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Preface

Dear participants

It is my pleasure to welcome you to the 2009 European Simulation and Modelling
Conference (ESMg 2009), the international European conference on the state of
the art of modelling and simulation, which this year is being held at the Holiday
Inn, in the city of Leicester, United Kingdom in cooperation with the de Montfort
University.

Even though we live in harsh economic times with declining numbers in
participation, this year’s event still has managed to attract some 65 high quality
papers from 21 different countries spanning 4 continents, out of 86 papers
submitted.

Further to the selected scientific presentations, EUROSIS and | are grateful to
Professor Adrian Hopgood of de Montfort University for giving this year’s keynote
speech entitled: “Hybrid Systems, the Future of Artificial Intelligence” and to our
invited speakers; Ken Kahn from Oxford University with his talk on “The
Modelling4All Project: A web-based modelling tool embedded in Web 2.0” and
Simon Scarle from Warwick University with his talk on “Putting a Heart into a
Box: GPGPU simulation of a Cardiac Model on the XBox 360”.

| wish to thank all those, who have contributed their time and effort in organizing
this meeting. This goes out to the International Program Committee members
who took care of the reviewing process. They have done a great job in arranging
a strong technical program, which covers a variety of speciality areas covering
present day methodological simulation research.

Recognition for this conference must go also to Philippe Geril, the EUROSIS
coordinator, who was the main force responsible for the organisation of the
meeting.

Furthermore, | would like to thank the Creative Technology Studios at de Montfort
University, for accepting to have the conference participants visit the BBC
research studios at the aforementioned site.

Finally, | would like to wish you a pleasant stay in Leicester and a successful
conference meeting

Professor Dr Marwan Al-Akaidi
ESM’2009 General Conference Chair
EUROSIS — M. East Chair

School of Engineering & Technology,
De Montfort University,

Leicester, LE 1 9BH, UK.

Email: mma@dmu.ac.uk
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OPTFERM - A COMPUTATIONAL PLATFORM FOR THE OPTIMIZATION OF
FERMENTATION PROCESSES

Orlando Rocha'??, Paulo Maia'?, Isabel Rocha!?, Miguel Rocha?

'IBB - Institute for Biotechnology and Bioengineering / Centre for Biological Engineering
*CCTC - Computer Science and Technology Center / Dep. Informatics - Universidade do Minho
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KEYWORDS

Fermentation processes, open-source software, process
simulation and optimization, Evolutionary Computation,
Differential Evolution

ABSTRACT

We present OptFerm, a computational platform for the
simulation and optimization of fermentation processes. The
aim of this project is to offer a platform-independent, user-
friendly, open-source and extensible environment for
Bioengineering process optimization that can be used to
increase productivity. This tool is focused in optimizing a
feeding trajectory to be fed into a fed-batch bioreactor and to
calculate the best concentration of nutrients to initiate the
fermentation. Also, a module for the estimation of kinetic
and yield parameters has been developed, allowing the use of
experimental data obtained from batch or fed-batch
fermentations to reach the best possible model setup.

The software was built using a component-based modular
development methodology, using Java as the programming
language. AlBench, a Model-View-Control based application
framework was used as the basis to implement the different
data objects and operations, as well as their graphical user
interfaces. Also, this allows the tool to be easily extended
with new modules, currently being developed.

INTRODUCTION

Nowadays, several products such as antibiotics, proteins,
amino-acids and other chemicals are produced using
fermentation processes. Due to the rise of petroleum prices
and the incentive to replace petroleum derivatives by “green
products”, many traditional processes have been replaced by
new biotechnological ones. Consequently, an effort to
improve biotechnological techniques has been verified.
Recombinant DNA applications were conceived to produce
new microorganisms, while several computational tools have
been designed and implemented for modelling and
simulation of metabolic pathways of the cell (Pettinen et al.
2005). All share a common purpose: to increase the
production yield and get a higher purity of the final product.
To optimize the productivity of a biological process, in the
majority of the cases, two different steps have to be
addressed: firstly, a selection and genetic improvement of
the organism strain is accomplished; in a second step, the
best conditions of the fermentation process are identified,
such as the initial nutrient concentrations, operating modes,
feeding profiles for fermentations, temperature and pH.

In industry, the second step is mostly done experimentally
using trial-and-error heuristics (Kawohl et al. 2007).
Although there are several tools to study, simulate and
optimize cellular pathways, there is still a clear lack of tools
to perform the optimization of fermentation processes.

Fermentation processes are affected by biochemical and
chemical phenomena such as the chemical interactions
between components, concentrations of substrates, products
and biomass, and environmental conditions like temperature,
pH and dissolved oxygen concentration (Tzoneva 2006;
Zhang 2008). The complex dynamic behavior and the
unpredictable effects of these factors increase the difficulty
of establishing accurate models to describe the real systems
(Benjamin et al. 2008). However, new methods to control,
predict and optimize bioprocesses have been proposed.

The OptFerm platform was developed using the Java
programming language, with the aim of being a user-
friendly, extensible and platform-independent tool. It was
designed to allow the user to evaluate and compare several
different methods for the tasks of simulation, optimization
and parameter estimation, in the context of fermentation
processes. The aim is to allow users to improve process
productivity, achieving better results in reduced times.

The available optimization algorithms in this tool were
developed and validated in previous work by the authors,
namely Evolutionary Algorithms (Rocha et al. 2004, 2007;
Mendes et al 2006, 2008), Differential Evolution (Mendes et
al. 2006, 2008) and Simulated Annealing (Rocha et al.
2007). Any of these algorithms can be used in feed
optimization or parameter estimation. Metaheuristic
optimization approaches are used, since the underlying
problems are typically quite complex. OptFerm is available
in the following website: http://darwin.di.uminho.pt/optferm.

MAJOR FEATURES

The main aim of the OptFerm software is to provide specific
computational tools for the simulation and optimization of
fermentation processes. The tools should enable its users to
use several methods and parameter configurations, thus
saving time in performing expensive wet experiments.

Fermentation models

The basis for all operations available within OptFerm are the
models of the fermentation processes. The internal
representation of a model is based on ordinary differential
equations (ODEs). In OptFerm, model information can be
divided in two main entities, a Process and a Function:



e Process — contains information on the state variables
such as names, initial values and upper and lower limits,
and the objective function for optimization purposes.

e Function — keeps the kinetic parameters (names, values
and limits), kinetic reactions and the ODEs that describe
the current problem dynamics.

The kinetic reactions and the ODEs are defined separately,
allowing any type of kinetic equations to be defined for a
given set of ODEs. The user can apply constraints to limit or
impose a condition when a value of a state variable or kinetic
reaction is exceeded. The kinetics functions can be
implemented using any of the control flow statements in
Java, demanding some knowledge of the programming
language, but allowing a greater flexibility.

The dynamical model describing the state variables behavior
along time is described by a set of ODEs (see the case
study). There are only two restrictions in the definition of the
model: it is necessary to associate a substrate feeding rate
parameter and a dilution rate factor has to be associated to
all differential equations, with the exception of the equation
describing volume/ weight variations.

Currently, the ODEs and kinetics have to be written in the
Java language. The definition of a new model requires the
implementation of two classes: one for the Process and the
other for the Function. The structure of these classes is
always the same, since they are based on a common
interface. After the compilation of a model, the different data
values associated with it are considered as default data and
cannot be modified. Nevertheless, new instances can be
created with different sets of values for different parameters.
Indeed, when a Project is created, new sets of initial values
for state variables, model parameters and feeding profiles
can be defined and kept for future use.

Simulation

Regarding the process simulation, the user has the ability to
test various combinations of the initial values for state
variables, parameters and experimental or hypothetical
feeding trajectories along time. Furthermore, it is possible to
perform simulations with feed trajectories obtained from
optimization. Likewise, after executing the estimation of
model parameters, the results are immediately accessible and
can be used to perform a simulation. The simulation results
can also be compared with experimental data. The results are
displayed via graphs, where each state variable or kinetic
rate can be visualized separately. These figures can be
exported as JPEG files. Simulations are performed by
running a numerical integration process, using a linearly
implicit-explicit Runge-Kutta scheme or a constant Runge-
Kutta scheme, included in OdeToJava (Ascher et al. 1997).

Optimization

Three types of operations can be performed: the optimization
of a simple feeding trajectory, of the feeding trajectory plus
initial conditions or of the feeding trajectory plus final time
(Rocha et al, 2004). In the first case, the ideal amount of
substrate to be fed into the reactor per time unit along time is
determined; the second scenario allows determining the best
initial concentrations for each selected state variable, while

in the third case the optimal duration of the fermentation is
also provided.

The minimum and maximum pump limits can be defined by
the user and these values are used as constraints on the
optimization operations. Some preferences related with the
algorithms can be modified by the user, such as the number
of iterations, the population size, the discretization step and
an interpolation factor. This factor is used to reduce the
solution size, so that feeding values are defined only at
certain equally spaced points. A report on the optimization
operations performed can be generated, describing the
conditions that were used and the results obtained.

Parameter estimation

To perform the estimation of parameters, a simple GUI is
available, where the various estimation options are easily
understandable. It is possible to fix certain parameters or to
assert that certain state variables should be ignored during
the estimation (this is important because if a state variable
has null values over time, the objective function is affected,
causing a numerical error). The results are presented in
graphs or tables and both can be saved to files. As with feed
optimization, a report can be generated. The fitting is
performed by minimizing a total cost function that represents
the adjustment between experimental and simulated data:

n 1 p 5 5 2
Total Cost=Y | —_ %‘”‘P”f n
exp,ij

i=1 p j=1
where f“"“*” represents the simulated data and é"f”"f the
experimental data for the state variable & (n is the number of
state variables) for every point (p is the total of data points).

The difference is divided by an average value 5""“”’7 with the
purpose of giving the same importance to all state variables.

IMPLEMENTATION ISSUES

OptFerm is built in a modular way, using a component-based
approach to software development. AlBench, a general
purpose Java application framework for scientific software
development, was used to manage the data objects and
execute the operations, also making the linkage with the
graphical interface. All information related with AIBench
can be found in http://www.aibench.org/.

AlBench is a MVC (Model-View-Control) based Java
application developed by the University of Vigo, with the
collaboration of the authors. It uses a plug-in engine, which
provides the capability to load or unload operations,
allowing to create applications based in software modules.
All applications developed with AlBench are structured
through two main concepts: datatypes, defining data
structures used in the application and operations describing
functions receiving input objects and creating output objects.
To implement OptFerm, it was necessary to define the
corresponding datatypes and operations. A general schema
of OptFerm structure is shown in Figure 1.

A datatype is a Java class that specifies the internal
representation of an object, in which simple data or complex
data (other datatypes) are incorporated. It may be considered



as a container. They can be used or created during the
various operations.

Simulation

functions

Optimization
functions

Parameter
Estimation

Figure 1: The general internal structure of OptFerm
In OptFerm, the datatypes were structured as (Figure 2):

e Project — it is the basic datatype; when a Project is
created, each of the objects shown in Figure 2 is
instantiated. A Project is directly related to a model (it
has to contain one Model object and cannot contain more
than a single one). A project has a list of Simulation,
Optimization and Parameter Estimation results. These
lists are extended, during the execution of each operation.

e Model — Within each Model there are four different
datatypes, as shown in Figure 2, namely: State Variables,
Kinetic Parameters, Feed Data and Experimental Data.
These datatypes are of type List, in which a new set of
initial values for the state variables, parameters, feed
profiles or an experimental dataset can be added to the
list. Consequently, different combinations of state
variables, feed profiles and kinetic parameters can be
used in the simulation, optimization and parameter
estimation operations, without the need to change the
internal structure of the model.

¢ Simulation, Optimization and Estimation Results —
these are datatypes of type List. After the execution of
each of these operations, a new object is created
containing the results. The conditions that were used in
these operations are saved, such as state variables, model
parameters, feed profiles and experimental data sets.

|l Lo

Simulation
Results

ptimization
Resulls

Resulls

Figure 2: Structure of the Datafypes within a Project

All datatypes are organized in a Clipboard and presented to
the user as a tree. The data contained inside the datatypes can
be accessed through viewers, graphical interfaces where data
is presented in tables, graphics or other suitable means.

In terms of the source code organization, a main library
gathers the various packages with the simulation,
optimization and estimation functions and a description of
the models. A module containing specific optimization
routines were created for feed optimization and related tasks.
This module uses JECoLi (Java Evolutionary Computation
Library; http://darwin.di.uminho.pt/jecoli) that contains
generic optimization routines based on metaheuristic search
algorithms. Some adaptations had to be made to adapt these
algorithms to support feed optimizations, as explained in
Rocha et al (2004) and Mendes et al (2006). Three
algorithms belonging to the main groups of Evolutionary
Algorithms, Differential Evolution and Simulated Annealing
are used to perform optimizations.

A package for kinetic parameter estimation was developed,
using the same optimization routines. Some modifications
were made to enable the user to perform estimations without
needing to modify the internal structure of the models.
Functions to import/ export data were also implemented.

CASE STUDY

The case study is related to production of ethanol by
Saccharomyces cerevisiae , described by Chen and Huang
(1990). The purpose is to explain in a descriptive way the
most important features of OptFerm and not to make any
study of the used model. Due to space constraints only
Simulation and Optimization operations are considered.

The model represents a fed-batch bioreactor system and
encompasses the following equations (Chen e Hwang 1990):

1
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where x;, x, and x; are the cell mass, substrate and ethanol
concentrations (g/L), x, the volume of the reactor (L) and u
the feeding rate (L/h). Kinetic variables are given by:
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The objective function was set to obtain a maximum of xj
when the maximum of reactor capacity (x4) is reached:

prod = x3(T)xy(T) ®
where T;is the final time.



Model edition

The first step was to define the Process Java class and the
Function Java class. The ODEs (equations 2 to 5) are
converted into the equations presented in Figure 3. This
represents a function that receives the present time value and
an array of state variables calculated in the previous
iteration. Next, it calls the updateKineticCoefs(t) method to
calculate new values for the kinetic variables at time ¢, and
then it calculates and returns an array containing the new
values for the state variables at time .

public doublaell fidouble T, doublei} x}

doublei] xp = new doubleix.lengthl;
updateKineticCoefs{t};
kinetics{xiil, xIZ2i}; 7/ =z, ®=z
double u = fsed{t};

xpid kCoefsi0i¥xi0l — u*{xiGl/ =xI31})s

Xpiil ~kCcefs {0}/ modelParsitl * xICI +

u /x[3] * {(modelParsili-xili};
xpi2} kCoefsI11*xiI0G] — 1 * { xI21/ xI3] }:
Xpi3 ur

raturn{xp) s

H

Figure 3: How ODEs are defined in the Function Java class

The kinetic equations 6 and 7 have to be converted to the
Java language as shown in Figure 4 . The variables g; and g,
at each iteration are saved in an array kCoefs, and these
values are used later in the ODEs. The modelPars are the
kinetic parameters defined in the Function java class as well.

public void kinstics (deoubls S, double P}

ECosEsi0] = (mx
{P/mode
kCosssill
* (5/({modeiPars{7i+8}};

£41+8)};

Figure 4: How kinetic variables are defined in Java

An objective function must be defined, describing the
purpose of the optimization. The aim was to obtain the
maximum of ethanol (x;) and equation 8 was used, being
defined in the Process class as the productivity method:

pubiic deouble productivity (double tf)
H
doable pro

d = wiZ}i{endPoint} ®* ui3]iendPoint];
raturn prod;

Figure 5: The objective function in the Java language
OptFerm ClipBoard

After defining the process and function classes, these are
compiled and are ready to use in OptFerm. A new project is
created and all initial Datatypes are displayed (Figure 6).
They are presented as a tree structure, and the data contained
can be viewed by simply clicking over the datatypes. All
functionalities are displayed in the menus.

Different sets of initial values for state variables, kinetic
parameters, feeding profiles and experimental data can be
created and added to the clipboard (Figure 7). Data can also
be removed from the clipboard. The internal data of these
new sets can be modified when necessary, and the user can
save or load previously saved data.
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Figure 7: Menus and sub-menus of the OptFerm toolbox:
example on how a new set of state variables can be created

Simulation

An interface is presented to the user with all options to
perform simulations (Figure 8). A Project, the initial values
of state variables and kinetic parameters have to be selected.
It is possible to select between feeding profiles that had been
defined by the user and the ones resulting from optimization
procedures. After performing a parameter estimation, the
model parameters are also available to be used.

% WinouiFees - WihFeed
Chnose Pamameters sal Fe2a Of an Opimization

< Use s Estimates Parsms!

Stats vaignies

Integrion Algorihm Simulafion Tima 50 oBoN

Figure 8: The graphical interface to perform simulations

After performing a simulation, the results are displayed in a
graph (Figure 9). The state variables or kinetic rates can be
visualized. The right panel displays the parameters used.

Optimization

To perform an optimization, a panel is presented (Figure 10).
On this panel, several options can be selected and the
available sets of initial values for state variables and model
parameters are displayed.
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After performing the optimization, the results are displayed
as shown in Figure 11. A graph and a table are used to show
the optimized feed trajectory. Information about the
objective function is displayed, as well as the best value. The
user can also see the parameters used in the optimization.
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CONCLUSIONS AND FURTHER WORK

The aim of the OptFerm software was not to replace
bioprocess optimization by trial-and-error approach, but to

reduce the number of trials that are necessary to achieve the
best results. So, with this tool the user is able to analyze the
robustness of a fed-batch model, compare simulated data
with experimental data, determine unknown parameters and
optimize a feeding profile to be fed into a bioreactor.

The current software version has a major limitation: the
absence of a graphical interface to visualize and edit models.
This feature will be available in a future version. The user
can still create the corresponding Java classes describing the
model by differential equations and kinetic reactions. In
future versions, functions for exporting/importing models in
SBML (System Biology Markup Language) format will be
implemented. Because OptFerm is implemented inside
AlBench framework that has a plug-in concept, new
functionalities or algorithms can be easily integrated.
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ABSTRACT

We present a method for modeling livestock production
systems (MLPS), based on unified modeling language. A
livestock production system is viewed as having four
aspects: production, decision, action and resource. A three-
stage process is used. First, the main interactions between
the production system and external systems are modeled for
each aspect by means of use case diagrams. Second, internal
processes detail these use cases with refined use case,
sequence or activity diagrams. Third, the model is built.
Package and class diagrams model its structure, while
sequence, activity, statechart and time diagrams represent its
dynamics. We applied MPLS to a simplified beef production
example.

INTRODUCTION

The purpose of any livestock production system is animal
production. Many models exist, focusing on the animal, the
herd, or the whole farm system. Even with such scale
differences, these models all simulate production (dairy or
meat) through internal dynamics and structure. The use of a
common method and formal representation would greatly
simplify the construction of these models, and help to
compare, develop and interconnect them.

Here we describe a method for modeling livestock
production systems (MLPS). It uses the unified modeling
language (UML) to formalize the model. First, we briefly
present UML. MLPS is then detailed, along with the subset
of UML used for the method. Finally, we apply MPLS to a
simplified beef production example.

UNIFIED MODELING LANGAGE

Unified modeling language is the international standard
language in  object-oriented software  development
(Rumbaugh et al. 2004). It aggregates (unified) main
principles from more than 50 object-oriented methods of the
1990s. The Object Management Group, a consortium of
major firms and institutes of the object community,
normalized it in 1997. It affords 13 different types of
diagram, each focusing on a particular aspect of the system.
Although it was built for object software modeling, it can be
used to model other types of domain (see for example
Papajorgji and Pardalos 2006).
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DESCRIPTION OF MLPS
Overview

The main goal of MLPS is to build a conceptual model of
the studied system, represented by several UML diagrams. It
is assumed that the objectives of the model have already
been identified. MLPS can then be used in conformity with
them.

The method models the whole system in terms of four
aspects:  production, decision, action and resource.
Production covers every physical or flow process that builds
or transforms products. Decision concerns either strategic or
tactical management. It does not modify the system states.
Humans or animals may take decisions. Action refers to the
implementation of the decisions, and modifies the system’s
states. Resource represents what is utilized by the three other
aspects and may be limited or unavailable at a particular time
(for example forages).

MLPS refines each aspect model in a three-phase process,
each phase focusing on a specific abstract level. This
breakdown is important in the method because it prevents
problems with several levels of abstraction being
confounded. For example, it is not important to detail the
growth process of the animal if the main functions of the
whole farm system are not identified.

The MLPS process

MLPS is composed of three phases by which the model is
built up: external, refine and build.

It begins with the external phase, which models the
exchanges between the production system and external
systems. The issue here is which systems impact the
production system, or are impacted by it. Using UML
vocabulary, the external systems are actors, and the general
description of the impact (exchange) is a use case. The
exchanges are represented with UML use case diagrams
(Figure 1).
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Figure 1: Use Case Diagram (stickman represents an actor)

At least one diagram for each aspect should be built.
However, depending on model objectives, a particular aspect
may have no external interactions.

At least one interaction must appear: the sale of the product
or the final building of it (it then exits the system). This is
the main interaction that drives the rest of the modeling
process. If a use case must be further explained, a sequence
diagram can be used (Figure 2).
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Figure 2: Sequence Diagram for a Use Case

The sequence diagram shows the sequence of exchanges
between the production system and one or more external
systems necessary to implement the use case. If the sequence
is too long, the interaction can be modeled by means of
scenarios, each represented by one diagram.

The next step is the refine phase. It concerns the internal
process needed to implement the previously described
external interaction. For livestock production systems, it may
be, for example, breeding process, feeding management or
dairy milking. This phase employs use case diagrams,
linking previous use case with secondary use cases (internal
process). During this stage, main secondary use cases may
be detailed with an activity diagram (Figure 3).
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Figure 3: Activity Diagram

In Figure 3, Activity 1 will be implemented after Activity 3
if Event 1 happens and Condition is met. If time is important
for a use case, timing diagrams may be used to show the
system state changes over time. This type of diagram is not
presented here owing to lack of space.

The last stage is the build phase. The first question here is:
which internal parts of the system concern the use cases, and
what are the links between these parts? For a livestock
system they could be, for example, a farmer, a cow, and a
culling action. Here the UML class diagram is used. It
details the structure of the model. In UML, the internal parts
are named classes (Figure 4).
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Figure 4: Class Diagram (P specialization link, L 4
composition link)

In Figure 4, System part 1 composes System part 3 and
System part 2 is a sub-type of System part 4. System part 1
has a link (association) with System part 2. The package
diagram can show whether the whole system is a set of sub-
systems in interaction. Each package represents a sub-
system, and is made up of interacting classes (Figure 5).
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In Figure 5, Package 1 aggregates Packages 2 and 4, and
depends on Package 3.

The next question concerns the necessary dynamics between
the system’s parts to implement a use case. Here the
sequence diagram is best, but the activity diagram can also
be used. To model state changes in internal parts, the
statechart diagram is used. It is based on a representation
similar to the activity diagram. For specific time transition
modeling, timing diagrams are also possible. During this last
stage, especially modeling the dynamics, the interaction
between aspects appears.

EXAMPLE OF A BEEF COW PRODUCTION MODEL

To illustrate the method, we present the use of MLPS for
modeling an individual based simulator named SIMBAL
(Pérochon et al. 2009). This simulator aims to predict the
impact of farmer management on beef production. Two
individual agents are modeled: the animal and the farmer.
The diagrams presented have been simplified, retaining the
important components.

External Phase

In accordance with the model objectives and simplification
choices, we kept only three aspects: production, action and
decision. Resource is considered to be not limited or to have
been included directly in production process equations. We
first define external systems: client for the decision aspect
and climate for the production aspect (Figure 6). No external
interactions are modeled for the action aspect. We then
choose main interactions to be modeled: sell animal,
breeding and growth.
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Figure 6: External Phase Use Case Diagrams

In our model, the climate interacts with the breeding and
growth processes through level of feeding or seasonal effects
on reproduction (Blanc and Agabriel 2008)

These diagrams are very simple but they are very important.
At this high level of abstraction, choices have been made

that will impact on the rest of the modeling process: some
potential external systems and interactions are not modeled.
What is represented is important but also what is not. For
example, for the decision aspect, only one actor is present:
the client who buys or asks for animals, while in reality, the
bank, the family, agricultural government policies, etc. also
interact.

Refine Phase

Each external interaction is now detailed. As the most
important is sell animal we present here the associated
refined use case diagram (Figure 7). An internal process
(secondary use case) appears: animal production. It concerns
decisions taken to produce an animal. Among these, we
consider that the main ones are breeding and growth.

Figure 7: Refine Stage Use Case Diagram

Comparing Figures 6 and 7, we see the difference in levels
of detail between the external and refine stages use case
diagrams.

We considered that the animal production decision needed

to be detailed for greater clarity. To do this we used an
activity diagram (Figure 8).
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Figure 8: Activity Diagram for the Animal Production Use
Case

This diagram introduces two new processes: watching the

cattle and planning. These are the most important ones for
the decision aspect. We can note that no actions on the cattle

12



appear. This is normal because it is the goal of the action
aspect. Figure 9 shows an activity diagram detailing the
farmer’s actions.

feading
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Figure 9: Activity Diagram for the Action Aspect

Build Phase

We now describe the internal structure of our model. First,
instead of considering the model as a mere array of
components, it is better to divide it into sub-systems; we use
packages. The obvious way is to use aspects for our
packages (Figure 10), three in our case study. But other sub-
systems may exist.
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Figure 10: Package Diagram of the Aspects in the Model

In Figure 10, we see that decision depends on every other
aspect, while production depends only on action. Each
package is then detailed in one or more class diagrams. The
central role of the farmer appears in the decision package
(Figure 11). It takes decisions and orders them in a schedule.
Several types of decision exist: culling, weaning, feeding,
breeding and selling.
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Figure 11: Class Diagram of the Decision Aspect

The main classes in the production aspect (Figure 12) are the
animal and the batch (of animal).
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Figure 12: Example of Main Classes for the Production
Aspect

To implement action or to take a decision, the farmer groups
animals into batches (Ingrand et al., 2002), each specialized
for a specific task. For example, the breeding heifer batch
concerns previously selected heifers kept for future breeding
to renew the herd. The culling bull batch is males to be sold
after fattening.

Now that the structure is modeled (though possibly not fully)
the dynamics between model parts may be modeled. When a
farmer renews animals in the breeding cow batch, he selects
what he considers to be the best cows in conformity with his
own criteria. This task uses parts of our model derived from
each aspect (Figure 13).
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Figure 13: Example of Sequence Diagram Detailing Renewing Dynamic (Building is an example of resource)

Renew decision is in the decision aspect, building is in the
resource aspect, selection action is in the action aspect and
the others are in the production aspect. As breeding states
are important in this system, we modeled it using a statechart
diagram (Figure 14).
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Figure 14: Statechart Diagram of the Cow breeding States
CONCLUSION

The three important points of the method are (1) to model
the system according to four specific aspects (decision,
production, action and resource), (2) to split the analysis
process into three stages (external, refine and build), each of
which deals with a level of abstraction, and (3) to propose
for each of them a UML subset. Using aspects to model an
agronomical production system is not new. For example,
Martin-Clouaire and Rellier (2003) used manager, operative
and productive aspects. This method considers resource to
be outside the operative system because managing resources
is different from utilizing them. Van de Ven et al. (2003)
chose potential production, limited production and reduced
production aspects, which mainly covers our production
aspect. Choosing a subset of UML was necessary because
users often get lost among all the UML diagrams. This is
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why we give the subset together with suggestions about how
to use it. MLPS approaches have been adapted for livestock
production systems by the unified software development
process method (Jacobson et al. 1999).
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ABSTRACT

Modelling and simulation of complex natural systems
may involve incompatibilities when trying to perform
data exchange between models defined by different
domain specialists. During these exchanges some
problems may appear according to the different types of
data units or different time units used in the models
involved in the overall modelling and simulation. This
paper deals with a modelling scheme allowing to solve
these problems. We will point out how we introduce
different kinds of conversions functions into a special
formalism based on DEVS called multilayer DEVS. We
present also how we are validating this multilayer DEVS
formalism through a Python implementation of the
modelling and simulation of the hydrological behaviour
of a catchment basin.

INTRODUCTION

Modelling complex natural systems involves the
cooperation of scientists from various horizons. Each of
them is able to make his own model; each resulting model
will represent a point of view of the studied natural
system. Each model will involve the definition of its own
data units. In order to fully study the behaviour of a
complex natural system the previously defined models
must have to communicate between them for exchanging
data or anything else. However since these models are
defined independently several problems may occur during
the data exchange. These problems can invalidate the
entire simulation.

We propose here a framework able to integrate the
different models and to perform a safe simulation. This
framework is based on the DEVS formalism created by
professor Zeigler [1] [2] [3] [4] [5]. We called our
formalism multilayered DEVS modelling and simulation.
A detailed presentation can be found in [6]. DEVS is a
formalism allowing to model a discrete event system. Two
kinds of models are defined: 1) basic models from which
larger ones are built, and 2) coupled models which
describe how these models are connected together in
hierarchical fashion. Basic models (called atomic models)
are defined by the following structure:

CA=<X,8S,Y, dint, dext, A, ta> where:
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6 X is the set of input values;
(i1) S is the set of sequential states;

(iii) Y is the set of output values;

(iv) dint is the internal transition function
dictating state transitions due to internal
events ;

v) dext is the external transition function
dictating state transitions due to external
input events ;

(vi) A is the output function generating external
events at the output, and

(vii) ta is the time-advance function which allows

to associate a life time to a given state.
The behaviour of an atomic model is illustrated as
follows: the external transition function describes how the
system changes state in response to an input. When an
input is applied to the system, it is said that an external
event has occurred. The next state s’ is then calculated
according to the current state s. The internal transition
function describes the autonomous (or internal) behaviour
of the system. When the system changes state
autonomously, an internal event is said to have occurred.
The next state s’ is therefore calculated only according to
the current state s. The output function generates the
outputs of the system when an internal transition occurs.
The time advance function determines the amount of time
that must elapse before the next internal event occurs,
assuming that no input arrives in the interim.
An atomic model enables us to specify the behaviour of a
basic element of a given system.
A coupled model indicates how to couple (connect)
several component models together to form a new model.
This latter model can itself be employed as a component
of a larger coupled model, thus giving rise to hierarchical
construction. A simulator is associated with the DEVS
formalism in order to execute a coupled model's
instructions so as to actually generate its behaviour. The
architecture of a DEVS simulation system is derived from
the abstract simulator concepts (Zeigler and al. 2000)
associated with the hierarchical and modular DEVS
formalism. The abstract simulator allows the definition of
a simulation tree whose root element is dedicated to the
time advance management.
The rest of the paper is organised as follows. In the second
section we present the multilayered DEVS formalism.
Section 3 deals with the example used in order to validate



the proposed formalism. We will describe two models
involved in the modelling of the behaviour of a catchment
basin which have been defined independently by different
modellers. The implementation and validation of the
multilayered DEVS formalism will be described in detail
in section 4. In the final paper we will present the obtained
results which are going to be generated in the next weeks.
Finally section 5 will briefly summarized some
conclusions and will present future work.

THE MULTILAYERED DEVS FORMALISM
The multilayered DEVS formalism allows the modelling
of a complex natural system by the integration of several
kinds of models. These models created by different
domain specialists are called behavioural models. In order
to perform the integration of these models we have
defined a DEVS model called Assembly Model. This
coupled model is the central element of the proposed
formalism. The Assembly model will treat every data
shared by the models. This special component is a coupled
model composed of two following main kinds of atomic
models:
(i) The Driven models; these models are in
charge of the data transmission. Each data
shared between the behavioural model pass
through the Assembly model. After received
the data, a write order is send to the
corresponding Storage models (describe
below); furthermore the second role of the
driven models is to transmit to an associated
behavioural model the data received from
the storage models. Each behavioural model
is link to one and only one Driven model.
The Storage models; their role is to register

(i)

the data shared between models. There is a
storage model for each type of data.
The Assembly model also contains conversion functions.
There are two kinds of functions:

6 Details conversion functions: these functions

act when there are some details scale
problems (units problems); for example if a
model use km as unit and another one cm, a
function converts the data to the right units.
These functions insure the validity of the
data.
Temporal conversion functions: theses
functions are based on the Jerome Euzenat’s
theory [9]. These functions allow us to not
redefine the classical DEVS simulator.

(i)

THE VALIDATION EXAMPLE: A CARTCHMENT
BASSIN

A catchment basin can be decomposed into 2 different
models: the hydrological model and the snow model

Hydrological model

GR3J is an hydrological model for the study of catchment.
It performs good results by using a representation of the
rainfall-runoff process as simple as possible and
depending on very few parameters.

A complete description of GR3J can be found in [11].

Figure 1 represents the structure of the GR3J model. P and
E are respectively the precipitations and the potential
evaporation; the first transformation takes place in a
reservoir called “interception” its capacity is null.
There are two functions:
*  Production function: the soil reservoir which is
defined by its capacity noted down here A and its

Intarosption

oy

Figure 1 GR3] model

16




real level S. S evolves with the rain Pn and the
evaporation En. The input (Ps) and output (Es)
flow take place when Pn and En are positive.

*  Transfer function: the water which does not go to
the soil reservoir represents the available water
for runoff (Pn-Ps). This water is divided into two
parts: the most important is the left part (90% is
transformed by a 1-day unit hydrograph (UH1)
while 10% is transformed by a second unit-
hydrograph (UH2)). The first part, after routing
by UHI is given as input to a reservoir whose
storage is R. This reservoir is subject to an
exchange of water F. Q represents the daily
stream flow.

Snow model

For this model, the air temperature will be very important.
In fact we can determine if there is some rain or some snow
with the air temperature. Let us call the air temperature TA,
the critical temperature below which it is snowing are call
TLow. If TA is higher than temperature TUp it is raining.
If temperature is between TLow and TUp it gives a mix of
rain and snow. The reader will find below the
corresponding equations.

f=1 if To = Tup
f=(Ta- Teow) / (Tup - Trow) if Trow = Ta <
Tup

f=0 if Ta < Trow

Snowmelt is calculated with these equations:

M = KM * (TA - TB,M)

Km =Kumw * (1 + Kcum * Mcum)

Where M is the snowmelt, K the degree-day, T, the
average air temperature, T is temperature in which the
snow melting. Mcyy is the melting accumulated during the
season, Ky is the minimum of the degree-day, Kcyy is a
parameter for some calibrations.

More details of this model can be found in [12].

THE IMPLEMENTATION
We have converted these models to DEVS model in order
to use them with our multilayer framework.

Hydrological model in DEVS
The hydrological model can be converted into DEVS
formalism. Figure 2 represents the coupled DEVS model
derived from GR3J. All of the submodels are atomic
models:
« Dispatcher handles the water distribution among the
two unit-hydrographs
* Delayl and Delay?2 represent the unit-hydrographs.
They calculate the amount of water to deliver and the
associated delay.
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e Cumul generates the streamflow, depending on the
water delivered by Delay1 and Delay?2.

Delavi i

Delay2 -

Figure 2 GR3J hydrological model in DEVS

Cumul

1y

Dispatcher

Snow model in DEVS
This model can easily be transform in an atomic model.
The basic principle is the following one:
When an input is received (3, , function), the variables are
updated, and the current state of the model is computed.
The model is active in the following cases:

* The available liquid water is higher than the
quantum

* The sum of liquid water and snow amounts is
higher than the quantum and the current temperature
allows snowmelt.
Then, the time advance function (ta) calculates the time
before the next job to execute:

« If the model is in the passive state, this time is
infinite

« If the available amount of water is higher than
the quantum, the output is quantized.

o If snowmelt is necessary to have a water
amount equal to the quantum, the time required to have a
sufficient snowmelt is calculated
The output function (A) generates an output equal to the
quantum. The internal transition function (3, ) updates the
model variables. If snowmelt is necessary to deliver a
quantum amount of water, an output is planned for later,
but we have taken into account the possibility for an input
event to occur in the meantime. If necessary, the external
transition function calculates the snowmelt for the given
period.

These two models represent the views of two specialists;
they are the behavioral models. They both link to the
Assembly model.

We have implemented both the multilayered formalism
and the DEVS coupled models and atomic models
involved in the validation example of section 3 using the
PythonDEVS  simulator [7,8]. The Python-DEVS
Modelling and Simulation package provides an
implementation of the standard classic DEVS formalism
described in section 1. The package consists of two files,
DEVS.py and simulator.py. The first one provides class
architecture that allows hierarchical classic DEVS models
to be easily defined by subclassing the AtomicDEVS and
CoupledDEVS classes. The Simulator engine (SE) is
implemented in the second file. Based on the principles of
simulation describe in section 1, it allows to perform
discrete event simulation. Even if the PythonDEVS
software involves a simulation engine which offers limited
means to terminate a simulation and provides no easy
model-reinitialisation possibilities we have been able to
use it in order to efficiently test our approach.



RESULTS

The two models presented below have been transformed
onto DEVS models and been linked through the assembly
model, this section presents two curves representing some
results. The curves (Figure 3) represent the comparison
between the real observed measures and the computed
measures. The first one presents results during a year and
the second the results for 8 years.

model do not taking into account that, the flood is a
special event that must be treated apart. Furthermore we
have pointed some inconsistencies in the measured results
that can explain some little differences between our
results.

Despite we can see that out results is very near from the
real measures, we can predict quite faithfully the
behaviour of a catchment basin. The second set of curves
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We can see some differences between the two curves (red
and blue), the first one (the blue one) show the results
takes by a specialist. The red curve, presents the results
obtain with our catchment model. We can see that there’s
a difference between our results and the “real” results; we
can explain that: our model is build from the GR3J model,
some parameters must be defined as a constant because of
its complex nature, so some details are not taking into
account. Moreover as its explain in the GR3J presentation,
the models is not provide for deal with flood. During a
flood a lot of water runoff in a very short time so GR3J
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Figure 3 Results :comparison between the classical approach and our approach

show this fact even better. Here we cover 8 years from
1969 to 1976, we can see here that our results even closer
to reality.

CONCLUSION

We have presented here a way to modeling complex
natural system. We use the multilayered DEVS formalism
[6] [10]. We have implemented both the Assembly
coupled model and the DEVS models involved by the
validation example dealing with the behavior of a
catchment basin. The validation example allows us to
fully illustrate and test the exchange and sharing of data




between models that do not have the same data unit and
the same time unit. We also made two curves to show the
reliability of our results. These curves point out that our
results are really close from the real measurements
especially when the scale covers a large period.
Furthermore we are also implementing a complex
application dealing with forest fire simulation using the
multilayered DEVS formalism. We plan to develop a
complete comparison between the simulation of forest
fires using a classical DEVS model and simulation of
forest fires using the multilayered DEVS formalism.
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ABSTRACT

In this paper, we propose a software component that
implements a generator of regular numbers from primes
when required by the simulation using refined descriptive
sampling. The latter is regarded as the best sampling
method. In order to validate the proposed component, an
illustration of the uniformity is given together with the
simulation of an M/M/1 queuing system. The simulation
results were compared to those obtained using the generator
rand () included in the C programming language under
Linux. The best results are given by the proposed software
component.

INTRODUCTION

Nowadays, simulation covers significant challenges in all
areas of engineering (technical, commercial, financial ...)
because it is a necessary aid to decision making and control
of accuracy. When all else fails, then simulate. Monte Carlo
simulation is a sampling experiment based on the
succession of a large number of random draws. This
method is well known and intensively used; nevertheless, it
is still a research subject in three main areas:

1. The quality of the random generators used (Makato and
Takukuji 1998).

2. The techniques of variance reduction (Henry and Flora
1998),

3. The techniques of behavioural model building (queuing
network, stochastic Petri network...) that seek help to better
formalize some problems before being processed.

But, its success was harmful. Indeed, Monte Carlo
method was provided to solve any kind of problem. No
study has been made for the type of problem for which it
was particularly adapted. Nowadays, it is also used to
generate the initial solution of other simulation techniques
(taboo search, simulated annealing...). The simulation
results obtained through a Monte Carlo method are of
modest accuracy, this is due to the extreme slow
convergence. Because of its limits, a new paradigm
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emerged: it is not always necessary to resort to randomness.
Then, non-random sampling methods were derived from
this paradigm. Descriptive sampling (DS) (Saliby 1990) and
refined descriptive sampling (RDS) (Tari and Dahmani
2005a) are both with this paradigm. The efficiency of RDS
over DS and RS is proved by several comparisons, on a
flow shop system and a production system (Tari and
Dahmani 2005b, 2005¢).

This paper is in the quality of number generators used in
a simulation. A software component is developed
implementing the RDS method for the generation of input
samples for simulators. The choice of the method is
motivated by the supremacy of its quality (Tari and
Dahmani 2006). An M/M/1 Simulator is also developed in
order to validate the proposed software component and the
performance measures of a simple queuing system are
established for comparison with the C-language random
number generator under Linux.

ALTERNATIVES
SIMULATION

TO MONTE CARLO

An algorithmic random number generator must satisfy a set
of criteria such as:

Uniformity: The number stream shall pass the tests of a
uniform distribution.

Independence: The full orbit and the particular sub-orbits
must be independent.

The extended period: Given that the typical programs
have execution times running from several hours to several
months, the simulation programs running on
supercomputers need random numbers. This imposes a
lower limit to the period of generators.

Reproducibility:  checking programs during their
development, we must be able to reproduce exactly the
generated stream of random variables

Portability: For reasons of verification, it is sometimes
necessary to run the program on different machines,
possibly with different word lengths.

Separate sub-streams: If a simulation is performed on a
multiprocessor machine or if the computation is distributed
across a network, then, the sub-stream used in each sub-task
of the program must be independent.

Effectiveness: Since the call to the routine of the
generator is done many times, it is then necessary that its



program is as simple as possible with required minimal
operations.

Refined descriptive sampling

To reduce the risk of bias, RDS procedure was proposed
as an alternative approach to Monte Carlo Simulation. This
method is mainly concerned with a block of prime numbers
which must be situated inside a generator aiming to
distribute regular samples of prime size when required by
the simulation. Compared to DS this approach removes the
need to determine in advance the sample size.

Let pg, g=1,2,3,... be distinct prime numbers and a
simulation experiment of M replicated runs, terminates
when my prime numbers have been used, which derives my
sub-runs. In this procedure, we present regular samples
from pq then pg:; and so on for any q in random order as
required by the simulation. We terminate when the
simulation terminates. Using RDS, subset values for the
input random variable X are generated as required by the
simulation.

The general method of the inverse transform produces
regular subset values given by

x=F'(r) fori=12,..,pg, q=1,2,...m; and j=1,2,...M
where
F'(r), r € [0,1] is the inverse cumulative input distribution
and r=(i-0.5)/pg; i1=1.,2,...,pq» =1,2,....m; and j=1,2,.... M

and the sequence of each regular subset {r;, i=1,2,...,pq} is
randomised.

PRESENTATION OF THE DEVELOPPED
COMPONENT

A generator aiming to distribute regular samples of prime
size, using RDS, when required by the simulation is
developed. We illustrate the developed component in two
figures representing the uniformity distribution of generated
points. A set of 5000 regular numbers are generated by the
developed component RDS, and represented over a plane
(fig 1). Furthermore, the set of numbers is divided into two
sub-sets of 2500 points which are represented over another
plane (fig 2).

Figure 1: Gréph of 5000 numbers obtain;i by the use of get
RDS showing the uniformity
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Figure 2: Graph of pairs of 2500 numbers obtained by the
use of getRDS showing the uniformity

Description and implementation

The main file of the developed library, called “getRDS”
contains the following four main functions:

alea_ min max (): This function generates a random integer

between the respective integer MIN and MAX such as MIN
<MAX <4294967295, these integers will be introduced by
the user. MIN and MAX represent respectively the
minimum and maximum.

Is Prime() : The aim of this function is to check if an
integer N is a prime or not.

pgetrand() : This function generates a prime number
randomly between the respective MIN and MAX such as
MIN <MAX <4294967295, these integers will be
introduced by the user.

ugetRDS() : The objective of this function is the generation
of uniform numbers using RDS method.

The design of the developed component is special in two
ways. First, the programmer can afford the service of each
function individually or separately and is useful as all
parameters are fixed by the user.

There are two possibilities for using this library, do
either:

# include "RDS.h": If this file is copied into the same
directory of the program that it uses.

or

# include <RDS.h>: If the file is copied into the directory
standard library of C language under linux / usr / include.

In the first case, we will have a program of the following
structure

#include <stdio.h>

#include "RDS.h"

int main() { }
But, in the second case, we will have a program of the
following structure

#include<stdio.h>

#include <RDS.h>



int main() { }
The use of the developed component

Let's show how to use the developed component. We
create a program under the name example.c and the
following source code:

# include <stdio.h>

# include<RDS.h> / * call the component, here the
component is assumed to be recorded under the directory /
usr / include / * /

int main ()

L

nt1;

printf ( "A stream of 5 integer random numbers between
2 and 50:");

for(i=0;i<5;i++)

printf ("% d", alea_min _max (2,50));

printf ( "A stream of 5 prime numbers between 3 and
50:");

for(i=0;i<5;i++)

printf ( "% d", pgetrand (3,50));

printf ( "A stream of 5 regular numbers between 0 and
1:");

for(i=0;i<5;i++)\\

printf ( "% 0.3f", ugetRDS (3,50));

if (Is_premier (11)) printf ( "11 is a prime number.");

else printf ( "11 is not a prime number.");

return 0;}

An example of application

The developed component was validated by simulating a
simple queuing system of type M/M/1. The same queuing
system was also simulated using the random number
generator rand () included in the C language under Linux.
The considered input parameters of the studied queuing
system are: The rate service time, p, and the arrival rate,
The output parameters are the mean waiting time (E(W))
and the mean stay time (E(T)). Then, an M/M/1 Simulator
is developed and implemented with C-language under
Linux, in order to validate the "getRDS" software
component and to compare it with the random number
generator rand() integrated by default in the C-language.
The design of the simulator is special in two ways. First, it
affords the comparison of both sampling methods and is
useful as all parameters are fixed by the user. Given these
input parameters, the simulator outperforms M=100
iterations for each sampling method to compute both
performance measures of the system being studied. The
results are given in the following table 1.
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Paranmieters values given by getRDS and randi} for L= 3 and p= 5
isttest 2nd test 3rdtest
rand rand rand
0,789 0,287 0,361
2,463 0,48 0,58

Theoretical values

RDS
0,28
0,472

RDS
0,309
0,502

RDS
0,284
0,477

EW) | 03
ET | 05

Paramieters values given hy getRDS and randi} for & = 2 and p=3

Theoretical values

1sttest 2ndtest Jrd test
RDS rand RDS rand RDS rand
EQNI | 0,6666667 0,639 0,753 0.7 0,58 0,646 0,596
ET | 1 0,958 1,184 1,019 0,902 0,068 0,916
Parameters values given by getRDS and rand{i for & =2 and p=5
Theoretical values 1sttest 2nd test 3rd test
RDS rand RDS 1and RDS rand
EAW)_ [ 0,1333333 0,128 0,123 0,131 0,283 0,131 0,297
ET | 03333333 0,32 0,313 0323 0,731 0,323 0,686

Table 1: Summary of an M/M/1 simulation results from
different tests of 100 replicated runs using “getRDS” and
rand() generators

CONCLUSION

We have proposed and implemented an RDS generator,
then we have shown how it works and an example of
application was given through an M/M/1 simulator. As
shown in table 1, the experimental results demonstrate that
all performance measures of the M/M/1 queuing system
using the "getRDS" component are closer to the theoretical
values than those obtained by rand() function. Therefore,
these results strongly support the efficiency of RDS. The
"M/M/1 simulator" affords a multitude of simulation
experiments and shows that even with more than one output
variable observed through simulation, the results from RDS
are better than RS. Given, that rand () is a very good
random number generator, this confirms that our getRDS
component really is a good generator.
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ABSTRACT

In this paper we present a novel approach to specify
and analyze complex system using product-form models.
The main strengths of this approach are its high modu-
larity and its ability of dealing with a very large class of
product-form models. This has been possible because
the product-form analysis is based on two properties
that are formulated at a very low level, i.e., the Markov
implies Markov property and the Reversed Compound
Agent Theorem. We propose a unifying framework for
combining product-form models defined in terms of dif-
ferent formalisms and we give the conditions that allow
the composition to be in product-form. The semantic of
their combination is formally defined because the var-
ious sub-models are transformed into GSPNs with an
equivalent underlying process. In particular, we illus-
trate with several examples that we can perform analy-
sis of models with non-linear traffic equations, including
those with some components being G-queues, product-
form stochastic Petri nets, or multi-class queueing sta-
tions.

INTRODUCTION

Stochastic models have proved to play a pivotal role in
the performance analysis of software and hardware ar-
chitectures. The model of the system can be defined ac-
cording to a large set of formalisms which ranges from
Petri nets extensions to queueing systems and others.
Generalized Stochastic Petri Nets (GSPNs) [Marsan
et al. (1995)] are a well-known formalism capable of rep-
resenting complex systems in a formal way. This formal-
ism is a stochastic extension of Petri Nets (PNs) that
had been introduced to describe systems with parallel
computations. Informally, PNs consist of places, transi-
tions and arcs that connect places to transitions or vice-
versa. Tokens represent the state of the model and are
associated with the places. The firing of the transitions
change the state of the model. In the Stochastic Petri
Nets (SPNs) the transition firing takes an exponentially
distributed random time and, under a set of assumptions
on the firing semantic, the marking process, i.e., the
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stochastic process that describes the state of the model
along the time, is a Continuous Time Markov Chain
(CTMC). GSPNs [Marsan et al. (1995)] can be seen as
a extension of SPNs that admits two types of transitions:
immediate and timed. The firing of the former ones oc-
curs in a deterministically zero time, while the firing
of the latter ones requires an exponentially distributed
random delay. We summarize the main strengths of
GSPNs.

- It has a strong semantic. Indeed, given a GSPN model
with its initial marking, the underlying stochastic pro-
cess is uniquely determined. This property is not shared
with all the formalisms for the stochastic modeling, e.g.,
queueing networks are usually described by a high level
language.

- It allows for qualitative analysis of the system, by the
so-called structural analysis, e.g., using the net invari-
ants.

- The state of the model and its structure are strongly
separated. For instance, we can define a structurally
finite model with an underlying process with infinite
states.

- The formalism, with inhibitor arcs, is very expressive.
Indeed, it is has been proved that PNs with inhibitor
arcs are Turing-complete.

If the process underlying a GSPN has a steady state,
then we can compute its stationary probability distribu-
tion. This plays a pivotal role in the performance eval-
uation field, because from the stationary distribution of
a model we can derive a set of significant performance
indices, such as the throughput, the response time dis-
tribution, the distribution of the number of tokens in
a place, and so on. However, the analysis of a model
defined in terms of GSPNs may easily become an unfea-
sible task. This is mainly due to two reasons: the first
problem is shared with all PNs models, i.e., it is com-
putationally expensive (when not impossible) to build
the set of all the reachable states of the model given its
initial state. Indeed, it is known that the reachability
problem (given an initial marking, is a marking reach-
able after any number or sequence of transition firing?)
for PNs without inhibitor arcs is EXPSPACE, while it
is equivalent to the halting problem of the Turing ma-
chines for PNs with inhibitor arcs. The second prob-



lem concerns the calculation of the performance indices
when the model admits a steady-state (i.e., when the un-
derlying CTMC is ergodic). Indeed, even small models
may have huge state spaces and, in the general case, the
stationary state probability distribution is calculated as
the solution of a linear system whose rank is the number
of states of the model. Usually, this is computationally
expensive and may soon lead to numerical instability of
the algorithms. These problems are partially overcome
by product-form models. These admit a decomposition
in a set of interacting sub-models whose stationary dis-
tribution can be computed in isolation after an appro-
priate parameterization. Then, the stationary solution
of the entire model is obtained as normalized product of
the distributions of the sub-models. Although the most
important example of product-form models is defined
in terms of queueing networks, i.e., the BCMP theorem
[Baskett et al. (1975)], the investigation of this prop-
erty has involved almost all the other formalisms with
an underlying CTMC. In the case of GSPNs a set of
results are presented in [Coleman et al. (1996); Balbo
et al. (2002)]. However, more recently, the problem of
defining a unique framework for the product-form anal-
ysis of Markovian models has been investigated. In our
opinion a major result is stated in [Harrison (2003)],
where the author introduces the Reversed Compound
Agent Theorem (RCAT) whose low-level formulation al-
lows for its application despite of the formalism used to
specify the interacting models. Using this result, and a
generalization of the Markov implies Markov property
[Muntz (1972)], in [Marin (2009)] we propose a unify-
ing framework for combining product-form models de-
fined in terms of different formalisms. In particular, we
show how it is possible to model G-networks and multi-
class queueing networks using GSPNs and then, we give
conditions that allow the composition of these building-
blocks such that the stationary solution is in product-
form. This is useful to model complex systems in a
framework where different types of sub-models can be
combined maintaining the product-form solution. The
various type of sub-models can be defined using different
performance modeling formalisms, such as queueing net-
works and their extensions, GSPNs and some stochas-
tic process algebra. The semantic of their combination
is formally defined because the various sub-models are
transformed in GSPNs with an equivalent underlying
process. Moreover, we show how it is possible to com-
pute the stationary distribution in product-form.

In this paper we present a novel approach to define a
GSPN sub-model in product-form. In simple words, we
aim to allow the modeler to store a library of product-
form GSPN sub-models so that he can use them to de-
scribe complex architectures by specifying the way they
cooperate. Note that we do not aim to define an auto-
matic way to decide whether a sub-model is in product-
form or not (although it can sometimes be done, e.g.,
[Coleman et al. (1996); Balbo et al. (2002)]), but we
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introduce the idea that given a library of models that
are known to satisfy a set of properties, and a system
described as a composition of these models, we can au-
tomatically decide whether that system has a product-
form solution, and calculate it. According to this ap-
proach the GSPNs have to be appropriately annotated
with some information that we shall describe in details
in the following sections. It is worthwhile pointing out
that within this framework it is possible to specify mod-
els such as G-queues, SPNs, multi-class queueing sta-
tions and PEPA models that interact. Moreover, we
discuss a practical contribution of the theoretical re-
sult just illustrated above. Since the modularization
and standardization is really important in this approach
(e.g., we would like that the modeler may define a GSPN
with his favorite tool and then just add the data needed
for the product-form analysis) we propose the guide-
lines for an implementation of this framework based
on the Petri Net Markup Language (PNML) [Weber
and Kindler (2003)] and its extension to the modules
[Kindler and Weber (2001)]. Finally, as further practi-
cal contribution, we show how to define GSPN models
equivalent to G-queues.

We shall now recall the GSPN definition and the mod-
ular composition of GSPN submodels. We start from
an example of modular combination of G-queues. Then
we introduce the two basic properties for product-form
models, i.e., the Markov implies Markov property and
the Reversed Compound Agent Theorem, formulated at
the CTMC level. We present the proposed framework to
combine different sub-models into a unique GSPN that
maintains the product-form solution. The submodels
can be defined in terms of different formalisms and can
be combined because thy can be transformed in GSPNs
whose underlying process is equivalent. We discuss how
to implement the framework by using PNML. Finally,
we present some examples of application of the proposed
technique.

GSPN FORMALISM

In this section we briefly recall the Generalized Stochas-
tic Petri Nets (GSPN) definition. A GSPN is a 8-tuple:

GSPN = (P,T,I(-,-),0(,-), H(-,-),11(-),w(-, "), mo)

where: P = {Py,..., Py} is the set of M places,
T = {t1,...,tn} is the set of N transitions (both im-
mediate and timed). I(¢;, Pj): 7 x P — N is the input
function, 1 <i < N,1<ji< M, O, P;): 7T xP—N
is the output function, 1 < ¢+ < N, 1 < j < M,
H(t;,P;) : T x P — N is the inhibition function,
1<i<N,1<j<M. ;) : T — Nis a function
that specifies the priority of transition ¢;, 1 < ¢ < N,
m € NM denotes a marking or state of the net, where m;
represents the number of tokens in place P;, 1 <¢ < N,
w(t;,m) : T x NM — R is the function which specifies
for each timed transition ¢; and each marking m a state



dependent firing rate, and for immediate transitions a
state dependent weight, and finally mg € N™ represents
the initial state of the GSPN, i.e., the number of tokens
in each place at the initial state. For each transition t;
let us define the input vector I(¢;), the output vector
O(t;) and the inhibition vector H(¢;) as follows: I(t;) =
<i1, cea ,iM), where ij = I(ti, Pj), O(tz) = (01, cen ,OM),
where o; = O(t;, P;) and H(t;) = (h1,...,ha), where
hj = H(t;, P;). Function II(¢;) associates a priority to
transition ¢;. If TI(¢;) = O then t; is a timed transi-
tion, i.e., it fires after an exponentially distributed fir-
ing time with mean 1/w(¢;, m), where m is the marking
of the net. If TI(¢;) > 0 then ¢; is an immediate tran-
sition and its firing time is zero. We say that transi-
tion ¢, is enabled by marking m if m; > I(t,, P;) and
m; < H(t,, P;) fori=1,..., M and no other transition
of higher priority is enabled. The firing of transition ¢;
changes the state of the net from m to m—1I(¢;) +O(t;).
The reachability set RS(myg) of the net is defined as the
set of all markings that can be reached in zero or more
firings from mg. We say that marking m is tangible
if it enables only timed transitions and it is vanishing
otherwise. For a vanishing marking m let 7, be the set
of enabled immediate transitions. Then the firing prob-
ability for any transition ¢; € 7, and any state m is
proportional to its weight. Given a tangible marking m
the transition with the lowest associated stochastic time
fires. A GSPN is represented by a graph with the follow-
ing conventions: timed transitions are white filled boxes,
immediate transitions are black filled boxes, places are
circles, if I(t;, P;) > 0 we draw an arrow from P; to t;
labelled with I(t;, P;), if O(t;, P;) > 0 we draw an arrow
from t; to P; labelled with O(t;, P)), if H(t;, P;) > 0 we
draw an circle ending line from P; to ¢; labelled with the
value of H(t;, P;), the marking m is represented by a set
of m; filled circles representing the tokens in place P;
for each j = 1,..., M. For ordinary nets we do not use
labels for the arrows. If we do not specify the weight of
immediate transitions it is assumed to be 1 (usually we
do this when we are sure there are no conflicts among im-
mediate transitions). GSPN analysis consists in finding
the steady-state probability for each tangible marking
of the reachability set, from which one can derive other
average performance indices. Some analysis techniques
are presented in Marsan et al. (1995).

GSPNs AND MODULES

The problem of giving a correct syntax and semantic of
modular compositions of GSPNs has been addressed by
several authors. In fact, the modularity allows for a def-
inition of the models that is coherent with the principles
of software and hardware engineering. In this paper, we
use the module definition as proposed in [Kindler and
Weber (2001)]. The main idea is that a module can be
instantiated several times with possibly different param-
eterizations. It has an input and an output interfaces
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that allow the modeler to define how every instance in-
teracts with the rest of the model, and an internal im-
plementation that is invisible to the user. This approach
could somehow be seen as the well-know procedure call
schema implemented by most of the programming lan-
guages, where the input/output interfaces may be in-
terpreted as the formal input/output parameters and
the instances of a module as the procedure call. Within
this interpretation, when the modeler connects the in-
terfaces of a module with other elements of the model,
he is defining the association between the actual and the
formal parameters. In the following example we show
a GSPN module whose underlying CTMC is equivalent
to that of a G-queue, see [Gelenbe (1991)].

Example 1 (GSPN model of a G-queue) G-
queues are the smallest components of G-networks.
They have been successfully used in a wide range of
applications such as the analysis of database systems,
communication networks or neural networks. In its
simplest definition, a G-queue is a single-class queueing
center with exponential service time distribution. Two
arrival streams of customers are allowed: one for the
so-called positive customers that exactly behave like
ordinary customers in standard queueing stations,
and the other for the negative customers. When one
of these arrives to the station it can either delete
a queued (positive) customer, if any is present, or
simply vanish if the G-queue is empty. By mow, we
assume Poisson independent arrivals for positive and
negative customers. Figure 1 illustrates a possible
GSPN representation of a G-queue.

g-queue module
input
interface e
\ -
P : :
Pp BN : :
1 o < i output
T ‘>©<1 ] : < interface
— - = '
Tp2 __-é__‘ . ; t3
Ppg b
instances
. ta
of the imported
places

Figure 1: GSPN module equivalent to a G-queue.

The module consists of two input places Py and P>. The
former stores a token for each positive customer in the
station, while the latter stores one token at a negative
customer arrival epoch. Notice that if there is one to-
ken in P, then either immediate transition ts or ty is



enabled. The firing of t3 consumes also a token from Py
(positive customer deletion), while the firing of t4 simply
consumes the token in Py (i.e., the queue is empty and
it vanishes). Moreover, it is immediate to observe that
in every tangible marking of the net there are no tokens
i Py, Finally, Th and Ty model the service of a cus-
tomer. We use two transitions in order to straightfor-
wardly model two different routings for customers served
i such a station. For example T may model the depar-
ture of a positive customer and Ty the departure of a
negative customer. Therefore, the service rate of the
station is = w(Ty,-) + w(Ts,). The input places are
associated with places Pp1 and Ppy. Ty and Tp,o repre-
sent a hypothetical connection of a net with an instance
of the module.

A brief introduction to concept of GSPN mod-
ule. In order to keep this paper self-contained, in this
part we review the main concepts concerning the idea of
modularization that we refer to. For a formal definition
of the syntax and of the semantic we refer to [Kindler
and Weber (2001)]. Note that other approaches to PN
modularization are available in literature, e.g., that used
by Timenet [Zimmermann et al. (2000)], but the passage
from one to the other is not complicated.

Informally, we can say that a module is a net with an in-
terface. We can create several instances of a module, but
only the objects specified in its interface are accessible
from outside the instance. What is not in the interface
is called internal implementation. Referring to the Ob-
ject Oriented Programming, this corresponds to the en-
capsulation feature. The interface consists of two parts:
the input part (formed by the imported objects) and the
output part (formed by the exported objects). Imported
objects play the same role of formal parameters in the
programming languages. Indeed, they are representa-
tives of objects that are provided when the module is
instantiated. Conversely, the objects that are exported
are defined inside the implementation of a module (e.g.,
they may be provided as referred objects for an input
interface of other module instances).

One can import and export three type of objects, i.e.,
places, transitions and symbols. The import and export
of symbols allows us to define the parameterization of
the modules. For instance, input symbols may be the
transition rates, the number of tokens in a place of the
internal implementation of the module and so on. The
technique described in [Kindler and Weber (2001)] is re-
ally flexible, so one can just import or export functions,
or anything else which can be useful for the modeler
purposes. In the following we use input (output) object
and imported (exported) object as synonymous.

Let us now reconsider the module defined in Example
1 and let us build a simple G-network using the GSPN
modularization.
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Example 2 (G-networks) A composition of G-
queues is called G-network. These models have shown
to be suitable for the analysis of several software and
hardware architectures. Let us consider the G-network
depicted in Figure 2-(A). The G-network consists of

+
0.6
A
(A) 30 0.9 .
+ + 0.4
0.1 -
c1 c2

(B)

Figure 2: Use of GSPN modules to describe a G-
network. (A) the original model. (B) the module com-
position.

two nodes, C1 and C2, with service rates 3.0 and 2.0,
respectively. When customers leave C1 they can enter
i C2 either as positive or negative customers, with
probability 0.9 and 0.1. Customers may arrive from
outside to C2 with rate \. Once a customer is served
by C2 it can leave the system with probability 0.4 or go
back to C1 with probability 0.6.

In order to give a GSPN representation of such a
network we wuse a composition of two instances of
the module introduced in Example 1. Actually, we
added two symbols in the input interface, p and p,
which represent the service rate of the node, and the
probability of firing of Ty with respect to Ts. Therefore,
p and p are used in the module definition to specify the
rates of Ty and T in an obvious way: w(Ty,-) = pu
and w(Tz,-) = (1 — p)u. Figure 2-(B) illustrates two
instances of the module, m1 and m2, that are equivalent
to the G-network of Figure 2-(A). In particular, the
dotted arrows associate an object of an input interface
with a concrete object (e.g., place Py in m2 with Ps, or
w in ml with 3.0). Note that, since the scope of the
object names is the module instance itself, the net has
no conflicts on names, e.q., Py in instance m1l cannot
be confused with Py of the net.



THE PRODUCT-FORM FRAMEWORK

In this section we present a framework to represent
complex models combining different product-form sub-
models into a unique GSPN that maintains the product-
form solution. This work is based on two results, i.e.,
the Reversed Compound Agent Theorem (RCAT) [Har-
rison (2003)] and the Markov implies Markov property
(M = M) [Muntz (1972)]. After formally defining
the composition rules of the module instances, we show
that, although deciding whether a GSPN model satisfies
M = M or RCAT conditions is generally very difficult
to do algorithmically, it is possible to store some infor-
mation in the module descriptions that will allow a tool
to automatically decide if a composition of such models
has product-form solution and then derive the station-
ary distribution. As already mentioned, this means that
the modeler works with a library of product-form models
that have been opportunely annotated and that can be
equivalent to G-queues, BCMP stations or other models
that have been proved to be in product-form. GSPNs
in product-form are studied in [Balbo et al. (2002)] and
they are defined as GSPNs reducible to SPNs in Cole-
man, Henderson et al. product-form [Coleman et al.
(1996)].

RCAT and the M = M property. In this part we
informally introduce RCAT and the M = M property.
Since the product-form analysis requires to study each
components as if it were in isolation, we give the def-

inition of what we mean by an isolated instance of a
module (IIM).

Definition 1 (Isolated instance of a module)
Given an instance of a module in a net, its 1IM is
defined as follows:

1. For each input transition T; of the module we asso-
ciate a transition with a null input vector and rate

Xti-

2. For each input place P; we associate a place which
is fed by a transition T,; with a null input vector
and an rate Xp;.

The rates X and Xp; for each input transition T; and
each input place P; are the input rates of the IIM, and
7 is the set of input rates.

As an instance we can consider the net of Figure 1 where
we can observe an IIM of the G-queue. The input rates
are the rates of 7},; and T},». We now introduce the set
of reachable states of a module.

Definition 2 (Reachability set of a module) The
reachability set of a module is the set of all the markings
reachable from its IIMs.
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Note that, in general, the reachability set of a module
is not finite, and this is one of the reasons that makes
the automatic decision of the following properties a very
difficult task.

In order to simplify the formulation of RCAT and M =
M for GSPN modules, we limit the output objects to be
transitions or symbols. This can be done without loss
of generality possibly using immediate transitions.

Definition 3 (RCAT-compatible IIM) We say
that an IIM of a module is RCAT-compatible if and
only if the following three conditions are satisfied:

1. For every tangible state, the instances of the in-
put transitions must be always enabled. Informally,
we can say that the module internal implementation
cannot inhibit the input transition in any tangible
marking.

2. Let m be a tangible marking of the reachability set.
Then, if T, is an output transition there must exist
one tangible marking m’ such that m is reachable
by m’ through the firing of T,.

3. For every pair of tangible marking m and m’ such
that m is reachable from m’ through the firing of
output transition T, the following relation holds:

(1)

where w(m) is the stationary probability of marking
m and K, € RT.

7(m")w(T,,m") = K,m(m),

These three conditions are just a rewriting of RCAT
conditions [Harrison (2003)]. Finally, we observe that
K, is a constant which is associated with each output
transition 7T, that in general depends on the structure
of the module and the input rates.

Definition 4 (M = M-compatible module) We
say that a module is M = M -compatible if and only if
the following three conditions are satisfied:

1. See Condition 1 of RCAT-compatible definition.
2. See Condition 2 of RCAT-compatible definition.

3. Let m be a tangible state reachable from and M =
{m'} through the firing of an output transition T,.
Then, the following relation holds:

> a(m)w(T,, m') = K,r(m),
m’eM

(2)

where m(m) is the stationary probability of marking
m and K, is a linear combination of the input rates.

In this case, it is not immediate to see that the con-
ditions on the GSPN module are equivalent to the
M = M property. Indeed, this property is formulated
in the context of queueing theory, therefore it involves



concepts such as customers, class of customers, work-
conserving an so on. The proof of the equivalence can
be found in [Marin (2009)] and is based on a generaliza-
tion of the M = M.

Product-form composition and derivation of the
stationary probabilities. Let us introduce the prob-
lem of the product-form composition of the module in-
stances with an example. Suppose that m1 and m2 are
instances of RCAT-compatible module(s). Our aim is to
define the appropriate input rates of the IIMs of m1 and
m2 such that if m = (m;, my) is a state of the original
net, and m; (my) the state of m1 (m2), then:

m(m) o m (my)me(ms),

where 7(m), 71 (m;) and m2(mz) are the stationary dis-
tributions of the whole net and of the IIMs of m1 and
m2, respectively.

Obviously, these operations have not to be manually
performed by the modeler, but we expect a tool to do
them automatically. Indeed, the difficult task is the def-
inition of the input rates.

Both M = M and RCAT give a way to set these rates
and they depend on the solution of a system called traf-
fic equation system. Note that, in this framework it is
not the case that the system of traffic equations is al-
ways linear as for example in BCMP queueing networks
[Baskett et al. (1975)]. Therefore, we are able to study
more general cases of product-form models than those
based on the analysis of queueing networks.

The traffic equations depend on they way the module
instances are connected. We allow two types of connec-
tions as specified by the following definition, where we
consider that the arc weights are all 1.

Definition 5 (Valid net) A net consisting of in-
stances of M = M -compatible or RCAT-compatible
modules is valid if the connection among the instances
of the modules are such that for each instance:

1. if T; is an input transition then it is associated with
just one output transition of another instance or
a transition with null input and output vector and
vice-versa

2. each place of the net is associated with one input
place and an output transition which is not associ-
ated with an input transition can have an outgoing
arc to just one place.

In a valid net the interactions among the module in-
stances are pairwise. In other words, at most two in-
stances can change their markings as a consequence of
the firing of a transition. Pairwise interactions are the
only interactions that are considered both by RCAT and
the M = M property.

It is worthwhile pointing out that the validity of a net
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can be decided by a trivial algorithm. The implications
of these definitions on the modelling of real systems are
discussed in the original papers presenting the M = M
property and RCAT.

THE FRAMEWORK IN PRACTICE

In this section we illustrate how we use the theoretical
results recalled in the previous section to specify com-
plex systems with product-form solutions. Informally,
we can say that once the modeler has chosen the mod-
ules to instantiate, he/she connects them in one of the
two ways that have been described. This operation can
be seen as a graphical way to specify the traffic equa-
tions. We think that this is the key-point of our ap-
proach, i.e., the modeler uses a library of module whose
behavior is known and when he connects them he is
simply specifying the system of traffic equations. Note
that, although this idea may seems trivial, it should
be pointed out that it can be implemented thanks to
the combination of the recent theoretical results about
product-form such as RCAT and the idea of mapping
each formalism into equivalent GSPNs.

What do we need to know about a module to be able to
generate the system of traffic equations? As we already
mentioned, the analysis of a single module with the aim
of deciding whether it is RCAT-compatible or M = M-
compatible may be a really hard task. Specifically, it
can be often the case that the reachability set of the
module is not finite. In order to overcome this problem,
we introduce the concept of product-form GSPN mod-
ule (PF-GSPN module). Let Z be the set of the input
rates and V be the set of the parameters of the module.

Definition 6 (PF-GSPN module) A PF-GSPN
module is a module with the following features:

o froar : I xV — {true, false} is a boolean func-
tion which assumes the value true if, for a given
parameterization, the module is RCAT-compatible

o fumn @ I xV — {true, false} which assumes
the value true if, for a given parameterization, the
module is M = M -compatible.

e For each output transition T,, K, : I xV — R™T is
the function which specifies the reversed rate of T,
in case of RCAT-compatibility or the sum of the
reversed rates in case of M = M -compatibility.
Obviously K, is defined only if frear(Z,V) V
fru=m(Z,V) is true.

We now illustrate a set of example of PF-GSPN mod-
ules.

Example 3 (G-queue) Let us consider again the G-
queue of Example 1. In this case we have T = {xp1, Xp2}
and V = {u,p}. The station is known to be always in
RCAT product-form, [Harrison (2003)], while if fulfills



the M = M property only if there are not negative cus-
tomer arrival (i.e., it is a standard exponential queue),
therefore, we have:

always

iprZ =0

frear(Xp1, Xp2, 1, D) = true
=11 (Xp1, Xp2, 1, D) = true

From the G-network analysis [Gelenbe (1991)] the sta-
tionary probability of observing m customers in Py is
(1—p)p™, where p = xp1/(1t+ Xxp2). Then, we straight-
forwardly obtain:

Xplljf
K b b) b =
1(Xp1 Xp2,> 4 P) Xp2 + 1
Xplljf
K ) ) M = - 1 -
Q(Xpl Xp2,> 4 P) Xp2 +M( P)

Example 4 (A model of a shared bus contention)
In this example we address the problem introduced in
[Afshari et al. (1982)], where the authors propose a
queueing model to study the access to a shared bus of
a set of customers that are clustered into R classes.
The authors assume that the bus is able to handle K
simultaneous transmissions. As soon as a channel of
the bus becomes available, a waiting customer is chosen
with uniform probability among the queued ones to get
served. The service time distribution is exponential and
identically distributed for all the customer classes. In
the paper the authors prove the stationary distribution
and that the station satisfies the M = M property.

In Figure 3 we propose a module of this system con-
sidering R = 2 classes of customers. Customers of

output
input interface interface
TP t3 Py R R
P Pt Py 28

...............

Figure 3: PF-GSPN module of the queueing model of a
shared bus contention for two classes of customers.

class 1 and 2 arrive to input places P; and Ps, respec-
tively. Place Ps contains as many tokens as the free
channels of the bus are. Immediate transitions t3 and ty
model the contention policy of the bus, i.e. their weight
function is w(ts, m) = my and w(ty, m) = mo, where
m = (mq,...,ms) is a tangible marking and m; denotes
the number of token in P;. The rates of timed transition
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Ty and Ty are p. Finally, K is the initial number of
tokens in place Ps, i.e., the number of channels of the
shared bus. In this case T = {xp1, Xp2} and V = K, p.
As mentioned, in [Afshari et al. (1982)] the authors
prove that the model satisfies the M = M property,
the fr=m(Z,V) = true always. In [Marin (2009)] we
prove that it satisfies RCAT conditions if K = 1, i.e.,
fRCAT(I7 V) = true ZfK =1. Fz'nally, Kl(I, V) = Xp1
and K2(Z,V) = xp2-

Automatic derivation of the traffic equations. In
order to be able to decide whether a valid net is in
product-form, and in this case provide the stationary
solution, we need to generate and solve the set of traffic
equations. The unknowns of these equations are the in-
put rates of the module instances of the net. If we are
able to solve the traffic equations we can check if they
satisfy the conditions for the M = M or RCAT appli-
cation for each instance of the module using functions
freaT and frr— . If this is the case, then we can derive
the stationary distribution of the IIMs associated with
every module instance using the input rates obtained by
the solution of the traffic equations. Then, the station-
ary solution of the original net is proportional to the
product of these stationary solutions.

In the following, in order to avoid conflicts of names in
the equations, we use the notation instance_name.object
(e.g., ml.xp1). A valid net admits only two types of con-
nections. Each of these generate the following equations:
- Suppose that output transition 7, of instance mk is
the input transition T; of instance mh with mk # mh.
In this case we have mh.xy; = mk.K,(mk.Z, mk.V).

- Suppose that the set output transitions 7* = {mk.T, }
is such that all the elements mk.T;, have an outgoing arc
to Py; that is an instance of input place P; of mh, with
mk # mh. In this case we have that:

)y

mk. T,eT*

mh. X = mk.K,(mk.Z, mk.V)

It is out of the scope of this paper to address the prob-
lem of an efficient solution of such a system. However,
using Muntz’s result [Muntz (1972)] we can state that
the system is linear if all the instances of the modules
are M = M-compatible. An approach used in [Argent-
Katwala (2006)] is to export the equations in ASCII
format and solve them using general purpose software
on Mathematics. If all the used modules have a finite
reachability set, then the algorithm presented in [Marin
and Rota Bulo (2009)] may be used.

EXAMPLE

The purpose of the following example is to show how the
technique previously described may be applied to study
a system consisting of sub-components that cannot be
modeled by ordinary queueing stations.



System description. Two classes of requests arrive
through a communication line from two networks. The
communication channel is bidirectional and has a wait-
ing room where the packets are stored. When a trans-
mission is completed a packet is chosen from the waiting
room according to a random policy. Once transmitted,
the requests are pre-processed by an ad-hoc system and
finally sent to the database. Some of the requests of the
first class may be converted into requests of the second
class. In some cases, the pre-processing phase may de-
cide to cancel a transaction that has already been sent
to the database. Some transactions fail, and have to
be sent back to the communication line to get processed
again. The database answers are sent back to the clients
through the channel. Figure 4 shows a sketch of this sys-
tem.

INVALID TRANSACTION

PRE-PROCESSING
T

TRANSACTION CANCELING

NETWORK 1
NETWORK 2

SHARED
CHANNEL

ANSWER

Figure 4: Software architecture analyzed in the Example
section.

Model description The modeling assumptions are
the following. The channel behaves like a shared bus
as described in Example 4 and the database is modeled
by a G-queue as described in Example 1. This means
that the service time distributions are exponential and
class independent both for the database and the com-
munication lines. The pre-processing of the requests is
modeled by the Module of Figure 5. For brevity, we
do not specify each phase of the processing, but it is
important to note that fork-join constructs are present,
and this makes the model impossible to be studied by
most of the existing product-form analyzer. For this
module, we have Z = {xp1,xp2} and V = 0. In [Marin
(2009)] is proved that far=n(Z) = frear(Z) = true,
and K4(Z) = xp1 and K5(Z) = xp2 (note that also the
stationary distribution is provided). Another module
that we use and that has not been previously described is
a switching module. This simply routes the tokens that
arrive to its incoming place according to a static proba-
bility as depicted by Figure 6. In our framework we can
model the system as depicted by Figure 7, where ml
is an instance of the module of a shared bus described
in Example 4, m2 is an instance of a router, m3 an in-
stance of the SPN module of Figure 5 and, finally, m4
is an instance of a G-queue module described in Exam-
ple 1. The model parameters are: the firing rates of T’y
(Aa) and Ts (AB), i.e., the arrival rates of the requests,
TR, i.e., the transmission rate of one line of the chan-
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Figure 5: SPN module of the query pre-processing
phase.

Input interface

Output interface

Figure 6: Simple router module. We have w(ty,-) =
and w(te, ) =1—p. ZT={xp} and V ={p}. fu=
frear = true and K1(Z,V) = pxp1, K2(Z,V) =

P)Xp1-

I

(1-

nel, pswircHh, i-e., the probability that a request of the
first type becomes a request of the second type, pgrr,
i.e., the probability of reprocessing of a transaction and
finally usgg, i-e., the service rate of the database.

Traffic equations. In our framework we can algorith-
mically derive the traffic equations using the rules pre-
sented in the previous sections, obtaining:

ml.xpr = A4
ml.ng = )\B

m4'Xpl
m4.Xp2+USER

m2.xp1 = m1. K1 = ml.xp

ml.xp3 = m4. Ky = (1 — pERR)MERR
m3.Xp1 = M2.K1 = m2.Xp1Pswitch
m3.xp2 = m2.K; + ml. Ky
= m2~Xp1(]- - pswitch) + m]-'Xp2
ma.xp1 = m3.K1 = m3.xp1

mé.xp2 = m3.Ko = m3.xp2

Once derived the solution for the traffic equations, this is
used to set the input rates of the IIMs of the module in-
stances. Then, we observe that all the IIMs are RCAT-
compatible and therefore the model is in product-form.



Ta Py T Pp Pg ) T7 P — D—‘J
; .-~~“‘ 3 ".,—-u tl O_J,- .‘I D—>O<) _:'. ";
1-Of] RO HOACE | O B
5P| | T2 i ro| p B P P
O [ P RO O I
Fo K 2 L VPswitch l.-p
hE ]; |:| pert®”
3
oy -
p
24"'K pser”™
m1 m2 m3 ma

Figure 7: Modular composition

The stationary solution m; of each IIM for i = 1,...,4
is then derived and the stationary probabilities 7 of
the whole model are such that m oc H?zl ;. Know-
ing the stationary distribution 7 of the model allows us
to compute some interesting performance indices, e.g.,
the mean response time of the database, or distribution
of the number of customers in the communication line.

CONCLUSION

In this paper we have presented a novel approach to
analyze product-form GSPNs. Its main strengths are
the high modularity and the fact it is capable to deal
with several product-form model classes, such as BCMP
queueing networks, G-queues, product-form SPNs, and
so on. The idea underlying this work is to use the mod-
ule concept as defined in [Kindler and Weber (2001)]
to define product-form models. These have to be anno-
tated in order to allow a software tool to take advantage
from the product-form property in the analysis phase. It
can be shown that all this work may be implemented us-
ing PNML without violating the standard. Finally, it is
worthwhile pointing out that in this framework, a mod-
eler is not supposed to have particular knowledge about
product-form models or GSPN modeling. Indeed, mod-
elers just need to pick some modules from a library and
then create and connect their instances according to the
simple rules that we have described. Then, the steady
state analysis and the derivation of the desired perfor-
mance indices can be automatically computed. Further
research efforts should have two directions. One is the
implementation or the extension of an existing tool ca-
pable to perform such an analysis. This should not be
hard, since it suffices to specify an appropriate PNML
grammar and use a symbolic tool to solve the traffic
equations. Another research open problem could deal
with the possibility of connecting the module instances
with arcs with arbitrary weights. This introduces some
complex problems in the analysis but would enhance the
flexibility of the framework.
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ABSTRACT

The main topic of the paper is the enhancement of
originally purely discrete simulation executive that is part
of the ABAsim architecture with the support for continuous
simulation and run-time animation. The resulting combined
simulation executive utilises modular design that enables to
optionally employ only requested parts of the executive. In
contrast to the discrete simulation module, the continuous
simulation and animation modules are utilising activity
scanning technique to execute and synchronise their
activities. Some applications that use the proposed
combined simulation executive design are also discussed.

INTRODUCTION

With the increasing need for simulation models that are
able to reflect the reality (or thoughts) more precisely, the
demand for continuous simulation support in simulation
executives often arises. Even simulation models that have
been designed to be purely discrete often need to be later
enhanced with continuous, and thus more detailed,
modelling of some activities (e.g. movement of vehicles).
Since by the primary design of such models no continuous
modelling was considered, the models are often based on
proprietary architectures and discrete-only simulation
executives, which are generally quite easy to implement but
have limited modelling abilities. Due to a variety of
reasons, the complete redesign of such models and
utilisation of different simulation executive (or even
architecture) might not always be feasible. Therefore, in
order to be able to utilise existing parts of the model, the
existing simulation executive has to be enhanced with the
support for continuous simulation.

Nowadays, the animated graphical output has become
an integral part of many simulation programs and tools and
is often requested by clients of simulation studies. The
animated graphical presentation of simulated activities
during simulation run, so called run-time animation,
provides simulation study clients as well as simulationists
with clear and understandable indication of simulation
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model’s state (supporting model validation) and the
possibility to immediately interact with the simulation
model. In order to support run-time animation, the
simulation executive has to provide means for the
synchronised execution of animation activities that realise
the animation of simulation model activities, regardless of
their type. For example, even discrete activity that models
the movement of a vehicle (i.e. the vehicle location
attribute changes discretely at the activity end) has to be
presented to the user as smooth vehicle movement (utilising
average speed of the vehicle). The integration of the
animation support into the simulation executive can ease
the implementation of run-time animation in simulation
models, especially discrete ones. However, the employment
of the animation should be optional and the additional
overhead caused by the integration of the animation into the
executive should be kept as low as possible.

On an example of the simulation executive that belongs
to the ABAsim architecture (Adamko 2004), this paper will
present one of possible approaches to the creation of
combined simulation executive by enhancing original
discrete simulation executive with simple optional support
for continuous simulation and run-time animation.

COMBINED SIMULATOR DESIGN

To guarantee the flexibility (e.g. optional execution)
without changing the interface of the existing discrete
simulator, and keeping the overhead as low as possible at
the same time, modular design of the combined simulator
has been proposed.

Two simulation modules create the base of the
combined simulator — discrete simulation module (existing)
and continuous simulation module, each responsible for the
execution of respective types of activities. These modules
are complemented by the animation module, which is
responsible for the animation of simulated activities (and
their presentation on the computer display), and inferface
module that intermediates the communication between
simulation modules and the animation module.

DISCRETE SIMULATION MODULE

Due to the fact that the proposed combined simulator is
an enhancement of existing discrete simulation executive,
the discrete simulation module (DSM) will govern the



simulation and become the central controlling module of
the combined simulator. The central module permits other
modules to run by granting time quanta and for this limited
time period hands the control of the simulation run over to
them.

Prior to the description of discrete simulation module’s
operation, let us first explain how discrete activities and
processes are modelled. The process is a sequence of
naturally adjacent activities that together create a logical
unit. Each process is started by delivering a Start message
to it. During the processing of the Start message, the
process starts its first (discrete) activity by planning a Hold
message that models the end point of the activity (Fig. 1).
Since the duration of discrete activity is generally known
by its start, the time stamp of the Hold message can be set
to the respective value (current simulation time value plus
the duration of the activity). The delivery of this Hold
message symbolises the end of the activity and all
respective state changes bound with the activity are realised
at this time. After the message has been handled, the
process can start its next activity or terminate own
execution (if the just finished was the last activity of the
process) by sending the Finish message to its controlling
entity (in ABAsim architecture it is an agent).

Ny

X

Start

e

Finish
Process ne

Activity 1 Activity 2

I I Activity 3
D D X

Hold Hold Hold

Figure 1: Process composed of three activities

The discrete simulation module consists of discrete
simulation kernel and a future event list (FEL) that holds
messages to be delivered at times specified by their time-
stamp information. The original discrete simulation kernel
utilised standard event scanning technique to manage the
simulation time and deliver messages — during each
simulation loop, a message with lowest time stamp was
removed from the future event list, the simulation time was
updated to the time-stamp value and the message was
delivered to the addressee for processing.

The new discrete simulation kernel is modified and
works in the following way. Assuming that all messages
that have to be delivered at the current simulation time (#p)
are already delivered and processed, the discrete simulation
module can identify the time quantum A#; (Fig. 2) that is
equal to the time difference of current simulation time #p
and the time stamp #, of first future message planned for
delivery (At;=ty— tp). If this quantum is greater than zero,
1.e. At;> 0, then the simulation run control is handed over
to the continuous simulation module with the time grant for
At; to execute its tasks. Notice, that the continuous
simulation is active only during idle times of the discrete
simulation module. After the CSM finishes, the simulation
run control is returned back to the discrete simulation
module that identifies the time difference A#, between
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current simulation time #p (notice that the simulation time
of DSM is used) and the time stamp #p of first future
message planned for delivery (A#,=tg—1tp). If the CSM
fully consumed the granted time quantum (no message with
time stamp #g<#p + At; has been planned by this module),
then Atgz Atl and =ty

Identified time quantum A#, is granted to the animator
module and the simulation control is handed over to it. The
animation module will execute “ex-post” animation for the
simulation time interval <#p, tg).

After return of the control the DSM initiates flushing of
the memory buffer (the records are either moved to the
external disk memory for future use or are just deleted) and
continues its operation (removing and processing the
message with lowest time stamp and continuing with next
simulation loop).

CONTINUOUS SIMULATION MODULE

The continuous simulation module (CSM) is
responsible for the simulation of continuous activities of
processes.

In order to start the execution of continuous activity, the
process must first register the continuous activity with the
continuous simulation module. The registration is initiated
from the discrete part of the model during the processing of
Start or Hold messages of the respective process — if the
next activity is a continuous one, the process (instead of
sending a Hold message as it is done by discrete activity
modelling) registers this activity with the CSM, providing,
among other parameters, a Hold message that is to be
delivered after the activity finishes. Since the duration of
continuous activities is generally not known in advance (it
is determined by the continuous simulation computation
during run-time) the Hold message cannot be planned for
delivery at specified time but will be delivered to the
process after the activity identifies that its finishing
condition has been met.

During the registration, the CSM includes the activity to
the list of registered continuous activities that are ready for
execution. All registered activities (each process can
register only one continuous activity at a time) are then
executed by the continuous simulation kernel (during its
active time) utilising the periodic activity scanning
approach with scanning period €. Besides the simple fixed
step numerical integration methods, the application of
variable step numerical integration methods is also
possible; however this topic exceeds the scope of the paper.

Continuous simulation kernel is activated as described
in previous chapter at current simulation time #p (Fig. 2)
and it is granted atime quantum A#;. Granted amount of
time A¢; is fully consumed only if no message was planned
(to be delivered on time #z; tp<tp+ At;) during the CSM
processing (as a result of continuous activity execution). If
a message was sent to be delivered at the time #g, then only
part Az, of granted time quantum At is used by CSM, the
reason for this is that the CSM can only be active when
there are no messages delivered or executed in discrete part
of the model (DSM).



After the activation of CSM (the execution control was
transferred from discrete simulation module), the local
simulation time of continuous simulation module (¢¢) is set

Continuous simulation module

to the value #c = #p and utilisable time quantum A, is
initialised to the value of granted amount of time Az, = A#;,

Discrete simulation module

Registered
continuous = T T Future event list
activities ~
~N ty
: —— |~ 'N
Continuous — @ E
simulation — =
kernel Aty |:;i 1
C <t At
T 1 Discrete
L 1 simulation
1 kernel
Interface module
At

Memoré buffer

\ ¥ Animation module

Registered
animation
activities

Animation
kernel

’EA

Figure 2: Combined simulation executive structure

If there are no continuous activities registered, the
execution control returns immediately back to the discrete
simulation module. If the continuous activity list is not
empty, the CSM starts its execution — utilising classic
activity scanning approach the registered activities are
periodically scanned (usually involving some differential
equation calculations) with scanning period equal to €.
Before each scan, the local simulation time of CSM is
incremented by t°.

If the CSM realises that during the activity scanning a
message with time stamp #x<{#p+ Af, was sent, the time
quantum Az is set to the value Af,= #x — #p. There are, in
general, two possible reasons for the message to be sent:

e During the activity scanning a message activation
condition was triggered or a situation that
influences the discrete part of the model (e.g.
threshold variable value was reached) occurred.

e One of registered activities finished its execution,
causing a Hold message to be send to the
registering process (with time stamp #z=#¢) and the
exclusion of the activity from the continuous
activity list. Notice, that continuous activity is
finished by the delivery of the Hold message to the
process, i.e. by exactly the same way as the discrete
activities. The main difference being that by
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discrete activities, the delivery time of the Hold
message is known by the activity start, whereas by
continuous activities the delivery time is a result of
computations handled by CSM.

At the end of the second phase of the activity scanning,
the CSM tests whether the finishing condition #¢— #p= A#,
is met, i.e. the utilisable time quantum has been consumed.
If the condition is met, the simulation control is returned
back to the DSM, otherwise the CSM continues with next
scanning period.

INTERFACE MODULE

The interface module separates the simulation model
from its graphical output on the computer screen. This
module incorporates a memory buffer that is filled with
information from discrete and continuous activities
executed in respective modules. Activities that request
animation chronologically store all required data for the
graphical output in the buffer memory. Animation kernel
then (after its activation) reads this data and independently
(although under the direction of DSM) performs animation
calculations and the graphical output.



The data stored in memory buffer can be saved to an
external memory (during the flush operation initiated by
DSM) for later realisation of post-run animation with
proprietary solutions or utilising third party tools, e.g. Proof
Animation (Henriksen 2000) or Animation Toolbox (ISL
2007).

ANIMATION MODULE

The main task of the animation module (AM) is to
execute registered animation activities resulting in the
graphical presentation of simulation computation processes.
Animation activity is a program routine (function) that
performs the animation of given object by changing its
attributes (e.g. position, colour, etc.) and optionally
presenting its graphical representation on the computer
screen.

The animation module is composed of the animation
kernel that controls the animation and the list of registered
animation activities that holds all currently active registered
activities. Similarly to the continuous simulation module,
the animation module is activated by the discrete simulation
module kernel and it is granted the time quantum Az,. At
the time of the AM activation, all actions (parts of
activities) that should happen during time interval <tp, #)
are already executed and the memory buffer of interface
module contains animation data that were place here during
this time interval by the discrete and/or continuous
activities from respective modules.

Animation kernel first processes all relevant records
from the interface module’s memory buffer that could be
put there by any discrete or continuous activity of currently
running processes. The records contain at least information
about the code of the requested animation activity and the
duration of the animation activity, which are usually
accompanied by additional data regarding the animation
(e.g. object to be animated, movement speed, animation
colour, etc.). Based on the code, requested animation
activity is created, initialised with additional parameters
provided and registered with the module by adding it to the
list of currently active registered animation activities.
Special attention has to be paid to the registration of
animation activities that originate in continuous simulation
module — the memory buffer usually contains more records
that are related to the same animation activity (one for each
scanning period of CSM). Therefore these records have to
be joined into single compound animation activity.

After all records have been processed, the animation
kernel (similarly to the continuous simulation module)
periodically scans the animation activities with scanning
period ©*, called the animation step. During the evaluation
phase of the activity scanning the animation activity
executes the respective animation tasks (e.g. moves the
vehicle on screen by the distance depending on the vehicle
speed and duration of the scanning period). If any
animation activity finishes, it is automatically removed
from the list and its instance is destroyed. After consuming
the granted time Af,, the animation module interrupts its
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execution and returns simulation control back to the
discrete simulation module.

Let us present the basic animation principles on a very
simple example. Typical animation activity is the
movement activity that animates changes in position of an
object. Imagine that we simulate the process of car
movement utilising discrete simulation activity and we
want to move the car from point A to point B over the
distance of 200 m with an average speed of 5 m.s”. When
the movement process is started (by a Sfart message) the
time needed for the car to pass the distance is calculated (40
s in this case) and an appropriate Hold message is planned
for delivery at the specified time. During the processing of
this message, the car will change its position from the place
A to the place B and the process finishes. To animate this
simple movement, the process has to additionally put a
record into the buffer of interface module to instruct the
animation module about the movement animation request
and to provide parameters for the animation (e.g. the object
to be moved, the activity duration and the length of the
movement) — this is done during the start of the process, i.e.
before the process actually finishes (notice, however, that
the finish time of the process is already known and
planned). The animation module processes this record and
creates respective animation activity instance, initialises its
parameters and puts it into the list of active activities. The
implementation of the animation activity is quite
straightforward — the activity contains the animation
method that is invoked by each scan of the animation
activity (i.e. every 1% time units). This method simply
changes the position of the object by the distance that
correspond to the movement during T* time units, in our
example if the scanning period of animation module would
be set to 0.1s, the animation activity would change the
position of the car by 0.5 metres (the overall duration of the
activity is 40 seconds and the car should move over 200 m
in total, this means that during 0.1 second the car moves
(0.1/40)*200 metres). The change in position can be
immediately reflected on the computer screen (this
approach is used by GDI drawing) or the screen output can
be realised independently in asynchronous manner
(typically used by DirectX or OpenGL visualisation).

The size of the scanning period ©* of the AM controls
the smoothness of the animation (this is very similar to the
number of frames per second in a film) and indirectly also
the speed of the simulation run — since the module
execution is synchronised, the simulation modules cannot
execute their activities before animation module finishes its
tasks.

SYNCHRONISATION ALGORITHM OF
COMBINED SIMULATION EXECUTIVE

The synchronisation algorithm of the combined
simulation executive with run-time animation is
summarized in following table.

THE



Module | Step | Task Conditions

Initialise the simulation
time ts (15: 0)

FEL is empty or the
simulation time limit has
been reached

1 End simulation run

Take out first event

DSM from FEL

Update the simulation
time (ts = tu)

4 Process the event

Identify and grant time
quantum Aty

Apply periodic time
activity scanning (with
scanning period 1€ ) on
all registered
continuous activities

At;#0 and the number of
registered continuous
activities nc£0

CSM 6

Identify and grant time

DSM 7 quantum At,

Process buffer records
8 and register respective
animation activities

At£0

Apply periodic time
activity scanning (with
scanning period 1*) on
all registered animation
activities till the At, is
consumed.

AM
At,#0 and the number of

registered animation
activities na#0

Initiate the flushing of

DSM 10 buffer memory

Flush
memory

the buffer

M 11 Buffer is not empty

DSM 12 | Gotostep 1

Table 1. The control algorithm of the combined simulation with
run-time animation

CONCLUSIONS

The presented combined simulation executive has been
implemented as a part of the ABAsim agent based
simulation architecture support libraries. Besides its
utilisation in teaching process at the University of Zilina,
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the combined simulation executive (and the ABAsim
architecture) has been used in large scale simulation models
of transportation logistic systems, e.g. Villon (Adamko
2007). The experience with the simulation executive
indicates that this solution provides efficient means for
enhancement of existing, as well as newly designed,
simulation models with simple continuous simulation and
run-time animation. The chosen modular approach
guarantees flexibility in optional employment of modules
while keeping the simulation executive overhead low (if the
additional modules are not utilised).

The proposed combined simulation executive design
provides a simple and straightforward solution to the
problem of the integration of continuous simulation and
animation into existing simulation models and can be easily
adapted to any discrete simulation executive that provides
indication of the future event time stamp.
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ABSTRACT

The main objective of this paper is to propose a general
approach for assessing the validity of Modelling and
Simulation (M&S) used during the development of
embedded systems. This approach is an effort to improve
confidence in the use of a simulation whose results are often
questioned without consistent justification. Considering that
the validity of a simulation is never assessed in isolation but
always in relation to a target user, we have defined the
problem of validity as the applicability of a given M&S
product to a given simulation objective of use.

INTRODUCTION

In all fields, models are produced for the purpose of
experimenting and predicting, attempting to approach and
universalise the concepts of a system. Sociologists,
biologists, ecologists and engineers all use the intellectual
process of modelling with the aim of defining what
constitutes and characterises a system and understanding its
operation and its behaviour.

Simulation is already very widely used in engineering
processes as an aid for decision-making. Estimating validity
(correctness, fidelity, maturity, representativeness) is
mandatory to formally evaluate the level of confidence that
can be attributed to a simulation in view of its environment
and its objectives of use. The question of the level of fidelity
required for a need and, obviously, the effort required to
reach this level of fidelity are the main issues for the
embedded systems developments.

If we consider that a simulation is a model or a set of models
subjected to an execution environment that gives life to this
model over time, we create a distinction between the validity
of the model and the correctness of the execution
environment, i.e. the simulator. The execution environment
adds further constraints, along with implementation errors, to
the model validity. This environment is composed of
complex computerised systems which are themselves
composed of components (simulation models and real
computers) and an infrastructure (real-time schedulers,
digital processors, electronic interfaces and means of
communication), all of which contribute to the level of
simulation validity.
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No level of confidence in a simulation has yet been formally
defined and stated as an approved and standardised synthetic
approach. This is obviously due to the recentness of the field.
Numerous validation tests are carried out on all levels of
simulation integration (non-regression testing, exhaustive
testing of systems), with each engineering branch using its
own resources and tools, but no coherent validation strategy
has been defined.

In this contribution, we will be studying the M&S used for
the development of embedded avionics systems. Within this
context, a system is a physical element composed of two
components: the avionics equipment itself (or "end system"
in EIA-632 [1] jargon) and a set of systems used for the
design, production, verification, operation, maintenance and
recycling of the equipment ("enabling system").

We can associate with each of these systems a list of
components that are physical objects, called the "system
composition", as well as an environment. The same object
cannot simultaneously belong to the system composition and
the system environment. However, over time, it may move
from the environment to the composition or vice versa. As
regards an item of avionics equipment, the composition can
always be given in terms of ports, processors, memories,
specialised components, FPGAs, ASICs or analogue
components.

These systems are characterised by a required level of
reactivity and a relation to time (which may vary greatly
depending on the field) which generally impose the capacity
to memorise past behaviour in order to prepare present
behaviour or even predict future evolutions.

Therefore, a system has structural properties related to static
aspects (composition, connections, weight, dimensions,
geometrical form) as well as behavioural properties related
to dynamic aspects (processes occurring within the system,
states, modes, actions on objects in the environment,
reactions to actions of objects in the environment).

In relation to a Verification and Validation plan of a system,
a simulation must be as close as possible to the system it
represents while respecting the constraints of cost and timely
availability. The simulations must be available before the
systems themselves. If the level of validity is too low, the
results required for the experiment can not be reached. If the
level of wvalidity is too high, time of modelling and
calculation is unnecessarily spent.

Considering that the validity of a simulation is never
assessed in isolation but always in relation to a target user,



we have defined the problem of validity as the applicability
of a given M&S product for a given simulation objective of
use.

DESCRIPTION OF THE APPROACH

We consider the problem of validity level as a hierarchy of
model abstractions. We therefore proposed a model for
describing properties of abstractions [2], called the
conceptual model, which is the unifying language between
user and developer of the simulation. It allows, first, to speak
strictly the same thing when the term "validity" is
mentioned, and secondly, to assess the compatibility
between an expected validity level for the experience and a
validity level provided by the simulation.

Then, we establish formal matching rules for mapping
between an objective of use and a simulation described
respectively as the conceptual model proposed. The problem
of mapping is based on the principle that both are
components, in the formal sense, i.e., they interact through
their interfaces and only through their interfaces. We look at
component-based engineering techniques to iteratively
enrich the concept of "context validity" of a model by
"symbolic concepts" and cover each property of the
taxonomy of abstractions.

A conceptual model is prepared through abstractions. A
variety of abstractions are used and they directly depend on
the point of view from which the real world system is
studied. The validity of a conceptual model is then evaluated
from a given perspective. In DEVS and the M&S theory,
B.P. Zeigler [3] proposed a way to supply a description of a
model while questioning whether this model correctly
reproduces the dynamic behaviour of the system from a
given perspective.

The basic principle of the M&S process described by B.P.
Zeigler involves the separation of the model and the
simulator. The same principle is recommended by the MDA
(Model Driven Architecture) approach proposed and
supported by OMG [4]. The basic entities of the M&S
process are the system, model and simulator (Figure 1).

Experimental frame

Real System
Simulator

Modelling

Simulation

Model

Figure 1. M&S process and its entities

The system is the real or virtual element used as a source of
observable data and subject to modelling. The model, also
called the system substitute, is a representation of the
system. It is usually a set of instructions, controls, equations
or constraints to generate its behaviour. The simulator is an
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IT system used to execute the model and generate its
behaviour based on model instructions and injected inputs.

This set is reorganised so as to integrate the concept of an
experimental frame. The experimental frame is a
specification of the conditions in which a system is observed
or experimented on. It can be seen as a system that interacts
with the system of interest to obtain the data of interest in
given conditions. It is an operational formulation of the
objectives which motivates the development of the M&S
application. There may therefore be several experimental
frames for the same system and the same experimental frame
may be applied to several systems. In fact, we can have
several objectives or perspectives or have a single objective
that motivates the modelling of different systems.

An experimental frame has three components: a generator
which generates a set of input segments for the system; an
acceptor which selects the data of interest of the system
while monitoring whether the desired experimental
conditions are complied with and a transducer which
observes and analyses the output segments of the system.

It should be remembered that the experimental frame
transforms the objectives, which are used to focus model
development on a particular point of view, into specific
experimentation conditions. A model must be valid for a
system in such an experimental frame. An operational
formulation of the objectives is produced by matching the
observed variables (system inputs and outputs) with
measurements of the system's effectiveness in accomplishing
its function. These measurements are called the result
measurements. Matching between observed variables and
result measurements is carried out by the transducer.

The relationship between a model, a system and an
experimental frame is modelling. The validity of a model is
the fundamental concept of the modelling relation. Validity
refers to the degree to which a model faithfully represents a
system in an experimental frame of interest. The relation
between a model and a simulator is simulation. The basic
concept of this relation is the correctness of the simulator. A
simulator correctly simulates a model if it guarantees to
faithfully generate the model output values given the model
state and the input values. This relation refers to the principle
of separating preoccupations between model design and its
implementation.

Besides the two basic relations presented above, B.P. Zeigler
introduced two other relationships that are fundamental to
our study: modelling as a valid simplification (valid
abstraction in the terminology of F.K Frantz [5]) and the
relation of model applicability to an experimental frame.

"Successful" modelling can be seen as a valid simplification.
It is necessary to simplify or reduce the complexity of a
model so that it can be run on a simulator, considered a
limited computing resource. A preservation relation or
system morphism establishes a correspondence between a
"concrete" system and an "abstract" or simplified system, the
abstract model being the substitute of the concrete model.
B.P. Zeigler uses the concepts of base model and lumped
model. In this case, the concrete model is a model with more



capabilities, meaning that it can be used for a greater number
of experimental frames. However, for a given experimental
frame, the abstract model can be as capable as the concrete
model. What must be remembered is that, for a given
experimental frame, an abstract model must be as valid as
the concrete model.

The applicability relation determines whether an
experimental frame can be applied to a model. This relation
is very important as it serves to state whether a use objective
can be reached with a specific M&S application. Only
models can implement experimentation conditions required
by an experimental frame used to reach objectives and may
possibly supply valid simulation results. The author also
defines a derivability relation between experimental frames.
This relation refers to the degree to which an experimental
frame defines more restrictive conditions (which allow fewer
observations) than another. Figure 2 below illustrates the
morphism, applicability and derivability relations.
Experimental frame EF4, not very restrictive, applies to
models M1, M2 and M3. Model M4 is too abstract to
accommodate EF4 as well as experimental frames EF1, EF2
and EF3 which are more restrictive than EF4. EF2 is
applicable to MI. EF3, which is less restrictive than EF2 is
therefore also applicable. In this case, we can say that M1 is
too concrete or complex for the given experimental frame
but not less valid. No models can accommodate EF1.

More restrictive

experimental frame More able model

Figure 2. Morphism, applicability and derivability relations

CHARACTERISING THE VALIDITY OF A
SIMULATION

The aircraft is a system composed of a set of subsystems
which may themselves be broken down into a set of
subsystems. The aircraft development process is therefore
broken down into a set of subsystem development processes.
Higher-level requirements are broken down into lower-level
requirements for each function or subsystem. The
requirements are then translated until the end product is
obtained. Then, moving back up through the aircraft
description hierarchy, the end products, each one responsible
for an aircraft function, are integrated to satisfy the
requirements described on the highest level of the hierarchy.
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The primary systems (ATA) of an aircraft (flight control
laws, warnings, fuel, hydraulics, communication, navigation,
engines, etc.) and their subsystems (sub-ATA) must
exchange data to carry out their respective functions. A
subsystem is thus designed to operate in a given environment
or context, i.e. a reference experimental frame which, in our
case, is the real aircraft.

A model is built through abstractions. As system
development progresses, these models become increasingly
concrete. We will therefore consider a set of models of the
same system, prioritised by a morphism relation. In this
hierarchy, a high-level model is a more abstract model than
the low-level model, meaning that it can be used for a
smaller experimental frame. The physical system is found on
the lowest level of the hierarchy. It is composed of a set of
software applications, distributed over a group of real
computers, themselves distributed through a network and
other physical elements. The most abstract level is the idea.
Between these two levels, a multitude of models with
different forms and different configurations are created:
conceptual (requirements), formal (Matlab, Scade, Saber),
executable (C, C++). These models are run on various
platforms.

At a given moment, the development of a system requires
the initiation of an M&S project. The use objective defines
the system of interest, i.e. an isolated part of the system,
modelled for a specific V&V plan. This use objective is then
used to derive a specification for the models interfacing with
the system of interest with a necessary and sufficient level of
abstraction. The full, detailed definition of a model
interfacing with the system of interest is not always the best
solution. More abstract models can thus be<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>