the user defines with the 
entities of the Commands layer. With the Body components, 
the Brain entity calls some actions and receives some 
events. From this point of view the Brain entity is designed 
as an agent. 

Commands layer 
The entities in the Commands layer are the multimodal 

interfaces for the user to give orders with text, icons, and 
speech. Icons and speech are translated into text, and then 
text is parsed to build an StrTree structure, which is the 
command input for the Brain entity. 

ROBOTCAT 
A couple of years ago, the Lego Company released a new 

range of Lego toys called Lego Mindstorms™ System. The 
goal of these toys was to give children (and adults) a tool to 
learn developing and building robots. The kit allows you to 

build a Lego robot and command it from your PC. This new 
range uses the pieces of the Lego Technics range, but Lego 
adds some special pieces: 

 
Figure 3: The LEGO Mindstorms system 

 
• The RCX or programmable brick: the main yellow 

piece in Figure 3 is a big Lego brick with a 
microprocessor inside and some inputs and outputs on 
the top. It can communicate with the PC via an 
infrared port located on the RCX and an infrared 
tower that should be connected on the COM port of 
the PC. 

• The output bricks: motors, lights. 
• The input bricks (sensors): to detect contact, rotation, 

light and temperature. 
• The cable bricks: these are just two small and simple 

Lego bricks with electrical contacts and are used to 
connect a RCX port to another special brick (inputs 
and outputs). 

Building 
The first stage of the realization of the robot is building it.  

It could be almost summarized in three words: connecting 
Lego bricks.  Indeed, from its nature, Lego offers us such an 
easy building way, which gives us a lot of building 
possibilities. However we were inspired from one of the 
most basic models (and thus one of the most functional) to 
build our robot. 

 
One of the major simplifications that we would like to 

point out that the robot has ’no legs’. Instead we used 
caterpillars and wheels.  Our robot can nevertheless use legs 
if it is wished (the wheel-caterpillar-legs are 
interchangeable) but the accuracy is reduced during moving 
and the control is much more random. Two engines are 
devoted for moving, using two PBrick outputs. The third 
output is used to connect the lamp. For the sensors of the 



 

 

robot, we equipped it with a rotation sensor allowing it to 
measure the distances covered. We also placed two contact 
sensors on the front side of the robot on the bumper, which 
enables it to detect contact with obstacles on the left and 
right independently. 

 

 
Figure 4: The LEGO cat 

Software 
There is software included in the Lego box. The program 

is called RIS (Robotics Invention System). RIS allows you 
to program simple behaviors using the RCX brick by 
visually connecting procedures. However, it is too much 
limited for our needs, in particular for extensibility and the 
possibility of adding external components such as the 
Speech API. 

The Lego software includes the Spirit.ocx component. 
The Spirit component is an ActiveX control with access to 
the COM port and the infrared tower connected on it to 
communicate with the RCX programmable brick (Pbrick). 
You can control the PBrick in two ways, and most of the 
Spirit methods are available for both ways: 

1. Direct commands: the action is done on the PBrick 
when the method is called on the PC. 

2. Downloadable commands: the command is downloaded 
when the method is called on the PC, the command is 
executed in the PBrick when the program has been 
started. 

 
To store downloadable commands, the PBrick has 5 

programs slot, each of them can contains 10 tasks and 8 
subroutines. The ActiveX control can only be accessed from 
a programming language, which provides ActiveX dynamic 
linking. Common user languages for this are C++ and 
Visual Basic. We chose Visual Basic for its advantages of 
quick development. 

We can group the actions of the Lego robot into four 
categories: 

1. Moving actions: driveForward, rotate Left 
2. Sounds and music actions: play Sound, play Music. 
3. Light actions: setLightOn, set LightOff. 
4. Systems actions: setPowerMotor, set 

PowerDownTime. 
The RobotCat cab fire four events from the contact 
sensors, they can be left or right contact which is pushed 
or released. 

EYESCAT 
Another kit in the Lego Mindstorms System line is the 

Vision Command kit, which provides the Lego Camera and 
the Vision Command software. The Vision Command 
software allows the user to command the PBrick according 
to some camera events fired from colour and movement 
detection. The Lego Camera is actually a simple web cam 
using the standard QuickCam drivers. Logitech, the 
QuickCam provider, offers the QuickCam SDK, which is a 
set of ActiveX libraries and controls. EzVidCap is another 
free ActiveX control to preview and capture pictures and 
videos; it uses the QuickCam SDK. The Lego Camera 
Control (LCC) is an ActiveX control which uses EzVidCap 
and which makes colour and movement detections 
according to a layout of detection zones that the developer 
can define. 

LCC Detection 
The Lego Camera Control provides an efficient way to do 

colour and movement detection. We can define up to 64 
layers, each of them can contain up to 64 detection zones 
for colour or movement. The detection is not done on the 
real image but on 16-colours version of this image, this 
increase the reliability of colour detection (movement 
detection is actually colour-changes detection). 

Actions and Events 
We had to specify how the system would use the camera, 

which means what are the layers that can be useful for the 
Robot Cat. The first idea is to put the camera on the Robot 
Cat, instead of his eyes, so the camera is looking 
horizontally. It would have been nice to put a motor with 
the camera to make it rotating up and down, but we are 
limited in using motors outputs on the Pbrick; there are only 
three outputs available, two are used for driving and one for 
the light. So the camera can only move from left to right, 
using the rotate driving commands of the whole robot. 

Because only one layer is active at the same time, the 
actions for Eyes Cat are to set a particular layer, or to set 
the inactive layer to prevent the system to receive events 
from the camera. Different events are raised according to 
the layer.  

VOICECAT  
In order to give a little more presence to our robot cat, we 

equipped it with a voice.  For this purpose, we had to use 
some classes of the Speech API to develop this small 
module of speech generation.  This module is based on the 
same model as the other cat commands, as will be discussed 



 

 

in the section iCatBeh. It means that the order "say" 
includes ICatBeh interface. 

 
The actions and events module adds the action “say” 

which takes a string parameter. It introduces also the 
concept of events of beginning and end of word or phrases, 
but these events are not available to the AMAELIA user.     
They are just used to synchronize the execution (when we 
want to do something after saying something). 

BRAINCAT 
 

 
Figure 5: Information flow diagram of BrainCat 

Component responsibilities  
The Events Manager object listen to events from the Body 
entities and also to the doNow event that the Commands 
entities use to start execution.  

• The ICatBeh interface is implemented by the current 
behavior tree, once the execution has been started, it 
has to organize its own internal execution of its nodes. 
The implementation of the ’Action()’ method should 
call specific actions on  Body components. 

• The Events Context stores all the event-reaction 
couples. While executing, the user can change these 
couples using a special control command.  

• The Knowledge object is the knowledge base of the 
system, inside are stored variables of different types 
which reflect the mind state of the cat (combination of 
Booleans), and also some integer and string values 
used for events and actions. 

• The CatBehTreeBuilder manages input commands 
from the Commands layer to build an ICatBeh tree, 
which will be stored in the Events Context. The input 
command is already organized into an StrTree.  

• The Timers form uses some Timer controls to make a 
countdown when an action is executing, in order to 
stop it if the end of task event has not been received 
(which can happen when the robot goes too far and 
loses infrared contact). 

 

ICatBeh interface as a composite model 
In order to structure our language, we take as a starting 

point a design pattern called Composite.  It is a structural 
design pattern, which enables us to organize the words of 
the language in sentences.   

 
The composite model offers to us a common interface for 

all the words of the language, the ICatBeh interface.  But 
also a structure for the spoken and executed sentences. 

 
In a second part, we introduced some control commands 

to enrich the language. 
• Three conditional commands: if, while, doWhile. 
• An event reaction is possible with the command 

"when". 
• A sequential command which is the natural alignment 

of the words in a sentence. 
• A synchronous command: "doBoth". 
• A loop command: "repeat" 
From a certain point of view, all the orders are equivalent 

but at the same time, some control commands may contain 
other basic orders or control itself. The customer would like 
to process all orders in the same way.  For that reason we 
consider the basic orders like leaves of the tree of the 
sentence and the nodes of the tree are control icons.  

  
In summary, it gives: basic, or complex orders on the 

leaves of the tree and the control commands, such as if, 
while, doWhile, when, doBoth or a sequence command, on 
the nodes of the tree. We note that in the case of some 
control icons, the leaves can also be tests (as "if", "while", 
or "doWhile" children) or events (as "when" children).  
Finally we note that we are also inspired by the Interpreter 
design pattern to build the control icons and integrate them 
in the tree of language. 

Discussion about the execution model 
The execution model defines how a tree of ICatBeh 

objects is executed (to execute means to call the method 
’Action()’ of the interface ICatBeh). There are two 
categories of ICatBeh objects as leaves of the tree:  

1. Immediate actions: like setLightOn, watchTarget, 
stopAll. 

2. During actions: like driveForward 10 cm, say “Hello“, 
playMusic A5, A5, A6. 

 
The internal nodes of the tree of ICatBeh objects are 

necessary controls command like sequence, if, when, while 
etc. An internal node can be an immediate or during type 
depending of the children of the nodes. Notice one 
exception: the when control is always an immediate 
command because this control command tells the cat how to 
react when an event occurs. The reaction (the child of the 
when node) is not executed when the ’ when control’ is 
executed, but when the event occurs. 

 
We want to build an execution model, which can execute 

a tree of ICatBeh objects regardless of the category of each 



 

 

object from the sequence (the sequence is a subsequence of 
the sequence of all the nodes of the tree in prefix order).  

 
The execution model should satisfy the following two 

requirements: 
1. Execute an action not before the previous action in the 

sequence is finished. 
2. Execute a new sequence when an event occurs. 
 
In the same way, we separate events into two categories: 
1. ’end of task’ event, which notify that the current action 

is just finished, so we can now trigger the next action 
in the current behavior tree, these events are not 
available at the user level (in the Cat Command 
Language) 

2. ’environmental events’, which notify a “Cat Event“ 
from the environment (ex: contactPushed, object seen, 
speech recognized...), so we need to stop the current 
execution, to change the current tree and to execute 
this new tree. These events are available at the user 
level (in the Cat Command Language), it means that 
the user can define the behavior to execute when an 
event occurs. 

 
Our incremental approach of the problem resulted in a 

design three different execution models. The features 
provided with the two first models are equivalent, but the 
first one makes the system call stack growing without 
control. This problem is corrected with model 2, which 
needs an “executioner“ (an entity different from the “Events 
Manager“ which can run and cancel the actions of the 
ICatBeh objects). The third model gives the feature of 
multitasking, which obviously increases the interactivity of 
the robot. Moreover model 3 does not need any 
“executioner“. 

THE CAT COMMANDS LANGUAGE (CCL) 

 
Figure 6: Icon interface of AMAELIA 

The cat command language makes it possible to order the 
robot cat quite simply.  The user just has to compose a 
sentence and to validate it.   

This sentence can be written either with the words of the 
language, or with command icons.  These two languages 
(text and icons) are completely equivalent, that is to say 
each word of the language text matches an icon. 

Basic commands 
The basic commands form the primary bricks of the 

language of the cat.  They are the basic orders of the robot, 
which match to its basic functionalities such as going 
straight, lighting the lamp or playing some music, taking a 
picture or saying something.  

Some of these basic commands are followed by some 
parameters, not optional for most of them. 

State icons 
The state icons or test icons represent the states of the 

robot cat.  They will be used with the keywords "if", 
"while" and "doWhile" in order to compose conditional or 
repetitive behaviors.  When these icons are used, they call 
upon the database of the cat (its base of knowledge, its 
brain) to know the value of the test and thus to decide the 
continuation of the behaviour.  

The icons of tests are:  isHungry, isSleeping, withCam. 

Event icons 
Event icons stand for events for which the robot cat is 

sensitive, that is to say all the events it can detect and which 
are available for the user.  These icons will be used with the 
keyword "when", thus the user will be able to set up specific 
reaction on some event.   

Control icons 
The control icons make it possible to structure the cat 

language in a logical way.  It makes it possible to combine 
basic icons between them, but also to introduce the events 
and the tests in the language. 

CONCLUSIONS 
AMAELIA is designed as an extensible application, it is 

possible to add new actions and events on the existing body 
components, but it is also possible to add new body 
components, which have their own actions and events. The 
input layer is also extensible while the new input can be 
translated in CCL. 

A very good extension for our cat could have been the 
icons recognition by the Lego camera. Indeed we designed 
an icon language and we designed a module able to 
recognize some icons belonging to CCL. In this way we 
could have a fourth way to command the cat. 
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ABSTRACT 
 
This paper investigates the application of neural networks 
to vary a character’s behaviours and the animation 
according to external stimuli from the character’s virtual 
environment. The use of a neural network in the character 
animation system can endow characters with more realistic 
and un-predictable behaviours suited in a dynamic 
environment. The paper firstly gives a brief review of 
neural networks and their use in real time graphics 
application such as games. It then proposes a new 
animation method with the incorporation of the neural 
network. An animation example is given to demonstrate the 
use of the neural network to produce more varied and 
realistic agent behaviours.  
 
 
 
1. INTRODUCTION 
 
There is a growing interest from the research community in 
developing intelligent systems for mobile robots that are 
based upon connectionist and biologically plausible models. 
The systems, which use Artificial Neural Networks (ANN), 
have the potential to make intelligent agents smarter, and 
offer insight into cognitive science issues that explore the 
link between brain and behaviour (Pfeifer 1996). These 
research outcomes also have the potential to be used in 
constructing intelligent Non Player Characters (NPCs) in 
modern entertainment software such as video games. 
 
Researchers have been working on a number of related 
projects. A neural system for integrating robot behaviours 
was designed by Browning and Wyeth (Browning and 
Wyeth 1998). The integration of behaviours in their work 
was accomplished by assigning different weights to 
different behaviours. All described behaviours are reactive. 
They do not rely on the memory of previous activity to 
perform their functions. The proposed method has the 
potential to be applied in real time computer simulation 
including games. Manslow (Manslow 2001) suggested 
using a multi-layer perceptron neural network (NN) in a 
game for controlling the firing behaviour of a tank. The 
work showed that the tank achieved around 98% hit rate 

after collecting and analysing 1049 samples. The author 
suggested a way in which the internal quantities of the 
network can be modelled using a look-up table to replace 
integers and non-linear functions. Interesting work has been 
carried out by Grzeszczuk et al (Grzeszczuk et al. 1998) on 
applying the neural network to control and evolve the 
physically-based model for computer character animation. 
They used a NN to learn to produce similar motions by 
observing the other models in action. The network 
structures of the proposed method enables a new solution to 
the control problem associated with physics-based models, 
leading to a remarkably fast algorithm for synthesizing 
motion that satisfy prescribed animation goals. Musse et al 
(Musse et al.) used a NN to recognize hand postures in 
order to achieve efficient interaction with virtual human 
crowds. Zaera et al. (Zaera et al. 2002) proposed a method 
based on a three-layer feed-forward NN to simulate 
schooling behaviour of artificial fish. The work reported 
that the method only succeeded in exhibiting simple 
behaviours such as dispersal and aggregation but more 
complex behaviours such as schooling were not achieved. 
 
The most compelling case for applying NN in a real time 
simulation environment is the computer game series 
Creatures. Each creature has a neural network responsible 
for sensory-motor coordination and behaviour selection. A 
Hebbian learning mechanism (Grand 1997) allows the NN 
to adapt during the lifetime of a creature. Basically, each 
creature’s brain is a heterogeneous NN, sub-divided into 
objects called “lobes”. Decision-making is achieved by 
‘perception lobes’ and ‘concept lobes’. Each lobe may 
contain several hundred neurons for representing different 
situations.  
 
The aim of this paper is to apply an ANN for intelligent 
agent animation to exhibit more realistic and un-repetitive 
behaviours in a dynamically changing environment. 
Furthermore, the paper will investigate the suitability of the 
modern graphics API such as DirectX to implement the 
scenarios. The paper is organised as follows: Section 2 
describes the general design of the agent animation 
environment and the proper rendering strategy for 
animation. Section 3 depicts the animation architecture in 
detail. Section 4 describes the use of DirectX in the work. 
Section 5 describes an example simulation and finally 
section 6 presents the conclusion and discusses future work.    
 



2.  ANIMATION STRATEGY FOR EXHIBITING 
AGENT BEHAVIOURS IN REAL TIME  
 
An intelligent virtual agent is the crucial component in a 
virtual environment as most of the interactions lie between 
the computer controlled agent (such as a NPC in computer 
game) and the human user. Such agents are expected to 
exhibit realistic and non-repetitive behaviours based on 
their own perception of the environment and their own 
beliefs. An agent’s behaviours will need to be rendered in 
real time for the sake of realism and sense of presence. 
Therefore, agent animation plays an important role in the 
simulation environment. Various animation strategies have 
been proposed. These can be loosely divided into two 
categories, namely pure off-line production and real time 
animation generation (Boulic et al. 1997). Pure off-line 
production results in a relatively high believability 
conveying the intention of the motion and the emotional 
state of the character. The animators and directors know 
well how the body postures and movements will be carried 
on with the assistance from the motion capture technology. 

Typical example using this kind of method are the 
computer-generated film such as “Toy story”, “The Final 
Fantasy” and cinematic scenes in computer games. 
However, this method presents problems for the intelligent 
agent animation since the behaviours of the agent appear to 
be repetitive.  
 
In interactive simulation, functional models are used to 
access a higher level of specification and control of human 
motion. Such motion modelling normally uses kinematics 
due to its low computational cost. For instance, the 
corresponding transformation matrices of the character’s 
hierarchical skeleton will be kept and updated to animate 
the character during the programme runtime. This method 
may lack the realism required for full believability but it is 
essential for the sake of the flexibility, and higher levels of 
control. An important issue in this method lies in the proper 
management of the transition between successive actions. 
This is generally made with fade-in and fade-out techniques 
realized with simple cubic steps (Boulic et al. 1997). Such 
approach is widely used in modern computer game where 
realistic pre-recorded animation sequences can be combined 
on the fly to provide fluid behaviours. The animation 

strategy adopted in our work is a hybrid method that 
combines the pre-recorded realistic motions according to a 
user generated events with the use of inverse kinematics for 
some specific tasks such as grasping.   
 
 
3. ANIMATION ARCHITECTURE USING 
NEURAL NETWORK  

 
Each virtual agent exhibits its behaviours based on the 
underlying hierarchical bone structure. Each bone is 
animated by its corresponding bone matrix and can have 
several degrees of freedom (DOF). Modern graphics APIs 
such as DirectX support the “skinned mesh” rendering 
technique in which each vertex in the character skin mesh 
can be associated with more than one transformation matrix 
(Taylor 2002). This animation method has the advantages 
of smoothness and control flexibility.  The proposed 
animation method is to use a neural network for selecting 
behaviours and change DOF for the character animation. In 
this way, the character will possess the ability to adapt to 

the new situation or various situations in the real time 
simulation system. The structure is illustrated in Fig. 1. 
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ijω  

 
Input layer: contains agent’s 
internal states. 
 
Output Layer: contains selected 
behaviours or actions with 
animation parameters such as 
values of DOFs or motion 
frequency 
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Figure 1 An animation architecture that uses a three-layer feed-
forward neural network for varying and adapting agent’s behaviours 

 
The animation structure starts from the perception module 
that is responsible for capturing information from the run 
time environment. Various methods have been proposed 
(Mehdi et al. 2002). In our system, a rather simple view 
frustum culling algorithm is adopted. In this method, any 
object that falls into the view camera of the virtual agent 
will be treated as visible object and the property of the 
object including object ID, orientation, position and so on 
will then be passed to the agent for input processing. 
Although this method is not the most realistic way to 
simulate agent perception, it is fast and efficient in the real 
time environment.    
 
 
The FzFSM receives input information from the perception 
module. A FzFSM differs from a traditional finite state 
machine by giving each distinct state a fuzzy set that 
normally ranges from 0 to 1 (Gough et al. 2000). Its main 
functionality is to alter the agent’s internal states according 
to the perceptual information. Some of the internal states 



such as "HUNGER" may change according to the time even 
without external stimuli. 
 
The three-layer feed-forward neural network is the main 
decision-making component in the agent virtual brain. This 
kind of network is the most popular connection method for 
the neurons because it only allows firing signals to travel 
forwards from input to output and hence no feedback is 
present. This avoids additional internal transitions that do 
not necessarily allow the NN to settle on a single output but 
cycle through several (Mehdi et al 2000). Each neuron has 
the same generic structure and performs the computation as 
follows: 

  
One important step for using a NN in agent behaviour is the 
input selection. The problem lies in the fact that there are so 
many factors in the dynamic environment that can affect the 
agent behaviours. For instance, for a single behaviour such 
as “acceleration”, it could be activated by several dynamic 
conditions in the environment such as  “ seeing food while 
feeling hungry” or  “wind direction changing”. 
Incorporating all factors in the inputs is obliviously 
unsatisfactory as it substantially increases the complexity of 

the network and the computation for those un-necessary 
links would be wasted resulting in low efficiency. However, 
the selection of inputs is often difficult in practice as stated 
in (Manslow 2002). This is because the problem being 
solved is often too complex or poorly understood to specify 
exactly what information is useful. Several rules are 
suggested by Manslow (Manslow 2002) to achieve better 
results. Browning et al. (Browning et al. 1998) partition the 
input into behaviours space so that the weight vector can be 
defined to construct the neural net. For instance, the agent 
may have three virtual sensors such as left-sensor, right-
sensor and center-sensor, which act as three main 
activations. The agent behaviours such as turn left, turn 
right, turn around and go straight can be specified in a 3D 
vector (LS, RS, CS) and then connected to the activators in 
the NN.  

The output layer contains the actions that will be passed 
into the graphic engine for further processing. The 
management of DOFs for the agent animation is an 
important issue for the graphic engine (Boulic et al. 1997). 
It is clear that executing solely one motion at a given time 
would probably result in an artificial animation. Intelligent 
agents often perform in parallel and overlap in time such as 
walking while waving arm or walking while rotating head. 
It is a fact that performing actions in parallel causes 
problems of simultaneous DOF updates as some of the 
DOF update values may conflict to some degree. In order to 
resolve this problem, DOFs need to be categorized into 
several sets. Furthermore, action mixing or blending should 
also be carefully considered. Typically the following 
equations could be used to manage the DOF values from 
output layer of the neural network (Emering et al. 2000): 
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he action weight can be a function of time whose value 
ormally falls into the range [0,1]. According to the 
imulation situations, action mixing normally contains two 
odes, namely add mode and blend mode. The blend mode 

nables the current motion to be smoothly blended with the 
ewly activated action. The add mode enables some more 
elicate actions for the character such as breathing or 

idgeting (Emering et al. 2000). The output from the above 
quation will be used to generate the corresponding 
ransformation matrices that reside in the character’s 
ierarchical skeleton. The information will then be passed 
o the DirectX based graphic engine for rendering. Fig. 2 
llustrates the program system. 

he training of NN normally requires the processing of 
any data examples, which incurs significant CPU 

rocessing hours. However, the training can take place off-
ine in advance. Once the NN has been trained, it can 
roduce a variety of animation according to different input 
attern during program run time.   
   
. THE USE OF DIRECTX  

DirectX Mesh 
Library 

e 

ocedure 



The system is implemented by using DirectX. Specifically, 
DirectX provides a library called X library to enable 
efficient use of modern API and hardware acceleration. 
Most graphics renderings are concerned with the 
manipulation of character mesh data and the hierarchical 
skeleton tree update. The X library provides series of 
functions to load, prepare and render the mesh in a 
hardware supported way. The bone hierarchy is stored as 
the frame hierarchy in the DirectX X file. Therefore, 
reconstructing and updating of the bone hierarchy 
architecture for the agent can be achieved efficiently 
(Taylor 2002).   
 
5. SIMULATION EXAMPLE 
 
The designed scenario is to animate a virtual agent (a 
predator fish) who is trying to catch a moving prey. The 
prey fish is moving around the environment by following 
several rules. For instance, for each simulation step, the fish 
will randomly pick up a direction to go and vary its speed 
to go until it detects the approach of the predator fish. The 
predator fish is constructed using the above discussed 
method and have several behaviours like “speed 
accelerating”, “speed decreasing”, “turn around” and so on. 
The input layer of the NN consists of character’s three 
fuzzy internal states, namely “hunger, tiredness and pain”. 
Perception information from the environment will be firstly 
interpreted and then activate or deactivate corresponding 
internal states. The output level of the NN consists of the 
character’s behaviours with animation parameters such as 
values of DOFs and frequency of motion. The training of 
NN is done by supplying set of simulation data in advance. 
The result shows that the trained network is able to produce 
numbers of variation in the final animation sequence 
according to the actual run time environment. 
 
6. CONCLUSION AND FUTURE WORK 
 
This paper has proposed an approach to animating 
intelligent agent behaviours in a virtual environment based 
on a neural network. The agent is able to adjust its 
behaviours efficiently to achieve various goals depending 
on its reactions to the environment. Furthermore, a graphic 
engine that is able to work closely with neural network has 
been proposed based on the motion blending and adding 
function. However, the application of a NN to animate 
agent behaviour is still in it early stage of development. It 
may need some time before a comprehensive conclusion 
can be withdrawn. Future work will concern with choosing 
and optimising the input and output vector of the NN with 
proper training data in order to exhibit more complex 
character behaviours. 
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