13™ ANNUAL EUROMEDIA CONFERENCE
2007
DELFT, THE NETHERLANDS

APRIL 25-27, 2007

Organized by
ETI
Sponsored by
EUROSIS
TTVI
EU-DG INFSO
BELGACOM

GHENT UNIVERSITY

HOSTED BY

DELFT UNIVERSITY OF TECHNOLOGY

EUROMEDIA'2007

FEATURING

THIRTEENTH ANNUAL SCIENTIFIC CONFERENCE
ON WEB TECHNOLOGY, NEW MEDIA
COMMUNICATIONS AND TELEMATICS THEORY
METHODS, TOOLS AND APPLICATIONS
AND D-TV

Leon Rothkrantz
and

Charles van der Mast

APRIL 25-27, 2007
DELFT, THE NETHERLANDS

A Publication of EUROSIS-ETI

Printed in Ghent, Belgium

Dr. Leon Rothkrantz
Delft University of Technology

Delft

The Netherlands

Prof. Marwan Al-Akaidi
De Montfort University
Leicester, United Kingdom

Fernando Boronat Seguif
UPVv
Valencia, Spain

Prof. Dr.J.Broeckhove
RUCA-UA
Antwerp, Belgium

Dr. Juan Carlos Guerri Cebollada
UPv
Valencia, Spain

Dr. Nathan Clarke
University of Plymouth
Plymouth, United Kingdom

Dr. Paul Dowland
University of Plymouth
Plymouth, United Kingdom

Dr. Steven Furnell
University of Plymouth
Plymouth, United Kingdom

Prof. Chris Guy
University of Reading
Reading, United Kingdom

Prof. Dr. Jan Knop
University of Disseldorf
Dusseldorf, Germany

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

Editors

Workshop Editor

Dr. H. Joachim Nern
TTVI
Dusseldorf, Germany

Programme Committee

Ass. Prof. Qingping Lin
Nanyang Technological
University, Singapore

Rachel Moreau
Hasselt University
Diepenbeek, Belgium

Lorenzo Motta
Ansaldo Trasporti s.p.a.
Genoa, ltaly

Dr.ir.Johan Opsommer
Belgacom
Brussels, Belgium

Dr. Carlos Enrique Palau Salvador
UPV
Valencia, Spain

Dr. Ana Pajares
UPVv
Valencia, Spain

Maria Papadaki
University of Plymouth
Plymouth, United Kingdom

Prof. Jehan Francois Paris
University of Houston
Houston, USA

Dr. Charles van der Mast
Delft University of Technology

Delft
The Netherlands

Prof. Marco Roccetti
University of Bologna
Bologna, Italy

Prof. Paola Salomoni
University of Bologna
Bologna, Italy

Prof. Jeanne Schreurs
Hasselt University
Diepenbeek, Belgium

Ph. D. Oryal Tanir
Bell Canada
Montreal QC, Canada

Ass. Prof. Vassilis Triantafillou

Techn. Education Institute
Greece

Prof. Rik van de Walle
Ghent University
Ghent, Belgium

Dr. Matthew Warren
Deakin University Geelong
Victoria, Australia

© 2007 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Simulation Society. Permission is
granted to photocopy portions of the publication for personal use and for the use of students providing credit is given
to the conference and publication. Permission does not extend to other types of reproduction nor to copying for
incorporation into commercial advertising nor for any other profit-making purpose. Other publications are encouraged
to include 300- to 500-word abstracts or excerpts from any paper contained in this book, provided credits are given to
the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be used
in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in this Proceedings have been peer reviewed

EUROSIS-ETI Publications are ISI-Thomson and INSPEC referenced

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Ghent
University, Faculty of Engineering, Dept. of Industrial Management, Technologiepark 903, Campus Ardoyen,

B-9052 Ghent-Zwijnaarde, Belgium.

EUROQOSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400
Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium
Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium
EUROSIS-ETI Publication

ISBN: 9789077381328
EAN : 9789077381328

\

PREFACE

Over the last couple of years, new media has taken an increasing place in many
activities in our every day life both as a professional and as a consumer. New media are
becoming part of more and more aspects of our work by supporting computer-based
tasks and activities, by supporting the user interfaces of embedded software, and by
increasing the engagement and trust of users of web-based applications. This results in
extending the research focus from traditional human-computer interaction to
engineering effective experience with multi-modal interaction between human and
artificial actors in a dynamic, social context. We think this is an important development.
And in the programme of this EUROMEDIA 2007 conference you can recognize this
development.

As with any conference, EUROMEDIA also would not be possible without the help and
support of a number of people, and we would like to begin by thanking all the reviewers
for their efforts, which have resulted in a truly interesting and varied conference
programme. We are also most grateful to Pieter Jan Stappers of Delft University of
Technology for presenting the keynote about the application new media to support
design conceptualization, especially in industrial design engineering. Thanks also to the
session chairs and other delegates who we are sure will guarantee us a lively and
thought-provoking conference. Finally, special thanks are due to Philippe Geril, whose
continued dedication and hard work as the conference organiser has enabled us to
maintain the standard expected of EUROMEDIA events.

We sincerely hope that all of the delegates enjoy the conference, and that other readers
of these proceedings will be encouraged to participate in EUROMEDIA events in the
future. On behalf of all of EUROSIS, the International Programme Committee, we
welcome you to this event and look forward to a successful conference.

Leon Rothkrantz
Charles van der Mast
General chairs

Vil

Vi

CONTENTS

Preface..... e ——————— VIl
Scientific Programme..........ccoo s 1
AUthOr Listing ... e 165
KEYNOTE SPEECH

New Media Tools to support Design Conceptualization
Pieter Jan Stappers, Daniel Saakes, Aadjan van der Helm
b= o I C T o g =T o 4= T o PR 5

WEB BASED APPLICATIONS

A Web Based Solution supporting the Integration of Virtual Reality
Environments in Logistics Applications
Pietro Colombo, Emanuele Grosso and Marco TariNi..cccceveeeereenrensrensermnseennes 13

A Web-Based Solution to manage Distributed Discrete Event Simulation
Alberto Coen-Porisini, Pietro Colombo, Ignazio Gallo and Antonella Zanzi...... 19

Boiling down Emergent Self-Organizing Soups to Solid Multimodal
Perception
J.C.Stevens, R.Dor and L.J.M. ROthKrantzccceeireirenirrmsiressressrenssressresssenseenes 27

WEB ENVIRONMENTS

Factors shaping the User Experience on Utilitarian Websites
Teun Hompe, Joris Leker, Charles van der Mast
ANA MArK NEEIMNCX cuuuuuiisrrrrrrnnnnnsssssssssrresnnnnsssssssssssmessnnnnssssssssssssnsnnnsssssssssssssnnnnnn 37

VU @ Second Life_- creating a (virtual) community of learners
Anton Eliens, Frans Feldberg, Elly Konijn and Egon Compter..........ccccmrireeenee. 45

Intelligent Advertisement for E-Commerce
Stephan Kassel, Christian-Andreas Schumann and Claudia Tittmann.............. 53

AUDIO VISUAL APPLICATIONS

A Comparison of the ILD and TDOA Sound Source Localization
Algorithms in a Training Environment

Joost Voordouw, Zhenke Yang, Leon J.M. Rothkrantz

and Charles A.P.G. van der Mastcuuuueeeecciisiesressessssssssssssssssssssssssssssssssnsnnns 61

CONTENTS

Signal-Coherent Video Watermarking Schemes based on Visual

Cryptography
Cezar Plesca, Victor Patriciu and Vincent Charvillat.....ccccciveeiieeiireireninenserennes 69

Interactive Augmentation of Photographs depicting Prehistoric

Engravings

Christophe Dehais, Vincent Charvillat and Jean Conterueucceiiiiiirireeecnnnnennnn. 74
MEDIA DATA COLLECTION

The Use of Storyboard in Audio-Visual Data Collection

Z. Yang, Xiaoan Wang and L. J. M. RothKrantz.......ceccceeiiiiimmmeecesssssssseenenseennns 81
Building a Data Corpus for Audio-Visual Speech Recognition

Alin G. Chitu and Leon J.M. ROthKrantz........eeveeeeeiiiiieeissssessssseesesesssesessssseeeeens 88
UBIQUITOUS COMPUTING

A Proposal of a Sensor-handling Mechanism Using a P2P Agent Platform
for Ubiquitous Environment
Yoshimasa Ishi, Yuuichi Teranishi, Kaname Harumoto and Shinji Shimojo...... 95

Personalized Adaptive PDA Interface
Siska Fitrianie and Leon J.M. ROIhKIrantZeeeeeieiiiiieceeceececeeceems e e seemsmnenns 98

Mathematics in Everyday Life: Between Art and Science
A.Cascone, G.DUrazzo and V.Stileiueviiemiiremiiremirrssrrresssrsnsssssssssensssrenaseens 106

Expert Advice and Regret for Serial Recommenders
Anton Eliens and Yiwen Wang.....cccsssssssssssssssssssssss s 111

A Hybrid Multi Agent System Architecture for Distributed Supervision of
Chronic Patients in the eHealth Setting

Olivier A. Blanson Henkemans, Stefano Bonacina, Nicola Cappiello,

Charles A.P.G. van der Mast, Mark. A. Neerincx and Francesco Pinciroli........ 119

VEHICLE BASED MULTIMEDIA

Position Enhancement Technique Using GPS-GSM Model for Vehicle
Location Systems
Jamal Suliman Rahhal and Dia |. AbDU-AI-Nadiccouvemeemeeniininieinrreemsssssnseeenens 127

Zona: a Forward Collision Avoidance System
Lucy T. Gunawan and Augustinus H.J. OOMESeeeeeeeemmmmmmmemmmmmmmmemmmeeemmmnmnnnnes 131

CONTENTS

WORKSHOP ON DIGITAL TELEVISION & DIGITAL SPECIAL INTEREST
CHANNELS

Web Services and Tools for their Composition considering Aspects of
Digital TV Workflow
Hristina Daskalova and Tatiana Atanasovace.ccviiimmnnee s 139

Framework Approach for Search and Meta-Data Handling of AV Objects

in Digital TV Cycles

Tatiana Atanasova, H. Joachim Nern, Andrzei Dziech

and NiKitas M. SQOUIOS ... 145

Towards Dynamic, User-Driven Content Creation and Delivery in IPTV
Environments
I L €= TSR S T T T o 148

Modules for an integrated System Approach for advanced Processing
of AV Objects in Digital TV Workflow
H. Joachim Nern, Andrzei Dziech, Victor Dimtchev and Georg Jesdinsky........ 150

Aspects of Watermarking Technologies applied to digital TV-Broadcasts
Objects
Jakob Wasserman, H. Joachim Nern and Andrzei DzieCh.......ccoomeemmunciiiiiinnnns 155

“Souvenirs from the Earth” — An Innovative Special Interest Channel for
Video Art
MaArCUS KIEISSciiiriiirinmmesssiisssrrrsnnnsnssssss s s s s s s snmmsss s s s s s e s e s nnm s s s s s s s s e e s nmmnsssnnss 158

Relevant Business Aspects of Ambient Media in Future Digital Television

Area
(ST S =Y [160

Xl

X1

SCIENTIFIC
PROGRAMME

KEYNOTE

NEW MEDIA TOOLS TO SUPPORT DESIGN CONCEPTUALIZATION

Pieter Jan Stappers, Daniel Saakes, Aadjan van der Helm, and Gert Pasman
ID-StudioLab, Faculty of Industrial Design Engineering
Delft University of Technology
NL-2628CE, Delft
The Netherlands
E-mail: {p.j.stappers, d.p.saakes, a.j.c.vanderhelm,g.pasman}@tudelft.nl
Website: http://studiolab.io.tudelft.nl/

KEYWORDS
Design tools, Design research, new media

ABSTRACT

The early phases of a design project are characterized by
combinations of associative and logical thinking. Interactive
visualizations have always played an important role in this.
In the design techniques research group, we study this phase,
and try to support designers with new media tools. The
research is driven by a merging of technology push
(exploring media possibilities) and contextual push (studying
design practice), and prototypes of new design tools take a
central role in this. In this presentation we explain our
approach and illustrate this with examples of interactive
design tools to support early idea generation.

INTRODUCTION

The design techniques research group has been working for
some 15 years on tools to support designers in the early
phases of idea generation. In this work, the use of rich
expressive computer-supported interactive visual media
(which we’ll refer to as ‘new media’ here) has been a central
ingredient, together with contextual studies into the way
designers work. The tools we develop have two purposes: as
an instrument to clarify the current way of working, and as a
demonstration of how the current ways of working might be
improved upon.

The research is situated in ID-StudioLab in the faculty of
Industrial Design Engineering of Delft University of
Technology. ID-StudioLab is a multi-disciplinary
community doing design research with a human-centered
focus. We lay emphasis on making rich use of perceptual
and motor skills, to support the creative cognitive processes,
especially visual thinking, in 1idea generation and
conceptualization.

In this paper we illustrate our approach by discussing some
tools. For reasons of space, we limit ourselves to only the
work from our lab, but we are not the only ones in this
business, obviously. More balanced literature references are
included in our regular papers.

IDEA GENERATION AND CONCEPTUALIZATION

The design process is generally conceived as a succession of
phases, which may be iterated. In the first phase, the goal is
defined, possibly in the form of a design brief, and initial
analysis of the topic is performed, which may result in
design requirements constraining the solution, and/or a

design vision indicating a desired direction. This continues
in generation of ideas for possible (partial) solutions,
development of a concept of the product as a whole. The
later phases include detailing the concept, working out
production schemes and marketing the product.

In our work we focus on the early phases, especially the
generation of ideas and concepts, which often includes bits
of analysis as well. The design activities here can be very
fuzzy as well as logical. Many different concerns are
considered, loose ideas are generated, wild associations are
evoked, and all these are integrated. In doing this, designers
do a lot of wvisual thinking, and make expressive
visualizations, such as sketches, models, and renderings.
Design studios have a rich visual culture, as illustrated in
Figure 1.

The introduction of computers as the ubiquitous tool for the
thinking person in all professions has also had its impact in
design. Drawingboards disappeared from design offices and
designers, like everybody else, were sitting behind screens,
operating keyboards, mice, and pen tablets (Figure 2).
Computers were excellent at handing symbols and following
logical rules, but lacked many of the informal strengths of
traditional media as the sketch-on-the-wall. In our research
we have worked at using those other strengths of computers,
the media capabilities, to support designers at being creative.

f
i
;
5

Figure 1: the Visually Rich Design Studio

Approach

The approach in developing the tools involves uniting two
opposite and necessary forces: technology push and
contextual push. The first is done by playing with the new
media, such as the possibilities of using beamers, multiple

input devices, different types of sensors, and different types
of animations and interactions. These explorations yielded
insights on how to use two-handed input techniques
(Gribnau, 1999), how sketchy and hi-fi visualizations differ
(Stappers & Hennessey, 1999, 2000; Stappers & Hoeben,
2001), and how large and small display sizes support
different types of cognitive processes (Stappers, Keller, &
Hoeben, 2001; Keller, Stappers, & Hoeben, 2001).

?

Figure 2: the Visually Poor Design Studio

The second is done by studying the context of designers in
current practice. In one such study, conducted in 1992 (see
Pasman, 2003), it was found that designer’s traditional tools
were characterized by

* An inspiring visual environment

* Use of high motor skills (e.g., sketching)

¢ Rapid shift between different ways of working
(thinking, sketching, organizing,)

Computer tools were lacking in these respects. The rich
visual environment, where designers and visitors were
constantly reminded of and inspired by various aspects of
their current and earlier projects, was replaced by closed
electronic documents, stored by name in digital folders on a
harddisc: good for retrieval, but never accidentally
encountered. In a later study (Keller & Pasman, 2006), it was
found that designers use two totally unconnected collections
of visual materials: a physical one, used for inspiration, and a
digital one, used for communication. Very little exchange
(scanning or printing) actually occurred between the two.

Both pushes are merged by the development of a tool that
fits the context and makes innovative use of the new
technology parts. Such tools are developed in the studio, and
we try them out on ourselves before we test them with
designers in practice (Stappers, 2006). During the
development of the tools, we reflect on the findings and
decisions on the way, so the output of this research is not just
the tool, but (more importantly) guidelines for supporting
designers, and creative people in general. We refer to this
approach as ‘research through design’, because in the
activity of designing, we confront theories and empirical
findings (van der Lugt & Stappers, 2006).

Table 1: Some Media-based Conceptual Design Tools from ID-StudioLab

TRI SketchBook
A platform for exploring
design tools using a sketchy
variety of Virtual Reality
techniques. (Keller, &
Stappers, Hoeben, 2000)

world sketchbooks.
(Hoeben, 2001)

A digital sketchbook which
uses the fluency of real

ProductWorld
An ideation tool that helps
designers finding patterns in
collections of existing
designs by interactive spatial
classification (Pasman, 2003)

Cabinet
An image collection tool that
merges virtual and physical
images in one seamless
collection. (Keller, 2005)

Photoboarding Skin

Inst ntTemplates Iris

A technique to capture and
retain playacting sessions in
arich and sketchy way, and

(Saakes and Keller, 2005)

develop them to storyboards.

A technique to play and
explore colors, patterns and
graphics on physical product

shapes. (Saakes, 2006)

Digital templates of video to
support physical drawing of
natural two-handed product
interactions. (Saakes and
Keller, 2005)

A shared digital posting
board for screenshots, to
enhance situation awareness
in distributed studios.
(Peeters and Stappers, 2005)

Principles

Many of the design activities in early design are open-ended
and involve associative and visual thinking next to logical
thinking. But most computer tools supported only the latter.
Therefore, the first guiding vision for the group was
formulated as designing loose and sketchy tools, ‘electronic
beermats and napkins’ (Stappers & Hennessey, 1999, 2000).
This was refined later into principles based on aesthetics
(sketchy, loose appearance to support associative thinking),
interaction (making use of rich sensory and motor skills),
and usability (directed at fitting real-world design processes
rather than laboratory activities), which was illustrated by a
sequence of ‘tiny’ tools (Stappers, Keller, Hoeben, 2002).
More complete tools were developed into prototypes in PhD
projects (e.g., Pasman, 2003; Keller, 2005; Saakes, 2006,
2006a). Table 1 shows an overview of some of the tools that
came out of this research in the StudioLab.

AN OVERVIEW BY EXAMPLES

What did we learn from these exercises? Instead of
reproducing the formal research paper findings (for that, see
the references), we discuss the ingredients and findings
through two examples of tools, and two platforms/toolkits

ProductWorld

Research had shown that designers studied existing products
to find new solutions on product aesthetics. To support
them in this highly visual process, a tool called
ProductWorld was developed that allowed designers to
categorize sample products from a database, organize them
on criteria, and explore computer-generated multi-criteria
organizations. It was found that through this process
designers ‘discovered’ in a playful way visual properties of
products regarding form, style, meaning etc. which are of
great value for the generation of new form concepts, but also
generally very difficult to formalize.

In ProductWorld designers can create structures of design
knowledge by spatially arranging product samples relative to
each other on various similarity criteria (Figure 3). The
distances between the samples are taken as a measure for
their mutual relationships. Thus samples which are arranged
closely together are considered more similar than samples
which are placed far apart. The resulting groups of samples
can then be given names that typify their characteristics.

Retrieval of product samples is conducted through a
dynamic, small, and interactive set of product samples.
These are shown as an Multi-Dimensional Scaling
configuration, reflecting their similarity relations. The points
in this configuration are dynamically updated by moving
them to their optimal location whenever the user removes
samples, adds new samples, or changes the similarity
criterion. Through these three actions, the designer
implicitly builds up an understanding of the design
knowledge that is embedded in the product samples and thus
can be applied into new design situations.

ProductWorld’s high degree of interaction encouraged
students and designers to get actively engaged with the
visual appearance of products (Figure 4). Such an active level
of involvement was found to be essential, since hrough it the
designer created, evaluated and modified new structures of

design knowledge, which could then be applied in the
generation and development of new product forms.

Figure 3. MP3 Players Organized by Form in ProductWorld

Figure 4. Using ProductWorld in an Educational Setting

Thus, while the visual thinking was supported by symbolic
information ‘under the hood’, the interface allowed the
designer to decide when to explore visually and when to
study the logical values. By playing with this balance and
shifting their way of thinking, a combination of analytical
and creative thinking was created. An important lesson
learned from the use of ProductWorld was therefore the
notion that its value was not directly in any physical or
tangible output, but much more in the experience and
insights the designer acquired while interacting with the
tool.

SKIN tool — tangible computer visualisation

In the early stages of new product development, consumer
products are oftentime designed by multidisciplinairy teams,
with stakeholders from engineering, marketing, usability and
sometimes the end-users of the products are involved
(Saakes, 2006). Creative group workshops support these
stakeholders to generate new ideas and facilitate
collaboration. These workshops regularly consist of cycles of
generating new ideas and exploring ideas into concepts.
Facilitators steer the workshops, and sometimes visualizers
aid the participants by sketching ideas.

Even though these stakeholders actively participate and
contribute to design solutions their input is mediated and
primary in oral or written language. This in contrast to
regular design meetings where designers make fluid and
extensive use of sketching as well as building little
prototypes out of paper or foam. Here, participants actively
contribute and explore the solution space by doing first.

Skin 2.0 is a novel ideation technique aimed at these
creative group workshops. The aim is to engage participants
in unmediated intuitive exploring of the solution space by
doing-first.

With Skin, groups of designers explore colors, textures and
graphics on physical objects such as foam and paper models.
Similar to other spatially augmented systems. Skin projects
computer generated images with a projector. But, Skin
projects materials, textures and colours as flat 2D images,
without any tracking or knowledge of the 3D object. This
loss of accuracy has two very large advantages: On the one
hand, any object can be used, as long as it is white or light
coloured. On the other hand, the rough and ambiguous
projection that occurs when moving the objects in the
projected light and seeing patterns and graphics deform gives
rise to serendipity: unexpected new combinations.

Figure 5. Skin 2.0 is a Physical/augmented Technique to
Explore Colors, Patterns and Graphics on Physical Objects.

Skin’s projector is mounted on a tabletop in such a way that
only the objects on the table are augmented with graphics.
See Figures 5, 6, and 7. The surplus light around the object
is masked through backlighting. (Saakes, 2006).

Skin has two modes of creating graphics. The first mode is
the “browse mode” . With a paddle controller participants

can flick through a collection of inspirational images.
Rotating the paddle scales and tiles the images.

During workshops in packaging industry we found need for a
second mode; namely to add and compose physical artwork.
With an attached video camera, physical materials, such as
photos found in magazines or fabrics can be added and mixed
on top of the digital images.In a series of workshops we
found vparticipants actively playing with graphics and
generating many new designs. The workshops indicate that
the not only the solution space is widened, more concepts
are considered in the same amount of time, also the solution
space is deepened, the physical/augmented approach provides
a better view on a concept. Moreover, the technique might
condense the cycles of generating and exploring and so make
the process more efficient.

Figure 6 In Skin,Horizontal Projection and Backlighting
Enhances the Physical Impression.

Figure 7 Designs Made by Participants. The Physical Pattern
(top left) is Mixed with Digital Images and Projected on the
Boot.

TRI — a platform for exploring interaction scales

The TRI setup, short for ‘Three Ranges of Interaction’,
embodies what we learned about how physical scale affects
cognitive activities. Its ranges small (fingers and hands, e.g.

pen tablet), medium (arm’s length, e.g. table surface) and
large (beyond arm’s length) were programmed separately on
separate hardware, in order to structure the tool designer’s
thoughts. See Figure 8 and 9. Hitherto, we had seen (and
done ourselves) several instances of inappropriate spatial use
in Virtual Reality tools (e.g., large CAVE setups used for
detailed interactions), which were a mismatch in both
technical sense (calibration problems) and a usability sense
(using the wrong body actions and perceptual range).

Embodying these findings in an easy-to-program platform
allowed design students to rapidly play with technologies,
often realizing experience prototypes in less than a day,
which allowed them to prototype user interactions in much
shorter times than with conventional VR tools. Many small
tools and toys were implemented on this platform. Most
were short-lived, like a sketch on an envelope, but just as
that sketch, helped to progress the development of the
interaction concept.

TRI exemplifies that making a user-centered choice of hard-
and software elements can lead to different and more
appropriate tool designs. Also, TRI’s large and medium
scale displays were not rectangular on purpose, which forced
our students to conceive interaction surfaces as not
necessarily rectangular, inviting them to explore wider
ranges of design solutions.

Atmosphere (large range)
Hanging collages, sketches, posters and
other sources of inspiration on the wall.

Layout {(medium range)
Organizing and comparing ideas and
previous concepts on the desk.

Precision (small range)
Creating and exploring concepts with
sketches and models.

pe

Figure 8 Three Ranges of Interaction in Real Life

Figure 9 TRI uses interactive images on three scales.

Visual programming and modular sensor systems to
support the design of interactive systems

In the field of designing interactive systems, multi disci-
plinary teams (designers, engineers, end-users, etc.)
collaborate in finding a proper solution to the design
problem at hand. A typical design process in this context
involves getting a feel for what it means to use the
interactive system under development. To achieve that, a
highly iterative approach is taken that involves making
prototypes and testing these. See Figures 10 and 11. The
working prototypes provide a means to experience and
communicate aspects of the concept for/to all members of the
design team.

Because interactive systems have a large technological
component traditionally the engineers dominated the early
stages of product design, designers or end-users were only
consulted in later stages of development. Recent advances in
visual programming platforms (Pure Data, Max/MSP,
LabView, d-tools) and modular sensor/actuator systems
(ICube, Phidgets, Arduino) gave designers the opportunity
to get involved early on in the process. See Figure 12.

Figure 10 Designer at work with the tools

Figure 11 Two Examples of Interactive Music Player

Figure 12 Example of Visual Program used for Designing
Interactive Music Players

In recent years visual programming systems have become
more widely adopted in the designers community because
these systems are easier to use than the traditional language
based software development tools. A visual programming
environment typically doesn’t employ an
edit/compile/link/run cycle, instead most systems allow for
modifying the program during runtime. This greatly
enhances the possibility to explore different configurations of
a prototype. Also the visual representation of the program
communicates the operation of a program in a more direct
way as opposed to language based program representations.
The combination of a visual programming environment
with the modular sensor/actuator systems enable designers to
be involved early on in the design process of interactive
systems and thus enable them to contribute to making
interactive products that are more user-friendly.

CONCLUSION

Approximately a decade after computers have prominently
taken their place in all design studios, their use beyond
symbol manipulators is growing up. The integration of
advanced computer graphics hardware with the new operating
systems, and the ability of tool designers to use these, opens
up possibilities to support the associative and visual
thinking styles that are essential for creativity in design. In
our research we have explored ways in which these new
opportunities can be given form, both in conventional GUI
contexts, and in the newer developments in tangible
interfacing.

REFERENCES

Gribnau, M. W. 1999 Two-handed interaction in computer
supported 3D conceptual modelling. Ph.D. Thesis Delft
University of Technology

Hoeben, A., & Stappers, P.J. 2001 “Ideas: A vision of a designer’s
sketchingtool”. Proceedings CHI2001: Conference on Human
Factors in Computing Systems. 199-200.

Hoeben, A, & Stappers, P.J. 2005 “Direct talkback in computer
supported tools for the conceptual stage of design”. Knowledge-
Based Systems, 18 (8), 407-413

Keller, A.L. 2005 For inspiration only: Designer interaction with
informal collections of visual material. Ph.D. Thesis Delft
University of Technology

Keller, A.L., Stappers P.J., and Hoeben A. 2000 “TRI: inspiration
support for a design studio environment.” DCNET conference.
(htty:/facultv.archusvd edu.an/kede/conferences/DUNet06/)

Keller, A.L, Hoeben, A., & Stappers, P.J. 2000. “Aecsthetics,
interaction, and usability in 'sketchy' design tools.” Exchange
Online, 1(1). (aitn/fwww.medin.uwe.acuk/exchange onling))

Keller, A.L, Pasman, G., and Stappers, P.J 2006 “Collections
designers keep: Collecting visual material for inspiration and
reference”, Codesign, 2(1), 17-33.

Van der Lugt, R. and Stappers, P.J. 2006. Design and the Growth of

Knowledge. Delft: StudioLab Press.
(htip:/studiolab.io.tudelftnlsymposium/).

Pasman, G. I. 2003 Designing with precedents. Ph.D. Thesis Delft
University of Technology

Peeters, A., and Stappers, P.J. 2005. “Iris: Supporting workplace
awareness by triggering informal interactions with visual
material.” Proceedings DPPI: Designing Pleasurable Products
and Interfaces

Saakes, DP, & Keller, A.l. 2005. “Beam me down Scotty: to the
virtual and back!” Proceedings DPPI: Designing pleasurable
products and interfaces

10

Saakes, D.P. 2006 “Exploring materials: New media in design”.
Drawing New Territories, 3 Symposium of Design Research.
Zurich: Swiss Design Network. 109-123.

Stappers, P. J. 2006. “Creative connections: User, designer, context,
and tools.” Personal and Ubiquitous Computing, 10 (2-3), 95-
100

Stappers, P.J. and Hennessey, J.M. 1999. “Towards eclectronic
napkins and beermats: Computer support for visual ideation
skills”. In: Paton, R.C. & Neilson, E. Visual Representations
and Interpretations. Springer , Berlin.. 220-225

Stappers, P.J. and Hennessey, J.M. 2000 “Beyond the clectronic
beermat: Digital devices for discussing design drawings.”
Codesigning 2000 Adjunct Proceedings 143-148

Stappers, P.J. & Hoeben, A. 2001. “Every pixel user-made:
Acsthetic consistency in the development of computer-
supported conceptual design tools.” Bulletin of the Fifth Asian
Design Conference, October 12-15, Seoul, Korea.

Stappers, P.J., Keller, A.1., Hoeben, A. 2000. “Listen to the noise:
'Sketchy' design tools for ideation.” Exchange Online, 1(1),
(http: Y www.mediauwwe.acuk/exchange online)

AUTHOR BIOGRAPHY

PIETER JAN STAPPERS did an Msc in experimental
physics at the Radboud University Nijmegen, and did his
Ph.D. in Delft (1992), exploring the use of Virtual Reality in
perception studies. Staying on in Delft, he joined the Design
Techniques group, which he headed as full professor since
2003, trying to live up to the characterization by his
superviser, that he was ‘both playful and solid’.

DANIEL SAAKES was born in Amsterdam and did his
M.Sc in industrial design engineering at Delft. He graduated
at SARA with a Virtual Reality application in their CAVE
setup. Then he worked as a freelance designer bridging the
digital and physical through interactive toy concepts and
augmented sports products. Now he has returned to Delft to
teach 3D Visualisation to product designers and is working
on his Ph.D. regarding new media tools. Daniel enjoyes the
great outdoors and is an active gamer and hopes to complete
guitar hero in expert mode.

AADJAN VAN DER HELM was born in Rotterdam and
did a bachelor in Software engineering. He is involved in
research and education at the ID-Studiolab, an institute of the
Industrial Design Faculty at the Delft University of
Technology. He is mostly active in the fields of early
prototyping and tangible interaction. He has 20 years
experience working with computer technology in a scientific
context in the fields of computer graphics, interactive design
and art.

GERT PASMAN received a M.Sc. in Mechanical
Engineering from the University of Twente in 1989. After
completing his military service, he joined the Faculty of
Industrial Design Engineering at the Delft University of
Technology, from which he obtained a Ph.D. in 2003.
Currently he is mostly involved in teaching Interaction
Design and Product Design. Gert has a deep fascination for
polar exploration, although he himself prefers temperatures

far above 20° Celsius.

WEB BASED
APPLICATIONS

12

A WEB-BASED SOLUTION SUPPORTING THE INTEGRATION OF VIRTUAL
REALITY ENVIRONMENTS IN LOGISTICS APPLICATIONS

Pietro Colombo

Dipartimento di Informatica e Comunicazione,

Universita degli Studi dell’Insubria,
Via Mazzini 5, 21100 Varese - Italy
email: pietro.colombo@uninsubria.it

Emanuele Grosso
NEWLOG Consulting srl,
Piazza Carrobiolo 5, 20052 Monza(MTI) - Ttaly
email: emanuele.grosso@newlog.it

Marco Tarini
Dipartimento di Informatica e Comunicazione,
Universita degli Studi dell’Insubria,
Via Mazzini 5, 21100 Varese - Italy
email: marco.tarini@uninsubria.it

KEYWORDS
3DML, Virtual Reality engines, Distributed logistics ap-
plications

Abstract

Distributed logistics applications can benefit from Vir-
tual Reality (VR) environments. In the context of ware-
houses management, virtual warehouses can show, in a
visually intuitive way, the positions of stacked goods,
the best ways how those positions can be reached, and
so on. This work introduces an integration approach of
virtual environments in web-based logistics applications.
Our solution consists in a simple and sound modelling
of 3D virtual warehouses, and in a platform indepen-
dent navigator that we have specifically built around
the structural and behavioural characteristics of the re-
sulting 3D scenes.

INTRODUCTION

Industrial logistics applications can take advantage of
the inclusion of a navigable virtual environment. An
integrated system can provide additional services to a
warchouse managament application, as suggesting the
best path to the closest unit of a required stock, vi-
sually emphasizing the distribution of goods and their
current status, and providing a visual representation of
the results of queries on the stocked goods.

Additionally, during the planning activity for a ware-
house, a virtual environment could be useful to carry
out a feasibility assessment to organize the positions of
the stocked goods; similarly, it can be used to test phys-
ical optimizations of an existing warehouse.

In order to achieve these goals, we need a 3D model
showing the physical structure of the real warchouse and
the current positions of the goods. We also need a real
navigation tool that provides interaction with the scene,
and that dynamically updates it to reflect the real world

13

or planned changes (e.g. movements of goods). Fur-
thermore, in order to support the usage of such tool in
a distributed environment, updates are to be triggered
also remotely. Finally, this application should be con-
veniently accessed from common web-browsers, because
typical distributed warechouses management systems are
interfaced through web applications to take advantage
of the World Wide Web (WWW) infrastructure.

Figure 1: A real-world warehouse (top), and the corre-
sponding 3DML virtual environment (bottom).

This paper describes a novel approach to facilitate a
quick and inexpensive modeling of responsive virtual en-

vironments reflecting real (or planned) warchouses, and
the design of an ad-hoc navigation tool embeddable in
a distributed web-based environment.

MODELLING REAL WORLD SCENES

Purpose of this work is to fullfill the following require-
ments: (1) to model real warehouses and their behaviour
with responsive 3D scenes in a sufficiently faithful way;
(2) to interactively navigate and interact with them from
a web application.

Several general purpose scene definition languages,
as X3D (Web3D Consortium 2004) or it predecessor
VRML (Web3D Consortium 1997), coupled with ded-
icated intepretion engines could be used to meet both
needs. Unfortunately, 3D modeling based on such lan-
guages is usually a very demanding, expensive and time
consuming task. In the general case, manual model-
ing via CAD systems is error prone and requires large
amounts of time by expert designers. Even commercial
modellers, as Graphisoft Archicad, that specifically tar-
get interiors, do not reduce the modeling effort enough.
3D range scanning techniques can be successully used
to capture building interiors, as shown by projects as
(Levoy 1999, Stumpfel et al. 2003). The results present
a definition and faithfulness level that exceeds our needs,
while the acquisition process is far too expensive for our
scenario.

Image based modeling techniques (Debevec et al. 1998,
Tarini et al. 2000) are more affordable and produce mod-
els with a more fitting geometrical complexity, relaying
more on textures. Starting from a few pictures showing
the interior, 2D features (lines, junctions, corners) are
identified, then projective geometry principles are used
to invert the projection, thanks to assumptions made on
the regularity of the scene. Even this approach is too
resource demanding here.

3D models need to be defined through a description at a
far higher level, while we have a large tolerance in term
of accuracy and faithfulness for the low level details.
The scene modelling task, which also includes the def-
inition of behavioural aspect of the scene, must be as
unexpensive and quick as possible.

For all these reasons we resort to a form of modeling
that, taking maximal advantage of the simplicity and
the modularity of our target (industrial buildings like
warchouses), minimizes the efforts for their construc-
tion.

THE 3DML LANGUAGE

Our approach is based on the 3DML language (Flat-
land Online Inc 2003a), a XML (Bray et al. 2006) based
language designed to allow an easy, direct description
of 3D virtual environments. It was introduced by Flat-
land Online (Flatland Online Inc 2003a) and focuses
on 3D content creation for web applications. 3DML

14

originally targets applications as online games, but it
has been used in other contexts, as for a Beer Fes-
tival setup (Polovina et al. 2000), for simplified ver-
sions of virtual cities (Doyle and Isbister 1999) and for
a virtual museum (Virtual Open Air Museum Latvia,
http://www.virmus.lv). We will argument that 3DML
characteristics make it ideal for virtual warehouse mod-
elling as well.

A 3DML virtual scene (a “spot”) is composed by in-
stances of 3D blocks that are disposed over a regular 3D
grid. Each instance of a block appears as a 3D poly-
gonized structure with associated textures, colors and
other attributes.

The global structure of the spot is defined by its “map”,
a regular 3D grid of labels (defined slice by slice) that
indexes a set of “3D blocks”. Each “block” is defined
extending an “abstract block” taken from one or more
repositories (the “block-sets”), which are part of the
3DML document as well. An abstract block consists of
a set of “sub-parts”, each of which is composed by poly-
gons and, optionally, has associated default appearance
attributes (e.g. textures). Abstract blocks are equally
sized and enclosed in a squared bounding box.

An extension of an abstract block can redefine some
of the appearance attributes associated with its specific
subparts (usually, texture or color). Textures images
used in the block-sets are stored inside the block-set it-
self together with the description of the abstract blocks.
Extensions can also add behavioral properties, sched-
uled by associated events (see next paragraph).

Scripting in 3DML

3DML allows the modeler to embed scripts for defining
functions to access the elements of a scene. The sup-
ported language for such activity is a Simkin dialect.

Simkin (Whiteside 2000) is an embeddable scripting lan-
guage whose scripts can be inserted in any XML docu-
ment, thus including 3SDML ones. A Simkin extension
called Roverscript (Flatland Online Inc 2003b) is specif-
ically designed for the 3DML language. Roverscript de-
fines several elements and services to access the proper-
ties of the elements inserted in a spot. Among them, the
Player element provides methods for changing the posi-
tion of the avatar in the virtual scene, the Map element
gives access to the instances of blocks in a given position,
and the Block element provides services to change to the
properties of an instance of block through transforma-
tions (translations, rotations, scaling) and overrides of
appearance attributes (e.g. texture).

3DML allows one to define, inside a “spot”, functions
that can be invoked during the scene navigation: they
can be triggered by navigation events, by timers, and so
on. In the following sections we will extend this schema
by allowing for remote functions invocation.

Figure 2: A small subset of the blocks that compose the “block-set” used for a warehouse scene.

APPLYING THE 3DML APPROACH

Given a specific application domain (e.g. warchouses,
factories interiors, simplified cities, Doom levels...),
building a new environment in 3DML format is fast and
straightforward, since the same block-set(s) is shared
by the great majority of the scenes in that domain. In
particular, in the case of virtual warchouses, the model-
ing effort spent once to build the needed basic blocks is
reused several times for different (but similarly themed)
scenes. In most cases, a new virtual warchouse will dif-
fer from another for its 3D “map” only, which represents
the high-level structure and can be easily built or mod-
ified either by a modeler or automatically.

A virtual warehouse is built following the structure of
the real one by defining its map (typically sized tenths of
blocks in each dimension), extending and instantiating
blocks defined by dedicated blockset. Figure 2 shows a
subset of the warchouse blockset (composed of over a
hundred blocks).

Floor tiles are marked with textures that represent sym-
bols to signal positions according to the standard ware-
house shelf coordinate system. Shelves are modeled by
using ad-hoc blocks reflecting the current stocking sta-
tus of their real counterpart. Corridors are empty blocks
between shelves. Stairs ramp blocks, leading to different
floors, are endowed with scripts to ease their use (e.g.
on contact the avatar is dragged to the intended final
position, dispensing the user to drive it manually). The
3DML document also encodes an auxiliary GUI that
provides direct accesses to predefined places in the scene,
commands to change visualization modes and triggers
for other context specific functionalities.

The resulting scene, modeled in a short time, is similar
in its general structure to the real world warchouse (see
fig. 1) enough for all our purposes.

This modeling approach is also web friendly, since the
blocksets can be cached in the client side, dramatically
reducing the amount of exchanged information during
scene downloading in a distributed application.

It should be noted that the repetitiveness of the elements
in a scene, that commonly represents a drawback, in
the industrial logistics scenario reflects the real world
structures (see fig. 3).

15

At present, available 3DML viewers provide game ori-
ented interaction features, but fall short of communi-
cation capabilities that would made them suitable for
the logistics scenario. Moreover, activities and anima-
tions (defined as Roverscript functions) can be triggered
only by local events (e.g. generated by GUI, timers or
navigation), while we are interested in dealing with dis-
tributed events that depend on the web-based environ-
ment where viewers operate. Specifically, we need to es-
tablish two way communication channels between web
servers and 3DML viewers (web clients); such channels
would allow the servers to issue events to the clients,
and to monitor their status. As an example, the servers
could dynamically invoke functions that adaptively up-
date the 3D warehouse to reflect changes in the real one.
In addition, available viewers are platform dependent
tools (Flatland Online Inc 2003a provides an ActiveX-
based plug-in and a Win32-based stand alone applica-
tion); conversely, in order to deal with the heterogeneous
environment of distributed logistics applications, we are
interested in platform independent solutions.

As a consequence, in order to exploit the advantages
of the 3DML scene modeling approach previously dis-
cussed, we choose to develop a novel scene navigator
that addresses the listed shortcomings. For such pur-
pose, we focus on scene interactions and other needs
associated to the context of logistics applications.

THE 3DML VIEWER

Open3DML is our web-based application specifically de-
signed to support the visualization and navigation of 3D
environments described with (a close adaptation of) the
3DML language. Open3DML is based on Java3D and
Java Applet, established development technologies for
3D graphics and web-based applications.

Java3D achieves good rendering performances thanks
to graphical hardware accelerations, and ensures high
portability, hiding platform dependent implementation
aspects, and finally provides an unified application in-
terface for the underlying OpenGL or DirectX APIs.
As a result, our solution is platform independent, needs
a Java plug-in and a Java3D package installed, and fea-
tures real time GPU accelerated renderings.

Figure 3: Snapshots of the navigator showing 3DML
scenes that model a warchouse.

Taking advantage of the Java Applet technology,
Open3DML can be used either as a stand alone tool,
or within a web browser as a part of a distributed ap-
plication.

Architecture

The Open3DML application is structured as a set of
modules that supports different activities required by a
virtual environment, such as scene loading, scene ren-
dering and user interaction management.

Fig. 4 shows a sketch of the Open3DML architecture and
its related modules. They include: (1) a core module
providing services for loading a scene from a 3DML doc-
ument and for rendering activities; (2) a Simkin module

16

Open3dml

Simkin / Roverscript ‘

Interpreter Interaction Manager ‘

‘ Communication ‘

3DML model manager Manager

3DML document

| User

Figure 4: The high level architecture of Open3DML.

that provides inerpretation and execution capabilities
for Roverscript functions; (3) a communication manager
for the interactions with remote applications, and (4) a
user interaction manager.

Scene loading

Open3DML is conceptually built around the 3DML
meta-model. Since 3DML is a XML-based language, we
defined its meta-model with an XML Schema Fallside
and Walmsley 2004 describing the structural relation-
ships among the elements of the language. This choice
is motivated by the support for automatic validation,
which can be carried out by a lot of parsers. Another
reason is ease of development: the Java classes, consti-
tuting the core module of Open3DML, are automatically
generated from the XML Schema through a template-
based code generation approach. We used XML Spy
by Altova (Altova Inc 2004) and the related SPL (Spy
Programming Language) scripting language (Altova Inc
2004) in order to generate classes used to parse a doc-
ument (compliant to the aforementioned XML Schema)
and to translate the 3DML (XML serialized) elements
in Java objects; the latter constitute the internal data
structure used to build the 3D scene.

A Java class is dedicated to each element of the meta-
model and each of these provides methods to access the
properties of an instance of 3DML element.

A 3DML model can be seen as a four level structure
(see Fig. 5). The first layer represents the original SDML
document. At the second level we find a DOM tree (Ap-
parao et al. 1998) directly corresponding to the 3DML
document. This tree is also the skeleton of the third
level, composed by a hierarchical structure of Java ob-
jects that represents the elements of the model. The last
level consists of the structure of Java3D objects that de-
fine the 3D scene. Such objects are preprocessed to op-
timize their subsequent rendering (see next paragraph).

Navigation and Rendering

Our Java3D based real-time rendering engine takes ad-
vantage of the high level structure of the 3DML scene
being displayed. Each defined block type can be pre-
processed and stored in a display-list or a vertex-buffer-
object list, to be efficiently referenced multiple times
in the same scene (through Java3D Link-ShaderGroup
mechanism).

To improve visualization efficacy, our scene can include
semi-transparent (alpha blended) elements: luckily it
is easy to render the blocks composing the scene in a
depth-sorted way thanks to the 3D lattice structure of
block references.

Visibility culling and view frustum culling are also made
straightforward, as the 3D lattice constitutes a natural
decomposition of the scene in cells for precomputed vis-
ibility.

Collision detection is implemented in an easy and ef-
ficient way: at scene loading time each block is cat-
egorized as “impassable”, “fHoor tile”, “empty space”,
and so on; this information is accessed at navigation
time, avoiding any further computational effort. This is
clearly an approximation, but it is well suited for our
purposes. Collision detection is used both for standard
collision responses, and as a possible trigger of scripted
events (e.g. “step in” trigger).

The scene can also embed animated textures (described
in the 3DML document as GIF images): all frames are
preloaded in the graphic card memory to be later alter-
nated.

Functions and triggers

Open3DML integrates a SimKin interpreter (Whiteside
2000), an open-source interpreter for RoverScript scripts
that are embedded in a 3DML spot. This module is
composed of:(1) a parser that analyzes the Roverscript
code; (2) a series of Java classes that map the element
defined for the base language; and (3) an engine that
executes the parsed code and accesses the properties of
the instances of the above described classes.

Level 4 Java3D objects
| 3D objects binding
Level 3 Java objects structure
Level 2 DOM tree (structure skeleton)
| | XML parsing & Java binding
Level 1 3DML (XML) document

Figure 5: The Open3DML scene loading process

17

Client-Server communications

Open3DML can be used as a client interface of a dis-
tributed application that provides web-services. It is
based on Java Applet technology and exploits the com-
munication and transmission infrastructures provided
by the WWW. The communication mechanism is based
on the HTTP protocol.

Scene loading is the simplest client-server interaction
form supported by the tool. 3DML scenes are remote
resources that can be accessed through web servers.
Open3DML sends a request to a specific URL. In re-
sponse, the web-server returns a 3SDML document that
is parsed to instantiate a 3D scene.

Roverscript allows the modeler to define functions that
can be invoked as responses to local events. These func-
tions can be seen as services provided by a 3DML scene.
As we discussed before, we also need double way com-
munications between Open3DML and the remote ap-
plication. To achieve this result in a HT'TP compli-
ant way, we extended the capabilities of the client side
(Open3DML) by defining an interaction mechanism that
allows a predefined remote application to require a ser-
vice. Open3DML continuously sends, with a customiz-
able rate, HI'TP GET requests to a specific URL. The
remote application replies sending either an empty doc-
ument, or a document containing the invocation of any
Roverscript functions defined in the currently loaded
3DML spot. A parser extracts the code from the sent
document and passes it to the Simkin interpreter that
processes the request. If necessary, after code execution,
the result of the computation can be sent back to the
remote application via a POST request.

As an example, let us consider the implementation of a
potentially useful service: “return the shortest path to
reach the position of a given pallet”.

Such service is implemented both on client and server
side. The client side provides the management of the
service invocation. The invocation can be triggered by
the interaction of the user with a component of the 3D
environment or the GUI. The server side hosts both the
service processing activities, namely an implementation
of the Dijkstra algorithm (Dijkstra 1959) to compute the
shortest path, and a module that translates the output
in a sequence of commands whose execution modifies the
3D model so that the shortest path appears as a series
of arrows on the floor.

CONCLUSIONS AND FUTURE WORK

This work presented a simple approach to manually
model virtual scenes representing industrial warchouses.
Our solution minimizes the modeling effort and still pro-
duces virtual scenes that are acceptably similar to the
real world structures, and additionally embeds meta-
information and functionalities. The proposed approach
is completed by a platform independent tool to navigate

such scenes. Interaction with the scenes is achieved by
both local and remote invocations of predefined meth-
ods embedded in the scene.

A promising direction, currently being investigated, in-
volves porting Open3DML to self tracking, portable de-
vices to be used inside the physical warehouse. This
solution would clearly find many beneficial applications.
The porting of Open3DML to hand held devices is eased
by its software structure.

Moreover, we think that the general schema presented in
this paper can be advantageously adopted in industrial
context different from warehouse management. Inciden-
tally, Open3DML, being a cross-platform tool capable to
show general 3DML scenes, can be useful to the general
3DML community.

References

Altova Inc, 2004. Altova XMLSpy 2005 User € Refer-
ence Manual. Vervante.

Apparao V.; Byrne S.; Champion M.; Isaacs S.; Jacobs
I.; Hors A.L.; Nicol G.; Robie J.; Sutor R.; Wilson C.;
and Wood L., 1998. Document Object Model level 1.
World Wide Web Consortium (W3C). W3C Recom-
mandation.

Bray T.; Paoli J.; Sperberg-McQueen C.M.; Maler E.;
and Yergeau F., 2006. FEztensible Markup Language
(XML) 1.1. World Wide Web Consortium (W3C).
W3C Recommendation.

Debevec P.; Yu Y.; and Borshukov G., 1998. Efficient
View-Dependent Image-Based Rendering with Projec-
tive Texture-Mapping. In Rendering Techniques 98,
Proc. of the EG Workshop. Springer, 105-116.

Dijkstra E., 1959. A note on two problem in connexion
with graph. Numerische Mathematik, 1, 269-271.

Doyle P. and Isbister K., 1999. Touring machines:
Guide agents for sharing stories about digital places.
In Proc. of AAAI Fall Symp. on Narrative Intelli-

gence.

Fallside D.C. and Walmsley P., 2004. XML Schema
1.1 Part 0: Primer. World Wide Web Consortium
(W3C). W3C Recommendation.

Flatland Online Inc, 2003a. 3DML Tag Reference. Flat-
land Technical Report, http://www.flatland.com.

Flatland Online Inc, 2003b. RoverScript: 3DML
Scripting Reference. Flatland Technical Report,
http://www .flatland.com.

Levoy M., 1999. The digital Michelangelo project. In
Proc. of the Second International Conference on 3D
Imaging and Modeling (3DIM99).

18

Polovina S.; Khatri B.S.; and Singh S., 2000. Culture
and Web3D: Experiences in Building o Virtual Beer
Festival Site tn 3DML. In Proc. of British Computer
Society HCI Cultural Issues in HCI Workshop.

Stumpfel J.; Tchou C.; Yun N.; Martinez P.; Hawkins
T.; Jones A.; Emerson B.; and Debevec P., 2003. Mod-
elling and Display of Architectural Forms Digital Re-
unification of the Parthenon and its Sculptures. In
Proc. of the 4th Int. Symp. on Virt. Reality, Archeol-
ogy and Intelligent Cultural Heritage (VAST-03). EG
Association, 41-50.

Tarini M.; Cignoni P.; Rocchini C.; and Scopigno R.,
2000. Computer Assisted Reconstruction of Buildings
from Photographic Data. In Vison Modeling and Vi-
sualization 2000 Proceedings. 10S Press.

Web3D Consortium, 1997. Virtual Reality Modeling
Language (VRML). ISO/TEC 14772-1.

Web3D Consortium, 2004.
ISO/IEC 19775.

Extensible 3D (X3D).

Whiteside S., 2000. Simkin for Java. Technical Report,
http://www.simkin.co.uk.

A WEB BASED SOLUTION TO MANAGE
DISTRIBUTED DISCRETE EVENT SIMULATIONS

Alberto Coen-Porisini
Pietro Colombo
Ignazio Gallo
Antonella Zanzi

Dipartimento di Informatica e Comunicazione
Universita degli Studi dell’Insubria
Via Mazzini 5, 21100 Varese, Italy
E-mail: {alberto.coenporisinilpietro.colombolignazio.gallolantonella.zanzi} @uninsubria.it

KEYWORDS
Web-based distributed simulation, discrete event simulation,
open-source SW, simulators integration, 3D visualization.

ABSTRACT

SINPL (Simulator Integration Platform) is an open-source
software platform supporting the integration of existing
simulators in a distributed Web-based environment and the
management of simulation experiments.

In the present work we introduce the platform architecture
and we discuss the role of the various modules composing
the platform focusing on their visualization capabilities.
Such capabilities aim at controlling and analyzing simulation
experiments by means of the implemented 2D and 3D
graphical user interfaces.

INTRODUCTION

In the simulation field the demand for distributed
architectures is mainly motivated by the advantages of
reusing existing simulators and modelling complex systems
that could be difficult to realize with a single stand-alone
application. Web-based simulation systems may be
considered the natural evolution of distributed simulations
and in the last years several proposals for this kind of system
have been made (Kuljis and Paul 2000).

SINPL is an open-source software platform that allows one
to carry out distributed simulations. The platform supports
the integration of existing heterogeneous discrete event
simulators in a Web-based simulation environment.

In a simulation environment, visualization capabilities are
important both in modeling and execution activities, and they
are used to achieve different goals such as animating
modeled processes or allowing one to manage and interact
with a running simulation.

In SINPL, the visualization is mainly devoted to show the
communication flow among simulators during a running
session. As a simulation updates the state of the modeled
system, visualization can provide an abstract representation
of the state of the on going simulation.

In the present work we introduce the SINPL platform
architecture focusing on the simulation execution module
and the implemented 2D and 3D visualization
functionalities.

19

The paper is organized as follows: first of all the simulation
design process supported by the SINPL platform is
introduced; then the architecture of the platform itself is
presented, followed by a description of the tools in charge of
the simulation execution and control, and by the presentation
of the implemented graphical user interface; finally, after a
short analysis of the related works, some conclusions are
drawn.

SIMULATION DESIGN PROCESS

The simulation design process (Coen-Porisini et al. 2004)
supported by SINPL comprises three main activities
described in the following.

1. The Information Model definition consists in defining the
basic elements that represent either the logical components
of a system related to a specific application domain. Thus,
each domain has its own Information Model. As a result, the
SINPL platform can be used in many different application
domains by defining the appropriate Information Models.

2. The Simulation Architecture design activity aims at
building a system by instantiating the elements of the
Information Model. The Simulation Architecture provides a
logical view of how the different simulation models
cooperate by defining both data flow (i.e., which data are
exchanged) and control flow (i.e., how the simulators
interact).

The semantics of the Simulation Architecture is given in
term of a High Level Petri Net (HLPN) (Jensen et al. 1997)
in which data are associated with tokens and actions with
transitions. A HLPN is associated with every component
defined in the Simulation Architecture, and thus the
Simulation Architecture itself results in a HLPN obtained by
composing the different HLPN associated with the
components therein.

3. The Simulation Experiment configuration and execution
consists in defining how the simulation has to be carried out.
This requires first to define the input data needed by the
different simulators and then to actually execute the
simulation. SINPL manages a simulation experiment
executing the HLPN associated with its Simulation
Architecture. Whenever a transition is enabled, the
associated action is enabled as well, and the input data are
taken from the input places and sent to the real simulator;

similarly the output data produced by the simulator are used
to update the corresponding marking of the HLPN.

All the aforementioned phases are supported by means of
software tools. In particular, Infocreator is the tool
supporting the definition of Information Models, while SED
is aimed at the definition of Simulation Architectures.
Finally, DSC represents the core of the platform and takes
care of managing experiments and running simulations. The
next section discusses the platform architecture and the
different tools composing the platform itself.

PLATFORM ARCHITECTURE

SINPL is a software platform characterized by a
heterogeneous architecture. The whole platform is built
around the Distributed Simulation Controller (DSC) system,
which manages the execution and the visualization of a
simulation experiment, coordinating the communication
among the different simulators involved. DSC exploits the
infrastructure of the World Wide Web (WWW) both to
provide communication functionalities and to integrate its
modules. This distributed application is characterized by a
client/server architecture. The client side is composed by two
modules, respectively DSC Manager Web Client and DSC
Client, both interacting with a server side module called DSC
Manager exploiting a HTTP based communication. Figure 1
shows the SINPL architecture from the DSC viewpoint.

More specifically, it identifies which modules are composing
the client side, which ones the server side, and the
communication protocols used.

The server side

The server side of the SINPL architecture is itself a
distributed system that includes DSC Manager and all the
simulators. Such subsystem is characterized by a point-to-
point star architecture, where all the communications among
the different simulators modules are mediated by the DSC
Manager. The system infrastructure has a hybrid nature: it
can be based on the WWW and/or on other kind of
infrastructures. DSC Manager, in order to communicate with
the simulators, uses established technologies such as
Common Object Request Broker Architecture (CORBA)
(http://www.corba.org) and Simple Object Access Protocol
(SOAP) (http://www.w3.org/TR/soap). CORBA is an OMG
standard that provides integration functionalities for
components of a distributed heterogeneous system, assuring
independence from operating systems, programming
languages and net infrastructures. SOAP is a W3C standard
designed to support communication for Web applications. It
is based on XML and supports different transport protocols.
A description of the utilization of SOAP as communication
infrastructure between DSC Manager and the simulators can
be found in (Coen et al. 2006).

DSC Client
InfoCreator ExperimentManagerinterface
SED
Cll
2DSimulationArchitectureGUI
DSC Manager Graphical User Interface
Web Client
:%DSimuIationArchitectureGE|
(Open3DML) SOAP
HTTP
Client Side
Server Side
Simulator-1
DSC Manager | DSC Manager
Simulator2DSC Weblnterface
Weblnterface [Ste.__
‘CORBA
RROSN Dpsc2simulator- | [DsC2Client & |
Weblnterface SOAPInterface
DSCCore
i _ DSC2Simulator- el

Simulator-k e ORBlInterface | | ExpManager —

_SOAP’
Simulato2DSC | _L--="
CORBAInterface

Figure 1: SINPL — Deployment diagram

20

Both SOAP and CORBA provide mechanisms that allow
simulators to share data. A dedicated common software
interface has been defined for all the components of a
Simulation Architecture in order to enable direct
communications among simulators and between simulators
and DSC. Moreover, an XML-based data inter-change
format has been defined in order to support data exchange.
As a consequence each simulator may need a software
adapter that implements such interface in order to convert
data from/to the common format, and to allow one to
supervise and control the simulator execution.

The client side

As aforementioned, the client side is composed of two
modules called DSC Manager Web Client and DSC Client,
respectively.

DSC Manager Web Client is a SINPL component that
provides configuration capabilities allowing one to define
and setup simulation experiments. Using such application, a
modeller is able to prepare all the required information in
order to start the execution of a simulation experiment.
These data are associated with the components predefined in
a Simulation Architecture.

Moreover Infocreator and System Editor (SED), two Java-
based stand-alone tools, are deployed by means of DSC
Manager Web Client exploiting Java Web Start technology
(Sun Microsystems 2005). This technology allows one to
download, install and execute programs stored on a remote
location that can be accessed through a common Web server.
The Infocreator tool supports the definition of Information
Models, while SED is aimed at the definition of Simulation
Architectures. More specifically, SED provides a graphical
editor that allows one to compose Simulation Architectures
using the Information Models previously defined. A
Simulation Architecture is built instantiating the simulation
elements defined by an Information Model and defining how
they have to be connected among them through the
communication interfaces. SED provides a module, called
Petri Net Editor, which allows one to generate and manage
the Petri Nets associated with each component of the
Simulation Architecture.

The second component (DSC Client) operating on SINPL
client side, is a tool designed to manage the execution of
simulations and to analyse the results of simulation
experiments. In order to provide analysis capabilities, DSC
Client integrates different kinds of graphical user tools.

In the rest of the paper, we discuss both the structural
characteristics of DSC and the functionalities provided by its
components, focusing on the communication, visualization
and control capabilities.

THE DSC SYSTEM

A Simulation Architecture is a conceptual model that
abstracts away from the characteristics of a heterogeneous
distributed software system composed by simulators. A
simulator is a software component that operates in the
context of a Simulation Architecture receiving and producing
data and events and performing some particular tasks.

In the SINPL platform, simulators communication is based
on the Blackboard architectural pattern (Buschmann et al.
1996). The Blackboard architecture provides a way for
communicating to a collection of independent programs that

21

operate on a common data structure. There is not a
predetermined sequence for the activation of the independent
programs. Instead, the evolution of the system is determined
by the state of the components and is controlled by a central
control unit that coordinates the programs.

In the SINPL platform, the execution of the different
simulators is managed by the DSC system. DSC is composed
of tools that provide events logging, communication and
control capabilities. It operates by sending control
commands to the simulators and by storing the events and
the data they produce. More specifically, executing the
HLPN associated with the Simulation Architecture provides
control capabilities allowing the synchronization of the
different simulators composing a Simulation Architecture.
Transitions firing in the Petri Net associated with a simulator
represent an internal change of the computational state of the

simulator. Instead, transitions firing in the Petri Net
connecting different simulators possibly enables the
execution of other simulators. The synchronization

mechanism supported by DSC exploits an implementation of
the Chandy-Misra-Bryant (CMB) protocol (Chandy and
Misra 1979) and it is fully discussed in (Carullo et al. 2006).

The SINPL communication system is based on a message
passing mechanism that ensures the persistence of the
exchanged messages. In this context, messages are events
generated by the different components of the Simulation
Architecture. The most significant types of events are the
following ones:

1. generic control events, as SimulationStart, and
SimulationStop, which are generated at the beginning
and at the end of a simulation experiment;

2. data events, as DataSend and DataReceive, respectively
generated whenever a simulator sends or receives data;

3. transition events, as TransitionRequest, that is generated
by a simulator that would like to change its state. Once
received such message, DSC, depending on the current
marking of the HLPN, enables the request replying to
the simulator with a TransitionAck.

All the events are labelled with a Timestamp that specifies
the time instant when they have been generated (Carullo et
al. 2006) and are stored by DSC. In this way one can
examine all the messages exchanged by the simulators and
replay the simulation itself starting from any time instant.

The events stored by DSC describe the evolution of the
simulators that is, all the data produced and received during
an experiment. In order to perform analysis tasks, the events
have to be elaborated and displayed. Similarly, we need to
show the real-time evolution of all the components involved
in an experiment.

Notice that the same experiment can be the target of different
analysis tasks. Therefore, events can be displayed exploiting
different viewpoints or different visualization modes. In a
distributed system, monitoring capabilities should not be
implemented by a centralized application. Such requirements
and the structural properties of the SINPL platform, whose
infrastructure is based on a heterogeneous system, motivate
the choice of a distributed solution. Remote applications
directly interfaced with DSC can implement all these
requirements providing the possibility to simultaneously
exploit several viewpoints and to analyse different parts of
the whole simulation history without affecting the evolution
of the experiment. Similarly, remote management

applications can be useful to configure and manage
simulation experiments.

Communication, management and monitoring functionalities
have been split among different components to optimize the
execution of the different tasks related to the management
and analysis of simulation experiments. DSC is a Web-based
system, expressively designed to satisfy the aforementioned
requirements.

DSC Manager is a Web application that operates on the
server side of the system. It can be imagined as a shell that
provides a Web interface to the DSC system. DSC Manager
provides all the functionalities through Web services. Thus,
taking advantage of WSDL interfaces and SOAP messages, a
remote application is able to directly invoke services
provided by DSC Manager. In a typical scenario, once
configured a simulation experiment, the modeller may use a
Web browser to manage the execution on DSC using the
DSC Manager. Such remote Web application can be
accessed through DSC Client, a dedicated client application.

DSC CLIENT

DSC Client is a tool used to remotely manage and analyse
the execution of simulation experiments. It operates on the
client side of the system, accessing the services provided by
DSC Manager, which operates on the server side.

This solution allows one to constantly get information on the
current state of the on-going simulation experiment, and to
manage the execution of an experiment itself.

DSC Client and DSC Manager exploit a profile-based
authentication mechanism. Generic users can access
monitoring services without any restriction, but only primary
users can affect the execution of an experiment. More
specifically, only administrators can start or stop the
execution of an experiment.

Monitoring services can be accessed both in real-time and
after the execution of an experiment. The latter mechanism
exploits “log files” that store the events generated by
simulators. The real-time monitoring services provided by
DSC are based on a synchronization mechanism that uses
Timestamp labels associated with the events. Given a certain
time instant, the state of an on-going experiment is described
by the set of all the events generated since the simulation
started. DSC Client exploits an asynchronous interaction
mechanism to obtain the current state of the experiment.
More specifically, it implements a polling algorithm that
constantly sends requests to the server in order to get updates
on the experiment state. Such requests specify the
Timestamp information associated with the last event
received by the client. DSC replies to the client sending all
the events that happened since the time instant specified by
the received Timestamp. This mechanism allows us to
optimise the quantity of data exchanged since all the events
are transmitted only once.

DSC Client provides a user-friendly interface to access the
DSC services and to analyse the events of a simulation
experiment. The DSC Client graphical user interface (GUI)
has been implemented using the Java SWING technology, an
established standard to build platform independent graphical
user interfaces.

The DSC Client GUI has been designed focusing on the
optimisation of the visualization capabilities for interacting
with the user. Notice that one of the most important features

22

provided by the application is the animated visualization of
simulations. Such functionality allows a user to graphically
rebuild the execution of an experiment. The GUI structure is
quite similar to that of common video-player applications. It
provides a slide bar that operates the time line of a
simulation execution. The slide bar is directly associated
with the queue of events either obtained by DSC or loaded
from a log file. As a consequence, users can either monitor
an on-going simulation or review an already executed
simulation. An example of the DSC Client GUI is shown in
figure 2. The screen shot shown refers to the execution of an
experiment in the Flexible Manufacturing System (FMS)
context. A FMS is composed of several machines connected
by means of a transport system. The transport system carries
the raw parts to the machines where they are processed.
Once the machines have finished their job, the parts are
moved back to the load station where they are unloaded.
Moreover, the machines use a tool-room as a repository for
the tools they need in order to properly work the raw parts
(Matta et al. 2004).

A detailed list of all the exchanged events is shown in a
dedicated internal frame labeled “Timestamps List”. Such
list is temporally ordered according to “timestamps” values.
Each item describes the number of events that occurred at a
given timestamp.

An internal frame labeled “Events at Timestamp”, lists all
the events generated at a given instant. Selecting an item
from the list, a user can obtain detailed information on the
associated event. The information depends on the type of
event, however some fields are common to all types. As an
example an analyst can access the event ID or the name of
the simulator that generated it. For events related to the
distribution of data, a dedicated window shows the XML
serialization of the data value. This window is useful for
analysis tasks since it allows an analyst to completely rebuild
the flow of data among simulators.

All the components involved in an experiment are
summarized in a frame labeled ‘“Architecture tree”. Such
frame provides a tree view of the components belonging to
the Simulation Architecture and of their communication
channels. More specifically, one can find the names and the
identifiers of all the involved simulators and of the links
among their input and output ports.

Visualization in DSC Client

DSC Client provides a dedicated frame showing both 2D and
3D representation of simulation architectures and an
animated representation of simulation experiments. In the 2D
representation, simulators are shown as boxes labeled with a
string identifier and colored dependently on their state.
During a simulation experiment, simulators change their
computational state (by producing/receiving data) or ask for
enabling an internal transition. As a consequence, DSC
notifies the user by changing the color associated with the
involved simulators. The same mechanism (i.e., by changing
the color associated with a connector) is used to notify users
that some kind of data have been generated by a simulator.
Colors show the computational state of the components and
of the communication channels. This visualization might not
be expressive enough to carry out analysis task on the
experiment, but can help one to obtain an immediate view on
the simulation state at a given instant.

Therefore, the 2D representation mode, which provides a flat
view of the System Architecture, even though is able to show
all the relevant aspects of a simulation experiment, may not
be expressive enough to abstract away from the complexity
of the relationships among the simulators. Thus, an
architecture composed of several components that share a
great quantity of data, may take advantage from a 3D
representation. In fact, the complexity of the interconnection
among the simulators can be reduced by providing a third
dimension to the Simulation Architecture. As an example,
consider a couple of simulators that communicates through
some tenths of ports; the 2D representation would show a
tangle of connections, which would be confusing for the
user. On the contrary a 3D representation would depict the
connections also along the third dimension. Notice that 2D
and 3D representations are simply different views on the
current state of the same model and it is up to the user to
decide which visualization mode is more suited to his/her
purposes.

The 3D simulation architecture provides a schematic
representation of the components and an intuitive
representation of the connections among them. Simulators
maintain the same graphical characteristics introduced by the
2D representation, they are labeled and they show their
current state using different colors. Such visualization mode
provides additional interaction capabilities. The user can
exploit predefined viewpoints to observe the simulation,

focusing on particular details related to the components in
the foreground. The GUI provides buttons to move from one
viewpoint to another. Therefore, the user can navigate the
simulation scene coming close to specific simulators or
connectors.

A user, clicking on the representation of a simulator obtains
a description of its computational state. As a consequence
the DSC Client shows a dedicated window (see figure 2) that
lists all the events associated with the simulator. The same
functionality is implemented for connections. Both 2D and
3D visualization frames provides such interaction capability.
An example of the 3D visualization frame is reported in
figure 3. The screen shot shown refers to the execution of the
same simulation experiment previously described.

The 3DML approach

The 3D visualization capabilities of the DSC Client make
use of 3DML (http://www.flatland.com/), a 3D modeling
language, and of an open-source application, called
Open3DML, specifically designed to support the
visualization and navigation of 3D scenes described with
3DML. Open3DML is a general-purpose interpreter for the
3DML language that can be used in different contexts
(Colombo et al. 2006).

A:rchitﬁ perpune Architecture view

% Simulators

Machine Status view

6

2
i o iBuffer
¥ .
& T
Machine e
S o Mackine
N, &

i

: i 0t
L@j Heguest [88] for transition on "work.onpaliet™
o on shndator “Blacbine 2 ODERSRTITT B TR

% Ack B transition reguest [B8]

Data [97] send
owet fink "irommachine o-buffer”
rater F991 sond
aver Buk e anach

Hezp

B

HE 97
TineStamy 13.0

Fimmlator: MachineZU05351Y

<attributeBlement id="walore'>
“ordinalTypsElemsnt™
<integerType value="1" />
<fordinalTypeElements

~~~~~~~~~~~~~~~~~~~~~~ Zfattributsll sment>

B=>  Iype: DataSend

Link Gate £k from-machine 1-to-buifer ”@

x|

)

CoomplexTypeElement id="PalletOk’ place="200535182T2TT5829.357

i . <foomplexTypeElement > -

8,00 fch for transiion reguest o B

13.1]!](30 0 mﬁfm o Data [y?] send

3ABBED e 7 ower link Mrem-miachine $o-buifer” -

158080 ¢ o Data[93] send -

16,0800 } over Bl "Rromanachined o affer™ -
Boly,

Figure 2: DSC Client GUI with the 2D visualization frame



The 3DML language is a XML (Harold 2004) based
language designed to allow direct description of 3D virtual
environments. It focuses on 3D content creation for Web
applications; examples of use of this language can be found
in tourist context like virtual museum (Virtual Open Air
Museum Latvia, http://www.virmus.lv) and virtual cities
(Isbister and Doyle 1999).

The 3DML modeling approach is based on the
approximation of the structure of a scene with a static 3D
grid and on the composition of the final scene with
predefined 3D objects called “blocks”.

A 3DML virtual scene is composed by instances of “blocks”
disposed over a regular 3D grid. Each instance is a 3D
polygonized structure with associated appearance attributes
(as textures and colors) and behavioral ones (functions
provided by the single 3D objects). Each block provides
services to change the properties of its instances by means of
transformations as translations, rotations, scaling and the
overriding of the appearance attributes. Such capabilities
allow one to define, inside a 3DML document, services that
can be invoked during the scene navigation in order to
change the characteristics of the scene.

Applying the modeling approach

3DML is suitable to define simple scenes that satisfy the
aforementioned modeling requirements: a simulation
architecture is described as composed by “boxes” (parts of a
simulators) and “tubes” that model the connectors defined
among the simulators. Such scenes are visualized by the

Open3DML engine, which provides also interaction
capabilities with the user.

Open3DML has been configured to allow DSC to directly
invoke services provided by a scene (like they were local
methods of an Open3DML class). As a consequence, DSC
interacts with Open3DML to change the characteristics of
the currently loaded scene triggering functions provided by
the same 3DML scene. Such mechanisms are helpful to deal
with animations that keep track of the evolution of the
components involved in a simulation experiment.

Exploiting such interaction mechanism, “3D Boxes” change
color as a consequence of changes in the computational state
of the component that they are modeling. The same

mechanism is applied to the “3D tubes” elements as well.
3DML approach assessment

3DML is well suited to deal with the definition of 3D
Simulation Architectures. In this context 3D is mainly used
to decrease the visualization and management complexity of
connections among the simulators. Such characteristics make
3DML an easy and cost effective solution. Simulation scenes
exploit the capabi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>