
SCIENTIFIC
PROGRAMME

DEVELOPMENTS
IN

GAMES

Enhancing The Immersive Experience

STUART SLATER

School of Computing
Wolverhampton University
E-mail: s.i.slater@wlv.ac.uk

KEYWORDS

Game Design and Immersive Environments.

ABSTRACT
Today’s market place is being continually bombarded
with game-releases. It is hoped to illustrate how
immersion in the context of computer games, is an
important ingredient in the success of these games,
and which elements in a computer game combine to
create an effective immersive experience for the
gamer. Final comments relate to current research
involving enhancing immersion in isometric tile-based
strategy games, by allowing the user more control
over their game environment.

INTRODUCTION
I lose count of the number of times I have gone to my
local cinema to sit through a movie and two hours
disappear in a seemingly much shorter time. Then, at
other times, watched another movie with a big budget,
famous action stars and “state of the art” special
effects, and continually looked at my watch wondering
how much longer the movie had left to go. The first is
an example of an immersive experience: the fact that
the viewer was so absorbed in this fictional world that
time didn’t matter and the second is an example of a
non-immersive experience, where for some reason the
“world” didn’t captivate the viewers, who stay to
merely get their moneys worth.

So why, when a famous star is signed up, and
a mega budget is allocated, do some movies fail to
provide an immersive experience for the viewer? Why
do moviegoers sometimes walk away feeling
disappointed with a film? Let’s rephrase these
questions with the computer games industry in mind
to: Why do some games fail to provide an immersive
experience for the gamer? Why do some gamers feel
disappointed after watching a “cut scene” from the
latest action game, then wait possibly months to buy
the game before discovering to their expense that the
game does not live up to their expectations or the
hype? Surely these game buyers will become
disillusioned with that particular game or games
company in a similar way that action stars lose favour
in movies that do badly at the box office, and what of
the studios/publishers who have other titles under

development based on these games? According to
Foster, Karlov, Kay and Thoma1 the top 20 games
take 90% of all profits, with the next 20 titles taking
5% leaving only 5% to all others, indicating that many
games may fail to make a profit or even, break even
which could mean the end of the developer involved.
This leads to the purpose of this paper: to examine the
elements involved in computer games that combine to
maximise the chances of commercial success.

IMMERSION?
Let’s begin by looking at three words that have been
noted from recent conferences: ‘addiction’,
‘absorption’ and ‘immersion’.

The Cambridge International Dictionary of English2
has the following related definitions.

Addictive: Addictive could be used of any activity that
you cannot stop doing once you have started.
Absorb: to take (something) in, esp. gradually
If someone's work, or a book, film, etc. absorbs them,
or they are absorbed in it, their attention is given
completely to it.
Immerse: to involve completely in something

The term “addictive game” could indicate some kind
of unhealthy preoccupation with a video game, maybe
at an extreme a gamer playing 24 hours a day, missing
work/school, and generally exhibiting anti-social
behaviour when the stimulus of the game is removed.
But more positively, a gamer who gets immersed in
the game environment and wants to see the game
through to the end, or the office worker playing
solitaire daily could be described by some as being
addicted.
Absorption is the initial part of the game, when the
user is absorbed by the characters and plot, is slowly
drawn into a world created for them by the designers,
and let loose to explore and interact with that
environment, leading to immersion when the player
eventually comes to feel in control of the game, and
begins exhibiting signs of emotional attachment to a
base they build or an enemy that they have taken some
time to defeat.

mailto:s.i.slater@wlv.ac.uk

A POSSIBLE IMMERSIVE
WALKTHROUGH
What are the key elements that combine to create an
immersive experience?
• The cinema goer/games buyer gets a teaser trailer

of the up and coming movie/game to whet their
appetite. (The Introduction)

• They wait anxiously then buy a ticket for their
local multiplex, or buy the game. (The Purchase)

• Now comes the crunch: the titles come up and the
movie starts. The first 15 minutes of the movie will
determine whether or not the other elements of the
experience have a chance to further immerse the
viewer. With a computer game, the first 15
minutes (including the loading) of the game have a
similar effect: can a plot be formed, characters
introduced, and is the game easy enough for the
gamer to get into within 15 minutes, so that they
are hooked and become absorbed in the fictional
world. (The First 15 Minutes – The Hook)

• Success so far: the gamer has brought the game,
and within 15 minutes is hooked. Now the next
important element of immersion is needed, the
story. Does the story unfold in a logical manner
and take the user from section to section, from
scene to scene. Can the gamer follow the plot?
Does the gamer get emotionally involved with
characters enough to feel more when the player
beats the end-of-level bad guy, or the villain gains
the upper hand? Does each section of cut scene
following the completion of a level fit in with the
story and involve characters the gamer has already
encountered or are they just added “eye-candy” for
the gamer? (Emotional Involvement)

• What good is a dramatic scene in a movie or
game without the music that helps create emotional
involvement? When you near the bad guys lair
does the music go deep and foreboding, and when
you complete the level is the music uplifting. Does
a gun sound like a gun, a dog bark as it should, and
does the gunfire reverberate as in an empty room?
(Sound)

• Do the in-game graphics live up to the initial hype
of the trailer? Mainstream gamers want to be awed
by spectacular special effects and cutting-edge
graphics (Graphics).

• Villains that challenge the hero: what use is John
Connor without the brutal Terminator foe always
one step ahead. The aliens against the marines in
Aliens Vs Predator. Do the aliens in the game react
as in the movies; are they cunning and sly, then
can you mow down a room-full with your assault
rifle, or do they behave against your
preconceptions, thus spoiling your fun? (Artificial
Intelligence).

• How much figuring will the gamer have to do to
get started? Is the interface in the style of the rest
of the game? Is the user “pushed out” to a DOS
screen or new window in order to change options,
thus breaking the immersive game experience?

Avoiding frustration is the key here. (The
Interface)

• Finally the ‘fun factor’, the romance aspect in a
love story, and the aliens in space movies each is
expected by the viewer, so why disappoint them.
In first person shooters (FPS) its always the guns
the user can collect, in isometric tile-games it’s the
build options. But what use these options without
well designed, challenging worlds and villains to
use them on. (Level Design).

THE HOOK: FIRST 15 MINUTES
It has been said many times that the start of a film is
important, the first 15 minutes must draw in the
audience and woe them with the hero’s plight against
some kind of adversary, putting the hero in harms
way. Only after the initial 15 minutes does the story
and background fully unfold. So what of a parallel
with gaming? “With gaming a player must be actively
engaged by a new game within 15 minutes of starting
play or we risk losing that player forever”3 Shelley. So
what is the typical format of the first 15 minutes in a
computer game: the loading of the game, the initial
screens, and the introduction to the game, usually non-
interactive video, that sets the scene ready for the
gamer to get started with some action.
Introductions are sometimes video such as in Red
Alert 2 (Westwood) or alternatively use game graphics
like Half Life (Sierra) and Halo (Bungie). Both
methods are effective if they help to immerse the
player in the world, and then introduce characters that
the player will encounter in the game. Some games try
to build a feeling for the world during the titles, such
as Unreal (Id) which takes the gamer on a tour of a
castle with some very effective music included for
atmosphere building.
With all the thrilling video is there a risk that the
gamer can become too immersed in the video? This
must be a concern because if the game isn’t as good
visually as the introduction then the user might be
disappointed. After the introduction, the game should
be easy and straightforward to get into and allow the
user to have some fun, not overly complicated or non-
intuitive, leaving the user with a failed purchase.

SETTING THE SCENE: VIDEO
Video can help to increase the realism and add to the
immersion of a computer game, but beware of going
too far. During the early 90’s a wave of games came
that were almost entirely video such as Ripper (Take
2), Black Dahlia (Interplay/Take 2) and Gabriel
Knight: The Beast Within (Sierra) didn’t do that well.
Many of these games featured stars such as Dennis
Hopper and Christopher Walken, and allowed limited
interaction by the user, but what developers failed to
grasp at that time was that most games players don’t
like limited plots that don’t allow much freedom of
movement i.e. the gamers do not feel in control.

Many of the top 20 games feature “cut
scenes” to seemingly boost the stories a prediction
come true from David Stripins of Factor 5 made at the
GDC 2001. They occasionally feature famous stars,
such as Michael Biehn in Tiberian Sun (Westwood)
but again if players have to sit through endless cut
scenes then they are going to get bored and the
immersion is reduced. Also “cut scenes” that seem to
build up characters in plots that are then not seen
anywhere in the actual game are common, and affect
the players’ involvement in the story. As to the
direction these introductions and scene changes take,
be it video or using in-game graphics, this is difficult
to predict, especially with the advent of new features
on graphics cards, such as “Cine FX” on the next
generation of Nvidia graphic cards that promise “real-
time cinematic effects in real-time”4 Freeman and
Nvidia’s CG programming language.

CAPTURING THE IMAGINATION:
THE STORY
The story or plot of the game should be easily
identifiable; games such as Command and Conquer
(Westwood) have self-explanatory titles so the user
can quickly understand what is expected of them.
Many FPS are simply getting from one side of a level
to the other with hazards placed in the path of the
gamer, complemented with encounters with bad guys.
Games in this mould are Tomb Raider, Quake, and
Unreal. Others have more difficult objectives to
understand. Most of the successful and addictive
games of all time have simple easy to understand
plots, such as Tetris and Pac Man. Games with overly
complicated plots will probably be played very little
and end up being traded in for the next version of
Doom.

CREATING EMOTION: SOUND
The use of sound as a medium for aiding immersion
can be seen in movies where music is used to enhance
dramatic scenes of romance or danger, thus adding
emotional content
One of the major success stories of 2002 (on the X-
Box) was Halo. Halo utilises music and sound to help
immerse the player, the goal being that the audio sets
the mood and gives the player information about what
is happening (Marty O’Donnell, Bungie, GDC2002).
Music can enhance a player’s experience of a game,
but too much music playing constantly can seriously
lessen the impact, as in Age of Empires 2 and to an
extent in the Command and Conquer games that
feature ongoing music. Technology in sound cards is
nearing the sophisticated level of movies, with Dolby
5.1 being featured on most new sound cards such as
Creative Labs Audigy and Extigy range, indicating
that immersive sound from the hardware vendor’s
point of view, may help boost sales, and hopefully
games developers will incorporate the new technology
into more games.

THE AUDIENCE GASPS: GRAPHICS
Graphics in games are said by many to be the
important selling point on games. Games buyers flip
the box over in the games store and are dazzled by the
screen shots of the games, they watch the videos
showing at games stores promoting the latest
action/adventure game, and see stunning screenshots
in magazines so no wonder they buy the games.

So what have developers been delivering between
1998 and 2002?

Graphics in FPS haven’t seemingly changed
in quality since Unreal (Epic) and Quake 3(Id) simply
because many subsequent games have used the
reusable engines created during the development of
these titles i.e. Half Life (Quake 2 engine) and Deus
Ex (Unreal engine). This is simply the tip of the
iceberg with Aliens VS Predator, Medal of Honour
Allied Assault (Quake 3) and many more.

What could developers be doing?

With Unreal being released in 1998, and
Quake 3 1999 gamers have been presented with reused
engines continually, whilst at the same time the movie
industry has moved on in leaps and bounds in
animation and computer-based visualisation effects.
Benchmarking software such as 3D Mark 2001/SE
features some polygon-rich graphics rendered on the
PC platform that I personally haven’t seen the likes of
in any games (except for the Max Payne section of
course). Many gamers have been left waiting for those
cutting edge graphics always promised on boxes or in
adverts until now.

What are developers now promising?

There are 2 significant events due in late
2002 early 2003, Doom 3 (id Software/Activision) and
Unreal 2 (Legend Entertainment/Infogrames), which
promise to take FPS into a new dimension by utilising
much of the technology available over the last 2 years
especially in the area of graphics card acceleration and
features. Whether they will or won’t is yet to be seen,
though initial videos and screen shots do look
encouraging. We should bear in mind that the engine
for Unreal 2 will also be used for Thief 3 and Deus Ex
2 (PC Gamer February 2002).
Other genres of games, such as strategy sports games,
must certainly follow suit with improved graphics to
satisfy the avid gamer. Games like Sim City 4
(Maxis/EA) and Colin McRae 3(Codemasters) look
likely to move their respective style of games forward
and satisfy the hungry gamer for the present time.

CHALLENGE: ARTIFICIAL
INTELLIGENCE (AI)
Players are increasingly moving to multiplayer on-line
games because AI is getting increasingly less of a fun
prospect. Why don’t the AI engineers repair bridges in
Red Alert 2, where an easy win is achieved on island-
based maps when player’s can cut themselves off from
the AI in order to build up unit numbers before wiping
out the opponent. Why, in games like Unreal, doesn’t
the AI use sniper weaponry? These are obvious
features gamers expect but are overlooked by
developers. Improved AI is promised, with many new
single-player games, but so far not many offer any real
challenge, Doom 3 and Unreal boast improved AI as a
key feature in the single-player versions of these
games.

SECOND NATURE: THE INTERFACE
Many will remember the days of Doom and
Wolfenstein where the user had limited options on
screen, and only a few keys to get going in the game.
Using arrow keys and the space bar you can run
around and have some fun without having to wade
through manuals to find out what key ‘z’ does. These
games may have other options that the user can use
such as “strafe” and “run” but the user doesn’t need
them to begin with.
Features to be avoided include cryptic options, and
cluttered and intimidating interfaces5 (Versluis).

ROCKETS AND GUNS RATHER THAN
ARROWS AND STICKS: LEVEL
DESIGN
Look at the differing commercial success of strategy-
based games that have 20th century technology
compared to those utilising feudal technology i.e.
Total Annihilation Kingdoms (Cavedog) against its
predecessor. There are those that do well that are more
adventure such as Baldur’s Gate, but Command and
Conquer style games seem to be more popular with
newer technological weaponry.
So Level design has not always got to offer a lot of
freedom for the player, as in FPS, but it has to be a
little interesting consider Daikatana by John Romero
of Doom fame: the game starts with interesting levels
then soon becomes repetitive and boring, so that the
player quickly loses interest.
Put interesting things in to perk the users’ interest, let
them explore a little, blow up trees if they want to, but
don’t allow them to wander for miles without a quick
way back, else they will get bored and stop playing.
An interesting addition to many FPS is the easy to
find, hidden chamber or level: this adds interest to
these styles of games but is missing from many recent
FPS. Remember, it is the challenge to the gamer, to
beat the designer in their world, which spurs them on.
There must be no villain that can’t be beaten, no route

that cannot be traversed, no secret button that can’t be
found.

BLAST AWAY: HAVING FUN
What’s the point of a “Physics enhanced” game that is
realistic and has real world models, if the player can’t
have fun? Games players like to enjoy doing things
that they are not supposed to do, such as killing
friendly non-player characters (NPC), shooting toilets
as in Duke Nukem, or crushing blast doors as in Deus
Ex, which was incidentally found to be fun in play test
and retained in the final release (Smith). Non-plot
additions, such as in Duke Nukem and others, add a
fun factor for some gamers, so they should not be
overlooked in development. Wouldn’t it be nice to be
able to kill that first bad guy in Unreal when you first
pick up the blaster? Killing friendly characters and
have their friends shoot at you as in Deus Ex might be
classified as a little anti-social to many, but can still
add to the gamers’ fun, and let’s them feel more in
control in this virtual environment. Surely a fun game
once completed can be replayed and the user can
spend some time looking for hidden things and
exploring areas of the map that they originally didn’t
notice, searching for all those hidden features, or
switch on “God Mode” found in many games, and
decimate everything in sight.

ENHANCING AN IMMERSIVE
ENVIRONMENT
A typical isometric-tile based strategy game such as
“Command and Conquer” (Westwood) involves the
user collecting resources from maps that are
subsequently used to create offensive and defensive
units. The gamer then uses these attacking units to
defeat an opposing computer or real human opponent.
Because of the nature of this style of game one or even
hundreds of units can be sent from one side of the map
to the other meaning that the elevated isometric
perspective is well suited to large-scale battles. But
what of the single unit sent on a scouting mission to an
enemy base or the spy sent in to steal technology?
Wouldn’t it be interesting if the player could zoom in
on these characters and almost turn an isometric tile
based game into a first person shooter simply by
zooming in on the unit? What of large battles where
the user could zoom in on troops to watch the action
close up. Would these kind of additional features
improve the immersive experience for the gamer? On
the flip side what design and development difficulties
underlie such a crossing of game genres?
The most obvious difficulty is that traditionally
isometric based games uses 2D sprites/graphics to
generate both terrain and units, which means that
zooming in is difficult and certainly the user would
not be able to look behind a 2D building. The only
solution to allow a game to be scaled in this way is to
utilise a 3D API (Application Programming Interface)
such as Direct 3D or OpenGL to render meshes with

textures created from a suitable package such as 3ds
max (versions 4 or5) or MAYA. Then create detailed
maps, units and buildings with full 3D scalability
achieved through a combination of Hardware
acceleration, 3D modelling packages and optimised
code.
Utilising the Direct 3D 8.1 the following features were
identified as easily attainable with suitable 3D models:
• Creation of an isometric map using meshes and

textures.
• Allow gamer to zoom right into a unit or building.
• Allow the gamer to see behind buildings by

allowing them to rotate freely in the game world.

The next logical step would be that at a predefined
magnification the view would become a first person
shooter allowing a whole new experience for the
gamer. The gamer could then play the engineer
infiltrating a base to steal or destroy it or even a spy
sneaking into a base to steal new technology. When
they have had enough or completed the task the view
can be returned to a typical isometric view, combine
this with an interesting plot idea concerning monsters
in the 1920’s trying to take over the world and some
detailed graphics and several of the elements
identified to improve immersion are in place.

CONCLUSIONS
The initial development of a 3D mesh based approach
for creating a tiled world rather than 2D tiles
highlighted 2 initial issues: The first was a
performance issue which would prevent the game
being played on lower performing PC’s (Less than
PIII 866Mhz + no Hardware graphic accelerator). The
second was the additional development time needed to
design and code 3D models. But the obvious
advantages is, allowing the gamer far more control
over their game environment and thus enhancing an
aspect of immersion in the game world.

Previous images show initial development of a 3D tile
based game that allows the player to zoom into the
map.

LAST WORDS
The mixing of game genres is not altogether new, in
Halo; the gamer can change from a FPS to a driving or
flying game almost seamlessly.

Does an immersive environment necessarily mean
commercial success?
The simple answer is “not necessarily”. With a mass
of games being released on a weekly basis the
publishers must entice the gamer to at least try the
game via shareware or a free “cover disk” demo, with
the hope that the released game isn’t a commercial
failure and so subsequent titles are put at risk. What is
certain is that a well-balanced, immersive and fun
game is more likely to succeed.

REFERENCES

1. Foster et al.
“Financing a Game Development Start-up in Today’s
environment”
AKIN GUMP Technology Ventures
Game Developers Conference 2001

2. Cambridge International Dictionary of English
http://dictionary.cambridge.org

3. Bruce Shelley (Ensemble Studios)
“Guidelines for Developing Successful Games”
Game Developers Conference 2001

4.Vince Freeman
Previewing the NVIDIA NV3x Architecture
July 29, 2002
www.sharkyextreme.com

5. John Versluis (Inevitable Software)
“Scripting for Artists”
Game Developers Conference 2001

6. Harvey Smith (Ion Storm)
Game Developers Conference 2002

BIOGRAPHY
Stuart Slater began programming in the early 80’s
finally completing a game for the Commodore 16 in
1985. He is currently working as a Lecturer in IT and
Computing at the University of Wolverhampton, and a
member of the “Games Simulation and Artificial
Intelligence” research group. His main interests are
developing computer games, and helping others
understand the fundamentals of computer game design
and development.

http://uk.cambridge.org/elt/cide
http://www.sharkyextreme.com/

A COMPARATIVE ASSESSMENT OF RECENT
HYBRID AI TECHNIQUES FOR GAMES

Julian Churchill, Richard Cant, David Al-Dabass

Dept of Computing and Mathematics
The Nottingham Trent University

Nottingham NG1 4BU
david.al-dabass@ntu.ac.uk

KEYWORDS
Combinatorial Game Theory, Game Tree Search, Genetic
Algorithms, Go, Neural Networks

ABSTRACT

This paper investigates a selection of artificial intelligence
methods that are applicable to board games. In particular it
focuses on the ancient oriental game of Go, a subtly
complex game, which so far computers have found very
difficult to play well. Amongst the techniques looked at
here are neural networks, alpha-beta type tree search
algorithms, temporal difference methods and rule based
expert systems. The balanced combination of these and
other techniques provide a promising avenue of research.
Several programs are looked at including Honte, Many
Faces of Go, NeuroGo and work done by Martin Muller
towards Explorer in the combinatorial game theory field.
We look some experiments with these techniques and how
they can be used for particular situations.

INTRODUCTION

The topic of artificial intelligence techniques for games is
an increasingly popular subject. Since the success of a
variety of AI methods, such as alpha-beta pruned minimax
search, neural networks and genetic algorithms, in the
realms of chess, Othello, checkers and many other zero-
chance games, research has been leaning towards a game
considered by many to be the most challenging of these
types of games; Go.

Go is a board game with its origins in China. It is played on
a 19x19 grid, stones being placed in turn by each player,
one black and one white, on the intersections. The aim is to
surround your opponent’s stones to capture them whilst
attempting to secure areas of empty intersections, known as
territory. Figure 1 shows an example position on a 7x7
board, note that games are usually played on a 19x19 board.
Due to the large board size and the simple unrestrictive rule
set the game can yield very complex situations. In terms of
search space it is many times larger than that of Chess, so
much so that even the most sophisticated game tree search
methods available at the moment have failed to produce
even an average human equivalent Go playing computer
program. There are quite a lot of resources available on the
internet concerning computer Go and a worldwide

community of programmers, some of whom actually make
a living from writing and selling their programs. A mailing
list where computer Go enthusiasts can exchange thoughts
and discuss new ideas is available [13] and the Computer
Go Ladder [1] exists for programmers to test their programs
against one another in an ongoing league.

Figure 1 - An Example Go Position

TECHNIQUES

A variety of techniques are available for programmers to
choose from, mix and match, or hybridise in novel ways.

Basic game tree searching is the simplest of these
techniques and simply means using a method to analyse
possible board positions to some given or dynamic number
of moves ahead in the game to find the most favourable one
immediately reachable from the current position. Arguably
the most popular search algorithm used by computer
programmers when tackling board games is the minimax
algorithm [9]. This algorithm constructs and analyses a
game tree, given the assumption that each player will
always be trying to increase their score as much as possible
whilst reducing their opponent’s score. Of course this
requires a reliable method of scoring a board position (an
evaluation function), which it turns out is quite a challenge
in the case of Go.

Genetic algorithms are based on the genetic evolutionary
process. Sets of genes, sometimes termed chromosomes,
each encode a possible solution to a given problem. They
can be combined and mutated if the algorithm specifies and
at each evolutionary step will have a fitness value

calculated for each potential solution. This allows biased
population reproduction as in the survival of the fittest
principal and for the best available solution to be selected
when required.

Artificial neural networks are modelled on the brain. An
artificial network is constructed using neurons and
connections between them, which have assigned weights
that affect the transmission of impulses between the
neurons. The weights can be modified by a variety of well-
known algorithms to ‘teach’ the network to recognise
patterns of input and associate appropriate output responses.
Probably the most important quality of ANNs is their
ability to generalise over sets of training patterns so that
given a never before seen input pattern, an appropriate
output response can be generated.

THE CONTENDERS

Neural networks have a handful of papers representing
efforts in that direction including evolutionary methods to
generate weight sets for networks. Richards et al. [11]
discuss their experiments in using the SANE method to
evolve networks to play Go and Donnelly et al. [3] explore
the use of genetic algorithms and neural networks for
positional evaluation and the problems with encoding
neural network structures for use with genetic algorithms.

Honte

A program called Honte by Fredrik Dahl [2] has achieved
some success using neural networks for a variety of
purposes. It uses conventional AI methods, such as alpha-
beta game tree search, in conjunction with three neural nets,
the first of which was trained by supervised learning to
score potential moves given the local contents of the board
surrounding the move. A second one was trained to
estimate the safety of groups of stones with the Temporal
Difference learning algorithm and the third uses TD
learning again, to estimate territory.

NeuroGo

Probably the most impressive result from the neural
network field so far has been from Enzenberger’s program
NeuroGo [5] which, through it’s public participation in the
Computer Go Ladder [1], has shown itself to be a
consistently well performing program, lending weight to the
scientific methods used in the program. NeuroGo uses the
Temporal Difference algorithm, self-play and a
dynamically connected network, which allows the structure
of the network to change to better represent the spatial
attributes relating stones to each other and to empty points
on a Go board.

Schraudolph et al. and Temporal Difference

Schraudolph et al. [12] have previously carried out similar
work to Enzenberger in an attempt to capture some
essential but elusive properties of human evaluation of Go

board positions. The effect of placing a stone can have
repercussions right to the very end of the game, so the fate
of future board positions are directly linked to previous
ones. This is true not only through time, but through space
also, where a stone may affect another one or a group of
stones later in the game, but in a seemingly unconnected
area of the board when the stone was placed. A prime
example of this is how occasionally in games of Go a
formation of stones occurs that is referred to as a ladder.
This structure will sometimes occur when one player is
fighting to save some stones from capture and the other is
trying to capture the said stones. This race to capture may
run across the board and the move sequence can be read out
precisely until either a board edge is hit or some other
stones are run into. These other stones may have the effect
of allowing the player being chased to escape or to allow
the chaser to capture and are called ladder breakers because
they disturb the ladder formation causing it to stop. For
anyone but a novice Go player these ladder breaker stones
are obvious when the path of the ladder is clear and so often
the fate of a ladder is decided by a single stone that may be
on the other side of the board and without even having to
start the ladder running. Schraudolph et al. used the
Temporal Difference training algorithm to try to capture
some of the relationship between successive board states in
a neural network that represented a board state evaluation
function. It was found that an undifferentiated network, one
with a raw input representation of the board state took
significantly longer to train and did not reach such a level
of play as an appropriately structured network with a
carefully considered input representation. The networks
produced managed a good level of play on a small board
(9x9), enough to beat Many Faces Of Go set to a low skill
level.

Golem

Another attempt at incorporating neural network techniques
into a Go program came from Enderton [4] called Golem.
The paper describes a fairly standard process of identifying
groups of stones (not directly connected, but may be
connected given some conditions) and then using a hard
coded territory estimation algorithm to give an evaluation
value for a position. Golem used a one-ply search to find
the best move and also used two neural networks to give
estimates of how good a particular move is. One was for
speed and was used in move ordering within the search tree,
the second was used to prune the initial set of moves
considered in the one-ply search.

Many Faces of Go

One of the leading programs in the computer go arena for
many years, Many Faces of Go uses a combination of
techniques such as a rule based expert system, low to high
level abstract knowledge about board positions and the
relationships between stones, updated incrementally, a
joseki database storing standard corner patterns of play and
a pattern database of 8x8 patterns with partial move trees
attached. The program uses hard coded algorithms to

determine the relative score for examined board positions,
which is linked to the move suggesting rule based system,
for instance if the program knows it is many points behind
it will play more risky moves.

Explorer and Combinatorial Game Theory

Combinatorial game theory was and is becoming an
increasingly popular topic, particularly when considering
end game positions. Mueller’s thesis [8] contains some
important work with the game of Go in this area.

GNUGo

A popular open source program called GNUGo [7] is a
participant in the Computer Go Ladder [1] and provides an
example of a Go playing program with no machine-learning
element to it. It uses extensive hard coded knowledge and
databases and follows the standard procedure of
information gathering, move generation and move
selection.

An important point noted from this survey was that whilst
most researchers have achieved a degree of success, albeit
mostly against trivial opponents, they have only
infrequently approached the level of play that commercial
programs are currently operating at. These programs, such
as Many Faces of Go [6] and Michael Reiss’ Go4++ [10],
nearly all use extensive expert knowledge in the form of
move sequence databases and hard coded rule systems that
have been finely tuned over many years. Even these
however, are far from reaching a professional level of play.
At present one of the best programs around, Many Faces Of
Go version 11.0 claims it’s hardest playing level to be
around 8 Kyu. This is 15 grades below professional level
given a beginner starts at 30 Kyu and after 1 Kyu you start
counting Dan grades at 1 Dan upwards to 7 Dan for
amateurs. Professional grades go from 1 Dan to 9 Dan by
smaller increments. 1 Dan professional is roughly
equivalent to 7 Dan amateur and at 9 Dan the scales
roughly coincide. Personal familiarity must also be taken
into account, for instance a human 8 Kyu would reliably
beat Many Faces at it’s hardest level after a short exposure
time, so adaptability to opponents and the ability to learn
from game to game must be a feature considered for future
Go programs.

EXPERIMENTS AND METHOD DEVELOPMENT

Following on from the work done during my MSc project,
which provided a basis for this work, I have developed a
suite of programs to allow a range of experiments to be
conducted. The software is flexible enough to allow easy
adaptation to new ideas and methods that may be developed
and may need to be tested and experimented with. Some
initial experiments have been carried out already in an
attempt to find a fruitful path for the research to follow. A
fair amount of time has been spent on training neural
networks to discover how they could best be used within a
Go playing program and to find out the limits of such

methods within this problem domain. Amongst the
experiments run to date are the varying of parameters to the
learning algorithms, in particular game specific parameters
which affect the way training data is generated for the
networks to learn, encoding and presentation of the training
data to the neural networks and a brief look at temporal
difference methods for incorporating temporal knowledge
of the game of Go into a static board evaluation function.

An exploration of intelligent search techniques has been
made to see what might be appropriate to implement or
expand upon in this research. Within the area of hard AI the
minimax variant MTD(f) [9] has been investigated and
implemented in conjunction with machine learning
methods, in the present case neural networks, to control the
size of the search tree. This method of tree pruning has
shown itself to be very worthwhile, even if only used at its
simplest level, which is to order nodes in a search tree,
rather than using the nets as an pruning heuristic. It would
be considered inadmissible as opposed to alpha-beta
pruning because it may yield a small chance that the
optimum solution will be missed. Increasing the nets move
ordering/pruning accuracy can reduce this chance, but the
risk will never be completely removed, only limited.

A recent development has led to research efforts in the area
of genetic algorithms with a view to use genetic algorithm
methods to tackle the search tree depth problem which has
proven to limit the effectiveness of game play even with
neural network additions, for pruning and move ordering, to
the MTD(f) algorithm. At present developing an
appropriate algorithm to make good use of the benefits of
the genetic paradigm to evolve partial game trees is the
focus of the research.

Figure 2 - Move Selection Process

Figure 2 shows the move selection sequence from an initial
board position to a final choice of move that the program
makes every time a new move is requested.

A further stumbling block encountered was the difficulty in
developing a good quality, reliable evaluation function for

the game tree search to use. For Go, there is no obvious
suitable function. Much work has been done by other
researchers involving training neural networks and using
evolutionary methods to find a viable evaluation function
with some reasonable results being found [3,11]. Initially
some experiments were done with the temporal difference
neural network training method but the results were not
really relevant to the research and more interesting
directions had presented themselves by this point.
Preliminary investigations were made into evolutionary
techniques to evolve an evaluation function, in particular
competitive co-evolution of a neural network, rather than
the gradient descent method used by the standard neural
network training techniques. However taking previous
research and the likely complexity of a good Go evaluation
function, time and resources may become a limiting issue.

Move Finder networks

After experimenting with various network designs, a class
of networks termed ‘move finder networks’ were
developed. The intended use for this category of nets was to
aid game tree pruning and search by allowing us to
immediately discard low scoring moves or pick a selection
of moves that achieved a boundary score or higher and to
order nodes in the search tree to enable algorithms such as
alpha-beta search to run more efficiently. To begin with
simple 3 layer networks using one input neuron per board
intersection and symmetric input values to represent the
contents of the intersection were used.

The networks were centred on each legal move in a board
position and produced a score from their single output
neuron to indicate the plausibility of the suggested move.
The size of the receptive area around the legal move had to
be considered since that would dictate the size of the input
layer, for instance with a 9x9 area of board around the
move, 81 input neurons would be required. At this point it
seemed the more board area that could be input to the net
the better and training and testing was carried out with 5x5,
7x7, 9x9, 11x11 and 13x13 input area sizes. Reasonable
results were obtained up to 9x9, after which the training
time was found to be to long to realistically train anything
useful. The training data for these networks was extracted
from a collection of professional tournament games in SGF
format acquired from the Internet.

Apart from changing the input area size some nets were
trained to see if the skill level of the players who played the
training games had an affect on the quality or speed of
training. Little information was gained from these particular
experiments however they were repeated for later
generations of move finder network.

Non-Repeating Training Data

For the next phase of experiments it was thought that non-
repeating training data, as opposed to the standard

repetition of a training set, would fare better for this
particular problem. The move finder networks produced so
far had shown that they performed well on their own
training sets however did not adapt very well to unseen
input. The solution to this was to use one of the Internet Go
Servers to acquire game records.

The server actually used was called NNGS and many
thousands of games from all skill levels were found there
and of course with each day more games are played and so
more game records produced with which to train the
networks. There were further problems concerning training
time and quality of the networks output that I felt might be
improved by finding more appropriate input
representations.

Initially the receptive area was set to 9x9 and the input
representation involved separating the possible intersection
states to give the network extra degrees of freedom, so we
had 3 input units for each board intersection, each
representing one of the possible intersection states our
colour, their colour and empty. Using the notions our colour
and their colour helped to remove some redundancy in the
training set due to colour symmetry in the training patterns
and so meant that a concept learnt for the black player was
also learnt for the white player. A further thought that had
cropped up whilst experimenting with the first phase of
networks was that due to the limited local area the networks
would perform badly when near an edge that was just out of
sight of it’s receptive field.

One solution to this is simply include the whole board as
input, however this had already been discounted as
unfeasible due to the previous experiments revealing that
the time and resources it had taken to train those networks
was substantial. An alternative solution was to include two
input units to indicate the distance to the two nearest board
edges. This combined with symmetry handling for the
board states in the training database code allowed the
networks to minimise the amount of training required to
learn edge and symmetrically related concepts.

Refining the Net

This particular architecture learnt a lot faster and to a higher
standard than the first phase, so much so that the networks
were now reliable enough to use for pruning game trees and
ordering moves in a proper Go playing program. Now the
task was to refine the nets as much as possible and to look
at other factors that may further improve performance. The
training set contained much redundancy, effort to remove as
much symmetry duplication as possible lead to the surprise
discovery concerning the use of the training set. From the
first set of experiments and partly due to the small amount
of available training data at the time, the training sets were
used in an unusual fashion.

For each move, in each training example game, the
following 5 moves were also assigned scores on a sliding
scale but with the same board state as the initial move. This

gave 6 times the amount of training data available and also
appeared to speed up the training. As an experiment in this
second phase some networks that had been trained to their
apparent capacity had the move look ahead switched, which
was 6 by default, to 0 so only the actual move for each
board position was used. This immediately produced a
distinct increase in output quality by 3-4% and then settled
again.

The same immediate increase was seen when changing the
training set contents from games from all levels of player to
only those played by Dan rank amateurs (high level
players) but the increase was not cumulative when using
both modifications at the same time. An attempt was made
to train nets starting on only Dan rank and also to start with
no look ahead as each of these conditions had proven to be
beneficial before however all of these nets failed to make
any significant progress through training, appearing to have
very quickly got stuck in a local minima. Unfortunately the
reasons for this are not clear at the moment but I hope to
find a reason behind this apparently odd behaviour.

Architecture Problems

There were still evident and emerging problems with the
network architecture as the network design moved into its
third phase. When the move being scored was near to the
edge, units that represented points off the actual board were
simply all set to 0. However, as mentioned before, the edge
of the board is very important in Go, so as well as
extending the 2 units previously used to encode the board
edge distances to 18 units (9 per edge, indicating distance
of between 1 and 9) an extra state neuron per board point
was added to represent off board points. Yet again the
training time was reduced and the quality of results
increased even though the number of neurons in each
network had steadily gone up and so the number of
calculations required had gone up also. Time was still a
problem though, if not in training then in practice. Whilst
the networks helped speed up the game tree search for the
actual Go playing program they were still taking up a lot of
processor time and the trade off between resources and
results was reaching its optimum. By analysing the
networks in operation I found that I had allowed too many
hidden units to be used in each net. The training was run
again, after a better estimate as to the necessary number of
hidden units required and the training and operation speed
was increased by a large factor. In fact this led on to trying
larger local areas as input to the nets, now that extra
resources were freed up. The most successful network to
come out of this research so far has been a third phase
13x13 input area network. As figure 2 shows this network
(newBPN13x13b.bpn) edged past the 9x9 version
(newBPN3b.bpn) at around 100,000 epochs and stabilised
just after. In general the 13x13 network plays better in Go
test games, but occasionally the 9x9 version picks up the
correct move where the 13x13 doesn’t. It can only be
assumed that due to the difference in local receptive field
size, the networks are learning mostly similar concepts with

a few unexpected but possibly important differences. It
would certainly be interesting to find out why one performs
better than the other in these situations and is relevant to
improving the playing ability of the Go program.

Amongst some of the latest ideas for input representation
have been to include more pre-processed Go specific
knowledge. To make an adaptable, useful and easily
generalized system the training has so far avoided any real
specific knowledge from the problem domain. Other
researchers have used specific knowledge to train networks
with moderate success [5,12] so a network with extra
information about the status of stones surrounding the
proposed move was developed. This showed no
improvement over the best networks trained to date.

0

5

10

15

20

25

30

35

40

45

0
10
40
0
20
80
0
31
20
0
41
60
0
52
00
0
62
40
0
72
80
0
83
20
0
93
60
0

10
40
00

11
44
00

12
48
00

13
52
00

14
56
00

15
60
00

16
64
00

17
68
00

18
72
00

Epochs Trained

A
ve

ra
ge

 R
an

k
O

f P
ro

fe
ss

io
na

ls
 M

ov
e

newBPN3Lookahead0.bpn

newBPN313x13b.bpn

newBPN3b.bpn

Figure 3 - Training Performance of NNs

CONCLUSIONS

One of the most obvious problems with computer Go
playing programs at present is that after a human opponent
has played against the program a handful of times, they can
very easily identify and exploit weak spots in the programs
play. A method to rectify this computer Go hurdle would
most likely involve machine-learning techniques such as
neural networks to allow the program to adapt its tactics to
the opponents style of play. This in itself opens up many
complex problems such as how to define tactics for this
game, where often there will be many moves in a game that
are played for reasons involving indistinct, abstract Go
concepts such as shape.

A good review of research in the computer Go arena has
been published which considers some of these issues and
proposes more possible lines of research [14]. All in all Go
is a very challenging game for computers and humans alike
and looks set to push the boundaries of artificial
intelligence in the coming years and certainly warrants
greater consideration by the AI community as a whole.

References

[1] Computer Go Ladder 2002, See

http://www.cgl.ucsf.edu/go/ladder.html

[2] Dahl, F, “Honte, a Go-Playing Program Using

Neural Nets”, from Workshop Notes: Machine
Learning in Game Playing. 16th International
Conference on Machine Learning (ICML-99),
Bled, Slovenia, 1999, available on the Internet at
http://www.ai.univie.ac.at/icml-99-ws-
games/papers/dahl.ps.gz

[3] Donnelly, P, Corr, P, Crookes, D, “Evolving Go

Playing Strategy in Neural Networks”, 1994,
available on the Internet at
ftp://www.joy.ne.jp/welcome/igs/Go/computer/egp
snn.ps.Z

[4] Enderton, H, “The Golem Go program”. Technical

Report CMU-CS-92-101, School of Computer
Science, Carnegie-Mellon University, 1991,
available on the Internet at
ftp://www.joy.ne.jp/welcome/igs/Go/computer/gol
em.sh.Z

[5] Enzenberger, M, “The Integration of A Priori

Knowledge into a Go Playing Neural Network”,
1996, available on the Internet at
http://www.markus-enzenberger.de/neurogo.html

[6] Fotland, D, “Knowledge Representation in the

Many Faces of Go”, 1993, available on the
Internet at http://www.smart-
games.com/knowpap.txt

[7] GNU Go, latest version can be found at

http://www.gnu.org/software/gnugo/gnugo.html

[8] Müller, M, “Computer Go as a Sum of Local

Games: An Application of Combinatorial Game
Theory”, PhD thesis, ETH Zürich, 1995, available
on the Internet at
http://www.cs.ualberta.ca/~mmueller/publications.
html

[9] Plaat, A, “MTD(f), A Minimax Algorithm Faster

than NegaScout”, 1997, available on the Internet at
http://www.cs.vu.nl/~aske/mtdf.html

[10] Reiss, M, Go4++, information can be found on the
Internet at
http://www.reiss.demon.co.uk/webgo/compgo.htm

[11] Richards, N, Moriarty, D, Miikkulainen, R,

“Evolving Neural Networks to Play Go”, Applied
Intelligence, 1996, available on the Internet at
http://www.cs.utexas.edu/users/nn/pages/publicati
ons/neuro-evolution.html

[12] Schraudolph, N, Dayan, P, Sejnowski, T,

“Temporal Difference Learning of Position
Evaluation in the Game of Go”, Neural
Information Processing Systems 6, Morgan
Kaufmann, 1994, available on the Internet at
ftp://bsdserver.ucsf.edu/Go/comp/td-go.ps.Z

[13] Computer Go Mailing List, see

http://www.cs.uoregon.edu/~richard/computer-
go/index.html

[14] Muller, M, “Computer Go: A Research Agenda”,

1999, available on the Internet at
http://www.cs.alberta.ca/~mmueller/publications.h
tml

Networked team games
Fiona French, Nic Hollinworth, Nigel Medhurst, Xavier Viader

London Metropolitan University
London, United Kingdom

Abstract
In this paper, we describe the design of a
networked, multiplayer game designed for
first year students taking a flexible learning
course in “Introduction to Multimedia
Coding” at London Metropolitan University.
The game aims to motivate students, to
help them consolidate their knowledge, to
introduce them to teamwork, to provide
them with peer support and to give them
the opportunity to make social contacts.
The prototype version of the game has been
successful in meeting some of these
objectives and feedback from students has
clear implications for future developments.

Introduction
In Higher Education, there is currently a
strong emphasis on the development of
flexible learning courses which can be
delivered online. Such courses facilitate
government and institutional aims of
widening participation by producing an
alternative means of learning. There is also
a potential marketing advantage. When a
course has been developed and proved itself
to be successful, institutions may choose to
offer it nationally or internationally, thus
attracting a more diverse range of students
and extending their traditional geographical
limits.

Collis and Moonen (2001) maintain that the
key idea in flexible learning is to provide
learner choice. Areas that could potentially
become more flexible include location,
delivery of resources, types of
communication and interaction within the
course, programmes of study and methods
of assessment. From the students' point of
view, online courses provide the opportunity
to access materials from home at convenient
hours and to combine study more easily

with full-time or part-time work. Learning
becomes self-directed, rather than
structured by teacher-led sessions, which
should promote autonomy.

Brookfield (1995) suggests that adults
engaged in self-directed learning “...use
social networks and peer support groups for
emotional sustenance and educational
guidance.” However, a potential
disadvantage of distance learning is the lack
of opportunity for teamwork, as it is likely to
be difficult to arrange meetings with other
students if there are no scheduled lectures
or tutorials. This is particularly a challenge
for first year students, who need
opportunities to socialise and network.
The designers' intention was to counteract
this problem by introducing a playful, team-
based activity to complement the online
learning resources.

The Game has been designed as an ice-
breaker for first year undergraduates taking
a flexible learning course in “Introduction to
Multimedia Coding”. The game itself is
simple and in its prototype phase. As an
optional component of a flexible learning
package, it introduces the concept of
teamwork to first year students, by giving
them the challenge of taking part in a
multiplayer competition which requires them
to work together to complete levels of the
game.

Team Play
Play is traditionally a social activity and this
is an aspect that has been missing from
many computer games. Recent
improvements in networking technology and
hardware have given rise to a renewed
potential for networked multiplayer games,
and this is revitalising the gaming industry.
Smith (2001) acknowledges that MPGs are

the future of game design, noting out that
at present they rely on the agency of other
players to provide the majority of their
excitement and interest. The next
generation of gaming consoles (PS2, X-Box)
has built-in internet connectivity, allowing
players to become involved in online games.
Mobile devices, such as the GBA, may soon
be seriously challenged by mobile phones
that can play java games and have colour
displays and internet access.

The current climate suggests that social
gaming will involve competing against other
players in an open arena. While this may be
more stimulating and less predictable than
trying to beat a computer program, it
reveals limited possibilities for collaboration
between players and associated practise of
communication skills, such as negotiating,
turn-taking, presenting information and
seeking resolution, all of which are qualities
that make games attractive to educators.

McGenere (2000) categorises games as
cooperative, competitive and individualistic,
and points out that cooperative games
provide opportunities for teamwork, which in
itself can be a highly motivating factor for
players. Kirriemuir (2002) indicates five
distinct benefits that can be associated with
the use of computer games in a relevant
educational context: (i) hand-eye
coordination; (ii) developing strategic skills;
(iii) developing team, social, communication
and resource sharing skills; (iv)
encouraging curiosity and experimentation;
(v) familiarity with technology.

Bekoff's observations (2002) of pack animals
lead him to believe that a sense of fairness
is innate, because social play could not exist
without it. Animals who are active in
playing with each other bond better with the
pack and are less likely to be forced to go
off as lone hunters. From a biological point
of view, being a good player aids longevity
and the potential to reproduce. Bekoff
concludes that morality has evolved through
play because it helps animals, including
humans, to flourish in a social environment.

Real teams and virtual teams

Multimedia students need to learn how to
work successfully together, so that they can
complete team-based assignments.
Teamwork also provides them with essential
training for work within their industry.

McGrath's taxonomy for group activities
(1984) includes conflict, power struggles
and competitions as part of the ritual
leading towards performance. These kinds
of interactions have all been evident in the
performances of multimedia students trying
to work together, but the most successful
and creative teams are almost always made
up of students who enjoy each others'
company and learn to collaborate. Panitz
(1996) defines collaboration as: “...a
philosophy of interaction and personal
lifestyle,” contrasting it with cooperation,
which is defined as: “...a structure of
interaction designed to facilitate the
accomplishment of an end product or goal.”
Students must learn to cooperate with each
other, or their team will fail; if they learn to
collaborate, they will probably have some
fun, be motivated to succeed and gain
tremendous satisfaction from participating in
groupwork.

Research has been done into the
pyschological profiles of people working in
teams in a real environment (Belbin, Myers-
Briggs, McGrath) and also in the field of
computer-supported collaborative work,
both in an educational and a work context
(Davis, Brookfield, Chandler, Nunamaker).
Certain phenomena seem to be recurrent,
such as the tendency for team members to
slip into familiar roles, and for some to
participate actively while others “lurk.”

Davis (1997), writing about virtual
communities, points out that under normal
social conditions, certain expectations have
to be fulfilled in order for someone to be
accepted as part of a community. In
cyberspace, however, many people are not
willing to engage in social exchanges.
Nunamaker (1997) highlights the difficulty of

getting users of online systems to maintain
their engagement over time. Interaction
between players in online games has been
investigated by Manninen (2001), who noted
that the majority of communication took
place outside the game system. However,
from an educational perspective, this is not
necessarily a disadvantage, as the purpose
of including a multiplayer game is to actively
encourage social contact between players
away from the computer screen.

Description of The Game
Playing the game is optional. Students who
wish to participate email their tutor for a
login and password to the game
environment. They are assigned to a team
of four players and given email contact
details for the other team members.
Students are encouraged to make real
contact with their team, so that they can
cooperate during play and help each other
gain high scores.

The game consists of a number of levels,
loosely related to the content of the course.
Some levels require the players to recycle
information they should have acquired
during the course. These could be
interpreted as a type of self-assessment
activity, where the player has an opportunity
to practise before submitting a final score.
Other levels of the game are experiential
and aim to simulate for players the
experience of, for example, sensory
deprivation. These are linked to course
components dealing with accessibility and
cognitive processing. Examples of game
levels are described below.

All team members need to achieve a
minimum score in order for the team to
move on to the next level. Each player's
score is added to the total. There is a score
screen that shows how each team is
progressing and reveals which teams are in
the lead.

“Scoreboard” screen

Level 1 – Team log-in

The initial challenge for the team is to meet
each other, exchange information and input
relevant data to the game, such as choosing
a team name and a representative icon.
The point of this exercise is to initiate

conversation and promote cooperation
between team members, who may not have
previously met. Only when all team
members have successfully completed the
task with identical information does the
team gain access to Level 2.

Level 2 – Know your enemy

This is a version of the ubiquitous shoot-em-
up, with course tutors for targets. The twist
is that players can be awarded plus or minus
points, depending on who they hit. The

intention is to ensure that students know
which members of staff to contact about the
course and that they know their tutors'
names and can recognise them.

“Know your enemy” screen

Level 4 – Hit the Spot

This is the first of a series of games that
explore perception. For example, some
variables, such as colour, can be recognised
very quickly, but are limited in range. It
takes longer to distinguish between different

shapes that are the same size, and yet the
range of possibilities is infinite. Players gain
a high score if they have a fast reaction
time. They have to match the object
revealed behind a sliding screen with a
moving miniature button.

“Hit the Spot” screen

Level 6 – Treasure Hunt

In this level, players are gradually deprived
of visual data and have to rely on audio
effects in order to navigate the game
environment. There are practice games,
which train the player to recognise particular
sounds and interpret their meaning,
followed by a scoring game which only
shows a black screen. Players have to avoid
mines and find golden cups, guided by

 different sounds that indicate their relative
position and proximity to danger or buried
treasure.

Evaluation of prototype
The prototype game was tested in a
workshop environment, where it was easy
for team members to meet face-to-face and

exchange ideas and information. The
session was timetabled and organised, but
not mandatory, allowing disinterested
parties to continue with alternative activities.
The players were second year students who
were familiar with many but not all of their
colleagues. They were put into teams with
students with whom they did not normally
work. It was clear that most of the students
enjoyed the experience of playing
synchronously and sitting together to
discuss the game. This led to the decision
that in future implementations, a scheduled
introductory session would be preferable to
leaving novice players to make their own
arrangements to form teams.

Manninen (2001) suggests that co-operative
incentive structures that reward individual
group members based on the performance
of the group can stimulate peer pressure
and lead to participation and coordination of
effort. This was found to be the case during
gameplay, when team members helped
each other to complete levels so that the
whole team could continue. During the
session, the atmosphere was loud and
enthusiastic. One student commented: “It
was a very good way of helping build
communication and spirit.”

Of the eleven teams, each consisting of four
players, the scoreboard revealed one clear
winning team (623 points), four potential
challengers and five teams who did not
progress past level 1. Some players gave up
if they encountered any technological
hitches. They were easily bored and
unwilling to test an imperfect application. As
the game was designed to be persistent and
tackled by players in turn at different times,
the player status was tied to the log-in
mechanism. This meant that players were
obliged to log in again at the end of every
level in order to proceed, which was quickly
revealed to be a flaw.

Observation of players and feedback from
students was useful and constructive. Some
levels were difficult to complete. It could
be argued that the application provided
insufficient feedback for novice users.
However, this was often treated as a

problem-solving activity, which promoted
communication.

Conclusion
The game seemed to meet the immediate
objectives of promoting teamwork and
providing opportunities for social contact
between students. It would be an
interesting activity to use at the start of a
first year course. Large classes can be
intimidating and this could be a friendly and
fun method for helping students to break
the ice, as well as practise their computer
skills.

Consolidation of knowledge was not
assessed in this evaluation, although some
of the levels were quizzes that related to
course material. Self-assessments are often
popular with students, as feedback is
computer-generated and therefore
immediate, performance is private and
exercises can be repeated at the student's
own pace. While it would be useful to know
if quizzes helped students to recycle course
material, it would be a pity to tarnish the
game with the label “edutainment,”
condemned by Jenkins (2001) as having “...
all of the entertainment value of a bad
lecture and the educational value of a bad
game...”

It will be interesting to discover whether
teams persist over a semester in the gaming
environment and whether they manage to
transcend the typical obstacles facing
groups in a collaborative virtual
environment.

References
Bekoff, M (2002) Virtuous Nature, New
Scientist 13 July 2002, Reed Business
Information Ltd.

Belbin, Meredith (1993). Team Roles a
Work. London: Butterworth and
Heinemann.

t

Brookfield, Steven (1995) Adult Learning: An
Overview. In: A. Tuinjman (ed.) (1995)

International Encyclopedia of Education,
Oxford: Pergamon Press.
http://nlu.nl.edu/ace/Resources/Documents/
AdultLearning.html

Chandler, H. E. (2001). The complexity of
Online Groups: A case study of
asynchronous distributed collaboration. ACM
Journal of Computer Documentation, 25:1-
2.

Davis, M. (1997), Fragmented by
technologies: a community in cyberspace.
In: Interpersonal Communication and
Technology Journal Vol. 4 No 1/2.
http://jan.ucc.nau.edu/~ipct-j/#byissue

Game Boy Advanced: Nintendo
http://www.gbacentral.net/

Jenkins, Henry (2001) MIT Games-to-teach
Project
http://cms.mit.edu/games/education

Kirriemuir, J (2002) The relevance of video
games and gaming consoles to the Higher
and Further Education learning experience.
JISC 2002
http://www.ceangal.com/

Manninen T. (2001) Virtual Team
Interactions in Networked Multimedia
Games - Case: “Counter-Strike” - Multi-
player 3D Action Game. In Proceedings of
PRESENCE2001 Conference, May 21-23,
Philadelphia, USA, Temple University

McGrath, J., & Hollingshead, A. (1994).
Groups interacting with technology.
Thousand Oaks CA: Sage.

McGrenere, J. (1996) Design: Educational
electronic multi-player games A literature
review. (Technical Report No. 96-12).
Department of Computer Science, University
of British Columbia, Vancouver, BC, V6T
1Z4, Canada.
http://citeseer.nj.nec.com/mcgrenere96desi
gn.html

Myers-Briggs Type Indicator: Working out
your Myers-Briggs Type

http://www.teamtechnology.co.uk/tt/h-
articl/mb-simpl.htm

Nunamaker, J. F. (1997) Future research in
group support systems: needs, some
questions and possible directions.
International Journal of Human-Computer
Studies, 47, 357-385.

Panitz (1996) A Definition of Collaborative vs
Cooperative Learning. Published online in
Deliberations.

http://www.lgu.ac.uk/deliberations/collab.le
arning/panitz2.html

Play Station 2: Sony
http://www.playstation.com/

Smith, Harvey (2001) The Future of Game
Design: Moving beyond Deus Ex and other
dated paradigms. Keynote for Multimedia
International Market 2001; published online
by International Game Developers
Association.
http://www.igda.org/Endeavours/Articles/hs
mith_printable.htm

X-Box: Microsoft
http://www.xbox.com/

http://nlu.nl.edu/ace/Resources/Documents/AdultLearning.html
http://nlu.nl.edu/ace/Resources/Documents/AdultLearning.html
http://jan.ucc.nau.edu/%7Eipct-j/
http://www.gbacentral.net/
http://cms.mit.edu/games/education
http://www.ceangal.com/
http://citeseer.nj.nec.com/mcgrenere96design.html
http://citeseer.nj.nec.com/mcgrenere96design.html
http://www.teamtechnology.co.uk/tt/h-articl/mb-simpl.htm
http://www.teamtechnology.co.uk/tt/h-articl/mb-simpl.htm
http://www.lgu.ac.uk/deliberations/collab.learning/panitz2.html
http://www.lgu.ac.uk/deliberations/collab.learning/panitz2.html
http://www.playstation.com/
http://www.igda.org/Endeavours/Articles/hsmith_printable.htm
http://www.igda.org/Endeavours/Articles/hsmith_printable.htm
http://www.xbox.com/

REAL-TIME VIDEO BASED MOTION CAPTURE SYSTEM AS INTUITIVE 3D GAME INTERFACE

Yoshiaki Akazawa, Yoshihiro Okada, and Koichi Niijima

Graduate School of Information Science and Electrical Engineering

Kyushu University
6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580 JAPAN

{y-aka, okada, niijima}@i.kyushu-u.ac.jp

KEYWORDS

Motion capture, Motion recognition, Interface, 3D games

ABSTRACT

This paper proposes a real-time, video based motion capture
system using one video camera and simulates its use as an
intuitive interface for interactive 3D games. Since
conventional video based motion capture systems need many
cameras and take a long time to deal with many video
images, they cannot generate motion data in real time.
Therefore they cannot be used as a real-time input device for
a standard PC. To deal with this problem, the authors have
already proposed a motion capture system using one video
camera (Akazawa et al, 2002a). It takes video images of the
upper part of the body of a person and generates upper body
motion data, e.g., x, y, z position of hands, a face rotation,
etc.. Since the system employs a very simple motion-
tracking algorithm, so it generates such upper body motion
data in real time. This paper especially focuses on the
tracking of hands motion on the top of a desk, and proposes
the use of its motion data as 3D game input data instead of
that from a mouse device.

1. INTRODUTION

This paper treats a video-based motion capture system using
one video camera. Many researches on the motion capture
system have been made so far because motion data has
become in great demand for CG animation productions and
3D game productions. Conventional video based motion
capture systems use many video cameras to obtain accurate,
desired motion data so they cannot generate motion data in
real time since it takes a long time to deal with many video
images. Consequently it is impossible to use them as a real-
time input device for human motion. Moreover such
systems are very expensive so they are not suitable for an
input device of a standard PC. To overcome this problem,
we have already proposed a real-time, video based motion
capture system using only one video camera to be used as an
input device for a standard PC (Akazawa et al, 2002a).
Since our system uses a very simple motion-tracking
algorithm based on color and edge distributions, it is capable
of tracking the upper part of the body of a person, e.g.,

hands, a face, etc, and generates their motion data in real
time. Our system is easily extended to track the lower part
of the body of a person as well as the upper part of the body
and to generate more accurate 3D motion data by using two
video cameras (Akazawa et al, 2002b).
This paper mainly describes the characteristics of our
proposed motion capture system consisting of one video
camera as an input device to be used instead of a mouse
device for intuitive 3D game interface. The focus is on the
tracking of hands motion. The system takes video image of
the hand from one video camera and extracts its x, y z
position data. This information can be used as an input data
like that from the mouse-device motion. Furthermore, the
system recognizes specified shapes of the hand, e.g., a paper
or a stone shape. This information can be used as an input
data like the mouse-device button press or release. In this
way, our motion capture system can be used as an intuitive
interface in place of a mouse device for various application
software including games. In this paper, we also clarify its
usefulness by showing some 3D games.

[Related work]
Many works on the video based motion capture system have
been made so far (Gravrila, 1999). Recently motion capture
systems without using any markers have been studied (Wren
et al, 1997). Their standard method for tracking the human
motion is based on the construction of a 3D shape as voxel
data from several silhouette images (Snow et al, 2000).
However, this process needs huge computation time. Some
particular techniques and other constraints are necessary to
reduce this computation time. Weik and Liedtke proposed a
hierarchical method for 3D pose estimation (Weik and
Liedtke, 2001). Luck et al. proposed a real-time algorithm
by reducing joints of a human body and their degrees of
freedom (Luck el al., 2001). These systems use four video
cameras at least and need a huge performance space. Our
system uses only one video camera. Already some methods
that use one video camera are proposed, but our method is
simpler than those. Musse et al. proposed hand sign
recognition method using a neural network. This system can
recognize many hand signs. However the system has to use
data glove while our system uses only one video camera.

The remainder of this paper is organized as follows. Section
2 explains system overview. Section 3 explains tracking
algorithm. Section 4 shows example games. Finally,
Section 5 concludes the paper.

2. SYSTEM OVERVIEW

First of all, as an overview of the system, this section briefly
describes its hardware architecture and software architecture
separately.

2.1 Hardware architecture

The system hardware consists of a standard PC, a video
capturing board, and a video camera. If there are two
systems connected with each other through the network as
shown in Figure 1, they communicate with each other and
work collaboratively. This hardware generates motion data
by extracting person's image from each frame of video
camera images and by computing the difference between
two adjoining person's images. This motion data is used as
an input data for other applications. Using the network
communication facility (network thread in Figure 2), this
motion data is sent to other applications running on another
computer through the network.

2.2 Software architecture

The software architecture has two main threads, i.e., tracking
thread and application thread, as shown in Figure 2.
Tracking thread tracks the person's motion, generates motion
data and sends it to a 3D graphics application, i.e.,
application thread. Visualization thread displays a person
image as animation according to the motion data on a
display screen. This is used for checking the motion
tracking. Finally network thread is a network
communication facility itself. Tracking thread sends motion

data to other 3D graphics applications running on a different
computer through this tracking thread.

3 TRACKING METHOD

This section explains how to track the person's motion.
Before tracking, the system requests an initializing process.
And then the system starts the tracking process.

3.1 Initializing process

As previously mentioned, the system tracks the person's
motion by extracting person's image from each frame of
video camera images and by computing the difference
between two adjoining person's images. First of all the
system needs to store a background image excluding a
person as an initial treatment.
After storing the background image, the system starts to
track the motion. For each video frame in the tracking
process, the system extracts the silhouette of a person by
subtracting the stored background image from the current
video image, and extracts a person’s image using this
silhouette as shown in Figure 3.
As explained in the next subsection, since the motion
tracking is based on the color information, the system needs
to store an initial state of the color information of the
person's image. The system requests the user to perform
his/her initial pose in order to obtain the color information of

Figure 1: Hardware architecture

Figure 2: Software architecture

Figure 3: Image extraction process

Figure 4: Initial pose setting

each tracking area of the user’s body as shown in Figure 4.

3.2 Tracking hands

The motion tracking is mainly carried out based on the color
information of each specific area of the body. Strictly
speaking, the median point of the color information is used
as the center of the corresponding focus area. It is calculated
using Equation 1.

 () ()∑∑
==

==
m

i
cc

m

i
cc iY

m
YiX

m
X

11

1,1
　 (1)

where Xc, Yc are the centroid coordinates of the color
distribution. Xc(i), Yc(i) are the X, Y coordinates of the i-th
color point, and m is the number of color points.

However, practically the color information is insufficient for
robust motion tracking. For example, the color of the skin is
uniformly distributed over the arm as shown in Figure 5. If
the user wants to track his/her hands, its color centroid is
influenced by the arm color and it moves to the center of the
arm area gradually. Consequently the system will loose the
focus area. To compensate this weakness, we employ new
measure concerning the edge distribution in addition to the
color information. Similar to the color information, the
median point of the edges, which are the contour pixels of a
focus area, is used as the center of the area. It is calculated
using Equation 2.

() ()∑∑
==

==
n

i
ee

n

i
ee iY

n
YiX

n
X

11

1,1
　 (2)

where Xe, Ye are the centroid coordinates of the edge

distribution. Xe(i), Ye(i) are the X, Y coordinates of the i-th
edge point and n is the number of edge points.

The edge centroid is always located on the upper part of the
hand. So the system does not loose the focus area. However,
the edge centroid is strongly influenced by the change in the
shape of hand. Therefore, we use weight values for both the
color centroid and the edge centroid. As a result, the focus
area becomes stable. The centroid of the focus area is
calculated using Equation 3.

ec

eecc
p

ec

eecc
p ww

YwYw
Y

ww
XwXw

X
+
+

=
+
+

= , (3)

where Xp,Yp are the centroid coordinates of the focus area. we
is the weight of the edge and wc is the weight of the color.

3.3 Motion data

As described in the previous subsection, our system
generates x, y location data for each tracking area. This is
enough for most applications. Especially when using our
motion capture system as a mouse device, this is enough.
However, for some cases it is not enough. For example, in a
virtual reality application, usually we need 3D position data
for manipulating a 3D object. Therefore, we employ another
measure concerning the depth.
The depth value is determined by the size of a focus area as
shown in Figure 6. This reason is easy to understand
because the size of an object far from the camera position is
smaller than that of the near one.

Figure 5: Computing focus point

Figure 6: Depth values based on their focus area size
Figure 8: Edge distribution: two typical histograms
of a stone shape and a paper shape

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .2 0 .4 0 .6 0 .8 1

distance/radius of focus area

co
un

t/e
dg

e
di

str
ib

ut
io

n
co

un
t

Stone p ap er

1

 2

Figure 7: Shape recognition by edge distribution

3.4 Shape recognition

Furthermore the system recognizes some shapes of a specific
object besides generating motion data. Currently the system
can recognize the hand shapes, e.g., a stone and a paper. To
recognize a requested hand shape, the system has to
calculate the difference between a current hand image and a
candidate hand shape image. We employ a very poplar
method; to calculate the difference between two images, the
system compares the histograms of their edge distributions.
A histogram is generated from the following Set D . This set
means how each point of the edge is distributed from the
centroid of the hand image as shown in Figure 7.

 { }nDDDD ,,, 21 L= (4)

where Di is i-th edge distance from the centroid of the focus
calculated by the following equation.

() ()22 YyXxD iii −+−= (5)
where X and Y are centroid coordinates of the focus area
calculated by Equation 3. xi and yi are the coordinates of the
i-th edge.
Figure 8 shows two typical histograms of a stone shape
image and a paper shape image. Since their images of
different shapes of hand have different histograms, therefore,
by calculating the error between the histograms of a current
hand image and a candidate stone shape image, and the error
between the histograms of the current hand image and a
candidate paper shape image, and then finding them
minimum, the system recognizes the current hand image to
be a stone shape image or not.

Histograms comparison

To calculate an error between the histograms of a current
hand image and a candidate shape image, i.e., a stone shape
or a paper shape, we have to prepare histograms of such
candidate shape images in advance. Figure 9 shows the two
candidate histograms of a stone shape and a paper shape.
These candidate histograms were calculated from the data
actually captured by our motion capture system. Strictly
speaking, each of these candidate histograms is obtained
through some processes. First process is to generate ten
histograms from ten different sets of capture data of the
same hand shape. Second process is to normalize each of

these ten histograms. Normalization is adjusting the
maximum rank size and the total amount. Final process is to
calculate the average of these ten normalized histograms and
to take it as a candidate histogram. Each candidate
histogram is represented as the following Set H .

{ }nHHHH ,,, 21 L= (6)

where n is the number of ranks. Hi is i-th rank value.
Then our motion capture system calculates errors between
each of these candidate histograms and the histogram of the
current hand image actually captured. We employ Euclidean
distance as an error metric. Each error is calculated using
the following equation.

() () ()22
22

2
11 ''' nn HHHHHHE −++−+−= L (7)

where Hi is i-th rank value of the histogram of a current
video image. Hi is i-th rank value of the candidate histogram
of a stone shape image or a paper shape image.

Finally, the system outputs a symbol value according to the
result of calculated errors. Currently the system recognizes
only two hand shapes. However, it is possible to recognize
more other shapes by preparing corresponding candidate
histograms. In this way, this shape recognition method is
very simple and useful. However, this method is insufficient
to recognize more complex hand signs. So, we will
implement more efficient technique to enable our system to
recognize more hand signs (Cui and Weng 1996).

Noise removal about hand shape symbol

As previously mentioned, our system generates position data
as the center of the hand image in real time. However such
position data does not match the true center position of the
hand. Especially when the user moves his/her hand quickly,
its error between the generated position data and the true
center position come to be bigger as shown in Figure 10. In
this case, the system calculates the incorrect histogram of a
hand shape distribution, and outputs an incorrect symbol
value. This data becomes a noise. To recognize the hand
shape correctly, the system removes this noise as follows:
The following Set S is a sequence of symbols that the system
outputs as the result of hand shape recognition.

()1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0=S (8)

Figure 9: Base histograms of two shapes

0

200

400

600

800

1000

1200

1 5 9 13 17 21 25 29 33 37 41 45 49

class mark

no
rm

al
iz

ed
 c

ou
nt

stone paper

Figure 10: Failure case because of rapid movement

where 0 and 1 indicate a paper shape and a stone shape
respectively.

As is easily understood, there are two noise values in S. The
ninth symbol 1 is the first noise value and the 28th symbol 0
is the second noise value. It is easy to remove these noise
values because if the length of a subsequence of the same
symbols is less than, for example, five, the subsequence
must be noise. In this way, our system removes noise values
and outputs the correct Set S’ as follows.

()1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0'=S (9)

As explained in this section, our system outputs 3D motion
data of each hand and a symbol value corresponding to its
shape. This data is almost similar to the one output by a
mouse device. Next section introduces some 3D game
examples that use our motion capture system as an input
device instead of a mouse device.

4. EXPERIMENTS

4.1 3D game examples

In this section, we introduce two board game examples, i.e.,
chess and reversi games as shown in Figure 11 and Figure
12. These games are developed using IntelligentBox (Okada
and Tanaka, 1995, Okada and Itoh 2000), which is a
constructive visual 3D software development system.

IntelligentBox provides various software components as 3D
visible, manually operable reactive objects called boxes. For
example, as shown in Figure 11, each chessman rides on a
XYMoverBox. This box moves along left-right direction and
forward-backward direction according to the user’s mouse
device operation. As shown in Figure 12, each reversi chip
is also attached to a XYMoverBox. The user moves each
chip by his/her mouse device operation. Although, in this
way, a mouse device is originally the input device for these
games, our motion capture system also becomes the input
device for these games as follows.
Figure 13 shows a composite box that communicates with
the motion capture system and handles a mouse device.
Strictly speaking, a VMCBox communicates with the motion
capture system and reads hand motion data. A
VirtualMouseBox handles a mouse device according to the
hand motion data. Three StringBoxes represented in wire
frame are attached to the VirtualMouseBox. These boxes
display a mouse-device X, Y position and left-button click
information. Using this composite box, the user can move a
chessman or a chip by his/her hand motion as shown in
Figure 14. When the user wants to grasp an object, he/she

Figure 11: Chess game

Figure 12: Reversi game

Figure 13: A composite box that communicates
with the motion capture system and handles a
mouse device

Figure 14: User control

takes a grasp action and simultaneously mouse device left-
button click information becomes true. Then, he/she moves
the object to where he/she wants to place, and releases it by
his/her release action. In this way, the user can feel
immersion as if he/she played the real board game.
In the actual case, you play a chess or reversi game with
your opponent. Network collaboration environment for this
case will be build as follows. IntelligentBox also provides a
network communication facility as a particular box called
RoomBox (Okada and Tanaka 1998). Multiple RoomBoxes
on a different computer share specific user-operation events
with each other. Therefore those RoomBoxes virtually
provide multiple users with a shared 3D space. Then using
the RommBox, it is possible to build network collaboration
environment rapidly and easily. Needless to say, technically
it is possible to use RoomBox on Internet. However, if you
want to build actual playable network games using RoomBox
on Internet, IntelligentBox has to employ advanced network
technology, e.g., client-server mechanism, particular

Figure 16: The change of position in three video
frames

Figure 17: The changes of x, y position and the
corresponding smooth data

0

50

100

150

200

250

300

1 6 11 16 21 26 31

x posi tion

y
po

sit
io

n

motion data

0

50

100

150

200

250

300

1 6 11 16 21 26 31

x posi tion

y
po

sit
io

n

smooth data

Figure 15: Actual motion tracking example

network protocol and so on since RoomBoxes on different
computers communicate with each other by a standard peer-
to-peer socket connection.

4.2 Performance

As for the performance of our system, the sampling rate,
when its resolution is 320x240 pixels, is around ten fps on
the standard PC (Pentium IV 2.0 GHz, 1.5GB) with one
video camera. In this experiment, both the motion capture
system and IntelligentBox ran on the same PC. Generally
ten fps is enough for most interactive 3D applications.

4.3 Discussion

As described in the previous sections, our system generates
motion data from the information of video images.
Generally speaking, since the video camera is very sensitive
to the light and easily affected by photo-noise, so video
images can undergo change. As a result, as shown in Figure
16, even if hand in three different video frames has almost
the same shape and position, corresponding calculated focus
points are different from each other and then position values
generated by the system vibrate as shown in the upper chart
of Figure 17. This becomes serious problem when using our
system as an input device that generates absolute position
values. To solve this problem, we will make motion data
smoother as shown in the lower chart of Figure 17.

5. CONCLUDING REMARKS

This paper proposed the real-time, video based motion
capture system as intuitive 3D game interface. Since
conventional video based motion capture systems use many
video cameras and take a long time to deal with many video
images, they cannot generate motion data in real time.
Therefore they cannot be used as a real-time input device for
a standard PC. On the other hand, our proposed system uses
only one video camera and generates motion data in real
time since our system employs a very simple tracking
algorithm based on color and edge distributions of tracking
focus areas. So our system can be used as an input device
for a standard-PC. In this paper, especially we clarified
usefulness of our system as intuitive input interface for 3D
games by showing some example games.
As a future work, the very common problem concerning
motion capture systems is an occlusion problem. Although
we did not mention it in this paper, we have already

proposed one solution for it and we will report it in
MVA2002 conference (Akazawa et al, 2002c). Furthermore,
we will develop more example games and evaluate their
performance to improve our algorithm.

REFERENCES

Akazawa, Y., Okada, Y. and Niijima, K. 2002a. “Real-Time
Motion Capture System Using One Video Camera Based on
Color and Edge Distribution”, Proc. of CSCC2002 (Recent
Advances in Circuits, Systems and Signal Processing), WSEAS
Press, 368-373.

Akazawa, Y., Okada, Y. and Niijima, K. 2002b. “Real-Time Video
Based Motion Capture System Based on Color and Edge
Distribution, Proc. of IEEE Int. Conf. on Multimedia and Expo,
Vol. II, 333-336.

Akazawa, Y., Okada, Y. and Niijima, K. 2002c. “Robust Tracking
Algorithm Based on Color and Edge Distribution for Real-
Time Video Based Motion Capture Systems, to appear in IAPR
Workshop on Machine Vision Applications 2002.

Cui, Y. and Weng, J. 1996 “Hand Sign Recognition from Intensity
Image Sequences with Complex Background.” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 88-93

Gravrila, D. M. 1999. “The Visual Analysis of Human Movement:
A Survey.” CVPR, Vol. 73, 82-98.

Luck, J., Small, D. and Little, C.-Q. 2001. “Real-time Tracking of
Articulated Human Models Using a 3D Shape-from-Silhouette
Method.” Robot Vision 2001, LNCS 1998, 19-26.

Okada, Y. and Tanaka, Y. 1995. “IntelligentBox: A Constructive
Visual Software Development System for Interactive 3D
Graphic Applications.” Proc. of Computer Animation '95, IEEE
Computer Society Press, 114-125.

Okada, Y. and Tanaka, Y. 1998. “Collaborative Environments of
IntelligentBox for Distributed 3D Graphics Applications.” The
Visual Computer, Vol. 14, No. 4, 140-152.

Okada, Y. and Itoh, E. 2000. “IntelligentBox: Its Aspects as a
Rapid Construction System for Interactive 3D Games.” Proc. of
First International Conference on Intelligent Games and
Simulation, SCS Publication, 114-125.

Snow, D., Viola, P and Zabih, R. 2000 “Exact Voxel
Occupancy with Graph Cuts.” in Proc. IEEE CVPR.

Wren, C., Azarbayejani A., Darrel, T. and Pentland, T. 1997.
“Pfinder: Real-Time Tracking of the Human Body. ” IEEE
Trans. Pattern Anal. and Machine Intel., Vol. 9, No. 7, 780-785.

Weik, S. and Liedtke, C.-E. 2001. “Hierarchical 3D Pose
Estimation for Articulated Human Body Models from a
Sequence of Volume Data. ” Robot Vision 2001, LNCS 1998,
27-34.

Musse, S. R., Osorio, F. S., Garat, F., Gomez, M. and Thalmann, D.
2000. “Interaction with Virtual Human Crowds Using Artificial
Neural Networks to Recognize Hands Postures.” Workshop
on Virtual Reality 2000, 107-118.

KEYWORDS

Emergence, emergent modelling, bottom-up modelling,
complexity, artificial life, games development.

ABSTRACT

Conventional modelling in games development is based
on a top-down approach, in which the developer determines
all possible states of the model. However, with an increase
of the number of components of the modelled system, this
approach becomes inefficient and incapable of describing
complex phenomena, such as animal movement in
biological systems and behaviour of complicated
mechanisms in technological systems. As everything in the
top-down approach depends on the developer, it is also
more difficult to achieve a wide range of different scenarios
and different outcomes of the game using this approach. At
the same time, the top-down approach demands a lot of
expertise from the developer in intricate details of systems
they model, which can only be obtained by studying the
theory of these systems in detail.

Emergent modelling, however, is based on the creation
of simple models of components, so that the system model
is obtained spontaneously, as result of interactions of these
components, without explicit programming. The paper
describes principles of emergent modelling and its potential
in games development in comparison with top-down
modelling.

INTRODUCTION

This paper investigates the concept of emergent
modelling and its role in games development. It draws a
contrast between top-down modelling and emergent
modelling, and demonstrates advantages of the latter from
the function and resources point of view. Using examples of
student work, it discusses how emergent modelling can
provide performance and resource advantages.

Two Modelling Paradigms

The concept of top-down modelling originated in
parallel with the development of the digital computer and
was well suited for procedural programming, where the
code was developed for strictly sequential operation. On the
basis of this approach, the developer models the system as a
whole and determines all states of the model.

The inspiration for top-down modelling goes back much
further than the invention of the digital computer and
procedural languages. It is believed that an extensive use of
traditional mathematics had led to models that could not
reproduce much more than the simplest behaviour in natural
systems (Wolfram, 2002).

Conversely, emergent or bottom-up modelling was
made possible through the invention of object oriented
programming. However, this was only a necessary but not a
sufficient condition for emergent modelling. Simple rules
on a component level and component interaction
architecture produce a self-organised model of the system
as a whole that emerges without explicit programming.

We discuss the origins and the notion of emergence in
the next section.

THE ORIGIN AND NOTION OF EMERGENCE

Although the phenomenon of emergence was already
evident in 1940’s, in early cellular automata models (von
Neumann, 1966), no attempt to establish a formal
framework was made until recently (Holland, 2000).
Although Holland’s work established basic principles of
emergence, a more formal investigation of the subject is
needed before a theory can be developed.

Despite the absence of a formal theory, many authors
have recognised emergence as a necessary condition for
complex behaviour. Conway’s Game of Life (Berlekamp et
al., 1985) relied on emergence to create self-sustaining
patterns in cellular automata, while others used emergence
to create life-like flocking behaviour of artificial agents
named “boids” (Reynolds, 1987).

Numerous works in the field of cellular automata relied
on emergence to achieve complex behaviour and, based on
emergence, four classes of complex behaviour of cellular
automata were established (Wolfram, 1986). Subsequently,
emergence was used as one of pre-requisites to establish a
new field of Artificial Life (Langton, 1992).

Emergent behaviour occurs as result of interaction of
system components driven by simple rules on a component
level. Through this interaction, the system will self-organise
and exhibit behaviour that cannot be predicted on the basis
of rules acting on individual components. It can be said that
in systems with emergent behaviour the whole is more than

EMERGENT MODELLING IN GAMES DEVELOPMENT

Dr Lubo Jankovic
InteSys Ltd

University of Birmingham Research Park
Vincent Drive, Edgbaston

Birmingham B15 2SQ, United Kingdom
E-mail: L.Jankovic@e-intesys.com

the sum of parts. None of the components are aware of the
behaviour of the system as a whole and they do not take it
into account in their behaviour.

Emergence is therefore a phenomenon of self-organised
system behaviour that occurs as result of interaction of
components driven by simple local rules acting on a
component level, where no component is aware of the
behaviour of the system as a whole.

EMERGENT MODELLING PRINCIPLES

We explain here some basic principles for achieving
emergent behaviour of computer models.

Interaction Framework

A basic requirement for emergent behaviour is
component interaction. Individual components need to
supply outputs to and receive inputs from other components
(Figure 1a).

These inputs and outputs must be of matching types, so
that, for instance, a Boolean output channel from one
component can only be received into a Boolean input
channel of another component. If these components all
originate from the same class, then the class needs to have
pairs of inputs and outputs of the same type so that in some
instances only inputs and in some instances only outputs
will be used, after instantiation into its working copies.

However, this direct connectivity between individual
components does not allow for an easy expansion and
maintenance of the model, as addition of new components
requires additional hard coding.

A much more efficient architecture of emergent models
has a common communication line between all components
(Figure 1b), so that new components can simply be added
into the model by instantiation and without any additional
hard coding. However, it was found to be much more
practical to convert this communication line into a more
elaborate container environment that provides infrastructure
for operation of the emergent model (Figure 1c).

Within this container environment there are several
connectivity topologies between the components that will
depend on the nature of the modelled phenomenon and will
also influence the computational intensity of the model.
These different topologies are discussed below.

Full Connectivity

Full connectivity of system components may be required
when modelling systems such as groups of animals, where
each component needs to be aware of each other component
(Figure 2).

This connectivity is still local, as components are

connected to each other one pair at a time. However, as
Figure 3 shows, this does not come without a computational
cost. As each of the N components is at all times influenced
by each other of the N-1 components, the computational
intensity of this type of connectivity is proportional to N2.
This means that the execution speed of the model will
reduce considerably, with a factor of 1/N2, as the number of
components increases.

Neighbourhood Connectivity

Neighbourhood connectivity is suitable for models with
rigid spatial structures, such as mechanisms, or cellular
structures (Figure 4). This type of connectivity does not
allow the components to change their spatial relationship
with reference to other components, and therefore the scope
of application is limited to systems that do not require
spatial flexibility.

Figure 1: Component Interaction: a) Direct; b) Through a
Common Interface; c) Through a Container Environment

Figure 2: Emergent Model of a Shoal of Fish

a)

b)

c)

Figure 4: Emergent Model of a Mechanism

However, as Figure 5 shows, the interaction of the entire

system of components can be calculated in one pass,
making the computational intensity proportional to the
number of components N.

Figure 5: Neighbourhood Connectivity

– N computational intensity

Component to Component Connectivity

Component to component connectivity lies between the
full connectivity and neighbourhood connectivity, and it has
advantages of both topologies (Figure 6). As components
can be spatially distant, this topology does not have the
rigidity of neighbourhood connectivity. And as the
interaction of the entire system can be calculated in one
pass, its computational intensity is proportional to the
number of components N.

Depending on the application, the components are
connected either statically or dynamically, and in the latter
case they do not have a fixed spatial relationship and may
be connected on demand.

Figure 6: Component to Component Connectivity

– local interaction between spatially distant components
created either statically or dynamically produces

computational intensity proportional to N

This can create a very efficient and flexible model.
However, the algorithm that creates the connectivity
topology, such as component vision or component
connectivity demand rules, may add to the overall
computational intensity of the model.

IMPACT ON CAPABILITIES AND RESOURCES

In this section we compare top-down modelling and
emergent modelling from the point of capabilities of models
and impact on development resources.

In top-down models, the entire state-space of the model
is determined by the developer. It is therefore conceivable
that this state-space cannot be infinitely large.
Consequently, the state-space of a game developed using
the top-down approach will have a limited number of
situations, scenarios, and outcomes, and the size of the
state-space will be directly proportional to the resources
used for the development process.

In emergent models, as only models of components are
developed, and the system model is created through self-

Figure 3: Full Connectivity

-interaction of each node with each other gives N2
computational intensity

0 1 2 3

4 5 6 7

8 9 … n

1 2

3 4

5 6

organisation of interacting components, there is a lot less
reliance on the developer. And as the state-space of the
model depends on component interactions alone, it can
become infinitely large. Consequently, a game developed
using the emergent approach will have an infinitely large
state-space and an unlimited number of scenarios and
outcomes.

As top-down models are based on classical theories of
the modelled systems, they have a prerequisite of a
considerable expertise in specific fields of science and
engineering. For instance, to model the human body using
the top-down approach, the developer needs to have
expertise of inverse kinematics. Yet when such model is
developed, not only that the underlying code would be
much more extensive, but the behaviour of the model will
have severe limitations concerning the number of
components, connection topology, and degrees of freedom
that these components can have.

These restrictions do not apply to emergent models.
Modelling the human body will not require any special
underlying theory and can be done without inverse
kinematics. The developer will therefore not need to be an
expert in this particular field. The underlying code will not
be as extensive as in the top-down approach, and the
behaviour of the model will not have limitations concerning
the number of components, component topology, and
degrees of freedom.

EMERGENCE IN GAMES

In this section we discuss some examples of student
work on games development based on emergent modelling.
The examples do not represent fully developed games.
They were produced as Virtual Reality coursework by
Computer Science students at the University of
Birmingham, and were restricted to mini-projects
(Jankovic, 2000). All models were developed in VRML,
Java, and JavaScript.

Figure 7 shows a helicopter with physics based flight
model, implemented on a component level. Running the
model feels realistic as it involves inertia, whilst a laser
beam searches for targets automatically.

Figure 8 shows a pool game that has physics based

collision rules for the balls. Multiple collisions between the
balls, the table, and the cue, and the resultant angles and
velocities of the movement of balls make this model feel
very realistic, and game play infinitely varied.

Figure 7: Emergent Model of a Helicopter Using Principles

of Physics on a Component Level

Figure 8: Emergent Model of a Pool Game

Figure 9 is an illustration of a driving game, where each

car is modelled as an independent component, roaming
freely in the modelled environment. The user controls one
car and is given random driving instructions on the fly.
Success and failure scores are recorded after each action.

Figure 9: Emergent Driving Game

– it enables the user to take the role of one of the agents in
the model

Figure 10 shows a golf game, in which principles of

physics integrated on the component level create realistic
behaviour of balls, as consequence of collisions with the
club, ground, and forces and angles used to hit the ball. This
is an analogue model of the game of golf, and the situations
in the model resemble those in the physical game.

Figure 10: Emergent Golf Game

– it uses principles of physics on a component level to
create realistic behaviour of golf balls

Figure 11 shows emergent tanks which roam around an

urban battlefield. The tanks try to increase their fitness by
destroying other tanks, and can do so on their own, but the
user can take control of one of them and play the game.

Figure 11: Emergent Behaviour of Tanks in an Urban

Battlefield Game - a bird-eye view

All of the above games have several things in common:

they were developed in relatively short time, but still
comprise immensely complex models; the model behaviour
is very realistic and convincing; the state space of the
models is unlimited; there is an unlimited number of
scenarios and outcomes; the developers were not experts in
relevant fields, such as physics, flight mechanics, traffic
modelling, or others; only the first principles were used for
component modelling; the system behaviour was not
explicitly programmed, but emerged by itself.

LIMITATIONS

However, there are some limitations of emergent
models. Certain types of architectures of emergent models
are very sensitive to the number of components. In cases
where full connectivity between system components is
required (Figure 3), the computational intensity of the
model is proportional to the square of the number of
objects, thus considerably reducing the execution speed of
the model with an increase of the number of components.
This can be overcome by partitioning the space into sub-
regions, and providing a dynamic connectivity on demand.

Also, in cases where extreme inputs are applied on the
system components, a mismatch between a discrete time
step required and the achievable frame rate can occur
(Jankovic and Dumpleton, 2000). The resultant
unpredictable behaviour can be overcome by reducing the
time step, but with a detrimental effect on speed.

CONCLUSIONS

The paper compared top-down modelling and emergent
modelling in the context of games development. As the top
down modelling requires all states of the model to be
determined by the developer, the scope of such models is
limited, as they can produce only simple behaviour.

Emergent modelling is based on creation of simple
component models, which through special interaction
architectures gives rise to system model behaviour without
explicit programming. As the state space of the system
does not depend on the developer, emergent games have
unlimited number of situations and outcomes that are not
explicitly programmed. Unlike in the top-down modelling,
the developer only needs to apply simple rules on a
component level, and does not require a special expertise of
the theory of the modelled systems. This can result in
savings of development resources, both in terms of
developer training and the development process.

Student projects that involved development of simple

games confirmed these issues. The models described
involved golf and pool games, combat helicopter
simulation, car driving instruction and an urban battlefield
for tanks. Although the games were developed in relatively
short time as mini-projects, they still had an immense
complexity and an unlimited number of outcomes. The
students were not experts in the fields of traffic simulation,
flight mechanics, and object dynamics, but were still able to
implement first principles on a component level and get
very realistic behaviour, reminiscent of real systems.

Although there are some limitations of emergent

modelling related to full connectivity of large number of
components and also to extreme inputs applied in discrete
time steps, emergent modelling can make games more
realistic and more fun, as well as save on development
resources. Future work will involve the analysis of winning
strategies in games based on emergence.

REFERENCES

Berlekamp, E. R.; J. H. Conway; and R. K. Guy. 1985. Winning

Ways for your Mathematical Plays, Vol. 2: Games in
Particular. Academic Press.

Jankovic, L. 2000. “Games development in VRML.” Virtual
Reality, Vol. 4, No. 5, 195-203.

Jankovic, L. and J. Dumpleton. 2000. Emergent modelling of
complex systems in VRML. In Proceedings of Eurographics
UK 2000, Swansea 4-6 April, 17-24.

Langton, C. 1992. "Life at the Edge of Chaos". In Artificial Life II,
ed. Langton, C. at al. Addison-Wesley, 41-91.

Reynolds, C. W. 1987. Flocks, Herds, and Schools: A Distributed
Behavioral Model. Computer Graphics. Vol. 21, No. 4, 25-34.

Von Neumann, J. 1966. Theory of Self-reproducing Automata, ed.
A. W. Burks. University of Illinois Press.

Wolfram, S. 1986. Theory and Applications of Cellular Automata.
World Scientific.

Wolfram, S. 2002. A New Kind of Science. Wolfram Media, Inc.

AUTHOR BIOGRAPHY

The author obtained his PhD in Mechanical Engineering
from the University of Birmingham in 1988. He is Senior
Lecturer at the UCE, Honorary Lecturer at the University of
Birmingham, and the founding Director of InteSys Ltd. His
research interests are in the field of Science of Complexity
and application of its principles to dynamic modelling and
analysis of behaviour of complex systems.

RENDERING
ALGORITHMS

GENERATING DYNAMIC MOTIONS FOR ARTICULATED FIGURES

Stefan M. Grünvogel
Laboratory for Mixed Realities,

Institute at the Academy of Media Arts Cologne
Am Coloneum 1,

D-50829 Cologne, Germany
E-mail: gruenvogel@lmr.khm.de

KEYWORDS
Skeletal animation, motion model, motion tree, motion clip op-
erator

ABSTRACT

For creating real-time animations of 3D characters we intro-
duce motion models, which model a certain kind of motion like
walk or wave. Each motion model has its own set of parame-
ters controlling the specific characteristics of a motion. These
parameters can be changed while a motion model is executed,
thus this allows a change of the characteristics of a motion in
real-time. The motion models produce animations by applying
operators on short clips of animation and blending the results
together. The parameters of the motion model determine the
operators and the animation clips which are used to create the
appropriate animation.

1. INTRODUCTION

Real-time animation of 3D characters is often done by blending
or masking short clips of motions produced by motion captur-
ing or keyframe-animation (Theodore, 2002). The clips for are
short animations which can stand for their own like e.g. a high
foot-kick a low foot-kick, a slow walkloop, a fast walk loop
and so on. If in the real-time application a clip is played (for
example the walk look) and then the user switches to another
movement (e.g. a run loop), then either a short transition from
one movement to the other is calculated or there is a a third
connecting clip between these two motions. Furthermore dif-
ferent clips not concerning the same joints of the character can
be mixed by masking, i.e. if we have e.g. a wave motion and
a walk motion, then the arms are animated by the wave motion
and the feet and the pelvis by the walk motion.

The main drawback of considering motion as a small pieces
of unchangeable animations is that in reality every human
movement can be done in a great variety. For example, a walk
movement can be described by its style (e.g. happy, aggres-
sive, John Wayne), by its speed or by the frequency of the feet
touching the ground. A jump movement can be characterised
by the hight and the width of the jump.

Furthermore, motions often can be divided into parts which
played consecutively, build the whole animation. These parts
also are dependent on the style or the special way the motion is
executed.

Motivated by the above points we adopted the notion of
the motion models which was introduced by Grassia (Grassia,

2000). Motion Models denote motions like walk or wave which
produce their animation depending on given parameters. We
expanded this concept for real-time animation, where the pa-
rameters of a motion model can be changed during its anima-
tion is played. The advantage is, that this results in an abstract
interface for each motion, which can create a motion in high
varieties.

2. PREVIOUS WORK

(Badler et al. , 1993) specify motions in the Jack System by
control parameters which describe bio-mechanical variables.
They also introduce motion goals, which are low level tasks
their animation system can solve. A similar approach is stud-
ied in (Hodgins et al. , 1995).

Within the Improv-System (Perlin & Goldberg, 1996) hu-
man motions are described and parametrised by so called Ac-
tions. These Actions can be combined by blending them or
building transitions between them. Their parameters denote
possible perturbations of the original motion data by coherent
noise signals. Perlin and Goldberg also state, that it is not al-
ways possible to combine every given motion with any other
at the same time. For example it makes no sense to combine
a stand pose with a walk motion. Taking this into considera-
tion, they divide Actions into different groups, like Gestures,
Stances etc. These groups provide the necessary information
about the allowed combinations with other motions.

In (Sannier et al. , 1999) and (Kalra et al. , 1998) a real-
time animation system VHD is presented which allows users
to control the walking of a character with simple commands
like walk faster.

Grassia (Grassia, 2000) introduces the term motion model,
which we adopt. Motion models represent elementary tasks
which can not be divided further. The level of abstraction of the
motion models resembles the approach in (Perlin & Goldberg,
1996). The idea is that every human motion belongs to a certain
category e.g. walk, run, wave with hands, throw, which can
stand for itself. Each motion model has its own parameters
which controls the process of motion generation.

3. SYSTEM ENVIRONMENT

Before going into the details of the motion models we first
present the current system environment for the animation of
characters. Each character is represented by an animation en-
gine (cf. Figure 1) which creates the animations in real-time.
The animation engine receives commands controlling the char-

acter like e.g. start or stop a walk movement or positioning the
character at an arbitrary position. The animation engine sends
the produced animation data to the trick 17 render engine.

animation engine

motion controller
������� ���
	���

 er submitter

time controller

trick_17 render engine

co
m

m
an

ds

Figure 1: The System Environment.

The animation engine consists of three components each
running in a separate thread. Time is discretized in frames by
the time controller and the animations of the character are pro-
duced with a fixed frame rate.

The motion controller receives commands for the animation
engine and produces the overall animation of the character. The
motion buffer reads and buffers the animation data from the
motion controller and finally the submitter interface send the
data to the trick 17 rendering engine. For each frame a com-
plete posture of the skeleton of the character is send to the ren-
der engine. The trick 17 renderer then calculates the mesh de-
formation of the character according to the posture and renders
the picture.

4. THE SCOPE OF MOTION MODELS

Though there exists no definition which motions should be
modelled as motion models and which not, there are some ba-
sic rules.

The purpose of a motion model is to produce motions which
can stand for their own. This means it should be able to recog-
nise that the resulting movement of the body has started, ex-
ecuted and finally finished. Thus one has to think about the
complexity and the purpose of the movement a motion model
describes. The movements should not be too elementary like
the rising of the left foot at the beginning of a walk movement.
But they also should not be too complex. An example for a
too complex motion would be the task to take a chair from one
room and bring it to another room. For this purpose one has
to localized the chair, then grasp it, doing path planning for
finding the way to the next room and so on.

Motion Models describe on the one side basic fundamental
movements like walking, running, jumping. On the other side
motion models also describe motions which need various infor-
mations to make adjustments of the environment (e.g. throwing
a ball, grasping a bottle). Complex tasks (like the chair exam-
ple above) which are too complex for modelling them as a mo-
tion model can be divided into subtasks. Then each of these
subtasks can be animated by a motion model.

Method Description
getActiveJoints() Returns the joints for which

there is actual data available
getFrame(Frame

�
) Returns for frame

�
for each ac-

tive joint the rotation or transla-
tion values if available

start() Returns the start frame of the
clip

length() Returns the length of the clip

Table 1: The AbstClip Class

5. BUILDING BLOCKS OF MOTION MODELS

Each instance of an animation engine represents one character.
The character is defined by a tree structure (called character
model) describing its skeleton. Because the mesh deformation
of the character is done by the trick 17 renderer by the posture
of the skeleton, we do not store the mesh data in the animation
engine.

Motion models are a very simple common interface, the Ab-
stMotionModel class. Every motion model is derived from this
class. Motion Models get initialised by a character model and
a source of the pre-produced animation clips. They have a
doCommand-method which is used by the motion controller to
control the generation of animation sequences within a motion
model. At present, the motion controller receives commands
like start, stop and stop hard. The start command contains pa-
rameters which further describe the resulting motion. These
parameters are motion model specific. E.g. the walk motion
model has parameters controlling the style (happy, sad, etc.)
and the speed of the walk. The parameters of a motion model
have to be chosen in such a way, that the important character-
istics of a motion can be influenced. The stop command just
advises to motion model to correctly stop its motion at the ac-
tual state. If in a walk motion the stop command arrives at the
motion model during the left foot is still in the air, the motion
model correctly finishes this last step. The stop hard method
just finishes the motion immediately, i.e. as soon as the motion
model receives this command it stops producing the animation
which can result in an (for the observer) incorrect movement
of the left foot. Although the visual result in the last case is in
general not convincing, this effect is sometimes needed.

The building blocks of motion models are base motions and
clips. The idea is that each motion model creates a certain mo-
tion by modifying and blending motion data according to the
given parameters. As a basis each motion model has small se-
quences (base motions) of pre-produced animations which are
used for mixing and blending.

The abstract AbstClip class (c.f. Table 1 and Figure 2) is the
common interface for animation data. By start() the start frame
and by length() the length of the animation is returned. The
getActiveJoints method returns the joints of the skeleton for
which the clip actually produces animation data. The getFrame
method returns for each valid frame two arrays of data. The
first array represents translation values for the joints (given by
3D vectors) and the second the rotation values (given by unit
quaternions). Played one after another, the array for each valid

frame builds the animation of the skeleton.

AbstClipAggregate

AbstClip

ClipPrimitive

Filter Loop Revert
��� �����	��
���
� �

eShift

Blend Embed

Figure 2: The Clip Classes.

The class ClipPrimitive actually holds pre-produced anima-
tion data. These animations are manipulated by the classes de-
rived from the AbstClipAggregate (cf. Figure 2). These de-
rived classes are operators on clips. Because every operator is
an AbstClip, it can also be used for the input to other operators.

Here we give a brief description of the implemented opera-
tors.
� TimeShift(Frame nShift, AbstClip *pkClip)

Shifts a clip on the timeline by nShift frames.

� Filter(FilterCoef *pkFIR, AbstClip *pkClip)
Filter the animation data with a FIR filter (cf. (Mallet,
1999), (Lee, 2000)). The impulse response coefficients
of the filter are given by pkFIR. This can be used e.g. to
smooth noisy animation data.

� Loop(int nLoops, AbstClip *pkClip)
Repeats pkClip either nLoops-time if nLoops ��� or re-
peats the clip an infinte times otherwise. This is the only
operator which can produce infinite length clips from fi-
nite ones. If pkClip has infinite length nothing is done.

� Revert(Frame nNewStart, AbstClip *pkClip)
Reverts pkClip in time at the frame nNewStart.

� TimeWarp(Array � TimeWarpKeys � *pkWarpKeys, Abst-
Clip *pkClip)
Applies a time warp on the underlying clip (cf. (Witkin
& Popović, 1995), (Grassia, 2000)), which squeezes or
stretches the animation over time.

� Blend(Frame t0, Frame t1, Frame A, Frame B, AbstClip
*pkFirst, AbstClip *pkSecond)
Blends the pkFirst clip to the pkSecond clip.

���
and

� � set
the start frame of the first resp. second clip. � denotes the
frame where we start to interpolating from the first to the
second clip, B the frame where we blended completely to
the second clip.

t0 t1A B

First Clip

Second Clip

Frame

Resulting Clip

� Embed(Frame t0, Frame t1, Frame A, Frame B, Frame C,
Fame D, AbstClip *pkFirst, AbstClip *pkSecond)
Blend from the pkFirstClip to the pkSecond clip and back
to the pkFirstClip. The parameters

����� � � � � and � are
the same as in Blend. At frame � pkSecond is blended
back to pkFirst, and at � only the animation of pkFirst is
played.

t0 t1A B

First Clip

Second Clip

Frame

Resulting Clip

DC

Note that often the algorithms within the operators for infi-
nite length clips are different from the finite length clips. E.g.
for finite length clips the algorithms in the Filter clip can be
highly optimized (cf. Wickershauser (Wickershauser, 1994)).
Special care is also needed if two clips are blended or embed-
ded with different sets of active joints.

By so far we have not implemented any operators, which ef-
fect a given ClipPrimitive such that the resulting clips has a new
style. One could think for example of noise functions applied
on certain joints or the techniques used in (Perlin & Goldberg,
1996). But this could be a very promising approach to create
variations of the motions without exchanging ClipPrimitives.

6. CREATING MOTION WITH MOTION TREES

Motion models create animations by combing ClipPrimitives
with the clip operators described in the previous section.

As an example we consider the walk motion model. Walking
can be divided into three phases: the start phase, where we start
to walk from a standing posture, the walk loop and the stop
phase ending again in a standing posture. As the motion model
walk gets the command to start at a specific frame

���
with a

specific speed � � , it creates the following term,

�"!$#&%('*)$+-,/.0#�1324,�5 �) � � �7698 !;:41 ��8=< ��>?�@BA�ADC)$+-,/.0# 698=< C) 6 � �D698 !E:��GFIH?!$# >J>�>LK (1)

This term can be visualized in the operator tree (which we call
motion tree) shown in Figure 3 (A).

The two ClipPrimitives WalkStart and WalkCycle contain
the animations for first and the second phase of the motion.
The WalkStart gets time-shifted to the start frame

���
of the ani-

mation. The WalkCycle is time-warped with warp-keys
6 � re-

sulting from � � for controlling the speed of the animation. The
result is looped for an infinite time producing an infinite-length
clip and is blended with the end of the time-shifted WalkStart
clip. The result is a clip which lets the character start walk-
ing. If the motion model started and the current animation is in
the WalkCycle loop (i.e. the animation is produced by the right
branch in tree of Figure 3 (A)) one can simply change the speed
of the character. As the motion model receives the command
to change the speed to �-M , it replaces expression (1) by

�"!$#&%('*)$+-,/.0#�1324,�5 �) � � �@BA�ADC)$+-,/.0# 698=< C) 6 � �D698 !E:��GFIH?!$# >J>L�@BA�ADC)$+-,/.0# 698=< C) 6 M �D698 !E:��GFIH?!$# >J>�>LK (2)

Here
� � is

� �
plus the time passed since the last full pass of

+-,/.0# 698=< C) 6 � �D698 !E:��GFIH?!$# > , and
6 M are the appropriate

keys which are derived from the speed � M .

Loop
��� �

eShift

Blend

���	�
kCycle

happy

�
� ���	����
��

Loop

���	�
kCycle

�
� �
eShift

Blend

�����
kStart

�
� �������	
��

���	�
kCycle

(A) (B)

Figure 3: Walk Motion.

The style of the motion can be easily altered by changing
the underlying ClipPrimitives. As an example, assume that the
ClipPrimitives WalkStart and WalkCycle represent neutral mo-
tions, and we also have a WalkCycle happy, representing a mo-
tion which expresses more joy and dynamic. If we currently are
in the WalkCycle phase of the walk motion then the style of the
motion can be changed by creating the motion tree as in Figure
3 (B), which is a visualization of the following expression:

�"!$#&%('*)$+-,/.0#�1324,�5 �) � � �7698 !E:��GFIH?!$# >L�@BA�ADC)$+-,/.0# 698=< C) 6 � �D698 !;:��GFIH?!;# 2 8 C C F >�>J>LK (3)

There the WalkCycle clip is played to its end and then blended
with the looped WalkCycle happy clip.

For correctly blending and manipulating these ClipPrimi-
tives additional information is need. E.g. for blending the
WalkCycle into the WalkCycle happy it is important to know
the frame, when the feet of the character touch the ground and
when they lift off. These information is used to determine the
correct parameters for the Blend clip.

Thus each ClipPrimitive object within a motion model be-
longs to a base motion (cf. (Grassia, 2000)). Base motions
consist of ClipPrimitives and Annotations, which hold the ad-
ditional information for the animation data. These are on the
one hand informal annotations, like the style of the motion (e.g.
aggressive, tired, happy) and on the other hand special spatio-
temporal relations.

Thus a motion model can hold several records of base mo-
tions each representing the movement in a different style. The
commands from the motion controller determine the special pa-
rameters which are used for the construction of the motion tree
with the help of the Annotations.

7. THE MOTION CONTROLLER

The motion controller receives commands from the animation
engine, controls the motion models and produces the overall
animation of the character.

The command set of the animation engine is fairly simple.
There are two classes of commands. The first class controls
the behaviour of the animation engine (e.g. resetting or posi-
tioning the character). The second class of commands (motion
commands) is used for starting, stopping or changing the an-
imations of motion models. The motion commands also hold
parameters which are specific for the motion model. To keep an
overview over the active motion models the motion controller
administers the motion commands in a command list. Only
those commands are kept in the list for which the correspond-
ing motion model still produces animation data.

The motion controller also holds a motion tree which is build
from the motion trees of the active motion models. This is
done by passing through the command list and getting for each
command the motion tree of the appropriate motion model.
Then the motion trees from the motion models are blended and
mixed together with the help of the clip operators from Section
5.

A rebuild of the motion tree is only necessary, if a new com-
mand is appended to the control list or the state of an active
motion model is changed (e.g. by changing parameters or by
stopping the motion model). In both cases, the concerned mo-
tion model builds its motion tree anew. The motion trees of the
other motion models stay unchanged. The motion controller
then deletes its old motion tree and builds a new one by pars-
ing through the command list and composing the motion trees
from the motion models.

At a first glance this seems to be an expensive operation. But
practical experience shows that only very few motion models
are active at the same time. Every human has only a finite
number of parts of the body, thus this defines a natural limit
of the number of motions a character can do simultaneously.
Thus besides the cost of building the motion tree of the changed
motion model, we only have to blend a few motion trees.

The hard task for the motion controller is to find the right
operators for mixing the motion trees of different motion mod-
els together. Before starting a new motion model the motion
controller first checks if the joints the motion model needs are
in use by other motion models. Each motion model contains
a list of the joints and parts of the body which are crucial for
the motion. The animation of these joint can not be blended
with other animations without destroying the task of the motion
model. If these joints are currently blocked by another active
motion models then the motion command is rejected. Other-
wise the animation of the corresponding joints are blended to
the new animation. As an example consider Figure 4 where we
started the wave motion model while the walk motion model
is executed. At the moment we only have few motion models
thus the parameters for the mixing operators between motion
models are prescribed for each combination of motion models.
Because for a growing number of motion models the complex-
ity increases geometrically, automatic methods for mixing mo-
tion models have to be explored. First approaches can be found
in (Grassia, 2000).

Figure 4: Blend of the motion model walk and wave.

8. EXPERIMENTAL RESULTS

We have implemented an experimental version of the anima-
tion engine with Visual C++ under Windows 2000 and Gnu
gcc under Linux on a PC with 1100MHz AMD processor. For
graphical output we use our trick 17 renderer, which runs with
minor changes both under Windows 2000 and Linux by using
OpenGL and GTK+. For test purposes we used a character
with about 9000 Polygons and 3.6Mb texture, which was cre-
ated in Maya and exported into the proprietary file format of
the trick 17 renderer. We use the computer’s keyboard to inter-
actively steer the character. The base motions were generated
by keyframe animation in Maya and sampled at 30 frames per
second.

The performance of the animation engine is promising: we
have not found delays or a break in the continuity of the ani-
mation which could come from creation of the motion trees in
the motion models or in the motion controller.

9. CONCLUSION

To summarise, motion models create movements which can
stand for their own. They provide a high level interface for
each motion and allow to change a movement during it is exe-
cuted by the character. Multiple Motion models can be played
at the same time.

For creating the transition of a higher number of motion
models, further research has to be done. Also the use of clip op-
erators which can change the characteristics of animation clips
has to be investigated.

ACKNOWLEDGEMENTS

I would like to thank Thorsten Lange for his support on the
trick 17 render engine.

This work was supported by the BMBF grant 01 IR A04 C
(mqube - Eine mobile Multi-User Mixed Reality Umgebung).

REFERENCES

Badler, Norman I.; Phillips, Cary B. and Webber, Bonnie Lynn.
1993. Simulating Humans: Computer Graphics and Con-
trol. Oxford University Press.

Grassia, F. Sebastian. 2000. Believable Automatically Syn-
thesized Motion by Knowledge-Enhanced Motion Trans-
formation. Ph.D. thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh.

Hodgins, Jessica K.; Wooten, Wayne L.; Brogan, David C. and
O’Brien, James F. 1995. Animating Human Athletics.
Computer Graphics, 29, 71–78.

Kalra, Prem; Magnenat-Thalmann, Nadia; Moccozet, Laurent;
Sannier, Gael; Aubel, Amaury and Thalmann, Daniel.
1998. Real-Time Animation of Realistic Virtual Humans.
IEEE Computer Graphics and Applications, 18(5), 42–57.

Lee, Jehee. 2000. A Hierarchical Approach to Motion Anal-
ysis and Synthesis for Articulated Figures. Ph.D. thesis,
Korea Advanced Institute of Science and Technology, De-
partment of Computer Science.

Mallet, Stéphane. 1999. A Wavelet Tour of Signal Processing.
Academic Press.

Perlin, Ken and Goldberg, Athomas. 1996. Improv: A System
for Scripting Interactive Actors in Virtual Worlds. Com-
puter Graphics, 30, 205–218.

Sannier, Gael; Balcisoy, Selim; Magnenat-Thalmann, Na-
dia and Thalmann, Daniel. 1999. ”VHD: A System for Di-
recting Real-Time Virtual Actors. The Visual Computer,
15(7/8), 320–329.

Theodore, Steve. 2002. Understanding Animation Blending.
Game Developer, 9(5), 30–35.

Wickershauser, Mladen Victor. 1994. Adapted wavelet analysis
from theory to software. A K Peters.

Witkin, Andrew and Popović, Zoran. 1995. Motion Warping.
Computer Graphics, 29, 105–108.

AUTHOR BIOGRAPHY

Stefan M. Grünvogel was born in Ellwangen, Germany and
went after his military service to the University of Augsburg,
Germany where he studied mathematics between 1990 and
1997. After finishing his diploma thesis in 1997 he worked
as a postgraduate at the University of Augsburg in the field of
mathematical control theory and finished his dissertation “Lya-
punov spectrum and control sets” in 2000. After this he worked
for debis before moving in 2001 to the Laboratory for Mixed
Realities in Cologne. There he develops a real-time anima-
tion system and a choreography editor for the augmented real-
ity project mqube (BMBF grant 01 IR A04 C).

EFFICIENT MIP-MAPPED TEXTURE COMPRESSION BY VECTOR QUANTISATION
AND WAVELET DECOMPOSITION

Stephen J. McGlinchey

Applied Computational Intelligence Research Unit
University of Paisley, Scotland
Email: mcgl-ci0@paisley.ac.uk

KEYWORDS
Texture compression, vector quantisation, neural networks,
fast decompression

ABSTRACT

In order to make efficient use of video memory, game
developers often use image compression techniques for
textures used in 3D environments. A disadvantage of most
widely used image compression methods is that they require
a significant amount processing to reconstruct compressed
images. In this paper, we propose a vector quantisation
method using the Scale Invariant Map, which allows fast
decompression of textures. Combining this algorithm with
wavelet decomposition, we show that our method is
particularly suited to mip-mapped textures.

INTRODUCTION

The capacity of video RAM in most games consoles and PC
graphics cards is something that often restricts artists and
programmers. Although hardware capabilities have grown
in accordance with Moore’s law, games software tends to
push hardware to its limits, making the game developer’s
job a difficult one. The vast amount of artwork in many
modern 3D games requires programmers to use image
compression techniques in order to allow more storage
capacity for textures, and to maintain a reasonably high
image quality.

Some widely used lossy compression algorithms make use
of a transform coding method such as block discrete cosine
transform (DCT) or discrete wavelet transform (DWT),
followed by a coefficient quantisation stage, and finally,
predictive entropy coding is used to optimise the resulting
bitstream. This strategy has been used with great success,
and has formed the basis of the JPEG standard, and also, the
more recent JPEG2000 standard.

Despite the widespread adoption of compression algorithms
such as JPEG, these algorithms are not particularly suitable
for use in games, where decompression has to be carried out
very quickly in real-time. (Ivanov 2001) Therefore, other
methods

have been proposed as alternatives that are more
suitable for use in games, many of which use
implementations of vector quantisation (VQ). VQ
algorithms rely on training a set of codebook vectors on
an image, then transforming the image into a set of
codebook indices. These indices are then stored along
with the codebook vectors. VQ compression of images
is an iterative process, and it can be computationally
expensive, but it has the important advantage of
allowing very fast decompression.

When developing an image compression method for
use at run-time in video games, we propose that the
primary aim is that decompression of images should be
fast. High quality of decompressed images is very much
a secondary goal. The method that we propose in this
paper allows very fast decompression, and also supports
progressive decompression for mip-mapped textures.
Therefore, when the smallest mip-mapped level of a
texture is required, only a small amount of
decompression is necessary. If the same texture is later
required at a higher mip-map level, then some more
decompression can be performed, which builds on the
decompression already done. This is in contrast to some
existing methods that require an entire texture to be
decompressed. If mip-mapping is required, then
reduction of the texture into various mip-map levels is
an additional processing requirement. Experiments
show that our method also produces decompressed
images of a reasonably high quality, and without the
“blocky” effect often seen with other VQ methods.

VECTOR QUANISATION

VQ aims to approximate vectors by transforming them
from a continuous distribution into a finite set

{ }KV www ,...,, 21= of K discrete values (a
codebook) whilst minimising the distortion of the data.
Each vector x in the data set can then be coded as
an index q

D
V∈)(x of the codebook, which normally

has a far smaller storage requirement than the original
vector. The coded value can then be used to reconstruct

mailto:mcgl-ci0@paisley.ac.uk

the original vector, albeit with some distortion (equation
1).

d

))

))((xx qrd −= (1) w

Over an entire data set with N vectors, the mean squared
error (MSE) is given by equation (2).

((1
1

ii

N

i
qr

N
MSE xx −= ∑

=

 (2)

The main problem with VQ is finding an optimal set of
codebook vectors, such that the MSE is minimised. There
are many different approaches to this problem, but amongst
of the most common are the k-means clustering algorithm
(MacQueen 1967), the EM algorithm (Bishop 1995), and
the Self-Organizing Map (Kohonen 1997).

It is common practice when compressing images by VQ, to
use fairly small vectors, such as a 4x4 block of pixels. Any
attempts to increase the size of this block result in
reconstructed images that are noticeably blocky. This
problem can be alleviated to some degree by increasing the
number of reference vectors in the codebook. However, this
adds to the storage overhead of the codebook, and also
increases the computational cost of training. Our method
does not have this limitation, and we shall show that larger
vectors can be used with no noticeable degradation in the
reconstructed images.

THE SCALE INVARIANT MAP

Another common method for finding an optimal set of
codebook vectors is Kohonen’s Self Organising Map
(SOM) (Kohonen 1997). The scale invariant map (Fyfe
1996, McGlinchey and Fyfe 1997) is an unsupervised
artificial neural network based the SOM. Kohonen’s SOM
is a biologically inspired artificial neural network that learns
an ordered set codebook of vectors from a data set. The map
consists of a set of nodes arranged in a low-dimensional
space (normally one or two dimensions). Each node has a
weight vector (or codebook vector) associated with it, which
maps the node to a point in data space. The data space
normally has a much higher dimensionality than that of the
map, so the SOM forms a non-linear mapping from a high-
dimensional data space onto a low-dimensional manifold.
After training of the network, the distribution of the
codebook vectors in the data space should reflect the
distribution of vectors in the training data. The SOM is a
special case of VQ, with an additional topology-preserving
property – nodes that are close together on a SOM map to
points in data space that are also close together.

A scale invariant map also consists of a regular array of
nodes arranged on a lattice. Due to computational

tractability considerations, maps normally have few
dimensions (three or fewer). Each node i is connected
to an array of sensory nodes x via a set of weights,

. The map is trained on a set of training data, and
the result is an ordered set of codebook vectors. During
training, input vectors are randomly selected from a
training set. For each training vector, a winning node,

, is chosen , according to some competition criteria.
The criteria that we recommend for this application is
to select the node whose weight vector has the closest
orientation to the input vector (equation 3).

i

c

x

)(min iic θ=

where
||||.||||

.)
i

i
i wx

wx
=θcos((3)

The next step is to update the weight vectors of the
winning node and the other nodes close to it, such that
their orientation is becomes closer to that of the input
vector. The neighbourhood of the winner, , is the set
of nodes that are deemed to be close enough to the
winner for the winner to affect them. A neighbourhood
function can also be used such that nodes closer to
the winner are affected more than nodes further away.
The weight update rule is given by equation 4.

cN

cih

() cccii Nih ∈∀−=∆ ,wxw η (4)

This training method is based on the negative feedback
network (Fyfe 1993), but with a neighbourhood
function applied to it.

After sufficient training, this network will form a
mapping based on the distribution of orientations held
in the training set. This is the crucial difference between
the scale invariant map and the SOM. Our motivation
for using the scale invariant map for VQ compression
of images is that often, images have similar patterns
that repeat, but with varying intensities. A scale
invariant method allows these similar regions to be
grouped under the same class, saving the requirement in
codebook size. The scale invariant map has already
been used in remote sensing applications. (MacDonald
et al. 1999).

WAVELET DECOMPOSITION

The Daubechies 2D wavelet transform refers to a set of
basis functions defined recursively from a set of scaling
coefficients and functions. The transform is applied as a
series of decomposition levels. At the first
decomposition level, the source image is separated into

four sub-bands – LL (low-pass vertical and low-pass
vertical), HL (high-pass vertical and low-pass horizontal)
and similarly for the LH and LL sub-bands. The LL sub-
band represents a downsampled low-resolution version of
the original image, and the other sub-bands represent
downsampled residual versions of the original image. Using
the Daubechies 5/3 wavelet, the process is reversible, and
each of the four subbands can be used to reconstruct the
source image. At the next decomposition level, the LL sub-
band of the first decomposition level is then decomposed
into the four sub-bands. This recursive procedure is iterated
for as many decomposition levels as necessary. Figure 1
illustrates this procedure for two decomposition levels. For
a more complete description of this procedure, the reader is
referred to (Antonini et al. 1992).

Some image compression algorithms such as JPEG2000
(JPEG 2000) use this method, followed by a rate allocation
algorithm such as EBCOT (Taubman 2000) to select parts
of the sub-bands to discard, such that the mean squared error
of the image decreases monotonically as the size of the
coded image decreases. For our purposes, fine tuning the
quality of reconstructed images is not a primary concern,
and we can therefore perform lossy compression on the sub-
bands using VQ.

Reconstruction of the image from the sub-band tree is
simply a case of reversing the decomposition process. Note

that if a smaller version of the original image is
required, then less processing is necessary. For low
decomposition levels, the processing overhead is very
small. This method is particularly suitable for fast re-
composition of mip-mapped images, since the image
only needs to be reconstructed as far as the required
mip-map level.

COMPRESSION METHOD

Our proposed method is to perform wavelet
decomposition on textures, using as many
decomposition levels as required to support the required
level of mip-mapping, and then use VQ to compress the
HL and LH sub-bands. It may also be beneficial to
compress the HH sub-band; however, this sub-band can
often be discarded with very little degradation of the
reconstructed image. The LL sub-band could also be
compressed using VQ; however, this sub-band
represents the lowest mip-map level and will normally
be a very small image. For this reason, we recommend
storing the LL sub-band in an uncompressed format.
Errors introduced to low frequency components have a
more significant effect on the degradation of
reconstructed images, so any lossy compression on the
LL sub-band will adversely affect higher mip-map
levels.

 LHa2

LLa2 HLa2

HLa1HHa2

I(x,y)

HHa1LHa1

Figure 1: Wavelet Decomposition of an Image into Sub-bands Using the Daubechies 5/3 Wavelet (Two Decomposition
Levels)

We have used the scale invariant map to quantise vectors
according to their orientation, rather than spatial location.
For adequate reconstruction of the image, this requires that
each input vector is recorded as a codebook index, and also
a magnitude. Whilst this method adds to the storage
overhead, it allows us to reduce the size of the codebook,
and also adds significantly to the quality of reconstructed
images. is the set of all vectors that are to be VQ
coded. Each member of this set is then coded as a
codebook index and a magnitude (equation 5). The
function gives the winning node according to
equation 3.

D

(c)x

() Dcq dddd ∈∀= xxx ,),((5)

The most significant computational cost at the compression
stage is in training the scale invariant map. However, for
this application, the computational cost of compression is
unimportant, and it is the cost of decompression that we
are most interested in minimising.

Images are decompressed by first reconstructing the image
from the set of quantised vectors. The reconstruction, x′ is
given by scaling the appropriate codebook vector by the
magnitude component of . Note that this only has to be
done for sub bands up to the required mip-map level. From
the reconstructed sub-bands, a wavelet re-composition is
done to restore the required image.

dq

RESULTS

To demonstrate the effectiveness of this method, we
present results of two types of images using different
compression parameters. An image of a tiling steel floor
texture (256x256 pixels) was wavelet transformed to one
decomposition level, and then the HL and LH sub-bands
were VQ compressed using 10 code book vectors, each of
size 8x8. The storage requirement of the original 8-bit
greyscale image was 65536 bytes. The compressed version

occupied 16384 bytes for the LL sub-band, 1024 bytes
for the codebook indices and magnitudes, and 640
bytes for the codebook, giving a total of 18048 bytes,
and a compression ration of 0.2754. The results for
this experiment are shown in Figure 2, along with
another example of compressing the “lena” image
using 2 levels of decomposition and 10 16x16
codebook vectors. In both cases any degradation in
image quality is barely noticeable. Higher
compression rates are also possible, albeit with more
degradation of the reconstructed images.

Although VQ compression is a widely adopted
technique of fast lossy compression, it is well known
that it produces a blocking effect around the edges of
the vectors. This method, however, produces no
blocking effect, even when parameters are set to use a
high compression rate. The reason for this is that with
wavelet compression, any errors introduced into the
decomposed sub-bands are distributed across many
pixels in the re-composed image. Even when the
compression is very lossy, no blocking effect is
visible, due to this distribution of error. Careful
inspection of Figure 2(e) reveals a slight blocking
effect in the HL and LH sub-bands of the “lena”
image, but this effect is not apparent in the re-
composed image (f).

CONCLUSION

We have presented a new method of texture
compression that allows very fast decompression of
images, and is therefore suitable for real time
decompression of images in video RAM in high
performance graphics applications such as video
games. We have shown that the method is particularly
suitable when used in conjunction with mip-mapping
because low-resolution versions of textures require
very little processing time to decompress. As higher
resolutions of textures are required, images can be
progressively decompressed.

Figure2: (a) Original Steel Floor Texture (b) Reconstructed Image after VQ Compression of HL and LH Sub-bands with 10
8x8 Codebook Vectors, Before Inverse Wavelet Transform. (c) Reconstructed Image. Similarly with (d), (e) and (f) for
“Lena” using 10 16x16 Codebook Vectors.

(b) (c) (a)

(d) (e) (f)

REFERENCES

Antonini, M., Barlaud, M., Mathieu, P. and Daubechies, I.
1992. "Image Coding Using the Wavelet Transform", IEEE
Trans. Image Proc., pp. 205-220, April 1992.

Fyfe, C. 1996. “A scale invariant map” Network:
Computation in Neural Systems,7: pp 269-275.

Ivanov, I-A. 2001. “Image Compression with Vector
Quantisation” Gamasutra, April 16, 2001

JPEG –Joint Photographic Experts Group. 2000. “ISO/IEC
JTC1/SC29/WG1 N1646: JPEG2000 Final Committee
Draft v1.0", March 16, 2000.

Kohonen T. 1997. "Self-organizing maps" 2nd Edition
Springer

MacDonald D., McGlinchey S., Kawala J., Fyfe C. 1999.
“Comparison of Kohonen, scale-invariant and GTM self-
organizing maps for interpretation of spectral data”
Seventh European Symposium on Artificial Neural
Networks

MacQueen, J. 1967. “Some methods for classification
and analysis of multivariate observations” In
Proceedings of the Fifth Berkeley Symposium on
Mathematics, Statistics and Probability Vol 1, pp 281-
297 Berkeley, University of California Press

Marcellin, M.W., Gormisch, M. J., Bilgin, A. and
Boliek, M.P. 2000. "An Overview of JPEG-2000",
Proc. of IEEE Data Compression Conference
(DCC'2000), pp. 523-541.

McGlinchey, S. and Fyfe, C. 1997. "An angular
quantising self-organising map for scale invariant
classification" Workshop on Self-Organizing Maps,
Helsinki University of Technlogy, pp 91-95 June 1997

Taubman, D. 2000. “High performance scalable
image compression with EBCOT," IEEE Transactions
on Image Processing, vol. 9, no. 7, pp. 1158-70.

REAL-TIME GENERATION OF IMPACT EFFECTS IN VIRTUAL
ENVIRONMENTS WITH APPLICATION TO GAMES

Ryan Doyle, Richard Cant, David Al-Dabass

Dept of Computing & Mathematics
The Nottingham Trent University

Nottingham NG1 4BU
david.al-dabass@ntu.ac.uk

KEYWORDS fracture simulation, crack propagation.

ABSTRACTS

This paper discusses two new methods of rendering
fractures in a virtual environment in real-time. The first is
based on a diffusion limited aggregation algorithm, which
allows extremely random and natural patterns to be
formed. The second works by assuming any surface has a
number of random weak points; a crack can be propagated
through the material, selecting weak points based on a
probability value. The fracture may also split, forming a
more realistic representation of a crack.

INTRODUCTION

In the field of computer graphics it is often the goal to
reproduce various phenomena that occur in the real world,
to various degrees of realism on a computer screen. This
can include anything from simulating a human talking, to
explosions, to plants growing – the list is practically
endless. Research into numerous methods has been going
on for many years to varying degrees of success.

There are two main schools of graphics in relation to this
project –
 - real-time graphics,
 - pre-rendered graphics.

Real-time graphics, as the name suggests, means that the
graphics being displayed on screen are being generated as
you see them. This allows for dynamic environments
which users can move around in and effect. To produce
such environments takes a great deal of processing, and
affords a very limited time in which graphics can be
generated. This restricts the quality of image that can be
produced.

Pre-rendered graphics are generated offline and can later
be displayed. Due to the fact that they do not have to be
generated in real time they can be of a far higher quality
that real-time generated graphics. Each object or frame can
have as much time as is necessary devoted to its
generation. However this approach has its disadvantages.
The scenes generated in this way are very inflexible as the
objects are not dynamic. You can not walk around a pre-
rendered object unless the game dictates that the player
must do so. Such scenes can be used in virtual

environments such as games, but are usually limited. Pre-
rendered graphics are frequently used as backgrounds in
games as they allow for very realistic representation of
various environments, though they are essentially just that
– backgrounds. Any interactivity with the world must be
handled completely separately from the background itself.
This generally means objects and characters interacted
with are specifically modelled and placed in the world,
with no connection to the background.

Pre-rendering also affords the opportunity to heighten
realism in other areas such as physics. Again, real-time
applications must deal with a number of processes,
including generating graphics and handling physics. This
unfortunately means the quality and realism of the
graphics and physics must be sacrificed to an extent.

The quality of pre-rendered graphics can be seen in many
recent films such as Final Fantasy: The Spirits Within, the
Toy Story films, and the new Star Wars films. They
demonstrate that pre-rendering can produce extremely
realistic results. Real-time rendering however, can not;
with advances in graphical hardware (such as nVidia’s
GeForce range of cards) this is just beginning to become a
possibility. Part of the problem is that to simulate lifelike
effects requires a great deal of complex processing. To be
able to do this in real-time much of this processing is
simplified or approximated to give what appears to the eye
to be a convincing representation.

Figure.1 – Pong [PON72]

In most real-time generated environments, specifically
games, interaction with the game world is one of the
highest priorities. To make a convincing world there
should always be an appropriate reaction to any action the
player takes in that world. This can be traced back even to
the earliest games such as Pong.

Essentially a tennis game, having a bat on each side of the
screen, and a ball bouncing between the two, the player
moved the bat to stop the ball from going off the screen. It
would bounce off the bat towards the other bat. This is
what a player would expect. If the ball went straight
through the bat, or stuck to it, it would strike a player as
somewhat unusual. This destroys the player’s perception
of interaction with the game world and can affect
enjoyment of a game in varying degrees, related to how
significant the lack of reaction was or how obviously the
error.

Many developers are seeking to correct such problems,
attempting to enhance interactivity within their virtual
worlds. One of the most apparent inconsistencies in most
game worlds is the alteration of environmental structures
in response to interaction in the form of impacts such as
bullets or explosions. Generally, bullet holes or cracks are
simulated using small static images called decals which in
this case would be a small texture that looks like a hole.
When bullets hit a wall these decals are pasted over the
wall at the point of impact. The problem with this is that
every impact looks exactly the same. One way around this
could be to have a variety of bullet hole decals used under
different circumstances, or generate the decals
procedurally. Neither of these solutions offer much in the
way of flexibility however. Producing a large number of
decals is impractical, especially when considering the fact
there are usually a variety of weapons each requiring
unique decals. Procedurally generated textures are
generally hard to control. It is hard to produce a particular
shape or pattern repeatedly, so again, this becomes
impractical.

Scope

The goal of this project is to construct a method of
producing realistic damage effects in real-time. Such
effects will need to be produced quickly, and with some
degree of randomness to ensure a natural appearance.

There are a number of benefits a successful new approach
may potentially wield. Having a more realistic and natural
looking simulation of any real-world phenomenon is
always an important goal in the graphics field. Little time
has been given over to fractures and cracks other than in
terms of pre-rendered graphics, or larger scale simulations
such as that of earthquakes. This would be the first step in
bringing better depictions of such a phenomenon to the
world of real-time graphics.

CURRENT TECHNIQUES

There is little research specifically focused on the topic of
this paper, but there are examples of non-real-time fracture
rendering, and other related topics which could form the
basis of an appropriate algorithm.

Fractals are one area that could provide some useful
insights. Fractals can reproduce natural phenomena very
realistically, and as such may be a way forward in
generating natural looking cracks. More information

concerning fractals and their history can be found in texts
such as “The Fractal Geometry of Nature” [MAN84], and
“Fractals for the Classroom” [PEI92]. There are countless
sources of information relating to fractals; some of the
more relevant of which are discussed here.

O’Brian et al (1999) provide very realistic modelling of
fractures under different circumstances and on different
materials. The approach is based on a particular set of
mechanics, including the use of various strain and stress
variables. This models the object to a higher level of detail
than will be necessary (or possible) for this project. The
authors state how they “are interested in graphical
appearance rather than rigorous physical correctness”
though the basis of their research is still far more intricate
and detailed than required here. The modelling is based on
more realistic and therefore complex physics than are
currently possible to simulate in real-time. In fact the
modelling alone would prove impractical for a real-time
renderer as the number of polygons involved in just one
object would be far greater than is practical in a scene
consisting of a number of objects. This can be seen from
the pictures taken from the paper:

The wall is initially made up of a number of polygons
(usually a simple wall would be made up of 2 triangles in a
game):

Figure.2 - Wall made from polygons

In the simulation the wall is hit by a wrecking ball. The
wall reconstructed after collision looks like so:

Figure.3 - Reconstructed wall

This produces a number of extra polygons so there are
already a far greater number than is necessary to create a
wall, however, this is just the front of the wall. As the wall
is in fact a 3D object it would be necessary to reconstruct
the entire wall to show the actual make-up of the wall after
fracturing. This is shown below:

We now have an enormous number of polygons just to
model a simple wall. Just rendering a simple building with
a number of fractures could potentially require thousands
of polygons. In a world containing a number of objects

each made from thousands of polygons, this becomes
impractical.

Figure.4 - Destroyed wall

Wirtz (2001) website describes in an informal but
informative manner the basis of diffusion-limited
aggregation (DLA) and how it is simulated, along with
some examples of where it can be seen in nature: “It takes
place in non-living (mineral deposition, lightning paths) or
living (corals) nature”. Pictorial examples of the
simulation results show some quite intricate and
interesting results.

Figure.5 - A DLA Fractal

This displays a complex phenomenon modelled using a
computer. Many natural phenomena are modelled with
similar methods using computers, with widely varying
results. These in particular are usually applied to
simulation of trends such as formation of mineral deposits
or urban growth. In general the nature of DLA give shapes
that are more complex than needed to represent a relatively
realistic fracture, but is clear that this could be used as a
basis and modified to produce similarly random, but less
elaborate results.

Steven (1990) covers a great deal of information regarding
various types of fractals and their implementation in Turbo
Pascal. Much of the detail is basic background on the
various fractals and their history, though some methods
may be applicable to this project as all the examples in the
book run in real-time. Some of the algorithms could be
used, perhaps in conjunction, to form the basis of the crack
tracer, particularly with the use of the Koch Curve.

The Koch Curve will be discussed in more detail in
chapter 3. If more information is needed regarding the
basics of the Koch Curve, there are many sources of
reference describing them in further detail, including the
two used in the development of this project. (Please refer
to the bibliography for details).

Deloura (2001) covers a number of topics are covered in
this book ranging from artificial intelligence to optimising

floating point calculations, one of the more relevant
chapters is titled ‘Programming Fractals’. This section,
written by Jesse Laeuchli, includes sections on plasma
fractals, fault fractals and fractal Brownian motion (FBM).
Only the latter is covered in any real detail, but the idea of
the fault fractal is of particular interest.

Laeuchli describes a simple implementation of FBM based
on noise functions which can be used for producing clouds
and fractal landscapes.

The applications of plasma fractals and fault fractals will
be discussed further in Chapter 2.

Lee et al (2001) deal with Fractal Brownian Motion. The
paper explains the history of Brownian motion (“based on
a process in plants discovered by Robert Brown in 1827”).
He described how particles floating in a liquid were in fact
constantly moving, a notion which he named Brownian
motion. Sometime later Einstein became interested in the
subject and it subsequently found a basis in physics,
thereby receiving greater attention.

Einstein produced a paper - the 'Elementary theory of
Brownian motion' – which described Brownian motion as
“the irregular and unceasing movement of solid
microscopic particles when suspended in a fluid medium”
[LEE]. At the simplest level this means that those particles
will have an apparently random trajectory.

Lee and Hoon then go into some depth concerning various
applications of Brownian motion including medical
imaging, robotics and market analysis. These topics are
beyond the scope of this paper and therefore will not be
detailed here.

NEW TECHNIQUES

This section discusses various ideas and concepts
including modified versions of those discussed in the last
section. Not all ideas examined here will be used in the
final implementation of the application, but more than one
may be used in conjunction, or developed separately for
comparison purposes.

Koch Curve Generator (KCG)

The Koch Curve is a widely known and well researched
fractal. It has one facet which offers potential with regards
to this project; the “curve has much of the complexity
which we would see in a natural coastline” [PEI92]. This
‘natural complexity’ may provide an ideal basis for
forming cracks.

This technique is founded on generating a number of
random lines which then have added complexity
introduced through the use of a KCG. Given a starting
point (the red point in Figure.6) a crack could be
propagated outwards by producing a set of random points
(the black points in Figure.6) representing the vertices of a
number of lines:

With these lines in place, complexity can be added to
enhance their appearance. By taking each line segment and
replacing it with another section (which would typically be
made up of say, 4 other lines in a particular arrangement)
the lines become more intricate.

Figure.6 - Randomly
generated vertices
These would be joined
producing something
similar to Figure 3.2.

Figure.7 - Crack formed
from random vertices

One initial problem with this overly simplistic approach is
that it allows for the possibility of lines overlapping or
circling back round on themselves. When separate cracks
overlap in reality, what actually happens is that the two
cracks join up. However lines rarely circle back on
themselves; when a material is hit with a force that cracks
it, the force is propagated outwards in a wave from the
impact point. The path of the crack will tend to follow
weak points in the material, but will rarely double back on
itself due to the expanding wave.

Figure.8 – Crack
Propagation (a)

Figure.9 – Crack
Propagation (b)

Figure.10 – Crack

Propagation (c)

Figure.11 – Crack
Propagation (d)

The basic concept can be extended to stop undesirable
effects like this (or to enhance desirable ones). One
method would be to ensure that every point generated for a
particular line can only be generated in a particular area.
For example, if the space in which the crack was occurring
was divided into quadrants, points may be only generated
in a 90 degree quadrant in the direction the crack is
propagating.

As in the series of figures above the crack is moving up
and to the right, each new point is then generated up and to
the right of the prior. However, this may be too simple as
cracks generated in this manner may not look particularly
natural. It would make it impossible to generate cracks
such as the one depicted in Figure.12.

Figure.12 - A vertical
crack

A crack such as this, which essentially crosses into two
quadrants, could not be described using this approach.

Alternatively instead of simple quadrants overlapping
sections could be used which would give a greater range in
which the crack could expand. The problem with either of
these approaches is that they put unnatural limits on the
development of the crack.

Modified DLA

A simple DLA algorithm alone gives results that look
similar to cracks. By releasing particles from predefined
areas, and allowing them to walk randomly around this
area until they come into contact with other particles, a
pattern is formed. This can be implemented by producing a
new ‘particle’ at one of a set of locations, then moving it
(within certain boundaries) one pixel (or arbitrary
distance) in a randomly selected direction per iteration of
the algorithm, until it hits another particle. When this
occurs another particle is released. Over time this process
will build up a pattern consisting of these particles.

Figure.13 - DLA using a bias

Under closer scrutiny however these patterns are too
intricate and organic looking. The illusion that they can
look like cracks suggests under different circumstances, or
with certain modifications they could be made to look a
great deal more like cracks.

A number of alterations could be performed to enhance the
fracture-like nature of results from DLA. One possibility

would be to bias the particles such that they were more
likely to stick in certain areas. This could be done by pre-
placing a number of particles in certain areas. This would
have the effect of biasing lines or clusters of particles to
gather around those areas.

Probabilistic Weak Point Propagation (PWPP)

This approach is similar to the method discussed in 3.1 in
that it partly relies on a number of randomly generated
points. It is however less simplistic and seeks to model the
fracture behaviour of a material more realistically,
potentially offering better results than the approach of 3.1.

The method starts by assigning a point on a wall –
generally where the user is looking, or aiming their virtual
weapon. This is the point of impact for the projectile fired
from the weapon. Now a number of random points around
the impact point are generated, up to a maximum distance
from the impact point, depending on the force of the
projectile. So points generated by a bullet hitting the wall
may only stretch as far as 10 pixels from the impact point,
while the points generated by a rocket hitting the wall may
stretch for 100 pixels. These points represent weak points
in the wall. As the projectile hits the wall a force is fed in
corresponding to the power of the projectile, this force
dissipates as the crack propagates. So, we link random
points nearer the impact point, to the impact point itself,
then link these points to points further out and so on. Each
point we link (thereby creating a small section of a crack)
we decrease the force that is left. Also, at random points
we allow the crack to split (each part of which again takes
part of the force that is left). This happens recursively, but
becomes less likely to happen after each split. When the
force is entirely dissipated the crack stops propagating.

There are a number of ways this method can be
implemented. One would be to simply generate the weak
points, then link up a number of them randomly. This
however would be unlikely to produce realistic looking
fractures as points on opposite sides of the impact point
could easily link up together.

Figure.14 - Randomly linked vertices

Figure.14 shows how by simply linking up random points
the crack can easily double back on itself and even cross
back over the impact point. This looks more like a bad
‘join-the-dots’ picture than a crack.

Another approach would be to draw an ellipse from the
impact point oriented in the direction of the force

propagation. This ellipse would encompass a number of
the randomly generated weak points. By generating a
probability value for each of these points we can calculate
which one the crack would propagate to. So we draw a line
from the impact point to the most probable point, then
draw another ellipse from this point, again oriented in the
direction of the force propagation. The use of ellipses
limits the weak points that can be joined up which
eliminates the possibility of occurrences such as that
illustrated in Figure.14. It also keeps the cracks
propagating in the same general direction once started.
This is done in a number of directions from the impact
point to generate a number of lines emanating from it.
As with the other approaches, for each line generated we
deduct a certain amount of the initial force until there is no
force left and randomly split secondary cracks from the
primary ones.

Calculating the probability values

Each of the weak points in the wall needs a value
representing the probability that the crack will propagate to
it next. These values are recalculated each time a crack
section is drawn, and only for the points that fall within the
current ellipse.

The process for calculating the values is as follows:

- Compute distance from last weak point to current weak
point as 1/distance2
- Take two vectors – one being the direction in which the
crack was last propagating, the second being the direction
from the last weak point to the current weak point.
- Take the dot product of these vectors and add it to the
distance. This represents the probability value for the weak
point.

This can be represented as
Probability = 1/d2 + v1 v2
Where d is the distance from the last weak point to this
one, v1 is the normalised vector the crack was last
propagating along, and v2 is the normalised vector from
the last weak point to this one.

These values are entered in ascending order into an array.
They are stored cumulatively, such that the first value is
entered as normal, the second value entered is the second
value added to the first, the third is the third value added to
the second and so on.

To select which weak point to propagate to next a random
number is generated between 0 and the sum of all the
probability values (which is the last value in the array).
The value closest to the random number is selected and the
point it represents is connected to the last weak point.

Branching

At random instances, any part of the crack may branch into
more than one line. This can be simulated by generating a
random number and if it is even the crack splits, otherwise
it does not. However, this may produce too many branches

and so should be limited. Another approach could be to
generate a number between 0 and 100, and if it is under
(say) 75 then allow it to branch. This essentially means
there is a 75% chance of it branching. The decision
boundary can be altered to find a suitable percentage
chance of allowing the crack to branch. The probability
can also be a function of the force of impact. The less force
there is, the lower the likelihood of the crack being able to
split.

Overlap Prevention

An addition which would also assist in prohibiting cracks
from overlapping would be to add a weight to the
probability such that the next vertex to be selected will be
‘repelled’ from any vertices that have already been picked.
This would have the effect of making cracks avoid each
other to an extent.

Crack Amalgamation

Even with the added weighting during the selection of
weak points, it is still possible that cracks will overlap; if
this is the case, they should join into one crack. To do this
will require finding the point of intersection between the
two lines, and clipping one of the lines to this
point. Given two lines, one going through the
points P0 and P1, the other going through the
points Q0 and Q1, this can be done by defining
one line explicitly as:

P = P0 + t(P1 - P0)

and the other implicitly as

dot(N, Q0 - P) = 0

where N is the normal to the line.

Substituting the first equation into the second, solving for t
gives:

t = dot(N, Q0 - P0) / dot(N, P1 - P0)

By substituting t back into the explicit equation the
intersection point P can be discovered.

From this the line can either be clipped entirely, or can be
made to follow the crack it has joined. If the first crack
then stops, the second may begin to propagate randomly
once again.

RESULTS AND DISCUSSION

Each of the approaches implemented met with varying
degrees of success. The only way to assess this success is
visually as there is no quantitative method applicable to
such measurement. Evaluation entails simply looking at
the patterns produced, and comparing them to real cracks,
and existing graphical methods of rendering them.

DLA Algorithm

The DLA approach certainly displayed potential towards
fulfilling the project’s goals. Unfortunately, its merits were
outweighed by the relative disadvantages.

The fundamentally random logic behind the algorithm
itself lends a natural tendency to the output. Based as it is,
on Brownian motion, organic patterns can be formed
easily using DLA. The patterns formed in Figure.16 to 5.3
illustrate the random nature of the method. They possess
some of the basic characteristics required to render a
realistic representation of a crack. These include
branching, and random propagation. However, when
viewed close up they are too intricate to look like realistic
cracks. The algorithm as implemented so far is just the
basic DLA algorithm. As such it will always produce this
kind of result. To generate anything more appropriate
would necessitate certain modifications. By adding in a
bias factor for example, it should be possible to predispose
the pattern towards certain shapes.

Figure.15 - DLA output
with bias

Figure.16 - DLA output
after 5 seconds

Figure.17 - DLA output
after 10 seconds

Figure.18 - DLA output
after 20 seconds

Through simply adding a number of particles to the scene
before releasing the random particles, the areas where
particles will congregate is effectively biased to a degree.
Though this was experimented with, it was not taken very
far for reasons explained below. One problem that did
arise was that if particles were initially placed too far from
the impact point, most released particles would only
congregate around the bias particles. If a line of particles
was placed into the scene, only a straight line would be
formed from the impact point, until clusters began to form
further out. If more time were spent testing the effects of
biasing a solution to this problem would likely present
itself.

Such modifications were not undertaken to a greater
degree as they were seen to be unwarranted in the face of
(execution) time factors. As mentioned earlier the time it
takes to produce a presentable result is too protracted to be
used in a real-time application. As it takes a number of
seconds to produce a reasonable image rather than a
number of split-seconds it reduces the possibility of
running in real-time (or at least quick enough to be used in
a fast moving virtual environment). The implementation
used is inherently slow as for every step a particle takes its
position must be checked against all existing particles. As
time advances execution will become slower from having
to check a progressively greater numbers of particles.

The series of figures above show examples of patterns
formed over time.

A possible alteration that could be made to enhance speed
would be to instead check the background colour at each
step. When the background colour is the same as the
particle colour, it should stick. However, though this may
work in the current application which uses only 2 colours,
it is far less likely to function correctly in a world using
textures and multiple colours. Also, the crack itself would
not be composed entirely of a single colour since this
would appear totally false, thereby defying its own
purpose. It would have to be composed of a similar
material (texture) to the surface it was propagating through
as essentially it would be part of the surface (or to simulate
it even more realistically, a volume removed from it).

Another potential speed enhancement would be rather than
releasing one particle per frame, to release a number of
particles per frame. This would have the overall effect of
producing a pattern faster, though it would also make it
develop jerkily. It would be possible to make the entire
crack appear in one frame if enough particles were
released in that one frame, however this would have a
detrimental effect on the frame rate.

What is more, is that in a game environment the rendering
of the crack will be one of a multitude of things that need
processing. The sounds, other graphics and artificial
intelligence among other things all require processor time
too. Bearing this in mind the speed of this method is
completely prohibitive for practical use unless
significantly enhanced. This project demonstrates that
there is potential in the approach, but only after a great
deal of effort spent on optimising the algorithm, as well as
making modifications which simplify the resulting
patterns.

Probabilistic Weak Point Propagation (PWPP)

This approach gave the best results overall. The DLA
method was fundamentally too slow to currently be
implemented for real-time use, and the KCG method was
overly simplistic. The weak point method gives a better
representation of a crack in a short time frame. Producing
very random patterns, and with convincing branches from
the main shafts, it gives the most realistic results of the
implemented approaches. It has the potential to add an
extra element of realism to today’s games.

The solution is more efficient than DLA as it works on a
line-by-line basis rather than a pixel-by-pixel basis, thus
providing a fundamentally faster technique. Speed is very
important if the technique were implemented in a virtual
environment, though as mentioned in chapter 6 it would
require a more efficient design to enhance the current
speed. As it is currently, this method works fast, but with a
noticeable lag between pressing a key and a crack
appearing. This is at least in part due to the experimental
nature of its development. With the feasibility proven a
more robust and more efficient design could be devised.
With this more fundamental issue addressed, the code
could also be optimised a great deal. This is another matter
neglected at this time as it was considered irrelevant. With
these two concerns dealt with the code should run a great
deal faster, and could potentially be implemented into
some form of real-time virtual environment application.
Also, considering the rapidly advancing speed of
processors, along with today’s graphics hardware taking
more of the burden from the CPU, more resources are
becoming available for processing such tasks. In six
months, even this un-optimised version may be fast
enough to run with a number of other things (graphics,
sound, artificial intelligence) being processed as well.

Figure.19 - A decal from Quake 3 [QUA99]

Compared to existing methods of simulating bullet holes
and similar forms of damage, the results are encouraging.
Where normal decals are all the same, this method
produces different ‘damage’ every time.

Not only that, but where decals must be drawn for each
type of weapon or damage available, here nothing needs
altering. Each weapon can simply pass in a different set of
parameters, resulting in different types of crack. Currently
this is limited to the size of crack and number of branches
it has, but other differences are discussed in the further
work section.

A more recent advance in damage effects is Volition’s
GeoMod engine in ‘Red Faction’ [RED01]. Though decals
were still used for smaller effects like bullet holes, damage
produced by more destructive weapons (such as a rocket
launcher) was modelled using a constructive solid
geometry engine. This allowed them to perform Boolean

operations on geometry. As such they could effectively
remove ‘chunks’ from walls. Though this offers a higher
level of interaction with the world, the results are
frequently simplistic or unrealistic.

Figure.20 - Red Faction [RED01]

The above image shows how certain parts of the scenery
have been removed. The area directly in front of the player
looks somewhat unusual. The damage effect present is not
entirely convincing. This is partially due to the simplistic
nature of what has been removed. The blocks of geometry
that have been removed are made up of a fairly low
number of polygons. The technique presented in this paper
provides a more complex and realistic representation of
impact effects, though currently they are purely aesthetic.

The results are not as realistic as those non-real-time
systems may render, but as observed earlier, there is no
limitation on the time taken to render graphics, and as such
they can use extremely complex physics models to create
phenomena like cracks.

If the viewer is aware of their purpose, a crack’s
appearance in the basic application is obvious. However,
to someone who was unaware of this, it may not be so
apparent. This is partly down to the abstract quality of the
environment. Each wall is made up of one colour so it may
not be immediately apparent what they are meant to
represent. Bearing this in mind, the lines do form some
natural looking cracks. To give them a more practical
setting, the walls and floor were textured. Setting them
into context immediately gives them more credibility than
in an abstract world. Anything viewed out of context can
be hard to recognise.

Figure.21 - A crack demonstrating branching, and
amalgamation

Figure.21 shows an example of amalgamation, where one
crack joins with another. It is also an example of a larger
crack. Amalgamation was not entirely successful. It does

not occur at every intersection. As explained earlier, there
is only a limited amount of intersection checking, however
the concept is proven to work and to produce good results.

Figure.22 - Small crack

This is an example of one of the smaller cracks. Due to the
smaller force it does not propagate as far, and though it has
small branches, it does not have the opportunity to branch
as much as a crack produced from a large force.

Figure.23 - Medium crack

This crack was produced from an impact with a greater
force. Not only does it span a greater distance than the one
in Figure.8, it has a greater number of branches, each of
which also propagate farther than the branches of the
previous one.

Even set in context there are negative aspects to the cracks.
In their current state they may be considered too thin. In
reality cracks generally split the material they are
propagating through. This means a volume of the material
is removed or that areas have their shape altered, which
from a distance may look like a thick line through it. The
lines in the application though representing the shape of a
crack do not actually split the material, or remove anything
from it. This issue is further addressed in the future work
section.

CONCLUSIONS

The proposed method certainly shows promise. It succeeds
in its primary goal of producing realistic looking cracks in
real-time. Some of the secondary goals were not entirely
successful due to insufficient time to complete them, but
are demonstrated to be feasible. There are a number of
avenues for further research as discussed in the preceding
sections. Hopefully at least some of these will be
investigated in the future.

As Steven Poole says “If you’re going to raise the retinal
stakes to a photorealistic degree, a comparable increase in
game play coherence will be necessary” [POO01]. As

graphical realism improves people will expect the same
kind of improvement in realism regarding interaction.

Conversely, it is sometimes desirable to have realism in
terms of interaction with a world, but not in terms of
graphics (and in some cases physics). Either way,
interaction needs to be described in some form. Modelling
interaction between all objects in a world is an impractical
way to do this; a more generalised approach is needed. The
technique presented here is a step towards this goal. With a
damage system that is easily generalised to any material, it
could be applied widely, from scenery to objects (such as
windows, rocks, ceramics – in its current state it is
unsuitable for metal objects as under normal circumstances
metal does not crack). No extra work would be necessary;
impacts with a wall would be modelled with the same
system that modelled impacts with a vase for example.
There would be no need to describe what happened to each
and every object and surface explicitly when they were
shot.

REFERENCES

1. [HAH97] Hahn, Patrick., 1997, Plasma Fractals.
 <http://www2.vo.lu/homepages/phahn/fractals/plasma
.htm> (February 2002).
2. Deloura, Mark., ed., 2001. Game Programming
Gems 2, Massachusetts: Charles River Media, Inc.
3. Stevens, T. Roger., 1990. Fractal Programming in
Turbo Pascal. USA: M&T Publishing.
4. O’Brien, F. James, Hodgkins, K. Jessica, 1999.
Graphical Modelling and Animation of Brittle
Fracture. ACM Computer Graphics (SIGGRAPH 1999
Conference Proceedings), (8-13).
5. [LEE] Lee, Y.K., Hoon, Kelvin., Brownian
Motion. The Research Goes On ...,
<http://www.doc.ic.ac.uk/~nd/surprise_95/journal/vol4/ykl
/report.html> (December 2001).
6. [MAN84] Mandelbrot, B., 1984. The Fractal
Geometry of Nature. (s.l.) W. H. freeman.
7. [NVI02] nVidia Corporation.., GeForce2 Ultra.
< http://www.nvidia.com/view.asp?PAGE=geforce2ultra>,
(January 2002).
8. [PEI92] Peitgen, Heinz-Otto., Jurgens, Hartmut.,
Saupe, Dietmar., 1992. Fractals for the Classroom, New
York: Springer-Verlag.
9. [PON72] Atari., 1972. Pong. Atari.
10. [POO01]Poole, Steven., 2001. Trigger Happy. Edge,
Sept, p20.
11. [QUA99] id Software Inc., 1999, Quake 3 Arena.
Activision.
12. [RED01]Volition Inc., 2001. Red Faction. THQ.
13. [SOM01] Somerville, Ian., 2001, Software
Engineering. 6th Ed. (s.l.): Addison-Wesley Publishers
Limited.
14. [WIR01] Wirtz, Franz-Josef., 2001, Diffusion-
Limited Aggregation and its Simulation.
<http://www.oche.de/~ecotopia/dla/>, (December 2002).

A NEW REALISTIC MOTION BLUR ALGORITHM

James Flannery, Richard Cant, David Al-Dabass

Dept of Computing & Mathematics
The Nottingham Trent University

Nottingham NG1 4BU
david.al-dabass@ntu.ac.uk

KEYWORDS motion blur, games graphics

ABSTRACT: This paper reports on a project whose aim is to
model a realistic motion blur phenomenon for computer-
generated images. There are many applications for this, but the
one chosen for this paper is for a first person perspective roller
coaster simulator. In this case, the surroundings will either be
completely still or have such a low velocity with respect to the
viewer, sat on the roller coaster, that they may be said to be
completely still.

INTRODUCTION

The Depth of Field Phenomenon: Blurred retinal images of
observed objects are stimuli for accommodation Rokita [1]. This
is caused by the tension of the ciliary muscles and the resulting
curvature of the eye lens that allows the object to become
focused. Accommodation is believed to be a weak source of
information about depth. The brain converts certain types of
information including depth cues, giving the sensation of depth
and distance. In real life, depth cues influence the human mind’s
perception of space and reality. These include occlusion,
perspective, and light and shade to name but a few. To develop
high levels of realism in virtual reality, any depth of field problem
solutions should reproduce all depth cues.

When an object is defocused due to the object being far from the
plane on which the optical system is focused, each point of the
object produces a circle (blur circle) on the retina, rather than a
single point. The depth of the observed point dictates the
diameter and intensity distribution of the blur circle. The image
of a defocused object is composed from the superposition
of these blur circles from all the visible points of
the observed scene.

A lens equation may be used to find the eye’s state of
accommodation because the eye will automatically adjust its focal
length to the distance of the object where the view is directed.

Accommodation cues in computer graphics are implemented in
the following way:

Eye tracking devices find out where an eye is focused at a given
moment (in computer hardware it will be the screen pixel
coordinate). This allows the z distance to be found which is the
distance from the eye to the object being viewed (in computer
hardware this is retrieved from the z-buffer). The diameters of the
blur circle for a given state of the eye’s accommodation will be:

Cd = |Vd – Vf| (F/(n.Vd) eq 1

where

Cd = diameter of blur circle
n = aperture number
F = focal length of lens
Vd = F.d / (d – F) where d > F
Vf = F.df / (df – F) where df > F

Since the pupil diameter varies depending on the amount of light,
an average is taken (F/n = effective lens diameter = 4mm).
Further complications occur because the focal length of the eye is
also variable. This is because the lens will alter its shape to
change the eye’s refractive power, thus allowing a sharp image to
be projected onto the retina. The focal length can be found from
the lens equation below:

1/D + 1/V = 1/F eq 2

where
D = object distance
V = image distance
F = focal length of lens

The focal distance can be found by equation 3 below and by
knowing the distance between the lens and object, and the
distance between the lens and image projected in equation 2.

F = 1 / (1/D + 1/V) eq 3

The distance between the lens and the retina (projection screen) is
not variable and in an adult is typically 24mm. The object
distance is the same as df in equation 1, which is taken from the z-
buffer.

Equation 1 reformed:

Cr = |Vd – Vf| (E/Vd) eq 4

where
Vd = F.d / (d – F) where d > F
Vf = F.df / (df – F) where df > F
d = point distance
F = 1/((1/df) + (1/dr))
dr = distance between eye lens and retina
E = effective lens diameter

Now the diameter of the on screen blur circles needs to be
calculated. This is proportional to the diameter of the retinal blur
circles:

Cs = (ds/dr) Cr eq 5

where
ds = distance between eye and display screen
dr = distance between eye’s lens and retina

mailto:david.al-dabass@ntu.ac.uk

Cr = diameter of the retina’s blur circles, from equation 4

Rokita generates the defocus effects by taking the intensity of
each pixel and applying a convolution filter with an appropriate
point spread function. A 3 x 3 convolution mask is used to
generate the blur circles because this type of filter is cheap and
simple.

One of the main advantages of the above method is that it is very
quick and efficient and it also can be easily implemented in an
existing rendering system because of its post-processing position.

2.2 Motion Blur Attempts
Potmesil and Chakravarty [2] were probably the first to attempt to
recreate the motion blur phenomenon in computer graphics.
Below is a brief description of their methods and conclusions:

Motion blur is caused by two main reasons: the movement of
objects, and the movement of the shutter.

The movement of objects is the movement solely of the camera,
solely the objects in the scene, or a mixture of the two.

The movement of the shutter is the movement of the shutter
across the film plane. The direction of movement of the shutter,
finite opening and closing times of the shutter and the changes in
the shape of the aperture can all have an effect on the final motion
blurred image.

Potmesil and Chakravarty constructed motion blurred images in a
two-stage process whereby: (1) a hidden-surface program
generates intensity sample points of an image. This identifies
which points are in motion and also gives the image path of the
projected motion; (2) a post-processor will then blur the moving
points by convolving them with derived optical system-transfer
functions and merges these with a stationary image to give a final
image. The optical system-transfer functions are derived from the
image path in stage (1).

For the hidden surface removal stage the system produces an
image using a ray tracing pinhole camera model. The intensity
and z value are then computed and stored for each point and the
intensity for each pixel is calculated. This is found from the
weighted average of the intensities in the blur circles that overlap
the pixel. The blur circle intensities for different values of z are
stored in lookup tables. This technique uses far too much
memory and takes too much time to be useful. Since the image is
formed from a single point, some light rays are lost. Therefore,
the image will only be an approximation.

The motion blur processor is passed samples of an image frame
with all the paths of the individual objects, time of the frame
exposure and the exposure duration. The actual blur is generated
from a raster image consisting of sample points of a moving
object of the same path. The motion blur is computed from the
object path, exposure time and exposure length. This forms
another raster image and the two images are merged to give the
final effect.

As mentioned before, this technique takes too long and uses up
too much memory. Further more, the technique does not solve
the motion blur problem completely because object occlusions
occurring during the exposure time cause complications.

A large amount of improvements have been made for spatial
aliasing (e.g. [3], [4], [5] and [6]) and many graphical programs
integrate antialiasing procedures as standard. However, very little

work has been done on temporal aliasing which is essentially
motion blur. Korein and Badler [7] published work on this in
1983 using different strategies to Potmesil and Chakravarty.

They understood that it was important to find out which object
projects onto a given pixel, but also when it does so. From this, a
temporal intensity function of high resolution may be derived on
the basis of visible object qualities. From here, the function is
convolved with an appropriate averaging function. Paper [7]
describes the two methods for finding out the high-resolution
function.

The first method approximates object movement with continuous
functions and calculates the precise periods during which each
pixel centre is sheltered by an unoccluded object. The intensity
function resulting from this is then derived using uninterrupted
approximations of the object qualities necessary for the shading
routines.

The second method uses a typical rendering algorithm which
undergoes a continuous iteration to super sample the moving
scene. It will also work out a discrete estimation of the required
pixel intensity function.

Both of these methods suffer from large processing times;
rendering an object multiple times is bound to be prohibitive.
Furthermore, if the number of temporal sample points is finite and
constant, the estimation will not be very accurate.

To combat the time consuming methods used previously, Wloka
and Zeleznik [8] developed a new algorithm for use with
interactive real-time motion blur applications. Without motion
blur, fast moving object often appear stilted and jerky, a typical
stroboscopic effect. An example of an interactive application
where this effect is not appropriate is when the user wants to
select a moving object. The user has difficultly in predicting
future object positions making it difficult to click on the object.
With a blurring effect, the path of the object becomes easier for
the user to follow and, therefore, the object can be selected
without difficulty.

Wloka and Zeleznik’s algorithm blurs individual objects onscreen
rather than the whole images. This means that the generation of
the blurring effect is fast enough to operate in real-time, but
interobject relations cannot be addressed. The given example of
this is for two moving objects. The first object always occludes
the second which in real life means that the viewer never sees the
second object and its blur. Their algorithm, however, shows both
objects and their corresponding blur patterns which is not
realistic.

A not wholly unrelated piece of work is that of deep shadow
maps [9]. A deep shadow map is a rectangular array of pixels
where each pixel stores a visibility function. This is a
representation of the fractional visibility through a pixel at all
possible depths.

Placing a camera at the light source origin generates shadow
maps. The light will intercept a set of objects which in turn will
cast shadows. The visibility function is simply a fraction of the
beam’s initial power that penetrates to that depth. Each visibility
function starts off as 1, and decreases with depth. It will become
0 should all the light be blocked. From this, a deep shadow map
can be produced.

With regard to motion blur, deep shadow maps can be used by
associating a random time with every shadow image sample and

its corresponding transmittance function. These samples are then
averaged into visibility functions accounting for the average
coverage over time and image plane, thus creating a blurring
effect. Deep shadow maps probably fall short of the mark with
regard to solving the motion blur problem in the same way as the
other papers mentioned. This is due to the interobject relations,
otherwise known as occlusions, not being taken into account.
Taking these into account increases the complexity of the
problem.

A rather insightful paper written by two employees of the Silicon
Graphics Computer Systems company [10] explains how four
computer graphics problems (aliasing, depth of field, motion blur,
and soft shadows) can be solved at once using the Accumulation
Buffer. Accumulating a series of discrete still images by allowing
the geometry to move as the image is being accumulated, is how
Haeberli and Akeley solve the motion blur problem. There are
defects with this method, however. The primary defect is that
when multiple images are convolved, the resulting picture will
often be found to have ‘ghost’ outlines around each object. This
is a typical result of multiple image convolution when used to
give a blurring effect.

THE MOTION BLUR ALGORITHM

As mention before, motion blur is a phenomenon that is caused
by:

1 – movement of objects in the scene,
2 – movement of the viewer/camera observing the scene,
3 - a mixture of the above.

For simplicity in this project, the movement creating the blurring
effect is due to the movement of the viewer/camera in the scene.
This particular scenario is also appropriate for the application of
the motion blur effect where the viewer/camera is positioned on a
roller coaster train. The train will often move so fast that other
object movement, such as passers by, will be negligible.

A further assumption in this project is that the viewer/camera is
always facing ahead, i.e. in the direction of the roller coaster’s
movement. This means that objects in the field of view will move
radially outwards with respect to the perspective of the
camera/viewer. The objects will, therefore, blur along their line
of movement. This makes the mathematical calculations a lot
easier.

The final assumption is that the train and, therefore, the
camera/viewer only moves in a forward direction and never
reverse. This ensures that objects move radially outwards and
towards the train, not inwards and away from the train.

Factors Contributing to Motion Blur

There are three major factors that will affect how much blurring
an object on screen will subjected to:

 1 – velocity of the viewer/shutter,
 2 – the object to viewer/shutter distance (depth),
 3 – the radial distance of the object from the centre of view.

The first factor is dependant upon the speed of the roller coaster
train because the viewer/camera will be positioned on the train
and, therefore, will move according to its motion.

The second factor creates more blurring when the object is close
to the viewer/camera and vica versa.
In the third factor, for simplicity, the screen is imagined to be
circular (figure 3). In this case the centre of view will be the
centre of the screen, C, and the radial distance, r, is the distance
from C to object O.

Figure-3

The overall 3-Dimensional view is show below from a side
perspective in figure 4. The actual view is conical, if a circular
screen is assumed, with the centre of view running all the way
down the middle of the cone.

Simple Perspective Calculations

The blurring algorithm is found by determining values for
primary factors, r and z.
To work out this out, simple perspective mathematics is used
(figure 5).

In the above figure an object in space, represented by an ‘O’, can
be represented on screen, o, using a simple similar triangles
calculation:

O / Z = o / z
o = Oz / Z

where:
z is the distance between the lens/shutter and screen in metres.
Z is the distance between the object in space and the lens/shutter
in metres.

This is the simplest case scenario in which the object and
viewer/camera is completely stationary. It is a good way to see
how an object in space will be represented on the screen.
However, what happens when the viewer/camera moves a certain
distance?

Introducing Motion Perspective Calculations

By using two triangles similar to the one in figure 5 the
viewer/camera movement scenario can be solved. One of the
triangles represents the original position of the camera/shutter
(figure 6), and the other represents the camera/shutter after it has
moved towards the object a certain distance (figure 7). Therefore,
the latter triangle’s Z distance will be shorter than the former’s
and this is shown by subtracting the distance travelled from the
original Z distance.

Furthermore, the factors in section 4.2 should now be taken into
account. If the object in space in figure 5 is viewed from above
and if it is assumed to be one pixel in size, the object in space
length, O, will now become the object in space radial distance
from the centre of view, R. Therefore, the object on screen
distance, o, will become the object on screen radial distance from
the centre of view, r (in pixels).

The velocity of the camera/viewer determines how far it will
move per frame on the screen. This will be worked out in due
course but, for now, the distance moved per frame will be
represented as ∆.

Both triangles will be found to have R as the radial distance of the
object in space to the centre of view. This is because this radial
distance will not change when the roller coaster train moves
forwards. However, the radial distance of the object pixel
position will change. Therefore, this allows a simplification by
taking away the larger triangles in both figure 6 and figure 7:

Similar triangles can now be used to solve the equation in terms
of z:

r / z = (r - δr) / (z - ∆)
r (z - ∆) = z (r - δr)
rz - r∆ = rz - zδr
r∆ = zδr
z = r∆ / δr

Rearrange equation 1 to solve equation in terms of r:

zδr = r∆
zδr / ∆ = r

Determining Sharp and Blurry Boundaries

Motion blur can be simulated on a computer screen by
determining a set of boundaries that relate to the r distance
(measured in pixels) and the z distance.
These boundaries split the virtual 3-Dimensional screen into areas
with different blurring factors. The blurring factors will be
explained in more detail shortly but first of all the boundaries
need to be calculated.

At this point the distance travelled per frame, ∆, must be found.
Since, roller coasters are always changing velocity, a fairly
average speed has been chosen for the purpose of this calculation:
55Km/hr. This is roughly 15m/s.

The frame rate of the human eye is approximately 25 frames per
second. Since the camera represents a persons view on the roller
coaster, this will be the frame rate of the camera.

From the velocity and frame rate, the distance moved per frame
can be found:
Velocity / frame rate = distance moved per frame
15.28 / 25 = 0.61m / frame
∆ = 0.61m/frame

Assuming a circular screen, the maximum value of r will be the
radial distance from the centre of view to the edge of the screen.
This means that r will be half of the resolution used. For the
purpose of the following determination, the resolution will be
1024, making r equal to 512 pixels.

The next important point to make concerns δr. This is the change
in distance of r in pixels that occurs when the viewer/camera
moves a distance ∆. This value can be any value from 1 to the
maximum value of r, 512. Essentially, this value determines the
amount of blurring to which the pixel is subjected.

From equation 1: by keeping r at a constant maximum, keeping ∆
at 0.61mpf (metres per frame) and changing the value of δr, the z
boundaries can be found. Section 1 of appendix 1 shows the
values of the z boundaries when r = 512, and δr changes by the
sequence shown below:

1,2,4,8,16,32, ……. 264, 512 To find which area in which a pixel will lie, a polar coordinate

system is used. This is based on the x, y and z Cartesian
coordinate system and will be looked at in the next section.

N.b δr is represented by dr.

Using these z values, equation 2, and yet again changing δr in the
same way as before, the r boundaries can be found (section 2 of
appendix 1). The row across the top of section 2 of appendix 1
holds the changing δr values.

By plotting r vs. z the actual blurring boundaries are shown
(appendix 2). However, it should be noted that some of the r
values are greater than 512. Since 512 pixels is the maximum r, a
new table can be drawn up where r does not exceed this (section
3, appendix 1). A renewed plot of this table can be seen in
appendix 3.

Not all the boundaries are shown on the graphs because some of
them are so close together at this scale that they appear to merge
and overlap. Furthermore, the graph needs a reflection in the x-
axis to be added so that it represents the boundaries below the
centre of view as well as above. In three dimensions, this would
form a conical shape (figure 4). Figure 10 shows these
boundaries from a front view perspective:
Figure 11 below shows the boundaries with their associated blur
parameters. The ratios are, simply, screen resolution ratios where
1:1 will be equal to full screen resolution, 2:1 will be half of the
full screen resolution, 4:1 a quarter of the screen resolution, and
so on. This is very similar to the depth of field algorithm.
The view directly ahead, δr ≤ 1, will always form a sharp image,
hence the 1:1 ratio. The area beyond this, 1 < δr ≤ 2 (2:1) gives a
slight level of blur. The 4:1 area will give twice a much blur as
the 2:1 area, the 8:1 area 4 times as much as the 2:1 area, etc.

It should be noted that the boundaries continue outwards until
they reach the edge of the screen (r = 512 pixels) as shown below.

Conversion of Cartesian Coordinates to Polar Coordinates

Polar coordinates (r,θ, z) can be found in terms of Cartesian
coordinates (x, y, z), where: r is the radial coordinate; and θ is the
angular coordinate (figure12). The equations are shown below:

 x = r.cos θ
 y = r.sin θ

r is the radial distance from the origin and can be found from
Pythagoras’s theorem:
 r = √(x2 + y2)

and θ is the anticlockwise angle from the x-axis:
 θ = tan-1 (y/x)

z will be the same in the polar system as it is in the Cartesian
system.

Location of Blur Area with δr: Equations 1 and 2 can be
rearranged to solve in terms of δr:
δr = r∆ / z

From the Cartesian coordinates of each pixel polar coordinates
can be found from section 4.6. Now that r and z have been found
and assuming ∆ = 0.61mpf, δr can be found. This allows each
pixel to be assigned to a blur area (screen).

Occupancy Weighting: A pixel is essentially a coloured spot on
the screen. It is made up of the primary colours: red, green, and
blue (rgb). When a pixel shines on a screen it will have been
assigned an appropriate value for each of its primary colours. To
cause a blurring effect, a factor must influence these rgb values

and change them accordingly. This factor is known as occupancy
and, it works in a similar way to the depth of field algorithm.

If a pixel lands exactly on a boundary it will be blurred by the
factor of the boundary that it lands upon. For example, if the
boundary is 2:1 the pixel will be blurred by a factor of 2:1, and
this is done from the resolution being half that of the sharp 1:1
area (section 4.5).

However, what happens if the pixel doesn’t exactly land on a
boundary? In this case scenario an occupancy weighting is found.
For example, if the pixel is the same distance from the 4:1
boundary as the 2:1 boundary, the pixel will receive a 50%
contribution from the 4:1 area and a 50% contribution from the
2:1 area. Should the pixel be nearer to the 4:1 boundary, it would
receive a larger contribution from the 4:1 area than the 2:1 area
relative to its distance from each boundary. This method is
known as linear interpolation and it should be familiar as it works
on the same principles as used in section 3.2.

The Algorithm

The blurring algorithm will be as follows:

For each layer:
For each pixel:
- Get coordinates.
- Find r and z from Cartesian coordinates.
- Calculate δr.
- if pixel not in 1:1 area (screen):
- Find polar coordinates.
- Find occupancy weighting for subject pixel.
- Store occupancy in memory at a point relating to correct
coordinates of pixel and layer.
Retrieve pixel values for each layer.
Combine layers from front to back to form final blurred image.

Pixels that have the same z value but different x, y coordinates
form layers. This is very similar to the Depth of Field algorithm
only now, instead of each layer having a different resolution
depending on how far it is from the point of focus layer, they are
split into areas (screens) from their blur boundaries as mentioned
earlier. These screens will, therefore, each have different
resolutions relating to their blur parameters, e.g. 8:1. Figure 13
shows these layers and their corresponding screens. It is based on
figures 10 and 11.

By finding the occupancy weighting for each pixel in each layer
and then combining all the layers together from front to back thus

performing hidden surface removal, a final blurred image is
formed. Front to back means from the layer nearest to the
view/camera back to the farthest.

IMPLEMENTATION

Implementing the algorithm involves using the existing depth of
field code and modifying it to perform motion blur. One of the
main differences is the fact that the depth of field code uses two
sets of memory for near and far screens. This near screen is from
the front layer to the centre of focus and the far screen is from the
centre of focus to the final layer. For the motion blur
implementation there will not be a near or far screen, just one that
works from the nearest layer to the layer at the rear.

The occupancy (rgb value) is worked out for each pixel using the
linear interpolation method mentioned in section 4.8. This value
needs to be stored for each pixel and is achieved by calculating
perimeter values. By knowing the perimeter value for a pixel
with a known r, the layer in which this pixel lies can be found.
Perimeter values are worked out from the pixels r value. These
can be seen in appendix 4 where they have been calculated from
2*Π*r. The perimeters are then rounded to the nearest pixel.

N.b. Not all of the perimeter values are shown because a list of all
512 would take up too much space. The appendix has been
supplied, simply, to illustrate how r is used to give perimeter
values.

Picture 1

As well as knowing the perimeter value for each r, θ is needed to
show where on the layer the pixel lies. θ is found from equation
6, and once obtained with the perimeter value, the exact location
of the pixel is known. This location is stored in an array as
‘perimeter*θ’.

Each pixel now has a different location in memory to store its
own occupancy weighting. Figure 14 shows how the occupancy
value, θ value, and r value for each pixel arrives for the former to
be stored in memory. An array of pointers exists for each r value.
When the pixel values arrive, r is checked and it is sent to its
appropriate point in the perimeter memory. When it arrives at the
perimeter memory θ is checked and its occupancy (rgb value) is
stored in the area of memory equal to θ*perimeter.

After all the occupancies are stored, they are recalled layer-by-
layer and merged together to give the final blurred image. This is
done starting at the front layer and working down to the back
layer which ensures that hidden surface removal is successful.

An example of a real life motion blurred image, taken from a
moving car, is shown below in picture 2.

EVALUATION

Some steps that may improve the accuracy of the blurring effect
would be to use a bilinear interpolation method as opposed to a
simple linear one. In the linear case, the occupancy value of a
subject pixel is splatted onto itself rather than spreading the value
out over the neighbouring pixels. The bilinear method will spread
the value out and, hence, would create a more realistic blurring
effect.

The above could be taken even further by using a trilinear
interpolation method, which is the bilinear method and the linear
method combined together. However, it is quite possible that the
rewards in this method maybe small considering the amount of
processing time it would require.

An enhancement for the future could be to allow object
movement as well as the camera/viewer. More simple than this
and, therefore, something that should be done beforehand, is to
allow objects to move while keeping the camera/viewer
stationary.

One greatly limiting problem in this paper is that the
camera/viewer has a fixed view directly ahead. This is obviously
not the case when people are on a roller coaster because they will,
generally, look around. The reason for using this fixed view
directly ahead was to simplify the motion blur by having all
blurring occur in a radial direction. Should the camera/viewer
adjust its/his/her view so that it is 90 degrees clockwise to the
original position, objects will blur along the horizontal axis.
However, should the view be adjusted so that it is 45 degrees
clockwise to the original position, there will be some blurring in
both the radial and horizontal directions. There is, obviously, a
considerable amount of scope for the investigation and simulation
of blurring in these and their analogous cases. An algorithm
should eventually be researched and developed to solve the
blurring for every viewing perspective with respect to the
direction of the roller coaster.
The final limiting problem with this investigation is to do with the
direction of movement of the roller coaster. Not all roller
coasters move in a forward direction only; many move

backwards. An algorithm could also be developed to enhance the
present one so it accounts for reverse motion.

As mentioned previously, there was not enough time to test the
algorithm described in the previous chapter. Therefore, whether
this algorithm is efficient or whether it would perform correctly
is, currently, unknown.

CONCLUSION

Overall, the motion blur phenomenon seems as though it could be
simulated by the algorithm discussed in this paper with respect to
the conditions set. The theory has been supported by
mathematical proof and, therefore, should provide a realistic
simulation.

REFERENCES

[1] P. Rokita, Generating Depth-of-Field Effects in Virtual
Reality Applications. Computer Graphics and Applications,
March 1996 16, pp 18-21.
[2] M. Potmesil, I. Chakravarty, Modelling Motion Blur in
Computer-Generated Images. Computer Graphics, July 1983
17(3), pp 389-399.
[3] B. Guenter, J. Tumblin, Quadrature Prefiltering for
High Quality Antialiasing. Transactions on Graphics, October
1996 15(4), pp 332-353.
[4] D. P. Mitchell, A. N. Netravali, Reconstruction Filters
in Computer Graphics. Computer Graphic, August 1988 22(4),
pp 221-228.
[5] R. J. Cant, P. A. Shrubsole, Texture Potential MIP
Mapping, A New High-Quality Texture Antialiasing Algorithm.
Transactions on Graphics, July 2000 19(3), pp 164-184.
[6] R. J. Cant, P. Shrubsole, Texture potential mapping: A
way to provide antialiased texture without blurring. Visualization
and Modelling, 1997, Academic Press, Inc., Duluth, MN, pp 223-
240.
[7] J. Korein, N. badler, Temporal Anti-Aliasing in
computer generated Animation. Computer Graphics, July 1983
17(3), pp 377-388.
[8] M. M. Wloka, R. C. Zeleznik, Interactive real-time
motion blur. The Visual Computer, Spring 1996 12, pp 283-295.
[9] T. Lokovic, E. Veach, Deep Shadow Maps. Siggraph
2000, pp 385-392.
[10] P. Haeberli, K. Akeley, The Accumulation Buffer:
Hardware Support for High-Quality Rendering. Computer
Graphics, August 1990 24(4), pp 309-317.
[11] Dr R. J. Cant, 4th floor Newton Building, The
Nottingham Trent University.
[12] J. Snyder, J. Lengyel, Visibility Sorting and
Compositing without Splitting for Image Layer Decompositions.
(Unknown Journal).
[13] NoLimits Roller Coaster Simulator (version1.25).
www.nolimitscoaster.de
[14] Images taken from Depth of Field Program written by
Dr R. J. Cant (see reference [11])
[15] Picture taken from Coasterforce.com.
www.coasterforce.com

http://www.nolimitscoaster.de/
http://www.coasterforce.com/

STORYTELLING
AND

NATURAL
LANGUAGE

PROCESSING

Investigation into Speech based Interaction for Video Games

Eleni Spyridou and Ian Palmer
School of Informatics
University of Bradford

Bradford BD7 1DP, United Kingdom
Email: {e.spyridou, i.j.palmer} @Bradford.ac.uk

Keywords
Speech, video games, Natural Language
Processing.

Abstract
In this paper we attempt to prove that
speech control is better suited to some
video game styles. After a brief research
review we describe our experiments on
two prototype systems we built and their
results. A discussion and description of
further work concludes our paper.

1. Introduction
Speech for most of us has been an essential
part of our daily lives since we were
children. Speech is communication; it is
expressive and conveys intentions clearly.
Conversations employ a range of
interactive techniques to make possible
mutual understanding and ensure clarity.
Despite the effectiveness of speech
communication, relatively little use is
currently made of speech in computing
environments. In most work places voice
synthesis and recognition are relegated to
specific industrial applications or aids to
the disabled; it is not a part of the computer
interface based on a display, keyboard and
mouse. Although present workstations
have become capable of supporting more
sophisticated voice processing, the most
thriving speech application to date is still
the telephone.
As speech technologies and natural
language understanding are established in
the coming decades, more potential
applications will become reality. However,
much more than raw technology is
required to bridge the gap between human

conversation and computer interfaces. An
understanding of the assets and liabilities
of voice communication is a necessary
prerequisite to determining under which
circumstances it will be valuable to end-
users.
Conversational systems must speak and
listen, but they must also understand, pose
queries, take turns, and remember the topic
of conversation. Understanding how
people communicate informs development
of better models for interacting with
computers by voice. But speech is not a
very easy medium to employ effectively,
and unless user interaction techniques are
chosen with great care, voice applications
tend to be slow and awkward to use.
(Schmandt, 1994)

In this paper we review some previous
work on speech recognition in command
and control applications and in virtual
environment. We next describe our
experiments on two prototype systems we
created using the Unreal Tournament
engine and the Age of Empires engine, to
test the effects achieved when introducing
speech into an interface. The experiments
were aimed to find whether speech could
influence the game play of a video game
and enhance the interaction. The results of
the experiments are outlined. We then
discuss these results and we conclude our
paper with future work.

2. Previous Work
In the early 1980s, experiments of speech
input in computer interfaces focused on the
differences in performance when the
keyboard and the mouse input were
replaced by speech input in applications.

The results of formal comparisons between
keyboard and speech are often
contradictory and ambiguous. In some
cases, speech input yields faster and more
efficient entry; in other cases it does not.
The quality and cost of the speech
recognition technology used may be one
factor responsible for the variable results.
With very high quality speech recognition
systems, used in optimal environments,
speech input often gives low error rates
relative to keyboard input; whereas the
reverse occurs in other situations. Hence,
these results do not verify the claim that
speech is a faster human response channel
than typing. There is a great deal of
relevant work in this area (Pock 1982),
(Nye 1982), (Haller, Mutshler & Voss
1984), (Gould, Conti & Movanyecz 1985),
(Damper, Lambourne & Guy 1985),
(Martin 1989).

Adding a speech interface to a virtual
environment changes the relationship
between the user and system. With direct
manipulation, the system is relatively
transparent; the user is directly embodied
as an actor in the virtual world. Speech,
however, requires a dialogue partner;
somebody or something the user will talk
to.

Combining a speech interface with a direct
manipulation interface results in a
multimodal interface where the user can
act upon the world by issuing physical or
speech commands and, conversely, the
system can respond by speaking and/or by
making changes in the virtual world.
Examples exist of such systems
(McGlashan 1995), (Karlgren et al. 1995),
(Everett et al. 1998), (Cavazza and Palmer
1999), (Cavazza, Bandi & Palmer 1999),
(Everett 1999).

2.1. Benefits of Speech Interface
in Virtual Environments

Speech offers a way of issuing commands
while allowing hands and eyes to remain
free. Operations normally carried out
through the direct manipulation modality,

such as transportation, change of view,
object creation and deletion, etc., can be
effected without tying up another modality.
Thus multiple actions can be
simultaneously carried out using different
modalities. This is particularly useful in
cases when hands/eyes are already busy;
for example, when direct manipulation is
used to drive a car, speech can be used to
control the radio.

Users can refer to objects, which are not
present in their current view of the virtual
world. In a direct manipulation interface,
actions can only be applied to objects that
are visually present. In a multimodal
interface though, the user can use speech to
select and manipulate objects, which are in
visual focus or will be in visual focus.
(McGlashan, 1995).

Finally, speech is natural, or more
precisely, familiar. Users are familiar with
using language to act in the world.
However, virtual worlds do not necessarily
obey the conventions of the physical
world, so the standard conventions of
language used do not necessarily apply
when interacting with the computer. The
speech needs to be a restricted language,
which the system can recognise and
understand.

2.2. Efficient interaction
A multimodal interface combining speech
and direct manipulation can provide more
efficient interaction than a single modality
interface, and give the user benefits of both
modalities. It also allows one modality to
compensate for limitations of the other; a
direct manipulation interface can
compensate for limitations of speech by
making immediately visible the effects of
actions upon objects and indicating
through the display which objects are
currently most important for the system. In
addition, the user is free to decide which
modality to use for the actions; the user
may use direct manipulation for
transportation within the virtual world, but

the speech modality for manipulating
objects. (McGlashan, 1995).

Although the motivation for the choice of
modality is frequently unreadable, various
factors, apart from personal preference, are
important such as the naturalness of an
action in a modality and the difficulty or
complexity of carrying out the action in the
other modality.

3. Experiments on speech
multimodal interfaces
3.1. Introduction

Prototype systems were built to test the
effects achieved when introducing speech
into an interface. Computer games were
created using the Unreal Tournament and
Age of Empires, The Age of Kings
engines. The experiments aimed to find
how speech influenced the different types
of game play and whether it enhanced the
interaction. Hence, the hypothesis guiding
the study can be formulated, as “Speech
control will be better suited to some video
game styles”.

3.2. Method
The thirty right-handed participants (12
female, 18 male) were undergraduate and
postgraduate students at Bradford
University and lecturers in the EIMC
Department of School of Informatics at
Bradford University and Trinity and All
Saints College at Leeds. They were not
paid to attend a half hour session on
successive days. All had some experience
with pc and familiarity with video games.

A mini DV camera was used to record
screen activity and reactions from the
participants. Computing hardware
comprised a 1GHz Pentium III Processor
and 256Kbytes of RAM. Microsoft’s
hardware SideWinder was used for ASR
processing with a noise-canceling, head-
mounted microphone. For Experiments 1
and 2 a number of different vocabularies,
containing from 6 to 18 commands
respectively, were invoked.

To make tasks relevant to participants, they
were given a booklet of instructions and
vocabulary for the voice commands they
would use. A questionnaire was used to
assess participants’ preferences of
modality throughout each experiment.

4. The prototype system design
4.1. Unreal Tournament

This video game belongs to the “action –
shoot-em up” category. The system allows
the user to select objects and move about
in the environment using spoken English.
The language used was restricted to low-
level commands. That means that the
system was not able to understand general
language but only language appropriate to
the particular task. The subjects were
required to use limited vocabulary and
syntax for a successful interaction with the
system. Figure 1 shows the system being
used.

Figure 1: Unreal test system in use

4.2. Age of Empires, The Age
of Kings

This video game belongs to the “real time
strategy” category. The system allows the
user to select, add and remove objects in
the environment using spoken English. The
language was not as restricted as in the
previous environment described above.
That means that the system was able to
understand general language in small
sentences, appropriate to the particular task
Figure 2 shows the test system in use.

Figure 2: Age of Empires test system in use

5. Results
The questionnaire (see Appendix A) aimed
to examine two conditions; (1) How much
participants are familiar with up-to-date
technology input devices in computers, i.e.
keyboard, joystick (questions 1-2), and (2)
How much participants are willing to
accept new technological ideas, which will
replace the already existing ones.
(questions 3-8).

Efforts were made to convert the
qualitative to quantitative characteristics to
avoid errors (Figures 3 & 4).

Question 1

4,700 > 3,000

Question 2

4,600 > 3,000

Question 3

1,300 < 3,000

Question 4

4,300 > 3,000

Question 5

1,100 < 2,000

Question 6

2,200 > 2,000

Question 7

1,300 < 3,000

Question 8

3,600 > 3,000

Figure3: Results based on the average ranking

3,000

4,700 4,600

-

1,000

2,000

3,000

4,000

5,000
R

a

n

k

i

n

g

Total

Average Quest. Nbr 1 Quest. Nbr 2

3,000

1,300

4,300

-

1,000

2,000

3,000

4,000

5,000
R

a

n

k

i

n

g

Total

Average Quest. Nbr 3 Quest. Nbr 4

2,000

1,100

2,200

-

0,500

1,000

1,500

2,000

2,500
R

a

n

k

i

n

g

Total

Average Quest. Nbr 5 Quest. Nbr 6

3,000

1,300

3,600

-

1,000

2,000

3,000

4,000
R

a

n

k

i

n

g

Total

Average Quest. Nbr 7 Quest. Nbr 8

Figure 4: Charts based on the average ranking

6. Discussion
Participants were conscious of the speech
interface in both situations, when playing
Unreal Tournament and Age of Empires,
the Age of Kings. Delays in recognition in
Unreal Tournament made the game slow,
boring, awkward and uncomfortable to
play. Speech was not the right interface for
this particular game since it gave another
level of interface for them to deal with. In
Age of Empires, the Age of Kings, speech
changed the level of interface of the game
from being in control when using the
mouse and keyboard to being in command
when using speech. Speech recognition
appeared faster and more accurate in this
game and on more than one occasion
convenient in saving mouse clicks and
time to choose from the icons in the menu.

Many participants made inadvertent noises
(thinking aloud) when deciding their next
action. The microphone would still pick up
the discourse and would try to match it into
a command. It would be a great step to
speech recognition if the machine could
distinguish between what is “noise” and
what is a “command”. The hardware used
for the experiment, Microsoft’s
SideWinder, gives the option to switch off
the microphone while the user would want
to say something other than a command
and switch it on back again. However, this
adds more artificiality to the interface.

Of great importance was the feedback of
participants who said that when using
speech they felt like talking to an ‘empty
room’. Many said that they would have
liked if the system could give them voiced
feedback of the process of the games. It
was also stated that because speech
interfaces are in their infancy teething
problems are expected.

The results of the experiment have shown
that speech interfaces are practical and
desirable but only in certain type of games.
Thus, the hypothesis that “Speech control
will be better suited to some video game
styles” is true.

7. Conclusions and Future Work
At his stage of the research we focused on
two video game genres; action and
strategy. For future work we will
concentrate on First Person Shooter (FPS)
action games. Only this time instead of
single-player mode we will be working on
a team multi-player mode. There will also
be a transition from low-level commands
to high-level commands using Natural
Language Processing (NLP).

Although it has been suggested (Spyridou,
2002) that First Person Shooter (FPS)
games are incompatible with simple low
level speech recognition, NLP allows
recognition of complex structed sentences.
Such commands (Spyridou, Palmer,
Williams, 2002) are more common in
3Dimentional gaming environments.
Therefore it is considered that NLP should
offer greater and more advanced control
for the user in an FPS game.

The concept of a team multi-player game is
that you have at least two teams with at
least two players each. To play with a team
means you have to work as a team; one
player depends on the other.

We are preparing to conduct experiments
using a team multi-player FPS game using
Natural Speech (NS), not Automated
Speech Recognition (ASR), to test what
are the most common and most frequent
vocal commands used in the game by the
users. Because the subjects will use
Natural Speech (NS), the commands issued
are expected to be lengthy and of high
complexity.

After collecting and evaluating the data,
we are planning to conduct a new set of
experiments based on the previous results
using this time speech recognition and
introducing Natural Language Processing
(NLP). High frequency spoken words
(Jurafsky, Martin, 2002) are accessed
faster or with less information than low
frequency words. They are successfully
recognised in noisier environments than

low frequency words, or when only parts
of the words are presented.

In this set of experiments we will test how,
if at all, the game-play perception changes
from the users point of view. And
investigate how the users’ relationship with
the game (spectator/director) changes with
the ability to issue vocal high level
commands. It has been suggested (Bolter,
Grusin, 1999) that natural language control
would shift the game experience towards
tactics rather than immediate action.

Imagine playing a multimodal multi-player
game where you could not tell if your
partner is a bot or a human.

8. References
Bolter, J. D. & Grusin, R. (1999),
Remediation: Understanding New Media,
MIT Press, Cambridge.

Cavazza, M. et al. (1995), “Virtual
Environments for Control and Command
Applications”, Proceedings of the FIVE’95
Conference, London.

Cavazza, M. & Palmer, I. J. (1999), “Natural
Language Control of Interactive 3D
Animation and Computer Games”, Virtual
Reality, Vol.3, pp.1-18

Cacazza, M. & Palmer, (1998) I., A
prototype for Natural Language Control of
Video Games, [Online],
Available:
http://www.qrg.ils.nwu.edu/aigames.org/

Cavazza, M., Banti, S. & Palmer, I. (1999),
““Situated AI” in Video Games: Integrating
NLP, Path Planning and 3D Animation”,
Proceedings of the AAAI Spring Symposium
on Artificial Intelligence and Computer
Games, AAAI Press, Technical Report SS-
99-02, March 1999.

Damper, R. I., Lambourne, A. D., & Guy, D.
P. (1985), “Speech input as an adjunct to
keyboard entry in television subtitling”,
Human-Computer Interaction, INTERACT

’84, B. Shackel (ed.), Elsevier (North-
Holland), pp. 203-208

Damper, R. I. & Wood, S. D. (1995),
“Speech versus Keying in Command and
Control Applications”, International Journal
of Human-Computer Studies, Vol. 42, pp
298-305.

Everett et al. (1998), “Creating Natural
Language Interfaces to VR Systems:
Experiences, Observations and Lessons
Learned”, Future Fusion: Application
realities for the virtual age
Proceedings of VSMM98, 4th International
Conference on Virtual Systems and
Multimedia, Vol. 2, pp. 469-474. IOS Press,
Burke, VA.

Everette S. S., (1999), “Natural Language
Interfaces to Virtual Reality Systems”, Navy
Center for Applied Research in Artificial
Intelligence. [Online],
Available:
http://www.aic.nrl.navy.mil/~severett/vr.html

Gould, J. D., Conti, J. & Hovanyecz, T.
(1983), “Composing letters with a simulated
listening typewriter”, Communications of the
ACM, Vol. 26, pp 295-308.

Haller, R., Mutshler, H. & Voss, M. (1984),
“Comparison of input devices for correction
of typing errors in office systems”,
Proceedings of INTERACT ’84. First IFIP
Conference on Human-Computer
Interaction, London.

Speech and Language Processing, D.
Jurafsky, J. H. Martin, Prentice Hall, 2000,
New Jersey, 0130950696

Nye, J. M. (1982). “Human factor analysis of
speech recognition systems”, Speech
Technology, vol. 1, pp 50-57.

http://www.qrg.ils.nwu.edu/aigames.org/
http://www.aic.nrl.navy.mil/~severett/vr.html

Spyridou, E., Palmer, I. J. and Williams, E.
J., (2002), “Speech Interaction for
Networked Video Games”, Abstract, Paper
to be presented at the HCI International, June
22-27, 2003, Crete, Greece.

Investigation into Speech based
Interaction for Virtual Environments,
Transfer Report,
E. Spyridou, Dept. of Electronic Imaging and
Media Communications, School of
Informatics, University of Bradford,
Bradford, U.K.

Wauchoppe, K. et al. (1997). “Natural
Language in Four Spatial Interfaces”.
Proceedings of the fifth Conference on
Applied Natural Languages Processing, pp.
8-11.

Appendix A (questionnaire)
1. How easy was it to use the keyboard and/or mouse to control Unreal Tournament?

1. Very easy 2. Easy
3. So and so 4. Difficult
5. Very difficult

2. How easy was it to use the keyboard and/or mouse to control Age of Empires (Age of Kings)?
1. Very easy 2. Easy
3. So and so 4. Difficult
5. Very difficult

3. How easy was it to use speech to control Unreal Tournament?
1. Very easy 2. Easy
3. So and so 4. Difficult
5. Very difficult

4. How easy was it to use speech to control Age of Empires (Age of Kings)?

1. Very easy 2. Easy
3. So and so 4. Difficult
5. Very difficult

5. Did using speech to control Unreal Tournament affect the game play in a positive way?

1. No 2. A little bit
5. A lot

6. Did using speech to control Age of Empires (Age of Kings) affect the game play in a positive way?

1. No 2. A little bit
3. A lot

7. How fast was Unreal Tournament to respond to your voice?

1. Very fast 2. Fast
3. So and so 4. Slow
5. Very slow

8. How fast was Age of Empires (Age of Kings) to respond to your voice?
1. Very fast 2. Fast
3. So and so 4. Slow
5. Very slow

© SCS

REAL-TIME CAMERA CONTROL
FOR INTERACTIVE STORYTELLING

Fred Charles, Jean-Luc Lugrin, Marc Cavazza and Steven J. Mead

School of Computing and Mathematics
University of Teesside

Middlesbrough, TS1 3BA,
United Kingdom

E-mail: {f.charles, j.l.lugrin, m.o.cavazza, steven.j.mead}@tees.ac.uk

KEYWORDS
Automatic Camera Control, Interactive Storytelling, AI-
based Animation, Computer Games.

ABSTRACT

In this paper, we present a fully implemented prototype of
real-time cinematic control for character-based interactive
storytelling approaches, where story diversity emerges from
dynamic interaction between characters. We describe the
specifities of real-time cinematic control within a dynamic
virtual environment, where events occur at different locations
at the same time. We also present results based on a situation
of interaction between characters in the unfolding of a story.

INTRODUCTION

Our interactive storytelling system (Cavazza et al., 2002) is
based on the interaction between characters’ behaviours
during the unfolding of the main characters’ plans
representing their role-play. The (active) spectator can
intervene with situations at any time throughout the story,
though not at all time.
Because of spatial and temporal constraints, there is a need
for a real-time cinematic system that will present to the
spectator the on-going situations that are most relevant to the
story at the time.
In traditional film production, the director is responsible for
the overall decision-making process. He ensures that the
narrative is conveyed effectively using the film techniques at
his disposal. In our system, the virtual director has a similar
role. The virtual director will query the client narrative
application and determine in real-time which idiom will best
fit the scene, based on the events specifications. To do this,
the director requires some information from the application,
namely the type of event, number of participants, and
emotional or affective context of the story at the current point
in its telling.
This paper refers to the specificities of real-time cinematic
sequences, being the dynamic nature of stories instantiated
from independent representations of character-based roles,
and the difficulties in producing a meaningful montage of on-
stage events generated in real-time, opposed to scripted film
sequences.
In the next sections, we will introduce the important concepts
of character-centred storytelling as well as a brief description
of our interactive storytelling system. Then, we describe the

traditional cinematographic elements used in automatic
camera control systems. Finally, we give an overview of the
implementation of our camera system, illustrated by an
example based on a typical situation of a conversation
between characters.

CHARACTER-CENTRED NARRATIVE
REPRESENTATION

We have chosen to use plans to represent individual roles for
the characters, rather than the global narrative structure. Each
character is associated a plan corresponding to its role or,
more precisely, the set of possible role instantiations
according to a given storyline. It can be seen as a resource
for story generation. Each plan corresponds to the character’s
role in a given story instantiation: it represents the plot
through a character’s behaviour (Figure 1). The plot itself
consists in the on-stage integration of the various roles
through the situations created by the interactions between
characters.
The on-stage performances of characters are the translation
of each sub-task element of the character’s plan, called
primitive actions, and perceived from the spectator’s point of
view as a sequence of meaningful events. These actions are
formally represented as syntactic triples (subject, verb,
object). The subject represents the protagonist (the actor), the
verb corresponds to the action to carry out, and the object
represents either a physical object or another character.
Though the action can not exist without the subject (actor), it
may be performed without the specification of an object.

Figure 1: Plan Representation of Character Behaviour

© SCS

While there are no straightforward rules to convert high-level
narrative functions into characters’ plans, we have attempted
to devise specific rules that could be applicable in the context
of the simple genre (sitcoms) with which we are
experimenting. The basic hypothesis is that the final story
will emerge from the relations that exist between the various
characters’ plans, these relations being determined from the
story genre.

SPACE, TIME AND CAUSALITY

Narrative is a way of comprehending space, time, and
causality. Since in film there are at least two important
frames of reference for understanding space, time, and
causality, narrative in film is the principle by which data is
converted from the frame of the screen into a diegesis - a
world - that frames a particular story, or sequence of actions,
in that world; equally, it is the principle by which data is
converted from story onto screen (Branigan 1992).
An important concept in interactive storytelling is causality
as a story is defined as a sequence of causally related events.
The editing must assure that the consistency of such causal
chain of events remains (Raskin, 1998). Causality supports
the consequences of interaction, whether it be character-
character interaction or spectator intervention. Some
interactive storytelling systems make causality explicit in
their representations (Young, 2000). However, in a task
network representation based on actions and sub-goals,
causality is not explicitly represented. One form of implicit
causality is the enabling of further actions by their
predecessors in the task network ordering, but it is not related
to interaction and dynamic generation. Other forms of
causality are implicit, illustrated by the interplay of choice
and causality in the narrative, which has been described by
Raskin (1998).
Many on-stage objects have an intrinsic narrative
significance as being resources for characters’ actions. In
modern narratology (Barthes, 1966), they refer to as a
“dispatcher”: a dispatcher is an object to which choice is
associated, triggering narrative consequences.
In the previous section, we described characters’ actions as
represented by triples (subject, verb, object). The potential
influence of action resources on the unfolding story will
emphasise the narrative implication of certain object
instances. For instance, a knife or a gun hold a stronger
narrative value.
In a plot-based approach (Young, 2000) causality can be
explicitly represented whereas in a character-based approach,
the anticipation of an action's resolution is dominant. The
character-plot duality has thus a translation in terms of causal
representations.
Editing rules are meant to preserve and reinforce the
narrative continuity of a story. The several parts of the story
need to refer sufficiently to each other, allowing the spectator
to integrate them into a single chronological sequence of
events.

FILM IDIOMS

Perhaps the most significant cinematographer invention is a
collection of stereotypical formulas to capturing specific
scene as sequence of shots. While there are an infinite variety
of idioms, film directors have learnt to rely on a small subset
of these. Traditional books (Metz 1974) (Arijon, 1976)
provide an informal compilation of formula, along with a
discussion of the various situations in which the different
formula can be applied.
For example, in a dialogue between two people, a filmmaker
might begin with an apex view of both actors, and then
alternate views and each following the actor’s speech
direction, at times using internal placement and at times
using external placement.
Expert cinematographers have used cinematic idioms for a
long time to direct the flow from frame to frame by
representing common shots such as the establishing shot and
two shot of conversing players (Mascelli, 1965). Virtual 3D
cinematography systems adopted idioms to help generate
sequences of prototypical shots to film actions such as
conversations between a small group of virtual players
(Drucker and Zeltzer, 1995) (He et al., 1996). Other systems
(Christianson et al., 1996) (Lu and Zhang, 2001) extended
the concept of idiom, a sub-unit of cinematographic
expertise, as a means of capturing the essence of a scene.
 The concept developed a means of encoding techniques for
conveying certain scenarios effectively. By creating an
assortment of fairly rigid structure to shoot different kinds of
scenes, the Virtual Cinematographer paradigm [5] is limiting
itself in two ways. Firstly, the system is limited to create
effective shots for scenarios that it is familiar with. Secondly,
each transition between two idioms will break the continuity
of the scene, creating a rupture in the narrative, hence not
adapted to real-time generation.
More recently, Amerson and Kime (2001) have proposed a
system for real-time camera control in interactive narratives
called FILM (Film Idiom Language and Model). This
system, inspired from the Virtual Cinematographer,
considerably completes and improves it. The FILM model
uses the common cinematographic techniques to construct
camera placement based on input from the narrative planner.
Information about common film idioms is encoded in a scene
tree using the FILM Language. Objects within the FILM
system use this knowledge in conjunction with the planner
input to constrain the location and orientation of the camera
for viewing a given action at execution time.
Similar to the FILM system, we propose a “hybrid” system
that uses abstractly defined idioms as constraints to choose
the best camera placement for any shot at any moment in the
unfolding of the on-going story. However, unlike in
(Amerson and Kime, 2001), where the narrative planner
generates the information that must be conveyed to a
spectator during a given scene, the Virtual Director gets its
information from the action recognition module which
reports all on-going actions in the interactive environment
based on each characters’ point of view.
In section 4, we describe a fully implemented prototype
developed for the Unreal™ engine using its scripting
language (UnrealScript).

© SCS

PARALLEL ACTIONS

Though our interactive storytelling paradigm guarantees
meaning to the story unfolding, via cause and effect duality
in the interactions of characters’ roles, interactions may
occur at different locations, but within the same time space.
A parallel action is defined as a device of narrative
construction in which the development of two pieces of
action is presented simultaneously.
The task of relating two storylines, or two characters, or two
different events, or a larger number of storylines, characters
and events, is assigned to parallel film editing. These types
of parallel editing could be defined as follows:

• The lines of interaction are close together, in the
same space.

• The lines of interaction are far apart, in different
places, and only a common motivation provides the
link.

Therefore, the concepts of parallel film editing are important
to consider for our system, when the scaling-up of the
characters’ roles will bring simultaneous storylines. As each
storyline develops separately, the cinematic camera control
must account for the information contributing to either
separate or concurrent storylines, arising from the characters’
roles independence or not.

SYSTEM OVERVIEW

The cinematography expertise encoded in the system is
captured in two main components: The Virtual Director and
the Virtual Cinematographer. Each of those abstract
components is composed of two types of modules: low-level
module (platform/domain dependant) and high-level module
(platform/domain independent) (Figure 2).
In our narrative paradigm, the current state of the world is
“wholly” determined, though the director does not have
control on its changes over time, unlike (real-world) cinema
directors. The director selects scenes based on the subject
nature of the shot, e.g. a character going to a café or two
characters having a conversation.
For example, we know where a character is going, though the
director can not influence or modify its course. The
modification of such behaviour would come from the
interactive nature of the system. Another character passing
by could stop momentarily the characters to have a mundane
chat or the spectator could influence his behaviour by telling
him that another character knows where what he is looking
for is.
Due to the real-time and dynamic natures of the application,
the camera control system must constantly reason on the
current state of the world. Events (also called tasks) are
recorded using the following template (subject, verb, object),
as described in the Virtual Cinematographer (He et al.,
1996). The subject is always an active character, while the
object maybe another character, a fixed object (book, gun,
etc…) or null. The verb represents a type of typical action
(move, pickup, talk, idle). Hence, there are as many events as
the number of active characters. Each of the variables for the
three template components is associated static heuristic
value, called story weight. The value of this weight is
proportional to the narrative importance of the object it is

associated with. For example, if an object (e.g. a gun) is
judged strategic, it will be gratified with a higher story
weight than a banal object. The same principle applies for the
allocation of weights for actions, as talking is more
meaningful to the narrative than walking. This judgment
seems rather artificial and subjective, and is in accordance to
the subjective decisions of the film director. Optimally, the
system should gather enough information to reason at a
higher narrative level. Using this information, the system
performs a heuristic classification of the events and extracts
the most significant event and so selects the idiom associate
to it. This method works upon the assumption that to any
typical type of event, there is an appropriate attached idiom.
It also selects an adapted pre-set of visual preferences to
apply. Once the scene is selected, the system binds any
unbound variables in the idiom specification and passes the
information to the Virtual Cinematographer (He et al., 1996).
During this process, the system may query the application for
additional information, such as the specific
location/orientation and dimensions of the various characters.
Moreover, the system will constantly analyse the screen
contents to immediately correct the camera settings if
occlusions are detected. The scene is then rendered using the
animation parameters and descriptions of the current
environment sent by the application, and camera
specifications (position/orientation) sent by the camera
control system.

Figure 2: System Architecture

RESULTS

Arijon (1976) states that basic techniques for the coverage of
two-or-three person static dialogues are also valid for larger
groups. Rarely do four people carry on a dialogue
simultaneously. There is always a leader, conscious or
unconscious, acting as moderator, and shifting attention from
person to person.
The example, presented in Figure 1, illustrates this particular
feature. It was introduced within our prototype using a
hierarchical finite state machine that handles dialogues
between three characters (idiom_3_talk). The finite state
machine is based on similar characteristics to a lower-level
idiom that handles dialogues between two characters
(idiom_2_talk). The considered idiom includes four states.

© SCS

The initial state uses an establishing shot (establish_shot) of
all three characters, while the second state relies (a_b_talk)
on the lower-level idiom idiom_2_talk. The other two states
(c_talks) and (c_reacts) capture the reactions from the
remaining character.
Following further tests, the camera control prototype
confirmed its capabilities in dealing with dialogues of four or
more characters, though hardly ever encountered in plot
instantiations from our interactive storytelling system.

CONCLUSION

We have presented the specificities of cinematic control in
interactive storytelling where a story is generated
dynamically in real-time, and described a fully implemented
prototype of cinematic camera control. Future works will
include extending the abilities of the system to manage
separate storylines unfolding at the same time and providing
the virtual director with the ability to choose between styles
of montage according to different movie genres.

REFERENCES

Amerson, D. and Kime, S., 2001. “Real Time Cinematic Camera

Control for Interactive Narratives.” In Proceedings of AAAI
SSS 2001.

Arijon, D., 1976. “Grammar of the Film Language”.
Communication Arts Books, hasting house, Publishers, New
York.

Barthes, R. 1966. “Introduction a l’Analyse Structurale des Récits”
(in French), Communications, 8, pp. 1-27.

Branigan, E. 1992. “Narrative Comprehension and the Fiction
Film”. London: Routledge p.32

Cavazza, M., Charles, F. and Mead, S.J., 2002. “Character-based
Interactive Storytelling”. IEEE Intelligent Systems, special
issue on AI in Interactive Entertainment.

Christianson, D. B., Anderson, S. E., He, L., Cohen, M. F., Salesin,
D. H., Weld, D. S., 1996. “Declarative Camera Control For
Automatic Cinematography”. In Proceedings of AAAI ’96,
148-155.

Drucker, S. and Zeltzer, D. 1995. “CamDroid: A system for
implementing intelligent camera control”. In Proceedings of the
1995 Symposium on Interactive 3D Graphics, 139-144.

He, L.; Cohen, M.; and Salesin, D. 1996. “The virtual
cinematographer: A paradigm for automatic real-time camera
control and directing”. In Proceedings of the ACM SIGGRAPH
'96, 217-224.

Lu, R. and Zhang, S., 2001. “Automatic Generation Of Computer
Animation”.

Mascelli, J. V. 1965. “The Five C’s of Cinematography”.
Cine/Grafic Publications, Hollywood.

Metz, C., 1974. “Film Language: A semiotics of the Cinema”. New
York: Oxford University Press.

Raskin, R., 1998. “Five Parameters for Story Design in the Short
Fiction Film”. P.O.V., n. 5.

Young, R.M., 2000. “Creating Interactive Narrative Structures: The
Potential for AI Approaches”. AAAI Spring Symposium in
Artificial Intelligence and Interactive Entertainment, AAAI
Press.

A_B_TALK
call idiom_2_talk (A,B)

C_ REACTS
internal (C)

C_TALKS
internal (C)

ESTABLISH_SHOT
Ext1to2 (A,B,C)

Figure 3: Idiom of a Dialogue Between Three Characters.

GENERATION OF A 3D VIRTUAL STORY ENVIRONMENT
BASED ON STORY DESCRIPTION

Xin Zeng, Q. H. Mehdi and N. E. Gough

Multimedia & Intelligent Systems Research Group
School of Computing and Information Technology

University of Wolverhampton, Wolverhampton, WV1 1SB, UK
E-Mail: q.h.mehdi@wlv.ac.uk

KEYWORDS

Story visualization, natural language processing, graphics

ABSTRACT

This paper reviews progress in story visualization and
describes a novel methodology that enables non-
professionals to generate a 3D Virtual Story Environment
(3DVSE) by using a simplified story-based natural
language input. The proposed architecture is described
and the paper focuses on how to integrate the natural
language processing and 3D computer graphic techniques
by using Java, XML and VRML to generate a 3DVSE.

1. INTRODUCTION

Storytelling for enhancing our imagination and
communication is an essential part of education and
entertainment. Basic plots do not change very much but
the way that we tell them does. Story visualization
describes techniques by which a storyteller composes
visual pictures to tell a story, evoke emotions, and shape
the entire experience, Seger (1994), Block (2001), Murray
(2001). It focuses on the use of visual metaphors to
represent non-visual story contents and relationships. The
ongoing development of the multimedia computer, with
its capacity for handling text, sound and images has a
profound effect on this process (Alborzi et al 2000).
Crucial to this is the concept of interactive media and
numerous computer researchers have highlighted the role
of the user in influencing the progress and outcome of the
story (Brooks 1997, Barry 2000).

Computer games that use new forms of interactive and
narrative storytelling have been discussed by many
researchers (see review by Zeng et al 2002). There is
particular interest in games that incorporate mainstream
media to create new genres, which have become more
story-oriented Flanagan & Arble (1998), Barwood
(2000)& Young (2001). For instance, the game Myst
(1993) was significant in its ability to use the immersive
nature of storytelling to express adventure, time and
history. Producing such a game requires both computer
expertise and storytelling artistry. Computer graphic
techniques have already played a major role in computer
games development and advances in 3D graphics have

made it possible to produce 3D animation movies, such as
Shrek or Final Fantasy. Computer games rely more on
images and interaction and 3D game environments offer a
wide variety of commands, 3D landscapes and objects.
This enables computer game producers to produce more
engaging and attractive games and storylines than before.
These advances can be easily observed by comparing
early “shoot-em-up” game, such as Wolfenstein 3D (1992),
Doom (1993), Quake (1996) and Tomb Raider (1996/7) to
Project IGI (2000) and Return to Castle Wolfenstein
(2001). However, these techniques still lie in the domain
of highly skilled professionals and require expensive
software. There is a lack of low cost and easy use tools for
non-professionals to create their own interactive 3D
virtual environments. There is thus a need to develop an
interactive, semi-automated approach that will aid the
creative artist to move more readily from scripts to
rendered 3D realizations.

In this paper we introduced a methodology to enable non-
professionals to generate 3D scenes based on
storyboarding. This complements research previously
undertaken on designing and implementing behavioural
based games characters (Gough et al 2000; Suliman et al
2001,2002; Mehdi et al 2000,2001; Wen et al
2000,2001,2002). The novelty of this work lies in the
bridging of the gap between scripting/storyboarding by a
non-technical creative writer and rendering characters and
scenes by a graphics specialist. The proposed
methodology combines advances in computer graphics
and text-to-visualization technology to generate a
behaviour based AI (BBAI) 3DVSE. This should make it
easier and faster for non-professionals to create 3D story
environments compared to using traditional 3D design
packages. After introducing interactive storytelling tools
in section 2, section 3 reviews research on using text to
visualization in character-based animation and behavior
virtual environments. Section 4 investigates the
possibilities of applying NL in computer games design.
Section 5 proposes a novel methodology and architecture
for developing an interactive storytelling system. We
focus on how to incorporate NLP and 3D computer
graphic techniques by using XML (Extensible Markup
Language), VRML (Virtual Reality Modeling Language)
to generate a 3DVSE. Section 6 gives a simple example
and the final section draws conclusions and mentions
future work.

mailto:q.h.mehdi@wlv.ac.uk

2. INTERACTIVE STORYTELLING TOOLS

Recently, there has been an explosion in the number of
commercial software applications for creating 3D story
environment, including Maya, SoftImage, Lightwave,
3dMax. However, even the most expert 3D animators
devote considerable time to collaboration with
programmers to create 3D interactive environments that
could be described in a few sentences from a story.
Several of the more popular games, including Quake 2,
Unreal Tournament, Half-Life, Homeworld and Descent 3
provide applications programming interfaces (APIs) that
allow users to have sophisticated control over the
dynamics of the game world. (Amanr & Young 2001).
Whilst these powerful tools enhance the concepts of story,
characters and narration, they use scripting languages
such as C/C++, Java and their use is restricted to
specialists.

In contrast, some researchers have developed easy-to-use
tools aimed at non-professionals. These tools are all
centered on the stories three main aspects: Environment
is where and when the story happens, the setting and stage
for the story. Character identifies who have the roles in
the story, which make the story happen, bring life to the
story; perform actions and interact with each other or the
environment. These roles have three features viz.
appearance, personality and actions. Plot is what is
happening in a story, a strategy for the story including
beginning, climax and end. In the early part of the story,
the plot is established, the characters are introduced and
some sort of problem or clue is presented. The complexity
then builds up, usually with events that challenge the
characters in unexpected ways. And finally the story ends
with some sort of pay-off.

AgentSheets is authoring tool that combines agents to
create sophisticated interactive simulations and models.
AgentSheets is used to create interactive games, virtual
worlds, training simulations, information gathering,
personalizing agents, and other interactive content.
Erasmatron, a story engine developed by Crawford,
includes all of the software and artwork necessary to
create an entire interactive story-telling world. He seeks to
balance character-based and plot-based approaches by
program actors who carry out any action that can be
specified as a verb with a subject and a direct object. He
then assigns them options in response to actions, and
allows them to choose among their options based on their
personalities, relationships, moods, and histories.
PuppetTime is a new 3D storytelling system for the
Internet that puts the user in control of self-animating
digital actors. Puppets are plug-ins that know how to
respond to high-level stage directions such as “Say Hello”,
“Be Happy” or “Wave goodbye” and that automatically
generate their own lip-synchronisation and animation
sequences based on the script. Spazz3D allows the user to
design and build 3-D scenes, and bring them to life by
animating the geometry and defining rules of interactivity,
which can trigger lights, sounds and animations. Sgouros

et al (1997) describe a novel dynamic dramatization
method for narrative presentations by inputting the
original story material, along with a plot written in a
special-purpose language. It analyzes the plot to identify
interesting dramatic situations and displays corresponding
images. Graphic StoryWriter is an interactive system that
enables users to create structurally complete stories
through the manipulation of graphic objects in a simulated
storybook. Through the simple interface and story-writing
engine, it provides an environment for early readers to
learn about story structures, to experience the relationship
between pictures and text, and to experiment with causal
effects (Steiner & Thomas 1998). Such systems allow
non-programmers to create agents with limited or
preprocessed behaviors and missions in a 3D environment,
but they are limited to 2D still images, do not permit the
user to “walk through”, do not allow users to create more
flexible 3D environments, and do not allow real-time
generation of some behaviours. Charles et al (2001)
described a prototype for interactive storytelling by using
Unreal engine. They presented an evaluation of the
concepts of how the dynamic interactions between
character and the user influence the generation of story.
Swartout et al (2001) integrated graphics, sound, character
and story to generating a holodeck-like interactive story
environment in order to training users how to deal with
the circumstances of real world.

3. TEXT TO VISUALIZATION TECHNOLOGY

Text and images are ubiquitous in human communication
and there are deep connections between the uses of these
two modalities (Wahlster 1998). We often convert images
to text (e.g. describe a painting by text) and vice versa
(e.g. paint a picture from a story), but this presents a
considerable challenge for computer systems. NL is
potentially an effective medium for allowing non-
specialists to describe visual ideas and NLP is an active
AI research area that attempts to reproduce the human
interpretation of language. One goal of NLP is to enable
communication between people and computers without
memorising complex commands and procedures. NLP
methodologies assume that patterns in grammar and
conceptual relationships between words in language can
be articulated scientifically. Most interface designers use
pointing devices such as mouse or joysticks for navigation
and interactions. There is now a growing awareness of the
possibilities for integrating NLP and computer graphics
by incorporating knowledge of human-to-human
interaction.

Compared with traditional menu-based interfaces, NLP
has many advantages: It is the easiest medium for HCI
and does not require substantial formal training. Its
availability makes the virtual human interface more
closely mimic real-life interpersonal communication. It
can simplify and speed up real-time applications
involving navigation or commands. A character’s actions
in a Virtual Environment (especially in computer games)

are much more limited than those in real life, but NL
should enable the user to carry out actions that would
otherwise have been very difficult with traditional
pointing devices, such as gesture and facial interaction.
For example, if you ask your avatar to wave its hands, you
only type the request instead of clicking the right mouse
button and choosing “wave hands” from a menu.

Generation of visual scenes based on NL input has been
investigated by several researchers and can be roughly
divided into two classes of models:

Character behaviour and animation based models

Anima NL enables users to input NL instructions as high-
level specifications to guide animated figures through a
task. It interprets simple instructional texts as intentions
that the agent should adopt, desired constraints on the
agent’s behavior and expectations about what will happen
(Badler et al 2000). Bindiganavale et al (2000) introduced
a prototype for inputting immediate or persistent
instructions using NL and viewing the agents’ resulting
behavioural changes. Allbeck et al (2000) explore an
architecture for authoring the behaviors of interactive,
animated agents using NL instructions with capability to
dynamically alter agent behaviors in real-time. Ulysse
comprised a conversational agent embodied in the
representation of a user in the virtual world. The user asks
the agent using spoken NL to carry out motion commands
(Bersot et al 1998). Piesk & Trogemann (1997) presented
an architecture for interactive storytelling using state-of-
the-art-technology in NL processing, speech synthesis and
3D character animation. A conversational 3D-character is
used to tell nonlinear stories interactively. They
implemented in a framework for synchronizing speech
with facial movements, gesture and body posture by
combining findings from linguistics and psychology. The
Behavior Expression Animation Toolkit (BEAT) allows
animators to embody expressive behaviors by entering
text and exporting appropriate nonverbal behaviors and
synthesized speech in a form that can be sent to a number
of different animation systems (Cassell et al 2001).

Scene and sequence based models

Improv is a system, implemented using an “English-style”
scripting language and a network distribution model, that
enables artists to create powerful interactive scenarios
(Perlin & Goldberg 1996). Put is language-based system
that focuses on spatial relationships, such as in, on, and at,
parameterized by a limited number of environmental
variables for object manipulation (Clay & Wilhelms
1996). Mukerjee et al (2000) used multi-dimensional
fuzzy functions called “continuum fields” by matching the
linguistic description to present scene reconstruction from
conceptions of 2D urban parks. WordsEye is as a new
system for automatically converting text into
representative 3D scenes that relies on a large database of
3D models and poses to depict scenes and actions (Coyne
& Sproat 2001). Egges et al (2001) and Nugues (1999)

constructed a system called CarSim to processes formal
descriptions of accidents and recreate corresponding 3D
simulations. Although there have been many such efforts
to apply NLP to virtual environments to enable interesting
and easy-to-use systems, most of them focus on the
character’s behaviours and animation, or represent the
still images or scenes without creating a true real-time
interactive 3D environment.

4. APPLICATION OF NLP IN COMPUTER GAMES

Narrative is a powerful tool for game producers to create
more attractive games. NL is the basic resource for scenes
script and game plots. Level designers transform the
meaning of the words into game environments. An
example for the computer game Max Payne is given by
Määttä (2002). Throughout the history of computer games,
from the 1970s Dungeons and Dragons to the 1980s
popular Internet-based adventure format gaming
environments such as MUD (Multi-User Dungeon), NL
has played an important role. Players immerse in a
common virtual environment by typing in real time the
words that describe the scenes, commands and actions
displayed on the each player’s screen. As with adventure
books, the language here not only conveys the words into
a virtual environment in the mind, but also gives the
capability to interact with the dynamic plot and various
players. A good example is the computer-based adventure
game of Zork, which begins as follows (Lebling et al
1979):

Welcome to Zork.
West of House.
Your are in an open field west of a big white house with a
boarded front door.
There is a small mailbox here.
>GO NORTH
North of House
You are facing the north side of a white house. There is no door
here, and all the windows are barred.
>EAST
Behind House
You are behind the white house. In one corner of the house there
is a small window which is slightly ajar.
>OPEN THE WINDOW
etc

In Zork the player interacts conversationally with the
“Master of the Dungeon,” who provides for each
proposed action. The players move around the dungeon
by typing the navigational commands (e.g. go north, up)
and interacting with objects by typing appropriate
commands (e.g. open window, move cover).

The results depend on the design of the game, its
architecture and furnishings. Murray (2001) comments
that the first step in making an enticing narrative world is
to script the interactor. There are a few projects that apply
NLP in computer games, such as Badler et al (1999) who
introduced a prototype for building a strategy game. A
player can control and modify the behavior of all the

characters in a game, and introduce new strategies,
through the powerful medium of NL instructions. They
describe a Parameterized Action Representation (PAR)
designed to bridge the gap between natural NL and the
virtual agents who carry them out. Cavazza et al
(1999,2000) investigated the integration of NLP
techniques into the video game DOOM to control the
characters’ actions. They described the implementation of
a command interpreter and discussed the generation of
appropriate system actions from spoken commands.

5. DESIGN METHODOLOGY

Unlike text, which is abstract and inherently non-spatial, a
story contains a rich source of information that can be
understood and analyzed by people. For instance, James
is eating, gives no idea where and what James is eating,
which presents a problem for a graphic depiction. A
sentence should thus have a detailed description in a story,
like James is eating a hamburger in the classroom. Hence,
a story is the prime potential source for applying
visualization techniques. It portrays the temporal and
spatial events clearly and in detail. It includes constraints

and context, which helps to avoid ambiguity. This section
proposes a novel architecture for 3DVSE systems and
introduces the techniques that will be used. The main
challenges are to encapsulate the creative designs of the
scriptwriter, incorporate motions and AI behaviors, and
generate appropriate graphical output. All NL based
graphical applications that generate 3D virtual
environments from story descriptions-can be divided into
the NLP and virtual scene representation tasks. NLP is
still an immature method. Clay & Wilhelms (1996)
therefore suggested that when dealing with graphical
complexities, it is necessary to restrict both the input
language and the conceptual domain of the systems. The
form of the language created restricts the concepts than

can be expressed and, ultimately, the scenes that can be
described. This constraint helps us avoid the general
complexities of NL understanding. As a Chinese proverb
says:

Keeping things simple, even simplest things can go further.

Hence we may start with a childrens’ picture book to
understand the context and construction of stories, as it
contains simple but effective information (e.g. objects,
temporal and spatial relationships, events) to generate a
3D virtual environment without the complications of
unconstrained vocabulary and grammar.

5.1 Architecture of 3DVSE System

Creating a storytelling system for use by non-
professionals is simplified because every story has the
same features, environment, character, plot. Technically,
the system is built in two levels as shown in Fig. 1. Once
this has been created with a suitable high-level interface,
the user interacts only with the high-level interface to
dynamically create the 3DVSE. The architecture of this
system is built by several modules: A knowledge-based
database extracts the output from the text input via a

language tagging module and this is used by the graphic
engine to create the 3DVSE. The main system is written
in Java, XML and VRML. Java facilitates writing and
running applications on a Java Virtual Machine and the
application should run on multiple devices. Java also
ensures faster development time, being easier to develop
than C++ (Melissionos 2002). In addition, VRML
encourages the use of components to construct complex
3D scene descriptions. Certain parts of a VRML scene
description are stored in external files with different
formats (images, textures, sounds, movies or Java classes).
It has all of the elements needed to author animations and
virtual environments and offers cross-platform
compatibility. The multi-level system comprises a NL

Environment
Editor

Character
Editor

Scene
Editor

Graphic
Engine

3D Virtual
Story

Environment
Text Input

Event
Editor

High-level Interface

Low-level Interface
Knowledge-based

Database Language
Tagging

Figure 1 3DVSE system architecture

parser in XML and Java, the VRML world, and a Java
applet to form the input interface and finally create links
between NL and the VRML world.

Representing the 3DVSE from a story requires
environment, character, plot and events. For the
environment, additional constraints are added (time to
place, object to its parts static scenes to dynamic
episodes). When a user inputs a sentence from a story, it
is first translated by a parser into tagged XML data; the
output is a tree data structure, which is then converted into
a set of 3D object representations, spatial relations, and
attributes. This is then matched to an existing KB
database that generates the final environment.

5.2 Application of XML in NLP

Virtual Environment

Object 1 Object 2 Object 3

Part1 Part2

Materials Colors Sizes

Part3 Object4 Object6Object5

Figure 2 Construction of Virtual Environment

Because the main goal is to represent 3D graphics by text
input, currently available computer linguistic techniques
need to be adapted to solve the problem of semantic
presentation. In particular this involves concepts
developed in Fellbaum (1998) and Hiyakumoto et al
(1997) and the methodology requires an extension to that
of Clay & Wilhelms (1996) and Coyne & Sproat (2001).
We use NL templates as our solution. As with picture
books, constructing virtual environments and characters
for computer games is different from arbitrary NL texts
because it does not involve complicated descriptions.
XML (Bradley 2002) is used to provide a natural way to
represent simpler texts. It is not limited to Web
applications but is used increasingly in databases. Data
independence, separation of content and its presentation
are its essential characteristics. It is text-based, so anyone
can create an XML document with even the most
primitive text processing tools (Deitel et al 2001). Cassell
et al (2001) used it as the primary data structure and the
knowledge bases were also encoded in XML so that they
can be easily extended for new applications. This will

facilitate modularity and extensibility by allowing users to
add their own tags to the parse tree at any stage of
processing. Wilcock (2001) discussed ways in which
XML can be used in NLP, including XML-based pipeline

architectures, templates, and tree-to-tree transformations.
Because XML data is easy for computers to read and
convert between formats, it can be used as middleware to
integrate legacy systems with other applications. As XML
can be extended and embedded in Java, objects of
different data types can be passed between them. This
allows conditions to return the various test results as
either a Boolean type or a Java string. In our system,
XML and Java based language engine have two tasks: one
is to find matched VRML objects in text and the other is
to transport object depictions (e.g. adjectives, prepositions
and verbs) into Java strings to manipulate VRML objects
or scenes (i.e. objects’ attributes, spatial relationships and
actions or events) by Java or Java Script.

5.3 Generation a Reusable VRML Format Object
Database

Since all 3D virtual environments are built from separate
and independent 3D objects, a large visual database of
objects and actions is required, along with set of
constraints corresponding to default dependencies in the
domain. Most NL-based graphic applications have
involved some appropriate words corresponding to 3D
objects or actions, and it is important to design and
validate a large extensible database or library, which
includes a 3D Objects Library and Animations Library.

3D Objects Library

To design and validate the 3D objects library, an example
is generated using several software packages (3D Studio
Max4.0, Character Studio3.0, Poser4.0, Photoshop, etc)
to create 3D objects and texture maps. Currently, the
database includes a great number of 3D objects, such as
cities, buildings, cars, plants, characters, etc. that
correspond to noun phrases. The objects are all created in
VRML format and their attributes are neutral in order to

further operation. We divide the 3D objects into two
types: static objects and dynamic objects. All objects are
relatives and can be transformed from one to another
(Egges et al 2001). In general, static objects are more

stable in their locations, e.g. grounds, mountains,
buildings, plants, etc. Dynamic objects have a relatively
unstable location or can move, e.g. human characters, cars.
Objects are classified into different libraries by their
function e.g. chairs, desks belong to furniture. These
properties are required by the routine that determines how
the object is used. This also helps the user to add new
models to the library. All 3D objects are made using
separate parts with their own attributes e.g. a desk is made
of top, drawers and legs. The part attributes also include
materials (e.g. wood, glass, metal, colours, sizes). The
objects corresponding to relative describable adjectives
are then converted to Java Strings. Figure 2 illustrates the
tree construction of the 3D virtual environment.

Animations Library

Designing the animation library requires discriminating
between normal animation and autonomous behaviour.
When the behaviour is pre-programmed, it can save much
time to redefine character interaction within the
environment. This type of motion corresponds to verbs
such as walk, sit and wave hands. Because of the
complexity of rendering motions related to behaviours in
3D, this involves a complex hierarchy and simplifications
to the kinetics are sought where appropriate. Inverse
Kinematics is applied to human characteristics, such as
posture, body movements, facial expressions and lip
movements/speech. In addition, some actions are not
isolated but are composite e.g., James walks to the door
and opens it contains two actions, walk and open door. To
deal with this, the system concatenates actions in time and
defines when the action should be completed. To solve
these problems, we refer to real-time actions and allocate
times for each action. This allows a different time
schedule for each character attribute.

5.4 3D Graphic Representation

VRML is used here as the primary object format and
rendering engine. It is a text based file format constructed
by a group of nodes (e.g. Texture nodes, Shape nodes,
Appearance node.) describing 3D objects and virtual
worlds. These nodes are organized in a hierarchical
structure of parent-child relationships that describe
location, shape, size and appearance and are used to
perform rendering by a browser. There are other nodes
such as Fog node (that specifies colour and intensity of
fog depending the distance from viewer), Background
node (that specifies sky and ground color profiles, and
texture), Viewing node (applies different viewpoints to
navigation) and Sound node, that greatly enhance the
feeling of realistic effects and navigation. TimeSensor
and Animation Interpolators, etc. provide Events and
dynamic scenarios. VRML allows the storage of custom-
tailored node descriptions in a library and a VRML scene
file to build another more complex VRML scene file,
integrating geometry, animation, interaction behavior, and
multimedia description. Thus a VRML scene file may be
created in a fast and cost-effective way, using predefined
components and taking advantage of the benefits of
reusability (Soetebier et al 1999). In spite of it is powerful
3D visualization language, VRML is very limited in terms
of interactivity and does not allow users to modify it in
real-time. VRML is not a general-purpose programming
language and Java is not a 3D presentation language.
However it has the ability to access VRML worlds. Hence
integrating the two languages gives interactive 3D
graphics, complete programming capabilities and
extensive support for building large-scale virtual
environments. Script nodes appear in the VRML file,
encapsulating the Java code and providing naming
conventions for interconnecting Java variables with field

Figure 3 Field interface between VRML and Java.

values in the scene. Interfaced Java classes import the
vrml.* class libraries to provide type conversion between
Java and VRML. Figure 3 presents the script node
interface between VRML and Java, showing how nodes in
the VRML scene are first defined and then passed as
parameters to the Java class (Brutzman 1998).

6. EXAMPLE

We present a simple 3DVSE example, adapted from a
picture book, which is constructed by using the method
described above:

It is a sunny summer mid day. In a green field, there is a
big tree on the ground. A blue caravan is right beside the
tree; the caravan has red door.

The sentences of the story are represented by the
following semantic objects:

A. Time when the story takes place:
Time: <Summer>
 Attribute: sunny
 mid day
This helps to define the main attributes of time, season, weather,
intensity of the light, and other relevant attributes
B. Place where the story happens e.g. In a green field
Place: <Field>
 Attribute:
 Material: grass
 Colour: green
which indicates the kind of place where the story takes place.
B1. Sub-Objects in the field e.g. a big tree on the ground
Object1: <Tree>
 Attribute:
 Size: big
C. Objects on the field:
Object3: <Caravan> A blue caravan is right beside the tree.
 Attribute:

 Color: blue
This indicates where to put the caravan in relation to the tree.
 Parts of the caravan: the caravan has red door
 <Caravan_Door>
 Attribute:
 Color: red
From this description we can ascertain what are the attributes of
the caravan.

Using the above methodology, this is rendered as shown
in Fig. 4.

7. CONCLUSIONS AND FUTURE WORK

This paper has proposed a novel methodology for creating
a 3DVSE by story-based NL input. We believe that story
visualization is a powerful way to integrate NLP and 3D

computer graphics to represent interactive 3DVSEs. The
novelty of this work lies in the bridging the gap between
scripting/storyboarding by a non-technical creative writer
and rendering characters and scenes by a graphics
specialist. This should make it easier and faster for non-
professionals to create 3D story environments compared
to using traditional 3D design packages. We expect this
new approach will have a wide range of applications, such
as games, 3D Chatrooms, Interactive picture books,
Screenplays, etc. Currently, the 3DVSE software is still
under development. Our next tasks will be to evaluate and
compare VRML with Java3D to evaluate which is more
suitable for creating realistic and interactive virtual
environments. An improvement of NLP techniques for
more complex NL descriptions may be made for future
work. Research will also take place on how to design and
embed a BBAI (behavioural-based AI) character and
event engine to facilitate the generation of dynamic and
interactive virtual environments.

Figure 4 Example of visualization story from a picture book

REFERENCES

AgentSheets. http://agentsheets.com 26th Jan 2002.
Alborzi, H, et al (2000) Designing StoryRooms: Interactive

storytelling spaces for children. Proc. Conf. Designing
Interactive Systems.

Allbeck, J. et al (2000) Authoring embodied agents' behaviors
through natural language and planning. Workshop on Key
Problems for Creating Real-time Embodied Autonomous
Agents at Autonomous Agents 2000.

Amanr, St. and Young, M. (2001) Artificial intelligence and
interactive entertainment. Working Notes of the AAAI Spring
Symposium on Artificial Intelligence and Interactive
Entertainment, AAAI.

Badler, N. et al (2000) Parameterized action representation and
natural language instructions for dynamic behavior
modification of embodied agents. AAAI Spring Sym. 2000.

Barry, A. B. (2000) Story Beads: A Wearable for Distributed
and Mobile Storytelling. Master Thesis. MIT.

Barwood, H. (2000) Computer and Video Games Come to Age:
A National Conference to Explore the State of An Emerging
Entertainment Medium. MIT, Cambridge, MA.

Bersot, O. et al (1998) A conversational agent to help navigation
and collaboration in virtual worlds, Virtual Reality.

Bindiganavale, R. et al (2000) Dynamically altering agent
behaviours using natural language instructions. In
Autonomous Agents, pp. 293–300, 2000.

Block, B (2001) The Visual Story: Seeing the Structure of Film,
TV, and New Media. Focal Press: USA.

Bradley, P. (2002) XML, Pearson Education.
Brooks, M., K. (1997) Do story agents use rocking chairs? The

theory and implementation of one model for computational
narrative. Proc.4th ACM Int.Conf. on Multimedia ,February.

Brutzman, D. (1998) The Virtual Reality Modeling Language
and Java. Communications of ACM, vol. 41 no.6, pp.57-64.

Cassell, J., Vilhjálmsson, H, H. and Bickmore, T. (2001) BEAT:
the behaviour expression animation toolkit. Proc 28th
SIGGRAPH Annual Conf Compr Graphics & Int. Techniques.

Cavazza, M., Bandi, S and Palmer, I. (1999) “Situated AI” in
video games: Integrating NLP, path planning and 3D
animation. AAAI Symposium on Computer Games and AI.

Cavazza, M and Palmer, I (2000) Natural language control and
paradigms of interactivity. AAAI Symposium on Computer
Games and AI.

Charles, F., Mead. S.J., Cavazza, M (2001) Behavioural
Interaction of Characters for Virtual Storytelling, Proc. 2nd
SCS Int. Conf. GAME-ON 2001, London

Clay, R. and Wilhelms, J. (1996) Put: language-based interactive
manipulation of objects. IEEE Computer Graphics and
Applications, pp. 31–39, March.

Coyne, B. and Sproat, R. (2001) WordsEye: An automatic text-
to-scene conversion system. Proc 28th SIGGRAPH Annual
Conf. Computer Graphics and Interactive Techniques.

Deitel, M, H., Deitel, J, P., Nieto, T., Lin, T. and Sadhu, P.
(2001) XML How to Program. Deitel Associates, Inc.

Egges, A., Nijholt, A. and Nugues, P. (2001) Generating a 3D
simulation of a car accident from a formal description: the
CarSim system. Proc. Workshop, on Temporal and Spatial
Information Processing. ACL 2001 Conference, Toulouse.

Erasmatazz. http://www.erasmatazz.com/index.html. 28/1/2002.
Fellbaum, C (1998) editor. WordNet: An Electronic

LexicalDatabase. MIT Press, Cambridge, MA, 1998.
Flanagan, M and, Arble, F. (1998) Interactive narrative: stepping

into our own stories. Proc Conference on CHI 98 Human
Factors in Computing Systems.

Gough, N.E., Suliman, H. & Mehdi, Q. (2000) Fuzzy state
machine modelling of agents and their environments for

games, Proc. 1st SCS Int. Conf. GAME-ON 2000 Intelligent
Games & Simulation, London, Nov., pp 61-68.

Hiyakumoto, L., Prevost, S. and Cassell, J. (1997) Semantic and
discourse information for text-to-speech intonation. Proc.
ACL Workshop on Concept-to-Speech Generation, Madrid.

Lebling, P., Marc, S. B. and Timothy, A, A. (1979) Zork: A
computerized fantasy simulation game. IEEE Computer 12,4:
pp 51-59.

Määttä, A. (2002) Realistic Level Design for Max Payne. GDC.
Mehdi, Q., Suliman, H., Evdokimos, Asloglou, Gough, N.E. and

Allen, M.J. (2000) Artificial neural networks in future
computer games, Proc. 1st SCS Int. Conf. GAME-ON 2000
Intelligent Games & Simulation, London, November, 29-33.

Mehdi, Q., Zhigang Wen, Gough, N.E. and Allen, M.J. (2000)
Efficient skinning effect for game character animation using
DirectX vertex blending, Proc. 1st SCS Int. Conf. GAME-
ON 2000 Intelligent Games & Simulation, London, Nov, 5-9.

Mehdi, Q.H., Zhigang Wen and Gough, N.E. (2001)
Visualisation system for agent behaviours in virtual
environments, Proc. ISCA 2001 Conf., Arlington, June.

Melissinos, C. (2002) Inside the Java Games Profile. GDC 2002.
Mukerjee, A., Gupta, K., Nautiyal, S., Singh, P, M. and Mishra,

N. (2000) Conceptual description of visual scenes from
linguistic models. Journal of Image and Vision Computing,
Special Issue on Conceptual Descriptions, v.18

Murray, J. (2001) Hamlet on the Holodeck, Cambridge, MA:
MIT Press.

Nugues, P (1999) Verb and written interaction in virtual worlds
Some application examples. Proc. 15th Twente Workshop on
Language Technology, A. Nijiholt, O. Donk & B. van Dijk
eds., pp 137-145.

Perlin, K. and Goldberg, A. (1996) Improv: A system for
scripting interactive actors in Virtual Worlds. Proc. of
SIGGRAPH 96.

Piesk, J. and Trogemann, G. (1997) Animated interactive fiction:
Storytelling by a conversational virtual actor. Proc.
VSMM'97, IEEE Comp. Society Press, September.

Puppettime. http://www.puppettime.com/. 28th Jan 2002.
Seger, L (1994) Making a Good Script Great. 2nd Edition.

Samuel French: Hollywood, CA.
Sgouros, N. M., Papakonstantinou, G. and Tsanakas, P. (1997)

Dynamic Dramatization of Multimedia Story Presentations.
ACM Int Conf. Intelligent User Interfaces. Orlando, FL, USA.

Soetebier, I., Dörner, R. and Braun, N. (1999) A VRML and
Java-based interface for retrieving VRML content in object-
oriented databases. World Conf. of the WWW and Internet,
WebNet ´99, Honolulu, USA, 25.-30 October.

Spazz3D. http://www.spazz3d.com/. 26th Jan 2002.
Stern, S., Frank, D., Resner, B (1998) Virtual Petz: A hybrid

approach to creating autonomous, lifelike Dogz and Catz.
Proc. 2nd Int. Conference on Autonomous Agents May.

Suliman H., Q.H. Mehdi and N. E. Gough, (2001) Logic
Development for Reasoning and Cognitive NPCs, Proc. 2nd
SCS Int. Conf. GAME-ON 2001, London, November, 35-42.

Suliman, H., Mehdi, Q.H., and Gough, N.E. (2001) Spatial
cognitive maps in agent navigation and path planning, Proc.
ISCA 2001 Conf., Arlington, USA, June.

Suliman, H. Mehdi, Q.H., Gough, N.E. (2002) Virtual agent
using a combined cognitive map and knowledge base system,
Proc. ISCA’2002, Boston, USA.

Swartout. W., et al (2001) Toward the Holodeck: Integrating
Graphics, Sound, Character and Story. Proc. 5th International
Conference on Autonomous Agents, Montreal, Canada.

Wahlster, W. (1998) Text and Images. In: Survey of the State of
the Art in Human Language Technology. Linguistica
Computazionale, Vol. 12,13, pp 303 – 306.

http://agentsheets.com/
http://www.puppettime.com/
http://www.spazz3d.com/

Wilcock, G. (2001) Pipelines, templates and transformations:
XML and natural language generation. Proc. 1st NLP and
XML Workshop, Tokyo, pp 1-8.

Young, R. M. (2001) The Co-operative Contract in Interactive
Entertainment, in Socially Intelligent Agents, Alan Bond et al,
eds., Klumwer Academic Press.

Zeng, X., Gough, N.E. and Mehdi, Q.H. (2002) A Review of
Procedures for Interactive Storytelling and for Computer Games.
SCIT Report No. MIST-020, University of Wolverhampton.
Zhigang Wen, Mehdi, Q., and Gough, N.E. (2001) Multiagent

based modelling and simulation in industry and environment,
Proc. ESS'2001, Marseille.

Zhigang Wen, Mehdi, Q., and Gough, N.E. and Suliman, H.
(2000) Creating animated behavioural game characters
based on environmental effects, Proc. 1st SCS Int. Conf.
GAME-ON 2000 Int. Games & Sim. London, Nov. 76-80

Zhigang Wen, Q. Mehdi and N. Gough (2002) A new approach
for animating intelligent agents in complex 3D virtual
environment based on spatial perception and memory, Proc
ISCA 11th Int. Conf. on Int. Systems on Emerging
Technologies (ICIS-2002) July 18-20, Boston, MA, USA.

LEARNING
TECHNOLOGIES

LEARNING BY IMITATION OF BEHAVIORS FOR
AUTONOMOUS AGENTS

Cédric Buche Marc Parenthoën Jacques Tisseau

Laboratoire d’Informatique Industrielle, ENIB

EA 2215 / Université de Bretagne Occidentale

Parvis Blaise Pascal, BP 30815, F-29608 Brest Cedex,

France

E-mail:{buche,parenthoen,tisseau}@enib.fr

KEYWORDS
Learning of behaviors, Animat, Autonomy, Imitation.

ABSTRACT

The goal of this work is to provide more autonomy for virtual
actors by endowing them with a learning ability by imitation.
While acting in his virtual world, our virtual actor uses
prototypic behaviors defined by Fuzzy Cognitive Maps (FCMs)
to simulate other actors’ behavior in his imaginary world. This
simulation allows him to carry out predictions and choices
of strategies. We propose a method allowing virtual actor to
adapt a prototypic behavior of FCMs to a model by simple
observation. Prototype adapts itself to its model and simulation
of other actors’ behavior in the imaginary world comes closer
to reality. This method uses meta-knowledge about learning
allowing to preserve a "personality" and emotions.

INTRODUCTION

Our study takes place in the framework of Interac-
tive Fictions where autonomous entities improvise with
avatars [Hayes-Roth 96]. The idea is to provide the abil-
ity for virtual actors to adapt his representation of other
actors’ behavior, and therefore to carry out accurate pre-
dictions by simulating.

EachAnimat[Meyer 91] has its own behavioral culture
implemented in a library of behavioral prototypes. This
culture gives it self-perception and perception of others.
While reacting in virtual world, it can simulates in its
imaginary world its vision of other entities in order to
choose a strategy according to the prediction of the sim-
ulation [Maffre 01]. We propose to endow theseAnimats
with learning by imitation [Mataric 01]. By observing an-
other entity or avatar, ourAnimatmodifies one behavioral
prototype from its library in order to imitate the observed
model with more accuracy, increasing the relevance of its
predictions. It can also imitate another agent preserving
its own “personality”.

Fuzzy Cognitive Map (FCM) [Kosko 86] can specify
and control emotional and perceptive (not only sensitive)
Animatsbehavior [Parenthoën 01]. FCM is declarative

and explanatory, it can therefore be specified by a non-
specialist in computer science.Animatsbehavioral cul-
ture consists in a library of prototypic FCMs allowing it
to simulate and to anticipate agents’ behavior in its imag-
inary world. We propose to adapt prototypic FCM by
learning process in order to imitate an observed behavior.

Applications are implemented in the multi-agent en-
vironmentoRis[Harrouet 02] showing a sheepdog gath-
ering sheep. The learning mechanism allows the dog to
adapt its prey prototype to a given sheep in real time.

Next section explicits the context in which our learning
algorithm is situated . We will justify the choice of the
FCMs as foundation of the behavioral library, explain the
notion of imaginary world and explain how we envisage
the learning mechanism. Next, we will present the
learning algorithm. Finally, we will apply this algorithm
on the example of the sheepdog and explicit the obtained
results.

CONTEXT

FCMs are graphs of influences allowing to specify and
to control anAnimatbehavior. FCM is a dynamic system
constituted by nodes and links. Nodes represent concepts
and links causal connexions between concepts. Every
concept has semantics. Information relating to the per-
ception of anAnimatare fuzzyfied to activate sensor con-
cepts, while activations of motor concepts are defuzzy-
fied to determine its effectors. FCM is not only sensory
but also perceptive thanks to self-excitator links and to
links from internal to perceptive concepts.

We consider that anAnimathas sensors allowing it to
perceive its environment, effectors to perform, and also
a library of prototypic behaviors specified by FCMs. A
FCM is not only declarative, it is an explanatory graph
fitting to behavior specification. Thus, an expert in col-
laboration with an ergonome will be able to develop a li-
brary of prototypic behaviors. This library represents the
behavioral culture of theAnimat. For example the library
of an animal can be constituted of a prototypic behavior
of prey, and a prototypic behavior of predator.

In parallel to the virtual world, anAnimathas also an

imaginary world, where it can simulate its own behav-
ior and also other actors’ behavior. This imaginary world
corresponds to an approximate representation of the envi-
ronment fromAnimatperception and to a representation
of other actors’ behavior. In Fact, anAnimat uses pro-
totypic behaviors in order to simulate other actors’ be-
havior. It imagines its behavior in simulating its own de-
cisonal mechanism and imagines other actors’ behavior
with prototypic FCMs. It can use its imaginary world to
choose a strategy between several possibilities, not by a
logical reasoning but by a behavioral simulation. Thus, it
will be able to make predictions on the future.

We want to provide the ability for anAnimat to
adapt its representation of other actors’ behavior and
consequently its predictions become more pertinent.
Thus, we propose to endow anAnimat with a learning
ability by imitation. AnAnimatmust be able to modify
a behavior to mime an observed behavior of a model
that could be another actor or an avatar controlled by a
human operator [Stoffregen 99]. By simple observation
of the imitated model, the virtual actor must adapt its
representation of the model behavior. The mechanism
used to control the model behavior to imitate is indepen-
dent of learning. Thus, imitated model can be piloted
by any decision-making mechanism. The idea here is
to modify prototypic FCMs representing other actors’
behavior in comparing the result of the simulation in the
imaginary world and the result of the virtual world. Thus
we incorporate a third level to anAnimat that we name
“adaptative mode” (learning), adding to the reactive
mode (virtual world) and to the “predictive mode”
(imaginary world). These three modes represent the
three levels used in cognitive psychology [Morineau 02].
The three methods are in communication, but they evolve
in parallel.

LEARNING THROUGH IMITATION

In this section, we present a method allowing an adap-
tation of prototypic behavior by imitation in real time. An
Animat observes its environment (other agents), allow-
ing it to simulate other entities’ behavior in its imaginary
world with prototypic FCMs. The idea is to provide a
more pertinent simulation by adapting prototypic FCMs
by imitation. The modification of prototypic FCMs re-
duces the difference between predictions of the imaginary
world and reality. We made the asumption that anAnimat
has sensors to estimate the information relating to proto-
typic FCMs, means an estimation of sensors and effector
values that will allow to fuzzyfy sensors values and to
compare the result of defuzzyfication of motor concepts
activations with the effector values of the model.

The learning mechanism consists in getting back the
result of the simulation in the imaginary world, compar-
ing it to what happened in the virtual world, and deduct-
ing an adaptation of prototypic FCMs. We will limit our
study to the learning of the weights of the causal connec-
tions between concepts in a prototypic FCM in order to

imitate a given behavior, by modifying neither the struc-
ture of the influence graph of a FCM, nor the fuzzyfi-
cation of the sensors, nor the defuzzyfication of the con-
cepts motors. This modification of the causal connections
between concepts uses meta-knowledge about learning
(the expert certifies notably structures of FCMs and the
sign of links).

Kosko has proposed two different Hebb type meth-
ods [Hebb 49] for an expert given limit cycle learning
by FCM [Kosko 88]. One is based on the correlations
between activations [Kosko 92], the other on a corre-
lation of their variations (differential hebbian learning)
[Dickerson 94]. The differential learning modifies only
the associated links to correlated variations of the con-
cepts activations, while the non differential correlations
learning risk to modify all links in a non pertinent way.
Kosko’s differential learning is based on the knowledge
of a limit cycle including all concepts and provided by an
expert. However, we can’t have such a limit cycle, be-
cause only estimated model sensors and effectors can be
observed and FCM having generated them is not avail-
able. In addition, Kosko’s differential learning makes the
assumption that external activations are constant. How-
ever, the virtual world is a dynamic system and external
activations evolve in time. Thus, we will modify Kosko’s
hebbien differential learning to our case.

The algorithm of adaptation that we propose is an iter-
ative cycle in four stages:

1. Model estimation:
by simple observation theAnimatestimates model-
sensors and model-effectors,

2. Simulation of the prototypic behavior:
sensors are fuzzyfied into perceptive concept exter-
nal activations, calculation of the FCM dynamics,
then image-effectors are obtained by motor concept
inner activation defuzzyfication,

3. Calculation of calling into question:
comparison between image-effectors and model-
effectors is performed, generatation of a set of de-
sired pseudo-activations obtained by going up the
influence graph from motor concepts towards per-
ceptive concepts without modifying links and by us-
ing meta-knowledge about learning,

4. Update causal links:
FCM causal links are updated by applying discrete
differential hebbian learning to the sequence corre-
sponding to the passage from FCM activations to-
wards desired pseudo-activations.

More precisely :

1. In the first stage, imitator measures features about
the model, which are necessary for model-sensor
and model-effector estimations.

2. The second stage corresponds simply to the usual
use of a FCM for the control of a virtual actor, and

determines image-actor FCM activations at moment
t + δt ≈ t in the imaginary world, according to
model-sensor estimation and FCM dynamics with
N iterations:

a(t+ I
N δt) = S

(
G(f(t), LT · a(t+ I−1

N δt))
)

for I = 1, · · · , N ; δt << 1 (1)

N equals the length of the longest acyclic path
added to the length of the longest cycle in the influ-
ence graph, in order to make sure that sensor infor-
mation is spread to all nodes;n being FCM concept
number,f = (fi)iJ1,nK external activations coming
from sensor fuzzyfication,a=(ai)iJ1,nK innner acti-
vations,L=(Lij)(i,j)J1,nK2 link matrix,G : (<2)n →
<n a comparison operator andS a standardization
function transforming each coordonate by the sig-
moidal function: σ(x)= 1+δ

1+e−ρ(x−a0) − δ, with pa-
rameters(δ, ρ, a0) ∈ {0, 1}×<+

∗ ×<. FCM motor
concept defuzzyfication at momentt + δt ≈ t pro-
vides image-effectors. For more clearness, we note
a the resulting inner activationsa(t + δt) in next
paragraphs.

3. The third stage recursivly generates sets of pseudo-
activations(Pi)i∈J1,nK translating an orientation for
FCM dynamics. The principle consists in going up
the influence graph from motor concepts towards
perceptive concepts proposing pseudo-activation
values according to meta-knowledge about learn-
ing and bringing image-effectors closer to model-
effectors estimation. We did not use the method of
gradient backpropagation [Rumelhart 86]. FCM is
a cyclic process and its topology is not organized
in layers (recurrent links). In addition, the method
of gradient backpropagation does not hold graph
semantic and we wished to have the possibility to
apply specific meta-knowledge to a specific node.
Let’s detail the recursive process:

Initialisation m = 0: entering into the FCM from
effectors. A setI0 represents indices of concepts de-
fuzzyfied onto image-effectors. For eachi ∈ I0, we
apply the decision learning meta-knowledge: two
potential pseudo-activationsp±i = σ(a0± 2αi

ρ) sim-
ulate an active/inactive conceptCi, αi ≥ 1 translat-
ing choise radicality. With theai value, that makes
3 possible pseudo-activationspi = ai, p+

i or p−i
for eachCi. The3CardI0 combinations are defuzzy-
fied, compared to model-effector estimation and the
best combination(p0,{}

i)i∈I0 is kept (the 0 deals
with defuzzyfication and the{} is a set of future la-
bels). ∀i ∈ I0, Pi = {p0,{}

i }. The other pseudo-
activations sets(Pi)i∈(J1,nK\I0) are empty.

Progression fromm to m + 1: Let Im ⊂ J1, nK
be the index set of concepts whose desired pseudo-
activation set is not empty. Fori ∈ Im, noteai

(reps. fi) inner (resp. extern) activation of con-
ceptCi, Pi = {pk1,{··· }

i , · · · , p
kL,{··· }
i } its desired

pseudo-activation set which cardinal equalsL and
J ⊂ J1, nK the index set of concepts which are
causes for the conceptCi (i.e.:Lji 6= 0) and such
that the arc fromCj to Ci has not been studied:
∀λ ∈ J1, LK, j 6= kλ. We will calculate pseudo-
activationsPj for j ∈ J as follows:

• For eachj ∈ J , we apply the decision learn-
ing meta-knowledge: two potential pseudo-
activationsp+

j andp−j are calculated (2) so that
their influence onai causes a clear choise be-
tween an activeCi or an inactiveCi, taking
into account external activations, withα ≥ 1
translating the choice radicality:

p±j =


a0 ± 2αj

ρ
− fi −

∑

l 6=j

Llial


 /Lji

(2)

• Then we randomly select aλ ∈ J1, LK.
That gives a p

kλ,{··· }
i ∈ Pi and we

choose among the3CardJ possible combina-
tions pi

j = aj , p+
j or p−j for j ∈ J , the

one p
i,{··· ,kλ}
j which gives aCi activation

σ
(
Gi(fi,

∑
j Ljip

i
j)

)
the nearest topkλ,{··· }

i ,

• Thus we obtain a new set of concept indices
with a not empty desired pseudo-activation set:
Im+1 = Im∪J with Pj = Pj∪{pi,{··· ,kλ}

j }for
j ∈ J .

Termination: if for eachi ∈ Im, the corresponding
J set is empty, every arc belonging to paths arriving
into (Ci)i∈I0 has been studied.

We use a discrete method by proposing three
pseudo-activations. We choose a discrete method al-
lowing us on one hand to limit the calculations and
on the other hand to translate a radical choice. We
argue that to learn semantic purpose, proposed mod-
ifications have to correspond to radical choices and
not to light modifications.

4. The fourth and last stage modifies FCM link
weights, in order to direct its dynamics towards a
behavior approaching the model. Contrary to Kosko
who uses a cycling cycle and a learning rate decreas-
ing with time (see [Dickerson 94] page 186), we
make only one stage from inner activationsa to link
corresponding desired pseudo-activationsp for the
weight modification without cycling and preserve a
constant learning rater(t) = R, in order to ensure a
strong adaptivity for our virtual actor. Formally, not-
ingA ⊂ J1, nK2 the arc set of the FCM,β ∈]0; 1+δ[
a sensitivity level ands : < → {−1, 0, 1} the dis-
crete functions(x) = −1, 0 or 1 if respectively
x ≤ −β, −β < x < β or x ≥ β, the learning

algorithm follows the equations:

∀(i, j) ∈ A, if ∃k ∈ J0, nK, p
k,{··· ,i,··· }
j ∈ Pj ,

we take such a k and :



∆i = s(pj,{··· }
i − ai), ∆j = s(pk,{··· ,i,··· }

j − aj)

Lij (t+1)=
∣∣∣∣
Lij (t) + R(∆i∆j − Lij (t)) , if ∆i 6= 0
Lij (t) , if ∆i = 0

else Aij 6∈ {path to effectors} : Lij (t+1) = Lij (t)

(3)
It is to note that we preserve a coherence in our
modification of links according to the initial pro-
totype furnished by the expert. Thus, the follow-
ing possibilities are forbidden: link emergence, link
suppression, or modification of the sign of a link.
We also keep some link weights inside given bon-
dariesBij = [Lmin

ij , Lmax
ij] so that the adapted be-

havior remains believable according to the expert:
if Lij (t+1) < Lmin

ij then Lij (t+1) = Lmin
ij and if

Lij (t+1) > Lmax
ij then Lij (t+1) = Lmax

ij . More-
over, the expert can decide to immobilize the weight
of one or several links, therefore they will not be
modified during the learning process. To immobilize
links or to impose limits allows to adapt prototypic
FCMs while preserving a "personality".

The complexity of this algorithm is a polynomial func-
tion of the numbern of concepts given by the expert,
and even aO(n). For an expert, the causes of a concept
are always in a very limited number (seldom more than
seven), therefore the number of arcs arriving on each
concept is rised byM (M ≈ 7). CardJ ≤ M . 3CardJ is
thus raised in practice, whatever the number of concepts
implied in the FCM. The same applies to the calculation
of FCM dynamics which complexity is aO(n) whereas
could seem to be aO(n2), thanks to the great number of
zeros in the link matrix; the number of not null links in
a column being no more thanM , whatever could ben.
This algorithm can thus be implemented for a use in real
time.

RESULTS

Our applications show a sheepdog gathering sheep.
During the simulation one or several sheep can move
away from the gathering zone. When approaching a
sheep, the dog frightens it and obliges it to regain this
zone. The dog simulates in its imaginary world several
strategies to gather sheep. We have implemented three
applications showing a sheepdog gathering sheep. First,
the dog learns a way of gathering sheep by the imitation
of a human operator or another dog. In that case, the pro-
totypic FCMs used is its own FCMs. Second, an adap-
tation of dog’s prey prototype to a given sheep occurs in
real time. This application is described in this section.
Third, a paranoiac sheep learns how to be surrounded by
other sheep remains frightened but does not flee any more
when viewing a dog. To immobilize paranoiac links al-
lows to adapt sheep behavior while preserving a paranoid

“personality”.
To simulate sheep behavior, the dog uses prototypic

FCMs of prey from its behavioral library. Actually, the
dog represents each sheep behavior by prototypic FCMs
of prey in its imaginary world. Each sheep is associ-
ated with its own prototype. Thus the dog can simulate
sheep behavior and can do predictions. Prototype will be
adapted to a sheep by imitation. A FCM controls the pro-
totype’s speed and another controls the prototype’s angle.

The comparison between the result of the imaginary
world and the virtual world allows an adaptation of proto-
typic FCMs in real time by learning. The figure (1) illus-
trates the modification by imitation of prototype’s speed
that defined the representation of one sheep’s speed used
the imaginary world. We imposed the learning period.
Such a period allows the convergence of the process.

+0.1

+0.1

+1

−0.1

−1

+1

+0.42

+1.1

−0.65

−0.25
+0.72

+0.95

FearFear

Enemy close

Escape envy

Enemy far

Escape envy

Enemy far

Enemy close

FCM prey before learning FCM prey after learning

Figure 1: FCM of perceptive prey is coming from the
library of prototypic FCMs and adapts itself by learning.

The dog observes the sheep to imitate. It adapts the
prototypic behavior of prey allowing it to simulate the
sheep’s behavior in its imaginary world. By simple ob-
servation of the sheep to imitate, it estimates information
necessary to the fuzzyfication for the prototype. The esti-
mation of sensors values are fuzzyfied in activation of the
concepts “Enemy close” and “Enemy far”. The dynamic
of the prototype occurs and by defuzzyfication of the ac-
tivation of the effector motor “Escape envy” we get the
image effector. Its corresponds to the representation that
the dog has of prey’s speed. This image effector from pro-
totype is compared to an estimation of sheep’s effectors.
This comparison allows to calculate a set of pseudo ac-
tivations that define desired modifications of FCM links.
The prey prototype adapts itself to a sheep by reiterating
the learning process. In pratice, the congercence occurs.

On figure (2), we compare the simulation of sheep
behavior from prototype in the imaginary world (“Prey
image”) and the sheep behavior in the virtual world
(“Sheep Model”), before and after learning while the dog
performs the same trajectory (“Dog”). We note that the
simulation is closer to reality after learning.

CONCLUSIONS AND FUTURE WORKS

Our Animat possesses a behavioral library composed
by prototypic FCMs. While acting in the virtual world,
the prototypic FCMs allows him to simulate other actors’
behavior in its imaginary world. It simulates different
strategies, allowing him to carry out predictions. We use
FCMs because they represent an explicit knowledge and
provide perception and emotions to theAnimat. We have

2

1

2

3
45

67

1

2

3

4

56
7

4

5

7

6

3

456
7

1

2

3

4

5

6
7 1

2

3
45

67

Prey after learning

Pasture

Dog
Sheep Model

Prey image

Pasture

Dog

Sheep Model

Prey before learning

Prey image

Figure 2: Learning by imitation allows to get more perti-
nent predictions from the imaginary world.

presented a learning algorithm allowing an adaptation of
the prototypic FCMs to imitate a given actor. This adapta-
tion provides a more pertinent imaginary world and there-
fore theAnimat carries out predictions closer to the re-
sults of the virtual world. Our learning by imitation uses
meta-knowledge from description of the prototypes by
an expert, allowing to preserve the "personality" and the
emotions of the prototype. In addition, our learning is
based on a behavioral prototype allowing to simulate the
model behavior to imitate. Moreover, we do not have to
modify the structure of the influence graph of the FCM,
the fuzzyfication of the sensors, and the defuzzyfication
of the concept motors. Future works will try to set up
a process that selects a prototype in the library by sim-
ple observation of the model behavior to imitate. Also,
we work on the the adaption of the fuzzy transformations
associated to the fuzzyfication and defuzzyfication.

REFERENCES

[Dickerson 94] Dickerson J.A., Kosko B., Virtual Worlds as
Fuzzy Cognitive Maps,Presence, 3(2):173-189, MIT Press,
1994.

[Harrouet 02] Harrouet F., Tisseau J., Reignier P., Chevaillier
P., oRis : un environnement de simulation interactive multi-
agents,Revue des sciences et technologie de l’information,
série Technique et science informatiques (RSTI–TSI)21,
no.4 :499-524, 2002.

[Hayes-Roth 96] Hayes-Roth B., Van Gent R.,Story-making
with improvisational puppets and actors, Technical Report
KSL-96-05, Stanford University, 1996.

[Hebb 49] Hebb D.O.,The Organization of Behavior, John Wi-
ley & Sons (eds), New York, USA, 1949.

[Kosko 86] Kosko B., Fuzzy Cognitive Maps,International
Journal Man-Machine Studies, 24:65-75, 1986.

[Kosko 88] Kosko B., Hidden patterns in combined and adap-
tative knowledge networks,International Journal of Approx-
imate Reasoning, 2:337-393, 1988.

[Kosko 92] Kosko B.,Neural networks and fuzzy systems: A
dynamical systems approach to machine intelligente, Engel-
wood Cliffs, 1992.

[Maffre 01] Maffre E., Tisseau J., Parenthoën M., Virtual
Agents Self-Perception in Virtual Story Telling,ICVS’01
proceedings, 155-158, Springer, 2001.

[Mataric 01] Mataric M.J., Sensory-Motor Primitives as a Ba-
sis for Learning by Imitation: Linking Perception to Action
and Biology to Robotics,Imitation in Animals and Artifacts,
Dautenhahn K. & Nehaniv C. (eds), MIT Press, 2001.

[Meyer 91] Meyer J.A., Guillot A., Simulation of adaptative
behavior in animats: review and prospect,from Animals to
Animats, 1:2-14, 1991.

[Morineau 02] Morineau T., Hoc J.M., Denecker P.,Cognitive
Control Levels in Air Traffic Radar Controller, To appear in
Internal Journal of Aviation Psychology, 2002.

[Parenthoën 01] Parenthoën M., Reignier P., Tisseau J., Put
Fuzzy Cognitive Maps to Work in Virtual Worlds,Fuzz-
IEEE’01 proceedings, 1:P038, 2001.

[Rumelhart 86] Rumelhart D.E, Mc Clelland J.L. and the PDP
research group,Parallel Distribued Processing Exploration
in the microstructure of cognition, Vol I, II and III., A brad-
ford book, MIT press, Cambridge (MA), 1986.

[Stoffregen 99] Stoffregen T.A., Gorday K.M., Sheng Y-Y.,
Flynn S.B., Perceiving affordances for another person’s ac-
tions,Journal of Experimental Psychology: Human Percep-
tion and Performance, 25:120-136, 1999.

EVOLVING IMPROVED OPPONENT INTELLIGENCE

Pieter Spronck, Ida Sprinkhuizen-Kuyper and Eric Postma
Universiteit Maastricht IKAT

P.O. Box 616
NL-6200 MD Maastricht, The Netherlands

E-mail: p.spronck@cs.unimaas.nl

KEYWORDS
Gaming, handheld computers, artificial intelligence, machine
learning, evolutionary systems, neural networks.

ABSTRACT

Artificially intelligent opponents in commercial computer
games are almost exclusively controlled by manually-
designed scripts. With increasing game complexity, the
scripts tend to become quite complex too. As a consequence
they often contain “holes” that can be exploited by the human
player. The research question addressed in this paper reads:
How can evolutionary learning techniques be applied to
improve the quality of opponent intelligence in commercial
computer games? We study the off-line application of
evolutionary learning to generate neural-network controlled
opponents for a complex strategy game called PICOVERSE.
The results show that the evolved opponents outperform a
manually-scripted opponent. In addition, it is shown that
evolved opponents are capable of identifying and exploiting
holes in a scripted opponent. We conclude that evolutionary
learning is potentially an effective tool to improve quality of
opponent intelligence in commercial computer games.

INTRODUCTION

The aim of opponents in commercial computer games is to
provide an entertaining playing experience rather than to
defeat the human player at all costs. The quality of the
opponent intelligence in games such as computer role-
playing games (CRPGs), first-person shooters (FPSs) and
strategy games, lies primarily in their ability to exhibit
human-like behaviour. This implies that computer-controlled
opponents should at least meet the following four

requirements: (1) they should not cheat, (2) they should
exploit the possibilities offered by the environment, (3) they
should learn from mistakes, and (4) they should avoid clearly
ineffective behaviour. Opponents in today’s computer games,
however, have not yet reached this level of behaviour. The
appeal of massive online multi-player games stems partly
from the fact that computer-controlled opponents often
exhibit what has been called “artificial stupidity” (Schaeffer
2001) rather than artificial intelligence.
 In early CRPGs and most of present-day FPSs and strategy
games an opponent’s behaviour is usually determined by a
straightforward script such as “attack the target if it is in
range, else move towards the target in a straight line.”
However, more advanced games contain opponents
controlled by large scripts comprising hundreds of complex
rules. As any programmer knows, complex programs are
likely to contain bugs and unanticipated features. As a
consequence, intelligent opponents intended to pose a
considerable challenge to a human player often suffer from
shortcomings that are easily recognised and exploited. For
example, in the CRPG SHADOWS OF AMN (2000; illustrated
in figure 1) the dragons, the supposedly toughest opponents
in the game, could be easily defeated by taking advantage of
holes in the extensive scripts controlling their actions.
Evidently, such artificial stupidity spoils the playing
experience.
 State-of-the-art artificially intelligent opponents lack the
ability to learn from experience. Therefore, the research
question addressed in this paper reads: How can evolutionary
learning techniques be applied to improve the quality of
opponent intelligence in commercial computer games? We
discuss two main ways of applying machine learning to
games: off-line learning and on-line learning. We introduce
the strategy game PICOVERSE and outline the duelling task
for which we evolve opponent intelligence off-line. We then
describe the environment and techniques we have used for
our initial experiments. We present the results of our
experiments and discuss them. Finally, we draw some
conclusions and point out future research.

OPPONENT INTELLIGENCE LEARNING

We distinguish two main ways of applying machine learning
to improve the quality of opponent intelligence in
commercial computer games: on-line learning and off-line
learning.

On-line Learning

Examples of on-line application of machine learning are
some of the opponents developed for the popular FPS
QUAKE. The artificial player in QUAKE III (commonly called
a “bot”) uses machine learning techniques to adapt to its
environment and to select short-term and long-term goals

Figure 1: A dragon in SHADOWS OF AMN.

(Van Waveren and Rothkrantz 2001). John Laird has
developed a bot that predicts player actions and uses these
predictions to set ambushes and to avoid traps (Laird 2001).
Of the four requirements we mentioned in the introduction
for opponent strategies that exhibit high entertainment value,
these bots address the first two, namely managing to avoid
cheating and using their environment effectively. However,
they can not learn from mistakes or generate completely new
tactics to overcome ineffective behaviour. They mainly adapt
to the world they find themselves in, rather than to the tactics
of the human player. Still, these bots are a first step towards
the creation of human-like opponents by on-line adaptation.
 Machine learning techniques are rarely used in commercial
computer games. Presumably, the widespread dissatisfaction
of game developers with machine learning (Woodcock 2000)
is caused by the bold aim of creating intelligent opponents
using on-line learning. Machine learning techniques require
numerous experiments, generate noisy results, and are
computationally intensive. These characteristics make
machine learning rather unsuitable for on-line adaptation of
opponents in computer games.

Off-line Learning

In the off-line application of machine learning techniques the
disadvantages mentioned for on-line learning do not pose an
insurmountable problem. However, to our knowledge,
developers of commercial games have never used machine
learning for off-line learning. In our view the two main
applications of off-line learning in games are: (1) to enhance
intelligence of opponents by training them against other
(scripted) opponents and (2) to proof opponents against
unforeseen player tactics by detecting “holes” in the scripts
controlling the opponents. The next three sections describe
the experiments supporting our view on the off-line
application of machine learning in games.

DUELLING SPACESHIPS

In our experiments, we apply off-line learning for optimising
the performance of opponents in a strategy game called
PICOVERSE. This section discusses the game and the learning
task to be used in our experiments. Figure 2 shows three
screenshots of the game. PICOVERSE is a relatively complex
strategy game for the Palm (handheld) computer. Our
intentions with the development of this game are twofold: (1)
we use it to support and illustrate our views on the design of
complex Palm games (Spronck and Van den Herik, 2002),
and (2) in the present context, we use it to investigate the off-
line application of machine learning to improve opponent
intelligence.
 In PICOVERSE the player assumes the role of an owner of a
small spaceship in a huge galaxy. Players act by trading

goods between planets, going on missions and seeking
upgrades for their spaceship. During travel, players
encounter other ships and combat may ensue. The ships are
equipped with laser guns to fight opponent ships. They are
protected from destruction by their hulls. Modelling ship
damage, the strength of the hull decreases when hit by laser
beams. The duels in PICOVERSE are more strategically
oriented than action oriented. While the relative attack power
and hull strengths of the spaceships are important factors in
deciding the outcome of a fight, even overpowered players
have a good chance to escape unharmed if their ship is
equipped with fast and flexible drives or specific defence
measures. To enhance immersiveness of the game, we permit
opponents, who have access to the same equipment as the
player, to escape from a duel that they are bound to lose,
rather than to continue fighting until being destroyed. This
feature makes the opponent intelligence non-trivial, despite
the relatively low level of complexity of the game (as
compared to state-of-the-art PC games).

OFF-LINE LEARNING EXPERIMENTS

In our experiments, the performance of a neural-network
controlled spaceship is optimised using off-line learning in a
simplified version of PICOVERSE. For both the evolved and
opponent ships, lasers fire automatically when their enemy is
within a certain range and within a 180-degree arc at the
front of the ship. If a ship bumps head-on into the other ship,
its speed is reduced to zero. The neural controllers are
trained using evolutionary algorithms. The fitness is
determined by letting the evolved spaceships combat against
scripted opponents in a duelling task. Below, we discuss the
duelling task, the neural network controlling the spaceship
and the evolutionary algorithm.

The Duelling Task

Figure 3 is an illustration of the duelling task. We refer to the
scripted ship as “the opponent” and to the ship that is
controlled by a neural network as “the evolved ship”. The
scripted behaviour of the opponent is implemented as
follows. The opponent starts by increasing its speed to
maximum and rotating the ship’s nose towards the centre of
the evolved ship. While the opponent ship is firing its laser, it
attempts to match its speed to the speed of the evolved ship.
If the hull strength of the opponent is lower than that of the
evolved ship, the opponent ship attempts to flee by turning
around and flying away at maximum speed. This simple yet
effective script mimics a basic strategy often used in
commercial computer games.

The Neural Controller

The neural network controlling the (to be) evolved ship has
ten inputs. Four inputs represent characteristics of the
evolved ship: the laser power, the laser range, the hull
strength, and the speed. Five inputs represent characteristics
of the opponent ship: the location (direction and distance),
current hull strength, flying direction, and speed. The tenth
input is a random value. The network has two outputs,
controlling the acceleration and rotation of the evolved ship.
The hidden nodes in the network have a sigmoid activation

Figure 2: PICOVERSE.

function. The outputs of the network are scaled to ship-
specific maximums.
 We studied two types of neural networks, namely
feedforward and recurrent networks. The feedforward
networks include fully-connected networks (every neuron
may be connected to any other neuron, as long as a
feedforward flow through the network is guaranteed) and
layered networks (neurons are only connected to neurons in
the next layer). The recurrent neural networks are layered
networks in which recurrent connections are only allowed
between nodes within a layer. Recurrent connections function
as a memory by propagating activation values from the
previous cycle to the target neuron.

The Evolutionary Algorithm

An evolutionary system, implemented in the ELEGANCE
simulation environment (Spronck and Kerckhoffs 1997), was
used to determine the neural network connection weights and
architecture. All simulations are based on the following
settings: a population size of 200, an evolution run of 50
generations, real-valued weight encoding, size-2 tournament
selection, elitism, Thierens’ method of dealing with
competing conventions (Thierens et al. 1993) and size-3
crowding. As genetic operators we used biased weight

mutation (Montana and Davis 1989), nodes crossover
(Montana and Davis 1989), node existence mutation
(Spronck and Kerckhoffs 1997), connectivity mutation
(Spronck and Kerckhoffs 1997), and uniform crossover. In
addition, we added randomly generated new individuals to
prevent premature convergence.
 The fitness is defined as the average result of fifty duels
between the evolved ship and its opponent. Each duel lasts
fifty time steps. Each duel in which the ships started with
different characteristics was followed by a duel in which the
characteristics were reversed. At time step t the fitness is
defined as:







>





+





≤

= 0/

00

000
t

ttt

t

t PH
OH
OH

PH
PH

PH
PH

PH
Fitness

where PHt is the hull strength of the evolved ship at time t
and OHt is the opponent hull strength at time t. The overall
fitness for a duel is determined as the average of the fitness
values at each time step.
 Determining the fitness in this way has the following
properties. If the evolved ship and its opponent both remain
passive the fitness is equal to 0.5. If the opponent ship is
damaged relatively more than the evolved ship, the fitness is
larger than 0.5 and if the reverse is true (or when the evolved
ship is destroyed) the fitness is smaller than 0.5. Therefore,
the fitness function favours attacking if it leads to victory and
favours fleeing otherwise.

RESULTS

Table 1 presents the results of the two types of networks
tested in the experiments. Evidently, the layered feedforward
neural networks with two layers outperforms all other
networks in terms of average and maximum fitness value.
The network with five nodes in each hidden layer scored
only slightly better than the network with ten nodes in each
layer.
 At first glance the best fitness results achieved are not very
impressive. A fitness of 0.5 means that the neural controller
results are as effective as the manually-designed algorithm. A
fitness of 0.579 (the best result obtained in the experiments)
may be taken to indicate that the evolved opponent scores
only slightly better than the scripted opponent. Since the
scripted opponent employs a fairly straightforward tactic, one
would expect the neural controller to be able to learn a far
more successful tactic. However, a controller that remains
passive reaches a fitness of 0.362. Given that a scripted

Figure 3: Sequence illustrating the duelling task. The duelling
spaceships are represented by the small circles. A ship’s direction
is indicated by a line inside the circle, its speed by the length of the
line extending from the ship’s nose. The dotted arc indicates the
laser range. The evolved ship is fixed to the centre of the screen
and directed to the right. In the sequence the evolved ship is
stationary. From left to right, top to bottom, the six pictures show
the following events. (1) Starting position. (2) The opponent moves
towards the evolved ship and (3) bumps into it. Both ships are
firing their lasers. (4) The opponent has determined it should flee
and turns around. (5) The opponent flees and (6) escapes.

Neural network type Exps Average Lowest Highest
Recurrent, 1 layer, 5 hidden nodes 5 0.516 0.459 0.532
Recurrent, 1 layer, 10 hidden nodes 5 0.523 0.497 0.541
Recurrent, 2 layers, 5 nodes per layer 7 0.504 0.482 0.531
Feedforward, 7 hidden nodes 5 0.472 0.382 0.527
Feedforward, 2 layers, 5 nodes per layer 5 0.541 0.523 0.579
Feedforward, 2 layers, 10 nodes per layer 8 0.537 0.498 0.576
Feedforward, 3 layers, 5 nodes per layer 7 0.515 0.446 0.574

Table 1: Experimental results. From left to right, the columns indicate the type of neural network
tested, the number of experiments performed with the neural network, the average fitness, the
lowest fitness value and the highest fitness value. The best results are typed in boldface.

opponent performs better
than a stationary ship, a
fitness of 0.638 is a
theoretical upper bound to
the maximum the neural
controller can reach. From
that point of view, a fitness
of 0.579 is not bad at all.
 From the perspective of
playing experience, the
fitness rating as calculated
in our experiments is not as
important as the objective

result of a fight. A fight can end in victory, defeat, or a
“draw”. For the best controller, we found that 42% of the
encounters ended in victory for the evolved ship, 28% in
defeat, and 30% in a draw. This means that 72% of the
encounters ended in a situation not disadvantageous to the
evolved ship, which achieved 50% more victories than the
opponent ship. Clearly, the evolved ship performs
considerably better than the opponent ship.

DISCUSSION

Our results show that machine learning (i.e., off-line
learning) can be used to create intelligent opponents that
outperform scripted ones. Analysing the behaviour of the
best-performing spaceship, we observed that it showed
appropriate following behaviour when it overpowered the
opponent. In these experiments, such following behaviour
can never be detrimental to the performance. The reason for
this is that the opponent’s script ensures that it will only turn
around to attack again if the hull strength of the attacker
becomes less than its own hull strength, which does not
happen as long as the evolved ship stays behind the
opponent. As we expected the evolved ship avoided bumping
against the opponent while following it. Avoiding bumping is
appropriate behaviour because bumping reduces the evolved
ship’s speed to zero while leaving the opponent’s speed
unaffected, potentially allowing it to escape. However,
contrary to our expectation the evolved ship did not avoid
bumping by reducing its speed when approaching the
opponent, but by swerving as much as needed to keep a
constant relative distance to the opponent.
 We further noticed that the evolved ship did not try to flee
when losing a fight. The probable reason is that for a
spaceship to flee, it must turn its back toward the enemy. The
fleeing ship then becomes a target that does not have the
ability to fight back (since lasers only fire from the front of
the ship). As a result, fleeing ships are almost always
destroyed before being able to escape. Such attempts to
escape seem therefore of little use. From this observation we
conclude that a better balance between the power of the
weapons and the versatility of the ships is required to enable
effective escape behaviour,.

Improving the Opponent

A surprising form of behaviour was observed when the
opponent ship started behind the evolved ship, as illustrated
in figure 4. In that case, often the evolved ship attempted to
increase the distance between the two ships, up until the

moment a draw would occur if it would continue to increase
the distance. At that point, the evolved ship turned around
and either repeated the behaviour or started to attack. Figure
5 illustrates this sequence of events.
 An explanation for the success of the observed behaviour is
that if the distance between the two ships is maximal, the
evolved ship will have a maximal amount of time to turn
around and face the opponent before it gets within the
opponent’s laser range. Since facing the opponent is required
to counter-attack, the observed behaviour is beneficial to the
evolved ship’s strategy. Therefore, improving the script of
the opponent accordingly may improve its quality
considerably.

Detecting Shortcomings in the Script

By using off-line learning, we could also detect shortcomings
in the scripted opponent. Although we did not specifically
design our experiments for this purpose, we found a
considerable hole in the script controlling the opponent by
observing the behaviour of the two duelling ships.
 The opponent bases its decision to flee on a comparison
between the relative hull strengths (e.g., if the opponent’s
relative hull strength is lowest, it concludes that it will most
likely lose the fight and will attempt to escape). The
opponent’s script does not take into account that it is its own
turn to act when it makes this decision. If the comparative
hull strengths are close to each other, this certainly becomes
an important consideration. For instance, if on the initial
approach the opponent ship came within the range of the
lasers of the evolved ship before being able to fire its own
lasers, it would be damaged while the evolved ship would
still be undamaged. Regardless of its own power, this would
cause the opponent’s initial reaction to be to flee. Since in
most cases the opponent would still be able to fire its lasers
once, this behaviour had little influence if the opponent
significantly overpowered the evolved ship, because it would
start to attack again on the next turn. However, if the
strengths of the ships were about equal, we found the evolved
ship to exploit this weakness of the opponent, by attempting
to manoeuvre into a position from which it could fire the first

Figure 5: The right panel displays a trace of the movements of the
evolved ship up to the moment that it fires its first shot. The
opponent is overpowered and tries to flee, but the learning ship
follows, as shown in the left panel. In this case the opponent is not
able to escape.

Figure 4: Opponent is behind the
evolved ship.

shot. Plugging this hole in the opponent’s script will be a
major improvement to its behaviour.
 It is noteworthy that in many commercial turn-based games
we have observed holes in the opponent AI similar to the
hole we discovered in our script. For instance, in many
games it is a good tactic for the player to pass game turns
until the enemy has approached to a certain distance so that
the player can initiate the first attack. Game designers will
seldom let computer opponents employ such a tactic because
it could lead to a stalemate where both the player and the
computer refuse to move, because whoever makes the first
move is at a disadvantage. Similarities with trench warfare
are striking.

Generalisation to Other Games

We have shown how machine learning can be used to
improve opponent intelligence in PICOVERSE. Of course, it
remains an open question whether our findings generalise to
the far more complex commercial PC games. Even the
detection of holes in scripted AI, which is obviously much
simpler than developing a whole new tactic, may prove to be
too difficult if the number of choices at each turn and the
number of turns in an encounter are very large. However, we
expect for most games that encounters do not last “too long”
(to avoid boredom) and the number of choices is not “too
large” (to avoid confusion). Even for commercial PC games
it should therefore usually be possible to detect AI
shortcomings by machine learning.
 Employing machine learning to design completely new
tactics, however, is probably severely limited in its uses.
John Laird warns that while neural networks and
evolutionary systems may be applied to tune parameters, they
are “grossly inadequate when it comes to creating synthetic
characters with complex behaviours automatically from
scratch” (Laird 2000). For a relatively simple game as
PICOVERSE machine learning techniques by themselves can
be useful in designing strong tactics. The combination of
machine learning with more structured techniques, such as a
subsumption architecture (Brooks 1991) or a technique
inspired by Laird’s Soar Quakebot (Laird 2001), is likely to
lead to more reliable good results within a shorter time, and
may therefore also be suitable for more complex
environments.

CONCLUSIONS AND FUTURE WORK

By applying off-line learning in the computer strategy game
PICOVERSE we were able to improve opponent intelligence
and to detect shortcomings in the scripted opponent. We
conclude that machine learning can be applied off-line to

improve the quality of opponent intelligence in commercial
computer games. We expect the application of off-line
learning to detect holes in commercial computer game scripts
to be feasible.
 Our future research will build upon our results with
PICOVERSE. The release version of PICOVERSE will be more
complex than the simulation we used, and we will run similar
experiments on the more complex opponents in that version.
For creating new opponent tactics, we intend to explore other
machine learning techniques in combination with, for
instance, subsumption architectures. In the long run, we hope
to apply our techniques to improve opponent intelligence in
commercial computer games.

REFERENCES
Brooks, R.A. 1991. “Intelligence without representation.” Artificial

Intelligence, 47:139-159.
Laird, J.E. 2000. “Bridging the Gap Between Developers &

Researchers.” Game Developers Magazine, August 2000.
Laird, J.E. 2001. “It Knows What You’re Going To Do: Adding

Anticipation to a Quakebot.” Proceedings of the Fifth
International Conference on Autonomous Agents, pp. 385-392.

Montana, D. and L. Davis. 1989. “Training feedforward neural
networks using genetic algorithms.” Proceedings of the 11th
International Joint Conference on Artificial Intelligence.
Morgan Kaufman, California, pp. 762-767.

Schaeffer, J. 2001. “A Gamut of Games.” AI Magazine, vol. 22 nr.
3, pp. 29-46.

Spronck, P.H.M. and E.J.H. Kerckhoffs. 1997. “Using genetic
algorithms to design neural reinforcement controllers for
simulated plants.” Proceedings of the 11th European
Simulation Conference (eds. A. Kaylan & A. Lehmann), pp.
292-299.

Spronck, P.H.M. and H.J. van den Herik. 2002. “Complex Games
and Palm Computers.” Entertainment Computing:
Technologies and Applications. Kluwer. (To be published).

Thierens, D., J. Suykens, J. Vandewalle and B. de Moor. 1993.
“Genetic Weight Optimization of a Feedforward Neural
Network Controller.” Artificial Neural Nets and Genetic
Algorithms (eds. R.F. Albrechts, C.R. Reeves and N.C. Steel).
Springer-Verlag, New York, pp. 658-663.

Van Waveren, J.P.M. and L.J.M. Rothkrantz. 2001. “Artificial
Player for Quake III Arena.” 2nd International Conference on
Intelligent Games and Simulation GAME-ON 2001 (eds.
Quasim Mehdi, Norman Gough and David Al-Dabass). SCS
Europe Bvba, pp. 48-55.

Woodcock, S. 2000. “Game AI: The State of the Industry.”
Gamasutra, http://www.gamasutra.com/features/20001101/
woodcock_01.htm.

ELEGANCE is available from http://www.cs.unimaas.nl/p.spronck/.
PICOVERSE is targeted for a release early 2003 and available from

http://www.picoverse.com/.

TEMPORAL DIFFERENCE LEARNING AND THE NEURAL MOVEMAP
HEURISTIC IN THE GAME OF LINES OF ACTION

Mark H.M. Winands, Levente Kocsis, Jos W.H.M. Uiterwijk and H. Jaap van den Herik
Department of Computer Science

Institute for Knowledge and Agent Technology
Universiteit Maastricht

P.O. Box 616, 6200 MD Maastricht, The Netherlands
E-mail: {m.winands, l.kocsis, uiterwijk, herik}@cs.unimaas.nl

KEYWORDS
Temporal difference learning, Neural MoveMap heuris-
tic, Lines of Action.

ABSTRACT

This paper investigates to what extent learning methods
are beneficial for the Lines of Action tournament pro-
gram MIA. We focus on two components of the program:
(1) the evaluation function and (2) the move ordering.
Using temporal difference learning the evaluation func-
tion was improved by tuning the weights. We found
substantial improvements for three weights. The move
ordering was enhanced by the Neural MoveMap (NMM)
heuristic, which is based on learning. The two learning
techniques improved both the playing quality and the
speed of the program. Test results are given. The new
evaluation function improved the program with a win-
ning ratio of 1.68. The speed up of the NMM heuristic
is 17 percent.

1. INTRODUCTION

The standard framework of the αβ search with its en-
hancements offers a good start position for building
a strong game-playing program. For Lines of Action
(LOA) we built the game-playing program MIA (Maas-
tricht In Action) by carefully composing its “hand-
crafted” evaluation function and implementing the αβ
variant PVS (Principal Variation Search) with iterative
deepening, transposition tables, quiescence search, killer
moves, history heuristic, etc [9]. MIA so equipped, came
second on the 2001 and 2002 Computer Olympiads [3, 4].
Further improvement of the program is expected to be
achieved mostly from fine-tuning the components men-
tioned. One approach is to fine-tune them by hand.
However, the program is playing at such a high level
that the effect of the changes in most of the components
are beyond human understanding. The alternative ap-
proach is to use automatic tuning by various learning
techniques. In this paper we focus on improving two
components: the evaluation function and the move or-
dering. To improve the evaluation function we employed

temporal difference learning. This learning method was
first used for checkers by Samuel [13] and was essential
for building the world-champion-level Backgammon pro-
gram by Tesauro [16]. For move ordering similar learn-
ing techniques were designed recently, of which the Neu-
ral MoveMap heuristic [7] seems particularly promising.
The remainder of this paper is organised as follows. Sec-
tion 2 explains the game of Lines of Action and describes
the tournament program. In section 3 the temporal
difference learning and the Neural MoveMap heuristic
are explained. The results of using these learning algo-
rithms are presented in section 4. Finally, in section 5
we present our conclusions.

2. MIA AND LINES OF ACTION

MIA (Maastricht In Action) is a LOA-playing tour-
nament program. It is written in Java. The
program can be played at the following website:
http://www.cs.unimaas.nl/m.winands/loa/. Below we
describe some details of MIA. In the first subsection we
explain the rules of Lines of Action. We give an overview
of MIA’s evaluation function in the second subsection.
The search engine is briefly described in the third sub-
section.

Lines Of Action

Lines of Action (LOA) [12] is a two-person zero-sum
chess-like connection game with perfect information. It
is played on an 8 × 8 board by two sides, Black and
White. Each side has twelve pieces at its disposal. The
starting position is given in figure 1a. The players al-
ternately move a piece, starting with Black. A move
takes place in a straight line, exactly as many squares
as there are pieces of either colour anywhere along the
line of movement (see figure 1b). A player may jump
over its own pieces. A player may not jump over the
opponent’s pieces, but can capture them by landing on
them. The goal of a player is to be the first to create
a configuration on the board in which all own pieces
are connected in one unit (see figure 1c). In the case
of simultaneous connection, the game is drawn. The

connections within the unit may be either orthogonal
or diagonal. If a player cannot move, this player has to
pass. If a position with the same player to move occurs
for the third time, the game is drawn.

a b c

Figure 1: (a) The Initial Position of LOA (b) An Exam-
ple of Possible Moves in a LOA Game (c) A Terminal
LOA Position

Evaluation Function

The evaluation function used in MIA consists of seven
features, whose weights will be tuned in section 4. Fea-
ture 1 is the concentration, which is computed in four
steps. First, the centre of mass of the pieces on the board
is computed for each side. Second, we compute for each
piece its distance to the centre of mass. The distance
is measured as the minimal number of squares the piece
is remote from the centre of mass. These distances are
summed together, called the sum-of-distances. Third,
the sum-of-minimal-distances is calculated. It is defined
as the sum of the minimal distances of the pieces from
the centre of mass. This computation is necessary since
otherwise boards with a few pieces would be preferred.
For instance, if we have ten pieces, there will be always
at least eight pieces at a distance of 1 from the cen-
tre of mass, and one piece at a distance of 2. In this
case the total sum of distances is minimal 10. Thus, the
sum-of-minimal-distances is subtracted from the sum-of-
distances. Fourth, the average distance towards the cen-
tre of mass is calculated and the inverse of the average
distance is defined as the concentration. Feature 2 is the
centralised centre-of-mass. Positions with a somewhat
more centralised centre of mass are preferred. Feature 3
is the centralisation. Pieces in the centre are preferred
above pieces at the edges. Feature 4 is the quad feature.
This feature looks at solid formations in the neighbour-
hood of the centre-of-mass by using quads. Details of
this feature can be found in [17]. Feature 5 is the mo-
bility. A bonus is given for the number of moves one
has. Feature 6 is the wall feature. A wall is a group of
pieces, which blocks the opponent’s pieces at the edge.
Position with walls are favoured. Feature 7 is the side
to move.

Search Engine

MIA performs an αβ depth-first iterative-deepening
search. Several techniques are implemented to make the
search efficient. The program uses PVS (Principal Vari-
ation Search) to narrow the αβ window as much as pos-
sible [10]. A two-deep transposition table [5] is applied
to prune a subtree or to narrow the αβ window. Next,
a null move [6] (equivalent to passing) is performed be-
fore any other move and it is searched to a lower depth
than we would do for other moves. The reason for doing
a null move is that it enables to produce cut-offs. For
move ordering, the move stored in the transposition ta-
ble, if applicable, is always tried first. Next, two killer
moves [1] are tried. These are the last two moves, which
were best or at least caused a pruning at the given depth.
All the other moves are ordered decreasingly according
to their scores in the history table [14]. These scores are
collected in the following way. At every interior node
in the search tree the history table entry for the best
move found is incremented by 2d, where d is the depth
of the subtree searched under the node. Finally, in the
leaf nodes of the tree a quiescence search is performed.
This quiescence search looks at capture moves, which
form or destroy connections [17].

3. LEARNING METHODS

In this section we present the learning methods em-
ployed in MIA. These include temporal difference learn-
ing for tuning the weights of the evaluation function and
the Neural MoveMap heuristic to improve the move or-
dering.

Temporal Difference Learning

An attractive approach to learn an evaluation function
is temporal difference (TD) learning (see [15]). Using
this approach, each state s has associated a value V ,
representing the estimation of the expected outcome of
the game. The state value can be used as an evaluation
function in the search tree.
In the learning phase, the state values are updated so
that they approach a target value. Let us consider a
sequence of game positions s0, s1, . . . , sT . The target
value for the final position, sT , is given by

V target(sT) =





1, if sT is a win for Black,
0, if sT is a draw

−1, if sT is a win for White
(1)

The target values for the non-terminal positions
s0, s1, . . . , sT−1 are given by

V target(st) = V (st+1) (2)

To speed up TD learning, we can use TD(λ), which

averages towards future target values:

V target(st) = (1−λ)
T−t−1∑

k=1

λk−1V (st+k)+λT−t−1V (sT)

(3)
λ taking values between 0 and 1.
In game programs using TD learning, V is typically
represented by a parameterised function. To tune the
weights of this function, we minimise the mean square of
the TD error (i.e., V target(st)−V (st)) with the following
gradient updating rule:

∆wt = α(V (st+1)− V (st))
t∑

k=1

λt−k ∂V (sk)
∂wi

(4)

The gradient updating rule given above suggests a
‘plain’ back-propagation-like adaptation, but some of
the improvements developed for supervised learning are
likely to work for TD learning too.
To employ TD learning, we need to generate sequences
of positions. Game sequences can be generated using
game databases or games played by the learning pro-
gram itself. In the latter case, a further choice can be
made on the opponent. Possible options include using
an already existing game program, playing against play-
ers with similar strength on the Internet, playing against
itself, or using more learning players which improve their
skill by playing against each other.

The Neural MoveMap Heuristic

The Neural MoveMap (NMM) heuristic [7] is a recently
developed learning method for move ordering. In the
NMM heuristic a neural network is trained to estimate
the likelihood of a move being the best in a certain po-
sition. During the search, the moves considered more
likely to be the best are examined first. The essence
of the heuristic is rather straightforward. However, the
details of the heuristic are crucial for the heuristic to be
effective, i.e., to be fast and to result in a small search
tree. The details include: the architecture of the neu-
ral network, the construction of the training data, the
training algorithm and the way the neural network is
used for move ordering during the search.
A comparison of different architectures for the neural
network is given in [7]. The authors found that the
best architecture encodes the board position in the in-
put units of the neural network and uses one output unit
for each possible move of the game. This architecture
is illustrated in figure 2. When encoding a position we
assign one input unit to each square of the board, with
+1 for a black piece, −1 for a white piece and 0 for an
empty square. An additional unit is used to specify the
side to move. A move is identified by its origin and des-
tination square (i.e., the current location and the new
location of the piece to move). The activation value of
an output unit corresponding to a move represents the

a1-a1

a1-b1

a1-c1

h8-h8

Figure 2: Architecture of the Neural Network for Move
Ordering

score of that move. The resulting network has 65 in-
put units and 4096 (64×64) output units. Although the
network is very large, the move scores can be computed
fast, since we have to propagate only the activation for
the pieces actually on the board, and to compute only
the scores for the legal moves. To increase the speed
further, we do not use hidden layers. This way, the
resulting move ordering requires just a little extra com-
putation during the search, namely a summation over
the pieces on the board.

A training instance consists of a board position, the le-
gal moves in the position and the move which is the
best. Of these three components, determining the legal
moves by an algorithm poses no problem. The choices
for the other two components are more difficult. In
games where large game databases are available, an at-
tractive choice is to use positions from these databases
and to consider the one played in the game as the best
move. In LOA, such databases are not available. The
alternative is to generate positions by self-play, and to
consider the one suggested by the game program as the
best move.

The neural network described above performs a linear
projection, and any training algorithm should thus be
reasonably fast. Consequently, we can use any of the
existent learning algorithms for neural networks without
influencing significantly the training.

When the neural network is used during the search the
moves are ordered according to the network’s estimation
of how likely a certain move is the best. The move order-
ing has to be placed in the context of the move orderings
already existent in the game program. The solution em-
ployed in MIA is to replace in every node of the search
tree the move ordering of the history heuristic by that of
the neural network. A slightly better solution that com-
bines the neural-network scores with history-heuristic
scores is described in [8]. The solution employed in MIA
is chosen for simplicity of implementation.

4. EXPERIMENTAL RESULTS

In this section we test the improvement in MIA caused
by the learning methods described in the previous sec-
tion. The first subsection deals with tuning the evalu-
ation function and the next subsection with the move
ordering.

Tuning The Evaluation Function

We have seen that the evaluation function E(st) of MIA
is a parameterised function consisting of seven features.
These features are already multiplied with weights to se-
cure reasonable play. All the board positions occurring
in a game are recorded and evaluated by E(st). These
raw values are converted to state values V(st) by passing
them to the hyperbolic tangent function [2]:

V (st) = tanh(βE(st)) (5)

where the constant β is chosen to ensure a not too steep
evaluation function (i.e., β = 0.0005). In each position
st the ∆wt is computed according to formula 4. ∆wt

is accumulated over 1000 games (an epoch), after which
the weights are updated (i.e., batch learning). As up-
date rule for the weights we used RPROP [11]. In for-
mula 4, λ is set to 0.8 because the evaluation function
is already somewhat reliable (cf. [2]); α is replaced by
the adaptive learning rates of RPROP.
To obtain results rather quick, the learning was per-
formed by self-play using a four-ply deep search. One
player changed its weights by TD learning, the other
used the original weights. To avoid repeatedly the same
play a small random factor was used in the evaluation
function during the search. After each game the players
switched side (to avoid overtuning). In figure 3 we plot
the development of the weights during training. We see
that the weights stabilise after approximately 60 epochs.
The initial weight of the dominating centre-of-mass (w1)
is decreasing to one tenth of its original value, indicating
that this feature was overestimated. Interestingly, the
weight for the centralised centre-of-mass feature (w2) is
changing its sign, which means that opposite to expec-
tations it is good to have the centre-of-mass closer to
the edge instead of in the centre. If the centre-of-mass
is in the centre, it is possible that pieces are scattered
over the board (e.g., the initial position). If the centre
of mass is at the edge, pieces have to be in the neigh-
bourhood of each other, otherwise they would lie outside
the board. The weight of the centralisation component
(w3) grows the most, indicating that this feature was
underestimated.
After tuning the weights we tested the benefit of the
new weights. A player with the new weights played 200
games against a player with the old weights, switching
sides halfway. Each player had 60 seconds per move,
simulating tournament conditions. In the second row of

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80

epoch

 w1
 w2
 w3
 w4
 w5
 w6
 w7

Figure 3: Development of the Weights

table 1 we give the match results. We observe that the
modified version outplayed the original with a winning
ratio of 1.68 (i.e., scoring 68% more winning points than
the opponent).

Table 1: 200-Game Match Results

Score Winning ratio
New Eval. vs. Old Eval. 125.5-74.5 1.68

NMM vs. History 102-98 1.04

Optimising Move Ordering

In this subsection all experiments were performed with
the original weights of the evaluation function. In or-
der to use the NMM heuristic, we needed a training set.
We used MIA to generate 600,000 position through self-
play. During the games the program searched to a depth
of four ply with a random component in the evaluation
function. For each position the move played by the pro-
gram was stored as the best move for that position. For
training the neural network with the above generated
training set we employed the RPROP algorithm [11].
The neural network obtained was included in MIA by
replacing the history heuristic.
We compared the new move ordering, including the
NMM heuristic, with the old move ordering that in-
cluded the history heuristic. We used a set of 322 posi-
tions, which appeared in tournament play. In figure 4 we
plot the relative performance of the two heuristics as the
size of the search tree investigated using the new move
ordering divided by the size of the search tree using the
old one. We observe that the performance is decreasing
until depth 5. After depth 6 the relative performance of
NMM is improving with the depth. This pattern of the

results was also noticed in [7]. At depth 11 (which is the
regular search depth under tournament conditions) the
reduction in tree size is 22 percent. The overhead of the
NMM heuristic is 6 percent. Consequently, the effective
time reduction is 17 percent.
A player using the NMM heuristic played 200 games
under the same conditions as in the previous subsec-
tion against a player using the history heuristic. In the
third row of table 1 we give the match results. The win-
ning ratio of the NMM version was 1.04. Testing the
combination of the NMM heuristic and the improved
evaluation function will be part of future research.

0.75

0.8

0.85

0.9

0.95

1

3 4 5 6 7 8 9 10 11

re
la

tive
 pe

rf
or

m
an

ce

search depth

Figure 4: The Performance of the NMM Heuristic Rel-
ative to the History Heuristic

5. CONCLUSIONS

This paper investigated the benefits of learning methods
for the LOA tournament program MIA. We draw two
conclusions based on our experimental results. First,
TD learning is very beneficial for tuning the weights
of the evaluation function. We found that three of our
handcrafted components of the evaluation function were
“wrong”. By learning these were adjusted properly.
Using the new evaluation function the program outper-
formed its previous version with a winning ratio of 1.68.
Second, using the NMM heuristic the search of MIA was
sped up with an effective time reduction of 17 percent,
which led to a small improvement of play.

REFERENCES

[1] S.G. Akl and M.M. Newborn. The principal contin-
uation and the killer heuristic. In 1977 ACM Annual
Conference Proceedings, pages 466–473. ACM, Seat-
tle, 1977.

[2] J. Baxter, A. Tridgell, and L. Weaver. Experiments
in parameter learning using temporal differences.
ICCA Journal, 21(2):84–99, 1998.

[3] Y. Björnsson and M. Winands. Yl wins Lines of
Action tournament. ICGA Journal, 24(3):180–181,
2001.

[4] Y. Björnsson and M. Winands. Yl wins Lines of Ac-
tion tournament. ICGA Journal, 25(3), to appear.

[5] D.M. Breuker, J.W.H.M. Uiterwijk and H.J. van den
Herik. Replacement schemes and two-level tables.
ICCA Journal, 19(3):175–180, 1996.

[6] C. Donninger. Null move and deep search: Selective-
search heuristics for obtuse chess programs. ICCA
Journal, 16(3):137–143, 1993.

[7] L. Kocsis, J.W.H.M. Uiterwijk and H.J. van den
Herik. Move ordering using neural networks. In
L. Montosori, J. Váncza, and M. Ali, editors, Engi-
neering of Intelligent Systems, Lecture Notes in Arti-
ficial Intelligence, Vol. 2070, pages 45–50. Springer-
Verlag, Berlin, 2001.

[8] L. Kocsis, J.W.H.M. Uiterwijk, E.O. Postma and
H.J. van den Herik. The Neural MoveMap heuristic
in chess. Proceedings of the Third International Con-
ference on Computers and Games (CG’2002), 2002.

[9] T.A. Marsland. A review of game-tree pruning.
ICCA Journal, 9(1):3–19, 1986.

[10] T.A. Marsland and M. Campbell. Parallel search
on strongly ordered game trees. Computing Surveys,
14(4):533–551, 1982.

[11] M. Riedmiller and H. Braun. A direct adaptive
method for faster backpropagation learning: The
RPROP algorithm. In Proceedings of the IEEE
International Conference on Neural Networks 1993
(ICNN 93), pages 586–591, 1993.

[12] S. Sackson. A Gamut of Games. Random House,
New York, NY, USA, 1969.

[13] A.L. Samuel. Some studies in machine learning us-
ing the game of checkers. IBM Journal of Research
and Development, 3(3):211–229, 1959.

[14] J. Schaeffer. The history heuristic. ICCA Journal,
6(3):16–19, 1983.

[15] R.S. Sutton and A.G. Barto. Reinforcement Learn-
ing: An Introduction. MIT Press, 1998.

[16] G.J. Tesauro. Practical issues in temporal differ-
ence learning. Machine Learning, 8:257–277, 1992.

[17] M.H.M. Winands, J.W.H.M. Uiterwijk and H.J.
van den Herik. The quad heuristic in Lines of Action.
ICGA Journal, 24(1):3–15, 2001.

MULTI-AGENT REINFORCEMENT LEARNING

FOR COMPUTER GAMES AGENTS

Jing Duan, N. E. Gough and Q. H. Mehdi
Multimedia & Intelligent Systems Research Laboratory,

School of Computing and Information Technology
University of Wolverhampton, Wolverhampton, WV1 1SB, UK

E-Mail: n.gough@wlv.ac.uk

KEYWORDS

Multi-agent systems, reinforcement learning, iterated
prisoner dilemma, computer games, Q-learning

ABSTRACT

This paper examines reinforcement learning in game
agent design. Multiagents are viewed as a basis for game
scenarios involving cooperation and competition.
Conditions for a game to be treated as an n-person
prisoner dilemma are considered. An iterated prisoner
dilemma example is presented using a Q-learning
algorithm agent against a tit-for-tat agent and results
suggest that the methodology may help to provide more
sophisticated and less predictable game play.

1 INTRODUCTION TO REINFORCEMENT

LEARNING

Reinforcement learning (RL) involves an agent that is
able to take several actions and learns which actions are
most preferable at each stage (Sutton & Barto 1998).
However, in contrast to supervised learning, the agent
does not require training by a domain expert. It explores
different actions and receives feedback from the
environment—the reinforcement or reward—which it can
use to rate the success of its own actions. For game
playing, actions are typically legal moves in the current
state of the game, and feedback is the result of the game.

An early example was MENACE (Matchbox Educable
Noughts And Crosses Engine), which learned to play the
game of tic-tac-toe by reinforcement. A weight was
associated with each of the 287 different positions for the
first player to move. In each state, all possible actions
were assigned a weight. The next action was selected at
random, with probabilities corresponding to the weights
of the different choices. Depending on the outcome of the
game, the moves played were rewarded or penalized by
increasing or decreasing their weights. However, the
reward was not received after each move. If it made a
good move was not immediately clear, as a delayed
reward was deferred to the end of the game. Positions
were then rewarded or penalized by increasing or
decreasing their associated weights. The main problem to

be solved was the credit assignment problem i.e. the
problem of distributing the reward to the actions that were
responsible for it. In a lost game, there may be only one
bad move that should be penalized fully, while all other
moves might have been good moves. However, it is
usually not known which move was the mistake. One
approach simply gives all moves in the game equal credit.
Another assumes that positions in later stages have more
impact on the outcome than earlier positions. A
disadvantage of this simple technique is that good
positions may receive negative feedback or bad positions
may receive positive reward. Feedback is often available
after each individual move and this can be used this for
training an evaluation function that predicts the number of
points that will be made by a particular play. However, in
this case it may be difficult to distinguish between
supervised learning and reinforcement learning. Usually
the reward has to be delayed because it may not be clear
immediately after a stage, whether the points are positive
or negative. After many steps, good positions will have
received more positive than negative reward and vice
versa, so that the evaluation function may eventually
converge to a reasonable value. Convergence theorems
for reinforcement learning have been found that confirm
this (Sutton and Barto 1998). MENACE made continuous
progress and after many games, the program produced
near-expert play but it had several problems including use
of a lookup table. For more complex games such as chess,
this is unsatisfactory. Also training is very slow and a
large number of steps are needed before evaluations
converge to acceptable values.

In our previous work we have examined various
approaches for creating more believable characters that
can be applied in computer games (Mehdi et al 2001;
Wen et al 2001; Suliman et al 2001,2002) and the need
for agents that can collaborate was established. This paper
examines the suitability of RL as a complementary tool
for designing cooperating agents in complex
environments such as those found in strategy computer
games. Section 2 reviews multi-agents systems. In
section 3 we examine cooperation and show that the
prisoner dilemma problem is relevant to games design.
Section 4 looks at multi-agent reinforcement learning. In
section 5 we propose a methodology. Section 6 gives an
example and conclusions are drawn in the final section.

mailto:n.gough@wlv.ac.uk

2 MULTI-AGENT SYSTEMS

Multi-agent systems (MAS) involve the concepts of
cooperation and competition. Clearly they are not
necessarily required when designing all complex systems
and there are some situations when the appraoach is
particularly appropriate and others when it is not. MAS
may be used in cases where there are different people or
organizations with different (possibly conflicting) goals
and proprietary information. Take for example a
manufacturing scenario in which company X produces
one component, but subcontracts production of a second
component to company Y. Neither company wishes to
relinquish information or control to the other. A feasible
solution is to allow both companies to create their own
agents that represent their own goals and interests and
then combine them into a MAS.

Multiple agents could also speed up a system's operation
by providing a method for parallel computation. For
instance, a domain that is easily broken into several
independent tasks that can be handled by separate agents
could benefit from MAS. Furthermore robustness can be
achieved by an MAS that has redundant agents. If control
and responsibilities are sufficiently shared among
different agents, the system can tolerate failures by one or
more of the agents. This results in systems that can
degrade gracefully. Another benefit of MASs is their
scalability. They are inherently modular and hence it is
easier to add new agents. Systems whose capabilities and
parameters are likely to need to change over time or
across agents can also benefit from this advantage of
MAS. From a programmer's perspective the modularity of
MASs can lead to simpler programming. Rather than
tackling the whole task with a centralized agent,
programmers can identify subtasks and assign control of
those subtasks to different agents, which can improve
program efficiency.

Finally, MASs can be useful for their elucidation of
intelligence . As Gerhard Weiß put it: ``Intelligence is
deeply and inevitably coupled with interaction'' . In fact, it
has been proposed that the best way to develop intelligent
machines at all might be to start by creating ”social”
machines . This is based on the socio-biological theory
that primate intelligence first evolved because of the need
to deal with social interactions. Agent-based systems
technology is thus regarded in AI research as an important
paradigm for conceptualising, designing, and
implementing software systems. Programmed agents act
autonomously on behalf of their users across open and
distributed environments, to solve complex problems.
Increasingly, however, applications require multiple
agents that can work together to solve problems that are
beyond the individual capacities or knowledge of each
problem solver. Hence a MAS distributes computational
resources and capabilities across a network of
interconnected agents; allows for the interconnection and
interoperation of models problems in a more natural way
of representing task allocation, team planning, user

preferences, open environments, and so on; efficiently
retrieves, filters, and globally coordinates information
from sources that are spatially distributed; provides
solutions in situations where expertise is spatially and
temporally distributed; and enhances overall system
performance in terms of computational efficiency,
reliability, extensibility, robustness, maintainability,
responsiveness, flexibility, and reuse.

3 COOPERATION AND THE PRISONER’S

DILEMA

In life a person tries to benefit from a situation regardless
of the outcome for the others involved and hence it seems
almost impossible for cooperation to exist. However,
cooperation does occur and this raises the questions: How
does this develop in situations where each individual has
an incentive to be selfish and not cooperate? How much
assistance would be offered to someone who never helps
in return? People will usually cooperate with others if it
they stand to gain. But will they cooperate if they know
that nothing will be gained? How much do people fail to
cooperate if they they can outsmart an opponent?

3.1 The prisoner’s dilemma

Cooperation arises when the pursuit of self-interest by all
agents results in a bad outcome for all. The basic concepts
are exemplified by the famous Prisoner’s Dilemma (PD)
game. There are two players each with two choices:
cooperate or defect. Each must make a choice without
knowing what the other will do, and no matter what the
other player does; defection gives a higher payoff than
cooperation. The dilemma lies in that if both defect, both
do worse than if they had just cooperated.

Action of A\Action of B Cooperate (C) Defect (D)
Cooperate (C) Fairly good [+ 3] Bad [- 1]
Defect (D) Good [+5] Mediocre [0]

Table 1: Two-player prisoner dilemma

Table 1 shows a 2-agent game in which one player
chooses a row entry, either defect or cooperate. The other
player, at the same time, chooses a column entry, either
defecting or cooperating. This results in one of four
possible outcomes each outcome having different scores.
If both players cooperate, both have good outcomes. They
get 3 points as a reward for mutual cooperation. If one
player cooperates and the other defects, the defecting
player gets the maximum reward, while the other gets the
sucker’s payoff, 5 and -1 points respectively. When both
players defect, neither scores points, the punishment for
mutual defection. Hence to be assured of gaining points, if
you think the other player will cooperate; it is sensible to
cooperate and get a modest reward for mutual
cooperation. However if you are tempted to defect, you
may have a better outcome. The dilemma occurs when
one player is selfish and greedy and only wants the 5

points. This person will have the temptation to defect in
the hope that the other cooperated. But since neither
player knows what the other will do ahead of time, it
makes it difficult to decide whether to defect or not. This
becomes even more complicated in games that involve a
sequence of decisions and computer programs have been
developed to devise a good strategy taking into account
the history from the previous moves. For example the
strategy known as Tit-For-Tat (TFT) gives good results
whereby it starts with cooperation and thereafter involves
doing what the other player did on the previous move.
The PD problem also involves the fact that the players
cannot get out of their dilemma by taking turns to exploit
one other. This means that an even chance of exploitation
and being exploited is not as good of an outcome for a
player as mutual cooperation. It is therefore assumed that
the reward for mutual cooperation is greater than the
average of the temptation and the sucker’s payoff.

In a games setting, agents will meet on many occasions
and the agent’s policy covering an unknown number of
stages is known as the iterated prisoner dilemma (IPD)
problem (Potkay et al, 2002). A pure IPD uses a
deterministic whereas a mixed IPD uses a stochastic
strategy.

3. 2 The n-person prisoner’s dilemma

The n-person prisoner's dilemma (NPD) is basically the
Prisoner's Dilemma with more than two players. It
emerged in the early 1970s and became popular among
social theorists and economists. At this time, problems
such as inflation, voluntary wage restraint, the energy
crisis, and environmental pollution were pressing issues.
Furthermore increasing international tension between the
superpowers created a threat to the existence of the entire
world and brought the issue of multilateral disarmament.
These social, political, and economic tensions can be
modelled by the NPD, indicating the remarkable range of
real-world problems that NPDs can simulate.

NPD can also be used to model the labour market: Every
trade union's self-interest is to negotiate wages that
exceed the rate of inflation. However, if all trade unions
negotiate solely through self-interest, the prices of goods
and services go up and everyone is worse off than if they
had all exercised restraint. This results in a "social
contract" designed to encourage collective rationality in
wage bargaining over individual rationality. Another NPD
is commonly encountered in situations where resources
are scarce e.g. water or energy must be conserved. An
individual only benefits from restraint if everyone else
restrains as well. However, if everyone else restrains then
it does not make much difference if you do not restrain.
On the other-hand, if you restrain and no one else does,
then your attempt at conservation is futile. Therefore, it
appears to be in every individual’s self-interest not to
conserve, even though, if everyone acts selfishly, all are
worse off. These example show that the NPD is a theme
that commonly arises in strategy games scenarios. All

multi-person prisoners’ dilemmas share a common
underlying strategic structure and any game that satisfies
the following criteria is an NPD by definition:

• Each player has two options: cooperate or defect
• Defecting is the dominant strategy for each player

(i.e. each player is better off choosing to defect than to
cooperate no matter how many other players choose to
cooperate)

• The dominant strategies (to defect) intersect at a
deficient equilibrium point (if all players choose to
defect, the outcome is worse than if each player had
chosen non-dominant strategies (to cooperate))

4 MULTI-AGENT REINFORCEMENT LEARNING

The issue of learning and adaptation in multi-agent
systems has been given increasing attention in AI
research. It is clear, given the dynamic environments in
which teams of agents interact, that behavioural patterns
and activities cannot simply be defined in advance. Our
approach to multi-agent learning, unlike the top-down
model of assuming an agent's state in advance, is similar
to the types of learning exhibited by lower animal
societies. Prior work in multi-agent RL can be
decomposed into work on competitive models vs.
cooperative models. Littman (1994) and Hu & Wellman
(1998) among others studied the framework of Markov
games for competitive multi-agent learning. Cooperative
learning can be further classified on the extent to which
agents need to communicate with each other. Studies such
as those by Tan (1993) require communication of states
and actions at each step. Conversely in approaches such
as that of Crites and Barto (1998), agents share a common
state description and a global reinforcement signal, but do
not model joint actions. Some studies of multi-agent
learning such as Balch and Arkin (1998) do not model
joint states or actions explicitly. In such behaviour-based
systems, each agent maintains its position depending on
the locations of others, so there is some implicit
communication or sensing of states and actions of other
agents. Makar et al (2001) used another approach
involving explicit task structure to speed up cooperative
multi-agent RL. Hierarchical methods constitute a general
framework for scaling reinforcement to large domains by
using the task structure to restrict the space of policies.
Also there is a further advantage of the use of hierarchy in
multi-agent learning: it makes it possible to learn co-
ordination skills at the level of abstract actions.

Using independent agents as a benchmark, Tan (1993)
studied cooperative agents that shared sensations,
episodes and learned policies. He shows that additional
sensation from another agent is beneficial if it can be used
efficiently, sharing learned policies or episodes among
agents speed up learning at the cost of communication,
and for joint tasks, agents engaging in partnership can
significantly outperform independent agents although they
may learn slowly in the beginning. In his work, each RL

agent can incrementally learn an efficient decision policy
over a state space by trial-and-error, where the only input
from an environment is a delayed scalar reward. The task
of each agent is to maximize the long-term discounted
reward per action. RL was extended straightforwardly to
multiple agents by supposing they are all independent.
Together they outperform any single agent due to superior
resources and a better chance of receiving rewards. He
compares the performance of n independent agents with
that of n cooperative agents to identify their tradeoffs.
There are three ways of agent cooperation: (i)
communicate instantaneous information such as
sensation, actions, or rewards (ii) communicate episodes
that are sequences of (sensations, action, reward) triples
experienced by agents (iii) communicate learned decision
policies. Case studies show that if cooperation is done
intelligently, each agent can benefit from other agents’
instantaneous information, episodic experience, and
learned knowledge.

Makar et al (2001) investigate the use of hierarchical RL
to speed up the acquisition of cooperative multi-agent
tasks. They extend the MAXQ framework to the multi-
agent case. Each agent uses the same MAXQ hierarchy to
decompose a task into sub-tasks. Learning is
decentralized, with each agent learning three interrelated
skills: how to perform subtasks, which order to do them
in, and how to coordinate with other agents. Using joint
actions at the highest level(s) of the hierarchy learns
coordination skills among agents. The nodes at the highest
level(s) of the hierarchy are configured to represent the
joint task-action space among multiple agents. In this
approach, each agent only knows what other agents are
doing at the level of sub-tasks, and is unaware of lower
level (primitive) actions. This approach allows agents to
learn coordination faster by sharing information at the
level of sub-tasks, rather than attempting to learn
coordination taking into account primitive joint state-
action values. They apply this algorithm to a complex
AGV scheduling task and compare its performance and
speed with other learning approaches.

Several authors note that RL in MAS suffers from
limitations that can make learning nearly impossible:
combinatorial explosion - the computational burden of
RL algorithms grows exponentially with the number of
states and actions; hidden global state - agents can only
rely on an imperfect, local and partial perception of their
environment; and the credit assignment problem. They
use a decentralized adapted incremental algorithm based
on Q-learning - a classical RL algorithm for which
convergence has been proven for stationary Markov
Decision Processes (MDP). To converge, Q-learning
requires knowledge of the actual state. In the modified
version, observations for states and policies are stochastic.
They also help agents to incrementally learn their policies.
Learning begins with a very simple version of the task to
be executed. Then, as learning progresses, the task is
made harder by giving more freedom of action to the
agents. Learning starts with a small number of agents.

Then more agents are added, with initial policies taken
from the original agents and then refined through
learning. See also Abramson & Wechsler 2001; Mataric
1994; Rosenschein & Zlotkin 1994; Stone. & Veloso.
1999.

5 DESIGN METHODOLOGY FOR RL IN GAMES

The most common AI technologies for Non Player
Characters (NPCs) specification are based on Finite State
Machines (FSMs) (Gough et al, 2000) that are strictly if-
condition-then-action rules. In developing modern
computer games, there is a need to consider how to apply
more intelligent technology to allow agents to make their
own decisions. Here RL is investigated as a suitable
approach. It is considered important to distinguish
between the game agent and the game AI that is
incorporated to make the game more believable. The ideas
examined here are studied in a simple PD test bed. The
system architecture comprises several parts as shown in
Fig. 1. For a particular game such as “Escape”, the game
player interacts with several agents. At each iteration, data
about the agents’ states is fed into an RL database. The
game engine then uses this data in conjunction with an RL
algorithm (e.g. Q-learning) to determine future agent
actions.

 Apply to

RL Algorithm (Q-learning)

Prisoner dilemma test bed

Distributed
Agents

Game
Server

Game
“Escape”

Figure 1: RL in game syst

5.1 Applying Q-learning in a ga

Q-learning is a relatively recent
not need a model of its environm
line. Therefore, it is very suited
against an unknown opponent. It
state-action pairs. The value Q(s
expected discounted sum of futu
taking action from state s and
policy thereafter. Once these val
the optimal action from any sta
highest Q-value. After being
numbers, Q-values are estima
experience as follows:

RL Database

Online
User
Interface
em architecture

me

RL algorithm that does
ent and can be used on-
for repeated IPD games
 estimates the values of
,a) is defined to be the
re payoffs obtained by
 following an optimal
ues have been learned,
te is the one with the
initialised to arbitrary
ted on the basis of

1. From the current state s, select an action a. This will
cause a receipt of an immediate payoff r, and arrival at
a next state s'.

2. Update Q(s,a) based upon this experience as follows:
 Change in Q(s,a) = α[r + y maxQ(s',b) - Q(s,a)]
 where α is the learning rate
 and 0 < y < 1 is the discount factor
3. Go to 1.

This algorithm is guaranteed to converge to the correct
Q-values with probability 1 if the environment is
stationary and depends on the current state and the action
taken (Markovian). A lookup table or neural network
must used to store previous Q-values, every state-action
pair continues to be visited, and the learning rate is
decreased appropriately over time. This exploration
strategy does not specify which action to select at each
step. In practice, a Boltzmann distribution strategy is
usually chosen that will ensure sufficient exploration
while still favouring actions with higher value estimates.
Experiments with Q-learning agent have been carried out
with favourable results. For example Littman (1994)
describes experiments with Q-learning agents that try to
learn a mixed strategy that is optimal against the worst
possible opponent in a zero-sum 2-player game.

6 EXAMPLE

Figure 2: 3D Model of Game “Escape”

Figure 2 shows a simple test scenario for a game
“Escape” which is a direct analogy of a pure n-player IPD
problem. A character is tasked by the player with the
problem of escaping from the environment within a
limited timeframe before its energy (a function of time) is
used up. It has the ability to search the maze, which is
occupied by other characters that may be friend or foe and
whose intentions are unknown. On encountering a
potential ally, the character could choose to cooperate
with the other character in the maze. High-level decisions
about how to escape are made by an RL agent based on
the plot of the game. For example the agent could decide
whether the character should actively search the maze for
objects that will aid in the task (e.g. map, key) or else seek
out another character to cooperate (e.g. may share some of

the objects already collected). It is assumed that the
characters can communicate effectively and the only
possible interactions between them are cooperate (C) or
defect (D). The agent therefore has two possible actions
on each encounter with another character, and its state is
determined by the state of the energy. Each action is a
play, and the reward is extra time to effect an escape. The
reward might be zero most of the time, but then become
positive when the character makes successful moves, or
large and negative if the energy runs all the way down.
Through repeated plays the available time is used wisely
by concentrating plays on the best options. Each action
has an expected or mean reward given that the action is
selected, referred to as the value of that action.

Consider a simple method for estimating the values of
actions and for using the estimate to make action selection
decisions. This is termed the action-value method. We
denote the true (actual) value of action a as Q*(a) and the
estimate value at the tth as Qt(a). At the tth play, action a
has been chosen ka times prior to t, with rewards r1, r2,..
and the Q-value is estimated to be

 Qt(a)=
a

k

k
rrr

a
+⋅⋅⋅⋅⋅++ 21

In our simulations, agents A and B can choose different
policies such as Q-learning, tit-for-tat (TFT) or Pavlov. In
the TFT policy, the opponent starts off by cooperating and
then repeats the Q-learners last move. In Pavlov, the
opponent cooperates if both players chose the same action
in the previous iteration. Otherwise, Pavlov defects.

 Agent B
 C D
Agent A C R=0.3 S=0.0
 D T=0.5 P=0.1

Table 2: Reward matrix for each agent

(C: cooperative, D: defect); T>R>P>S, 2R>T+S>2P

Suppose for example, we choose to play a Q-learner
against one playing a TFT strategy. The Q-learner adopts
a learning strategy using the algorithm given in section 5.
The conditions for setting the parameters for this type of
problem are detailed by Sandholm & Crites (1995). A
suitable reward matrix is assigned as in Table 2, noting
the requirement that T>R>P>S, 2R>T+S>2P. In the
simplest case, both players are assigned the same reward
matrix. Q-values at the present iteration depend on the Q-
values at the last iteration and these are denoted (CC, CD,
DC and DD). The discounted return varies according to
the strategies chosen and the values of parameters α and
γ. Suppose that we choose a learning rate α=0.2 and
discount factor γ= 0.95. Figure 3 shows typical results for
the q-values as the game progresses. It can be seen that
the expected discounted reward values increase at each
stage, although convergence towards the optimal Q* is
relatively slow.

7 CONCLUSIONS AND FURTHER WORK

The issue of learning and adaptation in multi-agent
systems has received increasing attention in AI research
and has matured to a stage where it can be considered for
use in games engines. It is becoming clear, given the
dynamic environments in which we want our agent teams
to interact, that behavioural repertoires and activities
cannot simply be defined in advance. The spirit of RL is
learning from experience and hence it was considered to
be an applicable methodology. The aim of the research
described here is to improve the communication and
cooperation ability of agents in multi-agent system
through RL. We believe a multi-agent architecture could
be widely used in a range of computer games genres and
particularly strategy games in which agents must form
teams to progress. Our research attempts to fill the gap
between traditional RL algorithms and games application
software. The n-person IPD describes many
cooperative/competitive team situations found in modern
games. The example given - limited here to the pure 2-
person problem - shows how this could be used to
advantage, ensuring that agents’ actions arise in
unpredictable and believable ways, through learning by
experience and by varying the strategies used. The
software needed to explore this approach in greater detail
is still under construction. Future work will expand on the
present findings, to include play against a variety of
opponents, to handle the stochastic case (mixed strategy),
to devise ways of storing the previous history and
improving convergence speed.

Iterations q(CC,C) q(CC,D) q(CD,C) q(CD,D) q(DC,C) q(DC,D) q(DD,C) q(DD,D)

0 0 0.1 0 0 0 0 0 0
1 0.079 0.14 0.019 0 0.01 0.01 0.02 0.02
2 0.1498 0.1739 0.0455 0.0019 0.1116 0.1118 0.0364 0.0396
3 0.2129 0.2204 0.0694 0.0228 0.1979 0.1907 0.1332 0.0492
4 0.3122 0.2739 0.0974 0.0562 0.2715 0.2829 0.1397 0.0847
5 0.3691 0.3346 0.1372 0.1004 0.3357 0.3529 0.1503 0.1163
6 0.4254 0.3947 0.3378 0.1474 0.4118 0.2083 0.1663 0.1416
7 0.4811 0.438 0.3511 0.1962 0.2901 0.2982 0.2172 0.1649
8 0.5363 0.4671 0.3723 0.2136 0.3388 0.3598 0.2605 0.1932
9 0.5909 0.502 0.3997 0.2392 0.4418 0.4373 0.2991 0.2241

TFT with alpha=0.2 and gamma=0.95

0
0.2
0.4
0.6
0.8

1
1.2

0 1 2 3 4 5 6 7 8 9

Iterations

Q
 v

al
ue

s
fo

r e
ac

h
st

at
e

q(CC,C)
q(CC,D)
q(CD,C)
q(CD,D)
q(DC,C)
q(DC,D)
q(DD,C)
q(DD,D)

Figure 3: Typical results for Q-learner vs TFT

α=0.2 and γ= 0.95

REFERENCES

Abramson, M. & Wechsler, H. (2001) “Competitive

reinforcement learning for combinatorial problems.”
In Proc. IEEE International Joint Conf. on Neural
Networks (IJCNN-01), 2333–2338, Washington, DC.

Balch, T. & Arkin, R. (1998) “Behavior-based formation
control for multi-robot teams.” IEEE Trans. on
Robotics and Automation, 14(6): 1-158.

Crites, R. & Barto, A. (1998) “Elevator group control
using multiple reinforcement learning agents”.
Machine Learning, 33:235-262.

Gough, N.E., Suliman, H. & Mehdi, Q. (2000) “Fuzzy
state machine modelling of agents and their
environments for games”, Proc. 1st SCS Int. Conf.
GAME-ON 2000 Intelligent Games & Simulation,
Imperial College, London, November, SCS, 61-68.

Hu, J. & Wellman, M. (1998) “Multi-agent reinforcement
learning: Theoretical framework and an algorithm.” In
15th Int. Conf. on Machine Learning, 240-250.

Littman, M. (1994) “Markov games as a framework for
multi-agent reinforcement learning”. In Proc. 11th Int.
Conf. on Machines Learning, 157-163.

Makar, R. Mahadevan,S. & Ghavamzadeh, M. (2001)
“Hierarchical multi-agent reinforcement learning”,
Proc. 5th Int. Conf. on Autonomous agents, May.

Mataric, M. (1997) “Reinforcement learning in the multi-
robot domain. Autonomous Robots, 4(1): 73-83.

Mehdi, Q.H., Zhigang Wen & Gough, N.E. (2001)
“Visualisation system for agent behaviours in virtual
environments”, Proc. ISCA 2001 Conf., Arlington,
June.

Potkay, J.A., Madhusudhan Chellappa & Kuo-Yuan Tye
(2002) “The iterative prisoner’s dilemma using
reinforcement learning and Lego Mindstorms™”.
PSYCH 643 Winter.

Rosenschein, J.S. & Zlotkin, G. (1994) Rules of
Encounter. MIT Press, Cambridge, Mass., 1994.

Sandholm, T. & Crites, R. (1995) “Multiagent
reinforcement learning in the iterated Prisoner's
Dilemma”. Biosystems, 37, 147-166, Special Issue on
the Prisoner's Dilemma.

Stone, P. & Veloso,M. (1999) “Team-partitioned, opaque-
transition reinforcement learning.” 3rd Int. Conf. on
Autonomous Agents, 86-91.

Suliman H., Mehdi, Q.H. & Gough, N.E. (2001) “Logic
development for reasoning and cognitive NPCs”,
Proc. 2nd SCS Int. Conf. GAME-ON 2001, London,
November, SCS, 35-42.

Suliman, H. Mehdi, Q.H. & Gough, N.E. (2002) “Virtual
agent using a combined cognitive map and knowledge
base system”, Proc. ISCA’2002, Boston, USA.

Sutton, R.S. & Barto, A.G. (1998) Reinforcement
learning: An Introduction. MIT Press, Cambridge.

Tan, M. (1993) “Multi-agent reinforcement learning:
Independent vs. cooperative agents.” Proc.10th Int.
Conf. on Machine Learning, 330-337, Amherst, MA.

Wen, Z., Mehdi, Q., & Gough, N.E. (2001) “Multiagent
based modelling and simulation in industry and
environment”, Proc. ESS'2001, Marseille.

NEURAL
NETWORKS

AND
EVOLUTIONARY

SYSTEMS

ONLINE COEVOLUTION FOR ACTION GAMES

Pedro Demasi and Adriano J. de O. Cruz
Instituto de Matemática – Núcleo de Computação Eletrônica

Universidade Federal do Rio de Janeiro
Av Brigadeiro Trompowski, s/n, Rio de Janeiro, Brasil

E-mail: demasi@ufrj.br, adriano@nce.ufrj.br

KEYWORDS
Online coevolution, Coevolution, Coevolutionary Games,
Real-time Interaction.

ABSTRACT

Coevolutionary algorithms (CEAs) have been widely
explored in the last years. Cooperative and competitive
methods were proposed and evaluated, and many
theoretical studies have been made about them and
important results have been achieved, however few works
have been published about a real-time approach to CEAs,
with online agent evolution. The goal of this work is to
explore this field of application of CEAs, proposing some
methods and strategies for online evolution in an action
(real-time) game. In this game, a human player interacts
with computer-controlled agents, which begin with very
naive or random behaviour and gradually get “smarter”,
resulting in improved difficulty levels of gameplay. We
present four different methods to do online evolution of the
agents: using game specific information; merging offline-
evolved data with online evolution; using online data only;
and using them together. We will, finally, present some
results and a brief discussion of the advantages and
disadvantages of each one of the methods proposed, based
upon these results.

INTRODUCTION

There are a lot of published works dealing with
coevolutionary algorithms (CEAs), which are usually
defined by its interaction-driven fitness. That is, an
individual fitness is determined based upon the interaction
with other individuals in the population. That interaction
can be cooperative, which means that individuals are
evolving towards a common goal, or it can be competitive,
which means that individuals are competing among
themselves to win some sort of resource. In brief, as noted
in (Wiegand et al. 2002), competitive CEAs are suitable for
problems in which external fitness functions are very
difficult to determine but have a natural way to define
competitive success fitness; whereas cooperative CEAs are
more suitable for problems which can be naturally
decomposed in subproblems that coevolve and that have
their fitness based upon how well they work together with
the other subspecies in the context of the whole problem.

It has been shown that CEAs can be successfully
applied in many areas (Angeline and Pollack, 1993;
Wiegand et al., 2001) and even in games (Reynolds, 1994).

The goal of this work, however, is to explore the potential
of CEAs to create a user-driven evolution of agents. In
other words, we want the agents to evolve and get smarter
by the same proportion that the human gets better himself
playing the game.

We truly believe that the challenge of beating the
opponent(s) gives the human player a great fun when
playing a game. So, if we manage to create games in which
the difficulty of beating the computer-controlled agents
increases together with the player’s ability to beat them, we
will be designing very challenging games to beat and thus
very fun games to play as well. On ideal conditions, instead
of trying to find the best all-around overall player for some
game, we want to find the best player against a given
opponent in a given time step.

But the task of evolving the agents according to
the human player’s ability to play the game is a very
difficult one. In order to evolve online (while the game is
being played) we must deal with: very few data (for the
agents only use what one player does for its fitness
calculations); very few time to evolve (the player won’t
wait minutes or even some seconds while the CEAs are
evolving) and with the fact that the evolution must happen
much quicker than offline evolution (we can’t expect the
agents to get smarter after 1000 generations and hundreds
of thousands of individuals, because the player will be
bored with the “easiness” of beating them much sooner
than that).

We propose in this work some methods and
strategies for online coevolution of agents for an action
game. We have chosen this kind of game because it
requires real-time interaction, in opposition to board
games, card games etc. which have a strictly discrete turn
of play and does not have true urge for real-time evolution.

GAME DESCRIPTION

In order to implement the proposed methods we will use as
an example a simple action game that we describe in this
section.
 The game scenario is a square room (480x480
pixels) where a man (which is controlled by the human
player) must survive against some “killer eyes” (16), which
are little monsters that pursue the player (if one of them
touches him, he gets killed). In order to beat those eyes, the
man has a gun. For each eye killed, another one enters the
room, so there are always 16 eyes alive (the eye killed is
replaced by a new one in the room borders, not where the
former was destroyed). The man’s gun has limited shots

(he begins with 20). Every 15 seconds, a new cartridge
with 20 shots appears somewhere in the room (the location
is chosen randomly by the game). The man must get it in
order to earn the extra shots. The man has also a defensive
maneuver: he can teleport from its local position to another
one (chosen randomly) in the room. This resource is also
limited, for the man can teleport only once for every 30
seconds of play (it’s not cumulative). Man and eyes have
the same “speed” (i.e. they can move the same number of
pixels). The eyes can move only in 4 directions (up, down,
left, right), and the man can walk in any one of the 8
directions (he can walk in diagonal). He can also shoot in
any one of these directions. The human player has 3 lifes,
once all lifes are lost the game is over (a life is lost when an
eye touches the player). The final score is equal to the
number of eyes destroyed.

AGENTS OVERVIEW

The agents were divided in two subgroups of 8 individuals
each. Thus, there are two subspecies that will have to
cooperate among themselves in order to beat the human
player. Both subspecies have the same chromosome, so the
big difference between them will be the way they act
during the game.
 Each agent has two simple “inborn” algorithms:
chase and evade. So, given a target and one of the
algorithms, they act chasing or evading it. The target can be
the human player, the cartridge or a shot. In each game step
the agent has the information about the relative distance of
the human player, the cartridge and the closest shot. This
distance, in pixels, is given as the Manhattan Distance
between the centres of the agent and the target. Given xa,ya
and xt,yt then:

d = |xa–xt| + |ya–yt| (1)

This information is translated into three degrees,
according to the distance of the target to the agent. The
degrees are: near (0 ≤ d < 150), medium (150 ≤ d < 300)
and far (d ≥ 300).

So, the agents “perceive” the targets’ positions
only in three discrete degrees. As there are three targets and
three degrees of distance for each one, we can have a total
of 27 (33) combinations of rules in the form: if target1 is at
distance1 and target2 is at distance2 and target3 is at
distance3 then do something. It may look like a fuzzy
rule, but it’s not, for we defined the degrees of distance
“crisply”. But we could, of course, use fuzzy definitions
and thus, fuzzy rules, but we think it’s not the most
important thing at this stage.

So, the genetic code of each agent contains the
information of the action to be done for each one of those
27 rules. If we combine the three targets and the two
algorithms, we would have six possible actions to be
chosen by the agents. In order to simplify, though, we
excluded the possibility of chasing a shot or evade a
cartridge (it would not make any sense) and to evade the
human (the agent must not fear him). It may seem strange,
at first thought, to think that the agent would chase a
cartridge. Well, they may chase a cartridge to be very close

to it and to make it very difficult to the player to get it (we
will see more on this later).

So, until now, there are three possible actions to
be chosen by the agent (chase player, chase cartridge and
evade shot). We will add one more possibility: a random
move (i.e. the agent chooses randomly if it goes up, down,
left or right). The agents have, therefore, four possibilities
of action for each rule. As this can be coded in two bits, the
genetic code of each agent if formed by 54 bits (= 27 rules
* 2 bits for each action).

DEFINITIONS

First of all, we need to define the target, the “ideal”
individual that every single agent must achieve at the
greatest stage of evolution (i.e. the hardest to beat) or in
some intermediate stage, as we are going to see later.
 We also need a degree of easiness. In few words,
the easiness is how well the human player is doing in the
game in a given moment (i.e. how easy is the game for him,
or how easy he manages to beat the agents).

This can be defined in a lot of ways. One of them
is to calculate the easiness as the number of agents killed in
the last s seconds, where s is some constant (lesser values
of s will mean a more instantaneous measure). Using this
definition, the more agents are beaten in a constant interval
of time, the easier is the game. Another definition would be
for a given interval s (the last s seconds played), calculate
the number of agents killed divided by the number of shots
made. By this definition, the less shots missed for a given
period of time, the easier will be the game.

A modifier can be added for whichever definition
of easiness used: lifes lost by the player. For every life lost,
we can subtract a number from the agents killed (if the
player died, then it can’t be too easy). Another modifier to
be used could be the use of the teleport (of course, with
lesser importance than the lost of a life).

Even though we still didn’t use the easiness so far,
it is clear that we can adjust the value, whichever the
definition we are using, to make the game evolve faster or
slower. It would be like adjusting its “sensitivity”.

It is very important that, besides being reliable and
giving trustable results, the easiness function does not
require a lot of computation time. In few words, it must be
simple. As we are dealing with real-time interactive games
and we already have some overhead for the agents
evolution, it is not desirable that we spend a lot of time
calculating the easiness, and this is a calculation we will do
very often. So, some times it is best to use a much simpler
function that yields a lesser accurate result, than a very
accurate function that requires a lot of computation. It will
depend on the problem one is facing and what is more
important for that case (quickness or precision).

The easiness function can also be seen as the
fitness function for the opponent (i.e. the human player).
So, the most fitted the player is, the easiest is the game. Of
course we are not going to evolve the human player, but
this opponent’s fitness can be used so we can evaluate how
good he is against the current agents. In brief, it is,
somehow, the inverse of the fitness function for the whole
population of agents.

METHOD 1: ONLINE EVOLUTION USING GAME-
SPECIFIC INFORMATION

The first method we will discuss is coevolving online using
game specific information. For the game we have
described, we use some simple information we gathered
playing the game a little.

As we are using two subspecies, we are going to
specify two ideal individuals, one for each subspecies.
 For the hardest stage of the game, we want one
subspecies to chase the player and the other to chase the
cartridge while the player is not close and to chase the
player if he is close. This way, we will have half of the
agents always chasing the human and the other half
guarding the cartridge, attacking the man only if he gets
close.
 Coding these two individuals is not too hard. The
first one is filled with “chase human” action (we can use
“evade shot” for the three rules that state that shot is near).
The second is filled with “chase cartridge” in all rules but
the ones with “human is near”, which are filled with “chase
human” action (here we can also “evade shot” as we stated
before).

Now that we have our targets, we can discuss how
to perform evolution. We start, as usual, with a population
filled with randomly created agents. Another option, for
this particular case, is to start all the population with the
“random” algorithm for every rule. This would lead, of
course, to little diversity. We can overcome this situation,
for instance, with mutation and/or initialising half of the
population this way and the other half with the former way.
Now we must decide how the individuals will evolve
towards the target.

First Approach – Hamming Distance

The first approach we explore is to use the Hamming
Distance (i.e. the number of different bits) between the
individual and the target one.
 When an agent gets killed, we calculate the
hamming distance between him and the target for his
subspecies. We must, also, establish some boundaries for
the easiness of the game. If the easiness reaches some
threshold t, we create the new individual with a
decremented hamming distance (i.e. we choose one random
bit that is different and flip it). If the easiness is lesser than
t, we just replicate the individual.

One of the questions that can arise is that
individuals will have different hamming distances and they
will evolve towards the target in different speeds. That is,
the ones with lesser distances will reach the target sooner.
While this can be a problem in some cases, it can also be
desirable, as we would have different styles of agents
living together.

When replicating individuals, we can add some
interesting genetic operations as well. For instance, we can
calculate a bit-mutation probability, so we can have slower
or faster learning individuals. Another possibility is to add
some randomly created individuals for, say, every 16

agents (in this way, even with evolving towards the ideal,
we assure we will have some diversity).
 This approach leads to some kind of discrete
evolution of the individuals based upon how well the
human is playing. For our game we would have a
maximum of 54 stages (the number of bits of the agents’
genetic code) of evolution.
 For bigger genetic codes, using just one target can
be very chaotic before the agents get to do something really
useful. So, we can also define intermediate targets. For
instance, let’s say we define 4 targets for each subspecies.
We do the same thing we would do with just one for the
first targets of each subspecies. When an agent reaches the
target, we just start to calculate the distance using the next
target. This way we can have more control over the stages
of evolution. Of course the more intermediate stages we
add, the more information about the problem we must
have.
 Besides the necessity of having to design the
target individuals, this approach also has the disadvantage
of a somewhat chaotic evolution that, in some cases, can
just seen to be random, until the agents get too closer of the
targets’ chromosome. The great advantages are its
simplicity of implementation and little computing power
necessary to calculate the evolutions. In brief, it’s very
simple and very fast, and so it can be very inexact and yield
some unpredictable results. But for games with simple
strategies, it can achieve interesting results.

Second Approach – Crossing Over

In order to overcome some of the disadvantages of the first
approach, we just change the way new individuals are
created.
 While the easiness is below the threshold, we
create new individuals crossing them over. This can be
implemented keeping record of, say, the last 8 individuals
for each subspecies and choosing randomly the parents
from this group. We can, also, define a fitness function and
use the roulette wheel method to choose the parents. The
fitness would be naturally defined by how well the agent
did against the human (competitive fitness), giving points
for time lived and a great reward for touching (i.e. killing)
him. This fitness should be also cooperative between the
two subspecies, meaning that if the player is doing very
well, all the agents are penalised, even the ones that
manage to survive more than the others, because on overall
the whole population is not doing well). As used in the first
approach, we can add mutation and some fresh randomly
created individuals as well.
 When the easiness reaches the threshold, we
create the new individuals crossing them with the target
ones. This would give us an improved population. The
number of individuals created this way can also be defined.
Just one agent (replacing the one killed) would result in a
slower evolution, whereas about the next ten agents (a
whole population) would result in a much quicker
evolution.
 As stated in the first approach, we can also use the
intermediate targets. Using a whole population crossing
with the targets will probably yield better results using
intermediate targets, as the evolution will occur faster

towards each one, but not so discrete (“jumping” from one
target to another), giving a smooth transition from each
intermediate targets.
 The great disadvantage of this approach is, as the
first one, the necessity of having to design the target (and
the intermediate targets). But unlike the former, this one
has a potential smooth transition between the targets, and
also has a more “genetic-like” implementation. It does not
require much computer power, and it’s easy to implement,
even though a little harder than the first one. An
inconvenience can be the correct choice of the number of
new agents created crossing them with the targets.
However, if a good number of intermediate targets is used
(which will depend of the nature of the game), one can
easily use the whole population.

METHOD 2: ONLINE EVOLUTION USING
OFFLINE EVOLVED DATA

The second method we present is very similar to the last
one, at least the main idea and the implementations. The
major difference is how the final and the intermediate
targets are obtained.
 Instead of using some heuristic or gameplay-based
way of designing the targets, we use the help of offline
evolved agents. When we have the results of the generated
agents, we will have plenty of targets to choose from. We
can even analyse the data we have at hand to decide how
many intermediate targets we will need, or at least how
many would be worth of using.
 When evolving offline we must keep in mind that
it is very important to define, as it was said before, a
cooperative fitness function. As we are dividing this game
population in two subspecies, it’s very important that they
coevolve in a proper manner. As this paper is neither about
the advantages of CEAs nor about a theoretical discussion
(for our goal is to propose and implement methods for
online use of CEAs), we recommend references (Wiegand
et al. 2001; Wiegand et al. 2002) for further details on
CEAs and their theoretical aspects.

First Approach – Another AI Agent

The first approach would be to create an AI agent to play
the role of the human player and use it on a conventional
offline evolution system (which can run for hours or even
days until it reaches some desirable winning ratio).
 The advantage of this approach is that it does not
need a great number of collaborators. A disadvantage, of
course, is the need of creating another AI agent. It is
slightly different from the need of designing the targets
directly as on the former method, after all, the goals are
different, and in some cases the human player may just
need to be fast and skilled. For oriented strategy-based
games, however, this approach is not very useful.

Second Approach – Human Internet Data

 The other way would be to use humans to play
against the agents. But it would be necessary a lot of them.
It could be done the way it was done in (Funes et al. 1998),
using internet to reach a great number of opponents, and

taking advantage of having a great quantity of data about
the game to evolve the agents.
 This approach has the clearly disadvantage of
needing a great quantity resources (servers, fast
computers). But it also has some interesting advantages,
because playing against a great number of human players
can yield some pretty good results (Funes et al. 1998). And
better of all it is the fact that it produces great number of
agents and diversity. This can be very useful when
choosing the targets for the evolution.

METHOD 3: PURE ONLINE EVOLUTION

The third method is also the most difficult one. If we can
not design the targets based upon game-specific knowledge
and can not evolve offline the agents, our only solution is
to evolve everything online, using only the current game
data.
 First, we use a “pool” of the best-fitted individuals
for a given subspecies. This pool can have about 16
individuals (double of the population). As in the last
method (second approach), we are going to cross the killed
agents with the best fitted from the pool, using the roulette
wheel method to select the parents. The difference is that
now we keep, as we said, the best fitted individuals
instead of the last individuals in the pool. The fitness can
be calculated as stated in the last method. When an agent
earns a higher fitness than the worst yet in the pool, then
the worst fitted gets out and the new one enters it. When
creating the new individuals, we can also use mutation
and/or randomly generated individuals at some rate.
 As it can be noted, this can result in a very slow
evolution, which certainly is not desirable. In order to
speed things up, one can give a high priority to agents that
beated the player (a very high fitness, or something like
that). Of course, this is not always good, for there can be
reasons for the player loss other than just what that single
agent did (it can even happen because of a player’s
mistake).

Games where there’s a high throughput of agents
(i.e. agent’s replacement occurs very often) will likely have
a good probability of evolving smoothly, as there are a
good numbers of individuals and, thus, greater diversity.
While it can be “painful” to work only with the current
game data (which can be reasonable small comparing to
offline obtained data), in real-time applications where the
fitness landscape is too unpredictable and the probability of
generalisation is somehow low, online evolution algorithms
can even do better than offline ones. (Agogino et al. 2000)
and are a very good option.

METHOD 4: JOINING THEM TOGETHER

The last method we present is a hybrid one. The basic idea
is to add the third method after the first or the second. For
instance, we can define some targets (and intermediate
targets) and after the individuals reach this evolutionary
level, they proceed from that moment on with online
evolution. This method is similar to the one used in
(Agogino et al. 2000).
 We can see this method as having an
“introductory” stage, where the player must beat some

increasingly basic strategies we could figure out for the
game. The second stage will be like a “master” stage, and
from that point on the agents will be “free” to evolve
(online) to more complex strategies and more adapted to
the player’s game style.
 This method can be good for situations where we
have some natural basic strategies that work well with
beginner or less experienced players but can’t figure out a
“best” strategy In some cases, there can be even no best
strategy at all, as there can be strategies that do well with
some and badly with others. This method can also be good
if we don’t want or don’t have enough computer power or
resources to do a better offline evolution (take, for instance,
the second approach of the second method). Or even if the
best solution we found is not good enough to beat the
human player. We can, therefore, evolve to some desirable
level offline, use this information with the second method
and when the player reaches this level, start to evolve
everything online.

IMPLEMENTATION

In this section we present the implementation details of the
methods proposed for the game described and the
implementation of the game itself.
 We left one small (but still very important) detail
of the game to this section because it makes more sense to
present it when talking about the implementation and also
because it is important to all methods. It was stated earlier
that the agents killed are replaced with possibly more
evolved ones. That is not the whole truth. We noticed that
when the player gets used to the way the game evolves its
agents, he perceives that just the opponents killed get
better. So, he starts to kill the same agent. This killed agent
will be often replaced by evolved ones and eventually will
reach the target and the greater stage of evolution. But all
the others won’t! So, the game will be still easy. This can
be easily noted when we look at the cooperative fitness
(which will be constantly low) and the easiness of the game
(which will be constantly high).
 We decided, therefore, to give each agent a “time
to live” (ttl). When this time is over, it evolves in the same
way it would do if it was killed. Thus, the fitness of the
population will also increase, as we put away the
possibility of having one very good agent while the others
are very bad ones. The implementation of the methods
followed straightforwardly the description given for each
one. We are going to list here the details and parameters
values that were used.
 The easiness function ef was calculated for every
2 seconds of gameplay and was defined as:

ef = (r + d) / 2 (2)

Where r is the number of agents killed divided by
the number of shots made (r = 1 if no shot was made, so
we have no division by zero), and d is 1 if the player did
not lose a life in that time span (2 seconds) and 0 otherwise
(i.e. if he lost a life). For instance, if in the last 2 seconds
the player killed 3 agents with 4 shots, then r = 3 / 4 = 0.75.
If the player did not lose a life, that ef = (0.75 + 1) / 2 =
0.875. If he did lose a life, then ef = (0.75 + 0) / 2 = 0.375.

So, we can easily see that 0 ≤ ef ≤ 1 and that 0
means the hardest and 1 is the easiest. This is a simple
function and may have some imperfections, but it can be
calculated very quickly, which is a very desirable
advantage as we saw before, and it has also the advantage
of being normalized. The threshold t we used was 0.6. So,
when the easiness drops bellow this value, the new agents
stop evolving (i.e. they evolve while t ≤ 0.6).
 The fitness function f of the agents was defined as:

f = tl + dist + d * K (3)

Where tl is the total seconds that the agent lived,
dist is how far he got from its initial point, d has the same
meaning as for ef and K is a constant (we used K = 30).
This function was used for both the offline algorithms and
for the online ones (for the parents’ selection criteria).
 The genetic algorithms (offline e online) were
implemented using one point crossover, roulette wheel
selection (based on fitness proportion), fitness function f
(defined above) and bit flip mutation (0.1% probability per
bit). Also, 10% of new individuals were randomly created
(to assure some diversity). The offline evolution algorithm
used was pretty similar to the online. We just implemented
a few simple AI algorithms to control the human player as
to guarantee some possible diversity of strategies (more
offensive, more defensive etc.), but we found out that this
was not a critical issue (at least in this case). The targets
obtained were slightly different from the ones we created
without offline evolution, but the final results were quite
similar.

Software Implementation

The game was implemented using ANSI-C. The compiler
used was a gcc port to DOS/Windows, the DJGPP
compiler (http://www.delorie.com/djgpp). The Allegro
game library was also used
(http://www.talula.demon.co.uk/allegro). A 2D game
engine designed for our research on games and evolution
was also used.
 The game source code had a continuous trace of
the main game variables (easiness, fitness, lives, agents
killed etc.) and dumped them in a text file in constant time
intervals (every 2 seconds) for each time the game was
played. This text file was later used to collect the data used
for the methods evaluation (as it will be presented in the
next section).
 Timers were used to handle the time dependant
functions (like the easiness) and to control the game
environment, like creating a new cartridge for each 15
seconds etc, new teleport each 30 seconds etc.
 The human player is represented by a structure
that contains the number of lives left, points (i.e. number of
agents killed), shots left and teleports. There are also some
data for the position on the screen, the frames used to
animate the character, etc. The agents are represented by a
structure that contains their genes (coded as a string of
bits). They also have, as the player structure, variables to
control their position on the screen, their current state
(alive/dead), frames used to animate them etc.

The main game loop can be described with a
pseudo-code algorithm as follows:

While(player.lives > 0)

Read input from the player
Move the player
For each killer eye alive
 Move eye
End for
For each shot in the screen
 Move shot
End for
Detect collisions
If (time mod 2 = 0) then calculate easiness
If (time mod 30 = 0) then player.teleport = true
If (time mod 15 = 0) then create cartridge
Draw everything

End while

 First, it reads the input from the use, which is done
with the keyboard, the arrow keys are used to move the
player, the alt key is used to shoot and the control key is
used to teleport. Then, the new position for the killer eyes
are calculated (more details, see bellow).
 The new positions of the shots in the screen are
then calculated (it is simple, for the shots follow a straight
line until it gets out of the screen or it hits a killer eye).
 After moving the player, the eyes and the shots,
the program checks whenever collisions occurred and treats
them. For instance, if an eye collide with the player, then
the player loses a life. When it happens, the eyes and the
player return to their initial positions, which are,.
respectively, in the borders of the screen and in the centre.
Other possibilities are if a shot hits an eye (both are
destroyed and a new eye is generated), if two eyes collide
(in this case, they both return to their previous positions) or
if the player collides with a cartridge (in this case he earns
20 shots and the cartridge is destroyed).
Then the time checks are done. For each 2 seconds the
easiness is calculated (and dumped to the text file). For
each 30 seconds the player earns a teleport (it is a boolean
variable because it is no cumulative). And for each 15
seconds a new cartridge is created in a random position of
the screen. After all this is done, everything is finally
drawn to the screen.
 The move for the eyes can be described by the
following pseudo-code algorithm:

Move eye
 d1 = distance between the eye and the player
 d2 = distance between the eye and the cartridge
 d3 = distance between the eye and closest shot
 r = rule(d1,d2,d3)
 else if (r = 0) then chase cartridge
 else if (r = 1) then chase player
 else if (r = 2) then random move
 else if (r = 3) then evade shot
 if (ttl = 0) then evolve and reset ttl
end

 This function first calculates the distances used by
the rules as described in the “Agents Overview” section

earlier in this paper, using equation (1), and then find out
which algorithm the agent must use to move (based on
those distances, as it was also described before). If there is
no cartridge nor shots in the screen, then the distances (d2
and/or d3) are set to “infinity”, which is just a very large
number.

The function also checks for the ttl of the agent,
and if it is over, then it evolves the agent (and resets the
ttl). The ttl is not decremented in this function. As it must
be done for each second elapsed, the ttl is actually the time
(in seconds) when the agent was created and it is compared
with the time elapsed since its creation. If its equal or
greater than the ttl limit (in our case, 5 seconds) then the
agent evolves (and the ttl is reseted not to zero, but to the
current time). So, if the agent is created with 27 seconds of
game play, then its ttl will be over when there is 32 seconds
of game play (of course, if it is killed before that it will
evolve before the ttl is over and it will be reseted anyway).

As it was already stated, the time count is done
with timer functions, which are handlers to system calls.
Those functions are called every time a fixed time interval
is elapsed. For instance, there is a function (time_handler)
which is called every second that increments the variable
time that stands for how much seconds were elapsed since
the beginning of the game (this variable is used to control
the agents’ ttl, for instance).

The agents evolve just like it was already stated in
the descriptions of the methods. Depending upon which
method and algorithm is being used, the program does the
corresponding evolution. The evolving function is called
when an agent is killed (and thus replaced by a new,
evolved one) or when its ttl is over (as shown above).

Except for the pure online evolution method, there
are also data structures that hold gene information of the
targets, which are used for the creation of evolved agents
(as it was also already explained).

Bellow we show screenshots of the game being
played. The first one is the initial position of the game,
with the player on the centre and the eyes on the borders of
the screen. The second one is the middle of a game (the
explosions are agents being killed).

Figure 1: Initial Position

Figure 2: Middle of the Game

RESULTS

 The results obtained with each method are given
bellow (Table 1). Only the best effort by each player was
used. It could be misleading using all results, for example,
because during the first games played the human usually is
still learning the game and its controls. So, those numbers
are not worth analysing.

Table 1: Methods Results

Method IT GP T1 T2 T3 NK AE
1.1 0 25 75.7 101.5 124.3 144.5 0.8055
1.2 0 25 45.8 96.9 116.9 149.1 0.7905
2.1 4 25 84.1 106.8 130.3 146.5 0.8199
3 N/A 25 36.2 51.3 60.5 80.1 0.7968
4 (2.1 + 3) 4 25 79.4 102.9 126.2 143.2 0.8076

The method used is given as its number and the

corresponding approach following a dot. IT is the number
of intermediate targets used. GP stands for “games
played”. T1 is the average time (in seconds) before the
player lost his first life (T2 and T3 are analogous). NK is
the average number of agents killed. AE stands for
“average easiness”.

The first approach of the second method was
implemented using crossover and not Hamming Distance.
It could be done either way, or even both. But as it was
shown before, when using crossover and the easiness
function is bellow the threshold, new individuals are crated
(crossing them with other individuals from the population)
instead of just replicating it. Even though we do not have
yet enough information to conclude that this is better, we
strongly feel that it gives a smoother flow to the game. The
second approach of the second method was not
implemented because it requires a lot more effort in order
to obtain the results and it would lead to another separated
work on its own. And we feel that for the particular game
we are using as an example it would not give us much
better results than we got using the first approach.

DISCUSSION AND FUTURE WORK

As a whole, we can see that the differences between T1, T2
and T3 show that the agents get harder to beat, because the
time intervals which the player manages to survive
decreases as the agents evolve. For instance, the values for
the first method are T1 = 75.7, T2 = 101.5 and T3 = 124.3.
It means that the player plays the game for about 75
seconds before he loses his first life, but just about 26
seconds before he loses his second (T2 – T1 = 101.5 – 75.7
= 25.8) and just about 23 seconds before he loses his third
(T3 – T2 = 124.3 – 101.5 = 22.8). The following table
shows the time differences of T1, T2 – T1 and T3 – T2 for
each method.

Table 2: Differences Between Each Player’s Life Lost

Method T1 T2 –T1 T3 – T2
1.1 75.7 25.8 22.8
1.2 45.8 51.1 32.2
2.1 84.1 22.7 23.5
3 36.2 15.1 9.2
4 (2.1 + 3) 79.4 23.5 23.3

Except for the method 1.2, we can see a clear

decrease of the time the player manages to play without
losing a life. For the method 1.2, however, the significant
decrease only occurs for the third life, which shows that
this method, at least for this particular game, has a
somehow slower evolution. Method 2.1 used, as method
1.2, crossover to generate the new individuals and it
showed a more constant transition from the second to the
third life lost (about 23 seconds), whereas for method 1.2 it
was from the first to the second life lost. Those patterns are
somewhat alike, and we tend to think that the crossover
may be causing it and the populations to get stuck on few
diversity for some time. Another difference between
method 1.2 and 2.1 is that the former uses intermediate
targets, which probably is causing the “switch” of the
stagnation from T1 and T2-T1 to T2-T1 and T3-T2. They
clearly require a more detailed study with other kind of
action game (and even with this same one, but with more
data) to conclude if this is a natural pattern showed by the
methods or just some kind of coincidence in the players’
data used. Method 4 also showed this pattern, but as it is a
hybrid implementation using method 2.1, this is quite
logical to happen.

As this was a simple strategy-game, the use of the
particular method was not a critical issue. A simple
empirical analysis, however, lead us to feel that using
intermediate targets gave us clearly a much more smooth
difficulty evolution of the game. Also, the best method to
use is a game-dependent choice. As we used a very simple
game, we could show all the methods we implemented
working efficiently.
 Method 1, besides its simplicity, can do very well
in situations when we somehow know strategies of
increasing level of difficulty. Many games have some
“difficult level” choice (like “beginner”, “intermediate”
and “advanced”, for instance). The first method can be
used to provide some smooth change from one degree to
other.

Using method 2 with intermediate targets can be a
very good choice for a game for which is not difficult to

build some AI to evolve offline or if there is the possibility
of using internet interaction (second approach).

The third method is best suitable for games that
have a lot of “freedom” when choosing strategies, or even
for games in which different strategies do well against
some players and bad against others. In general, when there
is a high degree of uncertainly, using just online evolution
can yield pretty good results, especially when compared to
offline evolution. We can also see that this method was the
“hardest” one: players lost their lives earlier and killed
lesser agents. This method, indeed, evolved faster than any
of the others.

Method 4 was found to make little difference,
since the individual targets were good enough to beat the
player in this particular game. It would be more useful if
the targets of the first stage were not (or could be not) the
best ones, then there would room for the agents to evolve
even further after the targets were reached.

The next step would be testing the proposed
methods with different games and styles of games to see
how well each method does with them. We will also add
the use of fuzzy logic rules together with genetic
algorithms for more complex game, trying to achieve better
strategies and even smoother evolution and behavior of the
agents.

CONCLUSIONS

 This work proposed some methods for online
coevolution of agents. The real-time environment gives us
a naturally competitive nature, where the fitness function
can be easily defined by how well the agents do against
their opponent. It was also shown that those agents can
coevolve online in order to cooperate and reach a better
strategy against the human player. We presented some
experimental results obtained with the implementation of
the methods proposed in a simple action game.
 The results indicated that online evolution (and in
particular, coevolution) is a great field to be explored, for
online adaptation of agents can yield good results for
applications which require real-time interaction and that are
unpredictable at some degree.

AKNOWLEDGEMENTS

This research is supported by CAPES and by NCE/UFRJ.

AUTHOR BIOGRAPHY

PEDRO DEMASI was born in Rio de Janeiro, Brazil in
1979. In 1997 he went to the Federal University of Rio de
Janeiro, where he obtained his Computer Science BSc
degree in 2000. Since 2001 he is a MSc student at the same
university with its expected conclusion due to February
2003, starting as DSc student soon after that.

ADRIANO J. de O. CRUZ was born in Portugal, in 1952.
He received the B.Sc. degree in Electronics Engineering
and the M.Sc. in Computer Science, both from the Federal
University of Rio de Janeiro, Brazil, and the Ph.D. from the
University of Southampton, UK, in 1975, 1979 and 1988
respectively. He is professor in the Computer Science

Department and senior researcher in the Computer Center,
both at the Federal University of Rio de Janeiro. His
current research interests are in the areas of fuzzy logic and
parallel systems.

REFERENCES

Agogino, A., Stanley, K. and Miikkulainen, R. 2000.
“Online Interactive Neuro-Evolution”. Neural Processing
Letters 11, no.1: 29-38.

Angeline, P. and Pollack, J. 1993. “Competitive
Environments Evolve Better Solutions for Complex
Tasks”. Proceedings of the 5th International Conference
on Genetic Algorithms. 264-270

Funes, P., Sklar, E., Jullié, H. and Pollack, J. 1998.
“Animal-Animat Coevolution: Using the Animal
Population as Fitness Function”. Proceedings of the Fifth
International Conference on Simulation of Adaptive
Behavior. MIT Press, 525-533.

Funes, P. and Pollack, J. 2000. “Measuring Progress in
Coevolutionary Competition”. In Proceedings of the Sixth
International Conference on Simulation of Adaptive
Behavior. MIT Press, 450-459.

Reynolds, C. 1994. “Competition, Coevolution and the
Game of Tag”. In Proceedings of Artificial Life IV. MIT
Press, Cambridge, Massachusetts, 59-69.

Wiegand, R., Liles, W. and De Jong, K.. 2001. “An
Empirical Analysis of Collaboration Methods in
Cooperative Coevolutionary Algorithms”. In GECCO
2001: Proceedings of the Genetic and Evolutionary
Computation Conference, Morgan Kaufmann, 1235-1245.

Wiegand, R., Liles, W. and De Jong, K.. 2002. “Analyzing
Cooperative Coevolution with Evolutionary Game
Theory”. In Proceedings of the 2002 Congress on
Evolutionary Computation CEC2002. IEEE, 1600-1605.

CLASSIFIER SYSTEMS AS 'ANIMAT' ARCHITECTURES FOR
ACTION SELECTION IN MMORPG

Gabriel Robert* ,* * , Pierre Portier** and Agnès Guillot*

 *AnimatLab, Laboratoire d'Informatique de Paris 6, 8 rue du Capitaine Scott, 75015 Paris, France
**Nevrax France, 104 Rue du Faubourg St. Antoine 75012 Paris, France

E-mail : { gabriel.robert ;agnes.guillot} @lip6.fr; portier@nevrax.com

KEYWORDS
Learning classifier systems, action selection,
autonomous agents, video game.

ABSTRACT

Classifier systems (CS) are used as control
architectures for simulated animals or robots in order
to decide what to do at each time. We will explain
why these systems are good candidates for action
selection mechanisms of Non Player Characters.
After having described different classifier systems,
we will introduce a new CS architecture, acting in a
multi-agent environment, which is adapted to the
specific constraints of the ‘Massively Multi-players
Online Role Playing Games’ .

INTRODUCTION

A new Artificial Intelligence approach focuses on
the synthesis of adaptive simulated animals or real
robots (called animats), the inner mechanisms of
which being as much inspired from biology and
ethology as possible (Guillot and Meyer 2000). An
animat has both sensors – which provide information
about its environment or internal states - and
effectors – which make it possible to change its
environment. In order to be able to survive, it is
endowed with a control architecture that connects its
sensors to its effectors, such architecture being
occasionally adapted to changing circumstances
through unsupervised learning.
Massively Multi-players Online Role Playing Games
(MMORPG) are new games in which thousands of
players interact with each other and with non-player
characters (NPC) in the same continuous and
persistent world (e.g., Everquest ©Verant
Interactive, Asheron’s Call ©Turbine Games, or
Dark Age of Camelot ©Mythic Entertainment).
NPCs behaving in these games are comparable to
animats, because these artificial creatures have to
adapt on line to dynamically changing environments,
to new goals assigned by game-designers, and to
unpredictable actions from the players.

The control architectures developed by the animat
community are useful to afford adaptive behaviours
to a NPC. In particular, one kind of model - the so-
called Classifier Systems (CS) - is especially

convenient to design architectures able to efficiently
select which actions the NPC should perform. A CS
is a population of 'condition-action' rules called
classifiers (Holland 1986). A CS can learn which
classifier is better suited than another to achieve a
given task. New rules can also be discovered
through the creation of new classifiers.
In this paper, we will introduce different categories
of CS used in the animat approach that could prove
to be applicable to NPC action selection in video
games. We also propose a new architecture, based
on hierarchical CS and specifically tailored to
Ryzom, a MMORPG developed by Nevrax.

CLASSIFIER SYSTEMS

A CS contains a classifier list, i.e. a pool of
'condition-action' rules, the classifiers (Figure 1). At
initialization time, this list is generally hand-
designed. Three parts characterize a classifier. The
first one, the condition part, corresponds to the
environmental information received by the animat
sensors, and expressed as a string defined by a
ternary alphabet { 0,1,# : false, right, don’ t care} .
The second part is an action command. The last part
is a ‘ fitness’ value, a quantitative measure of the
classifier’s past successes or failures.

Classifier System
Classifier list

 10##101 0001101 12.0

 01011## 1100101 13.0

 ##01#01 0001101 2.0

Fitness attribution

Message board
 1010101

 0011011

Selection
algorithm

Evalutation
function

Evolutionary
 algorithm

Classifiers

Environmental
Messages

executable action

Compare
Matching classifier

Action
consequences

1

2

3 4

5

6

7

8

Figure 1. A Classifier System (see text for
explanation)

When an animat detects some environmental
features (1), it encodes this information into a
‘string’ of { 0,1, #} that it deposits on the message
board, together with other possibly internal
messages (e.g. motivation) For example, if an
animat is near a river and a dragon, its three sensors
specific for water, food and predator will send the
message { 1,0,1} (2). This message is compared to
the condition part of each classifier in the classifier
list (3). A selection algorithm chooses one classifier
among those whose condition part matches to the
current message (4). The corresponding action
command is either directly sent to the effectors, or
deposited on the message board (5). In the latter
case, the corresponding action message may be
matched to the condition part of other classifiers,
and the process returns to step (3). In the former
case, the behaviour corresponding to the activated
effectors is displayed in the environment (6).
A CS has two adaptive mechanisms. On the one
hand, each time an action command is executed, the
fitness value of the corresponding classifier is
incremented or decremented relative to the resulting
positive or negative outcome (7). If, at step (3),
several classifiers are selected at the same time, the
classifier with the highest fitness value has the
greatest probability of being activated. This
reinforcement learning process - well-known in
ethology - allows an animat to efficiently associate
given classifiers to given tasks. On the other hand,
new classifiers may be created by an evolutionary
algorithm (e.g. a genetic algorithm, see Holland
1975), according to so-called mutations and
crossovers operators acting on classifiers with high
fitness values. Other classifiers may be removed
from the list if they are associated with low fitness
values (8).

Mac Namee and Cunningham (2001) have asserted
that a good action selection mechanism for a video
game must be reactive (i.e., agents behave by means
of event-action rules), proactive (i.e., agents exhibit
goal-directed behaviour), and autonomous (i.e.
agents do not call upon player or game master
intervention), as well as configurable and extensible
by a non-programmer, like a game-designer. It turns
out that a classifier system affords these specific
properties. Indeed, with such control architecture, an
animat is reactive, as some classifiers are simple S-R
rules. An animat is proactive, as the classifiers can
code internal needs and desires. An animat is
autonomous, as it can empirically build, through
learning or evolutionary process, an efficient
classifier list. Finally, a game designer can easily
configure, change or extend the behavioural
repertoire of the animats, because a classifier is
written in a classical video game formalism, i.e., “ if
condition then action” rules.

A huge variety of CSs has been proposed in the
animat literature (see Kovacs 2002, for a review).
We will introduce here the main systems only.
The best known CS are called ZCS (Zeroth level
Classifier System), that has been developed by
Wilson (1994). This CS does not have a message
board. Sensor and motor messages are directly
linked to the condition and action parts of the
classifier list. Wilson also designed XCS (Wilson
1995). Here, the fitness is split in two values, its
strength - that evaluates the efficiency of the
classifier - and its quality – that assesses the
precision of the strength’s evaluation. A classifier’s
overall fitness depends on the latter value. ZCS and
XCS have been tested with success on animats,
which had to survive in a dynamic environment, like
woods with different kind of trees, foods, traps and
predators.
The ACS (Anticipatory Classifier System) of
(Stolzmann et al. 2000) adds an anticipation part to
each classifier. This part is a string describing what
the sensors should detect in the environment after
the activation of this classifier. The fitness of a
classifier is based on its capacity to well anticipate
the consequence of its action in the environment. In
a maze, for example, an animat is able to learn that it
will reach a dead-end after turning right at a
particular location.
In any given CS, the possibility of creating new
classifiers – by hand, or with genetic algorithms -
clearly increases the matching process time and
entails a risk of combinatory explosion. Barry
(1996) accordingly suggested the use of hierarchical
CSs, in order to reduce the search space. This has
been done by Donnart (1996) within the framework
of animat navigation. Basically, his architecture
relied on three interconnected CSs, a first one
responsible for reactive behaviour, the second one
responsible for planning behaviour, and the third one
being in charge of building a cognitive map of the
environment.
The different CSs just described were used in
markovian environments only - i.e., in environments
where a given sensory input corresponds to a given
environmental state. However, a MMORPG is
definitely a non-markovian environment, especially
when it is implemented as a Multi-Agent System.
The corresponding worlds are indeed continuously
changing, according to the numerous actions of the
NPCs and players. Such changes may well not be
detected by the primitive sensors of NPCs, nor by
humans themselves.

CS IN MULTI-AGENT ENVIRONMENTS

When a CS is embedded within a Multi-Agent
System, every CS is seen as an agent that tries to
satisfy its own goals and shares the same
environment with other CS agents. The agents can

communicate, in order to improve their
performance.
On the one hand, some animats acquire information
about other animats indirectly, i.e., through the
environment. This is the case, for example, of the
so-called ”El Farol bar problem” , in which an agent
has to decide whether or not it will enter into the bar,
on the basis of the frequency of consumer visits over
the last weeks (Hercog and Fogarty 2001).
On the other hand, other animats communicate
explicitly, i.e., by exchanging classifiers or rewards.
For example, in OCS (Organisational Classifier
System), several CSs cooperate to solve a collective
task, the design of an electronic circuit (Takadama et
al. 2000). Each OCS represents an electronic
component. By exchanging good rules with the
others OCSs, the agents can collectively decide how
they should be arranged in a spatially optimal
circuit. In another work that simulates soccer, the
players have to decide at each time what to do, on
the basis of both an individual fitness value and a
collective reward, the latter being evaluated
relatively to the efficiency of the whole team (Sanza
et al. 2000).

Figure 2. A snapshot of Ryzom

MHiCS, A PROTOTYPE FOR AN ACTION
SELECTION ARCHITECTURE OF NPC IN
MMORPG

All the above-mentioned CSs were not especially
dedicated to NPCs in MMORPG. This is why we are
developing a specific architecture, inspired from
previous works, in order to fit the different needs
and constraints of these new games. It will be
applied to Ryzom, a MMORPG developed since
2000 by ©Nevrax (Figure 2).
Ryzom is a MMORPG elaborated with NeL (Nevrax
Library), a free software library developed under
General Public License. Like others MMORPG,
Ryzom is a game playable only through Internet, in
which players incarnate a character in a huge virtual
world. The game is persistent and will be shared by

thousands of players simultaneously. The player’s
goals may be concrete - like exploring the world,
killing monsters, searching for food - or more
abstract - like increasing his competencies, being
member of a community, becoming famous, etc. The
NPCs will be merchants and craftsmen, making and
selling artefacts, they will be people animating
towns, wild animals living in forests and deserts,
tribes and monsters that provide challenge to
players, etc. They will manage multiple goals that
may be conflicting, like sleeping, eating, hunting,
protecting territory, finding resources and the like.
Finally, they must be endowed with an appropriate
action selection system, able to manage different
goals in a massively multi-agent environment.

MHiCS is a Modular and Hierarchical CS
architecture dedicated to these NPCs (Figure 3). The
modularity of the architecture will allow the design
of various kinds of NPCs, in which modules could
be assembling in different ways. These modules will
correspond to different CSs, distributed in two
hierarchical levels. At level I, several CSs will
manage the motivations of the NPC. At level II,
other CSs will refine the action commands of level I.
Various motivations in the system may have some of
these CSs in common. Two lower levels (III and IV)
do not include any CS, but concern the execution of
the final action.

The Motivation level
Each NPC owns different motivations - like self-
protection, hunger, flocking. Each motivation is
associated with a specific CS that is not shared by
other motivations - but different specific CSs can
have similar action commands.
A motivation is associated with two values, its
Relative Power (RP) and its Motivation Value
(MV). Through the RP values, the programmer can
attribute a ‘personality’ to the NPCs. For instance, if
a given individual has a hunger RP of 4, while
another has a hunger RP of 10, the latter will have,
during its whole life, a stronger tendency to practice
all the actions linked to hunger than the former one.
MV is a value between 0 and 1, giving the current
strength of the motivation. If a NPC is eating, its
hunger MV decreases to 0, otherwise it increases to
1.
Several CS belonging to motivation of level I can be
triggered at the same time. Their activation values
depend on their RP and MV values. Several action
commands belonging to different CS can then be
selected. These action commands will trigger the CS
of level II.

The Common CS level
Each CS of level II can be activated by more than
one motivation of level I. If a CS is selected by a

 M V : M otivation Value MI : Motivation Intensity EI : Execution Intensity

If x threats me and I am stronger => A TTA CK (1)
If x threats me and I am as strong => A TTA CK (0.5)
If x threats me and I am less strong => FLEE (0.9)

Self-protection (Relative Power : 10)
M V : 0.8

If ... => TRA CK (0.75)
If ... => A TTA CK (0.9)
If ... => EA T (1)

Hunger (RP : 4)
MV : 0.3

I f ... => ... (0.6)
I f ... => ... (0.75)
I f ... => ... (0.1)

Flocking (RP : 6)
MV : 0.65

If I am as st rong => light hit (0.7)
If I am less strong => strong hit (0.9)
If I am at shooting range => shoot (0.8)
If I am good at hand-to-hand and not at short range => run to (1)

ATTACK
M I : 0.4 Self-protection + 0.27 Hunger

If ... => look around (..)
If ... =>... (..)

TRACK
MI : ...

Animation

Light hit
EI : -

State : inactive

Run to
EI : 5.08

State : active

Strong hit
EI : -

State : inactive

SpeedHit power X attraction

L ook around
EI : 4.06

State : inactive

I.
 M

ot
iv

at
io

ns
II

. C
om

m
on

 C
S

II
I.

 A
ct

io
ns

IV. Action Resources

Sensor Informations

Figure 3. An illustration of MHiCS (see text for explanation). For the sake of clarity, the CS are only depicted by
their classifier list, and the condition and action parts of the classifiers are not translated in strings of { 0,1,#} .

single motivation only, it inherits a Motivational
Intensity (MI) value, which is function of both the
MV of the motivation and the fitness value of the
level I classifier which has triggered the CS of level
II. If a CS (e.g. on Fig.3, Attack) is activated by
several motivations, its MI value depends on the
MV of all the motivations (e.g. on Fig. 3, Self-
protection 0.8 and Hunger 0.3), and on the fitness
values of all the level I classifiers that have
triggered this CS (on Fig. 3, bold classifiers at level
I: 0.5 and 0.9). A classifier that is activated by
several motivations will have more chances to be
triggered than a classifier activated by a single
motivation.

The Action level
All motivations diffuse their MI in the CS involved
at level II. As a consequence, several classifiers can
be selected at the same time, and several action
commands can be executable at level III. Each
action command is associated with an Execution
Intensity (EI), depending on the fitness value of the
corresponding classifier, the MI of the
corresponding CS(s), and the RP of the
corresponding motivation(s). For example (see
Fig.3), the action command ‘Run to’ , ordered by a
classifier with a fitness value of 1 (bold classifier at
level II), belonging to a CS with a MI of 0.4
(through Self-protection, RP=10) + 0.27 (through
Hunger, RP=4), will have an EI of
1[(0.4*10)+(0.27*4)] = 5.08.

The Action Resources level
Level IV provides resources for action execution. In
particular, it supplies resources for behavioural
animations (for eating, running, etc.), and for the

management of motion speed, attraction forces
from X, repulsion forces from Y, etc.
The action command with the highest EI value has
the primacy to recruit the needed resources. Other
executable actions cannot require these already-
used resources, but have only access to free ones.
The behaviour that will be displayed by the NPC in
the environment will be a combination of all the
activated resources.

Evaluation and creation of CSs
The CS fitness values are computed on line and
depend on the executed actions. If these actions
satisfy the motivations that have triggered them at
level I, all the classifiers that were implied in the
action execution, at whatever level, will have their
fitness value increased. In the opposite case, their
fitness value will be decreased. If there are no
classifiers matching to a particular environmental
context, new ones will be discovered off line by a
genetic algorithm.

The MAS environment
Each NPC equipped with MHiCS will be
considered as an agent in a MAS environment. It
will be able to communicate with other NPCs, for
example to indicate the value of its internal
variables (MV, MI, EI), in order to influence the
motivations or the EI of other agents. It will also be
able to exchange efficient classifiers or modules
with other NPCs, in order to increase its learning
process or its intrinsic skills.
Communication will be also possible between
NPCs and players. On the one hand, players could
train NPCs to achieve a given task, through the
reinforcement of some classifiers. On the other

hand, through the players’ actions, NPC could learn
to detect the players’ motivations or personalities,
and decide to cooperate or to compete with them.

A preliminary test of MHiCS
Such a complex architecture must be tested step by
step, in order to check the operational efficiency of
each mechanism.
The first step – the only one already done –checked
the diffusion of the motivations through a small
number of CSs, in a simplified environment having
the same characteristics as Ryzom. The
corresponding experiments involved the simulation
of prey, predators and ‘preydators’ – which behave
either as predators or prey – in a closed
environment. Each MHiCS included 2 motivations
at level I, 4 CSs at level II, 4 actions at level III.
Level IV was not implemented, the actions being
simulated directly with their resources (see Robert
2002, for the detailed results).
In such conditions, we observed how easy it was to
attribute a personality to NPCs thanks to RP values.
Actually, significant differences in the duration of
the displacements were exhibited by our three kinds
of NPCs, characterized by different Exploration RP
values. More importantly, we observed that the
diffusion of the motivations entailed a correct
chaining of actions for all NPCs. It also turned out
that bad parameter fitting could induce unwanted
effects, like dithering, i.e., a rapid oscillation
between two actions. This issue - a classical one in
action selection – could easily be solved at level IV,
by locking by hand undesirable motions. But, for
the design of autonomous NPCs, an adaptive
solution has to be designed.
Such issues are being tackled in the second series of
check tests that are under current development.
Additionally, learning and evolutionary processes
are implemented in the same experimental
conditions as above. Future extensions will concern
several NPCs in a Multi-Agent system, with the
implementation of interaction mechanisms between
NPCs and real players.

CONCLUSION

In this paper, we argue that classifier systems are
particularly appropriate to be used as action
selection architectures for autonomous NPCs. They
are written in a classical video-game formalism and
they integer adaptive capacities that allow NPCs to
behave without human intervention. CSs have
provided many sophisticated cognitive abilities in
animats, like generalisation, specialisation, latent
learning or planning (Lanzi 1999; Gérard 2002). To
our knowledge, only a single video game – a
classical one – currently integrates such a model
(Conflict Zone, ©Masa). The aspiration of MHiCS
is to demonstrate its relevance for more promising
kind of games, the MMORPG.

REFERENCES

Barry A. 1996. "Hierarchy Formation within Classifier

Systems A Review". In Proceedings of the First
International Conference on Evolutionary
Algorithms and their Application EVCA'96, E. G.
Goodman, V. L. Uskov, and W. F. Punch (Eds.),
195-211.

Donnart, J. Y. and J. A. Meyer. 1996. "Hierarchical-map
building and self-positioning with MonaLysa".
Adaptive Behavior, No.5(1), 29-74.

Gérard, P. 2002. "YACS : a new Learning Classifier
System using Anticipation". Soft Computing,
No.6(3-4), 216-228.

Guillot A. and J.A. Meyer. 2000. "From SAB94 to
SAB2000 : What's new, animat ?". In From Animals
to Animats 6, J. A. Meyer, A. Berthoz, D. Floreano,
H. Roitblat, and S. W. Wilson (Eds.), 3-12.

Hercog, L. M. and T. C. Fogarty. 2001. "Social
Simulation Using a Multi-agent Model Based on
Classifier Systems: The Emergence of Vacillating
Behaviour in the ``El Farol'' Bar Problem".
Computer Science, No.2321, 88-114.

Holland, J. H. 1975. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor.

Holland, J. H. 1986. "Escaping brittleness: the
possibilities of general purpose algorithms applied to
parallel rule-based systems". Machine Learning
Journal, No.2, 593-623.

Kovacs, T. 2002. "Learning Classifier Systems
Resources". Journal of Soft Computing, No.6(3-4),
240-243.

Lanzi, L. 1999. "An Analysis of Generalization in the
XCS Classifier System". Evolutionary Computation,
No.7(2), 125-149.

Mac Namee, B. and P. Cunningham.2001. "A Proposal
for an Agent Architecture for Proactive Persistent
Non Player Characters". Department. Technical
Report, TCD-CS-2001-20, Trinity College, Dublin.

Robert, G.2002. "Contribution des méthodologies animat
et multi-agent à l'élaboration des jeux en ligne,
persistants et massivement multi-joueurs.".
http://animatlab.lip6.fr/Robert/index_fr.html

Sanza C. ; C. Panatier ; and Y. Duthen. 2000.
"Communication and Interaction with Learning
Agents in Virtual Soccer". In Proceedings of Virtual
Worlds 2000, J.-C. Heudin (Ed.), 147-158.

Stolzmann W. ; M. Butz, V ; J. Hoffmann ; and D.E.
Goldberg. 2000. "First Cognitive Capabilities in the
Anticipatory Classifier System". In From Animals to
Animats 6, J. A. Meyer, A. Berthoz, D. Floreano, H.
Roitblat, and S. W. Wilson (Eds.), 287-296.

Takadama K. ; T. Terano ; and K. Shimohara. 2000.
"Learning Classifier Systems Meet Multiagent
Environments". In Third International Workshop on
Learning Classifier Systems (IWLCS-2000), L.
Lanzi, W. Stolzmann, and S. W. Wilson (Eds.), 192-
210.

Wilson, S. W. 1994. "ZCS: A Zeroth Level Classifier
System". Evolutionary Computation, No.2(1), 1-18.

Wilson, S. W. 1995. "Classifier Fitness Based on
Accuracy". Evolutionary Computation, No.3(2),
149-175.

AGENTS,
BEHAVIOURS,

PLANNING
AND

MOTION

THE µ-SIC SYSTEM:
A CONNECTIONIST DRIVEN SIMULATION OF SOCIALLY INTERACTIVE

AGENTS

Brian Mac Namee & Pádraig Cunningham
Machine Learning Group
Dept. Computer Science

University Of Dublin
Trinity College

Dublin 2
Ireland

E-mail: Brian.MacNamee@cs.tcd.ie

ABSTRACT

Recent highly successful games have shown that there is a
demand for the personalities, moods, and relationships of
Non Player Characters' (NPCs) to be made the focus of
game-play. In order for this shift of focus to take place,
agent architectures used to create NPCs must be augmented
with models of these aspects of a character's persona, which
must then be used to drive characters' behaviour. This paper
will present a system which uses an Artificial Neural
Network (ANN) to simulate social behaviour amongst NPC
agents using quantitive psychological models of the aspects
of NPCs’ personas mentioned above.

INTRODUCTION

The success of games such as The Sims (thesims.ea.com)
and Black & White (www.bwgame.com) have shown that
there is a demand for the personalities, moods, and
relationships of Non Player Characters' (NPCs) to be made
the focus of game-play. In order for this shift of focus to
take place, agent architectures used to create NPCs must be
augmented with models of these aspects of a character's
persona which must then be used to drive characters'
behaviour.

Psychology offers a number of quantitive models of
personality, mood and inter-personal relationships which
can be used to capture these important aspects of a
character's persona. In order to use these models to drive
character behaviour we can turn to connectionist AI
techniques, and in particular Artificial Neural Networks
(ANNs). This paper will describe the µ-SIC system which
does just this.

The purpose of the µ-SIC system is to choose which social
interactions characters should engage in when placed within
a virtual environment with other characters. When a
moment within a simulation arises where a character is free
to engage in an interaction, the µ-SIC system is queried
with the character's personality and mood details, and their
relationship details to each of the other characters in the
same location who are also available for interaction. From

these queries a particular interaction with a particular
character is chosen.

This paper will begin with a short overview of a larger
project of which the µ-SIC system is a part. Following this,
a description of the psychological models used by µ-SIC
will be given. The actual implementation details of the
system will be described next, along with a short
description of a simulated situation which uses the µ-SIC
system. Finally, a discussion of the benefits and drawbacks
of µ-SIC will be given, along with some pointers as to how
the system can be improved.

PROJECT OVERVIEW

Although games are becoming ever more engaging, there is
a trend in current adventure and role-playing games for the
behaviour of computer controlled NPCs to be very
simplistic. Usually, no modelling of NPCs is performed
until the player reaches the location at which an NPC is
based. When the player arrives at this location, NPCs
typically wait to be involved in some interaction, or play
through a pre-defined script which can lead to very
predictable, and often jarring behaviour. In order to
overcome these limitations new models are required for
implementing game characters.

Although such models have not been widely used in
computer games, a number of architectures for creating
realistic characters have been developed. For example,
work led by Thalmann (Caicedo & Thalmann 2000) and the
Oz project (Mateas 1997) based on interactive drama have
both developed virtual human architectures. As part of the
TCD Game AI Project (Fairclough et al. 2001) the
Proactive Persistent Agent (PPA) (Mac Namee &
Cunnningham 2001) architecture is being developed for the
creation of NPCs which overcome the limitations typically
associated with computer game characters.

Agents based on the PPA architecture are proactive in the
sense that they can take the initiative and follow their own
goals, irrespective of the actions of the player. Persistence
refers to the fact that at all times, all NPCs in a virtual
world are modelled at least to some extent, regardless of
their location relative to that of the player.

mailto:Brian.MacNamee@cs.tcd.ie

This paper will focus on the PPA architecture's social unit
(implemented using the µ-SIC system) which is used to
drive characters' social behaviour and maintain their
relationships with both players and other NPCs.

USING PSYCHOLOGY TO MODEL NPCS'
PERSONAS

This section will describe quantitive models taken from
psychology which are used to model NPCs' personalities,
moods and relationships. However, before discussing the
models used, it is worth taking a moment to discuss the
criteria used for selecting suitable models.

The first selection criterion worthy of note is that the
models chosen need not necessarily represent the current
state of knowledge in cognitive science in all its aspects.
Our goal is to create characters which behave plausibly at
all times within a simulation, so models which achieve this
are enough.

The second important criterion for model selection is that
the models used should be as simple as possible. In order
for game designers to successfully use the PPA architecture
to place characters within their games, the models involved
must be simple enough so that the designer can understand
how they work, and more importantly how changing a
model's parameters might affect a character's behaviour.

In addition to the concern for usability, any system for use
in games must be efficient both in terms of memory usage
and computation required.

Personality Model

The first important factor of an NPC's persona which needs
to be modelled is personality, which will allow the creation
of characters with personality types, such as aggressive,
sociable, moody etc. From the whole myriad of
psychological models of personality available we have
chosen Eysenck's two dimensional classification of
personality (Eysenck & Rachmann 1965).

The Eysenck model plots a character's personality across
two orthogonal axes, introversion-extroversion and
neuroticism-stability. From (Lloyd et al. 1984), the
extrovert is said to be sociable, impulsive and open to new
experiences, while the introvert is quiet, serious and prefers
solitary experiences. The neurotic is contrasted with a
stable person by suffering from tension and interpersonal
difficulties. An illustration of the model, which shows the
positions of a number of the possible personality types, is
shown in figure 1.

It is worth noting that psychologists generally accept that
two axes is not enough to accurately model the whole
gamut of human personality types. Currently the most
sophisticated models, such as the OCEAN (McCrae &
Costa 1996) personality model, operate across five axes.
However, the use of more axes was deemed overly complex
for the purposes of game simulation, and the Eysenck
model was chosen as it remains one of the most respected
and well established personality models in psychological
theory (Lloyd et al. 1984).

Figure 1 The Eysenck Personality Model which Measures
Personality Across the Introvert-Extrovert and Neuroticism-

Stability Axes

Mood Model

The second psychological model used, simulates a
character's mood as it changes over time through
interactions with other characters or players. Again,
simplicity is key and a model (shown in figure 2) which
works across two axes has been chosen. An agent's mood is
measured according to valance and arousal, where valance
refers to whether the mood is positive or negative, and
arousal refers to the intensity of the mood.

Figure 2 The Lang Mood Model which Plots Mood
According to Valance and Arousal

This model has been used in computing applications before
(Picard 1995), and is originally due to Lang (Lang 1995).
Over the course of Lang's work, this model was used in
experiments wherein subjects were shown a number of
pictures with their reactions to these pictures plotted
according to the two axes. Some of these reactions are
shown in figure 2.

Relationship Model

The third model we use (shown in figure 3) simulates
agents' relationships with each other and players. The
model has been used in a number of other entertainment
projects, namely the Oz Project (Scott Neal Reilly 1996),
TALE SPIN (Meehan 1976), and UNIVERSE (Lebowitz
1985), and has its psychological basis in (Wish et al 1976).
Traditionally, four values are used to characterise the
relationship of one character to another. These are the
amount that a particular character likes another character,
how physically attracted one character is to another,
whether the characters are dominant or submissive towards
each other and how intimate the characters are.

To facilitate conversation, we have augmented this model
with a value indicating how interested one character is in
another. Conversation within the µ-SIC system is based on
a very simple model in which each character has a list of
subjects in which they are interested. When characters
engage in a conversation they simply pass these subjects
back and forth. Thus, characters are interested in one
another if they share a number of common subjects of
interest.

Figure 3 The Relationship Model Used which Plots a
Character's Relationship to Another Character

IMPLEMENTING THE µ-SIC SYSTEM

In order to use the psychological models just described to
drive social behaviour, we need a technique which can take
the current values of these models, and determine whether
an interaction should be started, and if so which one. An
ANN has been chosen to perform this task.

ANNs (Russell & Norvig 1995) are a class of machine
learning technique which is based on the manner in which
neurons in biological brains operate. ANNs can be used to
perform classification tasks in which a set of inputs
describing a particular problem case are presented to the
network, which then outputs its class.

The structure of the ANN used within the µ-SIC system is
shown in figure 4. The network used is a multi-layer
perceptron (MLP) network, with just a single hidden layer.
The network's input layer has nodes for the personality and
mood of the character who is attempting to instigate an

interaction, and their relationship to the current character
being considered for interaction. The output layer has nodes
for each of the possible interactions which the characters
can engage in.

Before an ANN can be used to perform classification, it
must be trained to recognise the different classes involved.
Training a network involves presenting a number of known
examples of the problem case to the network and adjusting
the network's internals based on how well the network can
recognise these training examples. In order to train the
network used in the µ-SIC system the back propagation of
error (or more succinctly BackProp) algorithm (Bishop
1995) was used.

Figure 4 The Structure of the ANN Used to Drive NPCs'

Social Behaviour

For training, a data set describing the problem space must
be acquired. Data acquisition is often a difficult problem,
and is particularly so for the µ-SIC system, as there are no
databases available which contain information on how
people interact. For this reason, an artificial data set was
created. A number of simulation situations were created and
populated with characters whose personalities were set
using the Eysenck model. Relationships between these
characters were then initialised and a group of people
determined which interactions these characters would
engage in as their moods changed over time.

Based on this initial data set (consisting of approximately
100 data elements) a number of interaction exemplars (data
items considered to be particularly fine examples of when
an interaction would take place) were identified. These
exemplars were used to determine the ranges of each input
value which would cause each possible interaction. Using
these ranges, a set of 2000 random data points covering the
set of possible interactions was created.

To determine the accuracy of the network a five-fold cross
validation was performed in which the network achieved an
accuracy of 85%, indicating that the output of the network
was consistent and coherent. Further to this high accuracy,
when the system produces incorrect predictions these are
rarely significantly incorrect. For example, the system may
produce a CHAT interaction rather than a JOKE interaction,

but will never produce an ASSAULT interaction instead of a
KISS interaction.

Figure 5 An illustration of how the µ-SIC System is
incorporated into a Virtual World

Only one copy of the µ-SIC system is stored within the
game engine, with NPCs querying this each time they are
free to begin a new interaction. For this reason the system
can be considered an oracle that advises NPCs on how to
behave (see figure 5).

Figure 6 A Screenshot of the Demonstration System
Developed

To determine the success of the µ-SIC system a simulation
example has been constructed in which a number of
characters have been placed within a bar environment, free
to interact with one another. A screen-shot of this
simulation is shown in figure 6. The simulation successfully
demonstrates the full range of possible interactions and how
relationships between the characters within the simulation
evolve as the simulation progresses.

CONCLUSIONS

The purpose of this work is to develop a system which can
be used within a larger agent architecture to allow NPCs

within computer games perform social interactions with
other NPCs or players, based on their personalities, moods
and inter-personal relationships. The system achieves this
by simulating these aspects of a character's persona using
quantitive models from psychology. These models are used
as inputs to an ANN which determines which interactions
the character should engage in, with which other characters.
This ANN has been trained with a data set generated from a
small set of hand coded interactions. The µ-SIC system
successfully performs a comprehensive range of social
interactions based on the data set produced, and a
simulation example has been created to demonstrate this.

Although the system is quite successful in its present state,
one addition to the system has been identified which could
improve the system considerably. At present characters
engage in simple interactions wherein one character
performs an interaction, and the other character reacts, thus
ending the interaction. In order to more accurately model
the cut and thrust of conversation, an extra input node
indicating the previous interaction which the characters
were involved in could be added to the network.

In this way context would be explicitly added to the
interaction model, allowing interaction sessions to evolve
through different interaction modes. So, for example, two
characters might start by chatting, find they have little in
common and so start to insult each other, and finally end
their interaction by assaulting one another. Although this is
possible in the current system it would be spread across a
number of interaction sessions. The major drawback to this
extension to the model is that an order of magnitude more
data would be required for training. As previously
discussed, data acquisition is difficult although the
techniques discussed previously could be used.

REFERENCES

Bishop, C.M., “Neural Networks for Pattern Recognition”,
Clarendon Press, Oxford, 1995.

Caicedo, A. & D. Thalmann, “Virtual Humanoids: Let them be
autonomous without losing control”, The Fourth International
Conference on Computer Graphics and Artificial Intelligence,
2000.

Eysenck, H.J. & S. Rachman, “The Causes and Cures of
Neuroses”, London: Routledge and Kegan Paul. 1965.

Fairclough, C., M. Fagan, B. Mac Namee & P. Cunningham,
“Research Directions for AI in Computer Games”, Proc. of the
12th Irish Conference on AI and Cognitive Science, 2001.

Lang, P. J., “The Emotion Probe: Studies of motivation and
attention”, A study in the Neuroscience of Love and Hate.
Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers, 1995.

Lebowitz, M., “Story-Telling as Planning and Learning”, In
Poetics. Vol. 14. No. 6. December 1985.

Lloyd, P., A. Mayes, A.S.R. Manstead, P.R. Meudell & H.L.
Wagner, “Introduction to Psychology: An Integrated Approach”,
Fontana Paperbacks, 1984.

Mac Namee, B. & P. Cunningham, “Proposal for an Agent
Architecture for Proactive Persistent Non Player Characters”,
Proc. of the 12th Irish Conference on AI and Cognitive Science,
2001.

Mateas, M., “An Oz-Centric Review of Interactive Drama and
Believable Agents”, Technical Report CMU-CS-97-156, School
of Computer Science, Carnegie Mellon University, Pittsburgh,
PA. 1997.

McCrae, R. R., & P. T. Costa Jr., “Toward a new generation of
personality theories: Theoretical contexts for the five-factor
model”, In J. S. Wiggins (Ed.), The five-factor model of
personality: Theoretical perspectives (pp. 51-87). New York:
Guilford. 1996.

Meehan, J., “The Metanovel: Writing Stories by Computer”,
Research Report #74. Computer Science Department, Yale
University. New Haven, CT. 1976.

Picard, R.W., “Affective computing”, Perceptual Computing TR
321, MIT Media Lab, 1995.

Russell, S. & P. Norvig, “Artificial Intelligence: A Modern
Approach”, Prentice Hall, 1995.

Scott Neal Reilly, W., “Believable Social and Emotional Agents”,
Ph.D. Thesis. Technical Report CMU-CS-96-138, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA.
1996.

Wish, M., M. Deutsch & S. Kaplan, “Perceived Dimensions of
Interpersonal Relations”. In Journal of Personality and Social
Psychology. Vol. 33. No. 6. April 1976.

A Physics-Based Motion Control Algorithm for Dynamical Game Environments

H. Cheng ,T. R. Wan and R Earnshaw
Department of Electronic Imaging and Media Communications, School of Informatics,

University of Bradford, Bradford, West Yorkshire, UK, BD7 1DP
E-mail: H.Chen3@Bradford.ac.uk;T.Wan@bradford.ac.uk; R.A.Earnshaw@Bradford.ac.uk

KEYWORDS
Physics and Simulation, Motion optimization, path
planning, dynamical environment, navigation.

ABSTRACT

We propose a novel physics-based motion-optimisation
algorithm called Adaptive Dynamic Points of Visibility
(ADPV) for navigation of vehicles or moving agents in
dynamical un-configured environments, which computes a
collision-free, time-optimal motion track for the moving
objects. Our approach is able to deal with the obstacle-
space unknown or partly unknown to the moving agent. It
therefore solves the drawbacks of traditional obstacle-space
configuration methods. A physical model of moving agents
such as a vehicle or an aircraft is also developed, which is
addressing the manoeuvring capabilities of the moving
agents, while the moving agents' accelerations and
velocities are always continuous and bounded. The
generated motion path is constituted smoothly and has
continuous curvature on the whole state space of the
motion thus satisfying the major requirements for the
implementation of such strategies on physically-real game
or VR systems.

INTRODUCTION

Path finding and motion control has received considerable
attention in recent years, the basic problem of which is
about performing navigations: moving from one place to
another by co-ordination of planning, sensing and control.
Navigation may be decomposed into three sub-tasks:
mapping and modelling the environment; path planning
and selection; and path following and collision avoidance
[1]. Path-finding is properly the most popular and
frustrating—game AI problem in computer game industries
[2] [3]. Early works were concentrated on offline planners;
the planner uses the map of the environment to produce a
path. These algorithms have the common ground in which
the system has full information about the environments [4]
[5].

Conventional approaches for virtual moving agents in
computer game applications or VR environments are to
solve path-planning problems. Path planning for
autonomous moving agents for example, a vehicle, is
typically stated as getting from one place to another. The
vehicle must successfully navigate around obstacles, reach
its goal and do so efficiently. A number of approaches to
the problem of path-finding have been reported. Most of
the successful approaches lead to some sort of graph search

problem [6]. An approach called line intersection was
proposed when the data consist of only geometrical objects.
The objects here cannot be passed through and all the space
not occupied by an object were considered unobstructed
with no variation in vehicle speed or other parameters. The
idea was to construct the convex hull of all objects using
vertices and connect all vertices with edges. These edges
are then been filtered for finding the shortest valid path
between source and destination along a series of edges
using standard graph algorithms. These methods suffer
from the problem of rapidly increase in computational time
and memory for large and complex maps [7] [8]. Another
popular approach is called weighted graph [9], which
divides search space into a number of discrete regions,
called cells, and restrict movement from a particular space
cell to its neighbour. Neighbouring cells are those that can
be directly reached from a particular cell. A weight
function is defined by a cost to the connection between
neighbour cells [9] [10]. A* is the most popular algorithm
of this kind, which uses the weighted graph idea. Recently
an approach called path planning algorithm D* [11] [12]
has been reported, which resembled the A* algorithm for
applications in partially known environments, and only
achieved limited success [12].

Inspired by the research achievements above, we propose a
new approach for motion modelling for autonomous
moving agents such as a vehicle or aircraft in virtual
environments. Our method is based on path-finding A*
algorithm. We modify the conventional method by
developing a dynamical point detection and creation
system, which allows the system to update its optimised
node system based on the viewed vision field rather than
the pre-configured environments. Our method is capable
of dealing with dynamic unknown environments and is
very efficient in terms of computational cost. The aim is
not only to move from one place to a targeted place but
also how to move to the targeted place.

CONTROL ARCHITECTURE OF OUR APPROACH

The task is the motion control for self-controlled moving
agents to move through a field of obstacles to a goal. There
are two subtasks: to find and predict an optimised path
through the field of obstacles in terms of obstacles or path
nodes; to control the motion parameters of movable agents,
such as a vehicle, to let it move following such the track
path predicted. We use the information from the virtual
vision sensor to identify the key obstacle points and edges,
then create and add the obstacle nodes and path nodes to
the vision system. One of the advantages of our approach is

Updating
position

Path
prediction

Motion
Implement
ation

Tracking
control

State
Machine

Virtual sensor Environments Agent

Motion
planning

Figure 1: The architecture of the motion control system

that the generated desired or predicted track path is
dynamic but it is not necessarily the ones the movable
agent must pass exactly at a given time and the actual
motion track is therefore smoother in terms of curvature.
The position errors between exact desired path nodes and
the actual motion track are then used to modify the motion
parameters. Another advantage over other methods is that
our approach is quite robust with respect to measure errors
and external disturbances. If both errors and the
disturbances are within certain bounds, the algorithm can
still work properly. The architecture of the system is shown
in Figure 1.

There are a number of key issues related to the
development of our control system; we will discuss them
respectively in the following sections.

ENVIRONMENTAL CONFIGURATION

The first issue is concerned with map representation.
Approaches for environment representation to path
planning for moving agents can be broadly classified into
two categories: using exact representations of the world
and using a discrete representation. The computational
complexity is a function of the number of obstacles and the
number of obstacle facets, which we can not normally
control. In contrast discrete representation is that adjusting
the cell size can control the computational complexity.
There are several ways of partitioning the state space. They
all have merits and disadvantages, such as using regular
grid, quadtree and etc. [12] [13]. The method of using
points of visibility was reported however it was concerned
mainly with obstacle avoidance [13]. Methods that use
uniform grid representations must allocate large amounts of
memory for regions that may never be traversed or contain
any obstacles and the resulting path can be suboptimal.
Another problem of regular grid is the resulting path, which
only has several directions. (8 directions in 2D and 26
directions in 3D) Quadtree and framed quadtree can
remedy these problems, quadtree allow efficient
partitioning of the environment since single cells can be
used to encode large empty regions. Framed quadtree add
cells of the highest resolution around the perimeter of each
quadtree region. But either quadtree or points of visibility

are static configuration methods. They can hardly work
under real-time unknown environments.

In order to overcome the problems confronted, our
approach uses a new method called Dynamic Points of
Visibility (DPV), which allocates the points of visibility
dynamically. It is a dynamic configuration method, which
does not only choose the key visible points beyond vertex
of obstacles (because such strategy has the tendency to
make the moving agent move closer to the obstacle and
lose optimal when obstacles are only sparsely distributed).
In each step during detection, we uniformly decentralise
the view angle and build state node corresponded.

VISION FIELD AND OBSTACLE DETECTION

The Visual sensor System

In our system the "visual sensor" captures the information
about the environment. In fact, it is a simple method to
compute which parts of objects could be seen from the
location of the AGA (autonomous guided agent), not really
calculate the distance from the sequence of images. As
imaging system of a camera and human eye performs
perspective projection, all points along a line pointing from
the optical centre towards the location of AGA are
projected to a single point. Use the co-ordinates of the
point, which is nearest to the AGA to denote the projected
point. We assume all the obstacles are not transparent, so
mutual occlusion of objects and self-occlusion play a key
role. We also define the maximum detection distance and
view angle. All the obstacles out of the maximum detection
distance or view angle would be supposed to be invisible.
If in one direction there is no obstacle within the maximum
detection distance, we can use the point at the end of the
detection distance as the flag in this direction. Below we
will give some simple examples.

Figure 2 illustrates the mutual occlusion and self-occlusion.
As shown in the figure above. As shown in the figure, from
the current viewpoint, we could see obstacle A and part of
obstacle B.

THE DYNAMICS OF MOVING OBJECTS AND THE
MOTION CONTROL STRATEGY

Capturing all the motions of a movable object into
analytical equations can be quite difficult, although using
more elements in the model may increase the model’s
accuracy. In our work, we use a simple lumped moving
object as an example for illustrating the method as shown
in figure 3.

View field B

 A

The moving agent model developed has six degrees of
freedom. The dynamics of the model can be represented as
a set of motion parameters in terms of mass, accelerations
and steering angles as well as external force conditions,
such as air resistance or ground frictions. The dynamics of
a moving autonomous agent must follow the basic law of
motion, which may be represented as a set of general
ordinary deferential equations in the form:

Viewpoint

Figure 2: An example of vision field

ADPV Algorithm),(δXf
dt

dX
= (1)

Adaptive dynamic points of visibility is implemented to
partite the obstacle-space and choose A* algorithm to
complete the optimal search. At any location of the
environment, we could find the points of visibility that are
concerned with the co-ordinate of the vehicle. The
information perceived is analysed and resultant key points
are recorded and used to construct memorised path nodes.
Use the angle to partition the obstacle-space, keeping a safe
distance from the point of intersection if in some direction
there are obstacles. The cost function is formed to consider
three factors: the distance from the current location to the
state node, the heuristic distance of the state node and the
distance between current location and obstacles. Use
penalty to make the state node with no obstacles gain
higher priority. Then choose the lowest cost state as the
local goal; keep iterating until reach the destination.

where, X ∈ ℜ which is the state space of the moving agents,
and δ is the motion control input. We can recast the
equation for our motion optimisation problem in the form

^
ˆ

))ˆ,(,(ˆ ˆ







=

+=

dt
dXX

XfX
dt

dX a

&

& θδ
 (2)

where, X̂& , â and θ̂ are approximate values of motion
velocity, acceleration and moving direction (i.e. a steering
angle) respectively, and the motion control δ is a function
of acceleration a and moving direction θ. A desired or
predicted motion state of the moving object is pre-
estimated at a time by a set of approximate functions
according to the state of moving object and the
environment conditions related to the surrounding
obstacle–space, and the actual motion track is then
computed. The difference between the predicted motion
and the actual motion will be used for estimating the
control input to the motion system above.

ADPV is a dynamic configuration method; it could satisfy
the request of working under unknown environments. The
advantages of this map representation method are: firstly
this representation permits as many angles of direction as
required, instead of just eight angles as in the case of
regular grids. The second advantage of this representation
is that it is dynamic and independent on the size of the
obstacles. We do not need to think about the size of
obstacles. For example, if there is a big difference between
obstacles, we can choose big cell to partition the obstacle
space. The generated path will stay far away from optimal
paths, if we choose the small cell to partition the obstacle
space, the memory needed will be high and the safety
distance from obstacles will be small. Another advantage is
that we also have the information about the distance
between current location and obstacles in each direction.
Not like uniform grid, the preview distance is a fixed
constant. This is useful in motion control. In other words,
the paths generated and the motion character approximates
more closely optimal one.

obstacles

a
m m

Figure 3: Motion dynamics

t

fc

V, X(x,y,z) at

θt

fc Vt, Xt(x,y,z)

SIMULATION RESULTS

Figure 4: A simulation of aircraft navigation

We have implemented the algorithm in a 3D virtual
environment and completed a number of simulation tests.
Figure 4 is a simulation of a low flying aircraft, which
conducts a collision-free navigation in a virtual obstacle-
space.

Figure 5.1: Path generated using uniform grid map
representation (A* algorithm

Figure 5.2: Path generated by the new method, using small
velocity value while steering

Figure 5.3: Path generated by the new method, using large
velocity value while steering

Figures 5.1, 2 and 3 show the 2-D simulation results using
uniform grid map representation (the A* Algorithm, using
the new method and small velocity values while steering
and using large velocity values whilst steering
respectively). It clearly demonstrates the power of the new
method using DPV based algorithm.

CONCLUSION

A physics-based motion modelling algorithm for automatic
control of the motions of vehicles or moving agents in a
dynamical unconfigured environments is proposed, which
provides a collision-free, time-optimal motion tracks for
the moving objects in real time. The simulation result is
promising. Adaptive Dynamic Points of Visibility (ADPV)
is implemented for representing the obstacle-space, which
provides more motion options for moving agents, such as
vehicles or air crafts, and is independent on the size and
co-ordinates of the obstacles. Together with the physics-
based agent motion model, the motion track generated has
continuous second derivation, guaranteed the steer angle
and yaw rate is continuously changed and thus satisfying
the major requirements for the implementation of such
strategies on physically-real game or VR systems. The
next step for our research is to refine the algorithm and to
implement it in applications of complex games or VR
environments.

REFERENCES

[1] Prof.Gh. Lazea; As.E.Lupu, “Aspects on path planning

for mobile robots”, Technical University of Cluj-
Napoca Automation Department.

[2] Okan Arikan, Stephen Chenney, D.A.Forsyth
“Efficient Multi-Agent Path Planning”.

[3] Stephen R.Tate, “Arithmetic Circuit Complexity and
Motion Planning”, dissertation for the degree of
Doctor of Philosophy in the Department of Computer
Science in the Graduate School of Duke University.

[4] Dhanesh padmanabhan, “Optimal 2-D Path Planning”,
AME 598-Final project report.

[5] Latombe, J.-C., “Robot Motion Planning”, Kluwer
Academic Publishers, 1991.

[6] F.Markus.Josson, “An optimal pathfinder for vehicles
in real-world digital terrain maps”, the Royal institute
of Science, School of Engineering Physics, Stockholm,
Sweden.

[7] M. Montgomery et al., “Navigation algorithm for a
nested hierarchical system of robot path planning
among polyhedral obstacles”, Proceedings IEEE
International conference on Robotics and Automation,
pp. 1616-1622, 1987.

[8] P. D. Holmes and E.R.A. Jungert, “Symbolic and
geometric connectivity graph methods for route
planning in digitized maps”, IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol, 14,
no.5, 1992, pp549-565.

[9] S. M. Woodcock, “Artificial Intelligence in Games”.
[10] J. C. Lonningdal, “Smart unit navigation”.

http://www.lis.pitt.edu/~john/shorpath.htm, 1996.

[11] Anthony Stentz and martial Hebert, “A Complete
Navigation System for Goal Acquisition in Unknown
Environment”, In Autonomous Robots, Volume,
Number 2, August 1995.

[12] Alex Yahja, Anthony Stentz, Sanjiv Singh, and Barry
L. Brumitt, “Framed-Quadtree Path Planning for
Mobile Robots Operating in Sparse Environments”, In
Proceedings, IEEE Conference on Robotics and
Automation, (ICRA), Leuven, Belgium, May 1998.

[13] Bryan Stout, “The Basics of A* for Path Planning”.

COORDINATING AGENT MOVEMENTS IN A SEMI-CONCURRENT
TURN-BASED GAME OF STRATEGY

Tristan Pannérec

Laboratoire d’Informatique de Paris VI, Pôle IA, 4 place Jussieu,
75005 Paris, France

Tristan.Pannerec@lip6.fr
http://www-poleia.lip6.fr/~pannerec/

KEYWORDS
AI, semi-concurrent games, tactical coordination, simulta-
neous movement planning, search, meta-architecture.

ABSTRACT

In semi-concurrent games, each player simultaneously
moves a set of agents, the object of the game being to tacti-
cally coordinate these movements to maximise the winning
chances. In this paper, we present such a game, discuss the
problem it poses and report the use of our MARECHAL
framework to model the tactical expertise, which deals with
fighting moves. The results show that our AI opponent can
globally play at an experienced human player level.

INTRODUCTION

Semi-concurrent games are an interesting research field that
has received less attention than alternated games. In semi-
concurrent games, each player can program several actions
at the same time. For example, he can move each agent he
owns instead of moving one piece at a time like in chess. At
a tactical level, the problem is then to coordinate the agents’
moves by planning a coherent solution in order to maximise
caught enemy pieces and minimize the chances of his own
pieces being caught. While movement coordination prob-
lems in RTS games are more concerned with collisions and
formation movements (Pottinger 1999), we put emphasis on
deep tactical combinations, when losing a single agent can
lead to immediate defeat. Turn-based semi-concurrent sys-
tems are often used in board games or military simulations
because they are more realistic. But they are not frequent in
computer games, probably because of the difficulty to de-
sign an AI opponent. Theses systems pose an interesting
challenge to AI researchers, because they cannot be tackled
by classical search methods.

In this paper, we will be dealing with building an AI oppo-
nent for the “StrateGE” game. Following a description of
this game, the second section of this paper will discuss the
problem and explain why it cannot be tackled by classical
methods. To build an AI opponent, we have used our
MARECHAL framework, which is described in section 3.
This system contains original features, which have been
essential for this application. In section 4, we describe the
knowledge we have given to the system concerning the
tactical part of this game and in section 5 we report the
results we have achieved.

THE PROBLEM

“StrateGE” is a two player game of strategy where the
objective is to plan paths for a set of pieces on a discrete
board in order to catch enemy pieces and control some
predefined locations (cf. Fig 1 for a screenshot). StrateGE
(with the AI opponent) is distributed as a freeware and the
beta-version can be downloaded at www-
poleia.lip6.fr/~pannerec/stratege/ (the game can be played
with all Windows systems). In this section, we will first
summarize the rules of the game and then briefly discuss
the difficulties of the problem and present our approach.

Fig 1: Screenshot of the Game with a Solution

Game Rules

The game is played on a 3D board where each
one of the three following types: normal, bonus
den, with some squares being marked as obje
piece is defined by a colour (black or white, d
the player), a type (square, triangle or round) a
II or III), which indicates the “basic power” o
During the game, the rank of a piece can be v
temporally modified depending on the situation.

Bonus square

Objective

Rank of
the piece

Number of
the piece

Type and colour
of the piece

Higher level
Path of
piece B21

 for Black.

 square has
 and forbid-
ctives. Each
epending on
nd a rank (I,
f the piece.
irtually and

mailto:Tristan.Pannerec@lip6.fr
http://www-poleia.lip6.fr/~pannerec/

The game is played during a fixed number of turns. Each
turn unfolds as follows: the black player programs paths for
all his pieces and then activates the automatic resolution of
the moves (the computer simultaneously moves the pieces
according to the programmed paths and applies catch rules
when it is required). The white player then plays in the
same way. When the game ends, the winner is the player
that controls (by owning the closest piece) the maximum
number of objectives. The initial and final conditions are
not predefined: the size of the board, the number of in-
volved pieces, the type of each piece, the type of each
square and the locations to control can be defined for each
new game and initial positions of pieces are usually set
randomly.

Depending on their type, the pieces can move two or four
squares in any of the eight directions. Only square pieces
can enter bonus squares and no piece can move in a forbid-
den square. When two enemy pieces become adjacent, they
stop and cannot move until one of them is destroyed.

When the player has finished his moves, the program stud-
ies the possibilities of capture. When a triangle or round
piece is adjacent to an enemy square situated in a bonus
square it is automatically caught. Except in this case, a
piece is caught if it is adjacent to an enemy piece with (at
least) a rank higher than two levels. For the capture process,
we consider virtual ranks with the following conditions
modifying the basic ranks:

Non moving triangle: +1
Moving round: +1
Square on bonus: +1
For each ground level: +1
For each adjacent enemy piece: -1 (mass principle)

Difficulties

The game we have just described is an interesting applica-
tion for research in methods allowing to deal with semi-
concurrent games. This is a two-player game that falls in
the deterministic and zero-sum games categories and is a
kind of link between classical games like chess and military
simulation games. But, in some aspects, this combination
leads to a more difficult problem.

Compared to simulation games, there is no random factor
and results are binary. This means that the depth of the
game is reinforced and that most precise anticipations and
optimisations are necessary. In particular, the exact amount
of force needed to catch a piece has to be precisely antici-
pated because under- and over-affectations result in penal-
ties. Thus in the tactical part of the game, players face a
complex discrete optimisation problem. In the strategic
part, they have to foresee the long term control of the objec-
tives.

Due to these particularities, the problem cannot be tackled
by existing methods for classical games or simulation
games. The branching factor (from 950 to 9250) prevents the
use of classical game tree search (Allis 1994) and classical
AI approaches for video game (such RTS games) do not
address this problem (Woodcock 2000; Nareyek 2001).

The problem is theoretically the generation of a distributed
plan (Durfee 2001). However, it contains an abstract level:
we can first search a target location for each piece and then
compute a path toward this location. The pathfinding phase
can easily be tackled by an A* algorithm (some conflicts in
the set of paths have to be managed but it can be done by a
basic backtrack process). As the core problem is then to
define target locations, it belongs to the class of non-
constrained affectation problems. Classical metaheuristic
approaches for optimisation problems (Yagiura and Ibaraki
2000), like Genetic Algorithms, Tabu search or simulated
annealing are usually applied to this kind of problem, but
they do not fit well with problems where the evaluation
function is time-consuming and they cannot take into ac-
count complex expertises when they are available to limit
the exploration.

A decentralized problem solving approach could also be
used in our case (Durfee 2001) and has been initially ap-
plied with poor success: it was impossible to convert the
expert centralised expertise to a decentralised expertise and
no efficient coordination emerged.

Specific work on tactical movement coordination in TBS
(turn-based systems) includes B. Stilman’s Linguistic Ge-
ometry (Stilman 2000), which uses negation trajectories,
but this concept does not apply in our game. Few other
academic research has been carried out on semi-concurrent
TBS.

OUR APPROACH: THE MARECHAL SYSTEM

The MARECHAL system is a generic framework that al-
lows one to integrate complex domain-specific knowledge
with automatic search processes for combinatorial optimi-
sation problems. Excluding the “StrateGE” game, it is cur-
rently applied to several industrial problems like time-
tabling or automatic component placement in printed circuit
board layout.

The first principle of the system is to extensively use spe-
cific knowledge, which is declaratively defined in a particu-
lar language. Thus, one can give problem decomposition
knowledge, solving plans, rules bases and heuristics. With
this knowledge, the system is able to estimate choice possi-
bilities, to work at abstract levels and to quickly produce
good solutions. An example of a solving plan (to issue
operational order, cf. section 4) is given in Fig 2 and Fig 3
contains a simplified rule (to evaluate counter-attack possi-
bilities).

// Operational assignment of pieces for
// attack intention of target ($x $y)
#sub-problem IntentionAtk($x $y $o)
Method:
(// init : $v <- amount of force to send
 INST_MATCH[ForceAmount(Intention(
 attack(point($x $y))) val($v))]
 LET[$n current_session]
 LET[$m current_sp]

 // Assignment
 WHILE BEST_FACT[PossOpOrder(piece($g)
 attack(point($x $y))))

 option(loc_res($g))]
 DO
 (ADD_FACT[OpOrder(piece($g)
 attack(point($x $y)))]
 IF ($o != 0) THEN
 ADD_FACT[meta_info(
 r_seg($m)
 r_seg($n)
 choice(Assign(piece($g)
 Objectiv($o))))]
 RM_FACT[PossOpOrder(piece($g) ?0))]

 LET[$v ($v-((Quality($g)-1)/2))]
 IF ($v < 1) THEN
 RM_FACT[PossOpOrder(piece(?0)
 attack(point($x $y))))]
)
).
#end

Fig 2: Example of solving plan

//---------------------------------------
// Base-49: Compute attack interest for
// a counter-offensiv
//---------------------------------------
#rules-base BaseOffens($h $s $a)

(FOR_ALL[Engaged(piece($u))]
 (Side($u) == (3 - $s))
 (Ratio(sit($h) piece($u)) < Threshold)
 LET[$x PosXi(sit($h) piece($u))]
 LET[$y PosYi(sit($h) piece($u))]
 (OnFrontLine($x $y $h) > 0)
 LET[$b NbNCAdj($x $y $h (3 - $s))]
 ($b > 0)
 LET[$d Degree($h $x $y $s)]
 LET[$f Force(piece($u))]
 LET[$r ((MaxAtkFactor($s) - $f)
 + (2 * ($b - $d)))]
 ($r > 3)
 HIGH_R[$r 2 10 decrease 100]
)GOOD (100) TO_DO
 ADD[study(point($x $y))].
#end

Fig 3: Example of rule

But the system is not the slave of this knowledge, which
can never be perfect. The sub-problems are given with
goals and criterions and an iterative search process is real-
ized for each sub-problem, because the first produced solu-
tions are often not the best ones. Specific (meta-) knowl-
edge can then be given to control and limit the need for
search (Pannérec 2002b), but the system can also use do-
main-independent mechanisms.

The system is based on a meta-level architecture consisting
of two parts. The first part is responsible for constructing
solutions by using the normal knowledge (Pannérec 2002a).
The second part observes the first part (Pitrat 1991), allo-
cates time resources for each sub-problem and sends orders
to cancel choices and regenerate the solutions to explore
new areas. By means of constraints it thus directs the first
part towards good solutions. In particular, domain-
dependant heuristics can be given to this level to select and
evaluate improvement possibilities for a current (partial)

solution (Pannérec 2001). These heuristics can be based on
an analysis of the current solution and the reasoning that
has produced the solution. Thus, the system reasons at a
meta level on its own reasoning to control it in the best
way.

THE TACTICAL EXPERTISE

To build an AI opponent for the “StrateGE” game, we have
designed decomposition, construction, evaluation and im-
provement knowledge for the MARECHAL system. These
expertises are large: about 30 solving plans, 285 rules be-
longing to 80 bases and more than 300 concepts, which
totalises 7000 lines of declarative knowledge and 11000
lines of C++ for the perception/interface functions. These
expertises are also complex: some plans have 100 instruc-
tions and some rules have 50 premises. With sometimes
recursive plans and an improvement mechanism, which
continually leads to choice cancelling and partial new exe-
cutions, the emergent reasoning is very complex. For these
reasons, it is outside the scope of this paper to describe
precisely the given knowledge and the resulting solving
process. We will just give a brief and informal overview of
the tactical expertise, which deals mainly with fighting
moves.

As for many mind games, the destruction of the enemy
forces is the first mean to win the game and mastering the
capture aspect is thus the first required capability to play
the “StrateGE” game. So, the system puts an emphasis on
close, friendly and enemy pieces and study friendly/enemy
possibilities of capture, pieces protections etc. For this
tactical expertise, the horizon of anticipation does not run
over two half-turns and the goal is simply to maximize the
difference between enemy and friendly numbers of caught
pieces. To achieve this, the system uses three sub-problems
as shown in Fig 4.

The “
ber o

e
Piece’s impor-
tance evaluation
Fig 4: Tactic sub-

Offensives” sub-prob
f enemy caught piec

Fighting
moves
problem deco

lem tries to m
es after the

s

Endgame
moves

Offensives
 Defence
 Counter-off.
Catching
a piece
Defending
a piece
Protecting
a piece

Catching2
Multiple
sub-pb call
 Withdraw
Tactical expertis
mposition

aximise the num-
friendly movement

phase by using attack moves. The “Defences” sub-problem
tries to minimise friendly caught pieces after the friendly
movement phase by adding moves to defend threatened
pieces. The “Counter-offensives” sub-problem does the
same thing but after the enemy movement phase. That is, it
anticipates enemy moves against weak friendly pieces and
tries to prevent them.

Each of these three sub-problems function roughly on the
same basis: the system evaluates pieces to attack/defend
(abstract level choice) and eliminates a priori impossible
catches (too strong pieces or unfavourable local environ-
ment). It then calls another sub-problem for each selected
piece. For example, the “Catching a piece” sub-problem
searches for a set of paths which allows to catch the given
piece and to optimise some secondary objectives such as
fixing the maximum number of enemy pieces and minimiz-
ing the involved friendly pieces.

Although our system is mainly knowledge-based, it con-
tains a powerful search mechanism, which prevents imper-
fections in the knowledge. We can actually never give a
perfect knowledge so that the system will always reach the
optimal solution. Thus, for each sub-problem, the system
studies the generated solutions and runs iterative improve-
ment cycles. For example, in Fig 5, the first constructed
solution does not allow to catch the white piece because B8
cannot intervene (we use the notation Bx to designate the
black piece #x and Wx for the white piece #x). The system
understands this during the evaluation of the solution and
after one improvement cycle, the good solution is found.

Fig 5: Example of Improvement Results for the Sub-
Problem « Catching a Piece »

At a higher level, for the “Offensives” sub-problem, the
system tries different attacking methods to allow captures
that were impossible before. An example is given in Fig 6,
where the use of B8 instead of B2 against W31 allows
catching W33 after the first improvement cycle. For the
“Counter-offensives” sub-problem, taking into account of
the incoming opponent’s moves greatly complicates reason-
ing.

Fig 6: Example of Improvement Result for the Sub-
Problem « Offensives »

In addition to local sub-problem improvements, the system
manages the dependencies between the sub-problems. For
example, at the “Fights” sub-problem level, the system tries
to optimise the global result of all sub-problems. It can, for
example, cancel the capture of one enemy piece to prevent
the resulting capture of two friendly pieces. It can also
change moves to minimize enemy pressure on friendly
pieces as in the situation seen in Fig 7: sending B7 to “A”
instead of “B” maintains the capture of W42 and prevent
the white counter-attack.

Fig 7: Example of Impro

These simple examples sh
combinatorial dimension
not allow finding an optim
ers. Of course, although
paper, the strategic expe
with global resource allo
in order to maximize the
tem is thus able to genera
orders for each unit.
tack/defend/threaten acco
tions such as the initiative

RESULTS

In previous work (Panné
system only on sub-prob
complete game evaluatio
games between the system
have first compared it
where we try to optimise
those defined for the M
already pointed out, thes
results because of the tim
(it requires moves antic
genetic opponents have
GA-1 had one minute fo

 B

Not
caught
A

vement

ow the
of the t
al solu
it has n
rtise is
cation a
 probab
te strat
It ch

rding to
 factor.

rec 200
lems. N
n. We h

 and s
to a cl
the sam
ARECH
e kind
e neede
ipation
been te
r its rea

for Sub-Problem «Fight».

 underlying difficulty. The
actical problem does often
tion, even for human play-
ot been described in this
also important and deals
nd long term manoeuvres
ility of winning. The sys-
egic plans and operational
ooses objectives to at-
 global behavioural inten-

2b), we had evaluated the
ow, we are concerned by
ave thus run hundreds of
ome other opponents. We
assical genetic algorithm,
e evaluation functions like
AL system. As we had

of methods achieve poor
d to evaluate each solution
and catching tests). Two
sted : GA-1 and GA-10.
soning, which allowed 30

generations out of a population of 70 individuals. GA-10
had ten minutes, which allowed 100 generations out of a
population of 200 individuals. Several different coding
methods have been tested and we report only the best re-
sults obtained with GA. We then compared the system with
several human players : BH (a beginner human player), EH
(experienced human player) and XH (expert human player).
We have also run tests between the complete system
(MRC) and without the improvement process (MRC-NI).
Tests have been run on ten turns games with a set of 25
pieces of all types for each side and six different boards
(with different size, terrain and objectives positions).

For each game, we considered the score in terms of con-
trolled objectives and compute averaging scores on all
games. The results have been summed up in Fig 8 by using
“MRC” as a reference. These results should be read as
follows: when MRC plays versus GA-1, it will control in
average four times more objectives than GA-1 at the end of
a game.

0%

20%

40%

60%

80%

100%

120%

140%

160%

Pl
ay

in
g

le
ve

l /
 M

R
C

 in
 %

GA-1 GA-10 BH MRC-NI EH MRC XH

Fig 8: Global Playing-level Comparison

The results show that our system plays nearly at an experi-
enced human player level, which is a good result if we
consider the difficulty of the problem, the numerous miss-
ing concepts in its knowledge base and the rapidity of its
play. When an expert human player needs at least two min-
utes (5 for an experienced human and sometimes 10 for a
beginner), the MARECHAL system plays on average in 2.3
seconds on a Duron 700Mz (1.4 seconds without the im-
provement process). For the moment, the system is clearly
below an expert human player, mainly because of its con-
struction expertise, which is very incomplete (no use of the
immobilisation concept…), and because of its strategic
anticipation function, which is also very imperfect.

CONCLUSION

In this paper, we have described a semi-concurrent game
and the underlying difficulties posed by such a problem to
design an AI opponent. We have then reported how the
MARECHAL framework has been applied to this game and
how the required domain-dependent knowledge has been
defined to coordinate tactical fighting moves. Experimenta-
tions have showed that the system plays at an interesting
level, although it is for the moment below an expert human
player. Its level is still lacking in knowledge. Our approach

could easily be adapted to deal with move planning and
coordination in simulations such as military training tools
or simulation games that involves numerous agents moving
or acting simultaneously.

REFERENCES

Allis L. V. 1994. "Searching for solutions in games and artificial
intelligence". Ph.D. Thesis, Vrije Universitat, Amsterdam.

Durfee E.H. 2001. "Distributed Problem Solving and Planning".
LNCS vol 2086.

Pannérec T. 2001. "Using Meta-level Knowledge to Improve
Solutions in Coordination Problems". Research and Develop-
ment in Intelligent Systems XVIII, Springer, Cambridge.

Pannérec T. 2002. "Generating a solution with the MARECHAL
system". Proceedings of the Metaknowledge Workshop
BERDER-01, LIP6 Technical Report 2002/001, 30-52. (in
French)

Pannérec T. 2002. "An Example of Integrating Knowledge-Based
and Search-Based Approach to Solve Optimisation Problems".
In proceedings of STAIRS 02, Lyon.

Pitrat J. 1991. "An intelligent system must and can observe his
own behavior". Cognitiva 90, Elsevier Science Publishers,
119-128.

Pottinger D. C. 1999. "Implementing Coordinated Movement".
Game Developer.

Stilman B. 2000. Linguistic Geometry: From Search to Construc-
tion. Kluwer Academic Publishers.

Yagiura M. and Ibaraki T. 2000. "On Metaheuristic Algorithms
for Combinatorial Optimization Problems". The Transactions
of the Institute of Electronics, Information and Communica-
tion Engineers, J83-D-1(1):3-25.

Woodcock S. 2000. "Game AI : The state of the industry". Game
Developer, August.

Nareyek A. 2001. "Review : Intelligent Agents for Computer
Games". CG 2000, LNCS 2063, 414-422.

http://www.wkap.nl/book.htm/0-7923-7738-9
http://www.wkap.nl/book.htm/0-7923-7738-9

Search-based Planning: A Method for Character Behaviour

Miguel Lozano1, Steven Mead2, Marc Cavazza2, Fred Charles2

1University of Valencia
Dr. Moliner 50 (Burjassot) Valencia, Spain.

miguel.lozano@uv.es
and

2School of Computing and Mathematics
University of Teesside, TS1 3BA Middlesbrough, United Kingdom.

{m.o.cavazza, f.charles, steven.j.mead}@tees.ac.uk

Keyword: Heuristic Search Planning, Search-
Based AI, Virtual Actors.

Abstract

In this paper we present experiments with
search-based planning as the most generic
description of intelligent behaviour for virtual
actors. Using a MinMin heuristic search-based
planner (HSP), we demonstrate how this can
be used to generate efficient plans (in terms of
plan length), and how the production of these
minimum length plans is performed in times
suitable for the real-time 3D virtual
environments. Using an extension to the
classical 'dinner-date' problem, we illustrate
the planning and action execution undertaken
by the virtual actor.

1. Introduction

Planning is the most generic AI
technique to generate intelligent
behaviour for virtual actors, in
computer animation or computer
games. In such domains, planning
capabilities consist in finding a suitable
sequence of actions that let an agent
achieve pre-defined goals. Each action
generated can be played in the
environment to produce animation.
Hence, entire animations can be
generated from first principles, by
defining a set of actions and allocating
high-level goals to the character. It is
not only possible to generate intelligent
behaviour, but also to explore the
diversity of courses of action. In
recent years, several researchers have

described the use of planning systems
to control characters’ behaviours.

Geib [5] has proposed the use of
refinement planning following a
detailed study of animation
requirements [5][9]. Funge has used
situation calculus to generate
intelligent behaviours for virtual actors
[4], and Cavazza has approached this
problem with Hierarchical Task
Networks (HTNs) for storytelling
[2][3], considering the knowledge
intensive nature of this kind of
applications.

The planning requirements for virtual
actors depend on the specific
application, however we can identify
these essential requirements:

• The domain representation should

be appropriate to virtual actors in
their environments and identify
both goals and physical actions.

• Solution plans should be computed
efficiently, considering the time
scale of a virtual actor.

• In some cases when the virtual
actor evolves in a dynamic
environment, there is need to
interleave planning and execution
as well.

This paper will present the domain
representation and the behavioural
animation problem proposed to
integrate planning to drive character
behaviour. Then a review of the key
points associated to HSPs, and finally a

discussion of the results obtained by
this integration describing a classical
planning problem, which is also
relevant to a character animation.

2. Planning for virtual actors

In animation domains, planning
capabilities will consist in finding a
right sequence of actions that let an
agent achieve its goals, with the ‘added
value’ of seeing the solution-plan
carried out by it. Considering this,
planning systems will provide actors
with a general method to drive their
intelligent behaviours, and visualized
within the virtual environment in order
to see how the agent can solve their
virtual planning problems. For
instance, intelligent agents in
simulation systems could compute
solution plans in response to user's
instructions.

In the context we describe, plan
optimality will not be an essential
requirement, however we will be
normally interested in minimum length
plans, that is, the minimum sequence
of actions that let the virtual actors to
achieve their goals. The visualization
of these minimum-length plans will
display efficient and intelligent
behaviour.

Table 1 - Planning problem example

Experimenting with a Heuristic

Search Planner (HSP), we provide an
example using an extension to the
classical dinner-date planning problem
(funny-dinner-date - see Table 1). The
actor must undertake a set of tasks in
order to prepare a dinner date, such as
removing the garbage, wrapping a
present, etc. We have extended this

problem with more operators (watch-
tv, computer-work...) but also with new
goals and preconditions, such as to
having the house clean and to be in
appropriate mood for cooking (in our
example fun).

Moreover, this scenario has
similarities with the storytelling
application as described in [3] and
gives us an opportunity to investigate
with a (non-decomposable, non-empty
delete-lists) planning problem on a
similar application.

HSP domains are mainly represented

by three elements:
i. The domain representation of the

problem.
ii. The search algorithm.

iii. The heuristic function: In the
next subsections, we will review
the integration of these tree key
elements in our behavioural
animation domains.

2.1 The domain representation

Our agent-centred approach is based
on the typical state-model
representation for planning domains
[1]. Each state contains a set of atoms
representing the agent state (see Figure
1, e.g. (cleanHands, not garbage, not
work...)). To complete the problem
formulation the agent will require a set
of operators that will represent its
effectory capacity, mapping states to
successor states according to its
preconditions. The states can be
represented using a STRIPS-like
formulation, which will also be used in
the computation of heuristics for the
search process.

As we introduced before, the quality
of the agent plans will be directly
related to their lengths, such that,
longer plans are often non-optimal in
their action sequence. For instance, an
agent who washes his hands before
carrying out the garbage will have to

wash his hands again. To achieve this
we are managing at search time a depth
bounding criteria, which will prune all
the plans beyond the maximum length
plan allowed d. Considering that the
virtual actors should achieve their
goals through plans with no actions
repeated, we have initialised d as the
total number of operators the agent can
apply. In this way, the depth level
reached by a goal state of any plan-
solution will represent its plan length
and this will be the necessary
information to consider in the final
agent decision taking.

Figure 1. Initialisation of the start and goal
states

Taking into account the domain

representation introduced, the next
subsection will present MinMin as an
adequate search algorithm to supply
the planning requirements for our
virtual actors.

2.2 Planning with MinMin

MinMin [6] has been proposed as a
search algorithm for real time decision
taking. It has the advantage of
searching forward from the current
state to a fixed depth horizon and then
computes the heuristics values for the
frontier nodes. Furthermore, MinMin
provides a forward search method able
to interleave planning and action
execution, and to extract the minimum-
length plans required.

As Geffner pointed out [1], the
heuristics calculation associated to
every node in classical HSPs, is the
most expensive computational step
associated to HSPs, and MinMin
reduces this calculation to the search
horizon nodes.
MinMin is capable of refining its
solutions during the search using a
dynamic depth-bounding criterion. As
the plan-search progresses, a bounding
factor d is maintained to keep track of
the last best plan extracted (i.e. that
with the minimum plan length). This
bounding is also useful to overcome
the main problem of MinMin, that of
cycling. A secondary bounding
criterion has been introduced to
MinMin in order to improve its
efficiency. This second bounding (2-
B) simply detects the creation of a new
state with no new effects and thus
prunes it (e.g. S0- Carry - Suseless, S0 -
Relax - Suseless). The performance of
the whole planning system at the
funny-dinner-date problem introduced
will be shown, as the rest of tests, in
the results section.

Figure 2. Environment actions as operators

in the MinMin search

MinMin control is also adequate to
extract the shortest-length plans,
though not always the optimal one, as
each node will select the child with the
minimum cost (i.e. the node which
could be part of a minimum length-
plan solution). In this way, at the root
node tree the agent can perform an
informed action selection mechanism,
deciding at each plan step the shortest

strategy or sub-plan which let him to
achieve his goals. Figure 2
demonstrates the feedback from the
environment as operators are carried
out on stage by the virtual actor.
We are using the independent domain
heuristics presented by Bonet&Geffner
in [1], which can be easily adequate to
MinMin search domains. Heuristics
are computed from the horizon nodes
by ignoring delete-list and expanding
the atomic facts that belong to post-
conditions until all the atomic facts
corresponding to the goal are met.
Then the depth-level reached by this
goal node will be treated as the
necessary information to help MinMin
in its decision taking.

3. Results

The system has been fully
implemented and tested over a number
of initial configurations, in a graphic
environment corresponding that to the
funny dinner-date problem. The
Unreal™ engine performs low-level
animation (movement, orientation,
etc…) and visualization, however the
animation system is under direct
control of the planner. The planner
and Unreal communicates via UDP,
interfaced by the engine’s scripting
language UnrealScript™.

In this problem, the overall
performance obtained by MinMin
(search horizon = 3) has been
adequate to 3D real time graphics
environments. Furthermore, restricting
at S0 the maximum plan length (d =
13), MinMin finds 6 plan length
solutions in a suitable time frame for
the real-time performance
requirements.

The agent will start searching from
its initial state S0 using MinMin, and
will obtain solutions or plans from 13
to 8-length. Then at the top of the tree
it will try to apply the first operator

associated to the last minimum plan
calculated (e.g., S0 - wrap – S1).

(a) Start (s0) (b) Dolly

(c) Watch TV (d) Computer Work

(e) Shopping (f) Cook dinner

(g) Clean house (h) Take bath

(i) Wrap present

(Sgoal)
Figure 3. Integrating search-based planning

in 3D virtual environments

As shown in Figure 3, once the

virtual actor has executed an action, it
should update its own internal state
(eg. S1 = (S0) + dolly) performing
future searches from this (S1),
interleaving in this way planning and
action execution, and achieving finally
an intelligent autonomous behaviour
able to reduce the distance to its goals.
Figure 4 illustrates the search-plan
carried out by MinMin to solve the
funny dinner-date problem as
presented previously, where the
solution-vector associated to each
search state indicates the total number

of solutions or plans extracted by
MinMin in several depth levels.

Figure 4 – Solution vector for plan

4. Conclusions

We have described a specific approach
to integrate fully search based planning
behaviour for virtual actors.
Performance of the planning system
has shown good potential for scaling-
up on simulation tests. Our future work
will be oriented to include enlarging
the set of operators available and
uncertain information from the
environment in a more complex visual
planning problem, so that, a complete
intelligent virtual agent architecture
could be tested in 3D virtual
environmental simulations.

References

1. Bonet B, Geffner H. Planning as

Heuristic Search: New results.
Proceedings of ECP'99, pp.360-372.

2. Cavazza, M., Charles F. Mead, S. J.
Agents's interaction in virtual
storytelling. Proceedings of Third
International Workshop on Intelligent
Virtual Agents 2001. Madrid Spain.

3. Cavazza M., Charles F., Mead, S. J.
Interacting with virtual characters in
Interactive Storytelling. Proceeedings
of the Autonomous Agents Conf.,
AAMAS'02. Bologna, Italy, 2002.

4. Funge, J. Cognitive Modeling for
games and Animation.
Communications of the ACM, Vol
43. no.7, 2000.

5. Geib, C. The intentional planning
system: Itplans. Proceedings of the
2nd Artificial Intelligence Planning
Systems Conference, pp. 55-64, 1994

6. Korf, R.E. Real-time heuristic
search. Artificial Intelligence, 42:2-
3, pp. 189-211, 1990.

7. Pemberton, J.C. and Korf, R.E.,
Incremental Search Algorithms for
Real-Time Decision Making.
Proceedings of the 2nd Artificial
Intelligence Planning Systems
Conference (AIPS-94).

8. Tsuneto, R., Nau, D. and Hendler, J.,
Plan-Refinement Strategies and
Search-Space Size. Proceedings of
the European Conference on
Planning, pp. 414-426.

9. Webber, B., Badler, N., Di Eugenio,
B., Geib, C., Levison, L., and Moore,
M., Instructions, intentions and
expectations. Artificial Intelligence
Journal. 73, pp. 253-269.

APPLICATIONS I
FLIGHT

AND
WARGAME

SIMULATIONS

Introducing Emotion into Military Simulation and Videogame Design:
America’s Army: Operations and VIRTE

 Russell Shilling and Michael Zyda
MOVES Institute

833 Dyer Road, Room 254
Naval Postgraduate School
Monterey, CA 93943-5118

USA
Email: russ@shilling.us

E. Casey Wardynski

Office of Economic and Manpower Analysis
670 Cullum Road

U.S. Military Academy
West Point, NY 10996-1798

USA
Email: je2743@usma.army.mil

KEYWORDS
America’s Army, VIRTE, emotion, videogames, sound
design, audio, physiology, memory, learning, training

ABSTRACT

Emotion is a key component for sound design in
movies and videogames. We believe that it is also a
key component in virtual environments and simulation.
The following paper summarizes work at the MOVES
Institute’s Immersive Audio Laboratory which
demonstrates the emotional impact of sound in
interactive media and also shows that emotionality
evoked in a simulation has a positive impact on
learning for events that occur in the simulation. Our
research methods employ objective measures such as
physiological recordings and memory recall testing
rather than the more commonly used subjective
questionnaires and surveys. It is our belief that these
objective measures are more easily replicated and
generalized to a wide variety of simulations and
situations. We discuss our research in terms of the
parallel development in the MOVES Institute of the
videogame “America’s Army: Operations,” which we
use as an experimental test bed and tool. Applications
of this research are discussed in terms of high-end
simulation projects like the Virtual Technologies and
Environments (VIRTE) program sponsored by the
Office of Naval Research.

INTRODUCTION

Both in videogames and movies, the entertainment
industry has long recognized the role of emotion in
immersing viewers in the story portrayed on the screen.
However, military simulation has focused almost
entirely on improving the quality and accuracy of
visual representations to the exclusion of producing an
engaging and emotional experience. The philosophy
has been that emotion is irrelevant and is not
instrumental to the learning process.

We believe that emotion is a critical component of
learning in virtual environments. We have been
working with the entertainment industry to adapt
techniques used in movies and videogames to produce
systems that engage users on the visceral level as well
as the intellectual. We also believe that it is critical to
produce simulations that participants want to use and
enjoy using. In addition, research conducted in our
laboratory is showing that emotional arousal has a
positive impact on learning, performance, and sense of
immersion in virtual environments. This research has
been aided by the development of America’s Army:
Operations (AA:O), a professional videogame created
and developed at the MOVES Institute at the Naval
Postgraduate School in Monterey, CA. It is managed
by the U.S. Military Academy’s Office of Economic
and Manpower Analysis at West Point. The current
paper will summarize the techniques used in AA:O to
produce emotion as well as the research conducted in
parallel to determine the importance of emotion in
training and to measure emotional response provided
by different audio techniques. Our research differs
from most previous lines of research, because we rely
on objective rather than subjective measures for
determining emotion and immersion in simulation.

AMERICA’S ARMY: OPERATIONS

America’s Army: Operations (AA:O) is a multiplayer
online first person shooter videogame developed in-
house by the MOVES Institute. AA:O was built on
Unreal’s latest engine technology and designed by a
group of professional game developers, simulation
researchers, and graduate students. AA:O was not
designed to be a training system, but rather a tool for
introducing people to the goals and values of the U.S.
Army. The development team’s goal is to balance
realism and entertainment in ways that are not seen in
either traditional military simulation or videogame
communities.

For instance, in order to produce realism in the game,
the development staff visited over 19 Army bases
during the construction of the game. The artists, level
designers and programmers have fired weapons,
participated in training exercises and taken detailed
photographs, films and recordings of training facilities
and weapons platforms. Actual soldiers were used in
the motion-capture sequences. As a result of this
attention to detail, weapons are modeled with extreme
accuracy. Players must proceed through detailed
reloading and jam clearance sequences. Weapon
accuracy changes depending on whether the weapon is
used in the supported or unsupported position.
Accuracy is impacted by a combination of player
experience, health, if they are under fire and whether
the player is walking or running.

Figure 1. Screenshot from America’s Army: Operations

Prior to commencing multiplayer games, participants
must complete Army basic training, which is modeled
directly from the actual training bases used by the U.S.
Army. Training includes obstacle courses, rifle and
sniper ranges, weapons instruction and the U.S.
Airborne School, complete with 250 ft jump tower.
Players also proceed through Military Operations in
Urban Terrain (MOUT) training complete with the
Multiple Integrated Laser Engagement System
(MILES), the military’s version of laser tag. Thus, in
AA:O, even the simulators are simulated.

SOUND DESIGN AND EMOTION

One of the primary ways of introducing emotion into a
movie, simulation, or videogame is through the proper
use of audio cues and ambiences. In conversations
with experts at THX, Lucasfilm Skywalker Sound, and
Dolby, we were repeatedly told, “sound is emotion”. A
game or a simulation without an enriched sound
environment is emotionally dead and lifeless.

The film industry has allocated significant resources to
developing techniques for the design of sound effects
and ambient sounds that evoke a sense of realism and
manipulate the emotional response of the viewer. It is
difficult to imagine that all sound heard in the battle
scenes of Saving Private Ryan were added in layers
after the film was shot. Yet, in the opening scenes
depicting the Normandy invasion, the audio effects,
including the actors’ voices, are completely synthetic;
added to the film after it was shot. The audio effects
were spatialized using a surround-sound system to
immerse the audience in the sound field.

Using this philosophy, the sound design for AA:O is
incredibly rich and textured. Weapons sounds are
modeled for a combination of sonic accuracy and
emotionality. However, flat recordings of weapons fire
were not used. Traditional recording and sound
reproduction methods cannot capture the full dynamic
range of high decibel weapons fire. A flat recording is
not only emotionally flat; it also sounds unrealistic
(Yewdall, 1999). Instead, flat recordings were mixed
with other explosive sounds to compensate for the
weaknesses of the reproduction media. Great care was
taken when creating sounds to correspond with weapon
animation sequences to make the sounds of jam
clearance and reloading as accurate and compelling as
possible. Since there is no tactile response involved in
handling weapons in a videogame, it is important that
the sound convey the feeling and emotion of handling
the weapon in lieu of touch and feel.

In order for sound to impart emotion in a combat
scenario, you need to capture the wide variety of
sounds which are present in combat. Hence, we
modeled the sounds of bullets whizzing by your ears,
the sounds of bullet impacts in different types of
materials (wood, metal, concrete, etc), and the sounds
of debris resulting from bullet impacts. Thus, it is
common to have bullets cracking by your ear and
ricocheting or impacting on a concrete wall or wooden
frame behind you. Meanwhile, the sounds of wood and
concrete fragments shower down around your feet.
Additionally, footsteps and other impacts have texture
specific sounds associated with them. You hear your
own footsteps and the footsteps of the players around
you. We employed the movie sound designer’s creed
“see a sound, hear a sound” when we were designing
the environment (Holman, 1997). Within the
limitations of the game engine, if you see an action on
the screen, you hear a corresponding sound. These
details are crucial for immersing a player in the scene.

Finally, AA:O is a Dolby Digital certified game using
the NVIDIA Nforce platform and is 5.1 and 6.1
compliant on non-Dolby sound applications as well.

Environmental effects are created using Creative Lab’s
EAX 3.0, an API used to induce numerous types of
audio effects, including reverberation, occlusion,
obstruction, and exclusion. The goal of the API is to
mimic effects that approximate modeling the acoustics
of rooms, buildings, and other audio environments. It
does this without the expensive CPU requirements of
actually modeling geometry and audio ray tracing.
Future efforts in our lab will concentrate on using real-
world interactive acoustic models to see how these
impact users’ perceptions of the environment.

The overall result of these many audio details is a
highly immersive auditory experience which enhances
the gaming experience and draws the player into the
action. The first question becomes, can we prove that
entertainment audio actually increases emotionality or
is this folklore?

PHYSIOLOGICAL RESPONSE MEASURES

In order to determine the role audio plays in evoking
emotion in videogames, we measured physiological
responses during videogame play while subjects were
playing a combat sequence with and without sound,
using headphones or a THX certified 5.1 surround
speaker system. Speakers and headphones were
compared because of the hypothesis that a system
employing a subwoofer might evoke more of an
emotional response than a system using headphones
alone (Shilling & Shinn-Cunningham, 2002).
Temperature, Electro Dermal Response (EDR), and
heart-rate measures were collected during action
sequence game play. Results indicated increased
physiological responses on all measures in the sound
versus no sound condition. There was only an
increased temperature response in the speakers versus
headphone condition. These results clearly indicate
that the audio component of a videogame or simulation
contributes significantly to the emotional response of
the participants (Scorgie & Sanders, 2002). The
increased physiological response between speakers and
headphones is probably due to the increased bass
response derived from a subwoofer system that
provides a more dynamic and “whole body” response
to the sound. However, the effect may not be great
enough to justify the increased footprint of a speaker-
based system for simulations that must be placed in
spaces with a small footprint (Shilling & Shinn-
Cunningham, 2002).

EMOTION AND TRAINING

Given that audio design boosts emotionality, can we
prove that emotionality actually is an important aspect
of training in simulation? To answer this question we

turned to physiological models of human memory.
Adrenalin is a key hormone in emotional arousal and
fight-or-flight responses. In animals, it has been shown
that injections of adrenalin (a key hormone in
emotional arousal) can enhance memory (McGaugh,
2000). It stands to reason that emotional arousal (in
moderation) may also have a positive impact on human
learning. After all, the limbic loop in the human brain
modulates both emotional response and memory
consolidation. The purpose of this research was to
attempt to create a “virtual injection” of adrenalin to
enhance learning in virtual environments.

Figure 2. Screenshot from memory experiment using AA:O

An experiment was conducted to observe learning
differences in low-arousal conditions and high-arousal
conditions (Ulate, 2002). AA:O was used as the virtual
environment (Figure 2). In the low-arousal condition,
participants wandered peacefully through a scenario,
memorizing objects encountered while searching
buildings on a mission to free POWs. High-arousal
participants wandered through the same environment,
but were required to fight their way through the
scenario. Immediately after finishing the game,
participants were tested for their memory of objects
inside the buildings. An additional test was given 24
hours later. Results indicated that participants in the
“high-arousal” condition were significantly better at
encoding and recalling objects presented in the virtual
environment immediately after experiencing the
videogame and 24 hours post exposure. Thus,
memories for events in a virtual environment are
enhanced in situations where there are moderate levels
of arousal. These findings also indicate that simulators
used for mission rehearsal should not be dry,
emotionless systems, but should elicit an emotional
response from the user rather than a purely intellectual
response. Further research is needed to determine if it
is possible to over stimulate a user in a simulation, thus
negating the positive effects.

CONCLUSIONS

What does this mean for the design of simulators and
mission rehearsal systems? Since, emotional response
has traditionally been an overlooked detail in the
construction of simulations and virtual environments;
we need to consciously consider emotion when
designing simulations. Mission rehearsal systems
which allow pilots to fly through terrain maps might be
more effective if the pilot is engaged in combat while
flying though the map. This needs further study.

These findings also impact research and development
on other projects being pursued at the MOVES
Institute. For instance, the Office of Naval Research
sponsored Virtual Technologies and Environments
(VIRTE) program envisions a multi-user multi-
platform simulation for the Marine Corps. The
simulation will include squads of Marines interacting
in MOUT environments. Based on this research, we
know that audio design is critical for creating the
emotional context and arousal needed for optimal
human performance in simulation. In fact, we have
recently conducted task analyses to determine which
cues are necessary for both accurate performance in
MOUT situations and also for producing emotion
(Greenwald, 2002). Our research has concluded that
these tasks require more auditory cues than can be
provided by most videogame engines or VE systems.
For instance, MOUT tasks probably require accurate
room acoustics and physics instead of approximations.
We also believe that care must be taken to ensure that
sounds like footsteps and body noises (clothing,
breathing, etc) are modeled accurately in terms of the
distances at which they can be heard.

Live voice communication is also a problem for high-
end simulation that has not been adequately solved by
the gaming industry. Traditional techniques used in
gaming (VoIP) have latency rates exceeding 200 msec.
One solution we devised is to combine the strengths of
low-cost OpenAL and DirectSound3D systems with
high-end servers used specifically for simulation. One
such system is the AuSIM GoldServer. The
GoldServer provides non-networked spatialized live
audio over headphones with exceptionally low-latency
(Krebs, 2002). Of course, this is only a solution for
headphone-based systems.

 During the upcoming year, we will continue to
develop new strategies for creating detailed audio
environments and implement our findings in our
videogame work and in our simulation programs. At
the same time, we will continue to validate our work
with objective measures of performance. Ideally, the
research we are conducting will benefit both the

entertainment and simulation community by helping to
create environments that are more immersive and
emotionally engaging.

REFERENCES

Greenwald (2002). An Analysis of Auditory Cues for
 Inclusion in a Virtual Close Quarters Combat Room
 Clearing Operation. Master’s Thesis. The Moves
 Institute. Naval Postgraduate School, Monterey, CA.

Holman, T. (1997). Sound for Film and Television.
 Boston, MA: Focal Press.

Krebs, E. (2002). An Audio Architecture Integrating
 Sound and Live Voice in Virtual Environments.
 Master’s Thesis. The MOVES Institute. Naval
 Postgraduate School, Monterey, CA.

McGaugh, J.L. (2000). Research Shows the Role of
 Emotions and Stress in Forming Long-Lasting
 Memories. Brain Frontiers, Autumn (2-3)

Sanders, R., and Scorgie, R. (2002). The Effect of
 Sound Delivery Methods on the User’s Sense of
 Presence in a Virtual Environment. Master’s Thesis.
 MOVES Institute. Naval Postgraduate School,
 Monterey, CA.

Shilling, R.D., Shinn-Cunningham, B. (2002). Virtual
 Auditory Displays. Virtual Environments
 Handbook, Kaye Stanney, New York, Erlbaum.

Ulate, S. (2002). The Impact of Emotional Arousal on
 Learning in Virtual Environments. Master’s Thesis.
 MOVES Institute. Naval Postgraduate School,
 Monterey, CA.

Yewdall, D. (1999). Practical Art of Motion Picture
 Sound. Boston, MA: Focal Press.

BIOGRAPHY

LCDR Russell Shilling, Ph.D. is a U.S. Naval
Aerospace Experimental Psychologist and the
Technical Director for Immersive Technologies in the
MOVES Institute at the Naval Postgraduate School
(NPS) in Monterey, CA. and the lead audio engineer
and sound designer for America’s Army: Operations.
He joined the Navy in 1992 after completing his Ph.D.
in experimental psychology at the University of North
Carolina at Greensboro where he studied neuroscience
and auditory psychophysics. Prior to arriving at NPS,
he conducted research on virtual environments at the
Naval Air Warfare Center Training Systems Division
and the U.S. Air Force Academy.

STEPS TOWARD BUILDING A GOOD AI FOR COMPLEX
WARGAME-TYPE SIMULATION GAMES

Vincent Corruble, Charles Madeira

Laboratoire d’Informatique de Paris 6 (LIP6)
Université Pierre et Marie Curie (Paris 6)

4 Place Jussieu
75252 Paris Cedex 05

France
{Vincent.Corruble,Charles.Madeira}@lip6.fr

Geber Ramalho

Centro de Informática (CIn)
Universidade Federal de Pernambuco (UFPE)

Caixa Postal 7851, Cidade Universitária
50732-970 Recife, PE

Brazil
glr@cin.ufpe.br

KEYWORDS
Game AI in Wargames, Terrain Analysis, Representations
for Learning

ABSTRACT

One of the key areas for the application of Artificial
Intelligence to the game domain is in the design of
challenging artificial opponents for human players.
Complex simulations such as historical wargames can be
seen as natural extensions of classical games where AI
techniques such as planning or learning have already
proved powerful. Yet the parallel nature of more recent
games introduce new levels of complexity which can be
tackled at various levels. This paper focuses on the question
of finding good representations for the AI design, which
implies finding relevant granularities for the various tasks
involved, for a popular historical wargame. This work is
based on the partially automated use of the rules of the
game, as well as some common sense and historical
military knowledge, to design relevant heuristics. The
resulting gain in representation complexity will help the
application of techniques such as Reinforcement Learning.

INTRODUCTION

A type of computer games that has been gaining significant
popularity over the years lets 2 or more opponents confront
each other via the manipulation of a number of units on a
given terrain. Sounds familiar? Of course, this description
is so general that it encompasses age old games such as
chess. What we are interested in here are strategy games
which range from real time action-oriented games such as
Age of Empires (Microsoft) to intricate historical
simulations and wargames such as Sid Meier’s Gettysburg
(Firaxis) or Talonsoft Battleground series. The innovation
in this new type of games, from the point of view of AI and
complexity, is both quantitative as well as qualitative.

Quantitatively, they show an increased complexity by
letting players manipulate high numbers of units (typically
in the hundreds, if not thousands). Additionally, these units
have open to them a high number of possible actions,
depending on their characteristics, which fall in various

categories such as movement, combat, or building activities
for some of them.

Moreover, the physical space on which they move is much
larger. While chess has 64 positions, and backgammon 24,
the new games we are interested in involve 2-dimensional
grids which extend over hundreds of squares (or hexagons)
in each direction, so the total number of positions is in the
tens of thousands.

Despite the huge quantitative scale-up required to use
existing AI techniques on these new problems, the main
source of complexity is actually elsewhere. While
traditional games usually let the player select one (or a very
small number of) unit(s), and then select an action for it,
large modern simulations replicate the parallel nature of the
system they simulate: each turn, all of the units can be
moved (or take other actions) simultaneously. Therefore,
while the branching factor of most traditional games
increases linearly with the number of units, its increase is
exponential in our games. In practical terms, that means
that the standard versions of popular AI techniques (such as
planning or learning) [Newell & Simon, 1965, Samuel,
1959, Lenat 1983, Meyer et. al., 1997, Sutton & Barto,
1998] are rendered irrelevant because of the complexity
involved here. In this paper, we investigate how a careful
examination of a game, good choices of representation (as
well as possible innovations in the algorithms themselves),
can help to circumvent these limitations.

In the remaining of this paper we will focus on one specific
commercial game series named Battleground (Talonsoft®,
designer John Tiller). It is a turn-based game considered as
one of the best simulations of Napoleonic battles. On this
application, we will expose a number of research directions
under investigation, all aiming at dealing with the
complexity of the game so as to make it amenable to
efficient AI techniques. This paper focuses mainly on the
issue of finding good representations, using available
sources of knowledge about the problem, Its intended
impact is therefore on the initial stage of AI design. It can
be seen as a complement to other active research directions
in the field of machine learning which work on the learning
algorithms themselves to deal with higher complexities, e.g.
work on learning within a hierarchy of goals [Dietterich,

2000] or work on using function approximators such as
multi-layer perceptrons to deal with large state spaces
[Tesauro, 1995].

THE NAPOLECTRONIC PROJECT FOR AI DESIGN

The Battleground (Talonsoft®) series of wargames is a
turn-based game considered as one of the best simulations
of Napoleonic battles. It aims at a good historical accuracy,
with detailed maps, orders of battles, combat resolution,
etc. while retaining some gameplay value (though it would
certainly not be a hit among “action oriented” players). The
environment provided by this simulation constitutes the
testbed of our Napolectronic project, an AI endeavour to
provide human-level computer opponents to
strategy/simulation game players (Corruble, 2000).

The battleground series reproduces the historical order of
battle. It models units at the level of battalions, and
organizes each game turn in two parts composed of a
number of phases. The attacking side can move all of its
units, then the defendant can fire defensively, the attacker
fires, then the attacker’s cavalry can charge, then the
attacker can melee the defender’s units which are in
contact. Then for the second part of the turn, the attacker
and defendant switch roles. Each scenario is defined by a
fixed number of turns (10 to 52), each turn simulating 15
minutes of real time. The units move on a historical map
composed of hexagons (each hexagon representing 100
meters) and can assume different tactical formations (line,
column, limbered or unlimbered for artillery,…). Moreover,
each unit is also characterized by its quality, fatigue level,
ammunition level, etc.

Each sides aims at controlling a number of key positions by
the end of the scenario. A number of points is associated
with each one of these key positions, and the final scores
are calculated based on these points and the losses suffered
by each army.

The success of many simulation games results from the
feeling of immersion into a complex world that they
provide for the user. In order to obtain this feeling, the
game designer must balance two notions which could seem
contradictory. The player needs to have a lot of control on
the evolution of the simulated world (so that he can feel
engaged in it) yet he/she must be somewhat overwhelmed
by its complexity and should be unable to grasp its entire
depth all at once. This necessary combination of high
controllability and richness/depth justifies the evolution
toward highly complex simulations, which have also, for
the player interested in history, the advantage of becoming
more realistic. This highly complex modelling is a given of
the game and a natural approach to the design of an AI for
such games is to use this highly detailed model of the
system being simulated as the basic representation to do
some automated reasoning, some planning, or some
learning. Yet, because of the complexity involved, typical
methods (let’s say for example Reinforcement Learning)
cannot obtain satisfactory results based on this

representation. So a first step in the design of the AI is to
find a granularity of representation which suits well the task
at hand. There are a number of difficult points to address in
that respect:

• For a complex game, there are a number of tasks which
involve reasoning at various levels (strategic vs. tactic;
long-term resource management vs. short-term timing
of low-level actions,…). A good AI should therefore
have various representation granularities, each one
adapted to the task at hand. This issue of representation
is also directly linked to the issue of whether decisions
should be taken centrally or in a distributed manner.
We will not explore directly this issue in this paper.

• A representation with an appropriate granularity,
needed for strategic (or “high-level”) reasoning, has to
be constructed automatically or semi-automatically, as
an abstraction of the low level representation of the
simulation. This is in itself a complex problem, maybe
actually the central problem for the building of a
complex AI for games. Fortunately, because of the
historical simulation aspect of the game, we can use
some knowledge about the domain (here military
decision-making in Napoleonic times), a detailed
analysis of the rules of the game, or indeed simple
common-sense, to guide us toward that goal. In the
next section, we will present briefly work done to
partially automate this process of building a relevant
abstract representation, both in the action space (what
can be done?), and in the state space (what is the
situation?).

CONSTRUCTING HIGH-LEVEL
REPRESENTATIONS

Abstraction in the Action Space

As we saw earlier, most powerful AI techniques such as
learning or planning are very sensitive to the size of the
action space. Because the number of low-level actions
available to each unit in our game is huge, one can naturally
understand that any reasoning at a tactic or strategic level
needs to be tackled at a higher, more abstract level. This is
particularly true in the field of movement. A commander
should not have to specify the exact path of every given
unit. Instead it should be able to give a position as a goal,
and to specify a mode for this movement reflecting the
tactical situation. We carried out some experiments
following this approach. The modes that we have
experienced with are:

• Speed only: minimize the time taken to reach the goal

• Stealth: minimize the risk of being spotted and fired at
by the enemy

• Safety: minimize the risk of being intercepted by the
enemy

Speed is an easy problem to treat, since we know of the
movement cost associated with each terrain type and unit
type combination. The straight application of A* using the
straight line distance as admissible heuristics, works
perfectly well.

An interesting challenge here is for the AI to discover how
to implement the other movement modes. This has been
done first by characterizing the static version of these
concepts, then by applying A*, with a heuristic function
that covers both the geographic distance the static cost of
the mode.

Stealth is obtained when a unit moves through locations
which are out of sight of enemy units. Therefore knowing
for sure whether a potential path guarantees that a unit will
be stealthy would require that all enemy units are visible.
The fog-of-war option of the game, which makes for a
much more realistic simulation, has as a result that this is
not the case. Therefore, we defined statically that there is a
heuristic stealth cost associated with each location which is
proportional to the number of other locations from which it
can be seen (these are susceptible to be occupied by enemy
units). For example, going through a forest is very stealthy
since there a unit can only be spotted, or fired at, from
adjacent positions.

Safety is obtained by keeping a distance from enemy units.
The bigger distance the less likely this enemy unit is from
moving to intercept. Moreover, the cost associated takes
into account the strength of the threatening units, because
the stronger units are more likely to attack, and more likely
to cause serious problems if they do.

Lastly, initial work has been done to combine these various
modes of movement. So far this has been done simply by
proposing a heuristic function which is a linear combination
of the previous ones. Later, we envisage using some more
subtle combination of modes, which would be the product
of strategic reasoning and consider the motion of unit as a
multi-objective decision problem.

In the examples of Figure 1, one can see the paths
suggested for a single basic movement order, but with
distinct movement modes. The speed mode favors a direct
movement avoiding the forest hexagons, the stealth mode
encourages motion through the relatively hidden valley, the
safety mode favors remaining away from the enemy units
and going through the forest, and the combined mode
encourages an even wider circle going through the forest
and using another valley for stealth.

Abstraction in the State Space

Any significant and tractable tactical or strategical
reasoning needs to be able to refer to locations or situations
at an appropriate level of abstraction. Hence a leader should
be able to tell a subordinate to “take his troops to Village V
using the road going through forest F to the south of the
body of enemy troops E. To facilitate this process, we have

used simple algorithms inspired from the field of Artificial
Vision to automatically define relevant regions, which are
group of adjacent hexagons which share a relevant

Figure 1: Paths obtained for the same basic movement
order (initial and goal positions), first with the 3 basic
modes, then with a simple combination mode. The
initial position is circled in red. The proposed path is
given by the numbers appearing on some hexagons.
Each number shows the cumulative cost associated.

Speed

Combination

Safety

Stealth

property, such as terrain type (e.g. forest), altitude, or in
tactical terms (group of friendly, or enemy troops, waiting
or moving together). Figure 2 show an example of tactical
regions symbolizing the zones of control of the French
troops (in blue) and of the Russian troops (in green).

Additionally, these abstract regions can be used to carry out
some intelligent reporting describing in high level terms the
major events and the evolution of the situation at each turn.
This is the first application of this work that we are now
developing.

Figure 2: Inferring each side’s zones of control

Going further than the description of a situation, it is
interesting to go deeper into the automated terrain analysis
with the idea of discovering interesting tactical concepts.
We have first focused on an important subproblem: where
one should locate artillery units for defence or attack. This
is particularly crucial since artillery movement is very
limited and cannot therefore be easily readjusted while in
the thick of the action.

We have taken the approach of applying local heuristics
directly making use of the rules of the game. In a fashion
similar to the one used at the beginning of this paper, each
heuristic function reflects a different concern or goal a
leader should have in locating his artillery, the most
important idea is that the chosen location must balance the
effectiveness of the artillery fire and the protection to the
unit. In Figure 3, we show a part of the map where each
hexagon is covered by a coloured dot. The “warmer” the
colour, the better field of fire the location has. Hence the
inside of forests are in blue (bad field of fire) while the top
of a hill is red (excellent field of fire). It is important that
the colour (the heuristic function) is calculated directly
through the application of the rules of the games: the
system was not given any a priori military knowledge.

Figure 4 shows the same type of picture but the colour
represents the amount of protection offered by the local
terrain. Here ridges appear as good locations because their
elevated position offer defence bonuses according to the
combat rules, and moreover, infantry units can be placed in
front of these positions, where they can protect the artillery.
According to this heuristic function, hexagons inside forests

would be good locations for artillery (because they are
indeed well protected from enemy fire).

In Figure 5, basic heuristics (including the 2 previously
presented) are combined to provide a global evaluation
showing which positions are interesting candidates for
locating artillery. We can see with the green dots that ridges
are always sensible locations. This is a very interesting
result because it is perfectly consistent with well known
military knowledge. So we can expect that applying the
same approach to other subproblems will let us find
automatically some other tactical concepts relevant to this
simulation.

Figure 3: Hexagons in the field of fire

Figure 4: Protection offered by local terrain

Figure 5: Combination of basic heuristics

CONCLUSION

In this paper, we have presented some experimental work
aiming at finding good representations for a strategy game
simulating Napoleonic battles. This is seen as an essential
step to be able to use mainstream AI techniques, such as
learning and planning, for the design of a human – level AI
opponent. We have explored how abstraction in the
representation can be carried out along the dimension of the
action space, so that leaders can give high-level, tactically
meaningful orders, and along the dimension of the state
space, so as to be able to describe situations in concise and
meaningful terms. We are now completing this work on
representation before we start on applying and adapting
techniques such as Reinforcement Learning and Planning.
In parallel, we work on abstraction along the temporal
dimension, so as to provide meaningful game summaries,
and to obtain insights on the key events and tactical turning
points of a scenario.

ACKNOWLEDGEMENTS

Charles Madeira’s PhD work is funded by a scholarship
from CAPES, Brazil.

A number of CS students of University Pierre et Marie
Curie played active parts in this project. They include in
particular for the experiments described in this paper Jean-
Claude Thiout and Arlindo Dos Santos 4th year students in
2001, and Master students in 2002.

AUTHOR BIOGRAPHY

Vincent Corruble was born in Rouen, France, and obtained
graduate degrees in Engineering, Systems Engineering, and
Artificial Intelligence from the Ecole Centrale de Lille, the
University of Virginia, and the University Pierre et Marie
Curie (Paris 6) respectively. He is currently Assistant
Professor at the LIP6, the Computer Science laboratory of
the University Pierre et Marie Curie. His past and current
research covers areas such as pattern recognition, data-
mining, machine learning and machine discovery. His main
application areas for knowledge discovery are medical
research, web user modelling, and computer games.

Charles Madeira was born in Natal, Brazil. He obtained a
Master’s degree in Computer Science from the Federal
University of Pernambuco (UFPE), Brazil and is now
pursuing a PhD at University Pierre et Marie Curie (Paris 6)
on the topic of AI and computer games.

Geber Ramalho was born in João Pessoa, Brazil. He
obtained graduate degrees in Computer Science from the
University of Brasilia (UNB), and from University Pierre et
Marie Curie (Paris 6). He is currently Assistant Professor at
the Federal University of Pernambuco (UFPE), Brazil,
where he carries out research in the areas of symbolic
artificial intelligence, autonomous agents, multiagent
systems, computer music and computer games.

REFERENCES
Corruble, V. 2000. “AI approaches to developing strategies

for wargame type simulations”. AAAI Fall Symposium
on Simulating Human Agents. Cape Cod, USA.

Dietterich, T. G. Hierarchical reinforcement learning with
the MAXQ value function decomposition. Journal of
Artificial Intelligence Research, 13:227-303, 2000.

Lenat, D. B. 1983. “Eurisko: A program which learns new
heuristics and domain concepts”. Artificial
Intelligence, 21.

Meyer, C., J.-G. Ganascia, and J.-D. Zucker. 1997.
“Learning Strategies in Games by Anticipation”.
International Joint Conference on Artificial
Intelligence (IJCAI), Nagoya, Japan.

Newell, A., & Simon, H.A. 1965. “An example of human
chess play in the light of chess playing programs”. In
N. Wiener and J.P. Schade (Eds.), Progress in
biocybernetics (Vol. 2, pp. 19-75). Amsterdam:
Elsevier.

Samuel, A. 1959. “Some studies in machine learning using
the game of checkers”. IBM Journal of Research and
Development, 3(3):211-229.

Sutton, R. S., and Barto, A.G. 1998. “Reinforcement
Learning, An Introduction”. MIT Press.

Tesauro, G. 1995. Temporal Difference Learning and TD-
Gammon. Communications of the ACM, March 1995 /
Vol. 38, No. 3

TRAINING THE SOLDIER FOR OOTW

Sonia R. von der Lippe and Bradley C. Schricker
AT&T Government Solutions, Inc.

11315 Corporate Blvd.
Orlando, FL 32826

Email: vonderlippe@att.com, mailto:bschricker@att.com

KEYWORDS

Individual behaviors, simulation, training

ABSTRACT

U.S. military forces are increasingly called upon to
engage in Operations Other Than War (OOTW). As
opposed to war operations that focus on “large-scale,
sustained combat operations”, OOTW concentrates on
“deterring war, resolving conflict, promoting peace,
and supporting civil authorities”. A major component
of OOTW is the prevention of and defense against
terrorist actions. Achieving this objective is quite
complex, however, due to the unpredictable and
asymmetric nature of the terrorist threats and the
difficulty in training individual soldiers to counter
those potential threats. This paper proposes the
behavioral architecture needed to support individual
dynamic behaviors within a synthetic virtual
environment to better prepare the individual soldier for
unpredictable asymmetrical operations.

INTRODUCTION

The simulation training community has emphasized
training the soldier through constructive simulations
for war, typically force on force warfare where the
objective of the game is to fight and win to achieve
national objectives and protect national interests. (e.g.
Constructive simulations are those systems that
involve people operating the simulation and
stimulating the simulation with various attributes, but
are not actively engaged in determining the simulation
outcome.) However, the post cold war era has changed
the military’s focus on its’ operations. The military is
now called upon more frequently to perform OOTW.
This encompasses deterring war, resolving conflict,
promoting peace, and supporting civil authorities in
response to domestic crises. All OOTW must consider
all aspects of the operation’s political objectives,
which restricts the rules of engagement. One of the
principles of OOTW is security, which entails the right
of defense against hostile intentions or actions, and the
protection of citizens. (JP 3-07) These operations
include the prevention of and the defense against
terrorist attacks.

Currently, the simulation community has not kept up
with the new and challenging requirements for OOTW
regarding virtual simulations (Rose 1998), those

systems that immerse the user into the environment in
which he plays. Many quality constructive simulations
exist that aid the military planner in understanding
urban warfare, peacekeeping operations, and disaster
relief. However, it has become increasingly necessary
to train the individual soldier because the military’s
contemporary operating environment (COE) exposes
changes to its current operating environment. To
effectively train the individual soldier, a virtual
simulation system should be developed that exhibits
realistic behaviors that are more representative of
asymmetric warfare. Due to the unique nature of
terrorist behaviors, the simulation system needs to
represent those virtual entities individually.

OOTW SIMULATIONS

Several constructive simulations exist today that
facilitate the military’s effort to grasp the complexities
associated with OOTW. A couple of tools are
Deployable Exercise System (DEXES), Spectrum, and
Joint Conflict and Tactical Simulation (JCATS).

DEXES is a training and analysis tool developed by
US Southern Command to analyze and understand
complex contingency operations (CCO) for peace
keeping operations, civil affairs, and humanitarian
assistance/disaster relief exercises. (Barry 2001)
DEXES was designed to utilize a human-in-the-loop
and is often used with other simulation systems by
creating the scenario and processing the events from
the scenario and/or human-in-the-loop

Spectrum is the most widely known simulation system
developed to support the commanders and staff
members to train within a digitized OOTW scenario.
According to (Barry 2001), “Spectrum portrays a
thinking and reacting civilian population which allows
U.S., coalition, and combined forces, non-
governmental agencies, and other groups to conduct
CCO”. The simulation system enables the audience to
create and analyze a political, economic, and
sociological environment. It requires role-players to
portray the threat or opposing force behaviors.

JCATS is an entity-level simulation that is used to
model urban warfare and can model up to 60,000
entities. It can model entities at different levels
depending on the current execution needs of the
simulation. It can aggregate entities into units and

mailto:vonderlippe@att.com
mailto:bschricker@att.com

model those collective entities as a single unit, such as
a platoon, company, or brigade. JCATS also has the
capability to disaggregate those units and model the
entities individually. However, the soldier is not
immersed within the game and can only affect the
simulation by initializing the parameters to determine
the outcome.

When one army has advantage over another army by
either a large number of troops, or superior weaponry,
then there is an asymmetry between the conflicting
groups. Typically, in this case the inferior group will
do whatever is necessary to gain advantage over the
superior group. This type of combat is designated at
asymmetric warfare. It is often considered “non-
traditional” because it does not employ equal force on
force strength to fight one another, but seeks to
challenge the superior force’s weaknesses to gain the
advantage. (Allen 1997) During the American
Revolutionary War, the united American colonies
employed asymmetric warfare tactics to gain the
advantage over the superior British Army by using
guerilla warfighting techniques learned from the
Native Americans. This lesson has been forgotten in
the last 200 years as the U.S. military has grown in size
and in power, but leaves the country vulnerable to less
powerful enemies who focus on weaknesses. Our
soldiers need preparation for unpredictable tactics and
behaviors that are now present within the COE. A
virtual environment in which each entity is represented
individually with its own emotions and memory will
greatly aid in the training of a soldier preparing for
these varying threats.

Each of the previously mentioned systems facilitates
the military within a warfare environment and focuses
it’s training objectives at the commander level. They
do not assist the individual soldier in understanding
how to manage conflict when neither the enemy nor
their objectives are clearly known and understood. A
simulation architecture that models interactive
behaviors that stress human decision processing,
variable behaviors, and realistic opposing forces that
are affected by their own social, economic, political,
cultural, and religious environment is needed. (Barry
2001)

MODELING ASSYMETRIC THREATS WITHIN
A SYNTHETIC ENVIRONMENT

Because of the events of September 11th,
responsiveness to terrorist actions on our homeland has
become increasingly important. Therefore, AT&T
constructed a scenario that recognizes the variability of
individual behaviors and how those behaviors could
potentially interact and force the development of
different sub-conflicts branching off from the main
conflict.

Background: Based on increasingly reliable and
substantiated reports of possible terrorist activities targeted

against many of the nation’s international airports, the
President has federalized the Army National Guard. The
President has issued an Executive Order directing the
National Guard Bureau to temporarily assume control of
overall airport security while maintaining coordination with
local airport officials, FAA, FEMA, and other applicable law
enforcement agencies. In support of this larger national
level operation, the 1st Platoon, A Company, 2nd Battalion,
99th Infantry Brigade was tasked, and is now providing
security for JFK International Airport in New York City.

Situation: A suspected cell of terrorists disguised as airport
baggage handlers has gained entrance to JFK airport. The
terrorists are equipped with pressure/altitude sensitive,
exploding packages containing a highly developed and stable
strain of anthrax. Their intentions are to emplace these
devices with other baggage on departing aircraft. The
altimeter sensors are designed to detonate the explosive
device at low altitude killing the passengers and dispersing
the anthrax and burning aircraft remains over the highly
populated areas surrounding the destination city. At the time
the terrorists gain access to the airport, the airport
population is comprised as follows:

• A tour group of 100 Islamic passengers returning
home to Pakistan

• A tour group of 100 middle-school children with 20
adult chaperones departing for Egypt

• A tour group of 100 senior citizens departing for
Israel

• 1000 individuals/families both arriving and
departing on various scheduled flights

• Organic airport personnel and infrastructure

At 0900 hours, the 3rd squad observation post observes and
reports to the Platoon operations center that they have
witnessed a group of baggage handler’s
retrieving/distributing packages from the truck bed of one of
the airport food services vehicles and then disperse. Based
on their situational awareness and experience, the 3rd squad
feels this activity is suspicious and warrants investigation.

Mission: 1st Platoon/A Company/2nd Battalion/99th Infantry
Brigade secures JFK International Airport.

Implied Tasks:

1. Coordinate with airport officials and security
to close down the airport

2. Secure airport exits as well as passengers on
grounded aircraft

3. Begin search for suspicious packages
4. Maintain order until additional resources

arrive
5. Apprehend the suspected terrorists and their

packages

This scenario demonstrates both planned operations
and the unpredictability of the situation. To support
this uncertainty, each entity must be modeled
individually and has a direct impact on the overall
resultant simulation system. Since each entity has an
individual model, the complexity and processing needs
of the simulation increase. To account for the resource
demands without sacrificing performance, the
processing must be distributed across multiple
workstations. For this reason, a parallel discrete event

simulation (PDES) engine is the likeliest candidate to
support distribution and increased performance.
AT&T has developed a PDES engine that currently
serves as a test bed for our behavior development.

HUMAN BEHAVIOR MODELING

DARPA and the military have expended a tremendous
effort in populating the virtual battlefield with valid
friendly and opposing forces. However, the typical
architecture employed for behavior development has
consistently included the behavior processing as an
integral part of the simulation environment. Examples
of these simulation systems are Modular Semi-
Automated Forces (ModSAF), OneSAF Testbed
(OTBSAF), and Close Combat Tactical Trainer (CCTT
SAF). However, as with the other simulation systems
previously mentioned, these systems are inadequate
when focusing on training the individual soldier for a
variable threat. When the trainee is immersed in the
virtual gaming environment, she will encounter
individual entities. Those entities must appropriately
respond to the trainee. Therefore, the behavior
processing must be decoupled from the simulation
environment to promote the most accurate possible
human representation and increase the realism that the
trainee encounters.

However, because of the underlying architecture used
to develop human decision-making models,
inadequacies of the behaviors within the current
computer generated forces (CGF) systems exist.
(Lyons et al 1999, Stytz et al 1999, Willis 2000)
Current CGF system behaviors assume an ideal
situation on both friendly and opposing sides. The
determination of cause and effect is based on the
firepower of the simulated entities and statically
encoded command and control for those entities. The
decisions made currently within the CGF systems do
not reflect cultural, sociological and psychological
values, which influence an individual’s decision-
making process. In addition, the current CGF systems
cannot easily represent actions at differing echelon
levels. (Franceschini 2000, Willis 2000)

Human behavior psychologists have identified a
generic model, though slightly varied to enhance their
own personal views, as shown in Figure 1. This
Modified Stage Model (Pew et al 1998) demonstrates
the general idea of how a human receives, perceives,
and reacts to stimuli, and decides the next course of
action. The Modified Stage Model was adapted in
1992 from the Classic Stage Model of human
information processing. (Broadbent 1958) This high-
level view of human behavior is a good starting point
at which to create a behavior architecture within a
gaming / simulation environment to support the same
sort of cognitive model.

Figure 1. Modified Stage Model

The individual’s sensing and perception is stimulated
by events within the battlefield. That information is
stored both within his working memory (short-term)
and long-term memory, if the situation calls. An
individual’s long-term memory contains the actual
plans or tasks that the individual must complete, or in
other words, the goals. Based the stimuli from the
environment, the individual’s goals, and the
individual’s perception of what is occurring, the
individual is able to develop a response to events
within the immediate environment.

ARCHITECTURE TYPES

The Artificial Intelligence Laboratory at the University
of Michigan has identified various views of how an
intelligent system may be constructed. Those
architectural types that are important to an individual
behavior processor within the simulation only are
listed below.

Asynchronous Components
The architecture is organized into asynchronous
components. Each layer, or subset, of the architecture
has a specific function, thus reducing the complexity of
the overall system. This type of architecture is
pertinent for robotic entities. However, when
developing adaptable behaviors that represent the
variability of terrorist behaviors, the individual
behavior processor must manage the varying stimuli to
accomplish the main goal.

Interruptible
For an architecture to be categorized as interruptible, it
must quickly respond to events within the
environment. The architecture needs to process those
events within its system, handle the current event,
resume its previous operation and if necessary, replan
to achieve its goal objective. From the scenario stated
above, the terrorists have an goal of planting devices
within the baggage of departing aircraft. Because each
could individually encounter obstacles that deviate
them from their planned objective, the architecture

must support the events the terrorist encounters and
enable the individual to replan to still achieve its goal.

Layered
Layered architectures enable the developer to vary the
complexity of the different levels. An initial layer may
be continually sensing and reacting to its environment
while still passing the necessary events to a higher
level if further processing is required. Another layer
could coordinate the stimuli with the response and an
even higher level could manipulate the planning
algorithms. Each level has access to the model of the
world, however, the knowledge is distributed amongst
the layers. This is similar to how humans react to their
environment. If a human encounters a closed door, the
person does not think about how to open the door.
Instead, the person just opens the door. Unless the
human discovers that the door is locked, it is not
necessary to replan or develop a higher strategy for
opening the door.

Modular
This architecture type enables construction of the
intelligent system by integrating independent
components. These components could consist of
emotional or physiological aspects of behaviors, or it
could consist of learning algorithms. For the scenario
mentioned above, each individual entity would
experience a different emotional aspect and would
incorporate the varying emotions in different ways.

Multi-Component
Within this architecture type, each component within
the intelligent system is designed as its own piece.
Each component affects the overall system and is
affected by the system and can operate independently
of the other component pieces.

Plan then Compile
For a system to have some degree of intelligence it
must have the ability to plan or to replan based off
stimuli from the environment. Because we are
modeling human behavior, planning does need to exist
and, within the scenario, the individuals must replan
based on the situations they encounter.

INDIVIDUAL BEHAVIOR

To be effective, the synthetic environment must
present the training audience with realistic and
unpredictable scenarios and challenges. This can be
accomplished with role players and/or automated
behaviors representing the threat. An example of the
role player approach is for these individuals to initiate
terrorist attacks on a variety of infrastructure targets
such as communication centers, power plants,
transportation networks, etc. This approach is costly,
however, as it necessitates the use of exercise support
personnel to perform the threat role in the simulation.

A more appropriate solution is to automate the threat
forces that the individual will fight against. From the
architectures mentioned, AT&T has incorporated them
into the Figure 2. The “Physical & Emotional State”
and “Memory & Contextual Information” are modular
and do not inhibit the layered architecture of the
Deliberator, Sequencer, and Controller, but only affect
it when included. Individual behaviors are dynamic
and act upon the stimuli that are received from the
gaming environment, therefore the architecture allows
for interrupts and each component within this system is
asynchronous.

Figure 2. Individual Behavior Architecture

This architecture is based on the research that AT&T
has performed under STRICOM’s Advanced Robotics
STO effort. The modeling of robotic entities is similar
to the modeling of individual entities. For a robot to
be autonomous, the robot must be able to move within
its environment, plan, and re-plan based on changes to
the environment, and react to situations which at first
are not within its’ world model. The main components
of the Robotic STO’s behavior engine are the
controller, sequencer, and deliberator. These
components are based off of Gat’s three-layer
architecture. (Gat 1988) AT&T has extended this
robotic behavior architecture to more accurately model
an individual entity. The additional components are
the physical and emotional state and the memory and
contextual information.

At the lowest layer of Figure 2 resides the controller
layer that couples tightly to the physical world and
contains the basic behaviors, such as move, fire,
communicate, etc. This layer acts on the
environmental data and feeds that into both its
emotional state and its world knowledge or memory.

The sequencer layer coordinates the basic behaviors
the controller can initiate at any given time and
supplies parameters to those behaviors.

Finally, the deliberator layer contains all of the time-
consuming computations, which include planning and
exponential search algorithms. The deliberator layer
affects its planning based off previous experience,
recalled through its memory, and its current physical

and emotional state. Once the plans are produced, they
are sent to the sequencer for execution.

PARALLEL DISCRETE EVENT SIMULATION

Finally, individual behavioral modeling requires
immense processing power without performance
degradation. We have addressed this discrepancy by
using a PDES foundation to support our behavior
development and execution. Unlike a time-stepped
simulation that allocates time to all components of the
simulation regardless of importance or need, a discrete
event simulation (DES) responds only to time-stamped
events. This architecture results in three major
advantages.

To begin, DES focuses its computational resources on
areas that are relevant to the outcome of the
simulation. By contrast, time-stepped simulation
delegates resources to every component of the
simulation regardless of the importance. This waste of
computational resources is avoided with a DES
approach.

A second advantage is the presence of exercise
repeatability, correctness and causality. Because time
is a logical construct separate from the system clock in
DES, both repeatability and correctness in the model
can be guaranteed. (Beeker et al 2001) However,
because time-stepped simulation models are driven by
the system clock, repeatability and model correctness
can not be guaranteed. This makes the accurate
determination of causality through deduction
impossible.

The most important advantage for the purpose of this
work, though, focuses on the added power that a
parallel approach brings to a DES. Considering the
complexity and amount of data to be processed for
asymmetrical behaviors, implementing a parallel
discrete event simulation architecture will create a
scalable system that can grow to meet the needs of
those behaviors. AT&T envisions that as the
complexity of the behaviors increases, the simulation
will need to be distributed across multiple processing
nodes. This parallel approach will augment the
system’s ability to maximize model fidelity while not
overloading the processing resources. In short, any
performance enhancement beyond an increase in
computation speed or available memory relies on a
PDES approach.

REFERENCES

Allen, R. 1997 “Asymmetric Warfare: Is the Army
Ready?”
www.amsc.belvoir.army.mil/asymmetric_warfare.ht
m

Barry, P. 2001 “Modeling Operations Other Than
War/Complex Contingency Operations”,

Proceedings from the 2001 Spring Simulation
Interoperability Workshop 01S-SIW-088.

Beeker, Emmet and John Chludzinski, 2001 “Finding
Lookahead in Wargaming, A Requirement for
Scaleable Parallel Simulation”, Huntsville
Simulation Conference.

Broadbent, D.E. 1958 Perception and Communication,
New York, NY: Pergamon.

Brooks, R. A. 1991 “How to build complete creatures
rather than isolated cognitive simulators”, in K.
VanLehn (ed.), Architectures for Intelligence,
Lawrence Erlbaum Associates, Hillsdale, NJ.

Franceschini, R., Wu, A.S., Mukherjee , A., 2000
“Computational Strategies for Disaggregation”, 9th
Conference on Computer Generated Forces and
Behavioral Representation, Orlando, FL.

Gat, E., 1988. “On Three-Layer Architectures”, Eds,.
D. Kortenkamp, AI and Mobile Robots, AAAI Press.

JP 3-07, 1995, Joint Doctrine for Military Operations
Other Than War.

Lyons, D. & Hawkins, H, 1999 “Cognitive and
Behavioral Modeling Techniques for CGFs: A New
Initiative” 8th Conference on Computer Generated
Forces and Behavioral Representation, Orlando, FL.

Pew, R. & Mavor, A.: 1998 “Modeling Human and
Organizational Behavior: Application to Military
Simulations”. Washington, D.C.: National Academy
Press.

Rose, Dean 1998 “Operations Other Than War: A
Modeling and Simulation Imperative”, Proceeding
from the 1998 Fall Simulation Interoperability
Workshop 98F-SIW-007.

Stytz, M. R. & Banks, S. B., 1999 “Considerations and
Issues For Distributed Mission Training Computer-
Generated Actors” 8th Conference on Computer
Generated Forces and Behavioral Representation,
Orlando, FL.

Willis R. 2000 “Back Page-Representing Human and
Organizational Behavior 101”, 2000,
www.sisostds.org/webletter/siso/Iss_56.

BIOGRAPHY

SONIA VON DER LIPPE is a Senior Principal
Investigator for AT&T Government Solutions, Inc.
Ms. von der Lippe has over seven years experience
working behavioral development research projects,
from developing tools for operational mission planning
to investigating various behavioral architectures to
support robotics and cognitive processing. Ms. von
der Lippe received her Bachelor of Science in
Computer Science from Clemson University in 1987.

BRADLEY SCHRICKER is a Software Engineer
with AT&T Government Solutions, Inc. . He has over
four years of experience in software engineering,
focusing his efforts in the areas of distributed
simulation, High Level Architecture, and virtual
environments. Mr. Schricker received his Bachelor of
Science degree in Computer Science from Florida
State University in 1998.

RECOGNISING SITUATIONS IN A FLIGHT SIMULATOR ENVIRONMENT

Patrick A.M. Ehlert, Quint M. Mouthaan and Leon J.M. Rothkrantz
Data and Knowledge Systems Group

 Department of Information Technology and Systems
Delft University of Technology

Mekelweg 4, 2628 CD Delft, the Netherlands

E-mail: P.A.M.Ehlert@its.tudelft.nl, L.J.M.Rothkrantz@cs.tudelft.nl

KEYWORDS
Artificial intelligence, flight simulator, context awareness,

A.I. bot, neural networks, knowledge-based system

ABSTRACT
In this paper we describe our approach to a situation

recogniser system that currently is being developed for a
flight simulator environment. The situation recogniser is
part of a context-aware system and can be seen as a first
step to an artificial intelligent pilot bot. We will address our
explorative data study (PCA analysis), our attempt to
recognise and predict situations with an Elman neural
network, and our choice to use a knowledge-based
production system.

INTRODUCTION
Ever since the first airplane was built by the Wright

brothers the capabilities of aircraft have continuously been
improved. For example, the maximum speed of the average
military fighter plane has gone from approximately 100
Mph in 1920 to over 1500 Mph currently. These high
speeds are responsible for the little time available to pilots
to process information and make decisions. In addition, the
improved range of weapons in military aircraft (missiles can
be fired from 20 km away) reduces the pilot’s decision time
even more. Also, the amount of information available to a
pilot today and the complexity of the contents have
increased significantly. Where earlier planes only had a few
meters, modern aircraft have several hundreds of meters or
information displays, providing the pilot with a wealth of
different information sources.

To help the pilot deal with information processing and

decision-making, and to avoid cognitive overload, a crew
assistant system or intelligent pilot-vehicle interface (PVI)
has been proposed [Mulgund and Zacharias 1996]. The idea
is that such a system would present relevant information to
the pilot at the right moment, depending on the situation, the
status of the aircraft, and the workload of the pilot.

The Data and Knowledge Systems group at the Delft
University of Technology is currently working on a project
called Intelligent Cockpit Environment, or ICE for short.
The main objective of this project is to investigate new
interface techniques and technology for intelligent PVIs.
Part of the ICE project is to design a context-aware system
that can automatically recognise the current situation of the
pilot and aircraft. The first step towards this context-aware
system is to create a situation recogniser module. The
situation recogniser module should be able to determine the
status of the aircraft and the corresponding phase in the
flight plan.

Although the ICE project does not explicitly focus on

creating an A.I. pilot bot capable of reasoning and
recognizing situations in a flight simulator, it should be
possible to use the context-aware system for these purposes.

THE FLIGHTGEAR SIMULATOR
Many sophisticated flight simulator software packages are

available on the market, but most programs are commercial
software that cannot be extended. For the purpose described
above we want to be able to manipulate input data and
adapt our cockpit environment. Therefore, we chose the
open-source FlightGear flight simulator as our experiment
platform (see also Figure 1).

Figure 1: Screen shot of the FlightGear program

mailto:P.A.M.Ehlert@its.tudelft.nl
mailto:L.J.M.Rothkrantz@cs.tudelft.nl

The FlightGear simulator project is an open-source,
multi-platform, cooperative flight simulator project. The
idea for FlightGear was born out of dissatisfaction with
current commercial available PC flight simulators. The goal
of the FlightGear project is to create a sophisticated flight
simulator framework for use in research or academic
environments, for the development and pursuit of other
interesting flight simulations ideas, and an good and
extendable end-user application [Perry and Olson 2001].
The FlightGear platform is open to be expanded and
improved upon by anyone interested in contributing. For
more information on FlightGear visit the website
http://www.flightgear.org

EXPLORATIVE DATA ANALYSIS
We started our research with an explorative data analysis.

The FlightGear simulator allows us to log almost all internal
variables (e.g. altitude, airspeed, gear position, etc). For our
explorative data analysis we selected four variables: pitch,
throttle, acceleration and roll. Figure 2 shows the time graph
of the flight data generated on a sample flight. Note that the
straight flight (part C) was flown using the auto-pilot.

Figure 2: Time graph of selected flight variables during

annotated sample flight

PCA Analysis
The goal of the PCA analysis was to investigate the

possibility to give an automated interpretation of recorded
data; what was the planned action of the pilot and what was
his goal. As a proof of concept we limited ourselves to the
following set of actions: going up, regular (straight) flight,
turning right, turning left, going down, stand still (on the
ground), and taxiing.

Applying principal component analysis (PCA) or

Sammon mapping we were able to project the logged data
and cluster the data in the 7 selected action states. Figure 3
shows two projections of variables’ tracks during our
sample flight. From this figure we conclude that in principle
it should be possible to define states, which will result in
distinct clusters in the space of logged data. By tracking the
(projected) flight we can label the position with the
corresponding label of the cluster. This way we are able to

give an automated interpretation of the flight behaviour
based the logged data as is shown in Figure 4.

Figure 3: Clustering in two PCA projections

Figure 4: Tracking path in the two PCA projections

http://www.flightgear.org/

Elman neural network
We found similar results using recurrent neural networks.

We selected an Elman neural network with one hidden layer
as is shown in Figure 5. As test input we used the same
logged data as before and as output the earlier-mentioned 7
states. We were able to train the neural network for the
automatic recognition of the 7 states. The error rate on a set
of test data was 13.5 %.

We also used neural networks to predict the future values

of the logged parameters. As displayed in Figure 6, for
every variable X, we used at every point k the previous
values (Xk,…Xk-p) to predict X’s future values (Xk+1, Xk+2).
In Figure 7 we show the results using a feed forward
network of two hidden layers (4-5-5-2 architecture) using
window size 5.

Figure 5: Architecture of used Elman neural network

Figure 6: Model of prediction

More results about the PCA analysis and the prediction
with Elman neural networks can be found in [Capkova, Juza
and Zimmerman 2002].

Figure 7: Results of neural network state prediction with

window size 5

KNOWLEDGE BASE
After the explorative data study, we decided to take a

knowledge-based production system as the basis for our
real-time and on-line situation recogniser module. The
advantage of a knowledge based system is that it is much
more transparent how the system makes a decision,
compared to the neural network approach. In addition, it is
possible to make changes to the knowledge base and adapt
the system to new circumstances or environments (e.g. other
aircrafts).

A simple prototype
For our prototype program, we started with designing a

set of rules to recognise situations that can occur while
flying a Cessna 172, the default airplane in FlightGear. We
made rules for the following situations; start-up, taxiing,
hold-short, take-off, aborted take-off, set course to
waypoint, in flight, start-landing, aborted landing, final
approach, touchdown and shutdown. All situations can be
recognised based on a number of parameters such as
airspeed, vertical speed, throttle, brakes status, gear status,
etc. For each state we tried to use as much of the available
variables as possible, since this allows us to still get an
accurate indication of the situation, even if one of the
parameters is not normal for that situation. For example, if
the pilot lowers the gear, it is obvious that he is trying to
land. However, if for some reason the pilot forgets to lower
the gear, we are still able to determine that the pilot is
landing by looking at his airspeed, flaps, vertical speed and
altitude. This allows us to provide feedback to the pilot
about possible mistakes or malfunctions in a latter stage.

To reduce the amount of rules that have to be checked, we

devised a state-transition diagram and implemented this in
the prototype program, which is shown in Figure 8.

Figure 8: Screen shot of the prototype situation recogniser

In almost all on-line test cases, our prototype program
was able to recognise the correct situation in real-time.
However, in some cases the recogniser was a little late in
detecting that the pilot was initiating landing procedures.

Expanding the prototype
Our next step is to expand the prototype situation

recogniser program to accommodate a military aircraft such
as the F16. Not only will this provide us with a more
challenging and interesting domain with other situations, we
also expect that the usage of an intelligent interface, which
is our end goal, will have much more added value in a
military aircraft than in a civilian airplane.

Rules and procedures about flying an F16 are well

documented in two official F16 manuals available on the
Internet [USAF 1996], [USAF 1995] and in the user
manuals of the commercial flight simulator Falcon 4
[Microprose 1998], [Falcon unified team 2001]. These
documents describe many situations that can occur during a
military mission, as well as the actions that should be taken
by the pilot in those cases. In order to have a more generic
recogniser that can be used with multiple airplanes, we
chose to encode the F16 rules and procedures in XML. The
following situations have been described in our XML
knowledge base [Mouthaan 2002]: start-up, taxiing, taking
off, aborted takeoff, normal flight, dogfight, visual attack,
non-visual attack, guided attack, harm attack, taking evasive
action, deep stall, air refuelling, normal landing, flame-out
landing, aborted landing, and shutting down. Since we now
have to recognise a larger number of situations compared to
the Cessna, we decided to use a slightly different approach.
For every situation we designed a set of rules that produce a
probability that that particular situation is occurring. The
probability is calculated based on the state of the aircraft
(FlightGear variables) or the recent events (pilot or
environment). An event can have three sources:

Pilot: Pilot events are actions taken by the pilot, for

example pushing a button or adjusting the throttle.

Aircraft: Aircraft events are changes in the aircraft’s

state, for example a change in altitude or speed.

Environment: An event from the environment can be a

missile that is launched at the aircraft by an enemy SAM
site.

Besides these three sources there is another source of

information that can be used to determine the current
situation, which is the flight plan. The flight plan contains
information about the steer points the pilot should reach

during the flight, but it also contains information about
possible situations that will occur at those steer points (e.g.
attack ground target). If the flight plan is entered in our
system before the actual flight the system should be able to
more accurately predict the current situation.

The rules
The rules are grouped according to the situation they

relate to. Every rule has a value that indicates the
probability that the rule accurately identifies the situation.
When data (FlightGear variables) is passed to the
knowledge base some rules will fire and some will not. A
probability calculator will combine all the probabilities that
are the result of the rules that fire and calculate a new
probability for each situation. The probabilities that are
stored in the knowledge base are fuzzy values from a fuzzy
set. Once the probability calculators have produced a
probability for every possible situation, an overall controller
will evaluate all probabilities and determine if it can decide
with enough certainty that one of the situations is taking
place.

For every situation there are several types of rules:

Action rules: an action rule is a rule that states that a

pilot has to or might perform a certain action during this
situation.

Visual check rules: a visual check rule states that the
pilot should check a certain instrument during the situation.

Conditional rules: the conditional rules can be used to
determine if a situation has been started or if a situation has
been finished.

Additional rules: rules that do not fit in any of the
categories above.

Below we show an example of the XML code describing

a dogfight situation:

<situation name=”Dogfight” timewindow=”30”>
<actions>

<phase name=”ingress”>
<action name=”fcr” priority=”0/1” probability=”vsp”>&ACM;</action>

</phase>
<phase name=”engage”>

<action name=”master arm” priority=”1”
probability=”BP”&MASTER_ARM;</action>

………..
</actions>
<visualChecks>

<instrument name=”HUD”/>
<instrument name=”radio/>

….
</visualChecks>
<constraints startProbability=”SP” end Probability=”BP”>

<constraint name=”IFF” start=”&OFF;” />
<constraint name=”RWR” start=”&ON;” />

………
</constraints>
</situations>

CONCLUSIONS AND FUTURE WORK
We have presented some results of work in progress on an

automatic situation recogniser in a flight simulator. We
experimented with PCA analysis and neural networks to
automatically recognise 7 states. The results were fairly
good, but because of flexibility we decided to implement
the situation recogniser as a knowledge-based production
system. We devised a prototype situation recogniser that
can detect the most common situations when flying a
Cessna airplane. The prototype system also performed very
well, except in some cases it was slow in detecting landing
events. We have also shown our ideas about extending the
existing recogniser to detect more complex situations
(flying an F16) and adding probability values to the
reasoning process.

The situation recogniser is part of a context-aware system

that will be used in future research on intelligent interfaces
in the cockpit. After our implementation of the F16
knowledge base and improved reasoning system, we plan to
add a pilot-state recogniser module that should be able to
assess the pilot’s activities and workload.

Since our experiment platform, the FlightGear simulator,

does not support multiple aircrafts yet, we are currently
working on a multiplayer extension for FlightGear. Once
the multiplayer extension, knowledge base, and pilot state
recogniser are finished we plan to start experimenting with
different intelligent interface strategies.

REFERENCES
Capkova, I., Juza, M. and Zimmerman, K. (2002) “Explorative

data analysis of flight behaviour”. Technical Report, Data and
Knowledge Systems group, Delft University of Technology.

Falcon Unified Team (2001) “Falcon 4 Superpak 3 User
Manual”, Infogames Inc.

Micropose (1998) “Falcon 4.0 user manual”, Infogames Inc.

Mouthaan, Q.M. (2002) “Flying an F16: A knowledge base
describing the situations an F16 pilot might encounter”.
Technical Report DKS-02-03 / ACE 01, Data and Knowledge
Systems group, Delft University of Technology.

Mulgund, S.S. and Zacharias, G.L. (1996) “A situation-driven
adaptive pilot/vehicle interface”, in Proceedings of the Human
Interaction with Complex Systems Symposium, Dayton, OH,
August 1996.

Perry, A.R. and Olson, C. (2001) “The FlightGear flight
simulator: history, status and future”, LinuxTag July 2001,
Stuttgart, Germany.

USAF (1996) Multi-Command Handbook 11-F16 (F16-combat
aircraft fundamentals), Volume 5, May 10, 1996.

USAF (1995) Multi-Command Instruction 11-F16 (Pilot
operational procedures), PACAF Volume 3, April 12, 1995.

APPLICATIONS II
NETWORK,

BOARD,
MISCELLANEOUS

�������������	��

�������������������������������������! �"#���%$��&�����'�!��('
*)+�!�

,.-0/2143*576�8:9;-=<�9;-?> @BABCED=/GF09;-0HE/ IJ1 @B5B57KL3*5+6�8M9N6PO=9;-0/21

Q 9R57-TSTUV5+6W8PXY57Z[9;C=X\-]A+^MK`_:aJbdcfeY_Mgh9;KW57-0F0Z[9N6
F=A+>jikABZlKW^:F09;- Q Sm/29N6WSN9+_
Dh6M/23+9N-TC0/nF]9N/GFEop5+5+C?F0-]/qSTUBFR_Mrtsvu�s:wxAzyV{W|;{M_:{
}7~+~lo�g�op5+5+C?F0-]/qSTUBF

9NZ�57/2�����R9+s 3*576W8:9;-0Hx9N-0>J_ ^M/nF]9N-]HE/ IJ1�_ UM9N-]/21��7�\SNC;s ^W6M/GZ�5B5+C;s 6M�

�P�h�V�����V���
ikA+Z[KM^:F]9N-0��X\A�_:C?9R57-TSTU�_:9N3*57�2^W57F0/2A+6�_MC0A+�23�/G6M�[rtA+6W6
^W1
/G�JX\AWs

�L� ����� �4� �

e�UM/qCPKW57K�9N-pKM-09RC?9;6
F]C�5�C09;5+-]STU:� �W5BC?9R8¡57KWKM-0A
5+STU¡>¢A+-PF]UM9
�B5+Zl9�A7>�rtAB6M6�^M1�/n�JX\AWs£c¤6WA*3+9N�\9N3*5+�G^W57F0/2A+6�>¢^W6WS¥F]/GAB6'/qC
KM-]9;C09N6
F09R8[F0UW57FE/2Cx^WC09;8L/G6¦576V5+�GKWUW5*� ��9NF]5§>¢-]5+Zl9;HkAB-01lHE/GF0U
C?9;3+9;-]5+�=C?9R57-TSTU¨9;6MUW576�Sm9NZ[9;6BFTCNs�e�UM9�C?9R57-TSTU¨9;6M�+/26M9�K�9N-0�
>¢A+-]Z�C[Hk9;�G�=AB6�C?AB�G3�/26M�©K�A
C?/GF0/2A+6WCL576W8ªA+6ªUM9;^M-0/qC?F0/qS�KM�25z«Bs
u#K:F0/2Z�57�=C0A+�2^:F0/2A+6�C[Hk9;-09V>¢A+^M6�8�>¢AB-�C?Z�57�2�E9NZ[K:FJ«¨��A
57-T8MC
^MKªF0A�¬�­�¬:_�5+C�Hx9N�2�h5+C�C0A+Z[9�{P­�{©3*5+-0/q576
F]C;s�<®9���9N�
�G/29N3B9�F0UW57F4A+^M-VC?«:C?F09NZ¯SN5+6�5+�2C0A©��9�57KMKM�2/29;8¨F0A�S;57K:F]^M-09B_
�G/G>¢9z°78:9;57F0UL5+6W8�SmAB6M6M9RS¥F0/2A+6LKM-0AB�M�29NZ�Cj/26�F0UW9h�B5+Z[9=A7>±X\A�s

²P³m´ �§�4���¦µ � � ³ � ´

a�6§F]UM9��25BCJFf8:9;S;5+8:9RCN_+X\A\UW5BC`-]9;SN9N/23+9;8�C?/2�+6M/G¶�S;576
Ft57F?F]9N6
F0/2A+6
>¢-0ABZ·chal-]9;C09;5+-]STU!¸ }M_h|R~z¹ºs'»j9mFR_E8:9;C0KM/GF09p5+�G�#9m¼�A+-0F]C;_.F]UM9
��9RCJFdSmABZ[KM^:F09;-YX\AVKM-]A+�+-T57Z�C#57-]9�CJF]/G�2�tHk9R571�sY,fy:9NZ[KM�q57-]«
/2C4F0UM9�>½5+SmF4F0U�5*FLF]UM9®�25+-0�B9;C?FLC0¾
^W5+-09P��AB5+-]8ª>¢AB-LHEUM/qSTU¡5
SmABZlKW^:F09;-¦KW-0A�A7>�UW5+CV��9;9N6!KM^M�M�2/qC?UM9R8¡/qC¦A+6M�2«�¿`­f¿!¸n|z¬z¹ s
ÀE9;C0^M�GF]Ck�W5+C09;8[AB6�U�^MZ�576L5+6W57�2«:C?/qCf9my:/qCJFk>¢A+-�¬Á­.¬Y576�84{�­j{
�M^:F�57-]9=9myMSm9;9;8:/26M�B�G«[C?^W�:F0�29#5+6W8�UW5z3B9E6MA7Fx��9;9N6LSNA+6:¶W-]Z[9;8
��«LSmABZlKW^:F09;-]Cd¸ Â*¹ s
rtA+6M6�^M1�/G��X\A'Ã½57�qC0A�1�6MA*HE6¡5BCVcxFT57-]/n�JX\A�A+-VF0UW9�ix5+K:F0^M-]9
XY57Z[9RÄd/2C§5pC?/2Z[KM�G/G¶W9R8©3+9N-TC0/GAB6�A+>=X\A�F0UW57F�/2C�A7>ÅF]9N6�^WC09;8
F0A�F]9;5+STU�STUM/2�q8:-09;6pF]UM9�¶W-TC?F§KM-0/26WSN/GKM�29;C§A7>=X\AWsLe�UM9L�B57Z[9
/2CkKM�q5z«+9R8���«�FJHxA§KM�q5z«+9;-]C;_+�W�25BST1[5+6W8�HEUM/GF09B_:HEUMA�SNA+6WC09;SN^:�
F0/23+9;�G«lKM�q5+Sm9#CJF]A+6M9RCjA7>�F]UM9N/2-kSNA+�2A+^M-kA+6[F0UW9=/G6
F]9N-TC?9RS¥F0/2A+6�CjA7>
5�C0¾
^W5+-09Y�B-0/q8Ás.wx�q5+ST1LC?F]5+-?FTCxF0UM9§�
57Z[9+skgh^M-]/26M�[F0UM9��B57Z[9
CJF]A+6M9RCf-]9NZ�57/26l¶My:9;8Ásfch8*I?5+Sm9;6
F.CJF]A+6M9RCjA7>�9;¾
^W5+�WSmAB�GAB^M-.5+-09
SmAB6M6M9;SmF09R8Á_:8:/25+�+AB6W57��SmAB6M6M9;SmF0/2A+6WCx57-]9h6WA7F�^WC?9R8Ásje�UM9\�+A
57�
A7>%F0UM9��B57Z[9d/qC�F0A���9dF]UM9d¶W-TCJFEF]ALSN5+K:F0^W-09YA+6W9§A+-EZ[A+-]9dA7>
F0UM9[ABKMK�AB6M9N6
FRÆ CYC?F0A+6W9;C;s Q F]A+6M9RCY57-]9lS;57K:F]^M-09R8�HEUM9;6®F0UM9;«
57-]9xSNA+Z[KM�29mF]9N�2«�C0^M-0-]A+^W6W8:9;8l576�8�6MAd�2A+6W�+9N-fSNA+6M6M9RS¥F]9;8�F0Ad5
>¢-09;9EK�AB/G6
F.AB6lF0UM9=��AB5+-]8�s%e�HxAd-0^W�G9RCj8:/qCJF]/G6M�B^M/qC?U�rtA+6W6
^W1
/G�
X\A�>¢-0ABZÇX\A�s¦È%/2-]C?F;_fS;57K:F]^M-0/26M��8:/2-]9;S¥F]�G«�9N6W8WCdF0UW94�B5+Zl9Bs
e�UM9p�
57Z[9p/qCVHkAB6��
«ªF]UM9®C0/q8:9�F]UW5*FPSN5+K:F0^M-]9;8ªF]UM9�¶W-]C?F
CJF]A+6M9
Ã½CTÄ¥s4ch6W8©C?9RSmA+6�8Á_�KW5BC0C0/G6W�¦/qCY6MA+F�57�2�GA*Hx9;8¨Ã½C0AVF]UM9N-]9
/2CE5+�GH�5z«:C�5�HE/26M6M9;-TÄms
rtA+6M6�^M1�/G��X\A\/qCjC?/2Z[KM�29N-fF]UW5764X\Ad��9;SN5+^WC09�F0UM9;-09=5+-09�6MAd1BA7�
¶W�+U
FTC�576�8�C05BSm-]/n¶�Sm9;C;_f576W8®F]UM9¦9N6W8�/qC�Hk9;�G��8:9m¶�6M9;8�Ã�SN5+K:�
F0^M-]9RÄms'OhA*Hk9;3+9N-R_./GFV8:A�9RC�SmA+6
FT57/26ª/2Z[K�AB-?FT576
FL5+C0K�9;S¥FTC�A7>
X\A\C0^WSTU[5+CtSN5+K:F0^W-0/26M�dCJF]A+6M9RCN_78M9mF09;-0Z[/26M/26M�Y�G/G>¢9z°78:9;57F0U[576W8

Z[5+1�/G6M�\F]9N-]-0/GF0AB-0«Bs±ÈM-]A+ZÉ576�c=a%K�9;-]C0K�9;S¥F]/G3B9=C?AB�G3�/26M�dC?Z�5+�G�G�
��A
57-T8\rtAB6M6�^M1�/n�JX\A�/2C�/G6
F09;-09RCJF]/G6W�E��9RSN57^�C?9tF]UM9jK�9N-0>¢9;S¥F%KM�q5z«
KM-0A*3�/q8:9;C#576®57�WC0A+�2^:F09���9;6WSTUMZ�57-]1¦>¢A+-#F09RCJF]/G6M�VF0UW9�K�9N-0>¢A+-0�
Z[5+6WSm9lA7>x�G9R57-]6M/26M�V5+�G�BA+-]/nF]UMZ�CNs�ÈW^M-0F0UM9;-0Z[A+-]9+_ÁC0/G6�Sm9�SN5+K:�
F0^M-]/G6W�§CJF]A+6M9RCt/2Cj5+6[9;C]C?9;6BF]/25+�WX\A§C?1�/2�G�º_B5+6�«�57�2�+AB-0/GF0UWZ�F0UW57F
K�9;-?>¢AB-0Z�C�Hx9N�2�hAB6¨F]UM/qC4FT5+C01�_�HE/2�G�\57�qC?A���9�A+>Y/26
F09;-09RCJFL/26
SmA+Z[KM^MF09N-hX\A�s
a�6�F0UW/2CYKW5+K�9;-YHk9lKM-]9;C09N6
FY5¦C0«�C?F09;ZÊF0UW57FdKM�25z«:C\rtA+6M6�^M1�/G�
X\A®^�C?/26M�©5®C09;5+-]STUM�º�W5BC?9R8�57KMKW-0A
5+STU�s�e�UW9¦-]9NZ�5+/G6W8M9N-[A7>
F0UM9®KW57K�9N-V/2CVA+-]�B5+6M/2ËN9;8�5BC�>¢AB�G�2A*H=CN� Q 9;S¥F]/GAB6'}�KW-09RC?9;6BFTC
F0UM94C09;5+-]STU®Z[9mF0UWA�8�_±HEUM/qSTU©/2C§�W5+C09;8®A+6�5+�GKMU�5*� ��9NF]5¦HE/nF]U
C?9;3+9N-T57�t9;6MUW576�Sm9NZ[9;6BFTCNs Q 9;SmF0/2A+6�Ì�/26BF]-0A:8:^�Sm9;C§A+^M-d9;3z5+�G^M�
5*F0/2A+6�>¢^M6WS¥F]/GAB6�s�e�UM9;6�/26¨C09;S¥F]/GAB6�¿�Hk9¦C?UMA*HÍF]UM9PC?Z�5+�G�G�
��A
57-T8�C?AB�G^:F]/GAB6WC�>¢A+�2�GA*Hx9;8���«�C0A+Z[949my:K�9N-]/GZ[9;6BFT57�x-09RC?^W�nFTC
A+6PF]UM9�K�9N-0>¢A+-]Z�576WSN9§A7>.F0UM9[C?9R57-TSTUP9N6MU�576WSN9NZ[9N6
F]C\576�8PA7>
F0UM9¦9N3*57�2^W57F0/2A+6�>¢^W6WS¥F]/GAB6�s Q 9;SmF0/2A+6�¬�KM-]9;C09N6
FTC�C0A+Z[9¦KM-09N�
�G/2Z[/G6W5+-0«¦-]9;C0^M�nFTC=AB6PF0UM9�K�9;-?>¢AB-0Z�5+6WSm9§A+>fA+^M-#KM-0AB�+-T57ZÎA+6
�25+-0�B9N-[��A
57-T8MC;s'È%/G6�57�2�G«B_�C09;SmF0/2A+6�{©KM-]A*3�/28:9RC�SmAB6WSm�2^WC0/GAB6WC
576W8¦C?ABZ[9\/q8:9R5+Cx>¢A+-�>¢^MF0^M-]9dHkAB-01�s

Ï ��ÐP�Ñ��� � � � ÐÓÒ��\�§Ðp�4�

e�UM9�C?F]576�8M57-T8V>¢-]5+Zl9;HkAB-014>¢A+-h�
57Z[9m�ºF0-]9N9dC09;5+-]STU�/qCh57�2KMUW57�
��9NF]5M_zHEUM/qSTU§SmABZ[9;C�/26§Z�576�«hÔ�5z3+AB^M-]C;sÁ<®9kC09N�29;S¥F]9;8d5+6d/nF]9N-0�
5*F0/23+9§8M9N9NK�9N6W/G6M�¦rj-]/G6�Sm/2KW57��Õj5+-0/q5*F]/GAB6 Q 9;5+-]STU�Ã�rjÕ Q Ä�HE/nF]U
5�Z[/26M/2Z[5+�=HE/26W8:A*HÑ/26�5®6M9N�
57Z�5*y�>¢-T57Z[9NHxA+-]1�¸ Ö*¹ s�e�UM9
9m×4Sm/29N6WSN«VA+>.57�2KMUW57�º��9mFT54C?9R57-TSTU�^WC?^�57�2�G«�/2ZlKW-0A*3B9;C=C09N3B9N-T57�
A+-T8:9N-TC[A7>dZ�57�B6M/nF]^W8:9���«�57KMKW�G«�/26M��F0UW9�-0/2�+U
FLC09;5+-]STU�9N6M�
UW576WSN9NZ[9N6
FTCNs¦<�9VC?9;�G9RS¥F09R8�F0UM9�>¢AB�G�2A*HE/26M�W�LÃ?|RÄ\F]-]5+6WC0K�A
C?/G�
F0/2A+6lF]5+�M�G9RCh¸G|+|¥¹ _�Ãº}+Ät1�/2�G�29N-.ZlA*3B9;CE¸G|¥¹ _�Ã�ÌBÄ%UM/qCJF]A+-]«�UM9;^M-]/2C?F0/qS
¸n|RÌz¹±576�8�Ã½¿
Äx9N6WUW576WSN9;8LF0-T576WC0K�ABC0/nF]/GAB6¦SN^:F0A+¼�C§¸G|R}z¹ºs
e`-T576WC0K�ABC0/nF]/GAB6hFT57�M�29;CÁKW-09;3+9N6
F`C09;5+-]STUM/26M�kF0UM9kC05+Zl9fK�ABC0/GF0/2A+6
C?9;3+9N-T57��F]/GZ[9RC=��«VC?F0AB-0/26M����9;C?FhZ[A*3+9+_MC]SmAB-09B_W576�8P8:9NK:F]UPA7>
KM-09;3�/GAB^WC?�2«�9N6�SmA+^W6BF]9N-]9;8VK�A
C?/GF0/2A+6�CNsfÈMAB-�F0UM9YF]-]5+6WC0K�A
C?/GF0/2A+6
F]57�W�G9RCfHk9E^�C?9EF]UM9�FJHxA7��8:9N9;Kl-]9NKW�25BSm9NZ[9;6BF.C]STUM9;Zl9§¸ Ìz¹ sfe�UM9
ZlA*3B9.AB-]8:9;-0/26M�=/qCt5+C`>¢A+�2�GA*H=C;��¶W-TCJF%F0UW9.F]-]5+6WC?K�ABC0/GF0/2A+6§Z[A*3+9B_
F0UM9;6�FJHxA41�/G�2�G9;-hZ[A*3+9RCN_�576�8�¶W6W5+�G�2«¦F0UM9�-09;Z[5+/G6�8:9N-#A7>fF0UW9
ZlA*3B9;C=5+-09§C0A+-0F09R8¦�
«LF0UM9�UM/qCJF]A+-]«LUM9;^M-0/qC?F0/qS7sEbY/G�2�29N-=Z[A*3+9RC
-09;�G«[A+6LF0UM9Y5+C]C0^MZ[K:F0/2A+6LF0UW57F�5��+A�A:8�Z[A*3+9#/G6VA+6M9\�M-T576WSTU
A7>%F0UM9YF]-09;9\/qCEA+>ÅF09N6��BA
A:8¦5*Fh5+6MA7F]UM9N-E�M-T576�STU¦57FxF]UM9§C]57Z[9
8:9NK:F]U�s�e�UM9�UM/qCJF]A+-]«PUM9N^W-0/qCJF]/2Sl^WC09;Cd5�C0/GZ[/2�25+-Y/28:9R5¦�M^:F§/qC
6MA7F�-]9;C?F0-]/qS¥F09R8�F0APF]UM9L8:9;K:F0U�57F�HEUM/qSTU�Z[A*3+9;Cd5+-09[>¢AB^M6W8Ás
a�6PA+^M-=/2Z[KM�29NZ[9N6
F]57F0/2A+6¦F0UW9�1�/G�2�29N-=Z[A*3+9RCE57-]9§CJF]A+-]9;8©Ã½5+6W8
F09;C?F09R8WÄ±6MA7FtA+6W�G«§57F±F]UM9N/2-fA*HE6�8:9;K:F0Ul�M^:Fj57�qC0AhA+6W9x5+6W8§FJHxA
KM�G«�8:9;9NK�9N-Rs=ÈM^M-0F0UM9;-;_�A+^M-#/GZ[KM�29NZ[9;6BFT5*F]/GAB6PA7>tF0UM9�UM/qCJF]A+-]«

UM9N^W-0/qCJF]/2S�9NZ[KM�2A*«�C4A+6M9PFT57�M�29P>¢AB-4��A+F0U��W�25BST1¨576�8�HEUM/nF]9
Z[A*3+9;C;_ÁF]U
^�CY^:F0/2�G/2ËN/26M��F]UM9VX\A�KM-]A*3+9N-]�¡Ø?F0UM9�Z[A*3B9�A+>xZ�«
A+KMK�A+6W9N6
FE/2CEZ�«4Z[A*3+9RÙMs
,j6MU�576WSN9;8LF0-T576WC0K�A
C?/GF0/2A+6�Sm^MF0A7¼ÁCEFT571B9\9Ny�F0-T5l5B8:3*576
F]5+�+9YA7>
F0UM9¦F]-]5+6WC?K�ABC0/GF0/2A+6¨F]57�W�G9���«��2A
AB1�/G6M�©5*F45+�G�=C0^WSNSN9;C]C?AB-]C�A7>
5§6MA:8:9#F0A�¶W6W8LHEUM9mF]UM9N-xF]UM9N«4SNA+6
F]5+/G6�F]-]5+6WC0K�A
C?/GF0/2A+6WCjF0UW57F
�G9R5+8�F0Ad5Y��9mF]5YSN^:F0A+¼L��9N>¢A+-]9=5Y8:9N9;K�9;-jC?9R57-TSTU�C?F]57-0F]C;s Q /G6�Sm9
9N6MU�576WSN9;8¨F0-T576WC0K�ABC0/nF]/GAB6�SN^:F0A+¼�CL57-]9P9my:K�9;6WC0/G3B9�F0UM9;«ª5+-09
A+6M�2«\^WC?9R8YF0UW-09;9.A+-±Z[A+-]9jKM�2/G9RC±5zH�5z«=>¢-]A+Z'F0UM9k�G9R5z3+9RC.ÃÅF]UM9N-]9
F0UM9�57Z[A+^M6
F=A+>±F]UM9dF0-]9N9YF]UW5*F\SN576���9�Sm^MF0A7¼®/2C#C?^M×�SN/G9;6
F0�2«
�25+-0�B9RÄms

Ú �§ÐP�Û�hÜ �LÝ µ � � ³ � ´¯Þ µ ´ � � ³ � ´

e�UM9®9N3*57�2^W5*F]/GAB6�>¢^M6WSmF0/2A+6!/2C�5+6¡9;C]C09N6
F0/q57�\/G6W�+-]9;8:/29N6
FL>¢AB-
�+^M/q8:/26M��F0UM9PC09;57-TSTU�F]A*Hx5+-]8MClC?F0-]A+6M��KM�25z«Bs¨Dh6M�G/21+9�STUM9RC0C;_
6MA��+A�A:8�576W8ª9RC?K�9;SN/25+�G�2«�6MA¨STUM9;5+K¨9;3z5+�G^�5*F0/2A+6ª>¢^M6�S¥F0/2A+6�C
9my:/qCJFx>¢A+-hX\A�¸ }M_Á|;~z¹ sjg#9;C0KM/nF]9YA7>`F]UM/qC�Hk9#F0-]/G9R84F]A[�M^M/2�28¦576
9N3*57�2^W57F0/2A+6©>¢^M6WSmF0/2A+6�>¢A+-§F]UM9L�
57Z[9LA+>hrtA+6M6�^M1�/G��X\A�s�e�UM9
8:9m>½5+^M�GF=>¢A+-\C?AB�G3�/26M�4C?Z�5+�G���
57Z[9;C=/2C=F0A4^WC09�5lF]UM-09;9m� 3*57�2^M9;8
9N3*57�2^W57F0/2A+6©>¢^M6WSmF0/2A+6�_kSm�q5+C]C?/G>¢«�/G6M�p9;5+STU���A
57-T8©K�A
C?/GF0/2A+6�5BC
9N/GF0UM9;-P5�HE/26£Ã?|RÄm_\5��GA
C0C©ÃJßd|zÄ4AB-V^W6M1�6MA*HE6ÉÃ�~BÄ¥s Q ^WSTU
5¦F0UM-]9N9N�º3*5+�G^M9R8®9N3*57�2^W5*F]/GAB6®>¢^M6WS¥F]/GAB6�/2C�¾
^M/nF]949m×4SN/G9;6BFd>¢AB-
C?AB�G3�/26M���B5+Z[9;C;_�8:^M9§F0A�F]UM9�6W5+-0-]A*H¡HE/26W8:A*HàHEUM/qSTUP�+9;6M9N-0�
5*F]9;C\Z�576�«���9NF]5�Sm^:F]A7¼ÁCN_Á�W^:Fd��9RSmA+Z[9RC#^�C?9;�G9RC0Ch>¢A+-dC?F0-]A+6M�
KM�q5z«#AB6§�25+-0�B9f��A
57-T8MC;s±e�UM9;-09N>¢A+-]9fHk9x8:9N3B9N�2A+K�9;8d5=UW9N^M-]/2C?F0/qS
9N3*57�2^W57F0/2A+6V>¢^M6WS¥F]/GAB6�s
u#^M-`UW9N^M-]/2C?F0/qSf9;3z5+�G^�5*F0/2A+6Y>¢^W6WS¥F]/GAB6�/qC��W5BC?9R8YA+6d>¢AB^M-`KM-]/26WSm/G�
KM�29;C;�xÃ?|RÄ.Z[57y:/GZ[/2ËN/26M���2/G��9N-0F0/29;C;_ÁÃ�}BÄfZ�5*y:/2Zl/2ËN/26M��F09N-]-]/nF]A+-]«+_
Ã½Ì
Ä#SNA+6M6W9;S¥F]/G6W��C?F0AB6M9;C;_`5+6W8¨Ã½¿
Ä\Z�571�/26M�¦9N«+9RCNs[áh57F0^M-T57�2�2«
F0UM9RC?9=>¢A+^M-jKW-0/26WSm/2KM�29;Cf-]9N�q5*F]9E/G6�6W9N�B57F09R8�>¢AB-0ZÉF0AYF]UM9=ABKMK�A+�
6M9N6
FRÆ C�CJF]A+6M9RCNs�e�UM9[¶W-TCJF�KM-0/26WSN/GKM�29�>¢AB�G�2A*H=C§8:/2-09RS¥F]�G«p>¢-0ABZ
F0UM9h�+AB5+�:A7>�F0UW9=�B5+Zl9§Ã�SN5+K:F0^M-]/26M�§CJF]A+6M9RC]Äms Q /G6�Sm9EF]UM9=6�^MZl�
��9;-jA7>��2/G��9N-0F0/29;Cf/qCj5Y�2A*Hk9;-t��AB^M6W8[A+6lF]UM9E6�^MZ���9N-jA+>�Z[A*3B9;C
F0UW57Fj/2C.6M9N9R8:9;8�F]A�SN5+K:F0^M-]9E5dCJF]A+6M9B_+Z�5*y:/2Z[/GË;/G6M�YF]UM/qCj6�^MZl�
��9;-./qC.5d�BA�A�8�8M9m>¢9N6�C?/23+9hC?F0-T5*F]9N�B«�HEUM9;-09R5+CfZ[/26M/GZ[/2ËN/26M�dF]UM9
A+KMK�A+6W9N6
F;Æ CE�2/G��9N-0F0/29;C=8M/G-]9;SmF0�2«V57/2Z�C=5*F=HE/26M6M/26M�[F]UM9d�B5+Zl9Bs
e�UM9�C09;SmAB6W8¨KM-0/26WSN/GKM�29+_xZ�5*y:/2Zl/2ËN/26M�®F09;-0-]/GF0A+-]«+_k/2C�5©�2A+6W�7�
F09;-0Z!�+A
57�BC0/26WSm9j/GFf57�2�GA*H=CÁAB6M9.C0/28M9jF0AhKM�25BSm9kZlAB-09kCJF]A+6M9RC�/26:�
C?/q8:9Y/GF]C�A*HE6VF09N-]-]/nF]A+-]«�Ã¢��9m>¢A+-]9\¶W�2�G/26M�[/nFhSNA+Z[KM�29mF]9N�2«:Ämsje�UM9
F0UM/2-T8�KW-0/26WSm/2KM�29E>¢A+�2�2A*H=C%>¢-0ABZ�F0UW9=A+�WC09N-]3*5*F]/GAB6�F]UW5*Fk5dC0Z�57�2�
6�^MZ���9N-#A7>j�q57-]�+9d�+-]A+^WKWCE/qC=9;5BC?/29N-hF0AL8M9m>¢9N6�8�F0UW5+6p5��q57-]�+9
6�^MZ���9N-YA7>�C?Z�5+�G�t�+-]A+^WKWCNs�e�UM9N-]9m>¢AB-09B_�SNA+6M6W9;S¥F]/G6W�¦C?F0AB6M9;C;_
HEUM/qSTU¦C?F0-]/G3B9;CxF]A*Hx5+-]8V5lC0Z�57�2�Á6�^MZ���9N-=A+>±�q57-]�+9Y�+-]A+^WKWCN_�/qC
�+9;6M9N-T57�2�G«�5��BA�A�8�/q8:9;5Ws4e�UM9[>¢A+^M-0F0U©KM-]/26WSm/2KM�29�/2C§8M/G-]9;SmF0�2«
8:9N-]/23+9;8�>¢-0ABZÛ6MA+-]Z�57�ÁX\AW_�/G6¦HEUM/qSTUL9;«+9;Cx57-]9=F]UM9Y9;C]C?9;6
F0/q57�
/G6W�+-]9;8:/29N6
F]C�>¢A+-��W^M/G�q8:/26M�®�G/23�/G6M��C0UW57K�9;C;s�a�6�rtA+6M6�^M1�/G��X\A
�G/23�/G6W��C0UW57K�9;Ck57-]9hA+6W�G«[SN5+K:F0^M-]9;8L5*>ÅF09;-kAB6M9hKW�25z«B9N-jUW5BC.-]^M6
A+^:FtA7>�57�GF09;-06W57F0/23+9kZlA*3B9;C%576W8�/2C±F]U
^�C%>¢A+-TSm9;8§F0A#¶W�2�:UM/2C%A*HE6
9N«B9;C;s
Q /26WSm9hF0UM9\9N3*57�2^W57F0/2A+6[>¢^M6WSmF0/2A+6V/2Ck^WC09;8�/264F]-09;9#C09;57-TSTU�_
576W8
F0U�^WCE/qCESN5+�G�29;8�57F=Z[5+6�«4�G9R5z3+9RCN_:C0K�9;9;8¦/2C=9;C]C?9;6BF]/25+��sje�UW9N-]9m�
>¢A+-]9EA+^M-./GZ[KM�29NZ[9N6
FT5*F0/2A+6�^�C?9RCf�M/GF?� ��A
57-T8MCt>¢A+-j>½5+C?FkSmABZlKW^:�
F]57F0/2A+6[A7>�F0UW9=��A
57-T8§>¢9R5*F]^M-09RCNs%a�6WC?F09R5+8lA7>�SN5+�2SN^M�q5*F0/26M�d/26W8:/G�
3�/28:^�57���G/2��9N-0F0/29;CtK�9N-fCJF]-0/26M��_*F0UM9EC0^MZ�A7>��G/2��9N-0F0/29;C%/2Cf8M/G-]9;SmF0�2«
SN5+�2SN^M�257F09R8§>¢AB-±F]UM9�>¢^M�2�M��AB57-T8Ás%e`9;-0-]/nF]A+-]«d/2Ct9RCJF]/GZ�57F09;8���«�5
Hk9;/G�BU
F09;8[C0^MZâA+>�F0UM9=6�^MZ���9;-jA7>�¶W-TC?F?�T_BC09;SmAB6W8��`5+6W8lF0UM/2-T8��

A+-T8:9N-j�2/2��9;-?F]/G9RCNsEÃ½ã`/G��9N-0F0/29;CkA7>�AB-]8M9N-.äP5+-09=9;Z[K:FJ«[/G6
F09;-]C09;Sm�
F0/2A+6WCE57Fh5lop576MUW57F?FT576�8:/2C?F]5+6WSm9Yäp>¢-0ABZåF0UW9YC?F0AB6M9;CTÄ¥sjã`/G�M�
9N-0F0/29;C#A7>jUM/2�+UM9;-hAB-]8:9;-#5+-09�6MA7F\^WC?9R8�C0/G6WSN9§F]UM9N«�5+KMK�9R57-]9;8
F0AYC?�2A*H�8:A*HE6�F0UM9�9N3*5+�G^W57F0/2A+6�HE/nF]UMA+^:Fj5\C?/2�+6W/n¶�S;576
FfSmA+6
F]-0/G�
�M^:F0/2A+6�F0A\F]UM9E¾B^�57�2/nFJ«LÃ½9;C0K�9RSm/q57�2�G«dAB6lC0Z�57�2����A
57-T8MC]Äms Q /G6WSN9
F0UM9�9Ny:5BS¥F�C0/GË;9�A7>xF0UM9[F]9N-]-0/GF0AB-0«p��9RSmA+Z[9RCd¾B^W/nF]94Z[9;576W/G6M�+�
�G9RC0CEHEUW9N6¦F0UM9�8:/n¼�9N-]9N6�Sm9d��9mFJHx9N9N6���A7F]U�C?/q8:9;C=/2CE�q57-]�+9#F0UW9
3z5+�G^W9�SN5+6P��9lSm�2/GKMK�9;8�s�Ã½ÈWA+-\C?AB�G3�/26M��F0UW9�C0Z[5+�G�±��A
57-T8MCEHx9
^WC?9R8V5[Z�57y�/2Z�^WZÑ8:/G¼�9;-09;6WSm9dA+>%ÌlK�AB/G6
FTCNsvÄ
ikA+6M6M9RS¥F]/GAB6WC[576W8�9N«+9RC[57-]9VZ[A+-]9�SmABC?F0�2«©>¢9;57F0^M-]9;C�F]A©S;57�G�
Sm^M�q5*F]9VF]UW576¨F0UW9P�G/2��9;-?F]/G9RCNs�ÈMAB-?F]^M6W57F09N�2«�F]UM9N-]9�/2C�5pF0-]/2ST1
F0UW57F¦SmABZ��M/26M9RC4576�9RCJF]/GZ�57F09�A+>\F]UM9�FJHxA�/26�A+6W9pSTUM9;5+KM�2«
SmA+Z[KM^MF]57�W�G9[6�^MZ���9N-R�#F0UM94,.^M�G9;-Y6
^WZ���9N-4¸væ;¹ºs�e�UM9�,.^M�G9;-
6
^WZ���9N-�A7>t5��M/26W5+-0«�/2Z�57�+9B_�/2CxF]UM9Y6
^WZ���9N-�A7>%A+�:IJ9RS¥F]CxZ[/G�
6
^�CdF0UW9L6�^MZ���9N-lA7>EUMAB�G9RC�/26�F]UMABC094A+�MIJ9;S¥FTCNs�oP/G6W/GZ[/2ËN/26M�
F0UM9¦,j^M�29N-�6
^WZ���9N-§F]U�^WC�SNA+6M6W9;S¥FTC�C?F0AB6M9;C�5+C§Hx9N�2��5+C�SN-09N�
5*F09RCj9;«+9;C;s Q /G6�Sm9#F0UM9\,j^M�29N-k6
^WZ���9N-�SN576���9YSmA+Z[KM^MF09;84K�9;-
FJHkAV-0A*H=Ch^WC?/26M�¦5L�2A�A+1�^MKPFT57�M�29+_�A+6W�G«�5VC?Z�57�2�%6
^WZ���9N-YA7>
A+K�9N-T5*F0/2A+6�Ck/qCE6M9;9;8:9R8Ás

ç �\èLéd�\� ³ Ò�� ´ � �LÝ �V�Y�`µ Ý ���

e�UM/2ChC?9RS¥F0/2A+6¦KM-]9;C09N6
F]C�-]9;C0^M�GF]C�AB�:F]5+/G6M9R8¦A+6�5�rt9N6
F0/2^MZåa0a?a
|+s ~lXYOhËYSNA+Z[KM^:F]9N-R_:^WC0/G6M�[5�F0-T576WC0K�A
C?/GF0/2A+6LF]5+�M�G9YHE/GF0UP}7ê]ë
8:A+^M�W�G9�9;6BF]-0/29;C;sL<®948:/qC0SN^WC]CN�LÃ?|RÄdC0Z�57�2�j��AB57-T8©C?AB�G^MF0/2A+6WC;_
Ã�}+ÄPF0UM9¨/GZ[KW5BS¥F®A7>4C?9R57-TSTUà9N6MUW5+6WSm9;Z[9N6
F]C;_�5+6W8åÃ½Ì
Ä¦F0UW9
K�A*Hx9N-�A7>tA+^W-E9N3*57�2^W5*F]/GAB6L>¢^W6WS¥F]/GAB6�s

��ì�íWî½îjïkð�í:ñ*ò�óRð�î�ô`õRö½ð�÷±ó

u#^M-`KM-]A+�B-]5+Z'C0A+�23+9R8hF]UM9.9;Z[K:FJ«dC0¾
^W5+-09f��AB5+-]8MC`^MKdF]A\¬%­E¬:s
e±5+�M�G9®|PC?UWA*H=C§F]UM9PHE/G6W6M9N-R_jF]UM9P8:9NK:F]U!Ã½/G6�KM�2/29;CTÄ�A+>=F0UW9
C?UMAB-?F]9;C?FLC?AB�G^MF0/2A+6�_xF0UW9�6�^MZ���9N-4A+>d6MA:8:9;C;_E576W8¨F0UW9PF0/2Z[9
Ã¢/26�C?9RSmA+6�8MC]Ä#6M9;9;8:9R8®F0A�¶W6�8®F0UM94C0A+�2^:F0/2A+6�5BCdHk9;�G�k5+C\F0UW9
9m¼�9;S¥F]/G3B9V�W-]5+6WSTUM/26M��>½5BS¥F0AB-l>¢A+-l9;5+STU¨��A
57-T8Ás�a�6¨F0UM9�È%/G�+�
^M-09RC�|l576W8�}[F0UW9�KM-]/26WSm/2KW57�%3*57-]/257F0/2A+6WC#57-]9�C0UMA*HE6�>¢A+-#F0UW9
C?AB�G^:F]/GAB6WC�A7>±F0UM9d¿�­¦¿�576W8P¬l­P¬���A
57-T8Ás
<�9�AB�WC09N-]3+9;8¡F0U�5*F�C0Z�57�2��C0¾
^W5+-09©��AB5+-]8MC�HE/nF]U�576à9N3B9N6
6
^WZ���9N-.A+>Á/G6
F09;-]C09;SmF0/2A+6WChÃ�}h­�}Y576W8[¿\­§¿�Äf57-]9EHkAB6���«§F0UW9
C?9RSmA+6�8�KW�25z«B9N-YA+6©ËN^W�+ËNH�576W�©Ã�5*>ÅF]9N-�5PC09;¾
^M9;6WSm9�A+>xZ[A*3+9RC
F0UW57Ft6W9;57-]�2«Y¶W�G�qCtF]UM9�9N6
F0/2-09���AB5+-]8§F0UM9�¶W-TC?FtKW�25z«B9N-%/2C%>¢AB-]SN9;8
F0ALHx9;5+1+9;6¦UW/2C\K�ABC0/nF]/GAB6P��9RSN57^�C?9�KW5+C]C?/26M�4/qC#6MA7FY57�2�GA*Hx9;8WÄms
e�UM9d��A
57-T8MC�HE/GF0U�576�A:8M8�6�^MZ���9;-=A7>t/G6
F]9N-TC?9RS¥F0/2A+6�CdÃ½Ì�­�Ì
576W8�¬P­�¬BÄ[57-]9PHkAB6¨��«�F0UM9P¶�-]C?F4KM�q5z«+9N-R_xHEUMA�^WC09;ClF0UW9
/G6M/GF0/q5*F]/G3B9EF0A§F]571B9hSmAB6
F0-]A+�MA+>ÁF0UM9hSN9N6
F0-]9h5+6W8�8:A+Z[/26W5*F]9EF0UW9
��A
57-T8Ás`a Fj/qCt1�6MA*HE6�F]UW5*Fj/26lZ[5+6�«§��A
57-T8��
57Z[9;C±F]UM9E/G6W/nF]/257�
F0/23+9l/2CY5¦Sm�29;57-d5B8:3*576
F]5+�+9�HEUW9N6�F]UM9[��A
57-T8�/qCYC?^:×4SN/G9;6BF]�G«

}l­P} Ì[­¦Ì ¿�­V¿ ¬l­P¬ {[­¦{
<�/G6W6M9N- < w < w ø
gh9;K:F0U ¿ æ |N¿ |;Ö ùª}+Ì
á=A:8:9RC§ÃºúJû;�2A+��Ä |+s Â ÌMsv} ¬Msvæ ÂWs ¿ ù¡|z}
e�/GZ[94Ã�C]Ä ~ ~ | ÌBÖB¬ ù!|;~Bü
ýmþJÿzÿ }:s Ö }:s Ö }Ms { }Ms Â ø

e%57�W�G9[|+� Q A+�23
/26M��C0Z[5+�G�Á9;Z[K:FJ«L��AB5+-]8MC;s

13

5

7

12

14

1

4

8

9

3

2

11

6

10

È%/G�B^M-]9l|B� Q A+�2^:F0/2A+6V>¢A+-=F0UM9d¿�­¦¿[��A
57-T8Ás

10

18

11

3

2

4

8

13

1

5

6

17

12

9

7

19

16

14

15

È%/G�B^M-]9d}M� Q A+�2^:F0/2A+6V>¢A+-=F0UM9�¬l­P¬���A
57-T8Ás

�25+-0�B9h¸G|;{z¹ s±a Ft/qC�F]UM9N-]9m>¢AB-09x576§/26
F09N-]9;C?F0/26M�\¾B^W9;C?F0/2A+6§HEUM9NF0UM9;-
{4­p{V/qC#HxA+6���«�F0UM9l¶W-TCJFYA+-#F0UW9[C09;SNA+6W8pKM�q5z«+9N-Rsd<®9l-T576
A+^M-�C?9R57-TSTU�AB6�F]UM949;ZlKMFJ«®{¦­�{���AB5+-]8�>¢AB-�5�>¢9NHÍHx9N9;1�C;_
^M6
F0/2�f54K�A*Hk9;-h>½5+/G�2^M-]9�Sm-T5+C0UM9R8PA+^M-\Z�5+STUM/26M9Bs\e�UM9l-]9;C0^M�nFTC
/G6�8:/2S;5*F]9;8VF0UW57F�F0UM9§C0A+�2^:F0/2A+6�/qCE5*FE�29;5+C?F#}*¿lKM�2«V8:9;9NK�s
Q /26WSm9=C0A+�23�/G6M�\F]UM9E9NZ[K:FJ«l{E­d{h��AB5+-]8�F0^M-]6M9R8�AB^:F.5Y�M/GFfF0A�A
8:/G×�SN^M�GF;_�Hx9�F]-0/29;8�Z�571�/26M�LF]UM9l¶W-TCJF\>¢9NHÉZlA*3B9;C#��«�UW576�8Ás
e�UM9l¶W-TCJF\>¢A+^M-dZ[A*3B9;C\57-]9�6MAB-0Z�5+�G�2«PKM�q5z«+9;8p/G6�F0UW9[SN9N6
F0-]9
ÃÅ>¢AB-�F0UM9d-]9;5BC?AB6LA7>tSmAB6BF]-0AB�G�2/26M��Z[A
CJF�F09;-0-]/GF0A+-]«MÄ¥sfá=AB-0Z�5+�G�2«
F0UM/qC��29;5B8MC�F0A©F0UW9�CJFT57�M�29PSm9N6
F]-09�A7>YÈ%/G�B^M-09PÌWs�ch6�57�GF09N-0�
6W5*F]/G3B9dCJFT57-0F0/26M��K�A
C?/GF0/2A+6¦/qC�F0UM9�Sm-]ABC]C0SN^:F=C?UMA*HE6¦/26�È%/2�+^M-]9
¿WsLe�UW9LSm-]ABC]C0SN^:F§Sm-]9;57F09;Cd5+6©^M6WC?F]57�W�G94SN9N6
F0-]9�HE/nF]U©Z[5+6�«
>¢A+-TSm/26M�®ZlA*3B9;C;s¨e�UMAB^M�+U¨F0UW9PK�A
C?/GF0/2A+6ª/2C[/26:>¢9;-0/2A+-lF0A®F]UM9
CJFT57�M�29#SN9N6
F0-]9+_�HEUM9;6L-]9;5BSTUM9;8[>¢-]A+ZÍF]UM9\9NZ[K:FJ«���AB57-T8Á_
/nFE/qC
�+9;6M9N-T57�2�G«4SNA+6WC0/q8:9N-]9;8V576¦/G6
F09;-09RCJF]/G6W�[C?F]5+-?F]/G6W��K�ABC0/nF]/GAB6L>¢AB-
F09R5+STUM/26M�[��9;�+/26M6M9;-]CdÃ½9;C0K�9RSm/q57�2�G«4AB6V�q57-]�+9;-���A
57-T8MC]Äms
ÀE9;SN9N6
F0�2«lix5+ËN9N6�5z3+9Y¸ ¿+¹�C?AB�G3B9;8�rtA+6M6�^M1�/G��X\A\A+6�{E­d{\CJFT57-0F?�
/G6W��HE/GF0U¦5�SN-0A
C0C]Sm^:Fk/G6VF0UM9YSm9;6
F0-]9+sfO=/qCEX\-]5B8:^W57��c=��CJF]-]5BS¥F
rj-]A�A7> Q 9;57-TSTUPÃ�XYc#r Q Äf5+�G�BA+-]/nF]UMZ�_+HEUM/qSTU[/2Ck576[/26BF]9N-]9;C?F0/26M�
SmABZ��M/26W5*F]/GAB6#A+>M57�2KMUW5*� ��9mF]5�HE/GF0Ud5=SN�G9;3+9;-�F0UM-]9;57F?� 9my�F09;6WC?/2A+6
C0STUW9NZ[9+_kKM-0A*3B9;8¨5©HE/G6�5*FL8:9;K:F0Uà|*æ�/26�57-]A+^M6W8'|;~®Z[/26:�
^:F09RCNsjix57Ë;9N6W5z3B9.SmAB6WSm�2^W8:9R8§F]UW5*Fj5#KM�q57/26�57�2KMUW57�º��9mFT5hHxA+^W�28
C?K�9N6�8�«B9;57-TC�F0A�C0A+�23+9VF0UM/qC�KM-]A+�M�29NZ�s�<®9VF]9;C?F09R8¨AB^M-�57�G�
�+AB-0/GF0UMZÓA+6¨F0UM9�C]57Z[9�KM-]A+�M�29NZÓ5+6W8¨>¢A+^M6�8�F]UM9�C0UMA+-0F09RCJF
HE/G6�5*F48:9;K:F0Uà|z¬�/26�5®SNA+Z[KW5+-]5+�M�G9LF0/2Z[9�>¢-]5+Zl9BsªÈ%/2�+^M-]9
{pC0UMA*H=C�A+^M-[C?AB�G^MF0/2A+6�>¢AB-l{�­�{�HE/GF0Uª5pSN-0A
C0C]Sm^:FRs®c=>ÅF09;-
/GZ[KM�29NZ[9;6BF]/G6W��A+^W-kC09N�29;S¥F]/GAB6�A7>`C09;5+-]STU�9;6MUW576�Sm9NZ[9;6BFTCj/26
F0A
XYchr Q ix5+ËN9;6W5z3+9\Hx5BCE57�M�29YF0A[KM-]A*3+9\F]UM9dHE/G6P57Fh8:9NK:F]U�|R¬
/G6�}+{�C09;SNA+6W8MC�AB6¦5+6PcxF0UM�2A+6®|+s ælXYO=Ë4¸ ¬:_M{*¹ s
D=6M�2/21+9�F0UM9[Sm-]ABC]C0SN^:F;_�Hx9�Hx9N-]9�6WA7F§57�M�29§F]AL¶�6W8�¾
^M/qST1�C0A7�
�G^MF0/2A+6WCh>¢A+-hF0UM9lCJFT57�M�29�Sm9;6
F0-]9VÃ½È%/2�+^M-]9�Ì
Ä¥s�Ã�,.C?F0/2Z[57F09RC#5+-09
F0UW57F�C?AB�G3�/26M�¦F0UM/qCdK�ABC0/nF]/GAB6®8M/G-]9;SmF0�2«pHxA+^M�q8pU�5z3+9[-09R¾
^M/G-]9;8
57-]A+^M6�845§Z[A+6
F]ULA7>%SmA+Z[KM^MF]5*F]/GAB6�F0/2Z[9+svÄ�<�9d8:/q84UMA*Hx9N3B9N-
KM-]A*3+9�F]UW5*F[�M�q5+ST1©HE/G6�C§F]UM/2ClK�ABC0/nF]/GAB6���«©Z�576�^W57�2�2«®KW�25z«
�

È%/2�+^M-]9dÌM� Q FT57�M�29§C?F]57-0F0/26M�lK�A
C?/GF0/2A+6`s

È±/2�+^W-09Y¿W�kik-]ABC]C]Sm^:FECJFT57-0F0/26M�[K�A
C?/GF0/2A+6`s

20

22

18

8

4

16

14

24

11

3

2

17

5

10

15

26

7

13

1

6

19

21

23

25

9

12

È±/2�+^W-09E¬:� Q A+�2^:F0/2A+6�>¢A+-f{x­#{#CJFT57-0F0/26M�#HE/GF0U�5\CJFT57�M�29�Sm9N6
F]-09Bs

13

12

15

11

8

9

1

7 5

2

3

4

10

6

14

È%/G�B^M-]9Y{W� Q A+�2^:F]/GAB6L>¢AB-={[­¦{[C?F]57-0F0/26M�[HE/GF0UP5�Sm-]ABC]C0SN^:F;s

Q F]57�W�G9 ik-]ABC]C]Sm^:F
<�/26M6M9;- w w
g#9NK:F]U }7{�Ã � ¬BÄ |R¬¦Ã � ¿�Ä
áhA�8M9;C ¿�� ~[­�|R~
ú]ú |�� ~[­®|;~��
e�/2Z[94Ã½CTÄ Â�� Ì[­®|;~Bë |RÂB¬
ýmþ?ÿRÿ }Ms Â ÌWs ¿

e±5+�M�29d}M� Q A+�23�/G6W�l{[­�{[HE/nF]U�/G6M/GF0/q57�±CJF]A+6M9RC�/G6VF0UM9§SN9N6
F0-]9+s

/G6W��F0UM9[¶W-TC?F§ZlA*3B9+s4e�UM94C0A+�2^:F]/GAB6�/qC§C0UMA*HE6�/26�È%/G�B^M-]9�¬Ms
e�UM9§C?F0A+6W9;C�HE/GF0UMAB^:F=6�^MZ���9N-TCEHx9N-]9\KW�25BSm9;8VZ�576�^W5+�G�2«+_�F]UM9
-09RCJFEH�5+Cx>¢AB^M6W8¦��«4A+^M-EKW-0AB�+-T57Z�sfgh9NF]57/2�qC�A7>%F0UM/qC=C0A+�2^:F0/2A+6
57-]9dC?UMA*HE6¦/26�e±5+�M�G9�}Ms.c�6�^MZ���9;-=A7>f57�GF09;-06W57F0/23+9dC?F]57-0F0/26M�
Z[A*3+9;CkHx9N-]9#57�qC0A�F]9;C?F09;8�_M57�2���29;5B8:/26M��F]Al5�HE/26L>¢AB-x�W�25BST145*F
F0UM9\C05+Z[9h8:9NKMF0U�_BF0U�^WCk/G6�8:/2S;5*F]/G6M�§F0UW57Fk/G>ÁF0UM9h¶W-]C?F.¿§Z[A*3B9;C
/G6LF0UM9YSm9;6
F0-]9#57-]9hSNA+-]-09RS¥F.F]UM9YC?AB�G^:F]/GAB64A7>ÁF]UM9\9NZ[K:FJ«4{d­�{
��A
57-T8P/qC\5LHE/G6�/G6®ÌM|��
«�F]UM9�¶W-]C?F#KW�25z«B9N-Rs\e�UM/qCYC?^WKMK�AB-?FTC
F0UM9d/q8:9R5�F]UW5*F=/26M/GF0/q5*F]/G3B9#FT571B9;C�A*3+9;-E5*F={[­¦{Ws

���	��ö½ì�
tí
�+õlð��Eó���í:ñ�������÷	�±íM÷	����ì���÷�õRó

e�UM9dK�9N-0>¢A+-]Z[5+6WSm9YA+>±F]UM9�C09;57-TSTUL9;6MUW5+6WSm9;Zl9;6
F]CEH�5+C�Z[9;57�
C?^W-09R84��«LSmABZ[KW57-]/G6W�§F0UW9d6
^WZ���9N-�A7>%6MA:8:9;CEC09;5+-]STUM9R8�HE/GF0U
57�2�+9;6MUW576�Sm9NZ[9;6BFTCÁF]A=F0U�5*F±A+>:F0UM9xC?9R57-TSTUYHE/nF]U§A+6M9.9N6MUW5+6WSm9N�
Z[9N6
F\�29m>ÅFdAB^:F;_�A+6pF0UM9�F]5BC?1PA+>kC0A+�23
/26M�LF0UM9l3*57-]/GAB^WCh��AB5+-]8
C?/2ËN9RCNs�ÀE9RC?^M�GF]C#57-]9Y�+/23+9N6�/26�e±5+�M�29�ÌMsxa Fh/qChC0UMA*HE6¦F0UW57FhA+6
�25+-0�B9N-\��A
57-T8MC;_�HE/nF]U�8:9N9;K�9;-§C?9R57-TSTUM9;C;_�F0UM9�9;6MUW576�Sm9NZ[9;6BFTC
��9RSmABZl9[/26WSm-]9;5BC?/26M�B�G«P9N¼�9RS¥F0/23+9Bs4e�UM9[1�/G�2�G9;-dZ[A*3+9;C\AB6pF]UM9
¿V­�¿���A
57-T8�5+-09[576©9myMSN9NK:F]/GAB6�s4e�UM9[-09R5+C0A+6�Z[5z«p��9[F]UM9
-09;�257F0/23+9;�G«�8M9N9NK45+6W8[6W5+-0-]A*H�KW57F0U��29;5+8M/G6M�YF]A�5YHE/26[>¢A+-fF]UM9
C?9RSmAB6W8PKM�q5z«+9;-;_�-09RC?^W�nF]/G6M�¦/26�54K�A�A+-Y�+9;6M9N-T57�2/2Ë;5*F]/GAB6�A7>jF]UM9
1�/G�2�G9;-]CxF]A[A7F0UW9N-EKW5+-?FTC�A7>%F0UM9\F0-]9N9Bs

Ì[­�Ì ¿�­¦¿ ¬l­P¬
e`-T576�C?K�ABC0/nF]/GAB6LFT57�M�29;C ¿�}�� ÖBÂ�� ù=Ö+Ö��
bY/G�2�29N-EZ[A*3+9RC |RÖ�� � {�� ÂW|��
O=/qCJF]A+-]«4UM9;^M-0/qC?F0/qS {�� }+Ö�� ÂB{��
,j6MU`sje`-T576WC0K�s.ik^:F]A7¼ÁC ~�� {�� }+Â��

e%57�W�G9dÌM�jÀ=9;8:^WSmF0/2A+6�A7>%6MA:8:9;C=�
«VC?9R57-TSTUL9N6WUW576WSN9NZ[9N6
FTCNs

���	��
.ð����
ñLð��=ð�ô`ñ����MíMî�ô±í:õRö½ð�÷�� ô±÷	�7õRö½ð�÷

e�UM9§9;3z5+�G^�5*F0/2A+6�>¢^W6WS¥F]/GAB6�Hx5BC=SmABZ[KW57-]9;8VF0A4F0UM9lCJFT576W8M5+-]8
F0UM-]9N9N�º3*5+�G^M9R8©57KMKM-]AB5BSTUp>¢AB-�C0A+�23
/26M��C0Z�57�2�fF0-]9N9RCNs�DhC0^W57�2�2«
576©9N3*5+�G^W57F0/2A+6®>¢^M6WSmF0/2A+6�HE/GF0U�5�Z[/26M/GZ�5+�.-T576M�B9lA+>x3*5+�G^M9RC
�+9;6M9N-T5*F]9;CY5¦�25+-0�B9�6�^MZ���9;-dA7>���9NF]5*��Sm^MF0A7¼ÁC;_`576W8®/qC\F0UM9;-09N�
>¢A+-]9[ZlAB-09[9N×�SN/G9;6
Fd>¢A+-§C0A+�23
/26M��C?Z�5+�G�jKW-0AB�M�G9;Z�C\F0UW5+6pF]UM9
Z[A+-]9d¶W6M9N�º�B-]5+/G6M9R8�UM9N^W-0/qCJF]/2S�57KMKW-0A
5+STUM9RC�F0UW57F\5+-09�6M9N9R8:9;8
F0A#KM�25z«\A+6��25+-0�B9N-���AB5+-]8MC;s�a�6lSmA+6
F]-]5BCJFR_NF]UM9k-]9;C0^M�GF]C`�+/23+9N6d/26
e±5+�M�29l¿�/26W8:/qSN57F09[F0U�5*F§A+^W-dUM9N^M-]/qCJF]/2Sl9N3*5+�G^W57F0/2A+6�>¢^M6WSmF0/2A+6
A+^:F]K�9;-?>¢AB-0Z�CjF0UM9#Zl/26M/2Z�57�Á57KMKW-0A
5+STUl>¢A+-xC?AB�G3�/26M��rtA+6W6
^W1
/G�
X\AWsPe�UM94-]9;5BC?AB6�KW-0AB�W57�M�2«p�2/29;C§/26©F0UW9LZ[A*3+9[A+-T8:9;-0/26M�PA7>
HEUM/qSTU�9N×�SN/G9;6WSm«�/G6�Sm-]9;5+C09;C%HE/GF0UlF0UW9E/G6:>¢AB-0Z�57F0/2A+6lKM-0A*3�/q8:9;8
��«4A+^M-E9;3*57�2^W5*F]/GAB6L>¢^M6�S¥F0/2A+6`s
e±5+�M�29.¿#>¢^M-?F]UM9N-fC0UMA*H=CÁF]UW5*FtA+^W-%UW9N^M-]/2C?F0/qSj9;3*57�2^W5*F]/GAB6d>¢^M6WSm�
F0/2A+6¨/2Cl¾
^M/nF]9¦>½5+C?F;s�c=3B9N-T57�+9R8©A*3+9;-l5+�G�x6MA:8:9;Cl/GFl-]9;¾
^M/2-]9;C

Oh9N^M-]/qCJF]/2S <�/G6�°*^M6M1�6MA*HE6�°*�GA
C0C
wxA
57-T8 6MA:8:9;C F0/2Z[9BÃ�C]Ä 6MA:8:9;C F0/2Z[9BÃ�C]Ä
Ì[­�Ì |��væ�­®|;~�� ~ |�� æ�­�|R~�� ~
¿�­¦¿ ¬
� ~[­®|;~ ë | Â
� ~[­�|R~ ë |
¬l­P¬ }
� ¿�­®|;~�� ÌBÖB¬ {
�2|d­�|R~�� ÖB{+Â

e±5+�M�29\¿��frt9N-0>¢A+-]Z[5+6WSm9\A7>±F0UM9d9;3*57�2^W5*F]/GAB6L>¢^M6�S¥F0/2A+6`s

A+6M�2«¨5+-0AB^M6W8¨¿�� Z[A+-]9�F0/2Z[9�F0UW5+6�F0UM9�F]UM-]9N9m� 3*57�2^M9;8ª57KM�
KM-0A
5+STU!Ã¢HEUM/qSTU�/2C45+�GH�5z«:C[SN57�qSm^W�257F09;8�Ä¥s¡,.3+9N6ª/G>\Hx9�F]5+1+9
/G6
F0A�5BSNSmAB^M6
F�F0UW57F=-0AB^M�+UM�2«Væ*~��£A7>f57�2�Á6MA:8:9RC=57-]9\5BS¥F]^W57�2�G«
6MA7F�8:/2-09RS¥F0�2«�9N3*5+�G^W57F09R8'Ã�8:^M9¦F0A�F0UM9¦>½5BS¥FlF0UW57FlF]UM9N«�-09;K:�
-09RC?9;6BFV/G�2�G9;�B5+�hK�ABC0/nF]/GAB6WCN_�¶�6W57�\K�A
C?/GF0/2A+6�CN_�F]-]5+6WC?K�ABC0/GF0/2A+6WC;_
A+-d57-]9=IJ^WC?Fd/G6
F]9N-]6W57�t6MA:8:9RC]ÄhF0UW/2CdC?F0/2�G�j5+Z[A+^M6
F]ChF0AP5VKM^M-]9
9N3*57�2^W5*F]/GAB6�C?K�9N9R8�A7>Á-]A+^M�BUM�G«[¬:_ ~+~B~M_ ~+~+~#6MA:8:9RCjK�9N-kC09;SNA+6W8�s
ikA+Z[KW57-]/26M�¦F0UM/qCdF]A�F0UM94A*3B9N-0� 5+�G�tC0K�9;9;8©A7>E57��A+^MF�{+~B~M_ ~+~+~
6MA:8:9;CEK�9N-\C?9RSmAB6W8¦/G6W8M/2S;5*F09RCEF]UW5*F=F]UM9N-]9§/qC=C?F0/2�G�tC?/2�+6W/n¶�S;576
F
-0A�A+Zå>¢A+-=5+8W8:/G6W�l1�6MA*HE�29;8M�+9#F0A[F0UW9d9N3*57�2^W5*F]/GAB64>¢^M6�S¥F0/2A+6`s

 éd�\� Þ ���VÒ � ´ � �å� ´ Ýk� ��!¦�\� � � � �V���

<�9¦F09RCJF]9;8¨A+^M-lKM-]A+�B-]5+ZÇ5+�B5+/G6WC?FlÀh57/26M9N- Q STU#"^MF0ËN9BÆ C�>¢-]9N9N�
Hx5+-09lKM-]A+�+-T57Z Ø]cxF]57-]/ÅX\A�|Bs ~BÙ�¸G|N¿*¹ s�e�UM/qCdKM-]A+�+-T57ZÊKM�q5z«:C
A+6YF0UW9=|;~%­h|R~x��A
57-T8#HE/GF0U�5=STUMA+/qSm9fA+>�F0UM-]9N9j/26M/GF0/q57��CJFT57-0F0/26M�
K�A
C?/GF0/2A+6WC;_*A7>�HEUM/2STUlA+6W9k/qC±F0UM9ESm-]ABC]C]Sm^:F%/G6�F0UM9�Sm9;6
F0-]9+sju#^M-
KM-0AB�+-T57ZÎHx5BCh57�W�G9�F0A4HE/26pZ[ABC?Fh�
57Z[9;C;_��W^:F\A:S;SN5+C0/2A+6W5+�G�2«
�GA
CJF\HEUM9N6pC?F0AB6M9;ChHk9;-09§F0-T57KMK�9;8P/26p5L�25B8M8:9N-Rshe�UM9�-09R5+C0A+6
>¢A+-jF]UM9h�2ABC]CjH�5+CjF0UW57FkAB^M-.KM-]A+�B-]5+Zâ^WC09;8L5Y¶My:9;848M9NK:F]U�sta F
8:/28§6MA7Ft/G6�Sm�2^W8:9k5+6�«#Z[9;5+6WC±A7>M9my�F]9N6W8:/26M�#�25B8M8:9N-TCxÃ¢HEUM/qSTU§/qC
6MA7F%9;C]C?9;6BF]/25+�7>¢AB-%C0A+�23�/G6M�=F0UM9�C?Z�5+�G�B��A
57-T8MC]Äms±c=>ÅF09N-tZ�571�/26M�
576V5B8�� UMA:Sh/2Z[KM�G9;Z[9N6
F]57F0/2A+6VF0Al9my�F09;6W8VC0/2ZlKW�G9Y�q5+8M8:9;-]CxAB^M-
KM-0AB�+-T57Z SNA+6�3�/G6WSN/G6W�+�2«pHxA+6�57�2�j�B5+Z[9;C§5+�B57/26WC?FPØ0cxF]5+-0/ÅX\A
|+s ~+ÙMs
<�9hF09;C?F09R8[A+^M-kKM-]A+�+-T57ZÉ57�B5+/G6�CJF.C0A+Z[9=U�^MZ�576�KW�25z«B9N-TC%F0A�A
Ã¢A+6�F]UM9�9;ZlKMFJ«ªÖp­�Ö©��A
57-T8WÄ¥s!a�6�Sm�2ABC09�SmABZ��W57FL/GFLHx5BC
C?ABZl9NF0/2Z[9;C.5+�M�29=F0A�8:9m>¢9R5*Fk-]9;5BC?AB6W57�W�G«lCJF]-0AB6M�§57Z�5*F]9N^M-�X\A
KM�25z«B9N-TCN_±/G6�Sm�2^W8:/26M��5�-]9mF]/G-]9;8�ikUM/26M9RC?9�¶�-]C?F�8M5+6�s�gh9RC?KW/nF]9
A7>ÁF0UW/2C;_:Z[ABC?FxC?F0-]A+6M�B9N-.KW�25z«B9N-TCfHk9;-09\57�M�29=F]A�HE/2649R5+C0/G�2«[�
«
KM�25z«�/26M�[¾B^W/G9NFEF09N-]-]/nF]A+-]/25+���
57Z[9;C;s

$ � � ´ ��Ý µ�� ³ � ´ � � ´ � Þ µ¦�§µV�V�Û���4�L�

<�9EC0A+�23+9;8�rtA+6M6�^M1�/G��X\A=AB6§F]UM9EÌ.­hÌW_*¿k­h¿W_7¬j­\¬=576�8�C0A+Z[9
6MA+6:� 9NZ[K:FJ«©{�­©{P��A
57-T8MC;spe�UM9;C09L-]9;C0^M�GF]C�Hk9;-094AB�:F]5+/G6W9;8
�
«P5¦SmABZ��M/26W5*F]/GAB6�A7>xCJFT576W8M5+-]8pC?9R57-TSTUP9N6MUW5+6WSm9;Z[9N6
F]ChF0A+�
�+9mF]UM9N-EHE/GF0UP5l6MA*3B9N�Á9N3*5+�G^W57F0/2A+6V>¢^M6WSmF0/2A+6�s
ix57ËN9;6W5z3+9#576W8�AB^M-x�+-]A+^MK4��A7F]UVC0A+�23+9R84{d­4{§HE/GF0U¦5�SN-0A
C0C?�
Sm^:F=^WC0/26M�48:/G¼�9;-09;6BFEF]9;STUM6W/2¾
^M9RCNskikABZ��M/26M/26M�[A+^M-=C09N�29;SmF0/2A+6
A7>±C09;5+-]STU�9;6MUW576�Sm9NZ[9;6BFTC.HE/GF0UPix57Ë;9N6W5z3B9+Æ CkXYchr Q S;5764/2Zl�
KM-0A*3B9%F0UM9jK�9N-0>¢A+-]Z�576WSN9f9N3B9N6\>¢^M-0F0UM9;-;s%e�UM9j6M9Ny
F%STUW57�2�G9;6M�+9RC
/G6prtAB6M6�^M1�/n�JX\A�57-]9+��C?AB�G3�/26M�[F0UW9�9NZ[K:FJ«P{�­P{���AB5+-]8P5+6W8
C?AB�G3�/26M�4F]UM9lÂV­�ÂV��A
57-T8�CJFT57-0F0/26M�LHE/GF0U©5LSN-0A
C0C]Sm^MF#/26�F0UW9
Sm9N6
F]-09Bs

Þ ô±õ;ô±ñ��%��ðWñ�&

a�6¨F]UM9�9Ny�K�9N-]/2Zl9;6
F]C�/GFL��9;SN5+Z[9P9N3�/28M9N6
F�F0UW57FVC09;57-TSTU�9Ny��
F09N6�C?/2A+6WC=>¢A+-=�q5+8W8:9N-TC=57-]9d9;C]C09N6
F0/q57�`>¢A+-hC?F0-]A+6M��KW�25z«¦A+6¦F0UW9
�25+-0�B9N-t��A
57-T8MC;s%ÈW^:F0^M-]9=HxA+-]1§HE/2�G�:F]UM9N-]9m>¢AB-09�>¢A:SN^WCfA+64C09N�29;Sm�
F0/23+9dC?9R57-TSTU:� 9my�F09;6WC?/2A+6�CNs
Q /G6�Sm9�SN5+K:F0^M-]/26M�PCJF]A+6M9RC#/qCd576®/2ZlK�A+-0F]5+6
FdC0^M�:� �+A
57�%/G6�F0UW9
�B57Z[9�A7>�X\AW_BHk9EHE/2�2�:F09RCJFjAB^M-.C09;57-TSTU�5+6W8l9N3*57�2^W57F0/2A+6l>¢^M6WSm�
F0/2A+64/2645d>¢^M�2�ÁX\A7� KM�25z«�/26M�dKM-]A+�B-]5+Z¦s±<�9#9my:K�9;S¥FkF0UW57F.�+A�A:8
-09RC?^M�GF]C�S;576L��9YA+�:FT57/26M9;8L>¢A+-ES;57K:F]^M-09B_��G/G>¢9z°78:9;57F0U�576W8¦SmAB6:�
6M9;SmF0/2A+6¦KM-0AB�M�29NZ�CNs

�L� Þ �#�V� ´ � �d�

¸G|m¹ Q svXls7c=1��M576W8�o�s o�s7á=9;HE��AB-06�s:e�UM9xKM-]/G6�Sm/2KW57�:SmAB6
F0/26:�
^W5*F]/GAB6�5+6W8PF]UM9�1�/2�G�29N-\UM9;^M-0/qC?F0/qS7sda�6('�)
�,+.-	/0+2143
1�5�6879-;:81�<>=@?A=@1�BC=EDF?A:�BC=C=CG�HI1�J�K¥_+K�57�+9RC`¿
{+{�L
¿�æ7ÌMsRchixo�_
Q 9;57F?F]�G9B_�|;Ö�æ+æ�s

¸ }z¹§w\s�wxAB^MËN«�5+6W8peYs`ix57Ë;9N6W5z3B9+s§ikA+Z[KM^:F]9N-Y�+A��hc=6®c=a
A+-]/G9;6
F09;8©C0^M-]3+9N«BsM+2?ONPH QRB@HS6�7#TO1�NU=@7I7VHWJ�=@1�BC=N_�|;ÌB}WÃJ|zÄ¥� Ì+Ö�L
|;~
}:_�u\S¥F]A+��9N-=}7~B~M|Bs

¸ Ì*¹§g�s o�s�wx-09;^M1+9;-;_�@�s <�s O§s o�s�D=/GF09N-]HE/ IJ1�_É576W8&O�s @�s
3*576L8:9;64O=9;-0/21�s�À=9NKM�q5+SN9NZ[9N6
FxC]STUM9;Zl9RCj576�8lFJHkA+�º�29N3B9N�
F]5+�M�G9RCNsXT8-F-Y+[Z\:�5\?O1�687 _�|RÖWÃ½Ì
Ä¥�2|zæ+¬]L�|RÂ+~W_M|;ÖBÖ+{Ms

¸ ¿7¹§eYsfix5+ËN9;6W5z3+9Bs�ã±5P-]9;STUM9;-]STUM945+�WC?F0-T57/GF094�B-]5B8:^M9N�2�29L8:9
KM-]9N^M3B9+s¡a�6^'�_a`=@bc=d-a:�1�J8?9`=>Kfe9?A681�BC:hg�i
:81�=�+je	klThea3
+je	TA+mG�=akj=CBC:�141�6�HnKCK@6�1oBC=pG�=>K;eq:�?Obr=OKE=@N�TO14Ns=@7I7VHWJ�=>1oBC=
+2?ONtH QEB>HS=@7I7u=N_�ik9;6BF]-09x8:9;CjikAB6M�+-�v9;C±8ÁÆ c=6M�B9N-TCN_*Â*�T|;~#@B5+6:�
3�/G9;-l}7~B~B}Ms`rf57K�9N-�5z3*5+/G�q57�M�2945*FlU
F?F0K`�v°B°zHEHEHds 57/ºs ^M6W/G3
�
KW57-]/qC0ÂWs >¢-m°�w*SN5+ËN9;6W5z3+9*°*c=XYr Q � À=È%aJc�s K�8�>Js

¸ ¬z¹§eYs�ix57Ë;9N6W5z3B9+_M}7~B~B}Ms%rt9;-]C0A+6W5+��SNA+Z[Z�^W6M/2S;5*F]/GAB6�s
¸ {*¹§eYs
ix57Ë;9N6W5z3B9+sMX\-T5+8:^W5+�M57�WC?F0-T5+SmF%KW-0A�A7>�C?9R57-TSTU�s
T�-FxX+

Z\:�5\?O1�687 _�}B¬MÃJ|zÄ¥� Ì�L�|;{M_:}7~B~B}Ms
¸væR¹ Q s w#s
X\-]5z«BsMã�A:SN5+�:KM-0ABK�9;-?F]/G9RC%A7>��M/G6�57-]«d/GZ�57�B9;Ct/26lFJHkA
8:/2Zl9;6WC0/GAB6WCNspTAyXyay{z
?A681
K@6�B@NtHS:81
K.:81d-a:�bjg�5\NU=@?CKT_Ái.�
}7~�Ã�¬+Äm� ¬B¬:|>L:¬7{W|+_�|;Ö
æ:|+s

¸ Â*¹§O§s @WsR3*576�8M9N6�Oh9N-]/G1�_*@Ws <�s O§s o�sRDh/nF]9N-]HE/ IJ1�_75+6W8d@WsR3*576
ÀE/ I?C?HE/ I?ST1�s�XY5+Zl9RC�C0A+�23+9R8Á��á=A*HÍ576�8�/26©F0UW9�>¢^:F0^W-09Bs
+2?ONtH QEB>HS687�TO14Ns=@7I7VHWJ�=>1oBh=N_�|RÌ7¿�Ã?|m�J}+Äm� }
æ+æ�L:ÌM|B|+_§@
576�^W57-]«
}7~B~B}:s

¸ Ö*¹§eYs c�s=o�57-TC0�25+6W8ÁsÛc -09;3
/29NH A+>��B5+Z[9m�ºF0-]9N9pKW-0^M6W/G6M��s
T�-F-|+[Z\:85\?O1�6�7n_MÖWÃJ|zÄ¥� Ì�L�|;ÖM_�|RÖ+Â+{Ws

¸n|R~*¹do�sko("^M�G�29N-Rs'ikA+Z[KM^MF09N-��BAWs}+2?ONPH QRB@HS6�7RT>1�NU=>7I7WHWJ�=@1�BC=N_
|;Ì+¿�ÃJ|N��}BÄ¥�2|N¿�¬]L�|*æ*ÖW_+@B5+6�^W57-]«4}7~+~
}:s

¸n|B|m¹dO§s ãjs=áh9N�qC?AB6�såOh5BC?U¡F]57�W�G9RCV/26�ik-]5z«�wx�G/GF0ËBs{T�-F-|+
Z\:�5\?O1�687 _WÂ�ÃJ|RÄm� Ì�L�|RÌM_�|;ÖBÂB¬:s

¸n|z}z¹dc§s`r.�25B5*FR_`@Ws Q STUW579N¼�9;-;_`<�s`rj/ IJ�2C;_±5+6W8®c§s`8:94wx-]^M/26�s
,fy:KM�2A+/GF0/26M�[�+-T57KMU¦KM-]A+K�9N-0F0/29;C�A+>±�B5+Z[9#F]-09;9;C;sfa�6�DF?A:�3
BC=h=CG8HI1�J8Kc:~<,N�i
=�zoi\HI?ONs=C=@1�N�iM��6�NPHS:�1o6�7F-a:�1]<>=>?A=@1�BC=f:�1
+2?ONtHSB@HS6�7lT>1�NU=>7I7VHWJ�=@1�BC=(�S+j+j+jT
�)��h�*_h3BA+�2^MZ[9�|+_hKW57�B9;C
}7Ì+¿�L:}+Ì+ÖW_�|RÖ+Ö+{Ws

¸n|RÌ*¹d@Ws Q STUW579N¼�9;-;sfe�UM9YUM/qC?F0A+-]«4UM9;^M-]/2C?F0/qS7saT�-F-|+�Z�:85\?O1�687 _
{WÃ�ÌBÄ¥�2|;{�L�|RÖM_�|;Ö+ÂBÌMs

¸n|;¿7¹dÀds Q STU#"^:F]ËN9Bs cxFT57-]/G�BA�|+s ~M_V|;ÖBÖ+ÂMs¯ÈM-]9N9�F0Aà8:A*HE6:�
�GA
5+8l5*FtF0UW9=C?/GF09�A7>�F0UW9�gYX\ABw'Ã½g#9N^:FTC0STUW9N-.X\A7��wx^M6W8WÄm�
U
F?F0K`�v°B°zHEHEHds 8:�+AB��s 8M9z°*8MA*HE6�°z/26W8:9Ny 8:A*HE6�s U
F0Z�s

¸n|z¬z¹ Q s Q 9;/�576�8'eYs=bd5zH�5+C0UM/2Z[5WsÎcÇC0A+�2^:F0/2A+6!A7>[�+AªA+6
¿7y:¿���A
57-T8���«¡�
57Z[9�F0-]9N9�C?9R57-TSTU¡KM-]A+�B-]5+Z�_h>¢^*IJ/GF]C0^
C?A:SN/25+��C0SN/G9;6WSm9Ê�q57��A+-T5*F0AB-0«Bs a�6�z�i�=��
N�i�xl6�br=
TO1]<>:�?Obr6�NPHSBOK�xF?A:85]g�/�=C=>NPHI1�J�HI1mTADE��Z\6hg�6�1W_�KW57�B9;C

{+Ö�LMæ*{[Ã½/G6¦@B5+KW576M9RC?9zÄ¥_�}7~+~B~MsÁe±-]5+6WC?�q5*F]/GAB6�5z3z5+/G�q57�W�G9h57F
U
F?F0K`�v°B°zUMABZl9;KW57�B9+|Bs 6M/G>ÅFJ«+s SmABZL°za�1+9*°z1*5*FTC?^W6W57-]/Å°*KW57K�9N-m°
¿7y:¿+9Bs F0y�F;s

¸n|R{*¹§@Ws <�s O§s o�sÁD=/GF09N-]HE/ IJ1p576W8�O§s @Ws�3*576®8:9N6®O=9;-0/21�s§e�UM9
5+8:3*5+6BFT57�B9�A+>kF]UM9�/G6W/nF]/257F0/23+9+s�TO1�<>:8?Obc68NtHS:81��9B>HS=@1�BC=>KT_
|R}B}MÃJ|zÄ¥� ¿BÌ�L:¬7ÂW_
}+~+~+~Ws

� µ¦�§Ðp�4� � ³ �f!¦� � édÐ��

�#� ³ �ÑÜ � ´ �V�\�Û� �\� Þ /qC±5\rjU�s g�sR-]9;C09;5+-]STUW9N-Á/26§F0UW9
o�5+5BCJF]-0/qSTU
F Q 9;5+-]STU�576W8pXY5+Z[9;CYX\-0AB^MK�57FhF0UW9�ikABZlKW^:F09;-
Q Sm/29N6WSN9�gh9;KW57-0F0Z[9N6
F§A+>kF]UM94D=6M/23+9;-]C0/GF09N/GF§o�5+5BCJF]-0/qSTU
F;s[a�6
5p>¢AB-0Z[9;-��G/G>¢9PUM9�A+�:FT57/26M9;8ª576�o�s Q S+s�8:9N�B-09;9V/26�57KMKM�2/29;8
KMU�«�C0/qSNCx5*FxF0UM9Ygh9;�n>ÅF=Dh6M/G3B9N-TC?/GFJ«[A7>`e±9;STUM6WA+�2A+�+«Bs%Oh/2CxZ�57/26
/G6
F09;-09RCJFTCY57-]9�/26®SNA+Z[KM^:F]9N-§X\A�HE/nF]U®5L>¢A:Sm^WCY/qCYA+6®6M9;^M-]5+�
6M9mFJHxA+-]1:CN_[KW57F?F09;-06Í-]9;SNA+�+6W/nF]/GAB6�_[Z[5BSTUM/26M9��G9R57-]6M/G6W�à5+6W8
A7F0UW9N-=57KWKM�G/qSN5+�M�29Ycha.F]9;STUM6W/2¾
^M9RCNs

�`�V� µ ³ ���#�E� ³ ��� /qC 5BC0C0A:Sm/q5*F09 r.-0A+>¢9;C]C?AB- 5+6W8
SmA�A+-T8:/26W5*F]A+-ÑA+>âF]UM9�o�5+5BCJF]-0/qSTU
F Q 9R57-TSTU 576�8 XY57Z[9RC
X\-0AB^MK�sVOh/2C§Z[5+/G6�/26
F09;-09RCJFTC§57-]9[/G6�SNA+Z[KM^:F]9N-�STUM9RC0C;_±5+6W8
/G6ÍKW5+-?F]/2SN^M�25+-;_[/26ÍA+KMK�A+6M9;6
F©Z[A:8:9;�G/26M��576�8ÉC0K�9RSm^M�q5*F]/G3B9
KM�25z«Bs O=9Í>¢^M-0F0UM9;-�/qC�9;C0K�9RSm/q57�2�G«¤/G6
F09;-09RCJF]9;8 /G6�C0Z�57�2�
SmA+Z��M/26W5*F]A+-]/25+���
57Z[9;C;s

� �V� é Ü � ´ �¦� ´ ÐP�#� ³ � /qCâ5BS¥F0/23+9;�G«¤/G6�3+AB�G3B9;8
/G6�SmA+Z[KM^MF09N-0� �B57Z[9�KM�q5z«�/G6W�ÉC0/G6WSN9â|RÖ
æ7¬Ms�Oh9'HE-]A7F]9¡5
3+A+�2^MZ[/26MA+^WCÍr.U�s g�s®F0UM9RC?/qC;_!9;6
F0/GF0�29;8&ikA+Z[KM^:F]9N-TC0STUW5B571�_
Q STUW5+5+1�Hk9;-09;�28�9;6ªbY^W6WCJF]Z�5*F0/2�+9¦a�6
F09;�G�2/G�B9N6
F0/29�ÃºikABZlKW^:F09;-
ikUM9;C]CN_xF]UM9p<®A+-]�28ªA+>�ikUW9;C]CL576�8ªch-?F]/n¶�Sm/q57�ha�6
F]9N�2�G/2�+9;6WSm9��
/G6Ígh^MF]STU�Äms O=9�5+�2C0A¡/qC�,.8:/GF0AB-?� /26:�JikUW/G9N>4A7>LF]UM9ªa0i�XYc
@+AB^M-06�57�ºs

ACTIVE OBJECTS TO DEVELOP COMPUTER GAMES FOR BLIND CHILDREN

Cyrille Bertelle Antoine Dutot
cyrille.bertelle@univ-lehavre.fr antoine.dutot@univ-lehavre.fr

Damien Olivier Guillaume Prévost
damien.olivier@univ-lehavre.fr guillaume.prevost@univ-lehavre.fr

Université du Havre
25 rue Philippe Lebon, BP 540
76058 Le Havre Cedex, France

KEYWORDS

Active-objects, Multimodality, Visual Disability,
Specific Peripherals.

ABSTRACT

The TiM project focuses on creating games for visually
impaired or blind children. In this context, the TiM plat-
form is designed to help the creation of such games. For
the modeling of games, we usedactive objects. This ar-
ticle deals with the benefits and specificities of this ap-
proach. Most game creators will not be computer pro-
grammers, and to facilitate the use of our tools (pro-
vided under the form of Java programming libraries) we
define both a higher level and very simple language, and
then above it a graphical tool. This framework provides
facilities to create both very simple games when the au-
thor has no programming skills, or to develop advanced
games for more advanced computer users.

THE TIM PROJECT

The overall aim of the TiM project is to offer visually
impaired children the possibility to play with multime-
dia computer games. They will be intended to severely
visually impaired children (blind and partially sighted),
with different levels of physical and psychological dis-
ability, so that they can use them in an autonomous way,
without assistance of a sighted person.

This work will be completed by parallel tasks like an
evaluation by educators of children behavior confronted
to these games. An evaluation and study of cognitive
process and educational potential, in the continuation of
this work will be done.

Those studies will be oriented toward visually im-
paired children’s capacity to space and cognitive orien-
tation in the game. They will generate a feedback to
the software developers and game content designers in
order to improve the games.

THE TIM PLATFORM

The approach is to build authoring tools that allow to
conceive games from the ground up, or to adapt exist-

ing games, that can be played using specialized or nor-
mal devices. The parts developed here are:

game engineThe game engine is in charge of running
the game, managing active objects, and driving
the I/O layer. At this level, only the semantic of
the game is described. This means for example
that we know that characters exist but we do not
know how they will look like to the player. Iden-
tically, for inputs we know the player can go left,
right, up or down, but we do not know how these
orders will be given to it.

I/O layer Its role is double: It transparently outputs a
game according to the current hardware of the
user, and it must input player orders sent via spe-
cialized peripherals to present them to the game
engine under a generic form.

game programming language TL (TiM Language)
This part allows to program a game more eas-
ily than simply using the provided API in Java,
providing dedicated constructs.

graphical authoring tool This tool add an higher level
tool to develop games. It is limited to predefined
games but allows to derive them very quickly and
easily.

Figure 1: The game creation process

The game engine

Active objects are at the core of the TiM platform.
An active object[3] adds a life-cycle to the usual object-
oriented approach. It allows them to work in parallel.
They own a behavior[2], acting according to rules and
beliefs, and "live" in an environment that restrain their
acts.

The use of active objects was motivated by a main
reason: most of actual games define characters inside

an environment, and active objects directly map on such
a concept. Nowadays games uses engines based on this
model or close to it. Even games usually implemented
sequentially can be easily transcribed using active ob-
jects.

In our model, active objects are constrained by an
environment that influence their behavior and impose
them rules. This is a general view: environments are
not necessarily physical. An environment can be 1D,
2D or 3D, in the case of a one dimensional game, the
environment is sequential as for example in card games,
where it only describe a set of game rules (role, turn,
etc.). In 2D or 3D games, at the contrary, the environ-
ment is used as a playground in addition to describing
game rules.

Active objectare notobjects. This means that ac-
tive objects are never forced to follow orders of another
object. They communicate using messages. They can
choose not to respond to a message. They can also be-
have differently to the same message according to their
current environment.

Messages are organized instreams. Streams are dis-
tinct and every interaction in the system is based on
their use. For example there exist streams for vision, or
streams for mere inter-object communication, etc. An
object never sends the internal representation of what
it perceives. It only sends a symbol and the other ana-
lyzes it and reacts to it. Some communication streams
cannot be ignored by active objects. For example vi-
sion streams cannot be canceled. However each object
is constrained by its ability to analyze such an input
stream. For example some active objects can only see
at a given distance.

All in the system is modeled as active objects, com-
prising the environment. Games or environments are
specific derivations of active objects but the base and
the relationship between them are the same. This unifies
the model.

The I/O layer

To provide games for blind children an input output
software has been developed. This part of the platform
is then interfaced with a game engine that handles ac-
tive objects. The input output layer had to be able to
use various peripherals. But such devices are often non
standard (e.g. braille terminals or sensitive tablets) and
the I/O layer must providemultimodality[1] to hide this
complexity. Multimodality means that it will automat-
ically recognize peripherals and provide the appropri-
ate I/O drivers. For example, both the keyboard arrow
keys and a joystick can be used to control a character
in a game, or a character can be rendered as sounds for
blinds or on a display with high contrast for visually
impaired people, and this transparently for the game de-
signer.

The language

Basically the engine is provided as an API (Applica-
tion Programming Interface) in the Java language. We
then designed a very simple language to allow rapid cre-
ation of games for people that do not know Java or are
not acquainted with computer programming.

The developed language[4] provides specific con-
structs and directly maps on the active object model
defined by the engine. Here are the main entities: a
gamelinking severalscenes, in turn managing several
actorsor classes.

The distinction between actors and classes resides in
the fact that classes have no actions or perceptions.

An active object of the game engine is represented
by an actor of the language. Such an entity has sev-
eral states, and a behavior. The behavior defines the
messages it understands and what to do according to the
current situation when these messages arrive. Further-
more, the actor defines two blocksperceptionandac-
tion that allow it to estimate its situation and act accord-
ingly when not receiving messages.

Scenes define the environment of actors. They are
also active objects, but have no perception or action. A
scene can be one dimensional, two dimensional, or three
dimensional. When defined as a single dimension, a
scene describes the steps of the games: turns for play-
ers, etc.

A game is defined by a set of scenes and a behavior
block that lists the messages that will switch from one
scene to another. Like scenes, the game has no action or
perception.

Here is a simple example of a player in a labyrinth.
The user must find a treasure. We define five entities: a
game, a scene, an actor and two classes.

The game only defines the scene. This scene is acti-
vated when the game receives the automatically gener-
ated"init" message. We will send the"end" mes-
sage ourself when the actor will have found the treasure.

game
TreasureHunter

states
scene laby: Labyrinth;

behaviours
on "end" do exit; end
on "init" do activate(laby); end

end

The scene is initialized when it receives the au-
tomatically generated"init" message. The(2)
specification creates a 2D scene:

scene
Labyrinth(2)

states
actor p: Player;

behaviours
on "init" do

read_repr("labyrinth.txt");
end

end

An actor is created only according to a scene hence
the(Labyrinth) added after the actor name. It sends
the"end" message to the predefinedgame entity.

actor
Player(Labyrinth)

behaviours
perception do

if same_location("Treasure") do
game.comm("end");

end
end
action do

player_movement();
end

end

The classes are empty:

class
Wall

end

class
Treasure

end

We provide a rich set of predefined functions like
read_repr() that creates a 2D environment from a
simple description file or aplayer_movement()
that change the location of an actor using the I/O layer.

The graphical interface

Above the language, a GUI (Graphical User Inter-
face) has been defined that allows to create predefined
kinds of games. It takes care of the game hierarchy
(game, environment, active objects), and automatically
handles messages (streams), rules and behaviors. It also
provide development methods guiding the game author
through the creation steps. Figure 2 shows screenshots
of it.

CONCLUSION

We developed several arcade games like PacMan,
Doom, but also board games like card games that are
readily playable. However the platform still needs de-
velopment in several areas:

• Automatic detection of deadlocks between active
objects,

• I/O improvements,

• streams are currently not completely imple-
mented,

• new kind of games should be developed to test the
active objects concept,

• improve our game development methodology.

Figure 2: Snapshot of the GUI

ACKNOWLEDGEMENTS

The TiM project is funded by the European Commis-
sion, on the program IST 2000 (FP5/ IST/ Systems and
Services for the Citizen/Persons with special needs) un-
der the reference IST-2000-25298.

We also thank our TiM partners for their various re-
marks. More information about the TiM project can be
found at:
http://www.snv.jussieu.fr/inova/tim .

REFERENCES

[1] D. Archambault and D. Burger,“TIM (Tactile In-
teractive Multimedia): Development and adaptation
of computer games for young blind children,”in
Proc. ERCIM WG UI4ALL & i3 Sping Days 2000
Joint workshop, Interactive Learning Environments
for Children, (Athens, Greece), Mar. 2000.

[2] Maja J Mataric,"Behavior-Based Systems: Main
Properties and Implications"in Proceedings, IEEE
International Conference on Robotics and Automa-
tion, Workshop on Architectures for Intelligent Con-
trol Systems, Nice, France, May 1992, 46-54.

[3] P. Terna,Building Agent Based Models with Swarm,
Journal of Artificial Societies and Social Simula-
tions, 1998.

[4] D. Archambault, A. Dutot, D. Olivier,TL a Lan-
guage to Develop Games For Visually Impaired Chil-
dren, In Computer Helping People With Special
Needs, p. 193-195, ICCHP 2002, Linz (Austria).

A MULTIMODAL LEGO ROBOT

Guillaume Barraud, Priam Pierret and Léon Rothkrantz
Data and Knowledge Systems Group

 Department of Information Technology and Systems
Delft University of Technology

Mekelweg 4, 2628 CD Delft, the Netherlands
E-mail: L.J.M.Rothkrantz@cs.tudelft.nl

KEYWORDS
Lego robot, multimodal interaction, artificial intelligence.

ABSTRACT
The goal of the project was to develop a robot and a

multimodal user interface. The robot, designed as a digital
cat, can show complex behaviours such as move, speak,
touch, listen, and read. The input command interface is
based on text, icons, and speech. A prototype of the robot is
implemented using the Lego Mindstorms™ System. The
design and implementation of the robot are presented in this
paper.

INTRODUCTION
At Delft University of Technology there is a project on

multimodal communication. At the moment research topics
focus on automatic recognition and generating of facial
expressions, and automatic speech recognition. To develop
new ways of human-computer interaction a test environment
was created: AMAELIA (A Multimodal Application for
Extensible Lego Intelligent Agent). The robot is similar to
the well-known Aibo robot developed by Sony, but unlike
the Aibo we wanted to create an open-source and open-
development environment. To implement the robot we used
Lego Mindstorms ™ System.

Figure 1: The AMAELIA activity diagram

AI Aspect
AMAELIA is an environment for editing, executing and

saving behaviors with a Lego Robot Cat. It can be called an
AI environment because the core of the system is designed
as an intelligent agent, according to the PAGE definition
(Percepts, Actions, Goals, Environment).

Entertaining Aspect
The main use of the application is to interact with a Lego

Robot Cat equipped with Lego Camera, which can move,
play sounds and music, speak, take pictures and capture
videos, but it can also see, watch, touch, listen, read. You
can also teach AMAELIA how to react when it is running,
and all these things can be done at the same time. After
getting used with the Cat Command Language, you can
easily edit more complex behaviors, from the funniest to the
most useful, from the most stupid to the most intelligent.
When your new behaviors are ready for use, you can
demonstrate them by using the speech command.

Components Aspect
AMAELIA has a lot of advanced features like infrared

communication, image processing for color and movement
detection, speech recognition and generation, etc. We used
existing components for most of these advanced features.
The used components are ActiveX components for
Windows operating systems. The AMAELIA program was
written in Visual Basic, which is very efficient for ActiveX
reuse, graphic user interface design and quick development.

ARCHITECTURE OF AMAELIA
The architecture of AMAELIA is designed according to

an object-oriented approach; there are seven main entities,
all of them embed one or several existing ActiveX
components (see also Figure 2).

mailto:L.J.M.Rothkrantz@cs.tudelft.nl

Figure 2: Architecture of AMAELIA

The architecture can be divided into 3 layers:

1. Body components (low layer), which owns three
entities.

2. Brain (middle layer), which is one entity.
3. Commands (high layer), which owns three entities.

The Brain layer has only one entity, which is the core of
the system. All the entities in a same layer (1 or 3) are
equivalents in terms of role in the system.

Body Components layer
The entities in this layer can access the hardware to

produce a physical action: RobotCat is in charge with the
Lego Robot, EyesCat with the Lego Camera, and VoiceCat
with speech generation. These components are also sources
of events (contactPushed, objectSeen, endOfSpeech...). The
events are sent to the BrainCat which is the only entity
allowed to trigger actions on the Body entities.

Brain layer
The Brain entity organizes the execution of the cat

behaviors (structured as a tree) that the user defines with the
entities of the Commands layer. With the Body components,
the Brain entity calls some actions and receives some
events. From this point of view the Brain entity is designed
as an agent.

Commands layer
The entities in the Commands layer are the multimodal

interfaces for the user to give orders with text, icons, and
speech. Icons and speech are translated into text, and then
text is parsed to build an StrTree structure, which is the
command input for the Brain entity.

ROBOTCAT
A couple of years ago, the Lego Company released a new

range of Lego toys called Lego Mindstorms™ System. The
goal of these toys was to give children (and adults) a tool to
learn developing and building robots. The kit allows you to

build a Lego robot and command it from your PC. This new
range uses the pieces of the Lego Technics range, but Lego
adds some special pieces:

Figure 3: The LEGO Mindstorms system

• The RCX or programmable brick: the main yellow

piece in Figure 3 is a big Lego brick with a
microprocessor inside and some inputs and outputs on
the top. It can communicate with the PC via an
infrared port located on the RCX and an infrared
tower that should be connected on the COM port of
the PC.

• The output bricks: motors, lights.
• The input bricks (sensors): to detect contact, rotation,

light and temperature.
• The cable bricks: these are just two small and simple

Lego bricks with electrical contacts and are used to
connect a RCX port to another special brick (inputs
and outputs).

Building
The first stage of the realization of the robot is building it.

It could be almost summarized in three words: connecting
Lego bricks. Indeed, from its nature, Lego offers us such an
easy building way, which gives us a lot of building
possibilities. However we were inspired from one of the
most basic models (and thus one of the most functional) to
build our robot.

One of the major simplifications that we would like to

point out that the robot has ’no legs’. Instead we used
caterpillars and wheels. Our robot can nevertheless use legs
if it is wished (the wheel-caterpillar-legs are
interchangeable) but the accuracy is reduced during moving
and the control is much more random. Two engines are
devoted for moving, using two PBrick outputs. The third
output is used to connect the lamp. For the sensors of the

robot, we equipped it with a rotation sensor allowing it to
measure the distances covered. We also placed two contact
sensors on the front side of the robot on the bumper, which
enables it to detect contact with obstacles on the left and
right independently.

Figure 4: The LEGO cat

Software
There is software included in the Lego box. The program

is called RIS (Robotics Invention System). RIS allows you
to program simple behaviors using the RCX brick by
visually connecting procedures. However, it is too much
limited for our needs, in particular for extensibility and the
possibility of adding external components such as the
Speech API.

The Lego software includes the Spirit.ocx component.
The Spirit component is an ActiveX control with access to
the COM port and the infrared tower connected on it to
communicate with the RCX programmable brick (Pbrick).
You can control the PBrick in two ways, and most of the
Spirit methods are available for both ways:

1. Direct commands: the action is done on the PBrick
when the method is called on the PC.

2. Downloadable commands: the command is downloaded
when the method is called on the PC, the command is
executed in the PBrick when the program has been
started.

To store downloadable commands, the PBrick has 5

programs slot, each of them can contains 10 tasks and 8
subroutines. The ActiveX control can only be accessed from
a programming language, which provides ActiveX dynamic
linking. Common user languages for this are C++ and
Visual Basic. We chose Visual Basic for its advantages of
quick development.

We can group the actions of the Lego robot into four
categories:

1. Moving actions: driveForward, rotate Left
2. Sounds and music actions: play Sound, play Music.
3. Light actions: setLightOn, set LightOff.
4. Systems actions: setPowerMotor, set

PowerDownTime.
The RobotCat cab fire four events from the contact
sensors, they can be left or right contact which is pushed
or released.

EYESCAT
Another kit in the Lego Mindstorms System line is the

Vision Command kit, which provides the Lego Camera and
the Vision Command software. The Vision Command
software allows the user to command the PBrick according
to some camera events fired from colour and movement
detection. The Lego Camera is actually a simple web cam
using the standard QuickCam drivers. Logitech, the
QuickCam provider, offers the QuickCam SDK, which is a
set of ActiveX libraries and controls. EzVidCap is another
free ActiveX control to preview and capture pictures and
videos; it uses the QuickCam SDK. The Lego Camera
Control (LCC) is an ActiveX control which uses EzVidCap
and which makes colour and movement detections
according to a layout of detection zones that the developer
can define.

LCC Detection
The Lego Camera Control provides an efficient way to do

colour and movement detection. We can define up to 64
layers, each of them can contain up to 64 detection zones
for colour or movement. The detection is not done on the
real image but on 16-colours version of this image, this
increase the reliability of colour detection (movement
detection is actually colour-changes detection).

Actions and Events
We had to specify how the system would use the camera,

which means what are the layers that can be useful for the
Robot Cat. The first idea is to put the camera on the Robot
Cat, instead of his eyes, so the camera is looking
horizontally. It would have been nice to put a motor with
the camera to make it rotating up and down, but we are
limited in using motors outputs on the Pbrick; there are only
three outputs available, two are used for driving and one for
the light. So the camera can only move from left to right,
using the rotate driving commands of the whole robot.

Because only one layer is active at the same time, the
actions for Eyes Cat are to set a particular layer, or to set
the inactive layer to prevent the system to receive events
from the camera. Different events are raised according to
the layer.

VOICECAT
In order to give a little more presence to our robot cat, we

equipped it with a voice. For this purpose, we had to use
some classes of the Speech API to develop this small
module of speech generation. This module is based on the
same model as the other cat commands, as will be discussed

in the section iCatBeh. It means that the order "say"
includes ICatBeh interface.

The actions and events module adds the action “say”

which takes a string parameter. It introduces also the
concept of events of beginning and end of word or phrases,
but these events are not available to the AMAELIA user.
They are just used to synchronize the execution (when we
want to do something after saying something).

BRAINCAT

Figure 5: Information flow diagram of BrainCat

Component responsibilities
The Events Manager object listen to events from the Body
entities and also to the doNow event that the Commands
entities use to start execution.

• The ICatBeh interface is implemented by the current
behavior tree, once the execution has been started, it
has to organize its own internal execution of its nodes.
The implementation of the ’Action()’ method should
call specific actions on Body components.

• The Events Context stores all the event-reaction
couples. While executing, the user can change these
couples using a special control command.

• The Knowledge object is the knowledge base of the
system, inside are stored variables of different types
which reflect the mind state of the cat (combination of
Booleans), and also some integer and string values
used for events and actions.

• The CatBehTreeBuilder manages input commands
from the Commands layer to build an ICatBeh tree,
which will be stored in the Events Context. The input
command is already organized into an StrTree.

• The Timers form uses some Timer controls to make a
countdown when an action is executing, in order to
stop it if the end of task event has not been received
(which can happen when the robot goes too far and
loses infrared contact).

ICatBeh interface as a composite model
In order to structure our language, we take as a starting

point a design pattern called Composite. It is a structural
design pattern, which enables us to organize the words of
the language in sentences.

The composite model offers to us a common interface for

all the words of the language, the ICatBeh interface. But
also a structure for the spoken and executed sentences.

In a second part, we introduced some control commands

to enrich the language.
• Three conditional commands: if, while, doWhile.
• An event reaction is possible with the command

"when".
• A sequential command which is the natural alignment

of the words in a sentence.
• A synchronous command: "doBoth".
• A loop command: "repeat"
From a certain point of view, all the orders are equivalent

but at the same time, some control commands may contain
other basic orders or control itself. The customer would like
to process all orders in the same way. For that reason we
consider the basic orders like leaves of the tree of the
sentence and the nodes of the tree are control icons.

In summary, it gives: basic, or complex orders on the

leaves of the tree and the control commands, such as if,
while, doWhile, when, doBoth or a sequence command, on
the nodes of the tree. We note that in the case of some
control icons, the leaves can also be tests (as "if", "while",
or "doWhile" children) or events (as "when" children).
Finally we note that we are also inspired by the Interpreter
design pattern to build the control icons and integrate them
in the tree of language.

Discussion about the execution model
The execution model defines how a tree of ICatBeh

objects is executed (to execute means to call the method
’Action()’ of the interface ICatBeh). There are two
categories of ICatBeh objects as leaves of the tree:

1. Immediate actions: like setLightOn, watchTarget,
stopAll.

2. During actions: like driveForward 10 cm, say “Hello“,
playMusic A5, A5, A6.

The internal nodes of the tree of ICatBeh objects are

necessary controls command like sequence, if, when, while
etc. An internal node can be an immediate or during type
depending of the children of the nodes. Notice one
exception: the when control is always an immediate
command because this control command tells the cat how to
react when an event occurs. The reaction (the child of the
when node) is not executed when the ’ when control’ is
executed, but when the event occurs.

We want to build an execution model, which can execute

a tree of ICatBeh objects regardless of the category of each

object from the sequence (the sequence is a subsequence of
the sequence of all the nodes of the tree in prefix order).

The execution model should satisfy the following two

requirements:
1. Execute an action not before the previous action in the

sequence is finished.
2. Execute a new sequence when an event occurs.

In the same way, we separate events into two categories:
1. ’end of task’ event, which notify that the current action

is just finished, so we can now trigger the next action
in the current behavior tree, these events are not
available at the user level (in the Cat Command
Language)

2. ’environmental events’, which notify a “Cat Event“
from the environment (ex: contactPushed, object seen,
speech recognized...), so we need to stop the current
execution, to change the current tree and to execute
this new tree. These events are available at the user
level (in the Cat Command Language), it means that
the user can define the behavior to execute when an
event occurs.

Our incremental approach of the problem resulted in a

design three different execution models. The features
provided with the two first models are equivalent, but the
first one makes the system call stack growing without
control. This problem is corrected with model 2, which
needs an “executioner“ (an entity different from the “Events
Manager“ which can run and cancel the actions of the
ICatBeh objects). The third model gives the feature of
multitasking, which obviously increases the interactivity of
the robot. Moreover model 3 does not need any
“executioner“.

THE CAT COMMANDS LANGUAGE (CCL)

Figure 6: Icon interface of AMAELIA

The cat command language makes it possible to order the
robot cat quite simply. The user just has to compose a
sentence and to validate it.

This sentence can be written either with the words of the
language, or with command icons. These two languages
(text and icons) are completely equivalent, that is to say
each word of the language text matches an icon.

Basic commands
The basic commands form the primary bricks of the

language of the cat. They are the basic orders of the robot,
which match to its basic functionalities such as going
straight, lighting the lamp or playing some music, taking a
picture or saying something.

Some of these basic commands are followed by some
parameters, not optional for most of them.

State icons
The state icons or test icons represent the states of the

robot cat. They will be used with the keywords "if",
"while" and "doWhile" in order to compose conditional or
repetitive behaviors. When these icons are used, they call
upon the database of the cat (its base of knowledge, its
brain) to know the value of the test and thus to decide the
continuation of the behaviour.

The icons of tests are: isHungry, isSleeping, withCam.

Event icons
Event icons stand for events for which the robot cat is

sensitive, that is to say all the events it can detect and which
are available for the user. These icons will be used with the
keyword "when", thus the user will be able to set up specific
reaction on some event.

Control icons
The control icons make it possible to structure the cat

language in a logical way. It makes it possible to combine
basic icons between them, but also to introduce the events
and the tests in the language.

CONCLUSIONS
AMAELIA is designed as an extensible application, it is

possible to add new actions and events on the existing body
components, but it is also possible to add new body
components, which have their own actions and events. The
input layer is also extensible while the new input can be
translated in CCL.

A very good extension for our cat could have been the
icons recognition by the Lego camera. Indeed we designed
an icon language and we designed a module able to
recognize some icons belonging to CCL. In this way we
could have a fourth way to command the cat.

REFERENCES
[1] Pascal Vaillant: Sémotique des languages d’ icons.

Honoré Champion éditeur. 1999
[2]

http://neuron.eng.wayne.edu:80/LEGO_ROBOTICS/lego_r
obotics.html

http://neuron.eng.wayne.edu/LEGO
http://neuron.eng.wayne.edu/LEGO

LATE PAPER

NEURAL NETWORKS FOR ANIMATING VARIATIONS IN CHARACTER

BEHAVIOURS

Z. Wen, Q.H.Mehdi, and N.E.Gough
School of Computing And Information Technology

University of Wolverhampton, 35/49 Lichfield Street, Wolverhampton,
WV1 1EQ,UK

E-mail: Z.Wen2@wlv.ac.uk

KEYWORDS: Neural Network, Degree of freedom,
DirectX, Computer Animation

ABSTRACT

This paper investigates the application of neural networks
to vary a character’s behaviours and the animation
according to external stimuli from the character’s virtual
environment. The use of a neural network in the character
animation system can endow characters with more realistic
and un-predictable behaviours suited in a dynamic
environment. The paper firstly gives a brief review of
neural networks and their use in real time graphics
application such as games. It then proposes a new
animation method with the incorporation of the neural
network. An animation example is given to demonstrate the
use of the neural network to produce more varied and
realistic agent behaviours.

1. INTRODUCTION

There is a growing interest from the research community in
developing intelligent systems for mobile robots that are
based upon connectionist and biologically plausible models.
The systems, which use Artificial Neural Networks (ANN),
have the potential to make intelligent agents smarter, and
offer insight into cognitive science issues that explore the
link between brain and behaviour (Pfeifer 1996). These
research outcomes also have the potential to be used in
constructing intelligent Non Player Characters (NPCs) in
modern entertainment software such as video games.

Researchers have been working on a number of related
projects. A neural system for integrating robot behaviours
was designed by Browning and Wyeth (Browning and
Wyeth 1998). The integration of behaviours in their work
was accomplished by assigning different weights to
different behaviours. All described behaviours are reactive.
They do not rely on the memory of previous activity to
perform their functions. The proposed method has the
potential to be applied in real time computer simulation
including games. Manslow (Manslow 2001) suggested
using a multi-layer perceptron neural network (NN) in a
game for controlling the firing behaviour of a tank. The
work showed that the tank achieved around 98% hit rate

after collecting and analysing 1049 samples. The author
suggested a way in which the internal quantities of the
network can be modelled using a look-up table to replace
integers and non-linear functions. Interesting work has been
carried out by Grzeszczuk et al (Grzeszczuk et al. 1998) on
applying the neural network to control and evolve the
physically-based model for computer character animation.
They used a NN to learn to produce similar motions by
observing the other models in action. The network
structures of the proposed method enables a new solution to
the control problem associated with physics-based models,
leading to a remarkably fast algorithm for synthesizing
motion that satisfy prescribed animation goals. Musse et al
(Musse et al.) used a NN to recognize hand postures in
order to achieve efficient interaction with virtual human
crowds. Zaera et al. (Zaera et al. 2002) proposed a method
based on a three-layer feed-forward NN to simulate
schooling behaviour of artificial fish. The work reported
that the method only succeeded in exhibiting simple
behaviours such as dispersal and aggregation but more
complex behaviours such as schooling were not achieved.

The most compelling case for applying NN in a real time
simulation environment is the computer game series
Creatures. Each creature has a neural network responsible
for sensory-motor coordination and behaviour selection. A
Hebbian learning mechanism (Grand 1997) allows the NN
to adapt during the lifetime of a creature. Basically, each
creature’s brain is a heterogeneous NN, sub-divided into
objects called “lobes”. Decision-making is achieved by
‘perception lobes’ and ‘concept lobes’. Each lobe may
contain several hundred neurons for representing different
situations.

The aim of this paper is to apply an ANN for intelligent
agent animation to exhibit more realistic and un-repetitive
behaviours in a dynamically changing environment.
Furthermore, the paper will investigate the suitability of the
modern graphics API such as DirectX to implement the
scenarios. The paper is organised as follows: Section 2
describes the general design of the agent animation
environment and the proper rendering strategy for
animation. Section 3 depicts the animation architecture in
detail. Section 4 describes the use of DirectX in the work.
Section 5 describes an example simulation and finally
section 6 presents the conclusion and discusses future work.

2. ANIMATION STRATEGY FOR EXHIBITING
AGENT BEHAVIOURS IN REAL TIME

An intelligent virtual agent is the crucial component in a
virtual environment as most of the interactions lie between
the computer controlled agent (such as a NPC in computer
game) and the human user. Such agents are expected to
exhibit realistic and non-repetitive behaviours based on
their own perception of the environment and their own
beliefs. An agent’s behaviours will need to be rendered in
real time for the sake of realism and sense of presence.
Therefore, agent animation plays an important role in the
simulation environment. Various animation strategies have
been proposed. These can be loosely divided into two
categories, namely pure off-line production and real time
animation generation (Boulic et al. 1997). Pure off-line
production results in a relatively high believability
conveying the intention of the motion and the emotional
state of the character. The animators and directors know
well how the body postures and movements will be carried
on with the assistance from the motion capture technology.

Typical example using this kind of method are the
computer-generated film such as “Toy story”, “The Final
Fantasy” and cinematic scenes in computer games.
However, this method presents problems for the intelligent
agent animation since the behaviours of the agent appear to
be repetitive.

In interactive simulation, functional models are used to
access a higher level of specification and control of human
motion. Such motion modelling normally uses kinematics
due to its low computational cost. For instance, the
corresponding transformation matrices of the character’s
hierarchical skeleton will be kept and updated to animate
the character during the programme runtime. This method
may lack the realism required for full believability but it is
essential for the sake of the flexibility, and higher levels of
control. An important issue in this method lies in the proper
management of the transition between successive actions.
This is generally made with fade-in and fade-out techniques
realized with simple cubic steps (Boulic et al. 1997). Such
approach is widely used in modern computer game where
realistic pre-recorded animation sequences can be combined
on the fly to provide fluid behaviours. The animation

strategy adopted in our work is a hybrid method that
combines the pre-recorded realistic motions according to a
user generated events with the use of inverse kinematics for
some specific tasks such as grasping.

3. ANIMATION ARCHITECTURE USING
NEURAL NETWORK

Each virtual agent exhibits its behaviours based on the
underlying hierarchical bone structure. Each bone is
animated by its corresponding bone matrix and can have
several degrees of freedom (DOF). Modern graphics APIs
such as DirectX support the “skinned mesh” rendering
technique in which each vertex in the character skin mesh
can be associated with more than one transformation matrix
(Taylor 2002). This animation method has the advantages
of smoothness and control flexibility. The proposed
animation method is to use a neural network for selecting
behaviours and change DOF for the character animation. In
this way, the character will possess the ability to adapt to

the new situation or various situations in the real time
simulation system. The structure is illustrated in Fig. 1.

ijv
ijω

Input layer: contains agent’s
internal states.

Output Layer: contains selected
behaviours or actions with
animation parameters such as
values of DOFs or motion
frequency

…

…
…

…

…

Perception
Module

Graphic
EnginePerception

Interpretation
FzFSM

Input
Layer

Hidden
Layer

Output
Layer

Decision Making

Figure 1 An animation architecture that uses a three-layer feed-
forward neural network for varying and adapting agent’s behaviours

The animation structure starts from the perception module
that is responsible for capturing information from the run
time environment. Various methods have been proposed
(Mehdi et al. 2002). In our system, a rather simple view
frustum culling algorithm is adopted. In this method, any
object that falls into the view camera of the virtual agent
will be treated as visible object and the property of the
object including object ID, orientation, position and so on
will then be passed to the agent for input processing.
Although this method is not the most realistic way to
simulate agent perception, it is fast and efficient in the real
time environment.

The FzFSM receives input information from the perception
module. A FzFSM differs from a traditional finite state
machine by giving each distinct state a fuzzy set that
normally ranges from 0 to 1 (Gough et al. 2000). Its main
functionality is to alter the agent’s internal states according
to the perceptual information. Some of the internal states

such as "HUNGER" may change according to the time even
without external stimuli.

The three-layer feed-forward neural network is the main
decision-making component in the agent virtual brain. This
kind of network is the most popular connection method for
the neurons because it only allows firing signals to travel
forwards from input to output and hence no feedback is
present. This avoids additional internal transitions that do
not necessarily allow the NN to settle on a single output but
cycle through several (Mehdi et al 2000). Each neuron has
the same generic structure and performs the computation as
follows:

One important step for using a NN in agent behaviour is the
input selection. The problem lies in the fact that there are so
many factors in the dynamic environment that can affect the
agent behaviours. For instance, for a single behaviour such
as “acceleration”, it could be activated by several dynamic
conditions in the environment such as “ seeing food while
feeling hungry” or “wind direction changing”.
Incorporating all factors in the inputs is obliviously
unsatisfactory as it substantially increases the complexity of

the network and the computation for those un-necessary
links would be wasted resulting in low efficiency. However,
the selection of inputs is often difficult in practice as stated
in (Manslow 2002). This is because the problem being
solved is often too complex or poorly understood to specify
exactly what information is useful. Several rules are
suggested by Manslow (Manslow 2002) to achieve better
results. Browning et al. (Browning et al. 1998) partition the
input into behaviours space so that the weight vector can be
defined to construct the neural net. For instance, the agent
may have three virtual sensors such as left-sensor, right-
sensor and center-sensor, which act as three main
activations. The agent behaviours such as turn left, turn
right, turn around and go straight can be specified in a 3D
vector (LS, RS, CS) and then connected to the activators in
the NN.

The output layer contains the actions that will be passed
into the graphic engine for further processing. The
management of DOFs for the agent animation is an
important issue for the graphic engine (Boulic et al. 1997).
It is clear that executing solely one motion at a given time
would probably result in an artificial animation. Intelligent
agents often perform in parallel and overlap in time such as
walking while waving arm or walking while rotating head.
It is a fact that performing actions in parallel causes
problems of simultaneous DOF updates as some of the
DOF update values may conflict to some degree. In order to
resolve this problem, DOFs need to be categorized into
several sets. Furthermore, action mixing or blending should
also be carefully considered. Typically the following
equations could be used to manage the DOF values from
output layer of the neural network (Emering et al. 2000):

i. if is the transfer function

∑∑
==

+ +−+=
J

J

k
j

I

i

k
i

kk
i

kk

11

1).(θωθθθθ

I
J
k

T
n
s
m
e
n
d

f
e
t
h
t
i

T
m
p
l
p
p

4

DOFs update
and

management
component

Output from
the Neural
Network

Character’s
transformation
matrices tree

Graphics Engin

Figure 2. The rendering pr
 actions are in blended mode
 actions are in added mode
 is a time index
θ is the current value of the DOF
θ is the DOF value of the p contribution action

 is the DOF weight function of the p contribution action
p









+= ∑

i
jiijj xwfA 0θ

iA

j0

 is the activation, is the weight vector, ijw
θ is the threshold is the input vector for unit ix
pω

he action weight can be a function of time whose value
ormally falls into the range [0,1]. According to the
imulation situations, action mixing normally contains two
odes, namely add mode and blend mode. The blend mode

nables the current motion to be smoothly blended with the
ewly activated action. The add mode enables some more
elicate actions for the character such as breathing or

idgeting (Emering et al. 2000). The output from the above
quation will be used to generate the corresponding
ransformation matrices that reside in the character’s
ierarchical skeleton. The information will then be passed
o the DirectX based graphic engine for rendering. Fig. 2
llustrates the program system.

he training of NN normally requires the processing of
any data examples, which incurs significant CPU

rocessing hours. However, the training can take place off-
ine in advance. Once the NN has been trained, it can
roduce a variety of animation according to different input
attern during program run time.

. THE USE OF DIRECTX

DirectX Mesh
Library

e

ocedure

The system is implemented by using DirectX. Specifically,
DirectX provides a library called X library to enable
efficient use of modern API and hardware acceleration.
Most graphics renderings are concerned with the
manipulation of character mesh data and the hierarchical
skeleton tree update. The X library provides series of
functions to load, prepare and render the mesh in a
hardware supported way. The bone hierarchy is stored as
the frame hierarchy in the DirectX X file. Therefore,
reconstructing and updating of the bone hierarchy
architecture for the agent can be achieved efficiently
(Taylor 2002).

5. SIMULATION EXAMPLE

The designed scenario is to animate a virtual agent (a
predator fish) who is trying to catch a moving prey. The
prey fish is moving around the environment by following
several rules. For instance, for each simulation step, the fish
will randomly pick up a direction to go and vary its speed
to go until it detects the approach of the predator fish. The
predator fish is constructed using the above discussed
method and have several behaviours like “speed
accelerating”, “speed decreasing”, “turn around” and so on.
The input layer of the NN consists of character’s three
fuzzy internal states, namely “hunger, tiredness and pain”.
Perception information from the environment will be firstly
interpreted and then activate or deactivate corresponding
internal states. The output level of the NN consists of the
character’s behaviours with animation parameters such as
values of DOFs and frequency of motion. The training of
NN is done by supplying set of simulation data in advance.
The result shows that the trained network is able to produce
numbers of variation in the final animation sequence
according to the actual run time environment.

6. CONCLUSION AND FUTURE WORK

This paper has proposed an approach to animating
intelligent agent behaviours in a virtual environment based
on a neural network. The agent is able to adjust its
behaviours efficiently to achieve various goals depending
on its reactions to the environment. Furthermore, a graphic
engine that is able to work closely with neural network has
been proposed based on the motion blending and adding
function. However, the application of a NN to animate
agent behaviour is still in it early stage of development. It
may need some time before a comprehensive conclusion
can be withdrawn. Future work will concern with choosing
and optimising the input and output vector of the NN with
proper training data in order to exhibit more complex
character behaviours.

REFERENCES

Boulic R., P. Becheiraz, L. Emering, D. Thalmann, 1997.

“Integration of motion control techniques for virtual
human and avatar real-time animation”. In Proc.
VRST’97, pp111-118, September 1997, ACM Press.

Boulic, R., Huang, Z. and Thalmann, D. 1997 “ A
comparison of design strategies for 3D human
motions”. In “Human Comfort and Security of
Information Systems, Advanced interface for
information society”, Research Report ESPRIT, pp
305-313.

Browning B. and Wyeth, G. 1998 “Neural systems for
integrating robot behaviours”. In Australian Conference
on Neural Networks, 1997 , Brisbane, Queensland,
Australia, March 1998.

Emering, L., Boulic, R., Molet, T. and Tahlmann, D. 2000
“Versatile tuning of humanoid agent activity”,
Computer Graphics Forum, vol 19, No. 4, pp.231-242.

Gough, N.E., Suliman, H. & Mehdi, Q. 2000, “Fuzzy state
machine modelling of agents and their environments
for games”, Proc. 1st SCS Int. Conf. GAME-ON 2000,
Imperial College, London, November, SCS ISBN 1-
56555-210-5, pp 61-68.

Grand, S. 1997 “ Creatures: an exercise in creation”, IEEE
Intelligent Systems and Their Applications, vol. 12, No.
4,1997, pp. 19-24.

Grzeszczuk, R., Terzopoulos, D and Hinton, G. 1998 “
NeuroAnimator: fast neural network emulation and
control of physics-based models”, Proc. of SIGGRAPH
98. pp. 9-20.

Manslow, J. 2001 “Imitating random variations in behavior
using a neural network”, AI game programming
wisdom, 2001, Charles River Media, Massachusetts.

Manslow, J. 2002 “ Using a neural network in a game: a
concrete example”, in Game programming gems2,
Charles River Media pp. 351-357.

Mehdi, Q., Suliman, H. & Evdokimos, A. , Gough, N.E. &
Allen, M.J. 2000, ‘Artificial Neural Networks in
Computer Games’, Proc. 1st SCS Int. Conf. GAME-ON
2000, Imperial College, London, November, SCS
ISBN 1-56555-210-5, 29-33.

Mehdi, Q., Wen, Z. and Gough, N. 2002 “A new approach
for animating intelligent agents in complex 3D virtual
environments based on spatial perception and
memory”, Proceeding of 11thInternational Conference
in Intelligent System,2002, USA..

Musse, S., osorio, F., Garat, F. Gomez, M. and Thalmann,
D. 2000 “ Interaction with Virtual human crowds
using artificial neural networks to recognize hands
postures”. WRV – Workshop de Realidade Virtual,
2000, Gramado, RS, Brazil. pp.107-118.

Pfeifer, R. 1996 Building Fungus Eaters: Design Principles
of Autonomous Agents, From Animals to Animals.
Maes, P. et al., Cambridge, MA:MIT press.

Talyor, P 2002. “DirectX vertex shader”,
http://www.microsoft.com/directx, last accessed 1
September 2002.

Zaera, N., Cliff, D and Bruten, J. 2002 “Evolving collective
behaviours in synthetic fish”. www.hpl.hp.com/
techreports/96/HPL-96-04.pdf, last visit 1 September
2002.

AUTHOR
LISTING

AUTHOR LISTING

Akazawa Y. 22
Al-Dabass D. 10/47/56

Barraud G. 181
Bertelle C................................... 178
Buche C. 89

Cant R.. 10/47/56
Cavazza M................................. 73/144
Charles F. 73/144
Cheng H..................................... 134
Churchill J. 10
Corruble V................................. 155
Cunningham P. 129

de O. Cruz A.J. 113
Demasi P. 113
Doyle R. 47
Duan J.. 104
Dutot A. 178

Earnshaw R. 134
Ehlert P.A.M. 165

Flannery J. 56
French F..................................... 16

Gough N.E................................. 77/104/189
Gruenvogel S.M. 37
Guillot A.................................... 121

Hollinworth N. 16

Jankovic L. 29

Kocsis L..................................... 99

Lozano M. 144
Lugrin J.-L................................. 73

Mac Namee B............................ 129
Madeira C. 155
McGlinchey S.J. 42
Mead S.J. 73/144

Medhurst N. 16
Mehdi Q.H. 77/104/189
Mouthaan Q.M. 165

Niijima K. 22

Okada Y. 22
Olivier D. 178

Palmer I. 65
Pannérec T................................. 139
Parenthoën M. 89
Pierret P..................................... 181
Portier P. 121
Postma E. 94
Prévot G. 178

Ramalho G. 155
Robert G. 121
Rothkrantz L.J.M. 165/181

Schricker B.C. 160
Shilling R. 151
Slater S. 5
Sprinkhuizen-Kuyper I.............. 94
Spronck P. 94
Spyridou E. 65

Tisseau J. 89

Uiterwijk J.W.H.M.................... 99/173

van den Herik H.J...................... 99/173
van der Werf E. 173
Viader X. 16
von der Lippe S.R. 160

Wan T.R. 134
Wardynski E.C. 151
Wen ... 189
Winands M.E.M. 99

Zeng X....................................... 77
Zyda M. 151

	Game on actual Paper-10.pdf
	Enhancing The Immersive Experience
	
	KEYWORDS
	ABSTRACT
	INTRODUCTION
	IMMERSION?
	A POSSIBLE IMMERSIVE WALKTHROUGH
	SETTING THE SCENE: VIDEO
	CAPTURING THE IMAGINATION: THE STORY
	CREATING EMOTION: SOUND
	THE AUDIENCE GASPS: GRAPHICS
	CHALLENGE: ARTIFICIAL INTELLIGENCE (AI)
	SECOND NATURE: THE INTERFACE
	ROCKETS AND GUNS RATHER THAN ARROWS AND STICKS: LEVEL DESIGN
	BLAST AWAY: HAVING FUN
	ENHANCING AN IMMERSIVE ENVIRONMENT
	CONCLUSIONS
	LAST WORDS
	REFERENCES
	BIOGRAPHY

	teamgames2.pdf
	Networked team games
	
	Abstract
	Introduction
	Team Play
	Real teams and virtual teams

	Description of The Game
	Level 1 – Team log-in
	Level 2 – Know your enemy
	Level 4 – Hit the Spot
	Level 6 – Treasure Hunt

	Evaluation of prototype
	Conclusion
	References

	Games 24.pdf
	INTRODUCTION
	IMPLEMENTATION
	REFERENCES

	gameon2002-13.pdf
	Keywords
	Abstract
	Appendix A (questionnaire)

	Zeng_gameon02final-17.pdf
	KEYWORDS
	ABSTRACT
	1. INTRODUCTION
	2. INTERACTIVE STORYTELLING TOOLS
	3. TEXT TO VISUALIZATION TECHNOLOGY
	Character behaviour and animation based models
	Scene and sequence based models

	4. APPLICATION OF NLP IN COMPUTER GAMES
	5. DESIGN METHODOLOGY
	5.1 Architecture of 3DVSE System
	5.2 Application of XML in NLP
	5.3 Generation a Reusable VRML Format Object Database
	3D Objects Library
	Animations Library

	5.4 3D Graphic Representation

	6. EXAMPLE
	7. CONCLUSIONS AND FUTURE WORK
	REFERENCES

	JingDuan.pdf
	Jing Duan, N. E. Gough and Q. H. Mehdi
	KEYWORDS
	ABSTRACT
	
	Cooperate (C)

	4 MULTI-AGENT REINFORCEMENT LEARNING
	5 DESIGN METHODOLOGY FOR RL IN GAMES

	Figure 1: RL in game system architecture
	6 EXAMPLE

	Figure 2: 3D Model of Game “Escape”
	Agent B
	Agent A
	7 CONCLUSIONS AND FURTHER WORK
	REFERENCES

	online_coevolution.pdf
	GAME DESCRIPTION
	AGENTS OVERVIEW
	METHOD 1: ONLINE EVOLUTION USING GAME-SPECIFIC INFORMATION
	When an agent gets killed, we calculate the hamming distance between him and the target for his subspecies. We must, also, establish some boundaries for the easiness of the game. If the easiness reaches some threshold t, we create the new individual with
	One of the questions that can arise is that individuals will have different hamming distances and they will evolve towards the target in different speeds. That is, the ones with lesser distances will reach the target sooner. While this can be a problem i
	When replicating individuals, we can add some interesting genetic operations as well. For instance, we can calculate a bit-mutation probability, so we can have slower or faster learning individuals. Another possibility is to add some randomly created ind

	METHOD 2: ONLINE EVOLUTION USING OFFLINE EVOLVED DATA
	
	The second method we present is very similar to the last one, at least the main idea and the implementations. The major difference is how the final and the intermediate targets are obtained.

	METHOD 3: PURE ONLINE EVOLUTION
	
	
	METHOD 4: JOINING THEM TOGETHER
	IMPLEMENTATION
	Software Implementation
	RESULTS
	Method

	DISCUSSION AND FUTURE WORK
	Method

	CONCLUSIONS
	AKNOWLEDGEMENTS
	AUTHOR BIOGRAPHY
	REFERENCES

	Jinggame02-22.pdf
	Jing Duan, N. E. Gough and Q. H. Mehdi
	KEYWORDS
	ABSTRACT
	
	Cooperate (C)

	4 MULTI-AGENT REINFORCEMENT LEARNING
	5 DESIGN METHODOLOGY FOR RL IN GAMES

	Figure 1: RL in game system architecture
	6 EXAMPLE

	Figure 2: 3D Model of Game “Escape”
	Agent B
	Agent A
	7 CONCLUSIONS AND FURTHER WORK
	REFERENCES

	SocialUnit-14.pdf
	ABSTRACT
	INTRODUCTION
	PROJECT OVERVIEW
	USING PSYCHOLOGY TO MODEL NPCS' PERSONAS
	Personality Model
	Mood Model
	Relationship Model

	IMPLEMENTING THE µ-SIC SYSTEM
	CONCLUSIONS
	REFERENCES

	Game5.pdf
	TRAINING THE SOLDIER FOR OOTW
	KEYWORDS
	ABSTRACT
	INTRODUCTION
	OOTW SIMULATIONS
	MODELING ASSYMETRIC THREATS WITHIN A SYNTHETIC ENVIRONMENT
	HUMAN BEHAVIOR MODELING
	ARCHITECTURE TYPES
	Asynchronous Components
	Interruptible
	Layered
	Modular
	Multi-Component
	Plan then Compile

	INDIVIDUAL BEHAVIOR
	PARALLEL DISCRETE EVENT SIMULATION
	REFERENCES
	BIOGRAPHY

	GAME-ON_paper26.pdf
	Abstract
	Introduction
	The FlightGear simulator
	Explorative data analysis
	PCA Analysis
	Elman neural network

	Knowledge Base
	A simple prototype
	Expanding the prototype
	The rules

	Conclusions and future work
	References

	title.pdf
	MISCELLANEOUS

	GAMEON2002_paper25.pdf
	Keywords
	Abstract
	Introduction
	AI Aspect
	Entertaining Aspect
	Components Aspect

	architecture of amaelia
	Body Components layer
	Brain layer
	Commands layer

	RobotCat
	Building
	Software

	EyesCat
	
	LCC Detection
	Actions and Events

	VoiceCat
	Braincat
	Component responsibilities
	ICatBeh interface as a composite model
	Discussion about the execution model

	The Cat Commands Language (CCL)
	Basic commands
	State icons
	Event icons
	Control icons

	Conclusions
	References

	NNlAnimationFinal.pdf
	NEURAL NETWORKS FOR ANIMATING VARIATIONS IN CHARACTER BEHAVIOURS
	
	
	Z. Wen, Q.H.Mehdi, and N.E.Gough
	E-mail: Z.Wen2@wlv.ac.uk

	KEYWORDS: Neural Network, Degree of freedom, DirectX, Computer Animation
	ABSTRACT

