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Preface

It is with great pleasure we welcome you to Dublin for the 5™ International Conference
on Simulation and Modelling in the Food and Bio industries (FOODSIM'08). The
FOODSIM conference, conceived in 2000 by a team of five Professors from ENITIAA
(Daniel Thiel, Jean-Yves Monteau, Lionel Boilleraux, Dominique Della Valle and Michel
Havet) in cooperation with the European Simulation Office, has gone from strength to
strength, bringing together model developers, food experts and industrial users of model
simulation tools.

Mathematical and computing techniques play an important role in simulation,
optimisation and management of food and bio-processing techniques. The effectiveness
and reliability of modelling procedures has become a valuable alternative for, and
support to, the traditional experimental approach. In that respect, mathematical
simulation is of paramount importance in describing phenomena, solving problems,
testing new ideas for a better representation of reality.

FOODSIM’08 aims to present a broad overview of the state-of-the art in using computer
models in the development and operation of food and bio-processes. This event
provides a great opportunity for scientists from all over the world to share their thoughts,
findings and progress in this field and facilitates cooperation and interaction between
international experts in food and biological sciences, engineering, computer science, and
mathematics.

We would like to thank all the authors for sharing their research and the reviewers for
their diligent work in assessing papers. We would also like to thank the various
organisations for assistance and sponsorship of this year’s event (UCD, SFI, ENITIAA,
ETI, EUROSIS, Ghent University, NIZO Food Research).

Finally we wish you all a pleasant and enjoyable time in Dublin at FOODSIM’08.
Dr. Enda Cummins, University College Dublin, Belfield, Dublin, Ireland

and

Prof. Daniel Thiel, ENITIAA, Nantes, France
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Modelling and simulation of
dynamical systems with a dynamical structure

Jean-Louis Giavitto

IBISC FRE 3190 CNRS — Université d’Evry, Genopole,
523 place des Terrasses de I’Agora, 91000 Evry, France
giavitto@ibisc.univ-evry. fr
http://mgs.ibisc.univ-evry.fr

The  dynamical system  approach
characterizes a system by its state and
models its evolution by a transition
function (or a relation). This approach is
widely used in system's simulation and
there exists several formalisms used to
describe a dynamical system: ordinary
differential equations, partial differential
equations, iterated equations (finite set of
coupled difference equations), cellular
automata, etc., following the discrete or
continuous nature of the time, the space
and the value used in the modelling.

However, some dynamical systems exhibit
a dynamical structure, that is, the structure
of the state cannot be fixed a priori and
changes in the course of the time and/or
the evolution function is also susceptible to
evolve, cf. [Gia03]. We call such systems
dynamical systems with a dynamical
structure or (DS)? in short. Examples of
such systems include the modeling of
elastic and soft bodies, dynamical
networks (like the Internet, mobile
network, etc.) and numerous biological
systems, especially in morphogenesis
[GGMP02].

(DS)? cause specific and hard problems
for their simulation. For example the
transition function cannot be defined
globally and once and for all: the dynamics
of the whole system must be specified as
several local competing transformations
occurring in an organized set of simpler
entities (the elements of the system).
Locality means that the system can be
decomposed into parts, either statically or

dynamically [GMCS05], these parts being
small with respect to the whole, and such
that computation proceeds by evolution of
these parts.

In this presentation, we introduce the
notion of (DS)? and one approach for their
simulation based on the specification of
local evolution rules specifying the
system's  element interactions.  This
framework, based on elementary notions
borrowed from algebraic topology [GS08],
encompasses  previous well  known
formalisms like Lindenmayer systems
(used in the modelling of plant growth) or
cellular automata. The rule application
strategy can be used to achieve
synchronous, asynchronous or stochastic
evolutions.

The corresponding tool, instantiated in a
domain specific programming language'
(DSL) called MGSs, has been successfully
used in various applications. We will
present here two examples: the simulation
of the growth of the meristem of
Arabidopsis at a cellular level [dRBCL+06]
and an example of synthetic multicellular
bacteria  designed for the iGEM
competition in synthetic biology [IGE07].

References
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!'see the project web page at
http://mgs.ibisc.univ-evry. fr



properties of the cell-cell signaling network at
the shoot apex in Arabidopsis. PNAS,
103(5):1627-1632, 2006.

[GGMPO02] Jean-Louis Giavitto, Chris-
tophe Godin, Olivier Michel, and Przemyslaw
Prusinkiewicz. Modelling and Simulation of
biological processes in the context of
genomics, chapter “Computational Models for
Integrative and Developmental Biology”.
Hermes, July 2002. Also republished as an
high-level course in the proceedings of the
Dieppe spring school on “Modelling and
simulation of biological processes in the
context of genomics”, 12-17 may 2003,
Dieppes, France.

[Gia03]Jean-Louis  Giavitto.  Topological
collections, transformations and their ap-
plication to the modeling and the simulation of
dynamical systems. In Rewriting Technics and
Applications (RTA’03), volume LNCS 2706 of
LNCS, pages 208 — 233, Valencia, June 2003.
Springer.

[GMCSO05] J.-L. Giavitto, O. Michel, J.
Cohen, and A. Spicher. Computation in space
and space in computation. In Unconventional
Programming Paradigms (UPP’04), volume
3566 of LNCS, pages 137-152, Le Mont Saint-
Michel, September 2005. Springer.

[GS08] Jean-Louis Giavitto and Antoine
Spicher. Topological rewriting and the geo-
metrization of programming. Physica D, 2008.
(accepted for publication).

[IGEO07] IGEM. Modeling a synthetic
multicellular bacterium. Modeling page of the
Paris team wiki at 1GEM’07, 2007.
http://parts.mit.edu/igem07/ind

ex.php/Paris/Modeling.



Predictive Microbiology Tools for Evaluating the Compliance of RTE Foods with the New
European Union Safety Criteria for Listeria monocytogenes

Kostas Koutsoumanis

Laboratory of Food Microbiology and Hygiene, Department of Food Science and Technology, Faculty of
Agriculture, Aristotle University of Thessaloniki, Thessaloniki, 54124, Phone +30 2310 991647. Fax: +30
2310 991647. E-mail: kkoutsou@agro.auth.gr.

Abstract

This  study  presents  predictive
microbiology  tools for evaluating the
compliance of RTE foods with the new safety
criteria for L. monocytogenes. A probabilistic
modeling approach is described that combines:
a) growth/no growth boundary models, b)
kinetic growth models, c¢) data on product
characteristics (pH, a,, shelf-life) and d) storage
temperature data recorded from 50 retail stores
in Greece. The probabilistic analysis of the
above components using Monte Carlo
simulation, which takes into account the
variability of factors affecting microbial growth,
can lead to a realistic estimation of L.
monocytogenes levels in the products throughout
the food-supply chain. The developed approach
was also used for evaluating the probability of
food spoilage. The quantitative output generated
can be further used by food managers as a
decision-making tool regarding the design or
modification of a product’s formulation or its
“use-by-date” in order to ensure compliance
with the new safety criteria and quality of the
products.

INTRODUCTION

According to the new EU Regulation
(EC 2073/2005), food safety criteria are those
that “define the acceptability of a product or a
batch of foodstuff applicable to products placed
on the market”. Of particular interest in the food
safety criteria-compared to the previously
existing legislation- are the legislative
amendments regarding L. monocytogenes in
RTE foods. RTE foods other than those
intended for infants or special medical purposes
are sub-divided into those that are able to
support the growth of L. monocytogenes and into
those that are not. Products “with pH <4.4 or a,,
<0.92, products with pH < 5.0 and a,, < 0.94 and
products with a shelf-life of less than five days”

are automatically considered to belong to the
category of RTE foods that are unable to support
the growth of L. monocytogenes. The
Regulation also states that “other categories of
products can also belong this category, subject to
scientific justification”. Last, the food safety
criteria for L. monocytogenes are adjusted
according to their temporal stage in the food-
chain. Thus, for RTE foods that are able to
support the growth of L. monocytogenes, the
new Regulation demands the absence of the
pathogen (in 25 g) “before the food has left the
immediate control of the food business operator,
who has produced it”, but allows for up to 100
CFU/g for “products placed on the market
during their shelf-life”. The 100 CFU/g limit
also applies throughout the shelf-life of
marketed RTE foods unable of supporting L.
monocytogenes growth.

At a first glance, the new safety criteria
for L. monocytogenes might appear more lenient
towards food manufacturers; however, this is not
necessarily the case. Rather, the new Regulation
can be viewed as more pragmatic, albeit not
comprehensive (see Discussion), and certainly
generates novel responsibilities for food
manufacturers. For RTE foods that are able to
support the growth of L. monocytogenes,
Regulation 2073 specifies that the “100 CFU/g”
criterion “applies if the manufacturer is able to
demonstrate, to the satisfaction of the competent
authority, that the product will not exceed the
limit of 100 CFU/g throughout the shelf-life”
and the “absence in 25 g” criterion applies only
when the manufacturer is “not able to
demonstrate, to the satisfaction of the competent
authority, that the product will not exceed the
limit of 100 CFU/ml throughout the shelf-life”.
It is therefore the responsibility of the
manufacturer to engage into research and
generate product-specific data in order to



provide scientific proof to meet the above
requirements.

The purpose of this work was to
illustrate the usefulness of predictive modeling
as a tool for assessing the compliance of RTE
foods with the new safety criteria for L.
monocytogenes. For this purpose we used a
stochastic modeling approach based on
published data on the prevalence of the pathogen
in RTE deli meats together with data on product
characteristics from 160 deli meat samples (such
as pH and water activity that affect the behavior
of food-borne pathogens in foods) and data on
the temperature distribution of refrigerators in
retail stores in Greece (Koutsoumanis and
Angelidis, 2007). This approach was also used
for the evaluation of deli meat spoilage.

MATERIALS AND METHODS

For all RTE meat samples shelf-life was
calculated as the difference between the
expiration and production dates specified on the
label. However, the shelf-life of some products
could not be calculated as no production

if Binomial(l,Pg) = {
where Pg is the probability of growth

The concentration of L. monocytogenes
in RTE meat products at the end of shelf-life
was estimated using a combination of a
growth/no growth and a kinetic model. The
exponential growth rate () and the lag phase

N, for t <lag
N, =N, + a,u(t —t,ag) fort,,
N,_.. fort>t,

where: Ni=log of the population density at time
t [log(CFU/g)]; N,=log of the initial population
density [log(CFU/g)]; Nuax=log of the maximum
population density
[log(CFU/g)]; t=Elapsed time (h); tj,,=time when
the lag phase ends (h); t,=time when the
maximum population density is reached (h);
r=exponential growth rate [log(CFU/g)])/h and o
is the output of the Binomial (1, Pg) distribution,
where Pg is the probability of growth. Based on
the above modification, equation 1 predicts no

<t<t,.

information was recorded on the label. The
temperature in 50 display cabinet refrigerators
for deli meat products was monitored in six
super markets located at five cities in Greece.
Temperature data were then fitted to various
distributions using the @Risk Software (version
4.5, Palisade Corporation, Newfield, NY USA).

The ability of the tested RTE meat
products to support the growth of L.
monocytogenes was evaluated wusing the
growth/no growth interface model published by
Koutsoumanis and Sofos (10). The measured pH
and a,, values for each product as well as the
temperature distribution of retail refrigerators
were introduced into the model and the
distribution of the probability of growth of the
pathogen was estimated based on a Monte Carlo
Simulation technique (30.000 iterations) using
the @Risk Software. The percentage of the
packages of each product which are able or
unable to support growth of the pathogen during
storage in retail was calculated by treating the
data on the probability of growth derived from
the Monte Carlo Simulation as a Binomial
random variable with parameter Pg:

0 the package is unable to support growth
1 the package is able to support growth

was calculated from the models of Buchanan
and Phillips (2).Growth of the pathogen was
calculated using a modification of the three-
phase linear model (3):

eq.l

growth of the pathogen when the parameter « is
equal to 0, whereas when ¢ is equal to 1 growth
is predicted with both x and lag phase. The
initial contamination level (N,) of L.
monocytogenes was assumed to follow a normal
distribution Normal (-9, 3.5) log CFU/g
truncated to -2.3 log CFU/g based on an average
package weight of 200 g. The maximum
population density (N,.) was assumed to be
constant with a mean value of 10 log CFU/g.
For products with a known shelf-life, the



distribution of the concentration of L.
monocytogenes at the end of shelf-life was
calculated based on the above modeling
procedure using a Monte Carlo Simulation
technique (30.000 iterations) with the @Risk
Software.

The approach described above was also applied
for evaluating spoilage of deli meats. In foods
where spoilage is caused by microbial activity,
shelf life can be defined as the time required by
the specific spoilage organisms (the organism
responsible for spoilage) to grow from the initial
level to a spoilage level (level at which spoilage
is observed) (Koutsoumanis and Nychas, 2000).
In the case of vaccum packed deli meats,
Lactobacillus sake was chosen as the specific
spoilage organisms with a spoilage level of 10’
cfu/g (Devlieghere et al., 2000). Spoilage of deli
meat products was estimated using the extended
Ratkowsky model of L. sake developed by
Devlieghere et al., (1999). For the initial level of
L. sake in deli meats a custom distribution was
used based on data collected in our lab.

RESULTS AND DISCUSSION

The pH and a, values of each tested
product are shown in Figure 1. According to the
regulation criteria, only 8.2% of these products
belong to the category of not supporting L.
monocytogenes growth. This indicates that for
the majority of the RTE meat products that are
available in the market the food industry should
evaluate their ability to support growth of L.
monocytogenes.

The characteristics of the tested meat
products (pH and a,) were compared with the

15°C 10°C

0.92 0.96 0.98

pH and a, limits of growth predicted by
equation 1 at 4, 10 and 15°C (Fig. la). The
results showed that 121 out of 160 products
(75.6 %) are predicted to be able to support
growth at 4°C. Increasing storage temperature
however, leads to a shift in the growth limits.
As a result, the percent of the tested meat
products that are predicted to be able to support
growth at 10 and 15°C increased to 85.0% and
89.4%, respectively (Fig. 1). For example, this
means that, depending on their pH and a,,, some
products are unable to support growth at 4°C,
but are able of doing so at 10°C. However,
Regulation 2073/2005 does not include a clear
guideline regarding the temperature at which the
industry should evaluate the ability of its
products to support or not the growth of L.
monocytogenes. The only reference on
temperature in the Regulation is under the
General requirements of Article 3 where it is
stated that “Food business operators shall ensure
that the food safety criteria applicable
throughout the shelf-life of the products can be
met under reasonably foreseeable conditions of
distribution, storage and use”. In the present
study, in order to evaluate the ‘“reasonably
foreseeable conditions™ of storage of RTE meat
products we recorded the temperature in 50
retail refrigerators for deli meats. The results
showed that temperature can vary significantly
among  retail  refrigerators  (Fig.  1b).
Temperature data were fitted to various
distributions and a Normal distribution with a
mean value of 4.42°C and a standard deviation
of 2.63°C provided the best fit based on the
test.

(b)

30.0 -
25.0
20.0 -
15.0 4
10.0 4
5.0
oo ‘ ‘ . .

<0 Oto3 3to6 6t09 9to 12

% Refrigerators

Temperature °C



Figure 1. (a): pH and a,, values of sliced ready-to-eat meat products and growth/no growth boundaries
(50% probability level) of Listeria monocytogenes at 4, 10 and 15°C The shaded area indicates products
that are automatically considered as unable to support growth of L. monocytogenes according to EC
Regulation 2073/2005. (b): Mean temperature in display cabinet refrigerators of the Greek retail market.

The increased variability observed in the storage
temperature of RTE foods leads to the
conclusion that a probabilistic approach would
be more appropriate for evaluating both the
ability of products to support growth of L.
monocytogenes and the total growth of the
pathogen during the products’ shelf-life. Indeed,
by combining figures la and 1b, it becomes
evident that, for many RTE meat products, the
ability of a product unit (retail package) to
support the growth of L. monocytogenes as well
as the total growth of the pathogen during the
unit’s shelf-life are strongly dependent on the
temperature of the refrigerator that the package
will be stored in. Thus, more realistic
estimations can be obtained by taking the
variability of storage temperature into account.
Using the probabilistic approach
proposed in the present study both the
distribution of the probability of growth of L.
monocytogenes in a given product and the
percent of the product’s packages in the market
that are able or unable to support growth of the
pathogen can be estimated. The cumulative
distributions of the probability of growth of L.
monocytogenes in two representative products as
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predicted by the model are shown in Fig. 2. For
bresaola (pH=6.75 and a,=0.924) only 0.1% of
the packages is predicted to support growth of
the pathogen (Fig. 2a). For a pork-shoulder
product (pH=5.49 and a,=0.943) however, it is
predicted that 33.3% of the packages will be
able to support the growth of L. monocytogenes
(Fig. 2b). The question arising for the latter
product is whether it should be categorized in
the group of RTE foods that are able of
supporting the growth of L. monocytogenes or to
the group of RTE foods that are unable of
supporting the growth of the pathogen.
Interestingly, as in the case of the pork shoulder
example, for most of the RTE products available
in the market the answer to the above question is
not clear. From the 160 RTE meat products
tested in the present study in only 27 (16.9%)
was the percent of packages that are able to
support the growth of L. monocytogenes equal to
zero. The above results indicate the need for
guidelines on categorizing the products in a
more probabilistic way. Although it is not easy
to include such guidelines in a regulation some
recommendation on the “level of agreement” of
a product to each category is required.
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Figure 2. Cumulative distribution of the probability of growth of Listeria monocytogenes in (a) bresaola
and (b) pork shoulder and percent of packages that is able or unable to support growth of the pathogen

during storage in retail.

The  distributions of the L.
monocytogenes concentration in the packages of
bresaola (shelf-life=98 days) and pork shoulder
products (shelf-life=113 days) at the end of their
shelf-life are shown in Fig. 3. The simulation
results showed that the pathogen will exceed the
criterion of 100 CFU/g in 3.3% of contaminated
bresaola packages at the end of shelf-life (Fig.
3a). This means that the level of compliance of
this product to the safety criterion is 96.7%. For
the pork shoulder product the simulation results
showed that the pathogen will exceed the
criterion of 100 CFU/g in 35.3% of the packages
at the end of shelf-life (Fig 3b). The estimated
concentration of the pathogen at the end of the
shelf-life of the latter product varies significantly
from -2.3 to 10 log CFU/g. As it is shown in Fig.
4b there are two groups of packages, with low
and high concentration of the pathogen,
respectively. This bi-modal pattern of the
distribution can be attributed to the variability of
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the storage temperature in retail (Fig. 2). The
group of packages with L. monocytogenes
concentration less than 2 log CFU/g (64.5% of
the total packages) are those exposed at
temperature conditions which do not allow
growth of the pathogen and thus the L.
monocytogenes concentration at the end of shelf
life is predicted to be equal to the initial level of
contamination. In about 22.4% of the packages
the predicted total growth of the pathogen during
the shelf life ranged from 2 to 9 log CFU/g
depending on the storage temperature while in
13.1% of the packages the pathogen reached the
assumed maximum population density (10 log
CFU/g) at the end of shelf life. The above results
indicate that depending on the storage
temperature some packages will not allow
growth of the pathogens, whereas in some other
packages the pathogen can reach high levels,
especially when the product has a long shelf life
as in the case of pork shoulder (113 days).

45 - (b)
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shelf-life (log CFU/g)

Figure 3. Distribution of the predicted Listeria monocytogenes concentration in contaminated (a)
bresaola) and (b) pork shoulder packages at the end of shelf-life in retail.

In 66.1% of the products tested in this
work the level of compliance was less than 50%
(i.e. 66.1% of the products tested are expected to
have more than 50% of their contaminated

11

packages exceeding 100 CFU/g by the end of
their shelf-life), while only in 25% the level of
compliance was found to be higher than 90%.
However, 100% compliance was not observed



for any of the tested products. Indeed, achieving
absolute (100%) compliance to the safety
criterion may not be practically feasible because
even for contaminated products that do not
support growth of L. monocytogenes there is a
finite probability for the initial contamination to
exceed 100 cells/g.

Given a desired level of compliance, the
proposed approach can estimate an appropriate
adjustment of the product’s shelf-life or a
modification in its formulation in order to
achieve this compliance. For example, for the
pork shoulder product discussed above, in order
to increase the level of compliance from the
value of 64.7% (that is predicted with its current
shelf-life of 113 days) to 90 or 95%, the shelf-
life would have to be decreased to 50 or 36 days,
respectively (Fig. 4a). Alternatively, a 90%
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level of compliance could be achieved by
maintaining a shelf-life of 113 days, but
decreasing the a,, of the product from 0.943 to
0.930 and increasing the concentration of
NaNO, from 50 to 100 ppm (Fig. 4b). This
capability of the proposed approach can be also
utilized by the food industry for the development
of new products. The approach can provide
useful information, which can serve as the basis
for an appropriate product design that will assure
placement of the product to the desired food
category. It should be noted that it may be
beneficial for the food industry to prove that a
product does not support L. monocytogenes
growth since in this case the zero tolerance limit
for the time period until “the food has left the
immediate control of the food business operator
who has produced it” does not apply.
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Figure 4.. Effect of shelf-life or product formulation modifications on the cumulative probability
distribution of the Listeria monocytogenes concentration in contaminated pork shoulder packages at the
end of shelf-life (a: [1: Current shelf-life of 113 days, O: Shelf-life of 50 days, /\: Shelf-life of 36 days.
b: [J: Current formulation (pH=5.49, a,=0.943, NaNO,=50 ppm), O: Modified formulation (pH=5.49,
a,=0.930, NaNO,=100 ppm).Dotted lines indicate the level of compliance with the new safety criteria).

(@

(b)

] compliant/spoiled

non-compliant/spoiled

compliant/spoiled

non-compliant/spoiled

; gg%ae%@%

é) d)@b(p 0 [s

LAB at end of SL (log cfu/g)

non-compliant/unspoiled

LAB at end of SL (log cfu/g)

-2 -1 0 1 2 3 4 5 6
L. monocytogenes at the end of SL (log cfu/g)

12

compliant/unspoiled
]

° o o
B ° T
o 6
2 x> 8 © o
© o )

non-compliant/unspoiled

3 4 5 6 7
L. monocytogenes at the end of SL (log cfu/g)




Figure 5. Effect of shelf-life modifications on the cumulative probability distribution of the Listeria
monocytogenes and L. sake concentration in contaminated pork shoulder packages at the end of shelf-life

(a: Current shelf-life of 113 days, b: Shelf-life of 36 days.

The proposed approach can be also
applied for evaluating the probability of food
spoilage. In figure 5a the distribution of the level
of both L. sake and L. monocytogenes in pork
shoulder at the end of shelf life (113 days) is
presented. As it is mentioned above the level of
compliance to the safety criteria is 64.7%. In
addition this figure shows that 17.5% of the
packages will be spoiled before the end of shelf
life (L sake level > 107 cfu/g). In this case
decreasing the shelf life to 36 days will increase
the compliance level to 95% and at the same
time eliminate the spoiled packages before the
end of shelf life (Fig. 5b). Consequently, this
approach can be used for optimizing both safety
and quality of foods.
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ABSTRACT

Conventionally, food is significantly over-processed to
ensure safety. Dynamic optimization can be used to
compute optimal thermal operation condition to ensure
maximum product quality while assuring food safety. Local
optimization (LO) algorithms have been used to compute
optimal profiles. However, LO is not guaranteed to find the
best solution. We show that the problem can be formulated
as a convex problem with a reverse convex constraint and
we implement Tuy's algorithm to optimize globally. The
method is deterministic and guaranteed to find the global
optimum and therefore it is suitable to evaluate the
effectiveness local optimization to compute global optima.
We compared the results of LO and global optimization
(GO) to find that GO gives significantly better results for 2
and 3 heating time periods. However, for 4 periods the local
optimizer catches up. This suggests that LO is good enough
for this problem if we consider strategies with more than 4
periods implementable. However for many commercial
processes less than 4 heating-cooling stages are used.

INTRODUCTION

The main goal of thermal processing is inactivating
pathogenic micro-organisms to make the food safe to the
consumer (Bellara et al., 1999).

Thermal Processing of Foods

Thermal processing, i.e. heating, is one of the most
important operations in food processing (Balsa-Canto et al.,
2002). Conventionally, food is significantly over-processed
to ensure safety (Fryer and Robbins, 2005). Requirements
for microbial safety and food acceptability and its quality
are conflicting, as a certain amount of chemical change will
occur during adequate sterilization of the food. Therefore it
is important to ask what is meant by quality and what is the
scope for improving it (Lewis and Heppell, 2000).

However, heating needs to be done without the over-
processing which results in low quality. For obvious
reasons a decline in sensory quality is undesirable. If over-
processing is not excessive, then sensory quality may be
acceptable. Nevertheless, this will still lower the nutritional
value of the food as vitamins and micro-nutrients are
decomposed by heating process. In this case, the consumer
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will not be able to distinguish between high and low quality
food. The price the consumer is prepared to pay reflects the
quality of the product (real or perceived), and so
maximizing quality is critical for commercial success. The
manufacturers on the other hand, fear microbial safety and
tend to over-process while ensuring that the consumer will
not notice the loss in nutrition quality since sensory quality
is maintained.

Batch thermal processing is widely used in food canning
plants as continuous thermal processing is only economical
for very large processes (Norback and Rattunde, 1991;
Richardson, 2004) i.e. majority of canneries are small to
medium size. Batch thermal processing involves following
stages 1. heating stage: food temperature (already packed in
the can) is raised to the set temperature; 2. holding stage:
food is held at the set temperature for a set time; 3. cooling
temperature: the food is cooled down to a point were
reactions no longer occur.

Optimization of Food Processes

The literature in thermal processing of food is very
extensive. Thermal processing of canned foods reviews can
be found at Silva et al. (1993) and Durance (1997). Local
optimization of thermal processing has also been studied by
many authors, but global optimization method is rarely
explored in this area. Reviews on optimization of thermal
processing can be found in Holdsworth (1985) and Banga et
al. (2003).

Food systems have a non-linear dynamic nature described
by PDE’s such as the equations for heat transfer. The
corresponding optimization problems that need to be solved
are in general not convex. Consequently, LO methods can
only locate a local optimum. It is impossible to know how
close the obtained local optimum is to global optimality.
Hence, GO methods are needed to find the globally best
solution (Banga and Seider, 1996; Esposito and Floudas,
2000). Deterministic GO methods (Horst and Tuy, 1996;
Floudas, 1999) prove that a point is a global optimum or an
g-global optimum usually by searching the whole feasible
region. The main challenge is to locate in an efficient
manner sub regions that may include a solution and exclude
partitions that are guaranteed to be suboptimal.

In this paper we adopt a deterministic GO approach and use
Tuy’s algorithm to solve it.



MATHEMATICAL MODELS

The objective is to find the optimal retort temperature,
which maximizes the final nutrient retention. The casestudy
is one particular example from Banga et al. (1991) and
Garcia et al. (2006). Here, the formulation of the
maximization of the final nutrient retention is considered,
using both local and global optimization techniques. The
constraint for the optimization is the microbiological
lethality at coldest spot at a final time (safety).

The container considered is a cylinder of volume V7 with a

radius R and height2L, filled with a conduction heated
(solid) food. Because of symmetry half of the can simulated
as it shown in Fig. 1. The food is pork puree and the
parameters for simulation of this system are shown in Table
1.

a. Simulated
T volume

2| 4 _
" b, Cold spot

Fig. 1. Schematic diagram of simulated volumes in the can.

Heat transfer dynamics are given by conduction (Fourier)
equation
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Where T(s) is the retort temperature

Initial condition is

T(R,z,0)=T) ©)

the microbiological lethality indicator, F-value, is

calculated using first-order inactivation kinetic as

T(O)~Tyef ,F

Np(0)
N )) (7N

Where Zpis the thermal destruction rate and Ng(0) and

Ryltg)=(F10  ZF  di=Dyey p.log(

NF(tg)are the concentration of micro-organisms alive at

time 0 and time tg respectively.
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A quantitative measure of the heating effect on quality
factors, C-value or cooking value, the same manner as the
F-value defined as
T()-Tref C
— Ne(0)
Zc =y ®
Nc(tg)

As it can be seen from Eq. (8), Cp has a reverse relation to

Col1g)=[510 di=Dyef ¢ log(- €=

the retention of nutrient.

Table 1. Parameters for the processing model of pork puree

from Garecia et al.(2006)
Parameter Value
Container diameter (2R) 0.088 m
Container height (2L) 0.116 m
Thermal diffusion 1.561x107 m’s™
coefficient (alpha)
Initial temperature (Ty) 71°C
Micro-organism Baccillus
stearothermophilus
Zy 10 °C
Dyetr 240's
Tretr 121.11 °C
Fsp 1200 s
Nutrient Thiamine
Zc 25.56 °C
Dietc 10716 s
Tretc 121.11 °C
The system is modelled using generalised PRocess

Modelling Systems (gPROMS) package. For local
optimisation the build-in optimiser package was used while
for global optimisation Tuy’s algorithm was implemented
in C++.

GLOBAL OPTIMIZATION FOR FOOD
PROCESSING

We divide the time horizon into multiple intervals (periods)
and control the retort temperature separately in each of this.
That is, we compute piecewise linear strategies. The
solution of the heat equation gives the temperature as a
function of position and time. However, in most
optimization problems the control is the temperature
applied externally which appears into the model as a
boundary condition and therefore the effect of a change in
the controls is not directly visible.

F0,av, C0,av are convex functions in {7....,7,,} . In addition
the final temperature at any given point is an affine and
therefore convex function of 7j,..., 7, .

The problem we wish to solve is
min  Cq gy
Tl ” ’T n
Subject to
Fo,ay>1200s

30°C<T;<180°C

(€)

The method is deterministic which means that the optimal
point attained by the method is guaranteed to be the global
minimum. Apart from the obvious benefit of selecting a
good point, the confidence that we know the global



optimum is important for the evaluation of other faster
methods, such as Garcia et al. (2006) local optimization
approach.

NUMERICAL RESULTS

Figure 2 shows temperature at the centre of the can for the
three external temperature profiles.

The numerical results for a heating length of 12,000 s are
given in Table 2 in which F; is the safety indicator (and
should be at least 1200 s) while C, is the quality
degradation indicator because of heating. These results
reveals that for two and three heating periods the global
optimizations provides a significant improvement in the
food quality (i.e. provide lower C, value). However, the
local optimizer catches up for four periods. Since we used a
deterministic global optimization algorithm, this shows that
there is no room for improvement and local solution is
optimal for more than four periods.
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Figure 2: Temperature at the centre of the can for the three
external temperature  profiles: setl[100,110,110,60],
set2[100,115,110,60], set3[100,120,110,60]

CONCLUSIONS

We have addressed the problem of computing globally
optimal heating strategies for food sterilization process. We
have showed that the food canning problem can be
formulated as a convex problem with a reverse convex
constrain, and can thus be solved to global optimality by
Tuy’s deterministic GO algorithm. Tuy’s algorithm has
been implemented and result compared with the gPROMS
local optimization algorithm in the calculation of optimal
process conditions for food sterilization. The results
demonstrate that for small numbers of intervals, global
optimization gives better results, and that, as would be
expected, the local optimization accuracy depends on the
initial guess. The importance of using global optimization is
demonstrated by these results, as the majority of
commercial heat-hold-cool systems use only a few
temperature intervals.
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Table 2: Local optimization vs. global optimization

Local Optimization

Periods External Temperature C0 FO
2 92.09 21.266 4746 1200
3 98.1 124.3 66.4 4086 1200
4 862 113.5 124.0 65.7 4051 1200
8 85 99112 122124 106 2020 3920 1200

Global Optimization

Periods External Temperature C0 FO
2 121.5 50.7 4174 1200
31029 123.1 59.7 4062 1200
4 85.6 113.7 1239 66.6 4050 1200

REFERENCES

Balsa-Canto, E., Alonso, A., Banga, J., 2002. A novel,
efficient and reliable method for thermal process design
and optimization. Part 1. Theory. Journal of Food
Engineering 52 (May), 227-234.

Banga, J., Balsa-Canto, E., Moles, C., Alonso, A., 2003.
Improving food processing using modern optimization
methods. Trends in Food Science and Technology 14,
131-144.

Banga, J., Perez-Martin, R., Gallardo, J., Casares, J., 1991.
Optimization of the thermal processing of conduction-
heated canned foods: study of several objective functions.
Journal of Food Engineering 14, 25-51.

Banga, J., Scider, W., 1996. Global optimization of
chemical processes using stochastic algorithms. In:
Floudas, C., Pardalos, P. (Eds.), State of the Art in Global
Optimization. Kluwer Academic Publication, Dordrecht,
pp. 563-583.

Bellara, S.R., Fryer, P.J., McFarlane, C.M., Thomas, C.R.,
Hocking, P.M., Mackey, B.M., 1999. Visualization and
modelling of the thermal inactivation of bacteria in a
model food. Applied and Environmental Microbiology
65, 3095-3099.

Durance, T., 1997. Improving canned food quality with
variable retort temperature processes. Trends in Food
Science and Technology 8, 113-118.

Floudas, C., 1999. Deterministic Global Optimization:
Theory, Methods and Applications. Kluwer Academic
Publishers. Fryer, P., Robbins, P., 2005. Heat transfer in
food processing: ensuring product quality and safety.
Applied Thermal Engineering 25 (Nov), 2499-2510.

Garcia, M., Balsa-Canto, E., Banga, A.A.J., 2006.
Computing optimal operating policies for the food
industry. Journal of Food Engineering 74, 13-23.

Holdsworth, S., 1985. Optimisation of thermal processing —
areview. Journal of Food Engineering 4, 89-116.

Horst, R., Tuy, H., 1996. Global optimization. In:
Deterministic Approaches. Springer.



MODELLING OF HEAT TRANSFER TO FOODS
INCORPORATING UNCERTAINTY IN THE LOCATION OF
EXPERIMENTAL TEMPERATURE MEASUREMENT

Kevin Cronin!",
'Dept. of Process & Chemical Engineering,
University College Cork
*Corresponding author, k.cronin@ucc.ie

KEYWORDS
Cheese cooling, Measurement uncertainty

ABSTRACT

A cheese product in the shape of a rectangular slab is
cooled by immersion in brine. The temperature of the
cheese during cooling was measured by inserting
thermocouples into the product. As the cheese is very
soft and deformable, it is not possible to exactly identify
the measurement location. The Uniform and Exponential
probability distributions were found to best represent the
variability in thermocouple location at the centre and
surface respectively. Cooling of the product was
modelled with the one dimensional Fourier field
equation. Expressions for the mean measured
temperature at the centre and surface that result from the
distributed nature of thermocouple location were
obtained. These expressions were used to derive
equivalent locations in the cheese which should be used
when comparing model and experimental temperature
predictions. Experiments were conducted to quantify the
variability in thermocouple location and the associated
dispersion in temperature readings. It was shown that
when validating model temperature versus time histories
against experimental readings that this phenomenon
must be taken into account.

1. INTRODUCTION

Validation of the output from analytical models of heat
transfer to food products is generally accomplished by
comparison with experimentally obtained heating or
cooling curves in the product. To achieve this aim,
precise thermocouple location is crucially important in
model validation studies (Erdogdu, 2005). The issue is

complicated by the fact that there may be
unpredictability about the exact location of the
thermocouples used to record temperature. The

influence of imprecision on thermocouple location has
been examined by Gordon & Thorne (1990) and
Erdogdu (2005). In some foods, the location can be
determined experimentally by subsequent cutting of thin
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slices from the product or alternatively through remote
sensing such as X rays. For the particular product, that is the
focus of this work, (soft cheese) these methods were not
appropriate.

The impetus for this work is that a cheese product in the
form of a slab with a thickness of 60 mm, width of 500 mm
and length of 600 mm is produced at a temperature of 40
°C. The product is cooled down to 2 °C by forced
immersion in brine; itself maintained at a constant
temperature of 0 °C. The temperature of the cheese during
cooling is monitored by inserting thermocouples into the
cheese at its centre and under the surface. Over the cooling
process the rheology of the cheese changes substantially. At
its initial temperature of 40 °C, the cheese is extremely soft
making accurate placement of the thermocouple tip very
difficult. After the cheese has cooled and hardened, it is not
possible to subsequently, unambiguously identify the tip
location. Hence there is uncertainty in experimental
temperature histories which must be considered when
comparing them to theoretical predictions. If this issue is not
considered, it maybe erroneously concluded that there are
errors either in the model or the input data (product thermal
properties) that it uses. Specifically where product thermal
properties are estimated from the lag or intercept methods,
then it is essential that any thermocouple positional error is
considered.

2. THEORY

The cheese product is taken to be homogeneous in terms of
its composition. The dependence of thermal properties on
temperature is ignored because of the relatively small
temperature change involved in this cooling operation.
Shrinkage and latent heat effects are neglected so product
mass and dimensions are constant with respect to time;
experiments confirmed this assumption. Thus an analytical
solution for temperature versus time is available.
Furthermore because the plane dimensions of the product
(its width and length) are many times greater than its
thickness, heat transfer is regarded as essentially one
dimensional. Hence the equation of conservation of energy,
for one-dimensional unsteady state conduction in a plane



forms, the basis of this model. The first n terms of the
analytical solution (assuming convective boundary
conditions and a uniform initial temperature
distribution) is given as (Incropera and DeWitt, 1990):

T -T,

M:Z A e AT cos(l.ij (M
T, ~ i if
where the constants A; and A; are functions of the Biot
Number only. The term, L is half product thickness (i.e.
30 mm). Using the first term expansion of equation (1)
is sufficiently accurate for temperature prediction for
Fourier Numbers in excess of 0.2, (Incropera and
DeWitt, 1990) giving an expression for temperature

Aat
T(x1)= (T, *Tw)Ale r cos(%ijT @)

@©

Note the Biot Number for the particular thermal process
under review here is in excess of 100 (due to the very
high surface heat transfer coefficient between the cheese
and brine) so that temperature within the cheese is quite
insensitive to any uncertainty in the boundary condition.
The temperature gradient through the cheese slab is
given as (again for Fourier Numbers in excess of 0.2)

A at

Mmmﬁ%nMeLzﬂﬁﬁﬂﬁ 3)
dx 1 L)L

indicating that local temperature gradient close to the
surface will be significantly larger than at the centre and
this effect (which is always present) will be particularly
important for this cooling situation due to high value for
A resulting from the high Biot number.

As thermocouple location is generally unknown, its
position xt can be considered as a random variable. The
origin for position is taken to be at the centre of the
product. In the experiments, thermocouples were
inserted into the cheese to a nominal centre position and
at the surface. From analysis of experimental data, the
Uniform distribution was selected as the appropriate
probability density function for xt for centre temperature
while the Exponential distribution was found to best
represent the variation in surface thermocouple position.
Both distributions have the advantage that they are fully
characterised by a single parameter. For the former, the
probability density function of thermocouple location
will simply be the reciprocal of its range, xtg or
imprecision given that the distribution commences at
zero (Law & Kelton, 1991)

1

pliy)=—— )
Xrr

while the density function for measured surface

temperature position will be
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pl)=—te ©)

Xrum

where Xty is the mean location of the probe. Because
measured position of temperature, xr is now distributed,
corresponding measured temperature will also be
distributed. The predicted mean of measured temperature
can be found using:

Hy = J.f(xr)p(xT)de ()

where f(xr) is the functional relationship between
temperature and location and p(xr) is the probability
density function of thermocouple location. The full solution
contained in equation (1) can be used as the functional
relationship or alternatively and more simply, the single
cosine function within equation (2). For this work the
integral of equation (6) will be evaluated using the
simplified thermal model of equation (2) with the
appropriate limits and thus the obtained mean value will
also be subject to the Fourier time limit.

For centre temperature, the limits of integration in equation
(6) will be 0 and xtg while at the surface the corresponding
limits are L—xtv and L. Hence mean experimental
temperature at the centre will be:

_ 112 at sin( %Lxmj
— _ I’ T @)
py=(T,-T, )4 e yEaaiE
L

Note as the factor, xtp goes to zero, (no error in
thermocouple location) the expression for mean measured
centre temperature converges to theoretical centre
temperature. The corresponding statistic for surface
temperature will be:

_Aat
=T -T e F

L
i)

Again as the factor, xry goes to zero, (no error in
thermocouple location) the expression for mean measured
surface temperature converges to theoretical surface
temperature.

(%1 X jz {’11 xT“’Asinﬂ1 +cosA, — e*’L”J )
(Gsn)

For nominal centre temperature, it can be shown that all
individual recorded histories will be equal to or less than the
true centre temperature. For surface temperature, they will
be greater. Thus averaging individual temperature time
histories will give a mean that will always be offset from the
true value. In fact the expressions for mean centre and
surface temperature can be manipulated to give the
equivalent locations at which the average of the
experimental readings will correspond to. For ‘centre’



temperature the equivalent position, X, is

L ©

and for ‘surface’ temperature the equivalent position, X
is approximately given as

2
A .
(%1 xmj ( 1 xﬂ% sin A, + cos 4, )

_ 1+(%1 Xrm )2
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cos™

(10)

When comparing the average of the experimental
temperature histories for centre and surface to the
theoretical values, the analytical model should not be
evaluated at locations O (true centre) and L (surface)
respectively but rather at the equivalent locations given
by the above analysis. Broadly it can be seen that the
greater the local temperature spatial gradient and the
larger the dispersion in thermocouple position, the more
important is this phenomenon.

3. MATERIALS & METHODS

Initially a series of trials were carried out where the
thermocouple was inserted into the warm cheese to
assess the imprecision in location. Over thirty samples
were cut from the slab and dye marker was placed at the
tip of the thermocouple wire. Thirty minutes after each
insertion when the cheese had cooled down, the sample
was cut open and the location of the thermocouple tip
identified as best as possible. This methodology enabled
an indication of the distribution of location to be
quantified for the centre and surface regions.

The temperature histories of 10 slabs in brine were
recorded. Prior to each experiment, the slabs were
forcibly, completely submerged in warm water,
maintained at a temperature of 40 °C, for a period of 30
minutes to ensure an even initial temperature through
them. For each experiment, two thermocouples were
inserted into each slab at a position near the centre of the
slab and just under the surface of the slab. As far as was
practical, the two thermocouple locations were collinear
on the same vertical line in the cheese slab, between the
different experiments. This was to satisfy the one
dimensional analysis of the heat transfer. Temperature
data was logged to a computer. Temperature was
recorded over the full cooling cycle but only data from
the intermediate cooling period was used.

Furthermore, the Monte Carlo method was utilized to
estimate the effect of uncertainty in thermocouple
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location when validating the experimental results and to
numerically check the theoretical predictions. The Monte
Carlo method can be applied to the full temperature model
and thus avoids the limitations of the Fourier time limit.
Hence the first four terms of equation (1) formed the
deterministic sub-model of the Monte Carlo approach.
Random thermocouple locations were sampled from the
governing Uniform distribution using
X; =UXpp an

where u is a uniformly distributed random number on the
interval [0,1]. Temperature was evaluated at each sampled
location with the first four terms of equation (1). These were
then averaged to produce an estimate of centre temperature
incorporating location uncertainty. The same procedure was
followed to obtain an estimate of mean surface temperature
by sampling from the governing Exponential distribution
with the formula

X, =In(l—u)x,, (12)

with again temperatures evaluated at each sampled location
and then averaged. The Monte Carlo approach was used to

act as a check on the validity of the assumptions used in the
variability analysis.

4. RESULTS

The cheese thermal properties were measured as a density of
1060 kg/m’, thermal conductivity of 0.35 W/mK and
thermal diffusivity of 1.19 x 107 m%s. The measured
convective heat transfer coefficient in the brine was 1300
W/m’K. These properties imply that the Biot Number is
111, the A; and A, constants in equation (2) are 1.555 and
1.2731 respectively and the Fourier time limit for the
validity of equation (2) is 1512 s.

Analysis of the dispersion in centre thermocouple tip
location revealed that its position could vary symmetrically
by £ 3 mm on either side of the centre. Figure 1 depicts in
frequency histogram form the measured data; locations were
banded into 1 mm intervals and the mid-point is given on
the graph. With no discernable peak, the Uniform
distribution was selected to represent the dispersion.
Applying symmetry about product centerline, the value for
the appropriate range parameter, Xrg is 3 mm.
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Figure 1: Distribution in Centre Thermocouple Location



A different pattern was evident for thermocouple
location under the surface; the location could vary from
just under the surface to just over 5 mm below the
surface. However the deeper the location below the
surface, the less likely was a thermocouple to be
situated. Figure 2 illustrates the distribution; again 1 mm
bands are used and the mid-point shown. From its
general shape, an Exponential distribution was fitted to
the data and the analysis gave a value for the mean
location, xqy of 28.15 mm (or 1.85 mm from the
surface).
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Figure 2: Distribution in Surface Thermocouple
Location

Using the data from both distributions, equivalent centre
temperature location X, from equation (9) is 1.73 mm
from the centre and equivalent surface temperature
location X, is 28.2 mm from the centre or 1.8 mm under
the surface (from equation 10). Note that mean
temperature in either region (centre or surface) is not
equal to temperature evaluated at the mean
thermocouple location.

The 10 individual experimental temperature versus time
histories recorded at the centre were averaged to
produce a single mean experimental history. The
analytical solution (equation 2) was used to calculate
centre temperature at the exact centre (x = 0) and at the
equivalent centre location (x = Xx,.). Figure 3 displays the
average of the experimentally recorded centre
temperatures, the exact centre temperature, the
temperature at the equivalent centre location and the
Monte Carlo prediction of measured centre temperature.
The curves are only given for times in excess of 1512 s
to satisfy the restrictions on the use of equation (2) that
was used in the derivation of equivalent position. Figure
4 gives the same temperature-time histories for surface
temperature again with the same time limits.
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Figure 4: Surface Temperature Histories

Examining figures 3 and 4 it is clear the issue of uncertainty
in thermocouple location is much more of an issue for
surface temperature prediction than centre temperature. The
curves are almost coincident at the centre though



considerably different at the surface. This is partly
accounted for by a scale effect as temperature change
with time at the surface is considerably smaller than that
at the centre at times in excess of the Fourier limit.
There are two more fundamental reasons that are also
relevant:

1] Temperature gradients close to the surface (evaluated
at the location x.) is 11 times larger than temperature
gradient in the centre region (evaluated at x.). Hence
any uncertainty in thermocouple location has its
influence magnified accordingly.

2] The level of dispersion in thermocouple location (as
measured by the standard deviation) is greater for
surface readings than centre readings. Standard
deviation for centre location is 0.87 mm (i.e. = x7r/\12)
while for the surface it is 1.85 mm (= X1y).

Nonetheless for both locations, the agreement between
the experimental mean temperature history and the
temperature history evaluated at the appropriate
equivalent location is much superior than the agreement
with the temperature history evaluated at the nominal
position. This is markedly evident for the surface
location as depicted in figure 4. Table 1 quantifies the
agreement where the average temperature difference
between the experimental and equivalent position
histories is compared with the same statistic for the
experimental and nominal histories at the centre and
surface.

Table 1: Average Temperature Difference between
Experimental and Equivalent and Nominal Temperature

Histories
Location Average Temperature Difference
Equivalent Nominal
Centre 0.003 °C 0.07 °C
Surface 0.81 °C 2.52°C

As is clear, the agreement between theory and
experiment is much superior when the dispersion in
thermocouple position is accounted for. Specifically the
average difference between experimentally measured
temperature readings and those evaluated at the
appropriate equivalent location is much smaller than the
difference found between experiment and nominal
values. Any remaining differences between the
equivalent and experimental curves may be due to
sampling errors; equations (7) and (8) give expressions
for the population mean; the larger the number of
individual histories that are averaged the closer the
results will be to its predictions. Also issues such as
thermocouple accuracy and any other sources of error in
addition to location imprecision will affect the level of
agreement.

The results described here are all limited to times in
excess of 1500 s. Studies with the Monte Carlo model to
analyse the influence of thermocouple location effects at
shorter times demonstrated that the difference between
averaged experimental histories and equivalent /
nominal theoretical histories are even more pronounced
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at carly stages of cooling. Also note equation (6) can be
applied to determine the equivalent location at which
temperatures should be verified for, in principle, any
thermocouple location distribution function (uniform,
normal, exponential etc.). A useful heuristic that can be used
without the need to evaluate the integral is that the
equivalent location will be the nominal location offset by an
amount equal to the mean of the distribution that describes
the thermocouple positional imprecision. Finally the results
can be manipulated to examine the probability distribution
that describes the measured temperature gradient in the
cheese i.e. the temperature difference measured between
centre and surface locations divided by the (expected)
distance between both thermocouples.

5. CONCLUSIONS

The effect of thermocouple positional inexactness should be
included in comparing experimental and theoretical
temperature predictions where this is an important effect.
Such a phenomenon is generally significant when
examining surface region temperatures with a high
convective heat transfer coefficient. The analysis of this
paper can be used to quantify how significant this effect can
be and thus suggest whether it should be taken into account.
The adoption of an equivalent position rather than the
nominal position when comparing experimental and
theoretical (or model) temperature histories has been shown
to have advantages. The approach of this paper is equally
applicable to heating processes with the same assumptions
and restrictions. The underlying theory as expressed by
equation (6) can be applied to other thermal geometries
(cylinder or sphere) and other known distributions such as
the Normal distribution that describe thermocouple location.
In addition, expressions for the variance and the probability
density function of measured temperature can also be
derived and yield further criteria in assessing agreement
between theory and experiment.
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ABSTRACT

Paneer is an important dairy product and is used to
prepare different culinary dishes. It is highly perishable in
nature at ambient conditions and its shelf life is very low.
Moreover at high temperature, product develops a sour
smell, bitter taste and also being sparsely covered with
moulds.  Therefore, here is need to develop some
preservation technique to enhance the shelf life. Drying can
be one of the methods to increase shelf life of paneer. Due to
its numerous advantages such as less energy wastage, high
heat transfer coefficient, no oxidative changes during
drying, no resistance to mass transfer at the surface, higher
porosity, Low pressure superheated steam drying (LPSSD)
is used as a hybrid drying to dry food products. The neural
network model consisted was developed of an input, a
hidden and an output layer. The input layer has two nodes,
which corresponded to two processing conditions or
independent variables: Time of drying and weight changed
with corresponding time. The output layer consisted of three
neurons or dependent variables, representing the moisture
content (%db), drying rate (dm/dt) and moisture ratio (MR).
The correlation coefficients were greater than 0.98 in all
cases. For all combined data set with superheated steam, the
R* were found 0.9975, 0.9934 and 0.9983 for moisture
content, drying rate and moisture ratio. Whereas For all
combined data set without superheated steam, the R? were
found 0.9991, 0.9846and 0.9991 for moisture content,
drying rate and moisture ratio.

INTRODUCTION

Paneer, an acidic coagulated or rennet coagulated
dairy product, is highly nutritious in terms of fat and protein
content. Its normal shelf-life is 1-2 days at room temperature
or 3 days at 10°C due to high moisture content. Attempts
have been made to extend the shelf life of paneer by
different drying methods. Low pressure superheated steam
drying (LPSSD) is being explored for drying of food
materials due to its numerous advantages such as less energy
wastage, high heat transfer coefficient, no oxidative changes
during drying, no resistance to mass transfer at the surface,
higher porosity, recovery of latent heat of evaporation and
higher mass transfer rates (Mujumdar 2006). LPSSD has
been applied to drying of shrimp banana, apples, potatoes,
cassavas, carrots (Mujumdar 2004 a and b, Elustondo
2001).
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Drying phenomena has been studied extensively
and mathematical models are developed. Due to their
limited application covering the drying kinetics over the
entire operating conditions, new methods namely
artificial neural network (ANN) is being explored
recently with success.

In process control, the main objectives are food
safety, high quality and yield at minimal costs. To obtain
high quality products, on-line control techniques are
required. Most food processes are highly nonlinear, with
time varying dynamics, which complicates food
automation. However, the recent developments in
artificial intelligence based advanced control tools such
as neural network (NN) to food processing have opened
up novel possibilities for processing industries (Susan,
1998).

Artificial neural networks (ANN) are
mathematical models which have the capability of
relating the input and output parameters, without
requiring a prior, knowledge of the relationships between
the process parameters. It involves training and testing of
ANN models ( Borggard et al, 1992).

The objective of this work was to develop ANN
models for predicting moisture content (%db), drying
rate (dm/dt) and moisture ratio (MR). This will also
compare the moisture ratio obtained from experiments,
drying models and by ANN modeling.

EXPERIMENTAL SETUP

Experimental setup of low pressure superheated
steam dryer was developed to conduct the drying
experiments. Main components of the experimental
setup were steam generator, drying chamber, vacuum
pump and data acquisition system with computer. The
drying chamber consisted of a box insulated properly
with rock wool. Inner dimensions of insulated chamber
were 40 x 45 x 45 cm. Two electric heaters of 1.5 kW
capacities each were provided on opposite side walls of
the drying chamber. The temperature of drying chamber
was controlled by a temperature controller

The drying chamber was connected by a pipe
from bottom to a chamber in which digital balance was
kept. An autoclave was used as a steam generator and a
steam reservoir. A steam trap was provided to reduce
accumulation of steam condensate in the reservoir.
Steam was transported to the drying chamber through a
pipe insulated with glass wool. A heating tape, rated



1kW was mounted on steam pipeline to increase the steam
temperature to desired level of superheating.

The sample holder was made using thin stainless
steel sheet of 15 cm diameter. This was connected to a
balance by a thin rod passing through a G.I. pipe. One side
of the rod was attached to the sample holder and other side
was rested on analytical digital balance. The balance was
placed in a smaller chamber. The balance had a weighing
capacity of 320g with a least count of 0.001g. The data
recorded by this balance was transferred through the serial
cable by software. Electronic balance attached with
computer allows continuous weighing of the sample.

Chromel - Alumel (K type) thermocouples were
installed to measure temperature of superheated steam at
inlet of drying chamber, drying chamber and product
chamber continuously. These thermocouples were attached
to the data logger. Thermocouple signals multiplexed and
transferred to the computer through Terminal Software,
installed in PC. A vacuum pump was used to create the
desired vacuum in the drying chamber. 1 and 1.5 cm-cube
paneer size were used to study the kinetics. The experiments
were performed at 10, 14 and 18 kPa absolute pressure and
62, 72 and 82°C temperature.

Artificial Neural Network Model

The neural network model consisted of an input, a
hidden and an output layer. The input layer has two nodes,
which corresponded to two processing conditions or
independent variables: Time of drying and weight changed
with corresponding time. The output layer consisted of three
neurons or dependent variables, representing the moisture
content (%db), drying rate (dm/dt) and moisture ratio (MR).

MATLAB-7 software used for Artificial Neural
Networks (ANN) modeling and evaluating the different
training functions. The networks were simulated based on a
multilayer feed forward neural network. This type of
network is very powerful in function optimization modeling
(Kerdpiboon, 2006). The input layer, hidden layers, and
output layer structures are shown in Fig. 1. The inputs
required for modeling other than drying time and weights
were:

Method of computation -Back propagation
Algorithm - Levenberg -Marquardt

The network training - Different size of epochs
Goal - Minimum error

Transfer functions - Hyperbolic tangent, sigmoid transfer function and
Linear transfer function

A back-propagation algorithm was used to
implement supervised training of the network. During
training, weighting functions for the inputs to each ANN
were determined, such that the predicted output best
matched the actual output from the data set. Weights were
randomly assigned at the beginning of the training phase,
according to the back-propagation algorithm. A hyperbolic
tangent was used as the transfer function in each hidden
layer, and a linear transfer function was used in the output
layer. Minimization of error was accomplished using the
Levenberg — Marquardt (LM) algorithm. By this algorithm
tat trains a neural network 10 to 100 faster than the usual

gradient descent backpropagation method. It will always
compute the approximate Hessian matrix, which has
dimensions n-by-n. Training was finished when the
mean square error (MSE) converged and was less than
0.001. If the MSE did not go below 0.001, training was
completed after 5000 epochs, where an epoch represents
one complete sweep through all the data in the training
set. The ANN modeling thus obtained for moisture
content, moisture ratio and drying rate by combining all
drying data for temperatures, pressures and size (Six
ANN models)

The inputs included the time of drying and
weight changed with time. The output layer consisted of
%db, dm/dt and MR. The number of hidden layers and
number of neurons in each hidden layer were varied
from3t0 9 (3,5, 7, or9). The networks were simulated
with the learning rate equal to 0.05.

Input layer

Hidden layers Output layer

(i) (i) (k)
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Figuers 1 Theoretical architecture of multilayer neural
network for prediction of moisture content dry basis,
drying rate and moisture ratio

The optimized configurations from training for
each neuron were selected based on neural network
predictive performance, which gave the minimum error
from the training process. The average mean square error
(MAE), standard deviation of MAE (STDA), percentage
of relative mean square error (%MRE), and standard
deviation of %MRE (STDR) were used to compare the
performances of various ANN models, and were

calculated as (Kerdpiboon, 2006 and Torrecilla, 2007):
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RESULTS AND DISCUSSION

The ANN optimization process was performed
using a trial and error technique. Both time and weight were
used as input in the artificial neural network structure. The
data set of inputs and outputs used to train the ANN

consisted of individual conditions, combination of
temperatures at different conditions, combination of
pressure at different conditions, combination of all

superheated steam with 1 and 1.5 cm-cube sizes of paneer.
Each data set was divided in to two groups, consisting of
50% for training and 50% for testing.

Artificial neural network with between 1 and 2
hidden layers tested and with 3-9 neurons per hidden layer.
Each combination of hidden layers and neurons per hidden
layer was trained. The result showed that the number of
hidden layers, and neurons per hidden layer, that yielded
minimum error was different for each drying technique.
Table 1 gives the detailed ANN structure for all combined
data set with superheated steam and without superheated
steam drying. In table 1, the minimum MRE was found with
two hidden layers and seven neurons for moisture content
dry basis, two hidden layers five neurons for drying rate and
two hidden layers and seven neurons for moisture ratio. A
large number of hidden layers does no required to lower the
error if there are enough number of neurons ( Torrecilla et
al.,, 2007 ). The best prediction for most of the data set
contained two hidden layers. ANN developed for combined
drying data had slightly higher error than individual
conditions.

Plots of experimentally determined moisture
content, drying rate and moisture ratio versus ANN
predicted values for all combined data are shown in figure 2.
The correlation coefficients were greater than 0.98 in all
cases. For all combined data set with superheated steam, the
R? were found 0.9975, 0.9934 and 0.9983 for moisture
content, drying rate and moisture ratio. Whereas For all
combined data set without superheated steam, the R* were
found 0.9991, 0.9846and 0.9991 for moisture content,
drying rate and moisture ratio. In this study the ability to
predict moisture content, drying rate and moisture ratio were
very good. Studies using regression techniques in analytical
models had less predictable than ANN models. While this is
perhaps reasonable predictive power, the implementation of
the ANN provided even better prediction capability.

CONCLUSION

Artificial Neural Network can be used to predict
the drying characteristics of paneer undergoing different
drying techniques. The optimal models for combined drying
can predict the moisture content, drying rate and moisture
ratio with R* value greater than .98 offered better prediction
than analytical model.
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Table 1 Errors in the prediction of drying characteristics
with different number of hidden layers and neurons per
layer for paneer under going combined 1 and 1.5 cm-cube
under low pressure superheated steam drying

No of No of
Out | hidden | o rons | MAE | sTDA | MRE | sTDR | R
put layer
3 2.833 2.466 35.907 0.844 0.995
1 5 3.287 3.503 14.463 0.223 0.993
7 3.306 2.364 19.179 0.301 0.991
(%) 9 3.301 2.708 32.432 0.769 0.990
db 3 2.556 2.269 28.335 0.721 0.991
2 5 3.920 3.436 23.833 0.442 0.983
7 2.165 1.775 10.688 0.108 0.997
9 2.844 2461 35.646 0.827 0.995
3 0.068 0.148 26.090 0.493 0.905
1 5 0.058 0.145 17.298 0.263 0.902
7 0.054 0.147 20.492 0.370 0.910
dm 9 0.069 0.111 38.568 0.782 0.941
/dt 3 0.066 0.117 36.801 0.677 0.937
2 5 0.052 0.126 15.287 0.172 0.993
7 0.060 0.147 17.325 0.195 0.897
9 0.055 0.135 17.504 0.315 0.916
3 0.032 0.028 64.022 2.291 0.995
1 5 0.037 0.031 47.427 1.686 0.995
7 0.022 0.016 15.407 0.375 0.996
MR 9 0.037 0.029 58.380 2.163 0.989
3 0.023 0.021 36.129 1.580 0.994
5 5 0.041 0.035 35.063 1.297 0.983
7 0.020 0.015 13.109 0.238 0.998
9 0.032 0.026 61.167 2.168 0.995
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Figures 2 Correlation between predicted and experimental
values using the optimal ANN (LPSSD)
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1. Introduction

At the Bois-Rouge factory, the crystallisation
process is carried out using three massecuites
scheme, known technically as jets A, B and C.
Unlike the A and B sugars, the C sugar is not
marketable. It is re-thickened and injected back
into the factory circuit. The crystallisation of the
third jet is therefore the last stage to allow the
extraction of sucrose from the liquid phase. Any
sucrose molecule left in liquid form after this last
transformation is completely lost to the
manufacturer, and so from an economic point of
view, this last stage is extremely important.

A current methodology used in sugar industry to
exhaust a sucrose solution consist in
concentrating the solution to a particular state of
super-saturation, sow it with a certain volume of
slurry, and then allow their growth to obtain the
C crystals.

Numerous works (Bonnecaze (2004)) have
shown that the quality of the initial population of
seed-crystals has a large impact on the yields
from the C crystallisation process.

As part of the optimisation of the third jet
crystallisation process at the Bois-Rouge sugar
refinery, we have undertaken a study of the
seeding phase, using a methodology of design of
experiments. Our goal is to evaluate the
influence of some parameters defining the
operating conditions upon the mass of seed-
crystals produced.

2. Study of the seeding phase.
Methodology of experiment plans

The study of the seeding phase involves
determining the importance of the main factors
influencing the quality of the initial seed-crystals
population. To measure the influence of the
principal parameters which affect this quality,
we chose a methodology based on design of
experiments. These were carried out following a
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pilot study in the laboratory, which had the
advantage of allowing experiments while
varying several parameters. Industrial
production constraints mean that these
experiments cannot be carried out on site.

2.1 Factors and results of the

experiment plans
During the seeding phase, the nuclei
introduced into the supersaturated sucrose
solution come together into seed-crystals.
By considering this initial state, we
performed a first study of the seed-crystals
population by observing the principal
factors likely to affect both their quantity
and quality.
Numerous  scientific ~ works  have
investigated the initial seed-crystals
population (Clériot (1993), Vaccari and
Montovani  (1995), Marchal (1989),
Pautrat, Genotelle and Mathlouthi (1996),
Lin, Siyuan, Bing (1998)). However, most
of these studies were carried out on yields
from the first jet, i.e. the results of A
crystallisation. In the A jet, the quality of
the initial population is best described in
terms of crystal facies and size
distribution: the standard deviation of this
distribution should be as small as possible.
Any study of this kind has been lead in the
field of C crystallisation

A study carried out in the laboratory
consisted in using a methodology of design
of experiments to highlight the influence of
certain factors on the total mass of seed-
crystals larger than 6 um.

Earlier works (Cleriot, (1993)) have shown
that for an optimal seeding of a sugar
solution, the choice of seeding point, the
granulation characteristics of the seed-
germs introduced and the duration of the
maturing (or stabilisation) period are all
essential.



We set up an experiment plan based on the
following three factors:

. F1 : the purity of the initial solution;

. F2 : the conductivity of the solution at the
moment of seeding;

. F3 : the mass of slurry used.

The first two factors give information about the
initial state when the slurry is added to the
solution. The purity of the solution gives an
appraisal of the matter involved, and F2 gives
more information about the solution’s super-
saturation.

In order to study the impact of the seed-germs’
granulation characteristics on the crystalline
mass produced, it is necessary to have some seed
samples in which a granulation criterion, such as
the size of the micro-crystals, takes at least two
different values. However, as measurements of
granulation are generally found using statistics
based on representative samples, it is practically
impossible to guarantee that two samples possess
the same granulation characteristics. For these
reasons, we chose as criterion the mass of seed-
germs introduced, at the expense of a granulation
criterion.

The result Y from the plan is the crystalline mass
obtained after centrifugation through a sieve
which separates the mother-liquor from crystals
with a diameter greater than 6 pm. It is therefore
a number criterion which was chosen.

The initial solution, the magma, is a mixture of
various products, and so its purity in the factory
varies greatly. In the laboratory, it is easy to
obtain a magma solution with defined purity
criteria by mixing products taken on site.

Each experiment depends on the state of super-
saturation of the solution. Seeding an under-
saturated solution does not produce seed-
crystals. Conversely, the labile supersaturated
state of a sugar solution can promote primary
nucleation, and generate micro-crystals of
uncontrollable size. The generation of the initial
population of micro-crystals must therefore be
carried out while controlling the state of super-
saturation in the solution.

In the sugar industry, the sucrose solution’s
electrical conductivity is used to indicate the
level of super-saturation.

At Bois Rouge, by making the assumption that
the mass by volume of the seed-germs is
constant, the volume to be added for the growing
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phase is fixed by the vat. To test the impact
of this initial volume on the production of
seeds larger than 6 um, we reproduced the
operating conditions at Bois Rouge, by
working with the same conditions of
temperature and reduced pressure. The
upper and lower values for each of the
factors were chosen according to the
different operational ranges used in the
manufacturing process.

Table 2.1 below brings together all the
experimental upper and lower values for
each factor. We chose to test two different
operating zones depending on the nature of
the products used on site (variation range
of the solution’s conductivity). Two purity
intervals are given Dbecause they
correspond to different products. The
variation in the slurry mass introduced was
the same in each case.

PtePC Ptepc )‘sol )‘sol
(%) (%) ( S/em) | ( S/cm) Msem
Interval | Interval | Interval | Interval (2
1 2 1 2
Level
83.8 87.7 550 550 40
+1
Level
. 69.9 53.3 430 500 20
Table 2.1

Pte,. : purity magma - A

o - conductivity of

solution - Msem : Mass of slurry

2.2 Experimental approach
A three factor plan is based on the
completion of eight experiments. The
experimental approach used to carry out
each of these experiments is detailed in

Table 2.2:

Phase 1 Introduction of 41 of the Purity factor -1/+1
product

Phase 2 Concentration of the Conductivity -1/+1

solution

Phase 3 Introduction of the slurry Mass of slurry -1/+1

Phase 4 Maturation of the seed- Duration : 30 min
crystals
Phase 5 Measurement of the 20 hours after seeding

crystalline mass obtained

after centrifugation

Table 2.2

To guarantee a certain degree of
homogeneity, the sampling was carried out
on the same day, for each of the products.




Three complete plans were carried out using
these samples:

. PE1 and PE3 involve the same products
(interval 1 for the factor F1 : purity of magma),
which we will list;

. PE2 involves interval 2 of the factor F1.

The ranges of the different factors are
summarised in Table 2.3 :
Level -1 | Molasses A | 430 ( S.cm™) | 20 (g)
PE1
Level +1 Liquorstd | 550 ( S.cm™) | 40 (g)
Level -1 | Molasses A {500 ( S.cm™) | 20 (g)
PE2
Level +1 Liquorstd | 550 ( S.cm™) | 40 (g)
Level -1 | Molasses A | 550 ( S.cm™) | 20 (g)
PE3
Level +1 Liquorstd | 600 ( S.cm™) | 40 (g)
Table 2.3

The result Y of the experiments is the crystalline
mass obtained by centrifuging a constant volume
of massecuite (900ml). To describe the

interactions between the factors and the
response, and between the different factors, it is
necessary to estimate the coefficients a; of a
polynomial expression, the first degree form of
which is most often used:

Y =aO+al,F1 + a2,F2+ a3.F3+ al2,F1,F2+ 323,F2.F3+ al3,F1.F3+ am

FLF2F3
(D
3. Results and future work
The matrix of the effects obtained from the
various experiments in plans PE1, PE2 and PE3

is shown in Table 3.1 below:

F1 F2 F3 PE2 PE1 PE3
Runn°1 -1 -1 -1 678 474 479
Run n° 2 -1 +1 -1 614 546 410
Runn°3 -1 -1 +1 694 579 380
Run n° 4 -1 +1 +1 617 325 351
Run n° 5 +1 -1 -1 749 560 460
Run n° 6 +1 +1 -1 710 420 325
Run n°7 +1 -1 +1 840 493 522
Runn°8 +1 +1 +1 702 411 405

Table 3.1 : matrix of the effects —Plans PE1, PE2, PE3

3.1. Results of plans PEI and PE3
When studying the results obtained from PEI
and PE3, the most important problem identified
was undoubtedly that of reproducibility. Indeed,
the range of values of factor F2 includes a
common limit for PE1 and PE3. For this limit,
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when the two other factors are identical,
the runs were therefore carried out in
similar conditions. Nevertheless, there is a
non-negligible difference in the crystalline
masses obtained in these conditions:

Runs FI [F2 [F3] Yi | Y. | YirYs
(PE1) | (PE3)

69.9 | 550 [ 40 | 411 | 522 | -111
E8(PE1)=E7(PE3)

69.9 [ 550 |20 | 420 | 460 | -40
E6(PE1)=E5(PE3)

83.8 | 550 | 40 | 325 | 380 | -55
E4(PE1)=E3(PE3)

83.8 [ 550 [ 20 | 546 | 479 | +67
E2(PE1)=E1(PE3)

Table 3.2

Further, a complete plan involves

experiments spread over about ten days. As
the products sampled for these plans were
of the same nature, we conclude that the
inconsistency in the observed results may

be because

refrigeration  at

4°C

is

insufficient to stop bacterial activity. This
would mean that during the storage period,
alcohol fermentation reduced the sucrose
concentration in the solutions, changing

their purity.

The intermediate plan PE2 allows the
analysis to be completed. In this last plan,

the  eight

usual

experiments

arc

supplemented by two central points: the
levels of each factor are chosen in the
middle of each of the operational zones

(level 0).

The matrix of the effects obtained and the
operating conditions in plan PE4 is given

in Table 3.5 below:

F1|F2 |F3| |PE2
Runn®1 -1 -1 -1 678
Run n° 2 -1 | +1 -1 614
Runn°3 -1 -1 [ +1 694
Runn°4 -1 +1 [ +1 617
Runn®s5 +1]-11-1 749
Runn® 6 +1|+1]-1 710
Runn®7 +1]-1|+1 840
Runn° 8 +1[+1|+1 702
Centralpoint1|{ 0 | 0 | O 768
Centralpoint2| 0 | 0 | O 781




Table 3.5

The average effects of each factor are given in
the table below:

Mean effect | F1 F2 F3 Y
El -1 -1 -1 -1 678
E2 1 -1 1 -1 |614
E3 1 -1 -1 1 | 694
E4 -1 -1 1 1 |617
E5 1 1 -1 -1 1749
E6 -1 1 1 -1 710
E7 -1 1 -1 1 840
E8 1 1 1 1 ]702

|Average| -10.75 |49.75|-39.75|12.75| |

Table 3.6

For PE2, the refrigeration of the products at —
18°C justifies the assumption that the purity of
the products used did not vary. Indeed, the yield
is higher than the crystalline mass produced in
the previous runs, which confirms the
deterioration of the products at 4°C.

The dominating effects of the initial solution
purity and its electrical conductivity at the
moment of seeding are shown in the table of
mean effects, above. The results of PE2 are
consistent with those of PE3.

3.2. Model identified using the results from
PE2

To complete the analysis, a polynomial type
model ( Goupy (2001)), of first degree in each of
the factors taken independently, was identified
using the results from plan PE2 (see equation 1).
The approximation of the parameters was carried
out in the usual way, using measured factor-
response pairs, and linear regression.

Three first degree models were identified by
using the software MODDE. These models take
into account the main factors and/or the
interactions between these factors. In each case,
the form of the model chosen as well as its
associated correlation coefficient is given.
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F1 | F2 | F3 | F1F2 | F1F3 | F2F3
Model correlation
a a | a | a ay as ag

structure coefficient
without
interactions
with 715 (50| |13 0 0 0 0.74

40
central
points
with
interactions
with 715 |50 | |13 | 45 8 -14 0.77
central 0
points
with
interactions
without 700 | 50 | |13 | -45 8 -14 0.96
central 0
points

Table 3.7

Inspection of the correlation coefficients
shows that the model which takes into
account the interactions between factors,
but not the central points, is the best. This
model is given by the following equation:

Y=700+50F1-40F2+13F3-4,5F1F2+8F1F3-14F2F3

Inspection of the coefficients a, in the
model confirms that the three factors are
significant, and that the most influential are
the solution’s conductivity and its purity.
Among the interactions between factors,
only that between the solution’s
conductivity and the seed-germ mass
introduced is significant, although its
impact is nonetheless limited.

This model calculates a crystalline mass of
700g when the factors are chosen in the
middle of their operational zone. The
difference between the model response and
measurements is significant for the central
points (about 10%). Several hypotheses
might explain this phenomenon:

. the  first relates to  the
reproducibility of the results, mentioned
above;




. the second relates to the accuracy of the
model, unsatisfactory for three reasons;

- to facilitate this first approach, the
experiment plans were based on three factors,
which do not provide a proper phenomenological
description of the crystallisation process, which
is complex in an impure environment;

- as the choice of three factors has been
shown to be insufficient, other influential factors
should certainly be taken into account, in
particular the viscosity of the reactive mixture;

- the choice of model structure (first
degree) is perhaps too simple to reach a
satisfactory level of precision.

4. Conclusion

Our objective is to find the optimal operating
conditions for generating an initial population of
crystals-seed, with precise characteristics, in
order to improve yields from the crystalline
growth phase. A first approach which involved
using a methodology of experiment plans to
identify a linear relationship, allowed us to
quantify the impact of three factors on the
crystalline mass produced, under certain
conditions. However, the model derived exhibits
some inaccuracies. In order to improve it, we
plan to carry out further experiments which will
reveal more central points, while taking into
account at least one more factor which affects
the crystallisation phenomenon, namely the
solution’s viscosity.
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Determination of dielectric parameters of frozen materials via reverse
technique
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INTRODUCTION

Microwave heating is used in various processes of
the food industry, as drying, tempering, thawing
and heating. Numerous works related in the
literature deal with modelling of drying processes
[1-3] or heating ones [4,5]. The literature is
however more limited concerning thawing. The
main problem of microwave thawing comes from
the existence of hot spots leading to temperature
heterogeneities [6,7]. It constitutes a brake to a
larger development of this technology in food
industry, despite its great interest in terms of
flexibility.

These hot spots are due to resonance phenomena in
the frozen phase of foods. These resonances can be
observed when the penetration depth is larger than
the thickness of the sample to treat. This
penetration  depth increases when dielectric
properties are small, which is thus observed with
frozen materials.

In order to develop accurate simulators allowing to
improve microwave thawing processes, it is
necessary to have a good estimation of the
dielectric properties (loss factor and permittivity)
especially in the frozen phase. In this study, we
propose to determine these parameters using
reverse approaches.

MATERIAL AND METHODS

S

Thermas
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The experimental apparatus is a microwave system
(figure 1), supplying a monochromatic wave in the
fundamental mode, denoted TE,,, operating at a
frequency of 2.45GHz. Microwave energy is
transmitted along the z-direction of a rectangular
wave guide (section 86mmx43 mm). The sample
(84mmx*41mmx50 mm) fills the guide. A layer of
polystyrene, sufficiently thin (Imm) to neglect its
effects on the electric field, is inserted between the
walls and the product to limit the heat losses. In the
same way, the guide is covered by insulating foam.
The sample rests on a polystyrene plate to consider
only one convective exchange in the upper surface.
To ensure that only a minimal amount of
microwave is reflected back to the sample, a water
load is fixed at the end of the guide. The incident
power at the upper surface of the food sample is
measured. The considered sample is a block of
tylose made of methylcellulose (Methocel® A
4MFG, DOWChemicals) in which the temperature
is measured in three locations using optical fibre
sensors (LUXTRON  Fluroptic Thermometer,
model 790, accurate to +0.5°C). The tylose under
consideration is 50mm thick and is composed of
water (86.6%), methyl cellulose (13%) and salt
(0.4%). Tylose is widely used as an experimental
material in food-related research. Experiments are
made in frozen zone with microwave power input
fixed at 500W. The initial temperature of sample is
approximately -20°C.

.

optical fibres
Palystryrene plate Watter it

Wt

€.086m

Figure 1. Schema of the exi)erimental apparatus
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DESIGN OF THE SIMULATOR

Heat transfer model

In order to analyze the process of heat transport due
to microwave heating of a block of tylose, the
following assumptions are introduced:
Assumption 1: The product receives
electromagnetic waves by the upper surface.
Assumption 2: The product is homogeneous and
isotropic.

Assumption 3: The thermophysical and dielectric
properties are temperature dependent.

Assumption 4. The mass transfer is negligible.
Assumption 5: The lateral and lower surfaces of the
product are perfectly insulated.

Assumption 6: The initial temperature of the food
sample is homogeneous.

the

Heat transfer is based on the generalised heat

equation which depends on thermophysical
properties of the product, as follows:

or .
PPy = = dV(VT) +0,, (M

The effective heat capacity method, that requires a
single energy balance equation, has proved to be
reliable  for  studying phase change in
multicomponent materials such as food materials
[6,8]. Tt consists in using an effective heat capacity
for the entire domain.

Into the general heat equation, Q. denotes the
internal heat generation source term and quantifies
the amount of power which is dissipated into the
product by dielectric losses. In order to evaluate
this source term, the electromagnetic field is solved
into the product according to the theory of
Maxwell’s equations. The governing equations for
a propagating electromagnetic wave in differential
form are:

oD oeE

VxH=—+J=—+0F 2)
ot ot
vxp=-B__ ol 3
ot ot
V.D=V.eE = p, 4)
VB=V.uH =0 5)

with
J= O'(a))E(t) , D= g(a))E(t) and B= y(a))H(t)

g=¢'-je" is the complex permittivity, € is the
dielectric constant and ¢’’ is the dielectric loss
factor with j> =—1. The permeability ¢ may be

represented by u =4nx10"H.m™, the permeability
of vacuum [9]. In practice, we limit ourselves to
time-variant fields following a harmonic law, with a
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pulsation @ =27f, where f'is the frequency of the

wave.

In our case, the fundamental mode, that is TE ,, is
considered. It means that the electric field is in the
(xOy) plane with only a component E), .

In TE, y mode [10], considering a rectangular guide
filled by a homogeneous dielectric, the E,
component of the electric field is straightforwardly

obtained from the resolution of Maxwell’s

equations :

F-F sin(ﬂ] ©)
a

In this study, we propose to solve the model using
COMSOL®, release 3.3, where the resolution of
Maxwell equations is coupled to the heat transfer
resolution via a finite elements scheme. More
details concerning the numerical resolutions can be
found in [14].

Into the heat transfer equation, the source term is
computed from the knowledge of the local electric
field as follows [9]:

0, =0k, &.&" @)

This source term depends explicitly of the loss
factor, and implicitly of the dielectric permittivity

because E’_ depends on ¢’. In the sequels, we will
consider that, on the temperature range considered

for the experiments, €’ is constant and €” is an
exponential function of temperature:

&"=a-exp(pT) ®)

Let us denote p the vector of parameters to estimate
using reverse approach:

gV
p=|a|.

B

Initial and Boundary conditions

As initial condition, the material is assumed to be at
uniform temperature T,. Convective coefficient
h=10W.m2 K" is due to natural convective flux at
the upper surface of the product. Walls of the wave
guide are thermal insulated. Mathematically, the
initial and boundary conditions can be written as:

T=T, att=0,Vx Vz
ka—T:h(T—Tw) at z=0,Vx

0z

9

ka—T:0 at x=0,x =a,Vz ©)

0z
ka—T:O at z=L,Vx

0z



Walls of the wave guide are perfect electric
conductors. Incident electromagnetic wave is
applied at the top of the product. Wave reflection
between the air medium and the surface of the
product is directly computed according to the
theory of Maxwell’s equations. At the end of the
rectangular ~ wave  guide, the  resulting
electromagnetic wave exits the guide without any
reflection.

The initial and boundary conditions can be written
as:

E =E, sin(ﬂj
¥y
a

E =0

at z=0,Vx

(10)

at x=0,x=a,Vz

REVERSE APPROACH

Let us denote Y the observation vector, composed
by the measurements obtained from the 3 optical
fibres as illustrated on figures 1 and 2:

v=1, 1, T] (11)
The observations are done at regular sampling

period. Let us denote Y., the observations realized
on the whole experiment time, from ,,; to #;,u::

v(e,, ]

Ymoder 18 the corresponding values of temperatures
T to T issued from the simulator.

V=) v, +1) v, +20)

exp

Let us denote p,, the optimal parameters vector
such as:

p., =argminJ(p) (12)
where
JpE, =YV Vo] (13)

We propose to estimate p,,, using the well-known
Levenberg-Marquardt methodology [11], which is
implemented in Matlab®. Due to the strong non
linearity of the model, the gradient of the criterion
is estimated during optimization procedure via
finite differences. The routine implemented in
Matlab® supplies an estimation of the Hessian at the
optimum, but the quality of this estimation is highly
bound to the consistency of the algorithm. For this
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reason, it is proposed here to compute the Hessian
at the optimum with the following approximation:

VZJ(pnpl )z |:8Ymodd j| . |:8Ymodd j|

14
o o (14)
To obtain the Hessian matrix, small variations dp
(about 1%) can be applied on the 3 parameters of p
to compute

{axm } Mo (15)
op P

The knowledge of the Hessian at the optimum
allows computing a standard deviation for each
estimated parameter, provided that the standard
deviation of the measurements is known.

For the i estimated parameter, it can be calculated
as follows [12]:

det|V:J(p,,

det|V-J\p,,

o, is the standard deviation of the experimental

exp

(16)

measurements, and V.J (pnp,) is the Hessian matrix

deprived of the i" line and i™ column.
This expression is equivalent to compute the

covariance matrix [VZJ (P,)p, )]' and to consider the

square roots of its diagonal terms multiplied
weighted with o .
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Figure 2. locations of the experimental
measurements
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Figure 3. Experimental and model temperatures with optimal parameters. P;,. = 500 W

EXPERIMENTAL RESULTS

In this study, we have proceeded to 10 experiments
in similar conditions:

- initial temperature close to -21°C,

- microwave power of 500 W,

- optical fibres located at the same positions,

as illustrated on figure 2.

However, optical fibres are particularly difficult to
introduce into the frozen product with a good
accuracy. The consequence is an important
sensitivity of the temperature measurements,
especially at the neighbourhood of resonance spots.
For this reason, on figure 3 are represented the
mean values of temperatures (circles) and their
respective standard deviations (vertical bar).
Considering all the experiments, the standard
deviation of the output vector Y has been
established: o, =0.85

During the optimization procedure, the mean values
of experimental temperatures have been considered.
The optimization has been repeated using several
set of initial parameters in order to avoid local
minima.

The optimal parameters obtained are:

5.469
p,, =|3.88-10"
0.072
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The temperatures 7 to T3 issued from the model
with p,, are illustrated by continuous lines on
figure 3.

It is now proposed to evaluate the relevance of the
methodology by comparing with experimental
results published in [13], with the same product, but
in different experimental conditions:
- microwave power of 1000 W
- optical fibres located at different positions,
as illustrated on figure 4.
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202t Top view
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e
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Beitiaze

Figure 4. locations of the experimental
measurements. From [13]
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Concerning the minimization procedure, the
estimation of the Hessian at the optimum leads to:

7.2-10°  2.29-10" 2.34-10°
viJ(p,)=1229-10" 1.05-10° 1.03-10"

2.34-10°  1.03-10" 1.03-10°
Finally, equation (16) allows evaluating the

standard deviation of each parameter:
c,=0.07;0,=0.93-10";0, =0.001

These standard deviations show that, despite a large
uncertainty on temperature measurements due to
problems of repeatability, the dielectric permittivity
can be estimated with a very good accuracy.

Indeed, it can be noticed that o, <<¢,,
On the contrary, the loss factor, obtained with

equation (8) with 7 in Kelvin, is estimated with a
large uncertainty, as illustrated on figure 6.

Rt Y B 3 £l £ B

s i
i

Figure 6. Uncertainty on estimated loss factor
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Some general indications can be deduced from
these experiments. It appears that, as illustrated on
figure 3, a measurement at the neighbourhood of a
resonance point leads to a large standard deviation,
due to the large sensitivity to the position of the
sensor. Nevertheless, such a measurement is
particularly  sensitive to the electric field
distribution, and thus allows evaluating with a good
accuracy the dielectric permittivity, whose electric
field depends directly.

On the contrary, this measurement uncertainty leads
to a very bad estimation of the loss factor.

A good recommendation to correctly estimate the
dielectric properties would be to proceed in two
steps: (i) estimation of the vector parameters p with
measurements located close to the resonance points
(the resonance points are not a priori known, and a
try-and-error  procedure is  necessary),  (ii)
adjustment of the loss factor with measurements
effected far from the resonance points, with a small
uncertainty on experimental data.

CONCLUSION

In this paper, we have proposed to estimate via
reverse techniques the dielectric properties of
frozen material. The approach presented allows first
to estimate loss factor and permittivity, but also to
evaluate standard deviations for the estimated
parameters.

A set of experiments have been used for the
minimization procedure and the standard deviations
evaluation. The obtained optimal parameters have



been implemented in a simulator. Temperatures
issued from this simulator have been compared
with experimental data issued from works
previously published and in different conditions.
The results obtained have shown a good adequacy
between model and experiment.

The computation of standard deviations for the
estimated properties has highlighted the difficulty
to estimate the loss factor with a good accuracy,
while the dielectric permittivity can be evaluated
with a small uncertainty.

Finally, some recommendations to evaluate
dielectric properties of frozen material (that is, with
the presence of resonant mode), have been
proposed.
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ABSTRACT

Most bakeries work on a suboptimal level concerning
utilization of devices, energy consumption and staff
allocation. That results in “bottle-necks”, operation
problems, and not achieving the best possible profits. In
order to detect these suboptimal processes, it is
advantageous to use virtual models. Once created, these
models behave like the real system. Thus, they will provide
a possibility to predict the changes that may occur to the
real production, if the specifications of the production
elements are changed. Furthermore, the models can provide
a very detailed look on the production flows, which helps to
find and eliminate inefficient production schemes and
“bottle-necks”. Therefore, they provide a powerful tool for
production planning.

1. INTRODUCTION

Although there are many software programs which are built
for simulation of the industrial processes, such like
SIMBAX, SIMPLORER, DELMIA, FLEXSIM, and
ARENA, applications of modelling and simulation in
baking production processes are rare. (Kelton 2004)
presented the concepts and methods of simulation using
Arena as a carrier to help the modeller reach the ability to
carry out effective simulation modelling. Arena is based on
the SIMAN modelling language, and has an object-oriented
design and the ability to be tailored to any application area.
Some simulation examples at which Arena is successfully
implemented are contact centers, auto manufacturing plant,
bank facilities, and airport operations. (Balci 1990; and
Banks 1999) focused on verification and validation of the
model as the most important element. Their aim was to
certify the model’s accuracy when used to predict the
performance of the real-world system that it represents, or
to predict the difference in performance between two
scenarios or two model configurations. (Shannon 1998)
cited the "40-20-40 Rule". This rule states that 40 percent
of the effort and time in a project should be devoted to the
understanding of the problem, goals, boundaries and
collecting data. The next 20 percent is to the formulation of
the model in an appropriate simulation language, and the
remaining 40 percent to the verification, validation and
implementation. (Greasley 2003) noted that simulation is
best suited to systems that do reach equilibrium, meaning
that the stability of the process needs to be considered
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before simulation is used. The author also mentioned the
importance of the visual animated display as a
communication tool to facilitate discussion and
development of new ideas. Furthermore, (Goldsmann 1992)
presented a reasonable proposal to analyze the simulation
results. Obviously, all the previously mentioned simulation
software, modelling techniques and simulation analysis
algorithms, may be applied to the case of bakery production
lines. To our knowledge, the simulation as an effective tool
for the production planning and management is still not
commonly implemented in bakeries, though.

This paper displays the current research on modelling and
simulation of baking processes, with the solution of the
processing problems and optimization of the production
plans. A procedure combining elements of Banks and
Shannon would be used in this study. In this study, we
choose the production line of a small bakery that produces
ten kinds of products as a working example, and its baking
processes are modelled using Arena. The modelled
processes are connected to figure out the proposed
production line. The production line is simulated to validate
the process inputs/outputs with respect to the real bakery
production line’s data. Once the validation is performed
successfully, the analysis of the simulation data is possible,
and the possibilities to optimise the process are
investigated.

2. MATERIAL AND METHOD

To model the production line and obtain efficient processes
simulation and consequently processes optimization, the
procedure is initiated by collecting the bakery data. This
data is collected for one shift period which starts at 1:00
and ends at 7:10. The next step is to formulate the model
and simulate it, followed by validation of the simulation
results with respect to the real data, after which these results
are used for analysis and optimization purposes.

2.1 Production Line Data
The production line data includes the bakery products, the

required ingredients, the utilized devices (Table 1), and the
workers responsibilities (Table 2).



Table 1: The utilized devices in the bakery production line.

Device Name No. of Items
Mixer 2
Dough Divider 1
Forming Machine (Depositor) 1
Dough Retarder (Fermentation 1
Interruption)

Dough Proofer 2
Rack Oven 1
Tunnel Oven 1

The number of workers on the workbench (to form the
dough) is three, one of them is also charged to mix the
ingredients. Thus, during the mixing period there will be
only two bench workers. One worker is required to
transport the products between baking processes and
another worker for the final products’ packaging.

Table 2: The workers allocation, numbers and salaries
during one shift period.

Worker Task No. Worker Salary
(per hour)

Dough Forming on Bench 2 X
Dough Mixing and Dough

. . 1 1.1 *x
Forming Assistance
Products Trgnsportatmn 1 02 *x
among Devices
Packaging 1 0.5 *x

As shown in Figure 1, the production plan clarifies the
processes that each product will go through on the
production line during the shift period, starting from the
dough mixing process up to the products shipping process.
Two products (Multigrain rolls and poppy seed rolls)
terminate their processing path at “Dough Retarder”, to be
baked in the following shift period.
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-# - Poppy sead Rolls®
- sead Rolls
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Lob e Muldigeain Rolls
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- White Bread

Forming Starts
WorkBench 1
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Mixer Entranve
o
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G5:080
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100
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¥
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Figure 1: The time plan for one shift period explains the
stages that products will follow on the production line.
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2.2 Production Line Modelling And Simulation

Arena is an advanced software program that provides an
interactive environment for graphically animating, verifying
and analyzing simulation models. Within Arena’s building
area, the bakery production line model is generated using
modules. Each module is programmed to represent a certain
production line process. For example: the “Tunnel Oven”
module (in Fig. 2) contains all required information about
the baking process in the tunnel oven. In addition, some
attributes are assigned in the beginning of the model as
properties attached to the specified product. Such like “Rye
Bread.Baking Period” which is an attribute that refers to the
baking time necessary. Some decision modules (e.g. Ovens
Distributer) are also used to spread out the products to their
consequent process units (modules). Figure 3 is a screen
shot of a production line simulation, illustrating the flow of
products along production devices.

Rack
Qven

T

Codling -

Tunnel
Qven

Figure 2: Production line modelling (distribution of
products to ovens)

Poppy sced Dough (storad)

Rye Whdat Dough

Baguatte Daligh
Dough
Proclfar [

Wheut Rye Dough

Figure 3: A capture of a part of the production line during
simulation

3. RESULTS OF THE SIMULATION

Once the simulation results are validated with the real
production line data, we can rely on them to analyze and
optimize the production line processes. Figure 4 shows
some of the simulation results. The rack oven (Fig. 4(b)) is
idle for 55 minutes out of its 185 total working minutes (it
is shut down from 4:00 up to 4:50), totally this wastes about
30% of its energy. “Tunnel Oven”, “Dough Retarder” and
“Dough Proofer” can be occupied with more than one
product at the same time. Instead, the tunnel oven contains
only one product for 170 minutes out of its 205 total
working minutes (Fig. 4(c)). Meanwhile, the dough proofer



contains only one product for 125 minutes out of its 215
total working minutes. Moreover, workbench schedule (Fig.
4(d)) places its workers free for 50 minutes in the middle of
the shift period, which is a quite long break compared to
their 174 total actual working minutes. Finally, the
“Multigrain Rolls” dough waits for 25 minutes before being
processed in the “WorkBench 27, after being formed in
“WorkBench 17 and “Dividing Machine”. This waiting
period is too long for a pre-formed dough.
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Workbenth 1

Bough divider 5
Rask aven
Forming maching 5

Packaging
Faiger 1
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Doy o e i i w I~ B~ B~
oy 2P O T R Ty O O
Tunnsl aven Pl O T o R WD Y A A0 b
[==] R = = = A - R I < < =]
tal Mo. of products per device it} Products under processing in the rack oven
3 3
2 2
| | H
g : . o ; . :
5588883288885 S588E8R233888ER

ic} Products under processing in the tunnel oven ieh Products under processing on bench

Figure 4: Simulation results for some production line
devices utilization

4. PRODUCTION LINE OPTIMIZATION

The above observations imply that the real production line
is operated with a suboptimal production plan, and it is
preferable to design a more effective production plan that
reduces the wasted times and the wasted energy. Using the
production line model, it is simple to modify the production
plan, and instantaneously observe the responses on the
simulation results. After some iteration, we reach a more
qualified production plan as in Figure 5.
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Figure 5: The optimized time plan for one shift period
explains the stages that products will follow on the
optimized production line.

By rescheduling the production plan of some products (Fig.
6(a)), the idle utilization time gaps of “Rack Oven” are
removed, and it is fully occupied through its 130 working
minutes.

As for the bench workers schedule, we can reorganize their
break to start at 2:50 for 15 minutes, and continue working
for 35 minutes. Then they are given another break for 5
minutes, and continue working for the last 40 minutes. This
is applied in Figure 6(b) through rescheduling some more
products.
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Figure 6: The new, optimized schedule of some products

Rescheduling of those products’ production plan will also
decrease the working time of the “Tunnel Oven” and
“Dough Proofer”. This is achieved by increasing the rate of
their processing products per time, to be more than one
when applicable. Additionally, “Multigrain rolls” will be no
longer delayed before being processed in “WorkBench 2”.



5. CONCLUSION

Simulation of the Bakery production line presents a good
opportunity to optimize the processes and save the energy
consumed of the production devices. Furthermore
decreasing the working period of the workers on the
production line, saves extra salary, or at least will make the
workers free for other bakery tasks. Figure 7 shows a
comparison in devices utilization and workers allocation,
between the real production line and the optimized one.

L &

(¢} The Dough Proofer Ut

ilization

Figure 7: Comparison in resources management before
optimization (dotted line) and after optimization (solid line)

From (Fig. 7(a, b and c¢)) the energy consumptions of “Rack
Oven”, “Tunnel Oven” and “Dough Proofer” are reduced
by 30%, 15% and 14%, respectively. On the other hand,
Fig. 7(d and e) show that the total working times of the
bench and packaging workers are reduced by 30 and 55
minutes, respectively. The saved workers time can be
fulfilled in other tasks or saving 13% of the bench workers
salary and 19% of the packaging worker salary.

Finally, the packaging process terminates at 6:50 rather
than 7:10, reducing the total shift period by 20 minutes, and
the products are ready for shipping at an earlier time. (Table
3) summarizes the optimization results in comparison to the
actual results.
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Table 3: Comparison in the working times (in minutes)
before and after optimization. E,, S, and T, symbolize
energy consumption, workers salary and shift period after
optimization, respectively. E;, S; and T,are for the case
before optimization.

Production | Real Optimized Conclusion
Line Item Plan Plan

The Rack 185 130 E,=0.70 E,
Oven

The Tumnel | s 175 E,=0.85 E,
Oven

The Dough _
Proofer 215 185 E,=0.86 E,
Bench _
Workers 225 195 S,=0.87S,
Packager 290 235 S,=0.818§,
Shift _

Period 370 350 T,=095T,

6. FURTHER IMPLICATIONS

The upcoming step to this research is to create a generalized
simulation and optimization tool for bakery production
lines with an implemented user friendly graphical interface
(GUI). This tool will allow the user to define and save the
production line data, simulate the generated production line
model, analyze and optimize the simulation results.
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ABSTRACT

Post baking bread cooling was not very studied until
now. Nevertheless the time required is not insignificant
for the baking industry, and this phase of processes in-
duces mass losses. The objectives of the work presented
here are i) to determine the effects of ambient conditions
and of the nature of cooling, natural or forced convec-
tion, on the water loss and the cooling time, and ii) to
define optimal conditions for the sandwich bread cool-
ing. A model validated in preceding work was used.
Various ambient temperature and humidity values are
used, as well in natural convection as in forced convec-
tion. On the surface the respective weight of convection,
radiation and evaporation is studied as well. Radiation
is the heat transfer mode the most influent on the cool-
ing time and the water loss in natural convection. In
forced convection, the thermal convection is the most
influent. Results show that the water loss is very de-
pendant of the cooling time: the lower the cooling time,
the lower the water loss. Optimal cooling would be ob-
tained with forced convection, low ambient temperature
value and humid ambiance.

INTRODUCTION

In industry, sandwich bread cooling is generally
achieved in natural convection without special cares
about ambient conditions, temperature and humidity.
That involves various cooling times, more or less
significant water losses and thus variable quality.

Among the several cooling techniques, vacuum cooling
was applied on bakery products (McDonald and Sun
2000). In particular, use of modulated vacuum cooler
(MVC) allows to drastically speed up cooling (30 s
to 5 min instead of 1 to 3 h), but with an increased
water loss. This method presents numerous advantages
for industry but induces a certain loss of product
aroma. A patent was registered by Allied Bakeries
Ltd (Anonymous 1996) for vacuum cooling of bakery
products with sprayed liquid, preferably sterile water,
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to compensate water loss.

Many studies can be found about bread baking. On
the other hand very few searchers were interested in
the cooling. Nevertheless works of Grenier et al. (2002)
can be quoted: sandwich bread cooling was studied,
after turning out of the mould, in forced convection
with an air velocity equal to 1ms~!. Increase of
ambient temperature increased cooling time but re-
duced water loss. Cooling rate was decreasing. An
intense evaporation-condensation in the crumb was

proposed as an explanation for this varying cooling rate.

Le Bail et al. (2005) used an experimental design to
study the impact of selected parameters on the crust
scaling for the frozen part-baked bread after final
baking. The selected parameters were ambient air
humidity during phases of fermentation, partial baking
and post-baking cooling, and core temperature before
freezing. Air humidity during the first post-baking
cooling is the most influent parameter. Cooling must
be achieved in humid conditions to reduce scaling.

Hamdami et al. (2004) studied cooling of frozen
part-baked bread from partial baking to freezing. At
surface, in the first moments, the local water content
is decreased by an intense evaporation, so that there
is not freezing. Then, there is surface rehydration
by water diffusion from the interior of the product.
Except the zone close to surface, local water content
is homogenous in the product. Surface temperature
decreases quickly at negative values, whereas, inside
the product, temperature presents a freezing plateau.

Technological progress gives to researchers powerful
analysis tools: Lucas et al. (2005a;b) studied, using
MRI, the cooling and freezing phases of part-baked
bread. The porosity, i.e. the crumb proportion, and
the local water content are the main sources of the
signal variations during the cooling phase. The effect of
temperature is of the same order that the noise impact
to the MRI signal and might be ignored. The signal
variation during the cooling phase was considered
mainly due to the porosity change rather than the local
water content change.



Some authors quoted previously (Grenier et al. 2002,
Hamdami et al. 2004) developed simulators for the
needs of their works. About commercial software de-
signed for the study of the bakery processes, BAKTIX
can be mentioned (Van Der Sluis 1993). This software
is designed for the cooling and the freezing phases
simulation of bakery products. The temperature and
moisture distribution inside the product are computed.
The software is based on the finite elements method. A
ready to use library of models is supplied. The software
allows to study heat and mass transfers for irregularly
shaped products.

The works presented here use an heat and mass trans-
fers model for the cooling phase of the sandwich bread.
To use a simulator perfectly suited to our product and
allowing to modify the equations in accordance with
our needs, we developed our own model. The variations
of the temperature and local water content in the
product, and thus the cooling time and the water loss
can be studied in natural or forced convection, and in
relation with the ambient temperature and humidity
values. The objectives of the work were i) to conclude
about the impact of these parameters and ii) to deduce
information to optimize the cooling phase, i.e. to
minimize the cooling time and the water loss.

MODEL

The model was presented in (Monteau 2008) and was
used to model, using inverse method, the variation
of the thermal conductivity versus the temperature
and the local water content values in any place of the
product. This 2D-model was designed to compute
the temperature and local water content distribution
at any time as well as the water loss. The compu-
tations are for half a slice of sandwich bread such
as drawn on Figure 1. The model was validated in
experiments by cooling sandwich bread, after turning
out of mould, in a climatic chamber Vétsch VC 7018
(Votsch, Reiskirchen-Lindenstrath, Germany) in forced
convection with an air velocity value equal to 2ms™!
on average. In the model, the heat and mass convection
coefficients were computed for this condition for the
forced convection case. The model of the system is
based on the Fourier’s second law for the heat transfer
and the Fick’s second law for the mass transfer.

The surface boundary condition takes into account the
transfers by convection, radiation, and evaporation.

The evaporation flow is integrated on surface and in
time to compute the mass loss.

The ambient parameters, temperature and relative
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Figure 1: Geometry and mesh. The colours are for the
mesh quality and are linked to a number between 0 and
1 (0 for the worst quality and 1 for the best one)

humidity, are equal to 20 °C and 0.5 if not specified in
the runs of the simulator.

The initial conditions are homogeneous temperature
96 °C and local water content 0.762 kg water /kg dm.
The model was implemented with Comsol 3.3a. The
mesh used is tetrahedral 30 x 28 (Figure 1).

MODEL EXPLOITATION

The model was used to compare the cooling time and
the water loss in relation with the cooling conditions:
ambient temperature and humidity, natural or forced
convection. In simulation, to suppress transfer terms in
the boundary conditions is easy. So the impact of the
radiation, the thermal convection and the evaporation
on the cooling time and the water loss was studied.

The cooling phase was regarded as finished when the
core temperature inside the product reached 25 °C.

The first runs of the simulator were intended for the
comparison of the impact of the natural convection and
of the forced convection at standard ambient conditions
20 °C et 0.5 relative humidity.

A second series of runs were to judge the influence
of the ambient temperature ranging from 5 to 20 °C
on the cooling time and the water loss, as well in
natural convection as in forced convection, the relative
humidity being fixed at 0.5. In the same way runs were
achieved with an ambient temperature value equal to
20 °C and a scanning for the relative humidity from 0
to 1.

Lastly the impact of the three modes of transfer at sur-



face on the cooling time and the water loss was investi-
gated.

RESULTS AND DISCUSSION

In natural convection the cooling time was 5279 s.
In forced confection it was 4467 s. Thus the forced
convection decreases the cooling time by 15.4 % because
of the higher heat transfer convection coefficient. The
change of the water loss during the cooling is shown on
the Figure 2 for the natural and the forced convection.
The water loss is equal to 4.47 g in natural convection
and to 4.13 g in forced convection, i.e. a decrease equal
to 7.6 % between the two modes. These values are
respectively equal to 1.44 % and 1.33 % of the initial
mass. The two lines are practically superimposed,
which means that the evaporation flow is the same in
natural and in forced convection. Nevertheless, in the
ten first seconds, this flow is much more important in
forced convection than in natural convection (Figure 3),
and the water loss too. The flow decreases rapidly in
forced convection after the ten first seconds, and more
slowly in natural convection, which leads to loss water
appreciably equal as of 30 s. The diffusion inside the
product is the factor limiting the evaporation. For the
whole of the cooling, the water loss is lower in forced
convection because the cooling is finished earlier.

On the Figures 4 and 5 are shown the cooling time
and the water loss in natural and in forced convec-
tion for ambient temperature values equal to 5, 10,
15 and 20 °C with a relative humidity value equal to 0.5.

For all the values of the ambient temperature, the
cooling time and the water loss are greater in natural
convection than in forced convection, which extends
the results obtained for the ambient temperature value
equal to 20 °C. The saving of time and the decrease
of water loss obtained in forced convection compared
to the natural convection is practically the same
whatever the ambient temperature. On average, they
are respectively equal to 13.9 % and to 6.75 %. The
increase in the cooling time and in the water loss obey
to an exponential law.

On the Figures 6 and 7 are shown the changes in the
cooling time and in the water loss in natural and in
forced convection for ambient relative humidity values
ranging from 0 to 1. The cooling time is practically
the same for relative humidity values from 0 to 0.8. For
the range 0.8 to 1, it seems to increase. For these runs,
the forced convection decreases the cooling time on
average of 14.2 % compared to the natural convection.

On the other hand the water loss is quite dependant
of the relative humidity. The water loss decreases
when the relative humidity increases.  The water
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loss decreases drastically when the relative humidity
approaches 1. Nevertheless water loss is never equal
to 0, even when ambient air is saturated in water
vapour, because of the temperature value greater on
the bread surface than in the ambient air, which gives
evaporation. For these runs, the forced convection
decreases on average the water loss of 8.7 % compared
to the natural convection.

In the tables 1 and 2, the influence of the three modes of
heat transfer at the bread surface, convection, radiation
and evaporation, once the process finished, i.e. when
the core temperature reaches 25 °C, can be compared.

Table 1: Influence of the Three Modes of Heat Transfer
at Surface on the Cooling Time and the Water Loss in
Natural Convection

tr(s) p(g)
With the
three 5279 4.47
modes
Without oo (1337 %) | 5.24 (+17.22 %)
radiation
Without 5509 (16,06 %) 0
evaporation
Without
thermal 6849 (+29.7 %) | 5.149 (+15.2 %)
convection

The percentages are given compared to the case
with the three modes

Table 2: Influence of the Three Modes of Heat Transfer
at Surface on the Cooling Time and the Water Loss in
Forced Convection

tr (s) p(g)
With the
three 4467 4.13
modes
Without 11501 (4102 %) | 4.349 (+5.3 %)
radiation
Without | 1700 (6.8 %) 0
evaporation
Without
thermal 6854 (+53.4 %) | 5.201 (+25.9 %)
convection

The percentages are given compared to the case
with the three modes

In natural convection, the radiation is the most influent
of the mode of transfer on the cooling time, since the
suppression of this mode increases the most the cooling
time. Then it is the thermal convection by far before
the evaporation. In forced convection the most influent
is the thermal convection, then it is the radiation and fi-
nally the evaporation. In natural convection, the water



loss is a little more significant if the radiation is sup-
pressed than if the thermal convection is suppressed. In
forced convection the inverse is observed: the suppres-
sion of the thermal convection increases the losses of
25.9 % and the suppression of the radiation increases
them only by 5.3 %. Obviously the suppression of the
evaporation suppresses the losses. To conclude, as well
for the cooling time as for the losses, the radiation is
the most important mode in natural convection, and
the thermal convection in forced convection. The evap-
oration is the less significant mode on the cooling time
but is the real physical cause of the losses.

CONCLUSION

A post-baking cooling model of sandwich bread was
developed. The runs revealed that the water loss is very
dependant of the cooling time. The forced convection
speeds up the cooling and in this way decreases the
water loss. The cooling time and thus the water loss in-
creases following an exponential law when the ambient
temperature increases. The ambient relative humidity
has not a real impact on the cooling time, but when
is near the saturation, allows to minimize the water loss.

The comparative study on the impact of the radiation,
of the thermal convection and of the evaporation shows
than in natural convection the radiation is the most
influent factor and than in forced convection it is the
thermal convection. In any cases the evaporation has a
low influence on the cooling time.

The whole of these results points out than in practice to
decrease the cooling time and the water loss, the product
has to be cooled down in forced convection, at the low-
est possible temperature, and in saturated atmosphere.
These ambient conditions would involve an energy cost,
whereas, actually, the cooling is usually carried out with-
out control of these ambient conditions and thus with-
out energy cost. A continuation of this work could be
a study about this energy cost and the search for its
minimization.
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ABSTRACT

Stored or packaged mushrooms have a very high
metabolic activity, consuming O,, producing CO, and water
as a result of their respiratory metabolism. A closed system
methodology was employed to measure the O,, CO,
respiration rate (RR) and the transpiration rate (TR) of
mushrooms. The effect of storage temperature and the
change of RR and TR during storage time were studied.
After careful examination of the data of RR & TR on the
mushrooms during storage, a linear model (for the O, and
CO; RR) and a Weibull model (for the TR of O, and CO,)
were proposed to describe the primary model. Both RR &
TR were dependent on the temperature of storage. The O,
and CO, RR were found to have a significant linear increase
with storage time. This pointed to the need to adjust storage
conditions for these dynamic changes. The variability of the
RR was also dependent on temperature indicating that the
use of low storage temperatures is more beneficial in terms
of having a homogeneous product than to slow the metabolic
activity. An optimal temperature for minimise weight losses
by transpiration was found at 6.4°C.

KEYWORDS Modelling, respiration, mushrooms

INTRODUCTION

Fresh products stored or packaged remain
metabolically active, consuming oxygen (O,) and producing
carbon dioxide (CO,) and water as a result of their
respiratory metabolism. The respiration rate (RR) is the O,
consumption rate or the CO, production rate. The
transpiration rate (TR) is the process in which the mushroom
tissues give off water vapour to the atmosphere, as an
essential physiological process.

Fresh produce continues to lose water after harvest,
but unlike the growing plant it can no longer replace lost
water from the soil. The loss of water from fresh products
after harvest is an important problem for the food industry
and agriculture, causing shrinkage and weight loss. When
the harvested produce losses 5-10 % of its fresh weight,
normally it becomes unusable (Mahajan et al., 2008). To
extend the shelf life of produce, its rate of water loss must be
kept as low as possible. Agaricus bisporus is one of the most
perishable products and usually its shelf life is 1-3 days at
room temperature, weight loss being one of the principal
problems.

Vegetable respiration and transpiration rates are
essential measures of packaging vegetable, and if not taken
into account, may lead to a total consumption of the oxygen
with in the package, producing anaerobic processes and
resulting in a fermented product that will lack the quality of
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the fresh product. Transpiration of water will induce
condensation of water on the surface of product and the
packaging film, slowing down the gas transfer through the
packaging film and providing media for microbial growth.

There are several methods of measuring the
respiration and the transpiration rate of a vegetable, and the
easiest one to implement is the closed system method
(Fonseca et al., 2002).

The aim of this study is i) to determine the density of
the mushrooms in order to ii) determine the RR and the
effects of the storage on the RR and iii) the TR during the
storage under controlled environmental conditions.

MATERIALS AND METHODS

In order to estimate the volume filled by the
mushrooms in the closed system, their bulk density was
determined following the methodology of Fonseca (2002).

Determination of the respiration rate

A closed system methodology was employed to
measure the RR of mushrooms and to see the effect of
storage temperature and packaging atmosphere on the RR
and TR of mushrooms.

The system was closed with the lid of the container
and the concentration of O, and CO, was measured. Three
repetitions were measured each time using the MAP test
4000 (MAP test 4000, AGB scientific Itd, Dublin).

In order to determine the RR the concentration of
0, and CO, were measured every 20-30 minutes. Each
respirometer with mushrooms was stored from three to ten
days.

To avoid O, depletion and excessive CO,
production that may affect the RR, the system was reset
every time the percentage of CO, reached 5 %. To reset the
system, the lid was opened for one hour in order to get the
initial conditions (atmospheric air). The experiment was
carried out at 3 different temperatures (4, 15 and 22 °C).

Determination of the transpiration rate

In order to study the TR the mushrooms were
stored in a closed systems at 3 different temperatures (5, 15
and 21 °C) and the relative humidity was measured using
data loggers (Testo 175-H2, Eurolec Instrumentation Ltd,
Ireland).

The container was opened once condensation
appeared; which meant that the atmosphere inside the



container had reached saturation (100 % RH). Containers
were drained and mushrooms and data loggers were spread
on a grid, at the experimental temperature. This allowed the
condensed water and the mushrooms to return to their
original conditions. Dry containers were used and the same
mushrooms were weighed and a new experiment at the same
temperature was performed.

RESULTS AND DISCUSSION
Respiration Rate

Figure 1 shows that mushrooms have a constant
RR: the slopes of the O, consumption and CO, production
(ml gas/g mushroom) versus time were straight lines and a
linear model was used.
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Figure 1 Kinetics Of The Gas Change For Mushrooms In a
Closed System Respirometer, For Each Temperature Over
Time. The Temperature Of The Experiment (Green) And
The Batch Number (Orange) Are Indicated

Figure 1 also shows the gas consumption in each
closed system respirometer for each temperature. All initial
CO, readings started at 0, due to the limits of the detector.
Figure 2 shows that temperature has an important effect on
the RR. The RR decreased when the temperature was
reduced. At the same time the variability increased when the
temperature was increased.

Figure 2 also shows the O, consumption rate at
each temperature, which was constant at low temperatures,
lower than ~0.05 mg O,/g of mushroom per minute, proving
that storage time does not have an effect on the O,
consumption velocity at low temperatures. The small
perturbations on the initial O, content and on the O,
consumption velocity were due to batch-to-batch variability
and experiment to experiment variability. These
perturbations could be expressed as random effects
belonging to a normal distribution with an average zero on
the intercept and the slope of the linear model. In the case of
15 °C and 22 °C the O, consumption rate increased during
storage. At 15 °C the initial O, consumption rate was ~0.12
mg O,/g of mushroom per minute and increased to ~0.21 mg
0O,/g of mushroom per minute. In the case of 22 °C, the
increased O, consumption rate was higher and starts at ~0.15
mg O,/g of mushroom per minute and finished in ~0.31 mg
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0,/g of mushroom per minute which was more than 6 times
higher that at 4 °C.
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Figure 3 Effect Of Storage Time On The CO, Production
Rate For Each Temperature.

Figure 3 showed that the CO, production rate was
almost constant for low temperatures and lower than ~0.04
mg CO,/g of mushroom per minute, proving that the storage
time did not have an effect on the CO, production velocity at
low temperatures. In the case of 15 °C and 22 °C the CO,
production velocity increased during storage. At 15 °C the
initial CO, production velocity is ~0.06 mg CO,/g of
mushroom per minute and increased to ~0.12 mg CO,/g of
mushroom per minute. In the case of 22 °C, the increase of
the CO, production velocity was higher and starts at ~0.09
mg CO,/g of mushroom per minute and finished at ~0.25 mg
CO,/g of mushroom per minute which was more than 6
times higher than at 4 °C.

Modelling

After analyses of the Figures 2, 3 and 4, linear
mixed models were used to build the model of the RT:

O t~time+time: temp (1) + time: temp (T): day @

CO2t~time+time: temp (T) + time: temp (T): day  (2)



Where Oyt were the mg of O, per gram of
mushrooms at 0°C, time was the storage time, time:
temperature (T) was the dependence of the temperature
during the storage time and time: temperature: day is the
dependence of the temperature on the storage time. For
Equation 2, CO,t was the mg of CO, per gram of
mushrooms at 0°C, time was the storage time, time:
temperature (T) was the dependence of the temperature
during the storage time and time: temperature: day is the
dependence of the temperature on the storage time.

To adjust the models, the -coefficients were
required. A linear mixed-effects model fit by REML was
done to check if it fitted well with the values and if the
effects were still significant. The final models were:

Table 1 Linear Mixed Model Used For The O,
Consumption. All Linear Effects Significant (p<0.05).
Standard Errors For Fixed Effects and Confidence Intervals
For Random Effects Are Indicated in Subscripts.

Parameter Estimate
(Intercept) 84 3.7)

time -0.007 (0.002)
time: temperature -0.01 (0.0004)

Variability between batches

30 2533581
O Temperature 0.002 10,002-0.0031

Residual 1.1

[} Intercept

The O, consumption rate was only affected by
temperature and not by the storage time (p-value > 0.05).
The variability at the beginning of the experiment is 30%
and the variability on the slope is 0.002.

Table 2 Linear Mixed Model Used For The CO, Production.
All Linear Effects Significant (p<0.05).

Parameter Estimate
(Intercept) -2.6 (028)
time 0.0097 (0.003)

time: temperature

0.005 (0.0004)

Variability between batches

[} Intercept

1.46 [0.96-2.22]

o Temperature

0.001 10.0014-0.00231

Residual 2.7

The CO, production velocity was affected by
temperature (p<0.05). The variability at the beginning of the
experiment was 1.46 % and the variability on the slope is
0.001.

This experiment showed that the RR, O, and CO,,
was dependent on the temperature. Mushroom RR, was
lower at low temperatures than at high temperatures. Thus,
metabolic reactions would be slowed down with low
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temperatures. These results are in agreement with the results
of RR obtained by Tichua et al. (2007), Alique ef al. (2005)
and Jacxsens et al. (2001) who reported that storage
temperatures dominated the respiration rate of fresh produce.
Varoquaux et al. (1999) reported that the RR increased when
the storage temperature was increased for mushroom
Agaricus bisporus (1999). Day (2001) and McLaughlin &
Pitt (1999) proved that control of the RR was very important
and lowering the respiration rate could extend the shelf life
and preserve the quality of products.

The difference in RR between batches of
mushrooms might be due to the difference of maturity and
product heterogeneity. Cliffe-Brynes & O’Beirne (2007)
Tichua et al. (2007), Alique et al. (2005), Jacxsens et al.
(2001) and Varoquaux et al. (1999) analysed the RR at the
exact moment that postharvest starts and in this study the
mushrooms are form a local market and the analysis started a
day after harvest.

The time of storage had an effect on the RR, linked
with the temperature, even though it was not proved
statistically for the O, consumption. The RR increased with
time of storage and with the temperature. The variability, as
well, was very important between batches and between
experiments; and this variability increased with the
temperature.

The mathematical models which were built
described the kinetics of the O, and the CO, respiration rate.
Thus, it was possible to determine the RR at given
temperatures and storage times in order to choose MAP
parameters. It could be concluded that the time of storage
did not affect the metabolism of the mushrooms at low
temperatures (4 °C) but would have an effect at high
temperature (15 and 22 °C).

Transpiration Rate
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I

5°C 15°C 21°C
0.00020 /f : =
0.00015 ' - =

0.00010

g water/g mushroom

0.00005 | 4

0 5000 15000 0 5000 15000

Time [min]

Figure 4 Water Production Per Gram Of Mushrooms For
Experiments At Different Temperatures. The Colour Lines
Indicate Each Batch.



The TR was estimated, in gram of water per gram
of mushroom, using the relative humidity, the temperature,
the free volume and the weight of the mushrooms. Equations
describing the physical properties of moist air were used,
and finally arrived at Equation 3 and 4:

The TR kinetics were not linear (Figure 5), the
effect of parameters such as temperature and storage time
could not be analyzed with the experimental values; a non-
linear model was needed to describe the kinetics.

However, the effect of the temperature was very
significant. The TR increased with temperature. Figure 4
shows the variability inside batches and how this variability
increased with the temperature.

Model building

The dynamic evolution of the TR looked like a
growth curve. The most suitable model found for this kind of
dynamic was the Weibull model:

e

Wpg ~ Asym — Drop x e~ 3)
with
Asym ~T +T?
Drop ~T+T?
P @
Irce~T
pwr~1

Where Wpg: transpiration rate (g water / g
mushrooms), t: time (s), Asym was the numeric parameter
representing the horizontal asymptote on the right side, Drop
was the numeric parameter representing the change from
“Asym” to the “Wpg” intercept, Irc was the numeric
parameter representing the natural logarithm of the rate
constant, pwr was the numeric parameter representing the
power to which “t” is raised. In conclusion, the final TR
model is in Table 3.

Table 3 Weibull Model Used For The TR. All Effects
Significant (p<0.05). Standard Errors For Fixed Effects and
Confidence Intervals For Random Effects Are Indicated in

Subscripts.
Estimate
Asym 7.7e-05(82¢.06) — 8€-06(1 6061 * T +6.3e-07(1 1.0 * T
Drop | 3.06e-05.1c.06 -3¢-06(1 0e.0n * T + 1.0e-07(1 ge0s) * T*
Irc -4.461102 3546748y T 0.057763 0.0243699) ¥ T
pwr 0.5481890.0220818)
Variability between batches
c 9.45e-06 [7.3e-06-1.2¢-05]
Intercept
O Drop 7.72€-06 [5.8¢-06-1.01¢-05]
O irc 0.75 1o.54-1.031
O pwr 0.117 10.088-0.161
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This model showed that all the effects are
significant (p> 0.05) and there was a quadratic effect of the
temperature, so with the derivative of the time it was
possible to find a minimum or maximum for the Drop. In
this case a minimum was found, that means the point of
minimum TR, at 6.4 °C (Figure 5).

This experiment showed the TR of mushrooms
(gram of water per gram of mushrooms) in a closed system
at different temperatures as a function of time. The
behaviour of the TR function of time was in all the cases the
same: a quick increase and then an asymptotic stabilization.
In fact, there was a difference of water potential between the
mushrooms and the atmosphere inside the system, and this
product released water until a balance was achieved. The
lack of external cuticle in mushrooms to protect them from
water loss and the fact that they are composed mainly of
water are key contributing factors in their transpiration rate.

It could also be seen that there was a big variability
inside experiments, due to the non-homogeneity of the
mushrooms and their sensitivity to environmental factors.
The variability increased with temperature (Figure 5). The
experiment showed that variability at 22 °C is ten times
bigger than variability at 4 °C.

Water in Air [g water/g mushroom]
5605 6605 7e-05 8e-05
L L 1

4e-05

3e-05

Temp =6.4°C

2e-05

T T T T T
0 5 10 15 20

Temperature ['C]

Figure 5 Temperature Point Where The TR Of Rhe
Mushrooms Is Minimised.

The effect of the temperature was significant, as
shown previously in the model building. The TR increased
with the temperature, the asymptotic value stabilizing at
higher TR when the temperature got more and more
significant. This effect might be explained by the
mushroom’s metabolism which would be slowed down at
low temperatures, but also by the saturated vapour pressure
which was higher at high temperature. Therefore, low
temperatures were better to prevent weight loss.

The model built described the kinetics of the TR on
a function of time and temperature in a closed system. So, at



given temperatures and times, the amount of water produced
per gram of mushroom could be determined. The asymptotic
value was the most important because it represented the TR
at equilibrium. In MAP, this value might be used to
determine the quantity of water per gram of mushroom to be
maintained as a guide to producers to avoid water loss and
condensation in packs (risk of microbial spoilage).

CONCLUSIONS

The study showed that the respiration rate, O,
consumption and CO, production was dependent on the
temperature of storage. Respiration rate of the mushrooms
increased, when the temperature was increased and the
variability in the respiration also increased with the
temperature.

The O, consumption and CO, production at low
temperatures were constant, and storage time did not have a
significant effect.

Transpiration rate was affected by the temperature.
Transpiration rate decreased when the temperature was
decreased. This effect could be explained by the mushroom
metabolism which would be slowed down at low
temperatures, but as well by the saturation vapour pressure
which was higher at high temperatures. The results showed
the variability inside batches increased with temperature.
The study found that the transpiration rate was minimized at
6.4 °C.

FUTURE WORK

Possible extensions of this work would involve a
more detailed experimental plan, with a larger number of
temperatures and to study if significant effects can be found
for both respiration coefficients O, and CO, . A detailed
study of the respiration quotient would provide for a better
insight on possible metabolic deviations.
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Abstract

This paper covers with the identification of real
statistical distribution of time to failure (TTF)
and time to repair (TTR) of a manufacturing pro-
duction line. A formal procedure to obtain TTF
and TTR profile distributions (location, scale and
shape parameters) has been defined. The proce-
dure processes redundant and corrupted signals
logged from control systems of the manufactur-
ing machines during operative phases (i.e. alarms
and process data).

We define a formal algorithm to filter the data
and establish the qualitative and quantitative
characteristics for reliability applications. This
procedure has been applied to data acquired from
a Tetra Pak packaging line. The resulting TTF
and TTR profiles have been used to define statis-
tical failure and restoration input in simulation
campaigns of packaging line.

Introduction

Simulation is a tool for supporting the analyst in the de-
sign and assessment process allowing the experimenta-
tion and understanding of ideas and insights into effects
in a virtual world, and can produce a reduction in devel-
opment costs. Manufacturing simulation has been one of
the primary application areas of simulation technology.
It has been widely used to improve and validate a wide
range of manufacturing systems designs [1, 2].

To carry out helpful simulation studies we need a re-
alistic system model and to specify correctly probabil-
ity inputs such as machines failure and repair statistical
distribution. The simulations probability inputs are ob-
tained by processing data acquired from machines data
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captured from the system.
To specify simulation inputs, we can collect data using
one of the following approaches [1]:

e Stored data is used directly in the simulation, indi-
vidual data fed into model, based on time stamp:
traced-driven approach.

e The data is used to create an empirical distribution
functions.

Inferential statistics comprises the use of statistics to
make inferences concerning some unknown aspect of a
population, comparison of different scenarios is a very
common use of these techniques in simulation applica-
tions. For this reason, the correctness of input data is
crucial to guarantee the accuracy of simulation results
and conclusions [3].

Usually logger systems are integrated in manufactur-
ing sites, in particular production lines; they are tools
for collecting and loading real time events and manufac-
turing parameters, useful for performances analysis but
not for reliability applications [4, 5, 6, 7).

Generally, simulation studies assume that the system
failure and repair times follow a particular statistical dis-
tribution (i.e. exponential, weibull or normal distribu-
tion) based on field practical considerations and theory
studies without any systematic approach [8, 15, 16].

On the other hand, in literature there are many exam-
ples that provide guidelines to develop a production line
database, especially in semiconductor field. But there
are not many works that lead the practitioners to follow
a helpful procedure to obtain realistic and useful inputs
for a simulation study from all the logged data [10].

The focus of the present work is to suggest a proce-
dure for this gap. The main contribution of this paper
will be to establish a general methodology that makes it
possible to obtain a minimal data structure for failure
and repair statistical process characterization, starting
from a complex and unsuitable mass of recorded data.
This procedure has been applied to the simulation of a
packaging line from Tetra Pak.

In section 1, common data structure and data collec-
tion systems are presented and discussed, in section 2
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simulation input profile detection is presented and de-
scribed. Finally, in section 3, methodology application
is discussed.

1 Data Structure and
Collection

In this section, typical available data structures are pre-
sented and an example is reported: the Monitoring Sys-
tem of Tetra Pak (MS).

Input data collection is one of the key areas in simu-
lation. The quality of simulation output data and con-
sequently simulation derived conclusions are directly de-
pendent on the accuracy and reliability of the input data.
This mainly depends on how and what data is collected
and is generally recognized as one of the major hurdles
of simulation projects. It is typical to collect and store
transactional data about manufacturing parameters of
the whole production cycle in real time; for these pur-
poses support tools for data collection and analysis have
been developed. A manufacturing logger system may be
linked to other databases, and a data warehouse may
be needed for an intermediate integration of the neces-
sary information. Subsequently, one or more data ta-
bles can be created from the raw transactional informa-
tion for analysis. A typical table can contain rows for
each operation, each physical resource (i.e. equipments
or operators), each operation phase (i.e. maintenance,
cleaning, production, etc.) and each entity (i.e. pack-
aging material or product) involved in production cycle.
Each row can have information to identify the resource,
the current operation, the production route, the time in
to the actual operation, the time out from the previous
operation, and the entities involved in the particular op-
eration with their parameters (i.e. equipment speed or
acceleration) and much more, according to the particular
production line. There can also be variables describing
the production rate, the product type and the product
losses.

The variety and volume of data to be collected is di-
rectly determined by the complexity of the system under
investigation. There can be hundreds of rows of data for
each phase, split in several columns, describing how an
individual entity moves through the line. The amount of
data grows when we refer to manufacturing lines charac-
terized by short and numerous stops followed by restarts,
such as food packaging lines. A typical logger system
also records events outside the production phase, for ex-
ample preparation and maintenance times in historical
way.

All logged data can be tabulated by chronological or-
der and can be organized hierarchically. As each oper-
ation is time stamped, one of the first processing data
steps is to convert the time stamps into meaningful mea-

sures, suitable for the particular scope (i.e. performance
measurements, statistical analysis, reliability parame-
ters, etc.) [6, 8, 10].

This is where the gap between theories proposed by
literature and practical approaches becomes evident.

The Monitoring System tool of Tetra Pak production
lines, is an example of a typical logger system. It is
a tool that stores many events about the manufacturing
process. Parameters such as: product packages, machine
alarms, production waste, production shift management,
operators’ actions, etc. are stored. All these events are
useful for generating graphics and reports, suitable for
performance indicators, advanced operator assistance,
control measures and diagnostic performance. Every
stored event includes: date/time, shift, event code, event
description, waste packages, alarm source and manual
operator actions, as shown in Table 1.

DATE START EVENT EVENT DURATION PACKAGES InFo
TiME Cope DESCRIPTION EVENT
31/10/07 00:13:45 10300701 STEP ZERO 1:57:34 [ NA
31/10/07 00:13:45 10301120 Preparation 0:00:00 [ NA
31/10/07 00:13:45 10301209 TBA 1000Sq 1:57:34 o NA
31/10/07 00:13:45 10330117 Alarm Drying 1:57:34 0 NA
31/10/07 00:13:45 10330167 Alarm Aseptic 1:57:34 o NA
31/10/07 08:45:45 10300712 PRODUCTION 1:10:55 o NA
31/10/07 08:17:01 10338195 Waste TS 0:04:00 68 NA

Table 1: An example of a MS report (NA: not available)

2 Statistical Profile Detection

Procedure

In deeper detail, the data structure is composed of: Pro-
duction Time (PT), Down Times (DT), Idle Times (IT)
and time outside the production phase with the respec-
tive durations [11], as shown in Table 2.

Machine: Packaging Machine
Date: 31.10.2007
Machine State Time Duration
PT 1:45:12
DT 0:26:30
IT 0:50:44
PT 1:57:34
1T 0:11:22
Outside Production Phase 4:16:41

Table 2: Minimal data structure

If we are analyzing TTFs we can find them inside the
PT, the time during which the equipment is performing
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a primary required function. (i.e. producing product
or filled packages for Tetra Pak lines). Equipment stop
times can be classified in two categories: stops caused by
the equipment itself and stops caused by its interaction
with other machines of the production line, called DTs
and ITs respectively; the first ones are useful if we are
investigating TTR distribution. All this time refers to
the poduction phase of production line [11].

Figure 1: Methodological approach flow chart

As shown in Figure 1, our methodological approach
consists of the following steps:

1 — Data collection: The first step is to estab-
lish homogeneous conditions to collect data. It is not
possible to draw correct conclusions about hypothesized
profile distribution if we collect data from different op-
erational scenarios [1].

2 — Filtering procedure: Any filtering procedure
is focused on a suitable scope, for this reason, before
starting this phase we have to put these questions ‘ What
have we to pointing out?’, ‘ What are relevant events for
these study?’, ‘What events have we to not consider?’.
We would identify a correct distribution profile for TTR
and TTF that might be useful and realistic for the sim-
ulation study, these times must describe the standard
equipment behaviour [13].

2.1 — Record selection: Only record data sets that
have complete information from each operation from
process start to finish should be considered. Data sets
not having complete information should be eliminated
because incomplete data may lead to incorrect conclu-
sions without considering each step of the process [12].

2.2 — Artefacts removal: =~ We have to neglect
events that refer to unusual working conditions. Test
or engineering additional times (i.e. some logger sys-
tems add to record data factitious DT's in order to time-
quantify product losses) are eliminated because these
7events” do not refer to a normal production operations
of the global equipment. They are logged but do not
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reflect the true machine behaviour. We also have to
individuate and remove all the DTs caused by opera-
tors’ misfires: i.e. after a machine fault, if an operator
commands a manual restart without solving the prob-
lem source, the logger system registers a short TTF be-
cause the machine state goes ’down’ immediately. It is
suggested not to consider this TTF in the profile dis-
tribution calculation, because this data does not reflect
any working operations usually performed by the equip-
ment. It may have been caused by an incorrect problem
solving procedure on the part of the operator. Other
possible causes of artefacts are represented by testing
and training phases [6, 15].

Time

. Down Time

7
D Production Time Time out of production phase

Figure 2: Time-distribution events

8 — Constider time intervals relating to ”pro-
cess memory”: As a rule of thumb it may be consid-
ered that a machine loses the memory of its ” history”
when it is working in out of production phase. Machine
cooling, ordinary and extraordinary maintenance, clean-
ing parts, mechanical and software updates, are some
of the reasons that justify our hypothesis. Instead ITs
are time intervals in which the equipment is not in a
production state for external reasons and, at the same
time, no ”memory” is lost because the machine remains
in the production phase. Based on the previous reason
we can hide I'Ts and can sum two production time inter-
vals separated by an idle times. It is suggested that it is
incorrect to consider these two times separately because
no actual machine failure has happened. On the con-
trary, we cannot sum two PTs separated by every event
that refers to out of production phase. Le. referring to
Figure 2, we have to consider the third white block as PT
without summing the second one that will be neglected
because its duration is determined, not by a failure, but
by the end of planning production. Instead we have to
sum the duration of fourth and fifth white blocks, as a
single event. The global effect of the previous considera-
tion is to change the TTF and TTR profile distribution
that can only be obtained from raw logged data.

The following steps refer to statistical inferential test:

4 — Choose an appropriate sample size: Before
performing a statistical test, it is suggested to extract
an opportune sample from filtered data. The choice of
its size is led by the following considerations: collecting
at least 200 observations on the random phenomenon of
interest it is possible to discriminate between two candi-
date distributions. In general, the benefit produced by
an increase in the sample size from 200 to 300 is higher



than an increased sample size from 100 to 200, etc. On
the other hand, a more extensive sample size introduces
fitting problems: by improving the sample size, it is pos-
sible that no well-know probability distribution fits the
available data set. For these reasons, it is suggested that
230 observations is an appropriate compromise[9].

5 — Sample independency: Sample indepen-
dency verification is required before determining the best
model for data collected. If this assumption is unsatis-
fied inferential statistical techniques may not be used or
their conclusions can be misleading. With this in mind,
a scatter diagram of sample {X,} could be used. A scat-
ter diagram is a plot of pairs (X;, X;11). If samples are
independent, we expect the points (X;, X;11) randomly
distributed in the first quadrant of the Cartesian plane.
Instead, if the X,’s are correlated, they aligned them-
selves [1, 2, 12].

6 — Perform hypothesis tests: At this point a
hypothesis test can be performed, in deeper detail us-
ing the null hypothesis: observed data are independent
samples extracted from a theoretical distribution. Per-
forming a hypothesis test, two types of errors can be
observed. If one rejects the null hypothesis when in fact
it is true, this is called a Type I error («); its value is
under control (usually o < 0.05). If one fails to reject
the null hypothesis when it is false, this is called a Type
II error. For a fixed level o and sample size n, the proba-
bility of Type II error (3), depends on what distribution
is actually true (as compared to the hypothesized distri-
bution), and may be unknown. We call (1-73) the power
test and it is equal to the probability of rejecting the
null hypothesis when it is false. Clearly, a test with high
power is desired.

It is important to emphasize that failure to reject the
null hypothesis (observed data are independent samples
of the theoretical distribution) doesn’t mean that it is
true. Defining p-value like the smallest level of signifi-
cance (o) that leads to rejection of the null hypothesis,
the more p-wvalue is large, the more the fitting is good
(consrevative approach). There are definitely situations
for which no theoretical distribution will provide an ad-
equate fit for the observed data. In these cases it is rec-
ommended to use an empirical distribution [1, 9, 12, 14].

3 Methodology Application

In this section, previous methodology has been applied
to data referring to the filler machine of a Tetra Pak pro-
duction line for TTF distribution profile identification.
Investigation based on MS data coming from different
customer sites that respect the following requisites:

e Machine: TP Packaging Machine

e Product: Juice

e Production rate: 8000p/h
e Package 200s

Non homogeneous operational conditions are: number
of operators and line layout. Only complete data from
the whole amount of information are considered, on the
basis we have stated above. Before artefact removing
procedures, we elaborate MS records (see Table 1) to
obtain minimal data structure composed by TTFs and
TTRs durations (see Table 2). For these purpose we
have developed a suitable software tool, which also pro-
vides time intervals relating to the process memory, as
described in the previous section.

The next step is artefacts filtering. The implemented
tool provides some rules, lead by practical consideration
and specialists guidelines: i.e. it can be assumed that a
testing phase is happening if weekly production time is
less than twenty hours. Another example of artefact is
represented by operator misfires, i.e. we cannot consider
records that present a lot of the same alarm repetition
spaced out by zero seconds TTFs. It could be the situ-
ation where the equipment is restarted without solving
the particular machine problem.

It should be stressed that this phase needs accurate
and detailed line knowledge and should be conducted
under machine specialist counselling. After the filtering
phase, 230 observations have been chosen and sample
independence has been verified through a scatter plot,
results are shown in Figure 3:

s

Figure 3: Scatter plot for the considered data—set

Figure 4 shows the Frequency comparison plot which
displays two histograms of two data sets (a theoreti-
cal distribution and a empiric distribution) on the same
graph. Similarity of the two histograms proves that the
selected model provides a good fit for the observed data.
Gamma-distribution represents the best probability dis-
tribution for collected TTFs. Fitted distribution can be
characterized by three parameters: scale, location and
shape; referring to Figure 4 they are 0, 24.881 and 0.31
respectively. A shape parameter <1 implies that the
TTF rate is not constant with a tendency for more early
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Figure 4: Frequency comparison plot of normalized his-
tograms (TTFs are reported in seconds)

failures [14]; this is confirmed by the histograms shown
in Figure 4.

The Distribution-Function-Differences Plots are dis-
played in Figure 5 and Figure 6: the differences
have been calculated between the theoretical gamma-
distribution and collected data. Small vertical differ-
ences (errors) suggest that this model provides a good
fit.

fwpasi

Figure 5: Distribution-Function-Differences (Used data
come directly from the logger system)

Referring to Figure 5, used data comes from the log-
ger system directly. After the presented methodology
application, the same data set has been used for plot-
ting Figure 6. Error trend is similar: the goodness of fit
presents the main difference for a small values of TTF
and decreases for increasing values. The benefit on the
fitting introduced by the proposed methodology can be
seen; in fact the difference between the theoretical hy-
pothesized distribution and observed data is reduced .
The main difference can be observed among small obser-
vations: TTFs shorter than 1 hour (typical maximum
value for TTF is more than 16 hours). TTFs which
are separated by ” erasing memory events” are no longer
merged; hence the number of long TTFs is also reduced

(see Table 3 and Figures 5 and 6).

£
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Figure 6: Distribution—Function-Differences (Used data are
processed by the proposed methodology)

Moreover, performing several tests with different sam-
ples coming from the same process, the hypothesized
theoretical distributions are always gamma type. On
the contrary, using data without the application of any
filtering procedure, results in fitted distributions that
are not always of the same type. They can be gamma,
lognormal, weibull or others according to the particular
data sample.

Raw Data | Filtered Data
Observed Data 230 230
Minimum observation 0 1
(seconds)
Maximum observation 20.91 16.91
(hours)
Mean (minutes) 114 109
Median (minutes) 21.85 33.4
Standard devaition 1.11 0.96
(minutes)
Absolute error mean 0.0548 0.0465
(seconds)
Error standard deviation 0.06 0.05
by theoretical distribution
(seconds)

Table 3: Data summary comparison

In order to establish methodology efficiency on param-
eters estimation by inferential statistic tests, four inves-
tigations on different sample set have been treated. In
Table 4 Shape and Scale parameters are reported for
raw! and treated’! samples referring to the same time
period.

This data is used to compute a confidence interval
and perform a hypothesis test on the difference between
two sample means. The difference between shapes and
scales means, are 0.15 and 24240 respectively. The re-
sults shown in Table 4 prove that the methodology in-
troduced is able to discriminate parameter differences
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with a power test of more than 93%, thus confirming References

methodology effects on fitting theoretical distributions
from collected data.

Shape — I | Scale — I | Shape — II | Scale — I1
0.238 8489 0.311 6596
0.157 43496 0.263 24881
0.123 79950 0.397 26232
0.201 34380 0.362 11647
mean mean mean mean
0.18 41579 0.33 17339

Table 4: Estimated parameters: raw data (1) and treated
data (1I)

Conclusions

To achieve helpful and realistic results in a simulation
study it is fundamental to specify correct and realistic
TTF and TTR distribution profiles. Starting with data
collected from a typical industrial logger system, this
paper provides guidelines to obtain, when it is possible,
a theoretical distribution that represents a good fit of
observed data.

Methodology application effects on collected data are
evident, like those confirmed by high values from the
power of hypothesised tests to compute a confidence in-
terval of the difference between two population means.
Moreover, long TTFs are reduced as a consequence of
process memory considerations.

The benefits on simulation results applying the pro-
posed procedure on the observed data are represented
by the fact that obtained TTF and TTR distributions
are more realistic than raw data, also because they are
referred to a normal machine behaviour and memory
characteristics, as a consequence, simulation runs have
more truthful inputs. Theoretical fitted distribution is
no longer dependent on the considered data set, thus
confirming the goodness of fitting is improved, as shown
by the distribution differences plots and that the fitting
error is reduced. During a simulation study, all these
considerations imply that we can benefit from all advan-
tages of theoretical probability inputs without making
appreciable mistakes.
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