8™ INTERNATIONAL CONFERENCE
ON

INTELLIGENT GAMES AND SIMULATION

GAME-ONg 2007

EDITED BY

Marco Roccetti

NOVEMBER 20-22, 2007

UNIVERSITY OF BOLOGNA
BOLOGNA

ITALY

A Publication of EUROSIS-ETI

Cover art was reproduced by kind permission of Koala Games, Bologna, Italy

8™ International Conference
on

Intelligent Games and Simulation

BOLOGNA, ITALY
NOVEMBER 20 - 22, 2007

Organised by
ETI
Sponsored by
EUROSIS

Co-Sponsored by

Binary lllusions
University of Bradford
Delft University of Technology
Ghent University
Koala Games
Larian Studios
The Moves Institute

Simulation First

Hosted by

The University of Bologna

Bologna, Italy

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

EDITORS

General Conference Chair

Marco Roccetti
University of Bologna
Bologna, Italy

Local Programme Committee

Stefano Cacciaguerra, University of Bologna, Bologna, Italy
Antonio Corradi, University of Bologna, Bologna, Italy
Gabriele D'Angelo, University of Bologna, Bologna, Italy
Stefano Ferretti, University of Bologna, Bologna, Italy
Marco Furini, University of Piemonte Orientale, Italy
Luca Genovali, Institute for Advanced Studies of Lucca, Lucca, Italy
Vittorio Ghini, University of Bologna, Bologna, Italy
Silvia Mirri, University of Bologna, Bologna, Italy
Claudio Palazzi, UCLA, USA
Laura Ricci, University of Pisa,Pisa, Italy
Paola Salomoni, University of Bologna, Bologna, Italy
Cesare Stefanelli, University of Ferrara, Ferrara, Italy

INTERNATIONAL PROGRAMME COMMITTEE

Game Development Methodology

Track Chair: Licinio Roque, University of Coimbra, Coimbra, Portugal
Joaquim Ramos de Carvalho, University of Coimbra, Portugal
Barbara M. Griter, Hochschule Bremen University of Applied Sciences, Germany
Oscar Mealha, University of Aveiro, Portugal
Eija Karsten, University of Turku, Finland
Jari Multisilta, University of Tampere, Finland
Esteban Clua, Universidade Federal Fluminense, Brasil

Physics and Simulation

Graphics Simulation and Techniques
Arjan Egges, Universiteit Utrecht, Utrecht, The Netherlands
Magy Self EI-Nasr, Penn State University, University Park, USA
Pieter Jorissen, Universiteit Hasselt, Diepenbeek, Belgium
lan Marshall, Coventry University, Coventry, United Kingdom
Marco Roccetti, University of Bologna, Bologna, Italy

Facial, Avatar, NPC, 3D in Game Animation
Marco Gillies, University College London, London, United Kingdom
Yoshihiro Okada, Kyushu University, Kasuga, Fukuoka, Japan
Paolo Remagnino, Kingston University, Kingston Upon Thames, United Kingdom
Marcos Rodrigues, Sheffield Hallam University, Sheffield, United Kingdom
Joao Manuel Tavares, FEUP, Porto, Portugal

INTERNATIONAL PROGRAMME COMMITTEE

Rendering Techniques
Sushil Bhakar, Concordia University, Montreal, Canada
Joern Loviscach, Hochschule Bremen, Bremen, Germany
Frank Puig, University of Informatics Sciences, Havana, Cuba

Artificial Intelligence

Artificial Intelligence and Simulation Tools for Game Design
Stephane Assadourian, UBISOFT, Montreal, Canada
Michael Buro, University of Alberta, Edmonton, Canada
Penny de Byl, University of Southern Queensland, Toowoomba, Australia
Antonio J. Fernandez, Universidad de Malaga, Malaga, Spain
Tshilidzi Marwala, University of Witwatersrand, Johannesburg, South-Africa
Gregory Paull, The MOVES Institute, Naval Postgraduate School, Monterey, USA
Oryal Tanir, Bell Canada, Montreal, Canada

Christian Thurau, Universitaet Bielefeld, Bielefeld, Germany

Miguel Tsai, Ling Tung University, Taichung, Taiwan

Learning & Adaptation
Christian Bauckage, Deutsche Telekom, Berlin, Germany
Christos Bouras, University of Patras, Patras, Greece
Adriano Joaquim de Oliveira Cruz, Univ. Federal de Rio de Janeiro, Rio de Janeiro, Brazil
Chris Darken, The MOVES Institute, Naval Postgraduate School, Monterey, USA
Andrzej Dzielinski, Warsaw University of Technology, Warsaw, Poland
Maja Pivec, FH JOANNEUM, University of Applied Sciences, Graz, Austria
Martina Wilson, The Open University, Milton Keynes, United Kingdom

Intelligent/Knowledgeable Agents
Nick Hawes, University of Birmingham, United Kingdom
Weniji Mao, Chinese Academy of Sciences, Beijing, China P.R.
Scott Neal Reilly, Charles River Analytics, Cambridge, USA
Marco Remondino, University of Turin, Turin, ltaly

Collaboration & Multi-agent Systems
Victor Bassilious, University of Abertay, Dundee, United Kingdom
Sophie Chabridon, Groupe des Ecoles de Telecommunications, Paris, France
Nicholas Graham, Queen's University, Kingston, Canada

Opponent Modelling
Pieter Spronck, University of Maastricht, Maastricht, The Netherlands
Ingo Steinhauser, Binary lllusions, Braunschweig, Germany
Andrew Ware, University of Glamorgan, Pontypridd, United Kingdom

Peripheral

Voice Interaction

Oliver Lemon, Edinburgh University, Edinburgh, United Kingdom
Bill Swartout, USC, Marina del Rey, USA

Artistic input to game and character design

Anton Eliens, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Olli Leino, IT-University of Copenhagen, Copenhagen, Denmark
Sean Pickersgill, University of South Australia, Adelaide, Australia
Richard Wages, Nomads Lab, Koln, Germany

INTERNATIONAL PROGRAMME COMMITTEE

Storytelling and Natural Language Processing

Jenny Brusk, Gotland University College, Gotland, Sweden
Terry Harpold, University of Florida, Gainesville, USA
Laurie Taylor, University of Florida, Gainesville, USA
Ruck Thawonmas, Ritsumeikan University, Kusatsu, Shiga, Japan
R. Michael Young, Liquid Narrative Group, North Carolina State University, Raleigh, USA
Clark Verbrugge, McGill University, Montreal, Canada

Modelling of Virtual Worlds
Rafael Bidarra, Delft University of Technology, Delft, The Netherlands

Online Gaming and Security Issues in Online Gaming

Marco Furini, University of Piemonte Orientale, Italy
Pal Halvorsen, University of Oslo, Oslo, Norway
Fredrick Japhet Mtenzi, School of Computing, Dublin, Ireland
Andreas Petlund, University of Oslo, Oslo, Norway
Jouni Smed, University of Turku, Turku, Finland
Knut-Helge Vik, University of Oslo, Oslo, Norway

MMOG's

Michael J. Katchabaw, The University of Western Ontario, London, Canada
Jens Mueller-lden, University of Munster, Munster, Germany
Alice Leung, BBN Technologies, Cambridge, USA
Shea Street, Tantrum Games
Mike Zyda, USC Viterbi School of Engineering, Marina del Rey, USA

Serious Gaming

Wargaming Aerospace Simulations, Board Games etc....
Roberto Beauclair, Institute for Pure and Applied Maths., Rio de Janeiro, Brazil
Richard Ferdig, University of Florida, Gainesville, USA
Tony Manninen, University of Oulu, Oulu, Finland
Jaap van den Herik, University of Maastricht, Maastricht, The Netherlands

Games for training
Ahmed BinSubaih, University of Sheffield, Sheffield, United Kingdom
Michael J. Katchabaw, The University of Western Ontario, London, Canada
Jens Miiller-Iden, Universitat Minster, Miinster, Germany
Roger Smith, US Army, Orlando, USA

Games Applications in Education, Government, Health, Corporate,
First Responders and Science
Russell Shilling, Office of Naval Research, Arlington VA, USA

Games Interfaces - Playing outside the Box

Games Console Design
Chris Joslin, Carleton University, Ottawa, Canada

Mobile Gaming

Stefano Cacciaguera, University of Bologna, Bologna, Italy
Sebastian Matyas, Otto-Friedrich-Universitat Bamberg, Bamberg, Germany

\

INTERNATIONAL PROGRAMME COMMITTEE

Perceptual User Interfaces for Games
Tony Brooks, Aalborg University Esbjerg, Esbjerg, Norway
Michael Haller, Upper Austria University of Applied Sciences, Hagenberg, Austria
Carsten Magerkurth, AMBIENTE, Darmstadt, Germany
Lachlan M. MacKinnon, University of Abertay, Dundee, United Kingdom

Vil

© 2007 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Simulation Society. Permission is
granted to photocopy portions of the publication for personal use and for the use of students providing credit is given
to the conference and publication. Permission does not extend to other types of reproduction or to copying for
incorporation into commercial advertising nor for any other profit-making purpose. Other publications are encouraged
to include 300- to 500-word abstracts or excerpts from any paper contained in this book, provided credits are given to
the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be used
in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in these Proceedings have been peer reviewed

EUROSIS-ETI Publications are I1SI-Thomson and INSPEC referenced

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Ghent University,
Faculty of Engineering, Dept. of Industrial Management, Technologiepark 903, Campus Ardoyen, B-9052 Ghent-

Zwijnaarde, Belgium.

EUROQOSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400
Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium
Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium
Cover Pictures by Koala Games, Bologna, Italy

GAMEON;g is a registered trademark of the European Technology Institute under nr: 1061384-761314

EUROSIS-ETI Publication

ISBN: 9789077381373
EAN: 9789077381373

Vi

GAME ON;
2007

Preface

Welcome to Game-On 2007, the Annual European Conference on Simulation and Al in Games.
On behalf of all the people who made this conference happen, | wish to welcome you to this
special event.

During the past years, Game-On offered an opportunity for researchers and practitioners to
present their findings and research results in the new and exciting field of gaming and
concurrent technologies. This year, the 3-day technical program provides a forum to address,
explore and exchange information on the state-of-the-art of Al, simulation, networking, and all
the other allied technologies, in support of gaming, their design and use, and their impact on our
society.

With the emerging importance of gaming, we need to tackle a broad range of technology,
management and design issues, and we need to become familiar with newly introduced
techniques and current applications. To this aim, the gamut of papers presented at Game-On
will cover topics from game methodology and game Al, to art, design and game graphics; from
mobile and online gaming, to games for education and serious gaming, plus others designed to
provide a wide range of topics as reflected in the technical program of the Conference.

All those contributed papers have undergone a serious paper review and helped us to achieve
this goal. Special recognition goes to each of the contributing authors for their dedication and
effort in their field of research. In addition to all the accepted papers, we assembled a program
comprising a keynote speech (given by dr Graham Morgan, University of Newcastle upon
Tyne), a round-table discussion on serious games and a games projects session

On behalf of the Organizing Committee, | would like to extend my personal thanks to all the
members of the International Program Committee for their hard work in reviewing and selecting
the best papers to be presented from all the received submissions. The success of this
conference is credited to them, as well as to session chairs, presenters and attendees. My
sincere thanks also go to Philippe Geril, our deus-ex-machina, who has helped us in putting
together such an excellent program, as well as for his organizational efforts and input with the
Conference.

Finally, | must admit it is my personal pleasure to host, this year, this Conference in the
University of Bologna, the most ancient in the Western World. | am confident you will enjoy the
Conference and as well as the many treasures of my city!

Marco Roccetti

Game-On 2007, General Chair

Xl

X1

CONTENTS

Preface..... e ——————— Xl
Scientific Programme..........ccoo s 1
AUthOr Listing ... e 165

GAME METHODOLOGY

WEBBING: A Smart Architecture for Snappy Browser-Based Games
AleSSANAIO AMOIOSO..ireeusssrrrrmnsssrrrnmnssssrrnnnssssrrsmnsssssssnnsssssssnnssssesnnnssssesnnnsssssnnnn 5

Towards a High-level design Approach for Multi-Server Online Games
Alexander Ploss, Frank Glinka, Sergei Gorlatch and Jens Muller-lden............. 10

A Framework for Network-Agnostic Multiplayer Games
Patric Kabus and Alejandro P. BUChMANN ..o 18

Mobile Virtual Worlds: A Proximity Based Evolution
Stefano Cacciaguerra and Gabriele D’ANGEI0eeeeeemeemmmmmmmmmmmmmmeeeenneeeeeeeeenenee 27

Journey from the Magic Circle to the Therapeutic Gameplay Experience

721 P= 4= 300 L 747 T 32

GAME Al

Data Analysis for Ghost Al Creation in Commercial Fighting Games
Worapoj Thunputtarakul and Vishnu Kotrajaras.......ceccceniiimmmnsecessssnsssennsseennnes 37

Temporal Difference Control within a Dynamic Environment
Leo Galway, Darryl Charles, Michaela Black and Colin Fyfeccccoieeeemmnnnnnn. 42

Evaluation of Multiagent Teams via a New Approach for Strategic Game
Simulator

Vicente V. Filho, Clauirton A. Siebra, José C.Moura, Renan T.Weber,

Patricia C. Tedesco and Geber L. RamMalno ...ciciieeiieeiirmiieeiiee s rensessrnssennes 48

Map-Adaptive Artificial Intelligence for Video Games
Laurens van der Blom, Sander Bakkes and Pieter SproncKcccovveeeemnnnnnnnn. 53

Opponent Modeling in Real-Time Strategy Games
Frederik Schadd, Sander Bakkes and Pieter SPronckeeeeeeeeeeeeeeemeeeeeeeennnnnes 61

ART, DESIGN AND GRAPHICS

PANORAMA -- Explorations in the Aesthetics of Social Awareness
Anton EliEéns and Dhaval Vyas......cccsssssss s 71

Xl

CONTENTS

Issues for Multiplayer Mobile Game Engines
Abhishek Rawat and Michel SiMatiC.....cuueeeeeeeeieieeeeieeeeeeeeeee e e e e e e eeeeeeeeeeees 76

YEAST: The Design of a Cooperative Interactive Story Telling and
Gamebooks Environment
Paola Salomoni, Silvia Mirri and Ludovico Antonio MUuratori...cccceceeeseeeserensrennns 83

Simulating Infinite Curved Spaces using Vertex Shaders
M. C. Bouterse and A. Eli@NS.....cccceemrrriiiiiiiiissnsrss s ssssssssss s s 88

MOBILE GAMING

Mobile Games: What to expect in the near Future
YT oo 0 o 93

Simple, Cheap and Quick: Three Urban Games for Common Mobile
Phones

Helena Karsten, Jan-Erik Skata, Sebastien Venot, Nhut Do, Janne Konttiila,

P2 1o I T Yo = Fo T e =Y | (o] = 96

ONLINE GAMING AND SECURITY

Towards Swift and Accurate Collusion Detection
Jouni Smed, Timo Knuutila and Harri HAKONEN c.e.cvireireeirmireirermren e reneresensees 103

Behavioral Biometrics for Recognition and Verification of Game Bots
Roman V. Yampolskiy and Venu Govindarajueeeeeeeeeeeeeeeeemeeeeeememmeeeenenemennnes 108

The Anatomy of an Inter-Vehicular Gaming Communication Subsystem
with Experiments

Emiliano Manca, Fabio Parmeggiani, Claudio E. Palazzi,

Stefano Ferretti and Marco ROCCEtti ...uvieeiiieeiiriiirriir e reer e reesr e emaas 115

EDUCATION

Clima Futura @ VU -- communicating (unconvenient) science
Anton Eliéns, Marek van de Watering, Hugo Huurdeman, Winoe Bhikharie,
Haroen Lemmers and Pier Vellingacuveeeeiimmeeecnrmrecnsssesscsssssessmsssssessmsssssesnnas 125

Mashups in Second Life @ VU
Anton Eliéns, Frans Feldberg, Elly Konijn and Egon Compter......cccceviiiiininnns 130

Teaching Al Concepts by Using Casual Games: A Case Study
Cesar Tadeu Pozzer and Borje KarlSSONeeeeeeeeeeeemmeemmmmmmmmmmmemmemmenennnnnennnnnnnnnnes 135

XV

CONTENTS

EGO: an E-Games Orchestration Platform
Davide ROSSi @Nd EliSA TUIMINI weureurmirmrmrermrmrmsnrmnsmsrmssnsansmssmssmssnsassmssmssnsansansnns 139

SERIOUS GAMING

Gaming Technology in Cultural Heritage Systems
Tim Horz, Albert Pritzkau, Christof Rezk-Salama, Severin S. Todt and
N T [(== T o] | o 147

AIBO as a Needs-Based Companion Dog
José M. Blanco Calvo, Dragos Datcu and Leon J.M. Rothkrantzccccuu.... 152

Agent Based Virtual Tutorship and E-Learning Techniques Applied

to a Business Game Built on System Dynamics
= 7o T =T 0 0T o {10 TN 157

XV

XVI

SCIENTIFIC
PROGRAMME

GAME
METHODOLOGY

WEBBING: A SMART ARCHITECTURE FOR SNAPPY
BROWSER-BASED GAMES

Alessandro Amoroso
Department of Computer Science
Universita di Bologna
Mura Anteo Zamboni 7, 40127 Bologna, Italy
E-mail: amoroso@cs.unibo.it

KEYWORDS

Smartphone, Wireless, Web applications.

ABSTRACT

This paper presents the main architectural issues of a
new platform to implement multiuser interactive games
based on the browser. Those games runs “inside” the
browser, equipped with standard plug-in, and without
installing any program on the client side.

We named this new architecture WEBBING, that
stands for WEB Based INterpersonal Games. This ar-
chitecture is responsive, reliable and scalable. The main
characteristics of WEBBING suggest that it could be
profitably used to implement browser—based games that
could run on a smartphone.

We also sketch the main design issue of a test bed game
that we are planning to experimentally study our archi-
tecture. The game is aimed to the new iPhone, that
presents several programming challenges.

INTRODUCTION

Online games are very popular these days, and their
popularity is continuously growing. The increasing dif-
fusion of small portable devices, such as the smart-
phones, has been one of the factor that stimulated the
generation of a branch of online games called browser—
based games. Those games do not require any software
to be installed at the client side, they rely solely on the
browser with some common plug-in. The most com-
mon of these plug-ins are Java, Flash, and Shockwave.
In general, the main advantage of browser—based ap-
plications is that they do not require to install software
that will run on the client side. Recently, browser—based
games use Web technologies, like AJAX, to allow for
multiuser interaction.

In this paper we present a novel architecture to im-
plement multiuser browser—based games. We named
this new architecture WEBBING, that stands for WEB
Based INterpersonal Games. Moreover, we show the
main architectural issues of a browser—based game,

aimed to the iPhone, that we are going to implement
as a test bed for our architecture. We discuss several
properties of WEBBING, the main of them are: respon-
stveness, fairness, reliability, and scalability.

The bandwidth available to the Internet users is increas-
ing these days, but the latency of the messages over the
network is almost constant. The best effort nature of
the Internet leads to variable, and unpredictable, mes-
sages latency. The responsiveness of an online game
strictly depends on the latency of the messages. There
are several papers that deal with the responsiveness of
the online games. Among the others, in (Claypool and
Claypool, 2006) the authors studied how the latency in-
fluences the online games, while in (Chen et al., 2006)
there is a study on the effects of the network QoS with
respect to the quality of the game. Some proposed novel
a technique to a smooth and fast delivery of multime-
dia contents in a wireless home entertainment center,
such as(Palazzi et al., 2006). In (Brun et al., 2006b) the
authors discuss the problem of server selection, propos-
ing the idea of critical response time, they compare the
proposed solution with respect to a centralized one.
The consistency of the state of a distributed multiplayer
game has been deeply investigated. Among the others,
(Li et al., 2004) presents a continuous consistency con-
trol mechanism, based on a relaxed consistency control
model for continuous events. The fairness of real-time
online games is studied in (Brun et al., 2006a).

The available smartphones suffer several hardware limi-
tations with respect to the current personal computers.
The main limitations are on the screen size and on the
processor performance. Additionally, these devices are
particularly sensible to energy consumption, while they
are battery equipped. The screens are few hundreds of
pixels per side, and are large at most 3.5” in diagonal.
The above limitations depict a kind of device that resem-
bles the ones available in early 90’s of the last century.
Moreover, several smartphones are not equipped with a
full keyboard; when present, the keys are quite small.
A common feature to almost all the smartphones is a
simply accessible pointer control.

The design of a browser—based game, that takes in ac-
count the above limitations, strictly resembles the old

arcade games. Usually, those games used a joystick,
and few buttons, as means of moves input. This char-
acteristic suits very well the current smartphones.

In addition to the above mentioned features, a modern
arcade style game, running on a device connected to the
Internet, could offer multi—user interactions. Since al-
most all of the smartphones are capable to connect to
the Internet, the design of a game could take advantage
of that. The resulting game could have an interactiv-
ity between the users that ranges from soft real-time to
loose asynchrony.

ARCHITECTURE

The client device of our architecture presents several
challenges, mainly due to software constraints, that
strongly suggest a thin client design. The game, and
client management, run almost entirely on the servers,
while the clients provides for graphical user interface.
To implement WEBBING, we are studying a refinement
of an architecture, called AIDA (Amoroso, 2007), that
supports snappy auctions over the Internet.

The WEBBING architecture inherits from AIDA both
responsiveness and fault tolerance. The importance of
the scalability depends on the nature of the implemented
game. When the implemented game deals with tight
interaction between a small set of users, the scalability
is not a strong issue. This scenario imposes a constraint
to the number of users due to the screen size.
WEBBING is an hierarchical, timed, distributed archi-
tecture, arranged in two logical levels of abstraction.
The servers at the lower level are called cohort servers,
and one of them has the role of leader, that is the unique
server at the higher level. The Fig.1 shows an example
of this architecture. The nodes labelled Sy, S, S3 rep-
resent the servers implementing the WEBBING archi-
tecture, and the unlabeled squared nodes represent the
clients connected to them. The solid edges in the graph
represent communication channels, used to manage the
user interface, while the dashed edges, fully connecting
the set of servers, are communication channels carrying
coordination messages. The clients have no visibility of
each single server, but they perceive the gaming system
as a coherent whole. Needless to say, the set of servers
shown in the figure is largely oversized with respect to
the number of clients. Due to both synchronization and
fault tolerance issues, the minimum number of servers
is three.

Cohort servers these servers are at the lower level
of the WEBBING hierarchy; they accept connections
from the clients. In Fig.1 the servers S; and S are
cohort servers. These servers receive clients moves as
them are submitted. Periodically, each cohort server
computes the set of local moves based on the moves it
has received in the last period, if any, and communicate

Figure 1: System architecture

that to the leader. The cohort servers relay the state
of the game to the clients, upon receiving the specific
messages from the leader. Moreover, the cohort servers
detect and manage possible leader faults.

Leader this is a unique server, at the upper level of
the hierarchy, directly connected to each cohort server.
In Fig.1 the leader is S3. The leader receives the set of
local moves from the cohorts and, periodically, computes
the state of the game based on the moves it has received
in the last period, if any, and broadcasts that to the
cohort servers. The leader resolves the possible conflicts
between the sets of moves that it has received from the
cohorts. Possible failures of the leader are managed by
the reconfiguration mechanism described later.

The content of the message named state of the game de-
pends on the nature of the game. It could be either a
mere sequence of the non conflicting last moves, or a full
snapshot of the game. When the state of the game con-
tains the last moves, the length of the resulting message
could be minimal, but it is mandatory that none of the
messages got lost. When the state of the game contains
the snapshot of the game, the resulting message could
be bigger than the previous, but contains all the infor-
mation to keep the user up—to—date with respect to the
game state.

Client Side The users join the game by means of a
browser request to the Web service of the game. The
Web service answers with a client program, that con-
nects to a server and manage the user participation
to the game. The client program launches sequential
requests of availability to a predefined set of cohort
servers, and waits for their answers. After the last an-
swer, the client program selects the server that answered
in the shortest time, ignoring the other servers. The
client then receives the current state of the game from
the chosen server.

The client program can submit a move to the chosen
server any time it likes, and, almost periodically, it re-
ceives the game state message from that server.

The above strategy provides for the selection of the

server that is nearly the most responsive one. Moreover,
this measured responsiveness take into account both the
server load and the network state, even if these were not
detected exactly at the same time. Each client program
sticks with the chosen server, unless it detects unsustain-
able performance, i.e. it cannot keep the user response
time below a certain threshold. In that case, the client
program starts a new selection procedure. Note that
the above technique allows for a run—time load balanc-
ing with respect to the servers and the network; requir-
ing a negligible effort for the servers, a small amount of
work for any client, and a little overhead of the network
traffic. Moreover, the presented technique is effective
in case of both server and network faults, enabling the
client to autonomously connect to another server.

MAIN PROPERTIES

Timelines The discussion of the main timelines prop-
erties of WEBBING by means of the example shown in
Fig.2, that is a space—time diagram for a simple inter-
action in the system presented in Fig.1l. To simplify
the diagram, the figure shows few clients and all the
servers. The solid horizontal lines represent the com-
putations of both the servers and the clients; the time
flows from left to right. Client Cy is connected to server
S1, while C5 and C3 are connected to Se. The small ver-
tical lines on the server’s computations represent time
ticks, i.e. when the server computation reaches a tick,
it triggers an action accordingly to the server role. The
distance between two consecutive ticks is the duration
of the server period. The arrowed lines represent mes-
sages: the beginning of a line represents the sender time,
while the pointed end represents the receiver time. Note
that those times are measured with clocks that are lo-
cal to each process, and therefore can solely be assessed
by the other servers. At this moment, we may ignore
the points labelled with Greeks letters, these will be dis-
cussed later.

The Fig.2 shows client C; submitting a move to its
server Sy, that receives this move just after a tick.
Therefore, S; will store the received move until either
it receives a conflicting move, or its current period ex-
pires, i.e. its computation reaches the next tick. In case
of conflicting moves, it depends on the game criteria how
to resolve the conflict. In the meanwhile, the clients Cs
and C3 submit a move to their server. The server S5
concatenates these two moves, stores them, and waits
until the next tick to notify the leader server. Note that
the moves of the three clients are independent of each
other, because they are submitted in parallel.

The cohort servers send the messages containing the set
of local moves to the leader at a certain pace. There is
no synchronization between their sending periods. The
duration of the sending periods is a trade—off between
the number — and the size — of the messages, and the
responsiveness of the gaming system. When a server de-

/

g

Qf—]

time——>

Figure 2: Space—time diagram of some users interactions

tects a deterioration of the network performance it can
increase the duration of its period; this leads to both less
sent messages to the leader, and to less system reactivity.
On the other hand, when a server detects an increasing
of the network performance it can reduce the duration
of its period; this leads to both higher number of mes-
sages and better system responsiveness. The duration
of the server’s period could be dynamically adapted to
take into account both the number of messages and its
responsiveness. The servers immediately relay the state
messages because there is no convenience into delaying
them, and doing that will reduce the system responsive-
ness.

As shown in Fig.2, the first cohort server that reaches
a tick is S7. The notification from S; to the leader S;
takes a while and will arrive just after a tick, then Sj
will store it until the next tick. In the meanwhile, S
reaches its tick, and its notification to Sy quickly arrives,
just before a tick.

When the leader reaches its next tick, it multicasts to
the cohort servers the actual state of the game, i.e. the
one updated by the moves previously received from Ss.
When a cohort receives the multicast from the leader,
it immediately relays the message to its clients. In the
given example, all the clients receive the current state
fo the game containing the merged moves of C5 and Cj.
After the above described multicast, the leader S5 re-
ceives the moves from cohort server S7. Since this new
move is still compatible with respect to the actual state
of the game, the leader stores it until the next tick. As
in the previous case, the new state of the game, contain-
ing the move from C] finally reaches all the clients after
few consecutive multicasts.

The leader decides the state of the game, ad it is the
point of synchronization of the system. The ordering of
events is forced by the leader receiving time, that man-
age the consistency of the moves based on the ordering.
In order to reduce both the load of the leader and the
network traffic, the cohort servers locally manage incon-
sistent messages, by means of the same criteria of the
leader. It could happen that same moves, that are incon-

sistent at local level, become consistent at global level,
due to some intermediate moves. This scenario depends
on the nature of the game, and could be circumvented
by inhibiting the check for consistency operated by the
cohorts.

Responsiveness We can express the responsiveness
R as the time spent by the system to merge a new move
with respect to the state of the game, and to commu-
nicate the new state to all the clients. In the example
shown in Fig. 2, the responsiveness with respect to the
move of Cy is the elapsed time between the points «
and w. Let 0,0z and 0., be the maximum and the
minimum latency for any message in the system. Those
values are a parameter of the design; their value could
be either assessed by measurement, or defined by a rea-
sonable default. In addition, we name the periods of
the servers, i.e. the elapsed period between two consec-
utive ticks, as 7., and 7; for the cohorts, and the leader
respectively. Summarizing: R < 7. + 7 + 40max

We can divide the responsiveness in three sequential
step. The first step is the time that the leader takes
to receive a move, named rise time, that is at most
Te + 20maz- In Fig. 2 the rise time for the move of Cy is
the elapsed time between points a and (. The second
step is the leader latency, called coordinator time, that
is at most 7;. In Fig. 2 this is the elapsed time between
points 3 and A. The third step is the “diffusion” of the
current state of the game, called spread time, that is the
elapsed time between the broadcast of a new state, from
the leader, and the last reception of that state by the
clients. In Fig. 2 this is the elapsed time between points
A and w.

Note that this assessment of R does not explicitly con-
sider the load condition of the servers, i.e. how long a
message waits in the queue of the received messages be-
fore being evaluated. Such a delay might occur because
a server is dealing with messages previously received.

Fairness A side effect of the responsiveness is the fair-
ness, F', of the system, i.e. the elapsed time between the
first and last reception of the same state message by the
clients. In other words, F' represents the advantage of
the first client that receives a state message with re-
spect to the last client that receives the same message.
Fig. 2 shows an example of fairness as the elapsed time
between points ¢ and w.

To assess the fairness we consider the maximum differ-
ence between the fastest and the slowest spread times
for the same state message; therefore: F' = 2(0,00 —
57712'71) S 26muz

Fault Tolerance The WEBBING systems remains
available, and properly working, in spite of a predefined
number of servers and communications faults. The max-
imum number of tolerable servers fault is half minus one

of the servers. Our system can tolerate the following
types of faults:

Channel Performance: a communication channel is
overloaded, the connection remains active, the messages
are delivered with higher latency than expected;
Channel Disruption: a communication channel does not
delivers messages anymore, it has to be re-established;
Processor Performance: a computer is overloaded and
responds later than expected;

Processor Crash: a computer becomes not working,
then all the programs and communications executed by
that computer become unavailable. A crashed processor
could, possibly, return available after a fresh restart.
Each client regularly receives the state of the game mes-
sage. In regular running that message is sent almost
periodically, its arrival time gives to each client a gauge
of both the server load and the network traffic. The
missing of a state of the game message signals to the
client the presence of a fault, either of the server or of
the network. In that case the client could connect to
another server, by re-running the procedure to choose
a server that has been described above. This opera-
tion, named client migration, is completely transparent
to the user. The migration does not require any ef-
fort to the servers, therefore, the crashed ones neither
blocks, or interferes with respect to the migration. In
other words, the crashed servers do not influence the
reconfiguration of the system. Moreover, the migration
requires a lightweight work solely to the clients that are
migrating, without any kind of coordination with each
other.

The cohort servers elect the leader The leader remains
in charge for the whole duration of the game, unless it
suffers a fault. In the latter case, the cohort servers
elects another leader. Moreover, by means of the same
mechanism, the leader can manage the joining of a new
server to the group of cohorts.

Scalability As well known in literature, a distributed
system is scalable if it remains effective despite of a sig-
nificant increase in the number of both users and re-
sources.

We can assess the amount of resources required by the
system with respect to the number of clients. Specifi-
cally, we consider both the number of servers and the
number of messages exchanged between the servers. The
number of cohort servers is linearly proportional with re-
spect to the number of clients. The number of parallel
messages exchanged by the servers, is at most twice the
number of communication channels between the servers.
The workload of any cohort server is almost balanced.
As mentioned above, the load of the servers mainly de-
pends on the number of active connections, that could
be easily kept balanced during the growth of the sys-
tem. Due to this property, the single leader does not
represent a performance bottleneck.

IMPLEMENTATION DESIGN

We are implementing a client for WEBBING that tar-
gets the Apple iPhone. Two are the main motivations
for this choice. Firstly, we think that the device is the
first one of a new class of smartphones, that will rapidly
grow in popularity between the users. Secondly, the
programming paradigm proposed by the iPhone is quite
unusual, being strongly oriented to browser—based ap-
plications; therefore it represents a challenging opportu-
nity to modify the way we traditionally write programs
for smartphones. Moreover, a program that runs on the
iPhone — avoiding to take advantage of the devices spe-
cial features — will run without any modification on a
large number of platforms, ranging from other portable
devices to desktop computers.

The iPhone offers two different means to connect
to the Internet: fast Wi-Fi (802.11b/g, at about
1000Kbit/sec) and slow EDGE (about 140Kbit/sec).
The device is capable to silently switch between the two
connection modes without interfere with the current in-
ternet operations. This capability could be used to test
WEBBING with client suffering highly variable connec-
tion delays.

We are planning to implement, as test bed game, a kind
of distributed “pac—man”. This game offers important
characteristics, against which to test our system; the
most relevant of them are:

All-to-all: tight interactions between a small set of users
— we suppose they will be no more than ten;

Soft Real-time by the nature of the game;

Simple User Commands: to the avatar, that responds
by changing its moving direction in the bi—dimensional
constrained space; this allows for small messages, carry-
ing the moves, sent by the client.

iPhone Peculiarities As largely emphasized by Ap-
ple, the input device of iPhone are the user’s fingers that
directly touch the sensitive screen. The main difference
with respect to a built—in device is a resulting lower
precision in the pointing. The iPhone does not send
to the shown Web page some events traditionally gen-
erated by a pointing device, such as the “mouse—over”
events. Moreover, the iPhone screen manage multi touch
gestures performed by means of multiple fingers on the
screen at the same time. For portability reasons, in our
design we do not plan to take advantage of the latter.

The touch—screen of the iPhone is 3" x 2", at the reso-
lution of 160dpi. The device self detects its orientation,
and, automatically swap between landscape and portrait
mode, accordingly with respect to its orientation. The
iPhone is equipped with a “software” keyboard, that is
shown on the screen upon user request. Since the key-
board fills part of the screen, it is not a valuable means
of user input for the application that we are designing.
The browser available on the iPhone is Safari 3.x. The
browser has some restrictions, such as the size of em-

bedded JavaScript limited to 10MB, with respect to the
equivalent version running on personal computers. At
the moment, the operating system of iPhone does not
allows for any access to the file system, and the instal-
lation of any software is unsupported. Therefore, the
application that we are designing can run solely as a
browser script. Moreover, it is not possible to add any
plug-in to the browser, that nowadays does not support
technologies such as Flash. The only technologies avail-
able to build a browser—based application that runs on
the iPhone are: HTML 4.01, XHTML 1.0, CSS 2.1 (and
some 3.x), JavaScript 1.4, DOM, AJAX/Web 2.0 (in-
cluded the XMLHTTPRequest).

CONCLUSION

We presented the main characteristics of WEBBING,
and sketched the main design issue of a test bed game
that we are implementing to experimentally study our
system.

WEBBING is responsive, reliable and scalable. More-
over, the fairness of the system depends, almost entirely,
on the latency of the messages sent over the Internet.
We believe that the system could be well suited to im-
plement browser—based games. At this very preliminary
stage, we have developed part of the WEBBINBG ar-
chitecture, and some proof—-of-concept tests seems to
confirm our study.

Acknowledgment This work has been partially
funded by the Italian MIUR Project (MoMa).

BIBLIOGRAPHY

Amoroso A. 2007. “Aida: Responsive and available auctions
over the internet.” In GLOBECOM 07, Washington DC,
USA, IEEE.

Brun J.; Safaei F. and Boustead P. 2006a. “Managing la-
tency and fairness in networked games”. Commun. ACM,
49(11):46-51.

Brun J.; Safaei F. and Boustead P. 2006b. “Server topology
considerations in online games”. In NetGames '06: Proc.
of 5th ACM SIGCOMM workshop on Network and system
support for games, New York, NY, USA. ACM Press.

Chen K.; Huang P. and Lei C. 2006. “How sensitive are online
gamers to network quality?” Commun. ACM, 49(11).

Claypool M. and Claypool K. 2006. “Latency and player
actions in online games”. Commun. ACM, 49(11):40-45.

Li FW.B.; Li LW.F. and Lau R.W.H. 2004. “Supporting
continuous consistency in multiplayer online games”. In
MULTIMEDIA ’04: Proceedings of the 12th annual ACM
international conference on Multimedia, pages 388-391,
New York, NY, USA. ACM Press.

PalazziC.E.; Pau G. Roccetti M.; Ferretti S. and Gerla M.
2006. “Wireless home entertainment center: reducing last
hop delays for real-time applications”. In ACE ’06: Proc.
of 2006 ACM SIGCHI intl. conf. on Advances in computer
entertainment technology, New York, NY, USA. ACM
Press.

Towards a High-Level Design Approach
for Multi-Server Online Games

Alexander Ploss, Frank Glinka, Sergei Gorlatch, and Jens Miiller-Tden
University of Miinster, Germany
email: {plotzer | glinkaf | gorlatch | jmueller } @math.uni-muenster.de

ABSTRACT

The development of scalable online games is a compli-
cated problem that often requires a large amount of low-
level and error-prone programming. We analyse and
classify currently used development methodologies for
games, and propose a novel, high-level development ap-
proach. As a possible base for a high-level game design,
we describe the RTF (Real-Time Framework) middle-
ware system. The RTF middleware enables an easy and
flexible design of distributed, multi-server game software
with minimized development efforts. We explain how
RTF supports flexible implementation of single-server
online games and how the RTF allows to switch to prac-
tically proven multi-server distribution concepts of zon-
ing, instancing and replication for increased game scala-
bility. The RTF facilitates flexible and problem-oriented
adaptation and combination of these techniques in a
seamless development approach.

KEYWORDS
Online games, Game middleware, Game development
methodology, Real-Time Framework

INTRODUCTION

Current practice of online game development usually re-
lies on using a company’s in-house expertise for a custom
game design. Such custom development employs low-
level programming and networking tools, which makes
it time-consuming, risky and often very expensive.
This paper aims at raising the level of abstraction in the
development of online games, in order to simplify the
development process and improve its productivity. We
suggest a high-level development approach that shields
the human developer from the underlying low-level de-
tails, e.g., allowing him to transfer objects using commu-
nication channels instead of transferring low-level byte
arrays through system-dependent sockets.

We aim both at single-server and multi-server online
games, with the goal of seamless integration of these
concepts: this makes our approach generally usable by
all online game genres and allows for easy and flexible
combination of multi-server network architecture con-
cepts. Handling multiple servers in our approach en-
ables high-level development of Massively Multiplayer

10

Online Games (MMOGs) that pose especially difficult
challenges. These include the efficient realization of the
communication between game participants, as well as
techniques that allow to scale up the player numbers in
the application by using multiple servers. This should
substantially improve the current situation of custom
development, in which every new multi-server game is
designed and implemented almost from scratch.

This paper presents our RTF (Real-Time Framework)
middleware system for seamless and consistent game en-
gine development and operation for single- and multi-
server engines. The RTF middleware provides inte-
grated solutions for a variety of development and run-
time problems in multiplayer online games:

e Design optimized, object-oriented serialization and
communication for game entities and events;

e Integrate fast algorithms and efficient data struc-
tures, e.g., for area of interest management;

e Efficiently distribute and consistently maintain the
game state across servers and clients;

e Parallelize game state processing among distributed
servers to achieve scalability;

e Provide the players with an overall seamless and
responsive virtual environment.

Although there has been extensive work specifically and
exclusively targeting most of these problems, relatively
little research has been conducted so far on integrated
high-level libraries and middleware for games. It is our
goal in this paper to study which middleware concepts
can be adapted and enhanced for a variety of online
games types, ranging from fast-paced and small action
games to large MMOGs and how this can be done.
The contributions and the structure of the paper are
as follows: We develop a comprehensive taxonomy for
current online game design approaches, with respect to
their complexity and flexibility. We sketch a high-level
game development approach and describe the basic con-
cepts of our corresponding game middleware. We show
how RTF is employed for multi-server game processing,
give an overview of a first case study and conclude the
paper by summarizing our contributions in the context,
of related work.

game-specific logic game-specific logic

game-specific engine
(real-time loop)

game-specific engine
(real-time loop)

game-specific communication
(sockets)

v A

(a) Custom Development

game-specific logic

(b) Comm. Middleware (c) Using Existing Engine (d) Modding Game Game

game-specific logic

game engine (rt-loop)

(e) RTF approach

Figure 1: Main Approaches to Game Development. Unfilled: Self-Developed, Shaded: Use Existing Components

GAME DEVELOPMENT APPROACHES

The central part of a game software system consists of
the game state, i.e., the collection of all objects that
form the virtual environment, and the continuous pro-
cessing of the game state. In this paper, we focus on the
development, of the game state and its processing, rather
than on the game user interface, i. e., the representation
of the virtual environment the player interacts with.

In order to compare different development approaches
of the overall distributed architecture of online games,
we identify the following three major aspects of online
game software systems:

e game logic: entities, events (data structures), and
processing rules describing the virtual environment;

e game engine: real-time loop which continuously
processes (user) events, according to the rules of
the game logic, to compute a new game state;

e game distribution: logical partitioning of the
game world among multiple servers, computation
distribution management according to actual game
state, and communication.

The third aspect, game distribution, can be further split
up into two levels of distribution: a) distribution of the
user interface and game state processing between client
and server, and b) distribution of game state processing
in the multi-server architecture.

These three aspects are treated differently, depending
on the requirements and properties of a particular game
genre. For example, fast-paced action games rely on ef-
ficient communication and engine implementation while
using only relatively simple game logic and -content.
The complexity of the game distribution aspect usu-
ally increases with the number and density of the par-
ticipating users within a game and is thus particularly
challenging for MMOGs.

Our classification in Fig. 1 distinguishes common ap-
proaches a) — d) to game development, according to
how they treat these three aspects. In each approach,
the aspects shown in white are managed by the human
developer, whereas the shaded areas are provided auto-
matically by the development system:

(a) Custom Development: The most direct ap-
proach used for game development is to design and im-
plement the entire software system individually. The de-

11

velopment team designs and implements all three major
aspects of the game software system: game logic, game
engine and game distribution. This allows the develop-
ers to have full control over their code and optimized im-
plementation with focus on the individual performance
needs of the game. While the custom development of an
entire game is very complex, hence cost-intensive and
error-prone, it is sometimes the only way to achieve the
particular objectives of the game design because of its
flexibility.

(b) Game Communication Middleware: This ap-
proach uses special communication libraries and mid-
dleware systems (like Quazal Net-Z (Quazal, 2006)) for
game development. As shown in Figure 1(b), the game
developer employs the middleware to realize the com-
munication between clients and servers in a distributed
game while implementing the game engine and logic on
his own. Using this approach, the developer has enough
flexibility to design and implement the aspects of game
logic and game engine whilst the middleware deals with
the game distribution. However, available libraries usu-
ally focus on a particular architecture setup, decreasing
flexibility of the engine development. Furthermore, this
approach has been used only rarely for the development
of multi-server based MMOGs since a pure communi-
cation library is not sufficient for these games. A mid-
dleware for MMOGs also has to deal with the difficult
task of distributing the game processing among multi-
ple servers, for which only a few middleware systems are
available (e.g. Emergent Server Engine (EGT, 2007) or
BigWorld (BIG, 2006)).

(c¢) Using Existing Engine: With this approach,
shown in Figure 1(c), an existing game engine, i.e., the
processing component of a game, is re-used to develop
a completely new game. This reduces the complexity
of development. Some game studios design their game
engines primarily for the purpose of reselling and licens-
ing the engine afterwards. Examples of popular and
often used engines are the Quake 3 engine or the Unreal
engine. However, a particular engine is quite inflexible
because it is usually closely tied to a specific game genre.

(d) Game Modding: Figure 1(d) outlines the ap-
proach of game modding (community jargon for mod-

ifying an existing game) via a dedicated interface for
programming the game logic. This was first done by
hobby developers who modified the actual game content.
Nowadays, the creation of mods is based on high-level
tools created and also used by the game development,
studios themselves. Such tools allow the creation of
game content by designers with minimal programming
effort. The primary aspect of modding is the creation of
new game content within the constraints of an existing
game logic; hence it is rather inflexible. Nevertheless,
modding allows to develop innovative game concepts,
and sometimes a mod becomes even more popular than
the original game as, for example, the mod Counter-
Strike based on Valve’s game Half-Life.

(e) RTF Multi-Server Middleware: Our Real-
Time Framework, as illustrated in Fig. 1(e), allows a
novel game development approach which provides more
processing support than using only a communication
middleware, but does not constitute a complete game
engine, allowing higher flexibility. Thus, the RTF can
be classified in between the approaches (b) and (c). The
characteristics and usage of the RTF, justifying this clas-
sification, are discussed in the next sections.

.

\

(a) Custom
e) RTF Multi-Server (b) Communica- Development

Middleware tion middleware

flexibility

(c) Existing
Engine

(d) Game Modding

complexity

Figure 2: Taxonomy of game development approaches

Figure 2 illustrates our taxonomy of the five discussed
development, approaches with respect to their flexibil-
ity and complexity. The most simplicity in terms of
distributed software infrastructure is offered by exist-
ing game engines (¢) or modding toolkits (d). How-
ever, these approaches have the remarkable drawback of
being quite inflexible. Obviously, the fully custom de-
velopment (a) offers most flexibility while being rather
complex. The use of special middleware (b) is a promis-
ing alternative for particular tasks: its use reduces the
complexity of game development. Pure communication
support is not enough for MMOGs: for such large dis-
tributed systems, the multi-server management is quite
extensive and increases the development complexity. As
indicated in the taxonomy, the RTF is designed to pro-
vide the developer with most flexibility in game design
while freeing him from complex low-level implementa-
tion tasks in the game development process.

12

RTF: MULTI-SERVER MIDDLEWARE

The Real-Time Framework provides a high-level com-
munication and computation middleware for single-
server and multi-server online games. RTF supports
both the server-side and client-side processing of an on-
line game with a dedicated set of services which allows
developers to implement their optimized engine at a
high, entity-based level of abstraction in a flexible man-
ner. Figure 3 shows a generic multi-server example of a
game developed on top of RTF.

Server Server

Game Logic Game Logic]

Real-Time

Real-Time
Server Loop

[() s
Real-Time.
Communication

Pracessing
Managenent

Real-Time
Communication

Protessing
Management

. \) Real-Time Client

S

| User Interface

Client

X

Figure 3: RTF multi-server Middleware

The RTF middleware deals with entity and event han-
dling in the real-time client loop and the continuous
game state processing in the real-time server loop, and
the distribution of the game state processing across mul-
tiple real-time server loops. The developer implements
the game-specific real-time loop on client and server, as
well as the game logic, using the RTF middleware to
exchange information between the processes.

GENERAL DEVELOPMENT TASKS

The development of the game state processing in on-
line games consists of several tasks, as shown in Fig-
ure 4. Regardless of developing a multi-server MMOG

@ general task

o

% 3. Aol 2. Game State| [1. Data Structure
% Distribution Management | |Processing Design

g |

RTF

Figure 4: Development tasks for a multi-server game:
distribution between RTF and developer

or a single-server, small-scale action game, the developer
has to care about three general tasks — Aol manage-

ment, game state processing and data-structure design
— when building the game on top of RTF. If the game
uses multiple servers, then multi-server parallelization
and distribution also have to be taken care of by develop-
ers. Underneath these tasks for the developer, RTF pro-
vides a variety of low-level functionality like optimized
event and entity serialization and communication, man-
agement of the game state and its possibly distributed
processing. Overall, this separation of tasks among the
developer and RTF reflects the overall approach of RTF
sketched in Fig. 1(e): Providing high-level game engine-
related functionality on top of an optimized communi-
cation middleware. While a technical discussion of the
RTF can be found in (Glinka et al., 2007), the following
subsections focus on the developer tasks and present the
overall development methodology provided by RTF.

1. Task: Data Structure Design

The dynamic state of an online game is usually described
as a set of entities representing avatars, NPCs or items
in the virtual world. Besides entities, events are the
other important structure in an online game engine for
representing user inputs and game world actions. Both
events and entities require hierarchical data structures
for designing complex game worlds; they also have to
be serializable in an optimized manner for efficient net-
work communication. When using only a communica-
tion middleware, developers have to build data struc-
tures and serialization mechanisms from scratch, while
using an existing engine requires the use of predefined
entities and events, which reduces flexibility.

The RTF provides an optimized high-level entity and
event concept enabling automatic serialization while still
providing full design flexibility. When using RTF, enti-
ties and events are implemented as object-oriented C++
classes. The developer defines the semantics of the data
structures according to the game logic. The only se-
mantics of entities that is predetermined by the RTF is
the information about their position in the game world.
Entities, therefore, are derived from a particular base
class Local of the RTF that defines the representation
of a position for entities. This is necessary since the
distribution of the game state processing across multi-
ple servers is based upon the location of an entity in the
game world. Besides this requirement of inheriting from
Local, the design of the data structures is completely
customizable to the particular game logic, as illustrated
by the example of an avatar entity shown in Listing 1.

class Weapon :
class Avatar :
private:
rtf_int32 _ser_state_flags; // ducked, jump, etc
rtf_int8 _ser_damageCount; // health value
Weapon _ser_weapon; // yielded weapon
Avatar* _ser_target; // the current target
RTF::Vector _ser_velocity;
RTF::Vector _ser_orientation;
RTF::Collection

public RTF::Serializable;
public RTF::Local {

_ser_inventory;

}s
Listing 1: An entity written in the manner of RTF

13

In order to enable platform independence and the re-
quired introspection, RTF defines primitive data types
to be used (e.g., rtf_int32). Also, easy-to-use complex
data types for vectors and collections are provided to
the developer. Overall, more complex entity and event
data structures can be easily defined using these existing
primitives.

Automatic serialization and network transmission

In online games, entities and events are continuously
transmitted over a network. Therefore, these hierar-
chical data structures have to be serialized in an opti-
mized manner. However, there is no standard serializa-
tion mechanism in C+-, such that the developer has to
define and implement a network-transmittable represen-
tation for each entity and event of a game when using
a traditional communication middleware. As an alter-
native, most engines provide high-level scripting capa-
bilities with automatic serialization, but they decrease
flexibility and possibly also performance due to the ab-
straction overhead from native C/C-++.

RTF provides automatic and native serialization of the
entities and events defined in C+-, considers mar-
shalling and unmarshalling of data types and optimizes
for bandwidth consumption of the messages. The RTF
solves this problem for the developer by providing a
generic communication protocol implementation for all
data structures following a special class hierarchy. All
network-transmittable classes inherit from the base class
Serializable of the RTF. It is possible to have primi-
tive types, pointers to Serializables, and Serializable ob-
jects themselves as attributes of a class. For all entities
and events implemented in this manner, the RTF au-
tomatically generates network-transmittable representa-
tions and uses them at runtime. This code generation
is seamlessly integrated in the data compilation process,
as indicated in Figure 5. To enhance a class with the

@ editor

Avatar.h J____L Avatar.cpp

———,

A
]
I
scot |
/

\automatically generated serialization / @ standard compiler

ey

® linker

@ linker.

libRTF.a

Figure 5: Schema of the development cycle from the
class sources to the binary of the game

serialization functionality of RTF, the particular source
files are processed with our tool called scot (Serialization

COde Tool). Figure 5 illustrates that the usage of scot
is seamlessly integrated in the development cycle, where
it generates optimized serialization and communication
code directly into the compiled classes. This figure also
illustrates how the RTF is linked into the game software.
Items that are part of the RTF are shown unshaded.
Other items belong to the application, such that the de-
veloper of the application is responsible for them. The
first step (@ in the figure) is to implement the class as
designed for the game logic. The next step @ is to gen-
erate the implementation of the network-transmittable
representation of this class using scot. This step circum-
vents the usual implementation of class serialization by
hand which would be necessary for fully custom devel-
opment. The following steps @ and @ are the usual
compilation and linking steps for the application level
sources. The final step ® is to link the application bi-
naries for game logic and game engine against the RTF
library to the complete executable.

Overall, this approach allows to use native C++ data
structures for entities and events, while avoiding to im-
plement the cumbersome, network-specific serialization
by hand. Additionally, our approach is open to be com-
bined with custom, engine-specific scripting capabili-
ties: for example, LUA-bindings for high-level behaviour
scripting can easily be added into the C++-based core
data structures.

2. Task: Game State Processing

Using RTF, the developer still has to implement an own
real-time loop for computing the game state updates,
the so-called ticks. However, RTF provides substantial
support functionality for implementing and running this
real-time loop; in particular, it provides event and entity
manager classes the developer can directly work with, as
illustrated in Figure 6 for a server loop.

Server Real-Time-Loop
1. RTF::onTickBegin()

2. process user actions

3. update all entities

4. process game logic and Al

clients send the 5. RTF::onFinishedTick()

user actions in an

2.2 processEvent(event)
asynchronous way

3. updateEntity(...)
4, processEntity(...)

2.1 event =
eventMgr.popEvent()

event queue s

list of all entities
EventManager

N
Ob tM

i \
ZoneManager § CllentManager MessageManage

on the client side

the modified entities
: 5. send replica updates

of step 2-3 are update
Figure 6: RTF/game state processing integration

14

The figure shows the following standard steps of the real-
time loop to be implemented by the game developer:
process user actions (step 2. in the figure), update en-
tities (3.) and process game logic (4.). In each runtime
step, the processing code interacts with components of
the RTF. The runtime communication and distribution
tasks handled by the middleware happen before and af-
ter the processing steps of the games engine. Therefore,
the developer informs the RTF about the begin and the
end of each tick using the methods RTF: :onTickBegin
() (step 1. in the figure) and RTF: :onFinishedTick()
(5.). The particular tasks — transferring events, trans-
ferring entity states, and managing distribution — are
handled within the RTF in these methods and are de-
scribed in the following. This schema of integrating a
communication and distribution middleware into contin-
uous processing of the game state is an important find-
ing of our studies on using a distribution middleware
in online games: it frees the developer from low-level
network programming as is the case when using a con-
ventional communication middleware, but still provides
full design flexibility for the real-time loop as opposed
to using an existing game engine with a predefined pro-
cessing loop.

3. Task: Aol Management

An Area of Interest (Aol) concept assigns each avatar in
the game world a specific area where dynamic game in-
formation is relevant and thus has to be transmitted to
the avatar’s client. Aol optimizes network bandwidth by
omitting irrelevant information in the communication.
If done in a fine-granular manner, it avoids wallhack-
like cheating (Yan and Randell, 2005; Choo, 2001) at
the client side which makes walls semi-transparent and
reveals hidden opponents outside of the Aol. Unfortu-
nately, determining the relevant set of entities for a par-
ticular client can be quite compute-intense, such that
the Aol management, for which different algorithms are
compared in (Boulanger et al., 2006), has to be imple-
mented in an efficient and optimized manner.

RTF supports the custom implementation of arbitrary
Aol concepts by offering a generic publish/subscribe in-
terface for inter-entity visibility. The engine determines
continuously which entity is relevant for a client avatar
and notifies the RTF of each change of an "interested"
relation through a client.subscribe(...) and client
.unsubscibe(...) call. The RTF automatically takes
care that the entity is available and always updated at
the client or is removed from the client, respectively.
The RTF also takes care that entities are removed from
Aol of all participating clients if they disappear at a cer-
tain server. This is important, as entities can move from
one zone into another and thus maybe leave the Aol of
clients implicitly.

Transferring entity states

Every time the game engine has finished the processing
of a new game state, the RTF automatically synchro-
nizes the state of entities between the distributed pro-
cesses depending on the indicated Aol relations. When
an entity is replicated to another process (for example,
all the entities within the Aol of a particular avatar to its
client), the state of the remote copy has to be updated.
Since the computations are usually performed in repeat-
edly executed cycles (ticks), the best way to perform
state updates is after a computation cycle has finished,
thus preventing propagation of intermediate states and
read-write conflicts between the middleware and game
engine.

The use of RTF simplifies this task of transferring en-
tity states for the developer. He only has to inform
the middleware that a computation cycle of the game
engine has ended by invoking RTF: :onFinishedTick()
(step 5. in Figure 6). The necessary flow of information
to update the game state on all participating processes
is determined by the RTF upon the specified distribu-
tion. At runtime, the middleware automatically creates
messages for changed objects and transmits them. This
is done using the network-transmittable representations
that were generated for the data structures using scot
during the development cycle. The RTF-part of the re-
ceiving process of such an update message automatically
determines the object related to the messages and writes
the updated data directly to the right object. Since the
data is directly written to the objects used inside the
game engine, this writing step is again triggered by the
developer, e. g., directly before a computation cycle, by
invoking RTF: :onTickBegin() (step 1 in Figure 6), to
prevent read-write conflicts.

MULTI-SERVER TASKS

The general development tasks described in the pre-
vious section are fundamental for any client-server
based game. However, when the game should be mas-
sively multiplayer, a multi-server approach is required
for achieving a high scalability for supporting a large
amount of users. This section describes what paralleliza-
tion approaches are supported by RTF and discusses
how developers can easily use them for building MMO
worlds.

Parallelization Concepts supported by RTF

RTF currently supports three parallelization concepts
for scaling virtual world environments: zoning (Cai
et al., 2002; Rosedale and Ondrejka, 2003) and instanc-
ing, as commonly used in contemporary MMORPG, and
replication (Bharambe et al., 2006; Miiller and Gorlatch,
2006a; Miiller et al., 2007), an alternative parallelization
approach recently discussed in academia. All these ap-
proaches aim at different scalability dimensions: zoning
allows large user numbers in large MMORPG worlds,

15

instancing runs a large number of game world areas in-
dependently in parallel, and replication targets high user
density for action- and player-vs-player-oriented games.
Figure 7 illustrates the overall combination of these ap-
proaches in a single game as provided by RTF.

Server
Instance 1

S Zone 2 et "
erver zone ~~ ™ active entity

7 shadow entity

Figure 7: Combination of zoning, instancing, and repli-
cation for a single game world in RTF

The overall goal of integrating these approaches into
RTF, as discussed in detail in (Miiller and Gorlatch,
2006b), is to provide general and dynamic scalability for
all game genres within a single framework, which can
be operated on demand in a Grid computing environ-
ment. The following discussion sketches the envisaged
methodology for developers for using these multi-server
parallelization concepts.

4. Task: Parallelization and Distribution

If the multi-server capabilities of RTF are used, then, in
addition to the general tasks 1-3 (data structure design,
state processing and Aol management), the developer
has to segment the game world into zones, instances and
replication areas and to define the connections between
them in form of portals. Using this information, RTF
automatically assigns servers to each of the segments
and connects each client to the particular segment the
associated avatar resides in. If the user moves his avatar
through a portal area, RTF will recognize this and auto-
matically issue a connection transfer, making the server
of the new segment responsible for processing the avatar.
Each of the participating servers runs the normal server
real-time loop discussed in the previous section for its
associated segment — the RTF internally handles con-
nection migration and distributed entity management.
RTF offers a dedicated interface for specifying how the
overall game world is segmented into a combination of
zones, instances and/or replication areas. Figure 8 il-
lustrates a two-dimensional game world example with
three zones and portals of various types.

The definition of a zone, as illustrated in Fig. 8, consists
of an ID, the occupied space and a flag if it is allowed
to replicate the zone across multiple servers. For the
portals, an entrance area and a connected destination
area are given. During runtime, all zones are assigned to
the set of available servers. Fig. 8 shows different portal

SpaceToSpace

Portal B ~.

SpaceToPoint

Portal A -
\.\’ i \\k
|
ey pmop Bt
2 i+ 7
Ead Source Space
Target Point Standby Space
Bidirectional
Portal C
- T >
2 4 6 8 10 X
Code example:

Zone a = Zone(O, Space(l, 2, 0, 4, 2, 0), PLAIN);
Zone b = Zone(1l, Space(7, 2, 0, 4, 2, 0), REPLICATE);
Zone ¢ = Zone(2, Space(0, 0, O, 4, 2, 0), PLAIN);
Portal& pA = *new SpaceToPointPortal(entrancel,

destinationA) ;
Portal& pB = *new SpaceToSpacePortal (entranceB,

destinationB);
Portal& pC = *new BidirectionalPortal(spacelne,

spaceTwo) ;
Figure 8: Segmentation Specification Example

types supported by RTF for expressing various transfer
relations (uni-/bidirectional, space to space, space to
point) how to move over to a different area of the game
world.

Overall, game developers only have to implement mech-
anisms at a high level of abstraction in the RTF multi-
server task. In particular, they can start developing any
multi-server game engine as a single-server engine at be-
gin and then easily switch over to a scalable multi-server
engine. For this switch, developers, in most cases, only
have to segment the game world into zones, instances
and replication areas, possibly implementing segment-
related game logic mechanisms on top of the already
existing specified entity and event data structures.

IMPLEMENTATION AND
CASE STUDY

RTF is currently under development with a strong em-
phasis on studying and optimizing mechanisms in the
arca of distributed real-time computation and commu-
nication, continuous processing parallelization and de-
velopment methodology of distributed virtual environ-
ments and online games. The work on RTF is part of
the edutain@grid' project funded by the EC IST, where
it provides the fundamental real-time computation and
communication middleware for interactive applications
and online games operated in a Grid computing infras-
tructure.

Based on the current version of RTF, we are develop-
ing Offshore as a MMOG case study taking place in
an aquatic metropolis. Figure 9(a) illustrates the corre-
sponding overall game world being segmented into nine
zones, while Figure 9(b) shows a screenshot of the cur-
rent client prototype giving an overview on the game
world from an elevated position.

“OFFSHORE”

'http://www.edutaingrid.eu/

16

(a) Aquatic Metropolis Segmentation

(b) Overview Screenshot of Current Prototype

Figure 9: Offshore: Aquatic Metropolis Case Study

The Offshore case study has been used so far for tech-
nical evaluation and for verification of the game devel-
opment process and methodology. Here, RTF first sup-
ported the general development tasks for single-server
operation, after which the game engine has been suc-
cessfully switched over to multi-server processing by seg-
menting the game world.

CONCLUSION AND RELATED WORK

In this paper, we have studied and summarized devel-
opment methods for online games and demonstrated to
what extent the low-level custom development can be
substituted by a high-level approach using game mid-
dleware for single-server and for scalable multi-server
engines. We described our RTF system which is used to
support the human developer in the development pro-
cess. The RTF enables a smooth transition of single-
server online games to the multi-server architecture by
its integrated distribution capabilities. Since RTF fo-
cuses on the processing part of games, it puts no con-
straints on the remaining development tasks as, e.g.,
graphics or game logic implementation.

In comparison to existing approaches in the field of
communication middleware like Net-Z (Quazal, 2006),

HawkNL (Hawk Soft, 2006) or RakNet (Rakkarsoft,
2003), RTF provides a much higher level of abstrac-
tion featuring automatic entity serialization and hides
nearly all of the technical network communication as-
pects. On the other hand, RTF is much more flexible
than reusable game engines like the Quake or Unreal
engines, because it is not bound to a specific graphics
engine and leaves the real-time loop implementation to
the developer, supported by high-level entity and event
handling mechanisms. The multi-server capability of
RTF allows to easily incorporate three different paral-
lelization and distribution approaches and is open to
be extended to future approaches. This flexible sup-
port of different parallelization concepts allows RTF to
be usable for a wider range of MMOG concepts than
existing multi-server middleware like Emergent Server
Engine (EGT, 2007) or BigWorld (BIG, 2006) focusing
mostly on the concept of zoning,.

The current implementation of RTF already provides
important features for developers to implement online
games at a high level while still preserving design flexi-
bility for single- and multi-server engines. Summarizing,
RTF offers the following integrated functionality:

e The serialization mechanism liberates the developer
from the details of network transmission program-
ming.

e Communication is optimized with incremental up-
dates to reduce the data sent over the network.

e Segmentation and distribution of the game world
are described on an abstract level in game design.

e The proven multi-server distribution concepts zon-
ing, instancing and replication, as well as their com-
binations, are supported.

o Distribution management and parallelization of the
game state processing is fully handled by the RTF.

e The game logic and entities are implemented using
C++ in a usual object-oriented way and are open
to be integrated with state-of-the-art scripting ca-
pabilities.

Besides developing case studies using the offered multi-
server segmentation approaches in combination for in-
depth scalability evaluation and comparison, we plan to
integrate additional features into RTF in the future. In
particular, audio and video streaming as well as auto-
matic game state persistence are highly interesting to
be integrated for further enhancing the RTF as a com-
prehensive middleware for online games.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their construc-
tive comments helping to improve this paper. The work
described in this paper is supported in part by the Eu-
ropean Union through the IST 034601 project “edu-
tain@grid”.

17

REFERENCES

Bharambe A.; Pang J.; and Seshan S., 2006. A Distributed
Architecture for Multiplayer Games. In PACM/ USENIX
NSDI. San Jose, USA.

BIG, 2006. BigWorld Technology www.bigworldtech.com.

Boulanger J.S.; Kienzle J.; and Verbrugge C., 2006. Com-
paring interest management algorithms for massively mul-
tiplayer games. In NetGames °06: Proceedings of 5th
ACM SIGCOMM workshop on Network and system sup-
port for games. ACM Press, New York, NY, USA. doi:
http://doi.acm.org/10.1145,/1230040.1230069.

Cai W.; Xavier P.; Turner S.J.; and Lee B.S., 2002. A Scal-
able Architecture for Supporting Interactive Games on the
Internet. In Proceedings of the 16th Workshop on Paral-
lel and Distridbuted Simulation. IEEE, Washington, D.C.,
60-67.

Choo C., 2001. Understanding Cheating in Counter-Strike
http://www.fragnetics.com/articles/cscheat/print.html.

EGT, 2007.
www. emergent.net.

Emergent Game Technologies,

Glinka F.; Ploss A.; Miiller-Iden J.; and Gorlatch S.; 2007.
RTF: A Real-Time Framecwork for Developing Scalable
Multiplayer Online Games. In NetGames 2007: Proceed-
ings of 6th Annual Workshop on Network and System Sup-
port for Games. Melbourne, Australia, 81-86.

Miiller J. and Gorlatch S., 2006a. Rokkatan: scaling an RTS
game design to the massively multiplayer realm. ACM
Computers in Entertainment, 4, no. 3, 11. ISSN 1544-
3574. doi:http://doi.acm.org/10.1145/1146816.1146833.

Miiller J. and Gorlatch S., 2006b. Scaling Online Games on
the Grid. In M. Merabti; N. Lee; K. Perlin; and A.E.
Rhalibi (Eds.), GDTW 2006 - Fourth International Game
Design and Technology Workshop and Conference. Liver-
pool John Moores University, Liverpool, UK, 6-10.

Miiller J.; Gorlatch S.; Schroter T.; and Fischer S., 2007.
Scaling Multiplayer Online Games using Prozy-Server
Replication: A Case Study of Quake 2. In 16th IEEE In-
ternational Symposium on High Performance Distributed
Computing (HPDC 2007). IEEE, Monterey, California,
USA.

Quazal, 2006. Net-Z www.quazal.com.
Rakkarsoft, 2003. RakNet www.rakkarsoft.com.

Rosedale P. and Ondrejka C., 2003. Enabling Player-
Created Online Worlds with Grid Computing and
Streaming <hitp://www.gamasutra.com/resource_
quide/20030916 /rosedale_ 01.shtml>.

Hawk Soft, 2006. HewkNL www.hawksoft.com/hawknl.

Yan J. and Randell B., 2005. A systematic classification of
cheating in online games. In NetGames '05: Proceedings of
4rd ACM SIGCOMM Workshop on Network and System
Support for Games. ACM Press.

A FRAMEWORK FOR NETWORK-AGNOSTIC MULTIPLAYER GAMES

Patric Kabus
Alejandro P. Buchmann
Databases and Distributed Systems Group
Technische Universitdt Darmstadt
64289 Darmstadt, Germany
{pkabus,buchmann} @dvs1.informatik.tu-darmstadt.de

Abstract

Producing computer games is a complex and resource-
intensive task nowadays. Since this task involves many peo-
ple with a great variety of expertise, a clear separation of
concerns within the project is essential. Especially multi-
player online functionality, which is probably the most pop-
ular aspect currently, raises the complexity significantly.
Getting this aspect separated allows game developers to fo-
cus on design issues rather than on writing sophisticated
network code. This paper presents a framework that pro-
vides a complete abstraction from network related imple-
mentation details.

1. Introduction

“Ten or twenty years ago it was all fun and games. Now
it’s blood, sweat, and code.”’[4] In the early days, computer
games could be developed by a only few people or even a
single person. Most of the work was about writing opti-
mized game code for hardware with very limited resources.
Due to these resource limitations other aspects of a game,
like design, graphics or sound, had to remain very simple.
Today’s games are multi-million dollar projects including
dozens of highly specialized professionals like 3D artists,
level designers, musicians or storytellers. Yet at the core of
a game remains a large piece of code, the game engine. It’s
purpose is to combine all the digital content (called assets)
created by various artists into a playable game.

Since asset creators are mainly artists, they usually have
a very limited knowledge about writing code. Thus, the
interface to the game engine must require a minimum of
programming skills. But at least when creating assets that
exhibit behavior (like an enemy which is controlled by the
computer) one usually cannot avoid getting in touch with
coding. For this purpose, easy-to-learn scripting languages

are incorporated into the game engine. Together with pre-
defined methods, which handle common in-game function-
ality (e.g. a move(x,y) method, which moves a game object
to a certain position and automatically performs path find-
ing and collision detection) and can be called from within a
script, the programming task is kept as simple as possible.

Hiding complexity gets even more difficult when net-
work gaming comes into play. Network functionality is
probably the most important gaming feature today, with net-
works ranging from a few nodes in a LAN environment
to a few thousand nodes in Massively Multiplayer Online
Games. Providing a sufficiently consistent view of the game
on all nodes of the network is non-trivial. Consequently, as-
set creators should not be burdened with the task of han-
dling inconsistencies or performing manual synchroniza-
tion of game objects. However, even programmers will ben-
efit from being shielded from consistency issues. Modern
game engines are complex systems composed of various
modules. It is generally a good idea to keep consistency-
related code within a single module, allowing developers
of other modules to focus on their specific tasks. Finally,
a clean separation of concerns is a good basis for reusabil-
ity. Nowadays many game engines are reused by multiple
game projects and selling engine licenses is even part of the
business model of some producers.

In this paper we present a gaming framework that com-
pletely shields game developers from network and consis-
tency issues. Unlike existing game engines, our system
does not only abstract from a specific network architec-
ture. Games built using our framework can be deployed
in many different environments by simply changing a con-
figuration file. Besides running the game in single player
mode locally, we currently support three modes: classic
Client/Server, a Peer-to-Peer mode usually known as Repli-
cated Simulation [2] and a hybrid one, called Mutual Check-
ing [13]. In the following we will refer to these modes as
CCS, RS and MC respectively. All three modes provide
some protection against cheating, an essential property for

18

today’s games. The underlying abstraction allows develop-
ers to extend the framework with their own custom network
modes, if necessary. Without the need to commit to a spe-
cific network architecture, it is much easier to reuse a game
engine in different projects. Furthermore, game develop-
ers may allow players of a certain game to change the net-
work architecture by simply altering a configuration file. If
a group of players doesn’t trust a single node to host a server
for a Client/Server session, they could switch to Peer-to-
Peer mode where each node maintains its own local copy of
the game state. Finally, home-brewn or independent games
as well as academic projects may benefit from the possibil-
ity of playing around with different network settings with-
out having to change their game code.

In the following section we discuss related work. Sec-
tion 3 describes the architecture of our framework, while
in Section 4 we delve into some implementation details.An
example game that we have implemented to show that the
framework can actually be used for games is shortly pre-
sented in Section 5. Since cheating is an omnipresent issue
in online games, Section 6 briefly examines this topic. Fi-
nally, Section 7 concludes the paper.

2. Related Work

To our knowledge, no scientific work exists that deals
with the complete abstraction from different network archi-
tectures within a gaming context.

Kaneda et al. [14] propose a middleware that allows the
reuse of Client/Server-based games in a Peer-to-Peer set-
ting. The authors argue that this may be necessary if, for
some reason, the producer of a game discontinues to pro-
vide the necessary servers. Each player has to install an
application on his node which connects to the other player
nodes in a P2P fashion. The application acts as a fake server
to the local game application by capturing and answering
the game related traffic. The global state is synchronized
between all nodes, making it appear as if all players were
connected to the same server. A major drawback of this ap-
proach is that the game’s network protocol must either be
openly specified or reverse-engineered. Every implemen-
tation of this middleware is specific to a certain game and
hardly reusable for other games.

The Real-Time Framework (RTF) [11] also aims at pro-
viding an abstraction from the underlying network, but from
a different perspective. It does not address pure P2P or hy-
brid architectures. Instead, it abstracts from the way a mul-
tiplayer game is distributed in a multi-server architecture.
RTF supports three distribution concepts, namely zoning,
instancing and replication. Similar to our framework, RTF
provides a way for game developers to deal with game ob-
jects without concerning about synchronization issues. The
paper does not go into detail about the underlying network

interface

networkin

interface

Figure 1. High-level overview

architecture. Thus, it is currently difficult to say in which
parts our works complement each other.

Modern commercial game engines usually provide some
level of network abstraction, but are mostly tied to a certain
network architecture. The technology overview of the up-
coming Unreal 3 Engine [10] states that it will be possible
to run games either in a C/S or P2P mode. Unfortunately,
the architecture is not openly documented and details thus
unavailable. It is uncertain whether the engine supports a
transition from P2P to C/S or vice versa without altering
code. Moreover, it is very unlikely that the engine easily
supports hybrid or custom network architectures.

3. Architecture

Our proposed architecture can be divided into three lay-
ers and two intermediate interfaces, as shown in Figure 1.
The discussion in this section remains on a rather abstract
level; important implementation details are addressed in the
following section. We start on the highest layer, the game
layer, and work our way down to the lowest one.

3.1. Game Layer

This layer contains components like the input manager,
the presentation manager and the game engine. The input
manager is responsible for accepting commands issued by
the player via keyboard, mouse, a gamepad or any other
kind of input device. The presentation manager provides
the player with an audiovisual representation of the game
and probably even some haptic feedback. At the core of any
game there is a game engine which manages all the assets
that the game is composed of and controls their behavior
which is defined by the game logic. The engine may also
manage the other components of the game and perform ad-
ditional tasks like logging in and out of a network game.
Although virtually every game is made of components like

19

those mentioned above, actual implementations may show
a great variety. Professional games today will most likely
consist of much more components, while simple games may
combine everything into a single one. Note that these com-
ponents do not necessarily have to be implemented by the
game developers themselves. There are many implemen-
tations that can be bought off the shelf or are available for
free. The game layer is connected to the lower layers via the
object interface which serves as the top-level abstraction for
our framework.

3.2. Object Interface

The central element of a game is a collection of objects
that constitute the state of the virtual world. The game ob-
Jjects may represent nearly every aspect of the game: the
players’ avatars, computer-controlled enemies or allies, in-
teractive objects (like vehicles and machines) or completely
static objects (like trees and walls). Even purely logical en-
tities that have no perceptible representation (at least none
that is perceived by a human player), like containers that
aggregate game objects into a logical unit or triggers that
activate in-game actions, may be modelled as game objects.

In a multiplayer game, multiple participants share the
same game world and thus need to have a consistent view
of its state. If the players are located on different nodes of a
network, local copies of the game objects, which as a whole
represent the state, need to be synchronized. Our architec-
ture hides this synchronization effort completely, allowing
a game developer to access and manipulate game objects as
if they were local. Consequently, the interface that is pre-
sented to the developer allows the creation and deletion of
game objects as well as reading and changing their state.
The components of the game that run on a player’s node
may work as usual. E.g., the input manager translates input
events into appropriate changes of the player’s avatar object.
The presentation manager may read the state of the game
objects and generate audio-visual and haptic feedback. And
last not least, the game engine changes game objects when-
ever the rules and the logic of the game require it. Fur-
thermore, the interface provides methods that perform the
necessary bootstrapping when setting up or joining a net-
work session as well as methods that leave or shut down a
session. The following subsection describes the implemen-
tation of the object interface.

3.3. Object Layer

The object layer is responsible for holding up the illusion
that all game objects seem to be local and can be manipu-
lated without concerning about synchronization. Further-
more, it has to handle the necessary bootstrapping when a
new node joins the network or cleanup when a node leaves.

In our framework, every game object has an owner which
keeps a master copy of it. Whenever a node wants to change
a local copy of an existing game object it must send a re-
quest to the owner. If the request is granted, the owner
changes the object state accordingly and sends an update to
every node that keeps a local copy (including the one which
has sent the request). Whenever a node receives an update
sent by the owner of an object, it will perform the contained
change on its local copy. This way we achieve a single-
copy consistency since the owner of an object serializes all
operations on it. Note that in the MC example a group of
region controllers acts as the owner of a game object. Each
region controller in the group receives a request, processes
it independently and sends an update. Whichever node has
alocal copy will receive the updates and elect the one which
holds the majority. Please refer to [12] for details, including
a discussion on consistency.

Until now we have only talked about existing game ob-
jects which contain the owner information in their metadata.
What remains is the question of how ownership is deter-
mined when creating a game object. Burdening a game de-
veloper with this task when creating an object would break
our abstraction. To avoid this, the object layer has to pro-
vide a factory method for each supported architecture which
encapsulates the knowledge about determining ownership.
A game developer simply creates an object (using the ob-
ject interface) and, depending on the network configuration,
an appropriate factory is chosen. In our CCS example, the
server is the owner of all game objects and whenever a client
needs to create one, the respective object factory determines
the server as the owner of this object. In contrast, in the RS
example a peer node always takes ownership of objects it
creates. Finally, in the MC setting, the owner id addresses
the whole group of region controllers. As we can see, a
node does not only create objects for itself but it may also
request the creation on another node. Thus, the creation of
anew game object is treated the same way as the manipula-
tion or deletion of an existing one: it is sent as a request to
the future owner. Upon receiving and processing a creation
request, the owner sends an update to all nodes the creation
may concern.

Note that all operations needed for the management of an
object can be mapped onto two types of messages, namely
a request message and an update message. We still need a
third kind of message to inform nodes about organizational
events like the joining and leaving of nodes. Whenever a
node joins the network it sends an announcement to the ex-
isting nodes. Every node that owns a game object which is
relevant for the newly joined node may now send an update
containing the current state of this object. This way, a new
node can be provided with the current state of the game.
When the node leaves again, it may inform the other nodes
that it won’t process request or updates anymore. If the ob-

20

jects it owns are still needed, it may request the creation of
replacements on remaining nodes.

3.4. Networking Interface

The discussion above showed that the messages needed
for game object synchronization and node housekeeping
may be divided into three categories: requests, updates and
announcements. What we have to make sure is that mes-
sages are sent to the appropriate recipients. For instance, a
client in the CCS example is never interested in receiving
request messages, since it doesn’t own any objects. On the
contrary, the server doesn’t care about updates since — due
to the fact that it owns all the objects — it is the only one to
send them. To complicate matters, nodes join and leave and
thus the list of senders and recipients changes dynamically.

However, this problem is not new and a solution for
it is well-established: the Publish/Subscribe (pub/sub)
paradigm [9]. One of the main advantages of pub/sub sys-
tems is the decoupling of message senders from message
receivers. Participants of such a system only need to know
what kind of messages they want to send. They do not need
to know who are actually the recipients of these messages.
The other way round, receivers only need to know what kind
of messages they are interested in, not who may actually be
sending them. The sending of messages of a certain kind is
called a publication, while registering interest for a certain
kind is called a subscription. The pub/sub system matches
every publication to its respective subscriptions and thus
takes care that a message will reach its intended recipients.
Both, publishers and subscribers, may join and leave dy-
namically without requiring other participants to take notice
of this.

Applying this concept to our framework avoids that own-
ers of game objects and keepers of local copies have to be
aware of each other. Any node which wants to manipu-
late an object simply publishes an appropriate request mes-
sage. Owners of game objects are subscribed to this kind
of message and thus will automatically receive change re-
quests. After processing the request they publish an update
and nodes which keep a local copy will receive the change
since they are subscribed to update messages. To sum it
up, the networking interface has to provide means to issue
publications and register subscriptions.

3.5. Networking Layer

The lowest layer of our framework’s architecture is re-
sponsible for implementing the pub/sub methods that are
offered by the networking interface. Publications have to
be routed over the network to the appropriate subscribers.
This layer also has to take care of managing publishers and
subscribers which dynamically join and leave the network.

Please refer to Section 4.2 for a detailed discussion on im-
plementation issues regarding the networking interface and
layer.

3.6. Concluding Overview

Figure 2 gives a more detailed overview of our three-
layer framework including its two interfaces. On top is the
game layer which connects to our framework via the ob-
ject interface. Within the game layer, one may simply ma-
nipulate game objects as if they were local without paying
attention to the layers below. The only thing that may be no-
ticeable is a delay until a manipulation actually takes effect.
(This delay may be hidden from the player by using com-
monly known techniques like Dead Reckoning [18].) Below
the object interface is the object layer where the configura-
tion of the desired network architecture takes place. A node
has to define to which topics it publishes and subscribes
and which factory it uses for creating objects with the cor-
rect ownership. Supporting different network architectures
means providing the appropriate definitions and factories.
This layer is also responsible for handling the login and lo-
gout of nodes. Finally, the networking interface serves as
an abstraction to the message handling. By using a generic
interface one may use different implementations in order
to fulfill certain performance or scalability requirements or
simply to experiment.

4. Implementation Issues

This section will give more insight on some of the im-
plementation issues of the framework architecture. In order
to be able to speak of a complete framework, we must pro-
vide more than merely a networking middleware. A gaming
framework should also provide standard components that
are located on the game layer, like the input and presen-
tation managers and the game engine. However, our re-
search focus lies on the network transparency which is not
directly related to these components. Additionally, there
exists a vast amount of — free and commercial — imple-
mentations that may easily be integrated. Consequently, we
only provide implementations of these components to the
extent they are necessary for our example game (see Sec-
tion 5). In the following, we focus on the object model and
the pub/sub system implementations. The former is the part
that game developers have to deal with if they want to cre-
ate a game that is agnostic of the underlying network archi-
tecture. The understanding of the latter is important if one
wants to extend the framework with new network architec-
tures or optimize existing ones.

21

PRESENTATION
MANAGER

GAME
ENGINE

LOGIN/-OUT

I\
networking 4 F
interface

Figure 2. Detailed overview

4.1. Object Model

Many different ways exist to manage objects within a
virtual gaming environment [3, 5, 7, 8].We have chosen an
approach that provides high flexibility as well as ease of
use. Itis completely data-driven, i.e. every aspect of a game
object can be changed at any time dynamically without the
need for a recompilation. This speeds up the development
process and should make it easy to integrate this framework
into the workflow of a game developer.

The type system of the game object model doesn’t rely
on static types defined by the programming language’s class
hierarchy (our prototype is implemented in Java). Instead,
a generic GameObiject class is used which is assigned a
game object type dynamically. The type itself consists of
a number of state variables and methods plus possible base
classes. Every type inherits all of the states and methods
from its base types and thus new types can be easily com-
posed of existing ones. Game object methods may be de-
fined in any scripting language which is available for the
Java Scripting Platform [16]. The type definition itself is
currently written in XML, but by providing an appropriate
import plugin, any format may be used. Figure 3 shows how
a simple type definition may look like. The example shows

<type id="bomb">
<state name="x" default="50.0"/>
<state name="y" default="50.0"/>
<state name="countdown" default="10"/>
<script name="tick" lang="js">
<! [CDATA[
countdown -= 1;
if (countdown == 0)
{
go.execute ("explode");
}
11>
</script>
</type>

Figure 3. Example of a game object type def-
inition

a definition of a bomb which contains a two-dimensional
position state and a detonation counter. The “tick method,
which is always called by the node owning the object, al-
lows to trigger time-dependent behavior like decrementing
the internal counter of the bomb. Note that in our example
game, the tick method doesn’t decrease the counter every
time it is called but takes into account a variable that con-
tains the amount of time that has passed since the last call.
From within the script additional references may be used,
e.g. the current game object (“go”), the object manager (al-
lowing access to other game objects) or the object’s state
variables.

All game objects are stored hierarchically within a tree.
The object interface allows insertion, manipulation and
deletion of objects. Furthermore, a query method allows
finding objects that match a certain regular expression. Fi-
nally, it is possible to define arbitrary groups of objects
as views which provide an easy way to access objects that
match certain criteria.

Inserting and deleting objects as well as changing their
state triggers the notification of registered listeners. A cer-
tain listener is responsible for automatically publishing ap-
propriate requests and updates whenever necessary. Listen-
ers may also be used to manage the membership of views. If
a new object is created or an existing one changes its state,
any listening view may add the object if it matches the view
definition. The same way, objects can be removed if they
are deleted or do not match the view criteria anymore.

4.2. Publish/Subscribe

To demonstrate how a pub/sub messaging service can
be integrated into our framework we have chosen a sim-
ple form of pub/sub, a topic-based approach. Later on we

22

will discuss how more powerful approaches may be used to
lower bandwidth consumption or improve scalability.

4.2.1 Topic-based Publish/Subscribe

As the name implies, in a topic-based pub/sub system par-
ticipants publish and subscribe to topics and each topic rep-
resents a certain kind of message. The obvious way to
model our communication is to assign each type of message
— requests, updates and announcements— its own topic.
We first demonstrate how requesting a change and sending
an update works within the three example architectures we
have implemented. Next, we will show how the announce
topic may be used for handling nodes joining and leaving
the network.

The following is a short overview of how those architec-
tures distribute the ownership of game objects. For more
detailed information please follow the references given in
Section 1.

Classic Client/Server (CCS) The central server is the
owner of all objects and thus keeps all master copies.
Clients only store local copies which are updated by
the server.

Replicated Simulation (RS) Each peer may own certain
objects for which it keeps the master copies. It stores
local copies of the objects owned by other peers.

Mutual Checking (MC) In order to avoid arbitrary ma-
nipulations by malicious nodes, each object is owned
by multiple region controllers (RCs). Thus, each RC
keeps its own master copy of an object and any change
request has to be sent to each RC. After changing the
state of a master copy, each RC sends an update to the
local copies on the clients. The client compares the
update messages and elects the one that holds the ma-
jority.

Figure 4 shows the request/update process in the CCS
context. Client 1 wants to change an object and publishes
a message to the request topic. The server which owns all
objects has subscribed to this topic and thus receives all re-
quests. After performing the requested changes the server
publishes a message containing the changes to the update
topic. All clients, including the one that has sent the re-
quest, are subscribed to this topic and receive the update.

In the RS context (Figure 5), a peer that wants to change
an object publishes a request. All peers within the system
are subscribed to the request topic, but only the owner of
that object needs to process the request. The state update is
then published and received by all peers, since each of them
is subscribed to the update topic.

2: Server sends
UPDATE OBJECT

1: Client 1
requests
UPDATE
OBJECT

CLIENT 2

CLIENT 1

CLIENT N

Figure 4. Request/update in CCS mode

1: Peer 1
request:
UPDATE
OBJECT

2: Peer N sends
UPDATE OBJECT

PEER 1 PEER 2

PEER N

Figure 5. Request/update in RS mode

Our last example, the MC context (Figure 6), is very sim-
ilar to the CCS setting. Instead of having a single server, all
RCs are subscribed to the request topic. After performing
the requested change, each RC publishes an update. The
clients, which are subscribed to the update topic, receive all
updates from the RCs. Before an update will be performed,
the correct one is elected out of the received updates.

To handle events like nodes logging in and out of the
system, a third topic, called announce, is used.

Whenever a new player joins the game, an object has to
be created that represents that player. The nodes already
in the system need to be informed about the state of this
new player object. Figure 7 illustrates this process in the
CCS context. The server, which is subscribed to the an-
nounce topic, receives a login announcement published by
the new client. It creates a new avatar object representing
that player and publishes an appropriate update. This up-
date is received by all clients, since they are subscribed to
the update topic.

After logging in, the new client needs to be supplied
with the current state of the game. For this purpose, every
node that owns game objects must be subscribed to the an-
nounce topic. Upon receiving the login message, the owners
may publish an update containing the complete state of their

23

RC1 RC N-1 RC N

2: RCs send
UPDATE OBJECT

1: Client T
requests
UPDATE
OBJECT

CLIENT 1 CLIENT 2 CLIENT N

Figure 6. Request/update in MC mode

2: Server sends
CREATE PLAYER
OBJECT

1: Client 1
announces
LOGIN

CLIENT 1 CLIENT 2 CLIENT N

Figure 7. Client login in C/S mode

master copies. Unfortunately, publishing the whole state of
all master copies every time a node joins the game would be
a waste of bandwidth. Every node subscribed to the update
topic would receive the current state, even if its local copy
is up-to-date. Optimizations that avoid this are discussed in
the following subsection.

If a node wants to leave the network it simply publishes
a log-out announcement. After receiving this message, the
server publishes an update that removes the avatar object of
the corresponding player from the game. Note that in our
RS setting things are slightly more complex, since a leaving
peer node may be itself the owner of certain game objects
which are still needed. Bevor leaving the network, the node
has to make sure that these objects are transferred to other
peers. In order to do so, it can request the creation of an
object on another peer by specifying this peer’s id as the
owner id.

4.2.2 Optimizations

An important way to reduce network bandwidth require-
ments in online games is to restrict the amount of updates
a certain node receives. Obviously, a node does not need
to be informed about changes of game objects that the lo-
cal player can neither perceive nor interact with in any way.
Limiting the update message to ones relevant for the player
is commonly known as Interest Management. Instead of
subscribing to all messages that are published to the update
topic, a filtering based on the in-game position of objects
may be performed.

For example, the Java Message Service [20] combines
a topic-based pub/sub approach with filtering based on
key/value pairs. Every update published may be enriched
with additional properties that contain the position of the
updated object. Only when the player’s avatar is in the in-
teraction range of that object the update will be sent to that
player’s node.

Instead of using a flat topic space, a hierarchical one
may be employed to restrict messages to certain game re-
gions. This approach is usually referred to as subject-
based filtering [17]. E.g. in a game that uses a real-
world setting, subjects like Earth, Earth.Europe and
Earth.Europe.Germany could exist. Whenever an avatar
enters a region (e.g. Germany) the node subscribes to the
corresponding subjects. On the one hand, this makes sure
that the node won’t be bothered with unrelated messages of
events that happen in a different country or even on a dif-
ferent continent. On the other hand, the node will receive
messages of events that are relevant for the whole continent
or even globally. Naturally, changes made by the node will
be published to the appropriate subjects in the same manner,
depending on their relevance.

Not only the addressing model but also the implemen-
tation of a specific model has an impact on performance
and scalability. One very important performance criteria of
network games is the latency when propagating updates of
game objects. Usually nodes of gaming networks talk di-
rectly to each other, be it a client talking to a server or peers
talking to each other. The delay of changing an object (i.e.
issuing a request and getting a reply) equals the roundtrip
time between nodes. In an implementation that wants to
avoid higher latencies, a node that requests the change of
an object must send the request directly to the owner node.
Afterwards, the owner has to send its updates directly to
all nodes which keep a local copy of the updated object.
This way, extra delay caused by additional hops on the net-
work path is avoided. In such an implementation a local
software component running on each node can provide the
pub/sub interface to the object layer. Internally, this com-
ponent stores for all topics it publishes messages to a list of
all subscriber nodes. Whenever a node publishes a message
it can send it directly to the appropriate nodes. The sub-

24

scription management service may be located on a separate
node. Every time a node subscribes for a topic, the manage-
ment service can inform the publishers about it. By sending
a so called advertisement, a node can inform the manage-
ment service about its intention to act as a publisher for a
certain topic.

A further optimization is that whenever a node wants to
change a game object that it owns, it may directly publish
an update without the need to send a request first. But one
should be aware that this may affect fairness. While the
change is propagated to other nodes with the delay of a sin-
gle hop it is perceived nearly instantly on the local node.
This may enable the local player to react much faster than
players on remote nodes. To avoid this, an artificial delay
may be introduced (e.g. Local Lag [15]).

While the implementation above minimizes latency
caused by network delays, it severely limits scalability.
Think of a node in a Replicated Simulation which has to
send updates to a very large amount of other nodes in the
game. This way a node will soon reach the limits of its net-
work connection, especially when using an asynchronous
DSL connection with a very limited upload bandwidth. This
is where pub/sub systems that rely on intermediate brokers
play out their strength. While introducing additional de-
lays for message delivery, the intelligent routing and filter-
ing mechanisms can minimize bandwidth and connectivity
requirements on the game nodes.

5. Example Game

For demonstrating the feasibility of our approach, we
implemented a game that includes many important aspects
found in today’s games. These aspects include a graphical
representation, changes in object state through player input
or progress of time and interaction between game objects.
While in our example they remain very basic, our frame-
work imposes no limits onto their implementation. Rich
three-dimensional graphics and sound are possible as well
as control of game objects through complex artificial intel-
ligence.

Our game is a simplified version of a famous multi-
player game concept that has been implemented by the
open-source game XBlast [1]. Every player controls an
avatar which may move freely around the game field. By
pressing a button, he can place a bomb at his current loca-
tion. Placing the bomb starts a timed detonator and when
the countdown reaches zero the bomb explodes. All avatars
that are in the vicinity of the detonation are removed from
the field and, as in the original XBlast game, the last re-
maining player wins. Figure 8 shows a screenshot of the
game.

As intended, the same game code can be used within all
three network architectures without any modifications.

Figure 8. Example game

6. A Word on Cheating

No multiplayer online game today can come along with-
out some protection against cheating, since the possibil-
ity to cheat poses a major threat to the fairness of the
game.[6, 12, 19] Fairness is a critical factor for enjoying
a game and consequently cheating may drive away paying
customers. However, we will not delve into that topic. In-
stead, we only want to point out that the level of cheat-
resistance is determined by the implemented architecture,
not by our framework. In the classic C/S setting, all trust
is imposed on the server and our framework doesn’t change
this. A P2P node within the Replicated Simulation is re-
sponsible for the object it owns. However, all peers re-
ceive updates about changes of that object and they may
check themselves if those changes conform to the rules of
the game. Otherwise they may reject an update. In the Mu-
tual Checking scenario, each RC votes for a certain update.
The larger the group of RCs is, the less likely it is for cheat-
ing nodes to insert a falsified update.

The only thing the framework has to guarantee is that no
one is able to forge messages. E.g., if a node receives an
update, it must be sure that the sender is really the owner
of that object. Nodes may simply identified by IP addresses
or, if a higher level of security is necessary or object own-
ership must outlast network sessions, cryptographic signa-
tures may be used. For this purpose a public key infrastruc-
ture is necessary which can be run by the game provider.

7. Conclusion

In this paper we have presented a framework that pro-
vides a game developer with a complete abstraction from
network related issues. The framework can be divided into
three layers: on the highest level the game layer, underneath
the object layer and at the bottom the networking layer.

25

On the game layer, standard components, like the game
engine and components managing audiovisual feedback and
player input, are located. This is also where a game devel-
oper has to implement the rules and the logic of a specific
game. All components on this layer communicate through
an interface to the layer below, the object layer. Game de-
velopers can create, manipulate and delete all game objects
as if they were local; network consistency as well as owner-
ship management is handled automatically. The networking
interface below hides network related issues behind a pub-
lish/subscribe abstraction. If it is necessary to optimize the
network layer for different quality requirements, like higher
scalability or lower latency, custom implementations can be
used.

With network implementation details hidden, game de-
velopers can focus more on game design rather than writing
specialized code. Implementation details like data-driven
game objects further emphasize this approach.

References

[1] XBlast. xblast—center.com.

[2] P. Bettner and M. Terrano. 1500 archers on a 28.8: Net-
work programming in age of empires and beyond. In GDC
Proceedings, 2001.

[3] S. Bilas. A data-driven game object system. In Proceedings
of the Games Developer Conference, 2002.

[4] J. Blow. Game development: Harder than you think. ACM
Queue vol. 1, no. 10, February 2004.

[5] D. Church. Object systems: Methods for attaching data
to objects and connecting behavior. In Proceedings of the
Game Developers Conference, 2002.

[6] S.B. Davis. Why cheating matters - cheating, game sccurity,
and the future of global on-line gaming business. In Pro-
ceedings of the 2003 Game Developers Conference, March
2003.

[7] M. Doherty. A software architecture for games. Technical
report, University of the Pacific Department of Computer
Science, 2003.

[8] A. Duran. Building object-systems: Features, tradeoffs and
pitfalls. In Proceedings of the Game Developers Conference,
2003.

[9] P.T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-

rec. The Many Faces of Publish/Subscribe. ACM Computing

Surveys, 35(2):114-131, 2003.

E. Games. Unreal 3 engine. www.unrealtechnology.

com/html/technology/ue30.shtml, 2007.

F. Glinka, A. PloB, J. Miiller-Iden, and S. Gorlatch. RTF:

A real-time framework for developing scalable multiplayer

online games. In Proceedings of NetGames 07, 2007.

P. Kabus and A. P. Buchmann. Design of a Cheat-Resistant

P2P Online Gaming System. In Proceedings of DIMEA 07,

2007.

P. Kabus, W. W. Terpstra, M. Cilia, and A. P. Buchmann.

Addressing cheating in distributed MMOGs. In NetGames

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

(20]

26

"05: Proceedings of 4th ACM SIGCOMM workshop on Net-
work and system support for games, pages 1-6, New York,
NY, USA, 2005. ACM Press.

Y. Kaneda, H. Takahashi, M. Saito, H. Aida, and H. Tokuda.
A challenge for reusing multiplayer online games without
modifying binaries. In Proceedings of the 4th ACM Work-
shop on Network & System Support for Games, 2005.

M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag
and Timewarp: Providing Consistency for Replicated Con-
tinuous Applications. [EEE Transactions on Multimedia,
6(1):47-57, Feb. 2004.

S. Microsystems. JSR-223 Scripting for the Java Platform,
2006.

B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information
bus: an architecture for extensible distributed systems. In
SOSP ’93: Proceedings of the fourteenth ACM symposium
on Operating systems principles, pages 58—68, New York,
NY, USA, 1993. ACM Press.

W. Palant, C. Griwodz, and P. Halvorsen. Evaluating dead
reckoning variations with a multi-player game simulator. In
Proceedings of the ACM International Workshop on Net-
work and Operating Systems Support for Digital Audio and
Video, pages 20-25, May 2006.

M. Pritchard. How to hurt the hackers: The scoop on internet
cheating and how you can combat it. Gamasutra, 2000.
Sun Microsystems Inc. Java Message
Service (IMS) Specification Version 1.1.
http://java.sun.com/products/jms/docs.html, 2002.

MOBILE VIRTUAL WORLDS: A PROXIMITY BASED EVOLUTION

Stefano Cacciaguerra, Gabriele D’ Angelo
Department of Computer Science
University of Bologna
Via Sacchi 3, Cesena (FC), Italy
E-mail: {scacciag, gdangelo}@cs.unibo.it

KEYWORDS
Virtual Worlds, Pervasive Entertainment,
Entertainment, Game Design.

Agent-based

ABSTRACT

The wireless revolution has enabled a new generation of
applications for nomadic users. In this work we propose a
new paradigm for the creation of games based on virtual
worlds that are hosted on mobile devices. Each time mobile
devices “get in touch”, their virtual worlds have the
opportunity to interact. This form of interaction is based on
the remote control of a subset of the agents that populates
the virtual world. In accord with this, it is possible to create
games with an unpredicted and unforeseeable evolution.
Finally, we introduce PReDA, a prototypal implementation
of the proposed mechanism that is based on the Netlogo
environment.

INTRODUCTION

The pervasive diffusion of the wireless technology has
lead to wide effects on the ICT field. First of all the wireless
access to the Internet telephony and, then, the use of wireless
mobile devices to browse the Web, anytime and anywhere.
Thanks to more capable hardware, pervasive networks and
adaptive software protocols, the wireless technology is
fostering a new generation of applications, as an example:
sensors’ networks, wearable computers, ubiquitous and
context aware applications (Chen at al., 2003; Kanter, 2003).

In this scenario, it is easy to predict a future where
mobile users will daily use many forms of Internet access
(e.g. wireless hotspots, private networks, ad hoc networks
etc.), in order to share contents and to take advantage of the
resources offered by the broadband connectivity. As an
example, the participative virtual worlds are gaining more
and more popularity: they allow the users to keep in touch
with friends and colleagues, to collaborate in the resolution
of shared tasks, to run brainstorming meetings and to share
common resources. It is worth noting that this kind of social
environments supports both forms of collaboration and
competition between users, building a new kind of
interactive and immersive metaworld. To some extent, using
these technologies is possible to build virtual worlds that
mimic many of the daily activities (Linden, 2007). In this
case, the world is virtual and under some viewpoints it is
safe: it represents a sort of sandbox.

In this field, an important role has been played by the
participative simulation (Colella et al., 1998; Wilensky et al.,
2007) that is a gaming activity often used to explore

27

complex systems. As an example (Terna, 2003), a virtual
marketplace where users can be sellers and customers, at the
same time. As another example, the road transportation: we
could imagine a system where each user is in charge of
managing a specific traffic light, with the capability to
trigger the “green” and “red” lights. In this case the users
would be able to choose a strategy based on collaboration or
competition. For the sake of simplicity and clearness, all
these examples are immediate and obvious, but it is worth
noting that participative simulation has many fields of
application in both scientific and technical arcas (c.g.
diffusion of wviruses, vehicles behavior, modeling of
molecules in a membrane and the prisoners’ dilemma).

The main part of a participative simulation is the
underlying Multi-Agent System (MAS). It offers a
programmable system to model and simulate complex
behaviors. In a MAS, the simulation developer can define
groups of agents, to each group can be assigned autonomous
or shared tasks, and can be instructed to achieve a specific
goal. The global state of a multi-agent simulation is obtained
as the result of a large set of interactions among the agents.
During the simulation lifespan each agent will be part of
many local interactions, data exchanges, cooperation and
competition activities. Each agent (during its artificial life)
can be driven by a form of artificial intelligence or by a
human being. In both cases, the agents will play following
their capabilitics, in example their past knowledge, the
ability to explore the environment and the available
activities.

In this scenario, the wireless technologies enable the
participation of nomadic users, cxtending the access to
MAS:s also to users with mobile devices. The first and more
direct consequence of the wireless technology is that human
users can remotely control agents that are within a MAS,
anytime and anywhere. Furthermore, less immediate and
more complex consequences can be foreseen. Despite of a
human being, the player could be a remote MAS that
controls one or more external agents. In this case the
interaction would be between MASs. Using wircless
connectivity, would it be possible to imagine that a MAS
running on a mobile device would connect to another MAS,
to take control of a part of its agents?

The main goal of this work is to demonstrate that this
scenario is realistic, and to propose a new framework based
on the Netlogo environment. Following this approach,
different MASs implemented by Netlogo will be able to
interact together, based on their proximity, and to affect the
evolution of the whole system. In this case, we are not
proposing a new game based on MASs, but a new paradigm
for the creation of games based on mobile virtual worlds.

Following this approach, the evolution of the game is
determined by new factors, as the proximity of gamers and
the consequent random interactions between MASs. In our
vision, this work is the first step in the direction of a new
class of mobile games.

The next Section explains why it is important to give the
possibility to remotely drive agents. The third Section shows
similarities and differences with computer entertainment
applications. The fourth illustrates the system architecture.
The fifth suggests a case study based on Netlogo. Finally,
we conclude this paper with some final remarks and future
works.

REMOTE DRIVEN AGENTS

A MAS allows to represent, mimic and study complex
systems where different components interact among them in
a cooperative or competitive way. It promotes the
understanding of a complex system by means of the
description of its rules and the representation of its
evolution. Modern MASs are based on 2D raster graphical
functionalities (North et al., 2006; SWARM, 2007;
Wilensky, 2007) that, in many cases, arc inadequate for the
human perception. Only lately, the introduction of recent 3D
rendering engines (Cacciaguerra et al.,, 2004; Wilensky,
2007) has lead to higher expressivity and a better
representativeness of the system (sec Fig. 1). Expressivity
becomes either the capacity to mimic, with a higher detail of
accuracy, a complex system (if this is necessary for the
modeling effort) or to show to the viewer (i.e. the player)
another dimension in order to enhance his comprchension.
Essentially, we are introducing a new dimension to our
discussion, referring either to another physical dimension
(i.e. geometric plane) or an improvement of the
representation (i.c. expressive power). In accordance with
these considerations, we believe that enabling a MAS to
control the agents of another one, would permit to add a new
dimension in the evolution of complex systems. The idea
behind this approach is not related on the opportunity to
decrease the computational load, distributing the agents on
other computers (that is a well known approach in literature,
e.g. Riley, 2003). It refers to the opportunity that two or
more MASs get in touch and interact when are close, that is,
under the wireless coverage area of one or more network
adapters. This translates to a system that can evolve in a
“less deterministic” (i.e. unpredictable) mode: that is because
the interaction duc to the proximity with other systems
would be able to change their evolution. This kind of system
will be by far more unpredictable than a system where all
agents are driven by a single piece of local software (i.e. the
standard approach). In the first case, the movements of
mobile devices are the basis for unplanned meetings and the
availability of a wireless network is the media that allows the
interaction. In this scenario, the unplanned meetings add a
new degrec of indeterminism to the whole system.
Furthermore, following this approach, the game modelers
can define different behaviors of agents when reacting to the
same perception, implementing different course of action. In
any case, all the implementations are bounded by a sct of
game-related roles. For example, in the wolf-sheep predation
model, the sheeps should adopt different strategies to eat the
cabbage and to flee from the wolves. In any case, it is not

28

acceptable that a sheep eats a wolf! In other words, this
means that the freedom in the implementation of a specific
behavior have always to be coherent with the specific role of
the agent. Following this approach, it is possible to mix the
behaviors of agents that have been implemented by different
parties. This will allow to generate combined actions that
can lead to results that are unpredicted and unforeseeable in
the original system. In a causal meeting, the exchange of
behaviors among systems that are hosted on mobile devices,
can be described as the spread of a virus in an epidemiologic
scenario. In this metaphor, the remote system can affect the
behavior of many agents due to the comtact (i.e. the
proximity). A posteriori, if the resulting effect is seen as
interesting then it would be possible to analyze the log files,
in order to trace the interactions and inspect step-by-step the
evolution of the system. In most cases, videogames can be
considered as complex systems. Therefore, very often the
participatory simulation is seen as a form of game-based e-
learning. In this sense, we think that our approach could be a
first step in the direction of a new paradigm for mobile
gaming.

Rotate £ Zoom Move | B¢ 2D als (slower) & Arti-siasing (slowesr) Home § Full Scree

Fig. 1 Display of NetLogo bouncing balls model: 2D and 3D

RELATED WORK

In the state of art of computer entertainment there are
some applications partially based on the proposed paradigm,
such as: Ubiquitous Monster (Kawanishi, 2005), Insectopia

(Peitz et al., 2007), WSNMP (Liu et al., 2006) and Pirates!
(Bjork et al., 2001).

Ubiquitous Monster is a monster collection videogame
where the players wander about the real world to collect
monsters that will be used in the virtual world. In this case,
the transfer of monsters is based on the RFID technology.
Within the game, the behaviors and aptitudes of monsters
are predefined, and they appear in the virtual world in
relation with the geographical position of the player. The
monsters, accommodated in the virtual world running on a
mobile device, can: born, make friends, evolve, breed and
die on the basis of the weather conditions (i.e. lightness,
temperature, pressure, electric potential). All these
conditions arc detected by a sensors nctwork in the arca
where the user is located. For example, given a monster that
uses the light to obtain its vital energy, it is simpler to
capture it in a sunny place instead of a dark zone. Further,
the weather and light conditions change along the day: so, it
is very difficult to find such kind of monster during the
night! In the game, when two players meet, some monsters
may migrate from one virtual world to another, in order to
find more comfortable environments, and therefore to obtain
as much energy as possible. This game promotes the
movement of the players in the real world in order to collect
different monsters and to exchange them, by means of the
migration process. Since that the virtual world is an
ecosystem with limited resources, it is not possible to
capture a great number of monsters. Therefore, the aim of
the game is to reach a sort of instable equilibrium in each
local ccosystem, trying to support the higher possible
number of monsters of different breeds.

Similarly, Insectopia is an insect collection video game
running on mobile phones. Each player must collect and
domesticate his insects. The lifespan is limited to a fixed
amount of time. After a week, each insect dies and the player
must capture a new one. The catch of a specific insect
depends on the type of mobile devices that are in proximity
of the player. This game adopts the Bluctooth technology in
order to discover the different types of mobile devices.

Wireless Sensor Network based Mobile Pet game
(WSNMP) is a game where the user must control domestic
animal by means of a mobile device. In this case, the game is
based on a wireless sensor network. The players can interact
with virtual pets, feeding them, taking care of them and
playing with them. And furthermore, they can share their
pets with others, trade them, watch them compete against
each other, become friends, create offspring and develop a
virtual pet society. The players can also communicate each
other through their shared pets. Each virtual pet is
represented by a sensor node. The sensor nodes are
composed by many sensors; each sensor is an organ of
perception, such as, light detector, smoke detector and
microphone for eye, nose, and ear, respectively.

Pirates! is a videogame where the player takes the role of
a captain pirate sailing his ship in a fantasy archipelago. The
ship permits to transport commodities from the different
islands in order to be sold at markets. Each ship has a crew
and is equipped with cannons. If the captain successfully
completes the missions, then he can sturdier the ship thanks
to the gained rewards. There are some dangers such as
sinking in a battle, meeting cannibals or getting lost during
the exploration of an island. The aim is to find treasures and

29

commodities in each visited island. Islands are different and
provide many kinds of merchandisc and dangers. Further, at
the free harbor it is possible to recruit new crew members, to
repair a ship, to trade for goods and to obtain a new mission.
Each ship is represented by a PDA equipped by an IEEE
802.11 WLAN card and a RF proximity sensor, while the
islands are physical locations in the real world (e.g. different
rooms in a building).

The similarities of these applications with our proposal
arc: 1) the dynamism in the evolution of the ecosystems, and
ii) the migration of agents among mobile devices. The above
introduced applications use sensor networks to detect the
ambient conditions and to get the geographical position.
Differently in our approach, the possible evolutions of the
virtual world are, a priori, less predictable. In fact in the
other approach, the behavior of monsters, insects, pets or
pirates does not change during the lifespan of the game: all
of them arc defined and implemented by the application
developer and can not be changed at runtime.

To the contrary, in our approach, each player can modify
the behavior of its agents (e.g. implementing new actions) in
cach moment, also if the game has already started. The only
imposed limitation is to respect the general rules of the
virtual world that, above, we have called roles. In this way, it
will be impossible to define a priori the evolution of the
simulated ccosystem. A posteriori, it will be very important
to study the evolution of the system, inspecting the different
phases of the evolution and taking care to study emergent
patterns. This analysis will be possible using the log files
that trace the evolution of the whole system.

SYSTEM ARCHITECTURE

In our vision, we have a set of virtual worlds, each one
runs on a different mobile device. The virtual worlds should
be able to interact together depending on their proximity.
The position of a virtual world is due to the mobile devices
that hosts it. Each virtual world is composed by a set of
agents living in a defined environment. When a virtual world
gets in touch with another one, it can take control of a sub-
set of the agents in the other one.

In accord with this vision, we implemented the
Proximate Remotely Driven Agents (PReDA) framework.
PReDA is a prototypal communication framework, based on
the proximity of mobile devices, that is in charge of: i)
discovering devices that host a PReDA virtual world; ii)
managing the communication among PReDA virtual worlds
and iii) enabling the remote control of agents.

Given such requirements, the proposed architecture is
based on ultra-portable notebooks, tablet PCs and PDAs,
Java-enabled and with Bluetooth connectivity. The
discovery phase of PReDA takes advantage of the Bluctooth
discovery mechanism. Each device continuously searches
other devices within its coverage areca. Each time a new
device is detected, an inquiry scan is performed to obtain the
list of available services (i.c. a virtual world based on the
PReDA framework). If the new device is running PReDA,
then it is possible to start a direct communication between
the local and the remote virtual worlds. The communication
is implemented using the Bluetooth Logical Link Control
and Adaptation Protocol (L2CAP). PReDA uses the L2CAP
protocol to pair the local and the remote virtual worlds. Each

instance of PReDA verifies if there are remotely controllable
agents that are flagged as available. An agent is available if
no other PReDA systems are now controlling it. If at least
one available agent is found then the local virtual world will
send a set of commands to a subset of them. Due to the
nomadic nature of the hosting devices, only a limited amount
of time (in order of a few seconds) would be available for
the interactions among virtual worlds. Therefore, in a short
time frame, it is possible to transfer a single command or a
complex behavior (in form of a set of actions). In the
following section we will introduce a prototypal
implementation of PReDA based on Netlogo.

A CASE STUDY WITH NETLOGO

NetLogo (Wilensky, 2007) is a programmable tool that
allows to simulate the evolution of complex systems. This
tool permits to the modeler to give instructions to a high
number of independent agents all operating concurrently,
either in a cooperative way or in a competitive one.
Therefore, it promotes the exploration of the connection
between the micro-level behavior of individuals and the
macro-level patterns that emerge from the interaction of
these individuals. Further, the users can “open simulations”
(i.e. explore the internal state), can play with them, in order
to explore their evolution under various conditions and can
crecatc their own models (i.e. implementing new
functionalities). This tool is simple enough that any user can
casily run simulations or even implement the behavior of his
agents. The possibility to see the code of other models and to
access an clevated number of high-level primitives
promotes the reuse of the code, allowing everyone to
implement its own routines. The simple approach, that can
be used to program the tool, does not reduce the expressive
power of the models that can be simulated, making it an
interesting tool for many research fields (i.e. the simulation
of many natural and social phenomena). Moreover, the
Netlogo community is very active and has made a large
number of models frecly available, models that are related to
many fields as: biology and medicine, physics and
chemistry, mathematics and computer science, economics
and social psychology. This wide adoption demonstrates that
Netlogo is very casy to use and that can cope with many
different topics and problems. One of the most interesting
features (introduced in version 2.0) is the “‘extensions”
module, it allows the developers to introduce new
commands and reporters (Wilensky, 2007) that can be used
inside the Netlogo environment. The idea behind this
module is to extend the primitives by means of Java code,
that is archived in a jar file. In this way, it is possible to
write high-level functions but also to integrate the Netlogo
environment within other projects! In accord with this
consideration, we have integrated the Netlogo environment
within a new framework. The goal of this new framework is
to support communication among many Netlogo
environments that are executed on different devices. The
framework exploits the Netlogo extensions module to obtain
this result. The framework has to provide two main
functionalities: 1) it must supply an access point to cach local
instance of the environment by means of an agent discovery
system; ii) it must support the exchange of commands
among different mobile devices. The communication

30

between different environments needs a protocol that
permits to exchange commands (as string of characters) from
different worlds (e.g. Netlogo instances). Given the “A
world” and the “B world”, that are different environments
accommodated on two mobile devices, our mechanism
provides a form of addressing (i.c. to make the environments
reachable) and a communication protocol.

In detail, Netlogo classifies agents into two types:
passive and active. The virtual world is divided in square
picces of ground, cach picce is called “patch”. Netlogo
classifies the patches as passive agents. These agents can be
affected only by active ones and by the Observer (that is the
Demiurge of the world). The active agents (called turtles)
can interact among them and with the patches.

In the following, we report some details about the
implementation of our framework. Firstly, we report a piece
of code from a Netlogo model. It is worth noting that the
cxample contains an include of the PReDAextension.jar
archive. This archive provides the basic functionalities for
communication and discovery. In this way, the developer
can directly use its own Java routines inside Netlogo. Each
Netlogo model begins with the pressure of a button that
starts the sefup of the ecosystem, initializing the agents and
the environment variables. In particular, in the code example
reported below, after the initial setup, the setup bootstraps
the discovery system specifying which agents can be
remotely controlled. In detail, the rmt-crt-turtles and rmt-crt-
patches routines report the set of turtles and patches that will
be remotely controllable. By means of the definition of these
routines, the user can determine which agents can be
remotely controllable while leaving untouched the others.
The startCommFrmwrk initializes the communication
framework. The GO button runs the body of a Netlogo
model. The ask construct is used to specify commands that
are to be run by a set of agents. The run routine allows an
agent to interpret the given string as a sequence of one or
more NetLogo commands and runs them. The routine
recvmsg that has been declared inside PReDAextension.jar
receives a message, that is a string sent by a remote Netlogo
environment accommodated on a mobile device. Obviously,
this means that the remote Netlogo environment will use the
sendmsg routing (also in this case defined in
PReDAextension.jar) to send messages, that are strings
dispatched to one or more remotely controlled agents.

In last part of the code, it is possible to analyze the
approach used in the implementation of our framework. In
the first case (see Example 1), the received string will
contain the number of steps that a set of turtles must cover.
In the second case (see Example 2) is defined the new color
of a sct of patches. For example, if the string returned by
recvmsg is “3”, then all turtles will be moved straight of 3
steps in their direction, while, if it is “yellow” then all
patches will become yellow colored.

It is worth noting that in the third casc (scec Example 3
and Figure 2), the string directly reports a sequence of
commands, respectively: 1) “ask turtles with color = red [fd
3] - all red turtles will be moved straight on their direction
of 3 steps, while, ii) “ask patches with pcolor = yellow [set
energy 0] - the energy level of all yellow patches will be
decreased to zero.

-

o

§

Fig. 2 NetLogo Wolf — Sheep Predation

__extensions["PReDAextension. jar"]
to setup

setup-turtles
setup-patches
set clock O

Discovery(rmt-ctr-turtles, rmt-ctr-patches)
startCommFrmwrk
end

to GO

ask turtles

run fd recvmsg ;; (Example 1)

ask patches

run set pcolor recvmsg ;; (Example 2)

run recvmsg ;; (Example 3)

set clock clock + 1
end

CONCLUSIONS AND FUTURE WORK

In this work, we have introduced the Proximate
Remotely Driven Agents (PReDA) framework. PReDA is a
prototypal framework based on the Netlogo environment and
its “Extensions” module. PReDA exploits the Bluetooth
connectivity in order to discover other PReDA copies
running on top of mobile devices. Each mobile device runs a
local virtual world composed by an environment and a set of
agents. In this way, the PReDA-based virtual worlds running
in each mobile device can interact together, taking control of
a part of the remote agents. Since cach player can casy
modify the behavior of agents and since the game is subject
to random interactions, the evolution of the game will result
very unpredictable.

As a future work, we aim to build a rcal game based on
the proposed paradigm. Furthermore, we plan to develop a

31

light version of the PReDA framework that will run on Java-
cnabled mobile phones.

Another direction of this research will involve the study
of the behavior of nomadic users and the impact of the
proposed paradigm on social sciences.

REFERENCES

Bjork S., Falk J., Hansson R., Ljungstrand P., 2001 Pirates! - Using
the Physical World as a Game Board. in proc. of Human-
Computer Interaction conference (July), Tokyo, Japan.

Cacciaguerra S., Mirri S., Pracucci M., Salomoni P., 2006.
“Wandering about the City, Multi-Playing a Game” in proc. of
IEEE International Workshop on NIME (January), Las Vegas
(NV-USA).

Cacciaguerra S., Roccetti M., Roffilli M. Lomi, A, 2004. “Wirceless
Software Architecture for Fast 3D Rendering of Agent-Based
Multimedia Simulations on Portable Devices” in Proc. of the
First Consumer Communications and Networking Conference
(CCNC), IEEE Communications Socicety (January), Las Vegas
(NV-USA)..

Chen H., Finin T., 2003 “An Ontology for a Context Aware

Pervasive Computing Environment”, in Proc. of [JCAI
Workshop on Ontologies and Distributed Systems.
Colella V., Borovoy R., Resnick M., 1998 “Participatory

Simulations: Using Computational Objects to Learn about
Dynamic Systems” in Proc. of Computer Human Interface
Conference, (April) Los Angeles (USA - CA).

Kanter T. G., 2003 “Attaching Context-Aware Services to Moving
Locations” in IEEE Internet Computing Magazine,(March-
April) Vol. 7, N. 2.

Kawanishi N, Kawahara Y., Morikawa H., Aoyama T., 2005
“Prototyping a Recal-World-Oriented Monster-Collection
Game” in Proc. of 5th International Workshop on Smart
Appliances and Wearable Computing, (June) Columbus,(USA -
OH).

Linden Lab 2007, “Secon Life”, http://www.secondlife.com/.

Liu L., e Ma, H., 2006 “Wirecless Sensor Network Based Mobile
Pet Game”, In Proc. of NetGames, (October), Singapore.

North M.J.,, Collier N.T., Vos J.R., 2006 “Experiences Creating
Three Implementations of the Repast Agent Modeling Toolkit”,
in ACM Transactions on Modeling and Computer Simulation,
Vol. 16, Issue 1, pp. 1-25, (Jannuary), New York (USA - NW).

Peitz J., Saarenpdd H., Bjork S., 2007 “Insectopia - Exploring
Pervasive Games through Technology already Pervasively
Available” in Proc. of Advanced in Computer Entertainement
Technology, (June) Salisburg (Austria).

Riley P., 2003 “SPADES: System for Parallel Agent Discrete Event
Simulation”, in Al Magazine.

Terna P., 2003 “Decision making and enterprise simulation with
JES and Swarm.”, in Proc. of the Seventh Annual Swarm
Users/Researchers Conference (April), Notre Dame, Indiana
(USA -IN).

Swarm Development Group. 2007 “Swarm” http://www.swarm.org
Swarm Development Group, Santa Fe (USA — NM).

Wilensky U., 2007 “NetLogo” http://ccl.northwestern.edu/netlogo/.
Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL.

Wilensky U, Stroup W, 2007 “HubNet”
http://ccl.northwestern.cdu/netlogo/hubnet.html. Center for
Connected Learning and Computer-Based Modeling,
Northwestern University. Evanston, IL.

JOURNEY FROM THE MAGIC CIRCLE TO THE THERAPEUTIC GAMEPLAY
EXPERIENCE

Balazs Jozsa

Institute of Psychology,
University of Debrecen
4032 Egyctem tér 1. Debrecen, Hungary
E-mail: jozsabalazs@yahoo.co.uk

KEYWORDS
player’s experience, presence, avatar, methodology

ABSTRACT

This paper combines several theories which try to define
player’s The three component player’s
experience model is unique in that way, that it gives a
complex and full explanation how player’s experiences
come into exist. As avatar makes interaction with game
elements, game events arise and its interpretation has affect
on player’s emotion and opinion creating an experience.
This experience will influence the avatar’s behaviour.
Series of player’s experiences merged into gameplay
experience, which can be analysed by content analysis and
Experiential Analysis Technique.

experience.

INTRODUCTION

Researching player’s experience is quite a new field of
game researching, but its root date back to the past. In this
paper the question I am trying to answer is: What are the
components of player’s experience, how they establish and
how can we examine them?

Previous theories

According to Huizinga (1955) games arc onc of the
building stone of our society. If we observed a playing
animal or a human, we would find that their behaviour is
very similar to their everyday activity. So player’s game
experience - in my opinion - could be very similar to
player’s everyday experiences. Whereas Huizinga said,
games have their own space, time and rules, they are not in
connection with everyday life. This is what game research
called magic circle. Later, number of researchers attacked
this opinion (e.g. Callois 1961) but they also did not
mention what kind of experiences player could go through
during a game session.

If the magic circle was traversable, games would have long
term effect on players, so it would be worthy to plan
player’s experience in advance. There are several theories

32

trying to uncover components, which can influence player’s
experiences. One type of theories underlines immersion or
presence. Ermi and Miyrd (2005) set up a model called
SCI to explain how player’s experiences come into exist. It
has three components: Sensory Immersion,
Challenge-based immersion and Imaginative immersion.
Later, Arsenault (2005) modified this model, and used
Systemic immersion instead of Challenge-based immersion
and Fictional immersion instead of Imaginative immersion
(SSF-model). Despite its complexity the model
distinguishes only three types of experience: sensorial-,
systemic- and fictional type.

Other theories’ main concept is gameflow as gamec
researchers use it. Flow is a state of consciousness that is
sometimes experienced by people who are deeply involved
in an enjoyable activity (Pace, 2004). It has 8 components
which existence is necessary establishing flow
(Csikszentmihalyi 1990). Later Novak at al. (2000, in.
Fernandez 2007) criticized GameFlow theory that some of
its base components just consequences of flow and have no
any role in establishing it. GameFlow model tells how flow
could come into exist - which is a complex experience-
pack. So this model is not useful to distinguish different
type of experience.

Other theories emphasize player’s motivation and its role
in establishing experience. For example Mitchell’s
Situational Interest model (1993) separates catch and hold
triggering conditions. He said computer games are catch
conditions, which can capture player’s attention but cannot
hold it. I am not agree with Mitchell, I think computer
games could provide both catch and hold experiences - that
is why some players replay their favourite game. These are
two different types of experiences.

Fernandez (2007) tried to explain emotional aspect of
player’s experience. She create the Game Experience
Model to describe elements of digital game experiences
especially elements that determinate fun experience.
According to this model, as player playing with a computer
game it is elicit a cognitive and emotional response from
him/her and these two components are responsible for both
fun experiences and the evaluation of the game.

main

Bobko et al. (1984) asked people to compare ten computer
games pairwise how similar are they. Multidimensional
scaling showed 3 underlying dimensions: destructiveness,
dimensionality and graphic quality. However it is a quite
acceptable model it interpreted only 30% of the result.

PLAYER’S EXPERIENCE

According to Fernandez (2007) fun is the main result of
player’s experience. I think fun is just one type of player’s
experience. One of my interviewee said about a computer
game: “it is possible to learn a lot from games”. 1 think
players have not got main experience, they have different
kind of experiences (e.g. fun, growing knowledge, aesthetic
experience...etc.).

Intentions of

Game the designers B harware

element possibiliti
H es

Game
R Computer
.’
 JL

(and its
capabilities)

| PHYSICAL REALITY

If we try to understand player’s experience, we have to
make a model how experiences come into exist. At a game
situation there are two main components: the game and the
player. Computer is the transmitter medium between game
and player. Games have elements and interface, players
have opinions and emotions. This is a very simple model
and every element in it can be taken to further pieces. Every
game has an avatar (a special game clement mostly
controlled by the player): hero or heroine, a car driver, a
mayor...etc. Even Tetris has one: the force with which I can
manipulate tetris elements. So avatar is the player’s
representation in the game (reality). Avatar is a game
element with which a player can identify his/herself. Figure
1. shows components of player’s experience.

Game
elements

Figure 1: Components of player’s experience

Process of player’s experience

There are two different realities: avatar is in the game
reality (virtual reality) while player is in the physical
reality. In this model, presence is a function which makes
possible that player indentifies him/herself with the avatar
and that time the two realities become one. According to
this model, player’s experience can establish in that way:
Player starts to play, then with the help of presence, (s)he
becomes one with the avatar. Then avatar makes different
kind of connections with game clement, thus game event
come into exist. Finally, this game event takes effect on
player and creates an experience. So player’s experience is
a subjective interpretation of a game event(s) in the
player’s mind.

Levels of Player’s Experience

The definition of player’s experience has two components:
game events and its subjective interpretation in the player.
Subjective interpretation means game cevents can change
player’s opinion and emotions about what happens. After
player interprets a game event (s)he behaves (with his/her
avatar) according to it (in game reality). This model is
similar to the phenomenon of attitude, which is known from

33

social psychology. We can say player’s experience is a
special attitude which can change from game event to game
event. Attitude has 3 components: cognitive (intellectual),
affective (emotional) and conative (bchaviour). In case of
computer games, behaviour level is in the game reality,
while the other two are in the physical reality. Figure 2
shows the

arrangement of levels and theirs connection with reality.

AY NG o \\\ ~
NN N
NG N N
A NS
NN SN
N = ver's opintons, evulations {cognition i&g@gr}\ N N
<
N o . . N
\i\ . Mayer's amotion [sffestive lavar] N N
v : | N ~
\\\ Jodeglgame sndwadd sty —————-— a
N N
h : o N
N\ Avatar’s action {behaviour layer) N

Figure 2: Three Levels of player’s experience and their
Connection with reality

Cognitive level means what are my thoughts about the
game, about my avatar...etc. Affective level means my
emotions about game events, about my avatar and its
action...ctc. Conative level connects to avatar because
avatar ‘“does things” (walk, steer...etc.). Let’s see an

example: I moect with a dragon fovara mkes coneciion
switds ¢ pamie element). 1 think T am
to defeat that dragon and I feel myself in L
attack {wame evends the dragon. But dragon wemnnd me 2 lof
foame s recction fo ny hehavious). 1 think T am

to defeat that dragon and I am
starting to . Finally I run away
cmviavatar hehovieur). Fernandez (2007) also stressed, that
players have cognitive and emotional responses but she did
not define the way how they relate back on gameplay. In
my model player’s cognitive and emotional responses
manifesting in the behaviour of the avatar. Figure 3. shows
how components of player’s experience connect to each
other.

Figure 3: Relations of the three levels of player’s
experience

Gameplay Experience

The combination of the players’ personality and game
events results lots of different player’s experience.
Gameplay experience is a series (or combinations) of
player’s experiences during a gameplay - like an exciting
race in Need for Speed. This experience consist series (or
combinations) of game events (overtakings, drifts).

If I ask you to tell your opinion about a concrete game, you

will not speak about your gameplay experience. Gameplay
experience consists cognitive, emotional and behavioural
level at the same time. If you mention some remarkable
moments from the game, that will be a gameplay
experience. It is possible that every game, game genres or
even players have their own map of gameplay experience.

DISCUSSION—
EXPERIENCES

METHODS FOR EXAMINING GAMEPLAY

Resecarching player’s experience is very difficult task,
because if a rescarcher wants to know what players
experiencing during a game session, (s)he keeps player
from experiencing anything. Content analysis is good for
research this issue by ask players about their remarkable
memories. With this method gameplay experiences can take
to pieces. These will be player’s experiences. After coding
them we have to identify its cognitive, affective and
conative level and theirs connection with game elements.
EAT (Experiential Analysis Technique, Sheehan et al.
1978) can be useful in it. Using EAT, subjects are asked to
play with a computer game. A camera records game cvents

34

and players’ behaviour at the same time. After it a
questioner asks subjects to play the recorded video,
comment it, stop it whenever they want and explain what is
happening at that moment. Theirs explanations will be
analysed the same way as has been mentioned at content
analysis.

Although this model is preliminary yet, If we connected
game events to player’s experiences, some day we would
be able to create (or integrate) healing/therapeutic
experiences into a computer game. Finally, we will be able
not just play with games, but use them in favour of a good
matter.

BIBLIOGRAPHY

Arsenault, D. 2005. “Dark Waters: Spotlight on immersion.” In
Proceedings of Game-On North America 2005 Conference.
http//www te-ludophile. comyFiles/Arsenault%e20-%20Dark
0Waters.pdf, 2007. 11. 03.
Bobko, D., Bobko D.J. and Davis M.A. 1984. “Multidimensional
scaling of video games.” In Human Factors 26, No. 4, 477-482.
Callois, R. 1961. Man, play and games (M. Barash, Trans.). Free
Press of Glencoe, New York

Csikszentmihalyi, M. 1990. Flow: The Psychology of Optimal
Experience. HarperPerennial, New York

Ermi, L. and F. Miyrd. 2005. “Fundamental Components of the

Gameplay Experience: Analysing Immersion.” In Proceedings
of DIGRA 2005 Conference: Changing Views — Worlds in Play.
htip//www.gamesconiorence. org/digral0s/view
abstract.php?id=267, 2007.09.20.

Fernandez, A. 2007. “Fun Experience with Digital Games: a
Model Proposition.” In Proceedings of Interact 2007 Workshop.
httpsAwww fun-of-use.org/interact200 7/ papers/
FunExperienceWithDigitalGames.pdf, 2008.11.03.

Huizinga, J. (1955). Homo ludens: A study of the play element in
culture. Beacon Press, Boston

Mitchell, M. 1993. “Situational interest: Its multifaceted structure
in the secondary school mathematics classroom,” In Journal of
Educational Psychology 85, No. 3, 424-436.

Pace, S. 2004. “A grounded theory of the flow experiences of
Web wusers.” In International Journal of Human-Computer
Studies 60, 327-363.

Sheehan, P.W., McConkey, K.M. and Cross, D. 1978.
“Experiential analysis of hypnosis: Some new observations on

hypnotic phenomena.” In Journal of abnormal psychology, No.
87, 570-573.

BIOGRAPHY

BALAZS JOZSA was born in Debrecen, Hungary.
Hungary and went to the University of Debrecen. First he
studied as a programmer mathematician, then he was
admitted to psychology and he obtained his degree in 2005.
He has made two researches in relation with computer
games: one was about absorption effects on computer game
playing; second one (his final thesis) was about computer
game playing situation and its relation with hypnosis and
meditation. Now he is a PhD student at the same university.
His rescarch arca is gameplay ecxperiences, identifying
player’s experience and map of digital game experiences.

GAME
Al

36

DATA ANALYSIS FOR GHOST AI CREATION
IN COMMERCIAL FIGHTING GAMES

Worapoj Thunputtarakul and Vishnu Kotrajaras
Department of Computer Enginecring
Chulalongkorn University Bangkok Thailand
worapoj.t@student.chula.ac.th, vishnu@cp.eng.chula.ac.th

KEYWORDS: Ghost Al Fighting Game, Casc basc
ABSTRACT

In this paper we present a simple, rapid and efficient
method for creating a ghost Al, an Artificial Intelligence
that can imitate playing styles of players in fighting games.
The created ghost Al can perform combination actions and
make a decision about any movement in a similar fashion to
a player it is copying. We scan a player’s battle data, and
then create situation-action pair cases for its corresponding
ghost Al to use in actual battles. A ghost Al can be created
and run swiftly, using small amounts of memory, making it
suitable for console games. Our method is general enough
to be used in most 2D and 3D fighting games. We carried
out our experiment on Street Fighter Zero 3, one of the
most well crafted fighting games, using AI-TEM testbed
engine.

1. INTRODUCTION

1.1 Ghost Al

In fighting games there have been various attempts at
ghost Als (Als that imitate players). Virtua Fighter 4
allowed players to train computer Als to fight like them.
Such ghosts could then be assigned to fight another player.
However, feedback from players was not good at the time
the game was released because it was hard to train their
ghosts case by case. But in recent years, a ghost Al system
has been used once more, in Tekken5: Dark resurrection.
This time many things have been changed. Players do not
need to train their ghosts in a training mode. They just play
the game normally and the system will mechanically create
their ghosts. This method makes fighting games more
interesting because there will be many fighting styles for
computer controlled opponents. Despite the fact that the
ghost Al system is being acknowledged as the definitive
Al for fighting games, the method for ghost Al creation
remains undisclosed. In this paper, we propose a method
for ghost Al creation using data obtained from game
memory. Our method can be used in most fighting games.
It also requires very small amounts of memory and
therefore is suitable for console games.

1.2 Street Fighter Zero3 (SFZ3)

Strect Fighter Zero3 is regarded as onc of the best fighting
games of all times. In a fighting game, a player must select
one character from many characters, and fight one by one

with an opponent character (another player or computer Al).

37

A character can perform normal action such as move,
crouch, jump, guard, punch or kick. There are also special
attacks, such as firing bullets or executing a powerful flying
punch. These special actions can be performed when a
player presses a correct sequence of commands at the right
time. A player must choose to perform actions in various
situations based on the status of his character and opponent
character. Getting into action with SFZ3 requires only a
few minutes of tutorial. Nevertheless, the game has many
ways to play a single character. For that reason, we have
chosen SFZ3 as our game for experimenting with the ghost
Al

1.3 Testbed Environment

For the reliability of experimental results, game researchers
may want to test their Al on real commercial game
environments (Graepel et al 2004). But such environments
are scarcely available. Results obtained from a researcher
created game may not be convincing enough to warrant an
actual use of discovered techniques in genuine games. Some
researchers used mod of a commercial game (Spronck et al
2004), or a clone game (Ponsen et al 2005). Some
developed test games on their own (Kendall and Kristian
2004) or used a testbed (Bailey and Katchabaw 2005). But
none of those methods fit our experimental goal.
(Thunputtarakul and Kotrajaras 2006) proposed a system to
test Al modules in real commercial games without using any
sourcc code. They implemented a testbed from
VisualboyAdvance (VBA), a Nintendo GameboyAdvance
emulator. The testbed was called AI-TEM. An overview of
AI-TEM is presented in figure 1 and its workflow diagram
is presented in figure 2. By accessing the memory pool of
the emulator, AI-TEM users are able to know states of the
game at any particular moment. For fighting games, a state
can consist of characters’ positions, current animation
frames, health points, etc. Users can insert their AT modules,
in the form of C/C++ code or python script, into the testbed
to control the game characters by providing controller
signals. Our work uses AI-TEM as its testbed.

2. OUR APPROACH FOR CREATING GHOST Al

The main concept of our ghost Al creation is case based Al
construction. We extracted a player character’s reaction in
various situations from battle log data created while playing,
then produced situation-action pairs for the ghost of that
character. Our experiment was made using SFZ3 training

mode with character Ryu versus Ryu. AI-TEM was
modified to suit our experiment. The ghost Al creation
processes are displayed in figure 3. The following
subsections describe each component in the process.

| Menu Control |

\\\\\\\§ Python e e Game ROM
) Interface State State
Custom Normalize | Observer E mu Iator
Al Core
Module > Input Controller (VBA)

Figure 1: AI-TEM Testbed System Overview.
The Light Blue Modules are VBA Original Modules.

Game State Observer
1P Position X
Address: 0x20007C2
Value(16 bits): 002C(h)

002C = 44
820007C2 32
Game state Normalizer o2
Normalize by subtract 44 8280687E2
1P Position X = 0 92@8067F2
Signal
A| (update) A| (run loop) PRESS_A
Charl.m posX =0
Sharacter Glase delta = abs(char1.m_posX —
G char2.m_posX); Input
Lf (delta <= 10) Controller
m:animation:) / do attack. .. press A butlton Module

Figure 2: Workflow Diagram of AI-TEM System in SFZ3.

2.1 Obtaining Player Battle Log Data

First, while a player is playing, game states data need to be
dumped from memory onto a battle log file. The data are
used to identify each case in the case based Al system. The
data consist of characters animation, characters positions in
x and y axes, characters health points, characters bullet
positions in x axes, damage that characters obtain in that
frame, player character’s facing direction and the corner
status of characters. Recorded battle log data is in the
following form:

Frame Data no: 00001
P1:Ani=002,X=120,Y=40,bullet=0, damage=0, HP=90
P2:Ani=002,X=240,Y=40,bullet=0, damage=0, HP=90

Frame Data no: 00720
P1:Ani=016,X=150,Y=40,bullet=0,damage=0, HP=30
P2:Ani=030,X=560,Y=40,bullet=0, damage=5, HP=20

These criteria can change depending on game or user.
Creating the ghost Al while the game is running without
creating the battle log file is possible if complete
information about the game mechanic is known (such as
short or shared animation frame, that will be described in
section 2.3). For SFZ3 on AI-TEM, we did not have such
information. Therefore we had to use the log file.

2.2 Animation Set Database

An animation set database is used for identifying whether a
character animation frame belongs to an animation set. An
example is illustrated in Figure 4. Ryu animation frame

38

number 0 to 6 belong to animation set ID 0, which
represents Ryu’s standing animation, while frame number
707 to 713 belong to Ryu’s medium punch action, set ID 15.
Together with the battle log file, the animation sets are used
to create situation-action pair cases. In our experiment, we
manually defined this database. There are totally 912
frames for character Ryu. This seems daunting. However, it
is relatively casy for a game company to do because any
game development team usually has access to animation
data.

Ghost Al Creator

Scan & Mark Short

Obtain Animation Animation
Battle Log Set
Data Database| Deep Scan

R’ Jz Scan & Mark
5 o Exception Animation

Scan Batltle Log Data
{Create Ghost Al)

Scan Changed

r\z Animation

Encrvption

Figure 3: Ghost Al Creation Processes.

Animation Set 15: Medium Punch

Figure 4: Example of Animation Set Database.

2.3 Scanning Battle Log Data

This process scans through every frame of a player’s battle
log data, trying to find which situation the player decided to
begin his new animation set. For example, in situation 4
playerl is standing on the ground at position x=120 and
player2 approaches playerl by jumping in the air at position
x=150, both characters have full health bars and no bullets.
Playerl decides to perform the special anti-air attack called
Shoryuken punch. In short, the following situation-action
pair will eventually be created:

if (Situation == A) do SHORYUKEN;

Now we look at this process in more detail. The process
contains the following subtasks:

2.3.1 Finding Short Animation

Short animation means any animation that occurs for a very
short period of time. It takes place mostly when a character
is changing over from any standing animation loop to
crouching animation loop. See an example animation time
frame in figure 5. In figure 5, our character is standing then
intends to do a crouching kick, but the crouching kick is not
performed immediately. Before the crouching kick is
carried out, a short period of moving forward and crouching
animation is performed. This can happen due to the player
not inputting the right command. For a crouching kick to be
performed correctly without any prefix animation, the
player needs to press down and kick at the same time on his
control pad. In figure 5, the player presses down before

kick and also unintentionally presses forward at the same
time as down. Therefore ecxtra animation is triggered.
Nevertheless, the crouching kick is eventually performed
and the prefix animation is so fast a human eye cannot see.
We cannot avoid such minor mistakes made by players.

In our ghost Al model, detected animation frames tell us
about a player’s intention. Therefore, having the short
animation taking place before the intended animation can
misinform us. We must either identify a player’s intention
from the overall animation or get rid of the short animation
before processing. In our experiment, we chose to do the
latter.

All battle log data need to be scanned to find which
animation set appears unusually brief, then that set is
marked. Marked animation will not be considered when
creating the Al. For a set of animation to be considered
short, it depends on the set. In our experiment with SFZ3,
short animation was no longer than 6 frames for most of the
animation sets. The only exception was the crouching
animation, of which short animation was no longer than 14
frames because changing from standing to crouching
already took 8 frames.

Example time frame (1f = 1/60 sec

L.l2]2]2]2[2]3 222

.

[.12]2]2]2[2[m[m][2]2]2]212] |

I:I Stand I:I Move Forward Crouch Crouch Kick Heavy

Figure 5: Short Animation Marking.

2.3.2 Deep Scanning
Some animation frames arc shared between many
animation sets. In such case, scanning ahead becomes
necessary in order to identify the correct animation set. For
example, jump straight, jump forward and jump backward
begin with the same animation frames at the beginning.
With the first frame obtained, we can only conclude that the
character is doing an anonymous jump. With further
scanning, we then know which jump the player intends to
do and can go back to change from an anonymous jump to
a specific jump. This step can be omitted if the controller
signal can be completely analyzed. But this is not always
the case.
2.3.3 Exception Animation Sets
Some animation sets should be omitted from our case base
because they do not take place under players’ control.
Obvious examples are various damage animation sets. They
occur as the results of opponent attacks. This type of
animation that appears in the battle log data will be marked
here.
2.3.4 Scanning Changed Animation
This step is the corc of our ghost Al creation. After
matching all animation frames to their corresponding
animation sets and marking useless animation, it is time to
scan the battle log data once more to find the situation that
causes the player character to change its animation. Such
situation and the changed animation set that it causes will
be paired to create a situation-action casc.

An example is shown in figure 6, where a player executes
a crouching heavy kick. In 7"-8" frame, our character
changes its animation set from standing to moving forward.

39

But moving forward lasts only 2 frames so it is a short
animation. It is marked uscless and the next animation to
consider will be crouching. However, this crouching is also
a short animation and therefore marked useless (a proper
crouching must last 14 frames or more). As a result, the
next animation (crouching heavy kick) will be taken into
account. The crouching heavy kick does not fit the useless
animation category, so it is regarded as the changed
animation set. Therefore the (situation at 7™ frame,
crouching heavy kick) is added to the case based Al

crouch

crouch kick heavy

Figure 6: Scan Animation Change.

2.3.5 Situation Encryption

If the game needs to compare ten or more criteria
(animation, position, bullet, etc.) to judge whether the
current situation in the game is the same as any existing
condition in our situation-action database, it will be a waste
of processing power. Any game situation should be defined
in simple form for easy comparison and discovery. We
propose a method to encrypt a fighting game state situation
into a 32-bit integer (capable of holding 4,294,967,296
values). The bits can be divided into small 1-8bits sections
as shown in table 1.

Table 1: Detail of Situation Encryption.
Bit no. | nBits [nValues Meanings
1-8 8 256 | Player character animation set ID. [As said in section 2.2]
9-12 4 16 | Delta position in X axis. [Divide distance into 9 ranges]
13-14 2 4 | Delta position in Y axis. [Divide distance into 4 ranges]
15-18 4 16 | Enemy character state. [Group into 6 stages: Normal,
Attacking, Blocking, Dizzy, Damaged, Invulnerable]
19 1 2 | Character’s bullet state. [Have or not]
20-22 3 8 | Delta position in X axis between player character and
enemy’s bullet. [Divide distance into 8 ranges]
23-29 7 128 | Damage value that enemy got in that frame (use for
combination attack decision).
30 1 2 | Player character side. [Left or Right]
31 1 2 | Is player at corner. [Yes or No]
32 1 2 | Is enemy at corner. [Yes or No]

There are ten criteria that we use for identifying the game
state (ten rows in tablel). Bit 1 to 8 store the animation set
ID of the action that the player character performs in that
frame situation. The animation set value comes from the
animation set database described in section 2.2. When the
player character is in any normal standing frame (frame id 0
to 6), the valuc in the first 8 bit will be 0. As a bricf
example, the situation that two characters are standing at
the beginning of a battle will be encrypted as “1,792”.
Every criterion for this particular scene will have 0 as its
value, except the delta position in the x axis, which will
have its value equal to 7 due to the distance between
characters at the beginning of battle (150 units). Details of
this encryption can be changed to match other games or
other platforms.

2.4 Creating Ghost Al File

When the scanning process discovers that animation set
change takes place, the situation in the frame before that
discovered frame is encrypted into 32-bit data (integer) by
the process in section 2.3.5. Its corresponding case base can
now be created by combining the situation ID (32-bit
situation encryption result) with its response action list. An
example of our case base is shown below.

SituationID: 0000000000

TotalRatio: 03 TotalNextAni: 02
NextAni: Punch-Light-Close Ratio 2
NextAni: Kick-Heavy-Close Ratio 1

SituationID: 2684356352
TotalRatio: 01 TotalNextAni: 01

NextAni: Hadouken Ratio 1

Each case will have situationID for representing each
game situation. TotalRatio is the number of incidents the
player encounters that situation. TotalNextani is the
number of different animation sets that the player performs
when facing that situation. It is followed by the list of those
animation sets and the number of times the player performs
each animation set. The ratio of each animation set and the
total number of sets will be used in response selection while
the ghost Al is actually running.

From above example cases, the player encountered
situation O three times and decided to do a light-punch
twice and a heavy kick once. These cases should be kept in
a data structure that is convenient and fast to insert and find
because we need to know whether the situation is a new
situation that player never encounters (so we can add new
data from scratch), or an old situation that updates the
response action list. In our experiment we chose map of
standard template library (STL), which is a balanced binary
search tree, to store the cases. The tree was written into our
ghost Al file. Using file allows for future modifications of
the knowledge basc.

3. USING GHOST Al

To run the ghost Al, first, the game nceds to load any
required database such as the animation set database. Then
it needs to load the ghost Al case base into some data
structure that allows quick finding and matching. A new
case is never inserted while running the ghost Al

From the data in section 2.4, the game first loads all
cases into the map. When the situationip 0 takes place,
the case that has situationIp 0 in the map is searched. It
will be found and returned. That case has a total ratio of 3
and has two next animations (light-punch with ratio 2 and
heavy-kick with ratio 1). The game then randomly selects
one of these actions corresponding to the ratio value and
sends a command to perform that action.

When a ghost Al is running, if used with a suitable data
structure such as a balanced binary search tree, searching
any case is guaranteed to use O(log n) amount of time
(when n is the number of cases). A ghost Al with one
thousand cases should find a result in the tenth search. Each
casc based data uses approximately 40 bytes of memory.

40

Therefore, a thousand-case ghost requires only 40KB of
memory. In short, creating and running our ghost Al docs
not slow down the game or consume much memory at all.

4. VERIFYING METHOD AND RESULTS

The best way to evaluate a ghost AI’s similarity to its
creator should be: letting its creator verify with his own
eyes. But sometimes, people can make incorrect judgments,
forgetting even their own playing styles. Therefore we
designed a measurable method for evaluating the ghost Al

4.1 The Experiment

We appointed thirty two SFZ3 players and let them play the
game for approximately 2 to 10 minutes. We recorded their
game events in VMV file format (recording the beginning
game statc and controller sequence) and created their ghost
Al. After that, we let the player semi-play the game again
two more times, while their ghost Al was playing and while
their own playing movie was playing. The term semi-play
means players see their ghosts or their own movies playing
while pressing the controller, imagining that they are
controlling their characters in that situation. We wanted to
compare the controller signals of the ghosts with the
players’ signals. We also wanted to compare the players
against their video.

Controller signals should not be compared frame-by-
frame, because only 1 frame delay (1/60 second) will cause
the rest of the matching process to fail.

Therefore the controller signals need to be normalized
before any comparison can be done. In our approach, we
normalized the signals by splitting the signals into parts.
Each part contained approximately 5 to 15 signals. After
that, we combined all the same signals that appear
continuous into onc signal (when a player presses onc
button normally, it takes approximately 6-8 frame, so it
gives out 6-8 continuous signals). For example, if the
signals are as follows:

Raw ghost signal:
16,16,16,32,32,32,64,64,64,64,128,128,256,256,256
Raw player signal:
l6,16,16,16,16,16,32,32,32,32,64,64,128,128,128

After normalized they will be like these.

Normalized ghost signal: 16,32,64,128,256

Normalized player signal:16,32,64,128,0

It can be seen from the example that if we compare raw
signals directly the result will be 3 of 15 signals match. The
matching result is not correct because identical commands
that are pressed for slightly different amount of time will be
regarded as being different. However, if we compare the
two signals after our normalization, the match is 4 out of 5.

We had two methods for slicing controller signals. In the
first method, we sliced every 15 frames. We had tried
several values and this value gave the best result. Too small
values made the normalization meaningless, while too large
values put more than one signals in the same frame, making
the result unreliable. In the second method, we performed
the slicing every time the signal of the ghost Al or the

player movie changed values, based on the assumption that
matching signals should occur in the same frame time
period as its counterpart. With the second method, we
always had one signal per slicing window. We also gave
score if there were some similarity between controller
signals. For example, if the ghost Al was pressing down-
forward and the player was pressing forward only, we gave
similarity score of 0.5 (50%) to the ghost Al

4.2 Result

The result of our experiment is illustrated in figure 7 and
table 2. Player Player% is the similarity (in percentage)
between each player’s own movie and his actual control
when re-playing the situation in the movie. Ghost
Al Player% compares each ghost Al with its corresponding
player’s re-play. Delta% is the difference between the two
comparisons. Table 2 displays the overall statistical
summary. Delta A and Delta B indicate delta percentage
points between the result of [player’s own movie vs. player]
and [ghost Al vs. player]. Score is the score that the players
evaluate their ghosts’ similarity to their fighting styles
based on their feelings.

Both signal slicing methods gave similar results. But the
second method gave less matching percentage points. This
is likely because the number of signals after the
normalization was less than in the first method. With many
long signals in play, such as idle signals, the first method
scored better because it did not compress long signals into
one signal. For the first method, the average similarity
between ghosts and the players is 26.33%. This may seem
small. But if we look at the comparison between the players
and their own movies, the similarity is only 34.96%. The
ghosts’ performances were therefore very close to players’
performances (75.31% close). Some ghosts even scored
better than their corresponding players.

An average satisfactory score given by players is 72.2%,
which is good. The players thought that the ghosts
sometimes performed more attacks and fewer defenses than
their creators. Some players could not distinguish between
their ghosts and their own movies while semi-playing. (We
did not tell the players which engine was really controlling
the characters).

5. CONCLUSION AND FUTURE WORK

We propose a method and concept for creating ghost Al
without having to know game source code. We used Al-
TEM, an emulator based testbed to provide a commercial
game testing environment. Our concept for ghost Al
creation is general for all fighting games. Using SFZ3,
which is a very well respected commercial game, with its
basic systems being used in almost all fighting games, our
findings arc guaranteced to be applicable to other
commercial games.

Our method produces good results. Ghost Als display
their creators’ playing styles even when the training time is
short. The two-minute average training time we used is
equal to a match time in an average fighting game.

For future experiment we arc interested in exploring
techniques for ghost Al in team based fighting games,
where characters can cooperate. Another interesting future

41

work is developing Al that can adapt and counter an
opponent’s play style.

Controller signals comparison {Slice every 15 frames}

60.00 e Player_Players
55.00 = Ghast Al_Player%
5000 Ty —&— Delta%

4500 > - :

40.00 ey .

Fa ew N

Player
2500 Controller signals comparison {Slice every:slgr als chang‘at; .
e - Player_Playerd :
e ¢ @ GhostALPlayers ...
2% Uif] 0 —a— Delta%
2000 .
T 1500
e
= 10.00 ‘
. 5B
000 ;.*\ e —
s 41 11 151719 'M./M o8 97 g a4
1000

_ Player

W i 5 ¥ §

Figure 7: Players vs. Movies and Players vs. Ghosts.

Table 2: Summary Result of Experiment. A: Slice Every 15
Frames, B: Slice Every Time When Signal Change.

Player |Ghast Al Player |Ghaost Al
Sumrmary [Player A [Flayer A | DeltaA | |PlayerB [Player B | Delta B
Ilin 18.81 13.6 .45 4.37 6.54 518
Iolax 52.84 3518 19.62 2951 18.27 12.03
Average 3496 2633 862 17.93 13.81 412
REFERENCES

Bailey, C. and M. J. Katchabaw. 2005. An Experimental Testbed
to Enable Auto-Dynamic Difficulty in Modern Video Games.
Proceedings of the 2005 GameOn North America Conference.
Montreal, Canada.

Graepel Thore, Ralf Herbrich, Julian Gold. 2004. Learning to fight.
International Conference on Computer Games: Artificial
Intelligence, Design and Education

Kendall Graham, Kristian Spoerer. 2004. Scripting the Game of
Lemmings with a Genetic Algorithm. Proceedings of the 2004
Congress on Evolutionary — Computation, 1EEE Press,
Piscataway, NJ, pp. 117-124

Ponsen Marc J.V., Hector Munoz-Avila, Picter Spronck, and
David W. Aha. 2005. Automatically Acquiring Domain
Knowledge For Adaptive Game Al Using Evolutionary
Learning. Proceedings The Twentieth National Conference on
Artificial Intelligence.

Spronck Pieter, Ida Sprinkhuizen-Juyper, Eric Postma. 2004.
Online Adaptation Of Game Opponent Al With Dynamic
Scripting. International Journal of Intelligent Games and
Simulation, Vol. 3, No. 1, University of Wolverhampton and
EUROSIS, pp. 45-53.

Thunputtarakul Worapoj and Kotrajaras Vishnu. 2006. AI-TEM:
Testing Artificial Intelligence in Commercial Game using
Emulator. 8th CGAMES International Conference on Computer
Games: Al, Animation, Mobile, Educational & Serious Games.
Louisville Kentucky, USA.

TEMPORAL DIFFERENCE CONTROL WITHIN A DYNAMIC ENVIRONMENT

Leo Galway
Darryl Charles
Michaela Black

School of Computing & Information Engineering
University of Ulster at Coleraine
Cromore Road
BT52 ISA

E-mail: {galway-11, dk.charles, mm.black}@ulster.ac.uk

KEYWORDS
Reinforcement Learning, Sarsa, Digital Games, Pac-Man.

ABSTRACT

The aim of this paper is to investigate reinforcement
learning, specifically the use of Temporal Difference
learning methods for the generation of player character
movement, within a dynamic, digital game environment.
Using a variation of the classic arcade game Pac-Man, the
Sarsa and Sarsa(A) algorithms have been utilised for the
control of a Pac-Man game agent, with results indicating that
the chosen learning algorithms are successful in achieving
the underlying objectives of the game agent. However, a
number of trade-offs between the objectives of the game
agent must be made during the selection of parameter values
for the learning algorithms. In the experiments presented
herein, the incorporation of a priori game information into
the chosen learning algorithms has shown an improvement in
the performance of the game agent in terms of both the score
obtained and time taken per game.

INTRODUCTION

Digital games provide an interesting test-bed for machine
learning research due to the characteristically non-
deterministic, dynamic nature of digital game environments
(Spronck 2005). The incorporation of both traditional and
modern Artificial Intelligence (Al) techniques into a game
engine’s Al sub-system (game Al) often result in predictable
and static responses from computer controlled game agents.
In order to generate reactive and believable game agent
behaviours the use of effective machine learning techniques
is required (Charles 2003). However, the effective use of
machine learning algorithms within digital games is
restricted by a number of operational requirements (Galway
et al. 2006). These include ensuring that the computational
time taken for a learning algorithm’s operation is as efficient
as possible (Maes 1995; Spronck 2005; Baekkelund 2006),
the learning algorithm must be able to learn new game agent
behaviours in response to a changing game environment
(Maes 1995; Van Lent and Laird 1999) and any game agent
behaviours learned should be both appropriate within the
context of the underlying game and visible to the player
(Maes 1995; Van Lent and Laird 1999; Spronck 2005;
Baekkelund 2006). By contrast, not all operational
requirements for the integration of machine learning

42

Colin Fyfe

School of Computing
The University of Paisley
Paisley
PA12BE
E-mail: colin.fyfe@paisley.ac.uk

techniques within digital games are purely restrictive
(Galway et al. 2006). By incorporating prior knowledge
about the learning task into the learning algorithm and
knowledge representation used, the efficiency of a machine
learning algorithm within a digital game environment may
be improved (Baekkelund 2006). Although a large variety of
techniques exist within the machine learning domain,
reinforcement learning provides an approach to agent-based
learning which focuses on an agent’s interactions with its
environment (Sutton and Barto 1998), thus providing a
learning methodology appropriate for use within digital
game environments.

This paper investigates the use of reinforcement learning as a
potentially suitable machine learning technique for
controlling a game agent within a dynamic environment. The
classic arcade game ‘Pac-Man’ is used as the test-bed for the
integration of a reinforcement learning-based controller for
the Pac-Man agent. Experiments with regard to the setup and
implementation of the Temporal Difference control methods,
specifically the Sarsa and Sarsa(A) algorithms, have been
performed. These include investigations into the utilisation
of a priori information within the chosen learning
algorithms. Details of the experiments will be presented
along with analysis of the results obtained by the game agent
controllers. Results shall be discussed in terms of the game
objectives of the Pac-Man agent together with the efficiency
and believability requirements necessary for the effective
incorporation of machine learning techniques into digital
games.

BACKGROUND

Pac-Man is a well-known digital game in which the primary
objective for the player is to achieve as high a score as
possible by manoeuvring the Pac-Man agent around a 2D,
grid-based environment in order to eat ‘dots’ while at the
same time avoiding being eaten by four opponent (‘ghost”)
agents. Consisting of a maze of corridors, containing a
predefined number of dots and ‘power-pills’, the reduction in
the number of dots, along with the deterministic behaviour of
the ghosts and the Pac-Man agent’s ability to eat the ghosts
for a finite period of time after consuming a power-pill,
gives rise to the dynamic nature of the game environment
(Gallagher and Ryan 2003; Yannakakis and Hallam 2004;
Gallagher and Ledwich 2007). From the point of view of the
player, the overall aim of maximising the score obtained

within such an environment may be considered as the
problem of developing game-play strategies through a
combination of navigation, task prioritisation and risk
assessment (Koza 1993; Gallagher and Ryan 2003;
Gallagher and Ledwich 2007). As a suitable test-bed for real-
time machine learning research, the dynamic environments
presented by such predator/prey style games also offer the
advantage of being easily broken down into a finite set of
states (Hartley et al. 2004). Within the academic digital
game research literature a number of attempts have been
made to incorporate machine learning techniques into
variations of the Pac-Man game in order to implement
controllers for both the Pac-Man agent and ghost agents. A
variety of neuro-evolutionary approaches to the generation
of game agent controllers have been proposed. These include
the generation of a Pac-Man agent move evaluation
mechanism (Lucas 2005), the utilisation of local
neighbourhood ‘windows’ of game features as input vectors
to an evolved multi-layer network (Gallagher and Ledwich
2007), the use of an evolved probabilistic rule-base coupled
with a finite-state machine (Gallagher and Ryan 2003),
evolved neural networks for controlling the ghost agents
(Yannakakis and Hallam 2004), and the use of genetic
programming to evolve a series of primitive movement
operators for control of the Pac-Man agent (Koza 1993). In
the majority of these approaches however, a number of
distance metrics have been used (Koza 1993; Gallagher and
Ryan 2003; Yannakakis and Hallam 2004; Lucas 2005). This
is explicit information which may not necessarily be known
to a player during game-play. Although using a variation of
the Pac-Man game, the focus of the work by Yannakakis and
Hallam (2004) is to determine a metric for a player’s interest
in the game. One aspect of their proposed interest metric that
provides a suitable mechanism for establishing the
believability of a game agent’s behaviour is the use of
entropy. By determining the entropy of the moves made by a
game agent, the spatial diversity of the agent over the game
environment may be measured, with higher values of
entropy indicating a more interesting range of movement by
the agent over the course of a game (Yannakakis and Hallam
2004). Alternative approaches to the real-time control of
game agents within a 2D predator/prey game include the use
of Markov Decision Processes (MDP). By decomposing the
game environment, based on a variation of Pac-Man, into a
number of ‘states’ with associated ‘reward’ values, opponent
agents were successfully controlled by learning a near-
optimal policy which reflected the maximum expected utility
to be gained by the agent for any transition between the
states of the game environment (Hartley et al. 2004).

Temporal Difference Learning Methods

Based on the discovery of an optimal policy for an agent
performing actions within the discrete time, mathematical
model of a MDP, reinforcement learning comprises a set of
algorithms and techniques that involve learning a sequence
of actions in order to maximize an accumulated discounted
reward over a period of time, where each action is associated
with a reward or penalty. Through exploration and
exploitation of the agent’s environment a control policy can
be learned that maximises the environmental feedback for a
sequence of actions without requiring explicit training from a
domain expert (Sutton and Barto 1998; Duan et al. 2002;

43

Graepel et al. 2004; Pfeiffer 2004; Baekkelund 2006).
Although a MDP assumes that the environment is stationary,
deterministic and contains only one agent, a class of
algorithms, known as Temporal Difference (TD) methods,
which include the Sarsa and Sarsa(A) learning algorithms,
can be used to overcome the limitations of deterministic
MDP environments (Sutton and Barto 1998). These learning
algorithms are characterised by on-policy, model-free
learning methods in which an agent repeatedly evaluates the
results of its actions in terms of the reinforcement signal it
receives and estimates of the values of both current and
future state transitions that occur. Typically, the estimated
value for each state-action pair (Q-value) is stored in a look-
up table (Q-Table). Sarsa(L) extends the Sarsa algorithm by
incorporating the use of eligibility traces in order to maintain
an accumulating trace of state-action pairs visited, which
signify the amount of reward a state-action pair is eligible to
receive. As each step of learning proceeds, the eligibility
trace values for each state-action pair decay in relation to the
trace-decay parameter (1), unless the agent has visited the
state-action pair. Although the use of eligibility traces gives
rise to larger computation times, they offer the advantages of
faster convergence to an optimal policy and permit the use of
temporal difference methods when the learning task is
partially non-Markov (Sutton and Barto 1998). Within the
academic digital game research literature, reinforcement
learning techniques have been applied to a variety of games
in order to learn control policies for game agents. In
particular, a near-optimal control policy for agents in the
fighting game “Tao Feng” has been generated using Sarsa())
with a linear function approximation for Q-value
representation (Graepel et al. 2004). Similarly, Sarsa(\) has
been used in the strategy game “Settlers of Catan” in order to
generate a control policy for game agent strategies. By pre-
training the value function representation with domain
specific knowledge, improvements were found in the time
taken to learn the control policy, subsequently resulting in an
overall improvement in the game agent behaviours (Pfeiffer
2004).

EXPERIMENTAL SETUP
Pac-Man Game Environment

For the experiments discussed within this paper, the game
environment employed was a variation of the classic 2D
arcade game Pac-Man. The configuration of a 20x20 grid of
game dependent ‘features’ establishes the ‘level” of the game
used and comprises; walls, dots, power-pills, tunnels,
inaccessible spaces (i.e. grid cells for the starting position of
the ghost agents) and empty spaces (i.e. grid cells where a
dot/power-pill has been eaten). Unlike the arcade version of
the game, a single level has been used for all games played
and was initially populated with a total of 176 dots and 4
power-pills, each worth a respective score of 5 and 50 points.
Both the Pac-Man agent and 4 ghost agents begin each game
in predefined starting locations. Throughout the course of a
game, if the Pac-Man agent eats a power-pill the state of the
game environment temporarily changes from the default
‘Attack’ state to the ‘Evade’ state, during which the Pac-Man
agent may eat the ghost agents. 300 simulation steps have
been specified as the duration of the Evade state, regardless
of multiple power-pills being eaten or successive power-pills

being eaten when in the Evade state. A score of 100 is
obtained for each ghost agent eaten by the Pac-Man agent
during the Evade state, with all eaten ghosts being
regenerated (in the current game state) within the predefined
ghost starting position in the next simulation step. If a ghost
agent eats the Pac-Man agent, the Pac-Man agent loses 1 out
of 5 lives and is regenerated in its predefined starting
location. For both the Pac-Man and ghost agents, the range
of movement available is in the 4 directions; North, South,
East and West. Similar to the original version of the game,
the Pac-Man agent makes a move 50% more often than the
ghost agents however, the choice of moves for the ghost
agents are non-deterministic, with each ghost agent’s moves
being generated randomly, thus preventing the learning
algorithm from simply learning the ghosts’ movement
patterns (Gallagher and Ledwich 2007). In order to allow for
a direct comparison of games played during experiments, the
Pac-Man agent has been restricted to a maximum of 1000
moves per game. A game ends when all the Pac-Man agent’s
lives are gone, the total set of dots has been eaten, or the
maximum number of moves for the Pac-Man agent has been
reached. Based on the entropy metric proposed by
Yannakakis and Hallam (2004), the ‘raw’ entropy of the Pac-
Man agent’s moves over the course of a game, E,, is given
by Equation (1). Each raw value is subsequently normalized
using Equation (2) in order to produce an entropy value, E,,
within the range [0,1].

E. 2—21;” logz(?j (M

E
E =|——= (2)
(logz(P)J

where p; is a count of the number of times a specific grid cell
is visited by the Pac-Man agent and P is the total number of
moves made by the Pac-Man agent during the course of a
game (Yannakakis and Hallam 2004).

Game Agent Control Algorithm Setup

For all games played, the choices of moves for the Pac-Man
agent were determined using an on-policy TD control
algorithm. The game environment was broken down into a
20x20 grid, where each grid cell was represented as a state
with 4 possible actions, each action corresponding to one of
the possible moves that may be made by the Pac-Man agent.
Due to the finite number of state-action pairs, a look-up table
has been used for value function representation. While
attempting to learn an optimal control policy, state-action
pairs are selected using a e-greedy action selection policy. In
order to help maintain a high degree of exploitation of
learned state-action pairs, a low exploration rate, € = 0.1, was
used. For each new state that occurs as a result of taking the
chosen action, the game environment provides positive and
negative feedback directly corresponding to the game feature
(i.e. wall, dot, power-pill, tunnel, inaccessible space, empty
space or ghost agent) which exists in the grid cell
represented by the new state. Every time a move is required
for the Pac-Man agent the TD learning algorithm is run for

44

100 episodes of learning, with a predefined number of steps
per episode, and the Q-values updated. A move was then
chosen for the agent by selecting the action corresponding to
the Q-value for the current state that had achieved the largest
value during learning. At the start of each game, 1000
episodes of learning were performed as a prediction phase in
order to obtain an initial, optimistic set of Q-values. By
beginning the control phase of each game with a pre-
initialised set of Q-values, the Pac-Man agent is less likely to
repeatedly explore areas of the game level for which initial
moves made during the control phase provide positive
rewards. For all episodes of learning during the prediction
phase a static version of the game level was used, consisting
of stationary ghost agents and randomly generated positions
for the Pac-Man agent. This process of a single prediction
phase during game initialisation, followed by a control phase
before each Pac-Man agent move, was repeated for every
game played.

RESULTS

In the initial set of experiments the Sarsa algorithm was used
in order to determine a suitable number of steps per episode
of learning for the control algorithm. Based on the results
obtained, a second set of experiments were performed using
the Sarsa(A) algorithm to investigate the use of eligibility
traces in terms of the score, number of dots eaten, time taken
for the control phase and the normalized entropy values
obtained. A final set of experiments were then performed in
order to investigate the effect on the game agent’s
performance caused by incorporating a priori information
into the control algorithm. For these experiments two forms
of a priori information were used: (a) game state-based
reward values, with a negative reward value received by the
Pac-Man agent for a ghost agent encounter when the current
game state was the Attack state and a positive reward value
being received when the current game state was the Evade
state, (b) valid Pac-Man agent moves, where any action
chosen during learning which results in an invalid move
leads to the new state associated with the action being
disregarded and subsequently replaced by the current state.
For the third set of experiments, investigations were
performed using: (1) no a priori information, (2) game state-
based reward values, (3) valid Pac-Man agent move
information, (4) both game state-based reward values and
valid Pac-Man agent move information.

Number of Steps Per Episode of Learning Test Results

During all experiments the best game agent performance was
achieved using a relatively high learning rate (o = 0.1) along
with a high discounting factor (y = 0.9). In the first set of
experiments the Sarsa algorithm was used and the number of
steps per episode of learning tested with values in the range
[1, 10]. For each test of the step size parameter 20 games
were played. Figure 1 illustrates the mean scores obtained
while Figure 2 shows the mean number of dots eaten for the
range of steps per learning episode. Table | lists the mean
time taken, in seconds, for the control phase of all games
played alongside the mean normalized entropy values
obtained. From Figure 1 and Figure 2 it can be observed that
the highest mean score was obtained using 8 steps per

learning episode however, the highest mean number of dots
eaten was obtained using 2 steps per learning episode.

1800

1600

1400

1200

1000

Mean Score
o @
=) o
5] 5]

IS
=3
=3

N
°
=3

o

1 2 3 4 5 6 7 8 9 10
Number of Steps Per Learning Episode

Figure 1: Mean Score

180

175

170

165

160

Mean Number of Dots Eaten

155

150 T T T T T
1 2 3 4 5 6 7 8 9 10
Number of Steps Per Learning Episode

Figure 2: Mean Number of Dots Eaten

Table 1: Mean Time Taken & Mean Normalized Entropy

Number of Steps | Mean Time (sec) | Mean Entropy
1 124.33 0.681
2 122.58 0.733
3 123.55 0.733
4 131.07 0.717
5 131.30 0.713
6 131.65 0.700
7 132.01 0.700
8 132.00 0.699
9 132.12 0.686
10 132.04 0.677

As Table 1 shows, the lowest mean time taken during the
control phase also corresponds to the use of 2 steps per
learning episode, which also achieves a high mean
normalized entropy value. Although the range of mean
entropy values is relatively small, higher entropy values
suggest greater coverage of the game level by the Pac-Man
agent. However, a trade-off between the number of steps that
give rise to a high score and the number of steps that achieve

45

a high normalized entropy must be made in order for the
Pac-Man agent to successfully prioritise between the tasks of
eating all the dots and eating the ghost agents when
applicable. The number of steps used also has a visible effect
on the behaviour of the Pac-Man agent; a value of 1 step per
learning episode results in visibly erratic behaviour, with the
Pac-Man agent frequently oscillating between neighbouring
grid cells as each move is made. As the number of steps used
was increased, the erratic movement was visibly reduced.
Figure 3 illustrates the normalized entropy values obtained
over the course of a single game for both 1 step and 10 steps
per learning episode. As can be seen, the entropy values
obtained over a single game are, in general, higher with less
variation when a larger number of steps per learning episode
are used. Again, a trade-off is required between suitable on-
screen behaviour of the Pac-Man agent and the potential
result obtained.

o
@

Normalized Entropy
°
S

I
IS

0.2

1 101 201 301 401 501 601 701 801 901
Number of Moves

=—One Step Per Episode ~-~Ten Steps Per Episode

Figure 3: Normalized Entropy Values Over a Single Game
Trace-Decay Parameter Test Results

In the second set of experiments the Sarsa()\) algorithm was
used and a range of values for the trace-decay parameter, A,
tested using 2 steps per learning episode. The values tested
for A were in the range [0.1, 0.9]. Again, 20 games were
played for each value specified for A. The results obtained
for the mean score and mean number of dots eaten are shown
in Figure 4 and Figure 5 respectively, with the mean time
taken, in seconds, for the control phase and mean normalized
entropy of the Pac-Man agent given in Table 2. From Figure
4 and Figure 5 it is apparent that high values of A result in a
sharp decline in both the mean score and mean number of
dots eaten, suggesting that a lower trace-decay is required in
order for the Pac-Man agent to successfully navigate the
game environment. With less influence from future updates
on recent moves during learning, a lower value for A would
seem preferable given the dynamic nature of the game
environment. Again, the test which results in the highest
mean score (A = 0.7) does not necessarily equate to the test
with the highest mean number of dots eaten. For both A = 0.3
and A = 0.4, the Pac-Man agent consumed all 180 dots
(including power-pills) for 10 out of 20 games played using
each A setting. The highest mean number of ghost agents
eaten by the Pac-Man agent and the lowest mean number of
Pac-Man agents eaten by the ghost agents also occurred

when A = 0.7, hence the increase in the mean score obtained.
This would suggest a trade-off is required for A that results in
a large coverage of the game level by the Pac-Man agent and
a value that enables the Pac-Man agent to successfully
prioritise between the tasks of avoiding the ghost agents and
eating the ghost agents when appropriate.

1400

1200

1000

Mean Score

600

400

200

3 4 5 6 7 8
Trace-Decay Parameter Value

,_.
~
©

Figure 4: Mean Score

200

180

160

140

120

100

80

60

Mean Number of Dots Eaten

40

20

~

3 4 5 6 7 8
Trace-Decay Parameter Value

©

Figure 5: Mean Number of Dots Eaten

Table 2: Mean Time & Mean Normalized Entropy

Trace Decay (L) Mean Time | Mean Entropy
0.1 124.14 0.729
0.2 123.88 0.731
0.3 120.16 0.734
0.4 118.72 0.741
0.5 122.71 0.732
0.6 226.07 0.705
0.7 223.52 0.722
0.8 229.78 0.705
0.9 226.05 0.548

Almost twice as many Q-value updates occurred when A was
in the range [0.6, 0.9]. Correspondingly, the mean time taken
for the control phase almost doubles in these cases. In
general, the use of eligibility traces results in a more
consistent range of scores over all games played. The

46

decision to wuse eligibility traces must balance any
performance gain, in terms of the computation time taken
and consistency of results, over the overall performance of
the Pac-Man agent.

A Priori Information Test Results

In the final set of experiments the integration of a priori
information within both the Sarsa and Sarsa(\) algorithms
was tested. For both algorithms the number of steps per
learning episode was set to 2 and for Sarsa(A) the value of A
was set to 0.4. Four types of a priori information were used
during the experiments, as previously outlined at the start of
the Results section, with 20 games being played for each
type of a priori information used. The resulting mean score
and mean number of dots eaten for both algorithms are given
in Figure 6 and Figure 7 respectively.

1400

1200

1000

Mean Score

Ty
1306.75
1259

WSarsa 1112.5 1205.5
3 Sarsa(0.4) 1069 1257

Figure 6: Comparison of Mean Score

180

179

178

177

176

175

Mean Number of Dots Eaten

174

173

M Sarsa 177.5 177
[Sarsa(0.4) 177.8 178.85

Figure 7: Comparison of Mean Number of Dots Eaten
Correspondingly, Table 3 gives the mean time taken for the
control phase and the mean normalized entropy values

obtained.

Table 3: Mean Time & Mean Normalized Entropy

Sarsa Sarsa(0.4)
A Priori Test Time | Entropy | Time | Entropy
Type (1) 124.73 0.733 121.20 0.739
Type (2) 122.41 0.733 120.46 0.737
Type (3) 129.09 0.723 120.47 0.735
Type (4) 122.55 0.733 118.71 0.741

From Figure 6 and Figure 7 it can be observed that for both
Sarsa and Sarsa(A) the integration of Type (4) a priori
information leads to a higher mean score and higher mean
number of dots eaten. By making use of game state-based
reward values, in conjunction with valid move information,
the impact on the mean score and mean number of dots eaten
is greater, in the case of the Sarsa algorithm, than the use of
either type of a priori information alone. For Sarsa(A) there is
an improvement in game agent performance when using
Type (4) a priori information however, only a relatively
small improvement is gained over the use of Type (2) a
priori information. When only Type (3) a priori information
is integrated into the learning algorithm less coverage of the
game level occurs by the Pac-Man agent, as indicated by the
normalized entropy values shown in Table 3. In general, the
use of Type (4) a priori information may improve the overall
results obtained for both algorithms.

CONCLUSION

It has been shown that the Temporal Difference learning
methods Sarsa and Sarsa(h) may be successfully used to
control a game agent within a dynamic game environment. A
period of learning within a static game environment may be
utilised in order to bootstrap the initial Q-values used during
game agent control learning. Both versions of the Sarsa
algorithm have been shown to provide suitable controllers
for the game agent however, given a suitable choice of value
for the trace-decay parameter, Sarsa(l) has been shown to
marginally outperform Sarsa in terms of the coverage of the
game level by the game agent and the time taken for control
learning. Regardless of the Temporal Difference learning
method used, a number of trade-offs regarding the
algorithmic parameters used are required, including a trade-
off between the number of steps used per learning episode
that permits the game agent to achieve the task of obtaining a
high score and the task of fully exploring and navigating the
game environment. A further trade-off is required between
the number of steps per learning episode that results in a
high overall level of game agent performance and the
appropriate on-screen behaviour of the game agent.
Similarly, when using Sarsa()) a further trade-off is required
between the trace-decay parameter resulting in task
prioritisation by the game agent and a suitable degree of
coverage of the game environment. Subsequently, by
incorporating a priori information into both the learning
algorithm and reward value function used, the overall
performance of the game agent may be improved. One
drawback of the experiments presented is the use of only one
game level. Further research should be conducted into the
use of multiple game levels, thereby attempting to obtain a
generalization of the control policy. In addition, further
research into the retention of the Q-Table between
successive games in order to overcome the need for Q-Table
initialisation using a static environment should be performed.

REFERENCES

Baekkelund, C. 2006. “A Brief Comparison of Machine Learning
Methods.” In Al Game Programming Wisdom 3, S. Rabin (Ed.).
Charles River Media, Hingham, MA. 617-631.

Charles, D. 2003. “Enhancing Gameplay: Challenges for Artificial
Intelligence in Digital Games.” In Proceedings of Digital

47

Games Research Conference (University of Utrecht,
Netherlands).
Duan, J., Gough, N. and Mehdi, Q. 2002. “Multi-Agent

Reinforcement Learning for Computer Game Agents.” In
Intelligent Games and Simulation, Q. Mehdi, N. Gough and M.
Cavazza (Eds.). University of Wolverhampton, UK. 104-109.

Gallagher, M. and Ledwich, M. 2007. “Evolving Pac-Man Players:
Can We Learn From Raw Input?” [EEE Symposium on
Computational Intelligence and Games. 282-2877.

Gallagher, M. and Ryan, A. 2003. “Learning To Play Pac-Man: An
Evolutionary Rule-Based Approach.” [EEE Congress on
Evolutionary Computation, 2462-2469.

Galway, L., Charles, D. and Black, M. 2006. “A Set of Guidelines
for the Evaluation of Real-Time Machine Learning Techniques
for use in Digital Games.” In Proceedings of 9" Annual
Conference on Computer Games: Al, Animation, Mobile,
Educational & Serious Games (Dublin, Ireland). 52-56.

Graepel, T., Herbrich, R. and Gold, J. 2004. “Learning To Fight”.
In Computer Games: Artificial Intelligence, Design and
Education, Q. Mehdi, N. Gough, S. Natkin & D. Al-Dabass
(Eds.). University of Wolverhampton, UK. 193-200.

Hartley, T., Mehdi, Q. and Gough, N. 2004. “Applying Markov
Decision Processes To 2D Real Time Games”. In Computer
Games: Artificial Intelligence, Design and Education, Q.
Mehdi, N. Gough, S. Natkin & D. Al-Dabass (Eds.). University
of Wolverhampton, UK. 55-59.

Koza, J.R. 1993. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. The MIT Press,
Cambridge, MA.

Lucas, S. 2006. “Evolving A Neural Network Location Evaluator
To Play Ms. Pac-Man.” 2005. /[EEE Symposium on
Computational Intelligence and Games, 203-210.

Maes, P. 1995. “Artificial Life Meets Entertainment: Lifelike
Autonomous Agents.” Communications of the ACM 38, No.11,
108-114.

Pfeiffer, M. 2004. “Reinforcement Learning of Strategies for
Settlers of Catan.” In Computer Games: Artificial Intelligence,
Design and Education, Q. Mehdi, N. Gough, S. Natkin & D.
Al-Dabass (Eds.). University of Wolverhampton, UK. 384-388.

Spronck, P. 2005. “A Model for Reliable Adaptive Game
intelligence.” In Proceedings of 2005 Workshop on Reasoning,
Representation, and Learning in Computer — Games
(Washington, VA).

Sutton, R.S. and Barto, A.G. 1998. Reinforcement Learning: An
Introduction. The MIT Press, Cambridge, MA.

Van Lent, M. and Laird, J. 1999. “Developing an Artificial
Intelligence Engine.” In Proceedings of 1999 Game Developers
Conference (San Jose, CA). 577-588.

Yannakakis, G. and Hallam, J. 2004. “Evolving Opponents For
Interesting Interactive Computer Games.” In Proceedings of 8"
International Conference on Simulation of Adaptive Behaviour,
499-508.

BIOGRAPHY

LEO GALWAY was awarded a Masters with Distinction in
Computing & Intelligent Systems from the University of
Ulster in 2005. Having completed his undergraduate studies
in 1998, receiving a Bachelor of Science degree in Computer
Science from The Queen’s University of Belfast, he was
employed as a system level software engineer for a period of
6 years before returning to full time education. He is
currently pursuing a PhD degree at the School of Computing
& Information Engineering from the University of Ulster,
with an emphasis applied intelligent techniques for digital
games. His research interests include artificial intelligence,
evolutionary computing and machine learning.

EVALUATION OF MULTIAGENT TEAMS VIA A NEW APPROACH
FOR STRATEGY GAME SIMULATOR

Vicente V. Filho, Clauirton A. Siebra, José C. Moura, Renan T. Weber, Patricia C. Tedesco and Geber L. Ramalho
Centro de Informatica
Universidade Federal de Perrnambuco
Av. Professor Luis Freire s/n, Cidade Universitaria
50740-540, Recife — PE — Brazil
{ vvf,cas,pcart,glr } @cin.ufpe.br

KEYWORDS
Strategy games,
Benchmarks.

Simulation, Multiagent Systems,

ABSTRACT

This paper discusses some practical experiments using
JaRTS, the Java Real-Time Strategy simulator, which is
our proposal of simulator for real-time strategic games.
The main goal of this simulator is to support the
evaluation of different team approaches, implemented as
multiagent systems, during pre-defined game contests. In
fact, we show that the use of a simulator is important to
evaluate several individual aspects and components of a
team design, rather than only the final product as a whole.
The experiments were carried out during a student’s
competition, where we could testify if JaRTS was actually
able to detect positive and negative aspects of different Al
approaches to Real-Time Strategy (RTS) games.

INTRODUCTION

The evaluation of any computational system is an
important phase of its development process and this is not
different for systems that use Artificial Intelligence (Al).
For such systems, in particular, there is a trend (Hanks et
al 1993) in employing simulation environments as
benchmarks, which enable the evaluation of such system
in different test scenarios.

Another interesting trend is the use of such environments
in academic competitions (Stone 2003). This trend brings
two advantages to the Al research. First, competitions
motivate the investigation of solutions in specific areas.
Second, they integrate the research community, providing
an environment where approaches are discussed and
results, raised from contests, can be analyzed in a
comparative way.

The aim of this work is to describe the use of a real-time
strategic games simulator, called JaRTS (Java Real-Time
Strategy), during the evaluation of several Al techniques
used to implement teams as Multiagent Systems (MAS).
The experiments described in this paper were carried out

48

during a competition among students of the Intelligent
Agents Course of the Universidade Federal de
Pernambuco (UFPE), and the idea was to verify if such
students were able to take conclusions about their
approaches via tests using our simulation environment.
The students’ conclusions were captured via reports, as
discussed along this paper.

The remainder of this work is structured as follows.
Section 2 introduces the idea of using benchmarks and
simulators as option to validate and evaluate Al
approaches and, in particular, multiagent systems (MAS).
Section 3 discusses the use of RTS games as evaluation
approach and summarizes the main RTS environments
and competitions currently available. Section 4 presents
JaRTS, our proposal of simulator aimed at real-time
strategic games. Section 5 describes the use of JaRTS in a
competition involving students of the Intelligent Agents
course of the Informatics Centre — UFPE. Finally, Section
6 concludes this paper, stressing the main ideas and
results of our experiments.

BENCHMARK AND MULTIAGENT SYSTEMS

The use of benchmarks, as evaluation method for
multiagent systems, has become a common practice for
Al systems. In fact, this method is able to evaluate the
performance of such systems and provide a basis for
comparative analysis. However, some criticisms (Hanks
et al 1993) have been directed to the use of benchmarks.
First, such method is an empirical form of evaluation, so
that its users have to account for distinguishing the
important evaluation events, as well as interpreting the
results of such events. Second, there is not a consensus
about what a representative benchmark is. Finally, results
from benchmarks experiments are not general. Rather,
they are related to a subgroup of possibilities from the
total set of scenarios.

Simulators are a particular type of benchmark, whose
generation of new states is carried out at runtime and such
states depend on the activities performed inside the
environment. In this way, final results are commonly
unpredictable. An interesting trend related to simulators is

its use in academic competitions (Stone 2003). Apart to
motivate research and integrate the scientific community,
competitions determine deadlines to the creation of
functional systems and periodic events, using the same
platform, enables the improvement of past systems and
their approaches.

One of the main competitions related to multiagent
systems is the RoboCup Rescue (RCR) (Kitano and
Tadokoro 2001). RCR is an appropriate example of
benchmark to multiagent research because it implements
several of the prerequisites that such systems require.
These prerequisites are:

e Agents don’t have control on the environment so that
their actions aren’t the unique events can change it;

e Agents are not able to ensure that a sequence of actions
will lead to a specific state, or if these actions are valid
because changes can happen over the environment
between decision and execution moments;

e RCR environments are complex and each of their
objects presents several attributes whose values can
affect the ongoing simulation;

e The -environment considers communication and
coordination among agents as an important simulation
issue, so that there are specific rules to control such
communication;

e There are several ways to measure the efficiency of
approaches via, for example, number of victims or
total area of fire;

e The RCR simulator has a well defined temporal model,
which is based on configurable cycles;

A last and important RCR feature is its high level of
parameterization, which enables an evaluation of MASs
considering a significant diversity of problems and
conditions. In this way, RCR users can configure the
environment in such way that it can be more useful during
evaluations of some particular aspect.

RTS AS BENCHMARKS

As discussed in the last section, the use of benchmarks as
an alternative to evaluate MAS has received several
criticisms, which are mainly based on the fact that such
systems are implemented to be used in real situations. In
this way, independently of the specification level of a
benchmark, it will still represent a limited number of
situations that could happen in real scenarios.

There exist cases, however, in which realism is not the
main requirement to be considered. In such situations, the
goal could be focused on the comparative evaluation
among different approaches. For example, benchmarks
currently used in the Planning Systems Competition
(McDermott 2000) and the Trading Agent Competition
(Wellman et al 2001) corroborate this idea.

49

Other kind of competition, which is recently receiving
more attention from the research community, is related to
RTS games. Note that the main competition in this area
(Orts RTS Game Al Competition) does not have the same
maturity than other Al competitions. However, several
benefits can already be observed, such as the creation of a
community with common interests in RTS problems.

One of the main advantages of using RTS environments
as benchmark is the broad variety of problem types that
they can generate. For example, consider a classic RTS
game of battle between two teams. Some of the problems
that can be investigated in this game are:

e Pathfinding: teams need to move along the best routes
so that they decrease time and effort. It is common
more elaborated versions of this problem, such as
involving routes along unknown lands or facing
dynamic obstacles (e.g., enemy team);

e Patrolling: a team can keep a specific area on control,
or cover an area to find resources or enemies in an
optimized way;

e Coordination: the components of a team ideally need
some kind of coordination so that the whole work can
be improved and they do not disrupt each other. For
example, during an attack maneuver the team need to
decide if they will attack via flank, or if the infantry
should wait by the intervention of the artillery before
moving forward;

e Strategic and tactical decisions: each team must plan
and conduct the battle campaign (strategy) in the same
way that must organize and maneuver forces in battle
to achieve victory (tactics).

Then, RTS environments enable an ample set of problems
or situations in which we can apply Al techniques. These
environments must be configurable, following the RCR
model, so that users can create more appropriate scenarios
to each kind of problem.

MAIN SIMULATORS AND COMPETITIONS

There are currently several simulators to RTS games and
some of them are used in open competitions. In this
section we discuss four examples: ORTS, Stratagus,
Boson and Glest.

Open Real-Time Strategy (ORTS) (Buro 2003) is a
simulation environment for studying real-time Al
problems such as pathfinding, reasoning with imperfect
information, scheduling and planning in the domain of
RTS games. Users of ORTS can define rules and features
of a game via scripts that describe several types of units,
buildings and interactions. The ORTS server accounts for
loading and executing such scripts, sending the world
state to their clients. These clients are applications that
generate actions to be performed over the simulation
server, according to their objectives and the current state
of the world.

The ORTS competition comes up in cooperation with the
Artificial Intelligence and Interactive Digital
Entertainment Conference (AIIDE). There are four
different contests in this competition:

e Game 1: agents must develop strategies to perform
resource gathering. The idea is to get the maximum of
resources within 10 minutes;

e Game 2: tank agents must destroy as many opponent
buildings as possible within 15 minutes. However, at
the same time, they must also defend their home bases;

e Game 3: apart the resources gathering and battle
actions, agents must also deal with resource
management, defining if the team should collect more
resources or spend it. The decision making process
involves, for example, actions to create more fighters
or to attack/defend specific positions. The main goal is
to destroy all opponent buildings within 20 minutes.

e Game 4: marine agents must destroy as many opponent
units as possible within 5 minutes.

Stratagus (Stratagus 2007) is an engine to RTS games
that supports that development of both multiplayer online
and single player offline games. Stratagus is configurable
and can be used to create customized games.

Boson (Boson 2005) is a RTS engine to games similar to
Command & Conquer and StarCraft. The battles take
place in both land and air, with a high number of units
fighting at the same time. An interesting feature of this
simulator is the effect of world features (e.g., wind speed,
natural obstacles such as trees, and terrain variety) on
actions that are performed along the scenarios. Individual
units have their own moving pattern, animation, multiple
weapons and intelligent pathfinding, so that they can fight
against other agents or human players.

Glest (Glest 2007) is a 3D RTS engine available for
several platforms. The engine can be customized via
XML files, so that it is possible to define basic parameters
such as life, magic, protection, and so on. The current
version includes single player game against Al controlled
players, providing two factions for player control: Magic
and Tech, each of them with their corresponding tech
trees, units and buildings.

We can discuss some main points of this analysis. First,
Boson and Glest simulators are not centered in Al issues,
so that we could certainly need an additional effort to
define and create test scenarios to evaluate Al techniques.
Differently, Stratagus provides a script language (LUA)
that allows Al researchers to modify the game Al without
having to change the engine code. LUA employs many
familiar programming paradigms from ‘common’
programming languages such as C (e.g., variables,
statements, functions), but in a simpler fashion (Ponsen
et al 2005). Stratagus was also integrated to TIELT -
Testbed for Integrating and Evaluating Learning

50

Techniques — (Aha and Molineaux 2004), which is a
freely available tool that facilitates the integration of
decision systems and simulators. Currently, the TIELT
focus is on supporting the particular integration of
machine learning systems and complex gaming
simulators.

ORTS has initially presented itself as a good candidate to
be a MAS benchmark. However, after some trials, we
have identified that ORTS is very complex, presenting
several problems of configuration and behavior during its
performance. Furthermore, ORTS does not provide a
proper documentation. In this way, after an analysis of all
our alternatives and problems, we have decided to create a
new simulator that could be simpler and oriented to Al
problems. This means, users just need to be worried about
solutions related to Al problems. This simulator is
presented in the next section.

JARTS

JaRTS (JaRTS 2007) is a RTS game simulator that
enables users to focus their development uniquely on the
agents’ behavior. This means that users do not need to be
worried about the simulation and evolution of the
environment in simulation. The approach of JaRTS is
very similar to the Robocode simulator (Li 2002), where
there are basic classes that implement the main behaviors
of their agents, such as move to, twirl around, or shoot in.
The task of programmers is to extend such classes so that
they can generate more complex behaviors.

JaRTS presents three basic types of agents: (1) the
Worker whose role is to collect resources to fill up the
Control Center; (2) the Tank whose objective is to attack
or defend specific positions along the environment, and;
(3) the Control Centers that represent a save place to
resources collected by Workers and are also the target (to
protect or to destroy) of Tamk agents. These type of
agents, as well as their functions and goals, were based on
the ORTS agents.

Each type of agent in JaRTS can be individually
simulated. For example, we can create a MyWorker agent
and simulate its behavior in an environment populated
only with Worker agents. This means, every agent is
collecting resource without interference of enemies so
that we can focus our attention on this task in specific.
This is the scenario of ORTS Game 1.

In the same way, it is possible to create a MyTank agent
and simulate it in a world where the unique goal is to
fight, without considering resources gathering or
management, as happens in ORTS Game 2. Furthermore,
users can implement both Worker and Tank agents and
evaluate their behaviors in a more realistic RTS
environment that involves all the challenges such as
resource gathering, fight, resource management and
dynamic pathfinding.

The JaRTS modeling aimed the specification of a simple
and intuitive architecture, which could reduce the
development time of agents. The main component of this
architecture is the World class, which represents an
environment via components from the Element class. The
Unit and Terrain classes extend the Element class and,
while instances of the Unit class represent agents
specified by users (Workers, Tanks and Control Centers);
the Terrain class represents elements of the scenario such
as Obstacle (places where agents cannot move across),
Resource (objects to be collected by Workers), and Plain
Terrain (place where agents can move over). Each Unit
has an Instruction object that represents the target action.
For example, the instruction Mine has as target a
Resource representing the place where an agent will
perform this instruction (or action).

The implementation of an agent’s behavior is carried out
in a similar way than in the Robocode simulator. Users
just extend one of the unit classes (Worker, Tank or
ControlCenter) to specify a particular behavior. For
example, users can create the class MyWorker extending
the class Worker. At simulation runtime, users can choose
instances of classes that will connect to the simulation
environment.

EVALUATION OF RTS TEAMS

The evaluation experiment has involved 65 students of the
Intelligent Agents course in the Informatics Centre —
UFPE. The final project was the implementation of
multiagent teams that could run and be evaluated via
JaRTS. This project was split up in two parts. First,
groups of students should focus on approaches to the
resource gathering problem (Figure 1). After that, the
focus was on approaches to the tank battle problem.

After the conclusion of their projects, students should
report the agents’ issues/features that were evaluated via
simulator. Furthermore, the reports were also important to
clarify the approaches used for each team. The remainder
of this section consolidates the information of such
reports.

The first issue is related to which information agents are
able to sense and actions that they can perform. In
general, the teams have implemented sense routines to the
following game features: obstacles location, resource
locations, control center locations, enemy and fellow
agents’ locations, amount of resources available in a
mine, amount of resources already collected, hit points of
agents and control centers. In fact, the evaluation of such
routines is not a complex task because JaRTS is an
accessible domain. This means that agents have complete
access to the environment features (e.g., location of mines
or other agents), so that any kind of limitation rule was
implemented (note that some strategic games have rules

51

to sense limitation via, for example, the fog of war
concept). Differently, the simulator is very useful to test
patterns of behaviors (actions). Despite the fact that
students have implemented the same basic actions, such
as moving and resource gathering, the simulator can
provide several configurations of environments (e.g.,
open fields or narrow roads) where such behaviors can be
evaluated.

The second issue is related to which constraints/variables
teams must consider during the decision making process
of agents, or in other words, which information is
required and appropriated to make a decision. For
example, a pathfinding algorithm can initially be
implemented to only consider the surrounding area. In
this approach only the status of the nearby area is
required. In other approach, such as a dynamic
pathfinding, the position of other agents could also be
used (e.g., to avoid enemies). In this context, the
simulator clarifies if the sense of more information
actually corresponds to more efficient actions.

PPPP

A
&
A
A
A
A
A
F 9
F 3

Figure 1: JaRTS scenario to the first problem, where
triangles represent mines, circles represent agents that
must collect minerals in such mines and squares represent
static obstacles.

The third point is related to the process of decision
making itself. Teams have implemented different
strategies of reasoning and the simulator evaluates their
performances in different situations. It is common to
observe that a strategy does not have a good performance
in all situations. Rather, there are particular strategies that
are more appropriate to specific situations.

The fourth issue is related to the choice between reactive
and long term goals decisions. These properties are
classical extremes in Artificial Intelligence and the most
common approach is a hybrid implementation. The
application and evaluation of both approaches via
simulator has assisted the teams in finding a balance
between such extremes. For example, the moving to a

control centre is a long term goal decision, while the
avoidance of coalitions during this moving is a reactive
behavior.

The fifth issue is about communication. In this case, the
simulator has evaluated the performance of agents
regarding the amount and content of information
exchanged between agents. Note that the important point
is not to exchange lots of information, but information
with useful content. In this point the simulator helps to
figure out which piece of information is in fact useful.

Three other issues were not very explored by the teams:
approaches for coordination regarding techniques
(planning, negotiation, etc.) and architectures (centralized,
emerging or hybrid); use of homogeneous versus
heterogeneous agents in terms of roles, permissions and
goals; and the influence of the team goal on each
individual agent goal. Such aspects will be analyzed in
future directions of our work.

Note that a simulator only can carry out all these types of
evaluations if it is configurable in terms of scenarios/maps
and features. In this way, teams can set the simulator to
provide a more appropriate situation to the kind of test
that they intend to perform.

CONCLUSION

We can highlight some points about the evaluation of the
students” teams in both scenarios. In the first problem,
resource gathering, we have noticed that the main tactic
used by the teams was to collect mineral from the mines
closer to the control centre. In this way, a significant issue
of these approaches was a good specification of the
pathfinding algorithm.

An interesting observation was that some teams had a
very good performance in some of the game maps,
however such performance did not come up again when
other maps were employed. Thus we could clearly
conclude that particular features of the environment, such
as mines among obstacles, have significant impact on the
algorithms because such features could configure “logical
traps”. This means, situations where general algorithms
cannot deal with in an efficient way. Such fact was
important to stress the usefulness of RTS environments as
benchmarks, which can realize faults and advantages of
an algorithm in specific configurations and scenarios.

This issue is more critical in the second scenario. As
happens in real world, an attack/defense strategy is
strongly dependent on features of the environment
(battlefield). For example, a combat strategy for an open
battlefield cannot be used in a scenario with several
obstacles (e.g., trees), which can make difficult the
movement of military divisions. Again, the use of a RTS
environment as benchmark enables the evaluation of
strategies, such as the advantages and disadvantages that

52

each strategy can offer for specific configurations of the
environment.

Unfortunately the experiments have also stressed some
criticisms previously discussed. The process of choosing
maps, for example, has not used a proper methodology, so
that the maps only cover a small part of the existent
possibilities. In addition, the analysis of events is an
exclusive task of evaluators, so that they own need to
infer, for example, if a specific approach is (not) efficient
in a specific configuration of the simulation scenario.

REFERENCES

Aha, D. and Molineaux, M. 2004. "Integrating learning in
interactive gaming simulators". In D. Fu & J. Orkin (Eds.)
Challenges in Game Al: Papers of the AAAI’04 Workshop.
San José, CA: AAAI Press.

Boson. (2005). Boson Homepage. Available in
http://boson.eu.org/ (accessed on 10 September 2007)

Buro, M. (2003). Real-Time Strategy Games: A new Al
Research Challenge. Proceedings of the 2003 International
Joint Conference on Artificial Intelligence, Acapulco,
Mexico.

Glest. (2007). Glest: A Free 3D RTS Project. Available in
http://www.glest.org/ (accessed on 10 September 2007)

Hanks, S., Pollack, M. and Cohen, P. (1993). Benchmarks,
Testbeds, Controlled Experimentation, and the Design of
Agent Architectures. Technical — Report — 93-06-03,
Department of Computer Science and Engineering,
University of Washington, Seattle, WA, USA.

Kitano, H. and Tadokoro, S. (2001). RoboCup Rescue: A Grand
Challenge for Multiagent and Intelligent Systems. A/
Magazine, 22(1):39-52.

Li, S. (2002). Rock 'em, sock 'em Robocode!. IBM
developerWorks, — Available in http://www.ibm.com/
developerworks/java/library/j-robocode/ (accessed on 10
September 2007)

McDermott, D. 2000. The 1998 Planning Systems Competitions.
Al Magazine, 4(2):115-129.

Ponsen, M., Lee-Urban, S., Muifioz-Avila, H., Aha, D. and
Molineaux, M. 2005. “Stratagus: An open-source game
engine for research in real-time strategy games”.
Proceedings of the IJCAI Workshop Reasoning
Representation, and Learning in Computer Games.
Edinburgh, UK.

Stone, P. (2003). Multiagent Competitions and Resarch: Lessons
from RoboCup and TAC. In Gal A. Kaminka, Pedro U.
Lima, and Raul Rojas, editors, RoboCup-2002: Robot
Soccer World Cup VI, Lecture Notes in Artificial
Intelligence, pp. 224-2377, Springer Verlag, Berlin.

Stratagus Team. (2007). Stratagus: A real Time Strategy Engine.
Available in http://www.stratagus.org/ games.shtml
(accessed on 10 September 2007)

Wellman, M., Wurman, P., O’Malley, K., Bangera, R., Lin, S.,
Reeves, D. e Wash, W. (2001). A Trading Agent
Competition. [EEE Internet Computing, 5(2):43-51.

JaRTS Site. (2007). JaRTS: A Java Real Time Strategy Engine.
Available in http://www.cin.ufpe.br /~vvf/jarts/ (accessed on
10 September 2007)

MAP-ADAPTIVE ARTIFICIAL INTELLIGENCE FOR VIDEO GAMES

Laurens van der Blom, Sander Bakkes and Pieter Spronck
Universiteit Maastricht
MICC-IKAT
P.O. Box 616
NL-6200 MD Maastricht
The Netherlands
e-mail: l.vanderblom@student.unimaas.nl, {s.bakkes,p.spronck}@micc.unimaas.nl

ABSTRACT

This paper proposes an approach to automatically adapt
game Al to the environment of the game (i.e., the so-
called map). In the approach, a particular map is first
analysed for specific features. Subsequently, an auto-
matically established decision tree is applied to adapt
the game Al according to the features of the map. Ex-
periments that test our approach are performed in the
RTS game SPRING. From our results we may conclude
that the approach can be used to automatically establish
effective strategies dependent on the map of a game.

INTRODUCTION

Throughout the years, video games have become in-
creasingly realistic with regard to visual and auditory
presentation. However, artificial intelligence (AI) in
games has not yet reached a high degree of realism. Typ-
ically, game Al is based on non-adaptive techniques [9],
which prevents it to adequately adapt to changing cir-
cumstances. Adaptive game Al , on the other hand, has
been explored with some success in previous research
(2, 5, §].

An important component of adaptive game Al is the
ability to automatically establish effective behaviour de-
pendent on features of the game environment (i.e., the
so-called map). This is called ‘map-adaptive game AT
In this paper we will investigate how to analyse and ex-
ploit features of the game environment for the purpose
of establishing effective game strategies.

The outline of the paper is as follows. We will first
present our approach to establish map-adaptive game
Al Subsequently, the experiments that test our ap-
proach are discussed. The experimental results are dis-
cussed next. Finally, we provide conclusions and de-
scribe future work.

APPROACH

Our approach to establish map-adaptive game Al con-
sists of three components: (1) definition of the features
of a map, (2) determination of compound actions of

53

map-adaptive strategies, and (3) automatic construction
of a decision tree of map-adaptive strategies.

We establish map-adaptive game Al in an RTS game
environment, i.e., a simulated war game. Here, a player
needs to gather resources for the construction of units
and buildings. The goal of the game is to defeat an
enemy army in a real-time battle. We use RTS games
for their highly challenging nature, which stems from
three factors: (1) their high complexity, (2) the large
amount of inherent uncertainty, and (3) the need for
rapid decision making [1]. In the present research we use
SPRING, illustrated in Figure 1, which is a typical and
open-source RTS game. A SPRING game is won by the
player who first destroys the opponent’s ‘Commander’
unit.

Features of a Map

To automatically establish map-adaptive game Al, we
start by defining a basic set of features that will play an
essential role in the strategy of a player. For our exper-
iments, we decided to use the following five features of
a map.

1. RN: Number of metal resources.

Figure 1: Screenshot of the SPRING game environment.
In the screenshot, the artillery unit on the left attacks
a target across the river.

2. RD: Resource density.

3. NR: Presence of relatively narrow roads (e.g. due
to obstacles such as mountains and rivers).

4. CL: Number of cliffs.

5. DE: Distance between base locations.

Feature values will be used to automatically construct a
decision tree of map-adaptive strategies. If we would al-
low all possible feature values, an explosion in the num-
ber of nodes in the decision tree would occur. We there-
fore divide the range of feature values in bands [3], such
as ‘None’, ‘Few’ and ‘Many’. Naturally, game maps can
vary in size. Therefore, feature values are scaled pro-
portionally to the size of the map.

Map-Adaptive Game Al Actions

After analysis of features of a map, game Al is estab-
lished on compound actions of map-adaptive strategies.
For our experiments, we decided to use the following
seven compound actions.

1. Construction of metal extractors at near metal re-
sources.

2. Construction of metal extractors at far away metal
resources.

3. Placement of offensive units at relatively narrow
roads.

Placement of offensive units at own base.
Placement of artillery on cliffs.

Protection of operational metal extractors.

N o e

Protection of artillery on cliffs.

The defined actions can be used to establish offensive as
well as defensive stances of game Al.

Decision Tree of Map-Adaptive Strategies

A decision tree is a tree where each internal node anal-
yses a feature, each branch corresponds to a band of
feature values, and each leaf node assigns a classifica-
tion. Since we are dealing with discrete feature values,
the decision tree is called a ‘classification tree’. The
leaves of such a tree represent classifications and the
branches represent conjunctions of features that lead to
those classifications. Classification trees also enable dis-
junctive descriptions of the features of the map.

In the SPRING game, each feature of the map can be ex-
pressed by discrete values (e.g., the number of resources
and the resource density). For constructing a decision
tree for the SPRING game, we employ the ID3 learning
algorithm [4, 6].

54

The ID3 algorithm performs a simple-to-complex, hill-
climbing search through the hypothesis space, which
consists of all possible decision trees for the given fea-
tures and their values. That is, the hypothesis space
consists of all possible disjunctions of conjunctions of
the features. The algorithm maintains only a single de-
cision tree, performs no backtracking in its search and
uses all training instances at each step of the search dur-
ing the training process. Its evaluation function is the
information gain, which is defined as

| Ev,a |
| E |

G(E7a) = I(E) - Z I(Ev,a) (1)

veEV,
where F is the set of all training examples and a is an
attribute from the set of all features A. V, is the set of
values corresponding to feature a; that is, it is a set of
values, such that

Vo = {v | value(a,) = v}

(2)

for all € E, where value(a,x) defines the value for
feature a € A of a specific example . Moreover, £, , is
a subset of F, such that

E, .= {r € E|value(a,x) = v}

(3)

The function I is defined as

1= S -1

ceC

| Ee |
| E

log, (4)
where C'is the set of all possible classifications (i.e., the
actions that the game AI should perform) and E. is a
subset of F with classification ¢; that is, it is a set of
training examples, such that

E.={x € E|class(z)=c} (5)

for all x € E, where class(z) defines the classification of
a specific example x.

The function [is also called the entropy, which measures
the impurity of the set of all examples. In other words,
information gain is the expected reduction in entropy
caused by partitioning the instances according to a given
attribute. This implies that the learning algorithm has a
preference for short trees, with the features with a high
information gain located near the root of the tree.

EXPERIMENTS

This section discusses the experiments that test our ap-
proach. We first describe the process of constructing the
decision tree and then experimental setup.

Constructing the Decision Tree

We use the ID3 learning algorithm to construct the deci-
sion tree from experimentally determined training data,

which consist of input data with values for attributes of
the map and the corresponding target output data in
the form of actions of the game Al. The training data
is given in Table 2 (Appendix A). The learned decision
tree is displayed in Figure 2 (Appendix B). We give two
observations on the constructed decision tree.

First, the feature ‘number of metal resources’ is placed
at the root of the tree. This implies that the num-
ber of metal resources is the most important feature
when analysing a map. This result fits our expectation,
for metal resources are vital to expanding the base and
building the first units.

Second, if the number of metal resources is low, the
constructed decision tree considers the ‘resource density’
as the next-most important feature of the map. If the
number of metal resources is high, however, the resource
density is the least important feature.

Experimental Setup

To test our approach, the map-adaptive game Al will
be pitted in a game against the same game AI with-
out map-adaptive capability. We found one game Al
which was open source, which we labeled ‘AAT’ [7]. We
enhanced this AI with the capability to adapt its be-
haviour dependent on the features of the map.

The map-adaptive game Al is tested in real-time games,
which took place on five maps that are described in the
next section, namely (1) Speed Ball, (2) Speed Ball Ring
8-way, (3) Mountain Range, (4) Small Supreme Battle-
field v2, and (5) No Metal Speed Metal. Each experi-
mental trial is repeated five times.

In addition to pitting the map-adaptive game Al against
a computer opponent, our approach was also tested
against a human opponent. Our expectation was that
when pitting it against a superior human opponent, dif-
ferent behaviour will be evoked from the map-adaptive
game Al.

RESULTS

In this section we provide a detailed discussion of the
obtained results. For each map, we present the following
three items: (1) the characteristics of the map, (2) the
obtained results, and (3) a discussion of the obtained
results.

55

Map 1: Speed Ball

The Speed Ball map has many resources and the play-
ers are always relatively close to each other. This al-
lows us to determine whether the map-adaptive game
AT attempts to protect its own units. In the black area
nothing can be constructed. When two Al players com-
pete against each other, they may become more offensive
and attack each other early in the game. It is therefore
expected that different Al behaviour will be observed
when a relatively idle human player is involved as the
second player.

Gameplay on this map is focussed on effectively respond-
ing to the following features of the map: ‘Number of
Resources’, ‘Resource Density’ and ‘Distance between
base locations’. Action ‘1+2,4,6” is expected to be exe-
cuted, which corresponds to example X37 from Table 2

(Appendix A).

Obtained Results

We observed that the players did not focus on gathering
resources and building an army when the map-adaptive
game Al played against the computer-controlled player.
Players became offensive early in the game and con-
tinued battling while constructing buildings and units
(usually cavalry and artillery), which assisted them in
defeating their opponent. This occurred in each of the
five times that they played on this map.

When a human player was involved, the map-adaptive
game Al behaved differently. One time the human
player played offensively and successfully defeated the
game Al but in the meantime the game AI countered
by also playing offensively. Another time the human
player stayed in the background and remained relatively
idle for a long period of time, only taking actions in or-
der to defend himself. As a result, the game Al focused
more on gathering resources before actually attacking
its opponent.

Map 2: Speed Ball Ring 8-way

The Speed Ball Ring 8-way map has many similarities
with the Speed Ball map. Instead of one big circle,
however, this map is divided into eight equally sized
circles and one larger circle in the middle. All of the
circles are interconnected. The pathways that connect
the circles are not very wide, which implies that they
are considered as ‘Narrow Roads’. There is a relatively
large number of resources available on this map. Players
are positioned randomly at the beginning of the game,
thus the distance between the players can vary.

In this map we focus on all of the features other than
‘Number of cliffs’. It is expected that actions ‘142,3’
or ‘142,3,4,6” will be executed, corresponding to the ex-
amples X16 and X40 respectively, from Table 2.

Obtained Results

When the map-adaptive game Al played against an-
other computer-controlled player, the game AI often
performed action ‘142,3", as expected. There was only
one occurrence of action ‘142.3,4,6" being performed,
when the game Al was in the middle circle and decided
to place offensive units at the entrance of the pathways
connecting to the other circles, while the other player
was on one of the outer circles.

The map-adaptive game Al fared well against the hu-
man player with the same actions as expected, but again
the human player had to remain inactive for the most
part in order to provoke the game AI to exhibit be-
haviour that was expected of it. Otherwise, more of-
fensive subroutines of the game Al would take over and
battles occurred early in the game. There were two occa-
sions where the game Al was located in the middle of the
map, resulting in a different action, namely ‘14-2,3.4,6’.

Because starting positions of both players were random,
classifications by the decision tree were also different
each time we started a new game. This is caused in par-
ticular by the distance between both players, explaining
the large difference in classifications.

56

Map 3: Mountain Range

The Mountain Range map does not have many metal re-
sources. Additionally, the mountains are obstacles that
obstruct the roads, making navigation relatively diffi-
cult. Each location for constructing a base on this map
has its own advantages and disadvantages. The use of
metal storages is recommended on this map, because of
diminishing metal resources.

The map is relatively large. Therefore, the distance be-
tween the base of two players will typically remain large
in a one-versus-one battle, as is the case here. The fo-
cus of the decision tree lies on the features ‘Number
of Metal Resources’, ‘Resource Density’, and ‘Narrow
Roads’. We expected that the game Al would execute
action ‘1,3, corresponding to example X4 from Table 2.

Obtained Results

We observed that on this map the map-adaptive game
AT was strongly focussed on gathering nearby metal re-
sources early in the game. Additionally, the game Al
was blocking the passageways between the mountains
and, if applicable, between the edges of the map and
the mountains. The game AI protected the expanded
position, and launched an attack on the opponent when
it constructed a relatively large army. This strategy
was consistently observed against both the computer-
controlled as well as the human opponent.

We observed that early in the game, relatively few at-
tacks would take place. This is caused by the rela-
tively large distance between the base of each player.
As lower-level subroutines will not be called for handling
an attack, the map-adaptive game Al can focus on its
first priority: establishing and expanding a strong base.
Thus, we observed that in all cases action ‘1,3’ was ex-
ecuted, as expected.

Map 4: Small Supreme Battlefield v2

The Small Supreme Battlefield v2 map contains a long
bottleneck in the centre of the map. On each side of
the map there is a large area of water. On the other
two sides of the map there are small areas of land. The
map has relatively few metal resources, some of which
are available in the water areas. We expected that the
game Al would execute action ‘1—2,3’; corresponding to
example X10, or ‘1-2,3,4,6°, corresponding to example
X34, from Table 2.

Obtained Results

When in competition against the computer-controlled
opponent, the map-adaptive game Al had a preference
for executing action ‘1—2,3’. In most of the cases the
game Al blocked the bottleneck with offensive units. In
other cases the focus of the game was not so much on the
bottleneck, but more on the water area, on which the
battle continued by sea units and submarine units. The
computer-controlled player always built its base on land
located in the corner of the map, which implied that the
distance between the bases remained fairly large.
Identical behaviour was observed when in competition
against a human player. On one occasion the human
player constructed the base nearby the base of the map-
adaptive game Al. This led the Al to increasingly pro-
tect its base and the metal extractors by use of offensive
units.

Map 5: No Metal Speed Metal

The No Metal Speed Metal map is based on the Speed
Metal map. As the name implies, however, this par-
ticular map does not contain any metal resources. The
lack of metal resources makes it difficult to quickly pro-
duce units and expand the base. A challenge for the
established map-adaptive game Al was that it was not
trained under circumstances where no metal resources
were present on the map.

It was expected that the game AI would choose action
‘1-2,3’, corresponding to example X10, or ‘1-2,3,5,
corresponding to example X11 and X12, from Table 2.
Actions ‘1-2,3,4,6’, corresponding to example X34, and
‘1-2,3,5,6,7°, corresponding to examples X35 and X36,

57

were considered alternative possibilities.

Obtained Results

In competition against the computer-controlled game
Al both players focused on constructing offensive units
to oppose their opponent. In addition, the map-adaptive
game Al utilised units for protecting the entrance of its
own area. Similar behaviour was observed when com-
peting against the human player. In one case, the hu-
man player constructed the base in the centre of the
map, near the map-adaptive game Al. This led to a dif-
ferent classifaction, and thus different behaviour from
the map-adaptive game Al

Though the map-adaptive game Al was not trained for
circumstances where no metal resources are present, it
was able to utilise the learned decision tree by traversing
the node for ‘few metal resources’. However, it did not
exhibit behaviour suitable for defeating the computer-
controlled player.

A summary of the experimental results is provided in
Table 1.

DISCUSSION

Our approach to map-adaptive game Al should not be
confused with machine-learning techniques that allow
the game Al to adapt to novel situations. Rather, in our
approach, we implemented the map-adaptive game Al
as a high-level planner of strategic actions. We allowed
low-level actions, such as handling an imminent threat
of the opponent, to interfere with the established high-
level plan.

In a typical RTS game, early phases of the game are
focussed on planning the construction and expansion of
the base. Later phases of the game are typically focussed

Computer Human
Map 1
Speed Ball
Classification X37 (100%) | X37 (100%)
Win:Loss 3:2 0:5
Map 2
Speed Ball Ring 8-way
Classification X16 (80%) X16 (60%)
X40 (20%) X40 (40%)
‘Win:Loss 4:1 0:5
Map 3
Mountain Range
Classification X4 (100%) X4 (100%)
Win:Loss 4:1 0:5
Map 4
Small Supreme Battlefield v2
Classification X10 (100%) X10 (60%)
X34 (40%)
Win:Loss 3:2 0:5
Map 5
No Metal Speed Metal
Classification X10 (100%) X10 (80%)
X34 (20%)
‘Win:Loss 0:5 0:5

Table 1: Classifications of the map-adaptive game Al in
competition against the computer-controlled player and
against the human player.

on engaging in offensive or defensive actions. However,
if an opponent would decide to attack relatively early, a
player would be forced to abandon the established plan
and focus on combat. Therefore, our implementation of
map-adaptive game Al as a high-level planner of strate-
gic actions, is particularly suitable for RT'S games.

For games from other genres, our implementation of
map-adaptive game Al may not necessarily be the most
suitable one. Game developers should consider that to
apply our approach in practice, a balance should be
found between pursuing a high-level map-adaptive plan,
and allowing the game Al to respond to low-level ac-
tions.

CONCLUSIONS AND FUTURE WORK

In this paper we proposed an approach for establishing
map-adaptive game Al. In our approach the game en-
vironment, in the form a so-called map, is first anal-
ysed for specific features. Subsequently, a decision
tree of map-adaptive strategies is constructed automati-
cally. Experiments to test our approach were performed
in the RTS game SPRING. Our experimental results
show that against a computer-controlled opponent, the
map-adaptive game Al consistently constructed effec-
tive game strategies. The map-adaptive game Al was
outperformed by a human opponent. However, observa-
tions showed that the map-adaptive game Al responded
to strong play of the human player by adapting its own
strategy. From these results, we may conclude that the
established map-adaptive game Al can be successfully
used to construct effective strategies in RTS games.

In future work, we will incorporate a self-adaptive mech-
anism to enable the game Al to automatically refine
the constructed decision tree. This mechanism will
be particularly suitable for games where effective map-
adaptive game Al should be established online, on the
basis of relatively little training data.

ACKNOWLEDGEMENTS

We extend our gratitude to the anonymous reviewers for
their insightful feedback.

This research was funded by a grant from the Nether-
lands Organization for Scientific Research (NWO grant
No 612.066.406).

REFERENCES

[1] Michael Buro and Timothy Furtak. RTS games and
real-time Al research. In Proceedings of the Behavior

Representation in Modeling and Simulation Confer-
ence (BRIMS), 2004.

[2] Pedro Demasi and Adriano Cruz. Online coevolution
for action games. International Journal of Intelligent
Games and Simulation, 2(3):80-88, 2002.

58

[3] Roger Evans. Varieties of Learning. In S. Rabin,
editor, AI Game Programming Wisdom, pages 571
575. Charles River Media, 20 Downer Avenue, Suite
3, Hingham, Massachusetts 02043, United States,
2002.

[4] Daniel Fu and Ryan Houlette. Constructing a Deci-
sion Tree Based on Past Experience. In S. Rabin, ed-
itor, AT Game Programming Wisdom 2, pages 567
577. Charles River Media, 20 Downer Avenue, Suite
3, Hingham, Massachusetts 02043, United States,
2004.

[5] Thore Graepel, Ralf Herbrich, and Julian Gold.
Learning to fight. In Quasim Mehdi, Norman Gough,
and David Al-Dabass, editors, Proceedings of Com-
puter Games: Artificial Intelligence, Design and Ed-
ucation (CGAIDE 2004).

[6] Tom Mitchell. Machine Learning, chapter 3: De-
cision Tree Learning, pages 52-80. McGraw-Hill, 2
Penn Plaza, New York 10121-0101, United States,
1997.

[7] Alexander Seizinger. AI:AAI. Creator of the game
AT ‘AAT’, http://spring.clan-sy.com/wiki/AT:AAT,
2006.

[8] Pieter Spronck, Ida Sprinkhuizen-Kuyper, and Eric
Postma. Online adaptation of game opponent Al
with dynamic scripting. International Journal of In-
telligent Games and Simulation, 3(1):45-53, 2004.

[9] Paul Tozour. AI Game Programming Wisdom (ed.
Rabin, S.), chapter The Perils of Al Scripting, pages
541-547. Charles River Media, 2002. ISBN: 1-58450-
077-8.

A - TRAINING DATA

Example "N D AttI{IlEUteS L DE Action(s)
X1 Few High No None Far 1
X2 Few High No Few Far 1
X3 Few High No Many Far 1,5
X4 Few High | Yes None Far 1,3
X5 Few High | Yes Few Far 1,3
X6 Few High | Yes | Many Far 1,3,5
X7 Few Low No None Far 1-2
X8 Few Low No Few Far 1-2
X9 Few Low No Many Far 1-2,5
X10 Few Low Yes None Far 1-2,3
X11 Few Low Yes Few Far 1-2,3,5
X12 Few Low Yes Many Far 1-2,3,5
X13 Many | High No None Far 1+2
X14 Many High No Few Far 1+2
X15 Many High No Many Far 142,5
X16 Many High | Yes None Far 1+2,3
X17 Many High | Yes Few Far 1+2,3
X18 Many | High | Yes | Many Far 1+2,3,5
X19 Many Low No None Far 1+2
X20 Many Low No Few Far 142
X21 Many Low No Many Far 1+2,5
X22 Many Low Yes None Far 142,3
X23 Many Low Yes Few Far 1+4+2,3,5
X24 Many Low Yes | Many Far 1+2,3,5
X25 Few High No None Close 1,4,6
X26 Few High No Few Close 1,4,6
X27 Few High No Many | Close 1,5,6,7
X28 Few High | Yes None Close ,3,4,6
X29 Few High | Yes Few Close 1,3,4,6
X30 Few High | Yes | Many | Close 1,3,5,6,7
X31 Few Low No None Close 1-2,4,6
X32 Few Low No Few Close 1—-2,4,6
X33 Few Low No Many | Close 1—-2,5,6,7
X34 Few Low Yes None Close 1-2,3,4,6
X35 Few Low Yes Few Close 1-2,3,5,6,7
X36 Few Low Yes Many | Close 1-2,3,5,6,7
X37 Many | High No None Close 1+2,4,6
X38 Many High No Few Close 1+2,4,6
X39 Many High No Many | Close 1+2,5,6,7
X40 Many High | Yes None Close 1+2,3,4,6
X41 Many | High | Yes Few Close 142,3,4,6
X42 Many | High | Yes Many | Close 1+42,3,5,6,7
X43 Many Low No None Close 1+2,4,6
X441 Many Low No Few Close 142,4,6
X45 Many Low No Many | Close 1+2,5,6,7
X416 Many Low Yes None Close 142,3,4,6
X47 Many Low Yes Few Close 142,3,5,6,7
X48 Many Low Yes May Close 142,3,5,6,7

Table 2: Training data of the SPRING real-time strategy game with respect to features of the map. Legend:
means first executing the action before the dash sign, then the action after the dash sign. “4” means executing the
actions on both sides of the plus sign simultaneously. “RN” means number of metal resources. “RD” means resource
density. “NR” means presence of relatively narrow roads (e.g. due to obstacles such as mountains and rivers). “CL”

means number of cliffs. “DE” means distance between base locations.

59

B - DECISION TREE FOR MAP-ADAPTIVE GAME Al

.
Fiw Many

High Loy Mo es

4 AN AN
[oe]
NCI// Yes \ 3 / \

Mo Yes Far Close

N\ ‘\
Close Far Close None Few Many Nare FEW Many

AN

/T S m |m:||1 ma| [saser]
\ N

Mone Feuws Many Mene Few Many High Luw ngh Low

Figure 2: The automatically constructed decision tree. Only a portion of the tree is shown. Legend: “RN” means
number of metal resources. “RD” means resource density. “NR” means presence of relatively narrow roads (e.g. due to
obstacles such as mountains and rivers). “CL” means number of cliffs. “DE” means distance between base locations.

60

OPPONENT MODELING IN REAL-TIME STRATEGY GAMES

Frederik Schadd, Sander Bakkes and Pieter Spronck
Universiteit Maastricht
MICC-IKAT
P.O. Box 616
NL-6200 MD Maastricht
The Netherlands
e-mail: f.schadd@student.unimaas.nl, {s.bakkes,p.spronck }@micc.unimaas.nl

ABSTRACT

Real-time strategy games present an environment in
which game Al is expected to behave realistically. One
feature of realistic behaviour in game Al is the ability
to recognise the strategy of the opponent player. This is
known as opponent modeling. In this paper, we propose
an approach of opponent modeling based on hierarchi-
cally structured models. The top-level of the hierarchy
can classify the general play style of the opponent. The
bottom-level of the hierarchy can classify specific strate-
gies that further define the opponent’s behaviour. Ex-
periments that test the approach are performed in the
RTS game SPRING. From our results we may conclude
that the approach can be successfully used to classify
the strategy of an opponent in the SPRING game.

INTRODUCTION

In computer gaming, real-time strategy (RTS) is a genre
of simulated wargames which take place in real time. In
RTS games, the player needs to construct a base and
build units for the purpose of destroying the opponent.
The opponent is either a human player, or a player con-
trolled by an artificial intelligence (AI). Each unit-type
has particular strengths and weaknesses. To effectively
play an RTS game, the player has to utilise the right
units in the right circumstances.

An important factor that influences the choice of strat-
egy, is the strategy of the opponent. For instance, if one
knows what types of units the opponent has, then typ-
ically one would choose to build units that are strong
against those of the opponent. To make predictions
about the opponent’s strategy, an Al player can estab-
lish an opponent model. Many researchers point out
the importance of modelling the opponent’s strategy
(2, 3, 9, 10, 12, 14], and state that opponent models
are sorely needed to deal with the complexities of state-
of-the-art video games [8].

Establishing effective opponent models in RTS games,
however, is a particular challenge because of the lack of
perfect information of the game environment. In classi-
cal board games the entire board is visible to the player;

61

a player can observe all the actions of the opponent.
Hence, assessing the opponent’s strategy and building
an opponent model is possible in principle, for instance
by using case-based reasoning techniques [1]. In RTS
games, however, the player has to deal with imperfect
information [5]. Typically, the player can only observe
the game map within a certain visibility range of its
own units. This renders constructing opponent mod-
els in an RTS game a difficult task. In this paper we
will investigate to what extent models of the opponent’s
strategy can be established in an imperfect-information
RTS-game environment.

The outline of this paper is as follows. We will first in-
troduce the concept of opponent modeling. Then, our
approach to establish effective opponent models in RT'S
games will be discussed. Subsequently, our implementa-
tion of the approach will be presented. The experiments
that test our approach are described next, followed by a
discussion of the experimental results. Finally, we pro-
vide conclusions and describe future work.

OPPONENT MODELING

In general, an opponent model is an abstracted descrip-
tion of a player or a player’s behaviour in a game [§].
Opponent modeling can be seen as a classification prob-
lem, where data that is collected during the game is
classified as one of the available opponent models. A
limiting condition is the fact that in RTS games, these
classifications have to be performed in real-time, while
many other computations, such as rendering the game
graphics, have to be performed in parallel. This lim-
its the amount of available computing resources, which
is why only computationally-inexpensive techniques are
suitable for opponent modeling in RTS games.
Preference-based modeling is a commonly used
computationally-inexpensive technique [4]. The tech-
nique identifies the model of an opponent by analyzing
the opponent’s choices in important game states. Due
to the visibility limitations in RTS games, however, it is
common that choices of the opponent cannot always be
observed.

In the present research we use SPRING, illustrated in

Figure 1: Screenshot of the SPRING game environment.
In the screenshot, airplane units are flying over the ter-
rain.

Figure 1, which is a typical and open-source RTS game.
A SPRING game is won by the player who first destroys
the opponent’s ‘Commander’ unit. We used the freely-
available ‘AAT artificial intelligence player [15] to com-
bat opponents.

APPROACH

A straightforward approach to opponent modeling is the
following. First, a number of possible opponent mod-
cls is established, then the confidence level of each op-
ponent model is calculated, and finally, the opponent
model with the highest confidence level is selected. An
enhancement of this approach is to apply an hierarchical
ordering on the possible opponent models [7]. This hier-
archical approach allows the division of a relatively com-
plex classification problem, into several relatively simple
classification problems. In addition, the hierarchical ap-
proach makes it possible to use different classification
methods in each level or the hierarchy. For establishing
opponent modeling in RTS games, we follow the hierar-
chical approach.

Our opponent models will describe the strategy of a
player. We define a strategy as the general play style
combined with the player’s choice of units built. The
most defining element of an opponent’s strategy is the
general play style. We therefore place the general play
style at the top of the hierarchy. Each play style has its
own subcategories that further define behavioural char-
acteristics.

For instance, if it is known that the opponent follows an
aggressive general play style, a logical response would be
to improve one’s defenses. If also the opponent’s choice
of units is known, the defenses can be specialised to be
effective against those specific units.

62

IMPLEMENTATION

This section discusses our implementation of hierarchi-
cal opponent modeling in RTS games. In our implemen-
tation, we establish a hierarchy consisting of two levels.
The top-level of the hierarchy classifies the opponent’s
general play style. The bottom-level of the hierarchy
classifies the opponent’s choice of units built.

In the SPRING game we discriminate between an aggres-
sive, and a defensive play style. For an aggressive play
style we discriminate at the bottom level between pre-
dominantly using the following four unit-types: (1) K-
Bots, (2) Tanks, (3) Ships, and (4) Airplanes. Each unit-
type has specific strengths and weaknesses, and is there-
fore used to execute a particular strategy. For instance,
K-Bots are relatively fragile but can cross mountains,
and are therefore useful for a strategy against an op-
ponent which attempts to exploit chokepoints between
mountains. Tanks can only manoeuvre on plain terrain
but are relatively sturdy, and are therefore useful for
a strategy against an opponent who constructs strong
defenses.

For a defensive play style we discriminate at the bottom
level between the following three building preferences:
(1) Super Weapon, (2) Tech, and (3) Bunker. These
three building preferences are commonly observed in ac-
tual SPRING games.

Figure 2 displays the hierarchy of the opponent models.
The hierarchy defines the following strategies.

e Agoressive—K-Bot. The opponent will attack early
and will typically use K-Bot robots.

o Aggressive—Tanks. The opponent will attack early
and will typically use tanks.

e Aggressive—Air. The opponent will attack early
and will typically use airplanes.

- ’ A \\\\

1
1
. 1
1
)

Figure 2: Hierarchy of the opponent models.

Super
Weapaon

e Agoressive—Sea. The opponent will attack early
and will typically use ships.

e Defensive—Super weapon. The opponent will at-
tempt to construct a super weapon (e.g., a ballistic
missile).

e Defensive—Tech. The opponent will attempt to
reach a high technology level in order to have quick
access to superior units.

e Defensive—Bunker. The opponent will construct a
massive wall of static defenses around his base so
that he has time to construct an army.

Top-level Classifier

A way of performing opponent-model classifications in
a computationally inexpensive fashion, is by using fuzzy
models [16]. Fuzzy models create models of several clas-
sifiable classes based on a single numerical feature. The
choice of the numerical feature is crucial, as it should
allow to discriminate between the defined classes.

In our hierarchy, the top level classifier has to discrim-
inate between the classes ‘aggressive’ and ‘defensive’.
An aggressive player typically will spend a large part
of game time attacking. A defensive player, on the
other hand, typically will use most of the game time
for preparing an army, and only needs a small amount
of the game time for an actual attack. As a result, an
appropriate numerical feature to discriminate between
the two classes would be the relative amount of game
time that the opponent spends attacking.

We define an attack as the observed loss of a player’s
own units. When a loss of units is detected, then the
time span around this moment can be regarded as the
time that an attack took place. Because information
about a player’s own units is always available, this def-
inition is suitable for use in an imperfect information
environment.

An example of a top-level player model is shown in Fig-
ure 3. The figure illustrates the confidence of the op-
ponent following an aggressive and defensive play style,
as a function of the percentage of game time spent on
attacking.

Bottom-level Classifier

The bottom-level classifier has to discriminate between
the subcategories that further define behavioural char-
acteristics. The dynamic nature of RTS games implies
that a player’s strategy may change during the game.
Therefore, the bottom-level classifier needs to empha-
size recent event more than past events. To achieve
this, the principle of discounted rewards is applied.

63

Theoretical Background

The concept of discounted rewards origins from the prin-
ciple of repeated matrix-games [6]. A player can make a
choice between several actions and depending on the ef-
fectiveness of an action, a reward is received. In the field
of repeated matrix-games, the most important consid-
crations are how to seclect the initial strategy and how
to evaluate if a deviation from the initial strategy is
needed. A strategy in repeated matrix-games can be a
simple sequence of actions, which is played repeatedly.
It can also include certain rules for cases that take the
actions of the enemy into consideration. In order to de-
termine whether a deviation from the original strategy
is feasible, the expected rewards of the game with and
without deviation are calculated. Here the discount fac-
tor is applied, since it is assumed that a player prefers
to receive a reward carly in time rather than in the dis-
tant future. Hence, rewards in the future are valued
less. This valuation is expressed by multiplying the fu-
ture reward with the discount factor. The more distant
the reward is, the more often it is multiplied with the
discount factor. If § is the discount factor and m; is the
reward received at time ¢, then the expected reward can
be computed as follows [6]:

(1=0)xY mxs! (1)
i=1

When the expected rewards are calculated, a selection
mechanism typically will select the strategy with the
highest expected reward.

Applied Modification

Analogously to calculating the expected rewards, for dis-
criminating between strategies we need to calculate the
confidence value of the opponent applying a particular
strategy. The confidence value is calculated on the basis
of observations during game events. In classical matrix-
games, a game event would be one move of both players.

084 /1 o

v
Vo - aggressive
/ \\ /!' 1 % defensive

Confidence Rating
=)
e

0.0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 B0 85 S0 95 100

Attack Time Percentage

Figure 3: Example of a top-level player model.

Since RTS games do not operate in moves, the term
of an event must be redefined. When playing against
an aggressive opponent, the occurrence of an attack is
a suitable event since the player can then observe the
army of the opponent.

When playing against a defensive opponent, however,
an attack is not a suitable event because a defensive
opponent will rarely attack and hence not many obser-
vations can be made. Also, waiting for an attack of
a defensive opponent is typically an unsuccessful game
strategy. When playing against a defensive opponent,
it is typical that the player will ‘scout’ around the base
of the opponent. Since scouting will provide improved
information about the opponent’s actions, a scout event
is a suitable moment for calculating confidence values
against a defensive opponent.

When an event is detected, the confidence values of each
possible strategy will be updated according to the ob-
served game information. If § is the discount factor, v,
the belief that the opponent uses strategy s at event ¢,
ranging between 0 and 1, 7 the total reward added at
each event and i the most recent event, then the confi-
dence ¢4 that the opponent uses strategy s is computed
as follows:

0
Cs = Z Vs % T * yit (2)

t=i
The parameter v, is acquired by inspecting all vis-
ible units and structures during event t. Each unit
or structure has a value representing a tendency to a
certain strategy. The unit-tendency values were deter-
mined by the experimenter, using his own knowledge of
the game [13]. To give three examples of unit-tendency
values: (1) a common defensive tower has a relatively
small tendency towards an opponent using the defen-
sive bunkering strategy, (2) a super-weapon building
has a relatively high tendency towards the defensive-
super-weapon strategy, and (3) an amphibious tank has
a tendency towards both the aggressive tank and the
aggressive sea strategy.

EXPERIMENTS

This section discusses the experiments that test our ap-
proach. First we test the top-level classifier, and then
the bottom-level classifier. We finish the section by pro-
viding a summary of the experimental results.

Top-level Experiment

As discussed in the previous section, the top-level clas-
sifier requires the Al to detect if an attack took place.
This is implemented as follows. The Al will register
all visible units every N seconds, where N is the size
of the time window. The detection algorithm will scan
each frame for lost units. If the amount of lost units

64

Time Window
Threshold | 20 seconds

30 seconds 40 seconds
10% 94,92166 99,2271 93,64321
15% 99,99083 99,57988 96,22472

Table 1: Average defensive confidence values against a
defensive opponent

Time Window
Threshold | 20 seconds

30 seconds 40 seconds
10% 45.10261 76.27533 57.83488
15% 33.18209 52.74819 53.14834

Table 2: Average aggressive confidence values against
an aggressive opponent

is above a certain threshold, then each frame inside the
analysed time window is labeled as a moment in which
the opponent was attacking.

Two parameters determine the accuracy of the attack-
detection algorithm. The first parameter is the size of
the time window. The second parameter is the unit
threshold, which is a percentage value. We will first
analyse the sensitivity of the parameter settings on the
obtained confidence values. Next, we will discuss the
obtained confidence values as a function over the game
time.

Sensitivity Analysis

For each configuration of parameters, the Al was
matched ten times against an aggressively playing Al
and ten times against a defensively playing Al. As op-
ponent the ‘NTAT’-AT [11] was chosen, since it is rela-
tively straightforward to implement one’s own strategy
into this Al. For the matches where an aggressive oppo-
nent is required, the ‘NTAT’-AI was configured with an
aggressive strategy. Analogously, for the matches where
a defensive opponent is required, the Al was configured
with a defensive strategy. For the time window, the
sizes of 20, 30 and 40 seconds were tested. For the unit
threshold the percentages with value 10% and 15% were
tested.

For each match played, the aggressive and defensive con-
fidence values were recorded at each time point. When
the match was played, the average confidence values of
the match were calculated. Note that as in the first five
minutes of a game a player rarely performs an action
that would reveal his strategy, these first minutes were
not taken into account.

Table 1 shows the defensive confidence values of matches
against an defensive opponent, and Table 2 shows the
aggressive confidence values of matches against an ag-
gressive opponent,.

The obtained confidence values reveal that all config-
urations of the top-level classifier perform well when

Confidence Value
&

N . .
S NS Ve D0 b 66 DB AL B 96§ 0B s B 0 6

Time{minutes)

Figure 4: Average confidence value over time against an
aggressive opponent

recognizing defensive players. The best configuration
obtained a confidence value of nearly 100%. When rec-
ognizing aggressive players, the obtained confidence val-
ues are lower in comparison, as will be elaborated upon
shortly. The best configuration, with as parameters a
units-lost threshold of 10% and a time window of 30
seconds, obtained a confidence value of 76%. These ob-
tained configurations will be used for the remainder of
this research.

Confidence Value over Time

Using the obtained parameter values, we match the Al
fifty times against an aggressive opponent, and fifty
times against a defensive opponent. We again used the
‘NTAI’-AI as an opponent. For each game, we record the
confidence values as a function over time. The average
confidence values of all test games against an aggressive
opponent are displayed in Figure 4.

In the figure we observe that the average confidence
value is low in the beginning of the game. This is due
to the fact that the opponent is hardly able to attack
at this stage of the game, since he needs to construct
a base first. Therefore, one can safely disregard the
confidence values of the beginning of the game. After
approximately seven minutes of game time, the average
confidence value increases until it stabilizes at approxi-
mately 85%.

A similar effect can be observed when examining the
average confidence value over time of the games against
a defensive opponent, as displayed in Figure 5. In the
beginning of the game, the confidence values are nearly
100%. This is because the enemy does not attack in
the beginning of the game. The top-level classifier will
therefore respond with the maximum defensive confi-
dence value during this game stage. One observes that
after about six minutes of game time, the average con-
fidence value stabilizes between 96% and 97%.

65

Confidence
o
g

@ o @

075
3.75
45
525
7
8,25
1.3
128
135
14,3
15
158
16,5
173
18
122
195
203
21
21.8

8.78

15
2,25
3

w0
D=1
& 2

Time(minutes)

Figure 5: Average confidence value over time against
defensive opponent

|~

Bottom-level Experiment

For testing the bottom-level classifier, the ‘NTAI’-Al has
been configured such that it resembles each of the spe-
cific aggressive opponent models. However, since NTAT
is not able to adequately play the defensive strategies, a
human opponent was chosen to play against the ‘AAI’-
AT [15], by following the defensive strategies. For each
opponent model, ten experimental matches have been
performed. A correct classification of the top-level clas-
sifier is assumed for this experiment. For the discounted
reward algorithm, the parameters were set to 6 = 20%
and m = 0.8 by the experimenter. We test the bottom-
level classifier’s ability to discriminate between the K-
Bot and tanks aggressive sub-model, and between the
bunker, tech and super weapon defensive sub-model.

Aggressive Opponent

Figure 6 shows the average K-Bot confidence over time
of an opponent using the aggressive K-Bot strategy as
well as the average Tank confidence over time of an op-
ponent using the aggressive tank strategy. It is observed
that both confidence values eventually approximate a
value over 90%. We note that the average confidence of
the aggressive tank-strategy increases more slowly and
at a later stage than the average confidence of the ag-
gressive K-Bot-strategy. This can be explained by the
fact that producing tanks requires more resources, and
therefore more game time will be needed to attack with
tanks.

Defensive Opponent - Bunker

Figure 7 displays the confidence values obtained against
an opponent using the defensive bunker-strategy. We
observe that the bunker confidence rating increases
rapidly after approximately five minutes of game-time.
Over time the obtained average confidence value is 83%.
The instabilities that occur after 35 minutes of game-
time can be explained by the fact that at this moment
the AT has discovered structures that may also be used

o
©

o
@

o
3

=4
@

Confidene Value
o
«

- & N A Nl & <
PP P PR P PR

D W& & <
,\’L“i‘:‘\b \,,Jg © \»h{o&o

© Ao % g
o > e

N ¥

Time{minutes)

Figure 6: Average confidence value over time for the
aggressive sub-models.

by an opponent using the tech-strategy.

14
@

L

2
B

Iod
>
U

Ed
&

Confidence Rating
o
S

1

frr-‘
L

2

=

Figure 7: Average confidence value over time for an op-
ponent using the defensive bunker-strategy.

Defensive Opponent - Tech

Figure 8 displays the confidence values obtained against
an opponent using the defensive tech-strategy. We ob-
serve that for the largest part of the game, the confi-
dence values of the bunker-strategy are higher than the
confidence values of the tech-strategy. This can be ex-
plained as follows. First, we observed that scout units
were destroyed before they were able to scout the base
of the opponent. Second, high level units and structures
that define the tech-strategy can only be constructed in
later stages of the game. This implies that in the earlier
stages only structures that belong to a different strat-
egy can be observed. When at a later stage of the game
the Al is able to observe structures that are character-
istic for the tech-strategy, the confidence value of the
tech-strategy increases.

— . —— Khot
| Tank

66

Confidence Rating
o
o
pos
{ =

36 § ot

@B - 0 T W
oo Yol Yo
- « i

10,8
12
13,5
18,5
j
2855
30
215
33
245
36
275

Time(minutes)

Figure 8: Average confidence value over time for an op-
ponent using the defensive tech-strategy.

Defensive Opponent - Super Weapon

Figure 9 displays the confidence values obtained against
an opponent using the defensive super-weapon-strategy.
Analogously to the results obtained against an oppo-
nent using the defensive tech-strategy, we observe that
the confidence values of the bunker-strategy are higher
than the confidence values of the super-weapon-strategy.
After approximately 25 minutes the confidence value of
super-weapon-strategy steadily increases. After approx-
imately 41 minutes, the discounted-reward algorithm
temporarily decreased the confidence value because the
AT did not observe super-weapon structures any more.
Eventually the bottom-level classifier obtains a confi-
dence value of 75%.

2
©

[o wUWM 4
.‘JI LVAM ;‘"ﬂﬂf
P

—A

4
®

e
~

L e
ES

Confidence Rating
o
tn

l_
=

ol N

O N T D o® O N T O @O N TG om O N T om e o
————— IS IR B S ERCE C HRE S S I R

Time{minutes)

Figure 9: Average confidence value over time for an op-
ponent using the defensive super-weapon-strategy.

Summary of the Experimental Results

Experimental results obtained with the top-level classi-
fier show that the top-level classifier can accurately dis-
criminate between an aggressive and a defensive player.
Experimental results obtained with the bottom-level

—— Super Weapon

classifier show that the bottom-level classifier can accu-
rately discriminate between the established sub-models
in later stages of the game. In early stages of the game,
the bottom-level classifier was not always able to accu-
rately discriminate between the established sub-models.
This is discussed next.

DISCUSSION

Opponent modeling will typically be implemented in an
actual RTS game for the purpose of automatically classi-
fying the strategy of the opponent. Ideally, an accurate
classification of the opponent’s strategy is available rel-
atively early in the game, at a time when the player is
still able to counter the opponent’s strategy.

In the experiments that test our approach, we observed
that the bottom-level classifier was not always able to
accurately discriminate between the established sub-
models in an early stage of the game. This phenomenon
can be explained by the fact that, typically, the AI can-
not directly observe units and structures that are char-
acteristic for a particular bottom-level strategy. To ob-
serve these units and structures, the Al relies on scout-
ing.

A straightforward approach to achieve improved results,
therefore, is to adapt the AI’s scouting behaviour de-
pendent on the need for information of the opponent’s
activities. For instance, in competition against an ag-
gressive opponent, scouting is relatively unimportant.
In competition against a defensive opponent, however,
intensive scouting is vital. Analogously, to emphasise
the information obtained during a scout event, one may
choose to adapt the parameters of the delayed reward
algorithm dependent on the top-level classification.

CONCLUSION

In this paper we proposed an approach for opponent
modeling in RTS games. In the approach, a hierarchi-
cal opponent model of the opponent’s strategy is es-
tablished. The top-level of the hierarchy can classify
the general play style of the opponent. The bottom-
level of the hierarchy can classify strategies that further
define behavioural characteristics of the opponent. Ex-
periments to test the approach were performing in the
RTS game SPRING. Our experimental results show that
the general play style can accurately be classified by the
top-level of the hierarchy. Additionally, experimental
results obtained with the bottom-level of the hierarchy
show that in early stages of the game it is difficult to
obtain accurate classifications. In later stages of the
game, however, the bottom-level of the hierarchy will
accurately classify between specific strategies of the op-
ponent. From these results, we may conclude that the
approach for opponent modeling in RTS can be success-
fully used to classify the strategy of the opponent while
the game is still in progress.

67

For future work, we will incorporate a mechanism to
adapt the scouting behaviour of the AT dependent on the
top-level classification of the general play style of the op-
ponent. Subsequently, we will investigate to what extent
the classification of the opponent’s strategy can be used
to improve the performance of a computer-controlled
player, and will investigate how new models to describe
the opponent’s strategy can be established automati-
cally.

ACKNOWLEDGEMENTS

The authors wish to extend their gratitude to Marcel
Ludwig and Alexander Miesen for being the human op-
ponent in the experimental games. Furthermore, we ex-
tend our gratitude to the anonymous reviewers for their
insightful feedback.

This research was funded by a grant from the Nether-
lands Organization for Scientific Research (NWO grant
No 612.066.406).

REFERENCES

[1] Agnar Aamodt and Enric Plaza. Case-based rea-
soning : Foundational issues, methodological varia-
tions, and system approaches. AI Communications,
7(1), March 1994.

[2] Bruce Abramson. Expected outcome: A general
model of static evaluation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 12:182—
193, 1990.

[3] Hans Berliner. Search and knowledge. In Proceed-
ings of the International Joint Conference on Arti-
ficial Intelligence (IJCAI 77), pages 975-979, 1977.

[4] Jeroen Donkers and Pieter Spronck. Preference-
based player modeling. In S. Rabin, editor, AI Pro-
gramming Wisdom 3, chapter 8.4, pages 647 659.
Charles River Media, 25 Thomson Place, Boston,
Massachusetts 02210, 2006.

[5] Robert Gibbons. A Primer in Game Theory, chap-
ter 2.3B. Pearson Education Limited, Edingburgh
Gate, Harlow, Essex CM20 2JE, England, 1992.

[6] Robert Gibbons. A Primer in Game Theory, chap-
ter 2. Pearson Education Limited, Edingburgh
Gate, Harlow, Essex CM20 2JE, England, 1992.

[7] Ryan Houlete. Player modeling for adaptive games.
In S. Rabin, editor, AI Programming Wisdom 2,
chapter 10.1, pages 557 566. Charles River Me-
dia, 10 Downer Avenue, Hingham, Massachusetts
02043, 2004.

[8] Jaap van den Herik, Jeroen Donkers, and Pieter
Spronck. Opponent modelling and commercial

[13]

[14]

games. In Proceedings of the IEEE 2005 Sym-
posium. on Computational Intelligence and Games
(eds. Graham Kendall and Simon Lucas), pages 15—
25, 2005.

Donald Knuth and Ronald Moore. An analy-
sis of alpha-beta pruning. Artificial Intelligence,
6(4):293-326, 1975.

Richard Korf. Generalized game trees. In Pro-
ceedings of the International Joint Conference on
Artificial Intelligence (IJCAI 89), pages 328-333.
Detroit, MI, August 1989.

Tom Nowell. AI:INTAI. Creator of the game Al
‘NTAT, http://spring.clan-sy.com/wiki/AL:NTAI,
2007.

Arthur Samuel. Some studies in machine learning
using the game of chechers, ii - recent progres. IBM
Journal, 11:601-617, 1967.

Frederik Schadd. Hierarchical opponent models for
real-time strategy games. Bachelor thesis. Univer-
siteit Maastricht, The Netherlands, 2007.

Jonathan Schaeffer, Joseph Culberson, Norman
Treloar, Brent Knight, Paul Lu, and Duane
Szafron. A world championship caliber checkers
program. Artificial Intelligence, 53:273-289, 1992.

Alexander Seizinger. AI:AAI. Creator of the game
AT ‘AAT, http://spring.clan-sy.com/wiki/AT:AAT,
2006.

Michael Zarozinski. An open-fuzzy logic library. In
S. Rabin, editor, AI Programming Wisdom, chapter
2.8, pages 90-101. Charles River Media, 20 Downer
Avenue, Suite 3, Hingham, Massachusetts 02043,
2002.

68

ART
DESIGN
AND
GRAPHICS

70

PANORAMA - EXPLORATIONS IN THE AESTHETICS OF SOCIAL
AWARENESS

Anton Eliéns
Intelligent Multimedia Group
VU University Amsterdam
ecmail: eliens@cs.vu.nl

KEYWORDS

social awareness, visual semotics, interaction aesthetics,
video games

ABSTRACT

In this paper we reflect on our experiences in developing
PANORAMA, a playful application meant to promote
and support social awareness in a work environment,
through art-inspired visualisations of social processes
and personal contributions. With respect to the design
of PANORAMA, we found common notions of visual
semiotics helpful in determining the overall composition
of the screen layout. More in general, however, the
development of PANORAMA proved to be an exercise
in interaction aesthetics, which as we will argue in
this paper may greatly benefit from common notions in
interactive video game play. In this paper we will only
briefly discuss technical and deployment issues, since
our main contribution here is to establish the relation
between the aesthetics of interaction and game play.

INTRODUCTION

Since the 1970’s, Dutch universities have enormously
grown in size, due to the ever larger number of students
that aim at having university level education. As
departments become bigger, however, staff members
no longer know eachother personally. The impersonal
and anonymous atmosphere is increasingly an issue of
concern for the management, and various initiatives
have been taken, including collective trips into nature,
as well as cultural events, not to much avail for that
matter. An additional problem is that more and more
members of the staff come from different countries
and cultures, often only with a temporal contract and
residence permit. Yet, during their stay, they also have
the desire to communicate and learn about the other
staff members and their culture(s).

In september 2006, the idea came up to use a large
screen display in one of the public spaces in our depart-
ment, to present, one way or another, the ’liveliness’ of
the work place, and to look for ways that staff members
might communicate directly or indirectly with eachother

71

Dhaval Vyas
Human Media Interaction Group
Twente University
email: D.M.Vyas@ewi.utwente.nl

through this display. Observing that communications
often took place during casual encounters at the coffee
machine or printer, we decided that monitoring the
interactions at such places might give a clue about the
liveliness of the work place. In addition, we noted
that the door and one of the walls in the room where
the coffee machine stood, was used by staff members
to display personal items, such as birth announcement
cards or sport trophees. In that same room, mostly
during lunch time, staff members also gathered to play
cards.

Taking these observations together, we decided to de-
velop a system, nicknamed PANORAMA, to present
these ongoing activities and interactions on a large
display, which was to be positioned in the coffee room.
The name of our system is derived from the famous
Mesdag Panorama' in The Hague, which gives a view on
(even in that time nostalgic rendering of) Scheveningen.
However, it was explicitly not our intention to give an
in any sense realistic/naturalistic remdering of the work
place, but rather, inspired by artistic interpretations of
panoramic applications as presented in Grau (2003), to
find a more art-ful way of visualizing the social structure
and dynamics of the work place.

At this stage, about one year later, we have a running
prototype (implemented in DirectX), for which we did
perform a preliminary field study as well as a first
user evaluation, Vyas et al. (2007), and also we have
experimented with a light-weight web-based variant,
allowing access from the desktop. In this paper,
our primary focus, however, will be to establish the
relation between interaction aesthetics and game play, as
inspired by our experiences in developing PANORAMA.

structure The structure of this paper is as follows.
First we will give a brief sketch of the PANORAMA
system, that is the ideas underlying it and the realiza-
tion of a first prototype. Then we will present, in a
more general fashion, possible guidelines for the design
of PANORAMA, followed by a discussion of common
issues in interaction aesthetics and game play. We will
then introduce the notion of dialectics of awareness,
and in conclusion identify the primary dimensions of
aesthetic experience.

lwww.panorama-mesdag.nl

BEING SOCIAL @ WORK

The PANORAMA system is meant to support social
awareness, in non-work related ways, using a large
screen display in a public room in our faculty. To
achieve social awareness, we ask the staff to contribute
items of self-refiection, such as holiday postcards or
birth announcements. In order to reflect the liveliness
of the workplace, we monitor places where occasional
encounters may take place, for example during a break
at the coffee machine or in the printer room, waiting
for the printer queue. Encounters in such places are
often of an informal, personal nature, but may be mixed
with work-related interests. As an experimental feature,
we consider to allow for direct interaction using the
system, for example, to play a game, possibly with a
mobile phone as an input device. In summary, the
PANORAMA system is determined by the following
contributions of its users, contributions that are not
necessarily direct or even do require explicit activity.

e sclf-reflection(s) — e.g. picture/postcard(s)
e casual encounter(s) — at coffee machine or printer

e occasional battle(s) — optional direct interaction

For a deeper understanding of what role the system
would play in the (working) life of the staff, we engaged
in several field studies and used cultural probes to
determine what could be valuable contributions to ask
for and how to display these on the PANORAMA
screen, Vyas et al. (2007b).

We have developed a first prototype implementation in
DirectX 9, using ViP technology, based on the system
described in Eliens (2006). In this realization, we deploy
a moving virtual gallery, containing video and image
feeds. The gallery acts like a moving scroll, displaying
information in a continuous manner, in a panorama-like
way. The images in the gallery are fed by channels,
containing information that is either due to explicit
contributions (self-reflections) or ongoing activity in
the work place (casual encounters or occuring events),
monitored by cameras or other sensors.

Obviously, as we will discuss later, the PANORAMA
system is subject to a dialectic of awareness, that is
it will be present, but the staff will only occasionally
pay atention to it, dependent on their interests and also
on what visual cues and effects the system presents to
draw attention to ongoing activity. Although we would
like the system to be autonomous in the decision how
to present information, we cannot hope to do this by
computational means only, Eliens (1988), and hence we
need to provide interaction markers to invite the users to
contribute actively to the system, or influence the way
information is displayed according to their preference.
For the display of information, we provide a rich
context of material, including videos showing the faculty
and its surroundings, fragments from video clips, and
of course the material resulting from the occassional

72

encounters and self reflections. In PANORAMA we
use particle systems displaying the information in a
pictorial way by images flowing according to the rules of
the particle system chosen to represent that particular
type of information. To organize this material we took
conventions governing our interpretation of 2D displays
as a guideline in designing the flow of particle systems.
A more detailed discussion of these conventions will be
given in the next section. Identifying bottom with plain,
top with ideal, left with given and right with new, we
arrived at the following identifications.

semiotic rules

o self reflections: plain = ideal/new

e casual encounters: plain =—> ideal/given

e contextual stories: ideal/given = plain/new
o personell faces: ideal/new = plain/given

e occurring events: ideal = plain

For example one may remark that people’s faces become
more familar in time, and that in the process of getting
to know them we see more of the plain reality of people.
Naturally, different interpretations and different designs
are possible.

Apart from the spatial characteristics of these flows
of information we also used the speed with which the
images move accross the screen as a parameter of design.
For example events and occurrences move very fast,
while both casual encounters and self reflections move
slowly. Faces come across the screen with intermediate
speed. To give self reflections more visual salience, the
images are displayed in a non-transparent way, whereas
all other flows of images merge with the background due
to transparency. Although it is debatable whether the
interpretations given above hold, we found the heuristics
given by semiotic theory extremely helpful in deciding
how to represent the information as flows of images in
space/time.

MEANING OF COMPOSITION

Aesthetic awareness is common to us all. Having an
understanding of aesthetic awareness, can we isolate
the relevant design parameters and formulate rules
of composition that may help us in developing inter-
active applications? According to our philosophical
credo, Eliens (1979), no! However, the history of art
clearly shows the impact of discoveries, such as the
discovery of perspective, as well as conventions in the
interpretation of art, as for example in the iconic rep-
resentation of narrative context in 17th century Dutch
painting. Moreover, the analysis of the visual culture
of mass media may also give us better understanding of
the implied meaning of compositional structures.

The notion of perspective, described in Alberti (1435), is
an interesting notion in itself, since it describes both the
organisation of the image as well as the optimal point of

view of the viewer. The normal perspective as we know
it is the central perspective. However, there are variants
of perspective that force the viewer in an abnormal point
of view, as for example with anamorphisms.
Perspective had an enormous impact on (western) art
and visual culture. It defines our notion of naturalist re-
alism, and allowed for the development of the panorama
as a mass medium of the 19th century, Grau (2003). Art
that deviated from central perspective, such as cubism
or art from other cultures, was often considered naive.
Photography and its pre-cursors had a great impact on
the perfection of perspectivist naturalism, and what is
called photorealism became the touchstone of perfection
for early computer graphics, Bolter and Grusin (2000).
Apart from perspective, other conventions regulate the
composition of the 2D image, in particular, follow-
ing Kress and van Leeuwen (1996), the information
value related to where an object is placed in the
image, and the salience of the object, determined by
its relative size, being foreground or background, and
visual contrast. Also framing is used to emphasize
meaning, as for example in the close-up in a movie
shot. In analysing a large collection of image material,
Kress and van Leeuwen (1996), somewhat surprisingly
found that lef/right positioning usually meant given
versus new, top/bottom positioning ideal versus real, and
centre/margin positioning important versus marginal. It
is doubtful whether these meaning relationships hold in
all cultures, but as a visual convention it is apparently
well-rooted in western visual culture.

For 2D images, Kress and van Leeuwen (1996) further
identify narrative elements, that is relations between
objects in the image that suggest a story, such as a
diagonal line from a person to a door, or a relation of an
object to the viewer, such as a gaze towards the viewer, a
technique that has been used only since late renaissance
painting.

More than paintings or 2D images, film is the medium
for conveying narrative structures. The art of story-
telling in film has been perfected in such a way that
Hollywood films may seem more real than life. However,
as emphasized in Bolter and Grusin (2000), this is not
due to any inherent form of naturalism, but to the
fact that we have got accustomed to the conventions
applied, that is the techniques of cutting, montage,
camera movements, close-ups, etcetera. In a highly
recommended book, Arnheim (1957), Rudolf Arnheim
gives an extensive analysis of the principles of montage
and film technique, and he explains why film is such an
effective medium:

It is one of the most important formal qualities of
film that every object that is reproduced appears
simultaneously in two entirely different frames of
reference, namely the two-dimensional and the
three-dimensional, and that as one identical ob-
ject it fulfills two different functions in the two
contexts.

73

Due to the subtle play between these two frames of
reference film may be considered an art form, and as
such perhaps the dominant art form of the 20th century.
As a mass medium, film may be characterized by what
Arnheim, following Benjamin, called the aesthetics of
shock, replacing reflective distance with immersive thrill.
As an art form, however, it is the dominant paradigm for
aesthetic awareness, lacking however still one dimension,
interactive dynamaics.

As observed in Bolter and Grusin (2000), interaction
is what distinguishes video games from film. Current
day technology allows for high-resolution photorealist
graphics, that make video games or virtual applications
almost indistinguishable from film. Virtual reality
technology as applied in video games adds arbitrary
choice of perspective, as exemplified in first-person
shooters or fly-overs, as well as an arbitrary mix of the
imaginary and real, as in CG movies, in an interactive
fashion.

Now, should we take the aesthetics of interactive video
games as the standard for interactive applications? Not
necessarily, since the naturalism strived for in most
games may at best be characterized as naive realism,
mostly photorealism. As observed in Kress and van
Leeuwen (1996), realism is a social construct, and hence
the program for developing an aesthetics for interactive
applications should perhaps include the development of
appropriate realisms. Again with an eye to the history of
art, where we have for example impressionism, cubism,
expressionism, as a guideline in the design of interactive
systems, it might be even better to look for appropriate
interaction-isms, styles of developing interactive systems
and games from a particular perspective. Not excluding
provocative perspectives! Cf. Burger (1981).

AESTHETICS OF GAME PLAY

Where an arbitrary interactive system may differ from
a game played for entertainment is obviously the actual
outcome, that is the value attributed to using the system
in the real world, and probably the effort required and
the possible consequences. You would not like to run
the risk to die a virtual death when answering your
email, would you? However, when interactive systems
replace task-bound functionality with fun, the difference
becomes less clear.

As we indicate in Eliens & Chang (2007), one element
not sufficiently captured by a classic game model, as
introduced in Juul (2005), is the narrative aspect of the
game play.

We may observe that many games already have a
strong relation to reality in what narrative context they
supply, or else in the realities of the media industry, in
particular Hollywood. For serious interactive systems,
we may assume an even stronger and in some sense more
straightforward relation with reality, by the use of media

content that is relevant for the life of the individual.

interaction markers Where in game playing the
variety of interaction modes seems to be well under-
stood within each community of game players, for the
development of more general interactive systems we will
have to think seriously whether the target user will be
able to learn the various modes of interaction, either by
explicit instruction or during play. And as designers we
must be concerned with the rules of interaction as well
as issues of visualisation and interaction mappings, that
is in other words which affordances the application offers
for a particular group of users.

DIALECTICS OF AWARENESS

In the course of our field study for the PANORAMA
system, Vyas et al. (2007), we tried to establish what
relation users would have to the system, not only in the
way they interact with it, but also in terms of what role
the system plays in their lives, and when and how they
would be aware of the system.

Due to the intrinsic properties of the PANORAMA
system, as a system meant to support social awareness
in a work environment, we could not assume direct
focussed attention. Instead, we must take the various
forms of awareness or attention into account.

Our thoughts in this direction were triggered by a
lecture of Linda Stone (former vice-president of Mi-
crosoft) at the Crossmedia Week? September 2006 in
Amsterdam, entitled Attention — the Real Aphrodisiac.
In that lecture Linda Stone made a distinction between
applications popular before 1985, applications which
were in general meant for self-improvement, for example
language-learning, applications that were popular be-
tween 1985 and 2005, applications that she characterized
as supporting continuous partial awareness, such as
email and news-feeds, and applications of the period
thereafter, from now into the future, which may be
characterized as applications that allow the user to be
creative, take part in a community, and are in other
words more focussed and less dependent on the external
environment.

Admittedly, it takes a few more steps to formulate a
theory of the dialectics of awareness. However, with
the function of the PANORAMA system in mind, we
may make, following Benjamin (1936), some inter-
esting distinctions between the experience of art and
architecture. Where art is usually experienced in a
delimited time span, and is similarly delimited in space,
that is the position of the observer, architecture is
everywhere and always there. As a consequence, art
receives focussed attention and may be appreciated with
reflective distance, whereas architecture is often not
perceived consciously, but merely present and subject

2www.picnic06.org

74

to an almost sub-conscious sensibility, which is only
brought to the focus of attention when it is either
aesthetisized, for example when taking photographs, or
when something surprising is sensed, for example in the
change of skyline in New York.

As argued in Hallndss and Redstrém (2002), many
of the new interactive systems, whether in the cate-
gory of ambient media, ubiquitous computing or calm
technology, will fall somewhere inbetween the spectrum
spanned by art and architecture, or more likely even
alternate between the forms of awareness associated
with respectively art and architecture.

In designing the new interactive systems and games, we
need to be explicitly concerned with the actual phases of
awareness that occur, simply because it is not clear what
role these systems play in our life. When introducing a
new system or artefact, we may distinguish between the
following phases:

phases of awareness
e initiation — appeal to curiosity
e promotion — raising interest
e progression — prolonged involvement

As designers we must ask ourselves the following ques-
tions. How do we appeal to the users’ curiosity, so
that our system is moticed? How do we gel a more
sustained interest? How de we get the user to interact
with or contribute to the system? And, how do we obtain
prolonged involvement, and avoid boredom? These
questions are not simple to answer, and require also an
understanding of the actual context in which the system
is deployed as well as an understanding of the level of
(aesthetic) literacy of the user(s).

AESTHETIC EXPERIENCE

In Hallnéss and Redstrém (2002) the notion of ezpres-
stonal is introduced, to convey the expressive meaning
of objects, that is the shift of attention from use to
presence, subject to a dialectic process of appearance
and gradual disappearance, when objects gradually
become more familiar. For the design of presence,
aesthetics is then considered as a logic of expressions, in
which expressions act as the presentation of a structure
in a given space of design variables.

However appealing the notion of expressional, following
idealist aesthetics, Kant (1781), where a distinction is
made between aesthetic awareness as a given, or a priori,
sensibility and aesthetic judgement as being of a more
empirical nature, we would prefer to consider aesthetics
as a logic of sensibility, which includes a dimension of
self-reflection in the sense of its being aware of its own
history. Put differently, to characterize the contextual
aspect of aesthetics, as it certainly applies to art, we may
speak of aesthetic literacy, that is aesthetic awareness
that is self-reflective by nature.

Assuming a notion of aesthetics as a logic of sensibility,
we may distinguish between three dimensions of form,
extending Kant’s original proposal, as indicated below:
dimensions of aesthetic experience
e spatial — topological relations, layout of image
e temporal — order, rhythm, structure

e dynamic — interaction, reflection, involvement

The dimension of dynamics clearly is the great unknown,
and more in particular it is the dimension we have to
explore in the context of interactive systems, not in
isolation but in relation to the other dimensions, not so
much to establish definite criteria, but to understand the
forces at work, or in other words the relevant parameters
of design. Sartre (1936) gives an existential foundation
for the dimension of dynamics, by observing that the
human body is instrumental in gaining awareness, as
the centre of both obscurity and reflection from which
consciousness emerges, through selection and action. It
is in the existential dimension of aesthetic awareness
that we come most close to the experience of the new
digital artefacts, since it concerns both involvement and
human action.

CONCLUSIONS

The PANORAMA system, as presented in this paper,
may be regarded as one of the new interactive systems,
with game playing — in the form of occasional battle(s)
— as an intrinsic element. PANORAMA, and similar
systems alike, presents us not only with a technical
challenge, but more importantly also with a design
challenge, which requires a new way of looking at the
aesthetics of interaction, or perhaps we should say the
meaning of such systems in our day to day experience,
amplifying our awareness.

As our initial prototype was received with much interest,
we see as important targets for future research, firstly
the deployment of alternative platforms, Si & Eliens
(2007), and secondly the development of suitable games,
that fit within the aesthetic framework determined by
the primary raison d’étre for PANORAMA, to promote
and support social awareness.

REFERENCES

Alberti L.B. (1435), On painting and on sculpture,
Phaidon, edited by C. Grayson, 1972

Arnheim R. (1957), Film as Art, University of Califor-
nia Press

Benjamin W. (1936), The Work of Art in the Age
of Mechanical Reproduction, Online Archive —
http://www.marxists.org

Bolter J.D and Grusin R. (2000), Remediation — Un-
derstanding New Media, MIT Press

75

Burger P. (1981), Theorie der Avantgarde, Edition

Suhrkamp

Eliens A. (1979), Creativity: reflection and involve-
ment, Ninth Int Conf of Aesthetics, Dubrovnic,
August 1979

Eliens A. (1988), Computational Art, First Int Sym-
posium on Electronic Art, Leonardo Supplementary
Issue, Pergamon Press 1988, pp. 21-26

Eliens A. (2006), Odyssee — explorations in mixed re-
ality theatre, In Proc. GAME’ON-NA 2006, P.
McDowell ed., Eurosis-ETI, pp. 62-64, Sept 19-21,
Monterey, USA

Eliens A. and Chang T. (2007), Let’s be serious — ICT
is not a (simple) game, In Proc. FUBUTEC 2007,
April 2007, Delft

Grau O. (2003), Virtual Art — From Illusion to Immer-
ston, MIT Press

Graves-Petersen M., Iversen O.S., Gall Krogh P.,
Ludvigsen M. (2004), Aesthetic Interaction — A
Pragmatist’s Aesthetics of Interactive Systems,
Proc. DIS2004, Cambridge Mass. USA, pp.
269-276

Hallnéss L. and Redstrém J. (2002), From Use to
Presence: On the Expressions and Aesthetics of
Everyday Computational Things, ACM Trans. on
Computer-Human Interactions, Vol. 9, No 2, pp.
106-124

Juul J. (2005), Half Real — Video Games between Real
Rules and Fictional Worlds, MIT Press

Kant E. (1781), Kritik der reinen Vernunft,
Meiner Verlag, ed. 1976

Felix

Kress G. and van Leeuwen T. (1996), Reading
Images: The Grammar of Visual Design, Routledge

Sartre J.P. (1936), L’imagination, Presse Universitaire
de France, ed. 8, 1971

Si Yin and Eliens A. (2007), PANORAMA — A Rich
VRML Application Platform For Online Gaming,
Workshop Web 3D Games, Web3D Symposium 07,
Perugia Italy, April 15-18

Vyas D., van de Watering M., Eliens A., van der Veer
G. (2007), Engineering Social Awareness in Work
Environments, Proc. HCI International 2007, 22-27
July, Beijing, China

Vyas D. van de Watering M., Eliens A., van der Veer
G. (2007b), Being Social @ Work: Designing
for Playfully Mediated Social Awareness in Work,
Proc. HOIT 2007, Chennai, India in August 2007

ISSUES FOR MULTIPLAYER MOBILE GAME ENGINES

Abhishek Rawat
Indian Institute of Technology
Kanpur — 208016
Uttar Pradesh, India
E-mail: rawata@iitk.ac.in

KEYWORDS
Game, Game engine, Mobile, Development.

ABSTRACT

This study analyzes the different functionalities of Mul-
tiplayer Mobile Game (MMG) Engine- that is game en-
gines dedicated to development of multiplayer games on
mobile phones. The different functionalities are broadly
divided into- core functionalities and extra functionali-
ties. The core functionalities are necessary and essential
for MMG development and have been identified as- net-
working, graphics and animation, inputs management,
context awareness, sound and data management. The
extra functionalities on the other hand deal with non
gaming aspects such as portability issues, deployment
and development tools. We illustrate how these func-
tionalities are provided by some of the available MMG
engines. The concerned MMG engines are Fdgelib,
GASP and MUPE. We also throw light on the remaining
issues for future MMG engines. This paper concludes by
listing key issues related to MMG engines: portability,
context awareness, monolithic aspect of current MMG
engines, networking, and deployment. Portability has
limited research perspective. Other issues offer attrac-
tive research opportunities for further development of
MMG engines.

INTRODUCTION

Within few years, games have become more and more
popular on mobile phones. Nevertheless, currently
most of available games correspond only to the port-
ing of games existing on PCs, video game consoles (e.g.
XBOX 360), or handheld game consoles (e.g. PSP). In
particular, games do not take advantage of mobile phone
specificities: always on and always with user, network-
ing capabilities, etc (Costikyan 2005).

In order to help game developers in their game devel-
opment, game engines provide a suite of visual develop-
ment tools in addition to reusable software components.
This paper presents the different functionalities of MMG
engines. First it introduces the three available engines
which we studied in order to illustrate these functional-
ities: Fdgelib, GASP and MUPE. Then it analyzes the

Michel Simatic
GET — INT
9, rue Charles Fourier
91011 Evry Cedex, France

E-mail: Michel.Simatic@Qint-edu.eu

76

core functionalities of MMG engines. Afterwards it con-
siders their extra-functionalities. Finally it concludes by
listing key issues.

STUDIED MMG ENGINES

In order to illustrate the different functionalities of
MMG engines, we chose three MMG engines among the
available ones: Edgelib, GASP and MUPE. We selected
Edgelib as it is a game engine dedicated to C++ (thus
high-performance) games, GASP because we have a lot
of experience on it, and finally MUPFE for its interesting
handling of context-awareness.

The methodology involved in our study was primarily
theoretical. First of all, a thorough study of the con-
cerned platform’s documentation was done. This was
followed by experiments in order to further evaluate each
platform. The experiments involved playing some al-
ready existing games (which were developed using the
concerned platform) and making simple test games.
The following paragraphs briefly introduce each MMG
engine.

FEdgelib is a commercial'! multi-platform game engine
for mobile devices (Elements Interactive B.V. 2007). It
features a platform independent API, enabling the de-
veloper to make use of all of its features for all sup-
ported platforms. Games are written in C++. FEdgelib
is the engine itself, containing all the modules and the
interface APIs. An Edgelib-powered game hooks up
on Fdgelib using the entry and wrapper functions to
take advantage of the functionalities and gameloop from
Edgelib.

GAming Services Platform is a common project of
CNAM — CEDRIC and GET — INT laboratories (Pel-
lerin et al. 2007; 2005). Tts result is GASP- an
Open Source Java middleware for the development
of multiplayer games for Java Micro Edition (J2ME)
phones based on Connected Limited Device Configu-
ration (CLDC) profiles, such as Mobile Information
Device Profile (MIDP) and NTTDocomo Java (Doja).
This middleware implements the Open Mobile Alliance
Games Services (OMA GS) specifications v1.0 (Open

IThe license for Edgelib’s full edition costs 950$ per year (it
entitles developer to create and release as many commercial games
and applications as desired).

Mobile Alliance 2007).

Multi User Publishing Environment (MUPE) is an
Open Source application platform for rapid development
of mobile multi-user context-aware applications, games
and services (MUPE 2007). MUPE application frame-
work mainly contains: MUPE client, MUPE core, and
MUPE server. MUPE client (a J2ME MIDlet) contains
all phone related functionalities and extension plugins.
MUPE core deals with client-server communication, ex-
ternal context information and other utilities. MUPE
server provides the game/service logic and a simple vir-
tual world.

MMG ENGINES CORE FUNCTIONALITIES

While studying Edgelib, GASP and MUPE engines, we
identified several core functionalities, that is function-
alities which are directly taking care of some gaming
aspects. In the following subsections, we study each one
of these functionalities, illustrate them with these MMG
engines and introduce remaining issues.

Networking

A cellular networks environment is fundamentally dif-
ferent from a fixed networks environment. The
development of MMGs offers more challenge than
their fixed/desktop counterparts (multiplayer computer
games) mainly because of more limited resources. In-
deed resource limitations compensation techniques of
multiplayer computer games (Smed and Hakonen 2006)
can be reused: message compression and aggregation,
dead reckoning, area-of-interest filtering, etc. But these
algorithms have to be adapted to take into account cellu-
lar network specificities: latencies around 1 second and
data transfers charged with a pay-per-byte policy (Nokia
Forum 2003). The use of Bluetooth improves the situ-
ation (although it is still worse than a fixed network
environment), but then the number of players becomes
limited (typically to a maximum of eight players). More-
over players must be physically located in a 10 meter
radius area.

Cellular network (like 2G or 3G) experience two other
constraints:

e Even though IP APIs (e.g., TCP sockets) are pro-
vided by the mobile phone, they cannot be used
in many countries because these protocols are re-
stricted to HTTP communications by the operator.

e Connectivity is frequently intermittent: The MMG
should be playable even in the absence of network
connectivity. Indeed this constraint has an influ-
ence on the game design?. For instance, some
games are designed so that players do not consider

2Notice game design solutions to this problem may also solve
constraints related to highly interruptible nature of MMG ses-
sions (The mobile devices are mainly intended for person to per-

77

disconnection periods as system malfunction, but
rather as a special game situation, which may even
be advantageous for a certain period (Broll et al.
2006). Notice that this connectivity constraint, as
well as the latency problem, motivates the neces-
sity for data consistency sub-functionality (mod-
ule). Such a module guarantees a consistent view of
the game data for all players even when exchanged
messages between gamers mobiles experience high
latencies or when some players are temporarily not

playing

HNlustration

GASP enables to create MMGs running over cellu-
lar networks and over Bluetooth. In the former case,
because of protocol restrictions enforced by operators,
HTTP protocol is the basis of client-server communi-
cation: i) Game events are stacked on the server side,
ii) Clients send periodic requests to the server in order
to get these events.

To limit volume of data transfers, GASP relies on a
light-weight binarization of message objects provided by
MooDS protocol (Pellerin 2007). In the context of mul-
tiplayer gaming experiment, MooDS data is about 1.2
times longer than raw data length values, whereas JSR-
172 and kSOAP2 are respectively about 12.2 times and
14 times longer. Moreover generation of binarization
code is designed to scale down communication appli-
cation code size on mobile side. As an example, this
compilation mode was successfully used on a game pro-
totype to reduce code size by 8 kilobytes, representing
about 25% of the total application code size in Doja 1.5.

Issues

Despite Wi-Fi or other wireless technologies deploy-
ment, latency will remain a problem in the few coming
years. MMG architectures mixing Bluetooth networks
and 2G/3G networks may be a palliative solution.
With the increase in number of MMGs, the data con-
sistency sub-functionality will play an important role in
dealing with the latency problem (somehow it is a way
of hiding latency). Integrating it easily in the game de-
velopment process is an issue (Khan et al. 2007).
In-game communications between users will be more
and more required: easy communication with one an-
other through chat messages or, even better, by speak-
ing. Network libraries based on SIP are currently being
studied. SIP is indeed a neat solution to this require-
ment. But it is not sufficient, as SIP-based phones will
not be commonly deployed among users before a few
years. Other solutions should be studied.

Finally fairness is also an issue. Its goal is to guarantee
that all players have the same chances of winning, even
if some of them have a less powerful mobile phone or a

son communications, and thus phone calls and SMS messages can
constantly interrupt the MMG being played).

slower access to the network. Solutions have been pro-
posed in the context of PC/consoles, but studies should
be done in order to find solutions appropriate for mobile
environments.

Graphics and animation

Graphics are used to represent the characters and crea-
tures in a game, as well as background worlds and other
interesting objects that factor into the overall game de-
sign. Graphic functions must be provided to game de-
velopers. These functions include drawing of text, basic
shapes (lines, rectangles, etc) and displaying/rendering
of images on the screen. Transparency is an impor-
tant aspect of graphics. Without transparency, super-
imposed images would have distinct visible rectangular
borders, which would make the game less realistic.
Animation is the illusion of movement. It is the heart
of graphics in almost all mobile games (Morrison 2005).
Since mobile phones have limited resources, it is impor-
tant that when determining the frame rate for a game, it
should be low enough to yield a smooth animation and
at the same time it should not overload the processor.
Even though in recent years the graphics power of the
mobile phones have increased a lot (making it possible to
develop high performance 3D games with eye catching
graphics), for most of the existing mobiles, 2D anima-
tions are still more straightforward and efficient than 3D
animation and thus are more suited®. Sprites are impor-
tant in games because they provide simple, yet effective
means of conveying movement while also enabling the
objects to interact with one another. Indeed an impor-
tant aspect of sprite animation is collision detection: It
is used to determine whether sprites physically inter-
act with one another. This is a critical requirement of
virtually every action game.

Lastly it is desirable for game developers to have tools to
help screen design: MMGs generally require the screen
area to represent a large amount of information related
to game world and players. The small screen size poses
strong challenges to designers, as experienced for in-
stance by TibiaME developers (Nokia 2003).

Hlustration

FEdgelib contains a graphics engine, optimized for vari-
ous platforms. It provides functionality to draw both 2D
and 3D graphics. It supports color key blitting? and op-
timized opacity blitting, RGBA surfaces, different dis-
play orientation (both portrait and landscape layout),
rotation in all four orientations (0, 90, 180 and 270),
surface rotation and scaling, dynamic clipping, collision
detection, native image loading, custom pixel shaders
and various optimized color filters. It also supports a

3Now, many 2D animation techniques simulate 3D animation
by altering the look of the objects to simulate depth.

4Surface content can be copied from one surface to another by
this method.

78

broad range of image formats: BMP, PNG, etc. Edgelib
is equipped with native image loaders making the engine
fully independent from external libraries. These image
loaders are implemented as plugins and so unused im-
age formats can be disabled to decrease the filesize of
executables.

3D surfaces are available to store 3D models. FEdgelib
provides support for hardware accelerated 3D graphics
through OpenGL ES and OpenGL. It lets developers
fully utilize GPUs (graphics processing units) on mo-
bile devices supporting OpenGL (ES). Devices without
hardware acceleration can use an OpenGL (ES) software
implementation or Edgelib’s “fast” internal 3D renderer.
Edgelib can read 3D Studio Max files and MilkShape 3D
files.

Issues

Handling the small screen size will remain a key issue.
Some studies propose to take advantage of public dis-
plays to overcome the problem faced by small screen
size (Leikas et al. 2006). Such displays can have a
more detailed version of game world. Moreover non-
players can also enjoy the game. However, public dis-
plays should just add value to the game and must not be
a requirement. Otherwise it would hinder the mobility
of MMGs.

In future more and more users will be equipped with
mobile phones with 3D accelerator hardwares. This will
allow eye catching graphics in games. But this will lead
to having two classes of players: The ones equipped with
new mobile phones and the others using old ones. The
issue for game developers will be to develop two com-
pletely different versions of the same game, but allowing
people to play together

Flash Lite will become a popular technology for mo-
bile game development as it progressively becomes more
common on mobile phones (Koivisto 2007). But what
will be available to make multiplayer Flash Lite games?
Indeed there are solutions like SmartFoxServer (Go-
toandplay 2006) in the PC environment. Are they ap-
plicable to mobile environments?

Inputs management

Inputs management functionality is responsible for tak-
ing into account player actions related to the game.
Keyboard (or stylus, if available) is the most common
means by which a user interacts with MMGs.

The mobile phone has several inbuilt features like cam-
era, microphone, video player, phone book, which can
be used by MMG’s game design. (Koivisto 2007) gives
some examples: i) The phone book provides contact de-
tails of friends and it can be exposed to the application
so that players can contact/invite their friends during
game sessions; ii) The mobile phone camera can be used
for creating contents. The Nintendo DS allows players
to interact with games by using its integrated micro-

phone. For example player can take an action in the
game by blowing air through the microphone. This idea
can be reused with mobile phones microphones.

Even if they are less common, hands-free input meth-
ods start to be experienced thanks to accelerometers,
player’s body monitors, etc. For instance, Rexplorer
game uses the following method: Holding their mobile
phone in their hand, players draw signs in the air. Mean-
while their mobile uses the camera to analyze gestures
and thus recognize these signs.

Illustration

MUPE provides access to keyboard, but also phone in-
built features such as camera, sound, video, Bluetooth
IDs, location.

Issues

The available input interfaces are too limited on current
mobile phones.

One research direction is to have game designs which
cope with these limits. For instance, One button
games are successful mainly because of their simplic-
ity (Sheffield 2006). But they are more suitable for ca-
sual mobile games and truly do not satisfy the fast-paced
MMGs’ requirements.

Actually most promising improvements will come from
human-computer interaction (HCI) research field. In-
deed, today, more and more mobile phones integrate a
touchpad functionality on their display. Motorola in-
tends to use it for character recognition. Apple has
patented the simultaneous use of two fingers on its
iPhone’s display/touchpad: Thanks to this function-
ality, users can simultaneously move their thumb and
forefinger on the touchpad as if they wanted to reduce
the size of a displayed picture. In the near future, on-
going HCI studies will provide easier and more natu-
ral means of interacting with mobile phones, possibly
through body monitors hardware.

Context-awareness

Context-awareness can be described as the device’s (mo-
bile phone) ability to react and adapt to changes in
the user’s environment (Suomela et al. 2004). Context
awareness allows the environment to have an effect on
the gameplay. Actually it is the main differentiating
factor of mobile services compared to online services on
PCs: New gameplays can be imagined as MMGs can
be aware of the user’s surroundings/environment. For
instance, in Samurai Romanesque game (Potel 2003),
actual weather conditions are integrated into the game
world: If it rains in a real region, avatars located in
the corresponding game region cannot use their muskets
(due to wet gunpowder).

79

Hlustration

Context-awareness in MUPE is built into two separate
parts (Suomela et al. 2004). First, the connected user
clients can send their context information to the server,
as they are constantly connected to the server. Second,
any information in the Internet can be sent to the MUPFE
application by writing a context producer that formats
context information according to the Context Exchange
Protocol (CEP) (Lakkala 2002).

The context producer sends its information to MUPE
core. MUPEFE core triggers scripts related to this context
information change. These scripts may change some
data of the different games managed by MUPE server.
Possibly this evolution is notified to the different MUPE
clients.

Issues

First issue concerns collecting of context information:
How to gather it efficiently in order to avoid network
saturation because of collecting data? Middlewares like
JORAM look like an interesting solution.

Another issue concerns the processing of this context
information: How to avoid saturation of the proces-
sors (especially if these are processors of limited termi-
nals)? Middlewares like COSMOS provide a promising
answer (Conan et al. 2007).

Another question is: How to take into account context
evolution into the game world? More precisely what
programming environment should be provided to the
game developer to ease game development? We pre-
sented MUPFE development model previously. In Me-
diascape, context-awareness is limited to geolocaliza-
tion (mscape 2007): The terminal plays the appropri-
ate bits of media (sound, pictures, etc.) according to
its position. The program is designed as the combi-
nation of a map and a storyboard. OpenMEE goes one
step beyond by providing configurable/extensible design
representations (Biswas et al. 2006): maps, storyboards,
state-charts, algebraic representations, etc.

Final issue concerns correct interpretation of context
data. For instance, imagine a mobile which detects it
is in a hot, moist place. It could deduce it is besides a
swimming pool whereas it is in the stomach of a dog who
just swallowed it. How to improve context inference?

Sound

Game developers are also concerned with the efficient
playback of audio (and possibly video at some point).
In mobile environments they have the option to use
tones or the more advanced sound options (such as wave
sounds, MIDI music, and MP3 audio), or possibly some
combination of the two.

Game studios usually do not pay too much attention to
the sound (They concentrate most of their energy on the
graphics). This may be a mistake as good sound features
on its own can make the gameplay more interesting and

appealing. For instance, initial versions of PC game
Astronoid were not overwhelming because their sounds
did not “sound” realistic.

HNlustration

Edgelib’s sound module provides an interface for exist-
ing multi-platform sound libraries. It provides default
support for the multi-platform sound engine: Hekkus
Sound System® library. Other sound libraries can be
added by creating a custom wrapper. The default silent
interface is also available if no external sound library is
used. It is possible to add additional effects to sound
and music playback. These include: fade in, fade out
and cross-fade effects. Also it is possible to adjust pitch
and panning when playing sound effects.

Issues

The quality of sound hardware will improve as there will
be more and more hi-fi mobiles (like Walkman phones,
for instance).

There are studies on games (like Demor, for instance) for
blind people who play only with sounds. These studies
could make sound functionality an interesting alterna-
tive to the small screen size issue.

Data management

Considering the highly interruptible nature of mobile
phones (phone calls, messages, unexpected network fail-
ure or battery loss), it is necessary to store game re-
lated data. The game data such as high scores, game
state variables, game saves, must be saved and retrieved
efficiently when required.

Hlustration

GASP provides services to store or retrieve data from a
distant server. It enables basic SQL requests to a distant
HTTP persistency server (Pellerin 2007).

Moreover GASP can rely on MIDP RMS mecha-
nisms (Knudsen 2003), which give access to a device
persistent storage. GASP can also rely on JSR-75 (PDA
Optional Packages for the J2ME Platform) primitives:
They provide access to device file system.

Issues

There are on-going studies on how to use mobile
database to implement games. For instance, (Mottola
et al. 2006) presents the design and implementation of a
pervasive game on top of TinyLIME, a middleware sys-
tem supporting data sharing among mobile and embed-
ded devices: Data is distributed between laptops (car-
ried by the players) and motes (present in the different
rooms where the game is played). Laptops store the
equipments which players hold in the game. The motes
store the objects and possible monsters present in the

Shttp://www.shlzero.com

80

room. When a player takes an object in a room, cor-
responding data is moved from room’s mote to player’s
laptop.

Miscellaneous

PC/console game engines also integrate several other
functionalities: artificial intelligence, terrain generation
and physics engine. Do these have a counterpart in the
context of MMG engines?

Concerning artificial intelligence, as MMGs are cur-
rently rather simple, developers usually develop their
own solution (Morrison 2005). None of our studied
MMG engines proposes such functionality.

The same is true for terrain generation and physics en-
gines, probably because these latter functionalities are
too resource consuming. Morcover the current simplic-
ity of MMGs do not justify their use.

Issues

As terminal processing power increases, these function-
alities will be more and more requested. Main issue is
how to make these functionalities available on a mobile
terminal despite its limited capabilities.

MMG ENGINES EXTRA-FUNCTIONALI-
TIES

Previous section was dealing with MMG engines core
functionalities. This section presents functionalities
which ease the development of the game even though
they are not directly linked to gaming aspects.

Deployment

Deployment is the functionality dedicated to the instal-
lation, update and uninstallation of the game on the
user’s mobile (and possibly on servers in the case of
a multiplayer mobile game). For editors, an impor-
tant sub-functionality of deployment is payment man-
agement.

Hlustration

MUPE client uses a custom script language, which en-
capsulates J2ME functionalities. The end-users are re-
quired to do a single install only. Service discovery is
built in: A single install provides end-users with access
to many services.

When developers want to deploy their MUPE game
(first installation or update), they need to copy their
program files in directories used by MUPE core and
MUPE server. Afterwards, when necessary, MUPE
client will download part of its code from MUPE core.
Moreover, if developers’ game is a context-aware game,
they have to install, on the sensors, the code responsible
for transmitting context data to MUPE core.

Issues

Current mobile phone’s deployment capabilities are too
restricted (mainly for security reasons). For instance, it
is not possible to install a J2ME application and also
the shared library which it will use: The whole code
must be in the same jar file. JSR-124 (J2EETM Client
Provisioning Specification) is a first (incomplete) answer
to these limitations.

Another issue is related to distributed deployment: How
to guarantee that the different parts of an application
is completely (and coherently) installed, updated or re-
moved from the miscellaneous equipments which should
host them?

Dealing with portability

In mobile world, portability of games between different
phones with different features is by itself an issue. Soft-
ware development environments (such as Java or C++)
may vary as well as screen sizes and keypads. Even the
mobile phones developed by same manufacturer may
vary. This issue is of much more concern for MMGs,
because people living in different geographical locations
may want to play the same game. And there is a high
risk that their phones vary a lot in terms of features.
Thus MMG developers need help for making their game
available on many different hardware.

Hlustration

FEdgelib is referred as a “true multi-platform game en-
gine”, mainly because it can be used to create multi-
platform games smoothly through the generic interface
and all of its key features are available on each plat-
form. FEdgelib currently supports the following plat-
forms: Windows desktop (2k/XP), Windows Mobile
Pocket PC, Windows Mobile Smartphone, Symbian UIQ
(such as the Sony Ericsson P900 and M600), Symbian
Series (such as Nokia N-Gage and N70, E60). FEdgelib
provides support for most of the input and graphic fea-
tures which are available on these platforms.
Nevertheless Fdgelib does not provide any support for
Java-only mobiles.

Issues

Tools like Mobile Distillery or UMAK help in the port-
ing process. Nevertheless they do not prevent developers
from installing their game on dozens of mobiles to check
that the ported Java game is running fine. Porting pro-
cess is still costly.

Some countries offer a much healthier situation. In the
USA, BREW is a de facto standard. In Korea, gov-
ernment has imposed WIPIL. In the rest of the world,
there are on-going initiatives to make J2ME more strict,
thanks to, for instance, compliance testbeds.
Portability issue will mostly be solved by industrial com-
panies (there is limited research perpective). For in-
stance, in the last years, Nokia simplified some aspects

81

of portability by standardizing the size of its mobile
phones’ display.

Development tools
Development tools help in the development process.

Hlustration

MUPE Developer Tool plugin for Eclipse offers instruc-
tions and helps in application development. Developer
Tool contains template projects for getting started with
the different applications. In addition, there are code as-
sist, code examples and tools for linking the XML and
Java files.

Issues

In a previous section, we presented the issues related to
context-aware game’s development.

Another issue concerns monolithic aspect of MMG en-
gines. For instance, to develop a game there is no way
to use functionality A of MMG engine 1 and function-
ality B of MMG engine 2. This raises several issues:
i) How to glue MMG engines functionalities easily and
efficiently (especially if they are coming from various
providers)? ii) How to replace easily and efficiently one
MMG engine’s functionality by another MMG engine’s
functionality? Indeed solutions exists (and are applied)
in PC/console world, but they are not compatible with
mobile’s limited resources.

CONCLUSION

This paper presented the different functionalities of Mul-
tiplayer Mobile Game engines. For each functionality, it
presented the specificities of mobile environments which
are taken into account by current MMG engines, illus-
trated it with existing MMG engines and introduced re-
maining issues. The key issues are: portability, context-
awareness, monolithic aspect of current MMG engines,
networking, and deployment. Portability has limited re-
search perspective. Context-awareness has many open
and interesting issues, especially the one related to the
easy integration of application’s context-awareness in
the development process. Working on the limits of
monolithic aspect of current MMG engines seems an
attractive research direction. In the networking field,
architectures mixing various networks, data consistency
sub-functionality, as well as in-game communications,
offer worthwhile research opportunities. Finally, effi-
cient solutions for deployment issues also need to be
found.

ACKNOWLEDGEMENTS

The authors thank GET — INT school and JEMTU
project who funded this study.

REFERENCES

Biswas A.; Donaldson T.; Singh J.; Diamond S.; Gau-
thier D.; and Longford M., 2006. Assessment of
mobile experience engine, the development toolkit for
context aware mobile applications. In ACE '06: Pro-
ceedings of the 2006 ACM SIGCHI international con-
ference on Advances in computer entertainment tech-
nology. ACM Press, New York, NY, USA, 8.

Broll W.; Ohlenburg J.; Lindt I.; Herbst I.; and Braun
AK., 2006. Meeting technology challenges of perva-
stve augmented reality games. In NetGames "06: Pro-
ceedings of 5th ACM SIGCOMM workshop on Net-
work and system support for games. ACM Press, 28.

Conan D.; Rouvoy R.; and Seinturier L., 2007. Scalable
Processing of Context Information with COSMOS. In
J. Indulska and K. Raymonds (Eds.), Proc. 6th IFIP
WG 6.1 International Conference on Distributed Ap-
plications and Interoperable Systems. Paphos, Cyprus,
vol. 4531, 210-224.

Costikyan G., 2005. Mobile games: Medium and style.
Keynote Talk at 4th workshop on Network and Sys-
tem Support for Games (NetGames), Available online
at: http://www.research.ibm.com/netgames2005/pa-
pers/costikyan.pdf.

Elements Interactive B.V., 2007. Edgelib Mobile Game
Engine. http://www.edgelib.com/.

Gotoandplay, 2006. SmartFoxServer: Socket server
for Flash multiplayer games and applications.
http://www.smartfoxserver.com/.

Khan A.M.; Chabridon S.; and Beugnard A., 2007. Syn-
chronization Medium : A Consistency Maintenance
Component for Mobile Multiplayer Games. In Pro-
ceedings of 6th Annual Workshop on Network and
System Support for Games 2007 (NetGames 2007).
Australia, ACM.

Knudsen J., 2003. Wireless Java: Developing with
J2ME. Apress, second ed. ISBN 1-59059-077-5.

Koivisto E., 2007. Mobile games 2010.
Tech. rep., Nokia Research Center Finland,
http://research.nokia.com/tr/NRC-TR-2007-
011.pdf.

Lakkala H., 2002. Context Exchange Protocol (CEP).
http://mupe.nrln.net/files/cep_1_0.pdf.

Leikas J.; Stromberg H.; Ikonen V.; Suomela R.; and
Heinila J., 2006. Multi-User Mobile Applications and
a Public Display: Novel Ways for Social Interaction.
In PerCom. IEEE Computer Society, 66—70.

Morrison M., 2005. Beginning Mobile Phone Game Pro-
gramming. SAMS, first ed. ISBN 0-672-32665-5.

82

Mottola L.; Murphy A.L.; and Picco G.P., 2006. Perva-
sive games in a mote-enabled virtual world using tuple
space middleware. In NetGames '06: Proceedings of
5th ACM SIGCOMM workshop on Network and sys-
tem support for games. ACM Press, 29.

mscape, 2007. mscape - You are here. http://www.m-
scapers.com/.

MUPE, 2007. Multi-User Publishing Environment Ap-
plication Platform. MUPE website. Available online
at: http://www.mupe.net.

Nokia, 2003. TibiaME Case Study (Version 1.0). Nokia
forum, http://www.forum.nokia.com/main.html.

Nokia Forum, 2003. Querview of Multiplayer Mo-
bile Game Design (Version 1.1). Tech. rep., Nokia,
http://www.forum.nokia.com/main.html.

Open Mobile Alliance, 2007. Open Mobile Alliance:
Games Services Working Group. OMA web site,
http://www.openmobilealliance.org/tech /wg_com-
mittees/gs.html.

Pellerin R., 2007. The MooDS protocol: a J2ZME object
oriented communication protocol. In Proceedings of
International Conference on Mobile Technology, Ap-
plications and Systems (Mobility Conference). Singa-
pore.

Pellerin R.; Delpiano F.; Duclos F.; Gressier-Soudan E.;
and Simatic M., 2005. Gasp: an open source gaming
service middleware dedicated to multiplayer games for
J2ME based mobile phones. In 7th Int. Conference on
Computer Games CGAMES’05 Proceedings. T5-82.

Pellerin R.; Delpiano F.; Gressier E.; and Simatic M.,
2007. GASP — a middleware for mobile multiplayer
games. http://gasp.objectweb.org.

Potel M.J., 2003. Samurai Romanesque, J2ME, and
the Battle for Mobile Cyberspace. IEEE Computer
Graphics and Application, 23, no. 1, 16-23.

Sheffield B., 2006. GDC: Success Fac-
tors of One-Button Casual Mobile Games.
http://www.gamasutra.com/features/20060322 /shef-
field_01.shtml.

Smed J. and Hakonen H., 2006. Algorithms and Net-
working for Computer Games. Wiley, first ed. ISBN
0-470-01812-7.

Suomela R.; Résdnen E.; Koivisto A.; and Mattila
J., 2004. Open-Source Game Development with the
Multi-user Publishing Environment (MUPE) Applica-
tion Platform. In ICEC. Springer, Lecture Notes in
Computer Science, vol. 3166, 308-320.

YEAST: THE DESIGN OF A COOPERATIVE INTERACTIVE STORY TELLING AND
GAMEBOOKS ENVIRONMENT

Paola Salomoni
Silvia Mirri
Department of Computer Science
University of Bologna
Mura Anteo Zamboni, 7 40127 Bologna, Italy

{mirri, salomoni} @cs.unibo.it

KEYWORDS

Interactive cooperative tools, Interactive story telling,
Web 2.0 technologies.

ABSTRACT

Sharing knowledge and creativeness is one of the fulfilled
potentials of IT. The light hearted dimension of this so
called “collective intelligence” is furthermore enforced
by the arising Web 2.0 technologies together with the
possibilities of massive multimedia employment.
Interactive Story Telling is an example of such an
assumption. This paper presents a system gathering IST,
multimedia presentations and role game features to allow
the creation and the modification of digital tales on an
open easy-to-use environment.

1. INTRODUCTION

Marcel Proust wrote "In reality, every reader is, while he
is reading, the reader of his own self” and this is possibly
more glaring if dealing with a storyteller and an oral
process of sharing stories. Voice sound, gestures, rhythm,
newer and newer (often different) details, audience
feedbacks, cast the teller inside Ais story as if he were a
player of some kind of role or game, rather than a simple
go-between.

According to the IT jargon, we might describe such an
approach as a sort of multimedia versioning of a tale, an
adaptive interface and, indirectly, a collaborative long-
term work. Between the fixed structure and order of a
written tale and the uniqueness of a told story, recent
history shows the so-called “gamebooks” and Interactive
Story Telling (IST) environments (Crawford 2007,
Cacciaguerra et al. 2006). The formers branch into
different sceneries, according to the reader choices along
a series of plot steps, while the latter ones shift the
narration from a linear form to a dialectical one through

83

Ludovico Antonio Muratori
Corso di Laurea in Scienze dell’Informazione

University of Bologna (Cesena)
Via Sacchi 3 47023 Cesena (FC), Italy
muratori@polocesena.unibo.it

dialogues and discussions on a typically collaborative
environment. On the other hands, role games can be easily
conceived as unique performances of a story, where
players from time to time build a sort of a newer and
newer story plot (Romero et al. 2004).

This paper describes a system (named YeAST, Yet Another
Story Told) where IST and role games features arc
exploited, together with multimedia resources, in order to
offer an absolutely open playground for creating,
modifying and ruling stories, not only through textual
statement, but also with images, video and audio clips.
The main goal of such a system is providing a game
environment where players participate in building a plot,
by adding, editing and timing multimedia contributions. It
trics to be a sort of virtual movie-set, where any possible
situation is added and evolves while it is realistically seen
and heard by any character, player and audience.

As it happens with IST, individuals can share their
abilities and generate a more creative final product. The
collaborative dimension of such an environment has
implied the choice of a suitable, friendly and standardized
interface. One of the several flavour of a Wiki Content
Management System has been adopted to answer such a
basic instance. It has been integrated with some syntax
extensions with a suitable parsing add-on to the Wiki
engine, in order to add and edit multimedia resources. The
SMIL standard has been used as a sub-framework to
describe added resources and codify the extended syntax.
Moreover, an interface has been designed and
implemented inside the Wiki, to show any possible
branching of cach story plot.

Finally, a subsystem has been added to the Wiki
architecture to define roles and policies for the players
and to inherit versioning built-in features (Leuf and
Cunningham 2001). It’s worth noticing that, no rules arc
established beforehand. From time to time, a sort of
moderator can decide the acceptance of new (or modified)
“events” on the story. In this sense, the existing
versioning system of the Wiki, allows to roll back the
story whenever it were necessary.

The reminder of this paper is structured as follows:
Section 2 illustrates main design issues and some
motivations which have driven our work. Section 3 details
the architecture of our system, according to the framework
provided by the Wiki CMS. Section 4 describes some
aspects of the implementation, particularly referring to the
syntax extensions of the players interface. Finally, section
5 points out some open trends of the system, concluding
the paper.

2. ON THE DESIGN OF A WIKI-BASED IST
APPLICATION

The main goal in designing the architecturc of our
collaborative system is the integration of Web 2.0
technologies and interactive story telling features. Our
idea is based on the provision of a unique application in
order to offer casy-to-use editing and user managing, as
well as a sort of multimedia repository mechanisms.
Today, Wiki engines are certainly one of the most widely
utilized content management systems and represent one of
the key technologies for enabling user collaboration in the
Web. These Web 2.0-based systems embrace an approach
where contents are collaboratively edited by a multitude
of users (Vossen and Hagemann 2007). In Wikis, a
specific syntax must be employed to edit a new content;
the source format that is produced to create and organize
textual contents is called Wikitext. Users are allowed to
edit a simple markup language which exploits plain text
with a few simple conventions for creating links and for
giving some structure and/or style to the edited contents
(Ferretti ¢t al. 2007). Then, the inserted source code is
automatically converted to a final HTML document
(Désilets ct al. 2006).

While similar among each other, each Wiki system has its
own syntax, grammar, structure and keywords. No
standard has been provided yet. Hence, for instance,
different Wiki engines typically have different syntax
conventions to specify links. While the very first Wiki
systems were only able to produce spare HTML pages
with fixed structure and only some simple graphic styling
(c.g., bold, italic, acronyms), more recent versions add
support for a more complex editing, which allows, for
example, to insert text decorations, tables, images and
formulas.

Wikis provide a means to verify the validity of recent
additions to the body of pages. The most prominent, on
almost every Wiki, is the "Recent Changes" page, a
specific list numbering recent edits, or a list of all the edits
made within a given time frame. Some Wikis can filter the
list to remove minor edits and edits made by automatic
importing scripts.

From the change log, other functions are accessible in
most Wikis: the Revision History showing previous page
versions; and the difference feature, highlighting the
changes between two revisions. Using the Revision

84

History, an editor can view and restore a previous version
of the article. The difference feature can be used to decide
whether or not this is necessary. A regular Wiki user can
view the differences of an edit listed on the "Recent
Changes" page and, if it is an unacceptable edit, consult
the history, restoring a previous revision; this process is
more or less streamlined, depending on the Wiki software
used.

In case unacceptable edits are missed on the "Recent
Changes" page, some Wiki engines provide additional
content control. It can be monitored to ensure that a page,
or a sct of pages, keeps its quality. A person willing to
maintain pages will be warned of modifications to the
pages, allowing him or her to verify the validity of new
editions quickly. A similar control can be applied also to
the content and its format. All the above described
features provide a support to a sort of versioning system
for the content and its format of any Wiki-page.

Many Wikis are open to the users without the need to
register any account. Somctimes scssion log-in is
requested to acquire a "Wiki-signature" cookie for
autosigning edits. Many edits, however, can be made in
real-time, and appear almost instantaneously online. This
can lead to abusc of the system. Private Wiki servers
require user authentication to edit, sometimes even to read
pages. Some Wikis allows user managing, defining
different groups of users with different levels of
permission for cach Wiki-page.

Besides traditional Wiki characteristics, our system
YeAST needs some other additional feature. In order to
provide a sort of digital gamebook and interactive story
telling editing and enjoying, a privileged group of users
should be able to define and fix some step, such as the
first one, some intermediate ones or the end of the story.
More over, it should be possible to provide alternatives
which follow such fix steps of the story: as well as in
reading a gamebook, the users can choose the preferred
alternative in order to compose their own story.

Users should upload not only images and link to other
resources (such as pdf files), but also audio and video. On
one hand the Wiki engine has to be adapted in order to
accept such media files and to embed them in the Wiki-
pages. On the other one, the Wiki-syntax should be enrich
in order to provide a casy-way to add media and
multimedia to the story, to synchronize them each other
(in a parallel or sequential way), to plot steps and to
define following alternatives, if users’ permissions allow
it.

3. SYSTEM FEATURES AND ARCHITECTURE

YeAST has been designed as an interactive, collaborative,
open environment to build multimedia stories. It has been
implemented as an instance of the DokuWiki CMS
(Dokuwiki, 2007), by exploiting its plug-ins system to
extend the Wikitext syntax. As it is shown in Figure 1,

actors of such a system can be classified into three general
sets: as audience of the story, as players/tellers arranging
the sceneries and as directors/moderators surveying the
consistency of any plot. Each set has its own collecting
rules, which define the policies of access to the story.
Audience can simply access the sequence of scenes the
story is made up; players can add, edit, modify events on
scencs, while moderators can accept or refuse any
variation of the plot. An RSS feed (Really Simple
Syndication) is provided by the system about every
novelty the players have tried to introduce (RSS 2007). A
mechanism for deferring the publication of any submitted
new event can be activated or get disabled. In the first
case, no one except the moderators is able to see any
evolution of the story before it has been approved. The
second casc (truly closer to the Wiki philosophy) implics
possible roll backs of a universally visible version of the
story. Each story is quantized in scenes (or story unit)
structured as a graph. The versioning system of Wiki
allows to rewind the story, while a proper policy on new
events makes the deferred publication possible.

players/tellers

Cunnent
Producer
moderator

Figure 1: YeAST actors

At the server side, the YeAST manages multimedia
content (stored in units, or scenes inside the Scencs
Repository) in a Wiki-like modality:

e A wiki editing interface is used to add or modify
a scene, by using a text-based language that
extends the traditional Wiki syntax, by adding
some multimedia synchronization features
(named EWT, Extended Wiki Text).

e A Content Producer composes scenes, described
in EWT and related to multimedia files, by
composing an appropriate HTML and SMIL
content.

85

(story)

Fixes the first

scene

Adds
Multimedia

5

Alternative

et
/

Fixes the last
sCens

Figure 2: The collaborative editing process

As it is shown on Figure 2, a (possibly cyclic) graph of
scenes represents the varying flow of a story. Any user
can insert or edit a contemporary or scquential new
resource to the flow of the story. The moderator fixes
some step of the story to the YeAST system (in Figure 2
the first and the ending scenes are fixed). Contemporary
events are collected as grained resources of a single scene
or suitably mapped, starting from an entire story unit,
which is shown at the same time of another one. Such a
meta information is simply presented with a proper tag
between two or more contemporary scenes. According to
the time and space limits of any single story unit the
(quantized) flow of each story can also be beaten by a
scene unit as a whole or, once again, as a resource of it.

4. EXTENDED WIKI TEXT

Two different tags exist in SMIL for specifying the media
contemporaneity and the sequentiality: par identifies a
sct of parallel clements while seq identifies a set of
sequential media. With this in view, we added to the
Wikitext a specific syntax for each of these two tags
(W3C 2005).

In particular, in our Wiki syntax a +++ symbol
corresponds to the par SMIL element and the ~ "~ symbol
corresponds to the seq SMIL tag.

To add a set of parallel media, a user should exploit a
syntax which is as follows (sce Figure 3).

+++ “first media”

+++ “second media”

+++ “last media”

Figure 3: EWT code fragment for <par>

Instead, to add a set of sequential media, a user should
exploit a syntax which is as follows.

Ann Nfirst media”

AAA W

second media”

A Nlast media”

Figure 4: EWT code fragment for <seg>

For instance, instead of updating directly the SMIL code,
through our system it is possible to add media in a
Wikipage (as a gamebook) by writing the following lines
into the specific text form of the Wiki interface.

+++ [[http://www.criad.unibo.it/
audio/rainfalling.mp3]]
It can’t rain forever

+++

AANA

{{rain.jpg}} 10
[[http://www.youtube.com/
watch?v=oyHevbleOrk]]

AAA

Figure 5: The EWT example

To obtain this result, once the user has added a media
using our Wiki-like interface, the system automatically
adds to the document the SMIL markup code needed to
display that caption for the specific time interval, i.e., it
adds the <par> and <seqg> clements, reported in Figure
5, in the proper position of the SMIL document. In this
example an audio (rainfalling.mp3) is reproduced
as a background for a visual sequence composed by an
image (rain.jpg still for 10 seconds) and a video
resource from YouTube (Youtube 2007). In order to
represent nesting, a +++ clement is used to open the
sequence of visual resources. This example is limited to
the main methods (parallelizing, sequencing and duration)
used as extension to a traditional Wiki syntax. Obviously
the whole syntax includes all the clements nceded to
format text pages.
The editing interface for the code fragment of Figure 5 is
reproduced in Figure 7.
Besides +++ and ", we have added other new symbols
in order to support authors in creating sequences and
alternative scenes. Obviously the hypertextual structure of
the story graph could be obtained by using traditional link
mechanisms but we have tried to provide high-level
primitives to facilitate authors and, at the same time,
strength the perception of the story flow.
With this aim, we have added:

e !'!'! which identifies the one and only scene that

follows the current one.

86

e 2727, which identifiecs all the (morc than onc)
alternative scenes following the current one.

<par>
<audio src="http://www.criad.unibo.it/
audio/rainfalling.wav" />
<seq>

_r

<image src="rain.]jpg”/>
<video src=" http://www.youtube.com/
watch?v=oyHevbleOrk ”/>

<seq>

</par>

Figure 6: The SMIL code fragment corresponding to
EWT code of Figure 3

Generally, on YeAST, players can upload a SMIL-based
archive (as a common .zip file) or edit any existent one,
arbitrarily entering the scene. The interface on the Wiki
editor shows any available resource (audio, video, images,
or text) of the SMIL document and let to modify or add
further branches (as contemporary or sequential new
resources) to the multimedia flow. A contribution can be
either a multimedia file or, simply, a link to any
multimedia resource somewhere over the Internet. As a
final result, the Wiki parser produces a Web Page where
the possibly new scene is shown. As shown on Figure 1,
YeAST has a typical client/server architecture where a
“scenes forest” is server-side produced to describe a story
which user build and publish on a client side editor.

5. CONCLUSIONS AND FUTURE WORK

The novelty of YeAST is the possibility of telling and
playing a newer and newer story, not only by adding or
modifying text pieces of a plot, but also enriching the
scenery with images, video and audio clips. The aesthetic
and emotional impact of such an approach draw up the
final result to the storytelling tradition and cast players
and audience into a playground, which is more realistic
than usual role games scenarios. Wikis characteristics of
openness and collaboration shift the “collective
intelligence” to the “collective creativity”. Future trends
of YeAST are addressed toward the use of Web 2.0
tagging systems (like, for example, Youtube tags) to
allow users finding resources through proper keyword.
Furthermore, An existent work about extending syntax for
multimedia noting on a Wiki, named LAUGH - LAbelling
Unbound Grained Hypermedia (Ferretti 2007) is being
evaluated as an alternative to the current syntax. Finally,
overflow of media as contemporary resources, as well as
possible ruling mechanisms and management of spatial
synchronization (SMIL regions) remain as open questions
for the presented system.

O

Show page Old revisions

Recent changes Search

Trmia: gy skl
Edit the page and hit Bave. See syn
to make your first steps on the playground,

£

(R FN TPy

tax for Wikl syntax. Please edit the page only if you can improve it If you want to test some things, learn

====== The Rain —=====

+44 [http:/ Sww.criad.anibe. it/audic/rainfalling.mpdl]
It can’t rain forever
+44

- Cancel Edit summary: |

[CIMinor Changes

Lobxk - Las o

gamah

| Show nane

Ol resisions Admin Undate Profils 1 onnut Flack tn ton :
Ho00% v
Figure 7: A screenshot of the editing system
ACKNOLEDGEMENTS Ferretti, S.; Mirri, S.; Roccetti, M.; and P. Salomoni. 2007.

This work is supported by the Italian M.I.U.R. under the
MOMA and DAMASCO initiatives. Authors want to
thank Marco Roccetti e Stefano Ferretti for their
cooperation during this work.

REFERENCES

Cacciaguerra, S.; Roccetti, M.; and P. Salomoni. 2006.
“Multimedia Entertainment Applications — Interactive Story
Telling”. In Encyclopedia of Multimedia, (B. Furht Ed.),
Springer, January, 510-518.

Crawford, C. 2007. Storytron Interactive Storytelling Home
Page. http://www .storytron.com/index.html.

Désilets, A.; Gonzalez, L.; Paquet, S.; and M. Stojanovic. 2006.
“Translation the Wiki way”. In Proceedings of the ACM
International Symposium on Wikis, Denmark, 19-32.

Dokuwiki. 2007. Dokuwiki Home
http://wiki.splitbrain.org/wiki:dokuwiki.

page.

87

“Notes for a Collaboration: On the Design of a Wiki-type
Educational Video Lecture Annotation System”. In
Proceedings of the First IEEE International Workshop on
Semantic Computing and Multimedia Systems (IEEE-
SCMS'07), Irvine, CA, IEEE Computer Society, 651-656.

Leuf, B. and W. Cunningham. 2001. The Wiki Way: Quick
Collaboration on the Web. Addison-Wesley.

Romero, L.; Santiago, J.; and N. Correia. 2004. “Contextual
information access and storytelling in mixed reality using
hypermedia”. In Computers in Entertainment (CIE), v. 2 n.
3, 12-45.

Vossen, G. and S. Hagemann. 2007. “Unleashing Web 2.0:
From Concepts to Creativity”. Morgan Kaufmann.

RSS Board. 2007. “RSS 2.0 Specification”.
http://www.rssboard.org/rss-specification.

W3C. 2005. Synchronized Multimedia Integration Language
(SMIL 2.1). W3C Recommendation 13 December 2005,
http://www.w3.org/TR/SMIL/.

Youtube. 2007. Youtube homepage. http:/it.youtube.com/.

SIMULATING INFINITE CURVED SPACES USING VERTEX SHADERS

M. C. Bouterse,
A. Eliéns,
Department of Computer Science
Faculty of Sciences, Vrije Universiteit
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
E-mail: eliens@cs.vu.nl

KEYWORDS
Shader Programming, 3D In-Game Animation, Vertex
Manipulation, Curve Simulation

ABSTRACT

Rendering dynamically curved meshes can be complicated
if not impossible using traditional methods. Either it
involves creating pre-curved meshes and fixed animation
sets or processor intensive calculations to deform mesh
data on the fly. A model is presented here that can be used
to create infinite dynamic curved spaces in real-time using
a vertex shader. This makes dealing with curved meshes in
real-time rendering easier and makes procedural
animations of curves possible. Applications include
dynamically curving environments and objects for games.

INTRODUCTION

Shader programming has acquired an important position in
the field of real-time rendering. The ability to control the
rendering process by executing custom programs has
provided new possibilities for numerous applications.
Many articles have been published in the ShaderX and
GPU Gems book series describing new algorithms for
graphics hardware. Most of these articles demonstrate
techniques to improve the visual quality of the rendering
process. The ability of the vertex shader to manipulate
vertices to animate or deform meshes is less often
explored. A few articles dealing with this topic use the
vertex shader to render ocean water (Isidoro 2002a and
Finch 2004), fields of grass (Isodoro 2002b and Pelzer
2004) or soap bubbles (Isodoro 2002c). These articles
show the potential of the vertex shader in vertex-based
animation and deformation for very specific applications.
This paper builds on the concepts presented in these
articles and describes a general technique for applying
curves to vertex spaces.

This paper presents a method for using vertex shaders to
create infinite curved spaces; to apply curves in real-time
to meshes. The algorithm provides an easy way to apply
multiple curves in any direction to an arbitrary vertex
space. First a straightforward method for creating a single
curve is explained. This method is then used as a starting
point for creating a more generic model. Finally our
conclusions regarding this model are presented.

88

APPLICATIONS

The method described here is originally developed to
create curved tunnel systems for a yet unpublished game.
The method proved to be very useful for creating
dynamically curved environments and can also be used for
procedurally applying curves to in-game objects. The
method allows for smooth curve animations that are hard
to create with traditional technology.

APPLYING A SINGLE CURVE

To be able to apply a curve to an arbitrary vertex space, we
need a per-vertex algorithm that translates each vertex
from the original vertex space to the desired position in the
curved space. For a single curve this algorithm is relatively
straightforward to find. To illustrate the concepts presented
here we use a cylindrical mesh centred on the positive z-
axis starting from the origin. A cylinder is used here for
illustrative purposes, the algorithm works on any vertex
space, no matter what the distribution is. A cylinder is
appropriate, because one of the most obvious applications,
creating curved tunnel systems, uses meshes that resemble
cylinders.

In figure 1 the result of applying a ninety degrees curve to
the sample vertex space is shown. The length of the
segment is denoted by the letter d.

-X

Figure 1: Applying a 90° Curve to a Cylinder

The length of d is preserved in the middle of the cylinder.
Preserving the length in the middle of the vertex space is
desirable in most cases and leads to minimal stretching and

squeezing of the original mesh. The length of the curved
space will be the same as that of the original space.

Calculating this curve can be done on a per-vertex basis.
The length of the segment (d) and the angle of the total
curve (o) must be known beforchand. From this
information the main radius (r) of the curve can be
calculated using the formula for the circumference (27nr).
Taking into account the part of a full circle that the curve
covers, the formula for the radius becomes:

r=d/ o (with a in radians)

This radius is the distance from the pivot point (p) to the
centre of the vertex space (z-axis). This value is not used
directly, but used to calculate the per vertex radius as will
be shown in the next section.

To apply the 90° curve per-vertex the z-value of the
position is used in the vertex shader to determine the
position within the curve. For each vertex new coordinates
are calculated. Because the curve is applied in the xz-
plane, the y-coordinate of the vertex will be preserved. The
x and z coordinates can be computed using basic
trigonometry with the following formulas:

x + r’

x! = - cos(B) * r’

z'= sin(f) * r’

Where r’ is the per-vertex radius (r’ = r - x)andf
is the per-vertex curve angle that depends on the z position
of the current vertex (B = (z/d) *a); the further away
from the origin, the more the vertex will be displaced.

These are the calculations needed to apply a curve to a
single segment with a certain angle in the xz-plane. To
implement this in a vertex shader the following code
snippet can be used:

// Compute per-vertex angle
float beta = (pos.z / d) * alpha;

// Compute per-vertex radius
float radius = r - pos.x;

// Calculate curved positions
pos.x += radius - cos(beta) * radius;
pos.z = sin(beta) * radius;

The resulting shader is capable of applying a curve to a
segment of arbitrary length by a variable angle. Although
this might have some value in practise, the model is very
restrictive; only one segment, starting at the origin can be
curved and the curve is always in the same direction (in
the xz-plane and towards the positive x-axis). A generic
model for creating infinite curved spaces is needed and
will be presented next.

89

GENERIC CURVE MODEL

To overcome most of the restrictions of the single curve
model, we present a generic model that has the following
additions:

- Curves in any direction
- Multiple curves that seamlessly connect

The algorithm we have so far will be used as a basis for
creating such a generic model.

First the curve algorithm will be extended to support any
curve direction. A naive approach is to simply rotate the
model along the z-axis after the curve has been applied to
turn it into the desired direction. This allows for curves in
any direction, but introduces the problem that vertices are
not in the same position as they would be if a curve was
directly applied in that direction. A solution to this
problem is to first rotate the vertices over the z-axis in the
opposite of the desired direction, then apply the curve as
shown before and finally rotating it over the z-axis again to
its final position. The curve algorithm is now extended
with a new parameter, a rotation angle over the z-axis.
From now on we will use y to denote this angle.

The second addition in the generic model is the support of
multiple curves. Eventually the following algorithm needs
to be executed for each vertex:

Determine the curve this vertex belongs to
Translate start of the curve to the origin
Rotate around z-axis by -y

Apply the single curve algorithm

Rotate around z-axis by y

Align with end of previous curve

Connect to previous curve

N kv

We have already shown how to implement steps 3-5; the
remaining steps are needed to support more than one
curve. Before we can implement the remaining steps we
must divide the vertex space in segments (each segment
has separate curve parameters). The first segment starts at
the origin and ends at the plane z = d;, the second starts at
z = d, and ends at z = (d,+d,), etc. Each of these segments
has its own values for a, y, and d.

The first step of the algorithm can now be implemented by
comparing the z value of the current vertex to the start of
each segment until the right segment has been found.
Translating the segment to the origin is done by
subtracting the start value of the segment from the z value
of the current vertex. After the translation, steps 3 to 5 are
applied as described before. This can be implemented by a
single matrix multiplication. This matrix is the result of
concatenating a rotation matrix (-y) with a curve matrix
(described next) and finally another rotation matrix (y).
The curve matrix needed here can be created from the
calculations shown for the single curve algorithm. By
substituting the radius equation (r’= r - x) into the

curve calculations, we get the following matrix
multiplication:

X cos (f) 0 -sin(p) 0

Y 0 1 0 0

z 0 0 0 0

Wl (leospyy - O singpy -x 1

Finally the segment must be translated and rotated in such
a way that it seamlessly connects to the previous segment
(which can have an arbitrary curve as well). A
transformation matrix must be computed that takes care of
this. Given the per-segment parameters (y, o and d), such a
transformation matrix can be computed for each separate
segment. The transformation matrix for segment N can
then be computed by concatenating the matrices from
segment 0, 1, .., (N-1).

The transformation matrix for each segment is computed
by first orienting the vertices in the right direction and
consequently translating them to the end of the previous
segment. Aligning segment N with the end of segment N-1
can be done by rotating the segment using the curve
parameters of segment N-1. First segment N is rotated
along the z-axis with the negated y value of segment N-1,
then it is rotated along the y-axis with the o value of N-1
and finally it is rotated along the z-axis again using y from
N-1. The final step is to connect segment N to N-1, which
can be done with a translation vector from the origin to the
centre of the end of segment N-1. Using basic
trigonometry we can calculate the components of this
vector T:

T,y = r — r * cos(a)
T, = cos(y) * Ty
T, = sin(y) * Ty
T, = sin(a) * r

This is the final piece of the algorithm for a generic curve
shader. Implementing this algorithm in HLSL or another
shader language should be straightforward using the
presented calculations. The per-segment parameters and
the segment offset matrices need to be supplied as shader
constants once per frame.

CONCLUSIONS

In this paper a method was presented for creating infinite
curved spaces on the GPU that can be used to dynamically
apply curves to meshes. In a few steps a flexible model
was presented that is capable of applying multiple curves
in any direction. The scalability of the implementation is
depending on the available shader constants, which is
probably only an issue on targets lower than shader model
3.0. Applications in game development consist of creating
curved tunnel systems and other curved objects without the

90

need for more assets or complicated animations. The
presented technique works best on fairly dense and equally
distributed vertex spaces. Meshes with few polygons will
not look good when curved because the algorithm doesn’t
add vertices and curved objects need relatively many
vertices. This method might be used as a basis for creating
interesting dynamically curving game objects and
environments. Further research is needed to determine the
full potential and scalability of the presented technique.
The per-vertex calculations are relatively heavy, but
because most modern games are not bottlenecked by
vertex processing capabilities, this method should not lead
to dramatic loss of performance.

FUTURE POSSIBILITIES

The presented algorithm and implementation runs
sufficiently efficient on SM 3.0 hardware, but is still
limited by the amount of vertex constants available. This
limit will be almost gone on DirectX 10 hardware. Shader
model 4.0 supports considerably more constants, making
this limit much less important. Also the geometry shader
introduced by SM 4.0 could lead to interesting new
applications of the algorithm such as the generation of
curved objects on the fly or generating extra vertices to
curve meshes with few polygons smoothly.

BIBLIOGRAPHY

Isidoro, J.; A. Vlachos, C. Brennan. 2002a. “Rendering Ocean
Water” In Direct3D ShaderX, edited by W.F. Engel.
Wordware Publishing.

Isidoro, J. and D. Card. 2002b. “Animated Grass with Pixel and
Vertex Shaders” In Direct3D ShaderX, edited by W.F.
Engel. Wordware Publishing.

Isidoro J. and D. Gosselin. 2002¢. “Bubble Shader” In Direct3D
ShaderX, edited by W.F. Engel. Wordware Publishing.

Finch, M. 2004. “Effective Water Simulation from Physical
Models” In GPU Gems, edited by R. Fernando. Addison
Wesley.

Pelzer, K. 2004. “Rendering Countless Blades of Waving Grass”
In GPU Gems, edited by R. Fernando. Addison Wesley.

AUTHOR BIOGRAPHY

ANTON ELIENS studied art, psychology, philosophy,
and computer science. He is lecturer at the Vrije
Universiteit Amsterdam, where he teaches multimedia
courses. He is also coordinator of the Master Multimedia
for Computer Science. He has written books on distributed
logic programming and object oriented software
engineering.

MARCO BOUTERSE received a Master degree in
Computer Science/Multimedia at the Vrije Universiteit
Amsterdam. His master thesis was about the development
of games with a focus on shader technology. Currently he
is working as a game programmer at Two Tribes, a game
company located in Harderwijk, The Netherlands.

MOBILE
GAMING

92

MOBILE GAMES: WHAT TO EXPECT IN THE NEAR FUTURE

Marco Furini
Computer Science Department - University of Piemonte Orientale
Via Bellini 25/G - 15100 Alessandria, Italy

Email: furiniOmfn.unipmn.it

KEYWORDS
Mobile Gaming, Mobile Development Platforms.

ABSTRACT

The current mobile gaming market is filled with the so-
called casual games. Simple and easy, these games are
well suited for devices with limited resources and for
people who play games now and then. This is why Tetris
and Pac-man are among the best sellers games of several
mobile games charts. In this paper we analyze current
developing platforms, networking technologies, delivery
models and game characteristics of the current mobile
gaming scenario, in order to identify directions that will
lead to the near future of the mobile gaming scenario.

THE MOBILE GAMING MARKET

The success and the popularity of mobile games are
making the mobile gaming a successful market. Expec-
tations are high as reported by different research reports,
which forecast the mobile gaming market between 10
and 20 US$ billions by 2011 (see, Gibson (2006)).

Nowadays the mobile gaming scenario is filled with a
wide range of games (from very simple graphic games
to cutting edge 3D graphics; from single to multi play-
ers games) (see, Figure 1). However, looking at to-
day’s mobile gaming market sales, it is interesting to
note that customers prefer the so-called casual games,
easy and simple to play. Just see the best sellers mobile
game charts of different cellphone network operators,
to note that most of the titles are simple and easy to
play: Tetris, Pac-Man, Pong, Frogger, just to name a
few. The success of casual games has various reasons:
i) mobile games are basically used by normal people,
the so-called casual gamers, to kill time or to mitigate
boredom and are not meant to replace powerful gaming
console, ii) limited screen size and input keyboard are a
burden for complex games, whereas they are sufficient
for casual games, iii) old titles, usually simple and easy
to play, are familiar to a large segment of current mobile
device’s owners and familiarity is an important factor
in a game purchase decision (see, Telephia (2007)), iv)
the computational power of current cellphones is lim-
ited with respect to gaming console, but is comparable
to the one of old gaming console, and hence sufficient to

93

support simple games.

Will casual games play a fundamental role in the future
of the mobile gaming market? Will casual gamers be
principal target of the game industry? Will hardcore
gamers be more considered in the future mobile gam-
ing scenario? In this paper we analyze the current mo-
bile gaming scenario in order to identify directions that
will lead to the near future of the mobile gaming sce-
nario. In doing this, we focus on developing platforms,
networking and graphics technologies, delivery models
and games characteristics. Based on the highlighted
directions, the future mobile gaming scenario is likely
to be no longer focused on casual gamers, but hard-
core gamers will be the main target; casual games and
complex games will coexist and mobile games will mas-
sively use features like multi-player capabilities, social
aspects, location and proximity information and high
quality graphics. Figure 2 summarizes a possible evolu-
tion of the mobile gaming scenario.

DEVELOPING PLATFORMS

Today, the mobile scenario suffers from a considerable
platform fragmentation problem (see, Koivisto (2006)),
which is a real burden for the popularity of mobile appli-
cations and of mobile gaming in particular. In addition,
since the number of different mobile devices is enormous,
game developers are practically unable to release a game
version for any different platform and for any different
mobile device. Needless to say, making a game available
to the entire mobile market is almost impossible, as the
inter-platforms porting cost may be higher than the de-
veloping cost of the entire game. Currently, Java ME,
Brew, Symbian and Flash Lite are the most popular
software platforms used to develop mobile games.

Java Micro Edition (Java ME) is a collection of tech-
nologies and specifications to develop software for de-
vices with limited resources and is currently the most
ubiquitous application platform for mobile device. The
main advantage of using Java ME is that an application
can be written once and can be used on every device
Java ME compatible. However, the only way to guaran-
tee that the developed application will run on a particu-
lar device is to test it on that particular device. Needless
to say, this is a limitation. Furthermore, Java ME appli-
cations run slowly compared to applications specifically

£

Adog's \1g live 2008

Tetris adventure

Snake

Figure 1: Mobile games evolution: from snake to NBA
Live.

Today Tomorrow

Mobile Casual games Casual games - Multiplayer
Games social - location - proximity

i 26, 36 i-Fi, Bluetooth, 3G,
Networking Wi-Fi, Bluetooth, 3G,
technologies bluetooth location technologies

: A 3D graphics

Multimedia 2D graphics Audio Surround
features

Voice communications

Figure 2: The evolution of the mobile gaming scenario.

designed for a particular device/platform and this may
be a problem for games that need a fast system response.
Symbian is a proprietary operating system designed for
mobile devices with limited resources. Symbian applica-
tions, usually written in C4++, are designed for a partic-
ular device and hence they are more reliable and faster
than applications written for generic devices. Needless
to say, they are more complicated to write.

Brew (Binary Runtime Environment for Wireless) is a
development platform created to run between the ap-
plication and the wireless device’s chip operating sys-
tem; therefore BREW allows programmers to develop
applications without bothering themselves with system
interface or networking details. However, to develop a
BREW application it is necessary to submit the appli-
cation for testing, and this introduces a significant ad-
ditional cost (both in terms of time and money).
Flash Lite is a lightweight version of Adobe Flash
Player optimized for mobile phones and consumer elec-
tronics devices. This approach is ideal for applications
that massively use audio/graphics features and is be-
coming very popular as it has been adopted by several
cellphones operators, but currently, the main drawback
is that applications are not capable of communicating
with technologies like Bluetooth and infrared.

Far from identifying the best platform, we simply note
that, from the mobile gaming market point of view, a
unique platform would be necessary. However, it is un-
likely that the platform fragmentation problem will find
a solution. What is very likely to happen are porting
solution to automatically move from one platform to an-

94

other. A first step toward porting solutions is alcheMo,
an automated Java ME-to-BREW porting solution de-
veloped by Innaworks.

TECNOLOGIES

Currently, mobile devices are more and more similar to
hand-held computers, with increasing processing power,
considerable storage space and interesting multimedia
features. However, to transform a mobile device into a
mobile gaming console, graphics features and network-
ing technologies need to be improved.

In the near future, free-of-charge networking technolo-
gies like Wi-Fi and Bluetooth will be available also in
entry-level mobile devices, causing the network laten-
cies to decrease (a latency below 150 ms is mandatory
to support interactions). In such a scenario, gaming ap-
plications should automatically choose the most appro-
priate communication technology in a tranparent way
from the user point of view.

Location technologies will play an important role in
gaming applications and hence technologies like GPS
and RFID are likely to be available in entry-level mo-
bile devices.

3D Graphics should be supported; A first step toward
this direction is the OpenGL ES (OpenGL for Embed-
ded Systems) project, which is a subset of the OpenGL
3D graphics API designed for embedded devices such
as mobile phones, PDAs, and video game consoles (see,
Group (2007)). Also the Java community is working to
provide 3D graphics in mobile devices with the Mobile
3D Graphics API (M3G for short).

Multimedia technologies should better support interac-
tions among users (the usage of the small keyboard is a
real burden). A step toward this direction has been done
by Pathway to Glory a world war II game that makes use
of voice communication to allow gamers to send voice
messages to each other during the game. VoIP is a ma-
ture technology than can be embedded in mobile games.

DELIVERY MODELS

Currently, cellphone operators are offering customers an
easy way of downloading mobile games (in US, on-portal
mobile game revenues account for 74 percent of total
mobile game revenues Telephia (2007)), but the main
burden in downloading mobile applications is the cost
of the data traffic.

In the future, with more complex mobile games, this
downloading cost will be a major problem and hence
this delivery model is likely to be coupled with bricks-
and-mortar retailers, where mobile games can be sold on
different supports like multimedia memory cards. This
different delivery model will account for 9.1 percent of
the total global revenues for mobile games by 2010

Lhttp:/ /www3gcouk/PR/May2005/1459htm

MOBILE GAMES

Today, with an average play out of 11 minutes (see, Tele-
phia (2007)), the most successful games are the so-called
casual games (a.k.a. snack games) , while the popularity
of multi-player games is still quite limited.

Casual games are very simple to play since they are
based on very simple rules, basic techniques, simple
strategies and do not require special skills. These games
are played in short bursts, during work breaks or, in
the case of portable and cell phone games, on public
transportation. Due to their simple characteristics they
can be played on the majority of current cell phones
and hence they are immediately available to casual con-
sumer, people who cannot be defined as typical gamers,
instead, they play games when they come across them.
Tetris, one of the best sellers game in the mobile gaming
scenario, is an example of casual game.

Multi-player games allow thousands (or even more)
players to play at the same time, but currently, the mo-
bile versions of these games are not very popular. As
previously mentioned, the network latency is the main
burden for the popularity of these games, as well as the
fact that the data mobile traffic is quite expensive. By
2010, online multiplayer games will generate 20.5 per-
cent of total global revenues.

As recently happened, mobile games will be developed
exploiting the characteristics of the mobile device: they
will use advanced graphics and advanced communica-
tion technologies, but also social aspects will play an
important role in the development of mobile games.

Due to the success of Web 2.0 social applications
in the Internet world, it is very likely that the so-
cial aspect will be part of many mobile games of
the near future. As an example, you can think of
games similar to the popular Second Life?, a game
that emphasize the social aspect of a multi-player game.

Mobile games based on location technologies will
be part of the mobile gaming market. An example is
Pac-Manhattan®, a game that aims at creating a real
live version of Pacman around Manhattan. Although
this game is simply based on mobile phones to locate
users, it shows the potentiality of these games.

Proximity games are an interesting field of next-
generation multi-player gaming, as mentioned during
the PlayStation Portable presentation (see, Ackerman
(2004)). These games make use of close-range wireless
networking technologies (e.g., Bluetooth and Wi-Fi) and
they differ from classic MMOGs as they require players
to be close in space and also differ from classic location-
based games since they don’t require the knowledge of

2http:/ /secondlife.com/
Shttp://pacmanhattan.com/

95

the player’s absolute or relative position, but the knowl-
edge of proximity is sufficient (see, Sderlund (2005)).
Note that the proximity is not always referred to player,
but can also be referred to objects.

CONCLUSIONS

In this paper we analyzed different aspects of the cur-
rent mobile gaming scenario in order to identify possible
directions. As a result, it is likely that the games of the
near future will include social aspects, location-based
features, alternative delivery models and multi-player
capabilities, moving the target on hardcore gamers.

ACKNOWLEDGEMENTS

This work has been partially supported by the Italian
M.I.U.R. under the MOMA initiative.

REFERENCES
Ackerman K., 2004. Sony on Hardware:
PlayStation 2 Add-Ons and the PSP.

http://wwwfrictionlessinsightcom/Articles/
GDC2004SonyKey/GDC2004SonyKeyhtm.

Gibson B., 2006. Casual Gamers and Fe-
male Gamers to Drive Mobile Games Rev-
enues Quer the $10 Billion Mark by 2009. In
hitp: / /www.juniperresearch.com/shop/
viewpressrelease. php 2id=196pr=16.

Group K., 2007. OpenGL ES - The Stan-
dard for Embedded Accelerated 3D Graphics.

http:/ /wwwkhronosorg/opengles/.

Koivisto E.M.I., 2006. Mobile games 2010. In Cy-
berGames ’06: Proceedings of the 2006 international
conference on Game research and development. Mur-
doch University, Murdoch University, Australia, Aus-
tralia. ISBN 86905-901-7, 1-2.

Sderlund T., 2005. Proximity Gaming:
New forms of wireless network gaming.
http://wwwdifferentgameorg/detailasp 2item=672.

Telephia, 2007. Preloading Game Demos
Key Merchandizing Lever to Drive Purchases.
hitp: / /www.telephia.com/himl/
GDCOT_press_release_template.html.

s a
In

SIMPLE, CHEAP AND QUICK:
THREE URBAN GAMES FOR COMMON MOBILE PHONES

Helena Karsten, Jan-Erik Skata and Sebastien Venot
Department of Information Technologies & TUCS, Abo Akademi University
Joukahaisenkatu 3 A, 5™ floor, 20520 Turku, Finland
e-mail: eija.karsten@abo.fi

Nhut Do
ICT Turku
Itdinen Pitkikatu 4 B, 20520 Turku, Finland

KEYWORDS

urban game, mobile Bluetooth,

development

phone, game

ABSTRACT

We designed and implemented three location based
games for mobile phones. The overall design principles
were: (1) design for device platform with wide
penetration; (2) create an architecture that supports
different types of games and services, scalability; and (3)
aim for cost efficiency and quick application
development. The resulted three games are different in
nature, but each of them introduces a potential design
approach for future pervasive or location based games.
Player feedback also supports further development. We
see several opportunities for extending our ideas from
gaming to various other location-based applications.

INTRODUCTION

Location based gaming and pervasive gaming take into
account the physical characteristics of the real world as
well as the computer-maintained virtual game
environment. Also, they usually have a strong social
aspect.

Today, the characteristics, features and technology
platforms in pervasive gaming are still often prototypes
resulting from ambitious long-term research projects
(such as IperG, Uncle Roy All Around Us, or Human
PacMan), and thereby complex and, quite likely, also
expensive. Prototypes made for testing the ideas arc often
comprehensive and well designed from the game point of
view. By mixing manufactured and custom-made devices
together with advanced game logics, the result can be an
immersive game experience breaking the bounds of
traditional computer games. When the technologies
intended to be utilized in later, preferably commercial,
game realizations are still under development, they
seldom are accessible to potential game adopters. Also
the robustness of technologies in the making may be less
than optimal.

The challenge is thercfore to make game realizations that
arc actually adoptable by users with those devices they
already have. The main obstacle is the use of multiple
devices, and the one-purpose nature of the device

96

Janne Konttila and Joonas Peltola
Zetanol Ltd
c-mail:firstname.lastname@zetanol.fi

combinations. Thus, we decided to ground our project on
simplicity, low cost, and quick development. In this paper
we will describe the case of developing location-based
systems for three different games.

First, the background for our project is briefly discussed,
and the design principles are outlined. Then the game
development project and the technical architecture arc
introduced. The game realizations arc analyzed bricfly
including feedback from the players. We conclude by
discussing the strengths and weaknesses of our approach,
ideas for future work and the business opportunities
foreseen.

BACKGROUND AND PRINCIPLES FOR GAME
DESIGN

Pervasive games often include location awareness or
other elements from physical world. Also, the context of
player and perhaps qualities of the environment are taken
into account. Some, but not all, game objects may be
physical. Some actions or game events take place in a
virtual world, some in the real world (Magerkurth ct al
2004). Access to the game world can happen with use of
various devices. In pervasive games, the game experience
can be trans-medial: inputs and outputs between a player
and the game system can occur on multiple different
media. This emphasizes the role of the player as an
interpreter of information from various sources (Walther
2005). These approaches emphasize the technological as
well as the social aspect of pervasive gaming, originating
from the concept of pervasive computing. Montola et al.
(2006) usec the classic definition of play by Huizinga
(1938) as basis for defining pervasive games. Huizinga
proposes that play is playful, not serious, voluntary action
that is distinct from everyday life in terms of time, space
and people. A game occurs in a magic circle of certain
place, certain time with certain people. Montola et al.
then define a pervasive game as a game that extends
beyond this circle socially, spatially or temporally.

Our game development project was stimulated by the
idea of expanding the game experience to be part of
everyday life, not just a scparate activity. Today, virtually
everyone is carrying a device capable of running games
and other multimedia applications — a mobile phone.
When the game device is equipped with data transmission
capability, a multi-player network game is one obvious
development trend. Further, if the playing occurs when

the players are mobile, their location could be used as a
factor in the game state at any given point of time.
Likewise, the game moves can be made dependent of
physically visiting certain physical locations.

As key design principles we emphasize the following
three:

1. Design for a device platform with a wide penetration.
By designing applications for a device platform with a
large user base, the applications are more likely to spread
out and gain popularity. With the large user base, a
multiplayer game gets a bigger social factor. Further, the
threshold to try the game or other application is
significantly lower if it does not need the purchase of a
new device.

2. Architecture that supports different types of games and
services, scalability.

From the beginning, we saw it necessary to design a
basic architecture that would suite different types of
location based game models and other services, offering
different kinds of experiences. Although the main idea
was to design a model for a persistent multiplayer game,
we found room also for solo gaming and event-based
one-time experiences.

3. Cost efficiency and quick application development.

The project team had previous experience in J2ME
programming, so beginning with it was the obvious
choice. We also wanted to harness the players own
imagination in the game play experience. No expensive
3D modelling was implemented, and the users were
provided mainly with textual information. The hardware
infrastructure followed the principle of cost efficiency,
consisting of standard mobile phones and battery
powered Bluetooth beacons. Since the data transferred
during the game play was mainly textual, the network
rates were not a problem.

Game play is a natural motivator to participate in
something that is not immediately necessary or
beneficial. A game that coordinates the public to do
things with useful side effects would allow gathering
large amounts of information from large geographical
and social space. By controlling game events and perhaps
game logics and rules, the agencies that ultimately use
the gathered data can steer the players to do tasks
supporting their needs.

We agree with the suggestion of Capra et al. (2005) that
pervasive games can be used to support research groups
who use, for example, environmental data. With
appropriate devices and networks, ordinary people could
collect ficld data by means of game play. The game
would keep the lay people interested in a continuous
cffort. This game must be casy to participate in. The
devices used should be either very familiar to the players
(like their own mobile phones) or easy to manipulate.
The game rules should not be overly complex, as the play
will take place in a variety of environments. At the same
time, however, it is crucial that the researchers do get the

97

data they need from where they need it. The amount of
data received in this way could be very large. Even
though the experts would guide — via the game rules and
feedback — the players, there is still a likelihood of getting
less than optimum quality data. The data would need
cleaning, but the replicated data items can help in this.
For a future research project making use of this idea, we
found it necessary to begin a game development project.
However, the game project was soon considered a
scparate project.

GAME DESIGN PROCESS

The idea of using game play as a motivation for players
to participate in something not directly beneficial, or
harmful, for them, guided the design of the first game.
The aim was to create a game that would lead players to
certain places repeatedly. The game system should be
stand-alone, run the game and guide players
automatically. Also, it should allow intervention by
administrative personnel to redefine the important places
in the game. Ultimately, we designed three games based
on the same basic architecture. Each design and
development cycle started from a game concept idea.

Game Logic Design

The idea developed through a simple resource
management game: Players should invest their game
credits to physical places by actually visiting them. Then,
the investment starts to pay back in form of interest. This
interest can later be re-invested. The investment can be
lost if another player pays more for the same place. To
protect the investments made, the players need to once in
a while visit also places they already hold, in addition to
investing in a new place. That way the prices can be kept
up and the investments secured. The players are
organized in teams to ensure that even newcomers get
similar resources to other players. A persistent game
would then be a continuous battle of domination of most
game spots.

In the first one, Turku-game, the original idea was left
aside and the goal for the players was to solve a murder
mystery, aided by a virtual private detective. The game
narrative was basced on the works of a local novelist. The
game took place during the Arts Night in Turku, a
medium sized city in South-Western Finland. The players
visited a number of attractions during the evening. Once a
player detected a hotspot, she or he received a question
related to the site. After replying to the question, the
player received a clue about the mystery. Each clue
helped to get closer to solving the murder.

After the success of the Turku-game, the original game
idea was implemented and named Conquer the Quarter.
The game ideca was to climinate other players by
conquering all the quarters marked by Bluctooth beacons
or by buying them out. In the game, each Bluetooth-
tagged hotspot had a certain value in the beginning and
they were all distributed in corners of the game area. A
player could freely increase the value when capturing the

corner by investing in it. Other teams then had to pay this
new value to capture it. The investment also paid back in
interest. The longer the player owned the corner, the
more money the team earned. By capturing corners and
making wise investments, teams would soon have a
property that earns quickly, ultimately enabling the team
to conquer the whole quarter. Conquer the Quarter was
played in Manhattan, New York as a part of the “Come
Out and Play Festival 2006”.

The game concept for a third game, the Gnome-game,
was designed combining the ideas of the earlier games,
but it was never played. According to the plan, there are
named hotspots on the map. The player first goes to one
of them, and gets a short explanation or a story about the
current spot. The player is then asked to take a picture,
and finally receives a hint to find a nearby hidden spot.
Once the player finds this hotspot, they either get a new
hint, or they can proceed with the hotspots already
marked on map. At cach hotspot, they take a picture, and
get short story that links to the current location. The aim
is to visit as many hotspots as possible and document the
adventure by taking pictures. Pictures are published in
real-time on the web. The aim of this game was to work
as a guide showing different paths between interesting
places in the Turku city centre during Christmas time.
Also, the players, by taking pictures, would produce
material to the Web.

As in earlier realizations, the game spots were to be
digitally marked using Bluctooth radio beacons. The
player has to be in physical proximity of a particular
beacon to make a move in the game. When in the
location, the client application prompts the user with
sound and vibration, and a context-based screen appears.
The application suggests the player to make a game
move that is possible at the current game state.

Software Design

All the games share the same architecture with five
elements: Bluetooth beacons, mobile phones with game
software (client) installed, service provider network
(GPRS), the game server, and a databasc.

Each Bluetooth beacon consisted of a standard USB
Bluetooth adapter, wired up to a custom-made external
power adapter that enables running them stand-alone.
Beacons initially need to be activated while connected to
a PC, and they can then be unplugged. From that point
on, they will be running and transmitting the needed
signal so that they can be detected by the phones.

The client software runs on the mobile phone. The game
platform is Java 2 Micro Edition (J2ME). The minimum
requirement for the game to work properly is to have a
Java-enabled mobile phone that supports J2ME MIDP
2.0/CLCD 1.0, Bluetooth API, multimedia API (for the
camera) and a GPRS connection. The game uses the
GPRS connection to communicate with the game server;
therefore a service provider supporting this is needed.

98

The game management is run on the server with the help
of the database.

THE GAME EXPERIENCES
Turku-game

When playing takes place among other people in an urban
environment, the players cannot be expected to have their
focus only on the game and the game device. The first
game realization, “Turku-game” was tied to events of the
Arts Night. This gave a fruitful yet laborious approach to
game design. We tied the narrative to the events of the
night and aimed to design a mixed reality interactive
story that would expand the overall cultural experience.

The Arts Night, when the streets, galleries, restaurants,
bookstores and others were full of events, gave an
ongoing atmosphere for the game experience. Deeper
immersion in the game was reached when the game story
and virtual events were tied to ongoing live events. Even
if playing the game was for some players the main
activity, they ended up to places and ecvents they
otherwise would not have found. So, in addition to the
gameness, the game worked as a guide to the evening.

The players started all at same place, where they were
given the game devices and briefed about the idea of the
game and told about the events that had taken place, i.c.,
that a performance artist had been murdered after a play
in an art gallery. They also got a printed map, where the
game starting points — the murder scene and the current
location of some key witnesses — were marked. The
organizers guided them how to receive a first clue and to
get the hang of how to solve the murder mystery. Then,
the players started the adventure at their own pace. At the
game hot spots, players got further clues that helped them
to build a big picture of the mystery, and to find new hot
spots with new hints. Two of the 15 hot spots of the game
were carried by actual persons, who then gave the
required information to the players. Some of the clues in
the game required awareness of the other events during
the night. The clues sometime referred to an event, not
directly to a place.

If participants dead-ended in the game, they had a phone
number for “private detective Vares” who would help
them out. He was also helping in technical issues that
were expected since the game was a prototype. During
the game, “Vares” received about a dozen calls. Half of
them were about game situations, the other half technical
issues.

The overall experience was positive. As the organizers
recommended before the game, the players enjoyed also
other events of the night. About half of the players were
able to figure solve the murder mystery. A couple of days
after the experience we approached the 17 players with
questionnaire about the game event and received fourteen
answers. The questionnaire was semi-structured leaving
room for players to freely describe their experience and
thoughts about it (see Table).

Table. Evaluation questions

Before the game:

1.From where did you hear about the game?

2.What did you expect the game to be like?

3.Was the guidance given prior to the game sufficient? If not,
what was missing?

During the game:

4. With your own words, describe how you game play went and
what did you do during the game?

5.How much did you communicate with other players during
the game? Did you get help from them?

6.Did you play alone or with company?

7.Did you talk about the game with non-players during the
game?

8.Did you manage to immerse to the game? What affected this
the most?

9.What kind of technical problems did you experience?

After the game:

10.What are the most important things you remember from the
game?

11.What was the most fun thing in the game play?

12.What was the worst thing in the game play?

13.How did you experience this kind of combining mobile
gaming with a physical playing environment?

14.How would you suggest this kind of game to be developed?
15.Would you be interested to play similar, but further
developed game in future?

16.0ther comments

Many told that they found interesting events because the
game led them to places they otherwise would not have
found. On the other hand, some claimed that the game
felt like just running from one place to another, and not
true gameness existed. They yearned for more complex
tasks or tricky puzzles to solve to go ahcad, whereas the
murder could be solved by collecting enough information
by visiting a sufficient number of spots.

The technical problems were another issue. A few
players had continuous problems with detecting the
Bluetooth beacons. This was really annoying, and made
the experience nothing but trying to figure out why it
does not work. This also reflected on the player-to-player
interactions: most of the conversations between players
were about the technology and the whereabouts of the
hard-to-find beacons, not the game story or the
experience. In a few cases, the players were frustrated
while they knew they were at right position, but the
hotspot was not detected in the timeframe they expected.
Some players were more sensitive to latencies in the
system, while some others took it calmly and had a drink
near the place they knew was a hotspot. In one game
location, the Bluetooth beacon had been removed by the
Arts Night staff, because some person (not a player) had
mistaken it for a bomb! In another case, the Bluetooth
dongle was unplugged from the power supply, thus it
stopped working. These incidents caused some players to
dead-end in the game.

99

CONQUER THE QUARTER

The players of Conquer the Quarter were participants of
the Come Out and Play urban game festival in New York
and therefore quick to get the idea. The game begun with
a briefing, where players were provided with a game
device (a mobile phone) and a paper map with the 15
game corners marked. Similar information was also in
clectronic format available through the user interface of
the game application, but due to the small screen size and
bright sunlight, the paper map was found to be more
comfortable.

The players were divided into three groups. One group
had four players and the other two had three. All players
were in their mid-twenties. The game involved running
competitions, spontaneous strategy meetings, and
laughing. The fast-paced game got its culmination right
after half the time was spent: the green team had lost all
of its corners and most of the game credits. From that on,
the blue and red teams fighted for the domination of the
Quarter.

The game parameters were fixed to support
approximately one hour game. The adjustable game
parameters are the number of game corners, interest rate
and the length of the interest cycle. In this case, the rate
was 10% interest plus 1% for each corner the team was
holding. This rule was added after early tests where some
players ended up investing all the credits in one single
corner in the beginning, and later buying cveryone clse
out. Without this rule and with this strategy, there would
not have been challenge left (cf Juul 2005). The interest
cycle was set to one minute. That way the teams had
continuous credit flow (in case they had made
investments), and the game pace was kept fast.

As the game was set up in an area covering a few city
blocks, it was suitable for an intensive game. The players,
however, agreed that one hour was too short, and that the
area was too small. They also would have preferred to
play this kind of a game in a more populated area. All the
players had a very enthusiastic attitude, and as the tecams
were formulated, they liked the idea of leaving the
communication between players on face-to-face basis.
However, some players said that after a while, when the
teams had begun to conquer the game spots, it felt that a
little bit more complicated game logic would have given
extra excitement to the game. One suggested a model of
ability to build combinations of corners, like three in a
row or similar and giving something extra if the team
managed to do so.

As we expected, in this type of a game, when the actual
game cvents happened occasionally and the player did
not need to stare the game device all the time, further
simulation was unnecessary. Thus, the game could be
defined as mental game (Nilsen et al. 2004) where the
players have to resolve all the simulation themselves. One
player suggested giving the virtual corners some qualities

of the real world to strengthen the tie between real and
virtual worlds.

CONCLUSIONS

We were not able to play the Gnome game in public, but
the prototype has been demonstrated to several
audiences, with interested feedback. We are now working
in our new company, Zetanol, on several further projects
with local partners to create urban games to suit their
particular needs.

Complex games with high computing capacity
consumption, and need for long-term, intensive attention,
are not ideal entertainment for all players. A growing
number of players are so called casual players, who are
not willing to spend neither much time nor money to
games or playing. The age and gender of playing
audience will diversify. It can be proposed that easily
accessible and playable games with little need for time
will gain in popularity. Furthermore, digital games could
learn from traditional tabletop board games when it
comes to the social domain of game experience. To take
heed of this, an innovative approach is needed, and a
current idea of what is a game is perhaps to be left
behind.

With our project, we wanted to contribute to the
pervasive games research from our own vantage point.
Our aim was to design a location based game that would
enable a mixed reality experience by using a common
mobile phone as a game device. We had made it clear to
ourselves that use of any combination of devices, such as
palmtop computer and GPS (Global Positioning system)
device, was not an option. The use of Bluetooth was
chosen to make the location-based events possible.

Creating a mixed fantasy (Nilsen et al 2004) experience
with a combination of virtuality, reality and imagination,
is not an easy task. When the qualities of physical
surroundings are claimed to be tied to the computer-
maintained game world, the players expect such a
connection to exist, but delays and other technical issues
might loosen this connection, and the immersion suffers.
Also, if advancing in the game requires combining
information from the physical and the virtual worlds,
reconciliation of those two has to be smooth. A mixed-
reality game environment would require a much more
careful game design than we were able to evoke during
the rather fast-paced development project. We claim that
a coherent mixed reality environment might not be
needed, after all, to create a game offering a new kind of
interesting experience and even a model for mobile
entertainment. Also, we argue that a location-based game
can introduce a story, and the player can actually be part
of it, contrary to what has been claimed earlier (Rashid et
al 2006).

Pervasive games can be seen as socially, spatially or
temporally expanded games. The game prototypes
introduced here do not fully meet these challenges. They

100

already meet the challenge of spatial expansion and they
have the potential to be either persistent in time or
unlimited in the number of players. Our model can be
scaled up to harness a wider area of physical space to
game play. A future research question would then be how
a game could be set to a city centre in a persistent
manner: for example, would the popularity of certain
places in the physical city affect the popularity and virtual
price of the virtual corners? We also consider players as
potential writers of storics and mysteries.

A general issue concerning our approach is also how to
create a design that reacts to the real world environment
and causes a shift in the game in a manner that would
guide players to new locations. Our three cases, we
propose, give one example of possible direction for future
game development. By creating simple, interesting and a
little bit tricky games that give something extra to the
players’ everyday environment, it might be possible to
interest and engage them to a new type of gaming. This
can be a starting point of creating new types of mobile
services and business models.

ACKNOWLEDGEMENTS

We thank the organizers of the Turku Arts Night and the
New York urban game festival for inviting us to try our
games. We also thank several offices of the city of Turku
for many kinds of support and encouragement. Special
thanks to Nokia Research Centre for providing the
devices for the first experiment.

REFERENCES

Huizinga, J. (1938). Homo Ludens. Basel.

Capra, M., Radenkovic, M., Beford, S. Opperman, L., Drozd, A.
& Flintham, M. (2005). “The Multimedia Challenges
Raised by Pervasive Games.” MM’05, November 6-11,
Singapore: ACM. §9-95.

Juul, J. (2005). Half Real: video games between real rules and
fictional worlds. Cambridge: MIT Press.

Magerkurth, C., Engelke, T., & Memisoglu, M. (2004).
“Augmenting the Virtual Domain with Physical and Social
Elements: Towards a Paradigm Shift in Computer
Entertainment Technology.” ACM Transactions on
Computers in Entertainment, 2(4), Article 5b.

Montola, M., Waern, A., & Nieuwdorp, E. (2006). “Domain of
Pervasive Gaming.” Deliverable D5.3B. Integrated Project
on Pervasive Gaming. January 2006. Retrieved 14.3.2006
from http://www.iperg.org

Nilsen, T., Linton, S., Looser, J. (2004). “Motivations for
Augmented Reality Gaming.” New Zealand Game Design
Conference, 26.-29. June, Dunedin, New Zcaland.

Rashid, O., Mullins, I., Coulton, P., & Edwards, R. (2006).
“Extending Cyberspace: Location-based Games using
Cellular Phones.” ACM Transactions on Computers in
Entertainment, 4(1), Article 3C.

Walther, B. (2005). “Atomic Actions — Molecular Experience:
Theory of Pervasive Gaming,” ACM Transactions on
Computers in Entertainment, 3(2), Article 4B.

ONLINE
GAMING
AND
SECURITY

102

Towards Swift and Accurate Collusion Detection

Jouni Smed

Timo Knuutila

Harri Hakonen

Department of Information Technology
FI-20014 University of Turku, Finland

{jouni.smed, timo.knuutila, harri.hakonen} @utu.fi

ABSTRACT

Collusion is covert co-operation between participants of a
game. It poses serious technical, game design, and com-
munal problems to multiplayer games that do not allow the
players to share knowledge or resources with other players.
In this paper, we review different types of collusion and intro-
duce two measures for collusion detection. We also propose
a model and a simple game, implemented in a testbench, for
studying collusion detection.

INTRODUCTION

When the rules of a game forbid the players to co-operate,
any attempt of covert co-operation is called collusion. The
players who are colluding (i.e., whose goal is to win together
or to help one another to win) are called colluders. Collusion
poses a major threat to games that assume that the players
aim at individual goals individually, because many types of
collusion are impossible to prevent in real time. Even de-
tecting collusion can require discerning and understanding
the player’s motivation — which is often an impossible task
for human beings, too. For this reason, collusion is usually
detected only afterwards by studying the behaviour of the
players and recognizing characteristic patterns that indicate
forbidden co-operation.

Apart from games suspectible to collusion such as poker
[2, 8, 10] and bridge [11], collusion have been addressed
also in the context of tournaments [3] and multiple choice
examinations [1]. In our previous work [7] we introduced a
classification for different types of collusion, which we will
present in the next section. We argued that different types
of attacks have been lumped together under the same col-
lective title “collusion” and that they have been commonly
dismissed as unsolvable in the literature. We showed that al-
though there are collusion types that are indeed impossible
or very hard to detect, there are also cases where automatic
recognition is possible. In this paper, we take one step further
and present a model and a simple game with which collusion
detection methods can be tested and evaluated. Our motiva-
tion is that only when we understand how to detect collusion,
we can proceed further to its prevention.

The plan of this paper is as follows: We begin by pre-
senting classifications for collusion. They line out the types
of collusion and give us the terminology that we will use
throughout this paper. After that, we look at the problem
statement of collusion detection. It gives us measures upon
which the models and testbench game presented next will
rely. Finally, we will conclude the paper with a discussion

103

on how the model presented in this paper helps the research
and what are the steps for future work.

CLASSIFYING COLLUSION

When the players of a game decide to collude, they make a
agreement on the terms of collusion [7]. This agreement has
four components:

Consent How do the players agree on collusion?

o Express collusion: The colluders make an explicit
hidden agreement on co-operation before or dur-
ing the game.

e Tacit collusion: The colluders have made no
agreement but act towards a mutually beneficial
goal (e.g., try to force the weakest player out of
the game).

Scope What areas of the game the collusion affects?

e Total collusion: The colluders co-operate on all
areas of the game.

e Fartial collusion: The colluders co-operate only
on certain areas and compete on others (e.g., shar-
ing resource pools but competing elsewhere).

Duration When does the collusion begin and end?

o Enduring: Collusion agreement lasts for the dura-
tion of the game.

e Opportunistic: Collusion agreements are formed,
disbanded, and altered continuously.

Content What is being exchanged, traded, or donated in the
collusion?

o Knowledge: The colluders share expertise (e.g.,
inside information on the game mechanics), in-
game information (e.g., the colluders inform one
another the whereabouts of the non-colluding
players) or stance (e.g., the colluders agree on
playing “softly” against one another).

e Resources: The colluders share in-game resources
(e.g., donating digital assets to one another) or
extra-game resources (e.g., a sweatshop is playing
a character which will be sold later for real-world
money).

Instance of
the game

Sweatshop

Figure 1: Players and participants are the partakers of a
game. The relationship is usually assumed to be one-to-one,
but one human participant can control two or more players, a
player can be controlled by a computer program (i.e., a bot),
or two or more participants (e.g., a sweatshop).

This classification is not sufficient for on-line computer
games, because we must also discern the roles of the par-
takers — players and participants — of the game [7]. A player
in a game can be controlled by one or more participants, and
a participant can control one or more players in a game (see
Figure 1). This means that there are two types of collusion:
(i) collusion among the players which happens inside the
game, and (ii) collusion among the participants which hap-
pens outside the game. To detect player collusion, we have
to analyse whether the players’ behaviour diverges from what
is reasonably expectable. To detect participant collusion, we
have to analyse the participants behind the players to detect
whether they are colluding.

This gives a fine-grained classification of collusion types:

Participant identity collusion How a single player is per-
ceived to participate in a game?

e Player controller collusion: Many participants are
controlling one player (e.g. two players control-
ling the same character alternatively).

e Self-collusion: One participant is controlling
many players (e.g. one participant controls many
player in a poker table).

Inter-player collusion How the participants are affecting
the game?

o Spectator collusion: Co-colluder provides a differ-
ent type of information (e.g., ghost scouting, post-
game information).

o Assistant collusion: Co-colluder plays (possibly
sacrificingly) to assist the other to win (e.g., as a
sidekick, passive scout, or spy).

e Association collusion: Colluders achieve individ-
ual goals through co-operation.

Game instance collusion How factors outside the game in-
stance affect the game?

104

A
m(Q, D)
Te
;/ re
P T
t t

S

Figure 2: Collusion is detected when the observed results
using a measure m deviate significantly from the expected
results r,. Suspicion arises at the moment #; when the results
are getting either too “good” and cross the threshold r, or
they are getting too “bad” and cross the threshold rp.

o Multigame collusion: Players of different game
instances collude (e.g., studying the game prop-
erties, finding suitable server, fixing tournament
match results).

e [nsider collusion: The co-colluder is a game ad-
ministrator or game developer that reveals or mod-
ifies the workings of the game instance.

Because collusion prevention requires that collusion gets first
detected, let us next take a closer look at what is required
from collusion detection.

COLLUSION DETECTION

When comparing collusion detection methods, we should ob-
serve the following two properties:

Accuracy How justified is the suspicion raised by the detec-
tion method?

Swiftness How early does the suspicion raise?

Naturally, accuracy is important so that normal behaviour
does not set off an alarm and cause uncalled for inspection
or unjust punishment. Swiftness is usually related to accu-
racy so that the less accurate the detection is, the swifter the
suspicion is detected.

Let us try to interpret these properties in a somewhat more
formal — but simple — manner (see Figure 2). Suppose that
our detection is based on applying some numeric function
m upon the participants P of the game and some collected
game data D. Let Q C P and r, is some chosen threshold
value of the best possible play. If m(Q,D) > r,, we decide
that the players in the set Q are colluding. In this framework
the questions to be asked are:

Accuracy How is the value of m related to the probability
that Q really contains colluders?

Swiftness How much data D is needed before ry is ex-
ceeded?

Ideally, we would like to have a measure that indicates as
early as possible when players are colluding or when their

pay—off / colluder

MAXIMUM |- smmmmegz e ;
fairplay -+ ; -
0 optimum |p| number
of colluders

Figure 3: The pay-off of collusion per colluder increases un-
til the optimum number of colluders is reached, after which
it approaches asymptotically fairplay pay-off.

behaviour is showing suspicious traits. Should the detection
happen before collusion actually gives any notable gain for
the colluders, we have managed to prevent it altogether. How
then to find such methods? From an intuitive point of view,
any abnormal behaviour in a game should raise a suspicion.
This is the case especially when some of the players get too
good (i.e., exceeding the threshold r,) or too bad (i.e., going
under the threshold r;) results in comparison to their play-
ing skills (the latter would indicate a case of assistant col-
lusion). Function m could then indicate the (absolute) dif-
ference between the expected behaviour (e.g., wins in a card
game) against the observed one.

How to select Q then? Instead of inspecting all |@(P)| —
|P| different colluder sets, we can limit |Q| to a certain range,
which depends on the collusion pay-off of the game. Figure 3
illustrates the pay-off of collusion with respect to the number
of colluders. As the number of colluders increases, the total
amount of pay-off also increases. However, when the pay-
off is divided among the colluders, there exists an optimum
where the pay-off per colluder is the greatest. For example,
robbing is more effective when the gang of robbers is big, but
a big gang of robbers has to focus on big heists to provide
everyone with a big share of the loot. When we are detecting
colluders, |Q| can be limited near to this optimum. For the
game design this means that it is possible to discourage large-
scale collusion by pushing down the peak of the curve. For
example, if robbing is allowed in the game but a part of the
loot gets damaged (or otherwise loses its value), the optimum
size of a gang of robbers gets smaller.

Next, let us limit ourselves to inter-player collusion, where
the players of the game co-operate by exchanging in-game
resources or information. This type of collusion is what is
“normally” understood as collusion, where we can assume
players and participants have one-to-one relationship. For
a review of methods proposed for preventing other types of
collusion, see [7].

INTER-PLAYER COLLUSION

If the content of the collusion agreement is an in-game re-
source, it is possible to detect by analysing the game session
logs [2]. Detecting shared knowledge, however, is more diffi-
cult, because we can only observe the decisions made by the
players in order to discern the intention behind the decision-
making. To analyse this kind of collusion, we present a sim-
ple game, Pakuhaku, in the next section, but before that we

105

need to consider two attributes of a game.

The first attribute divides games into perfect information
games (such as chess), where the players can always ac-
cess the whole game situation, and hidden information games
(such as poker), where the players can access only a part of
the game situation [0, §4]. Naturally, hidden information is
worth colluding, because it gives the colluders benefit over
the other players. But collusion is beneficial even in a per-
fect information game, because the decision-making process
can always be seen as “hidden” information.

The second attribute is based on the properties of the game
world, which can be continuous or discrete. If the central at-
tributes of the game world are continuous, there usually is
a well-defined metric to compute the distance between two
game world locations. Since players try to dominate some
geometric sub-area of the game world, the winnings of the
game are related to the scope of the dominated area. Collu-
sion can allow the players to govern a larger area than they
would obtain by individual effort alone. If the game world
consists of a set of discrete locations, the colluders can try
to increase their joint probability of winning in the game by
maximizing the subset of states they dominate.

When we consider the measuring and estimating collusion
in some game environment, we could start by collecting real-
world data for the purposes of analysis. However, it would be
hard to ascertain what has been the driving force behind the
human players at a given time. Another approach is to use
synthetic players [5] some of which have been programmed
to collaborate. Clearly, it is easier to create a large amount of
test data with known co-operative properties with the latter
approach, and we believe that it is the more fruitful one in
this early phase of this research. The results obtained for
artificial data should naturally be later evaluated and verified
using real examples.

The idea behind our approach is:

(i) Generate game data with different number of players,
colluders, game types, and collusion strategies.

(ii) Devise detection methods.
(iii) Run the detection method against the data to get results.

(iv) Compare accuracy: How many (if any) of the colluders
got detected.

(v) Compare swiftness: How quickly the colluders were
detected.

Naturally, this creates a competition surroundings where cre-
ating colluding synthetic players fights against devising de-
tection methods.

In this paper, we limit ourselves to step (i). The subse-
quent steps will naturally be the focus of the our future work.
Moreover, we intend to provide ready-to-use test data (akin
to the Calgary Corpus [9]) for anyone interested in devel-
oping and testing their collusion detection methods as well
as the possibility to fine-tune the synthetic players and de-
velop new game types using our testbench system, Pakuhaku,
which we will describe next.

Pakuhaky

[# i 3 # # & 3
k) Ed & & &
i ki
il i E:] el
% # ke e,
o
—
e
i o .
g i ki -3 & i &]
s # # i3 kil # Eé &] i
bl # Ed il i3 i # o i @

Figure 4: Screenshot from Pakuhaku with fog-of-war. The
black players are colluding by dividing the game world into
non-overlapping interest domains, while grey players search
pills individually.

TESTBENCH FOR COLLUSION DETECTION

The basis for our testbench, Pakuhaku (see Figure 4), is
the classical computer game Pac-Man [4]. We have omit-
ted many features of the original game — such as the maze,
ghosts, and power-up cherries — but we allow multiple play-
ers to take part in the game. Moreover, we have parame-
terized the number of directions the players can take (which
ranges from three to infinite) and the area visible to the play-
ers can be limited by a fog-of-war. The goal of the game
is simple: eat as many pills scattered in the game world as
possible.

At each turn, each player makes a decision on the direc-
tion where to go. This decision is based on knowledge about
the game world, which can be perfect (i.e., not limited by the
fog-of-war) or hidden (i.e. limited to immediate surround-
ings by the fog-of-war). The system provides a communica-
tion channel, where the colluders can exchange one message
in each turn. The communication can be used to assist, re-
strict and guide the co-colluders.

The game type can be one of the following:

e Preset game world: A given number of pills are posi-
tioned in the game world. The game ends when all the
pills have been eaten.

— Evenly distributed pills: The pills are positioned
into rows and columns.

— Randomly distributed pills: This pills are posi-
tioned randomly from a given distribution.

o Regenerating game world: Pills are repositioned to
game world after they have been eaten. The game ends
when the leader has eaten a given number of pills.

— Dispenser competition: The game world has only
one pill, which is dropped into a random position
whenever it gets eaten.

106

Table 1: Results from 1,000 game instances with 100 ran-
domly distributed pills and a fog-of-war. Of the five players
A and B collude whereas C, D and E play fair. (a) The collud-
ers share only knowledge of their whereabouts. (b) The col-
luders divide the playfield into interest domains. (c) Player
A plays normally whereas player B tries to hamper the other
players by following and eating pills in front of them.

test | player min max mean variance
A 6 41 20.38 34.88
B 5 44 20.14 35.85
(a) C 5 42 1991 36.77
D 3 41 19.87 33.74
E 5 41 19.69 34.34
A 3 50 21.89 44.31
B 5 47 20.20 39.36
(b) C 3 40 1940 34.21
D 6 38 19.43 32.92
E 4 40 19.07 35.42
A 4 48 24.17 43.76
B 2 37 13.65 27.41
©) C 3 47 21.19 56.95
D 1 46 20.76 62.21
E 1 55 20.23 58.99

— Triple competition: A variation of the dispenser
competition, where three pills are dropped ran-
domly in a line somewhere in the game world.

The Pakiuhaku system runs on the Java platform. The testruns
can be done in a batch mode, where the system creates log
data for further analysis (see Table 1 for a simple statistical
analysis of the log), or the actions can be observed on screen.
The player logic (including colluders and non-colluders) is
freely programmable. The system can also be extended to
include new game types.

DISCUSSION

Let us first consider collusion and the effect of the fog-of-
war. If we have a perfect information game (i.e., no fog-
of-war), colluders do not get any benefit by informing about
the position of the game entities. Instead, they can agree on
dividing the game world into non-overlapping interest do-
mains (e.g., as a Voronoi diagram) so that each colluder eats
the pills within the respective interest domain (see Figure 4).
While non-colluders potentially target all available pills, thus
competing with other non-colluders as well as with colluders,
the colluders focus only to the subset that belongs to them
and avoid competition with other colluders.

If the game has hidden information (i.e., the fog-of-war
limits the visible area), the colluders get advantage by shar-
ing the positions of the entities visible to them. This benefit
is not as great in preset game worlds as in the changing ones.
For example, in the triple competition, if the colluders know
the position of two pills, the possible locations of the third
pill are limited to a single line.

To present an example how collusion can be detected, let
us consider the dispenser competition without the fog-of-
war: Let the game area size be A and the number of players

p. Normal players would most likely try to balance between
the following strategies:

e Patrol in the middle of the game field to minimize the
average direction to a random location.

e Try to find an area that can be dominated and which is
larger than A/p (i.e., an area where there are not many
other players around).

In either case, whenever a pill drops, the player starts rush-
ing to it. Note that if all players follow the same strategy,
they have equal chances of winning (1/p). If both strategies
are followed by some players, the latter strategy is the more
profitable one.

Let there be g collusion participants, who divide the game
field into ¢ disjoint interest domains. If all non-colluders are
patrolling in the middle, the colluders quite likely get most
if not all the pills. Even in the latter case, the even distri-
bution of colluders makes all areas of the game field equally
uninviting to normal players, so their decisions will be more
or less random.

CONCLUDING REMARKS

Collusion cannot be prevented, but some of its forms can be
detected and punished afterwards. Therefore, the counter-
measures are effective only if we can detect collusion accu-
rately and swiftly. In this article, we focused on inter-player
collusion and presented a simple game where collusion de-
tection methods can be tested. The testbench creates game
data that can be used to evaluate collusion detection methods.
This paves the way to the future work, which will focus on
designing detection methods, analysing them formally and
improving them experimentally.

REFERENCES

[1] A. Ercole, K. D. Whittlestone, D. G. Melvin, and J. Rashbass.
Collusion detection in multiple choice examinations. Medical
Education, 36(2):166-172, 2002.

U. Johansson, C. Sonstréd, and R. Konig. Cheating by shar-
ing information—the doom of online poker? In L. W. Sing,
W. H. Man, and W. Wali, editors, Proceedings of the 2nd In-
ternational Conference on Application and Development of
Computer Games, pages 16-22, Hong Kong SAR, China, Jan.
2003.

S. J. Murdoch and P. Zielinski. Covert channels for collusion
in online computer games. In J. Fridrich, editor, Information
Hiding: 6th International Workshop, volume 3200 of Lecture
Notes in Computer Science, pages 355-369, Toronto, Canada,
May 2004. Springer-Verlag.

Namco. Pac-Man. Namco, 1979.

J. Smed and H. Hakonen. Synthetic players: A quest for arti-
ficial intelligence in computer games. Human IT, 7(3):57-717,
2005.

J. Smed and H. Hakonen. Algorithms and Networking for
Computer Games. John Wiley & Sons, Chichester, UK, 2006.

J. Smed, T. Knuutila, and H. Hakonen. Can we prevent
collusion in multiplayer online games? In T. Honkela,
T. Raiko, J. Kortela, and H. Valpola, editors, Proceedings of
the Ninth Scandinavian Conference on Artificial Intelligence
(SCAI 2006), pages 168—175, Espoo, Finland, Oct. 2006.

[2]

(3]

[4]

[5]

[6]

[71

107

[8] C. Vallve-Guionnet. Finding colluders in card games. In
H. Selvaraj and P. K. Srimani, editors, Proceedings of the In-
ternational Conference on Information Technology: Coding
and Computing (ITCC’05), volume 11, pages 774-775, Las
Vegas, NV, USA, Apr. 2005.

I. H. Witten and T. C. Bell.
sion corpus, accessed Aug.

[9] Calgary text compres-

16, 2007. Available at

(ftp://ftp.cpsc.ucalgary.ca/pub/projects/text.compression.corpus/).

[10] R. V. Yampolskiy. Online poker security: Problems and so-
lutions. In P. Fishwick and B. Lok, editors, GAME-ON-NA
2007: 3rd International North American Conference on In-
telligent Games and Simulation, Gainesville, FL, USA, Sept.

2007.

[11] J. Yan. Security design in online games. In Proceedings of the
19th Annual Computer Security Applications Conference (AC-
SAC’03), pages 286-297, Las Vegas, NV, USA, Dec. 2003.

Behavioral Biometrics for Recognition and Verification of Game Bots

Roman V. Yampolskiy and Venu Govindaraju
Center for Unified Biometrics and Censors, University at Buffalo
2145 Monroe Ave. #4
Rochester NY, 14618
rvy@buffalo.edu

Abstract- Intelligent bots are quickly becoming a part of
our everyday life. Virtual assistants, shopping bots, and game
playing programs are used daily by millions of people. As
such programs become closer in their abilities and intelligence
to human beings the need will arise to verify and recognize
such artificially intelligent software just like it is often
necessary to authenticate and confirm identity of people. We
propose applying techniques developed for behavior based
recognition of humans to the identification and verification of
intelligent game bots. Our experimental results demonstrate
feasibility of such methods for both game Bot verification and
even for recognition purposes.

Keywords- Game Bots, Behavioral Biometrics, Bot
Recognition.

1. Introduction

Artificially Intelligent (AI) programs are quickly becoming
a part of our everyday life. Virtual assistants, shopping bots,
game playing programs, and smart search engines to give just
some examples are used daily by millions of people. As such
programs become closer in their abilities and intelligence to
human beings the need will arise to verify and recognize such
artificially intelligent software just like it is often necessary to
authenticate and confirm identity of people. With respect to
human beings identification and verification is mostly done
for sccurity rcasons, to prevent certain people from
unauthorized access to some resources and to allow it to the
authorized personal.

Similarly, with respect to artificially intelligent programs
reasons exist for determining the “identity” of a program or to
verify the program is what it claims to be. Such reasons
include but are not limited to:

e Finding out which program has actually performed a
given task in case a number of possible agents exist,
either for assigning blame or reward.

e Determining who has the authorship rights to the
results of computation and creative output produced
by Al software.

e Securing interaction between different pieces of
intelligent software or between a human being and an
instance of intelligent software.

e Preventing malicious intelligent software from
obtaining access to information or system resources
and granting it to authorized intelligent agents.

108

e Indirectly proving possession of unlicensed software
on a system or network based on the observed
capabilities of the system.

In addition to verifying and identifying people it is also
possible to classify human beings into a number of groups
based, for example, on race and gender. Similarly, in addition
to verifying and identifying an instance of intelligent software
we can verify and recognize a particular version or type to
which this software belongs, and from which it differs only in
so far as it was customized and trained differently from the
original release. Since all instances of particular software
release before being customized are exactly the same it is
much more valuable to be able to identify or verify a software
version than it is to classify a human being according to
gender since larger variability exists within genders than
between.

We propose applying techniques developed for behavior
based recognition of humans to the identification and
verification of intelligent programs. Those techniques are
commonly called behavioral biometrics. Section 2 of this
paper provides an overview of existing behavioral biometric
technologies. Section 3 reviews existing Al software to which
we can apply such techniques and covers previous work in the
field. Section 4 presents a strategy based behavioral biometric
used to verify identities of poker players. Finally, sections 5
and 6 report results of our experiments with automatic
verification and recognition of artificially intelligent poker
players.

2. Behavioral Biometrics

Purely behavioral biometrics are those which measure
human behavior directly not concentrating on measurements
of body parts or supposedly innate, unique and stable muscle
actions such as the way an individual walks, talks, types or
even grips a tool [18]. In accomplishing their everyday tasks
human beings employ different strategies, use different style
and apply unique skills and knowledge. Pure behavioral
biometrics researchers attempt to quantify such behavioral
traits and use resulting feature profiles to successfully verify
identity (see Table 1).

While many purely behavioral biometrics are still in their
infancy some very promising research has already been done.
The results obtained justify feasibility of using behavior for
verification of individuals and further research in this
direction is likely to improve accuracy of such systems. Table
2 summarizes obtained accuracy ranges for the set of purely
behavioral biometrics for which such data is available [71].

Table 1 summarizes what precisely is being measured by
different behavioral biometrics as well as lists some of the

most frequently used features for each type of behavior.

Behavioral Measures Extracted Features
Biometric

Car driving style Skill pressure from

[26, 24, 25] [35] accelerator pedal and

[47] [54, 44] brake pedal, vehicle
speed, steering angle

Email Behavior Style length of the emails,

[64, 65] [68] time of the day the
mail is sent, how
frequently inbox is
emptied, the
recipients’ addresses

Calling Behavior Preferences date and time of the

[34] [31][17] [27] call, duration, called
ID, called number,
cost of call, number
of calls to a local
destination,

Programming Style Skill, Style, chosen programming

[62][30] [28] Preferences language, code
formatting style, type
of code editor,
special macros,
comment style,
variable names

Text Authorship Vocabulary sentence count, word

[32][63] 39, 41, count, punctuation

42] mark count, noun
phrase count, word
included in noun

Game Strategy Strategy/Skill count of hands

[69, 75] [56] folded, checked,
called, raised, check-
raised, re-raised, and
times player went
all-in

Credit Card Use Preferences account number,

[15] transaction type,
credit card type,
merchant 1D,
merchant address

Biometric Sketch Knowledge location and relative

[16,4][67] [37] [58] position of different
primitives

Command Line Technical used commands

Lexicon Vocabulary together with

[60, 51][21] [76, 50, corresponding

45, 46] frequency counts,
and lists of
arguments to the
commands

Painting Style Style subtle pen and brush

[49] strokes characteristic

Soft Behavioral Intelligence, word knowledge,

Biometrics Vocabulary, Skills generalization

[36] ability, mathematical
skill

Table 2: Comparison of behavioral biometrics based on their

verification accuracy

Behavioral Biometric |

Reported Verification

109

Accuracy
Car driving style 68.8-73.0%
Email Behavior 86.2-90.5%
Calling Behavior 87.6-92.5%
Text Authorship 95.7-98.6%
Game Strategy 53.0-78.33%
Credit Card Use 80.0-99.95%
Biometric Sketch 98.7-100.0%
Command Line Lexicon 66.0-99.0%

Certain Al programs perform actions similar to those
performed by human beings so it is logical to try to apply
similar techniques to the task of profiling and recognizing
such programs. This allows us to utilize an already existing
technology in a novel and interesting way and possibly better
understand mechanisms underlying the human behavior. As a
consequence we might obtain improvements in the recognition
of human beings, resulting from breakthroughs obtained in the
recognition of intelligent machines.

3. Research Domain Overview

3.1. Previous Work

Existing research can be classified into three groups:
recognizing patterns in the output of software and behavior of
robots, distinguishing between people and computers, and
identifying people (biometrics). To the best of our knowledge
no research in output-based software recognition or
verification exists; some work has been done in program
recognition [55] and program understanding [57], in which the
source code of the program is analyzed with the purpose of
understanding the original purpose behind the creation of such
software. Others have researched possibility of robot’s
behavior prediction and recognition never applying discovered
trends to the recognition of robots exhibiting the observed
behavior [8, 33].

In 1950 Alan Turing published his most famous work
“Computing Machinery and Intelligence” in which he
proposes evaluation of abilities of an artificially intelligent
machine based on how closely it can mimic human behavior
[66]. The test, which is now commonly known as the Turing
test is structured as a conversation and can be used to evaluate
multiple behavioral parameters, such as agent’s knowledge,
skills, preferences, and strategies. In essence it is the ultimate
multimodal behavioral biometric, which was postulated to
make it possible to detect differences between man and
machine.

In 2000 Luis von Ahn et al. [2, 3] proposed the concept of
CAPTCHA (Completely Automated Public Turing test to tell
Computers and Humans Apart). It is a type of challenge-
response test used in computing to determine whether or not
the user is human. It relies on ability of human beings to
perform pattern recognition at a level which is beyond that
currently achicvable by artificially intelligent programs. Both
the Turing test and CAPTCHAs take advantage of the
differences in abilities between human beings and intelligent
machines to identify to which group an agent being tested

belongs. Majority of previous research falls under the heading
of biometric research and it is the utilization of biometric
methodologies for recognition of Al software which forms the
cornerstone of our research.

3.2. Existing Al software and Robots

The artificially intelligent programs we currently have arc
still years away from being as intelligent as human beings, but
there are some programs to which we can attempt to apply our
verification/identification techniques. Some examples are
provided below, but the list will unquestionably grow as our
success with Al technologies progresses and we obtain
programs which are as creative and unique as human beings.
We already have programs capable of composing inspiring
music [20], drawing beautiful paintings [19], and writing
poetry [14] and no limits are know to the abilities which a
machine can cventually obtain. Table 3 lists some well
developed artificially intelligent programs and behavioral
biometrics we can apply to their verification [70].

Table 3: Al software and behavioral biometrics we can apply

Al software Behavioral biometric we can apply
Game Playing Software | Profile of the game strategy,
(Chess, Poker, Go) frequently used moves, openings,

aggression level, etc.

Chat Bots Linguistic profile based on frequently
used words, common phrases, topics

of conversation.

Text-to-Speech Software Voice recognition, based on acoustic
features such as voice pitch and

speaking style.

Linguistic profile based on frequently
used phrases, idioms, etc.

Translation Software

Text authorship combined with error
rate analysis.

Speech Recognition

Biometrics refer to biological measurements collected for
the purpose of identifying human beings, however this name
is not appropriate with respect to non-biological agents. We
propose that the research aimed at recognition and verification
of software programs, robots and other non-biological agents
be known as Artimetrics after the word "artilect", which is a
shortened version of "artificial intellect" [29].

4. Verification and Recognition of Players

Yampolskiy et al. [69, 75, 72] proposed a system for
verification of online poker players based on a behavioral
profile which represents a statistical model of player’s
strategy. We propose that this approach can be expanded to
the task of verification of the Al poker players. In the strategy-
based-behavioral biometric the profile consists of frequency
measurements indicating range of cards considered by the
player at all stages of the game. It also measurcs how
aggressive the player is via such variables as percentages of
re-raised hands. The profile is actually human readable
meaning that a poker expert can analyze and understand
strategy employed by the player from observing his or her
behavioral profile [56]. For example just by knowing the

percentage of hands a particular player chooses to play pre-
flop it is possible to determine which cards are being played
with high degree of accuracy. Table 4 demonstrates a sample
profile for a player named Bot.

Table 4: Strategy based behavioral biometric profile [75]

Player Name: Bot Hands Dealt: 224

Pre-Flop | Flop | Turn | Rive
r

of Hands Played 224 68 46 33
Folded 67% 28% | 24% | 18%
Checked 7% 54% | 52% | 52%
Called 21% 32% | 28% | 33%
Raised 4% 1% 4% 6%
Check-Raised 0% 4% 0% 0%
Re-Raised 0% 1% 0% 0%
All-In 1% 3% 4% | 39%

110

A combination of statistical variables taken together
produces a feature vector which is used by a pattern
recognition algorithm to determine if a current profile is
consistent with the actions previously seen from this particular
player. In the Table 4 we see a 24 dimensional feature vector
(number of hands played is only used to determine if we have
enough information to put confidence in our statistical profile
and is not analyzed as a part of a profile). Explanation for the
meaning of the first 7 variables in our feature vector follows.
The rest of the variables represent similar strategic ideas but at
a later stages of the game [75].

o pre-flop fold Percentage of times this particular player
has decided to give up his claims to the pot

o pre-flop check Percentage of times this particular player
has decided to check

e pre-flop any call Percentage of times this particular
player has paid an amount equivalent to the raise by some
other player ahead in position in order to see the flop

o pre-flop raise Percentage of times this particular player
has chosen to raise before seeing the flop

e pre-flop check-raised percentage of times a player has
checked pre-flop allowing another player to put some
mongcy into the pot, just to come over the top and raise the
pot after the action gets back to him

o pre-flop re-raise Pcrcentage of times this particular
player has chosen to re-raise somebody-else's raise before
seeing the flop.

e pre-flop all-in Percentage of times this particular player
has chosen to invest all his money in the hand

Once feature vectors describing players’ strategies are
obtained it becomes necessary to compare such
multidimensional feature vectors. A comparison score needs
to be generated using a similarity distance function. The
distance score has to be very small for two feature vectors
belonging to the same poker playing agent and thercfore
representing a similar strategy. At the same time it needs to be
as large as possible for feature vectors coming from different
players, as it should represent two distinct playing strategies.

The most popular similarity measure is Euclidian Distance,
which is just the sum of the squared distances of two vector
values (x;, y,) [75, 73, 74].

5. Intelligent Bots-Poker Players

Historically games were a sandbox used for testing novel Al
theories and tools. It is a restricted domain, which allows
techniques, which are not yet ready for the real world to be
cxamined under controlled conditions. From the Al
perspective game of Poker provides opportunities for working
with Neural Networks, Genetic Algorithms, Fuzzy Logic, and
Distributed Agents to solve problems with probabilistic
knowledge, risk assessment, deception, and other real world
situations. Ideas from game theory, pattern recognition,
simulation and modeling are also come into play, not even
mentioning mathematics, statistics, probability and other arcas
of mathematics [10, 38]. As a result rescarch of artificial
poker players enjoys a long and fruitful history. We will begin
with a short overview of existing work in the field of
developing artificially intelligent poker players, followed by
our approach to the creation of Al poker players used as
subjects in our experiments on Al player verification and
recognition.

e Full Scale Texas Hold'em Poker Billings et al. [9,
10, 11, 13, 23, 22, 12] have investigated development
of a complete poker playing program for the game of
Texas Hold'em. They use opponent modeling,
statistical analysis, semi-optimal pre-flop strategy
and even neural-network-based opponent's action
prediction to construct a world-class poker-playing
program. Their research is still in progress, but their
best program Poki has alrcady proven itself as a
reasonable strength opponent against both computers
and people. It has been playing online and
consistently winning, but since the games were not
real money games the quality of opponents remains
questionable.

e Bayesian Poker Korb et al. are developing a
Bayesian Poker (BP) program which uses a Bayesian
network to model the program's poker hand, the
opponent's hand and the opponent's playing behavior
based on the hand, and betting curves which govern
play given a probability of winning. The history of
play with opponents is used to improve program's
understanding of their behavior [43]. BP is written to
play a two-player five-card stud poker game and is
still a work in progress.

e Evolved Poker Players Genetic algorithms provide
an automated way to solve complex problems
without explicitly solving every particular sub-
instance of the problem. Many researchers have
attempted to evolve good players for the game of

111

poker, typically for one of the simplified versions,
making search space more reasonable.

e Barone and While Baronc ct al. [7, 5, 6] usc a
simple poker variant where each player has two
private cards, access to five community cards and
there is only one round of betting. Their solution
takes into account hand strength, betting position and
risk management. The approach shows how a player
that has evolved using evolutionary strategies can
adapt its style to two types of game: loose or tight.

e Noble and Watson Noble et al. [52, 53] use Pareto
co-evolution on the full scale game of Texas Hold'em
and show that as compared to the traditional genetic
algorithm their approach shows promise. Pareto co-
evolution treats players as dimensions and attempts
to find optimal playing strategies for a
multidimensional space of potential strategies.

o Kendall and Willdig Kendall ct al. [40] have also
attempted to cvolve a good poker player and showed
that a simple reward system of adjusting weights is
sufficient to produce a player capable of beating its
opponents after playing them for some time and
adapting to their style of play.

5.1. Our Methodology

Our implementation of poker bots was done using the
statistical package called Online Hold’em Inspector version
2.26d4 [1]. By specifying such conditions as tendency of bots
to bluff, slow play, check raise and their aggressiveness level
as well as their pre-flop card selection we were able to obtain
numerous valid artificial poker players.

Overall we exercised control over: Pre-flop hand selection,
on the flop action based on position, number of players, and
number of raises in the pot; check raising on the flop, turn and
river, bluffing frequency based on a type of opponent, blind
protection and blind stealing, slow-playing versus different
opponents based on the strength of our hand, opponent respect
levels, and many others.

By manipulating those variables associated with bots
playing strategy and combining them in numerous ways we
were able to generate a multitude of realistically behaving
poker players. By statistically analyzing bot’s strategy we
were able to predict some characteristics of the bot's
behavioral profile. The figure below demonstrates such
statistical estimation of the behavioral profile for a bot called
Solid, representing a somewhat tight but relatively aggressive
stratcgy.

- Stats [for a typical full game
Ny 5 Preflip Flop Tun River
. Fod AT BAIZ 12317 126m
le TMWWM Creck | 740 [MO0 005 Way
Fps 2002 Cab | 4% 4% AE 1
SlatngHands 70(213%) Betfae 430% Z598% M4 W5

Figure 1: Behavioral profile statistically predicted based on
chosen strategy

For our experimental sct of artificially intelligent poker
players we have taken a number of built-in profiles which
came standard with the Hold’em Inspector namely: Solid,
Rock, Maniac, Fish, and Typical. We have also included some
profiles available via Internet poker forums particularly:
Vixen70, GoldenEagle, BettyBot v1.1, and poker champ [48].
Finally we have programmed in an additional artificial poker
player, called Albot, based on the game theory research
presented by Sklansky et al. [61]. Validity of our poker bot
was tested at low-stakes real-moncy online poker tables
against human opponents where our bot consistently scored
around 3 big bets per hour in profits. In total we ended up with
10 artificial poker players which is representative of the
current number of competing programs in many Al sub-fields
such as character recognition, chess, translation software, etc.

6. Results and Conclusions

Each artificially intelligent poker player had played two long
poker games, each one of at least 150 hands, against a mixture
of human and artificial opponents. First game was played to
establish the biometric template for the player and second one
to perform the verification and identification experiments.

6.1. Verification Experiment

In a databank of 10 AI player’s signatures each one was
comparcd with one profile taken from the same player as the
onc who generated the original signature and with another
profile taken from a randomly chosen player, for a total of 20
comparisons. This gave us an experimental set up in which
authentic users and imposters are equal in number. Using
Euclidian distance similarity measure and an experimentally
established threshold of 75 the algorithm has positively
verified 90.00% of users. The only false verification was the
positive verification of the Solid bot as the Rock bot, which
could be explained by the fact that both bots are programmed
to play a conservative type of poker strategy.

7.1 Identification Experiment

For this experiment we used a databank of 10 Al player
signatures. Each player’s record contains an original signature
from the enrollment period and a second signature from the
testing period. Each testing signature was compared against all
original signatures in the databank, for a total of 100
comparisons. The highest matching profile with respect to the
similarity measure was recorded as either belonging to the
same player (a successful identification) or to a different
player (a false identification). From the total of 10 highest
matching profiles 3 were correctly identified and 7 were false
matches. This gives us artificial player identification with
overall 30.00% accuracy, which is a good result considering
we are using a soft behavioral biometric technique, which are
typically only used for verification not for identification
purposes.

112

Our results demonstrate possibility of using strategy-based
behavioral biometrics for accurate verification of Intelligent
Agents. We further believe that it is feasible to apply other
behavioral biometric techniques to additional domains in
which artificially intelligent programs are becoming a major
force. In the field of output authorship recognition of
artificially intelligent software we expect a lot of progress as
Al programs become capable of many tasks usually only
attributed to humans such as telling a joke [59], composing
music [20], painting [19], or creating poetry [14].

As Al technologies become more commonplace in our
society it will be necessary to determine which program has
actually performed a given task, assign the authorship rights to
software, secure interaction between different pieces of
intelligent software, and prevent malicious software from
accessing certain information. We have demonstrated that it is
possible to verify and even identify artificially intelligent
game bots based on their observable behavior. We further
proposc that the rescarch aimed at recognition and verification
of software programs, industrial and personal robots and other
non-biological agents be known as Artimetrics to distinguish it
from the traditional biology centered research in biometrics.

6. References

[1] -. -, Online Holdem Inspector, Available at:
http://www.pokerinspector.com/, Retrieved May 2, 2006.
[2] L. v. Ahn, M. Blum, N. Hopper and J. Langford,
CAPTCHA: Using Hard Al Problems for Security, In
Eurocrypt, 2003.
L. v. Ahn, M. Blum and J. Langford, How Lazy
Cryptographers do Al, In Communications of the ACM,
Feb. 2004.
S. Al-Zubi, A. Bromme and K. Tonnies, Using an Active
Shape Structural Model for Biometric Sketch Recognition,
In Proceedings of DAGM, Magdeburg, Germany, 10.-12.
September 2003, pp. 187-195.
L. Barone and L. While, An adaptive learning model for
simplified poker using evolutionary algorithms, In
proceedings of the Congress of Evolutionary Computation
(GECCO-1999), 1999, pp. 153-160.
L. Barone and L. While, Evolving adaptive play for
simplified poker, In In proceedings of IEE International
Conference on Computational Intelligence (ICEC-98),
1999, pp. 108-113.
L. Barone and L. While, Evolving computer opponents to
play a game of simplified poker, In In proceedings of the

[5]

1998 International ~ Conference — on Evolutionary
Computation (ICEC'98), 1998, pp. 108-113.
[8] D. Barrios-Aranibar and P. J. Alsina, Recognizing

Behaviors Patterns in a Micro Robot Soccer Game, In
Proceedings of the Fifth international Conference on
Hybrid intelligent Systems, 1EEE Computer Socicty,
Washington, DC, December 06 - 09, 2005.

D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer,
T. Schauenberg and D. Szafron, Approximating game-
theoretic optimal strategies for full-scale poker, ijcai-03,
2003.

D. Billings, D. Papp, J. Schaeffer and D. Szafron,
Opponent modeling in Poker, Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI-98),
AAALI Press, Madison, WI, 1998, pp. 493-498.

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

D. Billings, D. Papp, J. Schaeffer and D. Szafron, Poker as
testbed for ai research, Al '98: Proceedings of the 12th
Biennial Conference of the Canadian Society for
Computational Studies of Intelligence on Advances in
Artificial Intelligence, Springer-Verlag, London, UK, 1998,
pp- 228-238.

D. Billings, L. Pena, J. Schaeffer and D. Szafron, Learning
to play strong poker, Machines that learn to play games,
Nova Science Publishers, Inc, Commack, NY, USA, 2001,
pp. 225--242.

D. Billings, L. Pena, J. Schaeffer and D. Szafron, Using
probabilistic knowledge and simulation to play poker, In
AAAI/TAAL 1999, pp. 697-703.

). Boyd-Graber, Semantic Poetry Creation Using
Lexicographic and Natural Language Texts, Available at:
http://www.cs.princeton.cdu/~jbg/documents/poctry.pdf,
Retrieved July 2, 2006.

R. Brause, T. Langsdorf and M. Hepp, Neural Data Mining

for Credit Card Fraud Detection, In Proceedings of the

11th IEEE International Conference on Tools with
Artificial Intelligence, 1999, pp. 103--106.

A. Bromme and S. Al-Zubi, Multifactor Biometric Sketch
Authentication, In A. Bromme and C. Busch, editors,
Proceedings of the BIOSIG 2003, Darmstadt, Germany, 24.
July 2003, pp. 81-90.

M. Cahill, D. Lambert, J. Pinheiro and D. Sun, Defecting

fraud in the real world, Technical report, Bell Labs, Lucent

Technologies, 2000.

Caslon-Analytics, Available at:
http://www.caslon.com.au/biometricsnote6.htm, Retrieved
October 2, 2005.

H. Cohen, HOW TO DRAW THREE PEOPLE IN 4

BOTANICAL GARDEN, Available at:
http://crca.ucsd.edu/~hcohen/cohenpdf/how2draw3people.
pdf, 1988.

D. Cope, Virtual Music: Computer Synthesis of Musical
Style, The MIT Press, Cambridge, Massachusetts, 2001.

V. Dao and V. Vemuri, Profiling Users in the UNIX OS
Environment, International ICSC Conference on Intelligent
Systems and Applications, University of Wollongong
Australia, Dec. 11-15, 2000.

A. Davidson, Using artifical neural networks to model
opponents in texas hold'em, Available at:
http://citeseer.ist.psu.edu/460830.html, Retrieved May 25,
2005.

A. Davidson, D. Billings, J. Schacffer and D. Szafron,
Improved opponent modeling in poker, Proceedings of the
2000 International Conference on Artificial Intelligence
(ICAI'2000), Las Vegas, Nevada, 2000, pp. 1467-1473.

H. Erdogan, A. Ercil, H. Ekenel, S. Bilgin, 1. Eden, M.
Kirisci and H. Abut, Multi-modal person recognition for
vehicular applications, N.C. Oza et al. (Eds.) MCS 2005,
LNCS 3541, Monterey CA, Jun. 2005, pp. 366 - 375.

H. Erdogan, A. N. Ozyagci, T. Eskil, M. Rodoper, A. Ercil
and H. Abut, Experiments on decision fusion for driver
recognition, iennial on DSP for in-vehicle and mobile
systems, Sesimbra Portugal, Sep. 2005.

E. Erzin, Y. Yemez, A. M. Tekalp, A. Er¢il, H. Erdogan
and H. Abut, Multimodal Person Recognition for Human-
Vehicle Interaction, IEEE MultiMedia, April 2006, pp. 18-
31

T. Fawcett and F. Provost, Adaptive Fraud Detection, Data
Mining and Knowledge Discovery, Kluwer Academic
Publishers, 1997, pp. 291-316.

G. Frantzeskou, S. Gritzalis and S. MacDonell, Source
Code Authorship Analysis for Supporting the Cybercrime

113

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

Investigation Process, Ist International Conference on
eBusiness and Telecommunication Networks - Security and
Reliability in Information Systems and Networks Track,
Kluwer Academic Publishers, Sctubal Portugal, August
2004, pp. 85-92.

H. d. Garis, The Artilect War, ETC publications, 2005.

A. Gray, P. Sallis and S. MacDonell, Software Forensics:
Extending Authorship Analysis Techniques to Computer
Programs, In Proc. 3rd Biannual Conf. Int. Assoc. of
Forensic Linguists (IAFL'97), 1997.

H. Grosser, H. Britos and R. Garcia-Martinez, Detecting
Fraud in Mobile Telephony Using Neural Networks,
Lecture Notes in Artificial Intelligence, Springer-Verlag,
2005, pp. 613-615.

H. v. Halteren, Linguistic profiling for author recognition
and verification, In Proceedings of ACL-2004, 2004.

K. Han and M. Veloso, Automated robot behavior
recognition, In Proceedings of IJCAI-99 Workshop on
Team Behaviors and Plan Recognition, 1999.

C. Hilas and J. Sahalos, User Profiling for Fraud Detection
in Telecommunication Networks, 5th International
Conference on Technology and Automation (ICTA 2005),
Thessaloniki, Greece, 15-16 October 2005, pp. 382-387.

K. Igarashi, C. Miyajima, K. Itou, K. Takeda, F. Itakura
and H. Abut, Biometric identification using driving
behavioral signals, Proc. 2004 IEEE International
Conference on Multimedia and Expo, 2004, pp. 65-68.

B. A. JACOB and S. D. LEVITT, To catch a cheat,
Education next, Availablet at: www.educationnext.org,
2004.

I. Jermyn, A. Mayer, F. Monrose, M. K. Reiter and A. D.
Rubin, The Design and Analysis of Graphical Passwordls,
Proceedings of the 8th USENIX Security Symposium,
Washington, D.C., August 23-36, 1999.

p- Jonathan Schaeffer. In, The games computers (and
people) play, AAAI/IAAL 2000, pp. 1179-.

P. Juola and J. Sofko, Proving and Improving Authorship
Attribution, Proceedings of CaSTA-04 The Face of Text,
2004.

G. Kendall and M. Willdig, 4n investigation of an adaptive
poker player, In proceedings of 14th Australian Joint
Conference on Artificial Intelligence, Adclaide, Australia,
Dec 10-14, 2001, pp. 189-200.

M. Koppel and J. Schler, Authorship Verification as a One-
Class Classification Problem, in Proceedings of 2lst
International Conference on Machine Learning, Banff,
Canada, July 2004, pp. 489-495.

M. Koppel, J. Schler and D. Mughaz, Text Categorization
for Authorship Verification, Eighth International
Symposium on Artificial Intelligence and Mathematics,
Fort Lauderdale, Florida, Januray 2004.

K. Korb, A. Nicholson and N. lJitnah, Bayesian Poker,
Proceedings of the 15th Annual Conference on Uncertainty
in Artificial Intelligence (UAI-99), Morgan Kaufmann, San
Francisco, CA, 1999, pp. 343-35.

N. Kuge, T. Yamamura and O. Shimoyama, A driver
behavior recognition method based on driver model
framework., Society of Automotive Engineers Publication,
1998.

T. Lane and C. E. Brodley, 4n Application of Machine
Learning to Anomaly Detection, 20th Annual National
Information Systems Security Conference, 1997, pp. 366-
380.

T. Lane and C. E. Brodley, Detecting the Abnormal:
Machine Learning in Computer Security, Department of

[47]

(48]

[49]

[50]

[51]

[52]

(53]

[54]

[53]

[56]

[57]

[58]

[64]

[65]

Electrical and Computer Engineering, Purdue University
Technical Report ECE-97-1, West Lafayette, January 1997.
A. Liu and D. Salvucci, Modeling and Prediction of
Human Driver Behavior, Proc. of the 9th HCI
International Conference, New Orleans, LA, Aug. 5-10,
2001, pp. 1479-1483.

C. LOONIES, Texas Holdem Poker, Available at:
http://cyberloonies.com/poker.html, Retrieved May 2006.
S. Lyu, D. Rockmore and H. Farid, 4 Digital Technique for
Art Authentication, Proceedings of the National Academy
of Sciences, 2004, pp. 17006-17010.

J. Marin, D. Ragsdale and J. Surdu, 4 hybrid approach to
the profile creation and intrusion detection, DARPA
Information Survivability Conference and Exposition
(DISCEX 11'01), 2001.

R. A. Maxion and T. N. Townsend, Masquerade detection
using truncated command lines, In International
conference on dependable systems and networks(DNS-02),
IEEE Computer Society Press, 2002.

J. Noble, Finding robust texas hold'em poker strategies
using pareto coevolution and deterministic crowding, In In
Proceedings of the 2002 International Conference on
Machine Learning and Applications (ICMLA'02), 2002.

R. A. Noble and J. Watson, Pareto coevolution: Using
performance against coevolved opponents in a game as
dimensions for pareto selection, Proceedings of the Genetic
and Evolutionary Computation Conference, GECCO-2001,
2001, pp. 493-500.

N. Oliver and A. P. Pentland, Graphical models for driver
behavior recognition in a SmartCar, In Proceedings of the
1EEE Intelligent Vehicles Symposium, 2000.

D. Ourston, Program Recognition, IEEE Expert, Winter
1989, pp. 36-49.

Poker-edge.com, Stats and Analysis, Available at:
http://www.poker-edge.com/stats.php, Retrieved June 7,
2006.

A. Quilici, Q. Yang and S. Woods, Applyving Plan
Recognition Algorithms To Program Understanding,
Automated Software Engineering: An International
Journal, Kluwer Academic Publishers, July 1998, pp. 347--
372.

K. Renaud, Quantifying the Quality of Web Authentication
Mechanisms. A Usability Perspective, Journal of Web
Engineering, Vol. 0, No. 0, Rinton Press, Available at:
http://www.dcs.gla.ac.uk/~karen/Papers/j.pdf, 2003.

G. Ritchie, Current Directions in Computational Humor,
Artificial Intelligence Review, 2001, pp. 119-135.

M. Schonlau, W. DuMouchel, W.-H. Ju, A. F. Karr, M.
Theus and Y. Vardi, Computer Intrusion: Detecting
Maquerades, Statistical Science, 16 (2001), pp. 1-17.

D. Sklansky and M. Malmuth, Hold'em Poker for
Advanced Players, Two Plus Two Publishing, March 2004.
E. H. Spafford and S. A. Weeber., Software Forensics: Can
We Track Code to its Authors? 15th National Computer
Security Conference, Oct 1992, pp. 641-650.

E. Stamatatos, N. Fakotakis and G. Kokkinakis, Automatic
authorship attribution, in Proc. nineth Conf. European
Chap. Assoc. Computational Linguistics, Bergen, Norway,
Jun. 1999, pp. 158--164.

S. J. Stolfo, S. Hershkop, K. Wang, O. Nimeskern and C.-
W. Hu, 4 Behavior-based Approach to Securing Email
Systems, Mathematical Methods, Models and Architectures
Jor Computer Networks Security, Springer Verlag, Sept.
2003.

S. J. Stolfo, C.-W. Hu, W.-J. Li, S. Hershkop, K. Wang and
O. Nimeskern, Combining Behavior Models to Secure

114

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Email Systems, CU Tech Report, Available at:
www .cs.columbia.edu/ids/publications/EMT-weijen.pdf,
April 2003.

A. Turing, Computing Machinery and Intelligence, Mind,
1950, pp. 433-460.

C. Varenhorst, Passdoodles; a Lightweight Authentication
Method, Available at:
http://people.csail.mit.cdu/emax/papers/varenhorst.pdf,
July 27, 2004.

O. D. Vel, A. Anderson, M. Corney and G. Mohay, Mining
Email Content for Author Identification Forensics,
SIGMOD: Special Section on Data Mining for Intrusion
Detection and Threat Analysis, 2001.

R. V. Yampolskiy, Behavior Based Identification of
Network Intruders, 19th Annual CSE Graduate Conference
(Grad-Conf2006), Buffalo, NY, February 24, 2006.

R. V. Yampolskiy, Behavioral Biometrics for Verification
and Recognition of Al Programs, 20th Annual Computer
Science and Engineering Graduate — Conference
(GradConf2007), Buffalo, NY, April 13, 2007.

R. V. Yampolskiy, Human Computer Interaction Based
Intrusion Detection, 4th International Conference on
Information Technology: New Generations (ITNG 2007),
Las Vegas, Nevada, USA, April 2-4, 2007.

R. V. Yampolskiy, Improving Accuracy of a Behavior-
Based Network Intrusion Detection System, IEEE Upstate
NY Workshop on Communications and Networks '06,
Rochester, NY, November 6, 2006.

R. V. Yampolskiy and V. Govindaraju, Dissimilarity
Functions for Behavior-Based Biometrics, Biometric
Technology for Human Identification 1V. SPIE Defense and
Security Symposium, Orlando, Florida, April 9-13, 2007.

R. V. Yampolskiy and V. Govindaraju, Similarity Measure
Functions for Strategy-Based Biometrics., International
Conference on Signal Processing (ICSP 2006), Vienna,
Austria, December 16-18, 2006.

R. V. Yampolskiy and V. Govindaraju, Use of Behavioral
Biometrics in Intrusion Detection and Online Gaming,
Biometric Technology for Human Identification IIl. SPIE
Defense and Security Symposium, Orlando, Florida, 17-22
April 2006.

D. Y. Yeung and Y. Ding, Host-based intrusion detection
using dynamic and static behavioral models, Pattern
Recognition, pp. 229-243.

THE ANATOMY OF AN INTER-VEHICULAR GAMING
COMMUNICATION SUBSYSTEM WITH EXPERIMENTS

Emiliano Manca, Fabio Parmeggiani, Claudio E. Palazzi, Stefano Ferretti, Marco Roccetti
Department of Computer Science
University of Bologna
Mura Anteo Zamboni, 7 40127 Bologna, Italy
{mancae, fparmegg, cpalazzi, sferrett, roccetti} @cs.unibo.it

KEYWORDS
Online Games, Inter-Vehicular Communication, Networked
Interactive Entertainment, Multi-hop Broadcasting, VANET.

ABSTRACT

We report on an extensive experimental evaluation of a new
scheme we recently devised for a fast broadcast of messages
in Inter-Vehicular Communication (IVC) systems. Our
scheme is specifically designed for online gaming contexts.
It is composed of two distributed algorithms, working in
parallel. The first one is a dynamic transmission range
estimator, which provides each vehicle with a measure of the
distance that a broadcast message can cover in the specific
geographical arca where the car is traveling. The second
component is a broadcasting scheme that, based on the
transmission range estimation, identifies vehicles that should
be selected to forward the message, so as to cover the whole
vehicular network in a minimal time. Our transmission range
estimator works by exploiting information extracted from
game events distributed during the game evolution. Thus,
only game related messages are utilized in the IVC.
Simulation results confirm the efficacy of our approach.

INTRODUCTION

Online gaming is becoming a pervasive activity due to the
widely available wircless connectivity (Farber 2004, Pantel
and Wolf 2002). Several mobile games have been recently
developed which allow users to play while being on the
move (Benford et al. 2005, Bjork et al. 2001, Piekarski and
Thomas 2002). The next step will surely be that of enabling
car passengers to play online games through Inter-Vehicular
Communication (IVC) systems.

Indeed, “on-car entertainment” is a blooming market, with
an ever increasing number of new technologies, typically
available for “in-home entertainment”, ready to be mounted
in people’s cars. For example, DVD systems and game
consoles arc now commonly installed on vchicles.
Therefore, the current research trend is that of investigating
on means to make cars able to communicate among each
other, by resorting to some ad-hoc networking technology.

New protocols for IVC are now under development. The
most prominent one is the DSRC/IEEE 802.11p standard
(DSRC 2007). This new technology will allow to distribute

115

application messages among a group of vehicles spread over
an area of few kilometers (i.e., a car platoon) through ad-
hoc communication. In this highly dynamic context, it
becomes particularly interesting to study how fast paced and
interactive applications such as online games can be
supported by the IVC infrastructure.

In particular, to provide cars passengers with interactive
online gaming experiences, a main open issuc is that of
identifying a fast and smart broadcast scheme, to be applied
in IVC systems, able to guarantee a rapid delivery of game
events produced by players. This is a crucial aspect which
demands solution in order to quickly deliver game events
among all players (Palazzi et al. 2006).

As a matter of fact, the fastest and less resource-consuming
way to broadcast game cvents in a vehicular network is that
of forwarding messages through a multi-hop broadcast over
the whole car platoon (Palazzi et al. 2007, Palazzi et al.
2007b). This way, each vehicle (equipped with a wireless
communication infrastructurc) can hear the message and, if
there is any player on that vehicle, pass the game event to
the application layer.

The rationale behind the need for a fast and efficient multi-
hop broadcasting scheme lies on the fact that even if game
events are typically limited in size to few tens of bytes, each
player generates several of them every second (Farber 2004,
Pantel and Wolf 2002). Thus, a shared wircless network
could become quickly congested with a high number of
participants. Moreover, for the sake of game interactivity,
this message delivery must be accomplished as soon as
possible, possibly within a temporal range of about 150-300
ms, depending on the game type (Palazzi et al. 2006).

A first simple solution to implement such a scheme would be
that of let any vehicle to re-broadcast every message as soon
as it is received, so as to cover the whole vehicular network.
Yet, this is not a good solution, since it would generate an
excessive number of forwarding messages being transmitted,
leading to collisions, network congestion, augmented delays,
and even to a transmission paralysis.

Summing up, an efficient approach is needed to quickly
propagate messages by guarantecing a limited utilization of
network resources. Basically, the idea is that of ensuring as
few redundant transmissions as possible, so as to keep the

channel available for other transmissions (Bisvas 2006,
Fasolo et al. 2005, Korkmax et al. 2004, Palazzi et al. 2007).

With this problem in view, we have recently devised a new
fast broadcast scheme which aims at ensuring that, upon a
message broadcast, the farthest vehicle in the sender’s
transmission range becomes the next forwarder (Palazzi et
al. 2007b). Our solution exploits two different components:
i) a transmission range estimator, which estimates the
maximum distance reached by a broadcast transmission in a
particular portion of the vehicular network, and ii) a
broadcasting scheme, which let vehicles select those cars
that should forward a given message, based on the estimated
transmission range.

It is important to point out that the transmission range
estimation is performed by exploiting information extracted
from game cvents distributed during the online game-play
evolution. Thus, no additional messages are sent through the
vehicular network that could increase the network traffic.

In this paper, we report on an cxtensive experimental
evaluation we conducted to assess the efficacy of our
proposed solution. Simulations have been carried out by
resorting to the well known NS-2 simulator (NS-2 2007).
Specifically, we measured the influence of the network
diameter and of the number of players on our approach.
Moreover, we have contrasted it against other mechanisms
proposed in scientific literature. The simulation study
confirms the cfficacy of our devised solution.

The rest of this paper is organized as follows. Section 2
describes our scheme. Section 3 reports on results obtained
from the simulative assessment we conducted to verify its
efficacy. Finally, Section 4 concludes the paper.

FAST BROADCAST FOR INTER-VEHICULAR
GAME COMMUNICATION

We designed Fast Broadcast Algorithm (FBA) to quickly
deliver multi-hop broadcast messages to players belonging
to the same car platoon and engaged in a certain game
(Palazzi et al. 2007b). Two main components characterize
our scheme: i) a transmission range estimator, and ii) a
broadcasting scheme, which are outlined in the following.
These two components work at a IVC session layer,
interleaved between the application (game) layer and the
transmission layer that factually performs the message
broadcast. It is important to notice that our approach can be
interfaced with classic transmission layers such as transport,
network or MAC layers, depending on the specific
architectural and communication requirements of the game
and of the IVC system (Palazzi et al. 2007, Palazzi et al.
2007b).

We assume that a positioning system, such as a GPS, is
available at each car which participates to the game and to
the broadcasting activity. This technology serves to measure
distances among vehicles and transmission ranges of
broadcast game events.

116

Transmission Range Estimator

During the game evolution, each game event generated by a
player is encapsulated in a message. Together with the game
event, the message includes parameters (managed at the IVC
layer) useful to obtain an estimation of the transmission
range in the particular area of transmission. These
parameters are: i) position of the sender vehicle; ii) its
driving direction; iii) the maximum distance from which
another vehicle was “recently heard”, from backward,
denoted as backward maximum distance (BMD); iv) the
maximum distance from which another vehicle was
“recently heard”, from frontward, denoted as frontward
maximum distance (FMD); v) the backward transmission
range estimation, denoted as backward maximum range
(BMR) estimation; vi) its frontward maximum range (FMR)
estimation. BMR and FMR represent how far a transmission
is expected to go before the signal becomes to weak to be
intelligible and are the main parameters utilized by our FBA.

To compute a correct transmission range cstimation, cach
vehicle needs to hear several messages from other cars
around. Indeed, this naturally happens when considering
interactive online games, where each node generates several
messages per cach sccond (Palazzi et al. 2006). This
guarantees that fresh information is always available at each
vehicle to compute estimations of transmission ranges.

Specifically, to estimate BMR and FMR, vchicles exploit an
heuristics that uses the estimations obtained for BMD and
FMD. Upon reception of a message, BMD and FMD are
updated by resorting to the following equation:

XMD = max(xMD,, . .d) (1)

where xMD represents FMD or BMD, depending on whether
the message arrives from frontward or backward, xMD..,,ens
is the current value to be updated, and d is the distance of the
vehicle that broadcast the message (measured by exploiting a
location system such as a GPS). In simple words, each time
a message is received from a vehicle farther than others
previously heard, this new information is stored through this
parameter.

Needless to say, since cars are moving, transmission
conditions dynamically change. Thus, old stored values are
meaningless after the vehicle has covered a given distance.
With this in view, the estimation of xMD.,,,,,..,, expires after a
tuned timeout, to be promptly updated based on more recent
messages.

Based on the obtained FMD and BMD, at each vehicle,
FMR and BMR can be computed. In particular, BMR is
heuristically calculated by considering messages coming
from vehicles behind the considered one; this value is
computed as the largest among all received FMDs and all
distances from vchicles that generated them. Similar,
specular considerations can be made for FMR. In other
words, the two transmission range estimations are updated as
follows:

XMR = max(xMR

current >

d,msgxMD) (2)

where, XMR represents FMR or BMR, xMR, .., is the
current value to be updated, d is the distance of the vehicle
that broadcast the message, and msgxMD is the data

contained in the received message, related to the maximum
hearing distance, i.e., FMD is considered if the message is
received from backward, BMD is considered in the opposite
case.

As demonstrated in our simulations, these heuristics provide
vehicles with accurate estimations of transmission ranges.

Broadcasting Scheme

Once a given player gencrates a new game cvent, the
corresponding message is broadcast to be received by all
other players in the vehicular network. Since with high
probability a single broadcast procedure cannot cover the
whole arca of interest, a forwarding procedure is activated in
both directions. Thus, each vehicle is engaged in a
forwarding procedure in a given direction (frontward if the
message comes from the back, backward conversely).

To avoid cyclic back and forth transmissions of the same
game cvent, each message includes information on the
position of the vehicle that generated the event and
information on the position of the last forwarder.

We now go into some details on the employed broadcasting
scheme. When receiving a message, based on the described
parameters, cach vehicle assigns itself a priority in becoming
the next forwarder of the received message. The
transmission range estimation (xMR) is used by vehicles to
determine which one among them will become the next
forwarder. With the aim of minimizing the number of hops
in order to reduce the propagation delay, the next forwarder
should be the farthest possible vehicle with respect to the
sending one. Therefore, the longer the relative distance of
the considered vehicle from the sender, the higher the
priority of the considered vehicle in becoming the next
forwarder.

In particular, vehicles’ priorities to forward a message arc
determined by assigning different waiting times from the
reception of the message to the time at which they will try to
forward it. This waiting time is randomly computed based on
a contention window value, as inspired by classical backoff
mechanisms in IEEE 802.11 MAC protocol (IEEE WLAN
MAC 1999).

If, while waiting, some farther vchicle along the same
direction of multi-hop propagation already forwarded the
message, vehicles between the sender and the forwarder
abort their countdowns to transmission as the message has
already been propagated “over their heads”. Instead, vehicles
which are located even farther re-activate the forwarding
procedure for the next hop.

The contention window (CW) used by cach vchicle is
measured in time slots and varies between a minimum value
(CWMin) and a maximum one (CWMax), depending on the
distance from the sending/forwarding vehicle (Disf) and on

117

the advertised estimated transmission range xMR, as shown
in equation (3).

oW = K% x (CWMax — CWMin)J + CWMinJ ©)
X

Using (3), the farthest vehicle in the sender’s transmission
range is privileged in becoming the new forwarder. Indeed,
the nearer the vehicle to the sending car, the larger the
contention window; larger contention windows make more
likely that a larger timeout value will be chosen and, hence,
that somebody else will be faster in forwarding the game
event.

A Practical Example

A simple example can permit a clearer understanding of our
solution. To this aim, we use Fig. 1 to show a broadcast
procedure during the distribution of a game event. Suppose
an event has been generated by a given vehicle, not shown in
the figure. The event has been propagated in both directions
(backward and frontward) in the car platoon. We consider
only a portion of the platoon backward with respect to the
vehicle that generated the game event. This means that the
message needs to be propagated backward, till reaching the
end of the area of interest. We suppose that, based on the
scheme we propose, vehicle d forwards the message
backward. In this example, suppose that only vehicles within
the shaded oval receive the message.

If we assume that the broadcast procedure is reliable, all cars
in the shaded area receive the message. Cars a, b and ¢
already received the game event in the previous turn, since
the message comes from frontward and d, which has the
message, is behind them. Then, upon the reception of the
message (from car d), the game event contained within the
message is simply ignored at cars b and ¢, and the event is
not passed at the application (game) layer to be processed,
since it has already been processed. Instead, the message is
utilized to update the estimations of BMD and BMR, using
cquations (1) and (2).

direction >

Contention
window size

Figure 1: A practical example of our scheme.

As to vehicles e, f and g, values for FMD and FMR are
updated, by exploiting equations (1) and (2). Moreover,
these vehicles are engaged in a new broadcast procedure to
forward the message backward. Thus, based on equation (3),
a contention window is calculated, which will be
proportional to the distance between d and the considered
vehicle, as shown in the figure (observe the triangle: the
height at each wvehicle corresponds to its contention
window). Each car then sclects a random timeout within its
contention window. This way, it is more probable that g
becomes the next car that trics to forward the game event.

EXPERIMENTAL ASSESSMENT

We carried out an extensive simulation assessment to test
our solution. The main tool utilized for our experiments is
the well known NS-2 simulator (NS-2 2007). For cach tested
configuration, 40 simulations were run and their outcomes
were averaged.

In these experiments, the length of the vehicular network
varies from 1 to 8 Km and for each length we compared
different densities of vechicles having communication
capabilities. As a scenario, we considered a freeway with
multiple lanes and the simultaneous presence of vehicles that
had no communication capabilities. Cars are randomly
positioned in a lane with a minimum distance of 20 m.

Focusing on the parameters, we have set CWMin and
CWMax equal to 32 and 1024 slots, respectively, as inspired
by the standard IEEE 802.11 protocol IEEE WLAN MAC).
Different slot sizes have been compared: 9 ps, which
corresponds to the value utilized by IEEE 802.11g (IEEE
802.11g), and a larger of 200 ps, which allow a larger time
distribution of contention declays. We set the actual
transmission range to vary from 300 to 1000 m, in order to
test boundary values that have been declared by the
IEEE 802.11p developing committee (Guo et al. 2005). Due
to the similarity of obtained results, we report only on the
case in which the actual transmission rate is one game event
sent every 300 ms.

We consider a number of players, among the vehicles with
communication capabilities, which vary from 2 to 50. (When
not differently stated, in the simulation this value is set to
50.) This means that game events are periodically generated
from cach of these vchicles and broadcast, even through
multi-hop, to all other players in the network. As to the
generation rate at each player, we considered different
values, which correspond to different kinds of games. In this
work, we report on the classic setting of a game event cvery
300 ms. The size of each game event was 200 Bytes (Farber
2002, Palazzi et al. 2006).

Influence of Network Diameter

We evaluate the ability of our architecture in ensuring
interactivity to the online game application with diverse
lengths of the car platoon.

Obviously, the smaller the vehicular network is, the faster
message delivery results. Indeed, outcome values are
generally proportional to the length of the vehicular network
and Fig. 2 shows how the number of hops that messages
have to traverse to cover the whole gaming car platoon is
about 3-4 hops for each km, regardless of the vehicular
network’s size and of the slot duration. This is coherent with
the fact that the actual transmission range was around 300 m.

The number of slots a message has to wait before being
forwarded on the next hop also depends on possible
collisions that forces vchicles to retransmit the message,
even multiple times. This happens more often when the time
width of a slot is very small, i.e., 9 us, as demonstrated by

Fig. 3 and Fig. 4. Indeed, Fig. 3 shows that with 9 ps, the
number of slots that a game event experiences in its path
through the vehicular network is much higher than when
200 ps is employed; while Fig. 4 demonstrates that this is
due to a higher number of transmissions or, in other words,
retransmissions caused by message collisions.

35
30
25
20
15
10

Hops

B 200us
B 9us

1000 2000 4000 8000
Length (m)

Figure 2: Average number of hops to cover the whole car
platoon.

£ 200us
B 9us

Slots

1000 2000 4000 8000
Length (m)

Figure 3: Average number of slots cumulatively waited at
forwarding vehicles by a message.

On the other hand, having time slots about 20 time smaller
allows the 9 ps setting to result in shorter total transmission
time for each broadcast game event (see Fig.5). Yet, we
deem that 200 ps represents a better tradcoff among the
requirements for limiting the number of message collisions
and for having game events quickly covering the whole car
platoon. Indeed, it has to be said that all the reported total
delivery times arc low cnough to be acceptable for many
interactive online games.

280
240
200
160
120

80

B 200us
B 9us

Transmissions

1000 2000 4000 8000
Length (m)

Figure 4: Average number of transmissions that a single
game event experiences while covering the car platoon.

If, for instance, we considered just fast paced games (e.g.,
first person shooters, car races), the only case where the
average transmission time of the 200 ps configuration
surpasses their 150 ms interactivity threshold is when we
consider long vehicular networks (i.e., 8 km). Therefore, it
would be cnough to limit the car platoon to a shorter
maximum length, for instance 4-6 km to obtain game
interactivity when employing the 200 us time slot.

— 240
(7]
£ 20
[
E 160
2
E 120 —&—200ps
» ~@— 9US
g 80
1]
§ 40
F oo
1000 2000 4000 8000
Length (m)

Figure 5: Average transmission time to cover the whole car
platoon.

These outcomes and the need for conciseness encourage us
in considering just the case of a 8§ km long vehicular network
for the tests reported in the rest of the paper.

Finally, as the main component of our scheme is represented
by its transmission range estimator, we evaluate in Fig. 6 its
efficiency in terms of the amount of time required to
dynamically compute the factual transmission range that is
currently available on cach vehicle. As expected, with higher
game message generation rates, our approach needs less time
to compute the correct estimation. This is a logic
consequence of the fact that the estimation is based on
information about vehicles” positions and ‘“hearing”
distances included in exchanged messages. Therefore, the
more the messages, the more the information received, and
the quicker the correct estimation can be built. However, all
the evaluated configurations show very little delays, 20 ms at
most, which is a really encouraging value. This proves that
our scheme is able to adapt itself extremely rapidly, which is
a crucial feature in a highly dynamic scenario such as a
vehicular network, especially when considering highly delay
sensitive applications such as online games.

N
a1

Estimation Delay (ms)
- - N
o o o
|] /
/
H
H
:/

—e— 200ps
—g@— 9us

o

o

500 300 100

Generation Interval (ms)

Figure 6: Average time to dynamically compute the factual
transmission range.

119

Influence of the Number of Players

The simultancous number of players that a game platform
can support is important as it relates to higher revenues for
game or network providers or just because humans are social
beings: “the more we are, the funnier it is”. Focusing on this
aspect, we report in Fig. 7, Fig. 8, Fig. 9, and Fig. 10 results
achieved by employing our scheme with a different number
of simultaneous players, from 2 to 50.

34
32
30 -
28
26
24
22
20

[200us
B 9us

Hops

2 10 20 30 50
Players

Figure 7: Average number of hops to cover the whole
gaming car platoon.

As it is evident, results do not change significantly when
increasing the number of players that are engaged in the
online game. This resilience to a higher number of players,
and hence to a more intense traffic on the channel, is
obtained thanks to the ability of the approach in limiting the
amount of game cvents simultancously “on air”. Indeed,
each message is forwarded by only few vehicles and is
quickly broadcast over the whole network, thus limiting the
amount of time a message spend “on air” occupying shared
resources. Analogous results in terms of resilience to player
scalability are obtained even when considering different
vehicular network’s length. We hence omit to present them
here as they would not bring any further information for our
cvaluation.

Considerations expressed in the previous subsection about
the different slot durations hold even in this series of tests.
Indeed, the case with 50 players in Fig. 7, Fig. 8, Fig. 9, and
Fig. 10 corresponds to the case with 8 km of network length
in Fig. 2, Fig. 3, Fig. 4, and Fig. 5, respectively.

1800
1500 -

1200 -
[200us

900 -
B 9us

Slots

600 -
300 -

2 10 20 30 50

Players

Figure 8: Average number of slots cumulatively waited at
forwarding vehicles by a message while covering the car
platoon.

280
240
200
160
120 -
80 -
40

@ 200us
B 9us

Transmissions

2 10 20 30 50

Players

Figure 9: Average number of transmissions that a single
game cvent experience while covering the car platoon.

240
200
160 -

—

120 -

®
o
)

Transmission Time (ms)
N
<)

o

2 10 20 30 50

Players

Figure 10. Average transmission time to cover the car
platoon.

Our Scheme Against Other Approaches

We have compared FBA against other three possible
solutions. For two of them, we have taken inspiration from
the solution presented in (Fasolo et al. 2005). This scheme is
similar to ours in that it attempts to have the farthest node in
the transmission range to become the next-hop forwarder.
The difference lies on the fact that the scheme in (Fasolo et
al. 2005) simply assumes to have the transmission range
parameter constantly set equal to a known predetermined
value, rather than being able to dynamically compute it
according to the factual channel conditions. We name this
solution Fixed300 if it utilizes 300 m as the transmission
range parameter, and Fixed!000 if it employs 1000 m.

Needless to say, Fixed300 and Fixed1000 perform ideally
when the factual transmission range is indeed 300 m and
1000 m, respectively. In any other situation, the utilization of
a wrong parameter could result in performance degradation.

We also evaluated Random, a solution that does not employ
any distance prioritization. Simply stated, ecvery car
computes a random waiting time within the contention
window before forwarding the message (if no one else
already did it). The adopted contention window is initially
sct to CWMin and follows a general backoff mechanism by
which its value doubles every time a transmission attempt
results in a collision and decreases linearly with every
successful transmission.

Specifically, we evaluate here the impact of the dispersion of
networking vehicles on the system’s performances. Fig. 11

120

shows the total transmission time when vehicles that
participate in the generation or forwarding of game messages
are placed every 20 m or every 80 m.

3000
n
£ 2500
Py —e—FBA
E 2000 - Fixed300
g 1500 Fixed1000
'ﬁ s Random
£ 1000 . .
a o
& 500 e
[= L
0 .
20m 80m

Scheme

Figure 11. Average transmission time required to cover the
whole gaming car platoon; 9 ps slot.

From the figure, our approach is the only scheme that is not
heavily affected by a more dispersed set of networking
nodes on which count on to forward the message. This is due
to the fact that the simulative transmission range was equal
to 300 m, with a factual one often around 280 m. Indeed,
having a car every 20 m corresponds to have the farthest car
in the factual transmission range exactly at 280 m from the
sender, whereas with 80 m of space between successive cars,
the farthest one in the factual transmission the transmission
will be located at 240 m from the sender. Therefore,
Fixed300 and, in particular way, Fixed1000 will be utilizing
a transmission range parameter wrong with respect to the
factual one; whereas FBA will adapt itself in virtue of its
transmission range cstimator, correctly computing 240 m.

CONCLUSIONS

In this paper we have evaluated FBA, a fast broadcast
scheme which allows to quickly distribute game events in
IVC systems. FBA cxploits a transmission range cstimator
that, based on the information extracted from messages
containing game events, provides a good measure of the
maximum transmission distance in a given portion of the
vehicular network. Then, a priority scheme is exploited to
privilege farthest vehicles in taking charge of forwarding the
message to other cars. Simulation results confirm the
viability of our approach.

ACKNOWLEDGMENTS

Partial financial support for this work is provided by the
Italian MIUR under the MOMA, and DAMASCO
initiatives.

REFERENCES

Armagetron: a Tron clone in 3d, 2007, available at
http://armagetron.sourceforge.net/.

S. Benford, D. Rowland, M. Flintham, A. Drozd, R. Hull, J. Reid,
J., Morrison, K. Facer, “Life on the ecdge: supporting
collaboration in location-based experiences”, In Proceedings of

the SIGCHI Conference on Human Factors in Computing

Systems (Portland, Oregon, USA, April 02 - 07, 2005). CHI '05.
ACM Press, New York, NY, 721-730.

S. Biswas, R. Tatchikou, F. Dion, “Vehicle-to-Vehicle Wireless
Communication Protocols for Enhancing Highway Traffic
Safety”, [EEE Communication Magazine, 44(1):74-82, Jan
2006.

S. Bjork, J. Falk, R. Hansson, P. Ljungstrand, “Pirates! Using the
Physical World as a Game Board”, Proc. Interact 2001, 2001,
IFIP.

DSRC, Dedicated Short Range Communications (DSRC) Home.
[Online]. 2007, Available at:
http://www .leearmstrong.com/dsrc/dsrchomeset.htm

J. Farber, “Traffic Modelling for Fast Action Network Games,”
Multimedia Tools and Applications, vol. 23, no. 1, pp. 31-46,
2004.

E. Fasolo, R. Furiato, A. Zanella, “Smart Broadcast Algorithm for
Inter-vehicular Communication”, in Proc. of Wireless Personal
Multimedia Communication (WPMC’05), Aalborg, DK, Sep
2005.

M. Guo, M. H. Ammar, E. W. Zegura, “V3: a vehicle-to-vehicle
live video streaming architecture”, in Proc. of 3rd IEEE
International Conference on Pervasive Computing and
Communications, Kauai, HI, Mar. 2005.

IEEE WLAN MAC, IEEE 802.11g, Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY)
specifications, Amendment 4: Further Higher Data Rate
Extension in the 2.4GHz Band.

IEEE 802.11g, IEEE 802.11g, Part 11: Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY)
specifications, Amendment 4: Further Higher Data Rate
Extension in the 2.4GHz Band.

121

G. Korkmax, E. Ekici, F. Ozguner, U. Ozguner, “Urban Multi-hop
Bradcast Protocol for Inter-vehicle Communication Sustems”,
in Proc. of 1st ACM Workshop on Vehicular Ad-hoc Networks
(VANET’04), Philadelphia, PA, Oct 2004.

NS-2, The Network Simulator NS-2, 2007. Available:
http://www.isi.edu/nsnam/ns/

C. E. Palazzi, S. Ferretti, S. Cacciaguerra, M. Roccetti,
“Interactivity-Loss Avoidance in Event Delivery

Synchronization for Mirrored Game Architectures”, IEEE
Transactions on Multimedia, IEEE Signal Processing Society,
vol. 8, no. 4, pp. 847-879, Aug 2006.

C. E. Palazzi, S. Ferretti, M. Roccetti, G. Pau, M. Gerla, “How Do
You Quickly Choreograph Inter-Vehicular Communications? A
Fast Vehicle-to-Vehicle ~ Multi-Hop Broadcast Algorithm,
Explained”, in Proc. of IEEE International Workshop on
Networking Issues in Multimedia Entertainment (CCNC/NIME
2007), Las Vegas, NV, USA, Jan 2007.

C.E. Palazzi, M. Roccetti, S. Ferretti, G. Pau M. Gerla, “Online
Games on Wheels: Fast Game Event Delivery in Vehicular Ad-
hoc Networks”, in Proceedings of the 3rd International
Workshop —on Vehicle-to-Vehicle Communications 2007
(V2VCOM 2007) - IEEE Intelligent Vehicles Symposium 2007,
IEEE Computer Society, Istanbul (Turkey), June 2007.

L. Pantel, L. C. Wolf, “On the Impact of Delay on Real-Time
Multiplayer Games,” in Proc. of the 12" International
Workshop on Network and Operating Systems Support for
Digital Audio and Video, Miami, FL, USA, pp. 23-29 May
2002.

W. Piekarski, B. Thomas, “ARQuake: the outdoors augmented
reality system” CACM, 45 (1), 36-38, 2002.

122

EDUCATION

124

CLIMA FUTURA @ VU*~ COMMUNICATING (UNCONVENIENT) SCIENCE

Anton Eliéns, Marek van de Watering, Hugo Huurdeman, Winoe Bhikharie
Intelligent Multimedia Group, VU University Amsterdam
eliens@cs.vu.nl rvdwate@few.vu.nl hchuurde@few.vu.nl svbhikha@few.vu.nl

Haroen Lemmers, Pier Vellinga®
Climate Centre, VU University, Amsterdam
lemh@geo.vu.nl p.vellinga@falw.vu.nl

KEYWORDS
climate change, science communication, model-based
simulation, serious games

ABSTRACT

In this paper we introduce Clima Futura, a game about
climate change. The primary aim of Clima Futura is to
gain experience with the parameters affecting climate
change and to give access to climate change related
research in a playful manner. The concept for the game
has been developed as a submission for the yearly Dutch
contest for the communication of science. In this paper
we will give an overview of the scientific background
of the game, the overall design of the game, and our
approach for realizing the game, deploying a modular
architecture which allows for extending the game with
minigames contributed by the community of players.

INTRODUCTION

Over the last couple of years, climate change has come
into the focus of public attention. Moved by television
images of dislocated people in far-away countries, ice
bears threatened by the corruption of their native
environment, tsunami waves flooding the third world,
and hurricanes destroying urban areas, the general
public is becoming worried by what Al Gore has so aptly
characterized as an inconvenient truth: the climate is
changing and human affluence may be the prime cause.
In response to the pathos of the media, many civil groups
do an appeal on the responsibility of individual citizens
and start campains for an ethos of climate-correct
behavior, by saving on energy-consumption or driving
CO2-friendly cars. In the media, such campains are
either advocated or critized by authorities from public
government, and experts from a multitude of sciences,
with conflicting opinions. As a result, the general
audience, initially with genuine concern about the state
of our world, gets confused and looses interest. And
more worrisome, the adolescents, looking at the serious

*www.climafutura.nl
Talso at University Wageningen

125

way adults express their confusion and ignorance, take
distance and may decide that the climate issue is not of
their concern.

At the Climate Centre of the VU University Amster-
dam, we are not happy to observe that pathos and
ethos overtake the public debate, and we actively wish
to participate in the public debate bringing our multi-
disciplinary scientific background into play. Moreover,
since we borrow the earth from our children, as the
old Indian saying goes, which Al Gore again brought
to our attention, we feel that we must take an active
interest in bringing the climate issue to the attention
of the youth, in a form that is appropriate. From this
background, we engaged in developing Clima Futura,
a multi-disciplinary undertaking, bringing together cli-
mate experts from a variety of backgrounds with mul-
timedia/game development researchers. The Clima
Futura game addresses the issues of climate change, not
altogether without pathos nor ethos, but nevertheless
primarily focussed on bringing the logos of climate
change into the foreground, in other words the scientific
issues that are at play, and the science-based insights
and uncertainties that may govern our decisions in the
political debate. Given the state of our knowledge, the
science of climate change itself may be characterized
as a somewhat unconvenient science, and as such an
interesting challenge to present by means of a game.

structure The structure of this paper is as follows.
First, we will briefly discuss general issues of game
design. Then we will describe the context, the science
communication contest, the process of developing the
concept for the game, and the actual design of Clima
Futura. Before discussing the overall architecture of the
game, we will characterize our game event description
format, developed to allow for collaborative design,
involving participants from a wide variety of disciplines.
We will then outline the technical properties of our pro-
posed game architecture, which accomodates extensions
for special interest groups as well as contributions from
the community of players.

GAME PLAY, SIMULATION
AND EXPLORATION

Games are increasingly becoming a vital instrument
in achieving educational goals, ranging from language
learning games, to games for learning ICT service
management skills, based on actual business process
simulations, Eliens & Chang (2007). In reflecting on the
epistemological value of game playing, we may observe
following Klabbers (2006), that the game player enters
a magic circle akin to a complex social system, where
actors, rules, and resources are combined in intricate
(game) configurations:

game as social system

actors rule(s) resource(s)

players events game space
roles evaluation situation
goals | facilitator(s) context

An often heard criticism on educational games is,
unfortunately, that, despite the good intentions of the
makers, they do not get the target audience involved, or
put in other words, are quite boring. This criticism,
as we will argue later, also holds for many of the
climate games developed so far, and the question is
how can we avoid this pitfall, and present the impact
of climate change and the various ways we can mitigate
or adapt to the potential threats of global warming in
an entertaining way, that involves the player not only
intellectually but also on a more emotional level? Put
differently, what game elements can we offer to involve
the player and still adequately represent the climate
issue?

Looking at the games discussed in Playing Games
with the Climate', we see primarily games that either
focus on (overly simplified) climate prediction models
(logos), or games that challenge the player how to
become climate-correct (ethos). In our approach, we
not only aim to include (well-founded) logos and ethos
oriented game-playing, but also wish to promote an
understanding of the pathos surrounding climate change,
where we observe that the models taken as a reference
are often gross simplifications and from a scientific
perspective not adequate! To this end we will, as
an extra ingredient, include interactive video as an
essential element in game playing. This approach
effectively combines a turn-based game-play loop, with a
simulation-loop based on one or more climate reference
models, with in addition exploratory cycles, activated
by game events, which allow the player to explore the
argumentative issues in the rethorics of climate change,
facilitated by a large collection of interactive videos in
combination with minigames.

Lwww.worldchanging.com/archives/003603.html

126

BUILDING THE TEAM

The Academische Jaarprijs® (yearly national Dutch
prize for scientific communication) is a contest for
bringing high-standing scientific research under the
attention of the general public, including the younger
generations! The VU University decided to submit
their internationally well-renowned climate research?,
e.g. Kabat et al. (2005), as a candidate for the prize.

Looking for adequate means to communicate our scien-
tific insights to the general audience, it took not long
before the idea of a game came up. Both senior and
junior staff of all relevant faculties were assembled to
discuss the plan of a game, and an inventory was made
of what games existed, followed by brainstorm sessions
in which initial ideas were proposed.

Games we looked at included: Planet Green®, of-

fering ways to explore climate-correct behavior, the
ThinkQuest® climate game, checking your knowledge
for basic climate-related facts, the DBritish Climate
Change Hero® game, meant to improve the players
knowledge about climate change factors, the German
Climate Simulator”, which allows for experimentation
with climate change based on a simulation model, and
the BBC game Climate Challenge®, where the player
must take decisions to tackle climate change and yet
stay popular. But none of these games seemed to be
satisfactory as a basis for our game, although each of
them provided some inspiration, one way or another.

When we came accross a serious game in an altogether
different domain, we nevertheless did find the inspira-
tion we were looking for. In the ground-breaking Peace-
maker? game, we found an example of how to translate
a serious issue into a turn-based game, which covers
both political and social issues, and with appealing
visuals, not sacrificing the seriousness of the topic. By
presenting real-time events using video and (short) text,
Peacemaker offers a choice between the points of view
of the various parties involved, as a means of creating
the awareness needed for further political action. With
Pecacemaker as an example after which to model our
climate game, we started working on the design of a
turn-based game, allowing the player to manipulate
parameters of climate change over a period of time,
against the background of a climate simulation model,
and offering the opportunity to explore climate-related
issues and opinions, using interactive video or by playing
minigames. Clima Futura was born!

2
3

www.academischejaarprijs.nl

www.climatecentre.vu.nl

4planetgreengame.com
Slibrary.thinkquest.org/5721/climategame.html
Swww.devon.gov.uk /index /environment /climatechange
www.deutsches-museum.de/dmznt /climate/climategame
www.bbc.co.uk/sn/hottopics/climatechange

7
8
9www.peacemakergame.com

CONCEPT - CLIMA FUTURA

The Clima Futura game is targeted at an audience
in the age of 12-26. Primary goals are to create
involvement with the climate issue, and to provide
information by allowing the player to explore cause and
effect relations, using models based on scientific research
in a continuously evolving field of knowledge.

Clima Futura is a turn-based game, with 20 rounds
spanning a 100-year period. In each turn, the player has
the option to set parameters for the climate simulation
model. The game is centered around the so-called
climate star, which gives a subdivision of topics in
climate research, as indicated below.

e climate strategies — (1) emission reduction, (2) adapta-
tion

e climate systems — (3) feedback monitoring, (4) invest-
ment in research, (5) climate response

e energy and CO2 — (6) investment in efficiency, (7)
investment in green technology, (8) governement rules

e regional development — (9) campain for awareness, (10)
securing food and water

e adaptation measures — (11) public space, (12) water
management, (13) use of natural resources

e international relations — (14) CO2 emission trade, (15)
European negotiations, (16) international convenants

Of the topics mentioned, not all may immediately be
represented in the simulation model underlying Clima
Futura, but may only be addressed in exploratory inter-
active video. The climate star is actually used by the
VU Climate centre as an organizational framework to
bring together researchers from the various disciplines,
and in the Clima Futura game it is in addition also used
as a toolkit to present the options in manipulating the
climate simulation model to the player.

The result parameters of the climate simulation model
are for the player visible in the values for People, Profit
and Planet, which may be characterized as:

e People — How is the policy judged by the people?

e Profit — What is the influence on the (national) econ-
omy?

e Planet — What are the effects for the environment?

A generally acknowledged uncertainty within climate
research surrounds the notion of climate sensitivity, that
is the extent to which the climate and climate change is
actually dependent on human activity. In practice, the
actual assessment of climate sensitivity may determine
whether either a choice for mitigation or adaptation is
more viable.

In the Clima Futura game we choose for using climate
sensitivity as as a parameter for setting the level of
difficulty of the game play, where difficulty increases
with the value for climate sensitivity.

127

To give an example of game play, we let the player
start in 2007, the year the IPCC!® (Intergovernmental
Panel on Climate Change) report was published. In each
subsequent round, the player may choose to undertake
action. For example, when the player decides to enforce
restrictions on CO2 emissions, s/he may choose option
(1) in the climate star, which can be reached through
climate strategies. The result will then be visible, after
some period of (game) time, in either one of the result
parameters, People, Profit, and Planet.

The climate simulation model'' underlying Clima Fu-
tura is primarily based on the Climber 2.0 model, which
is used for scientific simulations of climate change, based
on the division between land and sea, the density of
vegetation, sea temperature, and the amount of CO2.
Economic costs and benefits of climate policy options
are calculated by means of an integrated assessment
model coupled to the climate model. Additionally,
an alternative model, the MERGE!2 model is used,
which gives a flexible means to explore a wide range of
contentious issues: costs of abatement, damages from
climate change, valuation and discounting. MERGE
contains submodels governing domestic and interna-
tional economy, energy-related and non-energy related
emissions of greenhouse gases, as well as market and
non-market damages due to global climate change.

As an aside, the choice of models'? is in itself a contro-
versial scientific issue, as testified by J. D. Mahlman’s
article on the rethorics of climate change science ver-
sus non-science'*, discusssing why climate models are
imperfect and why they are crucial anyway.

Fig 1. Game play, Simulation, Exploration

In summary, see fig. 1, the Clima Futura game combines
the following elements:

1. game cycle — turns in subsequent rounds (G)

2. simulation(s) — based on climate model (W)

3. exploration — by means of interactive video (E)
Each of the three elements is essentially cyclic in nature,
and may give rise to game events. For example, game
events may arise from taking turns after 5-year periods,

due to alarming situations in the climate simulation,
such as danger of flooding an urban area, or accidental

10www.ipce.ch

Hen.wikipedia.org/wiki/Climate_model
2www.stanford.edu/group/ MERGE
Bwww.grida.no/climate/ipcc_tar/wgl/308.htm
Mwww.gfdl.noaa.gov/~gth/web_page/article/aree_pagel.html

access to confidential information in the exploration
of video material. In addition, Clima Futura features
mini-games, that may be selected on the occurrence
of a game event, to acquire additional information,
gain bonus points or just for entertainment. Examples
of mini-games, are negotiation with world leaders, or
a climate-related variant of Tetris. Clima Futura
also features advisors that may be consulted, to gain
information about any of the topics of the climate star.

GAME DESCRIPTION FORMS

Having decided on the general structure and eclements
of the Clima Futura game, a turn-based game loop,
a climate-model driven simulation, exploratory video,
and mini-games, the problem is how to connect these
elements in a meaningfull way, and design a coherent
collection of game events. This problem is further
aggravated by the need to find a way to design in a
collaborative fashion, necessitated by the sheer amount
of disciplines and people involved.

To enable collaborative design we developed a game
event description format, which standardizes the way
game events are to be described, and for which we also
developed an online form, structured as outlined below:

e name of event — give a meaningful name

e cvent-id — for administrators only

e type — (generic/specific) game/model/video

e cause — game play/simulation/exploration

e feedback/information — give a logical description

e player actions — indicate all (logical) player options

e description of visuals — for feedback, information and
player options

e additional information — give a url with references to
additional informatin and visuals

e relates to event(s) — give id’s or descriptions of related
events

Before enforcing the game event description format, our
ideas about the design of Clima Futura were gathered
in a collection of narratives and brief descriptions, in
what we called the Clima Futura Design Bible. Using
the standardized game event description format, we
hope to arrive at a more uniform way of describing the
narratives, the perspectives from which these narratives
can be experienced, the challenges or problems a player
must solve, the resources available to the player, such
as capital, knowledge and political power, the rewards,
possibly using bonus credits for succesfully playing a
mini-game, as well as the visuals, which will where
possible be derived from the collection of videos we have
available.

For the elaboration of the design, we are developing
storyboards, which characterize in a visual way the

128

major (dramatic) elements of narratives, structured
using a subdivision in:
scenario(s)

e context — general setting, situation

problem — event(s) to occur, problem to solve

S-R situation(s) — stimulus/response (one or more)
e climax — action must be taken

e resolution — find solution or result

Although the actual workflow that we will deploy during
development is at the moment of writing not clear, we
will strive for developing templates that allow for a
quick realization of the designs captured by the game
event and minigame description format(s), along with
the storyboards for visual design.

A MODULAR ARCHITECTURE

In the beginning, we envisioned the realization of our
climate game as a first-person perspective role-playing
game in a 3D immersive environment as for example
supported by the Half Life 2 SDK, with which we gained
experience in creating a search the hidden treasure'®
game in a detailed 3D virtual replica of our faculty.
However, we soon realized that the use of such a
development platform, would require far too much work,
given the complexity of our design. So, instead of
totally giving up on immersion, we decided to use flash
video'%, indeed as a poor-man’s substitute for real 3D
immersion, which, using flash!” interactive animations,
has as an additional benefit that it can be used to play
games online, in a web browser. Together with the
Flex 2 SDK'®, which recently became open source, flash
offers a rich internet application (RTA) toolkit, that is
sufficiently versatile for creating (online) games, that
require, in relation to console games or highly realistic
narrative games like Half Life, a comparatively mod-
erate development effort. To allow for component-wise
development, we choose for a modular architecture, with
four basic modules and three (variants) of integration
modules, as indicated below, in fig 5.

&

5 ¥

i & i 4

Fig 2. Clima Futura Architecture

1. climate model(s) - action script module(s)

2. game play interaction - event-handler per game event

15
16
17
18

www.cs.vu.nl/~eliens/game
www.adobe.com/products/flash /video
ww.adobe.com/devnet/flash
www.adobe.com/products/flex/sdk

3. video content module - video fragment(s) and interac-
tion overlays

4. minigame(s) - flash module(s) with actionscript inter-
face

5. Clima Futura - integration of modules 1-4, plus server-
side ranking

6. adapted versions — educational, commercial

7. multi-user version —with server-side support

In addition, we would like to develop a facility that al-
lows players not only to submit their own video material,
but also to build or modify their own minigames, which
might then be included in the collection of minigames
provided by Clima Futura.

For the actual production, we will use additional com-
ponents, including game physics'®, a relation browser?°,
and an earth?! component. In particular, both physics
and in-game building facilities seemed to have con-
tributed to a great extent to the popularity of Second
Life, Eliens et al. (2007). In creating digital dossiers®
for contenporary art, we have deployed concept graphs,
that is a relation browser, to give access to highly-related
rich media information about art in an immersive
manner. Finally, given the topic of Clima Futura, being
able to visualize models of the surface of the earth
seems to be more than appropriate. It is interesting
to note that our technology also allows for the use of
flash movies directly by invoking the youtube API?3 as
a web service, which means that we could, in principle,
build minigames around the evergrowing collection of
youtube, or similar providers.

Providing flexible access to collections of video(s) to
support arguments concerning controversial issues has
been explored in, among others Vox Populi®!.

In Vox Populi, video fragments are annotated with
meta-information to allow for searching relevant ma-
terial, supporting or opposing a particular viewpoint.
based on the users’ preference, either a propagandist
presentation can be chosen, expressing a single point
of view (POV), a binary commentator, which shows
arguments pro and con, or an omniscient presenter
(mind opener), which displays all viewpoints. Although
a research topic in itself, we would like to develop a video
content module (3), that provides flexible access to the
collection of video(s), and is media driven to the extent
that video-material can be added later, with proper
annotation. Together with in-game minigame building
facilities, it would be in the spirit of a participatory
culture, to provide annotation facilities to the player(s)
of Clima Futura as well, to comment on the relevance
and status of the video material,

www fisixengine.com

20http://der-mo.net /relationBrowser
2lwww.flashearth.com
22www.few.vu.nl/~dossier05
23www.youtube.com/dev
24homepages.cwi.nl/~media/demo/IWA /

129

CONCLUSIONS

To present the concept of Clima Futura, we decided to
have three central presenters (anchors) and an expert-
panel (choir), that may comment on detailed scientific
or technical issues. The presentation, stressed the multi-
disciplinary approach.

Although it too early to look back, we may on reflec-
tion ask attention for another potential pitfall, that
endangers any educational game, once aptly expressed
by Sartre in his criticism of l'esprit de serieuz. Indeed,
we may become too serious! In concluding our account
of the design and development of Clima Futura, we may
refer to an ontology of humour, Dormann et al. (2007),
that may be taken as a guideline to avoid the common
pitfall of serious games. In brief, Dormann et al. (2007)
distinguishes between three theories of humour, that
cach denote a particular function of humour: relief
theory, which explains humour as a reduction of stress,
superiority theory, which asserts that humour has a
social function, as a means to enforce the norm of a
group or culture, and incongruity theory, which relates
humour to the discovery of hidden meanings. We leave
it to the imagination of the reader to establish in what
way the various types of humour may be put to effect
in the climate issue!

Acknowledgement(s) We thank all (other) members
of the Clima Futura Team?®: Frans Berkhout, Peter van
Bodegom, Merlijn Draaisma, Alex Halsema, Thijs Louisse,
Anne Martens, Karlien Meulenaars, Elia Orru, Frans-Jan
Parmentier, Pieter Pauw, Rob Schuddeboom, Charlotte
Spliethoff for their enhusiasm and effort, and Paulis Klerk
(Harlequin), and Suzanne Waldau (Ex‘Machina), for there

suggestions and support in the realization of Clima Futura.

REFERENCES

Dormann C., Barr P. and Biddle R. (2007), Humour
Theory and Videogames: Laughter in the
Slaughter, In Proc. of the 2006 ACM SIGGRAPH
symposium on Videogames

Eliens A. and Chang T. (2007), Let’s be serious — ICT
is not a (simple) game, In Proc. FUBUTEC 2007

Eliens A., Feldberg F., Konijn E., Compter E. (2007),
VU @ Second Life — creating a (virtual) community
of learners, In Proc. EUROMEDIA 2007

Kabat P., van Vierssen W., Veraart J. Vellinga P.,
Aerts J. (2005). Climate proofing the Netherlands,
Nature 438, pp. 283-284

Klabbers J.H.G. (2006), The Magic Circle: principles
of Gaming and Simulation, Sense Publishers

2Swww.climafutura.nl/team/

MASHUPS IN SECOND LIFE @ VU

Anton Eliéns Frans Feldberg

FEW FEWEB
VU University VU University
Amsterdam Amsterdam

eliens@cs.vu.nl jfeldberg@feweb.vu.nl

KEYWORDS
Second Life, Web Services, Mashups, Virtual Economy,
Serious Games, User Tracking

ABSTRACT

In this paper we explore how to enhance our presence
in Second Life by utilizing Web Services in meaningful
compositions (mashups). After discussing the technical
requirements that must be met, we discuss possible
applications of mashups in Second Life, including serious
games, and delineate a behavioral model that allows for
tracking the behavior of visitors of our world. Taking
our requirements analysis and envisioned design, which
essentially includes the 3D nature of Second Life worlds,
as a starting point, the paper provides an overview of
research and development(s) that may contribute to the
realization of meaningful mashups and serious games in
Second Life.

INTRODUCTION

Second Life seems to be overtaking the world. In the
whole range of cummunity-building platforms, Second
Life stands out as an immersive 3D world with an
almost stunning adoption, by both individuals, com-
panies and institutions, followed attentively by the
Press. Not entirely without an understanding of the
value of press coverage, the VU University Amsterdam
decided to create presence in Second Life, by creating
a virtual campus, to realize a (virtual) community of
learners, Eliens et al. (2007). And, indeed, we succeeded
in being the first university in The Netherlands with
presence in Second Life and, as hoped, this was covered
in the 8 o’clock nation-wide TV news.

More substantial than getting into a nation-wide televi-
sion broadcast, however, is our aim to communicate our
institutional goals, creating a community of learners,
by creating a virtual campus in Second Life, offering
an information portal as well as a meeting point, in a
media platform that is widely adopted by our target
community. Virtual presence in Second Life, obviously,
is not enough. The relatively long history of virtual
worlds has shown that lack of interesting content and
functionality easily leads to boredom, desinterest, and

ea.konijn@fsw.vu.nl

130

Elly Konijn Egon Compter

FSW Communicatie
VU University VU University
Amsterdam Amsterdam

e.compter@dienst.vu.nl

hence churn, users dropping off. As a consequence,
there is a need for sustainable functionality, that both
motivates people to come back and participate, and,
otherwise why choose Second Life, makes essential use
of the 3D immersive environment offered by Second Life.
In this paper, we will explore how to use web services
in meaningful compositions or mashups to enhance
our presence in Second Life, and create a community
where visitors actively participate in both education and
research,

structure The structure of this paper is as follows.
First, we will briefly describe the construction of our
virtual campus and discuss the likely success factors
of Second Life. and indicate how to use Second Life
as a platform for interaction and serious games. We
will investigate what technological support is needed
to create mashups in Second Life and, after that,
whether Second Life offers the functionality needed to
incorporate web services. Further, we will characterize
applications based on web services that make essential
use of the 3D environment and fit within the virtual
economy as it exists in Second Life, in particular
serious games and (corporate) awareness systems. And,
finally, in before giving our conclusions, we will sketch
a behavioral model to characterize user interaction in
Second Life, that may contribute to the realization of
meaningful mashups and serious games in Second Life.

VU @ SECOND LIFE

What has been characterized as a shift of culture, from a
media consumer culture to a participatory culture, Jenk-
ins (2006), where users also actively contribute content,
is for our institution one of the decisive reasons to create
a presence in Second Life, to build a virtual platform
that may embody our so-called community of learners,
where both staff and students cooperate in contributing
content, content related to our sciences, that is. In
December 2006, we discussed the idea of creating
presence in Second Life. Our initial targets were to build
a first prototype, to explore content creation in Second
Life, to create tutorials for further content creation,
and to analyze technical requirements and opportunities
for deployment in education and research. Two and

a half months later, we were online, with a virtual
campus, that contains a lecture room, a telehub from
which teleports are possible to other places in the build-
ing, billboards containing snapshots of our university’s
website from which the visitors can access the actual
website, as well as a botanical garden mimicking the VU
Hortus, and even a white-walled experimentation room
suggesting a ’'real’ scientific laboratory. All building
and scripting were done by a group of four students,
from all faculties involved, with a weekly walkthrough
in our ’builders-meeting’ to re-assess our goals and solve
technical and design issues. The overall style is realistic,
although not in all detail. Most important was to
create a visual impression of resemblance and to offer
the opportunity to present relevant infomation in easily
accessible, yet immersive, ways. Cf. Bolter & Grusin
(2000).

As we argue in Eliens et al. (2007), the surprising
success and appeal of Second Life may be attributed to
an optimal combination of avatar modification options,
gesture animations, in-game construction tools, and fa-
cilities for communication and social networking, such as
chatting and instant messaging. Incorporating elements
of community formation, and very likely also the built-
in physics and the inclusion of elementary economic
principles, seem to be the prime distinguishing factors
responsible for the success of Second Life. In addition,
the possibility of recording collaborative enacted stories,
using built-in machinima® certainly may contribute to
its appeal.

The goal of this paper is to explore the use of web
services for, among others, the creation of serious games,
and to provide a behavioral model that allows us to give
an interpreation to users’ behavior patterns, and may
perhaps even help to guide users’ behavior in Second
Life, by providing appropriate recommendations.

WEB SERVICES & MASHUPS

By now the phrase Web 2.0 as well as applications
representing it, such as Flickr and YouTube, are well
established, and enjoyed by a wide community. Each
day new items are added to the growing list of mashups?,
and the number of web services that constitute the
building blocks of mashups also shows a steady growth.
Mashups seem to be the easy way to start up a company,
since the technology is relatively easy and, making use
of appropriate services, initial investment costs can be
low. Cf. Shanahan (2007).

What Web 2.0 stands for, from a technical perspective,
is succinctly expressed in Dorai’s Learnlog® XML Is The
Fabric Of Web 2.0 Applications:

e client side is AJAX (Asynch. Javascript and XML)

1
2

www.machinima.org
www.programmableweb.com/mashuplist /
3dorai.wordpress.com/tag/mashups/

131

e server application typically exposes data through XML
e the interaction model is web services

e mashups combine multiple webservices

And eventhough many alternative representations, such
as JSON* (Javascript Object Notation) are increasingly
being used, all in all XML may be regarded as the
interlingua of the Web 2.0.
Before taking a closer look at the communication
protocol(s) underlying Web 2.0 and de-construct the
tight link of AJAX to HTML in-page formatting, it
is worthwhile, following Shanahan (2007), to give an
overview of a selected number of services, that may be
used to create mashups:

services

e google — code.google.com/

e yahoo — developer.yahoo.com/

e delicio.us — del.icio.us/help/api/

e flickr — www.flickr.com/services/

e bbc — www0.rdthdo.bbc.co.uk/services/
e youtube — www.youtube.com/dev

Although mashups featuring google maps seem to be the
dominant mashup type, other services such as offered
by del.ici.us, Flickr and BBC might prove to be more
worthwhile for ’serious’ applications. For example,
for developing e-commerce applications Amazon® offers
services for product operations, such as item search
and similarity lookup, remote shopping carts, to create
and manage purchase collections, customer content, to
access information contributed by customers, and third
party listings, to find related resellers. It is important
to note that many of these services, as for example the
shopping cart services, may be used independently of the
commercial offerings of Amazon!
Most of the service providers and services mentioned
above are accessible using a choice of protocols, includ-
ing WSDL, SOAP, XML-RPC and the REST protocol.
The REST protocol seems to be most widespread and
as we will discuss in the next section, it seems to be tho
most appropriate protocol in Second Life.
REST stands for Representational State Transfer. In
essence, the REST protocol uses the url as a command-
line for stateless RPC invocations, which allows for
services to be executed by typing in the address box
of a web browser. A great tutorial about the REST
protocol can be found in Joe Gregorio’s column®: The
Restful Web. As fully explained in Van der Vlist et al.
(2007), the phrases representation, state and transfer,
respectively, stand for:

REST

e representation — encoding in a particular format

e state — data encapsulated in an object

Awww.json.org/
aws.amazon.com

6www.xml.com/pub/a/2004/12/01 /restful-web.html

e transfer — using HT'TP methods

In practice, the use of REST means that the state
associated with a resource or service must be managed
by the client. Together with mechanisms such as
content-negotiation and URL-rewriting, REST provides
a simple, yet powerful method to invoke services using
HTTP requests.

The Web 2.0 offers a lively arena for consumers and
developers alike, with a multitude of blogs discussing
the future of the web. For example, in Dion Hinchcliffe
rebuttal” of Jeffrey Zeldman’s Web 3.0 Web 1.0 = Web
2.0 blog, entitled Is Web 2.0 Entering ”The Trough of
Disillusionment”? it is suggested that our services could
even be more powerful by creating semantic mashups®.
To conclude this brief overview of web services and
mashups we wish to give another quote from Dorai’s
Learnlog, this time from Jon Udell, in his blog on his
move to Microsoft:

The most powerful mashups don’t just mix code and
data, they mix cultures.

which provides a challenge that trancends all issues of
mere technological correctness.

INFRASTRUCTURE

Second Life offers an advanced scripting language with
a C-like syntax and an extensive library of built-in
functionality. Although is has support for objects, LSL
(the Linden Scripting Language) is not object-oriented.
Cf. Eliens (2000). Scripts in Second Life are server-
based, that is all scripts are executed at the server, to
allow sharing between visitors. Characteristic for LSL
are the notions of state and eventhandler, which react
to events in the environments.
Among the built-in functions there are functions to
connect to a (web) server, and obtain a response, in
particular (with reference to their wiki page):
built-in(s)

e request — wiki.secondlife.com/wiki/LIHTTPRequest

e escape — wiki.secondlife.com/wiki/LIEscapcURL

e response — wiki.secondlife.com /wiki/Http_response

Other functions to connect to the world include sensors,
for example to detect the presence of (visitors’) avatars,
and chat and instant messaging functions to communi-
cate with other avatars using scripts. In addition, LSL
offers functions to control the behavior and appearance
of objects, including functions to make objects react
to physical laws, to apply force to objects, to activate
objects attached to an avatar (as for example phantom
Mario sprites), and functions to animate textures, that
can be used to present slide shows in Second Life.

7web2.sys-con.com/read/172417 htm
8www.web2journal.com/read/361294.htm

132

On the Mashable® Social Networking News site a brief
overview is given of the use of web services in Second
Life, entitled Second Life + Web 2.0 = Virtual World
Mashups. To access Second Life from outside-in (that
is from a web browser), so-called slurls may be used,
for example to reach VU'Y @ Second Life, and all
slurls listed in del.icio.us under slurlmarker'’ may be
used, also to activate in-world teleporting using scraping
techniques.
As remarked in the hackdiary'> by Matt Biddulph,
Second Life (currently) lacks the ability to parse XML
or JSON, so the best way to incorporate web services
is to set up a web server with adequate resources. As
Matt Biddulph indicates, to access flickr photographs
for a particular user (avatar), a web server may contain
the following resources:

web server

e /seen?user=SomeAvatar — records the presence of
SomeAvatar

e /touched?user=SomeAvatar — invokes flickr API with
users tag

e /set_tag?user=SomeAvatar&tag=FavoriteTag -
records SomeAvatar’s favourite tag

For example, in response to a ’touch’ event, invoking
touch results in consulting the database for the user’s
tag and asking the Flickr API for a random photo with
that tag. It then returns a string containing the url
for a particular photograph. LSL functions used in
this application include sensors, to check for presence,
listen functions, to respond to spoken commands, and
touch events, for the physical interface. In addition to
supporting strings and lists, LSL provides a perl-like
split function to convert a string into a list of strings,
thus allowing for processing multiple items in response
to a server request.

Another example of using web services in Second Life
is writing blogs' from within Second Life using the
BlogHUD!' developed by Koz Farina who also is re-
ported to have found a flash hack that allows for reading
RSS feeds.

The RSS display uses the ability to stream Quicktime
video in Second Life, and again the mashup is not cre-
ated in Second Life but by appropriate server support.
In a similar vein we may incorporate live streaming
video'®, for example by using WireCast'% to capture and
organize live camera input, possibly together with screen
output of other applications such as powerpoint, which
must then be sent to a streaming server supporting

9mashable.com/2006,/05/30/second-life-web-20-virtual-world-
mashups/
10slurl.com/secondlife/VU%20University %20NL/29/151
Hdel.icio.us/tag/slurlmarker
2www.hackdiary.com/archives/000085.html
3nwn.blogs.com/nwn /2006 /10 /really_simple_s.html
Mbloghud.com/
I5blogs.electricsheepcompany.com/chris/?p=206
16www.varasoftware.com/products/wirecast /

Quicktime, such as Apple’s Darwin!”, which may then
be accessed from Second Life to texture a display object.
Finally, as another Web 2.0 to Web 3D phenomenon,
announced in New World Notes'®, we may mention the
used of Twitter' messages, that allow residents to send
and receive message about ongoing activities. A similar
service is reported to exist for jasku?® messages.

VIRTUAL ECONOMY

Mashups on the Web are interesting representatives of
what one may call a virtual economy, with a business-
model that is not grounded in traditional production and
trade values, but rather consists of value-added services
with an indirect, albeit substantial, financial spin-off,
due to recommendations and referrals. The basic
mechanisms in a recommender economy are, according
to Kassel et al. (2007):

e cross sale — users who bought A also bought B

e up sale — if you buy A and B together ...

Where the principles underlying this virtual economy
have definitely proven their value in first (ordinary) life
economy, what are the chances that these principles are
also valid in Second Life?

According to the media companies selling their services
to assist the creation of presence in Second Life, there
are plenty New Media Opportunities In The Online
World Second Life*', to a possibly even greater extent,
as they boldly claim, as in what they call the predessor
of Second Life, the World Wide Web.

To assess the role web services, including semantic web
services, may play in Second Life, it seems worthwhile
to investigate to what extent web services can be
deployed to deliver more traditional media, such as
digital TV. To support the business model of digital
TV, which in outline may be summarized as providing
additional information, game playing and video on de-
mand, with an appropriate payment scheme, Daskalova
& Atanasova (2007) argue in favor of the use of a SOA
(Service Oriented Architecture), to allow for a unified,
well-maintainable approach in managing collections of
audio-visual objects. Such services would include meta-
data annotation, water-marking for intellectual property
protection, and search facilities for the end-user.

With respect to the application of web services in Second
Life, however, a far more modest aim, it seems that
nevertheless the business model associated with the
delivery of media items through digital TV channels may
profitably be used in Second Life, and also the idea of
wrapping media items in web services has in some way
an immediate appeal.

17 developer.apple.com/opensource/server /streaming/
8 nwn.blogs.com/nwn /2007 /03 /post_1.html
Wtwitter.com/

20devku.org/docs
2lywww.youtube.com/watch?v=8NOHRJBuyl

133

Leaving the economic issues aside we will briefly con-
sider two applications that we envisage to realize within
the virtual campus of VU @ Second Life. The first
application is Clima Futura??, a game meant to give
information about climate change.

Technical issues in realizing Clima Futura in Second Life
are support for ranking, as well as meta-information
with respect to locations where relevant information can
be found, which may be realized with the techniques
indicated previously. Another issue is giving flexible
access to video material related to specific topics in
climate change.

The other application we wish to discuss is
PANORAMA, Vyas et al. (2007). In developing
PANORAMA we proceeded from the assumption that
people somehow like to have a feel of what is going on
in the workspace, although not in any detail, and also
like to see items of personal interest, including (their
own) birth-announcements and sport troffees.
Embedding PANORAMA in Second Life would allow
us to observe, in more detail than in a previous user
study, the behavior of users, that is, to be more precise,
the proximity to particular objects of interest, the
duration of their presence, and, using the mechanisms
of recommendation, their interest in related items.
Technically, such monitoring can be achieved using the
sensors and listeners described before. To make sense
of such data, however, we need some model that allows
for an interpretation that is more meaningful than the
mere registration of presence.

TRACKING INTERACTION

Our virtual campus in Second Life already allows for
performing simple statistics, by recording the presence
of users at particular spots in the virtual world, using
sensors and listeners installed in 3D objects. Since the
LSL script-based counters appear to be rather volatile,
tracking data are sent to a web server and stored in a
database. This mechanism can easily be extended to a
more encompassing form of user tracking, recording for
a particular user not only presence at particular spots,
but also the duration of presence, the actual proximity
to objects, and the proximity to other users, as well
as explicitly spoken comments or actions such as the
donation of (Linden) money. For example, observing
that a user spends a particular amount of time and gives
a rating r, we may apply this rating to all features of the
item, which will indirectly influence the rating of items
with similar features.

This does of course not explain nor how ratings come
into existence, nor what features are considered relevant,
or even how guided tours should be generated. However,
as we have demonstrated in Ballegooij & Eliens (2001),
based on a rudimentary tagging scheme, we may in

22www.climafutura.nl

response to a query generate a guided tour taking
the topographical constraints of the virtual world into
account, for example to make a user familiar with the
(virtual replica of the) actual workspace. It seems
that this approach can be generalized to one that uses
alternative descriptive methods, as long as they support
feature-based information retrieval®3.

Obviously, both user tracking and recommendations
may be fruitfully used in the realization of serious
(corporate) games, as well as to support exploratory
activity in non-serious games and (corporate) awareness
systems.

CONCLUSIONS

Based on an overview of research and development(s)
in web technologies and our assessment of the technical
facilities offered by the Second Life platform, we may
conclude that there are ample opportunities to incor-
porate web services and mashups in Second Life. Our
intended applications, moreover, covering (corporate)
game playing as well as a system for promoting (cor-
porate) social awareness, indicate that there are clear
motivations to deploy web services in Second Life, both
for tracking users’ behavior and for providing additional
information based on recommendations that may be
derived from taking record of users’ behavior patterns.
Although we have sketched a first behavioral model that
allows to assign meaning to behavior and interaction,
it is clear that this model must be further refined and
that we need to gain experience in developing mashups
in virtual space to arrive at effective and meaningful
compositions of web services, supporting the realization
of (serious) games, in Second Life.

Acknowledgement(s) We (again) thank the students
involved, Viola van Alphen (FEWEB), Tom Beste-
breurtje (FEW), Elbert-Jan Hennipman (FEW), and
last but not least Bjorn de Boer (FSW), for their
enthusiasm, creativity, and of course their hard work
which led to an amazing result.

REFERENCES

Atanasova T., Nern H.J., Dziech A. (2007),
Framework Approach for Search and Meta-Data
Handling of AV Objects in Digital TV
Cycles, Workshop on Digital Television, Proc.
EUROMEDIA 2007, Delft, Netherlands

Ballegooij A. van and Eliens A. (2001), Navigation by
Query i Virtual Worlds, In: Proc. Web3D 2001
Conference, Paderborn, Germany, 19-22 Feb 2001

23www.cs.vu.nl/~eliens/research /rif. html

134

Bolter J.D and Grusin R. (2000), Remediation — Un-
derstanding New Media, MIT Press

Daskalova H. and Atanasova T. (2007), Web Services
and Tools for their Composition considering As-
pects of Digital TV Workflow, Workshop on Dig-
ital Television, Proc. EUROMEDIA 2007, Delft,
Netherlands

Eliens A. (2000), Principles of Object-Oriented Soft-
ware Development, Addison-Wesley Longman, 2nd
edn.

Eliens A. and Chang T. (2007), Let’s be serious — ICT
is not a (simple) game, In:Pre. FUBUTEC 2007,
April 2007, Delft

Eliens A. Feldberg F., Konijn E., Compter E. (2007) ,
VU @ Second Life — creating a (virtual) community
of learners, In Proc. EUROMEDIA 2007, Delft,
Netherlands

Jenkins H. (2006), Confronting the Challenges of Par-
ticipatory Culture: Media FEducation for the 21th
Century, White Paper, MIT MediaLab

Kassel S., Schumann C-A. and Tittman C. (2007),
Intelligent Advertisement for E-Commerce,
Proc. EUROMEDIA 2007, Delft, Netherlands

In

Nern H.J., Dziech A., Dimtchev and Jesdinsky (2007),
Modules for an Integrated System Approach for
Advanced Processing of AV Objects in Digital TV

Workflow, Workshop on Digital Television, Proc.
EUROMEDTA 2007, Delft, Netherlands

Rymaszewski M., Au W.J., Wallace M., Winters C.,
Ondrejka C., Batstone- Cunningham B. (2007).
Second Life — the official guide, Wiley

Shanahan F. (2007), Amazan.com Mashups,
Publishing Inc.

Wiley

Van der Vlist E,, Ayers D., Bruchez E.,, Fawcett J.
and Vernett A. (2007). Professional Web 2.0
Programming, Wiley Publishing Inc.

Vyas D., van de Watering M., Eliens A., van der Veer
G. (2007), Engineering Social Awareness in Work
FEnvironments, accepted for HCI International
2007, 22-27 July, Beijing, China

TEACHING AI CONCEPTS BY USING CASUAL GAMES: A CASE STUDY

Cesar Tadeu Pozzer
Santa Maria Federal University
(UFSM)

Centro de Tecnologia
Santa Maria, RS, Brazil
pozzer @inf.ufsm.br

KEYWORDS
Games in education, artificial intelligence, computer science.

ABSTRACT

Nowadays it is not uncommon for computer games to be
used as tools to help introduce basic computer science
concepts. In this paper we argue that games could also be
used in more advanced subjects. We propose a new approach
where applications can be easily developed to play games. In
our case, games are used as support to teach programming
and Al techniques, among other areas. A case study is
described, showing the overall principle and the design of an
environment we developed on which students will work in
building game player software that incorporates specific Al
algorithms to solve a given problem. Our testbed is a popular
gem-swapping puzzler.

INTRODUCTION

Digital games have a huge appeal towards students,
especially CS students, who generally spend a large part of
their entertainment time playing games. Games can attract
user attention in many different ways. Some people enjoy
playing games; some prefer designing and developing them
rather than playing games; others even like to watch other
people playing games. Many researchers claim some kind of
consensus status that games can motivate students, provide
positive experiences, and might be a good incentive to
learning (Swedy et al. 2005). Digital games are especially
popular in coursework around designing and implementing
games or courses that usually focus on playing games to
learn different specific subjects, from chemistry to history.

Other approaches, similar to the design and development
one, but with a different target, talk about using games as
support in teaching basic computer science concepts. One
major example being the Reality and Programming Together
program from the Rochester Institute of Technology, that
uses game development in early undergraduate computer
science education courses. The RAPT program uses games
as an application area on top of a traditional CS curriculum
in three initial courses that teach core topics in computer
science, focusing in real programming and games as complex
software (Bayliss and Strout 2006).

But few of these studies on the use of games as a learning
tool try to really understand why using games works. More
specifically, most of the studies on using games to teach CS

Borje Karlsson

Pontifical Catholic University of Rio

135

de Janeiro (PUC-Rio0)
ICAD/IGAMES/VisionLab
Rio de Janeiro, RJ, Brazil
borje@inf.puc-rio.br

subjects are motivated by the need to improve student
interest. Increasing motivation is definitely a valid concern
that has to be addressed as it is key to effective learning. But
motivation needs to be sustained through feedback, reflection
and active involvement in order for learning to take place
(Garris et al. 2002). Digital games could have a much bigger
role in learning than just as a motivational tool.

Recent research has tried to analyze why and how games can
be helpful in different learning contexts from the learning
sciences perspective. Also, studies have been published that
track student performance through time trying to identify if
their performance was improved by the usage of games in the
curriculum (Bayliss 2007), and show promising results.

Mayo in (Mayo 2007) claims that video games can teach
science and engineering better than regular lectures as they
have the potential to address many systemic deficiencies of
the traditional teaching methods. Mayo describes this
potential as derived from five reasons:

I — Massive reach — games are already hugely popular and
affect players throughout their lives;

II - Effective learning paradigms — games present support for
different learning precepts from learning science;

IIT — Enhanced brain chemistry — research has indicated that
dopamine release occurs during video game play, suggesting
that it may be that video games are able to chemically
“prepare” the brain for learning;

IV — Time on task — people spent a great deal of time playing
digital games, so compelling video games that could also
deliver educational content might raise time in learning tasks;
V — Learning outcomes data — initial studies comparing
video game teaching effectiveness to the classic lecture show
positive improvements, typically 30% or more.

Mayo concludes that games are better than a regular lecture
for learning and shows data suggesting that designing games
also increases student performance in science subjects. This
finding is also supported by a survey (Hake 1998) that shows
that courses with some degree of “interactive engagement”
have better student performance, which arguably could also
be said for CS and other engineering subjects.

As shown above, using digital games in education by itself is
not a new idea, but most of the time the focus is on
introductory or basic concepts. In this paper we propose a
new approach: using games as support to motivate more
advanced students by creating programs that play games. But
not as the traditional AI approach of solving a game like
chess, checkers, or go. Our approach uses popular available

casual games as base for a framework where students write
the game playing software completely detached from the
game. Our goal here is to describe the developed framework,
how to use it, and share our experience from the case study
of its application in two undergrad courses at one institution
and one graduate course at another institution.

In the next section, we present some related work, our
proposed approach, and the chosen casual game for the case
study. Then, a generic framework for building game players,
some implementation details, and how to use it during a
course are described. Finally, we present some results of our
case study, some remarks, and comments on future work.

RELATED WORK AND PROPOSED APPROACH

As previously stated, using digital games in education by
itself is not a new topic. Most of the existing work focuses on
teaching game development, using games to teach a specific
subject - primarily school level subjects, or teaching basic CS
concept by using games as a motivation - ex: (Lemmon et al.
2007). Very few try to explore how digital games could
support teaching of higher level computer science subjects.

One of the best known works in using games to teach CS is
the RAPT program (Bayliss 2007, Bayliss and Stout 2000),
and it already shows improvements in students who went
through the program. Bayliss examines in detail the use of
game development in early undergraduate Computer Science
education. The RAPT experience shows that students do
have a strong interest in using games and find the program
materials subjectively more satisfying than regular ones. In
its courses, student assignments can be either playing or
coding games (Bayliss and Strout 06).

Moskal et al. describes yet another experience of using
games in basic CS and provides some statistics collected
during two years showing that students achieved better
retention and attitude towards computer science. Students
matching the “drop out” profile, but had basic courses using
games to teach concepts in the curriculum, scored
significantly higher than students who did not go through this
kind of course (Moskal et al. 2004). One other major point of
this work is the claim that game design helps stimulate
students to develop human centered design skills and how to
work in an iterative development process, both skills that are
very important in their professional life.

A little different from these two works is the work by
Kelleher and Pausch in using a storytelling version of Alice
to raise interest and motivation in CS for high school
students, especially female students. Kelleher and Paucsh
(2007) also say that students often find their first courses
boring or uninspiring and that typical assignments fail to
engage many students. By using 3D movies and storytelling,
they intended to attract and motivate students. Their
storytelling approach increases the academic success and
retention of at-risk college students and girls using
Storytelling Alice were more motivated to program.

136

None of these approaches deal with using games in an upper-
level course in the CS curriculum, the area that our approach
focuses. To the best of the authors’ knowledge, Youngblood
(2007) is the only one currently addressing gamedev in an
upper-level class. Youngblood uses what he calls Game
Segments — full real-world-like code of a game with a clear
missing element — in a higher level Al course and also
defined principles for designing them. He applies games as
homework assignments, using each to test specific Al
techniques; while our approach uses a clear structure for the
student to develop in; and leaves only the design of the
solution up to the students, allowing them to choose and
combine different techniques, or focus on optimizing one.

A computer game comprises a number of distinct modules
like physics, graphics, user input, graphical interfaces, Al,
networking, among others. When building a game, designer
and programmer must consider all these parameters to define
appropriate data structures, languages and so on. If one is
interested in studying just the Al, for example, being able to
focus on the Al issues would be more productive. Although
the Game Segments approach minimizes these other
influences, it still leaves different code bases for the students
to learn, and allows the students to change the game part of
the game segments. In our case, instead of full source games,
or game segments, casual games are used as a base.

Our focus is on using game Al challenges to help students
learn Al concepts, programming techniques, and possibly
image segmentation and pattern matching. By using finished
games we take advantage of their gameplay and avoid
possible visual quality discrepancies (as when students with
different artistic skills create a game). Also, there is no need
to learn different code bases before getting each assignment
done. Even though being able to create new visuals and
sounds helps exercise creativity, this should not be the focus
in an Al course. Lastly, using a finished game provides a
common testbed for development and judgment of the
assignment completion.

There are several challenges to be faced by the students when
developing code for a game player. Some of them are:
understanding the game logic; make the program recognize
the game environments and the pieces/characters to be
moved around; design heuristics to select plays; timing and
interaction issues with the GUI; performance vs. play quality.
But the benefits really help focus on the Al part. Also, our
approach eases the process of creating competitions among
the different implementations, what - our experience shows -
is a great factor in motivating students.

BEJEWELED

The selected casual game for our study was Bejeweled by
PopCap Games (2007), a very popular gem-swapping
puzzler where one must swap adjacent gems to align sets of 3
or more gems of the same color in the vertical or horizontal
axis. There are 7 different gem colors and shapes, as shown
in Figure 1. Whenever a valid (winning) set is formed, such
gems are removed, the upper gems are shifted downward to
fill the created hole, and random gems are inserted in the

upper row. To swap gems, one must click once over each
gem or drag a gem with the mouse cursor, or click in a
neighboring gem. The game runs on a web browser.

The more gems removed at a given time, the bigger is the
score. Combos and cascades award extra points. The game
has a gem meter bar that increases as gems are removed.
When this meter if full, an increasing bonus is awarded.
Also, as one moves up the levels, the winning set is worth
more and more points. The game can be played both in
simple and timed modes. In timed mode, the gem meter
decreases continuously as time goes by, with a speed
proportional to the current bonus level. The greater the
current bonus, the greater the bar reduction.

Gem Meter

Possible move
Figure 1: Bejeweled snapshot and some possible moves.

PROPOSED FRAMEWORK

Our approach to create a virtual player is similar to the way a
human being plays the game. The player analyzes the screen
image, selects a play, and uses the mouse to execute the play.
With this approach, theoretically, virtual players can be built
for any kind of games.

In order to accomplish these requirements, the game playing
program must be capable of performing at least the following
operations: I - Capture the OS (MS-Windows) screen -
desktop; II - Analyze and segment the captured image; III -
Locate the game position in the screen; IV - Locate
individual game pieces; V - Define playing strategies and
heuristics; VI - Move the mouse cursor programmatically;
VII - Control action timing; and VIII - Send mouse events for
clicking on the game pieces. These requirements can be
translated into different modules and low-level implemented
native components that communicate with the OS to get:
screen colors; screen size; mouse position; screen contents;
and press and release mouse buttons.

User Application

Play Selector

Piece Detector

Game Application Detector

Screen Capturer

Casual Game (Bejeweled)

Figure 2: Framework Modules.

137

To reach the proposed goal, we built a hierarchy of modules
as shown in Figure 2. In the bottom of the hierarchy there is
the casual game (in this case, Bejeweled) and in the top is the
user application (game player). In the middle are modules for
processing and executing plays. In this architecture, the user
application can communicate with all other modules. In fact,
one can see all these layers as a single application.

Screen Capturer is a module responsible for capturing the
desktop image (content). It may use native resources
responsible for capturing the desktop being viewed. Game
Application Detector is necessary because the game does
not necessarily runs on full screen. Piece detector is the first
module more specific to the Bejeweled game and detects a
gem’s type inside the game. Every gem may assume one
position of a predetermined set of positions in a grid. When
implementing the Piece Detector in other games, like Tetris,
this step may become much harder. Play Selector is the main
component and comprises the main Al algorithms. Students
using this framework will mainly work on the Play Selector
and possibly in the Piece Detector, depending on the
assignment at hand.

[

Screen Capture

Native functions

24 bits image

Image analysis Pattern recognition

Delay 8x8 integer matrix

Al algorithms

Play selection

Movement: from-to

Execute Play Native functions

L] Mouse Action
Figure 3: Player execution. Highlighted module is the AL

To verify the feasibility of our solution, we have
implemented a virtual player that comprises the above
mentioned modules. An executable demo version of a player
and the API code can be downloaded from the web (Pozzer
and Karlsson 2007). Instead of creating a video to
demonstrate the player in action, we invite everyone to
download the demo and try it. Figure 3 shows the execution
loop of the game player framework. The role of the teacher
(advisor) is to decide which modules would be available for
students for building their players. At least the Play Selector
module should be under responsibility of the students.

The Piece Detector can be implemented in different ways. It
can be as simple as matching a pattern of colors (our
approach) or by using pattern matching technique, image
processing, or segmentation. Screen Capturer and Execute
Play use functions from the operating system. These
functions are wrapped in an API and library that are made
available to the students. Each of the necessary steps can be
implemented in C, C++, or Java. It is up to the students to
decide which approach to use taking into account:
performance, programming resources, and previous language
knowledge.

The implemented framework can easily be modified in order
to accommodate other similar games with fairly simple
changes in the provided modules.

CASE STUDY RESULTS

This framework was used three times until now (2006 -
2007), in three different courses in both graduate and
undergraduate computer science courses; once in an
undergraduate course at UFSM and twice in a graduate
course at UnicenP. The assignment students receive is to
implement an intelligent Bejeweled player. Some aspects of
the implementation are also questioned in a test during the
course. Near the end of each course, a competition was held
to evaluate the implemented players.

Depending on the level of difficulty, students may construct
all the hierarchy or just some high level modules like the user
application and play selection. How students are going to
implement the Play Selector is up to them. They can use
heuristics, search, state machines or even brute force, or any
combination of them. Also, students have to handle all the
timing issues in sending events, as well as possible
interruption during game flow (like the bonus message).

Different criteria can be used to try to measure performance,
at least for ranking purposes in the course competition. Some
possible criteria are: I - Reaching an N point bonus in less
time; II - Score is valid until the “no more moves” message is
displayed for the first time; III - Greatest score within a given
time limit. Games as Bejeweled are time based, so the faster
the player, the bigger is the reward. Because of this, a fast
algorithm can have a big advantage over a slower one. But
shorter times do not necessarily mean best scores. So, one
can tailor the ranking criteria to make the students try
different approaches. In order to tip the balance toward more
complex algorithms, we decided to adopt the bonus criteria
as it is more complex and open to different Al techniques.

During the application of this project in all three courses, we
could notice that students were excited and motivated by the
approach. Also, a “competition spirit” was also always
present because of the final ranking. During the player
development, lots of e-mail were exchanged between the
students about scores already reached and other groups were
motivated to improve their players. Some players even
managed to reach more than 1,000,000 points, and kept
improving long after the final ranking.

CONCLUDING REMARKS AND FUTURE WORK

A lot has been written about using games for learning
purposes, but most of the available research and literature is
on coursework around designing and implementing games or
courses that usually focus on playing games to learn different
specific subjects, from chemistry to history, to math. When
applied to computer science concepts, most approaches focus
only on teaching basic concepts in the CS curriculum.

We propose a different approach; to use popular casual
games as a base to teach more advanced CS courses. In our

138

case study, we focused on Al. In order to accomplish this, we
implemented a framework to allow the development of game
playing software. This way the students are freed from
unnecessary detail and can focus just in the Al itself.

During the case study it was possible to clearly notice the
students’ competition spirit, and that the students were
having fun with the project. It was clear that it was a highly
positive experience that stimulated their interest for the
subject. We showed that, in conjunction with an otherwise
already practical course, using a casual game as base for
teaching Al techniques in a somewhat large project provides
an immersive learning experience. As in Youngblood’s
approach, student performance and questions provided good
insights and caused a great deal of information exchange.

As future work, we will start working on more elaborate
game player projects. There are many possibilities. Tetris is a
good initial choice as pieces can have different shapes and a
more elaborate algorithm for detection is required.
Moreover, play selection is quite more complex as pieces
may be rotated and placed in different locations. We’ll also
try the same approach with a fight game, where image
analysis and segmentation will be much more important.

REFERENCES

Bayliss, J. D. 2007. “The Effects of Games in CS1-CS3”. Journal
of Game Development, vol 2, Issue 2 (Feb 2007), 7-18.

Bayliss, J. D., and Strout, S. 2006. “Games as a Flavor of CS1”. In
Proceedings of the 37th SIGCSE Technical Symposium on
Computer Science Education, Houston, USA, 500-504.

Garris, R., Ahlers, R. and Driskell, J. 2002. “Games, Motivation
and Learning: A Research and Practice Model”. Simulation and
Gaming, 33: 441-467.

Hake, R. 1998. “Interactive-engagement vs. Traditional Methods: A
6,000-student Survey of Mechanics Test Data for Introductory
Physics Courses”. American Journal of Physics, 66 (1), 47-62.

Kelleher, C., and Pausch, R. 2007. “Using Storytelling to Motivate
Programming”. Communications of the ACM, July 2007,
volume 50, number 7, ACM Press, 58-64.

Lemmon, C., Bidwell, N. J., Hooper, M., Gaskett, C., Holdsworth,
J., and Musumeci, P. 2007. “Creativity in the Cane Fields:
Motivating and Engaging IT Students Through Games”. In
Proceedings of the Microsoft Academic Days on Game
Development in Computer Science Education 2007, 43-47.

Mayo, M. J. 2007. “Games for Science and Engineering
Education”. Communications of the ACM, July 2007, volume
50, number 7, ACM Press, 30-35.

Moskal, B., Lurie, D., and Cooper, S. 2004. “Evaluating the
Effectiveness of a New Instructional Approach”. In
Proceedings of the 35th SIGCSE Technical Symposium on
Computer Science Education, ACM press, New York, 75-79.

Popcap Games. 2007. “Bejeweled”. [online] Available from:
http://www.popcap.com/games/bejeweled [Accessed 14 August
2007]

Pozzer, C. T. and Karlsson, B. 2007. “GamePlayer API”. [online]
Available from: http://www.inf.ufsm.br/~pozzer/gameplayer/
Swedy, E., Delact, M., Slaterry, M. C., and Kuffner, J. 2005.
“Computer Game and CS Education: Why and How”. In
Proceedings of the 36th SIGCSE Technical Symposium on

Computer Science Education, 256-257.

Youngblood, G. M. 2007. “Engaging Students in Advanced
Computer Science Education Using Game Segments”. Journal
of Game Development, vol 2, Issue 2 (Feb 2007), 33-46.

EGO: AN E-GAMES ORCHESTRATION PLATFORM

Davide Rossi
Elisa Turrini
Dipartimento di Scienze dell’Informazione
Universita di Bologna
Mura A. Zamboni, 7 - 40127 Bologna

Italy

E-mail: {rossi,turrini}@cs.unibo.it

KEYWORDS
Serious gaming, e-learning, process modeling.

ABSTRACT

Simulation-based learning games proved their effective-
ness as a support to regular or e-learning courses, es-
pecially for those related to economics. Authoring and
delivering multi-user simulation-based games, however,
requires a lot of effort, even when dealing with a limited
number of users. In this paper we present EGO, a plat-
form for the authoring and the Web delivery of multiuser
e-learning games that has been used for economic sim-
ulations. In EGO two games model cooperate: the in-
teraction model and the environment model; the former
is described by using a process modeling language, the
latter by using domain specific tools, in the case of eco-
nomic simulations we used a spreadshect-based model.

Introduction

The idea of using simulation games for learning is not
new (Gredler 2003). But, of the many existing proposals
to support game development in this context, most are
based on elementary facilities, typically on scriptable
environments that clearly show their limitations when
dealing with multi-user gaming. Multi-user games add
a new dimension of concern: interaction management
(notice that we do not refer to massive on-line multi user
games in this context, a games typology that introduces
further concerns). Multi-user games can be turn-based
games or can be concurrent games with synchronization
points or a mixing of these two models. Lots of different
interaction patterns can take place during the gameplay
and the management of players coordination by using
a scripting language is a very complex and error-prone
task, even when specific coordination tools (libraries,
language extensions) are provided. The reason for this
inherent complexity is that, in these games, two dis-
tinct models have to cooperate: the game environment
model (that, in the case of an economics game, deals
with economic indexes and their relationships) and the
game interaction model. By providing a method that

139

allows to separately address them, we can obtain better
separation of concerns, reducing code tangling and pro-
moting its reuse. A clear advantage of this approach can
be appreciated when focusing on the game development
team: the developer in charge of the economic model (an
advanced model that requires specific advanced knowl-
edge of economics) has probably little confidence with
tools for players coordination; while a member of the
team that has a good knowledge of interaction model-
ing has probably not the skill required for environment
modeling. In this paper we propose a dual model ap-
proach to simulation games for e-learning. Specifically,
the interaction modeling makes use of a process model-
ing language and the environment model can use specific
domain-dependent tools. In the case of economic sim-
ulation games like the one we focus on in this article,
a spreadsheet-based model is assumed. We also present
a Web-delivery platform that enacts both models in or-
der to govern gameplay. This platform is based on rich
internet application techniques for the interface manage-
ment and on a process enactment engine for interaction
management.

Interaction modeling

Interactions in EGO are driven by a process specifica-
tion. We use for this task EPML (Rossi and Turrini
2007), a graphical, executable, process modeling lan-
guage. EPML has a high expressive power associated
to a rather simple and intuitive notation. The main ad-
vantage of EPML in the context of this work, however,
is that it has an accompaining enactment engine that is
easily composable inside complex software architectures
with moderate effort. The enactment engine, in fact, has
to interact on the one side with the Web application for
the definition of the interfaces that have to be dispatched
to the user and, on the other side, with the spreadsheet
to govern the interactions between the players and the
game environment model. The interactions of the play-
ers and the gaming system in EGO progress by using
a sequence of interfaces. The interaction model defines
this sequence in function of the stage of the game and of
the interaction pattern among users at the current stage

Connections

()

sub-process

| Basic elements

O

processor

activity

exception
edge

main edge
in and
processors

[Processors decorations \

® @

start incoming end par
Cancellation

join and joinwith | | o
threshold

cancellation
area

Figure 1: EPML elements

(turn-based, concurrent playing, mixed models). Notice
that in the same game several interaction patterns are
possible so the language has to able to model all of them
with ease.

A detailed description of EPML is outside the scope of
this paper, the interested reader can refer to (Rossi and
Turrini 2007), in the next few lines we will give only a
very brief survey of it. EPML is a graphic language, a
process model (also called process specification) is ob-
tained by composing the elements depicted in figure 1
in a free direct graph structure.

Specific elements can be used to control constructs like
choice, concurrent execution, synchronization, etc. In
a EPML specification control-flow elements (the proces-
sors, depicted as circles) can activate tasks (or activities,
depicted by rectangles). Activities are computational
elements that, in the case of gameplay coordination,
correspond to the actions taken by the players. Given
the player interaction-interface association we discussed
before, activating a task corresponds to activating an
interface for a specified user. This mechanism is very
similar to what happens in most workflow management
systems: actors are associated to a set of work items. At
any time actors can take in charge work items and later
notify the system when their work is over (potentially
communicating the outcome of the work). In EGO the
interfaces are the work items: a player completes a work
item by interacting with an interface. The main differ-
ence with respect to workflow systems is that in EGO
players can have only one active interface at any given
moment whereas in a workflow system an actor can have
several (or none) associated work items. The run time
system is designed so that each time a new activity (in-
terface) is assigned to a player the previously assigned
one (if any) automatically completes. If players have
no assigned interfaces a default “wait” interface is as-
signed to them. This insures that the correct semantics
(exactly one interface per player at any time) is guar-
anteed. Consider now the example in figure 2: this is
the modeling of a portion of a game in which an auction

140

’
]
]
]
]
]
[]
[]
J
[]
]

AT I ER g

Figure 2: An auction in EPML

takes place.

We use this simple example to give a flavor of what
modeling game processes with EPML looks like. The
initial par processor creates as much concurrent flows
as the number of registered players plus one additional
flow that activates the timer processor. Each of the
former flows activate one bid activity (i.e. the corre-
sponding player is presented with a bidding interface).
The ending join processor is activated as soon as either
one player place its bid or the timer is expired. By an-
alyzing its incoming flow the join processor decides to
return to the par processor (in the case a player submit-
ted a bid) or to continue the game with the following
steps (when the timer expires). The dashed area con-
nected to the join processor is used to cancel the timer
(if still active) and the other player interfaces when the
processor is activated. Notice that the cancellation is
not really required since the join processor ignores all
the flows that come after the first one that activates it;
since the activation of a new interface for a given player
automatically causes the termination of the existing one,
the correct semantics of the system is preserved. It is
however a good idea to explicitly use cancellations to
keep the model as generic as possible since the specific
behavior we just described applies only to the EGO plat-
form.

EGO architecture

The run-time architecture of EGO is based on Java En-
terprise Edition. The game delivery system is a Web ap-
plication hosted in an JEE-compliant application server
(only the Web tier is used, so a stand-alone servlet con-
tainer like Tomacat or Jetty can be used). The behavior
of the application is driven by the process enactment en-
gine that, in its turn, interfaces with the economic model
described by a spreadsheet. The system has been devel-
oped so that when users connect to the game URL, after
an identification step, the interface for the current game
step is visualized (since the game can be a long-running
economic simulation, game time can be several days, so
it is normal for users to log in several times to com-

Web Browser

Flash }

" Process | Flexcompiler
‘ servlet ;
¢ ' XSLTfilter |
o
4 Dispatcher
EPML - servlet
engine \

’ Open Office Calc

Figure 3: The overall delivery architecture of EGO -
only major component are shown

plete a single game). The interfaces use rich internet
applications technologies to allow a rich gameplay and
to asynchronously check with the back-end if a new in-
terface has to be loaded (the current interface of a player
can change independently from its interactions with it,
for example when that player is taking too much time
to complete its interaction or when its interface has to
change from a wait-you-turn one to a playing one be-
cause it is now the player’s turn). The overall delivery
architecture of the system is depicted in figure 3.

The sequence of invocations associated to a user request
is as follows. When the user completes its interaction
with an interface the interface sends an HT'TP post re-
quest (containing the data relative to the user input for-
matted as XML) that is handled by a Process servlet
that acts as a controller. The Process servlet retrieves
the input data from the request and the user information
from the session data and calls Play. Play interfaces
with the engine: it creates an end activity event (con-
taining the user and the input data) and notifies it to
the engine. The engine enacts the process, typically ac-
tivating a processor, i.e. a process logic component that
interacts with the spreadsheet by using the UNO/Java
library. The behavior of the processor is, in general, to
put users data into specific cells of the spreadsheet. The
control returns to Play that delegate the reply to an-
other servlet, Dispatcher. Dispatcher queries the en-
gine to know the activity (if any) that is now associated
to the player. The activity descriptor holds references
to a portion of the spreadsheet that contains relevant

141

data that should be used to populate the new interface.
Dispatcher creates a new XML document containing
the interface description and the spreadsheet data and
returns it as an HTTP reply. This replay is then in-
tercepted by a filter. The task of the filter is to build
a rich interface by using the information contained in
the XML document. Filters can use different technolo-
gies for creating the interface. By using XSL transfor-
mations a plethora of different XML-based technologies
can be used. We built interfaces using HITML+XForms,
MXML (the Adobe Flex source format) and LZX (the
OpenLaszlo source format). Flex and OpenLaszlo are
used to create Flash-based interfaces; OpenLaszlo can,
from the same source, create both Flash-based and Dy-
namic HTML-based interfaces. In the case of the e-game
we focus to in this paper (the economic simulation) we
used a Flash-based interface generated with Adobe Flex.
The filter then transforms the incoming XML document
in a MXML one which is fed to the run-time Flex com-
piler that generates the resulting Flash movie.

EGO also includes Web-based management tools for
creating new games, adding players, managing existing
games and so on. The details about them, however, are
outside the scope of this paper.

Authoring EGO games

The authoring process of EGO-based games is composed
by three steps: interaction modeling (using EPML), en-
vironment modeling (the economic model created using
a spreadsheet) and the definition of the relationships
among gaming interfaces and elements in the environ-
ment model. In order to ease this last step we used a
metadata approach for the environment model. The ba-
sic idea is that each gaming interface can be associated
to a specific rectangular zone of the spreadsheet. Inside
this rectangle metadata (in form of styling information
associated to the cells) can be used to define partially
or in toto the information that have to appear in the
gaming interfaces that are related to the information
contained in the spreadsheet. Consider the screenshot
on the left of figure 4: the rectangular area delimited
by a double-line border contains the information (cell
values) and the meta-information (cell styles) that have
to appear in the gaming interface. Specifically, elements
associated to the output style are displayed as they ap-
pear in the spreadsheet in the corresponding Web inter-
face; elements associated to the input style (that appear
with a darker - yellow - background in the spreadsheet)
appear as input field in the Web interface, and so on.
The screenshot on the right of the same figure de-
picts the Flash interface automatically generated, using
Adobe Flex, from the specification given in the spread-
sheet.

When the game includes interfaces that are very differ-
ent in graphical appearance and in purpose, different
XSL transformation sheet can be used; the interface de-

AlMATWO Business Game

Figure 4: A portion of the spreadsheet and its corresponding interface

ROUND &

Figure 5: An interface generated with a specific XST
sheet

picted in figure 5, for example, is generated by a different
XSL sheet with respect to the one used for the previous
example.

By using the aforementioned technique the environment
model is overloaded with concerns related to the struc-
ture of the game, in which the relations between this
model and the gaming interfaces appear in an explicit
way. This is reasonable, it is still in fact possible to de-
velop the economic model with no relation to the game
structure and later add some sheets to the spreadsheet
(as it is actually the case with the game we took the
screenshot from) that address the correspondence be-
tween elements in the model (by simply referencing them
from the new sheets) and gaming interfaces. This let the
experts in environment modeling concentrate on the in-
ner workings of their models allowing other members of
the team, in a later stage, to complement their models

142

with the relationships between them and gaming inter-
faces. Our experience shows, however, that the first
approach enormously eases game development and cuts
its times considerably. We argue that, even when using
different tools for environment modeling, similar tech-
niques should used if possible.

Related works

Before describing the works related to our proposal, it
is worth noticing that e-games have impact on differ-
ent research arecas that span from artificial intelligence
to e-learning. It should also be noted that the litera-
ture provides very few proposals that can directly be
compared to EGO, in this section we try to point out
the systems that share common traits with it and could
enjoy reciprocal influence.

Among the plethora of papers that investigate e-games
from different perspectives, the work most similar to our
is the Extensible Graphical Game Generator (EGGQG)
(Orwant 2000). EGGG allows users to create almost
any kind of two-dimensional game with a minimum of
programming effort. Designers can describe a game us-
ing an high-level language. The game description is in
turn rendered by the EGGG engine that employs a set of
heuristics that embody the similarities between games
and then generates the program (that is the computer
game ready to be played) by composing reusable soft-
ware components. Both EGGG and EGO have the goal
of speed up the implementation of new games; the main
difference between the two is that EGO does not use
heuristics to interpret the game description and then
requires the game description to be precise and non-
ambiguous. The drawback is that designers have to be
fluent in EPML (the expertise required depends on the
game complexity); the advantage is that the range of

games that can be implemented is wider and not lim-
ited to two-dimensional games only.

Another interesting e-game authoring tool is presented
in (Moreno-Ger et al. 2007). Authors state that the de-
velopment of good educative games requires the active
participation of field experts (such as teachers) that of-
ten do not have a deep formation in computer technolo-
gies. The collaboration between those experts and game
developers is realized by means of a document driven
approach: the game can be described using a Domain
Specific Language (DSL) in order to facilitate the ex-
pert’s task. Those documents are then fed to an en-
gine that generates and executes the game. As DSL
has to be kept reasonably simple, it could hardly per-
mit the development of generic games: for this reason
the genre and functionality of the games have been re-
stricted, and focus on one single, well-defined genre (Ad-
venture Games).

There exist also other game building tools that can be
used by people with do not have any programming ex-
perience (see, for example (Cook 2005)), but, they have
been designed to create video games only. On the con-
trary EGO does not impose strict limitations on the
genre of the game (albeit it is best suited to non-realtime
games), but can be used to implement many kind of
game.

To conclude this section, we cannot ignore the grow-
ing interest in e-games as tools to support (e-)learning.
Nonetheless, the vast majority of studies, such as for
example (Magnussen et al. 2003, Arnseth 2006, Alsagoff
2005), focus on psychology and pedagogical aspects of e-
games, on the maximization of their learning potential,
and in case of multi-players game also on the interaction
dynamics among players.

Conclusions

The EGO platform we presented in this paper offers
several advantages for both the authoring and the de-
livery of e-learning simulation games. Games in EGO
are based on two main models: the interaction model,
described using the EPML process modeling language,
and the game environment model that, in the case of
economic simulations, can be described using a spread-
sheet. In this case the authoring process can take ad-
vantage by the use of styles as meta-data to describe
the relationships between sheet elements and interface
elements. As a delivery platform EGO can easily ac-
commodate different Rich Internet Applications tech-
niques since all the communications between the back-
end and the front-end take place by using XML. Using
asynchronous AJAX-like techniques the interfaces can
be kept consistent with the game status as stored in the
server. These techniques, however, are based on HTTP
polling so they are not feasible for games in which a
strictly coherent view of the game status is required for
all players (but this is not often a requirement for e-

143

learning simulations).

In our experience EGO revealed itself as a valuable tool
for authoring and delivering simulation-based learning
games. The development of the economics-based sim-
ulation game discussed in the paper revealed that the
promise of a clear separation between the different mod-
els participating in the gameplay can be fulfilled, allow-
ing a team of experts in different fields (interaction mod-
eling, user interface design and business economics) to
focus on their respective abilities and yet to cooperate
beneficially.

REFERENCES

Alsagoff Z.A., 2005. The Challenges €& Potential of Fd-
ucational Gaming in Higher Education. In Proc. of
the Second International Conference on eLearning for
Knowledge-Based Society.

Arnseth H.C., 2006. Learning to Play or Playing to
Learn - A Critical Account of the Models of Communi-
cation Informing Educational Research on Computer
Gameplay. International journal of computer game
research, 6, no. 1.

Cook B., 2005. Game Building Tools.
http://www.apple.com/games/articles/2005/08/
gamebuildingtools/. Accessed November 2007.

Gredler M.E., 2003. Games and simulations and their
relationships to learning. In D. Jonassen (Ed.), Hand-
book of research for educational communications and

technology, Lawrence Erlbaum Associates, Mahwah,
NJ, USA. 571-581.

Magnussen R.; Misfeldt M.; and Buch T., 2003. Partic-
ipatory design and opposing interests in development
of educational computer games. In Proc. of the Digital
Games Research Conference.

Moreno-Ger P.; Sierra J.; Martinez-Ortiz 1.; and
Fernandez-Manjon B., 2007. A documental approach
to adventure game development. Science of Computer
Programming, 67, no. 1, 3-31.

Orwant J., 2000. EGGG: automated programming for
game generation. IBM System Journal, 39, no. 3,4,
782-794.

Rossi D. and Turrini E., 2007. EPML: Executable Pro-
cess Modeling Language. Tech. Rep. UBLCS-2007-
22, Department of Computer Science, University of
Bologna.

144

SERIOUS
GAMING

146

GAMING TECHNOLOGY IN CULTURAL HERITAGE SYSTEMS

Tim Horz Albert Pritzkau

Christof Rezk-Salama

Severin S. Todt Andreas Kolb

Computer Graphics Group
University of Siegen
Hoelderlinstr. 3
57076 Siegen, Germany

{tim.horz, albert.pritzkau}@student.uni-siegen.de
{rezk, todt, kolb}@fb12.uni-siegen.de

KEYWORDS
Serious Gaming, Methodology, Rendering

ABSTRACT

This paper describes the design and implementation of
an interactive walk-through of a reconstructed German
stronghold, the Dillenburg. The application is currently
in use at the local museum. Applying technologies and
algorithms primarily used for the development of realis-
tic 3D computer games, we present a system that can be
categorized as a Serious Gaming environment, a term
that has recently come into existence. More specifically,
it can be called a Cultural Heritage Game. With this pa-
per we want to give a programmer’s view on the topic
of interactive cultural heritage systems.

INTRODUCTION

In recent years the markets for high-quality 3D com-
puter games and commodity graphics hardware have
grown immensely. Every new generation of graphics
cards allows for the next generation of 3D games, which
in turn demands the following generation of graphics
hardware. During this development, the amount of in-
novative techniques and algorithms needed for a realistic
real-time rendering of virtual environments keeps grow-
ing.

The technology and specific know-how gained from
years of computer game development, not limited to
3D games, can be used for creating applications out-
side a gaming environment. Recently, this notion has
been labeled as Serious Gaming (Blackman, 2005; Ray-
bourn and Bos, 2005). As can be seen below, numer-
ous projects show the major interest in cultural her-
itage applications, all of them using game technology in
some way or another. Those and future interdisciplinary
projects of that kind can be called Cultural Heritage
Games.

Our Cultural Heritage Game presents an information
and learning experience that helps to revive a part of
history. As a cultural heritage undertaking funded by

147

a non-profit organization and implemented by under-
graduate students, our project stands outside the usual
scope of business models and profit interests.
Throughout this paper we discuss aspects concern-
ing real-time graphics programming applied to the 3D
model extracted from a previous cultural heritage re-
construction project.

Figure 1: The Installation at the Museum

RELATED WORK

Generally, our work can be categorized as a computer
aided cultural heritage project. Numerous compara-
ble projects exist throughout Europe, some of which
inspired our design decisions in different ways. Most
notably, the virtual walk installation at Trento (Conti
et al. 2006), the guided tour at Sagalassos (Pollefeys
et al. 2001) and the (web-based) visit to the Piazza dei
Miracoli (Carrozzino et al. 2005) gave us insight into
cultural heritage projects. Those projects provide some
good concepts and ideas that inspired some of our so-
lutions. Content related aspects of the projects were

not adapted, since our work is focused on the applica-
tion of game technology to existing 3D cultural heritage
content.

The starting point to our work was, in fact, a previ-
ous project, aiming at the virtual reconstruction of the
long-gone German stronghold Dillenburg (Todt et al.
2007). The project yielded a detailed 3D model used
to generate an off-line rendered documentary movie
of the stronghold that was totally destroyed in 1760.
The movie and some rendered flights around individ-
ual buildings can be viewed by visitors of the Museum
Wilhelmsturm, located at the archaeological site of the
Dillenburg stronghold. The multimedia installation is
integrated seamlessly into the exhibition. Visitors can
browse a DVD containing the available renderings us-
ing a touchscreen interface (see Figure 1). The am-
bitious project was inspired and funded by the local
cultural heritage association (the Museumsverein Dil-
lenburg). From this project, we use the reconstructed
model to implement an interactive walk-through. For
human-computer interaction we take advantage of the
already present touchscreen interface and use it as the
input device for the entire simulation.

THE VIRTUAL MUSEUM

When creating a virtual museum application, most de-
sign decisions are determined by the setting, audience
and objective of the corresponding exhibition.

In general, the heterogeneous audience of a museum,
ranging from school classes to interested senior citizens,
implies many options the system has to offer. For ex-
ample, children might get uninterested if the simulation
does not provide the visual quality that they are used
to from modern computer games, while seniors might
reject the notion of interactivity and prefer watching
the original narrated movie rather than exploring the
stronghold themselves. Furthermore, a good and easy
means to navigate through the virtual environment is
necessary, as well as an information system to present
the most important and interesting facts about the site.
Some of these aspects can be addressed by finding simi-
lar problems in computer game development, while oth-
ers need a more tailored solution.

IMPLEMENTATION

Within the scope of this kind of project, it is not feasible
to implement a custom game-engine from scratch. Since
licensing a commercial game-engine was also not an op-
tion, we decided to combine various free and/or open-
source software and adapted it to our needs. For the
most important piece, the graphics engine, we chose the
Ogre-3D-engine, after analyzing different open-source
competitors. The Ogre engine convinced us with its
ease-of-use, its extensibility and, equally important,
the very active community that contributes to a wiki-

148

portal and a Q& A-forum. Through an extension called
OgreNewt we have simple access to the functionality of
the free Newton physics engine. Similarly, sound sup-
port is added via FMOD, and keyboard and mouse in-
put is handled by the Open Input System (OIS). Direct
access to the touchscreen is provided by the manufac-
turer Elo. As an embedded HTML-rendering compo-
nent we use Terralnformatica’s HTMLayout. Another
plugin called WMuvideo-Plugin, created and supported
by the Ogre community, enables the system to show
movies on arbitrary surfaces. Figure 3 sketches the col-
laboration of all these APIs.

FMOD Audio Library Object Oriented Input System OIS §

OgreNewt

Elo Touchscreen Interface

Figure 3: System Overview

Rendering

Nowadays, products that use real-time three-dimension-
al rendering, most notably computer games, have to
meet a simple but challenging criterion: the consumers
have to feel the rendering looks good, i.e. convincing and
realistic. Being a subjective factor as it may, the percep-
tion of quality is the driving force in computer graphics
technology, since visual quality is a selling point for each
generation of graphics hardware. Reversely, consumers
get used to better and better quality. If a product does
not meet the visual standards the users have grown ac-
customed to, it may be disregarded completely. This
notion can be especially observed with an important
audience of cultural heritage sites: children and young
adults. Any approach to a virtual museum has to meet
this quality challenge. Therefore, we chose to apply a
state-of-the art rendering technique to ensure the good
looks of our simulation. When designing the system
we also took advantage of high-end computer graphics
hardware, an nVidia GeForce 8800 GTX with 756 MB
of video memory.

The preceding reconstruction project mentioned above
yielded a complex model of the Dillenburg stronghold,
completely textured with decal maps, normal maps and
gloss maps. An 8-minute flight around and inside the
model was rendered off-line, using various global illumi-
nation and compositing techniques. With our interac-
tive version we try to offer an equally impressive render-
ing of the same model in real-time. Due to the complex-
ity of the Dillenburg model we use an environment map

Urg anng 1760

Figure 2: left: the Manor-house inside the Stronghold, right: Overview Map with Teleportation Points

(representing the sky) to light the entire scene, rather
than using one or various point-light sources. How-
ever, traditional (even HDR) environment maps cannot
be used for a complete and realistic real-time lighting
of an object, as they only represent the light informa-
tion for perfectly reflective surfaces. Prefiltered environ-
ment maps provide a powerful lighting and rendering
approach to compete the challenge (Kautz and McCool
2000). This technique approximates glossy reflection
with a set of cube maps generated from the original envi-
ronment maps. Using ray casting techniques, the diffuse
part of the lighting is precalculated and stored in an ir-
radiance map. Likewise, a set of maps corresponding to
different predefined specular lobes are generated. In the
application, the information is combined on a per pixel
basis using programmable graphics hardware as follows:

1= Kd : Ii'rr +Ks : ((1 _g) : IspecLow +g IspecHigh,) (1)

In Equation 1 I is the final lighting for the pixel. Ky
simply denotes the color value determined by the de-
cal texture. I;.. corresponds to the diffuse term in
the Phong illumination model and is determined by a
texture lookup inside the irradiance environment map.
The factor K represents the shininess of the material,
passed to the graphics hardware as a uniform parame-
ter. The specular term is approximated by the linear
interpolation of two predefined specular lobes, denoted
as Lspecrow and Igpecrign. After experimenting with
some values, we chose Ispecrow = 20 and Ispecrign = 00,
as they yield the best visual results. The interpolation
value g is looked up inside the gloss-texture and is equiv-
alent to the specular exponent of the Phong model. Note
that to avoid a blueish touch on non-reflective surfaces
(caused by the blue sky), we desaturate the irradiance
value beforehand.

149

Realistic shadowing is achieved by a combination of two
types of precalculated (baked) shadow-maps. On the
one hand traditional baked shadows are used. On the
other hand we generated ambient occlusion maps to im-
prove realism and plasticity of the objects (Landis, 2002;
Zhukov et al., 1998). As the original model had been cre-
ated with Autodesk® Maya®, we used the baking tech-
nique provided by this modeling software which allows
textures containing lighting information to be created
fast and easy. After the rendering process both the am-
bient occlusion and the shadow maps were combined
into one texture. To ensure a high quality we decided
to use one grayscale 1024x1024 pixel texture per build-
ing or wing of a building. With a total of 130 textures,
the lightmaps for the entire reconstruction consume 130
MB of video memory. The shadowing information is
combined with Equation 1 as follows:

(2)

Here, the factor s denotes a lookup inside the combined
shadow and ambient occlusion map. Figure 4 shows
the different textures used for rendering on the most
prominent building of the site, the manor-house. An-
other screenhsot showing the same building inside the
simulation can be seen in Figure 2, left.

Ish,adowed =s-1

Interaction

The creators of the Sagalassos project argue that offer-
ing a completely free walk through a virtual museum
is not desirable, as users might not get to see all the
important buildings or even get bored. Therefore, they
only offer virtual guided tours to their reconstruction.
Our system however allows the visitor to walk freely
through the environment, while we address the inherent
problems as well.

m

Figure 4: (a) Decal Map, (b), Combined Ambient Oc-
clusion and Shadow Map, (¢) Reflectivity (Gloss) Map,
(d) Combined Result Mluminated by Prefiltered Envi-
ronment Maps

An examination considering different input tools (e.g.
keyboard and mouse, joystick, or a gamepad) led us to
the decision to rely on the touch-screen monitor which
was already part of the configuration. In contrast to
other options as used in computer games it associates
the visual experience and the navigational task in a man-
ner best suited especially for the untrained user.

As for navigating through the virtual environment, we
considered several strategies to account for visitors with
gaming experience and unexperienced users alike. Fi-
nally, we devised two ways of interaction. Inspired by
the keyboard-and-mouse input known from games, the
camera can be moved by clicking on arrow symbols that
control lateral and longitudinal motion as well as yaw
and pitch, that way allowing complete freedom. This
method of interaction is clearly targeted at more expe-
rienced users. Navigation is only limited by collision
geometry, which is a sparse 3D model used for the col-
lision detection by OgreNewt and the Newton physics
engine.

The other method is based on a list of predefined view-
points stored for each building. When the user points at
a certain location on the screen, a camera-to-world ray
and its intersection with the geometry is computed. If it
hits a building, the system checks the associated list of
predefined viewpoints and navigates to the one closest
to the current position. Should the ray hit the ground,
the camera simply moves to the indicated position. This
approach allows the user to directly specify the building
they want to examine, without getting distracted by the
task of getting there on their own.

Supplemental Material

In any real museum, visitors need additional informa-
tion, usually in the form of information plaques. A vir-
tual environment has to offer some kind of information
system as well.

150

The creators of the DentroTrento project describe a
hotspot system that marks areas of interest inside their
simulation. Likewise, our system allows content creators
to place information panels at arbitrary world positions,
but instead of only rendering some sort of hotspot icon
the information is brought across directly inside the sim-
ulation: the information panels display freely config-
urable HTML content. That way users can easily ob-
tain further information on the area they are looking at
without changing into a different view (e.g. a menu).
This is achieved by an HTML rendering extension to
the Ogre 3D engine we developed, using Terralnfor-
matica’s free HTMLayout engine. The extension inter-
prets HTML content and renders the result to a texture,
which is then applied to the face of an information dis-
play inside the scene. The content can be handled in
the same way known from any other browser, so when
the visitor points to a hyperlink by touching the screen,
the system opens the referred page and shows it on the
information display. We also implemented basic sup-
port for augmenting the HTML content by video files.
Note that those HTML-signposts have only one associ-
ated predefined viewpoint, which represents the optimal
camera position needed to read and interact with the
HTML content. When a user points to such a signpost,
the mechanism described above will move the camera to
that optimal position.

Figure 5: An HTML-signpost

RESULTS AND CONCLUSION

It is important to find new ways of applying the spe-
cific know-how from computer games to different ap-
plications and to provide highest rendering quality and
state-of-the-art interaction techniques to the field of Se-
rious Gaming. Using a variety of 3D game related al-
gorithms, techniques and third party software we de-
veloped a system that resembles basic structures of a
computer game.

We solved the problems inherent in cultural heritage
simulations by applying concepts that exist in countless
computer games, e.g. the overview map and the arrow-

based navigation. Innovative techniques and ideas have
been implemented within the project, most notably the
HTML-signposts and the viewpoint-based interaction
system.

However, contrary to a computer game development
project, our work required less time and fewer resources
than a current state-of-the-art computer game, since
only a small part of a game’s functionality had to be
implemented. For example, the system does not offer
”opponents”, so no artificial intelligence is necessary.
Scalability was also not an issue, since the application
is used on only one target machine, which was a high-
end desktop PC with the most powerful graphics hard-
ware available at the time. We could harness all the
power available without ever having to implement op-
tions for toggling to a low-detail version of the model
or a stripped-down rendering process. In that regard,
our project is more related to game console develop-
ment rather than to a PC game. Furthermore, the lack
of typical tasks like level, character, and sound design
sets our project somewhat apart from a "normal” 3D
game.

FUTURE WORK

Our system can be adapted and improved to facilitate
other reconstructed cultural heritage sites. With Ogre’s
many import/export tools it is possible to convert data
from a wide range of modeling software, while our modu-
larized design facilitates the adaptation to other specific
needs.

However, even with only the current Dillenburg model
in mind the application in its current state holds still
room for improvement. It would especially benefit from
some ”eye-candy” such as particle and animation sys-
tems for effects like torches, fountains or movable doors.
The Ogre engine supports all this in a very straightfor-
ward manner, so after incorporating those features into
the system it would all become a question of content
creation. This next step would also benefit from the use
of more recent developments, most notably geometry
shaders.

Further down the road the system could be extended
to support predefined animated guided tours (compa-
rable to the ”virtual guide” used by the Sagalassos
project), selectable on the overview map. Furthermore,
the HTML-signposts have a lot of potential, since the
(now static) HTML-pages could just as well be gen-
erated by some kind of CMS, maintained by the mu-
seum staff and scientists. Added to that, combining the
sound-system with the signposts would make it possible
to have a narrator read the information back to the user,
thus further enhancing the experience for the audience.
Another useful addition could be internationalization
support, allowing translated versions of both written
and audible text sources inside the virtual museum, just

151

like usually offered by many of its real-world counter-
parts.

Acknowledgements

Our thanks go to the Museumsverein Dillenburg which
funded parts of our project.

Special thanks to Matthias Hoffmann, Jeong II-Sin,
Jan Kunze, Michael Schantin, Jens Schlemper, Sascha
Schlude, and Tim Wenclawiak,the members of the pre-
ceding project which yielded the final Dillenburg model.
Their results were the very basis to our work.

REFERENCES
SIG-

Blackman S., 2005. Serious games...and less!
GRAPH Comput Graph, 39, no. 1, 12-16.

Carrozzino M.; Brogi A.; Tecchia F.; and Bergamasco
M., 2005. The 3D interactive visit to Piazza dei Mira-
coli, Italy. In ACE ’05: Proceedings of the 2005
ACM SIGCHI International Conference on Advances
in computer entertainment technology. ACM Press,
New York, NY, USA, 192-195.

Conti G.; Piffer S.; Girardi G.; de Amicis R.; and Ucelli
G., 2006. DentroTrento: a virtual walk across history.
In A. Celentano (Ed.), AVI. ACM Press, 318-321.

Kautz J. and McCool M., 2000. Approximation of
Glossy Reflection with Prefiltered Environment Maps.
In Proc. Graphics Interface. 119-126.

Landis H., 2002. Production-Ready Global Illumination.
In ACM SIGGRAPH Course Notes 16. 87-102.

Pollefeys M.; Gool L.V.; Akkermans I.; Becker D.D.;
and Demuynck K., 2001. A Guided Tour to Virtual
Sagalassos.

Raybourn E.M. and Bos N., 2005. Design and evalu-
ation challenges of serious games. In CHI ’05: CHI
05 extended abstracts on Human factors in comput-
ing systems. ACM Press, New York, NY, USA, 2049-
2050.

Todt S.; Rezk-Salama C.; Horz T.; Pritzkau A.; and
Kolb A., 2007. An Interactive Exploration of the Vir-
tual Stronghold Dillenburg. In Proc. Eurographics Cul-
tural Heritage. 213-218.

Zhukov S.; Tones A.; and Kronin G., 1998. An Ambi-
ent Light Illumination Model. In Proc. Eurographics
Rendering Workshop. 45-56.

AIBO as a needs-based companion dog

José M. Blanco Calvo, Dragos Datcu and Léon J. M. Rothkrantz
Man-Machine Interaction Group
Delft University of Technology
Mekelweg 4, 2628CD Delft,
The Netherlands
E-mail: L.J.M.Rothkrantz @tudelft.nl

KEYWORDS
AIBO-robot, human-computer interaction, companion robot,
needs-based, personality modeling, nPME model.

ABSTRACT

In this paper we describe the architecture that allows the
modeling of an emotionally intelligent robotic companion
dog. We chose to implement this architecture for AIBO,
which is a dog-like autonomous robot, developed by Sony.
AIBO was developed as an entertainment robot and its
‘mind’ is programmable. The focus of this paper is on
creating a complex personality model that provides a realistic
needs-oriented behavior for robotic companion dogs. The
personality model is an extension of the nPME model and
implies that needs play the most important role and influence
the behavior of the AIBO robot in every situation.
Personality, Mood and Emotions are three layers that, in
combination with the needs, make AIBO show a real dog-
like behavior. The existing personality models need to be
modified, adaptated and improved so as to handle the
unknown and dynamic environment in which AIBO
performs. So, as part of the system design, the importance of
incoming events has been considered. A modification in this
architecture modeling the function of amygdale has been
introduced to speed up the resolution of some situations. The
implemented architecture is also designed to be suitable for
future extensions in the model. The prototype has been tested
in different scenarios using an AIBO robot. An extensive
user study has been carried on involving several students and
workers to test the realism, emotional responses and event
coherency in robot’s behavior.

INTRODUCTION

The societal relevance of intelligent robots is increasing
nowadays covering a wide range of applications: from
entertainment robots such as conversational partners, soccer
players, or companion dogs, to robots that provide
independent living support for elderly users in basic activities
such as mobility or household maintenance (Heerink et al.
2006). Security tasks can also be performed by surveillance
robots like AIBO watchdogs (Yang et al. 2006). Studies
conducted by Masahiro Fujita prove that AIBO seems to be a
good partner for users, having a positive effect on their
emotional state (Fujita 2004). Robots have shown their utility
even in medical domains by aiding the diagnosis and therapy
of diseases as autism (Scassellati 2005). According to Fujita

152

the current implementation of AIBO software provided by
Sony uses behaviors that come from a “manually designed
database” (Arkin et al. 2003). The next steps would be a
learning-based systems or evolving systems able to create
new behaviors through the continuous interaction with both
human beings and environment. Mature systems would play
also an important role in the future of entertainment robotics.

Figure 1: AIBO robot as a companion dog

This project focuses on the idea of improving interaction
between man and machine (Figure 1) through the creation of
a biological inspired model of human mind. This artificial
brain must act coherently with the environment, drawing
conclusions according to the different situations that can
arise during a day. To achieve this, it is necessary to create a
personality model capable of reasoning about a certain
situation to perform complex actions in every context. So
there must be a whole coherence between events, actions,
and emotions.

The situation awareness process would include a reasoning
system that combines the different personality parameters
(PME) with the levels of certain needs (n). Triggered by
incoming events it should be able to perform a set of actions
to satisfy the needs, in the similar way a real dog would do.
This paper is organized as follows: first we will introduce the
original nPME model (Dobai and Rothkrantz 2005); then our
extension will be explained; next section will describe the
architecture implemented to test the model; and finally, a
summary of the evaluation method and results in the user
study will be provided.

THE nPME MODEL

So far, the design of virtual humans, agents or game
characters used mostly two categories of personality models:
PME models that take into consideration personality (P),
mood (M) and emotions (E) and PE models that are based
solely on personality (P) and emotions (E). The work of
(Ksirsagar and Magnenat-Thalmann 2002) described an
layered based architecture for modeling personality, moods
and emotions.

nPME model combines Personality, Mood, Emotions and
also ‘needs’ to establish a complex behaviour model. For the
nPME model we started with a layered PME architecture
assumes the mood is seen as an intermediate layer between
personality and emotions and therefore is influenced by both.
Needs are used to let AIBO act independently in a
unpredictable and changing environment (nPME). The
inclusion of the needs modifies the role of the mood, and
now mood is not directly influenced by emotions or
personality, but indirectly as a consequence of the evaluation
of the goals, preferences and standards in regards with the
events that occur in the environment.

Concepts

Personality.

The most important factor in the nPME model is the
personality parameter itself. Among the existing
psychological models of personality the most widely
accepted is the Five Factor Model that describes and
measures the personality using five broad dimensions:
Openness, Conscientiousness, Extraversion, Agreeableness
and Neuroticism. This model is also known as the OCEAN
model (Beaumont 2003). Every personality can be classified
by those parameters, although those parameters with their
respective values cannot define a whole human personality.
According to Paul Costa Jr. (Costa and McCrae, 1992) these
parameters can experiment ‘“nuanced” changes during a
person’s life. However two assumptions are done over the
basis that our goal is to apply the model to a robotic dog:
first, those parameters are enough for define the dog-like
personality. Secondly, we assume that those parameters are
kept constant because their variations along a robot life are
imperceptible. According to this, the personality will not
change during the life of the robot dog.

Needs.

Primary emotions are considered to be driven by the basic
needs of surveillance and social affiliations (de Sousa 2003).
Moreover, according to Ekman the expression and
recognition of those simpler emotions are universal (Ekman
and Friesen 1989). Therefore the theoretical basis for the use
of needs has been proved. Needs are the basic engine that run
emotions and these can be modeled equally for different
subjects. The model of needs is based on the theory
introduced by Maslow (Maslow 1970). Needs are organized
in a pyramid (Figure 2): the need that is at the bottom of the
pyramid is the first to be satisfied. On the other side, the one
which is on the top will only be satisfied if all the rest under
it have already been satisfied.

153

This model is powerful enough to allow for the development
of a complex personality and it is also simple enough to
implement. The pyramid of needs that Maslow introduced as
a base for motivation theory contains 5 categories of needs:
physiological, safety, love and belonging, self esteem and
self actualization. The first 4 categories of needs have been
introduced by Maslow as “deficit needs” while the last
category of needs is known as “being needs”. In the nPME
model only “deficit needs” are taken into consideration. Self
actualization needs are seen as growing (a continuous driving
force in a very long term) and Maslow states that not
everyone ultimately seeks self-actualization (Maslow 1970).

AELE ACTUALIZATION

SELF ESTEER

I

‘ LONE AND BELONGING l

| SAFETY l

| PHYRHLOGIOAL]

Figure 2: Maslow Pyramid of Needs

According to the autonomy shown by current robots, these
need would not be met ever so it can be skipped for a robot
model. In practice the different categories of needs are
mapped into AIBO specific needs (e.g. physiological needs
are represented by the battery level, etc.). Needs have
priorities and act as thermometers in the sense that once
critical values have been reached by different categories of
needs, depending on their priorities, they lead to different
structures of goals, preferences and standards (e.g. once the
battery reaches a critical value of 10 % a new goal with the
highest priority is being generated that states: recharge, etc.)
(Dobai and Rothkrantz 2005).

Mood.

Mood is a conscious and prolonged state of mind that
directly controls the emotions. While emotions are
instantaneous, mood is constant for longer time spans.
Without mood, the link between personality that has the
sense of “eternal”, and the emotional expressions that are
instantaneous, vanishes. In our approach, the mood is based
on a model which basically applies a projection on a two
dimensional space having valence and arousal as axes, as
proposed by Lang (Bartneck 2002). Valence refers to
whether the mood is positive or negative and arousal refers to
the intensity of the mood.

Emotional States and Expressions.

An emotional state is a particular state of mind that is
reflected visually by means of an emotional expression. To
model this, the emotion categories proposed by Orthony,
Clore and Collins, commonly known as the OCC model
(Ortony et al. 1988) are primarily used. The model
categorizes 22 different emotions based on positive or
negative reactions to events, actions and objects. However,
not all the possible emotions are universally expressed so a
restricted set should be used. According to Ekman and
Friesen (Ekman and Friesen 1989) there are six universally

expressed recognizable emotions: happiness, sadness, fear,
anger, surprise and disgust. In our work we make use
eventually of these emotions to model the emotional
response of the robot.

Goals, Preferences and Standards.

The goals, preferences and standard parameters are set
dynamically based on needs and personality. Every time
changes occur in the parameters related to needs, the goals,
preferences and standards are also updated (Fujita 2004). By
goals we understand tasks orientated objectives that are
SMART (simple, measurable, acceptable, realistic, time
frame) (e.g.: aibo find ball). By preference we understand the
tendency associated to aspects of objects (e.g. like/dislike of
ball). By standards we understand approval/disapproval
regarding actions of agents. The standards can focus on the
selft agent or other agents (e.g. approval of being touched on
back).

Modification of nPME model

Due to the number of variables in the original nPME model
(4 needs, 5 traits of personality, 2 axis for mood, 6 emotions
with different intensities, and goals, preferences and
standards) the complexity of the implementation arises
considerably. That is the reason that some assumptions have
to imposed. These are taken under the constraint of ensuring
the final efficiency of the behavior.

2

Medium Level

Love and
Belonging

Physivlogical
Nesds

Figure 3: The bucket model of the behavioral needs

The five traits in the personality parameter have been
removed, under the assumption that personality can be seen
as a continuous underlying line of reacting and making
choices when facing different situations. This means that two
different personalities may show some differences in the
emotional responses and different ways of acting, while
facing the same situation.

In this case we have created 4 fixed personalities named with
the most prominent feature of their behavior: friendly,
unfriendly, aggressive and dissobedient. The needs have
been reduced to three: physiological, safety and
love&belonging. This has been done because the fourth need
has not been proved to exist in a real dog. Needs are the main
forces that influence the behavior. They can be seen as
buckets (Figure 3) with certain levels of water. Accordingly,
the water is dropping during time, and when the level is too

154

low, some actions must be performed to fill the bucket
(satisfy the need). We set the satisfaction of needs as the
main criteria to satisfy in any situation by always keeping the
priority of each need as explained in Maslow Pyramid of
Needs model.

The model of mood by Lang (Lang 1995) with two axes
(valence and arousal) has been simplified to only one axis
meaning the intensity of the mood (arousal). Valence is to be
translated in the value of the arousal. If its value is higher
than 0, it means positive valence, otherwise being considered
negative valence. The goals, preferences and standards have
been removed as intermediates. The combination of need to
satisfy and personality stereotype, and that of mood in the
context of incoming events, will give the appropriate
emotional response.

DESIGN CONCEPT FOR COMPANION AIBO
A modular architecture

Figure 4 illustrates the whole architecture that integrates the
personality model described above and the division of logical
parts into system components. It has 4 different modules to
control the connection, incoming events, scripts to execute,
the reasoning process and one more that is the central control
unit.

The architecture has been designed to allow for easy
integration of the exisisting modules. The centralized
architecture allows the incoming events to be automatically
processed by the Central Control Unit - CCU and the events
module through the connection control to the reasoning
module. The most important modules are the CCU and the
reasoning module. The former controls all the system, the
latter is the module where the extended nPME model has
been implemented.

Reasoning module.

All the personality components of the nPME model are
created and managed in the reasoning module in combination
with incoming events coming from Events module through
Central Control Module.

The reasoning unit manages all the components of the nPME
model and, in the presence of contextual events, it generates
a proper response to the CCU. The reasoning unit has two
main components that are called inference engines(Figure 5).
The first inference engine initially checks if there is any
important incoming event. In that case it will adjust the
values of the needs to make them more representative given
the current situation. Then the engine rechecks the values of
the needs and it chooses the one that is assigned with the
highest priority. The selected need is the one that must be
satisfied immediately.

The second inference engine makes use of a complete set of
different rules for each predefined personality. That means
that a certain personality can hold totally different ways to
satisfy a need than the rest of the personalities.

Considering the appropriate set of rules defined, the need to
satisfy, the value of the mood and the knowledge of the
previous scripts (that are already executed), the second
engine takes the decision about which is the next script to
execute and which emotion will combine with it.

EXTRRMAL 8V

PETERNSL EVENTS

Seripty
Bodule

AETDNS

it
fisstann

Figure 4: The architecture of the system

Once the reasoning algorithm has finished, the reasoning
control sends the information related to the script and the
emotion to the CCU so as to be executed by AIBO server. At
the same time, the values of the needs, the mood, and
emotions are updated according to the chosen script that will
subsequently be ready for the next iteration.

Serig Bomation

Figure 5: The inference engines of the reasoning system

Central Control Unit - CCU.

The Central Control Unit manipulates what every module of
the framework. On one hand, it supervise the information
transfer from one module to the another. On the other hand,
it manages the main time line of the system, meaning that it
supplies execution commands to every module at certain
times. In a real-time system that functionality is very useful
because different modules perform in conformance with their

155

own time line (new events may occur while the robot is
already performing a set of actions, etc). The central control
makes possible to avoid mistakes if, for example, one module
requires some information that is still being processed by
another module.

While the robot is in operation, the CCU is listening all the
time to the incoming events. When a new event occurs, it
passes the information to the reasoning module. This will
take the appropriate actions and will provide back an action
script to the CCU. Every time the reasoning module
generates a script, the CCU translates it into sets of URBI
commands using the scripts module. As soon as a script has
been translated, the CCU sends the information to the
connection module. This will send the right commands to
AIBO server, and so makes it to perform certain actions.
Once AIBO robot has finished to perform the actions, the
CCU obtains the control again and performs another
iteration, meaning that the process continues again with the
reasoning module.

Development perspective

The modular architecture we have introduced in this paper is
based on an existing platform that was developed during the
URBI Project at ENSTA Laboratories. URBI (Universal
Robotic Body Interface - www.urbiforge.com) is a scripted
language designed to operate over a client-server architecture
in order to remotely control a robot. URBI is released under
the GNU General Public License. Our present prototype runs
the server on AIBO (the original URBI server) and the client
on a PC (developed by us). The AIBO mind support is
resident on the PC. AIBO robot is in charge of sending raw

data information from the sensors and of executing complex
commands written in the URBI scripting language. Our long
term goal is to have both the client and the server be running
on the AIBO robot and so to have a perfectly autonomous
robot.

EVALUATION AND RESULTS

A user study has been done to test the correctness of the
prototype in terms of behavior. The study expected to
evaluate the realism of the prototype, the level of coherence
for the events-actions-emotions, the continuity of the
behavior and the personality designs (Figure 6). For the
experiment four different scenarios were developed. AIBO
had to face different situations and its goal was to satisfy its
most priority need. The performance was measured based on
a comprehensive analysis of the reaction of the robot dog,
obtained from a set of different video recordings in which up
to 24 potential users (students of the university and
independent workers) have participated. The people were
divided in two groups, each group having to act specific
roles, according to different particular personalities (friendly
and unfriendly).

The results of the analysis suggest that, even if there have
been noticed some discrepancies between the reactions of the
robot dog and a real companion dog, the behavior was
mostly coherent and well-adapted to each of the contexts.
Further work is to be carried on for accurately examining the
impact of improper robot reactions given the context and the
personality. The movements were mostly natural and
continuous for a robotic dog and the emotion responses were
mostly clear and well adapted to the situations.

Chiidren adapted
R imvoke endemess

8 Dangerous rehot

ilel childreen play with it7
Situation awareness

B Logic of actions coherert with situation?
B Strange reactions in the behaviowr?

(%)

Emotions response

¥ Emotions recognized?

@ Empathy? ‘

1 Sound helps? i
Companion experience

{B Convincing behaviour a2 a rohotic corpanion?
Any incohsrente as expecied in 3 companion dog?

Events response
B3 Behaviour modified by evenis?
B Reaction fas! enough?

Never 4 Alays
Few times Many times
Several times

Figure 6: The results for the evaluation of the nPME
model for AIBO robot

CONCLUSIONS

For creating an autonomous robot that acts coherently in an
unpredictable and changing environment, a main force that

156

drives its behavior must be designed: this force is the
satisfaction of the needs. The needs have to be considered to
be combinated with the events that define the environment
and always together with the emotion response that defines
the robot attitude towards the situation. The emotion
responses are directly related to the election of the
personality and the level of mood. Having all this
information, the system is able to choose from a set of
actions to be performed by the AIBO robot. As proved by the
user study, our approach gave very positive results when
comparing the behavior of the AIBO robot dog with the
behavior of a real companion dog.

REFERENCES

Arkin, R.C.; M. Fujita; T. Takagi; R. Hasegawa. 2003. “An
Ethological and Emotional Basis for Human Robot
Interaction”. In proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, No.3(Mar),
191-201.

Bartneck, C. 2002. “Integrating the OCC Model of Emotions in
Embodied Characters”, Workshop on Virtual Conversational
Characters.

Beaumont, R. L. 2003. “Five Factor Constellations and Popular
Personality Types”, Psychology 106.

Costa, P.T. and R.R. McCrae. 1992. “Normal personality
assessment in clinical practice: The NEO personality
inventory”. Psychological Assessment.

Dobai, I.; L. Rothkrantz; C. van der Mast. 2005. "Personality model
for a companion AIBO", ACM SIGCHI International
Conference on Advances in Computer Entertainment
Technology, ISBN 1-59593-110-4, ACM, Broadway New
York, 438-441.

Ekman, P. and Friesen, W.V. 1989. “The argument and Evidence
About Universals in Facial Expressions of Emotion”. In
Handbook of Social Psychophysiology. New York: John Wiley
and Sons, Ltd.

Fujita, M. 2004. “On activating Human Communication with Pet-
Type Robot AIBO”. In Proceedings of the IEEE, Vol. 92, No.
11, 1804-1813.

Heerink M.; B. Krose; V. Evers and B. Wielinga. 2006. “The
Influence of a Robot’s Social Abilities on Acceptance by
Elderly Users”. Amsterdam, The 15th IEEE International
Symposium on Robot and Human Interactive Communication,
2006 - ROMAN 2006, ISBN: 1-4244-0565-3.

Ksirsagar, S. and N. Magnenat-Thalmann. 2002. “A Multilayer
Personality Model”, In Proceedings of 2" International
Symposium on Smart Graphics, ISBN: 1-58113-555-6, 107-
115.

Lang, P. J. 1995. “The Emotion Probe: studies of motivation and
attention, A study in the Neuroscience of Love and Hate”.
Hillside, NJ: Lawrence Erlbaum Associates, Publishers.

Maslow, A.H. 1970. “Motivation and Personality”, 2nd. ed., New
York, Harper & Row.

Ortony, A.; G. L. Clore and A. Collins. 1988. “The Cognitive
Structure of Emotions”, Cambridge University Press.

Scassellati, B. 2005. “Using social robots to study abnormal social
development”. In proceedings of the 5th International
Workshop on Epigenetic Robotics. ISBN 91-974741-4-2.

de Sousa, R. 2003. "Emotion", Stanford Encyclopedia of
Philosophy (Spring 2003 Edition), Edward N. Zalta (ed.),
http://plato.stanford.edu/archives/spr2003/entries/emotion.

Yang, Z; B. T. Hau and L.J.M. Rothkrantz. 2006. "AIBO as a
watchdog". Game-On 2006, Eurosis, No.7(Dec), 74-78.

www.urbiforge.com

AGENT BASED VIRTUAL TUTORSHIP AND E-LEARNING TECHNIQUES
APPLIED TO A BUSINESS GAME BUILT ON SYSTEM DYNAMICS

Marco Remondino
Department of Computer Science
University of Turin
Cso Svizzera 185,

Italy

E-mail: remond@di.unito.it

KEYWORDS
Reinforcement Learning, Action Selection, E-Learning,
software agents, Enterprise Simulation.

ABSTRACT

An advanced Business Game is presented in the paper, built
on the methodology of System Dynamics. It can be used for
cognitive learning and knowledge transmission in schools
and Universities; it allows the learners to take decisions at
each time step, after which it calculates the corresponding
results, showing them according to the principles of double
entry accounting.

An agent based framework is then discussed, which
constitutes a form of virtual tutorship for the learners. The
agents act as a decision support system for the decisions to
be taken, and can explain some cause/effect relations. The
agents themselves learn how the model work by practicing it,
through some reinforcement learning techniques.

INTRODUCTION

Business Games (BG) can be considered a sort of role
playing games, caracterized by a managerial context. The
players usually face some situations typical for enterprise
management and must take various core decisions, mainly
about marketing, logistics, production, research and
developement politics and so on. A very interesting feature
of business games is that they can be employed as a teaching
instrument; the students can learn some important concepts
about enterprise management, by trying them on the field,
instead of just studying them on books. This is reguarded as
"learning by doing" concept.

For this reason, in the following discussion, the players will
be defined as “learners”. The main didactic goals for BGs are
to refine the decision capacities of the learners when facing
situations of uncertainty, and above all their ability to take
managerial decisions when there is a tradeoff between risk
and profit. Besides, through a BG, some advanced
managerial techniques can be teached, and so can be the
interaction among the different enterprise functions.

The BG presented here implies that the learners must be
organized in teams; each of them represents the manager of a
single area (production, sales, research & development,
manufacturing and so on) and they must coordinate
themselves in order to achieve the best possible result. This

157

is ment to promote a collective knowledge, that is valuable in
the real world.

The presented BG is built on the System Dynamics
methodology (Forrester, 1961); this means that the
mechanisms of the game are based on finite differences
equations and curves defining the main parameters of the
game itself.

An agent based framework is applied in the form of virtual
tutoring system for the learners; the intelligent agents learn
through a trial and error technique, based on Reinforcement
Learning paradigms, by practicing the system. After this trial
period, they form a model of how the simulation works (in
particular of the cause/effect relations among the decisions
and the observed results) and then they can be used as a
decision support system for the human learners, during the
game play.

A WEB BASED BUSINESS GAME

An existing simulation framework is described in this
paragraph, used as a teaching support in some University
courses at the Department of Computer Science, University
of Turin, Italy; this will be the one to which the agent based
paradigms described before will be applied, in order to
obtain a virtual tutorship and a decision support system for
the learners (the users). The simulation framework (http://e-
lab.di.unito.it/SimulazioneAziendale), developed by prof.
Gianpiero Bussolin and Dr. Marco Remondino at the
University of Turin, Department of Computer Science, has
been conceived as a teaching platform, used for transmitting
such concepts as “double-entry accounting”, and the way in
which the decisions taken in a real enterprise affect the
synthetic results, at the end of each period (month). The
model, for now, is just in Italian, but a translation in English
will soon be available.

In this model, the users have to take a number of core
decisions at the beginning of every month; the system, based
on Forrester’s System Dynamics, generates a set of reports,
typical for Management and Enterprise analysis. The users,
by reading these reports, can track down the influence of the
single decision — or even better the aggregate effects coming
from two or more decisions — on the synthetic results,
representing the monthly performance of the whole
enterprise.

o

Lofe o st matens poms (0 fiasie s i - S0
Lol i ratiare o produzions 1) foes - B
ST T B AR Er B i~ 200000
TR I ORICE B BenD dan) SORAD 10 - Su00
Assnan ane dopen dieli) . CigezEm
Licenament imang Coneds divells i EEZ‘%i} \ 0~ 20
Frozr soibaio ool BER0E 4T T
Surate st del oradite sonoeste w dlisoll rasenal g JOE0 - 3
Ibarnnne atve congesne sl el ol i 5 AEen
Pramudions marcato nadonale leure) e B S
Fratng wabarg e 0
Durtamadio det cediv oproesse o dedliaters g 3000 -
indennnn arnus conesne o eheod sslern % e tean
Promuiven mattaln sl s Jann e B
Tempe o dilnang pars Pk im 3#3%‘3@ | (e
Prastt fchiest afs Banche (B G - 500000
Ealirgione preslil bancan (suad 1 D SR0000

Figure 1: a form for monthly decisions

Agents can have many roles in such a system; first of all,
reactive agents can be used as a part of the system, in order
to simulate customers or suppliers. These agents should be
very simple, just reacting to some market curve. On the other
hand, reactive agents could also be the production implants,
with the possibility of being programmed by the users in
some way, and then adapting themselves to the number of
pieces to be produced, and so on. This kind of interactivity
would make the model more realistic.

Cognitive agents may have different and more important
roles in this kind of models used for e-learning. After a
training period on the model itself, using the reinforcement
learning methods discussed above, an agent can compute
some strategies to be used to make profit in the simulation.
That said, this agent could then be used both as a decision
support system for human users — since it could foresee some
results, based on its acquired experience — and as a virtual
tutor, explaining the relations among certain variables
(decisions) and the achieved results. This could help the
learners to understand the cause/effect links.

The Inner Structure of the Model

The model is built using a structure based on the theory of
System Dynamics.

The model itself is considered as an artefact, an interface
between the internal structure (implemented in Java) and the
external environment, i.e.: the physical one, in which the
system itself is used by the learners, i.c.: the final users of the
model.

There are six main subsystems, mutually connected, in the
simulated enterprise: production, finance, emplants, research
and development, marketing and sales. Some of these
subsystems are divided into other subsystems, if needed (e.g.:
national sales and sales to the rest of the World).

158

The model is a dynamic system and the temporal
walkthrough in the system has been converted into a set of
differential equations and laws that can generate the
walkthrough itself. This description consists into a constant
relation between the system status in a generic time T and the
status after a brief time interval "delta T" (DT).

Two are the main variable types in the model: the stock type
and the flow type (or rate). The latters are used to recalculate
the formers after each DT.

Many of these flows are generated by the "actions" of the
learners, i.e.: their decisions, in order to modify the states of
the system. Not all the stats are modifyied by external
actions, though. There exist some inner actions and
regulations that can be considered as "internal impicit
decisions" performed by the system, used to normalize the
levels. The choice of the configuration and balance among
the external decisions and implicit decisions identifies the
nature and type of knowledge that has to be transferred to the
learner in a direct od indirect way.

The external decisions are those that make it possible for the
individual learners to know the object of their studies, since
the object is directly "acted upon" by them. This kind of
actions are simply referred to as "decisions", since they can
be carried on by the learners. The other kind of decisions are
those that make it possible to keep the system "alive" even
when the learners (for a lack of knowledge) has not been able
to lead the system.

The enterprise is part of a bigger external environment (or
space) with which it continuously interacts. This environment
is configured by some other sub-systems, like the banking
system (able to supply the financial means for the developing
of new technologies, new products and the enterprise itself),
the market system (where the demand is generated in the
form of orders for the enterprise), the technology system
(that determines what kinds of technologies are available at a
certain time step), the suppliers system and customers system
(respectively simulating those sides) and the workforce
system (determing the average wages, the work supply on the
market and so on).

The equations in the model are in the form of:

SFi = S8Si + (RIi —ROi) * DT)
Where SFi at the first member is the i-th Stock Variable at
the end of a DT, while the SSi on the right is the same
variable at the beginning of the DT. RIi and ROi are
respectively the Input Rate and Output Rate relative to the i-
th stock variable.

The variation is then depicted as a difference among the
Input Rate and Outup Rate during the considered DT; this is
summed to the previous stock value, to calculate the new
one. It's important to notice that the algebric difference
amond the two rates is to be weighted by the time in which
that rates applied.

The units of measurement in the system directly derive from
the above equation. The time is measured in months and the
stocks are measured in wnits. The rates are then units/month
and DT is again measured in months.

DT is a very brief time period; for simplicity, in the model
is’s set to be 1/100 of a month.

TWO AGENT BASED PARADIGMS

The term agent, deriving from the Latin agens, identifies
someone (or something) who acts; the same word can also be
used to define a mean through which some action is made or
caused. In Nwana (1996) the studies on software agents have
been divided into two main strands: the first one, starting in
1977, is based on the studies on Distributed Artificial
Intelligence and gave origin to the cognitive agents, endowed
with inner symbolic models. The second one, whose origins
are to be found in the 90s, focuses on a wide range of agents,
defined as reactive. They do not have any internal
representation of their environment and the emphasis not on
the way in which they decide what to do, but simply on when
to act and what action to choose, basing on the stimuli from
the environment. Reactive agents simply retrieve pre-set
behaviors similar to reflexes without maintaining any internal
state.

Both paradigms, though quite different, have some peculiar
features that make them suitable for some given situations;
the main problem with a purely cognitive agent, when
dealing with real-time systems, is reaction time. For simple,
well known situations, reasoning may not be required at all.
In some real-time domains, minimizing the latency between
changes in world state and reactions is important and so
reactive agents can be successfully employed. On the other
end, cognitive agents should be used when artificial learning
or reasoning is concerned.

Reactive (sub-symbolic) Agents

This kind of agents may be regarded as any simple (not
structured) software entities which interact among them and
with the environment. A multi-agent context of this kind
allows the emergency of complex behavior and self-
organization, with no definition of a formal rule a priori.
Apparent intelligent behavior is a product of the interaction
among agents and environment, and of the interaction among
many simple behaviors. It can be really hard to describe the
real world under every aspect: some fundamental macro-
actions can thus be defined on single agents, which allow
cooperation with the environment and with other agents. The
concept of Multi Agent System for Social Simulations is thus
introduced: the single agents have a very simple structure.
Only few details and actions are described for the entities:
the behavior of the whole system is a consequence of those
of the single agents, but it's not necessarily the sum of them.
This can bring to unpredictable results, when the simulated
system is studied.
In some situations, effective results can be obtained just by
building simple, sub-symbolic agents, whose behavior is
randomly determined or is built by applying fixed pre
defined reaction rules; this is the case, for instance, of
Heatbugs, one of the canonical Swarm demonstrations
(Www.swarm.org):

“It’s an example of how simple agents acting only on
local information can produce complex global behavior. As
we read on Swarm main site, each agent in this model is a

159

heatbug. The world has a spatial property, heat, which
diffuses and evaporates over time. In this picture, green dots
represent heatbugs, brighter red represents warmer spots of
the world. Each heatbug puts out a small amount of heat,
and also has a certain ideal temperature it wants to be. The
system itself is a simple time stepped model: each time step,
the heatbug looks moves to a nearby spot that will make it
happier and then puts out a bit of heat. One heatbug by itself
can't be warm enough, so over time they tend to cluster
together for warmth”

Cognitive (symbolic) Agents

These agents’ behavior is goal-directed and reasons-based;
i.e. is intentional action. The agent bases its goal-adoption,
its preferences and decisions, and its actions on its Beliefs. In
[8] we read that a software cognitive agent should feature the
following properties:

e aqutonomy: agents operate without the direct
intervention of humans or others, and have some kind
of control over their actions and internal state;

e social ability: agents interact with other agents (and
possibly humans) via some kind of agent-
communication language;

e reactivity: agents perceive their environment, (which
may be the physical world, a user via a graphical user
interface, a collection of other agents, the INTERNET,
or perhaps all of these combined), and respond in a
timely fashion to changes that occur in it;

e pro-activeness: agents do not simply act in response to
their environment, they are able to exhibit goal-directed
behavior by taking the initiative." The Wooldridge and
Jennings definition, in addition to spelling out
autonomy, sensing and acting, allows for a broad, but
finite, range of environments. They further add a
communications requirement.

In general, cognitive agents have some sort of behavioral
pattern, that can be described through modal logic,
equations, evolutionary algorithms and so forth. In order to
make the agents able to learn and improve themselves, some
reinforcement algorithms can be embedded into their
structure.

ACTION SELECTION AND REINFORCEMENT
LEARNING FOR THE AGENTS

The action selection problem at time t+1, along with the goal
selection, at a macro (aggregate) level, are central topics,
when the agents must “learn” how the models works, by
experimenting on it and being able to act as a decision
support system for human users.

For action selection we do not simply mean the problem of
choosing which action to take at a micro level (agent level),
but also which one, among the possible goals, to select. The
first level of detail is typical for reactive agents; in fact they
don’t have any goals, if not those imposed by the external
environment. The cognitive agents feature both levels of
detail. In this work, the action selection problem is crucial

for the formal definition of the involved agents, especially
when they are employed as a decision support system, thus
requiring some learning ability.

The goals could be combined to form higher level objectives
or, on the contrary, be incompatible among them. In order to
decide which actions to take, it’s necessary to evaluate the
utility for each of them; specific Reinforcement Learning
(RL) algorithms are used for this purpose. These transform
quantitative data (the payoff) in behavioural patterns for the
agents.

An agent endowed with some RL algorithm, when in a
particular state of the world (x), makes an action (a) and gets
a payoff (r), calculated by a reward function based on the
consequences of the action itself. Through a trial & error
mechanism the agent learns what are the actions that
maximise this numerical value. An effective RL algorithm is
the one called Q-learning [Watkins, 1992]: an agent “lives”
in a world modelled as a Markovian Decision Process
(MDP), that’s a set of states X, in which some actions from
the set A can be done. For a state x, belonging to X, and an
action a, belonging to A, there exist a probability function

P . . .
() , determining the transaction probability towards a
new state y. At the same time, for each couple of possible x

and a, there exist another probability function P (r),
determining the payoff — or reward — r, generated by the
action. We obviously have that:

P, (=1
@

And that:

> P, (r)=1
r 3)

The Q-learning algorithm builds the so called Q-values,
Q(x,a), by considering not only the payoff of a singular
action, but also the expected discounted sum of future
payoffs obtained by taking action a from state x and
following an optimal policy thereafter. So we have that in
each time-step t:

R=r(t)+A*r(t+ D)+ A *r(t +2) +.... @)

where 4 <1 is the discount factor.

By defining policy (77) a set of action rules, given a
state, we have that by following that policy, the total
discounted reward at time t equals the previous formula with
E(r) instead of r, that’s its expected value defined as:

E(r)= r(x,a)* P ()
! (%)
Besides acting as a decision support system for human
learners experiencing with the model, artificial agents can be
used to supervise the decision taken by learners, in order to
interpret them in a cognitive way. For example, in the
previously mentioned enterprise accounting model, some

160

users could immediately pursue an high profit, while others
could be concerned first with the expansion of their
enterprise on new markets. Others could choose to improve
industrial plants, while others could want to differentiate
production and invest on research & development and
marketing. All these decisions are complex, since they are
determined by the combination of many different variables.
Sometimes the learners won’t even realize that they are
pursuing a strategy instead of another one, and they often
won’t foresee what the selected strategy could bring.

That’s where the motivational model is employed; this is
based on a function called wellbeing, where the intensity of
the motivation to take a certain decision comes from the
combination of two factors: internal drive and in a limited
way, some external stimuli. We have that:

M, =D, +w, ©)

In order to give more relevance to the first term, an
activation threshold can be used, such as:

D, <L =M, =0
if i i i

ifDi>Li:>Mi:Di+Wi 7

The wellbeing variable is calculated as the difference
between the highest possible value and the sum of the

motivational drives, weighted by a factor & which
represent in a cognitive way the personality of the human
agent (the weight that the learner gives to the single
decisions). We have that:

WB =WB_max— Y a,*D,
i ®)

The agents can also constitute some parts of the model itself;
in the considered enterprise accounting model, some reactive
agents can form the supply chain, or the warehouses, or even
the competitors operating on the same market.

When dealing with reactive agents, the action selection
problem is to be found at a macro (aggregate) level, i.e.:
population level. If reactive agents are the competitors of
human learners in the simulated world, they could have a
fixed rule of behavior over time. Some evolutionary
algorithms could be embedded in the agents, so that the best
players on the market could merge, to form some other
artificial players with an even better behavior.

In this way it’s possible to start with a population of agents
with a random behavior, facing the standard decisions in the
model, and select — through the various “generations” — the
best ones. So it’s not the single agent that selects his behavior
by updating its own policy (that remains the same, being the
agent a reactive one), but the population that evolves over
time, through the mechanism of reproduction and mutation.
This is an approach often used when the rules of the
environment are given and the main task is to observe some
emerging aggregate behavior arising from simple entities,
i.e.: reactive agents. Since these agents does not feature a
goal based — pro-active — behavior, the way they act tends to

be deeply dependent on the choices made by the designer. In
order to design flexible systems, the aggregate behavior (at
population level, i.e.: macro level) can be made self-adaptive
through the implementation of an evolutionary algorithm
(EA). In this case the agents will have a wired random
behavior at the beginning, and evolve according to the
environment in which they act, through a selection
mechanism.

EA derive from observations of biological evolution. Genetic
Algorithms (GA) [Holland, 1975] are inspired by Darwin's
theory of evolution, often explained as "survival of the
fittest": individuals are modelled as strings of binary digits
and are the encode for the solution to some problem. The
first generation of individuals is often created randomly, and
then some fitness rules are given (i.e. better solutions for a
particular problem), in order to select the fittest entities. The
selected ones will survive, while the others will be killed;
during the next step, a crossover between some of the fittest
entities occurs, thus creating new individuals, directly
derived from the best ones of the previous generation. Again,
the fitness check is operated, thus selecting the ones that give
better solutions to the given problem, and so on. In order to
insert a random variable in the genetic paradigm, that’s
something crucial in the real world, a probability of mutation
is given; this means that from one generation to the next one,
one or more bits of some strings can change randomly. This
creates totally new individuals, thus not leaving us only with
the direct derivatives of the very first generation. GA have
proven to be effective problem solvers, especially for multi-
parameter function optimization, when a near optimum result
is enough and the real optimum is not needed.

CONCLUSION AND FUTURE DIRECTIONS

A cognitive business game has been presented in this paper,
used to form learners in the Universities and schools. The
structure of the model is built on the theory of System
Dynamics, by using the concept of stocks and rates, and
considering the variations of the stocks as the difference
among the input and output rates, multiplied by a delta T, a
very short time interval.

The inner structure of the model has been briefly described
in the paper, along the main sub-systems tied to form the
whole.

The users of the system (called “learners”) must take
decisions at each time step, after which the system calculates
the corresponding results, showing them according to the
principles of double entry accounting.

Some agent based paradigms are then described as a future
development for the system itself. The agent based
framework will constitute a form of virtual tutorship for the
learners. The agents act as a decision support system for the
decisions to be taken, and can explain some cause/effect
relations. The agents themselves learn how the model work
by practicing it, through some reinforcement learning
techniques, and are then able to assist the learners in the
decision process.

161

ACKNOWLEDGMENTS

I would like to gratefully acknowledge the key support of
prof. Gianpiero Bussolin, who originally designed and
participated to the implementation of the Enterprise
Simulator used as the starting point for many ideas described
in this paper. I would also like to thank e-business LAB and
in particular prof. Marco Pironti (University of Turin, Italy)
for his precious support. I’d also like to aknowledge the
managerial board of Fontazione CRT. Last but not least a
big thanks to Stefano Gabutti, for his precious help and
ongoing support.

REFERENCES

Singh, H. (2003): Building Effective Blended Learning Programs,
in Issue of Educational Technology, Volume 43, Number 6,
Pages 51-54.

Simon, H. A. (1996): The Sciences of the Artificial, (third ed.).
Cambridge, MA, MIT Press

Nwana, H.S. (1996): Software Agents: an Overview, in Knowledge
Engineering Review, Vol. 11, N. 3, pp.1-40, Cambridge
University Press.

Sutton, R. S. (1998): Reinforcement Learning: an Introduction,
MIT press

Watkins, C. J. C. H., Dayan P. (1992): O-Learning, Sprinter edt.

Gadanho S. C. (2003): Learning behavior-selection by emotions
and cognition in a multi-goal robot task. The Journal of
Machine Learning Research. Volume 4 Pages: 385 — 412. MIT
Press Cambridge, MA, USA.

Holland J.H. (1975): Adaptation in natural and artificial system,
Ann Arbor, The University of Michigan Press

Woolridge, M., and Jennings, N. (1995): Intelligent agents: Theory
and practice. Knowledge Engineering Review 10(2). pp. 115-
152

BIOGRAPHY

MARCO REMONDINO got his Master Degree in
Economics at the beginning of 2001, with 7/0/110 cum
Laude et Mentione. Some months later, he started a PhD in
Computer Science, during which he delved into theoretical
studies about the structure of different software agents,
namely the reactive and deliberative (BDI) ones. He
completed his PhD in January 2005.

After that, he was awarded a two-year research scholarship
from ISI Foundation, for the Lagrange Project on Complex
Systems, during which he applied agent based paradigms to
design several models in different scientific fields, namely
Game Theory, Biology, Economics and Enterprise
Simulation.

At present, he holds a post-DOC research fellowship from
University of Turin, Department of Computer Science.

His main research interests are Agent Based Modelling,
different paradigms for agents and their integration,
computer simulation, Social Systems, emergent properties
for Complex Systems, Social Networks, Action Selection,
agent learning through Neural Networks, Genetic
Algorithms, Classifier Systems, paradigms of Reinforcement
Learning, Data Mining, validation of models and E-Learning.

162

AUTHOR
LISTING

164

AUTHOR LISTING

AMOoroso A. .ceeeeeeeeeeceens 5
Bakkes S....cooeeremiirennnes 53/61
Bhikharie W.....ccceuueene... 125
2] F=To] L Y 42
Blanco Calvo J.M......... 152
Bouterse M.C......cceeuu... 88
Buchmann A.P............. 18
Cacciaguerra S. 27
Charles D. .coeeeeeceneenee. 42
Compter E..cceeeeeeeeennens 130
D’Angelo G. ...ceeeeerennns 27
Datcu D.coeeeeeeeeeeeeeeeeees 152
[X0\ R 96
EHENS A..oveeeeeeeeeeeceeeee 71/88/125/130
Feldberg F. ceuueeeenennnns 130
Ferretti S. .oovevrmiieeeenene. 115
FilNnOV.V. woeieeeeeeeeeee 48
Furini M. coveeeeeeeeeeeee. 93
Fyfe C. ceiieeeeees 42
Galway L. ceeeeecceeiineeennns 42
Glinka F. e 10
Gorlatch S. v 10
Govindaraju V.c.... 108
Hakonen H.....cccceuun..... 103
(o] 00 I 147
Huurdeman H............... 125
JOzsaB. .o, 32
Kabus P. ceceeveeiiieeeeeeees 18
Karlsson B. ..ceeeeeeeneee. 135
Karsten H. ..ccoevmveneennee. 96
Knuutila T.oeeeeeeeeeeeeeees 103
Kolb A. e 147
Konijn E. woveeeeeceiieeeenns 130
Konttiila J. ceveeiemeeeneens 96
Kotrajaras V.ccceeeeeees 37

165

Lemmers H. .cooveevveeiennns 125
Manca E.cccceeeeirennnnee. 115
Mirri S, e reee s 83
Moura J.C. ...coeeeireennnee 48
Muller-lden J.ccveeuuenee. 10
Muratori L.AA. ..coeereeeneee. 83
Palazzi C.E.ccccuuuneee 115
Parmeggiani F. 115
Peltola J....coeemvrenirennnnne. 96
Ploss A. coreeeeieeecereeeeees 10
Pozzer C.T..cevreirennee. 135
Pritzkau A. ..coveeeeereeeeeees 147
Ramalho G.L. 48
Rawat A. ..ccoveeireireeee, 76
Remondino M. 157
Rezk-Salama C............. 147
Roccetti M...ccoveeeereennnneee 115
ROSSI D. coveeeeeecreeieeeeeee 139
Rothkrantz L.J.M........... 152
Salomoni P. .ccoveeeiveennnns 83
Schadd F. ..ooveeeeierreeee. 61
Siebra C.A. weerreeeeees 48
Simatic M...oecceiveeireeannns 76
Skata J.-E. eeerrecireennns 96
Smed J. i 103
Spronck P. ..coeveeeeeeennnnnn. 53/61
Tedesco P.C...ueeeeveennnns 48
Thunputtarakul W. 37
Todt S.T.eereeeereecrreeaes 147
Turrini E. coveeevveiveeieeeees 139
van de Watering M........ 125
van der Blom L. 53
Vellinga P. .viiiiiiiiennn. 125
Venot S...eeveeieveeeees 96
Vyas D. i 7
Weber R.T. coovevieeieeeennes 48
Yampolskiy R.V. 108

