
SCIENTIFIC
PROGRAMME

GAMES DESIGN
AND

DEVELOPMENT

A REVIEW OF 3-D ACCELERATOR TECHNOLOGY
FOR GAMES

NATHAN CHIA, RICHARD CANT, DAVID AL-DABASS

Department of Computing and Mathematics

The Nottingham Trent University
Nottingham NG1 4BU.

Email: richard.cant/david.al-dabass@ntu.ac.uk

KEYWORDS
OpenGL, DirectX, anti-aliasing, animation graphics.

ABSTRACT

In this paper we attempt to review the current
technology of 3 -D accelerators for animating graphics
used in games and visual simulation systems, together
with associated techniques and software architectures.
Topics covered include OpenGl, DirectX, anti-aliasing,
motion blur and depth of field. A summary of work in
progress is give in the conclusions section.

INTRODUCTION

Ever since 3dfx released their first Voodoo card (the
first 3D hardware accelerator for the consumer market),
it had always been a 5 horse race between the top video
card makers: nVidia, 3dfx, ATI, Matrox and S3. It was a
race to see who can hit the highest screen resolution and
who can draw the most polygons in a period of time. It
was rarely about making the real-time renders closer to
real-life.

3dfx came out with a simplified version of the
accumulative buffer to gain more speed from the
available version. It was named the ‘T-buffer’ and it
was introduced as the solution for drawing effects like
motion blur, depth-of-field and multi-sampling anti-
aliasing in real-time. Now that 3dfx has faded away and
nVidia is bringing out with their own version of multi-
sampling anti-aliasing named ‘Quincunx AA’, it seems
everyone had forgotten about the things that the T-
buffer had put out to do.

In this paper we will first review the development of 3-
D graphics technology and the current state of the art.
We will then discuss some effects that remain to be
incorporated in 3-D rendering systems. The problems
facing 3D accelerators today are mainly spatial aliasing,
depthless rendering, temporal aliased animation and
images looking 'too perfect'. One might question the
motive for this by asking isn’t it better to have sharper,
perfect renders rather than distorting them? However,
including these effects will give a greater feel of realism

and improve game play by modifying the difficulty of
task.

Hopefully these effects can be included in ways that
exploit the features of current hardware such as
texture mapping support. This will give software and
game makers more freedom to create 3D renders with
their very own style in them. The consumers will
benefit from this greatly as more real-time graphics is
pushed towards reality.

THE HISTORY OF COMPUTER GRAPHICS

Computer Graphics first started in 1945 when one of
the earliest electronic computers, the ENIAC
(Electronic Numerical Intergrator And Computer),
was built at the University of Pennsylvania’s Moore
School of Engineers. By the 1950s, they were
powerful enough to deal with computer graphics. To
handle the task of drawing lines, special vector display
devices were designed to be interfaced to the
computer.

Vector display can produce wire-frame images (Figure
1), which needed only a minimal amount of storage.
As computer memory is extremely expensive in those
days, it was only capable of drawing a list of
segments. As the 60s grew nearer, General Motors and
IBM jointly designed the DAC-1 (Design Augmented
by Computer). It allowed the user to enter geometric
specification of a wire-frame object and view it from
different angles (Figure 2).

Figure 1 Vector Display

Figure 2 Wire-frame
Object

In the 1960s, Digital Equipment Corporation (DEC)
produced the PDP-1 computer. MIT bought one of the
machines and a group of its students created the first
video game – Spacewars. The game was so popular

that it took up more than half the usage time on the
PDP-1 and it was used as a benchmark for newer
computers. Despite it’s popularity, it was never
copyrighted because very few people could afford the
hardware that runs it, and the concept had been copied
numerous times.

In the 1960s, another MIT student, Ivan Sutherland,
built the first head mounted display. The device was
capable of displaying two separate wire-frame images,
one for each eye. The two images were generated from
slightly different angles of view that corresponds to the
position of the eye. This technique created the
stereoscopic effect of depth (Figure 3). In 1967, General
Electric (founded by Sutherland and Dave Evans from
the University of Utah) developed the first real-time
flight simulator for NASA.

Figure 3 Ivan Sutherland’s head mounted display

image

There had been a great increase in speed and quantities
and decrease in price for computers in the 70s, which
rendered the raster display devices practical. Raster
display devices represents images as a regular mosaic of
dots, known as pixels, each with different colour and
shade. Solid object generation is also possible. (In 1977,
a 512-by-512 display acquired by the National Institute
of Health, in USA, cost US$65000. A similar one today
can be bought for less than $50.) In 1971, Henri
Gouraud proposed an algorithm to interpolate a
polygon’s colour to produce a continuous matte object
as opposed to flat surfaced ones (Figure 4). Later, in the
University of Utah, Phong Bui-Toung proposed a
method similar to Gouraud’s. It aimed to model shiny
surfaces approximated by polygons (Figure 5).

In 1974, Ed Catmull (who went on to lead the graphics
division of Lucasfilm) proposed texturing mapping, Z-
buffering hidden surface removal, and modelling with
curved surfaces. These techniques are now commonly
available in all 3D accelerator cards.

Zbuffer is the area of the graphics memory used to store
the Z or depth information about rendered objects. The
Z-buffer value of a pixel is used to determine if it is
behind or in front of another pixel. Z calculations
prevent background objects from overwriting
foreground objects in the frame buffer.

Two years later, Jim Blinn developed environmental
reflection mapping and bump mapping which adds
details to a 3D model without adding more polygons

(Figure 6). A modern processor, which does the real-
time environmental bump mapping very well, is the
G400 series from Matrox. Real-time reflection
mapping is claimed to be available in the hardware of
nVidia’s NV15,- it is just the hardware’s ability to
take snapshots quickly from the scene so that they can
be used as reflective textures.

Figure 4 Sphere drawn with and without Gouraud

Shading

Figure 5 Gouraud Shading and Phong Shading

Bump mapping is a shading technique using multiple
textures and lighting effects to simulate wrinkled or
bumped surfaces. Bump mapping is useful because it
gives a 3D surface the appearance of roughness and
other surface detail, such as dimples on a golf ball,
without increasing the geometric complexity. Some
common types of bump mapping are Emboss Bump
Mapping, Dot3 Bump Mapping, Environment Mapped
Bump Mapping (EMBM) and True, Reflective Bump
Mapping. Dot3 bump mapping is the most effective
technique of the three.

In 1982, Silicon Graphics (founded by Jim Clark)
produced computers with built-in capabilities for
graphics. Since then, computer graphics started to
appear in movies. The first was in Disney’s Tron,
which used approximately 30 minutes of computer
graphics. Lucasfilm and its famous Industrial Light
and Magic division (later, part of it was branched off
as Pixar) progressed from the projection of the Death
Star in Return of the Jedi to the sophisticated
animation of Jurrasic Park.

3D graphics also started to take off in the gaming
industry on the IBM-PC in 1991. In 1991, John
Carmack, Adrian Carmack and John Romero founded
id Software and released Wolfenstein 3D (Figure 7).

Although the game used a much simplified texture
mapping and projection techniques, and “bill-
boarding” was used heavily, it considerably raised the
expectations for 3D graphics in computer games. This

placed id Software on the map and its now developing
the sequel to the classic.

Figure 6 Phong Shading, Environmental Reflection

Mapping and Bump Mapping

Bill-boarding is to have the quadrilateral polygon drawn
base its orientation on the view direction. As the view
changes, the orientation of the polygon changes. Bill-
boarding, combined with alpha texturing and animation,
can be used to represent many phenomena that do not
have solid surfaces. Smoke, fire, explosions, vapor
trails, and clouds are just a few of the objects that can be
represented by these techniques. But for id’s case, bill-
boarding is used to pre-draw or pre-render the
characters in its game into a texture and is more
effective for the computer at that time to draw just one
polygon for each character rather than rendering them in
real-time.

Figure 7 id Software’s Wolfenstein 3D

Most recently, graphic cards with 3D algorithms built
into the hardware became affordable for the personal
computers. Quality real-time 3D graphics that used to
be only possible on specialized workstations is now
possible on the normal PC (Figure 8).

Figure 8 id Software’s sequel to Wolfenstein 3D

The remaining top players are nVidia and ATi. 3dfx was
bought over by nVidia and Matrox is now focussing on
the ‘office’ market. Recently, however, 3DPower is
formed by the ex-employees of 3dfx and headed by
former CTO Scott Sellers. The 3dfx ex-employees

secretly gathered without the knowledge of 3dfx or
nVidia and their new product will be based
specifically on 3dfx’s previous Rampage graphics
chipset.

With this huge variety of graphics card to program for,
developers will soon find that the situation is
becoming more and more chaotic. Every PC user
owns a different graphics card and new hardware
keeps popping day after day. Here’s where API comes
into the picture. The APIs available now are OpenGL
and DirectX.

CURRENT APIS, BENEFITS AND
LIMITATIONS

OpenGL

The definition of OpenGL was a software interface to
graphics hardware. Better describing it would be a 3D
graphics and modelling library that is extremely
portable and fast. The greatest strength of OpenGL
compared to a ray tracer is speed.

Ray tracing is also known as the screen-to-world
method. The idea of ray tracing is quite different to
OpenGL world-to-screen method, which is projection
of a 3D scene to a two-dimensional buffer. In ray
tracing, for every pixel on the screen, a ray is cast into
the representation of the virtual world until it
intersects with some surface. The colour of that
surface in the intersection point is what is supposed to
be seen at that pixel on the screen.

It is a new industry standard that had gained enormous
support over a few years. It originated from IRIS GL
from Silicon Graphics. It is the company’s 3D
programming API for the IRIS graphics workstations.
These machines had specialized hardware optimised
for the displaying of sophisticated real-time graphics.
The IRIS hardware does hardware matrix
transformations, hardware depth buffering, and other
features.

OpenGL was born when Silicon Graphics got stuck
trying to port IRIS GL to other hardware platforms.
OpenGL is in fact an improvement in IRIS GL’s
portability. It has the same capabilities of IRIS GL but
is “OPEN” for adaptability to any hardware platforms
and operating systems. OpenGL is more like a C
runtime library rather then an application itself and it
is intended to be used with specialized hardware that
is designed to draw and manipulate 3D graphics.

Because of its efficiency, OpenGL is used in a large
number of areas, like CAD, architectural, modelling
and animations. And with hardware accelerators and
faster processors becoming essentials, 3D graphics
will soon be a typical building block for any consumer
and business applications. A good example of such is

Quattro Pro, one of the pioneers to utilise 3D to power
its 3D charting of the old 2D spreadsheets. OpenGL
would add a lot of pleasant appearance to products
because appearance does matter.

To ensure that a particular hardware is OpenGL
compatible, it must undergo OpenGL conformance
tests. These are a set of tests designed to ensure full
implementation and production of reasonably
acceptable 3D renders.

Figure 9 OpenGL API Calls

When an OpenGL API call is made, the commands are
placed in a command buffer. Vertex and texture data
will be in the same buffer. When the buffer is flushed,
the contents in it would be passed to the next stage in
the pipeline.

The Transform and Lighting stage with vertices will be
recalculated for position and orientation, and lighting
calculations are performed to render the shading and
colour at each vertex. After the transform and lighting
stage, the data is fed to the rasterization segment of the
pipeline. The rasterizer actually creates a two-
dimensional image from the geometry and texture. This
image would finally end up in the frame buffer, which is
in the graphic card’s display memory (image is visible
on the screen at this point).

The initial 3D accelerators were nothing more than fast
rasterizers. Only the rasterization portion of the pipeline
is accelerated. The CPU had to do the rest. This would
mean that the performance of the 3D graphics with such
accelerators would be greatly pulled back by the
processor.

As computer peripherals get more and more affordable,
the T&L stage is implemented in the accelerator, even
for low-end consumer hardware. This would mean that
higher detailed models and more complex graphics are
possible at real-time rendering.

DirectX

DirectX is a multimedia development library, created by
Microsoft and provided for royalty-free use in the
creation of applications.

The DirectX SDK contains classes that are the
foundation of DirectX. They are:

DirectAnimation

DirectDraw -Provides efficient access to the
video memory, resulting in smooth animation for
game titles.

Direct3D -Provides high-performance
rendering of 3D scenes, utilizing the latest 3D
accelerators.

DirectSound -Provides audio playback and
mixing, including 3D sound effects

DirectMusic -Provides interactive music
capabilities, allowing for soundtracks that change with
action.

DirectInput -Allows input from keyboard,
mouse, and force feedback input devices.

DirectPlay -Provides communications for
network applications over the internet and local area
network, or through direct connection with modem or
serial cable (null-modem cable).

Microsoft intentions were to provide a standard
software interface, making interfacing with hardware
transparent to the developer. The biggest advantage of
developing a multimedia application is the fact that
Microsoft Windows is the predominant operating
system on home computers and DirectX comes free
with the OS.

Direct3D was first developed by a British company
called RenderMorphics. It is later acquired by
Microsoft and D3D was now a component in the
DirectX library. Direct3D covers a set of functionality
comparable to OpenGL and is also aimed at providing
a unified access to different hardware. Direct3D can
performed in 2 modes. HAL(Hardware Abstraction
Layer) and HEL(Hardware Emulation Layer).

Figure 10 Direct3D API call

The ‘Execute Buffer’ of Direct3D is quite similar to
the buffer of OpenGL’s ‘Command Buffer’. This
buffer would contain the geometric information as

Ope
nGL

Com
man

d
Buff
er

Rasteri
zation

Transf
orm
and

Lightin

Frame
buffer

Exe
cut
e
buff
er

Raste
rizatio

n

Trans
form
and

Lighti
ng

Direct
Draw

well as commands to be performed. Unlike OpenGL,
the execute buffers are quite cumbersome to work with.
Multiple data structures must be allocated, locked, filled
up in order to construct them.

The final module, 'DirectDraw', actually handles the
access of the frame-buffer. Another disadvantage of
Direct3D is that it only supports triangles. OpenGL
supports polygonal objects as long as all the points are
convex and no intersection is occurred.

CURRENT TECHNIQUES

Anti-aliasing

One of the biggest faults of raster graphics to all PC
users which needs no introduction is aliasing. Because
we are so used to perceive images in an “infinite”
resolution, it would be quite impossible to try to achieve
that with higher and higher screen resolutions. No
matter how high the resolution goes, the eyes will still
tell the mind that the staircase edges are still evident
when observed closely. It is the same reason why a
320x240 MPEG1 video might looks more pleasing than
a 1024x768 real-time 3D render. That is why anti-
aliasing plays such an important part in producing a
realistic image.

Also due to the impracticality of building an infinite
resolution display, another shortcoming of raster
graphics is under-sampling. This effect gets more
visible when textured objects are drawn smaller or
further away. For example, visualise a checkers board in
the middle of the screen. It moves further away in the
3D scene. One would expect that as it gets further, the
white and black would blur into a shade of grey. It
doesn’t (Left image of figure 11). In fact, the viewer
would witness a shimmering effect at some point. The
pixels alternate between black and white.

Figure 11 Checkered Texture without filtering (Left) and

with filtering (Right)

This aliasing found in Figure 11 can be reduced by the
use of bilinear filtering and MIP maps. The essential
idea of MIP mapping is to pre-compute the texture at
different levels of detail (Figure 12), and then to use
smaller textures for polygons further away from the
viewer. Bilinear filtering is used for textures that are
magnified to smooth out the jaggies. This could be
improved further by bilinearly blending neighbouring
levels of MIP maps to generate more levels of detail.
This is known as trilinear filtering. Although this will

not truly eliminate aliasing, the shimmering effect
mentioned earlier would be eliminated.

Figure 12 Generating smaller images

Another method of removing aliasing is to make use
of the accumulative buffer of the hardware
accelerator. This can be quite time consuming and
hence cannot be used in real-time animation. It is,
however, relatively easy to implement. The technique
is to jitter the image one-half a pixel in several
directions, to blur the edges of an image but not the
solid areas. Only four jitters is necessary to produce a
remarkably smooth image but even four jitters will
require the whole scene to be rendered 4 times.

Another anti-aliasing technique which most hardware
accelerator implements is super-sampling. Super-
sampling anti-aliasing draws the scene in a much
larger buffer than the screen resolution and scales it
down to fit the screen. The filtering procedure will
take a group of pixels from the original image and
compute the weighted sum of their intensities. The
result from this sum will be placed into a filtered
image bitmap. This will then be placed onto the frame
buffer to show the antialiased image.

This however requires a significant amount of video
memory and bandwidth. (Bandwidth is still the main
limitations of most hardware accelerators. Most
accelerators could be perceived as large buckets with
tiny bottlenecks.)

Another technique, which the latest Geforce 3 card
from nVidia is using for anti-aliasing, is
multisampling. nVidia patented it and calls it HRAA
(High Resolution Anti-aliasing) or Quincunx anti-
aliasing. nVidia claims that it provides performance
that rivals a 4X super-sampling anti-alising render
with the performance hit slightly more than a 2X
super-sampling anti-aliasing render.

This technique uses a “reconstruction filter” that uses
data from the neighbouring pixels to compute the final
pixel colour.

nVidia will no longer be "blowing up" the 800x600
screen to 1600x1200 and then shrinking it back down
in hardware to do their anti-aliasing in their new
Quincunx mode. Quin·cunx (kwin'kungks) - It is an
arrangement of five objects, with one at each corner of
a rectangle or square and one at the center (like the
side ‘5’ of a dice). This is a reference to the way they

sample the pixels that are used to fill in the jaggies. It
pulls information from the pixels surrounding a pixel in
order to smooth out the lines that are not perfectly
vertical or horizontal. This means that a significant
amount of bandwidth and memory usage can be greatly
reduced.

Motion Blur

The deficiency of motion blur is also a form of aliasing
known as temporal aliasing (the previous form aliasing
could be called spatial aliasing). The human eyes are
fast enough only for 25-30 frames per second, and less
in darker scenes. But the human eye is capable for
blurring several consecutive frames that are flipped too
quickly. That is why real-time 3D animations that
moves at 24 frames per second looks less convincing
than in the movies which moves at the same rate.

Temporal aliasing can also be seen in some videos of
moving carts in cowboy movies where the spokes of
turning wheels suddenly appear to be going the opposite
direction when it is not. It happens when the sampling
rate of the camera gets lower than rate of movement of
the spoke moving to the position of the next one.

In 3D graphics, without motion-blurring, the result
would be even worse than in the movies. Motion
blurring would add a blur trail to hint to us the direction
where the spoke is moving towards and gives an illusion
of a more fluid animation.

Depth Of Field

The human eye is able to focus on a particular object
and the rest of the “extras” in our scene will be
defocused. We can often see how this effect is used to
allow even a still image to be more dramatic in the
movies. How photographers with their award
masterpiece capture the essence of an object by using
depth of field.

Figure 13 Elsa 3D

Revelator
Figure 14 Left and Right

Images on Alternate Lines

The effect of ‘Depth of Field’ can be achieved by the
use of some affordable 3D glasses (Figure 13). The
glasses has to be in sync with the refresh rate of the
monitor. By altering the display drivers so that what the
left eye sees will go on the odd lines of the screen and

what the right eye sees to the even lines (Figure 14).
The left side of the glasses will turn opaque when the
even lines are drawn and will turn transparent when
the odd lines are drawn. The right side does the exact
opposite.

Disadvantages are that the vertical resolution will be
reduced by half and it will often cause discomfort to
the person viewing when the view of that person is not
positioned right in the centre from the centre of the
monitor.

The illusion of depth of field can also be achieved by
using (once again) the accumulative buffer. The idea
is to do multiple renders with the source of the view-
port offset slightly around the original position (Figure
15). The target of the view-port will remain at the
position of the focus distance.

Once again, the use of the accumulative buffer might
be too time-consuming for most hardware
accelerators.

Figure 15 DOF effect with Accumulative
Buffer

CONCLUSIONS AND WORK IN PROGRESS

A review of current state of the technology in
computer graphics and 3-D accelerators for games was
given. A brief history of graphics was outlined which
focused on OpenGL and DirectX. A review of current
techniques was described which included anti-
aliasing, motion blur and depth of field.

Current work addresses the following problems:

Lack of a customizable graphics engine: to
demonstrate and implement the algorithms, reasonably
believable 3D scenes and models are required to be
constructed. There is also a need for better texture
management for the graphics engine to be more
flexible and easier to use. Textures are also used
within the model importer, so, the texture library must
be intelligent enough to prevent duplicate loadings of
the same texture and yet keep this invisible from the
programmer. A model importer that supports multiple
textures and can support deformation for character
animation is needed too.

Spatial aliasing: due to the nature of raster displays,
aliasing artifacts are introduced into a real-time scene.
The brute force method of super-sampling antialiasing
adopted by current graphics card seems to do the job
quite well but has a big performance hit. The hardware
filters are also not customizable by the programmer.

Depthless renders: current hardware has the ability of
fogging which reduces the depth confusion in an image.
But the existence of fogging in a small area, like a
room, will make a scene look artificial. There is a need
for another mechanism, like depth-of-field, that would
reduce that confusion without the use of fog. It should
imitate the depth-of-field witnessed in real-life
photography.

Temporal aliasing: Because of this effect in real-time
computer graphics, graphics cards need to render at very
high frame-rates to create the illusion of fluid motion.
Multi-pass techniques consumes much processing time
and hence power.

REFERENCES

1. Richard S. Wright, Jr and Micheal Sweet,
"OpenGL Super Bible", 2nd Edition, By Waite
Group Press.

2. Robert Dunlop with Dale Shepherd and Mark
Martin, "DirectX7 (Teach Yourself … in 24
hours)",SAMS.

3. Sergei Savchenko, "3D Graphics
Programming", SAMS.

4. Rod Stephens, "Visual Basic Graphics
Programming", Wiley

5. NVIDIA's Developer Relations Site, (SDKs,
technical papers, demos)
http://www.nvidia.com/developer.

6. Neon Helium Productions, (Tutorials, base
code, AVI loader), http://nehe.gamedev.net.

7. Code Guru, http://www.codeguru.com.
8. Emeran, R., Mongomery, S. & Werfall, J.,

(2000) Pixel perfect - graphics card review,
Personal Computer World, Oct. 2000, 195-
213.

9. Montgomery, S. (2001) Graphics Cards,
PCW, Sept. 187-199.

10. Emeran, R. et al (2001) Graphics galore
(graphics card group test), PCW, Sept 161-
181.

11. Wen et al (2000) Creating Animated
Behavioural Game Characters based on
Environmental Effects, Proc GAME-ON
2000 Int Conf, pp76-80.

KEYWORDS
Motion Design, Human Interface, Software Architecture,
Game Toolkit, Component ware.

ABSTRACT
For 3D game creation, character design is a very important
factor but very hard work. Especially its motion design is
very laborious work. We have to spend much time to
design character's motions. So this paper proposes new
motion editing environment for 3D game character design.
The proposed motion editing environment is based on a
key-frame animation technology. In conventional tools for
key-frame animation, each key-pose is defined and
displayed separately on a computer screen so that users can
not recognize its complete motion until they see its
animation by applying a defined motion to a character.
The proposed motion editing environment displays all
sequential key-poses at the same time on a computer screen.
Then by seeing those key-poses users can recognize a
complete motion those key-poses mean and can edit each
key-pose interactively and easily by comparison with its
adjoining poses. Furthermore, the proposed motion editing
environment is realized as composition of several software
components so that users can make its copy and transfer the
copy to other computers through Internet. As a result,
users can create motions only by reusing and modifying the
motions already defined by other users.

1. INTRODUCTION

Advances in recent computer hardware technology have
made possible 3D rendering images in real-time. However,
it is still difficult for end-users to develop 3D graphics
software. For this reason, Okada and Tanaka developed a
3D prototype system called IntelligentBox(Okada and
Tanaka 1995). IntelligentBox is a component based
construction system. Its application fields include various
kinds, e.g., animation creation (Okada and Tanaka, 1999),
collaborative virtual environment construction (Okada and
Tanaka, 1998), education system development (Okada and
Itoh, 2001) and so on. IntelligentBox also has aspects as an
interactive 3D game development system (Okada et. al.,
2000). For 3D game creation as well as 3D animation
creation, 3D shape design and motion design are the most
laborious works. Traditional motion design is based on

key-frame animation. A motion is represented as a
sequence of a number of poses those are automatically
generated by interpolation of several key-poses, which are
poses used as keys of key-frame animation. Each key-pose
is defined by specifying the joints angles of a character. In
conventional tools for key-frame animation, each key-pose
is defined and displayed separately on a computer screen so
that users can not recognize its complete motion until they
see its animation by applying a defined motion to a
character. So this paper proposes new motion editing
environment for 3D game character design. The proposed
motion editing environment is also based on a key-frame
animation technology. However, the proposed motion
editing environment displays all sequential key-poses at the
same time on a computer screen. Then by seeing those
key-poses users can recognize a complete motion those
key-poses mean and can edit each key-pose interactively
and easily by comparison with its adjoining poses.
We have already developed such motion editing
environment using IntelligentBox. As mentioned above,
IntelligentBox is a component based development tool that
provides functional components called boxes. The
proposed motion editing environment is developed as a
composite box, which includes user-defined motion
information itself. Therefore, users can exchange their
edited motions each other through Internet by
copy-and-transfer operations, and create motions only by
modifying the motions already defined by other users.

 [Related Work]
There are many researches on motion generation for
computer animation. (Witkin and Kass, 1988) proposed
concept of spacetime constraints. After that, many
research papers based on spacetime constraints were
published. IK(Inverse Kinematics) is one of the popular
methods for efficient motion generation. The motion path
functionality is also a popular technique to intuitively define
movement of a character's center of mass. Furthermore,
the use of motion capture data has been becoming common.
Many animation creation software products have been made
so far. Most of them provide a traditional key-frame
animation function, IK and a motion path function. Those
products include 3D Studio MaxTM, LightWaveTM and so on.
IK is a powerful tool but it is not always available for
arbitrary motion definition. Then key-frame animation is

COMPONENT BASED MOTION EDITING ENVIRONMENT

FOR 3D GAME CHARACTER DESIGN

Yoshihiro Okada
Graduate School of Information Science and Electrical Engineering,

Kyushu University
6-1 Kasuga-Koen, Kasuga
Fukuoka 816-8580, Japan

E-mail: okada@i.kyushu-u.ac.jp

still used in many cases. Life FormsTM provides a
graphical timeline display functionality of key-poses.
Users can understand a motion by seeing the graphical
timeline of its key-poses. However, it does not include
movement information of a character's center of mass. In
our motion editing environment, users can edit each
key-pose of a character, which includes the movement of its
center of mass besides its joints angles. Most products also
support the use of motion capture data. However, most of
the motion capture data are human motions. For animation
creation of animals and other characters except human-like
figures, users have to define their motions based on
key-frame animation. Therefore, our motion editing
environment is significant since there are few researches on
efficient and intuitive interface for motion design based on
key-frame animation. Gleicher proposed a motion editing
based on spacetime constraints (Gleicher, 1997). Lee
proposed an interactive motion editing method for
human-like figures (Lee and Shin, 1999). Both of their
systems provide an interactive and graphical interface for
motion editing. Those are very intuitive interfaces.
However, their systems are dedicated to generate motions.
Our system is an integrated system so that the user can
create 3D game characters in the one integrated
environment.
The remainder of this paper is organized as follows.
Section 2 explains essential mechanisms of IntelligentBox
and shows its simple composite box example. Section 3
explains the motion editing environment and its realization
mechanisms. Section 4 shows motion definition examples.
Finally section 5 concludes this paper.

2. ESSENTIAL MECHANISMS OF
INTELLIGENTBOX

IntelligentBox employs the following essential mechanisms
inherited from IntelligentPad (Tanaka 1996), which is a 2D
synthetic media system since IntelligentBox is an extension
of IntelligentPad to 3D graphics applications.

2.1 Model-View-Controller (MVC) Structure
As shown in Figure 1, each box consists of two objects, a
model and a display object. This structure is called an MD
(Model-Display object) structure. Strictly speaking, a
display object consists of two objects, a view and a
controller. Therefore, this structure is called an MVC
structure. A model holds state values of a box. They are
stored in variables called slots. A view defines how the
box appears on a computer screen. A controller defines
how the box reacts to user operations.
Figure 1 also shows messages between a display object and
a model. This is an example of a RotationBox. A
RotationBox has a slot named ‘ratio’ that holds a double
precision number, which means a rotation angle. This
value is normalized between zero and one. One means one
rotation. Through direct manipulations on a box, its
associated slot value changes. Furthermore, its visual
image simultaneously changes according to the slot value
change. So a box reacts to a user's manipulations
according to its function.

2.2 Message-Sending Protocol for Slot Connections
Figure 2 illustrates a data linkage concept among boxes.
As shown in the figure, each box has multiple slots. Each
slot can be connected to one of the slots of an other box.
This connection is called a slot connection. The slot
connection is carried out by some messages when there is a
parent-child relationship between two boxes. There are
three standard messages, i.e., a set message, a gimme
message and an update message. These messages have the
following formats:
 (1) Parent box set <slotname> <value>.
 (2) Parent box gimme <slotname>.
 (3) Child box update.
A <value> in a format (1) represents any value, and a
<slotname> in formats (1) and (2) represents a user-selected
slot of the parent box that receives these two messages.
A set message writes a child box slot value into its parent
box slot. A gimme message reads a parent box slot value
and sets it into its child box slot. Update messages are
issued from a parent box to all of its child boxes to tell them
that the parent box slot value has changed. In this way,
these three messages connect a child box slot and its parent
box slot, and combine their two functions.

2.3 A Simple Example of Composite Boxes
Figure 3 shows a simple composite box example. Figure 4
illustrates its message flow and data flow. In this example,
the motor is a counter box having a cylindrical shape. Its
model has a slot with a double precision number value that
is increased automatically by a timer process. The toggle
button attached to the motor works as a switch that changes
the state of the timer process. Pushing the toggle button
activates the timer process and hence the motor. The slot
value of the motor begins to increase automatically, and

Figure 1. An MD structure of a box and its
internal messages.

Figure 2. Standard messages between boxes.

hence the motor begins to rotate. Then according to the
data flow shown in the figure, the toothed wheel 1 and
toothed wheel 2 come to rotate since both are RotationBoxes.
Consequently, the toothed wheel 2 makes the shaft with the
two wheels rotate.

3. COMPONENT BASED MOTION EDITING
ENVIRONMENT

3.1 Component structure of a human-like model
and its one pose data
Figure 5 shows components of a human-like model. This
model is consisted of 17 joints. Each joint is a
3DRotationBox. The bottom box is an ArrayBox that
stores xyz-angle data of the all joints. Therefore, this
ArrayBox keeps one pose data. So this composite box
illustrated in the figure is used as a unit for editing one pose.

3.2 Editing of multiple key-poses
Figure 6 shows multiple key-poses those mean a walking
motion. This motion is consisted of five key-poses. As
you see the figure and easily understand that the motion is a
walking motion, the figure means an intuitive motion
editing environment we propose in this paper. Figure
7(left) shows another motion. This is a jump motion
consisting of six different poses. As for a walking motion,
the character's center of mass moves gradually in one
direction. So it is not difficult to specify each pose by
directly dragging the joints on a computer screen.
However as for a jump motion, the character's center of
mass moves up and then down again. So it is difficult to
specify each pose by directly dragging the joints on a
computer screen since some poses are occluded. In this
case, it is possible to disappear other poses except the one
pose that the user is currently modifying. As you see, there
is a ContainerBox below each pose. A ContainerBox
controls visibility of its descendant boxes. If a user clicks
a mouse button on a ContainerBox, its descendant boxes
become invisible, and the user clicks again then its
descendant boxes become visible. By interactively
controlling their visibility, users can edit a pose with
showing only one corresponding character as shown in
Figure 7(right).

3.3 Mechanism of motion generation
Figure 8 shows data flow and component structure for
concatenated motion generation. The upper part of the
figure is component structure for one motion generation.
There is an InterpolationBox. The InterpolationBox

Figure 4. Message and data flow between boxes.

Figure 3. A composite box example.

Figure 7. Editing of a jump motion(left) and its one pose(right). Figure 6. Editing of a walk motion.

Figure 5. Component structure of a human-like model.

generates a motion as a complete sequence of poses
generated by interpolation among several key-poses. The
motion is stored in a slot of an ArrayBox. Furthermore the
lower part of the figure is component structure for
concatenation of several motions. There is a
MotionConcatenationBox. The MotionConcatenationBox
generates one motion as a sequence of several motions.
Figure 9 shows an example model to generate a
concatenated motion from two different motions. One
motion is a walking motion and the other is a jump motion.
In this figure, the walk motion is assigned a value of zero as
its ID number and the jump motion is assigned a value of
one. After the user specifies a sequence of ID number
values like (0, 1, 1, 0), the MotionConcatenationBox
generates one concatenated motion. That motion acts in
the order of a walk, a jump, a jump and a walk. As shown

in Figure 10, two sequential motions are concatenated
smoothly by a linear combination of last n frames of the first
motion and first n frames of the second motion. Strictly
speaking, concatenation process generates a smooth motion,
i.e., the first motion fades out and the second motion
simultaneously fades in.

3.4 Motion capture data support
As shown in Figure 11, IntelligentBox has provided a
particular box called a MotionBox This box reads a motion
capture data file and generates a motion as a sequence of
several poses. Currently this box supports a BioVision Inc.
BVH file format. In the figure, there is another box called
a MotionToKeyBox under the MotionBox. This box
automatically extracts multiple poses, which would become
key-poses, from one motion data generated by the
MotionBox.
Figure 12 show a screen image of key-poses extraction.
This figure is concerning a kick motion. Its motion capture
data file includes 150 frames (150 poses) and the
MotionToKeyBox extracted eight frames (eight poses) as
key-poses from 150 frames. We checked that the
key-poses generate almost the same motion as its original
motion of the motion capture data file by their interpolation.
As shown in Figure 11, after once several poses are
extracted as key-poses, the user edits those poses and then
creates new motion.

4. OTHER MOTION EXAMPLES

This section describes another motion editing example.

Figure 10. Smooth concatenation of two
sequential motions.

Figure 9. Example model of concatenated motion
generation from two different motions.

Figure 12. Key-poses extracted from a kick motion file.

Figure 8. Data flow of concatenated motion generation.
Figure 11. Data flow to generate one new motion from
motion capture data.

Figure 13 shows four screen images of each different pose
of a triceratops. This example uses an FFDControlBox to
deform a triceratops shape model according to the shape of
its skeleton model. Similarly to Figure 5, outside cubic
(wire-frame) boxes are all 3DRotationBoxes those work as
bones of the skeleton model. The skeleton model is
consisted of 17 bones, i.e., 17 joints. Users can define
each pose by dragging 3DRotationBoxes interactively on a
computer screen. In this way, using our motion editing
environment, users can design any character motions in an
intuitive manner as well as design of human-like model
motions.

5. CONCLUDING REMARKS

This paper proposed an intuitive motion editing
environment in which users can edit a character motion by
means of directly defining its multiple key-poses. In the
proposed intuitive motion editing environment, all
sequential key-poses are displayed as the corresponding CG
character's poses on a computer screen simultaneously.
Therefore users can see those poses and then rapidly
understand the motion that those key-poses mean. We
have already developed such a motion editing environment
using IntelligentBox and described its realization
mechanisms in this paper. Furthermore the proposed
motion editing environment is realized as a composition of
software components. It includes user-defined motion
information. So, it is possible to make its copy and
transfer the copy to other computer through Internet. As a
result, users can exchange their defined motions each other
through Internet.
In the future works, we have to clarify availability of our
proposed motion editing environment by evaluation of its
efficiency. Currently we have been developing a motion
database and a shape model database for easier creation of
3D animation. Our final goal is to build an interactive
animation system by which even end-users, especially
non-expert users, can create 3D animation rapidly and easily.
We will present their new findings as soon as possible.

AKNOWLEDGEMENT

This work is partially supported by research fund of
Ministry of Education, Culture, Sports, Science and

Technology of Japan, and the Telecommunications
Advancement Foundation (TAF) of Japan.

REFERENCES

Gleicher, M., 1997 : Motion editing with spacetime
constraints, Proc. of SIGGRAPH'97, pp. 139-148.

Lee, J. and Shin, S.-Y. , 1999 : A hierarchical approach to
interactive motion editing for human-like figures, Proc. of
SIGGRAPH'99, pp. 39-48.

Okada, Y. and Tanaka, Y., 1995 : IntelligentBox: A
Constructive Visual Software Development System for
Interactive 3D Graphic Applications, Proc. of Computer
Animation ’'95, IEEE Computer Society Press, pp. 114-125.

Okada, Y. and Tanaka, Y., 1998 : Collaborative
Environments in IntelligentBox for Distributed 3D Graphic
Applications, The Visual Computer (CGS special issue), Vol.
14, No. 4, pp. 140-152.

Okada, Y. and Tanaka, Y., 1999 : IntelligentBox: Its Aspect
as an Interactive Animation System, Proc. of
SCI'99/ISAS'99, Vol.2, pp. 198-201.

Okada, Y. and Itoh, E., 2001 : Aspects of IntelligentBox as
an Internet-Supported Tutoring System, Proc. of
SAINT2001 Workshops, IEEE Computer Society Press, pp.
27-32.

Okada, Y., Itoh, E. and Hirokawa, S., 2000 : IntelligentBox:
Its Aspects as a Rapid Construction System for Interactive
3D Games, Proc. of First International Conference on
Intelligent Games and Simulation, SCS Publication, pp.
22-26.

Tanaka, Y., 1996 : Meme Media and a World Wide Meme
Pool, Proc. of ACM Multimedia ’96, pp. 175-186.

Witkin, A. and Kass, K., 1988 : Spacetime constraints, Proc.
of SIGGRAPH'88, pp. 159-168.

Life FormsTM ,
http://www.credo-interactive.com/products/lifeforms/lf_3-9
_studio.html

Figure 13. Motion editing example of a triceratops model.

STRATEGO EXPERT SYSTEM SHELL

Casper Treijtel and Leon Rothkrantz
Faculty of Information Technology and Systems

Delft University of Technology
Mekelweg 4 2628 CD Delft University of Technology

E-mail: L.J.M.Rothkrantz@cs.tudelft.nl

KEYWORDS
Games, A.I., Multi-agent, Expert systems, Stratego

ABSTRACT
The field of multi-agent systems is an active area of

research. One of the possible applications of a multi-agent
system is the use of distributed techniques for problem
solving. Instead of approaching the problem from a central
point of view, a multi-agent system can impose a new mode
of reasoning by breaking the problem down in a totally
different way.

In this paper we investigate a distributed approach to
playing Stratego. Computational agents that each have their
own field of perception, evaluation and behavior represent
the individual pieces of the Stratego army.

A first prototype of a framework has been developed that
consists of a simulation environment for the agents and an
implementation of the agent’s evaluation function. The
agents have a rule engine that generates behavior that is a
resultant of the environment in which they live.

INTRODUCTION
This paper describes a first attempt to play the Stratego

game with multiple agents. The Stratego game is a board
game where two players battle each other with their armies
of pieces. The object of the game is to capture the enemy
flag, by moving pieces towards the enemy and trying to
capture the enemy pieces. An interesting property of the
game is that the information the players have is incomplete,
because the identity of the opponent's pieces is concealed
until exposed by battles between pieces.

Our motivations for using the multiple agent approach are
as follows. When we consider a human society from a
central point of view we see that it is a very complex
system. A possible attempt to understand the complex
behavior of a human society is to consider it as a system
that is made up of individuals that have their own
characteristics, behavior patterns and interactions with each
other. It is the sum of all the local actions and interactions
that constitutes the overall behavior of the society. This
investigation is an attempt to support this hypothesis by
considering the Stratego game. Specifically we want to
investigate whether a distributed way of playing this game
will provide us with a means to break down the complexity
of playing it.

Our work is based on ideas of multiple agents as
described by J. Ferber (Ferber 1999) and intelligent agents

as developed by P.Maes (Maes 1995) and L.Steels (Steels
1997).

DESIGN
In designing the agents we want to make use of the fact

that each piece in the Stratego army has a certain dedicated
role. These roles originate from their specific ranks and the
rules of the Stratego game. All pieces have secondary goals
as well of which possibly the most important one is to stay
alive. We propose to define some degrees of freedom in our
model of the agent that will allow us to experiment with
different types of agents in the Stratego army. Specifically
we define for each agent:

• The agent's perception range. Depending on the

agent's role in the army the perception will be a
diamond of range one to five, or an n x n square of
fields. Important pieces will have wider perceptions.

• The agent's ‘reactive’ behavior. For every agent we
define four elementary behaviors that are executed
following a reaction in various situations. These
behaviors are attack, flee, random walk, and stay and
do nothing.

• The agent's ‘cognitive’ abilities, for example evaluate
situation, compute optimal next move, form
hypotheses, and make plans.

In our design emotion is modeled as follows. Emotions

are related to parameter settings regarding the agent's
perception and behavior. For example, if an agent gets
upset, afraid or stressed we shrink his field of perception
(tunnel view). And if the agent is angry we increase the
possibility to attack (McCauley 1998; Scheutz 2000).

We designed two levels of communication among agents.
One is communication by means of a blackboard that can
be written to and read from by every agent. The blackboard
is a container of all information of the board situation that is
available. This way all agents can rely on the fact that their
field of perception is in accordance with the current board-
situation. The blackboard contains strictly information
about the board status.

Additionally the agents can use an asynchronous
message-passing structure. Agents can send and receive
messages to each other containing information about the
Stratego battlefield. The communication structure allows
sending messages to all other agents, sending messages to
agents of a certain rank or sending messages to specific
agents. The content of messages can either be known facts,
hypotheses or requests.

mailto:L.J.M.Rothkrantz@cs.tudelft.nl

Because only one piece can move at a time, a mechanism
was designed that decides which agent is allowed to move.
The decision rule was based on scores, where each agent
evaluates its current situation and assigns scores to
preferences of moving. A higher score will indicate a
stronger desire to move and the agent with the highest score
will be allowed to move.

ARCHITECTURE OF THE STRATEGO AGENT
For our Stratego agent we defined a three-layered

architecture, with a sensor, evaluation and effector layer.
These layers relate sensor inputs to actuator outputs. The
actual relation between percepts and actions takes place in
the evaluation layer. There are various possibilities for
filling in the evaluation layer. We discuss the traditional
and the behavior-based approach designed by R. Brooks
(Brooks 1986).

The traditional approaches to model cognitive systems
are based upon a strict functional decomposition of
modules. These approaches result in so-called sense-model-
plan-act frameworks. The cognitive system contains a
number of modules that are built on top of each other, each
performing a dedicated function as a part of the system.

One characteristic of these types of frameworks is that
every module has a specific function that uses input from
the module before it. When applied to the Stratego agent,
the traditional framework takes the form as indicated in
Figure 1. The three layers, (sensors, evaluation and
effectors) are influenced by the motivational and emotional
states that the agent undergoes.

The behavior-based approach has the advantage that new
modules with new behaviors can be added to the system
quite easily. Also, the architecture allows for a combination
of modules that may be based on each other or that may be
conflicting among each other. It is imaginable that some
goals of Stratego agents may very well be conflicting. The
architecture of the behavior-based approach seems to be
very appropriate for our notion of the Stratego agent, in the
sense that for each goal we are able to add a separate
behavior module. The three layers are influenced by the
motivational and emotional states that the agent undergoes.

As is the case in the subsumption architecture, these
modules operate in a considerable autonomous way. The
modules shown in Figure 2 are some behaviors that apply to
a piece in a Stratego environment. Depending on the
situation at hand, one of the behaviors has the overhand and
dictates the overall behavior of the agent.

KNOWLEDGE OF THE AGENTS
Since the agents represent pieces of the Stratego army, we

want them to express behavior that can be seen as ‘rational’
from their point of view. In other words, we want them to
express behavior that will make the agents successful in
achieving their goals. Our approach is based on a rule-set
that explicitly defines what to do for a number of situations.

For each of the Stratego agents we have defined a set of
rules that specify the behavior, according to the current
situation of the agent. We call these rule-sets preference
rules, since they indicate preferences to exhibit behavior
rather than performing explicit actions. The use of
preferences instead of actions in the rules arises from the
desire to allow separate behaviors to be activated
simultaneously.

We will give some examples of preference rules of the set
of 29 preference rules for the “minor”-agent:

Rule 1: This rule will fire the preference “attack” when the
following conditions are met:

• Enemy bombs captured
• I have moved
• My rank revealed
• Enemy with unknown rank present at distance 1

Rule 13: This rule will force the preference “flee” when the
following conditions are met:

• I have moved
• My rank revealed
• NOT enemy bombs captured
• Enemy with unknown rank present at distance 1

Figure 1: Traditional approach to modeling an Stratego

agent based on a functional composition of modules in the
evaluation layer.

Figure 2: Behavior-based model of the Stratego agent with
separate behavior modules in the evaluation layer.

Rule 22: This rule will fire the preference “stay” when the
following conditions are met:

• NOT I have moved
• NOT my rank revealed
• NOT enemy bombs captured
• Enemy with higher rank present at distance 1

Rule 27: This rule will fire the preference “attack” if an
only if an enemy bomb has been spotted at distance 1.

Upon each move, all agents evaluate their situation and

express their desire to act or not. Because of the fact that
only one agent can and has to move at a time, one agent has
to be selected. This is done according to a weighted
function that takes into account all desires of agents. The
agent’s rule engine has been implemented using the notion
of separate behavior patterns that conform to the behavior-
based model (Figure 2). The agent’s behavior can be
explained as being a resultant of all separate behaviors. The
agents show emergent behavior that is caused by the sum of
all separate behaviors.

A great advantage of this type of emergent behavior is
that the agent comes somewhat closer to our notion of an
autonomous system. The agent’s perception, goals,
motivations, etc. all influence the agent’s actions. This
means that we can define different types of rules for the
agent that may harmonize or conflict with each other.

Figure 3: The environment in which the agent playing Stratego

lives

IMPLEMENTATION
In this section we will describe an implementation for a

prototype called Stratesys, as an acronym of the words
Stratego expert system shell. The implementation has been
done using the object-oriented programming language
Java2. In the current version of the Stratesys we have
implemented an agent type that is based on production
systems. For the communication among agents and the

agent rule-engine we have used the JavaSpaces Technology
and an expert system shell called Jess, respectively.

The simulation
According to Russel & Norvig (Russel et all. 1995), an

agent is anything that can be viewed as perceiving its
environment through sensors and acting upon that
environment through effectors (see Figure 3). All agents
have the three layers sensors, evaluation and effectors. See
Figure 4 for a schematic view of the agent. Here we can see
each layer containing the agent’s internals. It also shows the
objects it is related to in its environment.

Figure 4: Schematic view of the agent's implementation

The Agent Player functions as a representative of the
Stratego army formed by agents. It is responsible for
creating all agents upon start-up, initializing them and
positioning them on the Stratego board. Also, the Agent
Player is responsible for maintaining information on the
Blackboard (Cavazza 2000). This is an object that
continuously reflects the actual situation on the Stratego
board, the way the Agent Player sees it. In other words the
Agent Player keeps positions of all pieces and where
possible fills in missing information concerning enemy
ranks.

The Agent Space is the agent's interface to communicate
with its fellow agents (a JavaSpace-service). It is read from
by the Hearing object and sent to by the Talk effector. The
View object provides the agents with visual perception. It is
actually an accurate copy of a small part of the Blackboard.
It continuously checks for recent changes on the
Blackboard, and updates itself whenever necessary.

The Stratego Space is the communication medium for the
Client and the Server. The agent's lifecycle can be viewed
as a number of states and transitions. The most important
state in the cycle is the Evaluate state. Here, the Rete
algorithm is applied using the percepts that have been
received. If the Evaluation leads to an action, it will cause a
transition to the Sleep state. In the Move state a piece can
do an actual move. From the Move state there are two
possible transitions to other states. When a move to an
empty square was done the agent perceives some changes in

its environment and evaluates them. The other possibility is
a battle with an enemy piece. In the Battle state the agent
either wins and notifies all fellow agents of the capture, or
the agent looses and notifies its death.

The Client-Server model
Since we wanted to be able to play human versus human

games, we have created two programs that implement a
Client-Server model. The Client is the main Stratesys
program. The Server runs in the background, continuously
listening for Clients to connect. See Figure 5 for a
schematic view of the Client and the Server.

The communication between the Clients en the Server has
been implemented by a Java Space-service called ‘Stratego
Service Space’. Using the space the Clients and the Server
can exchange information by reading from and writing
messages to the space.

Figure 5: The Client-Server model

The Client is the main Stratesys program. At startup, a
window is positioned on the screen with an empty Stratego
board. The possible ways of playing the game are a human
player playing against an agent army and two human
players playing against each other.

At startup, the players will be registered with the Server.
The human playing Stratego can position his army by
clicking on the squares of the board. A pop-up menu will
appear that will allow the player to choose a piece. When
all pieces have been positioned, the players can begin to
move their pieces. By using mouse-clicks on the squares of
the board the human player can select pieces to move. For
clarity concerning the situation on board we have chosen to
implement the use of animation for each moving piece.
When a correct move has been requested the board draws
an animation of the moving piece from the initial position to
its destination.

Depending on the type of game that is played, one or two
Player objects will be created. Only in the human versus
human mode will the Client create a one Player object.
Naturally this implicates the necessity of another Client in
the network. In the other modes of operation, only one
Client is used which runs both Player objects. The Player
object has both references to its own Pieces and to Enemy
Pieces. The Enemy Pieces are actually only ‘dummy’ Pieces
that are a visual representation of the actual enemy pieces.

From the Player object to the Server and back are messages
to register the player with the board. Messages from Player
to Pieces concern position and move messages. The same
applies to the messages sent from the Pieces to the Server
and back. The Enemy Pieces however only receive
messages from the Server and relay them to the Player
object. This is because of the fact that these objects are only
visual representations, as mentioned before.

Our implementation of the Server can accept two players
wanting to play Stratego. These players can reside in one
Client program or two. The latter case is only for human
versus human games. After the game is over, the Server will
wait for new requests for playing. The Client-Server
communication consists of four phases. These are
registration, positioning pieces, moving pieces and
notifying a game over. For each of the phases we have
defined specific messages, which we call, tickets.

Tickets are sent as requests and received as answers to
that request. The idea behind the concept of a ticket is that a
ticket gives a piece the right to position itself somewhere or
move to a certain square.

Upon starting the game, the Client creates one or two
Player objects, depending on the type of game that is
played. The Players send a Registration Ticket to the Server
to register. After sending the ticket, they will receive an
answer with information about the registration (successful
or not).

When two players have registered to the Server, they can
position their pieces. For each piece to be positioned a
Position Ticket is created and sent to the Server. The Server
checks to see if the requested positions are valid, and send
the tickets back with this information.

EXAMPLE OF A TEST RUN
In this section we will consider two situations where the

sergeant is in the environment as indicated in Figure 6. The
sergeant sees an enemy piece with unknown rank (north
square) and an enemy scout (northeast square). We will
consider the case where the sergeant has already moved and
its rank is known. The JESS output gives:

f-51 (enemy-known north east)
f-52 (enemy-unknown north)
f-54 (flee)
f-54 (update scores 0,–200,50,200,50)
f-55 (attack)
f-56 (update-scores 0,50,-50,-50,50)

Let us consider the computation of the scores (see Figure 7)
in case that the sergeant has a desire to attack:

Score for staying: 0
Score for moving forward: -200
Score for moving left: 50
Score for moving backward: 200
Score for moving right: 50

Figure 6: The sergeant’s environment

+

=

Figure 7: Computation of the scores

In the current implementation of the rule engine, the
evaluation consists of a mapping from enemy location to a
desire to move (for each direction) or to stay, expressed in
scores. In the specific example, the sergeant may want to
flee from the unknown enemy. But it also sees an enemy
scout that can be beaten. Therefore in this particular case
the sergeant’s behavior will be a mixture of the desire to
flee or to attack.

The scores indicated above express relative desires to go
or to attack. Negative scores mean that the agent does not
want to go in the corresponding direction. In the example
the scores are a resultant of the behaviors to attack or to
flee. The fleeing behavior is due to the enemy with
unknown rank. Since the sergeant is a piece with a relative
low rank, the score to move backward is largest and the
sergeant will decide to move backward

CONCLUSION
In this paper we have described a multi-agent approach

for playing the game Stratego. This approach involves
playing the Stratego game with multiple agents that each
represents a piece in the Stratego army. The approach was
based on the hypothesis that for some complex problems
distributing techniques for solving them can result in more
intuitive solutions. We assumed that the Stratego game
could serve as an excellent playground for testing the
hypothesis. Players have incomplete information on the
board status and that results in the high complexity of the
game.

We did not make an analysis of the game. We advocate
using a corpus-based approach to build up a library of
games, which can be used for studies and experiments about
Stratego. The Client-Server model that has been
implemented provides a framework from which several
experiments can be run.

We have tested our prototype program Stratesys by
letting the agents play against a human player. The
experiments have resulted in some valuable ideas about our
multi-agent approach. It proved that playing the game with
multiple agents is an excellent approach to break down the
complexity of the game.

REFERENCES
Brooks, R.A. (1986). A robust layered control system for

a mobile robot, IEEE Journal of Robotics and Automation
RA-2:14-23

Cavazza, M, et al (2000), A real-time blackboard system

for interpreting agent messages, Proc. GAME-ON 2000,49-
55

Ferber, J. (1999). Multi-Agent Systems, An Introduction

to Distributed Artificial Intelligence, Addison Wesley,
England

Maes, P. (1995). Artificial life meets entertainment: Life

like autonomous agents, Communications of the ACM 38,
11:108-114

McCauley, T.L. & Franklin, S. (1998). An architecture

for emotion, AAAI 1998 Fall Symposium “Emotional and
Intelligent: The Tangled Knot of Cognition”, AAAI Press.

Russel, S .& Norvig, P. (1995). Artificial Intelligence-A

modern Approach, Englewood Cliffs, NJ: Prentice Hall

Scheutz, M. et al (2000) Emotional states and realistic

agent behavior, Proc. GAME-ON 2000, 81-87

Steels, L (1997). A selection mechanism for autonomous

behavior acquisition, Robotics and Autonomous Systems
20: 117-131

 -200
50 0 50
 200

 50
-50 0 50

 -50

 -150
 0 0 100

 150

DIRECTIONS FOR FUTURE GAMES DEVELOPMENT

Michael J. Allen, Hussam Suliman, Zhigang Wen, Norman E. Gough and Qasim H. Mehdi

Multimedia and Intelligent Systems Technology Research Group
School of Computing and Information Technology, University of Wolverhampton,

 35 – 49 Lichfield Street, Wolverhampton, WV1 1EQ,
United Kingdom

email: ma@scit.wlv.ac.uk

KEYWORDS
Eye Tracking Technology, Artificial Intelligence,
Computer Animation.

ABSTRACT
In this paper artificial intelligence (AI), eye tracking
technology and computer graphics for character
animation are reviewed and current developments
examined. In each case the review is followed by a
discussion on how these developments may affect the
games industry in the future. Game AI and traditional AI
methods are investigated as well as the drawbacks of
using the traditional approaches in game development.
The graphics section examines four of the current
methods available for character animation - articulated
body animation, single mesh skinning and the N-patch
method - and discusses the advantages and disadvantages
of each one. The process and evolution of eye movement
research is undertaken in the final section which
concludes with a list of potential applications for the
technology within the Games arena.

INTRODUCTION
In this work, the fields of Artificial Intelligence (AI),
computer graphics for computer animation and eye
tracking technology are investigated. The aim of the
paper is to review how these technologies are currently
being used, inside and outside of the games industry, and
to highlight where they could be used in the future.

AI is now an established discipline. It enables an
electronic system to act intelligently by exhibiting
characteristics usually associated with human or animal
behaviour. A number of sub-fields have evolved, such as
soft-computing, intelligent computational control and
intelligent planning, and several other research areas have
become synonymous with AI, e.g. machine vision,
natural language processing and mobile robotics. Other
areas, such as pattern recognition and path planning, may
also use AI techniques although alternative non-AI
techniques also exist. In Section 2 the use of AI in games
is discussed. Game AI is discussed alongside traditional
AI techniques and the section concludes with a

discussion on computational efficiency and how this
affects the use of AI in game production.

With the advance in both computer hardware and
software, real time multimedia software applications such
as computer games can exhibit much more attractive
character animation to the users compared to earlier
applications. Furthermore, advances in animation control
methods enable the characters to be more intelligent in
responding to their environment and the user interaction.
Section 3 of this paper starts with the most commonly
used character animation method such as rigid-body
animation in 3D-computer games, and then describes the
single mesh animation method along with the more
advanced or recently proposed methods such as mesh
skinning and N-patch. The advantages and disadvantages
of these methods will also be discussed.

Eye tracking is an emerging technology in which a
feature of the eye is tracked to determine where the user
is looking. Eye tracking has been used in a number of
studies that have analysed where a subject looks when
driving, reading, playing fast action sports and interfacing
with a computer. Compression techniques, such as the
content-based functionalities of MPEG-4 and foreground
- background, encode Regions Of Interest (ROI) within
an image with more bits to improve the perceptual quality
of the encoded image. The ROI are those areas where the
user/operator’s eye tends to fixate. Section 4 begins with
a review of the research undertaken into eye tracking to
date and concludes with a list of potential application
areas where this research could, and is, being applied in
the area of games.

AI IN COMPUTER GAMES

Game AI

There are no generally-accepted guidelines for what
methods are included under games AI, but the broad
definition given by Wright & Marshall (2000) ‘Game AI
is the high-level control code that determines the
behaviour of game agents’ is widely accepted. Strictly
speaking, many games merely create the illusion of
intelligence. Games do not need to process every possible
object at every frame in order to create an illusion of

believability. Wright & Marshall (2000) go on to observe
that 'virtual worlds built for entertainment purposes need
to concentrate on presenting a believable world to the
player and need not concentrate on presenting an accurate
simulation of the real world'. Furthermore, games AI
does not necessarily imply that any traditional soft
computing tools such as neural networks are being
employed. Hence purists often refer to games AI as
"cheating" (Smith, 2000). However, for the purpose of
this research, we will adopt a less rigorous definition of
AI as one that creates believability in the sense that
games characters appear to be interacting intelligently
with one another and their environment.

The most common and popular AI technologies
(Woodcock 1999, 2000) for Non Player Characters
(NPCs) specification are based on Finite state machines
(FSMs) (Gough et al, 2000, Hein 1996, Funge 1999,
Hopcroft & Ullman 1979) that are machine-like
representations of rule based systems. Hence all reflex or
reactive agents that react to a rule of the form if condition
then action can be implemented by FSMs. They are
characterised as having sets of distinct internal states that
respond to a sensory input transit to a new state and
release an output. FSMs are used in layered or
hierarchical structures (Woodcock 1999,2000, Funge
1999) for implementing and customising behaviour.
Computer games such as ID software’s Quake I, II and
III use FSM modelled systems. The Valve software team
(Valve 2001) used a ‘schedule driven’ (event driven)
FSM for their award winning game Half-Life (GameAI
2000). Unreal and Unreal Tournament, for example,
demonstrates the complexity of behaviours available
using FSMs. The AI makes extensive use of FSMs to
control the behaviour of the player's opponents to an
amazingly realistic degree. For example, the monsters
appear to exhibit considerable intelligence, as they run
away, hide when wounded, call for reinforcements, and
even trick the player into ambushes. In addition, group
movements exhibited through the use of a flocking
algorithm add considerably to the realism, such as the
method of Reynolds (1987) used in The Lion King. All of
these effects were achieved by the developers through the
implementation of layering FSMs, which were built on
top of an extensible scripting system called UnrealScript.

Path finding and planning methods for agent navigation
are also extensively used in games. The basic problem is
to find a route through a network of possible locations in
the presence of constraints, such as take the shortest
distance, avoid ambush, minimise the number of
locations visited, etc. There are many well-known search
algorithms used in path finding such as breadth-first, bi-
directional breadth-first, Dijkstra’s algorithm, depth-first
and A∗ (Pearl 1984, Russell & Norvig 1995). They share
some common features and especially the strategies by
which they find paths. One of the most popular

algorithms for finding shortest distance paths in games,
A∗, is a heuristic search that ranks a node by an estimate
of the best route that goes through that node. It combines
the tracking of past path lengths with the heuristic of
breadth-first search (Hart et al 1968,1972, Russell &
Norvig 1995).

Path finding in practice also requires obstacle avoidance.
However, games involving 2D and 3D virtual
environments often avoid this problem by using networks
with pre-stored nodes through which NPCs must travel,
thus ignoring the existence of obstacles altogether. In a
more complicated scheme, the space can be presented as
a uniform grid, through which NPCs freely travel in any
direction but this requires the development and
implementation of complex obstacle avoidance systems
for NPCs to ‘sense’ the obstacles. For example, influence
maps or field methods (Boas 1983) consider objects such
as locations or obstacles as field sources that exert
influence on distant points.

Game companies are now focusing on extending these
techniques for specific games (such as path finding in 3D
space). Path finding tools are also beginning to take
account of environmental terrain. Terrain analysis is a
more difficult than simple path finding in that the game
AI must take into consideration geographic features but it
has been used successfully, particularly in military games
scenarios (Smith 2000).

One of the most interesting topics that has attracted game
developers recently is the development of AI software
development kits (SDKs). Academics and developers
alike have found them to be powerful tools for both game
development and AI research. There are many AI SDKs
available to the game developers but most of them are
intended for use in industrial or business applications.
DirectIA is an agent based toolkit that uses state
machines to specify behaviour. Also using state machine
modelling is GSM Suite, a set of programs for using
FSMs in a graphical fashion. The suite consists of
programs that edit, compile, and print state machines
(Game AI Page 2001).

Artificial Intelligence Tools

Traditional artificial intelligence has been exemplified by
a set of methods commonly referred to as soft computing
tools. These include expert systems, fuzzy logic,
artificial neural networks (ANNs), evolutionary
algorithms, and probabilistic reasoning (McCarthy 1987,
Nilsson 2001, Russell & Norvig 1995). Many hybrid
methods have also emerged from these basic methods,
such as distributed AI, which is logic based AI.

Logical AI involves representing knowledge as sentences
in logic (McCarthy 1958, 1987, Poole et al 1998, Russell
and Norvig 1995). It is used to develop computer
programs that represent what they know about the world

primarily by logical formulas and decide what to do
primarily by logical reasoning, i.e. applying inferences to
statements to draw conclusions. The proponents of the
symbolic AI approach to intelligence use logic based
systems for building intelligence into agents. Many AI
systems represent facts by a limited subset of logic, e.g.
logic programming restricts its representation to Horn
Clauses (Nilsson 2001, Russell & Norvig 1996),
databases often use only ground formulas and hardware
design usually involves only Propositional Logic
(Nilsson 2001, Russell & Norvig 1995). Theses
restrictions are almost all justified by considerations of
computational efficiency.

The goal-based agent architecture used in Quake II games
is an example of a rule-based production system. Based
on the SOAR model of Van Lent & Laird (1999) it uses
an arbitration method to decide what action to take when
the percept matches more than one rule.

Fuzzy logic (Zadeh 1965, Dubois & Prade 1980) is one
of the main components of AI. In a narrow sense it is a
branch of multi-valued logic, which provides
approximate reasoning in logical operations. It has found
applications in control systems, business and computer
games. Fuzzy logic developed by Lotfi Zadeh is based on
a concept known as fuzzy sets (Zadeh 1965), introduced
to handle uncertainty and linguistic variables. The
development of fuzzy logic has led to many successful
implementations of fuzzy systems. A fuzzy inferencing
system (FIS) uses the fuzzy sets in a rule-based system to
make decisions or draw conclusions. These rules are then
combined using rule composition and firm conclusions
are drawn through defuzzification. Fuzzy State Machines
(FzSMs) (Dubois & Prade 1984) are machine-like
representations of rule based systems that have fuzzified
states for more modelling power.

Connectionism is a style of modelling based on networks
of interconnected simple processing devices.
Connectionist systems, also referred to as Neural
Networks or Artificial Neural Networks (ANNs) (Bishop
1995, Hertz et al. 1991, Russell & Norvig 1995). ANNs
appeal to many AI researchers due to the analogy to the
structure of the human brain and the basic building block,
the neuron. The earliest work in neural computing goes
back to the 1940s when McCulloch and Pitts introduced
the first model. In the 1950s, Rosenblatt's work resulted
in a two-layer network, the perceptron (Minski & Papert
1969, Hertz et al 1991), which are capable of learning
certain classifications by adjusting connection weights.
Recent work includes Boltzmann machines, Hopfield
nets, Radial Basis Function networks, competitive
learning models, and Adaptive Resonance Theory models
(Bishop 1995, Hertz et al. 1991). ANNs are strongly
implicated as robust methods for detecting and
classifying patterns in data. Few of the top 100 games
claim to use ANNs. Battle Cruiser:3000AD developed by

Derek Smart (GAMEAI Page 2000) claimed to be the
first commercial game to feature ANNs for route finding
and goal-oriented design but it used fuzzy logic where the
networks were considered to be inadequate. Watson
(1996) used a neuro-fuzzy ANN with back propagation to
control a space ship on interstellar missions. An example
of a computer game using an ANN has been produced
and is described in Medhi et al (2000).

Evolutionary or Genetic algorithms (GAs) (Griffiths et al,
1997) are optimisation techniques that are inspired by
how animals evolved over time. The idea centres on the
principle of survival of the fittest whereby members of a
species compete over limited resources. The environment
poses a test which can favour particular elements of a
species over time. The surviving genes present the
codification of the solution to the optimisation problem
expressed in a fitness function. These optimisation
techniques have received comparatively little attention in
games dues to the vast computational costs. However
there is potential to evolve agents in artificial life (A-life)
communities. One game that claims to have used GAs is
Creatures from Cyberlife (Grand et al 1997). GAs have
also been used to evolve, controllers for characters and
for changing the characters body shapes (Taylor, 2000).

Computational Efficiency

‘The fastest computation is the one you don’t have to
compute’

 John Carmack (ID software)

Clearly, any increased complexity of game AI can only
be achieved at a price. Firstly, it brings increased
computational overheads. Furthermore, the emergent
behaviours may be so complex that they interfere with
game play and may have to be curtailed. For example,
the A-life techniques used to control NPCs in the online
game Ultima Online were so rich that they had to be
compromised in the interests of gameplay (Woodcock,
1999).

Game developers inevitably take short cuts to minimise
the computational load. For example, the FPS game
Unreal Tournament demonstrates realistic bot AI that can
compete strongly with the best of players yet is also fun
to play against. It intentionally makes mistakes and does
not always act optimally. However, it does not
incorporate any AI in a strict sense. Although, developers
are now looking towards more sophisticated ways of
incorporating AI in the traditional sense, they are unlikely
to accept them if they involve excessive computational
overheads.

In the early days of the gaming industry, tight and often
unreadable code was common place. The demand for
sophistication in agents and more complex virtual
environments, means that recent game designs tend to be
well-structured showing an integrated system of

formalised objects and relations for specifying the agent
and its environment. This is clearly observed in the
scripting languages accompanying games with extensible
AIs and Internet released sources of code.
Notwithstanding the increasing speed of CPUs today, this
clearly serves to emphasise the need for computational
efficiency (Rollings & Morris 1999, Saltzmann, 1999).

One approach to saving computational load is to increase
the amount of RAM accessible by the games engine. For
example, in agent navigation, many paths can be pre-
computed and stored in a look-up table, such that a path
is chosen by associative recall of locations along the
route. Consequently, computationally expensive search
algorithms should be applied only when there is no
alternative solution. Similarly for obstacle avoidance,
memory can aid significantly by explicitly storing the
distance to a nearest obstacle rather than incorporating
complex strategies.

Formal representations, such as FSMs tend to suffer from
the "curse of dimensionality" in that the dimension of the
state space increases alarmingly as the number of
characters or scenes is increased. A common solution to
this problem is to partition FSMs at natural boundaries,
such as different scenes, each scene being handled by a
separate FSM. This helps to make specification, design
and coding manageable by reducing the dimensionality
(Wright, 2000). At run time, since scenes are displayed
sequentially, the computational load imposed by AI can
be distributed on a frame-by frame basis and as in any
real-time control system with hard real-time constraints.
Details of how to design a games engine to spread the
load are given by Wright and Marshal (2000).

Learning architectures such as NNWs or the explanation-
based learning used in the SOAR architecture also raise
practical difficulties since they normally involve training
phases. The need to pre-train before a game is ready for
use is not likely to prove popular with game players.
However training could be achieved in real-time using
(say) reinforcement learning, but this would add a
significant computational overheads and research is
required to discover under what circumstances it could
prove to be feasible.

In summary, the development of new games AI methods
should always be accompanied by a detailed analysis of
the extra computational load required and limited benefits
should never be sought at the expense of excess
computational effort.

ADVANCES IN COMPUTER GRAPHICS
FOR GAME CHARACTER ANIMATION
This section gives a review of advances in real time
computer graphics and animation techniques for 3D
computer games. Today’s computer game’s characters
have become very realistic both in terms of their

appearance and their intelligence. With the advance in
graphics hardware and software, the CPU has been
greatly relieved from the traditional over-head 3D
graphics processing requirement so that more
sophisticated game physics and artificial intelligence
algorithms can be applied. For instance, the two most
powerful graphics chips for PC are Geforce 3 and Radon
8500; their fill rate now reaches 3.8 billion per second
and the memory bandwidth reaches 8.2 GB/s, which
promises much more realistic scenes while maintaining
high refresh rate (Nvidia, 2001). This review places the
emphasis on character animation methods.

Articulated Body Animation

The articulated rigid body animation technique has been
used in previous 3D game character animations such as
the Tomb Raider series. The 3D character is made up of a
series of hierarchical geometry. The articulated structure
can be thought as a hierarchy of nodes with an associated
transformation which moves the link connected to the
node in some way (Watt and Policarpo, 2001).
Kinematics techniques including forward kinematics and
reverse kinematics are widely used in producing the
character animation. During the animation, the
transformation matrix for the geometry which is at the
end of the hierarchical link can be calculated by
traversing from the root geometry down to the end in
forward kinematics and there is only one possible
solution for the kinematics equation. However, in inverse
kinematics, the procedure needs to be reversed. The end
effector of a hierarchical link is defined and all the
transformation matrices in upper hierarchical level need
to be calculated by incorporating the lower hierarchy
transformation and there may be infinite solution for the
kinematics functions. A project is being conducted by
Balder (Balder, 2001) that aims to derive fast, analytical
methods for solving inverse kinematics problems in real
time virtual human animation. The advantage of this
technique is its relatively fast execution speed - even
without the assistance of graphics acceleration hardware
which was originally not popular due to its high price.
Furthermore, the memory requirement of this method is
small since only one copy of the character model data
needs to be kept in memory at run time. The disadvantage
of this method is the inevitable gaps between the separate
parts, especially when the character makes big
movements. Figure 1 shows this gap in a game character
animation from the Tomb Raider series. The reason for
this gap is that the intersection part of two separate parts
is not transferred correctly, nor is the calculation of the
lighting normal, which results in the wrong shading
effect. This problem could be relieved to some degree by
increasing the polygon number for the character, or using
some “trick” such as wrapping some texture around the
joint which is most likely to create the “gaps” during big
motion.

Gap

Single Mesh Blending Animation

Due to the “gaps” problem, most of the present day 3D
computer games use the single mesh blending method to
animate the character movement. This technique models
the character in a single mesh rather than separate parts,
which therefore avoids the “gaps” problem found in the
articulated rigid body animation method. All the poses of
the character need to be modelled and saved as key
frames of the animation. During the program run time,
various interpolation methods are applied to perform
dynamic blending among these models. Linear
interpolation is the most common and fastest method but
lacks smoothness in some situations. More complex
interpolation algorithms, such as Hermite spline
interpolation, have been proposed to improve the smooth
transition between the animation key-frame. As this
method needs to hold four vertices information rather
than two as in the linear method and the calculation of
vertex position involves cubic functions, more
computation is needed (Cebenoya 2001). However, this
method can potentially reduce the memory usage as
greater space between the key frames can be allowed. It
means fewer key frames are required to produce the same
desired animation. Meanwhile, modern graphics chipsets
can achieve this complex interpolation method in
hardware which means that real time speed can be
guaranteed. It is also noted that today’s advanced
graphics rendering API such as DirectX support mutli-
stream data rendering in hardware, which is also able to
deal with this multi-stream data fetching issue efficiently
(Taylor 2001). Successful examples of the application of
this character animation method are the Quake series or
the even more recent game Max Payne (Figure 2). The
most attractive advantage for this animation method
would be its smooth animation and fast execution speed
due to the support from hardware. The disadvantage of
this single mesh blending method is its lack of flexibility.
As all of the animation poses have been defined as key
frames, it leaves relatively little flexibility for the
programmer to change the way the animation procedure
is executed. It also means the animation process becomes
very difficult or impossible to be parameterized. This
disadvantage implies that this method may not be the best

solution for intelligent character animation, which ideally
requires some non-repetitive behaviour.

Figure 1 Articulated rigid body animation in 3D game,
screen shot from Tomb Raider: The last revelation Demo

(a) Screen shot from Quake3 Team Arena Demo

(b) Screen shot from Max Payne Demo

Figure 2 Mesh blending in real time 3D games

Mesh Skinning Animation

The mesh skinning technique as a new real time game
character animation technique was proposed to combine
the advantages of the articulated rigid body and the
single mesh blending methods. It inherits the advantage
of being controlled and parameterised from the
articulated body animation method by establishing a
hierarchical body structure for the game character. The
programmer has the control of the transformation for
each bone. Therefore, kinematics can be applied to
produce decent character motion. Mesh skinning is also
free from the “gaps” problem by allowing more than one
transformation matrix to affect the character’s skin
vertices. Figure 3 is a screen shot from a mesh skinning
character animation. It is believed that this technique will
widely be used in future generation game character
animation although it requires more computational power
to deal with the additional one or more transformations. It
is noted that from DirctX8, this leading game
development API has begun to support this technique at
both software and hardware levels. The Vertex shader
technique allows the programmer to deal with the
traditional matrix transformation for both the vertex’s
position and lighting normal in a customised way.

Figure 4 Higher order surface in character animation

Figure 3 Mesh skinning in character animation

Therefore, any special graphics effects involving
transformation matrices are now becoming practical for
real computer games. Lindholm from Nvidia Company
present a user programmable vertex engine in the
SIGGRAPH conference by using the DirectX vertex
shader and Geforece 3 graphics card (Lindholm et al.
2001). The potential of this research is quite promising.
They even successfully implemented the famous
“Artificial Fish”(Tu and Terzopoulos 1994) in real time
and also a real time ray tracing simulation, which were
limited to special graphics workstations in the past. Mesh
skinning is supported at the hardware acceleration level,
which makes it likely to be the dominant character
animation method in the future.

N-patch Method

The N-patch character animation method is based on the
mathematical interpolation algorithm. N-patch is an
interpolating triangular cubic bezier surface. It is based
on higher order interpolation functions such as cubic or
quintic rather than traditional linear interpolation. For
example, given a triangle with 3 points, further 6 points
on the boundary are calculated by projecting the edge
vector into the plane defined by the 3 original points’
normal. The interior points are then calculated from these
9 key controls point (Hart 2001). The resulting vertices
are fed to the vertex shader for further transformation
matrix manipulation. The advantage of this character
surface construction method is its arbitrary topology and
fast execution speed in hardware as it is supported by the
most popular APIs such DirectX and OpenGL. In
addition, it is compatible with existing graphics data
structures and therefore can be combined with any
subdivision, skinning or tweening techniques. Several
animation demos from id Software using this method
were presented at the Game Developer Conference
(Figure 4) (Hart, 2001).

The N-patch method is primarily motivated for character
animation. However, it can be applied to generate other
environmental objects’ surfaces such as terrain or water.

APPLICATION OF EYE MOVEMENT
TECHNOLOGY IN COMPUTER GAMES
A keyword search on the INSPEC database from the
years 1969 to 2001 on ‘games’ reveals 11127 results.
However, when using the keywords ‘eye movements and
games’ only 4 results emerge and the most recent of
those was 1993/1994. This suggests a lack of interest on
behalf of games researchers to embrace eye movement
technology. There appears to be a number of potential
application areas within the field of computer games
where eye movement technology can, and is, being
applied.

In this section a brief review of eye movement research is
presented which considers eye movements in humans and
regions of interest, i.e. where do humans look. A section
on modelling the operation of the human eye is included
and in the final sub-section eye movement research is
discussed in the context of games development.

Eye Movements in Humans

‘The impression that we are aware in detail of our
surroundings has been referred to as the “Grand Illusion”’
(Harris and Jenkin, 1998). In daily life we are aware of
entities within our environments without perceiving
them, i.e. we automatically avoid objects and people in
the street but cannot recall what or who they were and
what they looked like.

Human vision is a dynamic process. The eye constantly
moves and representations of the world around us are
built up over time using multiple eye fixations. It has
been established that eye movement behaviour can be
divided into two discrete phases – fixations (when the
point of regard is held relatively still) and saccades
(where the eye rotates to re-orientate the point of regard

from one position to another) (Hendersen and
Hollingworth, 1998). The fovea is an area at the centre of
the retina where our ability to define fine detail and
colour information is best. Consequently, the eye moves
to focus regions of interest (ROI) within the scene onto
the fovea.

Humans actively seek information. When humans see
and understand they actively look (Aloimonos et al,
1987). In their review, Hendersen and Hollingworth
(1998) cite a number of studies (Buswell, 1935; Yarbus,
1967; Antes, 1974; Mackworth and Morandi, 1978;
Hendersen et al, 1999) that suggest that during scene
viewing the fixation points are non-random with more
fixations directed towards the more informative regions –
ROI. In each case the eye movements were recorded
when the viewer was presented with static images, e.g.
colour paintings and black or line drawings.

Norton and Stark (1971) coined the term scanpath to
describe the sequence of fixations used by a particular
viewer when viewing a particular pattern. As with the
studies listed above, this work was also conducted with
static images back-projected on to a screen. The study
examined how viewers examined new (previously
unseen) patterns during a ‘learning phase’ and then how
they recognized the same patterns during a ‘recognition
phase’. The result of the experimental work showed that
when recognizing a pattern the viewer enacted an
appropriate scanpath in 65% of the cases. The authors
regarded this as a strong result and suggested that the
presence of scanpaths is indicative of how patterns are
remembered and they provide evidence that high-level
processing is used for visual perception and eye
movement control (Top-down control).

Stark et al (2001) present a review of current scanpath
theory for top-down visual perception. This review
includes a general explanation of early and current
scanpath theory gathered from experiments with static
images and when looking at dynamic scenes. A detailed
description of their experimental work is given – which
includes work monitoring eye movements during the
viewing of animated scenes - and the presentation
concludes with a report on the implementation of a top-
down computer vision model.

However, top-down control is not the only control
mechanism. Low level signals highlight areas of potential
importance, e.g. our peripheral vision is particularly
sensitive to movement, and can influence eye movement
control (Bottom-up vision). When modelling the human
model Stark et al (2001) refer to the problem of how to
match bottom up confirmatory signals from the
peripheral field with detailed information that is extracted
from the fovea.

Regions of Interest

The eye moves to focus regions of interest on to the
fovea, but what makes one region more interesting than
another? Hendersen and Hollingworth (1998) discuss
semantic informativeness - the meaning of a region - and
visual informativeness - discontinuities in colour, depth,
luminance and/or texture. The scanpath theory indicates
that the use of semantic information is used extensively
in pattern recognition. The eyes follows a scanpath to
gather salient features about the scene to match against
the viewer’s cognitive model. The scanpath is controlled
by high level processing within the central nervous
system which in turn draws upon memory. However,
Stark et al (2001) identify task setting as an important
factor that can induce the viewer to modify the scanpath.
Hendersen and Hollingworth (1998) also identify task
setting as a factor that can influence eye movement
patterns and also include factors of viewing time and
image content.

In computer games the player has to analyze data from a
dynamic scene in real time. Often, as events on the screen
become more intense, the real time window becomes
smaller and the deadlines more important, i.e. the
viewing time is decreased. It has been established that the
human model combines visual data and experience
(expert knowledge) to anticipate future events in order to
reduce reaction times. In fast action sports, experts use
visual information, such as the body movements of a
competitor, to predict their subsequent actions and to gain
an advantage. The expert is able to distinguish between
the irrelevant and relevant information and to recognize
these cues early in the sequence of events (Paull and
Glencross, 1997). This also applies to experienced and
novice drivers. An examination by Chapman and
Underwood (1998) identified that, when viewing a scene
novice drivers, in general, fixated longer than
experienced drivers and it was argued that this related to
the additional time that is required by novice drivers to
process visual data from the scene. The study also
revealed that different visual scene (rural and urban
scenes) also invoked different observation behaviour
(influence of image content).

Modelling Eye Movements

If a model of eye movement behaviour can be
constructed, even a simple model to identify the density
of fixations in different parts of a scene, it could be used
to identify the ROI in different game scenarios. The
model would have to take into account the factors listed
above the influence the eye movements, e.g. task setting,
viewing time and image content, and whether the player
is a novice or expert. A knowledge of where the game
player is looking could facilitate the design process, i.e.
more attention could be paid to ROI and less to those of

lesser interest, and for playing interactive on-line games
where multi-resolution meshes are employed.

Hendersen et al (1999) describe a model of eye
movement control in scene viewing. The control method
uses a saliency map to determine the subsequent fixation
point. The saliency map contains a set of weights that are
initially assigned based on the saliency of a region based
on a parse of the entire scene. It is suggested that these
initial saliency metrics are assigned by low-level stimulus
factors such as luminance, contrast, colour, etc, i.e. visual
information as opposed to semantic information. The
attention is turned to the region with the highest weight.
Over time as the information within the regions of the
map are processed and become meaningful elements the
saliency weights are modified to reflect the semantic
importance of the regions. Consequently, the basis for
each weight gradually moves from being visually based
to semantically based.

The present authors (Allen et al, 1999) describe a method
for efficiently scanning image frames using a method
inspired by the operation of the eye. A schematic
breakdown of this system is shown in Figure 5. As with
the method described above this process assigns weights
to regions of the scene. However, a Fuzzy Inference
System is used to assign the weights (possibility values)
based on historical data relating to the proximity of the
region to other ROI; the attention paid to it in the past;
the success of the system in locating known objects; and
the position of regions that are known to be constantly
important. These possibilities are stored in a saccade
map. The regions to be examined during a particular scan
are chosen using a weighted roulette wheel, i.e. those
with the highest weights have more chance of being
selected. The 3D plot in Figure 6 shows the attention paid
to different areas of a dynamic scene over 60 frames. The
frames contained one static object and a mobile object. It
can be seen that more attention was paid to those regions
containing the objects. In the form described, this method
is not intended to model the movements of the eye.
However, the behaviour of the fuzzy system could be
retuned to handle new input data and resemble more
closely the operation of the eye.

Eye Movement Technology and Computer Games

A study was undertaken at the University of Hawaii
(Crosby and Chin, 1997) that utilized eye-tracking
technology to identify whether embedded information is
more difficult to interpret than unembedded information
when using multi-user interfaces. This study identified
where users of a user interface in emergency conditions.
A similar approach could adopted for examining the eye
movement behaviour of game players who will also be
interacting with a video image whilst under pressure.

In most game scenarios the game area is dynamic,
particularly so in action games. A number of methods for
capturing eye-movements whilst viewing dynamic scenes
have now been developed and used in experimental
projects (Stark et al, 2001; Land, 1998). If the eye-
movements of players could be modelled then it would
give an insight into how expert and novice game players
gather information when playing particular games and
this may provide useful data on how the game could be
improved.



















062.0176.0532.0987.0
067.0154.0543.0532.0
052.0167.0143.0123.0
054.0032.0034.0012.0

Image frame or
scene sub

divided into
sub-regions

Historical data mapped
using a fuzzy inference
system to establish the
saliency of each sub-

region.

Saccade map of
possibility values
establishing how
salient a region is

from
0 to 1

Weighted roulette
wheel selects n

regions using the
possibilities in the

saccade map

(4,1) Scanpath is a
string of n sub-

regions that are to
be examined

(1,3)

(3,2)

(2,4)

Figure 5 Construction of a scanpath from a saccade map

Interactive on-line computer gaming is an area where eye
tracking technology can be employed to maximize the
quality perceived by a subject viewing on-screen graphics
at interactive frame rates. The level of accuracy in a
transmitted image sequence can be sacrificed to improve
speed. O’Sullivan et al (2000) discusses the technique of
Interactive Perception of Multi-resolution Meshes
(IPoMM) which is an interest-dependent strategy where
the most interesting part of the scene is retained at a
higher resolution for as long as possible. The region of
interest is determined using eye movement technology.

As the intelligence of NPCs improves, expert knowledge
of where to look at the player-character, say during a
football match, would add to the realism of the character.
Like the player character the NPC would have to learn to
use visual cues to gain an advantage over his/her
opponent.

Research has been undertaken to ascertain how
professional racing drivers view the track when they are
racing. These eye movements could be compared with
those of an experienced player to assess whether a
particular racing game was realistic. The game could be
improved by including more visual cues on the lines of
those incorporated at the real tracks.

The apparatus required for tracking eye movements has
been relatively expensive and cumbersome to wear. As a
consequence, it is currently most valuable to disabled
people and researchers. However, Canon have developed
a miniaturized eye-tracker and included it as a means of
directing the automatic focusing system on two of their
cameras. The EagleEye project (Gips and Olivieri, 1996)
demonstrated how eye movement apparatus could be
used by disabled people in place of a mouse. If the price
of eye tracking instruments falls then the scope of their
use in virtual reality will increase. Game playing could be

made available to the disabled and these controllers could
be used as an additional form of on screen control.

Figure 6 Attention shown to sub-regions of the frames in a
sequence containing a static object and a mobile object

CONCLUSIONS
In this paper, various techniques that might be used in
games development have been examined and reviewed.
The area of graphics is well known to the games industry
and the field of AI is attracting more interest. Eye
tracking technology is possibly less well known but may
have much to offer in improving games in the future.

Section 2 discussed AI in computer games and
introduced the Game AI methods commonly used by the
games industry. This was followed by a section
considering games that use traditional soft computing
methods and went on to discuss computational efficiency.
In summary, the development of new games AI methods
should always be accompanied by a detailed analysis of
the extra computational load required and limited benefits
should never be sought at the expense of excess
computational effort.

Four different approaches to graphic animation were
presented – the articulated body animation, single mesh
skinning and the N-patch method. Although the
articulated body animation approach is used in numerous
adventure games, the single mesh skinning technique is
currently the most common method. However, although
not widely used at present, we suspect that the N-patch
method will become more popular in the future.

Eye tracking is a technology that is currently expensive
but, as the technology improves, the cost of the hardware
will go down and make it more accessible to a wider
range of applications including games. Currently, the
technology can be used to develop more effective
displays, i.e. for on-line gaming where data transmission
rates may be low, and in the future with added control for
the player who will be able to utilize eye movement to
control aspects of the game. The technology will also
open up computer gaming to people with disabilities.

REFERENCES
Allen M. J., Q. Mehdi, I. J. Griffiths, N. Gough, I. M.

Coulson. 1999. “Object location in colour images
using fuzzy-tuned scanpaths and neural networks.”
Proc. 19th SGES Int. Conf. Knowledge Based Systems
and Applied Artificial Intelligence, Cambridge, UK, pp
302-314.

Aloimonos J. Y, I. Weiss and A. Bandyopadhyay. 1987.
“Active Vision.” Int. Jour. Of Computer Vision, pp
333-356.

Antes, J. R. 1974. “The time course of picture viewing.”
Journal of Experimental Psychology, 103, 62 – 70.

Balder N. 2001 “Real-Time Inverse Kinematics for
Human Animation”

http://www.cis.upenn.edu/~hms/research.html, (last
accessed 1st November 2001).

Bishop M. C. 1995. Neural Networks for Pattern
Recognition, Oxford University Press.

Boas, M. L. 1983. Mathematical Methods in the Physical
Sciences, John Wiley & Sons.

Buswell, G. T. 1935. How people look at pictures,
Chicago: Chicago University Press.

Cebenoyan, C, Nvidia Company. 2001“Efficient
animation”,. http://www.nvidia.com, last accessed 10
October 2001.

Chapman P. R. and G. Underwood. 1998. “Visual Search
of Dynamic Scenes: Event Types and the Role of
Experience in Viewing Driving Situations.” Eye
Guidance in Reading and Scene Perception, Elsevier
Science Ltd, pp 369 – 394.

Dubois, D. and Prade, H. 1980. Fuzzy Systems: Theory
and Applications, Academic Press, New York.

Funge, J. D. 1999. AI for Computer Games and
Animation: A Cognitive Modeling Approach, A K
Peters Ltd.

Game AI Page 2001. “Games Making Interesting Use of
Artificial Intelligence.”
http://www.gameai.com/games.html, (last accessed 1st
October 2000).

Gips J. and P. Olivieri. 1996. “EagleEyes: An Eye
Control System for Persons with Disabilities.”
http://www.cs.bc.edu/~eagleeye/papers/paper1/paper1.
html (Last accessed 23 October 2001)

Gough, N.E., Suliman, H. & Mehdi, Q. 2000. “Fuzzy
state machine modelling of agents and their
environments for games.” Proc. 1st SCS Int. Conf.
GAME-ON 2000, Imperial College, London, pp 61-
68.

Grand, S., D. Cliff, and A. Malhotra, 1997. “Creatures:
Artificial Life Autonomous Software Agents for Home
Entertainment.” Agents 1998 Conference Proceedings,
ACM.

Griffiths, I.J., Mehdi, Q.M., Wang,T. and Gough, N.E.
1997. “A genetic algorithm for path planning” Report
AC-96/420, SCIT, University of Wolverhampton,
Proc. 3rd IFAC Symposium on Intelligent Components
and Systems, Annecy, France 1997.

Harris L. R. and M. Jenkin. 1998. “Vision and Action.”
Vision and Action, Cambridge University Press, pp 1 –
12.

Hart, E. 2001 “Character animation”, http://www.ati.com,
(last accessed 10 October 2001).

Hart, P. E., Nilsson, N. J. & Raphael, B. 1972.
“Correction to ‘A formal basis for the heuristic
determination of minimum cost paths’” SIGART
Newsletter, 37:28-29.

Hart, P. E., Nilsson, N. J. and Raphael, B. 1968. “Formal
basis for the heuristic determination of minimum cost
paths” IEEE Trans.on Systems Science and
Cybernetics, SSC-4(2):100-107.

Hein, J. L. 1996. Theory of Computation; An
Introduction, Jones and Bartkett Publishers
International.

Hendersen J. M. and A. Hollingworth 1998. “Eye
Movements During Scene Viewing: An Overview.”
Eye Guidance in Reading and Scene Perception,
Elsevier Science Ltd, pp 269 - 294.

Hendersen J.M., Weeks Jr and A. Hollingworth. 1999
“The Effects of Semantic Consistency on Eye
Movements during Complex Scene Viewing” Jour. Of
Experimental Psychology: Human Perception and
Performance, Vol. 2, No 1, pp 210 – 228.

Hertz, J., A. Krogh, and R. G. Palmer. 1991. Introduction
to the Theory of Neural Computation, Redwood City,
California, Addison-Wesley,1991

Hopcroft, J. E. & Ullman, J. D. 1979. Introduction to
Automata theory, Languages and Computation,
Addison-Wesley, Reading, MA.

Land M. 1998. “The Visual Control of Steering” Vision
and Action, Cambridge University Press, pp 163 - 180.

Lindholm, E., M.J. Kilgard,.and H. Moreton. 2001. “A
user-programmable vertex engine”. Proc. SIGGRAPH
2001. America.

Mackworth, N. H. and Morandi, A. J. 1967. “The gaze
selects informative details within pictures.” Perception
and Psychophysics, 2, pp 547 – 552.

McCarthy, J. 1987. “Mathematical Logic in Artificial
Intelligence.” Daedalus, vol. 117, No.1, American
Academy of Arts and Sciences.

Mehdi, Q., Suliman, H., Asloglou, E. Gough, N.E. &
Allen, M.J. (2000) Artificial neural networks in future
computer games, Proc. 1st SCS Int. Conf. GAME-ON
2000, Imperial College, London, November, 29-33.

Nilsson, N. J. 2001. Artificial Intelligence: A New
Synthesis, Morgan & Kaufmann.

Norton, D. and L Stark,., 1971. “Scanpaths in eye
movements during pattern perception.” Science, 171,
pp 308-311.

Nvidia 2001 “The Infinite Effects GPU Available on PC
and Mac Platforms.” http://www.nvidia.com/view.asp?
- PAGE=geforce3, (last accessed 1st Novermber 2001).

O'Sullivan, C., M. Janott, M. Watson, J. Dingliana, 2000.
“Level of Detail Control for Real-time Computer
Graphics and Virtual Reality: Applications of Eye-
tracking.” 1st Irish Workshop on Eye-Tracking: Book
of Abstracts. Trinity College Dublin.. pp 11-14.

Paull, G. C. and D. J. Glencross, 1997. “Expert
perception and decision making in baseball.”
International Journal of Sport Psychology, 28, 35-56.

Pearl, J. 1984. Heuristics: Intelligent Search Strategies
for Computer Problem Solving. Addison- Wesley,
Reading, Massachusetts.

Poole, D., MackWork, A. and Goebel, R. 1998.
Computational Intelligence: A Logical Approach,
Oxford University Press.

http://www.cis.upenn.edu/~hms/research.html
http://www.nvidia.com/
http://www.gameai.com/games.html
http://www.cs.bc.edu/~eagleeye/
http://www.cs.bc.edu/~eagleeye/
http://www.cs.bc.edu/~eagleeye/
http://www.ati.com/
http://www.nvidia.com/view.asp? - PAGE=geforce3
http://www.nvidia.com/view.asp? - PAGE=geforce3

Reynolds, C.W. 1987. “Flocks, herds, and schools: a
distributed behavioural model.” Computer Graphics,
21 (4), 25-34.

Rollings, A. and D. Morris, 1999. Game Architecture and
Design, Coriolis Group Books.

Russell S. & Norvig P. 1995. Artificial Intelligence A
Modern Approach, Prentice Hall Inc.

Saltzmann, M. 1999. Game Design, McMillan Digital
Publishing, Indianapolis, USA.

Smith, R. 2000 “ModelBenders LLC, The double helix:
simulation and gaming, Keynote Lecture, GAME-ON
2000 1st Int. Conf. On Intelligent Games and
Simulation, London, pp

Stark L. W., C. M. Privitera, H. Yang, M. Azzariti, Y. F.
Ho, T. Blackmon, C. Dimitri, 2001. “Representation of
human vision in the brain: How does human
perception recognize images”, Jour. Of Electronic
Imaging, 10(1) 123 – 151.

Taylor, P. 2001. “Tweening 3-ways, or Using Vertex
Shaders”,
http://www.msdn.microsoft.com/library/enus/dndrive/
html/directx04162001, (last accessed 10 October
2001).

Tu X. and D. Terzopoulos 1994 “Artificial fishes:
physics, locomotion, perception, behaviour”, Proc.
SIGGRAPH’94 (Orlando, FL USA, July24-29, 1994),
pp.43-50.

Valve (2001), www.valvesoftware.com/square.htm, last
accessed 8th November 2001.

Van Lent, M. & Laird, J. 1999. “Developing an artificial
intelligence engine, Computer Games Developer Conf.
May.

Watson, M. 1996. AI Agents in Virtual Reality Worlds:
Programming Intelligent VR in C++, John Wiley &
Sons.

Watt A. and F. Policarpo 2001 “3D games real-time
rendering and software technology”, Addison Wesley.

Woodcock, S. 2000. “Game AI: The State of the industry,
part two”, Gamasutra,
http://www.gamasutra.com/features/20001108/laird_0
1.htm (last accessed March 2001).

Wright, I. (2000) Sony Computer Entertainment Europe,
personal communication.

Wright, I. and J. Marshall, 2000. “Egocentric AI
processing for computer entertainment: A real-time
process manager for games.” Proc. 1st SCS Int. Conf.
GAME-ON 2000, Imperial College, London,
November,, pp 34-41.

Yarbus, A. L. 1967. Eye Movements and Vision, New
York: Plenum Press.

Zadeh, L. 1965. “Fuzzy Sets”, Information and Control
8:338-353.

http://www.msdn.microsoft.com/library/enus/dndrive/html/directx04162001
http://www.msdn.microsoft.com/library/enus/dndrive/html/directx04162001
http://www.gamasutra.com/features/20001108/laird_01.htm
http://www.gamasutra.com/features/20001108/laird_01.htm

MODELLING
INTELLIGENT
CHARACTERS

LOGIC DEVELOPMENT FOR REASONING AND
COGNITIVE NPCS

H. Suliman Q. H. Mehdi N. E. Gough

Multimedia and Intelligent Systems Technology (MIST) Research Group
School of Computing and Information Technology

University of Wolverhampton, UK, WV1 1EQ
in6543@wlv.ac.uk

KEYWORDS: NPC, Logic, Reasoning, Cognitive
Agent, Knowledge Base, Ontology, Memory, Attention.

ABSTRACT

This paper begins by reviewing logic systems and then
discusses some of the important issues relating to
reasoning Non-player Characters (NPCs) in conjunction
with believable and cognitive behaviour for computer
games. A KB system that relies heavily on substitution
rules for the specification of a logical agent is
introduced and is used as a first step in the research of
knowledge representations for game AI. Additional
features for incorporating common sense reasoning and
features of human cognition such as attention memory
are also presented. Examples and discussion are
included to demonstrate some of the applications of the
system and future directions of the research.

INTRODUCTION

Non-player characters (NPCs) or game agents can be
made to show more cognitive behaviour by being able
to reason about their environment and other NPCs. This
adds to their believability and enhances game play and
the immersion of the game. Creating scenes or
situations for a game that bring out the intelligence in
the NPC is not only the responsibility of the AI expert
but also the writer’s and the game’s ‘level’ designers.
The AI experts in a software team should provide the
apparatus (i.e. behavioural rules, AI engine, Logic
engine, etc) by which the NPC is able to make new
inferences as well as the ontology or vocabulary of
relations that describe the environment and the
situation. The AI expert formalises the domain and
integrates the degree of intelligence recommended for
the game scenario. In that respect the NPC must be able
to store and process facts about its world, i.e. it must
possess a Knowledge Base System (KBS) (Ringland &
Duce 1988, Russell & Norvig 1995), which has a stored
set of representations of facts ‘sentences’ about the
world. The vocabulary used for creating these
sentences, and hence describing the agent and its
environment is called an Ontology (Gruber 1993,
Russell & Norvig 1995). A conceptualisation of the
virtual world is a simplification and an abstraction of
this virtual world by identifying some comprehensible
concepts. An ontology, according to Gruber (1993) is
‘an explicit specification of a conceptualisation’. When
the domain knowledge is specified in a declarative
formalism, the set of objects that can be represented is

referred to as the universe of discourse. This set of
objects, along with the relations between them, are
represented in the vocabulary with which a KB system
represents its knowledge. Determining what follows
from the KB is called inference and it is any process or
mode of reasoning used to produce a conclusion from a
set of premises. Hence inference is used to produce a
proof to verify formally the validity of some assertion,
in the form of a statement. An inference system is
complete if it can find a proof for any sentence that is
entailed by the knowledge base. A proof is a sequence
of sound steps (successive steps that are implied by
preceding ones) that are used to verify formally the
validity of some assertion, in the form of a statement.
Conventional and common reasoning systems employ
First Order Logic (FOL) (Russell & Norvig 1995) also
known as Classical Logic which has an ontology of a
set of constant objects together with a set of relations
that are used to relate these objects. Sentences
formulated in first order logic are boolean statements,
i.e. are assertively TRUE or FALSE and so make use of
boolean connectives as well as additional connectives,
the universal quantifier and existential quantifier.

The KB system presented in this work is a hybrid
system, similar in capabilities to Semantic Networks
and Frame type systems (Minsky 1975, Ringland &
Duce 1988) in the representation of knowledge yet
more similar computationally to more conventional
FOL systems in their use of sentence parsing and
substitutions. Overall this paper discusses some of the
important issues relating to reasoning agents and in
conjunction with cognitive behaviour. Additional
features for more ‘common sense’ and ‘cognitive’
behaviour are also included. These include attention
(Norman 1976, Ashcraft 1998) and a simplified form of
human memory (Baddley 1999, Ashcraft 1998).

LOGIC REASONING SYSTEMS

Logic programming languages (Ringland & Duce 1988,
Russell & Norvig 1995) such as LIFE, ISABELLE,
OTTER and the very popular PROLOG, are high level
programming languages used for theorem proving and
problem solving, and are often used for reasoning in
mathematical or scientific problems. The majority of
these languages use resolution (Hein 1996, Russell &
Norvig 1995) for theorem proving in a FOL
representation and use the backward-chaining
algorithm for searching a proof. Resolution can exploit
a proof by contradiction strategy known as refutation

which is very commonly used. Resolution is a powerful
inference procedure that mechanises theorem proving
by repeated application of a single rule. To use
resolution, sentences in the KB must be expressed in
disjunctive or conjunctive clausal form (a conjunction
or disjunction series of literals respectively). When
using backward-chaining, proving a query begins a
search for substitutions that satisfy the query, i.e. work
backwards starting with a query sentence. Other
systems such as CLIPS and the well known SOAR
(Rosenbloom 1993) rely on production statements (if-
then or implications ⇒) for representing facts and
mostly used forward-chaining (Russell & Norvig 1995)
for searching solutions. With forward-chaining the
starting point for proof are the sentences in the KB.
The implication statements are used to trigger actions
on all aspects of the KB, such as control, updating and
deletion. SOAR has been developed as a general
cognitive architecture capable of representing and using
different forms of knowledge, i.e. procedural,
declarative or episodic presentations of knowledge.
Frame systems, semantic networks and subsumption
networks (Ringland & Duce 1987) draw strongly on
inheritance as a system for representing mostly
declarative knowledge. The idea of a frame has been
used to represent declarative knowledge and has been
encapsulated in a series of frame oriented knowledge
representation languages. Examples include KL-ONE
(Roberts & Goldstein 1997), KRYPTON (Brachman et
al 1985) and THEO (Mitchell et al 1989).

EXTENDING CLASSICAL LOGICS

The agent’s knowledge is often comprised of material
implications expressions of the form P⇒Qi (which
reads if P is true then Qi must also be true) for all i.
Such sentences known as Horn sentences (Hein 1996,
Russell & Norvig 1995) are powerful representations of
knowledge. The implication P⇒Qi for some i, states
that whenever P is true so must Qi be true, if P is false
the state of Qi being true or false does not contradict the
statement. Hence P⇒ Qi is identical to saying that Qi
cannot be false when P is true, i.e. ¬(P∧¬Qi). However
the power of the operator ⇒ is not expressive enough,
especially when P stands to represent a complex
concept, one that is understood through experience and
not defined. For example, consider the expression
loves(John, Jessy)⇒ Kindto(John, Jessy), saying that if
John loves Jessy then he is also kind to her. In addition
to statements loves(John, Jessy)⇒cares(John, Jessy),
Loves(John, Jessy)⇒Likes(John, Jessy), etc, in total
these amount to an expression of the form P ⇒ Q1∧Q2∧
… ∧QN. Unfortunately the antecedent P of ‘⇒’ cannot
be true while any of the consequents Qi is false. For
example, if John is not kind to Jessy, i.e. ¬Kindto(John,
Jessy) then he does not love her, which is not
necessarily true. What we actually wish to say is that if
most of the Qi are true then P is true. For example, we
can write,

P = (ΣN ,i=1Qi >n) 1≤n≤N

At extreme values, n=1 is equivalent to P = ∨iQi a
disjunction series, and when n = N is equivalent to P =
∧iQi a conjunction series. We have more flexibility
being able to choose intermediate values of n. This also
brings us closer to artificial neural networks (Mehdi et
al 2000, Bishop 1995) as this expression resembles of
the firing condition for a McCulloch-Pitts neuron
model. This directly exposes the limitation of the classic
logics or FOLs that use boolean and quantifier
operators and do not extend their functionality. Fuzzy
logic for example, extends the capability of logic
because its propositional variables have a truth value
from the closed interval [0,1], where as propositional
variables in classical logics have truth values limited to
1 or 0 (True or False). For the P case, P = (ΣN ,i=1Qi)/N,
1≤n≤N, dividing by N to normalise P into a range [0,1],
P can be interpreted as the average of the Qi, so this also
proposes a probabilistic interpretation.

In a different but related direction, modal logic
(Hintikka 1962, Kripke 1963, Chellas 1980) can offer
an alternative for extending classical logic’s apparatus.
Modal logic is a non-monotonic, first order, boolean
logic that employs formal arguments that involve the
notions of necessity ‘ ’ and possibility ‘◊’ in addition
to the apparatus of FOL, i.e. the boolean connectives
and existential quantifiers. Modal logic was invented by
Jaako Hintikka in 1962 and was originally based on the
concept of strict implication to allow stricter use of ⇒
when it comes to adding expression. The modal strict
implication is written as P⇒Q ≡ ¬(P∧¬Q) which
reads it is necessary that P implies Q. Saul Kripke
(1963) presented modal logic added with possible-
worlds semantics. A world is conceived as ‘possible’
for the agent using a modal logic if this world is
consistent with its present knowledge. In other words
these worlds summarise the possible directions of
monotonic change to the KB. Consider atomic
sentences P, Q, R, S, … , let Worlds(P) be the set of
worlds for which P is true and is a subset of the set of
all possible worlds W and similarly let Worlds(Q),
Worlds(R), … etc represent the possible worlds for the
respective atomic sentences. Note that the agent’s
knowledge involves relating these atomic sentences in
probably complex ways, i.e. a KB, roughly speaking, is
a collection of logical constraints. Hence, intuitively
giving truth values to some will impose restrictions on
other atomic sentences whose truth values are unknown,
and so makes it possible to cause tighter restrictions on
the possible truth value of some sentences than others.
Hence by using a simple example it is easy to see that if
World(P)∩World(Q) = ∅ (the empty set) and
World(P)∪World(Q) = W then P and Q cannot be both
true as there is no world for which they can be both
true, and this is regardless of truth values of R, S, T, …
etc leading us to infer that P = ¬Q. Hence the
expression ¬(P∧¬Q) would translate to saying that P
and ¬Q cannot be both true in any one world. Hence
John loves Jessy does not necessarily imply he is kind
to her. That is ◊(loves(John, Jessy)∧¬Kindto(John,
Jessy)). However despite the seductive use of the

operators of ◊ and , this does not seem to offer a great
simplification or more expressive power than relating
the premise P and consequent Q with the threshold

technique P = (ΣN ,i=1Qi >n) mentioned earlier. The
modal logic system known as S5 is the most widely
used system among the Sn modal systems precisely
because it is the simplest due to two strong axioms or
schemas ◊A→ ◊A, A→A (Chellas 1980) which do
not hold in every system of modal logic.

The above points are also related to the handling of
default reasoning problems in semantic network,
subsumption networks and Frame type systems through
the use of inheritance with exceptions. In these systems
a relation such as loves is an instance of cares can be set
by default, unless other information states otherwise.
Monotinicity is the property of a KB system by which
new statements can be added without invalidating
previously valid sentences. So in a monotonic logic
cares is implied by loves or it is not. Logics with this
property are referred to as monotonic logics. This
contrasts with non monotonic logics which allow the
KB to treat a proposition as being true until evidence is
provided to infer otherwise. Most conventional
reasoning systems such as FOL form monotonic KB
systems.

KBSs FOR GAME AI PROGRAMMING

Creating a KB System for a Game’s AI

Creating a KB in an object oriented language such as
C++, which is widely used for writing computer games,
sounds interesting and promises speed, but compilers
only allow programs to be structurally fixed after
compile time. This is not suitable as a KB system shares
some similarities to creating a programming language,
albeit a restricted and possibly very high level one. A
more common form of KB is one comprised of a string
of words and an inference process that involves the
manipulation and substitution of words for others. This
process known as unification (Robinson 1992, Russell
& Norvig 1995) makes the proving process efficient but
seemingly mechanical. Though this is the style of many
KB systems, unfortunately it does not sit well with the
way game engines are commonly designed - as class
objects each with their own member variables and
methods (Horrowitz et al 1995, Dewhurst & Stark
1989). These methods and variables are fixed as
machine code after compilation. Otherwise they are
interpreted which requires the production of a table,
called a Jump Table to detect the scripted instruction.
For example, consider a gate object, an instance of the
Door class with method open() for which the source
code portion gate.open() has the effect of opening
the gate in the games virtual environment. This
instruction presented as a string ‘open door’ for
example, will have to be interpreted, i.e. parsed for the
words ‘open’ and ‘gate’ and linked to the appropriate
function or method specified in the jump table. Hence
addresses to instructions corresponding to many

combinations of object ‘dot’ member variable or
method have to be included in the table, thus creating a
large interpretive overhead. Fortunately, most sentences
would be descriptive in nature and do not contain
instructions, so it is feasible to use an interpreted or
partly interpreted language at the end of the day. This is
also favourable for games that feature a extensible AI
because the game engine source itself is secret or too
complex for the players to successfully modify.

Extensible AIs

It is quite common for computer games today to come
with a scripting language that allows game fans to
expand the game such as scenery or NPC AI. For
example, UnrealScript for the first person shooter game
UNREAL (Epic MegaGames 2001) is one of many AI
scripting languages that enables the player to modify
aspects of NPC AI. UnrealScript is similar to C++ and
Java in syntax and is interpreted quite similarly to the
Java virtual machine. The UnrealScript files are coded
to function similarly to dynamic link library (DLL) files
in that they refer to other unreal components when read
by Unreal. Another example, is COG language created
for the 3D action-adventure game Jedi Knight: Dark
forces 2 on the PC (Huebner 1997). COG also has a
syntax very similar to the C language but with less
keywords and constructs such as aspects of the
language dealing with function declarations and switch
statements because they were significantly more
complex to parse and execute than the rest of the
language. The COG library provides about a hundred
different functions to the author, ranging from
environment manipulation commands to information
queries. These functions are used to control the game
environment while using the language syntax to provide
control for branching and looping.

A very useful resource is the catalogue of free
compilers website (Catalog of free Compilers and
Interpreters 2001) that can be linked with a developer’s
application. In particular the sections concerning logic
programming and natural languages are useful in this
paper’s context. The majority of these languages are
provided free being the products of government or
university research projects, or usually because of not
showing strong commercial application.

A SUBSTITUTION-PARSER KB

A prototype system is being developed to enable the
specification of a logical agent that relies on
substitutions and string pattern matching for altering
and inferring of knowledge in a KBS. A KB sentence is
expressed as a string of words ‘w1 w2 w3 … ’ which
can be variables or conjoined variables, all joined with a
single space to indicate the ending or beginning of
another word. The KB itself contains a single long
series of sentences stored as a string ‘K1,K2`,K3``, …’ of
strings Kn separated by a comma ‘,’ to indicate the end
or beginning of one sentence. Kn corresponds to the nth
KB sentences. Particular words are reserved for special
roles, some are concerned with representing knowledge

and others are syntax related. Most of them invoke the
KBS to perform some particular task when encountered
while parsing and can have many aliases. For example,
‘are’, ‘is-a’, ‘implies’, ‘means’, ‘the’ can be used in
place of ‘a’ which is used to express instances of classes
as a binary relation. Below are some of these reserved
words alongside their aliases and function.

Reserved words Function
‘is’,’equals’, … equivalence/implication

‘a’, ‘is-a’,‘implies’,‘means’, … inheritance /existence/ implication
‘all’, ‘every’, … entire class reference /universal
‘and’, ‘&’, … Conjunction

‘or’, ‘either’, … Disjunction
‘not’, ‘a false’, … Negation

‘,’ Sentence separator
‘⋅’, ‘-’, ‘ ’, Word separators

‘#’ Sentence reference

These words are also stated in order of precedence
because some might vary in the way the parser
interprets them as we shall see later. A sentence such as
‘man a human’ expresses that man is an instance-of or
inherits the features of the class human. Then a sentence
‘Jessica loves a man’ will naturally allow the
substitution of ‘human’ for ‘man’ to give ‘Jessica loves
a human’. Hence a sentence ‘x a y’ can be read as x
can-be-replaced-by y. However the statement ‘Jessica
loves man’ will then be construed as Jessica loves all
men, the substitution for human would give ‘Jessica
loves human’ saying that Jessica loves all humans,
which is incorrect! hence the substitution must be
conditional on adjacent words. If K is a sentence in
words x,y,z, … , the following substitution rules or
schemas would allow only for the correct changes
involving the ‘a’ character,

Changes Substitution Rule New Sentence
C1. K(‘x’), ‘x a y’, x≠y K(‘a-y’)
C2. K(‘a x’), ‘x a y’, x≠y K(‘a-y’)
C3. K(‘y’), ‘x a y’, x≠y K(‘x’)
C4. K(‘x’) K(‘a-x’)
C5. K(‘a a’) K(‘a’)

where the symbol ‘ ’ means is substituted for. Note C5
is necessary if we only use C1 and abandon C2. C1 is
the inference step modus ponens in substitution form.
The ‘is’ word is used to indicate equality and can be
rephrased in terms of ‘a’, for example, ‘man is male’ is
equivalent to ‘man a male’ and ‘male a man’ occurring
separately. Hence,

C6. K(‘x is y’) K(‘x a y’)
C7. K(‘x is y’) K(‘y a x’)

These substitutions are used extensively to generate
new sentences or cause the modification of existing
ones as part of steps in a proof process or just
generating new sentences. The role of the ‘-’ word
separator appearing in C1, C2 and C4 forms a word of
series of words joined by it, as explained in more detail
in the following sections.

Phrase Substitution

Sentences or statements can be referred to collectively
or as a phrase or Frame, for example

‘mike likes woman implies mike’

can literally mean mike likes all women. We may wish
to give a phrase meaning, so we can add,

‘mike-likes-woman implies mike-a-heterosexual’

The collective meaning is given preference or
precedence over the literal meaning in making proofs. If
‘mike-a-heterosexual’ is not contained in the KB, hence
the phrase does not exist and so the literal meaning is
used by default. If a sentence K(‘x-y’) where ‘x-y’
occurs only there and in no other sentence then ‘x-y’
does not exist as a phrase or sub phrase, so it can be
replaced by ‘x y’. This generalises to sentences with
more words. The parser interprets two words as a single
word if the word separators used is not the single space
‘ ’. Overall this system thus far is similar to what are
known as slot-filler or Frame type of systems (Minsky
1975, Ringland & Duce 1989) in structure because
sentences such as ‘x-y-z- …’ conjoins many concepts
into a single one.

Representational Power

The system is intended to simplify the substitution
process by using only binary relations (such as loves in
‘x loves y’ relating the pair x and y) and overlaying
statements which has similarities in the way humans use
natural language. Overlaying statements is done without
bringing ambiguity to meaning, thus economising the
usage and hence search when employing inference. For
example, ‘Jack owns a dog named Rover’ is written
simply as,

‘Jack owns Rover a dog’ ≡ ∃x owns(Jack, x)∧Dog(x)

The statement expressed in FOL representation is
contrasted on the right. The string ‘Jack owns Rover a
dog’ contains both ‘Jack owns Rover’ and ‘Rover a
dog’ which refer to two independent facts. Ambiguous
or incorrect statements can be expressed if one is not
careful, for example ‘all who love Jessica are tall’
would be incorrectly expressed as

‘tall loves Jessica’ ≡ ∀x tall(x)∧loves(x, Jessica)

because ‘tall’ can be substituted with all instances of tall
according to rule R1, giving rise to the meaning that all
that is tall loves Jessica, which is not correct. The
correct sentence is

‘loves-Jessica is-a tall’ ≡ ∀x loves(x, Jessica) ⇒ tall(x)

Notice that ‘love’ and ‘Jessica’ are joined by ‘-’ else the
parser will extract ‘Jessica is-a tall’ and erroneously
infer that Jessica is tall. The correct expression above
allows the occurrence of John in ‘John love Jane’ to be
replaced with ‘John is-a tall’, hence inferring that John
is a tall person. Further complicating, to say all who
love Jane are tall men can be done in two ways,

‘love-Jane is-a tall’
‘love-Jane is-a man’

or by creating a phrase tall-man,

‘tall-man is-a tall’
‘tall-man is-a man’

The additional word separator dot ‘⋅’ is used for
distributive operations. Consider ‘not-P-and-Q’, this
sentence defaults to ‘not P or Q’, i.e. ¬P∨Q when
reduced to its literal meaning by removing the dashes ‘-
’. However ‘not⋅P-and-Q’ is understood as ¬(P∨Q)
because ‘⋅’ is given precedence over ‘-’ in removal to
produce a new sentence,

C8. K(‘⋅’, ‘-’) K(‘⋅’,‘ ’) K(‘ ’,‘ ’)

The characters ‘⋅’ and ‘-’ used for forming phrases or
frames from individual words are preferred over
brackets because the length of a string does not have to
change with substitutions. The characters ‘.’ and ‘-’
replace the space between words and hence strings do
not have to be pushed to make more space, copied or
form linked lists to other strings, which is an incredibly
more efficient syntax.

Complex Specification of Patterns

Wildcards ‘∗’ can be used within sentences in
specifying more complex patterns or schemas. The rules
Cn mentioned above are enforced independently of the
sentences in the KB. However as they are simple they
can be removed and relegated into sentences with in the
KB, but the KB would then be more than a knowledge
representation system. ‘∗’ can be used in expressions to
create pattern rules for example,

‘not-∗ a ∗-a-false’ ≡ ∀P ¬P⇒ false(P)

which puts a request that upon encountering any word
preceded with the word ‘not’ it is permissible to make
the substitution with ‘a-false’ on the right. This
following rule has the power of removing redundancy
in using ‘a’ twice.

‘∗-a-∗ a ∗’

To distinguish between several free variables in an
expression, the recurrences of ‘∗’ would be used to
demonstrate this, for example

∗-below-∗∗ is ∗∗-above-∗ ≡ ∀x,y below(x,y)⇔above(x,y)

Sentences can be also referenced as wholes using ‘#’. A
sentence Kn has a corresponding number n in the KB as
the nth sentence, which can be used in referring to it.
For example, ‘#2 a False’ refers to the 2nd KB sentence
as being false.

Expressing Propositional Statements

Boolean connectives are used in relating proposition
type objects. However a proposition cannot be directly
termed in this system. As it stands no statement in the
system can contradict another, precisely because the
negation of a statement is not possible by making
statements purely about inheritance. Truth and False

statements can be phrased using ‘a’ (or ‘is-a’ or one of
its aliases) as set objects, e.g. ‘x a false’ or ‘x a true’
however the fact ‘true’ are ‘false’ disjoint sets cannot be
expressed. So the parser did need added capability to
handle statements (predominantly about inheritance) as
propositions. The ‘not’ word is used to refer to
negation.

‘not-∗’ ↔ ‘∗-a-false’

The most important complete inference procedure is
resolution.

(P∨Q)∧(¬Q∨S) → (P∨S) P,Q and S propositions

Precisely employed as a reduction schema, wherever in
a sentence, a word x and its negation lie in the same
sentence. The implementation is more complex than can
be expressed as one of the schemas Cn.

A point in relation to existence statements, consider
the expression ‘John owns a dog’ then given that rover,
bulldog, snoopy, … are all dogs mentioned in the KB
then they are possible candidates, as well as those not
specified in the KB as common sense dictates.

C9 K(‘a F’),x a F, y a F, … → 'K(‘x’) or K(‘x’) or … K(‘F’)’

Notice that ‘or F’ occurs as a possible substitution for
one of the disjuncts as an alternative if none of the
existing ones are appropriate. Substituting with
examples amounts to exploring statements, which can
be useful when the inference process examines a few
candidates random choices and does not enumerate all
the possibilities for substitution which may be the case
in proving theorems.

KB Queries

Resolving queries or proving statements amounts to
using substitutions and string matching or linking
multiple string matches to build a proof. This was easily
implemented using forward and backward chaining
algorithms which each can be invoked as separate
functions. Searching for statements relevant to a query
begin with more recent sentences and works its way
backwards. Without invoking any functions, by default
an incomplete sentence added to the KB can be
interpreted as a query. Hence when an agent uses
incomplete information it may store an incomplete
sentence thus querying itself.

Data Replication and Object Oriented Programming
for Performance Enhancement

Additional arrays or tables can be created for pointing
within KB sentences locations for more direct access to
statements within sentences. So in addition to string
sentences other locations can retain copies of the
simplest or ‘atomic’ sentences made in the KB or
pointers to positions in the KB sentences. A method
more common in relational databases is tree-based
indexing or table-based indexing (Russell & Norvig
1995) where data is rearranged in tables such that
searches are made more efficient. For example, consider
the binary predicate ‘loves’ which relates pairs of

names such as ‘John’ and ‘Jessica’ in ‘loves(John,
Jessica)’. A two column table can be used to store all
pairs of names related by Love. A query on who John
loves would be helped if the table was sorted according
to who loves, so that all those rows that show fields of
who John loves are adjacent. Similarly the table can be
sorted according to who is loved. Instead of replicating
the table for all permutations of the arguments of the
relations an array of pointers can be stored to show the
sorted order of the rows for a given argument.

In computer memory strings are just similar to any
other array. As a series of locations of fixed byte sizes
they could hold memory addresses as well characters or
numbers. In this sense a string could be replaced by an
array of pointers (Horowitz et al 1995, Dewhurst & Stark
1989) to objects where more information can be
separately stored, for example member variables of
addresses can point elsewhere in the KB for more direct
reference to other related objects. For example, in C++
we can create a class object called logic object (type
LogicObject) of which the KB will contain sentences
as arrays of pointers to these objects,

class LogicObject {

char *Name;
LogicObject *SubsetOf;
LogicObject *SupersetOf;
LogicObject **Associates;

Public :
// … };

A KB sentence would be an array of pointers to
instances of these objects,

LogicObject **aKBSentence;

The member variable SubsetOf points to all the objects
to which the instance is a member. The SupersetOf
member variable is the set of elements to which the
instance of the class is a superset. For example, ‘man’
in ‘man a human’ would correspond to some instance of
LogicObject for which its member variable would
point to the logic object of ‘human’, i.e.

LogicObject *man;

LogicObject *human;

man->SubsetOf = human;

The member variable Associates points to sentences that
contain the occurrence of the logic object. It can be
updated every time the parser encounters the logic
object.

ADDING COGNITIVE PERFORMANCE

Intelligence, Believability and Knowledge

It is well known that human intelligence is both a
function of the state of knowledge and the problems to
which it can be applied. Intuitively, having more
knowledge on a problem reduces the amount of time
and effort to solve it. On the other hand, believability of
an NPC that aims to mimic a human can be defined
broadly as a domain dependent intelligence, i.e.
intelligence observed with in a specific virtual world
instance. Within this world the NPC is able to perform

as well as any human or the character it represents.
Hence the believability of an NPC can depend greatly
on possessing the correct expertise and knowledge
associated with the character it portrays. A
considerable effort in creating some of this knowledge
would be undertaken by the game designers when
creating an ontology for the game world. A well
designed ontology eases the creation of a AI scripting
language so as to provide an extensible AI with a game.
Consider as an example, a thief/Guard situation where
an NPC plays the character of a Guard who is
responsible for securing some premises. The player
plays the role of the thief or intruder whose task is to
rob the premises. The first impression leads us to
believe that the guard’s behaviour can be predominantly
scripted because the possible circumstances that can
occur in this limited universe are very small and so can
be enumerated. For example, a guard can be attributed
an internal state which determines his level of
suspicion. Create a fuzzy variable Suspicion∈[0,1],
where at the extreme level of suspicion, i.e.
Suspicion=1, the NPC will be certain of the presence of
an intruder in or around the premises and will then go
about trying to apprehend the intruder, raise the alarm,
call for help, … etc. In the KB system introduced
earlier, the fuzzy value can be accessed by creating a
specialised function or table that will return the fuzzy
value for a string name corresponding to the variable.
That is, it is interpreted, alternatively the fuzzy value is
stored in an appropriate member variable of a
corresponding object instance of LogicObject
mentioned earlier, with an additional member variable
for storing the fuzzy value.

Believability demands the guards pick up on changes
in the environment they inhabit because the guards live
about the premises as well as guard it. So they move
about in patrols most of the time, perhaps with the odd
irregularity added to the pattern. Sometimes visits to the
latrine, a chat with another guard or just sleep in a
rotational basis. This translates to being familiar with
each other’s habits and the layout of their environment.
For example, an open door would be considered
suspicious if the guard could not determine who opened
it or if it is normally shut most of the time. Hence
guards must be able to remember and predict the
movements of each other so that they can make
inferences, e.g. ‘ … I here a noise behind me, but the
Guards are inside, it must be an intruder!!’ and
generally learn if the inferences produced wrong
conclusions, ‘… oops!, it was just a rat’. It is also
necessary that guards remember the layout of their
environment, for example if some boxes were moved
the guards must recognise the change and reason about
these changes, such as ‘ … these boxes were not like
this before, and a cat or rat is too small to move these
boxes. It must then be an intruder!!!’. In summary, the
NPC must show expertise; and be able to remember its
environment and past occurrences and use this
knowledge in conjunction with its expertise to infer new
facts.

Managing Memory and NPC Attention

As the NPC roams about its virtual environment, a
cognitive behaviour implies that the NPC must be
inquiring regularly on the states of some of these
objects. These objects can be said to have attracted the
NPC’s ‘attention’ and must be messaged to the NPC,
i.e. the NPC’s attention mechanism or management
system will be event driven so that it does not have to
continuously monitor all objects in its environment to
detect these changes. For example, consider the
possibility that a box placed near a guards patrol route
was moved in the guard/thief example mentioned
above. The box reports this change to the agent when
the conditions are correct or qualified (Funge 1999,
Russell & Norvig 1995). The NPC then consults its
memory of the boxes and determines if the changes are
indeed significant. If the changes are significant then
the NPC’s suspicion is increased. In addition, it is not
necessary for the agent to receive all details associated
with a single object that is not relevant to its situation,
hence a context may have to be defined in relation to an
object’s details. In resemblance to humans the agent
would also inquire on an object from time to time and
not just wait for a message. If changes are not detected
then the memory of the object does not need to be
altered. Hence not only should the NPC’s visual process
alarms to objects detected in its visual field but it should
also suggest objects to look at according its personal
interests and preferences. Consider again the guard
NPC of the earlier guard/thief example: objects that can
be inquired upon or worth inquiring on form a set,
called Objs, for example,

Objs = { Door, Boxes, Alarm, Cat, Rat, Guard1 , Guard2, …}

These objects are precisely those which can suffer a
state change. Doors can be opened or closed, boxes can
be moved, guards can roam about and the alarm button
can be triggered or switched off. The states of above
objects can only be determined when they lie in the
NPC’s field of view. The exception is the alarm button,
whose state can be deduced by the fact it is heard or not.
So the NPC’s attention mechanism would cycle its
attention through different objects over many frames.
Generally, if RM(X) is defined as the rate of monitoring
an object X, and X can grab the agent’s attention, then
its rate of monitoring should increase. Hence, RM can
be interpreted as a probability and the NPC’s attention
mechanism creates a sequence of references to objects
such that the periodicity of each reference reflects the
RM of the object. RM must therefore obey the
normalisation expression,

 ΣX in NPC Visual Field RM(X) = 1
 or Audible Range

n object X should message a change to the agent when
the condition of access is fulfilled or qualified, such as
being in the NPC’s visual or audible range. The object
itself may redirect the agent’s attention to some other
object. For example, an open door should direct the
agent’s attention to who opened the door as part of the

ability to make inferences. A missing box should
redirect the agent’s attention to who moved the box,
where is it now, and why was it moved. The where, who
and why are important in giving momentum to the
NPC’s thought processing.

NPC and Human Memory

As the NPC gathers information about objects in its
surrounding environment it retains copies of the states
of these objects. Typically, most of the objects the agent
will encounter in its environment can be modelled as
Finite State Machines (FSMs) (Gough et al 2000, Hein
1996). Doors, levers, elevators, guns, etc are examples
of FSMs in that they have distinct internal states that
characterise their behaviour. For example, a gun can be
in a firing or idle state, a door can be shut or open, etc.
Copying static data is unnecessary as the NPC’s
memory can just ‘point’ to it. However state changing
or dynamic objects have to be copied into its memory.
Based on human memory research (Baddley 1999,
Ashcraft 1998), a cognitive agent should be provided
with believable behaviour that includes forgetfulness
and an efficient management of stored knowledge. In
human memory, redundant information is constantly
being discarded and the memory is contracted without
seriously affecting overall cognitive ability. This can be
simply implemented when data degrades with passing
time but is reinforced with usage and recall. In a
reasoning NPC the data stored takes the form of
sentences in a some logic. Simple exponential decay
methods (Brown 1958, Nelson 1985, Ashcraft 1998)
can be used to apply this on atomic sentences of a KB.
Memory is also hierarchical in its representation
(Suliman et al 2000). Memory ‘items’ are coded feature
representations of concepts which reflect relationships
that bind these objects. Less prominent features tend to
decay than more prominent ones. In an inheritance
hierarchy, concepts further up the hierarchy would be
considered more prominent or general features. For
example if

‘bachelor is-a male’ ≡ ∀x bachelor(x)⇒ male(x)

it should be easier to forget that John is a bachelor than
he is a male. In terms of the KB system introduced
earlier a query sentence can be added to the KB and by
default, a incomplete sentence added to the KB can be
interpreted as a query. The KBS searches normally
begin with most recent sentences first and go backwards
in time. When the answer to a query or the KBS’s
attempt is available it can be added at the bottom as a
new sentence which refers to the query and answer as a
sentence. For example, if the query was logged as the
10th sentence in the KB and the system’s attempt was
logged as the 11th sentence, then the 12th KB sentence
would be, ‘#10 is-a #11’ instructing the KBS to replace
a new query with #11 if it looks exactly like the
sentence #10.

CONCLUSION
This paper has highlighted some of the most important
issues in improving NPC intelligence and how these
broadly tie with expertise, cognitive behaviour and
reasoning. The KB system presented has the expressive
power of FOL in declarative representations and takes
advantage largely of the substitution oriented
representation to make inferences. Further work is
needed to improve the performance of the KB system
and especially with regard to guiding the inference
process. Inference was done purely by pattern matching
and using the forward or backward chaining algorithms.
The language is extremely flexible overall and provides
a very good basis for creating a KB system. There are
many more interesting aspects of these topics that can
be indulged upon and already a lot of what was
developed provides a strong mechanism for expressing
and manipulating knowledge. It was also not the
intention of the authors to build a theorem proving
system because they are intended for more formal
applications but rather to investigate those aspects more
concerned with game design.

REFERENCES

Ashcraft M. H. (1998). Fundamentals of Cognition, Addison–
Wesley Educational Publishers Inc.

Baddley A. D. (1999). Essentials of Human Memory,
Psychology Press Ltd.

Bishop M. C. (1995), Neural Networks for Pattern
Recognition, Oxford University Press.

Brachman, R. J., Gilbert, V. P. and Levesque, H. J. (1985).
‘An essential hybrid reasoning system:Knowledge and symbol
level accounts of KRYPTON’. In Proceedings IJCAI-85.

Brown, J. A. (1958). ‘Some tests of the decay theory of
immediate memory’. Quarterly Journal of Experimental
Psychology, 62, 375-385.

Catalog of free Compilers (2001), www.idiom,com/free-
compilers/ , last accessed 1st November 2001.

Chellas, B. F. (1980), Modal Logic: An Introduction,
Cambridge University Press.

Dewhurst, S.C. and Stark, K. T. (1989), Programming in
C++, Prentice Hall Inc.

Epic MegaGames Inc (2001), unreal.epicgames.com, last
accessed 1st November 2001.

Funge, D. (1999), AI for Games and Animation: A Cognitive
Modelling Approach, A K Peters Ltd.

Gough, N.E., Suliman, H. & Mehdi, Q. (2000), ‘Fuzzy state
machine modelling of agents and their environments for
games’, Proc. 1st SCS Int. Conf. GAME-ON 2000, Imperial
College, London, pp 61-68.

Gruber, T. R. (1993), 'A translation approach to portable
ontologies'. Knowledge Acquisition, 5(2):199-220, 1993.

Hein, J. L. (1996), Theory of Computation; An Introduction,
Jones and Bartkett Publishers International.

Heubner, R. (1997), ‘Adding languages to game engines’,
Game Developer Magazine September 1997 issue.

Hintikka, J. (1962), Knowledge and Belief. Cornell University
Press, Ithaca, New York.

Hopcroft, J. E. and J. D. Ullman (1979), Introduction to
Automata theory, Languages and Computation, Addison-
Wesley, Reading, MA.

Horowitz, E., Sahni, S. and Mehta, D. (1995), Fundamentals
of Data Structures in C++, Computer Science Press, New
York.

Kripke, S. (1963), ‘Semantical considerations on modal
logic’. Acta Philosophica Fennica, 16:83-94.

Mehdi, Q., Suliman, H., Asloglou, E. Gough, N.E. & Allen,
M.J. (2000) Artificial neural networks in future computer
games, Proc. 1st SCS Int. Conf. GAME-ON 2000, Imperial
College, London, November, 29-33.

Minsky, M. (1975). ‘A framework for representing
knowledge’. In The Psychology of Computer Vision, ed. P.
Winston. McGraw-Hill, New York.

Mitchell, T. M., Allen, J., Chalasini, J., Cheng, O., Etzioni, M.
Ringuette and Schlimmer, J. (1989). ‘Theo: A framework for
self improving systems’. In Architectures for Intelligence, ed.
K. VanLehn. Hillsdale, NJ., Erlbaum.

Nelson, T. O. (1985). ‘Ebbinghaus’s contribution to the
measurement of retention: Savings during relearning’.
Journal of Experimental Psychology: Learning, Memory, and
Cognition, 11, 472-479.

Norman, D. A. (1976). Memory and attention: An
introduction to human information processing’ 2nd ed. New
York, Wiley.

Ringland G. A. and Duce D. (1988), Approaches to
Knowledge Representation - An Introduction, Taunton,
Somerset: Research Studies Press.

Roberts, R. B. and Goldstein, I. P. (1977). The FRL Manual.
Tech. Rep. MIT Artificial Intelligence Laboratory.

Robinson, J. A. (1992), ‘Logic and logic programming’,
Communications of the ACM, March 1992, vol.35, no.3.

Rosenbloom, P. S., Laird, J. E., Newell, A. & McCarl, R.
(1991). ‘A preliminary analysis of the Soar architecture as a
basis for general intelligence’. Artificial Intelligence,47,289-
325.

Russell S. and Norvig P. (1995), Artificial Intelligence a
Modern Approach, Prentice Hall Inc.

Suliman, H., Mehdi, Q. and Gough, N. (2001), ‘Spatial
cognitive maps in agent navigation and path planning’,
Proceeding of the ISCA 10th Int. Conf., Arlington, Virginia
USA, 27-31.

Technomagi Design Links (2001), www.technomagi.co
m/links/design.html, last accessed 1st November 2001.

Hussam Suliman is a PhD researcher at the
university of Wolverhampton researching
on AI with applications to computer games.
He first graduated in BSc Physics and MSc
physics in Control Systems from Imperial
College London in 1997 before joining
Wolfson College to study Graduate
Mathematics (PartIII) for 1 yr at
Cambridge University in 1998. Afterwards
he briefly worked as a software engineer

trainee with Saudi Airlines before joining Wolverhampton in
October 1999. Please visit his personal web page (forever
under construction) at www.wlv.ac.uk/~in6543 for more
information.

http://www.wlv.ac.uk/~in6543

© SCS

BEHAVIOURAL INTERACTION OF CHARACTERS
FOR VIRTUAL STORYTELLING

Fred Charles, Steven J. Mead and Marc Cavazza
School of Computing and Mathematics

University of Teesside
Middlesbrough, TS1 3BA,

United Kingdom
E-mail: {f.charles, steven.j.mead, m.o.cavazza}@tees.ac.uk

KEYWORDS
Interactive Storytelling, Synthetic Characters, AI-based
Animation, Computer Games.

ABSTRACT

In this paper we describe a fully implemented prototype for
interactive storytelling using the Unreal™ engine. We
describe the important mechanisms involved in the variability
of plot instantiations, within a scenario of sitcom genre. We
also provide an evaluation of the concepts of how the
dynamic interactions between agents and/or the user
influence the generation of story, with first results of
examples

INTRODUCTION

In this paper, we present results from a first version of a
fully-implemented storytelling prototype, which illustrate the
generation of variants of a generic storyline. These variants
result from the interaction of autonomous characters with one
another, with environment resources or from user
intervention.
The development of artificial actors and AI-based animation
naturally leads to envision future interactive storytelling
systems. A typical interactive storytelling system would be
based on autonomous virtual actors that generate the plot
through their real-time interaction. Besides, the user should
be allowed to interfere with the ongoing action, thereby
altering the plot as it unfolds.
Many interactive storytelling models have been proposed:
user-centred plot resolution (Sgouros et al. 1996), character-
based approaches (Young 2000) (Mateas 2000), anytime
interaction (Nakatsu and Tosa 1999) and the need for
narrative formalisms (Szilas 1999). Previous work has
identified relevant dimensions and key problems for the
implementation of interactive storytelling, among which: the
status of the user, the level of explicit narrative
representation and narrative control, the modes of user
intervention, the relations between characters and plot, etc.
Some of these problems derive from the inherent tension
between interaction and narrative (Young 2000) (Mateas
2000). Interactive systems demand user involvement but
often at the expense of a real storyline; on the other hand, a
strong narrative dimension is traditionally conceived with a
user as spectator rather than being actively involved. Our
solution to this problem consists in limiting the user

involvement in the story, though interaction should be
allowed at anytime. This is achieved by driving the plot with
autonomous characters’ behaviours, and allowing the user to
interfere with the characters’ plans. The user can interact
either by physical intervention on the set or by passing
information to the actors (e.g., through speech input).
In the next sections, we will introduce the important concepts
of character-centred storytelling as well as a brief description
of our implementation. Results of variants in story generation
are illustrated with an example.

CHARACTER-BASED STORYTELLING

The storyline for our prototype is based on a simple sitcom-
like scenario, where the main character “Ross” wants to
invite the female character “Rachel” out on a date. This
scenario tests a narrative element (i.e. “Will he succeed?”) as
well as situational elements (the actual episodes of this
overall plan that can have dramatic significance, e.g., how he
will manage to talk to her in private if she is busy, etc.). Our
system is driven by characters’ behaviours. These actually
“compile” narrative content into characters’ behaviours, by
defining a superset of all

Figure 1: HTN Representation for Character Behaviour

possible behaviours, represented by a plan for each character.
Dynamic choice of an actual course of action within this
superset is the basis for plot instantiation (Young 2000). In
that sense, this addresses the causality/choice duality

© SCS

described by Raskin (Raskin 1998) in storytelling, though
this choice takes place within the limits of the formalism used
to represent possible behaviours, which is a plan-based
formalism (Young 2000). This can be illustrated by
considering the overall plan for the character Ross (see
Figure 1).
In order to invite Rachel, he must for instance acquire
information on her preferences, find a way to talk to her, and
finally formulate his request (or having someone acting on
his behalf, etc.). These goals can be broken into many
different sub-goals, corresponding to various courses of
action, each having a specific narrative significance.
The initial storyline should actually determine not only the
main character's plan, but those of other characters as well.
The problem of dependencies between characters’ roles has
actually been described within modern narratology, though
not to a formal level. Narrative functions can be refined into
bipolar relations between a couple of actors, emphasising the
asymmetry in their roles (Barthes 1966). We have adopted
this framework to define the respective behaviours of our two
leading characters. We started with the overall narrative
properties imposed by the story genre (sitcoms). In terms of
behaviour definition, this amounts to defining an “active”
plan for the Ross character (oriented towards inviting
Rachel) and a generic pattern of behaviour for Rachel (her
day-to-day activities).

AI-BASED CHARACTERS' BEHAVIOUR

Individual agent behaviours are produced by solving the set
of sub-plans described in the preceding section, which are
represented by Hierarchical Task Networks (HTN), such as
the one of Figure 1. Using formal properties of these plans, it
is possible to generate solution plans by searching directly
the AND/OR graph of the HTN with an algorithm such as
AO* (Tsuneto 1997) (Pearl 1984). In our system (Cavazza
2000), this is done with a “real-time” variant of AO*, which
interleaves planning and execution and supports re-planning
that is required when a character’s plan is altered through
interaction with another virtual actor or the user. The
terminal actions (e.g. reaching a location, using an object,
interacting with other actors) forming the plan are actually
played in the graphic environment through their
corresponding animations. The dramatisation of these actions
constitutes the story as seen by the user.
The “virtual sitcom” prototype described in this paper has
been developed using the Unreal™ game engine. The
Unreal™ environment provides most of the user interaction
features required to support user intervention in the plot, such
as navigating about and interacting with objects within the
virtual set and its use has been previously reported in
prototyping interactive storytelling (Young 2000). The
system has been fully implemented as a set of template C++
classes, which can be used as native functions from within
UnrealScript™, Unreal™’s scripting language.

USER INTERVENTION

The user watches the story as a spectator. At this stage he can
follow the story from any character’s perspective or navigate
on the virtual set while the action is in progress. From his

understanding of the current action, he can choose whether to
interfere or not with the characters’ goals. Characters’ actions
are dramatised through the timing of appropriate animations.
Because the actors are playing a role rather than improvising,
their actions are always narratively meaningful. Hence, if a
character moves towards a given object, it is likely to bear
significance for the story and can be the target for user
intervention. For instance, if the user sees Ross moving
towards Rachel’s diary, he can choose to steal or hide that
diary (see Figures 2 and 3).

Figure 2: Re-planning on Action Failure

Figure 3: Dramatisation of Action Failure

The user can intervene by either acting on physical objects
on-stage that bear narrative relevance (and are often obvious,
such as keys, letters, gifts, weapons, etc.). These objects
being resources for actions, they will force the character into
re-planning or action repair, which, being dramatised as well,
will create a new course for the plot. The other mode of
interaction consists in influencing actors using speech
recognition. This form of influence will become the main one
in further developments of the system and will include:

1. providing information needed by the actors to
complete their plans (e.g. Rachel’s preferred gifts)
(see Figure 4)

2. giving doctrine advice that influences the
personality of an actor (i.e. recommending a
friendly behaviour towards certain characters)

3. trying to alter the mood of a character
4. getting actors to perform certain actions that have

narrative consequences, such as moving to a certain
location that increases the probability of meeting
other characters

© SCS

Figure 4: Speech-driven User Intervention:
"Ross, buy flowers for Rachel"

RESULTS

While the conditions for character interaction lie in the on-
stage spatio-temporal instantiation of the storyline, additional
mechanisms are required to recognise these interactions and
propagate their consequences.
Figure 6 (see next page) illustrates an entire story
instantiation. Ross wants to use Rachel’s PDA to retrieve
relevant information regarding her preferences. He goes to
Rachel’s bedroom (a), unseen by Phoebe, who is preparing
some coffee (b). As the user discovered Ross’ plan, he
decides to remove the object from the virtual environment (c)
to alter the on-going storyline. Ross reaches the location of
the PDA (d), unaware of user intervention (e). Ross makes a
new decision to talk to Phoebe (f), as she may provide him
with the relevant information. Ross interrupts Phoebe
regardless of what she is doing (g). As Ross was rather
unkind to Phoebe, she decides to lie to him concerning
Rachel’s preferences, telling him to offer Rachel a box of
chocolates (h). In a different story instantiation, if Ross were
more careful when asking Phoebe, she would have responded
more positively to his request, by telling him to buy roses
instead. After succeeding in gathering important information,
Ross goes to purchase his gift for Rachel from the shop (i, j).
After buying the box of chocolates (k), he goes back to the

flat (l, m) to offer them to Rachel. As she is alone, he goes
(n) and asks her out, which she inevitably refuses (o).
This example illustrates the interaction of the two main
characters’ plans. These plans are designed from narrative
principles. It appears that exploring actors’ behaviour in
storytelling is more feasible within narrative genres that
display the simplest storylines, as such developing “virtual
sitcoms” seems a relevant first step in the pursuit of
interactive storytelling. As its own name suggests, sitcom
standing for “situation comedy”, a significant fraction of the
story interest arises from the situations into which the actors
find themselves. For instance, the fact that Rachel could
misunderstand the situation where Ross was talking to
Phoebe, then triggering the emotional reaction of jealousy
(see Figure 5). Her state of mind being modified (i.e., she
gets upset), Rachel will then leave the room. The succession
of “small” interesting situations is a mechanism for cause-
and-effect relationships (Raskin 1998), providing the basis
for dramatic story generation.

Figure 5: Situation Comedy (Rachel Is Jealous)

Though plans are designed from global narrative principles,
considering the current story genre, they are run
independently. The bipolarity between the characters’ plans
was defined to emphasise the asymmetry in their roles
(Barthes 1966). The overall narrative properties imposed by
the story genre defined interaction between the main
character’s “Ross” and its supporting role’s “Rachel”
behaviours. The generic pattern of Rachel’s day-to-day
activities may interfere with Ross’ “active” plan, as
illustrated when Ross want to read Rachel’s diary while she
is already using it. This interactivity between characters’
behaviours must be emphasised visually when it
demonstrates narrative relevance.
As part of the story believability, mechanisms in action
recognition will help to make the characters’ emotional status
visible to the user, so he can understand their interactions.
The variations in characters’ emotions and moods must
emerge from situations relevant to the story genre without
changing their overall personality profile. For instance,
Rachel’s mood towards other characters can vary according
to the meaning of their actions for Rachel (e.g., jealousy).
The next generation of real-time animation engine (i.e.,
Unreal2™) will help representing facial expressions, or

© SCS

a b c

d e f

g h i

j k l

m n o

Figure 6: Example of a Story Instantiation

detailed non-verbal behaviour (e.g., body postures) to
improve the dramatisation of events through physical
characterisation.
Above the planning and interleaving of actions, explicit
situated mechanisms for reactive behaviours (Geib 1994) are
needed in order to deal with specific situations (e.g., Ross
suddenly meets Rachel on his way). This implies high-level
action recognition of interactions between characters’
behaviours. If a narratively meaningful (considering the story
genre) situation arises, the mechanism would act on the

character’s current plan by ordering a re-planning of its
action.

CONCLUSION

We have shown that, although actor's behaviours are
deterministic, the interaction between actors could
considerably contribute towards story variability. This degree
of unpredictability conditions the generation of dramatic

© SCS

situations. The character-centred approach has the advantage
of being modular and extendable to many actors.
Further work is to be dedicated to developing more complex
storylines within differing genres, scaling up using multiple
plans for each actor to increase characters' interactions and
narrative function recognition.

REFERENCES
Barthes, R. 1966. “Introduction à l’Analyse Structurale des Récits”

(in French), Communications, 8, pp. 1-27.
Cavazza, M., F.Charles and S.J. Mead. 2001. “Characters in Search

of an Author: AI-based Virtual Storytelling”. First International
Conference on Virtual Storytelling, Avignon, France.

Geib C., “The Intentional Planning System: ItPlans”. Proceedings
of the 2nd Artificial Intelligence Planning Conference, AIPS-
94, 1994, pp. 55-64.

Mateas, M.. 2000. “A Neo-Aristotelian Theory of Interactive
Drama”, AA,AI Spring Symposium in Artificial Intelligence
and Interactive Entertainment, AAAI Press.

Nakatsu R. and N. Tosa. 1999. “Interactive Movies”. In: B. Furht
(Ed), Handbook of Internet and Multimedia – Systems and
applications, CRC Press and IEEE Press.

Pearl, J., 1984. “Heuristics: Intelligent Search Strategies for
Computer Problem Solving”. Reading (Massachusetts),
Addison-Wesley.

Raskin, R. 1998. “Five Parameters for Story Design in the Short
Fiction Film”, P.O.V., n. 5.

Sgouros, N.M., G. Papakonstantinou and P. Tsanakas. 1996. “A
Framework for Plot Control in Interactive Story Systems”.
Proceedings AAAI’96, AAAI Press, Portland.

Szilas, N. 1999. “Interactive Drama on Computer: Beyond Linear
Narrative”, AAAI Fall Symposium on Narrative Intelligence,
Technical Report FS-99-01, AAAI Press.

Tsuneto, R., D. Nau and J. Hendler. 1997. “Plan-Refinement
Strategies and Search-Space Size”, Proceedings of the
European Conference on Planning, pp. 414-426.

Young, R.M. 2000. “Creating Interactive Narrative Structures: The
Potential for AI Approaches”. AAAI Spring Symposium in
Artificial Intelligence and Interactive Entertainment, AAAI
Press, 2000.

���������	��
�����
���
������������������������ �����������"!#�

$&% '�% ()%�*,+.-�/0+1*3254625-7+.-9878�4;:5%<8=4>%@?<% $&% '�%&ACB.D6E=FG46+3-�D6H
I9+�JLK=MNDPOQB3RTSU-�RVB�4XW�+.DXYZB3-�[\2]J;E=-=B3MZB3^�O_+.-98�`GO�:aDX25W�:

bc2>MdReDgfh-=YZ*32>46:XYdDPOQB.Ri[T2>J;E9-=B3MZB3^�O
'"2>F32>MNjk25^	l9m9n3o�n3prqkbsbc2>MdReD]m&[tE=2vuc2LDXE92546MZ+3-98=:

w"xcy{z}|�~{���
� +.W	2>:>m=�hS�m&�h4XDXYN�&JLY�+.M�(�MZ+1O�254]mG�cK�DXB�W�+,DX2]874XB�K�DX2g�9-98=YN-=^&%

�Q� ����~ �_� �

SU-�DXE=Y�:"�9+3�&2>4"DXE=2���K&+.F32�SaSXS"�h4625-9+���B.D�Y�:"�=462>:X25-rDX2]8�%
[tE=2���B.D7YZ:7+.-�YN-rDX2>MNMZYZ^325-rD�+.4XDXYN�&JLY�+.M��=MZ+1O�254{25W�K9MZ+.DXYZ-=^�+
EGK=W�+.-7�=MZ+1O�254tYZ-QD6E=2v^�+3W�2�2>-r*GYZ4XB�-=W	25-rDtB.R\D6E=2��94;:PDC��254X�
:aB�-�:aE9BrB3Da��25W�K=����Ii(k`=�v^r+.W	2{��K9+3F32_SXSaS��h4625-&+=%"/�YNDXE
DXE=2Q��K9+3F32	SaSXS��c4X2>-9+7�&B3D�25*32>4XO�B3-=2�J5+3-�2>-, PB,O"DXE92�^�+.W	2
+.-98¡�=4;+3JLDXY�JL2tjCYdD6E=B3K=D@DXE=2t-=2>2>8¡RVB34@B3DXE=2>4@�&2>B3�=MZ23%)[tE=2t�&B3D
YZ:�+.-0+.4XDXYN�&JLY�+.M@�=M�+1O32>4�DXE9+.D�¢aMZYN*�2>:6£7YN-9:XY�8�2	DXE=2_J5B3W	�=K�D6254]m
:aY�8�2¡�rO�:XYZ8�2¡jCYdD6E"DXE92¡^r+.W	2��=46B3^�46+3W7%h[tE92���B.D�B�-=MZO7+3���
�&2]+.4;:tMNYZF32v+�EGK=W�+.-7�=M�+1O3254tYZ-9:XYZ8�2�D6E=2v^�+3W	2L��j¤B�4XM�8�%)¥hB,jt�
25*�254	DXE92�YN-�^r+.W	2��&2>E9+1*GYNB�4�B.R�DXE=2"��B.D7:aE=B�K=M�8���2"E9+3468
DXB78�YZ:aDXYZ-=^�K=YZ:XE�RV46B3W¦D6E=2��&2>E9+1*GYNB�4cB.R¤ErK9W	+3-��=M�+1O32>46:>%�[TB
:aE9B,j§EGK=W�+.-���MZYNF�27��25E&+1*rYZB34_+0jCY�8�2"4;+.-=^�2�B.RgDX2>J;E9-=YZ¨rK=2]:
+.-98�JLB�W	W�B�-�:a2>-9:a2":XB3MZK�DXYZB3-&:�+.462{K9:X2>8�RVB�4	DXE=2"��B.DQ�cS�%
[tE=2{��K9+3F32�SaSaS��h4625-&+{��B.D�Y�:�D6E=2	�94;:PD�J5B3W	W	254;JLY�+.MZMNO�8�25�
*32>MNB��&2]87+34aD6Yd��JLY�+.M��=M�+1O32>4tDXE9+.DhK9:a2]:tRVK=MZMNO�+.K=DXB3W�+.DX2>87�9+.DXE
+.-98{46B3K�D62��9-98�YZ-=^	DXE94XB�K=^3E�+.46�=YNDX4;+.46O	J5B3W	�=MZ2L©�ª3b«��B3MZOG^.�
B3-9+3McjkB346MZ89:5mCjCYNDXE=B�K�D7DXE=2�-=252]8�RVB34{DXE=2��&B3D{D6B�+�J5¨rK=YZ4X2
FG-=B,jCMN2]8�^32	+.��B3K=D�4XB�K�DXYZ-=^"+.-98�-9+1*GYZ^�+.DXYZB3-�8=K=4XYZ-=^�^�+3W	2L�
�=M�+1O3%tuhB_EGK=W�+.-"YZ-rDX2>4X*�25-rDXYZB3-�Y�:h462>¨rK=YZ4X2]8QD6B_�=46B,*GYZ8�2gD6E=2
�&B3DTjCYNDXE�+.MZM3D6E=2¤YZ-�RVB�4XW�+,D6YNB�-v-=252]8�2>8�DXB�-9+1*GYN^r+,DX2)D6E=46B3K=^�E�m
+.-98�K9-98�254;:aD6+.-&8{-925js^�+3W�2�25-G*GYN46B3-=W	2>-�D;:5%t[tE=2���B.D�K9:a2]:
+�*�B3MZK=W	2��¬+.462>+r���&+3:X2>8�4625�94X2]:a2>-�D;+,D6YNB�-�B.R�DXE=2�ª�b¦^�+.W	2
25-G*GYN46B3-9W�2>-rD>m9jCE9YZJ;E�:X2546*32]:h+3:�+��9+3J;Fr���&B�-=2�RVB34cDXE=2¡�&B3D>­ :
JLB�^3-=YNDXYZ*32�jkB346M�8�W�B�8�2>M�%®[TB3^325DXE=2>4QjCYNDXE�+�E=YZ^3E���254XRVB34X�
W�+.-9J52c�9+.DXE��9-&8�YN-9^�:XB3MZK�DXYZB3-	D6E=Y�:kJ5B3^�-=YdD6YN*�2hW	B�8�25M¯W�+.F�2>:
DXE=2v��B.Dc¨rK=YNDX2v462>:XB3K946J52c2L°_J5YN2>-�D]%

±L²"��~_|��7³ � ��±>|�²

��K9+.F�2	SaSaS��c4X2>-9+���25MZB3-=^r:�DXB"D6E=2_^�25-=462�B.RkDXE=2Q�94;:PD���254X�
:aB�-�:aE9BrB3Da��25W´K=��^�+3W	2>:Q��I)(¤`=�L%T�µ�9MZ+1O�254�*GYZ25jh:vRV46B3W¶+
�94;:PD"��254;:aB�-#��254;:a��2>JLDXYZ*32�+.-&8�W	B,*32]:�+.46B3K=-98�YN-«+�462>+.MN�
DXYZW	2{ª3b§*GYN4XDXK9+3M�jkB346MZ8�%�[tE92_W	B�:aD�YNW	��B34XD6+3-�D�D6+3:XF�:�+34X2
:PD;+1OGYN-=^�+.MZYN*�2�+3-98�25MZYZW�YZ-9+.DXYZ-=^¡B��=��B3-=2>-�D;:kjCYdD6E=YN-QDXE=Y�:t*GYN4X�
DXK9+3McjkB346MZ8�%s[tE92>:X2�B3�=��B3-925-rD6:{+.462"B.DXE9254Q��25B��=MZ23mC2>¨rK9+3M
YN-�:PD64X2>-=^.D6E�+.-98�+3�=YZMNYNDXYZ2>:>m<JLB�-=-=2>JLDX2]8�DXB�D6E=2{:6+.W	2{^�+.W	2
DXE=46B3K9^3E�+_-92LDPjkB346F{B�4cD6E=2�SU-rDX2>4X-92LD>%�[tE=2��=M�+1O3254;:CE9+1*�2�+
jCYZ8=2�4;+.-=^�2<B.R9jk2>+3�&B�-9:>m]YNDX2>W�:T+3-98���B,j¤2>4a��K=�9:T+1*,+.YZMZ+3�=MN2<DXB
+.Y�8vYZ-�DXE92��9+.DaDXMZ2>:>%)[tE=2�^r+.W	2�E9+�:T+�:a25DTB3R&8�YN·�2>4X2>-�Di*GYN4XDXK9+3M
25-G*GYN46B3-9W�2>-rD6:CJ5+3MNMZ2>87MZ25*�25M�:CB34CW�+.�&:5m�D6E9+,DgJLB3-rD;+.YZ-746BGB3W�:
+.-98�E9+3MNMZjt+1OG:>%�[tE=2��&+,DaD6MN2]:�YZ-�DXE=2"^r+.W	2�D6+3F32"�=M�+3J527YZ-

DXE=2]:a2hW�+3�9:@W�K&J;E�MNYZF32C^�MZ+�8�YZ+.DXB�46:i�9^�ErD�YN-_+3-�+.4625-9+9%T(<M�+1Or�
254;:CJ5+.-":6JLB�4X2���B3YZ-�D;:C�GO_D;+.FGYN-9^�B�K�DhB.D6E=254c�=MZ+1O�254;:5%)/�E=2>-
FrYZMZMN2]8�m�+_�=MZ+1O�254C462>:X�9+1jC-9:h+.DcB3-92�B.R)DXE92¡8�2]:aYZ^3-9+.DX2]8�MNB�J5+.�
DXYZB3-9:�B3-�DXE=2�W�+.��+3-98�J>+.-�J5B3-rDXYZ-GK=2�D6BQ�&^3ErD>%���K9+3F32�SXSaS
�h4625-9+�+.M�:aB�E9+�:C:a2>*3254;+.M&DX2]+.WµB�4XYZ25-rD62>8{^�+.W	25�¸�=M�+1O	W	BG8=2>:>%
SU-�-9B346W	+3M@DX2]+.W����=MZ+1O�DXE=2>4X2_+34X2�DPjkB�DX2>+3W�:vjCYdD6E��=M�+1O3254;:
DXE9+.Dh�9^3ErDc2]+3J;E�B.D6E=254]%t[tE=2vDX2]+.W}jCYdD6E"DXE92�E=YZ^3E=2]:PD�+�J5J5K��
W�K=M�+,D62>8�:XJ5B34623m�B3R)+3MNM��9MZ+1O�254;:¤B�-7DXE9+.DhDX2]+.W�m=jCYZ-9:5%¤[tE=25462
YZ:7+.M�:aB�+�qk+.�=DXK=462�[tE=20IiMZ+3^��¸qk[CI@�_DX2>+3W¹�9+3:X2>8�^r+.W	2
W�B�8�2�%��h^r+.YZ-0DXE=2>4X2Q+34X2_DPj¤B"D62>+3W	:�jCYdD6E��=M�+1O32>46:>%7º¤+3J;E
DX2>+3W®E9+3:k+��9+�:a2�:PD64XK9JLDXK=462cYZ-_D6E=2c^r+.W	2cjkB346M�8	B34�W�+3��%@�
» +.^{YZ:��&Br:aYNDXYZB3-92>8�YZ-�:XK9J;E�+{�9+�:a2�%g�¼DX2]+.W�:6JLB3462>:c�&B�YN-rD;:
�rO�J5+3��DXK=46YZ-=^�DXE=2 » +.^vB3R&D6E=2hB3�9�&Br:aYZ-=^�DX2]+.W½+.-98	�=46YZ-=^3YZ-=^
YdDh�9+�J;F�DXB�D6E=25YZ4hB,jC- » +.^�YN-7D6E=25YZ4hB,jC-7�9+3:X23%
[tE=2k��K9+3F32@SaSXS��h4625-9+h�&B3DTY�:\:XK=�=��B�:X2>8gDXBg+3JLD\MNYZF32¤+CEGK=W�+.-
�=MZ+1O�254@YZ-	DXE=2c*rYZ4XDXK9+3M9jkB346MZ8¡B.R¯DXE92h^�+3W�2�%i��:�:XK9J;E�DXE=2��&B3D
:aE=B�K=M�8��&2¤E9+.4;8�DXBc8�Y�:aDXYZ-=^3K=Y�:XEvRV4XB�W#+CEGK=W�+3-v�=MZ+1O�254�YZ-�DXE92
^�+.W	2�%@SU-7B�468=254kDXB_+�J�DCMNYZF32�+�EGK=W�+.-��=M�+1O32>4kDXE=2v��B.Dc8�BG2]:
-=B.DcB�-=MZO{-=2>2>8�D6B_K=-98=254;:PD;+.-987D6E=2�46K=MZ2>:hB3R@DXE=2�^�+.W	2�+3-98
E=B,j�D6E=2v^�+3W�2vjkB346F�:5%@[tE=2v��B.Dc+3MZ:XB	-=252]8=:C�9+�:aY�J�+.�=YZMZYdD6YN2]:
MNYZF32h-&+1*rYZ^�+.DXYZ-=^vD6E=4XB�K=^3E	D6E=2c^r+.W	2h2>-r*GYZ4XB�-=W	25-rD6:>m3�9YZJ;FGYZ-=^
K=��YdD625W�:k+.-98	E9+3-98�MZYN-9^�j¤2]+.��B3-9:>%T[tE92c��B.D�E9+�:@D6B��&2�+.�=MZ2
DXBg�=MZ+1O�D6E=2¤DX2>+3W¾�9+�:a2]8v^�+3W�2¤DPOG�&2]:)+.-98�E9+3:TDXBgB3��254;+,D62¤YZ-
DX2>+3W�:5%)SU-QB�468=254¤DXB�B3��254;+,DX2�YN-�+vD62>+3W7m�jCYNDXE{�&B3DXE7EGK=W�+.-
�=MZ+1O�254;:�+.-98�B.D6E=254��&B3D6:>m�DXE92_�&B3D�-=252]8=:�D6B�JLB3W	W¡K=-=Y�J5+,D62
jCYdD6E�B.DXE9254��9MZ+1O�254;:5%7[tE=2_��B.D�MZYN*�2>:�YN-9:XY�8�2�DXE92QJLB�W��9K�DX2>4
-=2L©GD�DXB�DXE=27^�+3W	2{�=46B3^�46+3W�+3-98�B�-=MZO�+.�=��2>+346:	+3:�+�ErK=�
W	+3-��=M�+1O3254�YN-�D6E=2Q^r+.W	23%�[tE92Q:X+3W	2��V^r+.W	2]��4XK=MZ2>:�DXE9+.D
+.�=�=MZO7DXB7EGK=W�+.-��9MZ+1O�254;:hYZ-�DXE92¡^r+.W	23m�+.M�:XBQ+.�=�9MNO�D6B_DXE92
�&B3D>%�[tE=2���B.D�8=Br2]:tE=B,jk25*32>4t-=B.DCK9:X2�DXE=2�:6+.W	2�YZ-=�=K�D�+3-98
B3K�D6�=K�DC8�25*GY�JL2>:t+�:�EGK=W�+.-{�=M�+1O3254;:>%\SU-9:aDX2]+38_B3R�DXE92�B�K�DX�=K=D
8�25*GY�JL2>:tEGK=W�+3-Q�=M�+1O32>46:kK9:X23m�MZYNF�2gDXE=2vJLB�W	�=K�DX2>4>­ :tW	B3-=YNDXB�4
+.-987:aB�K=-987J5+3468�mGD6E=2��&B3Dh4X2]JL2>YN*�2>:kYN-=RVB346W	+.DXYZB3-7+.��B3K�DtDXE92
*rYZ4XDXK9+3M@j¤B�4XM�8�8=YN462>JLDXMZO"RV4XB�W¿DXE92�^�+.W	2	�=46B3^�46+3W�+3:v+�:a25D
B.Rt*1+34XY�+.�9MN2]:5%�[tE=2���B.D�+3MZ:XB78=Br2]:v-=B3D�K9:a2�D6E=2_JLB�W�W	B�-=MNO
K9:a2]80YN-9�=K�D�8=25*GYZJ52>:�MNYZF32�D6E=2QF�25OG��B�+.4;8�+.-980W	B3K&:a2�%�[tE=2
�&B3D{:a2>-98=:_+�:X2>¨rK=2>-9JL2"B3R�+�J�D6YNB�-9:�B34�YZ-rDX2>-�D6YNB�-9:_8�YZ462>J�D6MNO
DXB_D6E=2�^r+.W	2��=46B3^�46+3W�%h[tE=2>:X2¡+�J�DXYZB3-&:hE=B,jk25*�254]m&+.462�*�2546O
:aYZW	YNM�+.4vD6B�DXE=2{+3J�D6YNB�-9:�+"EGK=W�+3-��9MZ+1O�254�J5+3-�YN-9�=K�D�K9:XYZ-=^
DXE=2	JLB�W��9K�DX2>4>­ :gYN-=�9K�D�8�25*GY�JL2>:>%�[tE=2��&B3DgK&:a2]:�FG-=B,jCMZ2>8=^32
DXE9+.D¡E9+�:���252>-��=46B,*GYZ8�2]80YN-�+38�*,+.-&JL2{+3-98�FG-=B,jCMZ2>8�^�2Q+3JL�
¨�K9YN462>8{8�K=46YN-=^	^r+.W	2L���=M�+1O�D6B	J5B3-9:aDX46K9JLDt:XK9J;E�:a2]¨�K925-9J52>:kB.R
+3J�D6YNB�-9:>%
[\Bv��2c+.�9MN2CD6BvK=-98�2>46:aD6+3-98�+.-&8¡462>+�:aB�-�+.��B3K�D@D6E=2h25-G*GYZ4XB�-��
W�2>-rD�D6E=2��&B3D�-=252]8=:	+�J5B3^�-=YdD6YN*�2QW	B�8�25MCB3RcD6E=2�j¤B�4XM�8�YND
MNYZ*32]:�YN-�%{[tE=YZ:�JLB3^�-=YNDXYZ*32	W	BG8=25M<�=M�+1O�:v+.-�YNW	��B34XD6+3-�D�46B3MZ2

YN-�E=B,j§DXE=2"��B.D���254;JL25YZ*32]:�+.-98�K=-98=254;:PD;+.-98=:�D6E=2�*GYN4XDXK9+3M
j¤B�4XM�8�%�SU-��9+34aD6YZJ5K=M�+.4]m\D6E=2Q��B.D	J5+.-9-=B.D�-9B.DXY�JL27+3:X�&2]J�D;:�B.R
DXE=2	jkB346MZ8"DXE9+.Dv+34X2�-=B3Dg4625�=462>:X25-rD62>8�jCYNDXE9YN-�YdD;:vJLB�^3-=YNDXYZ*32
W	BG8=25M¸%iSU-�YND>­ :�:XYZW��9MN2]:PD<RVB�4XWÀDXE9YZ:¤JLB3^�-=YNDXYZ*32CW	B�8�25M�J5+.-	��2
+¡:X2LDtB.RT*1+34XY�+.�9MN2]:<D6E9+,DC4625�=462>:X25-rD�D6E=2vJLK=464625-rDk:aD6+.DX2gB.R�D6E=2
j¤B�4XM�8�%�[tE=Y�:v:aD6+,D62¡B3R�D6E=2¡jkB346M�8�YZ-9JLMZK98�2]:gDXE=2��&Br:aYNDXYZB3-�B.R
DXE=2��&B3D>mr�&Br:aYNDXYZB3-QB.R�25-=2>W	YN2]:¤+3-98	YdD625W�:>m�D6E=2cjk2>+3�&B�-9:)D6E=2
�&B3D�E9+�:�^�+.DXE=2>4X2]8�2LD6J3%�[\B"��2{+3�=MZ2�DXB�-&+1*rYZ^�+.DX2�DXE94XB�K=^3E
DXE=2�*GYZ4aD6K9+.M@jkB346M�8�+3-98��&-98�JL2>4aD;+.YZ-�MZB�J5+,D6YNB�-9:gYN-�D6E=2_*GYN4X�
DXK9+3M&jkB346M�8�DXE=2g�&B3Dk-9252>89:¤+v4625�94X2]:a2>-�D;+,D6YNB�-�B.R�DXE92�MZ25*�25M�B34
W�+.�{DXE=2v��B.DhY�:h:XYdD6K9+,D62>8{YN-�%
I=B�4¡+.K=DXB3-9B3W	B3K9:��&2>E9+1*GYNB�4vDXE92{��B.D	+.M�:aB�-9252>89:vDXB�W�+.YZ-��
D6+3YN-"+.-�25©G�9MNY�JLYNDh4X2>�=462>:X25-rD6+.DXYZB3-7B.R)E=B,j�D6E=2v*GYN4XDXK&+.M�jkB346MZ8
J;E9+.-9^32>:>%\[tE=Y�:TFr-9B,jCMN2]8�^32¤YZ:T4X25RV25464X2]8gDXB�+3:i8�B3W�+3YN-�FG-=B,jCMN�
2>8�^�23m,+.-&8�YZ:T4X2]¨rK=YN462>8gD6Bh462>+3:XB3-v+3�&B�K�D\D6E=2�25·�2]J�D6:TB.R98=Yd·¯254X�
25-rDC:a2]¨�K925-9J52>:kB.RT+�J�D6YNB�-9:5%@[tE=2g462>+3:XB3-9YN-=^�YZ:t-=2]JL2]:X:6+.46O�RVB�4
DXE=2g��B.DtYN-{B34;8�254�DXB	:a2>MN2]J�Dk+�J�D6YNB�-9:5m�DXE&+,DC+.462cK9:X2LRVK=M¯jCYNDXE=YZ-
DXE=2�^�+3W�2�+.-98�+3MNMZB,j}DXE=2��&B3DQDXB�+3J;E=YZ25*�2�JL2>4aD;+.YZ-�^3B�+3MZ:>%
¥hK=W�+3-7�9MZ+1O�254;:tB.ReDX2>-7DXE=YZ-=F7YN-rDXK9YdD6YN*�25MZO7+3�&B�K�DCDXE=2v25·�2]J�D;:
B.R<+3JLDXYZB3-9:c+.-98�W�+.F�2�+	MNB3DcB.R@YZW	�=MNY�JLYNDgJ5B3W	W	B3-":X25-9:X2�+3:a�
:aK9W��=DXYZB3-9:>%<���&B3Dc8�BG2>:kB.R@JLB�K=46:X2g-=B.DCE9+1*�2cD6E=YZ:CJ5B3W	W	B3-
:a2>-9:X2��GO�8=2LR¬+.K9MdD]%_�ÁJL254XD6+3YN-�MZ25*32>M@B.Rt8�B3W�+.YZ-�Fr-9B,jCMN2]8�^32
+.-987JLB�W	W�B�-7:X25-&:a2�jCYZMNM�E&+1*32gDXB	��2v�=K=YZMdDhYZ-rDXB	DXE92v�&B3D>%
[tE=2c��B.DC8�BG2>:k-=B3D¤B�-=MNO	-=2>2>8Q�9+3:XYZJcFG-=B,jCMN2]8�^32�YN-{+38�*,+.-&JL2
DXB{�&2�+.�=MZ2vDXB{B3��254;+,D62�YN-�DXE=2�*GYN4XDXK9+3M\jkB346MZ8�m=DXE92¡��B.D�+.M�:aB
E9+3:hDXB�+3J>¨�K9YN462�FG-=B,jCMZ2>8�^�2�jCE=YZMN2¡�=MZ+1OGYZ-=^�D6E=2¡^r+.W	23%g[tE=2
JLK=464625-rD�:PD;+,D62cB.R¯D6E=2cjkB346MZ8	Y�:<B�-=2hB3R�DXE=2g:aYZW	�=MN2]:PD¤FrYZ-98=:¤B.R
FG-=B,jCMN2]8�^32�DXE=2	��B.DvJ5+.-�+3J>¨�K9YN4623%v[tE=Y�:gFr-9B,jCMN2]8�^32�+3J5¨rK=YN�
:aYNDXYZB3-�Y�:¡4X25RV25464X2]8�D6B�+3:¡:a2>-9:XYN-=^&%��c:XYZ8=2_RV46B3W�Fr-9B,jCMN2]8�^32
+.��B3K�D�DXE927J5K=4X4625-rD�:PD;+,D62{B3RhDXE=27jkB346MZ80D6E=2��&B3D	J>+.-�+.M�:aB
+3J>¨�K9YN462tFr-9B,jCMN2]8�^32C+.��B3K=D@DXE=2c8=Or-&+.W	YZJ>:)B.R¯DXE92Cj¤B�4XM�8�m,D6E=2
8�B3W�+3YN-�Fr-9B,jCMN2]8�^32�%�[tE=2���B.D_JLB�K=MZ8�+3J>¨rK=YN4627Fr-9B,jCMN2]8�^32
+.��B3K�D�E=B,j§DXE=2"jkB346M�8���25E9+1*�2>:>m¤+.-&8�E=B,jÂB.D6E=254�2>-�D6YdD6YN2]:
MNYZF32cB.DXE9254��9MZ+1O�254;:@jCYdD6E=YZ-_DXE92cjkB346MZ8	��25E9+1*�23%)[tE=Y�:�FGYZ-98�B.R
FG-=B,jCMN2]8�^32�+3J>¨rK=YZ:XYNDXYZB3-7YZ:CJ>+.MZMN2]8QMZ2>+34X-=YZ-=^�+.-&8QY�:tR¬+.4CW	B�4X2
JLB�W��9MN25©cDXE&+.-�:X25-9:XYZ-=^9%iÃcReD625-vMZ2>+34X-=YZ-=^C462>¨rK=YZ4X2]:¯DXE92�462>JLB�^.�
-=YNDXYZB3-�B.R��&+,DaD62546-9:<YZ-Q+vM�+.46^32h+3W	B3K=-rD�B3R¯B��9:X2546*1+.DXYZB3-9:�+.-98
25*,+.MZK9+.DXYZB3-9:)B3R�D6E=2h25·�2]J�D6:<B.R�JL2>4aD;+.YZ-�:X2>¨rK=2>-9JL2]:@B.R�+3JLDXYZB3-9:>%
fc:XK9+.MZMZO�W�Br:PD]m=YNRT-=B3DC+3MNM�8=B3W�+.YZ-{FG-=B,jCMZ2>8=^32�+���B.DCK9:X2>:tY�:
�=46B,*rY�8�2]8_YZ-�+�8�*,+.-9J523%

��Ä"xv|�~gy

q¤4X2]+,D6YN-=^0+��&B3D	RVB34_+.-�I)(¤`�^�+3W�2�Y�:�+.-�2L©GDX2>-9:XYN*�2QD;+3:XF
jCE=Y�J;EÅ462>¨rK=YZ4X2]:�25©G��254XDXY�:X2¼RV46B3W�W�+.-GO¿8�YN·�2>4X2>-rDs+34X2]+3:
jCYdD6E=YZ-�DXE92Q�92>MZ8�B.R�+34aD6Yd��JLY�+.MkYN-rDX2>MNMZYZ^325-&JL2����hSa�Lm<+.-98�+.M�:aB
+.462>+�:<-=B3Dt8�YZ462>J�D6MNO�+�:X:XB�JLY�+,DX2]8�jCYNDXE{�cS�%=`GB3W	2gB.R�DXE92gJ5B3W��
W	B3-=MZO	K9:a2]8�W	2LD6E=B�8=:¤+3-98	D62>J;E=-=Y�¨rK=2>:k+.462c8�2]:XJ54XYZ��2>8�E=2>4X2�%

ÆcÇ�È]É�Ê)ËTÌiÍ¬ËiÎ

Ã�-=2�B.R�D6E=204X2]¨rK=YN4625W	2>-�D;:_RVB�4�+.K�D6B3-=B�W	B3K9:{�&2>E9+1*GYNB�4{YZ-
I)(¤`{^�+3W�2]:CY�:tDXE=2�+.�=YZMZYdDPOQDXB�-9+1*GYZ^�+,D62�DXE=46B3K9^3E7DXE=2�^�+.W	2
j¤B�4XM�8�YZ-�+�MNYNRV2L��MNYZF327W�+.-=-9254]%0b�2LD62546W	YN-=YZ-=^�E=B,j®DXB�-9+1*r�
YN^r+,D62�DXE=46B3K9^3E�+�W�+.��Y�:�+3-�YZ-�D625462>:aDXYZ-=^"�=46B3�=MZ25W�%�'�+3-GO
8�YN·�2>4X2>-�Dv+.�9�=4XBr+3J;E=2]:hD6B7:XB3MZ*GYN-9^_DXE9YZ:��=46B3�9MN2>W¿E9+1*32¡�&2>25-
�=462>:X25-rDX2]8�%CÏ@2546O7:XYZW��9MN2��hS) PK9:aD�MZ2LD;:�+���B.Dgjk+3MNFQRVB346jk+3468

IiYZ^3K=462	Ð3Ñ<'�+3H52�jCYdD6E�jk+1OG��B3YZ-�D;:k4X2>�=4X2]:a2>-rDX2>8Q�GO{8�B3D6:

K=-rDXYZMT:XB3W	2LD6E=YN-9^�YZ:CE9YdD]%¤�kDhD6E9+,Dc��B3YZ-rDCDXE=2��&B3DhDXK=46-9:h+3-98
JLB3-rD6YN-GK=2]:�jt+.MZFGYN-=^�RVB346jk+3468�%0[tE=2>4X27+.462{+.M�:XB�W	B3462QJLB�W��
�=MN25©7�&+,DXE��9-98�YZ-=^{+3MN^�B346YdD6E=W�:tDXE&+,D�K&:a2�E925K=46YZ:aDXY�J5:hDXB��&-98
4XB�K�DX2]:cD6E=46B3K=^�E"DXE=2	2>-r*GYZ4XB�-=W	25-rD>%¡�½:X��2>JLY�+.M)4625�=462>:X25-rD;+,�
DXYZB3-�B.R<D6E=2	25-G*GYN46B3-=W	2>-�D�B34�W�+.��YZ:�B3ReDX2>-�K9:X2>8�RVB34gD6E=2>:X2
W�B�4X2�J5B3W	�=MZ2L©�+3MN^�B346YdD6E=W�:5%_Ã�-=2	B.R¤DXE=2�W	B�:aD�JLB�W�W	B�-=MNO
K9:a2]8�4625�94X2]:a2>-�D;+,D6YNB�-9:�Y�:�+�jk+1OG��B3YZ-�D�:XOG:aDX2>WÒ�¬IiYZ^3K=4620Ð]�L%
`GK9J;E_+vjt+1OG�&B�YN-rD�:XOG:aDX2>W¼Y�:�+�J5B3MZMN2]J�D6YNB�-�B.R��&B�YN-rD;:<B34�MNB�J5+.�
DXYZB3-9:	�Vjt+1OG�&B�YN-rD;:6�cjCYdD6E�8�YN462>JLDXYZB3-9+3M)MNYZ-=F�:g�&25DPj¤2>25-�DXE=2>W7%
[tE=2�jk+1OG��B3YZ-rD6:�4625�=462>:X25-rDgDXE=2_�9MZ+�JL2>:�jCE925462	DXE=2���B.D�J>+.-
^3BQ+3-98�DXE92�MZYN-=F�:��&25DPj¤2>25-�D6E=25W¿4625�=462>:X25-rDCD6E=2¡�&+,DXE&:CDXE92
�&B3D�J5+3-0RVB3MZMNB,j®YZ-�B34;8�2>4�DXB�2>+3:XYZMNO�DX4;+1*32>M<RV46B3W�B3-=2_jt+1Or�
�&B�YN-rD�DXB0+.-=B3DXE=2>4>%�fc:XK9+3MNMZO�DXE=2�MZYN-=F�:¡4X2>�=462>:X25-rD�:aDX4;+.YZ^3ErD
MNYZ-=2�8�YZ462>J�D6YNB�-9+.MC�&+,DXE&:5%¾q¤4X2]+,D6YN-=^�+3-�2L°_JLYZ25-rDQjt+1OG�&B�YN-rD
:aO�:aDX25W¦RVB�4g+7:X�&2]JLYN�&J�2>-G*rYZ46B3-=W	25-rD�YZ:�+3-�YZ-�D625462>:aDXYZ-=^{+3-98
B.ReDX2>-�J5B3W	�=MZ2L©�D6+�:aF¯%��Â�&B3D�J5B3K=M�8�J54X2]+,D62_DXE92{jt+1OG�&B�YN-rD
:aO�:aDX25W½8�K=46YN-9^�^�+3W�25�¸�9MZ+1O�+3-98�8�46B3�	jk+1OG��B3YZ-rD6:<+�:@YdD¤jk+3-��
8�254;:iDXE=46B3K9^3E¡DXE=2h2>-G*rYZ46B3-=W	25-rD]%T[tE=2C��B.D<jCYZMNM9E9+1*32C+gE9+.4;8
DXYZW�2�4X2]+3J;E=YZ-=^CW	B�:aD\�=M�+3J52>:�YZ-vDXE92<25-G*GYN46B3-9W�2>-rD�K=-rDXYZM�YND\E9+�:
jk+3-98�25462>8"DXE=46B3K=^�E�W	B�:aD�B.R<D6E=2¡^r+.W	2�j¤B�4XM�8�%�fc:XYZ-=^QD6E=Y�:
W�25DXE=B�87D6E=2���B.DcB3ReDX2>-"-=25*�254C�9-&8=:hB�K�DcE=B,j#DXB_^�B	DXBQJ5254X�
D6+.YZ-�E9+.4;8�D6B�4X2]+3J;E��=MZ+�JL2]:5%	[tE=2�jt+1Or��B3YZ-rD�:XO�:PD625WÅJ5B3K=M�8
+.M�:aB��&2�JL462>+.DX2]8�YZ-#+38=*1+3-9JL2���2LRVB3462�DXE=20��B.D"25-rDX2>46:QDXE92
^�+.W	2�%7(�MZ+�JLYZ-=^"jk+1OG��B3YZ-rD6:�D6E=4XB�K=^3E9B3K�DvD6E=2Q2>-r*GYZ4XB�-=W	25-rD
+.-98�MNYZ-=FGYN-9^_DXE925W�Y�:cB3ReDX2>-�+QDXYZW�2	JLB�-9:XK=W	YN-=^QD6+�:aF�D6BQ��2
JLB3W	�=MZ2LD62>8��GO_D6E=2�MZ25*�25M\8=2>:XYN^�-=254]%t`�B3W	2�+.MZ^3B�4XYNDXE9W	:tE&+1*32
�&2>25-"8�25*�25MZB3��2>8QDXB_+3YZ8{YN-"J54X2]+,DXYZ-=^	+	jk+1OG��B3YZ-rDt:XO�:PD625W§YZ-
+38�*,+.-&JL23m&�=K�DgK9:aK&+.MZMNO7EGK=W�+.-�YZ-rDX2546*32>-rDXYZB3-�YZ:c4X2]¨rK=YN462>87D6B
B3��D6YNW	YZH52�DXE92�:aO�:aDX25W�%
/�E=25-7+�^3BGB�8	jt+1Or��B3YZ-rD¤:XOG:aDX2>W®YZ:k+1*,+.YZMZ+3�=MN2hDXB¡DXE=2��&B3D>m�+
jCE=B3MZ2@46+3-=^32@B3R=8�Yd·¯254625-rD��9+.DXE9:TJ5+3-v�&2�J>+.M�JLK=M�+,D62>8�%Tfc:XK9+.MZMNO
B3-=MZOhD6E=2�:XE=B34XDX2]:PD��9+.DXE9:�DXB,jt+.4;8=:�:a��2>J5Yd��J@^3Br+.M�:�+.462@K9:a2]8g�rO
+���B.D>%@¥cB,j¤2>*3254¤8�Yd·¯254625-rDkFrYZ-98=:¤B.R��&+,DXE&:¤J>+.-_��2cK9:X2LRVK9M�+�:
j¤2>MNM¸%@I=B34kYZ-9:PD;+.-9J52��&+,DXE&:�D6E9+,DtMZ2>+38_DXB,jt+.4;8=:�+¡^3Br+.M¸m�jCE9YNMZ2
+1*3B3Y�8�YZ-=^�J5254XD6+3YN-�+.462>+�:�B3RcDXE927jkB346M�8�+,D	D6E=2�:X+3W	2QD6YNW	23%
`G25*�254;+.M�+3MN^�B346YdD6E=W�:T+34X2k+1*,+.YZMZ+3�=MN2<DXB�J5+.M�JLK9MZ+.DX2<D6E=2C:aE9B34XDX2>:aD
�9+,D6E"�&25DPj¤2>25-�+_:XB3K946J52vMNB�J5+.DXYZB3-�+3-98"+_8�2]:PD6YN-9+.DXYZB3-�%�[tE=2
W�Br:PDcJ5B3W	W	B3-=MZO_K9:X2>8�+3MN^�B346YdD6E=W�:C+.462�IiMZB,O�8�­ :>m=b�Y PF�:aDX4;+=­ :
+.-98��gÓ��¬�¼�C:aD6+34;�¡Ô ª,Õ�%�[tE=2>:X2¡+3MN^�B346YdD6E=W�:cjk25462¡8�2]:aYZ^3-92>8
YN-�D6E=2�J5B3-rDX25©GD�B.R�^�46+3�=E9:<+3-98�^34;+.�9E¡D6E=25B�4XO�%)`�YN-9J52�+vjt+1Or�
�&B�YN-rD�:XO�:PD625W¶Y�:�*�2546O�:XYNW	YZMZ+34�D6B�+�8=YN462>JLDX2>8�^34;+.�=E0D6E=2>:X2
+.MZ^3B346YNDXE=W�:7J5+.-#+.M�:aB��&20K9:X2>8�DXB�J5+.M�JLK9MZ+.DX2��&+,DXE&:7+3MNB�-=^
B3-=2�B34kW�B�4X2gjt+1Or��B3YZ-rD6:>%i[T4;+1*325MZYZ-=^�+.MZB3-=^�+��&+,DXE\m�D6E=2��&B3D
W�YZ^3ErD	:PD6YNMZMt25-9J5B3K=-rDX2>4¡:XW�+.MZM¤B�4¡M�+.46^32>4�B3�9:aD6+�JLMZ2>:>%��Â�&B3D

retreat attack
enemy

chase

items

gather

IiYN^�K=4X2�n=Ñ@`�YNW	�=MZ2�I@`�'´RVB34h+	��B.D

B.ReD625-�K9:a2]:	:a2>-9:aYZ-=^0+.-98�25-G*GYN46B3-9W�2>-rD	:6+.W	�=MZYN-9^�D6B�Y�8�2>-��
DXYNRVOQD6E=2�-&+,DXK94X2vB3R@:XK9J;E�B3�&:PD;+3JLMZ2>:>%t[tE=2���B.DhD6E=25-�D64XYZ2>:hDXB
+1*3B�YZ87B34�-9+1*GYN^r+,D62�+.46B3K=-&87DXE=2¡B3�9:aD6+�JLMZ2>:>%c[tE=2���K9+3F32�SXSaS
�h4625-9+���B.DQ8�BG2]:	-=B.D_K9:X2"jt+1Or��B3YZ-rD6:¡DXB0�&-98�4XB�K�DX2]:�+.-98
-9+1*GYN^r+,D62¤D6E=46B3K=^�E¡D6E=2h2>-r*GYZ4XB�-=W	25-rD>%TSU-9:aDX2>+�8¡DXE=2h��B.D¤K9:a2]:
+�*�B3MZK=W	2��¬+.462>+r���&+3:X2>8�4625�94X2]:a2>-�D;+,D6YNB�-�B.R�DXE=2�ª�b¦^�+.W	2
25-G*GYN46B3-9W�2>-rD>m9jCE9YZJ;E�:X2546*32]:h+3:�+��9+3J;Fr���&B�-=2�RVB34cDXE=2¡�&B3D>­ :
JLB�^3-=YNDXYZ*32gj¤B�4XM�8{W�B�8�2>M�%

ÖCÍ¬ËiÍVÈ]×���È]Ç�È>×�Ø¼Ç=Ù1ÉTÍ�ËT×

���9-=YNDX2h:aD6+,D62tW	+�J;E=YZ-=2v�¬I@`�'��iY�:@+�:aO�:aDX25W¾DXE9+.D)E&+3:@+gMNYZW��
YdD62>8v-GK=W¡�&2>4\B3R9:PD;+,DX2]:�B3RGB��&2>46+.DXYZB3-�%T��462>+.M�j¤B�4XM�8g2L©=+.W	�=MZ2
JLB�K=MZ80��2{+�MNYZ^3ErD¡:XjCYdD;J;E�jCE=Y�J;E�YZ:¡25YNDXE9254�B�-�B34¡B.·)%�[tE=2
�9-=YNDX27:PD;+,DX2{W�+3J;E=YZ-=2_D6E9+,D�4X2>�=462>:X25-rD6:�+�MNYZ^3ErD¡:XjCYND6J;E�E9+�:
+.-�Ú B3-�:PD;+,DX2�­�+3-98�+3-�Ú B.·�:PD;+,DX2�­N%��ÀMNYZ^3ErDg:XjCYND6J;E�E&+3:cDPj¤B
:PD;+,D62>:k+.-98_RV4XB�WÁ25YNDXE=2>4t:aD6+.DX2cDXE=2�MZYN^�E�Dt:ajCYND6J;E7J5+3-{J;E9+3-=^32
DXB�D6E=2cB3DXE=2>4�:PD;+,D623%)fc:XK9+.MZMNO¡DXE925462h+.462CW�B�4X2tD6E9+.-� PK&:PD¤DPj¤B
:PD;+,D62>:v+.-&8�D6E=2�:PD;+,DX2	D646+3-9:XYdD6YNB�-9:�+.462¡B3ReDX25-0MZYNW	YNDX2]8�%_[tE=2
:aK9�� P2>JLD_�&2>YN-=^0W	B�8�25MZ2>8�K9:XK9+3MNMZO�J5+3-=-=B3DQ8�YN462>JLDXMZO�J;E9+3-=^32
RV4XB�W´+3-rO�:PD;+,D62�DXB"2>*32546O�B3DXE=2>4�:aD6+,D623%�[tE=2Q:aD6+.DX2�D646+3-9:aYN�
DXYZB3-9:	+34X27+.M�:aB��&B�K=-98��rO�J5254XD6+3YN-�JLB3-&8�YdD6YNB�-9:>%�[tE=27MNYZ^3ErD
:ajCYND6J;E�RVB�4�YN-9:aD6+3-9JL2"B�-=MZO�J;E9+3-=^32]:�:PD;+,DX2�jCE=2>-�+��&2>46:XB3-
�=K9:XE=2>:kD6E=2�:XjCYdD;J;E7YZ-"+	JL254XD6+3YN-�8�YZ4X2]J�D6YNB�-�%
�h-GO¡:XO�:PD625W¼DXE9+.D<E9+3:@+�MZYNW	YNDX2]8	-rK9W���254<B3R&��B�:6:aYZ�=MZ2h:PD;+,DX2]:
J5+3-���2	W�B�8�2>MN2]8�+�:v+_�&-=YdD62_:PD;+,D62�W�+�J;E=YN-923%	ITYZ-=YNDX2_:aD6+.DX2
W�+3J;E=YZ-=2>:¤+.462hB.ReD625-{K9:a2]8	DXB�:aYZW�K9MZ+.DX2cEGK=W�+3-_�&2>YN-9^�:>m�E=B,j
DXE=2>O���25E&+1*32�+.-98�D6E=YZ-=F¯%7�cMdD6E=B3K=^�E0DXE=2>4X2_+34X2�B3DXE=2>4�:XOG:a�
DX2>W	:gD6E9+,D�J>+.-�W	B�4X2	+3J>JLK=4;+,D625MZO7W	B�8�2>M)DXE=2	jt+1O7EGK=W�+3-9:
DXE=YZ-=F�+3-98�MN2]+.46-�m¯DXE=2�:XYNW	�=MZY�JLYNDPO�B.R<�&-=YdD62_:PD;+,D62¡W�+3J;E9YN-=2]:
W�+.F32]:vD6E=25WÛ4;+,D6E=254���B3�=K=M�+.4]%0[tE=2Q�&-=YdD62":PD;+,DX2{W�+3J;E=YZ-=2
B3-=MZO"-=2>2>8=:gD6B{��2�+3:�JLB�W��9MN25©�+3:�DXE=2�8�2]:aYZ462>8�J5B3W	�=MZ2L©�YNDPO
B.RTDXE=2�:XK=�� P2]J�Dh��25YZ-=^�W	BG8=25MZ2>8�%
IiYN-=YNDX2_:aD6+.DX2	W�+3J;E=YZ-=2]:v+.462�B3ReDX2>-�K&:a2]8�D6B"W�B�8�2>M@DXE92�MNYZ-=2
B.R<D6E=YZ-=FGYN-=^7RVB�4�+7��B.D]%¡[tE=2�8�YN·�2>4X2>-rD�:aD6+.DX2>:�B3R<DXE92¡�&-=YdD62
:PD;+,D62gW�+�J;E=YN-92�J5+.-74625�=462>:X25-rDC8�Yd·¯254625-rDc:aD6+.DX2>:hB.RTW	YZ-98�m&B34
8�YN·�2>4X2>-�DhFGYZ-98=:CB3Ri��25E&+1*rYZB34]%@[tE=25462�J5+3-{��2�:aD6+.DX2>:kRVB�4h8�YNRe�
RV254625-rD@:aYNDXK9+.DXYZB3-9:)+3-98�:aD6+.DX2¤DX4;+.-9:XYdD6YNB�-9:i+.462¤B3ReDX25-¡�9+3:X2>8�B3-
JL2>4aD;+.YZ-72>*32>-�D;:tYN-�D6E=2�^r+.W	2v25-G*GYN46B3-9W�2>-rD>%��«*�2546O{:XYNW	�=MZ2
�&B3DcJLB�K=MZ87��2�W	B�8�25MZ2>87jCYNDXE�+��9-=YNDX2�:aD6+.DX2vW�+3J;E9YN-=2vK&:aYZ-=^
RVB3K=4�:PD;+,DX2]:h+3:�:aE9B,jC-7YZ-�IiYN^�K=462�n�%t[tE=2¡��K9+.F�2vSaSXSt�c4X2>-9+
�&B3D_K9:X2>:�+0:aYZW	YNM�+.4�:aDX46K9J�D6K=462�+�:�DXE=2�I@`�'ÜD6B�W	B�8�2>MhYdD;:
DXE=YZ-=F{�=4XB�J52>:6:5%

Ö\ÝiÞ3Þ.ß�à¬á�Î�Í¬Ù

I=K=H>H5O�MNB�^3Y�J"ÔdÐ5Õ¤Y�:�+�:XK=�&2>46:X2LD¡B.RCJLB3-G*�25-rDXYZB3-9+3Mh�¬âkBGB3MZ2>+3-&�
MNB�^3Y�J.%�[tE=Y�:�MZB3^�YZJ�jk+�:�2L©GD625-98�2]8®DXBÀE9+.-&8�MN2�DXE=2sJLB�-��
JL25�=D¡B.RC�9+34aD6YZ+3M<D64XK�D6E�m<+.M�:XB"K9:aYZ-=^�*,+3MNK=2]:���2LDPjk252>-¾¢XJ5B3W��
�=MN25DX2>MNO�D64XK=2]£�+3-98Â¢XJLB�W	�=MN25DX2>MNO�R¬+.M�:X2>£=%Â?�B.DX�«ã¯+�8�25E#B.R
fgqCä,âk2>4XF�25MZ25O�YZ-rDX46BG8=K9JL2]8�RVK9H5H5O�MZB3^3Y�J�YN-0D6E=2�Ð]å3o3æ9­ :�+�:�+
W�2]+.-9:kD6B	W�B�8�2>M�DXE92vK=-9JL2>4aD;+.YZ-rDPO_B.Ri-9+,D6K=46+3M�MZ+3-=^3K&+.^32�%
$3K9:aD�+3:gD6E=25462�YZ:v+�:aDX46B3-=^�4625M�+,D6YNB�-9:aE9YN���&25DPj¤2>25-�âkBrB�MN2]+.-
MNB�^3Y�J�+3-98�DXE=2�J5B3-9J525��D"B.R�+�:aK9�9:a25D>m�D6E=254620YZ:"+�:XYNW	YZMZ+34
:PD64XB�-=^�4625M�+,D6YNB�-9:XE=YN����2LDPjk2525-¡RVK=H>H5O�MZB3^�YZJt+3-98�RVK9H5H5O�:aK9�9:a25D
DXE=2>B346O3%_?�25D>­ :�+3:6:XK=W	2	DXE=2>4X2�­ :v+":X2LD¡`�+.-&8�D6B�+.MZM<YND6:v2>MN25�
W�2>-rD6:cDXE=2>4X2�­ :cB3-=2�2>MN2>W	25-rD�B3R@DXE=2�:a25D�æ=mZÐ�+,DXD6+�J;E=2>8�%�[tE=2
:aK=�&:a25D�fµB3RCDXE=27:a25D	`0Y�:�8=2L�9-=2]8�+3:�+.MZM<D6E=2Q2>MN2>W	25-rD6:¡B.R
`"D6E9+,D�E9+1*�2�+�­ZÐ3­�+.DaD6+�J;E=2>8�%�[tE=2�D64XK�D6E0B34gR¬+.M�:aYNDPO�B3R�DXE92
:PD;+,DX2>W	25-rD�¢a©�YZ:�YZ-�fc£�J5+3-���278=2LDX2>4XW	YZ-=2>8�%�[tE=27:aD6+.DX25�
W�2>-rD�Y�:cD64XK92�YNR<DXE=2>4X2�­ :g+�­ZÐ3­¯+,DXD6+�J;E=2>87D6BQD6E=2�2>MN2>W�2>-rD�­ ©�­
YN-�`¯%�ÃcD6E=2546jCY�:a2�DXE=2�:aD6+.DX2>W�2>-rDhYZ:kR¬+3MZ:X23%
`GYNW	YZMZ+34XMZO�RVB34�D6E=2�RVK=H5H>O�J>+3:X2�D6E=254623­ :�+7:X2LD�`¯%�âkK�D�-9B,j¼+
1+3MNK92<RV46B3W#DXE=2¤YN-rDX2>4X,+3M�Ô æ=mGÐLÕrYZ:i+,DXD6+�J;E=2>8gD6Bc25*�2546O�2>MN2>W	25-rD
B.R¤`¯%�[tE=2	:aK9�9:a25D�f¼B.R<D6E=2	:a25Dv`�Y�:X-�­ Dv:aDX46YZJLDXMZO�8�2L�9-92>8�YZ-
DXE=Y�:�J5+3:X23%�¥cB,j¤2>*32>4cYNDvJ>+.-��&2	8�2LD62546W	YN-=2]8�E9B,j«W�K9J;E�+.-
25MZ25W	25-rD�RV46B3WÀDXE92g:X2LDk`��&2>MNB�-=^�:�DXBvD6E=2hRVK9H5H5O�:XK=�9:X2LDtf�%G�
*1+3MNK92�B.R¤H52546B{+.DaD;+3J;E=2]8�DXB7+.-�2>MN2>W�2>-rD�RV46B3W�`"4625�94X2]:a2>-�D;:
JLB3W	�=MZ2LD62Q-=B�-���W�2>W���254;:aE9YN��B3Rcf�%)�µ*,+.MZK=2QB3RhB3-=2Q4X2>�=4X25�
:a2>-�D;:¡J5B3W	�=MZ2LD62{W	25W¡�&2>46:XE=YZ��%�[tE=27*,+.MZK=2>:¡�&25DPj¤2>25-�H52546B
+.-987B3-92v4X2>�=4X2]:a2>-rDhYN-rDX2>4XW	2]8�YZ+.DX2�8�2>^346252]:tB.R@W	25W���254;:XE=YN�\%
[tE=2_8�25^�4X2>2�D6B"jCE=Y�J;E�D6E=2_:PD;+,D625W	25-rD�¢P©�YZ:�YZ-�fc£7YZ:vDX46K=2
J5+.-�+3MZ:XBh��2k8=2LDX2>4XW	YZ-=2>8�%T[tE=2k8�25^�4X2>2<B.R�D64XK�D6E�B.R�D6E=2¤:aD6+.DX25�
W�2>-rDtY�:t^3YZ*32>-Q�GO�D6E=2�+,DXD6+3J;E92>8_*,+3MNK=2gD6B¡D6E=2�25MZ25W	25-rDC©QYZ-
DXE=2�:X2LDc`¯%
ÃcReDX25-�+_*,+.MZK=2�RV4XB�WÂD6E=2�YN-rDX2>4X*,+3MkÔ æ=m)ÐLÕ)Y�:g+.DaD;+3J;E=2]8�DXB7+.-
25MZ25W	25-rDvB.RkDXE=2�:X2LD¡`�K9:XYN-=^"+{RVK=-9JLDXYZB3-�m\DXE=2�W	2>W���254;:aE=YZ�
RVK=-9J�D6YNB�-�%�`�K9J;E�+�RVK9-9J�D6YNB�-�YZ:�B�-=2L�U8�YZW	25-9:XYNB�-9+.Mt��2>J>+.K9:X2
YdD]­ :��9+�:a2]8�:XB3MZ25MZO"B3-�B3-=2	JL46YdD62546YNB�-�%�SU-��=4;+3J�D6YZJ52¡W	2>W���254X�
:aE=YZ��RVK=-9JLDXYZB3-9:¡+.462��&+3:X2>8�B3-�DPjkB"B34v25*�25-0W	B3462_JL46YdD62546YZ+9%
`GK9J;E"+�RVK=-9JLDXYZB3-�^3YZ*32]:C+	*1+3MNK92�RV4XB�WÁDXE=2�YN-rDX2>4X*,+3M<Ô æ9m�ÐLÕ�D6B
+�JLB�W��=YZ-9+.DXYZB3-�B.RgJL46YdD62546YZ+�+3-98�Y�:�B3ReDX2>-�462LRV2546462>8�DXB0+3:¡+
¢PRVK=H>H5O�4X2>MZ+.DXYZB3-9£9%i[tE=2gJL46YdD62546YZ+v8=B3-�­ D¤E9+1*�2CDXB¡�&2�25MZ25W	25-rD;:
RV4XB�WsDXE=2h:6+.W	2t:a25DiD6E=25O¡J5+.-c PK9:aD�+3:ij¤2>MNMG��2t25MZ25W	25-rD6:iRV46B3W
8�Yd·¯254625-rD�:X2LD;:5%7[tE=2_JL46YdD62546YZ+"+3MZ:XB"8�B"-=B3D�E9+1*32�DXB"��2_2>MN25�
W�2>-rD6:	RV46B3W¹:a25D6:>%�Ï<+34XY�+.�=MZ2>:_B.Rv:aB�W�2"FGYZ-98�J5+3-�+.M�:aB0��2
K9:a2]8{+�:CJL46YdD62546YZ+9%
I=K=H>H5O�MNB�^3Y�J�J5+.-���2QK&:a2]80�rO��&B3D6:�DXB�25©��=4X2]:X:�E=B,jÀW¡K9J;E
DXE=2>O�jt+.-rD�D6B�E9+1*�23miB34�8�B�J5254XD6+.YZ-0DXE9YN-=^r:5%�I=B�4�YZ-9:PD;+.-9J52
+"�&B3D�W	YZ^3ErD�D6E=YZ-=F0B.RhE=B,j®W�K&J;E�YdD	jt+.-rD6:�DXB�462LD64XYZ25*�2_+
JL254XD6+3YN-"YNDX2>W�+3:�+	RVK=H5H>O�*1+3MNK923%�[tE92�W	B3462vDXE92¡��B.Dgjk+3-�D;:
DXE=2�YdD625W¹DXE92�E=YZ^3E=2>4_D6E=2�RVK9H5H5O�*,+.MZK=2�%ÀI=K9H5H5O�4625M�+,D6YNB�-9:
J5+.-{�&2�K9:X2>8_DXB	2L©��=462>:6:�DXE=2�4625M�+,DXYZB3-Q�&25DPj¤2>25-{DXE=2vJLK94X4625-rD
:PD;+,DX2kB.R&DXE=2t��B.D<+.-&8�E=B,j�W¡K9J;E¡DXE=2t��B.D@jk+3-rD6:i:aB�W�25DXE=YZ-=^&%
I=B34kYZ-9:PD;+.-9J52��&+3:X2>8�B�-QjCE=Y�J;EQjk2>+3�&B�-�DXE=2g��B.DtYZ:kE=B�MZ8�YZ-=^&m
+.-98�E=B,j�W�K&J;E�+.W	W�K=-9YdD6YNB�-�DXE=2���B.Dg+.MZ4X2]+38�O{E9+3:tRVB�4CDXE92
j¤2]+.��B3-�m9DXE=2���B.DgJ5+.-�+.DaD;+3J;E�+�RVK=H>H5O�*,+.MZK=2vDXBQE=B,j#W¡K9J;E
YdD�jt+.-rD;:�DXB�462LD64XYZ25*�2�W	B3462_+.W	W�K=-9YdD6YNB�-0RVB34vD6E=2Qjk2>+3�&B�-�%
[tE=2g��K9+3F32tSaSXS)�c4X2>-9+���B.D�K9:X2>:@DXE=Y�:<FGYZ-98	B.R�RVK=H5H>O¡MZB3^�YZJkD6B
2L©��=462>:6:<E=B,j�W�K&J;E_YdDkjk+3-rD6:@D6B�E9+1*�2hB34k8�B¡J5254XD6+3YN-	D6E=YN-9^�:>%

l3ç¬è [\2]+.WµMZ2>+�8�254h�cS
ª3é;ê '"Y�:6J.%<�hS �hStuh25DPj¤B�4XF q¤B3W	W�+.-98=:
n.ë3ê I9K=H5H>O q¤E9+.4;+3JLDX2>4 � B�+3MZ: u�+1*rYZ^�+.DXYZB3- q¤E9+,D;:
Ð]ì�ç �h462>+	�hjt+.4625-=2]:X:C`GO�:aDX2>W ât+�:aY�J��cJ�D6YNB�-9:

IiYZ^3K=462vª=Ñ@?\+1O�25462>8Q+346J;E9YdD62>J�D6K=462

xcí�î¤×�ï1È�ð>ß�ð5È]×rñ

�h-�25©G��254XDQ:XOG:aDX2>W�:�Ô n,Õ�Y�:_+�:XOG:aDX2>WòD6E9+,D7:PD6B3462>:	EGK=W�+.-
2L©���254XDXY�:a2�m&^r+.YZ-=2>8{RV46B3W}DX4;+.YZ-=YZ-=^Q+.-&8�2L©��&2>4XYZ25-&JL23%c`�K9J;E�+
:aO�:aDX2>WÂE9+�:hD6E=46252�YZW	�&B�4aD;+.-rDg+�:a��2>JLD6:>%c[tE=2�FG-=B,jCMZ2>8�^�2�B.R
R¬+3JLD6:>mGDXE=2�FG-=B,jCMZ2>8�^�2�B3RT4625M�+,DXYZB3-&:¤��2LDPjk252>-_D6E=2�R¬+3JLD6:>m=+.-98
+7E=25K=46Y�:PD6YZJ	B�4g25°_JLYZ25-rD�W	2LDXE9BG8�RVB�4�:PD6B34;+.^32	+.-&8�+�J5¨rK=Y�:aYN�
DXYZB3-"B3RTD6E=YZ:cYN-=RVB346W	+.DXYZB3-�%t[tE=2�J5B3-9:aDX46K9JLDXYZB3-�B.R@+.-"25©G��254XD
:aO�:aDX2>WÛYZ:�J>+.MZMN2]8�FG-=B,jCMZ2>8=^32725-=^�YN-=2>2546YN-9^9%��¦Fr-9B,jCMN2]8�^32
25-=^�YN-925254@25©GDX4;+3J�D;:)DXE92hFG-=B,jCMN2]8�^32v�¬�=4XB�J52>8�K=462>:>m3:aDX4;+,D625^3YZ2>:>m
YN-=RVB346W	+.DXYZB3-7�9MNDX2>46:>m9JLB�W	W�B�-�25*32>-rD6:>m=2LD;J.%ó�_B�K�DhB.R@EGK=W�+.-
2L©���254XD6:	+.-98�DX4;+.-&:PRVB�4XW�:�DXE=Y�:	FG-=B,jCMN2]8�^32{YN-rD6B�+3-�25©G��254XD
:aO�:aDX2>W7%µ[tE92�F�25O�Y�:X:XK=2�YN-#2L©��&2>4aD�:XO�:PD625W�:QY�:{DXE=20jt+1O
FG-=B,jCMN2]8�^32	Y�:�:aDXB3462>8�YZ-�mi+3-98�2L©GDX4;+3JLDX2]8�RV46B3WÅDXE=2_FG-=B,jCMN�
2>8�^�2��&+3:X23%@?�B�^3Y�Jc:XOG:aDX2>W�:¤�94XB,*GY�8�2���B,jk254XRVK=M�DXBGB3M�:¤DXB�4X2>���
4X2]:a2>-rD¡+.-98�YN-�RV2>4¡FG-=B,jCMZ2>8=^32_YZ-�+.-�2L©��&2>4aD	:aO�:aDX2>W7%�(<46B.�
8�K9JLDXYZB3-�4XK=MZ2>:�B�4�4XK=MZ2L���9+�:a2]8�:XOG:aDX2>W�:v+.462�D6E=25462LRVB�4X2�B.ReD625-
K9:X2>8�D6BQYZW��9MN2>W�2>-rD�+3-�2L©���254XDg:XOG:aDX2>W�%�(<46B�8�K9JLDXYZB3-"46K=MN2]:
B346YN^�YN-&+,DX2�RV46B3W¿D6E=2_SPIÀ�P%]%L%6��[C¥�º�uµ:aDX46K9JLDXK=4623mTjCE=YZJ;E0Y�:
FG-=B,jC-�RV46B3W«D646+�8�YNDXYZB3-9+3M��=4XB�J52>8�K=4;+.MGM�+.-=^�K9+.^�2>:>%\[tE=2t46K=MN2]:
JLB�-9:aY�:aDgB3R¤+{J5B3-98=YdD6YNB�-�:XYZ8�2"�VDXE=2�+.-rD62>JL2]8�25-rD��c+3-98�+3-�+�J��
DXYZB3-�:XY�8�2��VDXE=27JLB3-&:a2]¨�K925-rD;�LÑ�SPI®��JLB3-&8�YdD6YNB�-&��[C¥�º�u´�¬+3JL�
DXYZB3-&�L%@[tE=2hJLB�-98�YNDXYZB3-�Y�:<+vMZB3^3Y�J5+3M�2L©��=462>:6:aYZB3-�B.R¯R¬+�J�D6:@RV4XB�W
DXE=2�FG-=B,jCMZ2>8�^�2Q�9+�:a2�%�[tE=2�+3J�D6YNB�-�2>YdD6E=254�JL462>+.DX2]:¡B�-=27B34
W	B3462C-=25j�R¬+3JLD6:>m34625W	B,*32]:iR¬+3JLD6:<B�4)DX46YN^�^32>46:@J5254XD6+.YZ-	25*�25-rD6:>%
[tE=2�8�YN·�2>4X2>-9JL2"YZ-�46K=MN25�¸�&+3:X2>8��=4XB�^34;+.W	W	YN-9^�+�:	B3�=��B�:X2>8
DXB0JLB�-r*�25-rDXYZB3-&+.Mk�=4XB�^34;+.W	W	YN-9^�MNYZ2>:	YZ-�DXE=27R¬+3JLD¡D6E9+,D	D6E=2
:PD;+,D625W	25-rD6:cYN-�JLB3-G*�25-rDXYZB3-9+3M��=46B3^�46+3W�W	YZ-=^�M�+.-=^�K9+.^�2>:h+34X2
2L©�2>J5K�DX2]8QYZ-�+¡�94X2]8�2L�9-92>8{B34;8�254]%@ACK=MZ2L���9+3:X2>8{:aO�:aDX25W�:tK9:X2
+.-�YN-�RV2>4X2>-9JL2�2>-=^3YZ-=23m¤jCE=Y�J;E�8�25DX2>4XW	YZ-=2>:¡DXE92746K=MZ2>:�D6B���2
�9462>8"�9+�:a2]8�B�-"DXE=2	JLK94X4625-rDcR¬+�J�D;:5%�SU-�D6E=Y�:�jt+1O�-=25j¾R¬+3J�D;:
J5+3-�J;E9+.-=^�2gDXE=2�JLB3K946:X2vB.R)DXE92��=46B3^�46+3W§+3:CYND��94XB�JL2>2>8=:CDXB
�9462�B3DXE=2>4k46K=MZ2>:>mrDXE9+.DC+34X2�-=B.Dt-=2]JL2>:6:6+.46YNMZO�:PD6B3462>8QJ5B3-9:X2>J5K��
DXYZ*32>MNO�D6B��=4625*GYNB�K9:XMNO	�9462>8{46K=MN2]:5%
�h-�2L©���254XDQ:aO�:aDX2>WòJ5+3-���2"K9:X2>8�DXB0YZW	�=MN2>W	25-rD_DXE92"4X2]+,�
:aB�-=YZ-=^"B.Rc+"��B.D]%�[tE=2Q25©��&2>4aD6YZ:X2�RV46B3W�ErK9W	+3-��=M�+1O3254;:vY�:
2L©GDX4;+3JLDX2]8�+.-&8�:aDXB�4X2]8�YZ-0+{FG-=B,jCMZ2>8�^�2¡�9+�:a2�%�(�4XB�8�K&J�DXYZB3-
4XK9MN2]:CJ5+.-���2vK9:X2>8{DXB_J54X2]+,DX2�-=2>j�R¬+�J�D;:CB34CYZ-=YNDXY�+,DX2�J5254XD6+3YN-
+3JLDXYZB3-9:>%�I9B34�YZ-9:aD6+.-&JL27DXE=2"��B.DQJ5B3K=M�8�K9:a27D6E=2�RVB3MZMNB,jCYZ-=^
�=46BG8=K9J�D6YNB�-�4XK=MZ23Ñ�SPIÀDXE=2���B.D7YZ:_�9^3ErD6YN-=^��cucbÅDXE92��&B3D
YZ:�MNB,jÀB3-0E=2>+3MdD6E��cucbµDXE=2���B.D�8=Br2]:v-=B3D�E9+1*32�+7�&B,jk254X�
RVK=M�jk2>+3�&B�-7[C¥�º�us462LDX462>+.DtRV4XB�WÁDXE=2��&^3ErD>%<[tE=2�J5B3-9J525��D;:
¢aMZB,j�B3-	E=2]+.MNDXE9£�+3-98�¢X8�BG2>:)-9B.D<E9+1*�2k+���B,j¤2>4aRVK9M�j¤2]+.��B3-9£
+.462�-=B3D�J5MN2]+.4�R¬+3JLD6:gYN-�DXE=Y�:g2L©=+.W	�=MZ23%�I9K=H5H>O"MNB�^3Y�J�J>+.-���2
K9:X2>8gDXB�^3YZ*32<+hJ5MN2]+.4TW�2]+.-=YZ-=^CD6Bc:XK9J;E�JLB�-9JL2>��D6:>%\��*1+3MNK92�B.R
DX46K�DXE7J5+3-_�&2�+,DXD6+�J;E=2>8	D6B�D6E=2�:PD;+,DX2>W	25-rD¡¢XMNB,j�B�-_E=2>+3MdD6E9£
�9+3:X2>8	B�-	DXE=2g+.W	B3K9-�D¤B.R�E=2>+3MdD6E�DXE92c��B.D�E9+�:5%)SU-	D6E=2�:6+.W	2

jk+1O�+�*,+.MZK=2�B3RgD64XK=DXE�J>+.-���2�+,DXD6+�J;E=2>8�D6B�DXE=2�JLB�-9JL2>��D
¢PDXE92{��B.D_8�BG2>:	-9B.D	E9+1*32�+���B,jk254XRVK=Mtj¤2]+.��B3-9£��9+3:X2>8�B3-
DXE=2�jk2>+3�&B�-9:�+.-980+.W	W¡K=-=YNDXYZB3-�DXE=2���B.D�Y�:vJ5+34X46OGYN-9^9%	fc:a�
YN-=^�+�RVK=H5H>O�4625M�+,D6YNB�-�miYdD�YZ:¡+.M�:aB"��B�:6:aYZ�=MZ2�DXB�JLB�W��=YZ-=2	DXE92
JLB3-&JL25�=D6:v¢XMNB,j�B3-	E=2>+3MdD6E9£v+.-&8�¢68�BG2>:)-=B3D�E9+1*�2t+g��B,j¤2>4aRVK9M
j¤2]+.��B3-9£�YN-rD6B�DXE=2C-=2>j�J5B3-9J525��D�¢aDXE=2t��B.D<Y�:@-=B.D)�=D<2>-=B3K9^3E
DXB��9^�E�D;£=%�[tE=2_25©�+3W	�=MN2��94XB�8�K9JLDXYZB3-046K=MN2{JLB3K9MZ8�DXE925-���2
4X2>�=MZ+�JL2]8��GO¯Ñ{SPI¾DXE=2���B.D�YZ:	YZ-�+��&^3ErD_�cucb¿DXE=2"��B.D�Y�:
-=B.D@�=Dk25-=B�K=^3E�D6B��9^3ErD�[C¥cº¤u�462LDX462>+.D@RV4XB�W¾D6E=2C�9^�E�D]%i�c-
YN-�RV2>4X2>-9JL2�25-9^3YZ-=2�B3R¤:aB�W	2¡FGYZ-98�J>+.-���2	K9:a2]8�YZ-�J5B3W��9YN-9+.�
DXYZB3-	jCYdD6E	�=4XB�8�K&J�DXYZB3-	46K=MZ2>:@+3:)YZ-�DXE=2C25©=+.W	�=MZ2>:>%i¥cB,j¤2>*3254]m
:aK9J;E��=46B�8�K9J�D6YNB�-	4XK=MZ2>:@+34X2C+3MZ:XB�B3ReDX2>-� PK&:PD�MZY�:PD62>8�YN-�:X25*�254;+.M
�=4XB�J52>8�K=462>:>%�[tE=2Q��K9+3F32�SaSXS��h4625-&+{��B.DvK9:X2>:g�=46B�8�K9JLDXYZB3-
4XK=MZ2>:TD6Bg25©��=MNY�JLYNDXMZO�4625�=462>:X25-rD@JL2>4aD;+.YZ-�FG-=B,jCMZ2>8�^�2k+3-98�W�+3F32
JL254XD6+3YN-�8�2]JLY�:aYZB3-9:>%

� ~ � Ä"±L��x � ��³{~{x

ô�Ç�ß&×rï,×rÌ�Ç�ï,Ù]ÉiÍVÈ]×GÙ.È>ÝTï,×

[tE=2Q��K9+.F�2¡SXSaS��h4625-9+{�&B3D�YZ:��9K=YNM�8�K=�0YN-0:a2>*32>46+3MiM�+1O32>46:>%
[tE=2g+1jt+.4625-92>:6:<B.Ri8�2>J5YZ:XYNB�-9:¤DXE=2g��B.DCW�+.F32]:�jCE9YNMZ2��=MZ+1OGYZ-=^
DXE=2�^r+.W	2"YZ-9JL462>+�:a2]:�jCYdD6E�E=YZ^3E=2>4QM�+1O3254;:>%#[tE=2�8=2>JLY�:XYNB�-9:
RV4XB�WõE=YZ^3E9254_M�+1O32>46:_+34X2"25©�2>JLK=DX2>8�D6E=46B3K=^�E�MNB,jk254_M�+1O32>46:>%
[tE=2vMZ+1O�25462>8_:aDX46K9JLDXK=462�B.RiDXE=2v��B.DhY�:C:aE9B,jC-{YZ-"ITYZ^3K94X2vª=%
[tE=2�Ð1ì�ç	MZ+1O�254QY�:{�9+3:XYZJ>+.MZMNO�DXE92�YZ-=�=K�D"+.-98�B3K�D6�=K�D�MZ+1O�254
RVB34CD6E=2���B.D]%t[tE92��h462>+��cjk+34X2>-=2>:6:h`GO�:PD625W}YZ:hDXE=2¡:aO�:aDX25W
DXE9+.D<�=4XB,*GY�8�2>:TD6E=2C�&B3D�jCYNDXE�+.MZMGDXE=2cYN-�RVB�4XW�+.DXYZB3-	+.��B3K�D)DXE92
JLK=464X2>-rDC:aD6+.DX2vB3RTD6E=2vj¤B�4XM�8�%@SU-�RVB�4XW�+.DXYZB3-"+.��B3K�DCD6E=2�:aD6+,D62
B.R=D6E=2tj¤B�4XM�8vY�:T462>J525YZ*32]8�+3:i+�:X2LD)B.R&*1+34XY�+.�9MN2]:T8�YZ462>J�D6MNO�RV46B3W
DXE=2¤^�+.W	2¤�=4XB�^34;+.W�%�I=B�4\R¬+�:PD)+.-98�2>+3:XOv+3J>JL2>:6:\+3-98vK9:6+.^�23m1+
MNB3DTB.R�RVB�4XW�+.DaDXYZ-=^g+.-98v�94X25�¸�=46B�JL2]:X:XYN-9^CYZ:T�&2>4aRVB�4XW	2]8vB3-vD6E=Y�:
YN-�RVB�4XW�+.DXYZB3-�%sº<*�2546O�D6E=YZ-=^�DXE=2���B.D�:a2>-9:X2>:�^�Br2]:	DXE94XB�K=^3E
DXE=2��h462>+_�cjk+34X2>-=2>:6:c`GO�:aDX25W�%g[tE=2��9+�:aY�J�+�J�DXYZB3-&:c+.462�DXE92
B3K�D6�=K�DTB3R�DXE=2¤�&B3D>%i[tE=2�B�K�DX�=K=DTY�:�RVB�4XW�+,DXDX2]8�YN-�+hjk+1O�DXE9+.D
JLB3-=RVB346W	:<DXB¡DXE=2g�9+346+3W�25DX2>46:�B.R�D6E=2�^r+.W	23%)[tE=2gB3K�D6�=K�DtB.R
DXE=27�&B3D�YZ:¡DXE92{�=M�+1O32>4�YZ-=�=K�D	RVB�4¡D6E=27^�+.W	2�m<W�K9J;E�MNYZF327+
ErK9W	+3-{�9MZ+1O�254tK9:X2>:C+	F32>OG�&Br+.4;8Q+.-&8{+�W	B3K9:X23%
[tE=2cn.ë3êCMZ+1O�254@�=46B,*GYZ8�2]:TDXE=2hYZ-rDX2>MNMZYN^�25-9J52kDXE9+.D�YZ:<B.ReDX2>-�:aK=�=�
JLB3-&:XJ5YNB�K9:kDXBQ:XFGYNMZMZ2>87EGK=W�+.-"�=M�+1O32>46:>%�[tE=Y�:hM�+1O32>4hJLB3-rD;+.YZ-9:
�hStRVB34g^3Br+.M\:X25MZ2>JLDXYZB3-�%g[tE=Y�:��cSc+.MZMNB,jh:CDXE=2��&B3DcD6B{J;E=BGB�:X2
DXE=2��&2]:PDv^�B�+.MTDXB7�=K=4;:XK=2�RV46B3W�+QjCE=B3MZ2�46+3-=^32¡B.R���B�:6:aYZ�=MZ2
^3B�+3MZ:>%�[tE92{��B.D�K9:a2]:¡RVK=H5H>O�MZB3^�YZJ_DXB�8�2>J5YZ8�27jCE=Y�J;E�^3Br+.M�:
YdD	jk+3-rD6:�DXB0+3J;E=YZ25*�23%0[tE=YZ:�RVK=H>H5O�MZB3^3Y�J_Y�:	+.M�:aB�:PD6B3462>8�YZ-
DXE=2¡n3ë3ê�M�+1O32>4>%�[tE925462vYZ:h+3MZ:XB_�hS¤DXBQ-9+1*GYN^r+,DX2gD6E=4XB�K=^3E{DXE92
^�+.W	2k25-G*GYN46B3-9W�2>-rDTD6B,jk+3468=:i+�:a��2>J5Yd��J¤^�B�+3M�%i[\B���2t+3�=MZ2¤D6B
JLB3W	W¡K=-=Y�J5+,D62�jCYdD6E�B.D6E=254��9MZ+1O�254;:cD6E=Y�:�M�+1O3254�+3MZ:XB"E9+�:��hS

Client code
providing the IO
functionality for
human players

Server

Client

Renderer

Game Bot AI (3 & 4 layer)rd th

ndBot AI (1 & 2 layer)st

Player input

Sound

3D image

Client Game

networking

ITYZ^3K94X2�l9Ñ)SU-rDX2>^34;+,D6YNB�-{B3RT��B.Dc�hSkjCYNDXE7DXE=2v^r+.W	2�25-=^�YN-923%

DXB¡YN-rDX2>4X�94X25DkJ;E9+.D¤W	2>:6:X+3^32]:)RV4XB�W®B.DXE9254;:¤+3-98	DXB�JLB�-9:PD64XK&J�D
J;E9+,D�W	2]:X:6+.^�2>:�8�YZ462>J�D62>8�+.D�B.DXE9254��9MZ+1O�254;:5%7ITYZ-9+3MNMZO�D6E=25462
YZ:c+�W	BG8=K=MN2�DXB_:aDXB3462�+.-&8�4X25DX46YN2>*32��=46B3��254XDXYZ2>:CB3R@8=Yd·¯254625-rD
�&B3D<J;E9+.4;+3JLDX254;:>%\º�+�J;E���B.D<J;E9+.4;+3JLDX2>4TE9+�:)+g:X2LD@B3R&*,+.46YZ+3�=MZ2>:
DXE9+.Dh4X2>�=462>:X25-rD¤D6E=2�J;E9+346+�J�DX2>4XY�:aDXY�J5:¤B.RiDXE=2v��B.D]%
[tE=2�ª�é6ê�MZ+1O�254hY�:c+QW	Yd©GDXK94X2�B3R<�=46BG8=K9J�D6YNB�-"4XK=MZ2>:¡�VYNRe��D6E=25-=�
25M�:a21��+3-98Q+3-Q�hS¤-=2LDPjkB346F�jCYdD6E7:X�&2]JLY�+.M�-=B�8�2>:¤RVB�4t8=Yd·¯254625-rD
:aYNDXK&+,DXYZB3-&:<+.-98�:aD6+.DX2]:@B.R�W	YN-&8�%@[tE=YZ:<-=2LDPjkB346F�Y�:@*32>4XO�:aYZW��
YNM�+.4	D6B�+�:PD;+,D627W�+�J;E=YN-923%��cMNMcDXE=2"E=YZ^3E9254X�¸MZ25*�25MtDXE9YN-=FGYZ-=^
+.-98�4X2]+3:XB3-=YZ-=^	D6+3F32]:c�=M�+3J52�YZ-�D6E=YZ:�M�+1O3254]%�[tE9YZ:�MZ+1O�254g+.M�:aB
JLB�-�D;+.YZ-9:i+�J5B3W	W�+.-98�W�B�8�K9MN2kjCE=Y�J;E�+3MNMZB,jh:�D6E=2t�&B3DiD6B�K9-��
8�254;:aD6+.-&8{B�468=254;:C+.-98�JLB�W	W	+3-98=:tRV46B3WÂB.D6E=254h�9MZ+1O�254;:tB34h+
DX2]+.W§MZ2>+�8�254]%<[tE=2vW	Y�:XJ525MZMZ+3-=25B�K9:C�hStW	B�8�K=MZ2�JLB3-rD;+.YZ-9:C�hS
DXB_:XK=�=��B34XDh�&2>E9+1*GYNB�4hK9:X2>87YZ-�m&+3-98"8�2>J5YZ:XYZB3-9:tW�+38=2�YN-7D6E=2
�hSC-=25DPj¤B�4XF¯%g[tE=YZ:gYZ-9JLMZK98�2]:��cSCRVB34cDXE=2¡�9^�E�D6YN-9^Q��25E9+1*GYZB34
B.R=D6E=2k�&B3D@+3-98��cS�DXBg-9+1*GYZ^�+,D62¤+34XB�K=-98vB��9:PD;+3J5MN2]:T+3-98�:XB3MZ*32
:aW�+3MNM��=K9H5H5MZ2>:tYZ-7DXE=2v^r+.W	2�25-G*GYN46B3-9W�2>-rD>%
[tE=2vl3ç¬è�MZ+1O�254tYZ:CDXE=2�¢X�=4;+.YZ-9£�B3RTD6E=2vD62>+.WÂMN2]+38�2>4CB34hJ5B3W��
W�+.-98�J525-rDX2>4>%gSU-�+_DX2]+.W¦^�+3W�2¡B3-=2¡B.R@D6E=2¡��B.D;:cY�:�8�2>:XYZ^.�
-9+,D62>8{DXBQ�&2vD6E=2�DX2]+.W}MN2]+38�2>4c+.-&8{E&+3:tD6E=YZ:c2L©GDX4;+�¢a�=4;+.YZ-9£
K9:X2>8�D6B�JLB3W	W�+.-&8�DX2]+.W	W�+,D62>:>%Â[tE=Y�:�+.MZMNB,jh:{DXE92�D62>+3W
MN2]+38�2>4�DXB"B�4X^r+.-=YZH52¡DXE=2	D62>+3W´+.-&8�+�J5J5B3W	�=MZYZ:XE�D;+3:XF�:�YN-�+
DX2]+.W�%
[tE=2_JLB�8�2�B3RtDXE=2�^r+.W	2�25-=^�YN-923m\YZ-9J5MNK98=YN-=^�DXE=2_��B.D��cS�m\Y�:
:PD64XK&J�DXK94X2]8{+�:C:aE=B,jC-7YZ-{D6E=2v�=MZB�J;FQ8�Y�+.^34;+.W���IiYN^�K=4X2�lG��%
[tE=2�¢ � +3W	2>£�W	BG8=K=MN2�:a25D6:	D6E=2"4XK9MN2]:	RVB34�D6E=2"^�+3W	2�+.-98
8�Y�J�D6+.DX2]:{E9B,j¿DXE=20^r+.W	2�jkB346F�:5%µ[tE=2�¢6`�2546*3254;£�W	B�8�K=MZ2
�=46B,*rY�8�2]:CDXE92�RVK=-9JLDXYZB3-9+3MNYNDPO7RVB34g�=M�+1O3254;:tD6B{JLB�-=-=2]J�DcD6B_D6E=2
^�+3W�2�%#[tE=2�¢;q¤MZYN2>-�D;£=m	¢;q¤MZYZ25-rD � +.W	2>£�+3-98®¢XAh25-98�2>4X2>46£
W	BG8=K=MN2]:CD6B3^325DXE=2>4h�=46B,*GYZ8�2�D6E=2�SU-9�=K�D�ä�Ã�K�DX�9K�D��¬SXÃ��kRVK=-9JL�
DXYZB3-9+3MNYNDPO�RVB340+�EGK=W�+.-¼�=MZ+1O�254]%ò[tE=2½¢;q¤MZYN2>-rD6£�W	B�8�K=MZ2
4X2]JLB�468=:<YN-=�9K�D�RV46B3W½DXE92cYZ-=�=K�Dt8�25*GY�JL2>:k+.-&8�:a2>-98=:¤YdD¤DXBvD6E=2
:a2>4X*�254]%T[tE=Y�:kW	BG8=K=MN2g+.M�:aB�RVB346jk+34689:@YN-=RVB346W	+.DXYZB3-�RV46B3W½D6E=2
:a2>4X*�254�+3�&B�K�D�D6E=2c^r+.W	23mG+.-&8�jCE9+,DkYZ:�*GYZ:XYN�9MN2cDXB�D6E=2c�9MZ+1O�254
DXBCD6E=2�¢�q¤MNYZ25-rD � +3W	2>£CW	B�8�K=MZ23%i[tE=2�¢�q¤MNYZ25-rD � +3W�2]£CW	B�8G�
K=MZ2�YZ-�D62546�=462LD6:cDXE9YZ:�YN-=RVB346W	+.DXYZB3-�+3-98�:X25-989:hD6E=2�-=2]JL2]:X:6+.46O

8=+,D;+7DXB�DXE92�¢XAC2>-98�2>4X2>46£7jCE=Y�J;E0�=4XB,*GY�8�2>:�+"ª3bÁYZW�+.^32	D6B
DXE=2��=M�+1O32>4>%@[tE=2�¢;q¤MZYZ25-rD � +.W	2>£¡W	BG8=K=MN2�+3MZ:XB	:a2>-98=:t�9+�J;F
YN-�RVB�4XW�+.DXYZB3-Q+3�&B�K�Dh:aB�K=-98=:�DXB¡DXE=2�¢�q¤MNYZ25-rD6£9mGjCE=YZJ;E{W�+.F32]:
DXE=2Q:XB3K9-98=:�+3K98�YZ�=MZ2�DXB"D6E=2_�=M�+1O32>4>%7SU-�IiYN^�K=462�l"DXE=2{�&B3D
�hSCY�:�:XE=B,jC-"YZ-"DPj¤BQ�9+.4XD6:>Ñ�D6E=2�MNB,jk254CDPjkB_M�+1O32>46:h+3-987DXE92
K=�=��2547DPj¤B�MZ+1O�254;:5%½[tE=2#¢ � +.W	2>£�W�B�8�K9MN2��=46B,*rY�8�2]:�DXE92
�h462>+	�hjt+.4625-=2]:X:h`�OG:aDX2>W§jCYNDXE�+3MNM�D6E=2vYZ-�RVB346W�+,DXYZB3-"+3�&B�K�D
DXE=2	:PD;+,D62�B.R@D6E=2�^�+.W	2¡j¤B�4XM�8�%�[tE9YZ:gYZ-�RVB346W�+,DXYZB3-�JLB3-&:aY�:PD;:
W	+3YN-9MNO�B.Rt25-rDXYNDPO�8=+.D6+9%_[tE=2��&Br:aYNDXYZB3-\m\DPOG��23mT+3�=��2>+.4;+.-&JL2
2LD6J3%�B.R�25-rDXYNDXYZ2>:	YZ-�D6E=2�^�+.W	27+.462{JLB�W	W�K=-=Y�J5+.DX2]8�DXB�DXE92
�h462>+Q�cjk+34X2>-=2>:6:�`�OG:aDX2>W�%�[tE=2¡��B.D�YZ-=�=K�D]m\+Q:X2>¨rK=2>-9JL2�B.R
�9+3:XYZJc+3J�D6YNB�-9:@B�4<YN-rD625-rDXYZB3-9:>mr^325-9254;+,DX2]8��rO¡DXE92c��B.D>mrY�:�:X25-rD
8�YN462>JLDXMZO�DXB	D6E=2"¢ � +3W	2>£¡W�B�8�K9MN2�%
[tE=2{jCE9B3MZ2Q^�+3W	2QDPOG�=Y�J5+3MNMZO04XK=-&:¡YZ-�:XW�+.MZM�D6YNW	2":aDX25�&:¡B�4
RV46+3W�2]:5m�jCE=YZJ;E�Y�:	4X25RV25464X2]8�DXB�+�:�D6YNW	25�¸�9+�:a2]8�:XYNW¡K=M�+,DXYZB3-\%
º�+3J;E¡RV4;+.W	2tDXE=2hDXYZW�2�+.-98¡DXE92hjCE=B3MZ2C^�+3W	2Cj¤B�4XM�8¡+�8�*,+.-9J52
+�MNYNDaD6MN2{�=YdD]%�[tE=2_��B.D]­ :�¢a�=4;+.YZ-9£�+.M�:aB"B��&2>46+.DX2]:vYN-�RV46+3W�2]:
�=K�D	-=B.D�-=2]JL2>:6:6+.46YNMZO�:XOG-9J;E=46B3-=YZH52]8�jCYNDXE�D6E=27^�+.W	2�%�[tE=2
�&B3D>­ :�¢a�=4;+.YZ-9£	+.MZjt+1OG:tB��&2>46+.DX2]:C+,D�Ð]æ�¥cH3%tº<*�2546O�DX2>-�D6E"B.R
+C:a2]JLB3-&8cD6E=2<��B.D\J;E=2]J;F�:�K=��B3-vYND6:�:aD6+.DXK9:�+3-98v:XYdD6K9+,D6YNB�-�+3-98
8�2>J5YZ8�2]:¯RVB34�DXE=2<��2>:aDT+�J�DXYZB3-&:¯DXBh��2)D6+3F32>-�%T[tE=2@��B.DTK9:a2]:¯DXE92
YN-�RVB�4XW�+.DXYZB3-"+1*,+.YZMZ+3�=MN2�RV46B3WÂDXE92��h462>+��cjk+34X2>-=2>:6:c`GO�:aDX25W
DXBv:PD;+1O�K=��DXBv8=+.DX2C+.��B3K=D<YdD;:@:PD;+,DXK&:<+.-98�DXE92C25-G*GYN46B3-=W	2>-�D]%

� ±�ËT×rÈ;ö�á&ï]÷

[tE=2�J525-rDX4;+.M¤¢a�=4;+.YZ-9£vB3R�DXE=2��&B3D¤Y�:¤+�-=2LDPjkB346F¡jCYNDXE{:a��2>J5YZ+3M
-=B�8�2>:�RVB�4�8�YN·�2>4X2>-�D�:XYNDXK9+.DXYZB3-9:�+3-9808�YN·�2>4X2>-�D�^�B�+3MZ:>%_[tE=Y�:
� +.W	2¡�cSh-=2LDPjkB346F�4X2]:aY�8�2]:c+,DgDXE92�ª�é6ê¡M�+1O3254�B.R@D6E=2�:PD64XK9JL�
DXK=462Q:XE=B,jC-0YN-�IiYZ^3K=462Qª=%"�cMNM�DXE=2{B.DXE9254��cS�:aK=�=��:XO�:PD625W�:
+.462�K&:a2]8�RV46B3W´B34vjCYNDXE=YZ-�DXE=Y�:v-=25DPj¤B�4XF¯%�[tE=Y�:"¢a�=4;+.YZ-9£{B.R
DXE=2h��B.D¤YZ:�*32546O�W¡K9J;E�MZYNF�2h+��9-=YNDX2c:aD6+.DX2hW�+�J;E=YN-92hW	BG8=25MZ2>8
+3:i+c-=25DPj¤B�4XF�B3R9-=B�8�2>:ijCYNDXE	JLB�-98�YNDXYZB3-9+3M�MZYN-9FG:i��2LDPjk252>-�DXE92
-=B�8�2>:>%{[tE=2Q�&B3D¡J5+3-�B�-=MZO���2Q+,D�B�-=2_-=B�8�2_+.D�+.-GO�D6YNW	23%
º<*32>4XO�D6E=YN-9F�RV4;+.W	27DXE=2���B.D_^3BG2]:�D6E=46B3K=^�E�D6E=YZ:	-92LDPjkB346F
K=-rDXYZM<DXE92_-=B�8�2_��2>:aD¡:XK=YdD;+.�=MZ2	RVB34�DXE=2_��B.D]­ :¡JLK=464625-rD�:aYNDXK=�
+,DXYZB3-0Y�:vRVB�K=-98�%"[tE=2>4X2�Y�:�+3MNjt+1O�:�2L©=+3JLDXMZO�B3-92_-=B�8�2���2>:aD
:aK=YND6+3�=MZ2¡RVB�4gDXE=2_J5K=4X4625-rDv:aYNDXK&+,DXYZB3-\m\+.-98�DXE92���B.D�J;E9+3-=^32]:
-=B�8�2>:�K=-rDXYZM&YND��9-&8=:<D6E=Y�:¤:X�&2]JLYN�&Jh-9BG8=23%@º�+�J;E�-9BG8=2cjCYNDXE=YZ-
DXE=2�-92LDPjkB346F�YZ:QB3��D6YNW	YZH52>8�RVB�4Q+�:a��2>J5Yd��J�46+3-=^32�B.R�^3Br+.M�:
B34�:XK=����^3B�+3MZ:>%�[tE=2�-=25DPj¤B�4XF�+3MZ:XB�E9+3:�-9BG8=2>:vjCE=Y�J;E�+.MZMNB,j
DXE=2g�&B3DtDXB	8�B��=462>:6:XYN-=^�D6+�:aF�:¤jCE=YNMZ2�^3B�YN-=^�RVB34C+�MZB3-9^�DX2>4XW
^3B�+3M�%¤º�+3J;E7-=B�8�2vE9+�:h+	�=46B�JL2>8=K=4X2�jCYNDXE"�=46B�8�K9JLDXYZB3-�4XK9MN2]:
�VYNRe��D6E=25-��t25M�:X2]�tRVB�4hD6E=2¡462>+�:aB�-=YZ-=^_+.-98"8=2>JLY�:XYNB�-�W�+.FGYN-9^_B.R
DXE=2���B.D]%7`GK9J;E�+��=46B�JL2]8�K=462	+3MZ:XB�YNW	�=MZ25W	2>-�D;:vD6E=2_JLB�-98�YN�
DXYZB3-9+3M� PK9W��&:�D6B¡B3DXE=2>4t-=B�8�2>:¤DXB�W�+.F�2�:XK=4X2�DXE92���2>:aDC-=B�8�2
YZ:kRVB�K=-98{RVB34C2]+3J;E�:aYNDXK9+.DXYZB3-�%
ITYZ^3K94X2�ø�:aE9B,jh:@DXE92�-=25DPj¤B�4XF¡K9:X2>8_�GO�DXE92c��B.D>%@[tE=2g��B1©G2]:
jCYdD6E�+�-9+.W	2t4625�=462>:X25-rD\D6E=2t-=B�8�2>:>%)[tE=2k+34X46B,jh:\:XE=B,j�RV46B3W
jCE=YZJ;E�-=B�8�2{DXB�jCE=YZJ;E�-=B�8�2{DXE=27�&B3D	J>+.-� PK=W	��YZ-�B�468�2>4
DXB��&-98�D6E=2���2>:aD7-9BG8=2�RVB34{DXE92�JLK94X4625-rD{:XYdD6K9+,D6YNB�-�%®[tE=2
Ú 462>:X�9+1jC-�­r-=B�8�2�YZ:tK&:a2]8QjCE=2>-QD6E=2��&B3DCYZ:C8�2]+38�m�+3-98Q-9252>89:
DXB"462>:X�9+1jC-�:aB�W�2>jCE=25462	YN-0D6E=2Q^r+.W	2	25-G*GYN46B3-9W�2>-rD>%�[tE=2
Ú :aD6+3-98�­@-=B�8�2�Y�:	K9:a2]8�jCE925-�DXE=2���B.D_Y�:�:PD;+.-98=YN-=^0:aDXYZMNMCD6B
J;E9+,D�jCYNDXE�B.D6E=254��=M�+1O32>46:>%�I=K=4XDXE=2>4XW	B�4X27DXE925462�+34X27D6E=4X2>2
Ú :X252>F�­¯-=B�8�2]:gjCE=YZJ;E�DXE=2	��B.DvK9:X2>:gjCE=2>-�YNDvYZ:g-=B3D��9^�ErDXYZ-=^
jCYdD6E�+.-GO�B��=��B3-=2>-�D;:5%¾[tE92���B.D{J>+.-��=K=4;:XK=2�MZB3-=^�D62546W�m

Seek Long Term
Goal

Seek Short Term
Goal

Seek Activate
Entity

Stand Respawn

Battle Fight Battle Chase Battle Retreat
Battle Short Term

Goal

IiYZ^3K=462�ø�Ñ � +3W�2v�cS¤-=25DPj¤B�4XF¯%

+.-98�:XE=B34XDc^�B�+.M�:tYZ-�DXE=2]:a2�-9BG8=2>:>%t[tE925462vYZ:�+.M�:aB�+�-=B�8�2�DXB
+3JLDXYZ*1+.DX2C�=K=DaDXB�-9:<+3-98¡DX46YN^�^3254;:iDXBvB��&2>-�8�BGB34;:5m.�&+.4;:)2LD6J3%TYZ-
DXE=2�^r+.W	2�25-G*GYZ4XB�-=W	25-rD>%_/�E925-�DXE=2Q�&B3D�YZ:��&^3ErDXYZ-=^"jCYNDXE
+.-_2>-=25W¡O	B3-=2�B.R�D6E=2�Ú �9+.DaDXMZ23­G-=B�8�2]:�Y�:kK9:X2>8�%@[tE=2��&B3DkE9+�:
+v-=B�8�2cDXBv�9^�ErDk8�YZ4X2]J�D6MNO�jCYdD6E�DXE92c25-925W�O�mrJ;E&+3:X2c+.-�2>-=25W¡O
DXE9+.D�DX46YN2]:�DXB�46K=-�+1jk+1O�m�462LDX462>+.D¡RV46B3Wù+��9^3ErD�jCE=25-�D6E=2
�&B3D�8�BG2>:@-9B.D@RV252>M=�=D<2>-=B3K9^3E�mr+.-98	+g-=B�8�2CD6B�+3J;E=YZ25*�2k:XE=B34XD
DX2>4XW�^3Br+.M�:�8�K=46YN-9^�+C�9+.DaD6MN2�m]MZYZF32��9YZJ;FGYZ-=^hK=��+h-=2>+34X�GOcYNDX2>W�%

� ï,×GÇ � ö�Ç�ï,×GËT×Gð]ðQ��ß�ð>È>×Gñ

[tE=2h�h462>+v�cjk+34X2>-=2>:6:<`GO�:aDX25W¦�¬����`=�<YZ:<DXE=2cjCE=B3MZ2h:aO�:aDX2>W
K9:X2>8�D6BQ�=46B,*GYZ8�2�D6E=2��&B3D�jCYNDXE�+3MNMTDXE=2¡YN-=RVB346W	+.DXYZB3-�+3�&B�K�D
DXE=2{JLK=464X2>-rDv:aD6+.DX2_B3R¤D6E=2_jkB346MZ8�%{[tE=Y�:vYZ-9JLMZK98�2]:�YZ-�RVB346W�+,�
DXYZB3-_+3�&B�K�D¤-9+1*GYZ^�+.DXYZB3-�m�4XB�K�DXYZ-=^�+3-98�+.M�:aB�B.DXE9254�2>-rDXYNDXYZ2>:<YZ-
DXE=2�^r+.W	23%@�hMZM¯DXE92gYZ-�RVB�4XW�+,D6YNB�-QY�:¤RVB346W	+.DaD62>87+.-98Q�=4X2>�=46B.�
JL2]:X:X2>8�RVB34�R¬+3:aD_+.-98�2>+3:XO�+3J>JL2]:X:�+.-98�K9:6+.^�2Q�GO0DXE=2���B.D]%
[tE=2�E=2]+.4XDcB.R�����`�Y�:c+Q:a��2>J5YZ+3Miª�b¾4625�=462>:X25-rD6+.DXYZB3-�B.R)D6E=2
^�+3W�2	jkB346MZ8�%	�cMNM�YN-�RVB�4XW�+.DXYZB3-��=4XB,*GY�8�2>8�DXB�D6E=2��&B3D�YZ:�YZ-
:aB�W	2�jk+1O74625M�+,DX2]8�DXB{B34�MNYZ-=F32]8"jCYNDXE�D6E=Y�:gª�b¼4625�94X2]:a2>-�D;+,�
DXYZB3-�%�¥cB,j¤2>*32>4hDXE9YZ:g4625�=462>:X25-rD6+.DXYZB3-"Y�:g�=4XYZW�+.46YNMZO�K9:X2>8"RVB�4
4XB�K�DXYZ-=^�+.-&8Q-9+1*GYZ^�+.DXYZB3-�%
�µjt+1OG�&B�YN-rD�:XO�:PD625W¶Y�:¡J5B3W	W	B3-=MZO�K&:a2]8�RVB34¡4XB�K�DXYZ-=^�+.-98
-9+1*GYN^r+,D6YNB�-��=K=46�&Br:a2]:�YN-�ª3b¦2>-r*GYZ4XB�-=W	25-rD6:>%�I9B34	-9+1*GYN^r+,�
DXYZB3-��=K=46�&Br:a2]:�D6E=2{MZYZ-=F�:¡��2LDPjk252>-�D6E=2{jt+1OG�&B�YN-rD;:�E9+1*�2{+
:a��2>J5Yd��J_�=46B3��254XDPO¯Ñ¡B�-=2QJ5+3-�2>+�:aYZMNO�DX4;+1*32>M<RV46B3W�B3-=2Qjk+1Or�
�&B�YN-rD�DXB{+3-=B.D6E=254gYNR<DXE=2>O"+.462�MNYZ-=F�2>8�%gSU-�B3DXE=2>4cjkB34;8=:CD6E=2
-9+1*GYN^r+,D6YNB�-�JLB�W	�=MN25©�YdDPO�DXB�4X2]+3J;E�B3-=2�jt+1OG�&B�YN-rD�RV46B3WÅ+3-��
B.D6E=254i+.MZB3-=^g+CMNYZ-=FvY�:\W	YZ-=YZW	+3M�m1RVB�4TYZ-9:aD6+3-9JL2�DXE=2¤-9+1*GYN^r+,DXYZB3-
+.MZB3-=^¡+�:PD646+3YN^�ErD�MNYZ-=2�%)����`_E9+3:¤+�:XYNW	YZMZ+34��=46B3��254XDPO�+�:@D6E=2

jk+1OG��B3YZ-�D�:aO�:aDX25W�%��c��`�K9:X2>:�ª3bÂ�&B�K=-98�2]8�EGK=MNM�:>m<J5+.MZMZ2>8
+.462>+3:>m.jCYNDXEQ+�:a��2>J5Yd�&Jh�=4XB��&2>4aDPO¯Ñ\DXE=2�-9+1*GYN^r+,DXYZB3-�J5B3W	�=MZ2L©G�
YdDPO	RVB�4¤D646+1*�25MZYN-9^vRV4XB�Wµ+.-GO�462>+3J;E&+.�=MZ2h��B3YZ-�DtYZ-7+3-{+.462>+9m3D6B
+.-GO�B.D6E=254C462>+�J;E9+.�=MZ2g�&B�YN-rDCYN-7D6E=2�:X+3W	2g+34X2]+=mGYZ:tW	YZ-=YZW	+3M�%
SU-���K9+3F32hSXSaS¤�c4X2>-9+vD6E=Y�:¤W	2]+.-9:k+���B.DCJ5+3-_W	B,*32��&25DPj¤2>25-
+.-GO�:aK9J;EQDPj¤B¡�&B�YN-rD;:¤�GO� PK9:aDtjk+3MNFGYZ-=^�B�4k:XjCYNW	W	YZ-=^�+3MNB�-=^
+g:aDX4;+.YZ^3ErD@MZYN-=2�%@[tE=2CW�+.��B34@^�+3W	2k2>-G*rYZ46B3-=W	25-rD@E9+�:)DXB���2
:aK=�¯8�YZ*GYZ8�2]8�YZ-rDXB�+.462>+�:cjCYNDXE�DXE=Y�:��=46B3��254XDPO3%�'�B�:aD�J5B3-G*325©
B3��25-�:X�9+3J52>:CB�4hEGK=MNM�:hE&+1*32�DXE92��=46B3��254XDPOQ462>¨rK=YZ4X2]8QRVB�4CDXE92
+.462>+3:tB3R)����`¯%�âkYN-9+34XO7`G�9+3J52�(@+.4XDXYNDXYZB3-=YZ-=^"�¬âC`�(k�tY�:CK9:X2>8
DXB":aK9��8�YZ*GYZ8=2	DXE=2�W�+.�0YZ-rDXB7DXE=2]:a2_J5B3-G*325©�EGK=MNM�:vB�4�+.462>+3:>%
¥�%=I=K&J;E9:5m&ã)%=ú�2>8�2>W7m=+3-987â�%=u�+1OGMNB�4��94;:aDtYZ-rDX46B�8�K9JL2]8QâkYN�
-9+.46O¡`G�9+�JL2h(@+34aD6YdD6YNB�-=YN-9^�RVB�4<^34;+.�9E=YZJ>:i4X2>-98�2546YZ-=^v�=K=46�&Br:a2]:
Ô l3Õ¸%{/�YdD6E��=YZ-9+.46O�:X�9+3J52��9+.4XDXYNDXYZB3-=YZ-=^�+7D64X2>2_:PD64XK9JLDXK=462�Y�:
JL462>+,D62>8�mr+�:XB.�UJ5+.MZMZ2>8	âC`�(�DX46252�%)[tE9YZ:¤ât`=(0DX46252hY�:�+��=YN-&+.46O
DX462523m�jCE=Y�J;E�4X2>�=4X2]:a2>-rD6:iDXE92h25-rDXYZ462h:a�9+�JL2�m�+.-�2>-rDXYZ4X2CW�+.��YZ-
DXE=2<^r+.W	23%Tº�+3J;E�-=B�8�2�YN-�D6E=2@DX46252@4625�94X2]:a2>-�D;:�+hJLB�-G*32L©g:aK=�=�
:a�9+�JL2k+.-98�:PD6B3462>:i+c�9MZ+3-=23m,jCE=Y�J;E¡:X�=MZYdD;:iDXE=2t:X�9+3J52�D6E=2t-=B�8�2
4X2>�=4X2]:a2>-rD6:hYZ-�DPj¤B{E9+.MZ*32]:5%v�À-=B�8�2�+3MZ:XB{:aDXB�4X2]:c462LRV2>4X2>-9JL2]:
DXB�DPj¤B�B.DXE9254�-=B�8�2>:>m<jCE=Y�J;E�4625�=462>:X25-rD�2]+3J;E�E&+.MNRP%�[tE=2>:X2
DPj¤B	-=B�8�2]:h+.462vB.ReD625-"J5+3MNMZ2>8�J;E=YZMZ8=4X2>-7B�4hJ;E=YZMZ87-=B�8�2]:5%k[tE=2
�=MZ+3-=2>:hB.RiDXE=2���B3MZOG^3B�-9:CK9:X2>8{RVB34hDXE=2�jkB346M�8{^�25B�W�25DX46OQ+.462
K9:a2]8�+3:g:X�=MNYNDaD6254;:�+.DcD6E=2¡-9BG8=2>:�B.R@DXE92�D64X2>23%�¥hB,jk25*32>4CDXE92
j¤B�4XM�8¡+3-98�DXE=2]:a2C��B3MZOG^3B3-&:i+34X2t25©G�&+.-98�2]8¡�946:aD>%)[tE=2t*GYZ:XK9+3M
�=MZ+1O�254�W	B�8�2>M�Y�:�-=B3D¡K9:X2>8�D6B�JLB�MNMZYZ8=2_jCYdD6E�DXE92_j¤B�4XM�80^325�
B3W	2LD64XO�m9YZ-9:PD62>+�8QD6E=2��9MZ+1O�254C462>:XYZ8�2]:CYZ-�+.-�+,©�Y�+.M���B3K9-98�YZ-=^
�&B1©�m<jCE=Y�J;E�Y�:�K9:X2>8�RVB�4�J5B3MZMNY�:XYNB�-�8�25DX2>JLDXYZB3-�%�[tE92{�=M�+1O32>4
W�B,*�25W	25-rD�Y�:¡MNYZW	YdD62>8��GO�DXE92{JLB�MNMZY�:aYZB3-9:�B.RCD6E=2{��B3K9-98�YZ-=^
�&B1©�jCYNDXE_D6E=2�j¤B�4XM�8	^32>B3W	2LD64XO�mr+3-98�D6E=2gB346YN^�YN-_B3R�DXE=Y�:k�&B1©
E9+3:	D6E=2�:6+.W	2�RV46252>8=B3WòYZ-�W	B,*32>W�2>-rD�+�:	DXE92��&B1©�YdD;:a2>MdRP%

[tE=25462LRVB�4X2{YdD_:XK�°_JL2]:�D6B0B3-=MZO�FG-=B,jÁjCE=25462{DXE=2�B346YZ^3YZ-�B.R
DXE=Y�:v��B3K=-&8�YN-9^7��B1©�J>+.-0�&2�jCYNDXE9YN-�DXE92�^�+.W	2	jkB346MZ8�%	I=B�4
DXE=Y�:i4X2]+3:XB3-�D6E=2t�&B�K=-98�YZ-=^g�&B1©vY�:i8=2>JL462>+�:a2]8�DXBg+c��B3YZ-rD>m1D6E=2
�&B1©{B346YN^�YN-�m�+3-98{DXE=2v��B3MZOG^3B3-&:¤B3RTD6E=2vjkB346MZ8Q^325B�W	2LDX46OQ+34X2
2L©��9+3-98�2>8�mGDXB�W	+3F32�K=�{RVB34tB3-9MNOQJ5B3MZMNY�8�YZ-=^�jCYdD6E{D6E=2�B346YN^�YN-
B.RTDXE=2v��B1©QYZ-9:PD62>+�8{B3R\D6E=2v�&B�K=-98�YZ-=^���B1©QYND6:X25MNRP%
[tE=2c+34X2]+3:@JL462>+.DX2]8¡jCYNDXE��9YN-9+34XO�:a�&+3JL2C�&+.4XDXYNDXYZB3-=YZ-=^�8�B�-9B.D
-=2>J52>:6:X+34XYZMZOcE9+1*�2@W�YZ-=YZW�+.M3-&+1*rYZ^�+.DXYZB3-vJLB�W	�=MN25©�YdDPOg�&25DPj¤2>25-
+.-GO�DPjkB	4X2]+3J;E9+3�=MN2g��B3YZ-�D;:CjCYNDXE=YZ-�DXE=2�:6+.W	2�+34X2]+=%)SU-�J5+�:a2
+���B.DCJ5+3-Qjt+.MZF	:XB3W	2>jCE=25462hYZ-{+�JLB3-G*�2L©�+.462>+�D6E=25462�W	YZ^3ErD
+.M�:aB���2�B�-=2�B�4cW	B3462v^�+3�9:hYZ-�DXE=2 » BGB34�YN-�D6E=2¡:6+.W	2�+34X2]+=%
[tE=2��&B3DQJLB�K=MZ8�R¬+.MZMhYZ-rDXB�:aK&J;E�^r+.�9:�+3-98�-9B.D_��2�+.�=MZ27DXB
^325D�B3K=D>%��h462>+3:cjCYdD6E���B.D6E�+_^r+.��YZ-"DXE92 » BGB�4�+.-&8"�=M�+3JL2]:
jCE=25462hD6E=2g�&B3DtJ>+.-Qjt+.MZF¯m�jCYZMZM�E&+1*32hD6B���2v:aK=�¯8�YZ*GYZ8�2]8_YZ-rDXB
W�K=MNDXYZ�=MZ27+34X2]+3:>%�/�E=2>-=25*�254	:aK9J;E�+.-�+34X2]+�YZ:¡RVB3K9-98�m@YND�Y�:
:a�9MNYNDvjCYdD6E�+{*32>4aD6YZJ>+.Mi�=MZ+3-=2�DXE=46B3K9^3E�+3-�2]8�^32�B.R<D6E=2	^�+3��%
[tE=2¡âC`�(�DX46252¡YZ:gW	B�8�YN�92>8�+3J5J5B34;8�YZ-=^3MZO_D6B7:aDXB�4X2�DXE=2�-=25j
:aK9�9:a�&+3JL2]:¤J54X2]+,D62>8��GO_:X�=MNYNDaD6YN-9^�D6E=2v:aK=�&:a�9+�JL2�4X2>�=4X2]:a2>-rDX2>8
�GO�DXE=2�+34X2]+=%
[tE=2h+.�9YNMZYdDPO�DXBv2>+�:aYZMZOv-9+1*GYN^r+,DX2tjCYNDXE=YZ-�+.462>+�:TY�:@-=B3D@25-=B�K=^3E
DXB{DX4;+1*32>M\D6E=4XB�K=^3E�DXE=2�jCE=B�MN2�W�+.��%¡`�B�J>+.MZMN2]8�462>+�J;E9+.�=YZMZYd�
DXYZ2>:�+34X2�J>+.M�JLK=M�+,D62>8��&25DPj¤2>25-�+.462>+�:5%_[tE92>:X2�4X2]+3J;E9+3�=YNMZYNDXYZ2>:
+.462�MZYZ-=F�:t�&25DPj¤2>25-�+.462>+3:¤D6E9+,Dc:XE=B,j�E=B,j�DXE=2���B.DcJ>+.-72>+3:a�
YNMZO�DX4;+1*32>M�RV46B3W¿B�-=2¡+34X2]+�DXB�+.-9B.DXE9254]%�[TB{J>+.M�JLK=M�+,D62�D6E=2>:X2
4X2]+3J;E9+3�=YZMNYNDXYZ2>:)W	B3462t2>+�:aYZMNO�DXE=2�ât`=(�DX46252CjCE=Y�J;E	4X2>�=4X2]:a2>-rD6:
DXE=2v^r+.W	2gj¤B�4XM�8QY�:kDX4;+.-&:PRVB�4XW	2>8QYN-rD6B	+3-=B.D6E=254C4625�94X2]:a2>-�D;+,�
DXYZB3-�%cSU-�DXE=Y�:c-925j«4625�=462>:X25-rD6+.DXYZB3-7DXE92¡+.462>+�:h+.462v��B3K=-98=2>8
�GO¡R¬+�JL2]:5%@[tE=2]:a2�R¬+3J52>:k+.462c��B3MZOr^�B3-9:<DXE9+.Dk2>YdD6E=254t4625�=462>:X25-rD
:aB�MNY�8�jk+3MNM�:�B�4_MN2]+38�D6B�B.D6E=254Q+34X2]+3:>%#AC2]+3J;E9+3�=YZMNYNDXYZ2>:_J>+.-
2>+�:aYZMNO¡�&2cRVB3K=-&8�DXE=46B3K=^�E_:aK&J;E	R¬+3JL2]:@D6E9+,D�MZ2>+�8�DXB�+�81 a+3J525-rD
+.462>+�:5%i¥hB,jk25*32>4�W	B3462�JLB3W	�=MZ2L©�462>+�J;E9+.�=YZMZYdD6YN2]:¤J>+.-Q+3MZ:XB���2
J5+3MZJ5K=MZ+.DX2]8¡K&:aYZ-=^vD6E=2CR¬+3J52h4625�=462>:X25-rD6+.DXYZB3-�B.R¯DXE92c+.462>+�:5m,RVB�4
YN-&:PD;+.-9J52{+Q PK=W	��RV46B3WûB3-92{+.462>+"DXB0+.-=B3DXE=2>4¡jCE=Y�J;E�^�BG2>:
DXE=46B3K9^3E7W�K=MNDXYZ�=MZ2�+.462>+3:>%
fc:XYN-9^{D6E=2�462>+3J;E&+.�=YZMNYNDXYZ2>:�D6E=2��&B3D�J5+.-0-=B,j¼-=B.D�B�-=MNO�2>+3:a�
YNMZO7DX4;+1*32>M\jCYNDXE=YZ-�+34X2]+3:>m9�=K�Dv+.M�:XB_�&25DPj¤2>25-�+.462>+3:>%cACB�K�DX2]:
J5+3-�+.M�:XBQ��2	J>+.M�JLK=M�+,D62>8"��2LDPjk252>-�+34X2]+3:cK9:aYZ-=^{DXE=2	462>+�J;E9+,�
�=YZMdD6YN2]:5%@[tE=2>4X2h+34X2c:X25*�254;+.M=+3MN^�B346YdD6E=W�:@4X2]+38�YZMZO¡+1*,+.YZMZ+3�=MZ2tDXB
J5+3MZJ5K=MZ+.DX2	46B3K�D62>:v+.-&8�D646+1*�25M)D6YNW	2>:�YN-�+7^34;+.�9E�%Q¥hB,jk25*�254
DXE=2���K9+3F32hSXSaS¤�c4X2>-9+���B.DtK9:X2>:k+¡:X��2>JLY�+.M�W�K9MdD6Yd��MN2>*32>M�46B3K=Da�
YN-9^�+3MN^�B346YdD6E=W�DXB0J5+.M�JLK9MZ+.DX2_D646+1*�25M¤DXYZW	2>:��&25DPj¤2>25-�+.462>+3:>%
I=B�4�DXE=Y�:Q+3MN^�B346YdD6E=WÛD6E=2�+34X2]+3:�+.462"^346B3K9�&2]8�YZ-rDXB�:X25*�254;+.M
JLMZK9:aDX254;:>%¡[tE=2�DX4;+1*32>M\D6YNW	2]:v+.462�J>+.M�JLK=M�+,D62>8�+,DgDPj¤B7MN2>*32>MZ:>Ñ
jCYdD6E=YZ-�J5MNK&:PD6254;:_+.-98���2LDPjk2525-�J5MNK9:aDX2>46:>%�[tE=2"W¡K=MdD6Yd��MZ25*32>M
4XB�K�DXYZ-=^�+.MZ^3B346YNDXE=WÛJ>+.-�J>+.M�JLK=M�+,D62QD6E=2":X+3W	2_DX4;+1*32>M�D6YNW	2]:
+3:<DXE=2gJLB3W	W	B3-9MNO�K9:X2>8�+.MZ^3B�4XYNDXE9W	:�MNYZF32�ITMZB,O�8�­ :�+.-&8�bcY PFr�
:PD646+9­ :�Ô ª,Õ�m=�=K�DhK&:a2]:C:aYZ^3-=YN�&J>+.-rDXMZO_MZ2>:6:t4X2]:aB�K=46J52>:>%

� á&È	Ù]ÉiÇ�ï,Ç=Ù3È>×rï,ð

�§EGK=W�+3-��=M�+1O3254	J5+3-��=M�+1O�DXE=27^�+3W�2{jCYdD6E�B�-=2{B�4¡W	B�4X2
+.4XDXYN�&JLY�+.Mg�=M�+1O32>46:>%µ[\B�W�+.F�2�D6E=20^�+.W	2�W�B�4X2�25-. PB,O�+.�9MN2
+.-980W	B�4X2_*�254;:X+.DXYZMN2�miDXE=2>4X2_Y�:�+"jCE=B3MZ2_4;+.-=^�2_B.Rc8=Yd·¯254625-rD
�&B3D_J;E9+.4;+3JLDX254;:�DXE9+.D	�9MZ+1O�D6E=2�^�+3W�27YZ-�D6E=25YZ4�B,jC-�:aDPOGMN2�m
+.-98_�=4XB,*GY�8�2c8�YN·¯254625-rDkJ;E9+3MNMZ25-9^32>:<RVB34¤DXE=2gEGK=W�+.-_�9MZ+1O�254]% �
J;E9+.4;+3JLDX2>4�J5B3-9:XY�:PD;:�B.RC+"J5+.462LRVK9MNMZO�:X25MZ2>JLDX2>80:X2LD�B3RtJ;E9+346+�J��
DX2>4XY�:PD6YZJ>:kDXE9+.Dh+.462g+3�=�=MZYZJ>+.�=MZ2�YN-{DXE=2v^r+.W	23%@[tE=2]:a2vJ;E9+346+�J��

DX2546Y�:PD6YZJ>:v+.462�:aDXB�4X2]8�YZ-�D6E=2_J;E9+.4;+3JLDX2>4�W	B�8�K=MZ2	YN-�DXE92�n.-98
MZ+1O�254tB.RTDXE=2�:aDX46K9J�D6K=462	��IiYN^�K=4X2�ªr��%
[tE=2�W�B�4X2gJ;E9+.4;+3JLDX2>4XY�:PD6YZJ>:<D6E9+,DhJ>+.-Q��2vJ;E9+.-9^32>8Q�&2>4CJ;E9+.4X�
+3J�D6254]miDXE=2{W�B�4X2Q*3254;:6+,DXYZMZ2	DXE=27J;E9+.4;+3JLDX254¡J5+.-���23%�S�D�J>+.-
W	+3F32�DXE92�J;E9+.4;+3JLDX254;:7MN2]:X:��=4X2]8�Y�J�D6+3�=MZ23%�¥hB,jk25*�254":XB3W	2
J;E9+.4;+3JLDX2546Y�:PD6YZJ>:CYN-rD6254;+3J�D�jCYdD6E�2>+�J;E"B.D6E=254gB34�25*32>-�JLB�-rDX4;+,�
8�YZJLD"2>+3J;E#B.D6E=254]%ÂSU-rD6254;+3J�D6YNB�-#J>+.-=-=B3D�+3MNjt+1O�:Q2]+3:XYNMZO���2
+1*3B3Y�8�2]8�% I9B34@YZ-9:aD6+.-&JL2hD6E=25462c+34X2cJ;E&+.4;+3J�D62546YZ:aDXY�J5:)4625�94X2]:a2>-�DX�
YN-=^�DXE=2QDX25-&8�25-9J5O�D6B_ PK=W	��+3-98�DXE92_DX2>-98�2>-9JLO�DXB�JL46B3K9J;E
4X2]:a��2>JLDXYZ*325MZO��VW	B�:aDXMZOvYZ-��9^�E�D;:�D6Bg+1*�B3Y�8v�=46B. P2]J�DXYZMZ2>:;��%T¥cB,jt�
25*32>4\+t��B.DiJ>+.-=-9B.D� PK=W	��+3-98vJL46B3K9J;E�+,D\DXE=2k:X+3W�2)D6YNW	2�%�DXE92
YN-rDX2>46+�J�D6YNB�-�YZ:	+1*3B�YZ8=2>80�GO�J;E=BGB�:XYN-=^�J;E9+.4;+3JLDX2546Y�:PD6YZJ>:vjCYdD6E
JLMZ2>+.4t��B3K=-&8=+.46YN2]:C+.-987jCYNDXE=B�K�DhB,*32>4XM�+.�\%
[tE=2{J;E9+346+�J�D62546YZ:aDXY�J5:�+34X2{+.M�:aB�-9B346W	+3MNYZH52]8�%�[tE92Q4;+.-=^�2_B.R
DXE=2"*,+.MZK=2"B3R�+0J;E9+346+�J�DX2>4XY�:aDXY�J{+3-98�YdD;:�YN- » K=25-&JL2"B3-�E=B,j
DXE=2<��B.Di�&2>E9+1*32]:¯jCYdD6E=YZ-vDXE=2�^�+.W	2�m]:XE=B3K9MZ8�W�+.F�2<:a2>-9:X23% [tE=2
J;E9+.4;+3JLDX2546Y�:PD6YZJ>:g+34X2�+34X2_+3MZ:XB�-=B346W�+.MZYNH>2>8�4X2>MZ+.DXYZ*32�DXB�2]+3J;E
B.DXE9254]%�I=B34�YZ-9:aD6+3-9JL2�YNR�D6E=25462"YZ:�+3-�+.YZWò+3J>JLK=4;+3J5O�J;E9+.4X�
+3J�D62546YZ:aDXY�JQRVB34	2>+�J;E�B.R�DPj¤B�jk2>+.��B3-&:5m@D6E=25-�DXE927*,+3MNK=2]:	B.R
DXE=2]:a2�J;E&+.4;+3J�D62546YZ:aDXY�J5:�:XE=B�K=MZ8�E&+1*32iDXE=2k:X+3W	2@2L·¯2>J�DTRVB34���B.D6E
j¤2]+.��B3-9:>%
/�E=25-�+v:X2LD<B.R�J;E9+346+�J�DX2>4XY�:aDXY�J5:iYZ:�:a2>MN2]J�DX2]8�B3-=2C:XE=B3K=M�8�F32>25�
YN-vW	YZ-98�DXE&+,D\D6E=2<��254;JL2>��DXYZB3-�B3R�ErK9W	+3-v�=M�+1O3254;:¯Y�:�DXE92�W	B�:aD
YNW	��B34XD6+.-rD)DXE9YN-=^&%)/�E=25-	EGK=W�+.-��=M�+1O3254;:TDXE=YZ-=F�+.��B3K�D@E=B,j
+{��B.D��9MZ+1O�:gDXE92�^�+.W	2	Y�:�W�B�4X2	YZW	�&B�4aD;+.-rDvDXE9+3-�E9B,j¾DXE92
�&B3D<4X2]+.MZMNOv�=M�+1O�:iDXE=2C^r+.W	23%@Ã�-=2h+3:iD6B�W	+3F32C:XK=4X2kD6E=2CK9:X2>8
J;E9+.4;+3JLDX2546Y�:PD6YZJ>:�462>+3MNMZO_8�B	W�+.F32v+�8�YN·�2>4X2>-9JL2�D6E9+,DhJ5+3-7+3-98
jCYNMZMC�&2�-=B3DXY�JL2]8��GO�EGK=W�+.-��=MZ+1O�254;:	q¤K94X4625-rDXMZO0YN-���K9+3F32
SaSaSi�h4625-9+9m1DXE=2>4X2C+34X2Cn3øcJ;E9+.4;+3JLDX2546Y�:PD6YZJ>:\YZW	�=MN2>W	25-rDX2]8¡:XK9J;E
+3:v-9+3W	23m\^�25-98=254]mT+.^�^3462>:6:aYZB3-\m�+.MZ254XDX-=2]:X:>m= PK=W	��254]m)jk+3MNF�254
+,DaD;+3J;Fv:XFrYZMZM�m3+3YNW¾+�J5J5K=46+�JLO�m]jk2>+3�&B�-�jk25YZ^3ErD6:>m YdD625W«jk25YZ^3ErD6:>m
J;E9+,D;:t2LD6J3%
'"B�:aD�J;E&+.4;+3J�D62546YZ:aDXY�J5:cE9+1*32¡*,+.MZK=2>:�YZ-�D6E=2	46+3-=^327Ô æ9mNÐ5ÕC��:a2>2
ITYZ^3K94X2�or��%#[tE92�J;E9+.4;+3JLDX2546Y�:PD6YZJ>:�¢Xj¤2]+.��B3-�j¤2>YN^�ErD6:6£�+3-98
¢aYNDX25Wüjk25YZ^3ErD6:6£�+.462�4X25RV254625-9J52>:�D6B�DXE=2�MNB�J5+.DXYZB3-9:�jCE=25462
RVK=H5H>O#MZB3^�YZJ�Y�:�:aDXB�4X2]8�RVB34�:XYNDXK9+.DXYZB3-¼8�2>�&2>-98�2>-�D�j¤2]+.��B3-
�=4X25RV254625-9J52>:_+3-98�YNDX2>Wù^�B�+3Mc:a2>MN2]J�D6YNB�-�4X2]:a��2>JLDXYZ*32>MNO�%¾[tE=2
J;E9+.4;+3JLDX2546Y�:PD6YZJÁ¢6J;E9+,D;:X£¼YZ:�+À4X25RV254625-9J52�D6B¼D6E=2#MZB�J5+.DXYZB3-
jCE=25462�DXE=2¡YN-&8�YN*GY�8�K9+3M\��B.D�J;E9+.DaD6254cY�:h:aDXB�4X2]8�%C'"B�:aDhB.R)DXE92
+.��B,*32¡J;E&+.4;+3J�D62546YZ:aDXY�J5:�+.462�4625M�+,D62>8�D6BQD6E=2��9^3ErDXYZ-=^7�&2>E9+1*r�
YNB�4¤B3R�DXE=2���B.D]%<[tE=2���B.DCY�:kB.ReDX2>-{:X252>-{8�K=46YZ-=^��&^3ErD6:>%@�c:t+
4X2]:aK=MNDcD6E=2�8�YN·�2>4X2>-9JL2]:cYZ-���25E9+1*GYZB34g�&25DPj¤2>25-�8�Yd·¯254625-rD��&B3D
J;E9+.4;+3JLDX254;:TYZ:iW	B�:aD@-=B.D6YZJ52>+.�9MN2tjCE=2>-�D6E=2t�&B3D6:@+.462¤�9^3ErDXYZ-=^&%

� |_² � ô�³"��±>|_²

[tE=2���K9+.F�2�SaSXS7�c4X2>-9+��&B3D�Y�:�+�R¬+.YZ4XMZO�^3BGB�8�B��=�&B�-=25-rD]%
[tE=2c��B.DtYZ:t+3MZ:XB�25-rD6254XD6+.YZ-=YZ-=^¡+3-98_¨rK=YNDX2�:aK9YdD;+.�=MZ2hRVB�4¤�=4;+3JL�
DXY�JL2�+3-987DX4;+.YZ-=YZ-=^��=K=46�&Br:a2]:5%k[tE=2���B.DcY�:c+3�=MZ2vDXB�-9+1*GYZ^�+.DX2
DXE=46B3K=^�E�DXE=2¡25-G*GYN46B3-9W�2>-rDcYN-�+�MZYdRV25�¸MZYNF�2�W�+.-9-=254]m�+3-987DXE92
�&B3DCJ>+.-7�=Y�J;F�K=�{YNDX2>W�:h+.-98QE9+.-&8�MN2�jk2>+3�&B�-9:T PK9:PDhMZYZF32gErK=�
W	+3-��=M�+1O3254;:>%#[tE=2���B.D7+.M�:aB�:XE=B,jh:�YZ-rDX25462>:aDXYZ-=^0�9^�ErDXYZ-=^
�&2>E9+1*GYNB�4CjCYdD6E�D6+3JLDXY�J5+3M�W	B,*32>:>%<[tE=2���B.DcJ>+.-"J;E9+�:a2�B3�9�&B3�
-=25-rD6:CDXE9+.DCDX46O�DXB�2]:XJ>+.��2�RV46B3WÂ+��9^3ErD>m=+3-98{DXE=2v��B.DhYND6:X25MNR
J5+.-{DX46O�D6B�4X25DX462>+,DtYNR)YNDhY�:t-=B.DCRV2>25MZYN-=^��=Dh2>-=B3K9^3E{DXB	�9^�E�D]%
[tE=2{��K9+.F�2¡SXSaSv�h4625-&+{��B.D�J>+.-�:XE=B,j¼4625M�+,D6YN*�25MZO�JLB3W	�=MZ2L©
�&2>E9+1*GYNB�4cjCYNDXE�+{4;+,DXE9254�:XYZW��9MN2�W	BG8=25MiRVB34gYdD]­ :g462>+�:aB�-=YN-9^9%

`�FrYZMZM�jCE=25-"+.YZW	YN-9^9m=+�*,+.MZK=2v�&25DPj¤2>25-"æ	+.-98�ÐgRVB34C2]+3J;E7j¤2]+.��B3-

ý�þ<ÿaþ�����þ�ÿ����	��

��
����������������������	����� ���!�#"�$%� �&�'���
ý�þ<ÿ)(������#þ�ÿ�*��	����� �+�-,%
.������/-,������#
.��0
ý�þ<ÿ�*������21\ÿaþ��	����� �+�3��4%�������&"�$�� �&������,������#
5��0
ý�þ<ÿ�6������21\ÿaþ��7� 8+,����.93��� �&��0�������� 9�"�"�����0�������/�����0%��" �#����/��
ý�þ<ÿ�:������21\ÿaþ���8�/%���#
����&
'"��-� 9�"��+�<;�9����	�����.�+�7
����%"���$&
���
.��,��

IiYZ^3K=462vo=Ñ@º@©=+.W	�=MZ2�¢X+3YNW§:XFGYNMZM�£

[tE=2_�hSg-=25DPj¤B�4XF¯m\:XYNW	YZMZ+34�DXB�+{�9-=YNDX2{:PD;+,DX2	W�+3J;E9YN-=2�m\E9+�:
*32>4XO�RV2>jÀ-=B�8�2]:�B34v:aD6+,D62>:>%�¥hB,jk25*32>4cD6E=2���B.D�J5+3-��=K946:XK=2
:a2>*32>46+3Mt8=Yd·¯254625-rDQ^�B�+.M�:	YZ-�2]+3J;E�:aD6+,D623mtjCE=Y�J;E�+.MZMNB,jh:�D6E=2
�&B3D�DXB�JLB3W	�=MZ2LD62Q+"jCY�8�2_4;+.-=^�2	B.RtD6+�:aF�:�+3-980:aE9B,j½W	B�4X2
JLB�W��9MN25©Q�&2>E9+1*GYNB�4>%
/�YdD6E7DXE=2¡��K9+3F32�SaSXSk�c4X2>-9+��&B3Dc:aE9B,jh:�D6E9+,Dc+3MNM¯D6E=2vYZ-�RVB34X�
W�+,DXYZB3-7+���B.Dt-=252]8=:kYN-{B34;8�254¤DXB�-9+1*GYZ^�+,D62c+.-&8��9-98{46B3K�D62>:
DXE=46B3K9^3E�+.-�+.46�=YdD646+34XO�ª�b«�&B�MNOG^�B3-9+3M�2>-G*rYZ46B3-=W	25-rDCJ5+3-{��2
�V�=462]��J5+3MZJ5K=M�+,DX2]8�YZ-�+Q4X2>MZ+.DXYZ*32>MNO":XE=B34XD�D6YNW	2�m�jCYdD6E=B3K=D�D6E=2
-=252]8_RVB�4CEGK=W�+.-7YN-rDX2>4X*�25-rDXYZB3-\%iSU-�25·�2]J�Dc+��&B3DhJ5+.-�Ú MN2]+.46-�­
YdD;:�jt+1O�+.46B3K9-98�DXE=2_^r+.W	2�jkB346MZ8�YZ-�+�*32546O�:XE=B�4aD���2546YNB�8
B.R@D6YNW	23%v[tE=Y�:�YZ:g+.-�+�8�*,+.-rD6+3^32�B,*�254CD6E=2	JLB3W	W	B3-9MNO�K9:X2>8
jk+1OG��B3YZ-rDt:XO�:PD625W�:5%<[tE92>:X2�:aO�:aDX25W�:C+34X2�K9:XK9+.MZMZO_E9+.4;8�2>4tDXB
JL462>+.DX2�jCYNDXE��94XB�^34;+.W	W	YN-=^&m9+.-&8"B.ReD625-�462>¨rK=YZ4X2�ErK9W	+3-�YZ-��
DX2>4X*�25-rDXYZB3-{YN-�B34;8�2>4¤D6B�B3��D6YNW	YZH52�D6E=25W�%
�hMNDXE=B�K=^3E�DXE=2���K9+3F32>SaSaS��c4X2>-9+��&B3D¡D6K=4X-92>8�B�K�D	DXB��&2�+
R¬+.YZ4XMZO_^�BrB�8{+.4XDXYN�&JLY�+.M��=M�+1O32>4>mGYNDcJLB�K=MZ8{��2vYNW	�=46B,*32]8_YZ-QD6E=2
RVB3MZMNB,jCYZ-=^_+34X2]+3:>Ñk[tE=2��9^3ErD6YN-=^Q�&2>E9+1*GYNB�4hB.R@D6E=2���B.D�JLB3K9MZ8
�&2vYZW	�=46B,*32>8{�GO{+�8=8�YZ-=^	W�B�4X2v+3-987�&25DaDX2>4c+.-rD6YZJ5YN�9+.DXYZB3-�B.R
25-=2>W	YN2]:5%�q¤K=464X2>-rDXMZO3mGjCE=25-QDXE=2g25-925W�O�Y�:kB3K�DtB.Ri:aYZ^3ErD>mrD6E=2
�&B3D¤+.MZjt+1OG:@+�:X:XK=W	2>:>m,D6E=2h25-925W�O�jCYZMNM9J5B3W	2h�9+�J;FvDX4;+1*32>MNYZ-=^
+.MZB3-=^7D6E=2_:aE9B34XDX2>:aDv�9+,D6E�%Q�kDvD6E=YZ:�W	B3W	25-rDvDXE92��&B3D�K9:a2]:
MNYNDaD6MN2�B�4k-9B¡�=M�+.-9-=YN-9^�D6B	+�J;E=YZ25*32g:a��2>J5Yd��J�^�B�+3MZ:¤jCYdD6E=YZ-QD6E=2
^�+3W�2�%T[tE=2¤�&B3DijCYZMZMrMZYZF325MZO�:XE=B,j�W	B3462<YN-rD625MZMNYZ^32>-�D)��25E9+1*GYZB34
jCE=25-0YND�E9+�:�DXE=2{+.�=YZMNYNDPO�D6B�JLB�-9:PD64XK&J�D�M�+.46^3254v�9MZ+3-9:5%7[tE=2
DX2]+.W��¸�9MZ+1Og�&2>E9+1*GYNB�4�B.R�D6E=2���B.D@JLB�K=M�8v�&2¤YNW	�=46B,*32]8v+3:\j¤2>MNM¸%
DXE=2C��B.DkJLB3K9MZ8���2hW�+38�2CW	B3462C+1jk+34X2kB.R�JL2>4aD;+.YZ-�DX2>+3W¼^�B�+.M�:
+.-98{D6K=-=2>8"RVB34h��2LDXDX254gJLBGB3��254;+,D6YNB�-�jCYdD6E�DXE=2vD62>+3WÂW�+,D62>:>%
[tE=2tJ;E9+,DiW�2]:X:6+.^�2<�9+346:XYN-9^�JLB�K=M�8�+.M�:XBh�&2tYZW	�=4XB,*�2>8gRVB�4\D6E=2
�&B3D>­ :¤J5B3W	W�K9-=YZJ>+,D6YNB�-�m�J5K=4X4625-rD6MNO�B3-=MZO¡DX25W	�=M�+,D62>:k+.462hK9:X2>8
�GO�DXE=2v��B.DCD6B0¢aK=-98=254;:PD;+.-98=£�W	2>:6:6+.^32]:5%

~QxgÖCx�~{x�² � xv�

ÔdÐ5Õ¡q�% ¥�%�q¤E=25-�m>=&?%@BADC�EFEHG<IKJML'NPORQ'S#TRUV@
C�WMQ�XYUZ@H[]\^J'W`_
?%Q�S&T�aFJ.J5_�b�Sa`�âtu�Ñ9æ.��æ�c]�Uæ=Ð3Ð�Ð>p�å,�Up

Ô n,Õ�?<%�âkB3K9MNM�+.4XD>m_��% ú�46Y P^r:aW�+3-½+3-98®Av% ��%�Ï�YN-=^�2546E=BG2>8=:>m
dfe�e XgNPOFQ�[hNPJ�S�JjikQ�Wl[hN mfOHNPQ�XnNoS�[)@
XoXpNpL�@HS#OF@qNoS e W`J.OM@
rFrqOFJ�S�s
[]W`J'XtbT�PÐ>å�å�n���()2>4X^r+.W	B3-Q(�4X2]:X:tSa`=âku�Ñ=æ3æ�p3æ.lGn.æ9Ð c,o

Ô ª.Õ�[tE=B3W�+3:�¥�%{q¤B�4XW	2>-�m>ulS+[]W`J.T�C�OH[hNPJ�Sv[wJ d X L�J�WlNo[x?�yVr�m
��n.æ�æ3æ	n,l�ç¬è��=4XYZ-rDXYZ-=^r�Lm�Sa`�âtu�Ñ9æ.�Un3o�n,�Uø3ª3æ3å9ÐL�Uæ

Ô l3Õ�¥�%9I9K9J;E9:>m&ãi%=ú�2>8�2>W�m=â�%&+.-987uc+1OGMZB34]mnzKN{rlNPa
Xt@}|+C�Wxi
Q�OF@
~ @HS#@HW`Q'[]NPJ'S�a
G d s]�nWlNPJ'WlN�=%W`@F@f|+[hWlC�OH[]C�W`@
rHbr�¬$�K=MNO�Ð>å�p3ær��m
q¤B3-�RP%9(�4XB�J3%rB3R@`�S �v� Ah�c(¤¥®­ p�æ=m�Ð5l��¬ªr��m�Ð]n.l.�;Ð>ª�ª=%

Ô ø,Õv$�B3E9-�bg+1*rY�8�I9K=-=^�23m d u�i
J'W ~ Q'y�@
r�Q'S#T d S+Noy�Q'[]NPJ'S#b
�aÐ>å�å3å��Lm��«úÀ()25DX254;:>mG?�D68�%9Sa`�âtu�Ñ�Ð1ø.o3p�p=Ð�Ð>æ3ª�å

Ô o.Õ�`GDXK9+34aD¡AhK9:X:X25M¸mT()25DX2>4�uhB�4X*GYZ^9m d Wl[hN mfOHNPQ�X�ulS+[w@HXoXgNpL�@
S&OM@
�
Q�y�J.T�@HWlS�Q e�e W`J.Q�OF? �aÐ>å�å�ø3�½(�4X2>-�D6YZJ52L�U¥c+3MNM�Sa`�âtu�Ñ
æ9Ð>ª9Ð>æ3ª�p3ærø3n

Ô c1Õvb�B3-&+.M�8 ¥c2>+.46-�m¹'�%µ(@+.K9MNYZ-=2 ât+.F32>4>m���J'y e C�[w@HW
~ W`Q e ?�NPOlr�m_��n ë3ê 2>8=YdD6YNB�-ÀÐ]å3å3or��mc(�4X2>-rDXY�JL2L�U¥c+3MNM�Sa`�âtu�Ñ
æ9Ð>ª9Ð]ø.å�o3å�æ'�

MESH SKINNING TECHNIQUE FOR INTELLIGENT ANIMATED CHARACTERS IN

COMPUTER GAME

Z. Wen, Q.H.Mehdi, and N.E.Gough
School of Computing and Information Technology

University of Wolverhampton, 35-49 Lichfield Street
Wolverhampton, WV1 1EQ, United Kingdom

E-Mail: IN6716@wlv.ac.uk

KEYWORDS:

Mesh skinning, transformation pipeline, DirectX 8,
intelligent animated character, transformation matrix,
vertex shader.

ABSTRACT

The mesh skinning technique has several distinct
advantages compared to the traditional computer game
animation techniques such as key framing and articulated
rigid body animation. It can produce realistic and smooth
character animation in real time by allowing more than
one transformation matrix to affect the vertices that form
the “skin” of the character. With advances in both
hardware and software, it has now become more practical
to implement this technique in PCs in real time. The paper
firstly gives a brief review of traditional animation
methods in computer games. It then introduces the
skinning mesh technique and proposes a method to
incorporate this technique into procedures for intelligent
character animation. The paper also introduces the
implementation of mesh skinning using DirectX 8. The
result of this work could be applied to 3D simulation
involving realistic character animation.

INTRODUCTION

Computer animated characters play an important role in
interactive entertainment products such as computer
games. Due to the limited computational power of PCs
and real time performance, efficient character animation is
one of the main concerns for computer game design and
implementation. Various methods such as hierarchical
articulated rigid body animation and simple mesh
blending animation have been applied to produce real
time character animation.

The hierarchical articulated body animation method uses a
hierarchical set of interconnected mesh pieces that form
the body of a character (Anderson 2001). A simple
example of this technique would be a head connected to
the torso, the torso to the upper arm, the upper arm to the
lower arm, and so forth. During the rendering, the final
transformation matrix is calculated in such a way that it

makes a recursive function call to all the matrices that sit
on the higher hierarchy in forward kinematics or lower
hierarchy in reverse kinematics. For instance, in the above
example, the animation matrix for the lower arm is
affected by the matrices of upper arm. For the 3D
hierarchic articulated object, the flexibility is its main
benefits. Various transformations that comprise a
character’s motion can be produced using an animation
package, and then any interpolation techniques from
simple linear interpolation to complex hermite spline
interpolation can be applied to generate in-between
frames in order to produce smooth animation (Cebenoyan
2001). Furthermore, inverse kinematics also can be used
to produce realistic character movement. Since the vertex
information for the model including position, texture co-
ordinate and transformation matrix needs to be stored only
once during program runtime, the memory usage would
be small. However, the memory capacity constraint is no
longer a significant problem to the game designer due to a
rapid reduction in the cost. Another advantage of this
technique is that it is simple to implement and it can be
executed relatively quickly in software, which was clearly
an important prerequisite for early real time 3D computer
games (Freidlin 2001). One of the drawbacks to this
method is the result of an unpleasant folding effect when
character’s limb is rotated too far about a joint. In
practice, when the game character makes some large
movement, an ugly gap will appear between the separate
parts of bodies. Furthermore, it would be very difficult to
achieve smooth shading across the boundaries of the
separate mesh pieces because of the anomalous
perturbation of the vertex normal surrounding a joint. This
problem therefore forces game designer to devise tricks to
cover the problem. For example, a cloth accessory like
belt or long sleeve is applied around the joints that are
most likely to cause the problem.

A mesh blending skinning method was introduced to
implement smooth character animation. Rather than
breaking a character into separate body parts, the mesh
blending method produces a character in a single mesh
object, generates multiple slightly different copies of the
character model and produce real time animation by
blending these different models using various
interpolation methods. The main advantage of this method
is the result of smooth animation with no gaps or self-
penetration part in the character model during runtime.

Although mesh blending can be executed very fast during
runtime by using a special multi-stream data rendering
technique provided by today advanced APIs such as
DirectX, the disadvantages of this method still remain a
major issue. This is because the animator needs to model
all of the possible poses of the character in advance and
store them in a huge system database for use in runtime.
The problem is that after the animator has modelled the
poses, it leave nearly no flexibility to the game designer to
generate various animations based on user interaction and
changes of game environments. The animation process
becomes difficult to parameterise. This problem implies
that it is not easy for the movements of character to reflect
changes in its run time environment, which is an
important aspect of character’s believability.

In the light of the preceding discussion, a more suitable
method is needed and a way of applying this method to
intelligent animated character needs to be investigated.

MESH SKINNING IN INTELLIGENT
CHARACTER ANIMATION

Introduction to mesh skinning

Mesh skinning animation was introduced in order to
combine both advantages from articulated body animation
and single mesh blending animation, namely flexibility
and smoothness (Lander 2001a; Lander 2001b; Weber
2001). Generally speaking, the mesh skinning technique
achieves this effect by allowing more than one
transformation matrix to affect a vertex’s final position
and lighting normal. The mathematical equations that
describe this method are as follows (Domine 2001). For
the position of a vertex,

The normal needs to be transformed by the inverse
transpose of the matrix used to transform geometry in
order to achieve the correct effect for back-face culling
and shading (Moller and Haines 1999).

The mesh skinning technique allows a mesh to be
deformed based on an underlying hierarchical
transformation matrix set. This animation method mimics
the way in which the skin is deformed by a skeleton in
reality. The animator has the control of the transformation
matrices that comprise the character’s skeleton rather than
the direct skin vertex and associates each skin vertex with
more than one transformation matrix. In this way, the
mesh skinning method can enable the application to create
unique animation sequences based on user interaction and
run-time game environments instead of interpolating from
per-set poses. Furthermore, skeleton animation is easily
parameterised, which makes it a superior choice for
intelligent character animation. This is because once the
animation procedure can be parameterised such that the
animation procedure’s parameters are able to change
during program run-time according to the character’s
internal and external stimuli, the character will be capable
of performing various movements based on environmental
stimuli and internal states. The following section depicts
the animation architecture that reflects the above method.

The animation architecture

The animation architecture is based on that proposed in
(Mehdi et al. 2001) and enhances the behavioural and
graphics part so as to adapt to the mesh skinning method.
The character perceives its environment from several data
channels named virtual sensor (Thalmann 1995;
Thalmann 1996). The sensorial information is then passed
to the perception component to form its own “image” for
the world. The reason for this stage is that the intelligent
character’s beliefs are distinct from the actual states of the
world (Burke et al. 2001). For instance, an object may be
located at co-ordinates (20, 20, 0), but the character only
knows where the object is relative to its head. Therefore,
the character cannot be allowed access to the world
model. Furthermore, not all perceived information should
be passed through this component to reach the internal
states of character. This perception component will also
act as a “information filter”. The actions will then be
selected via a Fuzzy Finite State Machine (FzFSM). The
most important enhancement is the graphics component
and the links between the graphics component and
behavioural component. The system architecture is
outlined in Figure 1. Compared to the Pat-Nets proposed
by the Balder (Granieri et al. 1995), this architecture is
more suitable to be implemented in PC platform. The Pat-
Nets is an inter-connected network that contains three
kinds of nodes, namely control, perceptual and
behaviours. As the system is intended for the multi-agent
animation, a network processes each behaviour node. In
this way, the system needs to be run in a multi-processor
system. In reality, normal PCs would not have more than
one processor available in their system. Therefore, the
generic implementation method proposed by Thalmann
(1996) is more suitable. As shown in Figure 1, the
sensorial information comes from the external game
environments. Different data channels can detect different

vMwV
n

i
iifinal ∑= ∑ =

i
iw 1

v is the vertex position
n is the number of matrices

iw is the associated weight
iM is the transformation matrix

Where:

(1)

∑ =
i

iw 1∑ −=
N

i
iifinal nMwN

T1

n is the vertex normal
N is the number of matrices

iw is the associated weight
T

iM 1− is the inverse transpose of
transformation matrix

Where:

(2)

For the lighting normal of a vertex,

Perception Component

Sensorial Information

State 1 State 2 State N

Behaviour 1 Behaviour 2 Behaviour 3 Behaviour N

…

…

Bone 1 Bone 2 Bone 3 Bone N…

Skin patch 1 Skin patch 2 Skin patch N…

FzFSM

Behavioural
Elements

Skeletal
Bones

Skin Mesh

Parameters
Adjustment

Figure 1 Layer-based architecture of intelligent character
animation using mesh skinning

System
Clock

The Character Animation

kinds of information. The classification of data kinds was

described in (Wen et al. 2000). The perception component
then receives the sensorial information as the input. It then
performs as a “information filter”, which extract the
useful information for the character’s active internal
states. For instance, when a hungry shark has detected a
moving fish and a floating sea plant ahead, this sensorial
information will then be passed to the perception
component. The perception component firstly translates
these two objects’ world positions into two positions
relative to the head of the shark so that once the action is
determined, the shark would know in which direction to
take. The information of “floating plant” will likely be
discarded and the information of “moving fish” will
enhance the shark’s dominant internal state “HUNGER”
resulting in behavioural actions such as chasing, rotating
tail etc. However, in other situation, suppose that a small
fish character has detected the same objects as above. If
the small fish is hungry, object “float plant” will trigger
the food hunting related internal states and will
subsequently affect certain behaviours. Meanwhile, object
“moving fish” may increase its internal state
“CAUTION”. Therefore, the rules of this perceptual
component may vary differently depending on the
character’s own behavioural routine.

The FzFSM receives input information from the
perception component. This information flow will
determine which internal states need to draw attention to
the newly arriving external stimuli. Some of the internal
states such as "HUNGER" may change according to the
time even without external stimuli. In the layer of
“behavioural elements”, each behaviour in this layer is
associated with one or more of the character’s states in the
internal state layer. These links are pre-set. For example,
the internal state “HUNGER” will activate several
behavioural elements such as “chasing”, “accelerating”,
etc. As in mesh skinning animation, motion is applied to
the character’s skeletal bones rather than the “skin” seen
by the player and the behaviours will then have direct

links to the corresponding bones inside the character’s

skeleton. These links are also pre-set. For example, the
behavioural element “accelerating” will activate the
transformation matrix for the bone “tail” to be
manipulated during this time step’s rendering. This
implies that the information contained in this bone
transformation matrix needs to be updated to reflect any
change in the character’s internal state. In addition, there
is information flow from the internal state layer. As every
internal state is a fuzzy set, it can normally vary from 0 to
1. For example, “HUNGER=0” means that the character
is not hungry; “HUNGER=1” means that the character
will die of hunger, which results in totally different
animation sequence. When the number is between 0 and
1, this reflects how hungry the character is, which can be
a parameter supplied to the transformation matrix. In this
way, the behaviours that the character presents will be
more flexible and unpredictable during run-time, which
substantially increases the believability of the game
character. Thus, this bone layer will perform the most
important task in this animation system since it is
responsible for the generation of animation sequences
based on the input from the characters internal state.
Various methods such as real time inverse kinematics can
be applied to produce realistic animation. For instance, a
method called Cyclic-Co-ordinate Descent (CCD) can be
used (Lander 2001c). This algorithm is capable of
mimicking the realistic movement for an articulated
object in a reasonably fast way.

In the last layer of the animation system is the skin patch,
which is able to be associated with more than one
transformation bone in the bone layer. This vertex level
mechanism can efficiently eliminate the gap or inter-
penetration between the separate parts of character model
due to the single transformation problem. It is worthwhile
to mention that for the sake of speed, it is not necessary
for all the skin vertices to get involved in this multi-bone
rendering. Only those parts that are likely to produce the
gaps should be involved. For instance, for the upper arm

and lower arm, only the vertices that are near the joint are
need to be involved into multi-bone rendering. The other
vertices should be treated by the normal rendering
procedure. Therefore, it may be more efficient to divide
the skin vertices into several categories according to the
number of bones that will affect the vertex (Cebenoyan
2001).

IMPLEMENTATION ISSUES IN DIRECTX

In the earlier version of Microsoft DirectX, the API
introduced a new rendering state into their fix-function
rendering called D3DRS_VERTEXBLEND. This state
allows geometry to be affected up to four transformation
bones. To efficiently perform soft-skinning on the whole
character (which clearly requires more than four
transformation bones to represent its motion), the
application has to make batch calls to the DrawPrimitive()
function based on which four bone matrices influenced a
given mesh piece. Therefore, four is the maximum
number of transformation bones possible each time the
DrawPrimitive() function is called. The main benefit for
this vertex blending is that it can be executed very fast.
However, the disadvantage is the limit to the number of
transformation bones for each vertex that form the skin
mesh. Furthermore, it does not integrate well with per-
pixel lighting that was introduced in DirectX 8
(Cebenoyan 2001). Per-pixel lighting enables generation
of customized photo-realistic effects by using the
programmable pixel shader in the Direct3D rendering
pipeline.

With the birth of DirectX 8, the above limitations have
been alleviated by two new provided methods to
implement more sophisticated vertex blending techniques
in real time, namely indexed vertex blending and matrix
palette skinning with vertex shader.

Indexed vertex blending is the easier way but not the most
flexible way to implement mesh skinning compared to the
vertex shader method. It can be thought as an overall
improvement over geometry blending provided by
DirectX 7. Instead of each polygon being influenced by a
maximum of four bone matrices, each vertex can now be
influenced by as many as four bone matrices. This implies
that 12 different bone matrices would now influence a
polygon. In this way, much more flexible and smooth
character animation effect can be achieved. If the vertex is
provided with rendering normal in appropriate vertex
buffer flag, DirectX will automatically compute the
inverse transpose of the matrices that are depicted in
equation 2. DirectX achieves this by encapsulating an 8-
bit value as indices to the transformation matrices that
will influence the vertex position and lighting normal. The
main problem for this indexed vertex blending is the
number of bone matrices that can influence one single
vertex is limited to four. This number may vary depending
on what graphics hardware is installed on the machine.
Additionally, there may not be wide hardware support for

indexed vertex blending in the future, which may
significantly limit the possible high performance
implementation of this technique (Freidlin 2001).

By incorporating the programmable vertex shader, matrix
palette skinning via vertex shader becomes the most
flexible way to implement mesh-skinning technique for
character animation in real time (Wloka and Maughan
2001). This implementation method is fully support in
hardware and can support a flexible number of bones per
vertex depending on different rendering requirements.
Therefore, this method has been adopted to develop our
example animation. The vertex shader is introduced to
replace the transformation and lighting engine inside the
DirectX transformation pipeline in order to produce more
desired effects by the programmer. It is a small assembly
language program with 128 instructions. The instructions
have access to four different types of memory locations,
namely per-vertex data of an incoming vertex, constant

memory, temporary registers and per-vertex output-
registers. When it is activated in program, it replaces the
transform and lighting computation of the fixed-function
pipeline for vertex. A vertex shader operates on a single
vertex at a time. A typical vertex shader implementation
for a vertex in mesh skinning is shown in Figure 2
(Freidlin 2001).

Prior to the above procedures, the character needs to be
modelled and a number of bone matrices need to be
assigned to some skin vertices. The mesh also needs to be

Unpack the index to the first matrix
from the vertex’s index component

Transform the vertex by the bone
matrix in quaternion

Scale the vertex by the first blend
weight.

Store the vertex in a temporary
register.

Last Bone?
NO

For the last bone, perform the first
two steps, scale vertex by the

difference of 1 and the sum of all the
bone weights.

YES

Add all the blended vertices
Transform to clipping space

Output the final vertex position

Figure 2 Vertex shader
programming procedure

translated via the function
ConvertToIndexedBlendedMesh() in order to be
influenced by certain transformation bones.

EXAMPLE ANIMATION

This section describes an example animation using the
method outlined in above section. The character has

around 19 bones and it is designed to be able to exhibit its
behaviours based on the run-time of the game
environment and its internal states in real time. In this
example, the character has two internal states, namely
CAUTION and HAPPY and several behavioural elements
such as “walking”, “standing”, “looking around” and
“running”. Figure 3a shows the character model, which
has been developed in 3D Studio Max. In Figure 3b the
character is walking around with HAPPY and CAUTION
being kept in at intermediate level. The character in
Figure 3c is walking and looking around with caution due
to noise/sound being detected. The level of CAUTION
has gone up in this situation. Figure 3d shows that after
the CAUTION level has been reached a high level, the
character is starting to run away while looking around.

CONCLUSIONS AND FUTURE WORK

The paper has proposed a methodology on how to apply
mesh-skinning technique to realistically animate an
intelligent game character in virtual environments. This
method has been shown to be an efficient way to generate
real time intelligent game character animation. The game
character is capable of performing various movements

based on run time game environment, user interaction and
its own internal states. Future work will concern efficient
use of the vertex shader to produce more complicated
character’s motion in real time.

REFERENCE

Anderson, E. F. 2001. “ Real-time character animation for
computer game”. http://www.pope-
mp.org.uk/projects/tentacle, last accessed 01/09/2001.

Burke, R.; Isla, D.; Downie, M.; Ivanov, Y. and Blumberg, B.
2001 “ Creature smarts: the art and architecture of a virtual
brain.”
http://www.gdconf.com/archives/proceedings/2001/burke/B
urkeR.htm, Last accessed 01/09/2001.

Cebenoyan, C. 2001.“Efficient Animation”.
 http:// partners.nvidia.com/ Marketing/ Developer/

DevRel.nsf/ TechnicalPresentationsFrame? OpenPage last
accessed 01/09/2001.

Domine, S. 2001 “Mesh Skinning”. http:// partners.nvidia.com/
Marketing/Developer/DevRel.nsf/TechnicalPresentationsFr
ame?OpenPage, last accessed 01/09/2001.

Freidlin, B. 2001“DirectX8: Enhancing real-time character
animation with matrix palette skinning and vertex shaders”.

 http://msdn.microsoft.com/ msdnmag/ issues/01/06/
Matrix/print.asp, last accessed 01/09/2001.

Granieri, J. P.; Becket, W.; Reich, D.; Crabtree, J. and Badler,
N.I. 1995. “Behavioral control for real-time simulated
human agents.” Proceedings of the 1995 symposium on
Interactive 3D graphics (NewYork, USA, April), ACM
Press New York, NY, 173 – 180.

Lander, J. 2001a “Skin them bones: game programming for the
web generation”.http:// www. darwin3d.com/ gamedev.htm,
last accessed 01/09/2001.

Lander, J 2001b “Slashing through real-time character
animation”. http://www.darwin3d.com / gamedev.htm, last
accessed 01/09/2001

Lander, J. 2001c “Oh my god I inverted kine: inverse kinematics
for real-time games.” http:// www.darwin3d.com/
gamedev.htm, last accessed 01/09/2001.

Mehdi, Q.; Wen, Z. and Gough, N.E. 2001 “Visualisation
system for agent behaviours in virtual environments”. Proc.
10th International conference of Intelligent System,
(Arlington, Virginia USA, June 13-15, 2001), pp 47-50.

 Moller, T. and Haines, E. 1999. Real-time rendering. A K
Peters Natick, Massachusetts.

Thalmann, D. 1996. “Physical, Behavioural, and Sensor-based
Animation”, In Proc. Graphicon96 (St Petersburg, Russia)
214-221.

Thalmann, D. 1995. “Virtual Sensors: A key Tools For the
Artificial Life of Virtual Actors”. In Proc. Pacific
Graphics’95 (Singapore) 22-40.

Weber, J. 2001 “ Run-time skin deformation”
http://www.intel.com/eBusiness/business/digitalmedia/wp01
2209_sum.htm, last accessed 01/09/2001.

Wloka, M. and Maughan, C. 2001 “Vertex shader introduction”.
http://partners.nvidia.com/Marketing/Developer/DevRel.nsf/
WhitepapersFrame?OpenPage, last accessed 01/09/2001.

Wen, Z.; Mehdi, Q, Gough, N.E and Allen, M.J. 2000. “
Creating animated behavioural game characters based on
environmental effects”, Proc. Game On 2000, International
Conference on Intelligent Games and Simulation (London,
UK November 11-12,2000), pp. 76-80.

Figure 3 Screen shots from the example animation
(a) Establish the model in 3D studio Max
(b) Character is walking
(c) Character is walking and looking around with

caution
(d) Character is running away and looking around

with scare

(a) (b)

(c) (d)

http://partners.nvidia.com/Marketing/Developer/DevRel.nsf/TechnicalPresentationsFrame?OpenPage
http://partners.nvidia.com/Marketing/Developer/DevRel.nsf/TechnicalPresentationsFrame?OpenPage

ALGORITHMS
FOR GAMES
SIMULATION
AND AGENT

PATH PLANNING

© SCS

REAL-TIME EDGE FOLLOW:
A NEW PARADIGM TO REAL-TIME PATH SEARCH

Cagatay Undeger

Modeling and Simulation Section
Defense Technologies Enginering Inc.

35. Sok. No.28 Balgat
06520 Ankara,

Turkey
E-mail: cundeger@ceng.metu.edu.tr

Faruk Polat
Department of Computer Engineering

Middle East Technical University
06531 Ankara,

Turkey
E-mail: polat@ceng.metu.edu.tr

Ziya Ipekkan
Scientific Decision Support Center

Turkish General Staff (TGS)
Bakanliklar

06100 Ankara,
Turkey

E-mail: zipekkan@tsk.mil.tr

KEYWORDS
Computer-generated forces, real-time path search, maze
problems.

ABSTRACT

Path searching and mission planning are challenging
problems in many domains such as war games, robotics,
military mission planning, computer-generated forces, etc.
The objective of this study is to develop a real-time path-
planning algorithm to accomplish specified missions on
large landscapes. For that purpose, a real-time goal-
directed path search algorithm, Real-Time Edge Follow
(RTEF), which can work on fully known, partial known or
completely unknown maze environments, is developed.
RTEF aims to find a path from a staring point to a static or
dynamic target point in real-time. The basic idea behind the
RTEF is to let the agent eliminate closed directions (the
directions that cannot reach the target point) by analyzing
obstacle edges in order to decide on which way to go (open
directions). For instance, if the agent has a chance to
realize that moving to north and east won’t let him reach
the goal state (although the target is at north-east), then he
will prefer going to south or west. RTEF finds out these
open and closed directions, so decreasing the number of
choices the agent has and significantly shortening the path.
The method is tested on large mazes and compared with
Real-Time A*. We observed that RTEF always performs
much better than RTA* when solution quality is considered
and usually better when total time spent to reach the goal
state is considered (especially on complicated mazes).
RTEF frequently gives high solution quality, which is in
most cases near to optimal solution, and never needs to
return to a previously visited cell while on the way.

INTRODUCTION

Multi agent systems can be used to model computer-
generated environments where intelligent agents react
suitably to various events. Many of the applications in this
context need realistic environment generation, efficient
search algorithms and heuristics suitable for real-time
simulations. Multi agent systems are integrated into these
simulations for supporting automatic and semi-automatic

human and group behaviors to complete a given mission.
Planning a mission usually means to plan a sequence of
actions that lead to the goal-state.

The problem of path planning can be described as finding a
sequence of state transitions from some initial state
(starting point) to a goal state (target point), or finding out
that no such sequence exists. Path-planning algorithms can
be off-line or on-line. Off-line path planning algorithms
like A* [Russell and Norving 1994] find the whole solution
before starting execution. They plan paths in advance and
usually find optimal solutions. Their efficiency is not
considered to be crucial and the agent just follows the
generated path. Although this is a good solution for a static
environment, it is completely infeasible for dynamic
environments, because if the environment or the cost
function changes, the remaining path may need to be re-
planned, which is not efficient for real-time applications.
Real-time path planning algorithms such as Real-Time A*
(RTA*), Learning Real-Time A* (LRTA*) [Knight 1993;
Korf 1090], Moving Target Search [Ishida and Korf 1995],
Bi-directional Real-Time Search [Ishida 1996], Real-Time
Horizontal A* [Undeger 2001], D* [Stentz 1994], Focused
D* [Stentz 1995] are on-line and offer more efficient
solutions. Some of them produce optimal solutions for
dynamic changes such as D* and Focused D*, and some
only bring efficiency but not optimality such as Real-Time
A*.

In this paper, we have proposed a real-time path search
algorithm, “Real-Time Edge Follow” (RTEF), which
provides both efficiency and solution quality on maze
environments. The algorithm is capable of searching a path
in real-time to reach a static or dynamic target on a fully
known, a partial known or a completely unknown mazes. It
can also be used in real-life applications uncluding
robotics. RTEF is tested on randomly generated mazes and
large terrain data, and compared with RTA*. The results
showed that RTEF performed better in both solution
quality and execution time.

In Section 2, a survey of related work on path planning is
given. Our real-time path search algorithm, Real-Time
Edge Follow is described in detail in Section 3. The

© SCS

performance analysis of RTEF is given in Section 4.
Finally, the conclusion is given in Section 5.

RELATED WORK

Multi-agent systems are used in many domains such as
robotics, computer generated forces, games, training,
RoboCup soccer and their simulators. In robotics [LaValle
and Kuffner 1999] and RoboCup soccer [Jensen and
Veloso 1998], intelligent planning aims to find out ways
for interacting with the physical world, which makes the
problem hard to solve. In contrast, intelligent planning for
computer generated forces and games [Pew and Mavor
1998; Undeger et al. 2000; Undeger 2001; Baxter and
Horn 1999; Gelenbe 1998; DeLoura 2000] aim to generate
behaviors similar to the real world in virtual environments.
Simulating real world actions in a virtual environment is
basically used to test some conditions that are not possible
or hard to generate in the real world. For example,
intelligent agents that behave much like real world entities
are frequently used for pilot trainings in flight simulators
[Jones et al. 1993, 1994]. In such simulators, realistic
modeling of agent behaviors is very important for the
realism of training.

In multi agent simulations, evaluating the environment
information, learning and reacting in time is essential. Erol
Gelenbe proposed modeling computer-generated forces
with learning stochastic finite-state machines whose state
transitions are controlled by state and signal dependent
random neural networks [Gelenbe 1998]. In Knuffner’s
approach [Kuffner and Latombe 1999], rendering off-
screen from the character’s point of view and real-time
path planning is used. His path-planning module aims to
find a collision free path between a starting and ending
point over the 3D terrain using the information gathered
from vision based perceptions. In the study of Knuffner,
the terrain is divided into embedded graph cells, which
have vertical, horizontal and diagonal costs of walking
through. Then, the suitable path is found using Dijkstra’s
algorithm, which is actually an optimal off-line path-
planning algorithm integrated into a real-time application.
Using an off-line path-planning algorithm in a real-time
application is not suitable for large terrains. By the help of
some guidance such as admissible heuristics can increase
efficiency of off-line path planning algorithms. A* [Russell
and Norving 1994] is one of best-known efficient path
planning algorithms, which is guided by a heuristic
function. A* always finds the optimal solution and uses
linear distances between points for the heuristic function.
Optimal path planning algorithms cannot be used for large
and dynamic landscapes because of its complexity. To
avoid this drawback, some partial path update algorithms
are also proposed such as D* [Stentz 1994] and focused D*
[Stentz 1995]. These algorithms plan an off-line path, let
the agent follow the path, and if any new environment
information is gathered, they partially re-plan the existing
solution. But some times, a small change in the
environment may cause to re-plan almost a complete path,
which may take a long process time.

A number of algorithms exist for supporting real-time
simulations such as Real-time A* (RTA*) and Learning
Real-Time A* (LRTA*) [Knight 1993; Korf 1990]. RTA*
uses a greedy search strategy and a heuristic together to
guide the search. It guarantees to find a solution if one
exists, but the solution may not be optimal. In this paper,
we have proposed a new Real-Time path search algorithm
for maze environments.

There are also some path-planning algorithms that use
random search techniques such as genetic algorithms,
random tree generators. In [Sugihara and Smith 1997], an
adaptive path-planning algorithm based on genetic
approach is proposed. In this study, they assumed that a
valid path that is not optimal is initially found and they
refine this given path by genetic algorithm. Considering
this concept, our previously developed off-line path-
planning algorithm, Linear Search Path Finder [Undeger
2001] seems to be applicable to this case successfully. In
the study of LaValla and Knuffner [LaValle and Kuffner
1999], a randomized planning technique based on a version
of random tree generation called rapidly exploring random
tree is presented. They generated two random trees starting
from the goal and the target points, and try to catch an
intersection among the points of distinct trees to find a
path.

REAL-TIME EDGE FOLLOW

RTEF is developed for maze-type problems and aims to
find a path from a staring point to a target point in real-
time. The basic idea behind the RTEF is to let the agent
eliminate closed directions (the directions that cannot reach
the target point) in order to decide on which way to go,
(open directions). For instance, if the agent has a chance to
realize that moving to north and east won’t let him reach
the goal state, than he will prefer going to south or west.
RTEF finds out these open and closed directions, so
decreasing the number of choices the agent has.

The environment is assumed to be a grid world with
obstacles, where the cells having obstacles are marked with
a non-zero value and the rest is filed with zero. Initially, the
agent is at a starting point and the goal is to reach a static
or dynamic target. At each move, RTEF algorithm is
executed to eliminate closed directions from the current
cell in order to select the next move from a set of open
directions. The cost of moving to the next cell + the
distance to the target is used for the heuristic function to
select one of the open alternatives. After doing the move,
the previous cell is marked as an obstacle; so loops are
prevented. The set of previously marked cells are called the
history of the agent. In exploration mode with an unknown
maze, the history has to be cleared when a newly
discovered obstacle blocks the way that was open before.

The algorithm is constructed on the idea that every obstacle
has a boundary, which is actually formed from a set of
connected edges shaping the object. The obstacles are

© SCS

defined as a set of merged cells in a grid world. RTEF
splits the moving directions from each other by a set of
rays sent away from the agent, and analyze each region to
discover whether it is closed or open.

Moving Directions and Sent-Rays

RTEF accepts the possible moving directions as north,
south, east and west. Although there are many interval
values of these directions, a set of basic directions is
chosen to partition the area for the sake of efficiency. The
idea is not to find an exact direction, but to choose a
general direction having a left and right angle limit. The
algorithm splits the visual environment into four regions by
sending 4 rays away from the agent. The rays are sent

along 4 diagonal directions (the angle between two
adjacent rays is 90 degree). The rays go away from the
agent until hitting an obstacle and hence split the area into
4 different regions. Some of these regions are on the way to
the target point and some are not. This is illustrated in
Figure 1.

Each ray hits the boundary of one of the obstacles. The
cells on the way of a ray are followed until a blocked cell is
detected. The boundary of the grid world is also marked as
blocked in order to prevent infinitely going rays. The first
ray is assumed to be on the northwest diagonal. This is
illustrated in Figure 2. A ray is assumed to hit an obstacle,
when any cell on the way is marked as blocked.

Figure 1: Sending rays until hitting an obstacle to split the basic directions

Figure 2: Rays, Directions and hitting: Rays and directions are numbered from 0 to 3 in clockwise direction on the left. The
figure on the right shows the cells on the way of 4 rays.

Following Edges

Four rays split the area around the agent into 4 regions.
Some of these limited regions are closed and target point is
inaccessible from any point located inside these regions. If
all are closed, that means the target is inaccessible from the
current state or location. To detect which ones are closed,
the boundaries of obstacles that the rays hit must be
analyzed. The edges on the boundaries are followed and if

edges are followed clockwise or counter-clockwise
directions starting from a hit-point, we always return to the
same point. By following edges and returning to the same
starting point on the boundary, a polygonal area is formed
(the boundary of the obstacle is detected). We call this
polygonal area an “island”. There are two kinds of islands:
outwards facing and inwards facing, which are shown in
Figure 3. If the target is inside an outwards facing island or

North d.

South d.

East d. West d.

The agent

An obstacle

A hit-point

Target

The best
direction that

could be chosen
from 3 open
alternatives
(west, east,

south)
Moving directions

Rays

Legend

90 degree

North d.

South d.

East d. West d.

© SCS

outside an inwards facing island, that means the target is
inaccessible from the current location.

Figure 3: Island types: outwards facing (top), inwards
facing (bottom)

If we reach the hit-point of another ray while following
edges (only the first one reached is considered), we have an
additional polygonal area (the two rays are also included)
called “hit-point-island”. This polygonal area is illustrated
in Figure 4.

Figure 4: Two rays hitting the same obstacle at two different
points

A hit-point-island borders one or more moving directions. If
the target point is not inside the hit-point-island, it means
that all the directions that are bordered by the hit-point-
island are closed. Otherwise all the directions that are not
bordered by the hit-point-island are closed. This is
illustrated in Figure 5.

Figure 5: Analyzing hit-point islands and eliminating

moving directions

The edge following algorithm works on grid worlds and it is
the most time consuming part of RTEF. There are two edge
follow directions. One follows the edges from the left side
of the hit-point and one follows from the right side. If we
follow edges from the left, we have to choose the next edge,
which is connected to the left side of the current edge and
similar process is done for the right side. This is depicted in
Figure 6.

Figure 6: Edge detection: The figure illustrate next possible

states when starting from south side of a cell. The
possibilities are tested from smaller angles to larger angles.

After finding the island and the hit-point-island, the target
must be checked if it is located inside these polygonal areas
or not. Implementing an inside test is not so complicated.
For testing whether the coordinate (tx,ty) is inside a polygon
P or not, we just need to count the number of edges in P
that are on the left side of ty and intersecting the horizontal
line passing on ty. If the edge count is an odd number, the
point is inside the polygon else it is not.

Detecting Closed/Open Regions

To detect closed and open regions, “edge following
process” and “inside polygon tests” are used together. To
follow edges from only one direction is enough for the
detection, but one direction has to be chosen and used for
all the rays. The C-like pseudo code for left side edge
following is shown in Figure 7. When open and closed
directions are detected, one of the open directions is chosen
and one-step move is performed. The simplest heuristic is
the cost of moving to the next cell + the distance of next cell
to the target. The direction, which minimizes the cost, is
selected for the next move.

Although the algorithm finds only the open directions, there
is a high possibility of getting into loops, especially when
there is more than one open direction at a time. For
example, assume that the agent is at the same y coordinate
as the target is, and there is one choice “moving north”. So,
the agent moves north. Consider the next state has two open
regions: north and south. South is the previous cell. If the
agent selects the south, it is obvious that it will go into a
loop. The agent selects the south, because being at the same
y coordinate as the target is, has less cost than being at two
cells up from the y coordinate of the target (the distance to
the target is shorter). This is only one of many possibilities.
The simplest solution to avoid the loops is to mark the
previous point as an obstacle. So the agent never has a
chance to visit the same point again.

An outwards facing

An inwards facing
island

A hit-point island

The first ray The second ray

Target

All the directions
that are bordered
by the hit-point-
island are closed

Target

All the directions that are not bordered
by the hit-point-island are closed

© SCS

For each ray-sent
Find hit-point of the ray;
Follow the edges from left side of the hit-point;
Find out the island and hit-point-island;
if (an hit-point-island is found)
{

if (targetx,targety) is inside the hit-point-
island)
{

if ((targetx,targety) is inside the island)
{

if ((agentx,agenty) is not inside the
island)

 close all the directions; // the
target is
inaccessible
;

}
else
close the directions that are not bounded by
hit-point-island.

}
else close the directions that are bounded by
hit-point-island.

 }
 else
 {

if ((the island is outwards facing and
(targetx,targety) is inside the hit-point-island) or
(the island is inwards facing and (targetx,targety)
is not inside the hit-point-island))

close all the directions; // the target is
inaccessible;

 }

Figure 7: The C-like pseudo code for detecting closed and

open regions

Exploring and Adaptation to Dynamic Environments

If the maze is not given in advance or just a part of the maze
is known, the agent has to explore and learn the
environment in real-time. The algorithm is applicable for
real-time exploration. It will immediately adapt itself to the
new condition, but there can be a problem because of
marking the cells traveled with obstacle. Because the agent
assumes that the rest of the way is opened, so it marks the
previous cells as obstacle, but when it explores the area and
notices that the region is closed, it may be stuck in a
completely closed region. All we need to do is to clear the
history when all the directions are closed.

In real life, the targets, the obstacles and the threats usually
have a dynamic nature. For RTEF having a dynamic
environment is not a big problem in fact. The algorithm can
also be adapted to a change in the cost function rapidly. The
only problem that may occur is blocking. For example,
while the target is moving, it may enter to a previously
blocked region, but if the target is blocked, the agent rapidly
detects that all the directions are closed and the history is
cleared.

One disadvantage of clearing history is forgetting previous
experience and returning back to same regions again. While
marking traveled cells as obstacles, one good thing is also
done. The noise (small obstacles) on the maze is cleared by
connecting them with history lines. So clearing the history
causes noise to increase again.

Complexity of RTEF

The worst case complexity of RTEF for each move is O(w x
h), where w is the width of maze and h is the height of
maze. But almost never we have this complexity. In general,
it is much more smaller than this. The efficiency of a move
can be explained with total number of edges followed.
Other operations are very efficient compared to edge
following process. The observed worst-case frame rates for
different sized mazes are shown in Table 1. As seen, the
seconds per move increases almost proportional to the
number of cells.

Table 1: Worst-case performances on sample mazes:
Sec/M = seconds per move, M/sec = moves per second,

Increase = Increase compared to previous column

 100x100 200x200 400x400 800x800 1600x1600

Sec/m 0.005 0.024 0.110 0.462 1.935

M/sec 200.000 41.666 9.090 2.164 0.516

Increase - 4.800 4.583 4.200 4.188

PERFORMANCE ANALYSIS

The test environment is implemented in Borland Delphi
programming language under Windows platform. The tests
are run on an Intel Celeron-466 with 128 MB memory. Both
RTEF and RTA* (described in subsection “Real-Time A*”)
are implemented. We observed that the solution quality of
RTEF is always better than RTA* in both simple and
complicated mazes. The efficiency (seconds per move) of
RTEF is satisfactory in most cases, but not better than
RTA*. The efficiency of RTEF depends on the environment
complexity, while the efficiency of RTA* is nearly constant.

Three different versions of RTEF algorithm are realized and
tested using randomly generated mazes, and compared to
RTA*. The first RTEF algorithm knows the entire maze in
advance, so has a chance of better planning. The second and
third ones don’t know the maze. The agents can see the
neighboring cells to a certain depth. They completely see a
square region with size d x d, where d is twice of their
visual depth plus one. For example, if the observation depth
is 5, the agent knows a square of 11x11 cells (5 left, 5 right,
5 up and 5 down). The agent can build the map with real
data in time.

Real-Time A* (RTA*)

RTA*, which RTEF is compared to, is a greedy search
algorithm that uses heuristics to direct the search. It
evaluates the costs of the neighbor voxels at the current
position and jumps to the voxel having minimum cost.
While jumping to the next voxel, the algorithm writes 1 plus
the cost of the second best neighbor to the previous voxel.
This is illustrated in Figure 8.

© SCS

5 8 3

1 7

9 6 7

The best

The second best

5 8 3

1 7

9 6 7

4

The second best + 1

Figure 8: State transition of Real-Time A*

The algorithm is effective and complete for maze
environments, but if the terrain is large and there are many
semi-closed regions having large open areas inside, the
agent may be stuck in the regions for a long time, because
the search strategy is too local, only the neighbor voxels are
evaluated. In addition RTA* uses much memory than
RTEF, because it needs an additional array to store cost
updates. And RTA is also not applicable to dynamic
environments in practice.

Test Results of RTEF

The mazes with size 100x100 and 500x500 are randomly
generated. The agents and the targets are positioned on
upper-left, lower-right or upper-central, lower- central side
of the mazes. Total time passed, average moves/sec and the
number of moves to reach the target point are used to
evaluate the results. We evaluated the efficiency and
solution quality of RTEF. The average values of test results
are shown in Table 2 and 3.

As seen from the results, RTEF always gives better solution
quality than RTA* on the average. The difference
significantly increases if complicated mazes are used. The
RTEF again has a good solution quality when unknown
mazes are explored. The best solution quality over RTA* is
995.741 times better than RTA* on the average. The worst
solution quality of RTEF is again better than RTA*, which
is 1.010 times better than RTA*. The average moves/sec
(moves per seconds) of RTA* is 2395 (almost constant),
where average moves/sec of RTEF is 371 (varies from 29
moves/sec to 991 moves/sec). This moves/sec is much more
smaller than RTA*, but acceptable for soft real-time
systems. In robotics, doing unneeded physical actions is
much more time consuming than thinking and doing good
actions, so the moves/sec is not a disadvantage at all. In real
world, the time to walk to the next state will usually take
more time than thinking phase, and the next move can be
calculated while walking to the next state. If we examine
total time spent to reach the goal state, an interesting result
is observed. In very simple mazes the efficiency ratio of
RTA* is better than solution quality ratio of RTEF. But in
simple mazes, they go head to head. And after simple
mazes, the solution quality and efficiency generally seems
to be better than RTA* and after average mazes, the RTEF
is better both in efficiency and solution quality. Some
sample snapshots are shown in Figure 9, 10.

CONCLUSION

In this paper, we have studied the concept of computer-
generated forces in order to construct a real-time simulation
system. We have generated complicated landscapes similar
to real ones and tried to solve real-time path planning
problem for mission planning purposes. A test environment
is generated and a set of scenarios is performed to evaluate
performance of developed algorithm. We observed that
RTEF performs better than RTA* in most cases. The
algorithm is also applicable to robotics and real-time
observation, and it frequently gives high solution quality,
which is in most cases near to optimal solution.

By introducing new heuristics, the solution quality can be
increased, but these methods may reduce the efficiency of
the algorithm. For example, some evaluation methods can
be applied using edge follow information.

As a result of our observations, we state that the real-time
path planning techniques can be improved by increasing the
visual search depth, which helps a lot to escape earlier from
the local semi-closed regions. But we have also noticed that
there is much to do for better intelligent search strategies.
More human-like evaluation techniques are needed to go
one step forward.

Figure 9: A Maze with 5 cell corridors: RTA* performs
226772 moves in 102.034 seconds (top), RTEF performs

1664 moves in 46.474 seconds (bottom). Black regions are
traveled cells. RTA* may travel a cell more than once.

© SCS

Figure 10: A Simple Maze (left): RTA* performs 2163 moves in 0.890 seconds (top-left), RTEF performs 1325 moves in
2.840 seconds (bottom-left). A Complicated Maze (Middle): RTA* performs 6157 moves in 27.024 seconds (top-middle),

RTEF performs 1487 moves in 13.680 seconds (bottom-middle). A Very Complicated Maze (right): RTA* performs 76387
moves in 34.105 seconds (top-right), RTEF performs 1670 moves in 20.870 seconds (bottom-right).

 Table 2: Test results (mazes filled with randomly distributed noise)

Average of Simple Mazes:

500x500 cells
Time in
Seconds

Average
Moves/Sec

Number of
Moves

Efficiency of RTEF,
RTA* Time / Time

S. Quality of RTEF,
RTA* Moves / Moves

RTA* 1.665 2408 3950 1.000 1.000
RTEF (maze is fully known) 2.850 449 1282 0.584 3.081
RTEF (observation depth 5) 3.490 507 1771 0.477 2.230
RTEF (observation depth 10) 3.889 389 1513 0.428 2.610

Average of Average Mazes:
500x500 cells

Time in
Seconds

Average
Moves/Sec

Number of
Moves

Efficiency of RTEF,
RTA* Time / Time

S. Quality of RTEF,
RTA* Moves / Moves

RTA* 4.058 2367 9718 1.000 1.000
RTEF (maze is fully known) 4.695 218 1026 0.864 9.471
RTEF (observation depth 5) 2.653 660 1753 1.529 5.543
RTEF (observation depth 10) 3.018 404 1221 1.344 7.959

Average of Complicated Mazes:
500x500 cells

Time in
Seconds

Average
Moves/Sec

Number of
Moves

Efficiency of RTEF,
RTA* Time / Time

S. Quality of RTEF,
RTA* Moves / Moves

RTA* 57.685 2468 94365 1.000 1.000
RTEF (maze is fully known) 19.138 74 1428 3.014 66.081
RTEF (observation depth 5) 29.094 285 8317 1.982 11.346
RTEF (observation depth 10) 18.802 300 5652 3.068 16.695

Average of Very Complicated
Mazes: 500x500 cells

Time in
Seconds

Average
Moves/Sec

Number of
Moves

Efficiency of RTEF,
RTA* Time / Time

S. Quality of RTEF,
RTA* Moves / Moves

RTA* 58.766 2415 142089 1.000 1.000
RTEF (maze is fully known) 21.932 62 1373 2.679 103.487
RTEF (observation depth 5) 21.897 422 9245 2.683 15.369
RTEF (observation depth 10) 21.960 369 8123 2.676 17.492

© SCS

 Table 3: Test results (5 and 1 cell corridors with sizes 500x500 and 100x100)

Average of mazes with 5 cell
corridors: 500x500 cells

Time in
Seconds

Average
Moves/Sec

Number of
Moves

Efficiency of RTEF,
RTA* Time / Time

S. Quality of RTEF,
RTA* Moves / Moves

RTA* 843.917 2495 2176692 1.000 1.000
RTEF (maze is fully known) 73.257 29 2186 11.519 995.741
RTEF (observation depth 5) 581.190 122 71377 1.452 30.495
RTEF (observation depth 10) 167.415 119 19983 5.040 108.927

Average of mazes with 1 cell

corridors: 100x100 cells

Time in
Seconds

Average
Moves/Sec

Number of
Moves

Efficiency of RTEF,
RTA* Time / Time

S. Quality of RTEF,
RTA* Moves / Moves

RTA* 3.861 2434 9201 1.000 1.000
RTEF (maze is fully known) 2.801 117 329 1.378 27.966
RTEF (observation depth 5) 2.808 434 1220 1.375 7.541
RTEF (observation depth 10) 2.385 295 704 1.618 13.069

REFERENCES

Baxter, J.W. and Horn, G.S. 1999. “A Model for Co-Ordination
and Co-Operation Between CGF Agents.” In Proceedings of
8th conference on Computer Gererated Forces and
Behavioral Representation, Orlando, Florida, 101-111.

DeLoura, M.A. 2000. Game Programming Gems. Charles River
Media.

Gelenbe, E. 1999. “Modelling CGF with Learning Stochastic
Finite-State Machines.” In Proceedings of 8th conference on
Computer Gererated Forces and Behavioral Representation,
Orlando, Florida, 113-115.

Ishida, T. and Korf, R.E. 1995. “A Moving Terget Search: A Real-
Time Search for Changing Goals.” IEEE Trans Pattern
Analysis and Machine Intelligence, Vol.17, No.6, 97-109.

Ishida, T. 1996. “Real-Time Bidirectional Search: Coordinated
Problem Solving in Uncertain Situations.” IEEE Trans
Pattern Analysis and Machine Intelligence, Vol.18, No.6.

Jensen, R.M. and Veloso, M.M. 1998. “Interleaving Deliberative
and Reactive Planning in Dynamic Multi-Agent Domains.” In
Proceedings of the AAAI Fall Symposium on Integrated
Planning for Autonomous Agent Architectures, AAAI Press.

Jones, R.M., Tambe, M., Laird, J.E. and Rosenbloom, P.S. 1993.
“Intelligent Automated Agents for Flight Training Simulator.”
In Proceedings of 3th conference on Computer Gererated
Forces and Behavioral Representation, Orlando, Florida, 33-
42.

Jones, R.M., Laird, J.E., Tambe, M. and Rosenbloom, P.S. 1994.
“Generating Behavior in Response to Interacting Goals.” In
Proceedings of 4th conference on Computer Gererated Forces
and Behavioral Representation, Orlando, Florida.

Knight, K. 1993. “Are Many Reactive Agents Better Than A Few
Deliberative Ones?” In Proceedings of The International
Joint Conference on Artificial Intelligence, 432-437.

Kuffner, J.J. and Latombe, J.C. 1999. “Fast Synthetic Vision,
Memory, and Learning Models for Virtual Humans.” In
Proceedings of Computer Animation, IEEE, 118-127.

Korf, R.E. 1990. “Real-Time Heuristic Search.” Artificial
Intelligence, Vol.42, No.2-3, 189-211.

LaValle, S.M. and Kuffner, J.J. 1999. “Randomized Kinodynamic
Planning.” In Proceedings of IEEE International Conference
on Robotics and Automation, ICRA'99, Detroit, MI.

Pew, R.W. and Mavor, A.S. 1998. Modeling Human and
Organizational Behavior: Application to Military
Simulations, National Academy Press.

Russell, S. and Norving, P. 1994. Artificial Intelligence: a
Modern Approach, Prentice Hall.

Stentz, A. 1994. “Optimal and Efficient Path Planning for
Partially-Known Environments.” In Proceedings of the IEEE
International Conference on Robotics and Automation, ICRA
'94, Vol.4, 3310–3317.

Stentz A. 1995. “The Focussed D* Algorithm for Real-Time
Replanning.” In Proceedings of the International Joint
Conference on Artificial Intelligence, IJCAI’95.

Sugihara K. and Smith, J.K. 1997. “Genetic Algorithms for
Adaptive Planning of Path and Trajectory of a Mobile Robot
in 2D Terrains.” Technical Report, number ICS-TR-97-04,
University of Hawaii, Department of Information and
Computer Sciences.

Undeger, C., Isler, V. and Ipekkan, Z. 2000. “An Intelligent
Action Algorithm for Virtual Human Agents.” In Proceedings
of the 9th Conference on Computer Generated Forces and
Behavioral Representation, Orlando, Florida, 25-33.

Undeger, C. 2001. Real-Time Mission Planning For Virtual
Human Agents. M.S. Thesis in Computer Engineering
Department of Middle East Technical University, Ankara,
Turkey.

AUTHOR BIOGRAPHY

CAGATAY UNDEGER received his B.Sc. degree from Kocaeli

University, Turkey in 1998 and went to the Department of
Computer Engineering, Middle East Technical University,
where he has worked as a research assistant and obtained his
M.S. degree in 2001. He is currently doing his Ph.D. in the
same university and studing on Modeling and Simulation
within Defense Technologies Engineering Inc.

FARUK POLAT is an associate professor in the Department of

Computer Engineering of Middle East Technical University,
Ankara, Turkey. He received his B.Sc. in computer
engineering from the Middle East Technical University,
Ankara, in 1987 and his M.S. and Ph.D. degrees in computer
engineering and information science from Bilkent University,
Ankara, in 1989 and 1993 respectively. He conducted research
as a visiting NATO science scholar at Computer Science
Department of University of Minnesota, Minneapolis in
1992-93. His research interests include artificial intelligence,
multi-agent systems and object oriented data models.

ZIYA IPEKKAN has been serving as an operations research

analyst at TGS for more than twelve years. Lt.Col.Ziya
øSHNNDQ LV FXUUHQWO\ WKH OHDGHU IRU)RUFH 6WUXFWXUH $QDO\VHV
Team at the position since August 2000. He is responsible for
conduct of studies and analysis of joint concepts, the
warfighting capabilities and plans, and force structures.

Figure 1. Unreal’s scene.

USING GAMES ENGINES TO IMPLEMENT INTELLIGENT VIRTUAL ENVIRONMENTS

Carlos Calderon and Marc Cavazza
University of Teesside, TS1 3BA Middlesbrough, United Kingdom,

c.p.calderon@tees.ac.uk, m.o.cavazza@tees.ac.uk

KEYWORDS
Games Engines, IVE, and problem solving mechanisms.

ABSTRACT

In this paper we present an Intelligent Virtual
Environment (IVE) obtained by incorporating a problem
solving mechanism (AI technique) into a Virtual
Environment. In particular, in this paper, we will discuss the
implementation of the interaction with the problem solving
mechanism by using the following metaphor: the visual
space provided by the Virtual Environment is seen as the
search space.

INTRODUCTION

 The emerging area of Intelligent Virtual Environments
explores the integration of Artificial Intelligence techniques
into Virtual Reality systems. One particular research topic is
to couple interactive AI systems (scheduling, planning, etc.)
to virtual environments where the VE serves as an interface
to the interactive planning system. Because the nature of the
tasks to be solved are mainly spatial, Visualisation Engines,
in general, and Games Engines in particular are well suited
to serve as interface to the planning and/or problem solving
mechanisms. That is, by incorporating AI techniques into 3d
real-time interactive graphics technologies, we could, for
instance, add a problem-solving component to the virtual
environment. This would be beneficial for industrial
applications where task scheduling or interactive design is
relevant.
 The objective of this paper is to present an interactive
prototype in which we have linked a Virtual Environment
(VE) to a constraint solving mechanis m (solver). In our
example application is possible to directly manipulate the
objects from the virtual environment to create an input
configuration for the planning system. This new input
configuration is analysed by the problem solving mechanism
and then, displayed in the Virtual Environment.
 The next section briefly introduces the technologies used
to create an Intelligent Virtual Environment for our example
application. The third section describes how the problem
solving mechanism has been incorporated into the Game
Engine. Finally, the paper concludes with a brief discussion
about the different implemented types of interactivity,
further work lines of work and some conclusions.

TECHNOLOGY BASELINE

Interactive Visualization Engine
 We decided to use the Unreal Virtual Machine for three
main technical reasons: extensibility, an extremely powerful
rendering engine and cutting-edge networking capabilities.
Unreal has also been successfully used in non-gaming
applications [1] and research projects [2].
Rendering engine and subsystems.

 The Unreal rendering engine has the most complete
lighting conditions support of all the games engines. A
variety of effects: such as surfaces with shadowing, realistic
wavy water, animated materials, etc (see figure 1) have been
used to add realism to the virtual scene. Unreal also supports
digital sound system (software Dolby Surround encoding for
full 360-degrees). Real world sounds , e.g water splashing,
have been incorporated to the virtual scene to add realism to
the exploration of the virtual environment.

Problem Solving Techniques

 Our approach is based on a combination of Constraint
Logic Programming over Finite Domains (CLP(FD)) and 3D
real-time interactive technology.
 Our choice of CLP(FD) as a software technology was
made based on a series of factors: expressivity, the
combination of search and incremental constraint solving
capabilities, the short development time while exhibiting an
efficiency comparable to imperative languages, and the fact
that CLP(FD) is fast enough to react in “real-time” to the
user’s input configuration

 In our concept architecture examples we have used GNU
Prolog as a programming environment, which contains an
efficient constraint solver over FD. GNU Prolog offers two
different propagation techniques to solve arithmetic
constraints: full arc -consistency and partial arc-consistency.
This coupled with the use of labeling constraints help us to
discover inconsistency as soon as possible, thus avoiding
futile search through inconsistent alternatives. Hence,
efficient and very fast constraint solvers can be programmed.

INTELLIGENT VIRTUAL ENVIRONMENT

 This section explains how we have made the constraint
solver work jointly with the visualization engine to create an
Intelligent Virtual Environment in which the virtual
environment serves as an interface to the planning system.
The starting point is to formulate the problem in terms of
constraints (using GNU Prolog). Then the next step is to link
our constraint solver with the visualization engine (Unreal
Virtual Machine).
 The next sub-section explains in more detail how the
constraint solver has been implemented.

Constraint Solver

Problem
 To experiment we have developed a test application in
which the task is to allocate a Coke machine in a bank hall.
This task can be seen as an example of a spatial/resource
allocation problem. This can be represented as a Constraint
Satisfaction Problem (CSP), which, consequently, can be
easily formalised in CLP (FD). There are numerous design
issues, especially in the context of building design, that can
be easily transformed into constraints such as health and
safety regulations, urban and planning regulations, etc.
 The Constraints imposed on the Coke machines are the
following: a) sources of heat (i.e. radiators) should stay a
minimum distance away from the machines, b) the coke
machines can only be placed at a maximum distance away
from a socket (power point) c) the machines must not
obstruct ventilation ducts, d) the coke machines must stay
clear from exits and thoroughfares e) the minimum distance
to a wall is 25 cm f) finally, the allocation of coke machines
must take into account the existing furniture and decoration
in the hall.

Representation of the Search Space
 There are at least three options to choose from to represent
the spatial search space: rectangular or hexagonal
discretisation, actual polygonal floor and polygonal floor
representation. There is no obvious choice, each
representation has its trade-offs. This decision has great
implications in terms of speed to solve the CSP problem and
flexibility to accurately represent a constraint satisfaction
problem.
 In this prototype we have opted for a Rectangular or

Hexagonal Grid: A uniform rectangular or hexagonal grid is
overlaid onto the world. The size o f each grid space is related
to the smallest character. The pros of this approach are:
obstacles and characters can be easily marked in the grid; it
works well for our 3D world, in our example application the
working (spatial search) space is a flat 3D world that is, the z
coordinate is constant; save computations on the z
coordinate. c
 When we translate our CSP problem to a rectangular grid,
we are simplifying the 3D space into more familiar 2D terms.
The idea is to solve the problem in a pseudo 3D environment
(where the Z coordinate is constant) while providing a full
3D representation to the user. To do this, we use a
rectangular grid as a mesh to transform the 3D space into a
more manageable search space.
 We have experimented with different grid size but as far as
the search space goes, the maximum number of cells or the
finest possible mesh is implementation dependent. This is
due to the fact that in GNU Prolog FD variables can only
take values in their domains. There are two internal
representations for an FD variable: interval and sparse
representation. The initial representation for a FD variable is
always internal representation and is switched to a sparse
when a “hole” appears in the domain (i.e due to an inequality
constraint). So to avoid unexpected surprises we have used
the following predicate: fd_set_vector_max(512) that sets
the environment variable VECTORMAX to the greatest
value that any FD variable can take. This means that in our
example application the finest possible mesh has a cell size
of 37mm by 37 mm in real units, That is, in the real world.

Problem expressed in CLP(FD)
 We can easily transform our initial task into a CSP problem.
That is, a problem where one is given: a finite set of
variables, a function which map each variable to a finite
domain, and a finite set of constraints. In our case, the set of
variable is (X,Y) where X and Y represent the coke
machine’s x and y coordinates in our search space. We map
these variables to a finite domain by using the following
predicate: fd_domain(Vars,1,36). Finally, we have to impose
our constraints.
 We have regarded the constraints d and f as fixed

/*distance to a wall, in this case 25cm*/
walldistance(X,Y) :-
 X=2,!
 ;
 Y=2,!
 ;
 X=35.

/*max distance to, i.e, a plug*/
/*In this case the Manhattan distance is 3 units*/
maxdistance(X,Y) :-
 D is 3,
 (Xc is 2,
 Yc is 1,
 distance(X,Xc,Dc1),
 distance(Y,Yc,Dc2),
 Dc1+Dc2#=<D)).
Figure 2. Examples of constraints

topological constraints and we have implemented them as
facts in the database. Alternatively, we could have
implemented them as atomic constraints such as Y#=<10
what could have been more efficient but for simplicity we
chose not to. The constraints a and c have been regarded as

conjunctive. The formulation of this type of constraints
(conjunctive) is straight forward. See figure 3 where Xo and
Yo are the position of the source of heat in the search space.
Finally, b is regarded as a disjunctive constraint. The
formulation of this type of constraints is also simple. See
figure 2 where Xc and Yc represent the location of the
socket in the search space. We have used the Manhattan
distance as distance criterion.
 It is worth noticed that the incremental constraint solving
capabilities makes very easy to implement more conjunctive
constraints. We just need to add a new constraint but with a
different Xi and Yi and the solver takes care of the rest (see
figure 3). Figure 4 shows a graphical representation of a
fraction of the search space and the constraints implemented
in it.

System Architecture

Concept Architecture Example
 The system is constructed of a number of modules

-LinkServer
 This module handles the communication of Unreal with
the GNU Prolog solver and it has been implemented using
the Berkley socket interface. In short, the aim of this
subsystem is to provide a means of inter-process
communication that allows bi-directional messages between
two processes regardless of whether those processes reside
on the same machine or different machines. In our current
implementation, the solver is located in a remote location
and the communication protocol used to send information
across the network is TCP/IP (Transfer Control Protocol and
Internet Protocol).

-Interaction Modules (ITModules)

 A series of Unreal modules have been scripted in order to
create a satisfactory and appropriate player’s interaction
with the world. These modules provide the system with a
customized player pawn which has embedded the following
functionality: the ability to locate the sought object and
Grabbing/Dropping objects at will by just pressing the
appropriate key. Figure 5 shows a player exploring the

/*Where X0 and Yo is a ventilation duct*/
/*The criterion to used to calculate the distance is: */
/*The Manhattan distance*/

mindistV0(X,Y) :-
 D is 1,
 X0 is 1,
 Y0 is 1,
 distance(X,X0,D1),
 distance(Y,Y0,D2),
 D1+D2#>D.

/*A new constraint can be added just by changing */
/*te location of the ventilation duct, Xi Yi*/

mindistVi(X,Y) :-
 D is 1,
 Xi is 1,
 Yi is 1,
 distance(X,X0,D1),
 distance(Y,Y0,D2),
 D1+D2#>D.

Figure 3. Incremental Constraints

Figure 5. Player explores virtual scene.

Legend:

Plug

Radiator

Duct

Thoroughfares

Figure 4. Fraction of the search space with constraints.

virtual scene after he/she has “grabbed” a Coke Machine.

-Interface Modules (IFModules)
 In order to have a smooth player’s interaction with the
virtual environment, an interface with the LinkServer
module has been embedded in our Player Pawn class. This
approach guarantees that interface is switch on/off at the
player’s will, that is, when the player decides to input a new
configuration (i.e by dropping an object).
 The basic functionality provided by this interface is the
following: a) the player’s input configuration is parsed,
transformed and send to client-server subsystem b) the new
configuration produced by the solver is received from the
client-server subsystem, parsed and transformed into
UnrealScript commands in order to create the corresponding
object configuration which the Unreal Virtual Machine
displays in real-time. Figure 6 shows the overall system
architecture.

Interaction cycle

The interaction cycle works as follows:
-Initial State (Initial Knowledge)

 An initial configuration is proposed to the user. In our
example, a Coke machine is initially allocated in the Virtual
Environment.

-Exploratory State

 The user explores the initial proposed configuration in the
Virtual Environment.

-Solution State
 To reach this state the u ser has previously decided to place
the Coke machine in the Virtual Environment in a position
different from the one initially given. Once the user has
placed the Coke machine, the new input configuration is sent
to the solver. This analyzes it and reacts to it. There are two
possible scenarios:
a) The new configuration complies with the constraints.
Outcome: the system reacts by displaying a confirmation
message.
b) The new position does not comply with constraints
embedded in the solver. Outcome: the system reacts by
returning to the previous valid configuration.
 Once the Solution State is completed the user is back to the
Exploratory State and consequently, a new interaction cycle
commences. Figure 7 depicts the interaction cycle.

FURTHER WORK

 We see the results presented on this paper as a step towards
the development of reactive environments In practical
implementation terms in our example application the
following could be an example of a reactive environment:
In our initial scenario we could have two types of
constraints: hard constraints (i.e topological) and soft
constraints (i.e movable objects). Thus, if player’s
configuration complies with all the topological (hard
constraints) but not with the soft constraints (movable
objects) then the system should react by reallocating the
movable objects in the new configuration.

DISCUSSION

 One key aspect to successfully incorporate planning
systems into Visualisation Engines is that AI techniques are
often less interactive that it would be required for a complete
integration into the virtual environment. In previous papers
[3] we discussed and shown that CLP over FD as software

Figure 7. Intercation cycle.

SOLVER
(GNU Prolog)

VISUALISATION
ENGINE

 (Unreal)

IFModule

IFModule

Results

ITModule

Link
Server

USER

Events

TCP/IP

Figure 6 System Architecture.

technology it is fast enough to react in “real-time” to user’s
input configuration. Furthermore, the results shown in table1
underpinned the idea that although constraint programming
in itself is not a reactive technique it can be used to emulate
reactivity because it can produce a solution quickly enough.

Table1. Solution times.

 To find: First
Solution(ms)

To find: All
Solutions (ms)

User-time 0 [10-40]
System-time 0 [0-10]

Cpu-time 0 [10-30]
Real-time [0-2] [61-63]

Average time in milliseconds over 10 trials

 Another key point in order to implement a real-time system
is that the sampling rate of object manipulation in the virtual
environment must be compatible with the result production
granularity of the problem-solving algorithm. In our case,
the implementation of a real-time reactive environment will
depend not only on using the adequate technology to
implement the constraint solver but also on the overall
system architecture.
 Unfortunately, at this point in time, we do not have enough
experimental data to back up this particular point. However,
our empirical estimation is that the current implementation
produces a satisfactory result in terms of the compatibility of
the object manipulation in the virtual environment with the
overall result production granularity.

CONCLUSIONS

 In this paper we have presented an interactive system in
which the virtual environment acts as an interface to the
interactive planning system. Because the nature of the tasks
to be solved takes place in a 3 dimensional space,
Visualisation Engines are suitable tools to serve as an
interface to the planning and/or problem solving
mechanisms. We have shown that the inclusion of an AI
layer adds a problem-solving component to the Virtual
Environment. This could also be seen as having a VE where
objects have associated behaviours.

ACKNOWLEDGEMENTS

Many thanks to Mr Steve James Mead. for his technical
assistance regarding C programming and system
architecture.
Many thanks to Mr H. Robert Berry, Jr for his technical
assistance regarding UnrealScript.

REFERENCES

[1] De Leon, Victor. (1999), VRND:NOTRE-DAME
CATHEDRAL: A Globally Accessible Multi-User Real-Time
Virtual Reconstruction, the 5th International Conference on Virtual
System and MultiMedia 1999 (VSMM’99):Next Generation Virtual
Reality “Milestones for a New Virtual Milennium”.Dundee,
Scotland, UK, 1-3 September, 1999.
[2] Young, Micheal. (2001), An Overview of the Mimesis
Architecture: Integrating Intelligent Narrative Control into an
Existing Gaming Environment. In The Working Notes of the AAAI
Spring Symposium on Artificial Intelligence and Interactive
Entertainment, Stanford, CA, March 2001.
[3] Calderon, C and Cavazza, M. (2001), Intelligent Virtual
Environments to Interactively Solve Spatial Configuration Tasks.
Proceedings of the Seventh International Conference on Virtual
System and Multimedia. Berkeley, USA, 25-27 Oct 2001

© SCS

Co-ordination of Multi-agent Path Planning using
the Synchronous Near-Admissibility A* (SNA*) Algorithm

M.Shafie Abd Latiff
Ian Palmer Marc Cavazza

Electronic Imaging and Media Communication School of Computing and Mathematics
University of Bradford University of Teesside

Bradford BD7 1DP Middlesbrough, TS1 3BA
United Kingdom United Kingdom

E-mail: m.s.abdlatiff@bradford.ac.uk Email : m.o.cavazza@tees.ac.uk
E-mail : i.j.palmer@bradford.ac.uk

KEYWORDS
Multi-agent co-ordination, path planning, games theory

ABSTRACT

This paper discusses a solution to generate multiple paths
using a single algorithm. The paths will disperse among
different available roués and reconvene back at the same
destination. The solution is unique in terms of co-ordination
among agents. Co-ordinated path planning for multi-agents
is based on collective behaviour. Admissibility, as a main
property of the A* algorithm, provides the basis to
incorporate a collective behaviour in path planning. We
introduce a new extension of A* called Synchronous Near-
Admissible A* or SNA* that produces alternative paths that
depart from the shortest path solution.

INTRODUCTION

Co-ordination of agents not only refers to interaction
between agents where the goal of each agent’s action is to
induce change in the other agents (Pinhanes, 1999) but it
also includes the sharing of information to work together as
a group of agents. For example, in crowd simulation and
the movement of groups of artificial animals, information
about separation distance is important to ensure that agents
will not collide with other agents. Most research into multi-
agent movement focuses on how to move the crowd together
without inter-agent collisions and avoiding obstacles. The
crowd is intended to move from the same location to the
same destination. If there are several alternative paths or a
number of obstacles providing several paths to the
destination, human nature is to choose a different path
rather than the same congested path. This is especially
evident for crowds in emergency conditions.
There are many real-world applications in which this
problem arises, as can be illustrated by a practical example.
In many modern computer games, the player’s avatar is
often confronted with several Non-Player Characters
(NPCs). A measure of how “intelligent” these NPCs are is
often how well they co-ordinate their attacks on the player,
including the path planning phase. In particular, it is easy
for the human player to confront opponents lined in a row,
all following the same path towards his avatar. A better
approach consists of using the player's position as a goal,

while approaching him from different directions.
(AbdLatiff, 2000).

The design of virtual buildings or dealing with the problem
of space layout planning (Medjdoub and Yannou, 2001) is
incomplete, generally only fulfilling the dimensional and
topological constraints. The approval of building design also
includes the safety of the people occupied inside the
building. The location of emergency exits is vital and these
should be arranged in such locations so that alternative
paths are provided and the people could vacate the building
in the quickest possible time. The important aspect of
security in building design has also been expressed in
(Atlas, 1989).

CURRENT WORK

There are requirements in many applications to co-ordinate
the movement of a population of artificial actors. For
example, in crowd simulation (Thalmann et. al., 2000),
battlefield planning (Brock et. al., 1992), flocking behaviour
(Reynolds, 1987) etc. Thalmann et. al. (2000) have
emphasised the concept of ‘Level of Autonomy’ and have
implemented this concept in crowd behaviour. In this the
level of co-ordination among the agents is classified into
three levels. On the first level, ‘guided crowd’ behaviour is
defined explicitly by the user. Schweiss (1999) uses a rule-
based behaviour system to control them. Programmed
crowds are a second level where the behaviour is
programmed in a scripting language. On the third level
autonomous crowds are specified by rules or other complex
methods. Farenc et. al. (2000) present a crowd management
method as an architecture for simulating crowds.

Brock et. al. (1992) employ the concept of a group leader in
co-ordination and control of multiple autonomous vehicles
for soldiers in a training simulation. A flocking algorithm is
identified among the early solutions in co-ordinating the
movement of a group of animated characters. This was
introduced by Reynolds in 1987 to simulate the movement
of birds in a park. It is described as ‘boid’ procedures by
Parker (1999) and has been referred to by many researchers
in their animation of multi-agents movement simulation.
For instance (Bedau, 1992), (Noser, 1996), (Tu, 1996),
(Brogan, 1997), etc.

© SCS

Algorithms that simply co-ordinate agents around a group
leader without actually sharing a common goal are faced
with a certain number of limitations. For instance, flocking
algorithms are vulnerable to local phenomena in the virtual
world: if one actor splits from the group it might not be able
to reconvene on the basis of the flocking algorithm only,
especially if the terrain contains obstacles. More
specifically it is difficult with flocking algorithms to use
devise strategies for multiple path planning that enable co-
ordinated agents to follow different routes to the same
destination (AbdLatiff and Cavazza, 2000). Separate paths
are created for each agent using linear interpolation as
implemented in crowd behaviour and do not actually involve
a proper path planning process. The movement is based on
guided crowd behaviour from one interest point (IP) to
another IP and collision detection with obstacles is included
in a separate module for each agent. Schooling behaviour
also does not include path planning and the actions are
controlled by a separate behaviour routine, for instance
avoiding static-obstacles, avoiding fishes, leaving the group,
schooling etc.

RESEARCH PROBLEM

There are two aspects to the problem of co-ordination of
groups of actors: to search the minimal path from source to
destination and to co-ordinate the group of actors which
share the same destination or goal. Most of the research on
multi-agents movement focuses on how to move the crowd
together, without collisions between each other and avoiding
obstacles. Most of the solutions to path movement for
multi-agents are not based on a path planning algorithms
and there is no co-ordination between agents in path
generation.

Most of the research on path planning or shortest path
algorithms is exclusively meant for an individual agent or a
single animated character. Every single character in a
virtual environment has to find its own path in order to
move from one location to another.

To find the path for a group of actors originating from the
same place towards the same destination results in all actors
following the same path. This is shown in Figure 1 where
three actors find their own paths using a normal A*
algorithm, directing from the left middle room to the right
room. There are a few obstacles for them to avoid. The
result shows that every actor generates more or less the
same path to the destination.

METHODOLOGY

Bandi & Cavazza (1999) explained that the path planning
algorithm must satisfy some optimality criteria. These
optimality criteria include not only the shortest distance but
also include application-dependent data that relate to the
Virtual Environment semantic. An example of application-
dependent data is that the path taken should approach a
certain object.

Figure 1: Three agents follow one after another using
normal A*

We introduce collective behaviour as application-dependent
knowledge incorporated in a secondary heuristic of the A*
algorithm. One of the collective behaviours is maximum
dispersion. With this behaviour, every agent will take
different path from the same start location to the same
destination, if such a path exists.

One major property of the A* algorithm is admissibility. In
other words A* will be guaranteed to find an optimal
solution if the path exists (Nilsson, 1980)(Pearl,
1995)(Luger, 1993). The optimal solution in this case is the
shortest distance between the starting point and the
destination.

Barr and Feigenbaum (1981) have suggested relaxing the
admissibility condition, thus trading optimality of the
solution for computation speed. In addition to the OPEN
list of expanded nodes, Pearl (1995) has defined a FOCAL
list as:

where n' is a node in the OPEN list and f(n') is its cost. In
A* the node with the lowest cost is selected for the next
expansion. In A*ε algorithm, however, the criterion is
altered. All the nodes with cost less than or equal to (1 + ε)
times the minimum cost in OPEN are considered. This set
of nodes is termed FOCAL. A*ε has been introduced as a
trade-of between admissibility/optimality and computational
efficiency (Bandi and Cavazza, 1999).

The property of admissibility is used to enhance the
capabilities of A* algorithm to serve this purpose. Every
agent will generate his own path with a different size of
FOCAL. This generation is implemented synchronously.
Epsilon-admissibility is only guaranteed when the size of
FOCAL is small. Practically, the bigger the size of FOCAL
the longer the path that exceeds the optimal path. This will
give a measure of how much the algorithm departs from
admissibility. To reflect the fact that this implementation
might depart from admissibility, we will use the term near-
admissible rather than ε-admissible. Hence we called this
algorithm Synchronous Near-admissible A*, or SNA*.

})'(min)1()(:{
'

nfnfnFOCAL
OPENn ∈

+≤= ε

© SCS

Primary and secondary heuristic

In A*, the best node from OPEN list is selected as the next
node to be expanded. The evaluation function f (n) = g (n) +
h (n) is the main function used to determine the order of
OPEN list.

Generally, Euclidean distance or Manhattan distance is used
as the main geometrical heuristic function, h (n). This is
called the primary heuristic and is concerned with the
distance between the current node and the destination node.
The path generated using only the primary heuristic will
resolve the shortest path between start and final node. This
path is not concerned with the properties of the environment
or any other constraints such as dynamic configuration as
described by Bandi and Cavazza (1999).

As there are requirements to incorporate application-related
knowledge or application-dependent data into path
planning, a secondary heuristic is introduced. We are using
this secondary heuristic to incorporate the behaviour of
multi-agents and this behaviour is called the collective
behaviour. For the second heuristic, the expanded node is no
longer the best node in OPEN list, but a node from FOCAL
list will be used instead. The best or selected nodes in
FOCAL are induced with the application-dependent
knowledge or collective behaviour.

While these heuristics can have a geometrical translation
(e.g. in term of heading vector) they also depend
dynamically on the shape of the path planned for the agent.
Using a secondary heuristic, an alternative to the
aggregation of multiple heuristics as described in Pearl
(1985) can also be seen. It has however the advantage of
maintaining a hierarchy between the primary heuristic and
the secondary heuristic. This is especially relevant in path
planning, where the primary heuristic is distance based
(AbdLatiff & Cavazza, 2000).

Synchronous Near-admissible A* (SNA*)

The algorithm of SNA* is given by the pseudocode below:
procedure SNA_star;
begin

get_BEHAVIOUR(focal_A, focal_B, focal_C)
call A_star(xa, xb, xc)
get_DIRECTION_for_Agent1(s1, d0)
get_DIRECTION_for_Agent2(s2, d0)
get_DIRECTION_for_Agent3(s3, d0)

end
end_of_procedure;

get_BEHAVIOUR() is the main function used to set the
collective behaviour between agents. Maximum dispersion
is a collective behaviour defined as :
xn = max(max_dist(x1 , x2), max_dist(x1 , x3),..,
max_dist(x1 , xm))

where xn is the next expansion node, for m agents. Figure 2
shows the result for three agents taking different routes to

the same destination using SNA* algorithm with maximum
dispersion behaviour.

Figure 2. The result of using SNA* algorithm for maximum
dispersion behaviour for three agents

RESULT

There are four criteria that control the delineation of paths
generated in SNA*, i.e. obstacle density, obstacle
distribution, the constrained environment and the FOCAL
size. A high density of obstacles will cause the alternative
paths to a destination to be difficult to find, whereas a low
density of obstacles will not generate any alternative paths.
The Virtual Environment that we have used is limited to an
open environment where the obstacles are individually
located. In this condition the alternative paths are
guaranteed to exist and the implementation of SNA*
algorithm is assured.

The position of obstacles is another factor that determines
the layout of paths, especially the first obstacle encountered
by the agents. Early obstacles will make the path generated
disjoint and early dispersion will normally determine the
pattern of the remaining path. At least one obstacle has to
be located in such a position so that any two agents will split
from each other. This is shown in Figure 3, where A, B, C
and D are obstacles to be avoided.

In a constrained environment, the possibility of agents
dispersing at an early stage will effect the dispersion of
remaining path. It appears that agents starting from a more
open environment have more opportunity for early
dispersion and subsequently more dispersion in the rest of
the path generated. This is shown in Figure 4 where A is in
a room and B is at the door.

 All the limitations for the maximum dispersion due to the
density, disposition and the closed environment, can be
improved with the size of the FOCAL set. The ability to
disperse is more when there are more options to select in the
next expansion. So with the increase of FOCAL size either
the ability to disperse is increased or the dispersion pattern
becomes greater. Moreover the percentage should be limited
to maintain the property of admissibility. With this property
the alternative paths are semantically logical for the agent to
follow. Although a higher percentage does not significantly
effect the processing speed, the path generated will be to far
from optimal.

© SCS

Figure 4: Open environment has more opportunity for early dispersion

Figure 5 shows the effect of increasing FOCAL size on the
previous experiment. In Figure 5(i), the previous experiment
is as shown in Figure 3 with 20% of FOCAL size and then
increased to 30%. Agent_A and Agent_C have departed
8.8% and 14.3% from its admissibility respectively.
Agent_B is assumed to take the shortest path to destination.
Figure 5(ii) shows the effect of increasing FOCAL size from
20% (from Figure 4) to 50%. Admissibility comparison is
taken from 0%, 30%, 40% and 50% of FOCAL size. The
figure shows that the dispersion for multi-agents paths in
the constrained environment can be improved by increasing
the FOCAL size.

CONCLUSION AND FURTHER WORK

This paper discusses the co-ordination of path planning for
multi-agents using the Synchronous Near-admissible A*
(SNA*) algorithm. SNA* uses maximum dispersion as the
collective behaviour for the co-ordination of multi-agents in
path planning. This differs from existing solutions like
flocking algorithms, crowd simulation and school

behaviour. SNA* provides a path planning solution as well
as co-ordination among agents. The path generated using
SNA* has direct influence with the admissibility property.
The density of obstacles in certain environments will
provide alternative paths that do not differ from the
optimum path from the start to the destination. However
with a higher percentage of FOCAL size, the path generated
is able to depart from the admissibility property and path
dispersion becomes high. It should be noted that the number
of alternative paths does not have to match the number of
agents. Splitting a large group of agents into three smaller
groups taking different routes can be sufficient for many
applications.

There is certainly an upper bound on the number of
alternative paths that can be found in a given environment.
This would depend on the obstacle density and layout as
well as the size set of the FOCAL list. However, as the
number of alternative paths increases, some might depart
too much from optimality (AbdLatiff & Cavazza, 2000).

A

B

A

A

Figure 3: The early obstacle would act as a “splitters”

A

BC

A

BC
D

© SCS

 Figure 5: i. Increasing 30% from 20% (Figure 3)
ii. Increasing 50% from 20% (Figure 4).

REFERENCES

Abd Latiff, M.S. and Cavazza, M., 2000. Synchronous Path
Planning for Multi-Agent Co-ordination. Proceedings of the
VSMM 2000 Conference. Gifu, Japan.

Atlas, R. 1989. Building Design Can Provide Defensible Space.
Access Control, September. [Online]. Available from:
http://www.cpted-security.com/builddes.html. [accessed July 6,
2001].

Bandi, S. and Cavazza, M., 1999. Integrating World Semantics
into Path Planning Heuristics for Virtual Agents. Proceedings
of VA'99. Salford, UK.

Barr, A. and Feigenbaum, E.A., 1981. The Handbook of Artificial
Intelligence, vol. 1. William Kaufmann.

Bedau, M.A, 1992. Philosophical aspects of artificial life. In
Toward a Practice of Autonomous Systems: Proceedings of the
First European Conference on Artificial Life, pages 494--503,
Paris, France, 1992

Brock, D.L., Montana, D.J. & Ceranowicz, A.Z., 1992.
Coordination and Control of Multiple Autonomous Verhicles.
Proceedings of the IEEE Conference on Robotic and
Automation. Nice, France.

Brogan, D.C., Metoyer, R.A., and Hodgins, J.K. 1997.
Dynamically simulated characters in virtual environments.
SIGGRAPH'97 Visual Proc.. pp. 216.

Farenc, N., Musse, S.R., Schweiss, E., Kallmann, M., Aune, O.,
Boulic, R. and Thalmann, D., 2000. A Paradigm for
Controlling Virtual Humans in Urban Environment
Simulations. Applied Artificial Intelligence. 14, 1, pp. 93-124.

Luger, G.F. & Stubblefield, W.A., 1993. Artificial Inteligence –
Structures and strategies for complex problem solving, The
Benjamin/Cumming Publishers.

Medjdoub, B. and Yannou , B., 2001. Separating topology and
geometry in space planning. Computer-Aided Design. Vol.32.
No.1. pp 39-61.

Nilsson, N.J., 1980. Principles of Artificial Intelligence. Tioga
Publishing Company.

Noser, H., Pandzic, I.S., Capin, T.K., Magnenat-Thalmann, N., &
Thalmann, D. 1996. Playing Games through the Virtual Life
Network. ALIFE V, Oral Presentations, May 16-18, Nara,
Japan, 114-121

Parker, C. (1999). Boids Pseudocode. [Online] Available from
http://www.cse.unsw.edu.au/~conradp/boids/pseudocode.html
[Accessed on September 15, 2000]

Pearl, J., 1985. Heuristics. Intelligent Search Strategies for
Computer Problem Solving. Addison-Wesley.

Pinhanez, C.S., 1999. Representation and Recognition of Action in
Interactive Spaces. PhD Thesis. MIT

Reynolds, C.W., 1987. Flocks, Herds, and Schools: A Distributed
Behavioral Model. Computer Graphics, 21(4), July 1987, pp.
25-34.

Reynolds, C.W., 1999. Steering Behaviors for Autonomous
Characters. In Conference Proceedings of the 1999 Game
Developers Conference, Miller Freeman Game Group, San
Francisco, California, pp 763-782.

Schweiss, E. , Musse, S.R., Garat. F., Thalmann, D., 1999, An
Architecture to Guide Crowds Using a Rule-Based Behaviour
System, Proc. Agents 99.

Thalmann, D., Musse, S.R, Kallmann, M., 2000. From Individual
Human Agents to Crowds. , INFORMATIK/
INFORMATIQUE, No1, 2000

Tu, X., 1996. Artificial Animatl for Computer Animation:
Biomechanic, Locomotion, Perception and Behaviour. PhD.
Thesis. University of Toronto.

Admissibility Comparison

38

40

42

44

46

48

50

Agent_A Agent_B Agent_C

Agents

P
at

h
 L

en
g

th

30%

20%

A

B

Admissibility Comparison

0

10

20

30

40

50

60

70

agent_A 44.87 45.69 54.02 57.79

agent_B 44.28 45.92 45.92 45.1

agent_C 44.28 44.28 44.28 58.97

0% 30% 40% 50%

i

ii

A NEW COMPUTATIONAL APPROACH TO THE
GAME OF GO

JULIAN CHURCHILL, RICHARD CANT, DAVID AL-DABASS

Department of Computing and Mathematics

The Nottingham Trent University
Nottingham NG1 4BU.

Email: richard.cant/david.al-dabass@ntu.ac.uk

KEYWORDS
Computer Go, Neural Networks, Alpha beta search
algorithms.

ABSTRACT

This paper investigates the application of neural network
techniques to the creation of a program that can play the game
of Go with some degree of success. The combination of soft
AI, such as neural networks, and hard AI methods, such as
alpha-beta pruned minimax game tree searching, is attempted
to assess the usefulness of blending these two different types
of artificial intelligence and to investigate how the methods
can be combined successfully.

INTRODUCTION

Go is an oriental game that is very popular in China, Japan and
Korea in particular, but which has a very large following all
around the world [Chikun 97]. It is a relatively simple game,
the complexity of which emerges as you become familiar with
the ideas presented. A comparison with Chess is often made
[Burmeister et al 95], as these are both board-based games of
zero-chance. The rules are simpler in Go, however the board is
larger and due to the unrestrictive nature the rules tend to,
there are many more moves available for the Go player to
consider.

The game is played on a board, which has a grid of 19x19
intersections. Two players, black and white, take turns to place
a single stone on any unoccupied intersection, with the aim of
surrounding as much territory as possible. A player can pass at
any turn instead of placing a stone. Capturing the opponent’s
stones is also used to increase a player’s score but is usually a
secondary concern compared to securing territory. A stone is
captured when the last of its liberties is removed. A liberty is
an empty intersection directly next to the stone. Liberties are
shared amongst connected stones. Diagonals are ignored when
looking at connectivity between points in Go. With this in
mind suicide is not allowed unless it is to capture some
opponent’s stones in which case the suiciding stone remains
uncaptured and is left on the board.

The end of the game is usually reached by mutual agreement
between the players, when they both pass consecutively. The
remaining stones on the board are considered as to whether
they would survive further or not. If they are decided to be
effectively dead then those points count for the opposing
player. The territory is then totalled up and the winner
declared.

CURRENT RESEARCH

Neural Networks: To implement a neural network on a
computer a model of neurological activity as described above is
used. This usually takes the form of two or more layers of
connection weight values. These are changed during training
using some specific mathematical rules until the network
outputs the correct values for the input pattern. A function for
calculating the output of a neuron given a set of input values
also needs to be specified. This function is referred to as the
activation function, since it determines whether a neuron
‘activates’, that is whether it generates an output signal or not
and also determines the strength of the signal based on a set of
parameters. This is frequently a simple summing function of the
weights multiplied by the input signal along the associated
weight.

Figure 1 shows a small but typical multilayer network of the
form 3-2-3, 3 input neurons, 2 hidden neurons, and 3 output
neurons. Note weights of connections only apply between
neurons, so the intial values being fed into the input layer do not
have to multiplied by a connection weight. The same applies for
the output neurons final output of values. Also note that each
neuron is connected to every other neuron in adjoining layers.
This is not always done in neural networks, but shall be so for
the networks developed in this project.

Figure 1 - Small Multilayer Neural Network

A particularly interesting and relevant aspect of neural network
techniques is that the neural net developed will usually learn
general trends in the relationships between input and output
patterns, often these are things that people may not consciously
notice themselves. This means the net will frequently be able to
handle input that it has not been trained on and will hopefully
give useful output. For new classes of input the net may have to

be trained further, but at least this shows that neural nets are
flexible, can adapt to changing circumstances and learn from
new experience even when installed in its application
environment.

State Of The Art: The computer Go programming
community is relatively small compared to computer Chess
but interest in the topic is building now that computer chess
has reached such a high level of success, the AI community
are looking for a new holy grail. The central hub of this
community can be found at the computer Go mailing list
[Computer Go Mailing List 01], where many of the best Go
programmers gather to thrash out new ideas, protocols and
discuss recent tournaments.

Many Faces Of Go: Many Faces Of Go uses many traditional
or hard AI techniques the most important of which are alpha-
beta search, pattern matching and rule based expert systems.
The main principle is to supply the program with as much
knowledge, about how to play Go and what makes a good
move, as possible. The alpha-beta search algorithm is used in
conjunction with a complex evaluation function to investigate
moves where necessary.

NeuroGo: One program that has been developed using neural
network techniques is called NeuroGo [Enzenberger 96]. It
achieved some amount of success against Many Faces Of Go
set to a medium level. Many Faces is currently ranked one of
the best in the world. The training target was determined by
the Temporal Difference learning algorithm [Schraudolph et
al. 94], which has been used with great success in a
backgammon neural network program called TD-Gammon
[Tesauro 94]. NeuroGo is really a crossover program, which
does lean heavily towards soft AI techniques of machine
learning, but also incorporates expert knowledge, which must
ultimately come from human experience.

A NEW APPROACH

The use of a NN for selecting possible moves should be fast
and also allows the opportunity to expand the NNs knowledge
in an automated fashion. This is part of the strength of NNs,
even when the NN is actually in use it is still possible to teach
it where it went wrong and show it how to correct it’s
behaviour by supplying it with the correct stimuli/reaction
combination.

Combination Of Hard And Soft AI Techniques: By
attempting to use neural networks with game tree search this
project is bringing together hard and soft AI techniques and
trying to meld them in a useful and productive fashion. The
main purpose behind this is to take the best features of each
component and combine them to produce something that
performs better than either of the two components separately.
In the case of game tree search the advantage of using it
comes from its ability to look ahead into the probable results
of playing a particular move. The disadvantage is that it can be
very resource intensive and inefficient. For example without
additional help a standard game tree search may spend as
much time looking at what may be obviously bad moves to us,
as it does looking at what may be obviously good moves. It
has no knowledge, no sense of what makes a good or bad
move.

Application To Standard Game Tree Search: The terminal
nodes in a game tree are assigned a score based upon some

static analysis of the board position at that node and the scores
from all the terminal nodes are filtered up the tree toward the
root node. Using a technique known as Minimax [Owsnicki-
Klewe 99], the best move, the one that maximises the players
score can be found, however there are still many problems with
this approach. For instance the terminal node board scoring
method must be fairly accurate else the minimax values will be
irrelevant, and for many games the computational power
required to generate a game tree large enough to produce a
conclusive result is enormous. For example a game of chess
could have around 40

Figure 2 - A Partial Game Tree for Tic-Tac-Toe

moves and at each turn there maybe 10 legal moves available
giving 1040 nodes. For Go it is much more complex due to the
19x19 board and very few restrictions on moves. With around
220 moves per game and an average of about 180 different
moves to play each turn it has been estimated that the size of this
particular search space is around 10170 [Allis et al. 91]. So an
exhaustive search is completely out of the question, even a
relatively shallow game tree search, 6 ply, could easily be
beyond the resources of the host computer.

SOFTWARE/HARDWARE DEVELOPMENT

System Specification: A generic neural network program was
developed to create and train neural nets. The generic
application was expanded and applied to Go, in such a way as to
be able to create and train a neural network to suggest plausible
moves, using the current board position as input for the network.
A user interface was provided for both the neural network
module and the Go playing part of the overall system. A
graphical interface is useful for displaying board positions and
for showing what moves the system maybe considering.

Board Representation: A few definitions first: a string is a
connected line of stones (north, south east, west only, no
diagonals), a liberty is an empty point next to the string and can
be thought of as breathing space for that particular string.
According to the rules if a string has no liberties all the stones in
the string are captured and removed from the board.

The board is represented by a special ‘Board’ object that
contains a two dimensional array, one value for each point on
the board; 0 for empty, 1 for white and 2 for black. An array of
‘GoString’ objects is also stored that represent each string of
stones currently on the board containing details such as which
points belong to it, the colour of the string and the number of
liberties the string has. This information is updated
incrementally; everytime a stone is added or removed from the
board. Other arrays are present to represent special markers that
may be of use to show the neural networks responses at various
points.

Graphical User Interface: A simple but functional GUI must
be a part of this project since Go is a visual game and it would
be very difficult to judge the performance of the neural
network. The GUI would ideally allow a human to play a
game of Go against the program thus enabling those people
with some knowledge of the game to test it’s weaknesses and
strengths. Also the user should be able to view the program
playing against another program and to observe the neural
networks responses during a game or whilst playing through
an expert game so that the success of the program can be
evaluated.

As can be seen from the screenshot below the interface
provides menus to access all of the available functions of the
program. A toolbar is present with for greyed out buttons.
These currently allow the user to step forward or backwards
through moves in an SGF game, to indicate a pass move
during a game of Go and to abort the current action by using
the round button at the end. A log window is provided to
output text messages to the user. From this image the board
can also be seen, with coordinate system along the edges.
When necessary the user can select points on the board, for
instance during a game to specify a move.

Design Issues: The initial architecture prposed was a 3-layer
network consisting of 25 neurons for the input layer, 10 for the
hidden layer and 1 for the output layer. The 25 neurons of the
input layer would map directly onto a 5 by 5 section of a Go
board. The idea was to train a network so that all the legal
moves possible in a particular board position could be fed into
the network one at a time, incorporating a 5 by 5 area of board
around the potential move and that the neural net would output
a plausibility value for the given move. The move with the
highest plausibility would then be chosen, or better still,
several of the highest plausible moves would be taken and fed
into an alpha-beta minimax search to investigate the moves
impact on the future of the game.

The back propagation algorithm [Callan 99] for training
chosen, mostly because of it’s general applicability to a wide
range of problems and also it would be simple to implement
and use.

Training data was acquired as a collection of professional
tournament games in SGF format from the Internet [Van Der
Steen 01]. A training database generator then dissected these
files into input/output pairs that could be fed directly into the
neural network training algorithm. For each move the board
position was analysed to produce several input/output training
pairs. For every legal move in the board position an input
matrix was generated that represented an n-by-n area centred
on the move. It was determined whether the move was played
up to 6 moves in the future and if so an output value was
associated with it that started at 1.0 for the move occurring
next turn, down to 0.2 for it occurring 6 moves in the future. If
the move did not occur within 6 moves it was relegated to a
set of unlikely moves and an output of 0 was connected to it.
At the end 6 unlikely moves were randomly chosen and stored
in the database with the 6 likely moves to balance the
networks training.

Figure 4 shows the game walkthrough test in progress, which
allows the user to play through a game of Go that has been
stored in SGF format. The program itself makes suggestions
and comparisons are made between the program and the actual
moves made. This test is most useful is professional quality

SGF games are used. The green circle shows the most recent
move, the blue circles highlight the programs top ten suggested
moves and each point on the board has a small coloured square.
This indicates the plausibility score given to a move at that point
in the current situation by the neural network. The redder the
square the lower the score and the high end goes to blue. Lots of
log information is also outputted in the window on the right,
showing the actual scores associated with the best and the worst
suggested moves. Also the rank of the actual move is outputted,
in this case being 52nd out of 314 legal moves.

IMPLEMENTATION

Smart Game Format files can be read and interpreted allowing
training databases to be compiled from SGF files. However SGF
files cannot be saved and only the main line of play can be read,
not any saved alternative lines of play. Many testing functions
have been written to maintain consistency throughout
development of the program and to allow progress to be
measured. The code to create and maintain GoString
information has been written and stores which stones belong to
each string, what

Figure 3 - NeuralGo GUI

Figure 4 - Game walkthrough in progress

colour the string is and how many liberties the string has. This
greatly increases the speed when detecting and removing
captured groups and could provide useful information for
additional tactically oriented modules. A graphic board display

is available to easily view the program playing through an
SGF and suggesting moves to compare to the actual move.
The GUI is also intended to be used to watch the program play
against another program using the GMP interface, however the
GMP protocol code has not ported well from the Java version
The user may also play through the GUI against the neural
network.

An Area Finder network was trained for a reasonable amount
of time and started to show some signs of sensible
suggestions, certainly enough to warrant further investigation
to ascertain how worthwhile it would be to use it in
conjunction with a standard network of the sort just discussed.

Two restricted move range networks were trained, both
showing promising results. The first covered the first five ply
moves and second covers from five ply to ten ply. The MTD
(f) variation of the alpha-beta minimax search algorithm was
implemented along with various enhancements. The program
also uses the best move from previous iterations as the first
node to expand as this has been shown to give a considerable
performance boost [Schaeffer et al.].

Enhanced transposition cutoffs [Schaeffer et al.] are also
implemented which means that all nodes arising from a
position are first quickly checked to see if they cause a cutoff
in the tree before deep searching that branch.

The expand function which creates child nodes given a
position uses a neural network to suggest a specified number
of the most plausible moves as child nodes. Also two
alternative evaluation functions to score the nodes are
available, one that counts each sides liberties and attempts to
maximise one sides liberties whilst minimising the opponents.
The second one simply counts the number of stones on each
side and so encourages capturing and aggressive play.

RESULTS & DISCUSSIONS

Looking at how long it takes various configurations to reach a
move decision shows us some important points and in
combination with some quality of result analysis can tell us to
what degree the combination of soft and hard AI has been
successful and if it is worth pursuing in the future.

First of all the difference between configuration 1, see Table-2
which used just a 9x9 network and configuration 2 which used
a 9x9 network with an Area Finder network is easily
explainable. Using the coarser grained Area Finder network
divides the board into 9 sectors and given the full 19x19 board
selects the most appropriate sector out of the 9. Then the 9x9
network looks at all legal moves within that sector only. For
the first configuration all legal moves in the entire 19x19
board must be considered so we see a logical time difference
of around a factor of 9. A similar affect is seen when
comparing configurations 4 and 5. The use of the Area Finder
network gives a substantial speed boost without adding any
unreasonable overheads. If the quality of suggestions
presented by the Area Finder network can be measured and
built upon then this could be an effective and efficient method
of incorporating neural network technology within a Go
playing program.

The use of alpha-beta search added considerable
computational overheads, however that is expected
considering the nature of the algorithm. The liberty count
evaluation function was used in all cases. To assess and

compare the quality of the neural networks and different
configurations involving either or both soft and hard AI two
approaches were taken.

Configuration Average
Time
Taken
Per
Move
(seconds)

1. 9x9 Neural Network 0.784
2. 9x9 Neural Network
 + Area Finder

0.136

3. Alpha-Beta (Liberty Count) 41
4. 9x9 Neural Network
 + Alpha-Beta (Liberty
Count)

9

5. 9x9 Neural Network
 + Alpha-Beta (Liberty
Count)
 +Area Finder

1.56

Table 1

First, the configurations used for timing an average move were
used to play proper games of Go against GNUGo 26b [GNUGo
01]. It is important to play actual games since this was the
original intention of creating such a program and is really the
best way of judging its success in its intended environment. The
program itself still unfortunately has a few problems and bugs
that were given special provision. The program did not have any
method to decide when to pass, so a game would continue until
GNUGo passed or until a crash occurred. Where a crash
occurred it is marked in the results table as N.C. (not
completed). When a game has reached an end, either on purpose
or by fault, the board was scored by Jago [Grothmann 01],
which functioned as arbiter between the programs.

Percentage of time that
actual move is in top n
percent

Neural
Network

Average
Time
Per
Move

Average
Move
Rank

10 20 30 40 50
5x5 0.576 105 19 36 50 59 65
7x7 0.736 115 17 30 42 60 66
9x9 0.936 114 12 31 39 53 64
Copy of
9x9

0.912 104 18 34 47 56 69

11x11 1.256 161 10 19 30 35 44
13x13 1.664 124 18 28 36 51 62
Random
9x9

0.824 156 5 21 29 35 45

Table 2

The second method was used to determine the extent and level
of training achieved by the neural networks. Several measures
were used and information gathered about 6 different networks.
The statistics were collected as each network played through the
same professional game; the average time to select a move was
recorded, as was the average rank of the actual move within all
the moves considered by the neural networks. To give a more
detailed look at the quality of the moves being selected the

percentage of time that the actual move was ranked in certain
percentiles was also noted, see Table 2, for example for the
5x5 network the actual move was ranked in the top 10% of
moves 19.2% of the time and was tanked in the 20% of moves
36% of the time. For the sake of comparison a newly created,
hence untrained, network was tested also, so we should
expect, if training has worked at all, that the new network
should have the lowest scores.

Figure 5 - Game in progress

Figure 5 shows a game in progress against GNUGo. GNUGo
is playing white and the program is playing black. The move
marked with a green circle is the most recent move.
Comparing all of these figures to the random 9x9 network
shows that they all improved after training and reveals an
interesting and very important point about over training. The
‘copy of 9x9’ network was an earlier version of the current
9x9 and has much better figures. This does suggest rather
strongly that the current 9x9 has been over trained and the
quality of its output has been degraded as a result. This also
implies that some sort of peak of training can be reached and
by considering the figures they also suggest that the peak does
not mean getting the very best move at rank number one.

Configuration Game Score (we play
black)
(J = Japanese, C =
Chinese)

1. 9x9 Neural Network J: B-8, W-49
C: B-106, W-146

2. 9x9 Neural Network
 + Area Finder

J: B-3, W-21
C: B-54, W-71

3. Alpha-Beta (Liberty
Count)

J: B-9, W-12
C: B-35, W-38
* Not Complete

4. 9x9 Neural Network
 + Alpha-Beta (Liberty
Count)

J: B-9, W-25
C: B-107, W-124

5. 9x9 Neural Network
 + Alpha-Beta (Liberty
Count)
 +Area Finder

J: B-7, W-18
C: B-55, W-66

Table-3

Rather it suggests, perhaps viewing it optimistically, that the
network realises there may not be one perfect move but maybe
lots and using a neural network allows the moves to be ranked
effectively as opposed to selecting a single best move. This may
be the strength of using neural networks in this instance.

If we now move onto the results of the test games against
GNUGo we can observe several things from the scores. Both
Chinese and Japanese scores are presented, with our program
playing black for each game.

All these results show that soft AI has something to offer the
problem area of Go, the limitations and extent of which require
further investigation, however we have made some connections,
various ideas have been tried and tested and a system that can
support further research has been developed and implemented.
More than anything else perhaps, questions have been raised and
pointers for promising future investigations have been found.

There could be any number of ways to combine soft and hard
AI. The trick is to do it in such a way as to maximise the
strengths of each and minimise the weaknesses. If in doing so
the combination is greater than the parts then the job is a
success. From the results it seems clear that hard I benefits soft
AI and it is a pity the reverse cannot be concretely induced from
the results collected but it would be reasonable to assume so.

CONCLUSIONS AND FUTURE WORK

Much of the research carried out over the past few months only
touches upon each idea, any one of which could provide a
lengthy and fruitful line of research. Amongst these are
combining various grain networks, how to combine them and
which to use, limited range networks which tend to
specialisation and of course other methods of combining soft
and hard AI. There are other soft AI techniques apart from
neural networks that may be worth looking at such as genetic
algorithms and evolutionary programming.

Interesting extensions to the ideas could include a closer look at
the actual choice of neural network architecture and
construction, and a more thorough review of the choices
available. A deeper understanding of the way humans perceive
and play Go could be developed from further work, perhaps
leading to a better understanding of human pattern recognition.

REFERENCES

1. [Allis et al. 91] Which Games Will Survive?, ALLIS, L.V.,
VAN DER HERIK, H.J., HERSCHBERG, I.S., Heuristic
Programming in Artificial Intelligence 2 - The Second
Computer Olympiad, pages 232 - 243. Ellis Horwood, 1991.
2. [BGA 99] British Go Association (BGA), 1999,
Available on the Internet at http://www.britgo.org/
3. [Burmeister An Introduction to the Computer Go Field
and et al. 95] Associated Internet Resources,
BURMEISTER, J., WILES, J., 1995, Available on the Internet
at http://www2.psy.uq.edu.au/~jay/go/CS-TR339.html
4. [Callan 99] The Essence Of Neural Networks,
CALLAN, R., Prentice Hall, 1999
5. [Chikun 97] Go: A Complete Introduction To The Game,
CHIKUN, C., Kiseido Publishing Company, 1997
6. [Computer Go Computer Go Ladder, 2001, See Ladder 01]
 http://www.cgl.ucsf.edu/go/ladder.html
7. [Computer Go Computer Go Mailing List, 2001, See
Mailing List 01]

 http://www.cs.uoregon.edu/~richard/computer-
go/index.html
8. [Enzenberger 96] The Integration of a Priori of Knowledge
into a Go Playing Neural Network, ENZENBERGER, M.,
1996, Available on the Internet at http://www.uni-
muenchen.de
9. [Fotland 93] Knowledge Representation In The Many
Faces Of Go, FOTLAND, D., 1993.
10. [GNUGo 01] GNU Go latest version can be found at
http://freedom.sarang.net/software/gnugo/beta.html
11. [Grothmann 01] Jago, GROTHMANN, R., Available on
the Internet at http://mathsrv.ku-
eichstaett.de/MGF/homes/grothmann
12. [GTP 01] Go Text Protocol information can be
found 2/3 down the page at
http://freedom.sarang.net/software/gnugo/beta.html
13. [Hollosi 99] SGF User Guide, HOLLOSI, A., 1999,
Available on the Internet at http://www.red-
bean.com/sgf/user_guide/index.html
14. [Huima 99] A Group-Theoretic Hash Function,
HUIMA, A., 1999, Available on the Internet at
http://people.ssh.fi/huima/compgo/zobrist/index.html
15. [Muller 97] Playing It Safe: Recognizing Secure
Territories in Computer Go by Using Static Rules and Search,
MULLER, M., 1997, Available on the Internet at
http://www.cs.ualberta.ca/~mmueller/publications.html
16. [Plaat 97] MTD(f), A Minimax Algorithm Faster
than NegaScout, PLAAT, A., 1997, Available on the Internet
at http://www.cs.vu.nl/~aske/mtdf.html
17. [Owsnicki-Klewe Search Algorithms,
OWSNICKI-KLEWE, B., 1999] Available on the
Internet at http://www.informatik.fh-
hamburg.de/~owsnicki/search.html
18. [Tesauro 94] TD-Gammon, a self-teaching
backgammon program, achieves master level play,
TESAURO, G., Neural Computation, Vol. 6, No.2, 1994.
19. [Schaeffer et al.] New Advances In Alpha-Beta
Searching, SCHAEFFER, J., PLAAT, A.
20. [Schraudolph Temporal Difference Learning of Position
Evaluation in the et al. 94] Game of Go, SCHRAUDOLPH,
N., DAYAN, P., SEJNOWSKI, T., Neural Information
Processing Systems 6, Morgan Kaufmann, 1994, Available on
the Internet at ftp://bsdserver.ucsf.edu/Go/comp/td-go.ps.Z
21. [Van Der Steen 01] Go Game Gallery, VAN DER
STEEN, J., 2001, Available on the Internet at
http://www.cwi.nl/~jansteen/go/index.html.
22. [Wilcox et al.] The Standard Go Modem
Protocol – Revision 1.0, WILCOX, B., Available on the
Internet at http://www.britgo.org/

A LEARNING ARCHITECTURE FOR THE GAME OF GO

A.B. Meijer and H. Koppelaar
Delft University of Technology. Faculty ITS. Section Mediamatics.

Mekelweg 4, P.O.Box 356, 2600 AJ, Delft, The Netherlands.
{a.b.meijer, h.koppelaar}@its.tudelft.nl

ABSTRACT

In this paper, a three-component architecture of a
learning environment for Go is sketched, which can be
applied to any two-player, deterministic, full informa-
tion, partizan, combinatorial game. The architecture
called HUGO has natural and human-like reasoning
components. Its most abstract component deals with
the selection of subgames of Go. The second component
is concerned with initiative. The notion of gote no
sente (a move that loses initiative but creates new
lines of play that will hold initiative) is formalized. In
the third component, game values are computed with
a new kind of ®-¯ algorithm based on fuzzy, partial
ordering. Our approach leaves some valuable control
parameters and o¤ers ways to apply further machine
learning techniques.

KEYWORDS Combinatorial Games, Uncertainty,
Initiative, Fuzzy Partial Ordering, Game of Go

INTRODUCTION

Two-player, deterministic, complete, information, parti-
zan, combinatorial games form a family of games which
has received a lot of attention from the AI community
over the last decennia. Altough much progress has been
made, resulting in some well-playing chess programs for
example, almost all modern programs for these games
lack (well-formalized) human-like behavior in general
and the notion of initiative in particular. This need not
result in a poor performance, rather it depends on the
domain. We hypothesize that the notion of initiative
is mandatory for writing a good program for the most
notorious of combinatorial games: Go. It’s folklore is
full of terminology concerning initiative and profession-
als play the game at an abstract level of initiative, far
beyond considering just move sequences, as in the com-
monly used ®-¯ algorithm (or any other minimax-based

search algorithm). Furthermore, the ®-¯ algorithm is
based on some absolute scalar-valued evaluation func-
tion, whereas humans can be said to use an ordering
function to compare two board situations directly with
one another. For example, a professional Go player
could reason that one position is slightly better than
another when his walls look a bit thicker (=stronger).

Figure 1: An endgame situation in 9£9 Go.

This paper is organized as follows. In the next two sec-
tions we will give a short introduction to the game of
Go and combinatorial game theory. Then, we formalize
these two human-like concepts that arise in the learn-
ing environment of Go and embed them in an architec-
ture called HUGO. The following three sections further
explain the three components of HUGO. The …rst com-
ponent deals with the selection of subgames of Go, the
second with initiative and the third with the compu-
tation of game values. We end with some concluding
remarks and future work. Go terminology is written in

small caps.

THE GAME OF GO

Go is an ancient game, originated in China about 4000
years ago. It has in‡uenced oriental warfare, which
shows o¤ in the shape of the Great Walls of China and,
very recently in Afghanistan, in the preference for semi-
…xed frontlines between the opposing factions, which
only change hands if there is a broad momentum in
favour of one of the sides. Compare this with Go, where
two players have to embark territory by alternately plac-
ing a stone on a grid, gradually building strongholds and
eventually walls that completely surround one’s terri-
tory. Strongholds will only be given up if the opponent
has created enough in‡uence (Go term for momentum)
to walk over it.
The rules of Go are very simple in principle (but in …-
nesse they can vary a lot over di¤erent rule sets like the
Chinese, Japanese or mathematical Go rules). The cap-
turing rule is the most important, stating that a string
of stones gets captured if all of its neighboring intersec-
tions are occupied by enemy stones. This rule implies
that the two x ’s in …gure 1 are suicide, which implies in
turn that the white group that surrounds them cannot
be captured (Go terminology: the group lives). The
white group can only be captured if White would co-
operate foolishly and plays on one of the x ’s himself.
Black is then allowed to play the “temporary suicide”
of the other x, because this would capture the entire
white group and the suicide is resolved.
The goal of the game is to make living groups that sur-
round more territory than your opponent.
If in the game of …gure 1 Black were to play, he would
have two good options. The …rst is to play at d, killing
the white group since it has become impossible for
White to construct two suicide points (eyes) like the
two x ’s. The second option is to save his own group in
the bottom right by playing at a. This would result in
two black strings, each having one eye. The strings can
always be connected with White b, Black c or vice versa.
The resulting group lives with two eyes. The best of the
two is a, since there are more stones in this group.

COMBINATORIAL GAME THEORY

This section is a very short introduction to Combi-
natorial Game Theory, loosely following (Cazenave,
1996). It is a mathematical theory for games and num-
bers, developed by J.H. Conway (Conway, 1976) and
adapted to many games by Berlekamp, Conway and Guy
(Berlekamp et alii, 1982).

De…nition 1 A combinatorial game G = fF jOg is
composed of two sets F and O of combinatorial games.
Every combinatorial game is constructed this way.

In games, F should be seen as the set of options (board
positions) that player Friend can reach with one legal
move. O can be looked at as the options for player
Opponent. F can have two possible values, W (win for
Friend) or L (loss for Friend, so win for Opponent). If
Friend has a legal move that ensures a win for the whole
game, then the value of F is W. This gives four possible
outcomes for a combinatorial game: WW, WL, LL and
LW (We will use both WW and WjW as abbreviated
notations for {WjW}). The left half of a game value is
the maximum result that Friend can obtain, the right
half is Opponent’s best result.
WW denotes a game that is won by Friend, irrespective
of who moves …rst (both player can at best move the
game to W = win for Friend). A Go example is the
white group in the bottom left of …gure 1, which lives
unconditionally.
WL is an unsettled game, it is won by the player who
moves …rst. An example is the life status of the white
group in the upper right corner. If White moves …rst
he can play at d, resulting in a living shape (its terri-
tory contains two eyes, intersections that are suicide for
Black).
LL is a lost game for Friend, so a sure win for Opponent,
even if Friend moves …rst. Trying to kill the black group
in the upper left corner is a lost game for White (given
correct counterplay from Black)
LW is a somewhat strange equilibrium situation where
the player who moves …rst will lose the game. An ex-
ample of this situation is known as seki. The triangled
stones in …gure 1 form a seki: either player who wants
to capture the opponent string of triangled stones and
plays at one of the two shared intersections will imme-
diately be captured himself.
To evaluate a subgame, we de…ne

V alue(W) = 1; V alue(L) = ¡1:

In order to evaluate the global position, each subgame
is assigned a numerical importance. A (linear) combina-
tion of the value of the subgames yields an indication of
the balance of power. The precise nature of combination
is a task for component 1.
Now it is possible to de…ne the value of a move:

V alue (move) = V alue (F) ¡ V alue (O) :

V alue(move) is the value of the move that achieves state
F and thus prevents Opponent from achieving state O.
The value of a seki needs special attention, since usu-
ally there will be no play inside a seki (the value for such
a move is -2 times the numerical importance). Its value
depends on the rules. In Chinese counting one counts
one point for all the stones that live in a seki but no
point for territory, which is natural since no player con-
trols the in-between territory.
Another commonly used term for game value is temper-
ature, which corresponds to the size of the largest play.

As the game progresses, the temperature tends to drop.
Local temperature corresponds to the size of the largest
play in a region of the board. Ambient temperature is
the temperature of the game besides the local region.
In theory, the value of a game has only two values, W or
L. However, it is often intractable to compute the pre-
cise game value. Cazenave therefore extended Conway’s
theory to uncertain outcomes (Cazenave 1996). He in-
troduced a variable U, denoting an uncertain game value
with range [-1, 1]. If halfway a game the position is con-
sidered roughly equal for both players, then it makes
sense to assign this uncertain position the value 0.
U can be seen as a control parameter along the risky-
safe axis, since one is free to de…ne the value of U. A
low value for U would result in conservative play, a high
value models a form of risky play.

THE HUGO ARCHITECTURE

As stated in the introduction, it is our aim to model
human concepts that exist in the folklore of Go. We
have identi…ed three components that are inadmissable
in our approach. The …rst component is to select rel-
evant subgames and their numerical importances. The
second is an initiative engine and the third computes
game values. We have called the resulting architecture
HUGO (human Go), see …gure 2.
HUGO’s input is a board position and some constraints,
for example a time or memory limit. This input goes to
component 1, which outputs a collection of games. This
is the input of the initiative engine, which calls the third
component to calculate the value of every single game.
Knowing all the game values, the initiative engine tries
to …nd a move that both scores some points and holds
initiative.

COMPONENT 1: CHOICE OF SUBGAMES

The task of this component is to select a collection of
well-de…ned subgames (or simply: games) of Go which
form the basis for further computation. A good choice
of games should have a high discriminative ability: the
player that wins most of the important games should
also win the whole game and vice versa. The problem of
such an approach is that the subgames are not indepen-
dent and thus the value of the whole game is not simply
the sum of the value of the subgames (Berlekamp et alii
1982). However, advanced human Go players constantly
use a variety of games, such as life or death, connection
of stones, territory and more. They do this as a means
to obtain overview in a chaotic board situation and the
result is some sort of a mental model of the state of
the game. For each separate game, they can quite eas-
ily …nd the (sub-)optimal move. The di¢cult part is
to take the interactions among games into consideration
and to …nd the optimal move for the whole game. Play-

Board position, time constraint

 move

Component 1: Selection of subgames

Ensure high discriminative abilities

Component 2:
Initiative Engine

1. For all subgames:
determine desired
width of game values

2. Select overall best
move

Component 3:
Compute Game Value

a-ß search based on
fuzzy partial ordering

{G1, G2, … , GN}

Gn, width

Value(Gn)

Figure 2: The HUGO architecture

ing Go at this abstract level means …nding con‡icting
interactions all the time and then resolving or exploiting
them.
A good collection of games to start with are (1) life
and death for strings of stones and (2) connection of
strings (the fundamental importance of these games fol-
lows from the importance of the capturing rule). These
two families of games govern tactical play, but are also
inadmissable in strategic play.
One can think of many more games and there is indeed a
lot of work to be done, before this can all be automated.
However, one could also leave this task to an expert. In-
troducing more families of games would enhance more
sophisticated play, but at the cost of a higher computa-
tional e¤ort.
One further sophistication is to de…ne connections be-
tween groups (clusters of strings that are highly inter-
connected) instead of strings of stones. A clustering
algorithm would be valuable for this task.

COMPONENT 2: INITIATIVE ENGINE

Given a collection of well-de…ned subgames from com-
ponent 1, the task of the initiative engine is to …nd the
move that yields the most points, preferably while hold-

ing initiative. When one has the initiative, one dictates
the course of the game and one can choose to accumulate
small gains from di¤erent subgames.
The …rst step of this component is to compute the value
of each game. A sophisticated game value should not
only reveal the player how will win a particular game
with which move, but should also tell what are threat-
ening moves in the game. A simple approach to meet
this criterium is to compute the game value for the two
cases that each player once moves …rst and once moves
second (this is more or less common practice in the more
sophisticated current Go programs). If one wishes to
model threats, s/he must also compute game values for
two cases where each player gets to play twice before
the opponent may respond.
Let us call the number of plays by one player before the
opponent answers the width of a game value. One possi-
ble outcome for a game value with width two is WLjLL.
This is the situation that Friend can move to an un-
settled situation (WL) which he can win if he gets the
chance to play a second move (only when Opponent ig-
nores the …rst move), whereas Opponent can move to a
won game (LL) if he does answer. Cazenave already de-
rived that this type of game has a threat for Friend only
(Cazenave 1996). In fact, the general representation of
a one-sided threat is WUUU for Friend and UUUL for
Opponent. WUUL is a two-sided threat.
If Friend wishes to play kiku (play to hold initiative)
he can choose to play a series of threatening moves. Al-
though Opponent simply can answer all the threats and
win in all the threatened games, this line of play can
be advantageous to Friend because a move generally
plays in more than one game at the time (multipurpose
moves). If a move is a threat in two games at the same
time, it will be di¢cult (if possible at all) for Opponent
to …nd a move that resolves both threats at the same
time. The simplest line of follow up play is to answer
the most important threat, but then Friend can win the
other game.
Sometimes there is such a big move that one does not
care about holding initiative but just grabs the points
associated with the move (for example killing a large
group). In general, this should be done when the local
temperature is hotter than the ambient temperature.
Such moves usually end in gote (loss of initiative) and
the resulting game is cold (not much to gain left for
either side). In general, gote play lowers the local tem-
perature, while sente play raises it.
Ryo-sente (two-sided sente) arises when a move is a
two-sided threat. If it arises in important games it is
usually played immediately.
Despite losing initiative, gote moves can develop new
initiative. If a move is gote in one game but creates new
sente moves in another game, then this move is called
gote no sente (gote with sente potential). For ex-
ample, WLLLjLLLL is a lost game for Friend, but he can
change the game to a (lost) game where he does have a

threat (WLLL), whereas Opponent can move to a game
which he has won and leaves no threat (LLLL). So, an
example of a gote no sente move is one that is gote
in one game and moves another game from WLLLjLLLL
to WLLL. Gote no sente moves can only be found
if one considers the possible outcomes if a player moves
three times in a row before his opponent starts to answer
(width = 3). None of the current Go programs described
in literature does this. Cazenave uses game values up to
width 2 (but gave a formalization for greater width).
Computing up to width K is twice the cost of computing
up to width K-1. Therefore, one has to know when to do
so. This task should be dealt with by component 2. One
good possibility is iteratively widening based on game
value feedback from component 3, since it is known from
(Berlekamp et alii, 1982) that one best makes moves in
hot (unsettled) games. So these are the games whose
value one would like to know most precise.
All the current commercial programs lack a well-de…ned
notion of initiative and their advantage in playing
strength can be expected to shrink relative to programs
based on scienti…c research, which do implement Com-
binatorial Game Theory.

COMPONENT 3: COMPUTING GAME VAL-
UES

The task of this component is to compute the game-
theoretic value of a particular game. Once determined
to what width an outcome has to be calculated, one ac-
tually has to calculate the value of the game and the
move(s) that accomplishes this value. In fact, in order
to do so, one has to calculate the value for all the moves
and select the best one. However, at this point it hasn’t
yet been determined in which game is to be played. It
is better not to remember just the best move but all
(good) options, because this leaves the possibility open
to detect multipurpose moves. Such a move might be
suboptimal in all the games it plays in, but can be su-
perior in the combined game compared to any of the
optimal moves in the separate games. Furthermore, re-
membering all good options can o¤er a means to prevent
unnecessary recalculations. Imagine you would only re-
member the best option (and also only the best reply)
and your opponent plays in a later stadium a subopti-
mal move in the nearby region, threatening the result
of your best move. You then would need to re-evaluate
this move, whereas you wouldn’t need to, had you re-
membered opponent’s suboptimal moves too.
So the task in this component is to calculate the value of
a game, given some width. An ®-¯ algorithm (or other
forms of minimax search) can be used to do this, but this
requires some sort of scalar-valued evaluation function
to compare two board positions. This indirect compari-
son has several drawbacks, including the horizon e¤ect.
Quiescence search has been invented to circumvent this

problem, but does not solve all the problems. This and
other disadvantages of using absolute evaluation func-
tions are well described in (Müller 2000).
Müller concludes that in many cases partial ordering
is better than absolute evaluation. This makes sense,
since it is more natural and even in ®-¯ search absolute
evaluation is used for partial ordering in the end.
We hypothesize that ®-¯ search in its current form can-
not handle the multidisciplinary and strategic nature of
Go.
Müller’s alternative was a method that combines par-
tial order evaluation with minimax search, called Par-
tial Order Bounding. In this method one categorizes all
the possible states into a success set or a failure set.
Minimax search is performed to determine which move
guarantees that any leaf node of this move’s subtree be-
longs to the success set. Leaf nodes are evaluated just
by checking whether or not it falls into the success set,
so the minimax values are boolean.
In contrast to this, our approach does not directly use
a success set, rather we bring partial ordering right into
the ®-¯ algorithm itself, so we use no boolean-valued
evaluation function. To be more precise, we will use
fuzzy partial ordering of vector states. Obviously, this
generalization is not possible without considering all
consequences of introducing fuzzyness and partial or-
dering at the same time.
In short, fuzzyness can be dealt with by putting states
that are approximately equal into one cluster. If one
watches out that intra-cluster distances remain (far) big-
ger than inter-cluster distances, it is possible to order
clusters just as if one were ordering single board situa-
tions.
The partial ordering function compares the game value
of two (clusters of) feature vectors a and b and outputs
an ordering such as a Â b (a is preferred over b), a ÂÂ
b (a is by far preferred over b) a ¼ b (about equal),
a » b (a and b are incomparable), combinations of
these like a % b (a is preferred over or approximately
equal to b) and negations. Notice that incomparable
is di¤erent from approximate equality. Two states that
have approximately the same value are incomparable if
one is far hotter (more unstable) than the other.
A traditional ®-¯ algorithm (without speed enhance-
ments) remembers during search just the values ® and
¯. In comparison, our generalized algorithm has to re-
mind a partially ordered tree of fuzzy clusters of already
evaluated options. We believe that the considerable ex-
tra amount of work (…rm theory plus implementation)
is worthwhile, since it o¤ers a natural (=human) look
at Go. For example, it enables an ordering between two
moves based on the achievements relative to some shared
parent state, which is really di¤erent (and probably eas-
ier) than any scalar-valued board evaluation technique.
The details of this approach will be discussed in a forth-
coming paper, due to shortage of space here. One issue
that will be discussed in great detail and with math-

ematical rigour is omitted here, namely the fact that
game values are looked at as scalars in the above dis-
cussion, whereas they are more like an interval [O,F],
where O is an underbound for the real value (the best
result for Opponent) and F is an upperbound (Friend
best result). The real value is determined as soon as
one of the two players chooses to play in that game. Of
course, the discussion of this section still holds for small
game value intervals (cold games).

CONCLUSIONS AND FUTURE WORK

This paper sketched a human-like learning architecture
for the game of Go, called HUGO, but it uses no game
speci…c knowledge, so it should be possible to apply it
to any two-player, full information, deterministic, com-
binatorial game. HUGO has three major components.
The …rst component deals with the de…nition and choice
of subgames. The second component is concerned with
initiative. In the third component, game values are com-
puted with a generalized ®-¯ algorithm based on fuzzy,
partial ordering.
The notion of gote no sente (a move that loses ini-
tiative but creates new lines of play that will hold ini-
tiative) is formalized for the …rst time.
There are some points where one can apply further ma-
chine learning techniques, for instance a clustering al-
gorithm in the extended ®-¯ algorithm. Furthermore,
each component has some valuable control parameters.
The iterative widening in component 2 and possible iter-
ative deepening in component 3 could further enhance
real-time behaviour. The value of uncertainty can be
used to control the style of play along a safe-risky axis.
Currently, work is carried out to mathematically for-
malize and implement the ®-¯ algorithm based on fuzzy
partial ordering, having combinatorial game values with
uncertainty as output.

REFERENCES

Berlekamp, E.; J.H. Conway; and R.K. Guy. 1982. Winning
Ways (for your mathematical plays). Academic Press,
New York.

Cazenave T. 1996. Systeme d’Apprentissage par Auto-
Observation. Application au Jeu de Go. PhD thesis,
Université Pierre et Marie Curie, Paris.

Conway J.H. 1976. On Numbers and Games. Academic
Press, New York.

Müller M. 2000. “Partial Order Bounding: A new Approach
to Evaluation in Game Tree Search.” Technical Re-
port of ETL, TR-00-10. To appear in a special issue on
heuristic search of the Arti…cial Intelligence Journal.

GAMES
PLATFORMS

PALM GAME DESIGN

Pieter Spronck
Universiteit Maastricht IKAT/Infonomics

P.O. Box 616
NL-6200 MD Maastricht, The Netherlands

E-mail: p.spronck@cs.unimaas.nl

KEYWORDS
Gaming, handheld computers, software engineering, design.

ABSTRACT

Though the Palm is mainly a business tool, many games have
been developed for it and more are published daily. This
article starts by examining the status of game development
on the Palm today. To give an indication on what designing
guidelines a game developer for the Palm should take into
account, several "rules of thumb" are presented. A
description is given of a successful Palm game, "Space
Trader", and areas where this game fails are indicated. The
article concludes by looking forward into the near future of
Palm game development.

INTRODUCTION

Since 1998 with the release of the Palm III, handheld
computers have become all the rage (Williams 1999).
Starting out as replacements for electronic agendas, newly
developed applications turned them into calculators, web
browsers, notebooks, email-managers, translators, e-books,
databases, barcode-scanners and even remote controls. Of
course, games weren't left behind. The number of
downloadable games for the Palm runs in the thousands,
most of them shareware or freeware. Many of these games
are not really worth your while, but there are gems to find for
those who keep their eyes open.
 This paper examines today's status of Palm game design,
gives a few rules of thumb for the technical designing of
handheld games, illustrates this by the story of a successful
Palm game, and will venture a look forward into the near
future of handheld games. It will be limited to discussing
games for the Palm OS, which currently has the biggest
market share, but most of the statements here are just as
applicable to competitors of this OS.

PALM GAMES TODAY

When viewing the landscape of Palm games as it is today, we
see games of many types and qualities. There are arcade
games like "PacMan", "Galax" and "Hardball"; action games
like "Void" and "Ancient Red"; text adventures playable with
"PilotFrotz"; role playing games like "Dragonbane" and
"Kyle's Quest"; board games like "PocketChess" and
"Kalah"; card games like "Hearts"; and strategy games like
"Taipan" (see figure 1).
 Most games are fairly simple, finding their inspiration in
games from the early '80s, but recently, especially since the
advent of colour Palms, more complex games have entered
the Palm landscape. The evolution of games on the Palm
goes fast, and developers try to catch up with even the latest

PC games. For instance, the first role playing game for the
Palm was a port of the ancient, text-based game "Rogue".
This was followed soon by "Kyle's Quest" that was inspired
by the first "Final Fantasy" games and "Dragonbane" that
was inspired by "The Bard's Tale". Now there is even
"Ancient Red", a Palm game reminiscent of the popular
"Diablo".
 A game like "Ancient Red" looks very beautiful, but does
not set the standard for Palm game development. There are
several reasons for that. Firstly, though the game does
support greyscales, the graphics are too intricate to play it on
anything less than an 8bit colour screen. Secondly, even on a
colour screen, the interface with its excruciatingly small fonts
and pixel-hunting stylus interaction is unclear and difficult to
use. Thirdly, the game's memory usage is enormous.
Fourthly, it has a steep price. Though the game seems to be
popular with some of the people who bought a Palm purely
for pleasure, it has only a limited audience.
 "Ancient Red" seems to be an exception to the rule that
most Palm games are designed and built by a sole
programmer. The Palm doesn't allow much in the way of
graphics or sounds – the capabilities of the Palm can be
compared with those of the first XTs or of a Commodore 64
without a sound chip. Therefore you don't have to be an artist
to build a game. Furthermore, for the design of a new game
you can be inspired by the multitude of games that have
populated the gaming realm since the first release of "Pong".
All of this makes the current Palm gaming world an ideal
place for an aspiring game programmer to leave his mark. A
good Palm game can be produced by a single programmer in
a matter of months. There is a large audience awaiting such
efforts, and it is even possible to start a small one-person
business in Palm games.

Figure 1: Several Palm Games

RULES OF THUMB

Handheld computers are not, like PCs, general-purpose
machines. Palms are not about putting a PC in your pocket,
they are meant for executing quick, simple tasks, anytime,
anywhere. Adding ten numbers on a Palm is acceptable;
filling out a large spreadsheet to calculate the total costs of
sending your kid through college is not. One of the reasons
the Palm is far more successful than its derivatives is that the
Palm hardware, as well as the Palm OS, is geared towards
such quick tasks (Rhodes and McKeehan 1999). However,
this philosophy puts serious limitations on the design of Palm
games. This paragraph presents several rules of thumb that
take these restrictions into account. Some of these rules are
derived from the "Palm OS Programmer's Companion"
(3Com Corporation 1999), but here they are especially
geared towards game design. Note that these rules only give
pointers on designing a well-functioning Palm game, not
necessarily a fun one.

1. The Screen Resolution Drives the Design

A Palm screen is limited in size to only 160x160 pixels on a
6x6 cm area, with at most 256 colours. The game designer
has to make do with that. Even worse, in order not to restrict
the audience too much, the game should work with
monochrome screens, since even greyscale support has only
recently been added to the Palm OS. The screen resolution is
a serious limitation in the functionalities a game can offer.
The best way to handle this is not to design a game and then
see how it fits on the screen, but to take the screen
restrictions into account at every moment during the design.
 Of all Palm applications, especially games often make
mistakes in screen design. There are games that create their
own, small fonts that are unreadable. There are games that
use tiny buttons that are easy to miss with the stylus. There
are games that use rich colours and use a dithered, unusable
version of that to support monochrome screens.
 Because of the physical restrictions imposed by the screen,
the functionality of each screen should be limited. Scrolling
using scrollbars should be avoided. There should be no more
than around four buttons on the screen, and they should be
big enough to be easily tapped with the stylus. If both colour
and monochrome screens are supported, the monochrome
version should be designed separately from the colour
version.

2. Games Are Small and Use Little Dynamic Memory

Memory is a valuable resource for the Palm. Not only is it
used to run applications; it is also used to store them and
their databases when they are not in use. There is no hard
drive. The earliest Palms only have half-a-megabyte of
memory or even less. Most of the Palms today are limited to
two megabytes. New Palms will commonly have at least
eight megabytes, but it'll take a few years before all the older
ones are replaced.
 There are two problems with the memory limitation. The
first is that the user is severely restricted in the number and
size of the installed applications. Games are usually not a
priority and will be quickly deleted when there's a lack of
memory – especially the larger games. When deliberating
whether or not paying a shareware fee for a game, the user's

decision will not only be guided by the monetary costs, but
also by the memory costs. The quality of a large game must
be very high to get a user to pay for it.
 The second problem is that an application cannot
dynamically assign much memory. The size of the dynamic
heap of a Palm is restricted, in the worst case to 32K. On a
PC this kind of problem is solved by "swapping out"
memory. On a Palm this can be emulated by storing allocated
records in a database. However, one should realize that this
database is built in the generic Palm memory, and therefore
limited by the size of the memory the user left unused after
installing applications, which usually isn't that much.
 It should be noted that especially colour images are serious
memory hogs. One full-screen colour image will take around
25K of memory. While this doesn't seem that much, one
should realize that many applications as a whole are even
smaller than that. One way around this is to make graphics an
optional feature of a game and to store them in a separate
database, which users can install if they have memory to
spare.

3. Game Control Is by Parsimonious Use of the Stylus

Most PC games use a variety of input devices. Normally you
can use a keyboard and a mouse, sometimes a joystick is
required. None of these is delivered with the Palm. The
standard Palm has three ways of inputting data: by tapping
the screen, by writing on the graffiti pad, and by pushing one
of the shortcut buttons. Of these, screen tapping is the main
method to control a game. This is completely different from
controlling PC games, and the design of a game should take
this into account.
 To answer the question why the graffiti pad should not be
used: the pad is used for inputting texts, but is not as easy to
use as a keyboard. The writing of text should, especially in
games, fulfil only a minor role. Pick-lists are often a good
alternative.
 To answer the question why a game should refrain from
reprogramming the buttons (except for the up/down button,
of which the use is application-dependent): the buttons are
used to switch to the major tasks the user performs with the
Palm, and as such reprogramming them is annoying
especially to the business user. Many games, mainly arcade
games, break this rule. Of course, it may be hard to create an
arcade game without reprogramming the buttons. In practice,
however, there are many games which reprogram the buttons
while a better way of controlling the game would be using
the stylus. In case one finds the buttons are indeed the only
viable input device for the implementation of a certain
function, one should at least make sure they get released at
each and every opportunity.
 Even though tapping is the way to control a game, the
number of taps necessary to execute that control should be as
small as possible. Main functions should require no more
than one tap. "Double-tapping" (equivalent to double-
clicking with a mouse) is theoretically possible but awkward
and therefore totally out of the question.

4. Exiting a Game Takes No More Than a Second

Currently, the normal use for a Palm is not "playing games".
It is used as a business device, a portable extension of a PC,

a small tool to support tasks done "in the field". The average
Palm user will have a few games loaded to entertain him
while standing in line or to kill some time while travelling,
but these are not the reason why he or she bought the Palm.
 Palm users can't be as patient as PC users, since they are
usually "on the move". Even a few seconds delay in
activating their desired application is too much. They ask
their Palm for information and want it now, not in a moment.
Therefore, games should allow the user to instantly switch to
another application. This means they should be quick to shut
down.
 Some games break this rule by taking a considerable
amount of time to save their state. Other games even do
worse and prohibit the user from leaving the game at any
given moment, either because that means the user will
instantly "lose" the game, or simply because it refuses to give
the control back to the OS at that time. These are serious
problems.

5. A Game Session Can Be as Short as One Minute

Palm users tend to fire up a game when they have a few
moments to spare. They are waiting in line for a cashier or
for the bus to arrive. Often they don't know how much time
they will have, they just want to play a few turns and be able
to put the game away at any given moment. A game should
allow them to do that.
 This means that the game's state should be obvious at a
glance. Even if a game could take an hour to play from start
to finish, any possible state in which the game can be loaded
should be clear to the user, even if he played the previous
session a week before.
 It also means that a game can be saved in any possible
state. Some games, when exiting, don't save the actual game
state but a previous game state. That's not much of a problem
if it means the user loses a few seconds of playtime.
However, if one game-turn takes a couple of minutes and the
state is only saved at the end of a turn, the user should at
least play a whole turn to make any progress, so he can't play
a one-minute session.

6. Sound Is Optional

When a user plays a game on a PC, he can, if he wants (and
the neighbours agree), have sound blasting from enormous
speakers. Palm games, however, are usually played in public.
Computer game sounds, those simplistic Palm sounds in
particular, are very annoying to bystanders, and if they are a
required feature of a game, the game cannot really be played
at times when the user would like to. Besides, sounds can be
turned off for the Palm as a whole, and many users only have
"alarm" sounds turned on.

7. Games Don't Need a Manual

When a user starts a new game, he doesn't want to study a
manual; he wants to spend five minutes on playing a game. A
paper manual, of course, is out of the question anyway, since
he won't be carrying it with him. But also on-line manuals are
not an acceptable method of training. The Palm screen is too
small to read text efficiently, and besides, reading long
manual texts only costs time which could better be spent on
game-playing.

 The solution is to make the game interface easily
understandable. In principle, the screen should tell the user
everything he needs to know. For board games, which may
have complex rules, this is not always possible, but even then
at least the interaction with the game should flow naturally. A
short instruction text, three screens long at the most, is
acceptable if it's easy to access and it only needs to be read
once.
 The designer can count on the user tapping things that look
like buttons or selection lists. So, a good way of creating an
easily playable interface is to create buttons for the actions a
user can perform and label them in a clarifying manner. This
may be problematic because the number of buttons can't be
too large, and labels should be short for lack of room. That's
exactly where a designer's job comes in.

8. Games Are Thoroughly Tested

This rule is a wide open door, of course. However, it should
be particularly noted for Palm games, since Palm users
commonly have little patience with buggy software. Games
are not required software, there are many free or pretty cheap
alternatives available, and storage capacity is valuable. The
game designer must expect that a game that annoys a user,
even only once, will be deleted. Only serious testing, not
only for bugs but also for playability, may avoid this from
happening.

SPACE TRADER

One way to create a game that adheres to the rules of the
previous paragraph is to keep it simple. That is actually what
has been done for most of the Palm games that exist today.
However, that does not mean that complex games are
impossible to create for the Palm, though it is more difficult
to keep a game playable. Especially the screen limitation
needs serious consideration for complex games, since they
usually offer the player many possibilities which must be
presented somewhere on the screen. This paragraph presents
experiences with the design of a complex Palm game.

The History of Space Trader

Halfway the year 2000 there were no complex
strategy/trading games for the Palm. The few trading games
that existed had very simple mechanisms and depended
mainly on luck. As an experiment I decided to build a space
trading game, with complex trading rules, geared towards the
strategic player. As inspiration I used the famous '80s game
"Elite", removing the 3D flight mode and increasing the
trading aspects considerably. I implemented the game using
CodeWarrior release 6. After a thorough beta testing phase I
released it September 2000 as freeware under the name
"Space Trader". The first release was quickly followed by a
few new releases in response to player comments, adding
some graphics and making interface enhancements (see
figure 2).
 The game has been received surprisingly well, getting
almost unanimous good reviews from players, websites and
magazines, and receiving several nominations as "the best
Palm game" in some category. The number of players, nearly
one year after the initial release, I estimate between 100,000

and one million. The current version of the game allows the
player to trade ten different kinds of goods in a galaxy
comprised of 120 solar systems, each with their own size,
technological development level, political system, special
resources and special events; to fly ten different kinds of
ships equipped with a selection of different kinds of
weapons, shields and gadgets; to become a trader, bounty
hunter, pirate or smuggler; and to go onto a several quests of
varying difficulty.

Figure 2: Several "Space Trader" Screens

Space Trader Design

The gameplay of "Space Trader" consists of two parts:
"trading" and "travelling". When trading, the player is
docked at a space station, where he can switch to many
different functions, like buying and selling of cargo, buying
equipment, visiting a bank or choosing a new solar system to
fly to. While travelling, the game is in a modal state, and the
player has to negotiate his way past several encounters with
police, pirates and other traders he meets underway. The
player can interrupt the game at any moment and restart it at
that same point later. If the interruption happens in a fight,
the encounter screen tells him everything he needs to know.
If it happens while docked, all information about current
cargo, current ship, current location and current quests is
accessible.
 The game is designed as a continuous journey towards
some final goal, which takes a couple of hours of playtime to
reach. The main activity of the player is seeking good trading
opportunities, which is a strategic task, because it is only
slightly randomized (to simulate small local market
fluctuations) and the best deals are made when the player
succeeds in exploiting the characteristics of neighbouring
solar systems. All the factors which play a role in the
determination of the prices of the different trade items are
explained and justified in a separate manual, which isn't
required reading but which might make the game more fun to
play.
 Besides hoarding money to fulfil the final goal, the player
must use his earnings to upgrade his ship and equipment, to
manage to survive encounters with the pirates, which become
stronger and more numerous while the game progresses.
Combat itself is simple and does not rely on reflexes, but
mainly on making prudent decisions on when to fight, when
to flee, and when to surrender (most players abhor
surrendering, but especially on the harder difficulty levels it's
sometimes the best choice).
 This design carries in it the risk of repetitiveness. A
reasonably successful attempt has been made to resolve this
by having the following features:
• There are so many factors which influence the trading

balance, that the trading experience differs notably from
solar system to solar system.

• There are quests which the player gets offered
occasionally, many with special rewards.

• The player can choose his own playing style, and can
switch between styles if he likes.

• The player can attempt to influence the success rate of
his own playing style by choosing the right equipment
and mercenaries.

• The enemy AI is simple but takes into account the
player's style, strength and success rate.

• Dying is possible in the game, but always avoidable for
a smart player.

 For the user interface it was decided to strive for clarity by
using standard fonts and buttons, by spreading functions over
as many different screens as needed, and by avoiding the use
of abbreviations.

Space Trader and the Rules of Thumb

After presenting rules for the successful design of Palm
games, it's interesting to examine how well my own exploits
confirm to them. "Space Trader" mainly sins against three of
them in the following ways:
• The game is not small. The first release was 150K in

size, which is acceptable but strains the limits. Later
releases increased this to 315K for the colour version.
This is mainly the result of adding graphics. The
graphics have been compiled in the game itself and are
not stored in a separate database, so the user is forced to
install them. A black-and-white version has been made
available that is "only" 230K in size.

• The game gets controlled mainly with the stylus, but the
stylus use is not parsimonious. "Space Trader" simply
contains too many screens. A better design would have
integrated more functions in fewer screens. In figure 3,
the three screens in the game that are used for the trading
of cargo are shown. After the first release, a player
suggested allowing the user to buy cargo immediately
from the average price list. For the next version, I added
the ability to buy cargo by tapping on one of the cargo
types listed on the average price list. This would popup a
screen showing the details of this cargo item and asking
the user if he wanted to buy it, and if so, how many
canisters (with the possibility to buy "as many as
possible" by tapping one button). This greatly increased
the user-friendliness of the trading function and
decreased the number of necessary screen-switches
considerably. With a bit of thinking, it would be possible
to also integrate the selling function, producing one
"Cargo Trading" screen. It should be noted that many
reviews have mentioned the ease of use of "Space
Trader" and the clarity of the screens. Integrating more
functions in one screen could mean sacrificing some of
that clarity, but it would probably be worth it.

• The game is more in need of a manual than I would like.
There is a huge in-game manual in the form of help
screens and several menu-items that explain certain
aspects of the game. I don't believe these are all
necessary, and in fact I have discovered that many
players don't read the help texts at all. However, a player
must at least be instructed on how to buy and sell cargo,
how to equip his ship, and how to travel to other solar
systems. The need for a manual for these aspects would

be greatly reduced if the following changes were made:
the addition of a "nerve centre" screen from which the
basic functionalities would be accessed and the
reduction of the number of screens as already mentioned
above.

Figure 3: "Space Trader" Cargo Trading Screens

Lessons Learned

The following statements I would offer as "lessons learned"
from the production of "Space Trader":
• Graphics are important. The first version of "Space

Trader" only contained a simple graphical "Start" and
"Victory" screen. I got many requests to add more
graphics, and did so by adding ship pictures and
enhancing the existing illustrations. I took care that the
graphics were not just "eye-candy", but fulfilled a useful
role in the game. After that, requests for more graphics
were seldom ventured.

• Graphics are not that important. The graphics in
"Space Trader" are very simple, but I get virtually no
complaints on that. Players seem to focus on the
strategic aspects of the game. And graphics do have a
bad side: adding them doubled the memory footprint of
the game.

• The fewer screens, the better. When docked at a space
station, the player of "Space Trader" has access to ten
main screens and about the same number of sub-screens.
This requires far too many screen-switches. A redesign
of the game would probably make do with about four
main screens and a few sub-screens, without losing
functionality.

• Don't use the menu except for housekeeping
functions. "Space Trader" makes the mistake of making
some of the basic functionalities only accessible through
the menu. This means some players completely forget
about them. The menu should be used only for
housekeeping.

• Keep interest going by having developments and a
few surprises. The most appreciated aspects of "Space
Trader" are the quests, which form small stories in the
game, and the few surprises the game has in store for the
player. A better version of "Space Trader" would have
far more and different quests, and would offer multiple
solutions for them.

• Keep supporting low-level Palms. A surprisingly large
number of players write to me how glad they are that
there are still developers that write games for older
Palms, so it seems worthwhile to keep supporting them.
This may, however, prove to be impossible for games
that require more advanced functionalities, like elaborate
graphics.

• Incorporate a savegame feature. Intentionally, I left
out the savegame feature for "Space Trader", because it

would remove all tension from the combat sequences.
However, there are three good reasons to have it: Firstly,
if a player moves on to another Palm or if his Palm
suffers a serious crash, he will have lost his current
game; secondly, it allows players to play multiple
parallel games on one Palm; thirdly, if a player reports a
bug, having access to a savegame is an important help in
solving it. When adding savegames, a good solution for
the combat issue could be penalizing the player for
restoring a saved game, for instance by disallowing
ranking in the highscore table.

THE FUTURE OF PALM GAMING

Palms have dropped in price and have become popular not
only as a tool for business users, but also as a "cool gadget"
for everyone else, especially youngsters. These people are far
more interested in games than in business applications. The
Palm Corporation seems to find this enough reason to forego
their philosophy of focussing on simplicity and starts to push
the Palm more and more as a games machine. This means it
is very likely that in the near future we will see the release of
Palms specifically for gamers, with extra graphic capabilities
(perhaps a 320x320 screen with 16bit colours), extra sound
capabilities and an earphone jack, a lot more memory or
memory cards on which software can be preloaded, easy
Internet access for multi-player games, and perhaps a built-in
joystick. In fact, hardware which supports some of these
features is already available. The consequences for the Palm
OS are minimal, it's mainly the hardware that will be
changed. Palms without these extras will, as long as the
game-specific Palms are clumsier than regular Palms, still be
available for business purposes. Just like what happened with
PCs, the gamers will use the most expensive and advanced
machines.
 The consequence is, however, that game programmers must
decide whether they will build a game which runs on all
Palms, or whether they will produce a game for a
"GamePalm". The first will restrict the game's features, the
second the audience (though it will, of course, mean that the
designer can relax on the rules presented earlier in this
paper). At first, a single programmer is probably better off
concentrating on the basic Palm, because it is likely that
professional programming teams will quickly start working
on producing games for the enhanced Palm. Not long after, I
expect there will be no room anymore in the Palm game
development world for a one-person business. Therefore, the
statement at the start of this article that the Palm gives an
ideal opportunity for a sole game programmer to make a
name for him- or herself, has an expiration date. The time to
grab that opportunity is now. It will probably have passed in
a few short years.

REFERENCES
3Com Corporation. 1999. Palm OS Programmer's Companion.

Part of the Palm OS Software Development Kit.
Rhodes N. and J. McKeehan. 1999. Palm Programming: The

Developer's Guide. O'Reilly & Associates.
Williams J. 1999. Games to Go: The PalmPilot Series.

GamaSutra. Available at: http://www.gamasutra.com.

DISTRIBUTED AUDIO-VIDEO SHARING

BY COPY-AND-TRANSFER OPERATION
FOR NETWORK 3D GAMES

Hirotatsu Sakamoto Yoshihiro Okada Eisuke Itoh Masafumi Yamashita
Graduate School of Information Science and Electrical Engineering, Kyushu University

6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
Phone: +81-92-642-3872, Fax: +81-92-583-7632

hirotatu@swlab.csce.kyushu-u.ac.jp okada@i.kyushu-u.ac.jp itou@cc.kyushu-u.ac.jp mak@csce.kyushu-u.ac.jp

KEYWORDS

Network 3D games, Audio-video communication,
Copy-and-transfer, Component ware, Distributed
virtual environments

ABSTRACT

This paper treats distributed audio-video shar-
ing mechanisms for the development of network 3D
games. Especially the authors propose the concept
of the copy-and-transfer operation. This concept is
that making a copy of a visible, manually opera-
ble software component and transferring it to an-
other computer enable users to share it. If a fa-
cility that manages audio or video data is realized
as such a component, even end-users can easily and
rapidly build audio-video communication environ-
ments through the copy-and-transfer operation. This
paper explains realization mechanisms of the copy-
and-transfer operation and describes its availability
by showing network 3D game examples.

1 INTRODUCTION

Advances of computer hardware technologies
make it possible to create 3D images in real-time,
so that 3D graphics software has become in great
demand. For this reason, we have been studying
3D graphics software development systems and us-
ing IntelligentBox [Okada and Tanaka 1995] as our
research system. IntelligentBox is a component ware,
which provides various software components as visi-
ble, manually operable 3D objects called boxes. In-
telligentBox also provides a dynamic data linkage
mechanism called slot-connection that enables users
to construct 3D graphics applications by combin-
ing existing boxes through direct manipulations on
a computer screen. Okada et al. described that
IntelligentBox is available for the development of
interactive 3D games and also network 3D games

[Okada et al. 2000]. For network 3D games, face-
to-face communication by audio/video media enables
players to feel their enemy’s emotion and it enhances
enjoy-ability during playing a game. Especially for
group battle games, audio-video communication is
necessary to effectively and strategically play games.

Then this paper treates a distributed audio-video
sharing mechanism. Especially we describe a new
concept of the copy-and-transfer operation. This
copy-and-transfer operation is similar to the copy-
and-paste/cut-and-paste operations, which are stan-
dard GUI operations based on using a mouse-device.
With the copy-and-transfer operation, even end-users
come to easily and rapidly build audio-video com-
munication environments. IntelligentBox provided a
video managing facility as a VideoBox. However this
version of VideoBox was not available through net-
work. So we improved it in order to support video
communication via network [Sakamoto et al. 2001].
We have also been developing boxes to manage au-
dio media through network. Furthermore a par-
ticular box called RoomBox exists for providing a
shared 3D space [Okada and Tanaka 1998]. Using
these boxes, i.e., RoomBox, VideoBox and audio man-
aging boxes, which support audio-video communica-
tion, only through copy-and-transfer operations, it
will be possible to build network 3D games. In this
paper, we clarify availability of this copy-and-transfer
operation by discussing development costs and per-
formances with showing possible, practical applica-
tion examples.

Related works

Our research purpose is to establish software ar-
chitecture that makes it easier to develop 3D graph-
ics applications. Related works are 3D softoware de-
velopment systems including DIVE [Hagsand 1998],
MASSIVE [Greenhalgh and Benford 1995], MERL
[Anderson et al. 1995][Barrus et al. 1996], dVS
[Ghee 1995], MR Toolkit [Shaw et al. 1993]. DIVE

Copy

Transfer

Information sharing

: visible, manually operatable object

network

virtual environment A virtual environment B

Figure 1: The concept of copy-and-transfer.

is a virtual reality construction toolkit system. It
has network communication facilities by audio and
text media. MASSIVE is a remote conference sys-
tem based on sharing a 3D virtual space. It has a
text-to-audio communication facility, but not a video
communication facility. MERL is a development sys-
tem for collaborative virtual environments. It allows
us to communicate by audio and text media. dVS is
a commercial product as a virtual reality construc-
tion toolkit. It allows us to develop distributed col-
laborative applications, but does not provide audio-
video communication facilities. MR Toolkit is a vir-
tual reality construction toolkit system at a library
level. Although these are very powerful systems, it is
not easy to use their essential mechanisms when de-
veloping distributed 3D graphics applications. Our
research system IntelligentBox provides various 3D
software components represented as visible, manually
operable, and reusable objects. Furthermore the In-
telligentBox system provides a dynamic data linkage
mechanism. These features make it easier even for
end-users to develop 3D graphics applications includ-
ing network 3D games. This is the main difference
between IntelligentBox and the others.

The remainder of this paper is organized as fol-
lows: Section 2 describes the copy-and-transfer con-
cept. Section 3 explains essential mechanisms of
IntelligentBox and RoomBox. In section 4, we ex-
plain audio-video data sharing mechanisms. Section
5 discusses development costs and performances with
showing possible, practical 3D game examples. Fi-
nally, we conclude this paper in section 6.

2 COPY-AND-TRANSFER

Object-oriented programming becomes very com-
mon because of its reusability of software componets
and its availability of bottom-up programming man-
ner. However, conventional object-oriented program-

Figure 2: An MD structure of a box and its internal
messages.

Figure 3: Standard messages between boxes.

ming is not enough for end-users, who do not have
any programming knowledge, since it requests users
to write text-based programs. We think that software
components should be represented as visible, man-
ually operable objects because such software com-
ponents allow even end-users to develop software
only by combining them interactively on a computer
screen. Furthermore, for such visible, manually op-
erable components, it is possible to execute the copy-
and-transfer operation as shown in Figure 1. In this
figure, the user using the left computer can make a
copy of a certain component, and transfer it to the
right computer. This operation is done only with
manual operation using a mouse-device on a com-
puter screen. If the copy and its original software
component keep the same states, two users using
each computer can share the same data as its states.
Therefore the copy-and-transfer operation of audio-
video managing components allows users to share
audio-video data via network.

3 ESSENTIAL MECHANISMS OF INTEL-
LIGENTBOX

The following essential mechanisms are inherited
from IntelligentPad [Tanaka 1996], which is a 2D
synthetic media system, to IntelligentBox, since In-
telligentBox is an extension of IntelligentPad to 3D
graphics applications.

Figure 4: Message flow between two RoomBoxes for network collaboration.

3.1 Basic structure of box

As shown in Figure 2, each box consists of two
objects, a model and a display object. This structure
is called an MD (Model-Display object) structure. A
model holds state values of a box. They are stored
in variables called slots. A display object defines how
the box appears on a computer screen and defines
how the box reacts to user operations.

Figure 2 is an example of a RotationBox. A Ro-
tationBox holds a rotation angle as its slot value.
Through direct manipulations on the box, this slot
value changes(1© 2©). Furthermore, its visual image
simultaneously changes according to the slot value
change(3© 4©). Then the box reacts to the user ma-
nipulations according to its function(5©).

3.2 Message-sending protocol for slot con-
nections

Figure 3 illustrates a data linkage concept between
boxes. Each box has multiple slots. Its one slot can
be connected to one of the slots of other boxes. This
connection is called a slot connection. The slot con-
nection is carried out by three messages.

A set message(1©) writes a child box slot value into
its parent box slot. A gimme message(2©) reads a
parent box slot value and sets it into its child box
slot. An update message(3©) is issued from a parent
box to all of its child boxes to tell them that the parent
box slot value has changed. In this way, these three
messages connect a child box slot and its parent box
slot, and combine their two functionalities.

3.3 A shared-copy and a distributed model-
sharing

The MD structure allows more than one box to
share the same common model. This mechanism is
called model-sharing and the operation that gener-
ates a copy of a display object sharing a common
model is called shared-copy. A box generated by the
shared-copy operation shares all slot values. After one
of model-shared boxes is transferred to another com-
puter via network, a new corresponding box is gen-
erated in that computer and the box has the same
slot values and keep them always by messages via
network to conserve consistency of slot values. This
means distributed model-sharing.

3.4 RoomBox for collaborative virtual envi-
ronments

This section briefly describes an idea of a shared
3D space and a functionality of a RoomBox. As
shown in Figure 4, the RoomBox has a slot named
‘event’ which holds a current user-operation event
operated on its descendant boxes. Some specific user-
operation events generated in a RoomBox are always
stored in this slot until the next event is generated.
As mentioned above, IntelligentBox provides a dis-
tributed model-sharing mechanism. By this mecha-
nism, multiple RoomBoxes can share user-operation
events with each other. Here, descendant boxes of
a RoomBox are treated as collaborative operable 3D
objects.

In Figure 4, there are two RoomBox models exist-
ing separately on a different computer. These models
are kept in the same state by messages passed via net-
work. This linkage is built easily and rapidly by mak-
ing a shared-copy of a RoomBox on one computer and
by transferring it to the other computer. When a user

slot
connection

MovieBox

VideoBox

SoundBox

MicBox

movie file

video camera
 device

sound file

mic device

ScreenBox

ScreenBox

SpeakerBox

SpeakerBox

:Model of Box :frame slot in Model

Figure 5: Boxes managing audio-video data and their pairs.

operates one box in the RoomBox on the computer A,
his operation event is sent to the RoomBox model and
subsequently set in its event slot. Furthermore, this
event is sent to the other RoomBox model existing on
the computer B by a message. After these processes
are completed, the operation event is applied to the
corresponding box on the computer B. In this way, by
using distributed RoomBoxes, user-operation events
are shared among several computers.

4 DISTRIBUTED AUDIO-VIDEO SHAR-
ING MECHANISMS

As previously mentioned, using RoomBoxes, it
is possible to build collaborative virtual environ-
ments easily and rapidly. As well if boxes that man-
age audio-video data exist, it is possible to build
audio-video communication environments easily and
rapidly by their copy-and-transfer operations. Then
we designed and implemented six boxes managing
audio-video data as follows. Actually four boxes are
used for audio-video communication, i.e., the pair of
VideoBox and ScreenBox for video communication,
and the pair of MicBox and SpeakerBox for audio
communication.

1. MovieBox reads movie data from a movie file.
2. VideoBox gets movie data from a video camera

device.
3. ScreenBox displays movie data onto its surface

as texture images.
4. SoundBox reads audio data from a sound file.
5. MicBox gets audio data from a mic device.
6. SpeakerBox outputs audio data to a speaker de-

vice.

Figure 5 illustrates the usage of the six boxes.
We can implement audio-video facilities as just one
software component like Microsoft MediaPlayerTM .
However we designed them as six components se-
paretely because of the following. We think that
software components should be as simple as possi-
ble and should have the same metaphor as existing
things in the real world. Such software components
are very easier for end-users to deal with and have
high reusability.

4.1 Boxes managing video data

MovieBox, VideoBox, and ScreenBox manage
video data. MovieBox and VideoBox are used for
reading video data, and ScreenBox are used for dis-
playing video data. The texture-mapping technique
is used to display a binary 2D image in a 3D virtual
space. Strictly speaking, a texture image is mapped
on the surface of a 3D object, i.e., a box. These
boxes have a ‘frame’ slot in its model. A texture
image is loaded and stored in this slot. Periodical
updates of the slot content allow us to see an anima-
tion. MovieBox and VideoBox also have a ‘TRIG-
GER’ slot. Whenever ‘TRIGGER’ is accessed, the
next frame will be loaded. Actually a TimerBox
is used to access the ‘TRIGGER’ periodically by a
slot-connection. A TimerBox holds a timer value,
which periodically increases every user-specified in-
terval time, in its ‘time’ slot. Then this box is used
as a timer to notify MovieBox and VideoBox of its
timing to get new frame of video data.

Figure 6 and Figure 7 illustrate distributed video
data shaing mechanisms using VideoBox and Screen-
Box. Figure 6 is the case without using RoomBox.

Computer A Computer B

slot connection

VideoBox A

ScreenBox A ScreenBox A’

ScreenBox B’

slot connection

ScreenBox B

VideoBox B

Figure 6: Distributed video data sharing mechanisms
without RoomBox.

Computer A Computer B

slot connection

slot connectionVideoBox A

ScreenBox A

ScreenBox B’

VideoBox B’

slot connection

slot connectionVideoBox A’

ScreenBox A’

ScreenBox B

VideoBox B

event event

Figure 7: Distributed video data sharing mechanisms
with RoomBox.

We can build this structure by means of the copy-and-
transfer operation of ScreenBox. This is the simplest
way to share audio-video data between two comput-
ers. For network 3D games, we have to build collab-
orative virtual environments using RoomBoxes.

Figure 7 is the case with using RoomBox. We
can also build this structure by means of the copy-
and-transfer operation of RoomBox, which contains a
composite box of VideoBox and ScreenBox. Actually
a RoomBox contains its child boxes, which are collab-
orative operable 3D objects. In this way, even end-
users can build collaborative virtual environments in-
cluding audio-video communication for network 3D
games.

4.2 Boxes managing audio data

SoundBox, MicBox, and SpeakerBox manage au-
dio data. SoundBox and MicBox are used for reading
audio data, and SpeakerBox for playing audio data.
These boxes have the common structure for manag-
ing audio-data. Actually these boxes have a dedi-
cated buffer called ”audio buffer,” a ‘frame’ slot, and
an ‘always’ slot. The audio buffer is used for storing
temporal audio data sent from an audio device or
read from an audio file. A part of the audio buffer is
mapped to a ‘frame’ slot. The size of this slot is fixed.

The timing of updating this slot value is controlled
by an ‘always’ slot, which has a boolean value. If an
‘always’ slot value is true, the update timing is asyn-
chronous. Strictly speaking, in the case of SoundBox
and MicBox, audio data sent from a source is once
written to audio buffer and its part is sent to a ‘frame’
slot asynchronously. In the case of SpeakerBox, audio
data stored in its ‘frame’ slot is written to a part of
an audio buffer asynchronously and is sent to speaker
device. Actually a ToggleSwitchBox is used to change
the ‘always’ slot value since a ToggleSwitchBox has a
boolean value in its ‘State’ slot and it can be used as
a switch.

5 DISCUSSION

This section discusses possible, a practical appli-
cation example, their development costs and perfor-
mances.

5.1 A practical application example

Figure 8 shows two screen images of a network
game, which is a tank battle game actually we have
already developed. In this example, there are two
players each using a different computer. The left fig-
ure is a screen image of one computer and the right
figure is that of the other one. As for the left fig-
ure, the upper right small view is a camera view of
a CameraBox attached to the tank controlled by this
computer’s player. Each player can control his own
tank with looking at the each camera view. Fur-
thermore the two upper left small images are two
players faces displayed using VideoBoxes. As this
example case, face-to-face communication is impor-
tant for enhancement of enjoy-ability during playing
a game. Especially for a group battle game, audio-
video communication is necessary to effectively and
strategically play a game. Then our proposed copy-
and-transfer operation is significant since it allows
even end-users to construct network 3D games.

5.2 Development costs

We give an outline of the simplest way to cre-
ate an application with video communication using
VideoBox, RoomBox and TimerBox:

1. Compose a composite box from a TimerBox and
a VideoBox.

2. Connect the ‘time’ slot of the TimerBox and
the ‘TRIGGER’ slot of the VideoBox by a slot-
connection through a menu selection.

3. Define the composite box as a descendant of a
RoomBox.

4. Make a copy of the RoomBox and transfer it to
another computer.

Figure 8: A distributed tank battle game.

In this way, construction process for video commu-
nication, based on the copy-and-transfer operation, is
very simple and easy for even end-users. This pro-
cess is done immediately only through mouse-device
operations.

As mentioned in the paper[Okada et al. 2000],
using IntelligentBox, it is possible to build 3D
games without writing any text-based programs only
through direct manipulations on a computer screen.
The network game example without audio-video
communication presented in this paper was also de-
veloped in several hours only through direct manip-
ulations on a computer screen.

5.3 Performances

We experimented to evaluate the performance of
video communication. So we executed a copy-and-
transfer operation to each VideoBox on two comput-
ers and created video communication environment.
The environment we experimented is as follows:

• computer A

– CPU: Pentium III 800MHz
– Memory: 256MB
– Network: 100Base-TX
– OS: Windows 98
– Graphics Card: Geforce

• computer B

– CPU: Pentium III 450MHz
– Memory: 256MB
– Network: 100Base-TX
– OS: Windows NT
– Graphics Card: Cobalt

Parameters are as follows:

• uni-direction or bi-direction

• frame rate(frame/sec)
• resolution(the numbers of vertical pixel × the

numbers of horizontal pixel)
• color depth(byte/pixel)

Table 1 shows frame rates in some cases. For in-
stance, the left lower values, i.e., 2.5 and 0.2, mean
the frame rate of computer A to computer B and
the frame rate of computer B to computer A respec-
tively in the case that communication is bi-direction,
frame resolustion is 128×128 pixels, and color depth
is four byte/pixel. The frame rates of computer A to
computer B are larger than the frame rates of com-
puter B to computer A because of the difference of
CPU peformances of computer A and computer B.
In any case, the table does not show performances
enough for practical use since we didn’t use any data
compression technique nor particular communication
protocol. So communication performce can be im-
proved if these techniques are used. These are left as
a future work.

6 CONCLUDING REMARKS

This paper presented distributed audio-video shar-
ing mechanisms for the development of network 3D
games. Especially the new concept, i.e., the copy-
and-transfer operation, was proposed and its realiza-
tion mechanisms were explained. If a software com-
ponent is represented as a visible, manually operable
object, the copy-and-transfer operation on such an
object becomes possible. Then if a facility that man-
ages audio-video data is realized as such a visible,
manually operable object, even end-users can easily
and rapidly build audio-video communication envi-
ronments through the copy-and-transfer operation.
This paper clarified the availability of the copy-and-
transfer operation by discussing development costs
and performances of applications with showing net-
work game examples.

128 x 128
4

128 x 128
1

64 x 64
4

64 x 64
1

A -> B

B -> A

B -> A

uni-direct

bi-direct

B

A
stand-alone

18.0 18.0 18.0 18.0

 6.6 6.6 6.1 6.1

resolution (pixel)
depth (byte/pixel)

frame rate (frame/sec)

A -> B

0.3 0.9 0.9 3.4

0.80.2 3.10.9

17.0 2.5 18.010.3

2.6 18.1 10.3 18.1

Table 1: Frame rate of VideoBox.

ACKNOWLEDGEMENTS

We would like to thank all members of our labo-
ratory for their advices and suggestions. This work
is partially supported by foundation for Fusion Of
Science and Technology(FOST) of Japan.

References

[Anderson et al. 1995] Anderson, B., D., Barrus, W.
J., et al., 1995. ”Building Multiuser Interactive
Multimedia Environments at MERL.” IEEE
Multimedia, Vol 2, No. 4, 77-82.

[Barrus et al. 1996] Barrus, W., J., Waters, C.,
R. and Anderson, B., D., 1996. ”Locals and
Beacons: Efficient and Precise Support For
Large Multi-User Virtual Environments.” Proc.
of IEEE Virtual Reality Annual Int. Symp.
(VRAIS-96).

[Greenhalgh and Benford 1995] Greenhalgh, C. and
Benford, S., 1995. ”MASSIVE: A Collabora-
tive Virtual Environment for Teleconferencing.”
ACM Transations on Computer-Human Inter-
action, Vol. 2, No. 3, 239-261.

[Hagsand 1998] Hagsand, O., 1996. ”Interactive
Multiuser VEs in the DIVE System.” IEEE
Multimedia, Vol. 3, No. 1, 30-39.

[Okada et al. 2000] Okada, Y., Itoh, E. and Hi-
rokawa, S., 2000. ”IntelligentBox: Its Aspects as
a Rapid Construction System for Interactive 3D
Games.” Proc. of First International Conference
on Intelligent Games and Simulation (GAME-
ON2000), SCS Publication, 22-26.

[Okada and Tanaka 1998] Okada, Y. and Tanaka,
Y., 1998. ”Collaborative Environments in Intel-
ligentBox for Distributed 3D Graphics Applica-
tions.” The Visual Computer (CGS special is-
sue), Vol. 14, No. 4, 140-152.

[Okada and Tanaka 1995] Okada, Y. and Tanaka,
Y., 1995. ”IntelligentBox:A Constructive Visual

Software Development System for Interactive
3D Graphic Applications.” Proc. of Computer
Animation ’95, IEEE Computer Society Press,
114-125.

[Sakamoto et al. 2001] Sakamoto, H., Okada, Y.,
Shimokawa, T. and Ushijima, K., 2001. ”Com-
ponent Based Video Communication Tool for
Collaborative Virtual Environment.” Proc. of
15th International Conference on Information
Networking, 375-380.

[Shaw et al. 1993] Shaw, D., Green, M., Liang, J.
and Sun, Y., 1993. ”Decoupled Simulation in
Virtual Reality with the MR Toolkit.” ACM
Trans. on Information Systems, Vol. 11, No. 3,
287-317.

[Ghee 1995] Ghee, S., 1995. ”dVS – a Distributed
VR System Infrastructure.” In SIGGRAPH ’95
CourseNotes.

[Tanaka 1996] Tanaka, Y., 1996. ”Meme Media and
a World Wide Meme Pool.” Proc. of ACM Mul-
timedia’96, 175-186.

 © SCS

CONTENT-BASED RECKONING FOR INTERNET GAMES

Jörg R. J. Schirra
Department of Computer Science

Otto von Guericke University
Universitätsplatz 2

D 39 106, Magdeburg, Germany
E-mail: joerg@isg.cs.uni-magdeburg.de

KEYWORDS
Dead reckoning, behaviour encoding & decoding,

ABSTRACT

Event concepts, which structure our understanding of agents’
behaviours as well as and our verbal descriptions, can reduce
the amount of messages in network games if they are em-
ployed in a content-based extension of dead reckoning for
anticipating and communicating the game states among cli-
ents. An example case is described by adapting to the new
task the necessary recognition and reconstruction routines for
such “semantic” event concepts from prior work in an AI pro-
ject dealing with the linking of natural language generation
and computer vision. Beside reducing communication, analys-
ing the players in terms of high-level concepts also opens a
preview of dealing with dissociations on a more general level.

NETWORK GAMES AND DISSOCIATION

Messages can pass through the internet only with a certain
speed leading often to a significant latency between the time
of sending and the time of receiving. This is particularly dis-
turbing in settings with a high amount of interaction as in
computer games, when players all around the earth may try
enjoying a common game with each others, and long dis-
tances are coupled with temporally highly demanding ex-
changes. If, for example, the updating of the players’ posi-
tions in a shooter game is delayed, there is a severe danger
that the game dissociates, i.e., that the actions of the players
no longer belong to one unique context of interaction. There-
fore, handling dissociation is one of the crucial technical
questions when building internet-based games. So far, several
methods have been proposed to deal with the danger of disso-
ciation. Reducing the amount of information that has to be
sent through the net is a basis for most of them, as the reduc-
tion of necessary bandwidth also lessens the temporal pres-
sure on the communication channel.
Often, a multitude of local game contexts are used that are
essentially autonomous and may deviate from each other to a
certain degree. Only major differences need explicit synchro-
nization. One of the most successful methods in this frame-
work is Dead Reckoning (or more generally: “predictive con-
tracts”, Mellon and West 1995): essentially, the movements of
all player characters are locally extrapolated by every partici-
pant. Deviations between the predictions of the movements of
the “local character” and the “real” positions determined by

the player trigger corresponding messages to the others – but
only if they exceed a certain threshold. The receivers react by
smooth correction movements of the corresponding characters
in their respective game contexts. So far, the threshold of al-
lowed deviation depends merely on geometric information,
and it is always the same no matter what kind of behaviour in
which context is considered.

CONTENT-BASED RECKONING

This paper examines the idea of using descriptions as in natu-
ral language for anticipating and communicating the game
states between clients instead of geometric information alone.
Our verbal descriptions of actions in games are usually struc-
tured in events that belong mainly to an intermediate level of
complexity: they are richer than pure geometry, and less
global than strategic notions. Therefore, they cover relatively
large segments of time. They also define context-sensitive
thresholds for tolerable deviations only dependent on rele-
vance.
While the usual dead reckoning is easily performed on the
description of the game states as already given – basically the
coordinates and velocity vectors of the characters – dead
reckoning based on high-level descriptions depends crucially
on routines for encoding and decoding the behaviour of game
characters into concepts underlying our own descriptions of
what is going on: e.g., “running along some channel toward a
trap door” in a role playing game, or “playing a double-pass
with a team-mate in front of the opposing team’s penalty
area” in an online soccer game. Such routines are described in
the next section, based on research in a classical sub-field of
AI: natural language systems.
Predictive contracts allow local game clients to act rather in-
dependently from each other by calculating the players’ prob-
able behaviours, instead of using their real input. Correspond-
ingly, in our approach “semantic” concepts of actions are de-
coded into concrete spatio-temporal instances of that behav-
iour, predicting the players’ activities. At the same time, every
game client analyses the actual behaviour of “its” player by
encoding his/her concrete movements into the high-level con-
cepts, and compares them with its own predictions. The rele-
vant distinctions are determined indicating necessary correc-
tions of the simulations. This revised architecture is intro-
duced in the second section.
The paper ends with a sketch of the approach’s open ques-
tions and its potential to stimulate future research.

 © SCS

Behaviour Recognition and Reconstruction in VITRA

To define in an operational manner what we mean in this con-
text by “content” is the first step toward content-based reck-
oning. Essentially, we need procedures for encoding behav-
iour given by means of coordinates and velocity vectors into
relevant concepts, and also for decoding them back. Fortu-
nately, an existing implementation of the operational seman-
tics of spatio-temporal verbs and prepositions from a natural
language system is close enough to the multiplayer game set-
ting that it can immediately be adapted for a soccer game
without many changes. In the project VITRA (VIsual TRAns-
lator), we have studied the connection of natural language
generation and computer vision in the scenario of a radio
sports report (Herzog and Wazinski 1994). The domain is
soccer games. Aiming at a continuous processing from video
input to a fluid report in German, many approaches of low
and high level computer vision had to be coordinated in
VITRA with components for utterance planning, syntax gen-
eration, and pragmatic anticipations of the listeners’ under-
standing. Since a “life report” setting was chosen, temporal
restrictions also played an important role.
After calculating from the video signal the 3D-positions,
forms, and types of “objects” (players and ball), an idealized
representation is sufficient for the higher levels of behaviour
recognition: the centres of gravity of the players in the 2D-
plane of the soccer field in a bird’s eye view (Schirra et al.
1987). Encoding the game states is based on the relative posi-
tions of the players and the ball with respect to each others
and to the geometric and functional parts of the soccer field.
Such static spatial relations, which can be articulated by
means of locative prepositions like “in” or “to the right of”,
can efficiently be detected by mathematical applicability func-
tions based on simple geometric concepts and part-whole rela-
tions. Applying such a function onto an idealized geometric
game state (as given by object recognition) leads to a fuzzy
applicability value in [0.0 .. 1.0] (Schirra 1993). In Figure 1,
such a function is graphically represented (unmarked position
≡ applicability value 0.0; black ≡ 1.0).

More complex events (including simple and interactive be-
haviours as well as intentional acts) have been defined as
temporal sequences of sets of such static spatial relations (plus
part-whole relations like team membership), forming Finite
State Machines (FSM), the states of which correspond to
points in time, the transitions to the flow of time. They can
immediately be used for parsing the input data into corre-

sponding events. More precisely, we employed an augmented
version of FSM: each state transition is marked twice (cf. Fig.
2): (a) with a condition, i.e., a conjunction of static spatial
relations (or sub-events, see below) that have to hold at the
time this transition is active, and (b) one of the following
types: start, proceed, succeed, stop. The later classes deter-
mine phases of recognition: the moment of first assumption;
an ongoing recognition without final confirmation (i.e., event
not completed, completion can still fail); an ongoing con-
firmed recognition of durative events (e.g. “running”); and the
final moment of successful recognition (first moment after the
event). In order to simplify definitions, these recognition
phases can be used for referring to sub-events in state transi-
tions, too (in Fig. 2, the start phase of the “pass” event refers
to the stop phase of an event “ball-possession”, i.e., one
player is losing contact with the ball).
The actual recognition of geometric events (e.g. “ball rolling
toward something/somebody”) or intentional acts (e.g. “scor-
ing” or “attacking”) is controlled in an object-oriented manner
by means of “type demons” associated to each event type de-
fined: if the conditions of its start phase apply to a sufficient
degree (≥ 0.8) in the input of that moment, an event instance
is created that tries to reach its stop phase through a couple of
proceed (and perhaps succeed) loops. At every time step, a
transition with fulfilled conditions must be made, or the rec-
ognition fails. While the instance is active, an event of that
type is recognized as being seemingly happening – an
assumption that might fail if the FSM does not reach a
succeed or stop phase. Nevertheless, the assumption can
already be communicated – covering a relatively long look-
ahead on the probable development of the game in the future.
The utterance has to be explicitly corrected only if the event
recognition fails (Herzog 1992).
Most aspects of VITRA’s language generation are not in the
focus of attention here; it may suffice to mention that all event
instances that are still active or successfully completed at that
time are taken into consideration for generating the next utter-
ance. They are dynamically ordered into a speech plan deter-
mined by criteria of the event types’ relevance and the in-
stances’ topicality. The event concepts are linked in the lexi-
con to deep-case frames for verbs: the verbalization is finally
created around that core (André et al. 1988).
Although it may on first view seem unexpected in the context
of VITRA, we have also demonstrated that the very same data
structures used for encoding – FSM and applicability func-
tions – can efficiently be used for decoding corresponding
verbal descriptions, i.e., for reconstructing the geometric
scene. This problem was investigated in the context of listener
modelling: How will a listener understand the utterance under
planning? Such anticipations are useful in order to deal with
several problems of linguistic pragmatics in language genera-
tion. In a nutshell: A corresponding “mental image” is con-
structed as the listeners’ presumed understanding and com-

Figure 1: 2D-Typicality Distribution for “in front of”
and Three Approximation Paths

:START

AND
 (

STOP (Ball-Possession (p1, b) t),
 between (b, p1, p2))

START (Move-free (b), t),

AND
 (START (Ball-Possession (p2, b) t),
 STOP (Move-free (b), t))

PROCEED (Move-free (b), t)

:PROCEED

:STOP
Figure 2: Augmented Finite State Machine for event type

“player p1 passes ball b to player p2”

 © SCS

pared to what actually happened on the soccer field; the dif-
ferences are calculated and used to change the sentence finally
uttered (Schirra 1995).
While encoding reduces the amount of irrelevant informa-
tion, the problem with decoding is quite obviously that addi-
tional information has to be “invented” in some way. Here,
the applicability (of a description for a given scene) has to
be re-interpreted as a measure of typicality (of a scene for a
given description): we are always looking for the most typi-
cal scene. Then, all objects mentioned are positioned so that
all relations considered are maximally applicable. In order
to reach that maximally typical scene from a given set of
concepts, first the proceed and succeed transition loops of
the corresponding FSMs – additionally marked for that pur-
pose by temporal typicality distributions – are “expanded”
in the current situational context, leading to a temporal se-
quence of sets of static spatial relations that have to hold
simultaneously at one moment. Then, each of the sets can be
transformed into adequate geometric information by means
of a simple hill-climbing algorithm working on the applica-
bility/typicality functions for the spatial relations. Like rub-
ber bands, the typicality distributions “pull” the objects at
highly typical positions: three such paths from different
starting points are given in Fig. 2, indicating that the hill-
climbing algorithm on spatial typicality distributions, which
has also been successfully used in the author’s group to plan
camera paths in computer games (Halper et al. 2001), is
highly context-sensitive. It is this context sensitivity that
binds together the momentary pictures into the whole of the
animation sequence: the result for one moment serves as the
starting point for the next step. In this “cinematographic
procedure”, the typical movements of the objects involved
in the context given are geometrically reconstructed in
VITRA’s listener model (Schirra and Stopp 1993).

Application to Network Games

While the routines in VITRA for encoding and decoding a
soccer game in natural language were essentially developed
in order to understand the cognitive foundations of speaking
about something seen, most of its design principles can eas-
ily be adopted for a network computer game. Each player of
that game may act as a member of a virtual soccer team. The
player’s essential activity is controlling the position (or
velocity) of the character. He can also “perform” a few

locity) of the character. He can also “perform” a few special
activities, like kicking the ball. The input therefore consists
in a constant stream of position/direction updates, punctured
by a kicking action once and again. With respect to content-
based reckoning, the soccer domain is intended as an exam-
ple setting only.
Let us assume a server-client configuration. In the idealized
standard dead reckoning algorithm (Fig. 3, left), the local
game world is completely built by the client’s game engine:
the player characters (PC) are mainly controlled by extrapo-
lating their prior movements – sometimes messages from the
server initiate corrections. For non-player characters (NPC),
we may assume the evaluation of behaviour scripts in the
form of extended FSMs – similar to VITRA’s decoding se-
quence described in the previous section. FSMs are indeed a
widely used mechanism for determining the behaviour of
NPCs in computer games. In this context, too, an idealiza-
tion of the characters as points is basically sufficient: con-
trol points for the subsequent 3D-animation of the character
on the screen have to be determined. Note that only in the
NPCs’ case strategic rules (e.g., from a SOAR-like compo-
nent; Van Lent and Laird 1999) are employed by the game
engine for selecting one of several event types applicable at
that time.
The server receives a message from a client if the geometric
difference between the local player’s actions (input stream)
and the predictions of that client’s game engine exceeds a
fixed threshold. The server forwards each such message
with the correcting input coordinates to all the other clients
triggering there the corresponding routines of adaptation.
(Additional messages may indicate that no message was lost
when corrections are superfluous for some time.)
Content-based reckoning (Fig. 3, right) uses the very same
architecture extended by two modules for encoding geome-
try data into higher behavioural concepts: One of these
modules “observes” the actual behaviour of the player (i.e.,
the input), the other one analyses the local game world en-
coding the PC’s behaviour as generated by the game engine.
In consequence, the comparison algorithm has to be
changed, because now it is not geometric data to be com-
pared with respect to a numeric threshold but complex ac-
tions, recognized ones as well as assumed ones, that either
are the same in relevant aspects or not. We come back to the
criteria of comparison in more detail soon.

local player

correction: other players

correction: local player

comparison

user
interface

local game world

(NPC:)
PC: predicting

game engine:
decoding

server

geometry-
based

game descrip
tio

ns

difference
> threshold

local game world

encoding
(local PC)

local player

correction: other players

correction: local player
strategy & decoding

game engine:

comparison

encoding
(local player)

user
interface

server

content-b
ased

game descrip
tio

ns

difference
relevant

Fig. 3: Schematic Comparison of Standard Dead Reckoning (left) and Content-Based Reckoning (right)

 © SCS

Instead of numeric positions and velocity values, the correc-
tion messages now carry the information of actions taking
place as in verbal descriptions. Of course, in the game set-
ting, the event concepts do not have to be really verbalized
in any natural language with all its peculiarities and redun-
dancies. The event type’s name, a mark for the current
phase of the event recognition, some optional spatial rela-
tions indicating important location and direction parameters
of that event instance, and a time stamp suffice for a mes-
sage.
The game engine is modified in order to understand these
messages. In general, the PCs’ positions are now derived by
means of decoding event concepts as described in the previ-
ous section, i.e., just like the NPCs’ behaviours. On an in-
termediate level between the strategic overview and the
concrete animation of the character, the gradient-based
search for maximal typicality concretises behavioural con-
cepts chosen by strategic rules in the current context
delivering control parameters for the 3D-animations to be
presented on the screen. However, this autonomous
selection of actions may be overwritten by the concepts in
correction messages – bringing in the real actions of the
players. The correction itself is anchored in the current
game state by the very same decoding procedures that
unfold any behaviour of characters. Note that the geometric
difference to be corrected cannot be extreme (or it would
have been corrected earlier). The context-sensitivity of the
cinematographic procedure therefore leads to smooth
transitions even if the underlying concept is changed.
It is crucial here that events can be used in correction mes-
sages even if they are not yet completed, i.e., if they are
merely assumed: events, the beginnings of which have been
recognized in the players’ movements (but not in the corre-
sponding character’s behaviour). Assume that the start
phase of an event – e.g., of type “scoring”, i.e. ball starts
moving away from the player toward the opposing goal –
was found in the player’s activities but not in the local game
with the PC’s reckoned behaviour. Consequently, a correc-
tion message informs the game engines about this event,
which then replaces the one currently active for that PC.
Time stamps and phase markers in the messages allow the
game engines to position the correct parts of the expanded
events at the right temporal frames. A combination with “time
warp” techniques looks promising in order to simplify the
integration of the events at the right time. Following (Mauve
2000), a network soccer game with its limited number of
characters is a plausible application for a “time warp” addition
to standard dead reckoning. It may work well with content-
based reckoning, too. For virtual environments with more
characters, however, “time warping” becomes too expensive.
As only the start phase has really happened so far in our ex-
ample, most of the activity covered by that concept still be-
longs to the future at communication time. If the “scoring”
action is finished as predicted (and communicated to the other
clients) no further message needs to be sent for the rest of that
time. Thus, the general frequency of messages is reduced as
we have intended.
The crucial component is the comparison, filtering out rele-
vant from irrelevant differences of behaviour. In principle we
have to decide whether the two descriptions of behaviour con-
structed by the two encoding components are literally the
same or not. In fact, in the original sports report setting, a

similar comparison was performed in order to determine 13
kinds of difference between the listeners’ anticipated under-
standing (the re-analysed mental image) and the real events
(as seen by the reporter; Blocher and Schirra 1995). For con-
tent-based reckoning, only two cases have to be distinguished:
(a) no instance of the event type covering the real behaviour is
predicted, (b) two corresponding instances of the same event
type occur, though with different parameters (mainly, a place
or direction slot is filled with different spatial relations or the
phase is wrong). In both cases the observed event must be
communicated to the game engines. In the second case, a
marker has to be added indicating that a corresponding in-
stance with divergent parameters is already active and has to
be adapted, not replaced. A third case seems interesting, too:
no instance of a predicted event type is recognized in the real
behaviour (case (a) inverted). However, this case is not rele-
vant since it always co-occurs with a difference of type (a):
then, as a consequence of the correction message, all active
events of that PC are replaced.
The player’s input may indeed differ to a greater or smaller
degree from the positions generated by decoding the active
concept: Only if the input cannot be “parsed” any longer into
the same concept, a correction message is generated. Thus,
depending on the concepts and the phases of the events, the
tolerance allowed can be quite different – a few small steps
only (e.g., if a lot of spatial relations restrict simultaneously
the PC’s position), or several long paces (if few relations are
given or the PC is away from anything that could act as a ref-
erence object at that moment).

Some Problems

So far, an example architecture for content-based reckoning
has been presented on the basis of procedures adapted from a
project in cognitive science for recognizing and reconstruct-
ing events (i.e., behaviours in the game). Of course, a lot of
questions remain open. For example: more complex event
concepts lead not only to the positive effect of longer look-
ahead times but also to higher chances of wrong recognition
and more effort for recognizing. Therefore, determining for
different game genres the right tactical level of detail and ab-
straction of the concepts is a particularly crucial task for fur-
ther empirical research in this framework.
Content-based reckoning trades off less communication load
for more local effort for encoding/decoding. These routines,
however, become easily quite complicated – a standard prob-
lem in AI. While VITRA’s routines for encoding and decod-
ing at least performed approximately “in real time”, other
types of games with more characters or/and more difficult
behaviours may become problematic. If the additional com-
ponents could be transformed into “anytime” versions (Zilber-
stein 1996), thus leading even under temporal pressure to at
least acceptable results, a dynamic adaptation to the resources
available at that time (and for that client) offers an interesting
solution. Typicality approximation with hill climbing has al-
ready “anytime” property. Encoding can also be transformed
– though not easily (Wahlster et al. 1998). However, there
remains another, more principal problem with this approach
that has to be considered in greater detail: the variations in-
herent to the results of anytime algorithms may contradict the
ultimate prerequisite of dead reckoning (using the same pre-
dictive algorithm).

 © SCS

AN OUTLOOK ON FUTURE RESEARCH

The most promising perspective of content-based reckoning
opens if we consider again the main reason to set it up origi-
nally: the danger of dissociation, which so far is reduced but
not banned. Encoding game states into semantic concepts that
cover longer time intervals allows us at least to recognize ear-
lier the danger of dissociation. So far, we have used the server
only to forward the correction messages. It can also maintain
its own local copy of the game world predicting the behaviour
of all PCs (no encoding of a player or comparison necessary
here). Then, with a decoding of the concepts presently active
that is faster than real (game) time, the server is able to antici-
pate the probable development of the game for some time
ahead. Some of those game states may evoke strategic rules
activating critical interactions of two players with particularly
high latencies (it is easy to keep track of the current average
latency to each client). For example, in the soccer domain,
two characters of opposing teams may run toward each other
from some distance – one having the ball, the other perform-
ing the beginning of an attack event. The server recognizes
that the game is likely to dissociate when the attack concept is
realized much further (because this initiates critical types of
interaction beyond the potential of the current latencies), and
may therefore initiate resource-sensitive countermeasures – if
available.
In the Germanic world of legends, Wotan appoints the Val-
kyries to influence with minimal “perceptibility” for the par-
ticipants the fights between human heroes, and to decide the
encounters as he demands – based on his general plan and the
earlier “performances” of the heroes. The legendary schema,
which we name “the Wotan Principle”, suggests an idea of
how to keep together a dissociating game without too much
loss of “gameplay”: when it recognizes a probable dissocia-
tion, the server (acting as Wotan) decides how the sensitive
interaction is going to happen, though only on a very general,
coarse scale (essentially: the results). To this purpose the
server can, for example, script a sequence of the semantic
concepts described above. The decision could depend on
some general game principles or, in a rather futuristic version,
on players’ personal profiles derived automatically from ear-
lier encounters. It is left to the clients (acting as “Valkyries”)
by merging the script with the players’ reactions to set up the
events accordingly, giving the local player some room for
her/his own activities (i.e., remaining relatively imperceptible)
nevertheless binding him or her into the general schema har-
monized a priori with the other players in focus. Of course,
the concrete sequence of events may be realised in quite a
different way for each of the players involved in a dissociat-
ing scene. But the overall results are unique and allow all
players (“surviving” – in a shooter game) to continue after the
dissociation in a non-dissociated game with relatively similar
memories of that encounter. The effects of this hidden author-
ity on the “gameplay” feeling are yet unknown and form a
major focus of interest in our future research on content-based
reckoning.

* * *

Whilst most computer games are said to be provided with an
internal AI, few results from Artificial Intelligence research
on visual event recognition, natural language generation, and

user modelling of the past twenty years have had a noticeable
influence on the development of computer games so far. The
transfer described in this paper is an attempt to improve this
situation. In particular, insights in the cognitive aspects of
defining motion verbs and spatial relations may hopefully
play a more prominent role in computer games in the future.

REFERENCES

André, E.; G. Herzog; and T. Rist. 1988. “On the Simultaneous

Interpretation of Real World Image Sequences and their Natural
Language Description: The System SOCCER.” In Proceedings
of the 8th European Conference on Artificial Intelligence 1988
(Munich). Pittman, London, 449-454.

Blocher, A. and J. R. J. Schirra. 1995. “Optional deep case filling
and focus control with mental images: ANTLIMA-KOREF.” In
Proceedings of the International Joint Conference on Artificial
Intelligence 1995 (Montreal, August 20–25). 417–423.

Halper, N.; R. Helbing; and Th. Strothotte. 2001. “A Camera Engine
for Computer Games: Managing the Trade-Off Between Con-
straint Satisfaction and Frame Coherence.” In Computer Graph-
ics Forum: Proceedings of Eurographics 2001. Manchester,
2001. To appear.

Herzog, G. 1992. “Utilizing Interval-Based Event Representations
for Incremental High-Level Scene Analysis.” In Proceedings of
the 4th International Workshop on Semantics of Time, Space,
and Movement and Spatio-Temporal Reasoning 1992 (Château
de Bonas, France), M. Aurnague (ed.), IRIT, Toulouse, 425–
435,

Herzog, G. and P. Wazinski. 1994. “VIsual TRAnslator: Linking
Perceptions and Natural Language Descriptions.” Artificial Intel-
ligence Review 8 (2/3), 175–187.

Mauve, M. 2000. “How to Keep a Dead Man from Shooting.” In
Proceedings of the 7th International Workshop on Interactive
Distributed Multimedia Systems and Telecommunication Ser-
vices (IDMS) 2000, Enschede, The Netherlands, 199–204.

Mellon, L. and D. West. 1995. “Architectural Optimizations to
Advanced Distributed Simulation.” In Proceedings of the 1995
Winter Simulation Conference. Ch. Alexopoulos (ed.). IEEE,
Piscataway, N.J., 634–641.

Schirra, J. R. J. 1993. “A Contribution to Reference Semantics of
Spatial Prepositions: The Visualization Problem and its Solution
in VITRA.” In The Semantics of Prepositions - From Mental
Processing to Natural Language Processing 1993, C. Zelinsky-
Wibbelt (Ed.). Mouton de Gruyter, Berlin, 471–515.

Schirra, J. R. J. 1995. “Understanding Radio Broadcasts On Soccer:
The Concept ‘Mental Image’ and Its Use in Spatial Reasoning.”
In Bilder im Geiste: Zur kognitiven und erkenntnistheoretischen
Funktion piktorialer Repräsentationen. K. Sachs-Hombach
(Ed.). Rodopi, Amsterdam, 1995, 107–136.

Schirra, J. R. J.; G. Bosch; C.K. Sung; and G. Zimmermann. 1987.
“From Image Sequences to Natural Language: A First Step to-
wards Automatic Perception and Description of Motion.” Ap-
plied Artificial Intelligence 1(3), 287–305.

Schirra, J. R. J. and E. Stopp. 1993. “ANTLIMA – A Listener Model
with Mental Images.” In Proceedings of the International Joint
Conference on Artificial Intelligence 1993 (Chambéry, France,
Aug. 29 – Sep. 3). 175–180.

Van Lent, M. and J. Laird. 1999. “Developing an Artificial Intelli-
gence Engine.” In Proceedings of the Game Developers Confer-
ence 1999 (San Jose, Ca., Mar. 16–18). 577–588.

Wahlster, W.; A. Blocher; J. Baus; E. Stopp; and H. Speiser. 1998.
„Ressourcenadaptierende Objektlokalisation: Sprachliche Raum-
beschreibung unter Zeitdruck.“ Kognitionswissenschaft 7(3), 111–
117.

Zilberstein, S. 1996. „Using Anytime Algorithms in Intelligent Sy-
stems.“ AI Magazine Fall 1996, 73–83.

LATE PAPER

NEW ANTI-ALIASING AND DEPTH OF FIELD
TECHNIQUES FOR GAMES

RICHARD CANT, NATHAN CHIA, DAVID AL-DABASS

Department of Computing and Mathematics

The Nottingham Trent University
Nottingham NG1 4BU.

Email: richard.cant/david.al-dabass@ntu.ac.uk

KEYWORDS

Computer Graphics, Anti-aliasing, super-sampling, depth
of field, focus, Open GL.

ABSTRACT

We describe software techniques that will enable Open
GL capable graphics cards to implement antialiasing and
depth of field effects in software. The methods allow any
hardware facilities that are available on the graphics card
to be used to improve performance but do not require
hardware support in order to work.

INTRODUCTION

Sophisticated graphical and optical effects have in the
past been the preserve of pre-rendered animation
sequences taking hours or even days to calculate. In other
cases these effects were incorporated in real time systems
but only in very expensive military simulators, Potmesil
and Chakravarty 1981, Cant and Sherlock 1987, Montrym
et al, 1997. Since that time high end graphics
workstations have also incorporated these techniques, e.g.
Silicon Graphics. However recent advances in
technology suggest that some of these effects should now
be considered for real time implementation even on
relatively low cost systems, such as PCs and games
consoles. In this paper we will explore the possibilities of
implementing some of these features by making use of
existing facilities in hardware 3-D accelerators via
OpenGL.

ANTI-ALIASING

For the implementation of anti-aliasing, this paper will
attempts to replicate nVidia’s quincunx anti-aliasing
(which is built into the hardware of an expensive GeForce
3 card) Figure 1, by using the existing hardware calls of
common 3D accelerators.

nVidia’s quincunx does the filtering at the stage where the
buffer is rasterized to the screen. The 3D-scene is
rendered normally, but the Pixel Shader is storing each
pixel twice, Figure-2, in two different locations of the
frame buffer. This does not cost more rendering power

than the rendering without AA, but requires twice the
memory bandwidth of the pixel write operation at the end
of the pixel rendering process.

Figure 1: Quincunx Anti-aliasing

By the time the last pixel of the frame has been rendered,
the HRAA-engine of GeForce3 virtually shifts the one
sample buffer half a pixel in x and y direction (Figure 3).

Figure 2: Storing pixels twice

Figure 3

This has the effect that each pixel of the 'first' sample is
surrounded by four pixels of the second sample that are
1/SQR(2) pixels away from it in diagonal direction. The
HRAA-engine filters over those five pixels to create the
anti-aliased pixel. The weights of the pixels are shown in
Figure 4.

Figure 4: Weights of the quincunx pixels

Figure 5 is a comparison of quality between the anti-
aliasing results. These images were captured by
www.tomshardware.com for an article on the GeForce 3
video card. The image was taken from a frame in Quake
III: Arena. (Nowadays, Quake III: Arena is used more
often as a benchmarking tool than a game.)

It is quite clear that the quality of quincunx filtering is
quite close to that of the 4x super-sampling anti-aliasing.

No anti-aliasing 2x anti-aliasing

Quincunx anti-aliasing 4x anti-aliasing

Figure 5: Comparison of anti-aliasing quality

Coming up with a similar technique with the available
hardware is quite intuitional. By examining figure 2.3 and
2.4 a little bit closer, one can deduce that the quincunx
sample can be reduced to the 2x2 sample in figure 6.

Figure 6

The top-left pixel and the centre pixel are virtually the
same pixel in the case of a quincunx sample. The
implemented algorithm simply captures the entire back
buffer and draws it back to the same position {offset(0,0)}
with 0.625 of the original value, blend with alpha value of
0.125 for three other images at offset(0,1), offset(1,0) and
offset(1,1). This would be equivalent of averaging the 2x2
sample with the new weights in Figure 6:

R= 0.625*offsetR(0,0) + 0.125*[offsetR(1,0) + offsetR(0,1) +
offsetR(1,1)]

G= 0.625*offsetG(0,0) + 0.125*[offsetG(1,0) + offsetG(0,1) +
offsetG(1,1)]

B= 0.625*offsetB(0,0) + 0.125*[offsetB(1,0) + offsetB(0,1) +
offsetB(1,1)]

The algorithm can be summed up in the following
diagram:

 Draw Scene in
back buffer

 Read buffer

 Draw 0.625 of original
value on back buffer

 Set blending at
0.125

 Blend 0.125 of original value on back
buffer at offset(1,0)

Blend 0.125 of original value on back
buffer at offset(0,1)

Blend 0.125 of original value on back
buffer at offset(1,1)

Swap buffer

MIP MAPPING DEPTH OF FIELD

MIP mapping is a popular technique intended to reduce
aliasing. The essence of the technique is to pre-compute
the texture at different levels of detail, Figure 7, and to
use smaller textures for polygons further away from the
viewer. It aims to improve graphics performance by

1
2

1
8

1
8

1
8

1
8

1
2

1
8

1
8

1
8

1
8

1
8

1
8

1
8

5
8

generating and storing multiple versions of the original
texture image. The graphics processor chooses a different
MIP map based on how large the object is on the screen,
so that low-detail textures can be used on objects that
contain only a few pixels and high-detail textures can be
used on larger objects where the user will actually see the
difference. This technique saves memory bandwidth and
enhances performance. The acronym MIP stands for
Multum In Parvo (Latin for 'much in small')

Figure 7: A 320x240 image reduced to 160x120, 80x60,

40x30 and so on…

The 3D hardware bilinear hardware kicks in when the
smaller images are enlarged and as it attempts to fill in the
missing pixels, an image that is more blurred will be
generated (Figure 8). This algorithm will attempt to abuse
this aspect of the MIP mapping hardware of a modern 3D
accelerator to generate the blurred portions in an image
with depth-of-field.

Figure 8: Enlarging a scaled down image

Since MIP mapping is such a standard technique, it would
be safe to assume that all hardware accelerators, even the
pioneering 3dfx Voodoo card, will be able to do it without
much effort at all. The scene can either be rendered on the
back buffer or the memory buffer before requesting the
hardware to generate the MIP maps.

If the hardware does not natively allow rendering to a
buffer other than the back buffer, rendering can be done
on the back buffer first and the memory block will have to
be copied by hand. And similarly, if MIP-map generation
is not supported in hardware, it can also be read by hand
and averaged with neighbouring pixels when scaling
down.

“MIP-map Pixel Value” = [pixel(1,1) + pixel(1,2) +
pixel(2,1) + pixel(1,2)] >>2

(where ‘>>’ refers to shifting the bits to the right)

MIP mapping DOF algorithm

Render Scene onto
back buffer and Z-
buffer.
{
 :
}

Capture Scene from back buffer
{
 for (y=0;y<height;y++){
 for (x=0;x<width;x++){
 image(x,y)=backbuffer(x,y)
 }
 }
}

Generate MIPMAPs
{
 int level=0
 Repeat until image is 1x1
 {

scale image to
 (
 WIDTH
 2level

 by

 HEIGHT
 2level
)
 Use as LOD ‘level’ image
 Increment ‘level’ by 1
 }
}

Draw DOF image back onto back buffer
{
 for (y=0;y<height;y++)
 {
 for (x=0;x<width;x++)
 {
 backbuffer(x,y)=MIPMAP[Z-value for
 pixel(x,y)](x,y)
 //MIPMAP[float i](int t,int s)
 // where ‘i’ is a choice of which
 // level of mipmap to use
 }
 }
}

Since the next level of detail is always a quarter of the
current level, the averaging isn’t as taxing as it sounds.
Each destination MIP map pixel is just the average of the
four corresponding source pixels, arranged in a 2x2
square.

MIP mapping and bilinear sampling can be merged to
form tri-linear sampling where two neighbouring levels of
detail from the texture are averaged to generate an in-
between image. This will effectively allow the blurring of
an image to be varied without the use of a filtering kernel
and therefore speeding up the process of generating
depth-of-field because multiple different degree of
blurring will be needed for every single render.

It may be handy to be able to do a full screen blur with
ease but this is an extreme effect and may not be much
use when it comes to rendering a 3D scene other than
doing transitions. It is, however, more desirable to be able
to blur out some objects and leave the others sharp.
Depth-of-field effects is can now be possible where only
objects in the extreme distance or foreground are blurred,
image focussing, in real-time. Depth-of-field would give a
very impressive photo-realistic look to a rendered image
(as shown with the cartoon image in Figure 9).

Figure 9: An image after MIP mapping depth of

field

The next step in the algorithm is to decide which portion
of the image would use what level of blurring. This will
have to be done when the image is being rasterized onto
the back buffer. The decision for each pixel will be made
based on the Z-buffer value at the same position.

By definition depth of field is the total distance, on either
side of the point of focus, which , when viewed from an
appropriate distance, appears sharp in the final image. The
interest of this algorithm is to move real-time graphics
away from their usual artificial look which is caused by
shaded triangles projected in a 2 dimensional space.

The cartoon image is intentionally chosen as an example
because like all or most real-time 3D computer graphics,
everything appears to be in the foreground and without
the perspective drawn into the cartoon, the confusion may
be even greater. Notice how the depth of field increase the
realism as well as reducing the confusion between the
background and foreground image which plagued the left
image of Figure 9. This forces the viewer's eye to
concentrate on the more important, non-blurred
characters.

Since the backbone of the major part of the algorithm
relies on the 3D hardware, the whole process could be
automated into the hardware itself. This would provide
easy access to the depth-of-field or blurring effect with
just an API call.

As with all great things, there is a down side to this
algorithm. One of the deficiencies of this technique is the
effect which appears like an aura around a focused object.
The appearance of this effect is not at all bad as it creates
a “Vaseline lens” effect (Figure 10) on an image and
brings it closer to photo-realism.

Figure 10: Photo of Xena, the cat, without and with the
“Vaseline lens” effect

The other effect that is not pleasant appears when the
focused object is in the background. Due to the cut-off of
the Z-buffer when the foreground is blurred, instead of
fuzzing out the foreground, a distinct line can be seen
where the foreground edge meets the background.

So while the effect obtained when focusing the
foreground and blurring the background adds realism to
an image, the effect when focusing the background and
blurring the foreground is less forgiving. This renders this
technique only effective when doing depth of field of the
former.

A possible solution to stop this effect is to blur out the Z
buffer when doing this method of depth-of-field so that no
sharp edges would be present, and hence will give a
smoother transition from the foreground object to the
background object.

Another possible but less appealing solution would be to
render the foreground objects (objects before the focal
point) onto individual memory buffers. These images will
then be used as sprites, drawn on the position where the
object will be if drawn in 3D. Do multi-pass blending
jitters with

Offsets = (focal_point –
object_distance_from_focal_point) * constant

with the sprites to create the fuzzy edged objects that are
at the foreground.

For the mentioned MIP mapping DOF implementation to
work effectively, one would need to get to the metal of
the hardware. For the purpose of this project, a simplified
version of the algorithm, which could produce a similar
result on existing 3D accelerators, was implemented.

Figure 11: Original screenshot image from the

game Airblade.

Figure 12: Images with different LOD layered

and scaled to appear as the same size and position
to the viewer

MIP mapping DOF algorithm (second
implementation)

Render Scene onto
back buffer and Z-
buffer.
{
 .

.
}

Capture Scene from back buffer
{
 for (y=0;y<height;y++)
 {
 for (x=0;x<width;x++)
 {
 image(x,y)=backbuffer(x,y)

 }
 }
}

Generate MIPMAPs
{
 int level=0
 Repeat until image is 1x1
 {

scale image to
(

 WIDTH
 2level

 by

 HEIGHT
 2level
)

Use as LOD ‘level’
image,
Increment ‘level’
by 1
}

}

Draw DOF image back onto back buffer
{

On Depth Testing but do not write changes
to depth buffer

Let Z be the depth where objects are to be
sharpest

Draw LOD[3] at Z-3*offset
Draw LOD[2] at Z-2*offset
Draw LOD[1] at Z-1*offset
Draw LOD[0] at Z
Draw LOD[1] at Z+1*offset
Draw LOD[2] at Z+1*offset
Draw LOD[3] at Z+1*offset

}

While the first implementation assumes an infinite
amount of LODs in the image, this implementation will
reduce that to a finite amount of LODs.

As before, a scene like the one in Figure 11 will be
rendered, MIP maps generated. These maps will be
layered and scaled in such a way that they will all appear
the same size and position to the viewer (Figure 12).
These images will be effectively be billboards cutting
through the depth of the scene based on the existing Z-
buffer values.

By positioning the desired LOD on appropriate position
along the Z-axis, the Z-buffer mechanism will
automatically cut out the unwanted portions of a layer that
might block the layers at the back.

Figure 13: Simplified Z-buffer of the image.

Figure 14: MIP mapping depth-of-field in effect.

In figure 13, the darker portions are objects that are
further away and the brighter portions are objects nearer
to the front. Figure 14 is drawn by drawing the LOD
images in the way illustrated in figure 12 using the Z
buffer values in figure 13.

As can be seen from Figure 14, although the levels of
LODs have been reduced to a finite amount, the technique
can still deliver a convincing effect of depth-of-field.

The effects that are found in the previous implementation
will still exist in this implementation, however the
‘foreground blurring edge’ effect will not be visible in
Figure 14 because the focused character is in the
foreground.

CONCLUSIONS AND FUTURE WORK

Techniques were proposed and implemented to perform
anti-aliasing and depth of field processing using features
of OpenGL and current 3-D accelerators. Surprisingly
impressive images have been obtained in spite of the fact
that these facilities are not supported 'natively' by the
equipment in use. Future work will include refinements of
these algorithms, exploration of the possibilities for direct
implementation in future hardware and investigation of
other effects such as motion blur, sun glare and film grain.

REFERENCES

1. M. Potmesil and I Chakravarty, "A Lens and Aperture
Camera Model for Synthetic Image Generation", in
Proceedings of ACM-SIGGRAPH 81, Dallas, Texas,
August 3-7 1981, pp297-305, Vol. 15, No.3.
2. Richard S. Wright, Jr and Micheal Sweet, " OpenGL
Super Bible", 2nd Edition, Waite Group Press.
3. Cant, R.J. and P.E. Sherlock. 1987, "CIG System for
Periscope Observer Training", in Proceedings of the 9th
Inter-Service/Industry Training Systems Conference, 311-
314.
4. J. Montrym, D Baum, D Dignam, and C Migdal,
"InfinitReality: A Real-Time Graphics System", in
Proceedings of ACM SIGGRAPH'97, pp 293-301,
August 1997.
5. S Nishimura, and T Kunii, "VC-1: A Scalable Graphics
Computer with Virtual Local Frame Buffers", in
Proceedings of ACM SIGGRAPH'96, pp 365-372,
August 1996.
6. Sergei Savchenko, "3D Graphics Programming",
SAMS.
7. Rod Stephens, "Visual Basic Graphics Programming",
Wiley.

AUTHOR LISTING

Al-Dabass D. 5/81/114
Allen M.J. 22

Calderon C................................. 71
Cant R.. 5/81/114
Cavazza M................................. 43/71/76
Charles F. 43
Chia N. 5/114
Churchill J. 81

Gelenbe E. XVII
Gough N.E................................. 22/35/56

Hussain K. XVII
Hussam H.S. 35

Ipekkan Z................................... 63
Itoh E. .. 100

Kaptan V. XVII
Koppelaar H. 87

Mead S.J. 43
Mehdi Q.H................................. 22/35/56

Meijer A.B.87

Okada Y.12/100

Palmer I.76
Polat F.63

Rothkrantz L.J.M.17/48

Sakamoto H................................100
Schirra J.R.J.107
Shafie Abd Latiff M...................76
Spronck P.95
Suliman H.22

Treijtel C.17

Undeger C.63

van Waveren J.M.P.48

Wen Z...22/56

Yamashita M.100

	game-15.pdf
	Abstract
	Introduction
	Design
	Architecture of the Stratego agent
	Knowledge of the agents
	Implementation
	The simulation
	The Client-Server model

	Example of a test run
	Conclusion
	References

	game-8.pdf
	Structured bookmarks
	MESH SKINNING TECHNIQUE FOR INTELLIGENT ANIMATED CHARACTERS IN COMPUTER GAME
	Z. Wen, Q.H.Mehdi, and N.E.Gough
	Wolverhampton, WV1 1EQ, United Kingdom
	E-Mail: IN6716@wlv.ac.uk
	ABSTRACT
	MESH SKINNING IN INTELLIGENT CHARACTER ANIMATION

	game-17.pdf
	DIRECTIONS FOR FUTURE GAMES DEVELOPMENT
	Multimedia and Intelligent Systems Technology Research Group

	KEYWORDS
	ABSTRACT
	AI IN COMPUTER GAMES
	ADVANCES IN COMPUTER GRAPHICS FOR GAME CHARACTER ANIMATION
	APPLICATION OF EYE MOVEMENT TECHNOLOGY IN COMPUTER GAMES
	
	
	
	
	
	CONCLUSIONS
	REFERENCES

