4" INTERNATIONAL NORTH-AMERICAN CONFERENCE

ON
INTELLIGENT GAMES AND SIMULATION

GAMEON-NA’2008

EDITED BY

Jorg Kienzle

Hans Vangheluwe

And

Clark Verbrugge

AUGUST 13-15, 2008

McGILL UNIVERSITY
MONTREAL, CANADA

A Publication of EUROSIS-ETI

Printed in Ghent, Belgium
|

Cover art was reproduced by kind permission of EA Montreal (design by Martijn Steinrucken.
rendering by Juan Lema)

4™ International North-American Conference
on

Intelligent Games and Simulation

MONTREAL, CANADA

AUGUST 13-15, 2008

Organized by
ETI
Sponsored by
EUROSIS
Co-Sponsored by
Ghent University
GR@M
UBISOFT
Larian Studios

GAME-PIPE

The MOVES Institute

Hosted by
McGill University

Montreal, Canada

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

EDITORS

Conference Chairs
Jorg Kienzle, McGill University, Montreal, Canada
Hans Vangheluwe, McGill University, Montreal, Canada
Clark Verbrugge, McGill University, Montreal, Canada

PROGRAMME COMMITTEE

Game Development Methodology
Track Chair: Licinio Roque, University of Coimbra, Coimbra, Portugal
Joaquim Ramos de Carvalho, University of Coimbra, Portugal
Esteban Clua, Universidade Federal Fluminense, Brasil
Gabriele D'Angelo, University of Bologna, Bologna, Italy
Oscar Mealha, University of Aveiro, Portugal

Physics and Simulation

Graphics Simulation and Techniques
Stefano Ferretti, University of Bologna, Bologna, Italy
Yan Luo, National Institute of Standards and Technology, USA
lan Marshall, Coventry University, Coventry, United Kingdom
Marco Roccetti, University of Bologna, Bologna, Italy

Facial, Avatar, NPC, 3D in Game Animation
Marco Gillies, University College London, London, United Kingdom
Yoshihiro Okada, Kyushu University, Kasuga, Fukuoka, Japan
Paolo Remagnino, Kingston University, Kingston Upon Thames, United Kingdom
Joao Manuel Tavares, FEUP, Porto, Portugal .

Rendering Techniques
Sushil Bhakar, Concordia University, Montreal, Canada
Joern Loviscach, Hochschule Bremen, Bremen, Germany
Frank Puig, University of Informatics Sciences, Havana, Cuba

Artificial Intelligence

Artificial Intelligence and Simulation Tools for Game Design
Stephane Assadourian, UBISOFT, Montreal, Canada
Mokhtar Beldjehem, Ecole Polytechnique de Montréal, Montreal, Canada
Michael Buro, University of Alberta, Edmonton, Canada
Penny de Byl, University of Southern Queensland, Toowoomba, Australia
Antonio J. Fernandez, Universidad de Malaga, Malaga, Spain
Gregory Paull, The MOVES Institute, Naval Postgraduate School, Monterey, USA
Oryal Tanir, Bell Canada, Montreal, Canada
Christian Thurau, Technical University Dortmund, Germany
Hans Vangheluwe, McGill University, Montreal, Canada

PROGRAMME COMMITTEE

Learning & Adaptation
Christian Bauckage, Deutsche Telekom, Berlin, Germany
Adriano Joaquim de Oliveira Cruz, Univ. Federal de Rio de Janeiro, Rio de Janeiro, Brazil
Chris Darken, The MOVES Institute, Naval Postgraduate School, Monterey, USA
Andrzej Dzielinski, Warsaw University of Technology, Warsaw, Poland
Pascal Estrallier, Universite de La Rochelle, La Rochelle, France
Martina Wilson, The Open University, Milton Keynes, United Kingdom

Intelligent/Knowledgeable Agents
Nick Hawes, University of Birmingham, United Kingdom
Weniji Mao, Chinese Academy of Sciences, Beijing, P. R. China
Scott Neal Reilly, Charles River Analytics, Cambridge, USA
Marco Remondino, University of Turin, Turin, Italy

Collaboration & Multi-agent Systems
Victor Bassilious, University of Abertay, Dundee, United Kingdom
Sophie Chabridon, Groupe des Ecoles de Telecommunications, Paris, France

Opponent Modelling
Ingo Steinhauser, Binary lllusions, Braunschweig, Germany

Peripheral

Voice Interaction
Bill Swartout, USC, Marina del Rey, USA

Artistic input to game and character design
Anton Eliens, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Olli Leino, IT-University of Copenhagen, Copenhagen, Denmark
Richard Wages, Nomads Lab, Koln, Germany

Storytelling and Natural Language Processing
Jenny Brusk, Gotland University College, Gotland, Sweden
Ruck Thawonmas, Ritsumeikan University, Kusatsu, Shiga, Japan
R. Michael Young, Liquid Narrative Group, North Carolina State University, Raleigh, USA
Clark Verbrugge, McGill University, Montreal, Canada

Modelling of Virtual Words
Rafael Bidarra, Delft University of Technology, Delft, The Netherlands

Online Gaming and Security Issues in Online Gaming
Pal Halvorsen, University of Oslo, Oslo, Norway
Timo Knuutila, University of Turku, Turku, Finland
Jouni Smed, University of Turku, Turku, Finland

MMOG's
Chris Joslin, Carleton University, Ottawa, Canada
Michael J. Katchabaw, The University of Western Ontario, London, Canada
Alice Leung, BBN Technologies, Cambridge, USA
Mike Zyda, USC Viterbi School of Engineering, Marina del Rey, USA

PROGRAMME COMMITTEE

Serious Gaming

Wargaming Aerospace Simulations, Board Games etc....
Roberto Beauclair, Institute for Pure and Applied Maths., Rio de Janiero, Brazil
Henry Lowood, Stanford University Libraries, Stanford, USA
Jaap van den Herik, University of Maastricht, Maastricht, The Netherlands

Games for training
Michael J. Katchabaw, The University of Western Ontario, London, Canada
Gustavo Lyrio, IMPA, Rio de Janeiro, Brazil
Tony Manninen, University of Oulu, Oulu, Finland
Jens Miller-Iden, Universitat Munster, Minster, Germany
Maja Pivec, FH JOANNEUM, University of Applied Sciences, Graz, Austria
Roger Smith, US Army, Orlando, USA

Games Applications in Education, Government, Health, Corporate, First Responders and Science
Nicholas Graham, Queen's University, Kingston, Canada
Benjamin Lok, University of Florida, Gainesville, USA
Daniela M. Romano University of Sheffield, Sheffield, United Kingdom
Russell Shilling, Office of Naval Research, Arlington VA, USA

Games Interfaces - Playing outside the Box

Games Console Design
Chris Joslin, Carleton University, Ottawa, Canada

Mobile Gaming
Stefano Cacciaguera, University of Bologna, Bologna, Italy
Sebastian Matyas, Otto-Friedrich-Universitadt Bamberg, Bamberg, Germany

Perceptual User Interfaces for Games
Tony Brooks, Aalborg University Esbjerg, Esbjerg, Norway
Michael Haller, Upper Austria University of Applied Sciences, Hagenberg, Austria
Lachlan M. MacKinnon, University of Abertay, Dundee, United Kingdom

VI

GAME’ON-NA
2008

© 2008 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Simulation Society. Permission is
granted to photocopy portions of the publication for personal use and for the use of students providing credit is given to
the conference and publication. Permission does not extend to other types of reproduction or to copying for
incorporation into commercial advertising nor for any other profit-making purpose. Other publications are encouraged
to include 300- to 500-word abstracts or excerpts from any paper contained in this book, provided credits are given to
the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be used
in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in these Proceedings have been peer reviewed

EUROSIS-ETI Publications are I1SI-Thomson and INSPEC referenced

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Greenbridge NV,
Wetenschapspark 1, Plassendale 1, B-8400 Ostend Belgium

EUROSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400

Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium
Final Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium

EUROSIS-ETI Publication

ISBN: 978-90-77381-42-7
EAN: 978-90-77381-42-7

VIl

Preface

Welcome to Game-On 'NA 2008 the fourth American sister event of the well-
established European Game-On conference series on Al and simulation in
computer games. This year’s event is hosted by McGill University, a university
with a long tradition in multimedia, graphics and Al research and education in
Canada.

Just like previous years game Al and content-generation constitutes the main
focus of the event with applied Al coming in as the second most important factor
in game development.

As well as the peer-reviewed papers, Game-On 'NA 2008 features an invited talk
and tutorial by Eva Hudlicka, Psychometrix Associates, Blacksburg, USA entitled:
“Effective Computing for Game Development”. The second tutorial is by Joseph
M. Saur. Senior Research Scientist, Joint Systems Integration Command,
entitled: “Understanding Wargame Outcomes(and Why They Make No Sense!)“

Game-On 'NA 2008 is of course, also about making contacts in the computer
game research community and we hope you find your time at this Game-On 'NA
productive and enjoyable while also enjoying the hospitality of Montreal.

Jorg Kienzle, Hans Vangheluwe and Clark Verbrugge
Conference Chairs

McGill University

Montreal, Canada

CONTENTS

Preface ... e IX
Scientific Programme ... 1
AUthOr LiSting......cccoiiiiniiieeeeeeeerrrr s 115
INVITED SPEECH

Affective Computing for Game Development
Y= T [0 o | T = 5
PATH FINDING AND MAPS

A Territory based Path Finding Approach for Computer Games
N 1= 1= T K= Ta o JE= Ta T I B =T o T o = S 15

Dynamic Motion Patches in Configurable Environments for Character
Animation and Path Planning

Kelson Gist and Xin Lisssssssssssssssssssssssssssssssssssmsmssssssssssssssssssssss 21
Playable Maps /Sensitive Maps: Materializing the Learner’s Mental Map
Sandro Varano, Jean-Claude Bignon and Didier Bur.......ccccccieeemmnnnnnnnes 30
CONTENT ADJUSTMENT

Content-Adjustment Mechanism for Console Gaming
NIE=T1E= T =T aTo J= T To I N F= T o To TN o1 o N 37

An Iterated Subdivision Algorithm for Procedural Road Plan Generation
Nicholas Rudzicz and Clark Verbruggeccccerermnnnrsssmmmssiinssssssssssssssssssssssssnas 40

Wall-Building in RTS Games

Abhishek Chawan and Dmitri VOIPEr ..euuuiieimieiieeeiriee s s s ss s s s e s ssssss s snssssnnns 48
INTERACTION AND IMMERSIVE GAMEPLAY

Towards Immersive Multimodal Gameplay

Mitchel Benovoy, Mark Zadel, Rafa Absar, Mike Wozniewski and
Jeremy R.COOPEIrSIOCK. . uumurmemrrerrmrrrrrrrrrsssnnnnnnnnnnsnnnns 57

Xl

CONTENTS

Modelling Highly-Structured Turn Based Games Using Interaction Beliefs
N. B. Szirbik, G. B. Roest and M. Stuitcccccerriiricsrseerrrrssccsseeee e ee e e 63

Using Genetic Algorithms to evolve Character Behaviours in Modern
Video Games
T. Bullen and M. Katchabaw ... 68

GAME SCRIPTING
Using Lua as Script Language in Games Coded in Java
Gustavo Henrique Soares de Oliveira Lyrio and

Roberto de BeauUCIair SEIXAS ..uueevireeurrrrenrrrensssrensssrenssrresssrsesssressssrensssrensssrsnsssres 79

Automating Cinematics and Cut Scenes in Video Games through
Scripting with Active Performance Objects

V. Bonduro and M. KatCha@bDaWccieeirreiresirensrensiressressrsssresssessssnsssnsssesssensssnsses 83
Generation of Variations in Repetitive Motion using Bilinear Factorization
Chao Jin, Thomas Fevens and Sudhir MUQUIcieeiiemeiiimeiiiresciresssesssesensssnnes 91
GAME Al

Variable Resolution A*
Kyle Walsh and Bikramijit Banerjee....uueemuuerrrerrrrrrrrememmmnssssssssrsrsssssmmsssssssssssseenes 103

Goal Oriented Behaviour Trees: A new Strategy for controlling Agents

in Games
Yingying She and Peter Grogonoccccceeeeerriisses 108

Xl

SCIENTIFIC
PROGRAMME

INVITED
SPEECH

AFFECTIVE COMPUTING FOR GAME DESIGN
Eva Hudlicka
Psychometrix Associates, Inc.
1805 Azalea Drive
Blacksburg, VA, 24060 US
E-mail: hudlicka@ieec.org

KEYWORDS
Affective Computing, Affect-Focused Game Design,
Affective Gaming, Serious Games

ABSTRACT

Affective gaming has received much attention lately, as the
gaming community recognizes the importance of emotion in
the development of engaging games. Affect plays a key role in
the user experience, both in entertainment and in ‘serious’
games. Current focus in affective gaming is primarily on the
sensing and recognition of the players’ emotions, and on
tailoring the game responses to these emotions. A significant
effort is also being devoted to generating ‘affective behaviors’
in the game characters, and in player avatars, to enhance
their realism and believability. Less emphasis is placed on
modeling emotions, both their generation and their effects, in
the game characters, and in user models representing the
players. This paper discusses how the emerging discipline of
affective computing contributes to each of these three elements
of affective game design, with emphasis on the importance of
affective modeling. The paper provides a summary of a
conference tutorial whose aim is to enable game designers to
make informed choices about where to incorporate emotion in
games, and provide information about existing data and
theories from the affective sciences, and relevant methods and
techniques from affective computing, to support affect-focused
game design.

1.0 INTRODUCTION

Affective gaming has received much attention lately, as the
gaming community recognizes the importance of emotion in
the development of more engaging games (Becker et al. 2005;
Gilleade et al. 2005; Sykes, 2004). Emotion plays a key role in
the user experience, both in entertainment, and in ‘serious’
games developed for education, training, assessment, therapy
or rehabilitation. Current focus in affective gaming is
primarily on the sensing and recognition of the players’
emotions, and on tailoring the game responses to these
emotions; e.g., minimizing frustration, ensuring appropriate
challenge (Gilleade and Dix 2004; Sykes and Brown 2003). A
significant effort is also being devoted to generating ‘affective
behaviors’ in the game characters, to enhance their realism
and believability. Less emphasis is placed on modeling

emotions, both their generation and their effects, in the game
characters themselves, and in user models representing the
players.

This paper discusses each of these elements of affective
gaming, and outlines how the emerging discipline of affective
computing (Picard 1997) can contribute to integrating emotion
in game design. The three core areas of affective computing
provide methods and techniques directly relevant to affective
game design: emotion sensing and recognition; computational
models of emotion; and emotion expression by synthetic agents
and robots. This paper emphasizes the importance of affective
modeling in particular, both as a basis for more realistic
behavior of game characters, but also as a means of
developing more realistic and complete models of the players,
to enable real-time affect-adaptive gameplay, and to enable the
game system to induce a wide range of desired emotions in the
players.

The paper summarizes a conference tutorial that introduces
these three core areas of affective computing, and highlights
their relevance to the development of engaging and effective
games. The aim of the tutorial is to provide sufficient
information about affective computing methods and
techniques, and data and theories from the affective sciences,
to enable game designers to make informed choices about
where and how to incorporate emotion in games.

2.0 THE ROLES OF EMOTIONS IN GAMING

Emotions are critical in game design. One only has to
eavesdrop on a group of kids huddled over a Nintendo DS to
hear “AWWW! I GOT KILLED” or “YES!!! I GOT
ANOTHER LIFE” to get a sense of the internal affective
drama engendered by gaming. Players become frustrated
when the game does not go well, pleased with themselves
when they “beat a level”, or may turn away in disgust when
they encounter a seemingly insoluble problem.

Players’ emotions can be triggered by the gameplay events
(e.g., finding a treasure), by behavior of a game character, or
as a result of interaction with the game (e.g., frustration when
the game is too difficult). Emotions can be conveyed to the
player by the game character behavior, and by the look-and-
feel of the game environment; e.g., contrast the intense, high-
arousal graphics of DOOM, the mysterious and foreboding
environment of Myst, and the lighthearted Mario games.

The degree of explicit focus on players’ emotions in gaming
varies. Players’ emotions may be a “side effect” of the game,

with not much conscious thought given to emotion during
design: as long as the game is more ‘fun’ than ‘frustrating’,
the players remain engaged and their emotions can be ignored.
The players’ emotions can also function as a means-to-an-end,
to control the players’ engagement within the game. This
requires more systematic attention to the players’ affective
reactions. This can be achieved through an “open-loop”
approach, one that does not require the game system to sense
the player’s emotions; e.g., through carefully structured levels,
plot lines and sequences of increasingly difficult actions
required to achieve the ultimate game goal, or through game
character behavior such as taunting or encouragement. In
contrast to this, the player’s emotions can be incorporated into
a game in a “closed-loop” manner, where they are sensed and
recognized by the game system, and some aspect of the game
is modified as a function of the player’s state: the game is
made less challenging if the player becomes frustrated and
more challenging if s’/he becomes bored, the behavior of the
game characters changes to accommodate the player’s
affective state, or the game situation is changed to adapt to the
player’s emotion (e.g., a shift to a less stressful ‘place’ within
the game). Here player’s emotion is a key factor, actively
manipulated to ensure engagement. This type of dynamic
affective adaptation (affective feedback (Bersak et al. 2001))
is the focus of current affective gaming efforts (Becker et al.
2005; Gilleade et al. 2005). Finally, affective games can be
applied in therapeutic contexts, where the player’s emotions
are the central focus of the game; e.g., the achievement of a
particular emotional state (e.g., happiness, pride) or the
reduction of some undesirable state (e.g., fear, anger). Here
the recognition of the players’ emotions is essential to support
the selection of appropriate gameplay, either affect-adaptive or
affect-inducing.

Affect-inducing elements can be incorporated into multiple
aspects of the game, including the look-and-feel and dynamics
of the game environment, temporal and resource constraints
on player behavior (e.g., requirements to complete a difficult
task within a short timeframe designed to induce stress),
choice of game tasks or situations provided to the player (e.g.,
casier tasks to build confidence, difficult task to challenge)
and their integration within the overall plot or game narrative,
as well as the appearance and behavior of the game characters
or the players’ avatars.

A range of issues must be addressed by the game designer.
In game character development, the game designer should be
clear about the following: What emotions, moods and
personality traits should they express, when, and how? Are
deep models of emotion necessary? Do the characters need to
affectively respond to all situations or can their affective
behavior be scripted to respond to selected game and user
events? How realistic do the affective expressions need to be
to make the game characters believable and maintain player
engagement? Which expressive modalities should be used
(e.g., speech tone and content, behavior selection, gestures,
facial expressions)? Should the game characters’ behavior be
directed to the player, other game characters or the game
environment in general?

Regarding the affect-adaptive gameplay, the designer needs
to be clear about the following: What role do the player’s
emotions play in the overall gameplay (e.g., side effect of the
game vs. central focus in therapeutic games)? Which player
emotions or moods need to be recognized and which
modalities and signals are most appropriate for their
recognition (e.g., physiological signals, facial expressions,
player behavior within the game)? Does the player’s
personality need to be assessed? Which elements of the
gameplay should be adapted (e.g., narrative and plot changes,
game character behavior, game tasks)? What information
about the player’s affective makeup is necessary to enable
these adaptations?

The remainder of this paper, and the associated conference
tutorial, discuss how the emerging discipline of affective
computing, and existing research in the affective sciences
(psychology and neuroscience), help provide answers to these
questions, and thereby support affect-focused game design.

3.0 WHAT DO WE KNOW ABOUT EMOTIONS?

Emotion research in the affective sciences over the past 20
years has produced data, conceptual and computational
models, and methods and techniques that are directly relevant
to affective computing and affective human-computer
interaction, and to affective game development. The emerging
findings inform sensing and recognition of user emotion by
machine, computational affective modeling, and the
generation of expressive affective behaviors in synthetic
agents and robots. This section summarizes some of the key
findings relevant for affective game design.

Definitions

When searching for a definition of emotions, it is interesting to
note that most definitions involve descriptions of
characteristics of affective processing (e.g., fast,
undifferentiated processing), or roles and functions of
emotions. The latter are usefully divided into those involved in
interpersonal, social behavior (e.g., communication of intent,
coordination of group behavior, attachment), and those
involved in intrapsychic regulation, adaptive behavior, and
motivation (e.g., homeostasis, goal management, coordination
of multiple systems necessary for action, fast selection of
appropriate adaptive behaviors). The fact that emotions are so
often defined in terms of their roles, rather than their essential
nature, underscores our lack of understanding of these
complex phenomena. Nevertheless, emotion researchers do
agree on a high-level definition of emotions, as the
“evaluative judgments of the environment, the self and other
social agents, in light of the agent’s goals and beliefs” and the
associated distinct modes of neural functioning reflected
across multiple modalities (e.g., cognitive, physiological,
behavioral) and coordinating multiple cognitive and
behavioral subsystems to achieve the agent’s goals.

Multiple Modalities

A key characteristic of emotions is their multi-modal nature,
which has direct implications for both sensing and recognition
of player emotion, and behavioral expression of emotions by
game characters. In biological agents, emotions are manifested
across four interacting modalities. The most visible is the
behavioral / expressive modality; e.g., facial expressions,
speech, gestures, posture, and behavioral choices. Closely
related is the somatic / physiological modality - the
neurophysiological substrate making behavior (and cognition)
possible (e.g., changes in the neuroendocrine systems and their
manifestations, such as blood pressure and heart rate). The
cognitive / interpretive modality is most directly associated
with the evaluation-based definition of emotions above, and
emphasized in the current cognitive appraisal theories of
emotion generation, discussed below. Finally, there is the
experiential / subjective modality: the conscious, and
inherently idiosyncratic, experience of emotions within the
individual.

Understanding the ‘signatures’ of specific emotions across
these multiple modalities provides guidance for sensing and
recognition of player emotions, and for the generation of
affective behavior in agents, as will be discussed below in
section 4.

Affective Factors

The term ‘emotion’ can often be used rather loosely, to denote
a wide variety of affective factors, each with different
implications for sensing and recognition, modeling and
expression. Emotions proper represent short states (lasting
seconds to minutes), reflecting a particular affective
assessment of the state of self or the world, and associated
behavioral tendencies and cognitive biases. Emotions can be
further differentiated into basic and complex, based on their
cognitive complexity, the universality of triggering stimuli and
behavioral manifestations, and the degree to which an explicit
representation of the agent’s ‘self’ is required (Ekman and
Davidson 1994; Lewis 1993). The set of basic emotions
typically includes fear, anger, joy, sadness, disgust, and
surprise. Complex emotions such as guilt, pride, and shame
have a much larger cognitive component and associated
idiosyncracies in both their triggering elicitors and their
behavioral manifestations, which makes both their detection
and their expression more challenging. Moods reflect less-
focused and longer lasting states (hours to days to months).
Finally, affective personality traits represent more or less
permanent affective tendencies (e.g., extraversion Vvs.
introversion, aggressiveness, positive vs. affective
emotionality).

Emotion Generation and Emotion Effects

While multiple modalities play a role in emotion generation
(Izard 1993), most existing theories (and computational
models) emphasize the role of cognition, both conscious and
unconscious, in emotion generation, termed the ‘cognitive

appraisal’ theories of emotion (Roseman and Smith 2001). A
key component of most appraisal theories is a set of domain-
independent appraisal dimensions which capture aspects of the
stimuli and the assessed situation the agent is facing, such as
novelty, urgency, likelihood, goal relevance and goal
congruence, responsible agent and the agent’s ability to cope
(Ellsworth and Scherer 2003; Smith and Kirby 2000). This
approach to appraisal, also termed componential model of
emotions, provides an elegant conceptualization of the
generation process and facilitates modeling. If the values of
the dimensions can be determined, the resulting vector of
‘appraisal dimensions’ can readily be mapped onto the
emotion space defined by these dimensions, which in turn
provides a highly-differentiated set of possible emotions.

Less understood are the processes that mediate the effects of
the triggered emotions. The manifestations of specific
emotions in behavior are certainly well documented, at least
for the basic emotions; that is, the associated facial
expressions, gestures, posture, nature of movement, speech
content and tone characteristics. Some effects on cognition are
also known; e.g., fear reduces attentional capacity and biases
attention toward threat detection (Isen 1993; Mineka et al.
2003)). However, the mechanisms mediating these observed
effects have not yet been identified. The interactions among
multiple modalities make this a particularly challenging
problem.

Three broad categories of theories postulate specific
mechanisms mediating emotion effects. Spreading activation
models, such as Bower’s “network theory of affect” (Bower
1992; Derryberry 1988), were developed to explain the
phenomenon of mood-congruent recall. These conceptual
models suggests that emotions can be represented as nodes in
a network that contains both emotions and cognitive schemas.
When an emotion is activated, it co-activates (via spreading
activation) schemas with similar affective tone. The
componential theory suggests that the domain-independent
appraisal dimensions that mediate emotion generation map
directly onto specific elements of affective expressions, such
as the facial musculature; e.g., novelty correlates with
eyebrow raising, pleasantness with raising of lip corners and
eye lids (Scherer and Ellgring 2007), and possibly even onto
emotion effects on cognition (Lerner and Tiedens, 2006). The
parameter-based models, proposed independently by a
number of researchers (e.g., Hudlicka 1998; Matthews and
Harley 1993; Ortony et al. 2005; Ritter and Avramides, 2000),
suggest that affective factors act as parameters inducing
patterns of variations in cognitive processes. The parameter-
based models appear consistent with recent neuroscience
theories, suggesting that emotion effects on cognition are
implemented in the brain via global effects of
neuromodulatory transmitters that act systemically on multiple
brain structures (Fellous 2004).

4.0 EMOTION SENSING, RECOGNITION AND
EXPRESSION: EMOTION SIGNATURES ACROSS
MULTIPLE MODALITIES AND TIME

The multi-modal nature of emotions, and their evolution over
time, both facilitate and constrain recognition of emotions in
players, and generation of expressive affective behavior in
game characters. Many emotions have characteristic multi-
feature, multi-modal ‘signatures’ that serve as basis for both
recognition and expression; e.g., fear is characterized by
raising of the eyebrows (facial expression), fast tempo and
higher pitch (speech), threat bias attention and perception
(cognition), a range of physiological responses mobilizing the
energy required for fast reactions, and of course characteristic
behavior (flee vs. freeze). Identifying such unique emotion
signatures is a key challenge in emotion recognition by
machines. Once identified, the constituent features guide the
selection of appropriate (non-intrusive) sensors, and the
algorithms required for the associated signal processing to
map the raw data onto a recognized emotion. For example,
frustration can be identified with a high degree of accuracy
(~80%) by combining facial expression analysis, posture, skin
conductance and mouse pressure data (Kapoor et al. 2008).

The multiple modalities thus facilitate recognition by
providing multiple “channels” of information, and options for
the selection of the best channel for a particular application.
Affective gaming presents a unique set of constraints on
recognition, by requiring non-intrusive sensors and precluding
methods that require fixed player positions. For example,
sensors that detect arousal, a key component of emotions, such
as finger-tip caps to detect galvanic skin response or heart-rate
monitors, are not optimal for gaming, nor are facial
recognition systems that require the player to remain in a fixed
position. Instead, emotion recognition in gaming emphasizes
sensors that can be readily incorporated into existing game
controls; e.g., gamepad pressure to detect arousal (Sykes and
Brown 2003). Products are also emerging that offer helmet-
embedded sensors combining multiple channels (EEG, facial
electromyogram, blink rate, heart rate, head motion and skin
temperature) to recognize game-relevant player states, such as
engagement vs. boredom (e.g., hitp:/www.emotiv.com/,
http://emsense.com/). The advent of movement-oriented
controls, such as those in the Wii, promises to provide a rich
set of affective sensors based on movement quality and
haptics.

The identification of the most diagnostic emotion features
also guides the selection of best expressive ‘channels’ to
convey a particular emotion to the player via game character
behavior. In expression however, multiple modalities also
present a challenge, by requiring that expression be
coordinated and synchronized across multiple channels to
ensure character realism. For example, expression of anger
must involve consistent signals in speech, movement and
gesture quality, facial expression, body posture and specific
action selection. However, for a given game character or
situation, all of these channels may not be required; e.g.,
“cartoonish” characters may be able to express many basic
emotions (joy, anger, sadness) with minimal changes in

expression, movement and behavior. However, as games
mature and proliferate into more ‘serious’ applications, these
coordination requirements will become more stringent.

The temporal dimension of emotions facilitates recognition
and presents challenges for expression. Temporal affective
data increase recognition accuracy. In some channels (e.g.,
facial expressions), recognition is much higher for video clips
than for still photographs. In many modalities, the temporal
dimension is an essential component (e.g., speech, movement,
behavior monitoring, but also physiological data).

In affective expression, the temporal dimension presents a
challenge by requiring realistic evolution of the affective state,
and transitions among states. This requires data regarding
how the affective dynamics are reflected in changes in facial
expressions, speech and movement, as the emotion intensity
ramps up and decays. Particularly challenging are the
depictions of mixed affective states (e.g., sadness and joy, fear
and anger) and transitions among states, which may need to be
gradual for some situations but dramatic for others. For some
modalities, these dynamics are well-documented (e.g., the
facial action units vocabulary of facial expressions (Ekman
and Friesen 1978) that define the onset and offset patterns
(Cohn et al. 2005)), but in general, these dynamics are
determined empirically and require significant tuning.

The sensing and recognition of emotions, and the expression
of their myriad of manifestations in game characters, thus
require fundamental knowledge of emotions and their unique
multi-modal signatures, selection and integration of sensors
satisfying the desired constraints (e.g., degree of intrusiveness
allowed, cost and ease of use, data quality, post-processing
requirements of the raw data), selection or development of
algorithms for data enhancement and filtering, and for pattern
recognition and classification. Given the idiosyncratic nature
of affective expression, the use of player baseline data is
essential, and typically user-specific training of the
recognition algorithms is required to achieve the desired level
of accuracy.

A key element in this process is the identification of the
semantic primitives for each sensed channel, and a
development of an associated vocabulary of primitives, whose
distinct configurations can then characterize the different
emotions (Hudlicka, 2005). Examples of such semantic
primitives are the facial action units comprising the Facial
Action Coding System developed by Ekman and Friesen
(1978), the ‘basic posture units’ identified by Mota and Picard
(2004) and used to identify boredom and engagement during
training, and patterns of pitch and tonal variations in speech
used to identify basic emotions (Petrushin 2000).

The conference tutorial discusses specific emotion
signatures, and associated methods and approaches for
recognition and expression, in more detail.

5.0 COMPUTATIONAL AFFECTIVE MODELING AND
AFFECTIVE USER MODELS

The past 15 years have witnessed a rapid growth in
computational models of emotion and affective architectures.
Researchers in cognitive science, artificial intelligence and

human computer interaction (HCI) are developing models of
emotion for theoretical research regarding the nature of
emotion, as well as a range of applied purposes: to create more
believable and effective synthetic characters and robots, and to
enhance HCI (Becker et al. 2005; Breazeal 2005; Kapoor et al.
2008). Computational models of emotion are relevant for
game development from two distinct perspectives. First,
affective computational models enable the game characters to
dynamically generate appropriate affective behavior in real
time, in response to evolving situations within the game, and
to player behavior. Such adaptive character behavior is more
believable than ‘scripted’ behavior, and the resulting realism
contributes to an increased sense of engagement. These
models also enable the characters to consistently and
realistically portray specific emotions when the game
objective is to induce a particular emotion in the player, as is
the case in psychotherapeutic games. Second, computational
affective modeling methods can also be used to create
affective models of the players; that is, user models that
explicitly include information about the player’s affective
makeup. This includes information such as what emotional
states a player is likely to experience, information about the
behavioral indicators associated with different emotions that
can aid in their recognition by the game system, and what
game situations are likely to induce a particular emotion. Both
of these uses of computational affective modeling are briefly
described below, and elaborated in the conference tutorial.

5.1 Computational Affective Modeling

The complexity of models required to generate affective
behavior in game characters varies with the complexity of the
game plot, the characters, the available behavior repertoire of
the player within the game, and of course the game objectives
(e.g., entertainment vs. education vs. therapy). For many
games, very simple models are adequate, where a small set of
gameplay or player behavior features is mapped onto a limited
set of game characters’ emotions, which are then depicted in
terms of simple manipulations of character features (e.g.,
player fails to find a treasure and the avatar shows a ‘sad face’,
player loses to a game character and the character gloats).

Such simple models are termed ‘black-box’ models, because
they make no attempt to represent the underlying affective
mechanisms. Data available from the affective sciences
provide the basis for defining the necessary mappings
(triggers-to-emotions, emotions-to-effects). However, as the
complexity of the games increases, resulting in more involved
plots and narratives, and associated increase in the
sophistication of the game characters and richness of player
interactions, the need for more sophisticated affective
modeling arises. This may in some cases require ‘process-
models’, where explicit representations of some of the
affective mechanisms are modeled, allowing a greater degree
of generality.

In an effort to establish more systematic guidelines for
affective model development, and to facilitate analysis of
existing models, Hudlicka has recently suggested dividing the
modeling processes into those responsible for emotion
generation, and those responsible for implementing emotion

effects across the multiple modalities (Hudlicka 2008a;
2008b). Each of these broad categories of processes are then
further divided into their underlying primitive computational
tasks. For emotion generation, these include defining the
stimulus-to-emotion mapping; specifying the nature of the
emotion dynamics, that is, the functions defining the emotion
intensity calculation, as well as the ramp-up and decay of the
emotion intensity over time; methods for combining multiple
emotions, necessary for combining existing emotions with
newly derived emotions, and for selecting the most
appropriate emotion when multiple emotions are generated.
For emotion effects, these tasks include defining the emotion-
to-behavior and emotion-to-cognitive process mappings;
determining the magnitude of the associated effects on each
affected process, as well as the dynamics of these effects; and
the integration of the effects of multiple emotions, both in
cases where a residual effect of a prior emotion is still in force,
and in cases where multiple emotions are generated
simultaneously and their effects on cognition an behavior must
be integrated.

Modeling Emotion Generation

As stated above, our understanding of emotion generation is
best within the cognitive modality and most existing models of
emotion generation implement cognitive appraisal, which is
best suited for affective modeling in gaming. The discussion
below is therefore limited to these theories and models.

Many researchers have contributed to the current versions of
cognitive appraisal theories (Arnold 1960; Frijda 1986;
Lazarus 1984; Mandler 1984; Roseman and Smith 2001;
Scherer et al. 2001; Smith and Kirby, 2001). Most existing
computational models of appraisal are based on either the
OCC model (Ortony et al. 1988), or the explicit appraisal
dimension theories developed by (Scherer et al. 2001; Smith
and Kirby 2000), and outlined in section 3 above (e.g.,
novelty, valence, goal relevance, goal congruence, responsible
agent, coping potential).

A number of computational appraisal models have been
developed for both research and applied purposes (e.g., Andre
et al. 2000; Bates et al. 1992; Broeckens and DeGroot 2006;
Reilly 2006). These models typically focus on the basic
emotions (e.g., joy, fear, anger, sadness), and use a variety of
methods for implementing a subset of the computational tasks
outlined above. Most frequently, symbolic methods from
artificial intelligence are used to implement the stimulus-to-
emotion mapping, whether this is done via an intervening set
of appraisal dimensions, or directly from the domain stimuli to
the emotions. In general, the complexity of this process lies in
analyzing the domain stimuli (e.g., features of a game
situation, behavior of game characters, player behavior), to
extract the appraisal dimension values. This may require the
representation of a set of complex mental structures, including
the game characters’ and players’ goals, plans, beliefs and
values, their current assessment of the evolving game
situation, and expectations of future developments, as well as
complex causal representation of the gameplay dynamics.
Rules, semantic nets and Bayesian belief nets are some of the
most frequently used formalisms to implement this mapping.

Emotion dynamics are generally limited to calculating
emotion intensity, which is usually a relatively simple function
of a limited set of the appraisal dimensions (e.g., absolute
value of the desirability of an event or a situation multiplied
by its likelihood (Reilly 2006)), or some customized
quantification of selected feature(s) of the stimuli (e.g., a
linear combination of weighted factors that contribute to each
emotion of interest). The ramp-up and decay of emotion
intensity generally follows a simple monotonically increasing
(ramp-up) and decreasing (decay) function over time. A
variety of functions have been used in appraisal models,
including linear, exponential, sigmoid and logarithmic (Reilly
2006; Hudlicka 2008). In general, the theories and conceptual
models developed by psychologists do not provide sufficient
information to generate computational models of affective
dynamics, and guesswork and model tuning are required
during this phase of affective modeling.

The issue of integrating multiple emotions is the most
neglected, both in existing psychological theories and
conceptual models, and in computational models. Typically,
very simple approaches are used to address this complex
problem, which limits the realism of the resulting models in
any but the most simple situations. In general, intensities of
synergistic emotions (e.g., all positive or all negative
emotions) are combined via a simple sum, average, or max
functions, in some cases using customized, domain-dependent
weightings (e.g., some emotion is emphasized in a particular
situation over another emotion, possibly as a function of the
character’s personality). Each of these approaches has
limitations, which are discussed in more detail in the tutorial.
A more problematic situation occurs when opposing or
distinctly different emotions are derived (e.g., a particular
situation brings both joy and sadness). Neither the available
theories, nor existing empirical data, currently provide a basis
for a principled approach to this problem and the
computational solutions are generally task- or domain-
specific, and often ad hoc.

Modeling Emotion Effects

For modeling purposes, it is useful to divide emotion effects
into two categories: the visible, often dramatic, behavioral
expressions, and the less visible, but no less dramatic, effects
on attention, perception and cognition. Majority of existing
emotion models of emotion effects focus on the former. While
technically challenging, the behavioral effects are easier from
a modeling perspective, due to the large body of empirical
data regarding the visible manifestations of particular
emotions, and the established techniques for 3D dynamic
graphical modeling and rendering required to display these
expressions in virtual characters. We know, in general, how
the basic emotions are expressed in terms of facial
expressions, quality of movement and gestures, quality of
speech, and behavioral choices. (As with emotion generation,
the degree of variability and complexity increases as we move
from the fundamental emotions such as fear, joy, anger, to the
more cognitively-complex emotions such as pride, shame,
jealousy). While the tutorial will address both the behavioral

10

effects, and the effects on cognition, due to space limitations
the discussion below will focus on cognitive effects only.

The internal effects that emotions exert on the perceptual
and cognitive processes that mediate adaptive, intelligent
behavior are less understood than those involved in emotion
generation. This is true both for the fundamental processes
(attention, working memory, long-term memory recall and
encoding), and for higher-level processes such as situation
assessment, problem-solving, goal management, decision-
making, and learning. These processes are generally not
modeled in existing game characters, and, indeed, may not be
necessary. However, as the affective complexity of games
increases, the need for these types of models will likely
emerge, particularly so in therapeutic games, where the
assessment and triggering of specific emotions is the focus;
e.g., games designed to support cognitive-behavioral
therapies, and the associated cognitive restructuring, will
require explicit modeling of emotion effects on cognition to
implement the treatment protocols.

While data are available regarding some of the emotion
effects on cognition (see section 3), the mechanisms of these
processes have not been identified and this presents challenges
for the modeler, frequently resulting in black-box models
rather than mechanism-based process models. Nevertheless,
several recent efforts focus on the process-models of emotion
effects on cognition, most often in terms of parametric-
modification of cognitive processes (e.g., Hudlicka 2003;
2007; Ritter et al. 2007; Schaba et al. 2007). For example,
Hudlicka’s MAMID model uses a series of parameters to
control processing within individual modules in a cognitive-
affective architecture, enabling the implementation of the
observed emotion effects such as speed and capacity changes
in attention and working memory, as well as the
implementation of specific biases in processing (e.g., threat
and self-focus bias in anxiety). Several models of emotion
effects on behavior selection use a decision-theoretic
formalism, where emotions bias the utilities and weights
assigned to different behaviors (Busemeyer et al., 2007; Lisetti
& Gmytrasiewicz, 2002).

Modeling emotion effect magnitude and dynamics is
problematic, as it requires going beyond the qualitative
relationships typically available from empirical studies (e.g.,
anxiety biases attention towards threatening stimuli). In the
majority of existing models, quantification of the available
qualitative data is therefore more or less ad hoc, typically
involving some type of linear combinations of the weighted
factors, and requiring significant fine-tuning to adjust model
performance. The same is true for modeling the integration of
multiple emotions. Especially challenging for both of these
tasks is the lack of data regarding the internal processes and
structures (e.g., effects on goal prioritization, expectation
generation, planning). The difficulties associated with
characterizing these highly internal and transient states may
indeed provide a limiting factor for process-level
computational models of these phenomena.

5.2 Affective User Modeling
Affective user models are representational structures that

store information about the affective makeup of the player:
which stimuli trigger which emotions, what behaviors are
associated with different emotions, etc. Such models serve a
critical role in affect-adaptive gaming, supporting both
emotion recognition, and the generation of an appropriate
affect-adaptive strategy by the game system. Since affective
behavior can be highly idiosyncratic, affective models
typically involve a learning component, so that the player’s
behavior can be tracked over time and the important affective
patterns extracted from monitoring of the player’s state and
game interactions. For example, Player A may express his
frustration by more forceful manipulation of the game
controls, while Player B may express frustration through
increasing delays between game inputs.

The knowledge and inferencing required to support these
functionalities can take a number of forms. A useful
representation is an augmented state transition diagram or a
hidden Markov model (Picard, 1997) that explicitly indicates
the known states of the user (e.g., happy, sad, frustrated,
bored, excited), the situations and events that trigger these
transitions (e.g., in gaming context, loss or gain of points or
game resources; appearance or disappearance of a particular
game character, etc.), and the player’s behavior (or other
monitored characteristic) that indicate each emotion. The
tutorial discusses the structures, development, and use of
affective user models in more detail.

6.0 SUMMARY AND CONCLUSIONS

This paper summarized key ideas from an associated
GAMEON 08 tutorial on “Affective Computing and Game
Design”. The aim of the tutorial is to discuss how the
emerging discipline of affective computing contributes to
affect-focused game design. The paper also provided
information about existing data and theories from the affective
sciences that inform decisions about approaches to emotion
sensing and recognition, generation of affective behavior in
game characters, and computational affective modeling in
affective gaming.

Gaming researchers emphasize the importance of affective
game adaptations to the player’s emotions, to ensure
engagement and enhance effectiveness of serious games.
Today, the term ‘affective gaming’ generally means adapting
to the player’s emotions, to minimize frustration and ensure a
challenging and enjoyable experience. The methods developed
in affective computing provide many of the tools necessary to
take affective gaming to the next stage: where a variety of
complex emotions can be induced in the player, for both
entertainment and training and therapeutic purposes.
Affective computing thus directly supports all three of the
phases comprising affective gaming, as suggested by Gilleade
and colleagues: “Assist Me, Challenge Me, Emote Me”
(Gilleade et al. 2005), and the methods and techniques
developed in affective computing can serve as a foundation for
affect-focused game design.

11

7.0 REFERENCES

Andre, E., Klesen, M., Gebhard, P., Allen, S., & Rist, T. (2000).
Exploiting Models of Personality and Emotions to Control the
Behavior of Animated Interactive Agents Proceedings of IWAI,
Siena, Italy.

Amold, M. B. (1960). Emotion and personality. New York:
Columbia Univeristy Press.

Bates, J., Loyall, A. B., & Reilly, W. S. (1992). Integrating
Reactivity, Goals, and Emotion in a Broad Agent. In Proceedings of
the 14th Meeting of the Cognitive Science Society.

Becker, C., Nakasone, A., Prendinger, H., Ishizuka, M., &
Wachsmuth, I. (2005). Physiologically interactive gaming with the
3D agent Max. International Workshop on Conversational
Informatics at JSAI-05, Kitakyushu, Japan.

Bersak, D., McDarby, G., Augenblick, N., McDarby, P.,
McDonnell, D., McDonal, B. (2001). Biofeedback using an
Immersive Competitive Environment. Designing Ubiquitous
Computing Games Workshop - Ubicomp..

Bower, G. H. (1992). How Might Emotions Affect Memory? In
S. A. Christianson (Ed.), Handbook of Emotion and Memory.
Hillsdale, NJ: Lawrence Erlbaum.

Breazeal, C., Brooks, R. . (2005). Robot Emotion: A Functional
Perspective. In J.-M. Fellous & M. A. Arbib (Eds.), Who Needs
Emotions? NY: Oxford.

Broekens, J., & DeGroot, D. (2006). Formalizing Cognitive
Appraisal: From Theory to Computation. ACE, Vienna, Austria.

Busemeyer, J. R., Dimperio, E., & Jessup, R. K. (2007).
Integrating emotional processes into decision-making models. In
W.Gray (Ed.), Integrated Models of Cognitive Systems. NY: Oxford.

Cohn, J. F., Ambadar, Z., & Ekman, P. (2005). Observer-Based
Measurement of Facial Expression with the Facial Action Coding
System. In J. A. Coan & J. B. Allen (Eds.), The handbook of emotion
elicitation and assessment. NY: Oxford.

Derryberry, D. (1988). Emotional influences on evaluative
judgments: Roles of arousal, attention, and spreading activation.
Motivation and Emotion, 12(1), 23-55.

Ekman, P., & Davidson, R. J. (1994). The nature of emotion:
Fundamental questions. NY: Oxford.

Ellsworth, P. C., & Scherer, K. R. (2003). Appraisal Processes in
Emotion. In R. J. Davidson, K. R. Scherer & H.H.Goldsmith (Eds.),
Handbook of Affective Sciences. NY: Oxford.

Fellous, J. M. (2004). From Human Emotions to Robot Emotions.
AAAI Spring Symposium: Architectures for Modeling Emotion,
Stanford University, CA.

Frijda, N. H. (1986). The Emotions. Cambridge: Cambridge.

Gilleade, K., Dix, A., & Allanson, J. (2005). Affective
Videogames and Modes of A ffective Gaming: Assist Me, Challenge
Me, Emote Me. DIGRA, Vancouver, BC, Canada.

Gilleade, K. M., & Dix, A. (2004). Using Frustration in the
Design of Adaptive Videogames. ACW, Singapore.

Hudlicka, E. (1998). Modeling Emotion in Symbolic Cognitive
Architectures. A4A1 Fall Symposium: Emotional and Intelligent I,
Orlando, FL.

Hudlicka, E. (2003). Modeling Effects of Behavior Moderators
on Performance: Evaluation of the MAMID Methodology and
Architecture. BRIMS-12, Phoenix, AZ.

Hudlicka, E. (2005). Affect Sensing, Recognition and
Expression: State-of-the-Art Overview First Intl. Conference on
Augmented Cognition, Las Vegas, NV.

Hudlicka, E. (2007). Reasons for Emotions. In W. Gray (Ed.),
Advances in Cognitive Models and Cognitive Architectures. NY:
Oxford.

Hudlicka, E. (2008a). Guidelines for Modeling Affect in Cognitive
Architectures. Submitted for publication to Journal of Cognitive

Systems Research (Also: Report # 0706, Psychometrix Associates,
Inc. Blacksburg, VA).

Hudlicka, E. (2008b). What are we modeling when we model
emotion? Proceedings of the AAAI Spring Symposium - Emotion,
Personality, and Social Behavior, Stanford University, CA.

Isen, A. M. (1993). Positive Affect and Decision Making In J. M.
Haviland & M. Lewis (Eds.), Handbook of Emotions. NY : Guilford.

Kapoor, A., Burleson, W., & Picard, R. W. (2008). Automatic
Prediction of Frustration. International Journal of Human-Computer
Studies, 65(8), 724-736.

Lazarus, R. S. (1984). On the primacy of cognition. American
Psychologist 39(2), 124-129.

Lerner, J. S., & Tiedens, L. Z. (2006). Portrait of the Angry
Decision Maker: How Appraisal Tendencies Shape Anger's Influence
on Cognition. Journal of Behavioral Decision Making, 19, 115-137.

Lisetti, C., & Gmytrasiewicz, P. (2002). Can rational agents
afford to be affectless? Applied Artificial Intelligence, 16(7-8), 577-
609.

Mandler, G. (1984). Mind and Body: The Psychology of Emotion
and Stress. New York: Norton.

Matthews, G. A., & Harley, T. A. (1993). Effects of Extraversion
and Self-Report Arousal on Semantic Priming: A Connectionist
Approach. Journal of Personality and Social Psychology, 65(4), 735-
756.

Mineka, S., Rafael, E., & Yovel, 1. (2003). Cognitive Biases in
Emotional Disorders: Information Processing and Social-Cognitive
Perspectives. In R. J. Davidson, K. R. Scherer & H. H. Goldsmith
(Eds.), Handbook of Affective Science. NY: Oxford.

Ortony, A., Clore, G. L., & Collins, A. (1988). The Cognitive
Structure of Emotions. NY: Cambridge.

Ortony, A., Norman, D., & Revelle, W. (2005). Affect and Proto-
Affect in Effective Functioning In J. M. Fellous & M. A. Arbib
(Eds.), Who Needs Emotions? NY: Oxford.

Petrushin, V. (2000). Emotion Recognition in Speech Signal. 6tk
ICSLP.

Picard, R. (1997). Affective Computing. Cambridge, MA: The
MIT Press.

Reilly, W. S. N. (2006). Modeling What Happens Between
Emotional Antecedents and Emotional Consequents. 4CE, Vienna,
Austria.

Ritter, F. E., & Avramides, M. N. (2000). Steps Towards
Including Behavior Moderators in Human Performance Models in
Synthetic Environments: The Pennsylvania State University.

Ritter, F. E., Reifers, A. L., Klein, L. C., & Schoelles, M. J.
(2007). Lessons from defining theories of stress for cognitive
architectures. In W.Gray (Ed.), Advances in Cognitive Models and
Cognitive Architectures. NY: OUP.

Roseman, I. J., & Smith, C. A. (2001). Appraisal Theory:
Overview, Assumptions, Varieties, Controversies. In K. R. Scherer,
A. Schorr & T. Johnstone (Eds.), Appraisal Processes in Emotion:
Theory, Methods, Research. NY: Oxford.

Scherer, K., & Ellgring, H. (2007). Are Facial Expressions of
Emotion Produced by Categorical Affect Programs or Dynamically
Driven by Appraisal? Emotion, 7(1), 113-130.

Scherer, K., Schorr, A., & Johnstone, T. (2001). Appraisal
Processes in Emotion: Theory, Methods, Research. NY: Oxford.

Sehaba, K., Sabouret, N., & Corruble, V. (2007). An emotional
model for synthetic characters with personality 4ffective Computing
and Intelligent Interaction (ACII), Lisbon.

Smith, C. A., & Kirby, L. (2000). Consequences require
antecedents: Toward a process model of emotion elicitation. In J. P.
Forgas (Ed.), Feeling and Thinking: The role of affect in social
cognition. NY: Cambridge.

12

Smith, C. A., & Kirby, L. D. (2001). Toward Delivering on the
Promise of Appraisal Theory. In K. R. Scherer, A. Schorr & T.
Johnstone (Eds.), Appraisal Processes in Emotion. NY: OUP.

Sykes, J. (2004). Affective Gaming. Retrieved May 2008, from
http://www.jonsykes.com/Ivory.htm

Sykes, J., & Brown, S. (2003). Affective Gaming: Measuring
emotion through the gamepad. CHI Extended Abstracts.

EVA HUDLICKA is a Principal Scientist and President of
Psychometrix Associates, Inc. in Blacksburg, VA. Her
primary research focus is the development of computational
models of emotion, aimed at enhancing our understanding of
the mechanisms underlying cognition-emotion interaction, and
the nature of affective biases in decision-making. This
research is conducted within the context of a computational
cognitive-affective architecture, the MAMID architecture,
which implements a generic methodology for modelling the
interacting effects of multiple affective factors on decision-
making. She is currently exploring the applications of this
research in the development of ‘serious games’ in healthcare.
Her prior research includes affect-adaptive user interfaces,
visualization and user interface design, decision-support
system design, and knowledge elicitation. Dr. Hudlicka has
authored numerous technical articles, and book chapters. She
was recently a member of a National Research Council
committee on “Organizational Models: From Individuals to
Societies”. Dr. Hudlicka received a BS in Biochemistry from
Virginia Tech, an MS in Computer Science from The Ohio
State University, and a PhD in Computer Science from the
University of Massachusetts-Amherst. Prior to founding
Psychometrix Associates in 1995, she was a Senior Scientist at
Bolt, Beranek & Newman in Cambridge, MA.

PATH FINDING
AND
MAPS

14

A Territory based Path Finding Approach for Computer Games

Jiajia Tang and Liang Chen
Computer Science Department, University of Northern British Columbia
3333 University Way, Prince George, BC,Canada
E-mails: jromline@gmail. com, Ichen@jieee.org

KEYWORDS
Path Finding, territory based, prepared paths, path finding with
database.

ABSTRACT

A* algorithm (Dechter 1985) is the most popular method to be
used on computer games for years. By the rise of online game,
the repetition of path finding becomes a heavy load while
game proceeding.

The special character online games keep, comparing with
stand alone games, is that the ideal situation of game progress
is maximizing the executing time and minimizing other types
of time consuming, such like shutdown, maintenance and
initialization.

By taking the advantage of this particular aspect of online
game, territory based path finding approach is proposed to
decrease the time cost of present method. It shifts jobs to
preparation time and reduce loads in execution time, by
combining A* algorithm with map preparation, database
searching and computer-assisted vector drawing. With the
concept of territory, characters are actually jumping through
map during path finding process, and go straight path without
block checking in detailed path planning.

INTRODUCTION

The scenario most frequently happens in Role-playing game
(Abbreviated as RPG) is: when player intruding a mob’s
(Wikipedia 2008) scope of alert, it leave its fastness to attack
the invader. Due to the major drama of RPG, path finding is
inevitable job a developer needs to face. Until now, A*
algorithm is a most adopted method used in game.

In off-line RPG, path finding could be eliminated within the
sphere of player’s activities, but in online game, players
spreading everywhere and being in active concurrently, path
finding becomes heavy load. Maintainers do not have infinite
time to solve this problem; instead, based on the strict request
of instantaneity, they usually need to spare at least one server
from the game server cluster to do this job.

The method proposed in this paper is to reduce the load of path
finding job, by combining many technique from different
computing area to increase the efficiency of path finding work.

15

PRE-STUDY

Before introducing territorial based path finding approach, it’s
better to have basic understanding of A* algorithm.

A* algorithm is a path finding method driven from Dijkstra's
algorithm. In implementation, to use A* algorithm, there must
be a map, a start point and an end point. Path finding job starts
from start point, sets it as a checking point, and checks the
availability of neighbor point. According to the weight
cumulated from checking point back to start point and the cost
estimated to the end point, A* algorithm decides neighbors as
possible steps, puts them into path array, so called open list,
and them accordingly as new checking point. Then this
process is repeated until the end point reached. Finally, set the
least cost path as the final path. Usually the evaluating
algorithm is denoted as Equation (1).

F(n)=Hm) +Gm) (1)

Which n represents the checking point; F is the total score of
the checking point to start point and destination. H is the cost
needed from starting point to checking point. G represents the
estimation from checking point to destination.

A* algorithm originally judge path by weight factor, it is not
necessary base on grid map. But since characters are not just
be transmitted (but need to walk through) to other point, grid
map is inevitable.

The predecessor of A* is Dijkstra’s algorithm (Dijkstra 1959),
which does not adopt destination estimation. In practice, it
starts from start point, checks all the neighbor points (even
those on opposite direction), then adds appropriate candidates
into path array. The progress is repeated until reaching the end
point.

D* algorithm (Stentz 1994) is driven from A*. It adds new
factor to denote if one node in open list costs increasingly or
decreasingly. Then the algorithm could choose the path in
smarter way according to the denotation.

CONCEPT OF TERRITORY BASED PATH FINDING

Territory based path finding approach is based on A*
algorithm, combining with map partitioning, data searching
and linier drawing. Since it is not based on single approach, it
finishes its job by jumping through map in path finding
process, and pass territories straightly during run-time. In
implementation, it could be parted into 3 parts:

Area Partition

Maps of RPG usually contain large range of passable land.
Therefore, it is possible to partition them into several area
which helps rough decision of travel path. It seems a character
decide travel path by jump through area, but in practice, it still
move along every land point if necessary.

All territories are convex polygons, which could avoid any
clog between two plots within a polygon. Since every 2 plots
in the same territory could be connected by straight line, all the
plots within a territory will be reachable plots for any path
outside, as long as the path can reach its boundary.

Territory Analysis

Since polygons are not as convenient as grid unit, which could
check adjacent grid by coordinate system. “Territory path
finding” should list all the adjacent relations for each polygon
during initialization. We need set up a dominating point for
each polygon, then enumerate paths with A* between each
territory for later usage.

Runtime execution

Since paths between each two territories are listed, they could
be stored in start-end pairs in a proper structure and only
computation is needed, rather than any searching method to
find the distinct pair. The process is divided into 2 phrases.
The first step is confirming the starting and ending territories
and retrieving the path according to the pair. The second step
is linking up the sieved polygon-edged points by a linear
function. Using this approach, both searching time and
temporary memory usage are reduced.

METHOD

As mentioned previously, there are 3 major parts of work need
to perform for territory based path finding approach. From
now on, the detailed description is discussed below:

Map partition

In computer drawing field, auto partition is an important topic
for effective texture pasting. Though, now, there are functions
to perform this job, for example Silhouette (McGuire 2004), but
most of them do not fit our approach properly. The reason is
computer drawing try to mimic real scene. Texture varies
frequently for factors such as angle or light. Over partition is
acceptable. But in our approach, which based on large
accessible area, over partition will decrease the efficiency of
path finding progress.

Until now there is not an acceptable method to partition a map
automatically, do it by hand is still the best choice. A map of
RPG is not only for decoration, it contains story progress and
strategy usage. Designing a map by hand is inevitable, and it is
possible to do partition while review the design of map.

Since we will emphasize our focus on path finding approach in
this paper, auto recognition and auto partition are profession
out of our scope. Map partition for now is done by hand.

16

After the setting up of map information, it is saved according
to vertexes.

Dominating point settlement

In territory based path finding approach, a dominating point
basically is to help the estimation of weight factor such like
that A* algorithm needs. It just keeps its position within a
territory, nether too close to any side, nor exactly at the center.
Slightly away from center doesn’t make difference in large
territory. But if the partitioned territory is too small, this
approach doesn’t do much benefit than A* algorithm to path
finding job.

Therefore, we use the average value of all the vertexes to be
the center of a territory. Function works as Figure 1.

function Dom_point(vertexes)
pointset := (0,0)
while not end of vertexes
pointset := pointset + vertexes []
pointset := pointset / number of vertexes
return pointset

Figures 1: Function For Dominating Point

List of adjacent territory

List of adjacent territory is needed for further progress. Every
edge of territories is present as linear algebra according to their
vertexes data. By comparing the slope and the effective range
of each algebra, lists of adjacent territories could be filter out.

Unlike human’s vision, until now, computer still processes
only linear data. It can’t decide the adjacent just by “looking at
a 2D image”, but by scanning the whole map and checking the
adjacent relation point by point. By algebra comparing process,
map scanning is not necessary, and as mentioned previously:
this approach is based on large territories partition. In a big
map, limited algebra comparing process costs more effectively
than map scanning.

Setting territorial path

According to dominating point and adjacent territory list, each
territory can set up the cost form its dominating point to those
dominating point of adjacent territories. Then, for each two
territories set, we use A* algorithm to enumerate all the paths
in between, and record them into database.

Until now, all the work of territory based path finding
approach could be done before game starting. In fact, during
run-time execution, it is not an approach to scan a map in order
to find the path, but a data researching and linier drawing
approach.

Run-time: finding path

When a set of game server cluster is started, time for loading
settings is required before players’ login. Data of territories

based path finding should be pre-load during this preparation
time, too.

During preparation time, the original map setting is loaded, so
is map partition data for this approach. The partitioned map is
loaded as an image, and each territory is assigned a color.
When any character needs path finding, its address and
destination point on original map mapped to the points of
partitioned map, and, according to the color the points
represent, the territory each point belongs to revealed.

After starting and ending territories are decided, it’s time to
searching database to retrieve the path between them.

Run-time: drawing

According to the retrieved path between territories, planning
path across every territory in the list is needed. Since each
territory is a convex polygon, every two point within a
polygon could be connected by a straight line.

From the start, the next territory needed to be reach is know by
list, we set the starting point as checking point. Then we find
the edge of next territory, and try to find the perpendicular
function to the edge crossing the checking point. If the
intersection is within the range of the edge, it would be the
nearest position to the checking point. If it is out of the range,
the nearest vertex of the polygon on the edge would be the best
choice. We link up both points by mimic drawing line function,
set the point on the edge as a checking point, and then repeat
previous process until reaching the end point.

All steps mentioned in prior are the whole processes that
needed for territory based path finding approach. The
preparation work seems to take the major part of time for this
approach, but it doesn’t counted in run-time execution, This is
the reason this approach fit to online RPG game. A game host
is supposed to be keeping in running state as long as possible,
and the shutdown time for maintenance is expected to be short.
This means when territory based path finding approach is used,
the pre-loading time would happen barely in normal situation.
After the preparation time, players are allowed to login, and
the jobs need to be perform by this approach are merely
database searching and simple function computation.

This approach reduces the real job in run-time and spares
resource for better usage.

COMPARISON

All Dijkstra’s, A* and D* approaches are based on single
mathematic algorithms. The major difference between them
and territorial based path finding approach is the latter one
jump through territories at the progress of path finding. By
new approach, path finding job is mainly done before game
execution. While game proceeding, new approach
accomplishes path finding job by simple computation, instead
of trying to find the path step by step. In order to estimate the
improvement of new approach from pure path finding
algorithm, we designed a series of estimations based on
simplified algorithm and logically estimated cost, to compare

17

the performance of A* algorithm and territory based path
finding approach.

Cost setting

In order to make comparison, the cost of time for different
action is set in Table 1. The actual usage of each action
described below:

Table 1: Cost Setting

Action Time | Action Time
unit init

Address 1 Math calculation 3

locating

Data 1 Function calculation 20

comparison

Address locating: It represents works such like scanning data
lists or locating map address.

Data comparison: It is to defining the relation of two data as
lager than, less than or equal to.

Math calculation: It represents works such like calculation of
weight factor, estimation of the distance to destination.

Function calculation: It works like calculating straight path
between two points, finding the nearest point on the edge to a
designate point.

Drawing is not counted in Table 1. Since both A* algorithm
and territory based path finding approach need to draw on the
map, or provide final path to original map, drawing action is
omitted in simulating progresses.

Map definition

The following estimations use a simple map partitioned into
5x5 territories from the view point of our approach. The
starting point and the end point are always the point at the left
of bottom line, represented as A, and the right most point at the
top line, represented as B, shown as Figure 2 (1). Since the
territories may contains more than one accessible map point,
the ratio between A* algorithm and our approach varies by
situation, for example, the map on Figure 2(2). On grid map,
path is allowed to stretch vertically, horizontally or obliquely.
Basically, one point, except those on the edge of the map, has
eight directions to choose.

5 B S0 P
4 40
5 30
5 20
1 2 3 4 5 t

o 20 30 40 350
(2) Map used by A*
algorithm with ratio of 1:10

(1) Partitioned map of
territory based path

finding

Figure 2: Maps With Different Definitioin

Simplified A* algorithm estimation

In strict, during run-time execution, comparison of A*
algorithm and territory based path finding approach would be
the comparison of pure path finding algorithm and database
searching combining with data computation. Since the main
purpose of out approach is emphasize on path finding progress,
it is reasonable including the cost of “setting territory paths” in
preparation step into account. Therefore, A* algorithm will be
part of our approach.

While implemented in real tasks, A* keeps many paths in open
list and output the best one as the result. In our estimations, A*
algorithm is set to be smarter than usual. It checks only three
neighbors and makes the best decision immediately. It only
keeps one path, and this path is the best one to reach the
destination.

New approach will not get much advantage with simplified A*
algorithm. But combined with simple map, pre-decided
starting point and destination, it makes estimations easier to
develop without programming, and still representing the real
situations that will happen when they are digitalized.

Complexity estimation one

Based on the previous settings, estimations are developed upon
different ratio.

With ratio 1:1

The first estimation took place here is a 5x5 grid territory
partition map versus to A* algorithm map with ratio 1:1. This
means, A* algorithm is going to find the path on the map
exactly the same as partitioned map.

Based on previous settings, For A* algorithm to find path from
A to B, there are 4 steps to go. Each step is decided after
checking 3 neighbors of checking point. The total cost is
presented on Figure 3.

cost:=0
for steps from 1 to 4
for checking neighbors[] from 1 to 3
estimate[x] :=0
estimate[x] += locate nighbor address (1)
estimate[x] += estimate the cost to B and to A (3)
subcost :=0
for estimate[] from 2 to 3
subcost := smaller one of
subcost[x-1] and subcost[x](1)
cost += subcost
cost=4*3*(1+3)+2*1)= 56

Figure 3: Cost of A* algorithm with ratio 1:1

In estimation for A* algorithm travel from A to B costs 56
units of time. When the same path searched twice, the total

18

cost is 112. And triple times search costs 168. Basically, the
same cost adds up for one more time of research.

For territory based algorithm, the distinct path need to be
found in preparation cost the same time units, since it use A*
algorithm to enumerate territory paths. But there are still
runtime jobs to do, which shown on Figure 4.

cost := single path preparation time (56)
cost += locate the path entry in database (25 * 24)
// paths are save under start-end pair,
// and this path is assumed at the last entry
for steps from 1 to 4
cost += Locat the edge adjacent to next territory (1)
cost += Get the nearest point on the edge to
checking point.(20)
cost += link up 2 points. (20)

cost = 56 + (25*24) + 4 * (1 +20 +20) = 820

Figure 4: Cost of new approach for map 5x5

For the first time, the total cost for territory based path finding
approach to plan the path from A to B is 820. When the same
path searched twice, the total cost is1584. And triple times
search costs2348. Unlike A* algorithm, one more time new
approach performs, only the run-time cost will be toped up,
which is 764 units of time.

With ratio 1:10

With ratio 1:10, the actual map A* algorithm need to deal with
is a 50x50 grid map. Steps needed from A to B are 49 steps.
The total cost of this trip is 49 times of single step, 686.

For territory based path finding approach, under the same
partitioned map, the cost needed for path finding doesn’t
change. The steps needed to reach the destination don’t change,
too. So, the total cost of the path finding is still 820.

With ratio 1:20

With ratio 1:20, the actual map A* algorithm need to deal with
is a 100x100 grid map. Steps needed from A to B are 99 steps.
The total cost of this trip is 99 times of single step, 1386. For
territory based path finding approach, the cost needed for
planning trip form A to B is still 820.

Based on previous estimation, the extending estimation is
listed on Table 2, in which M1 represents A* algorithm and
M2 represents territory based path finding approach.

Table 2: comparison under different ratio

ratio | 1 time 2 times 3 times
M1 | 1:1 56 112 168
M2 820 1584 2348
M1 | 1:10 | 686 1372 2058
M2 820 1584 2348
M1 | 1:20 | 1386 2772 4158
M2 820 1584 2348

M1
M2

1:30 | 2086

820

4172
1584

6258
2348

According to the results, when the ratio between A* algorithm
and new approach getting large, the performance of new
approach getting better. If the ratio is under certain limit, such
as ratio 1:20 in our estimations, the cost for A* algorithm to
repeat the same search is lower than the cost new approach
needs in run-time. It makes A* algorithm a better choice of
path finding. But as we declared in method description,
territory based path finding approach is based on large
accessible territory, new approach would be a better choice
under this circumstance.

Complexity estimation two

According to previous estimations, when the ratio of
partitioned map and grid map reaches certain limit, territory
based path finding approach would be a preferable way to
solve path finding job. But by definition, new approach is not
based on grid map. Estimations later on would show how the
average edges of polygons on partitioned map affect the
efficiency of path finding approach.

Since A* algorithm is assumed to find the next step in only 3
adjacent-point-checking. Each map grid has 8 accessible
neighbors to proceed, except grids at edge of the map. This
means A* algorithm is assumed to check only 3/8 of accessible
grids for each step. While the polygons on partitioned map
changes, the same assumption applies.

In this part of estimations, map for A* algorithm represents as
a reference; the main comparison is on partitioned maps with
different edge setting. The assumptions for 1) one path that
costs only 5 steps to reach goal and 2) there are 25 territories
in total on the map are still used, but the number of adjacent
polygon for each territory changes. Since there may be many
polygon of different shape on the same map, only average
number of edges is used in the estimation.

In previous estimation, there are 8 directions for one territory
to pass, it could be assumed as a map with polygons of average
edges of 8. Maps with polygons of average edges of 16, 24 and
32 are simulated in this part. Therefore, simplified A*
algorithm cost is modified as Figure 5, and the cost under
different averaged edges is shown on the same figure.

cost:=0
subcost := 0
checkedge := average edges * 3/ 8
for step from 1 to 4
for neighbors[] from 1 to checkedge
estimate[x] :=0
estimate[x] += locate address (1)
estimate[x] += estimation to A and to B (3)
for estimate from 2 to checkedge
subcost := smaller one of
subcost[x-1] and subcost[x](1)
cost += subcost

cost of map with average edges of 8:

19

4% ((8* 3/8) *4 + (8%3/8 -1)) = 56

cost of map with average edges of 16:
4 * ((16 * 3/8) *4 + (16*3/8 -1)) =116

cost of map with average edges of 24:
4% ((24 * 3/8) *4 + (24 *3/8 -1)) = 176

cost of map with average edges of 32:
4 *((32 * 3/8) *4 + (32*3/8 -1)) = 236

Figure 5: cost with maps of different averaged polygon edges

During run-time, our approach only retrieves the path and
follows the direction. There are still 5 straight paths on the
map need to be considered, no matter how many edges in
average do the polygons on map have. Therefore, the cost of
deciding a path in run time is 764, exact the same estimation
one. The extended estimation is recorded on Table 3.

Table 3: list the cost needed to perform trips from A to B

Mathod to descide path 1 time | 2times | 3 times
A¥* algorithm (1:20) 1386 2772 4158
New approach with 8 edges | 820 1584 2348
in average

New approach with 16 880 1644 2408
edges in average

New approach with 24 940 1704 2468
edges in average

New approach with 32 1000 1764 2528
edges in average

According to the description and estimation, the difference at
the average edges of polygons on partitioned map doesn’t
actually make difference on run-time execution. And even in
path planning stage, it doesn’t significantly increase the cost
for A* algorithm to check more neighbors, since territory
based path finding approach used A* algorithm on preparation
stage.

Complexity estimation three

In previous estimations, the cost of only one path is counted in
territory based path finding approach. As mentioned in process
description, it is assumed to enumerate all the paths and record
them into database. In this part, the real processes that our
approach needs to take are revealed.

The setting is the same as estimation one. 5x5 partitioned map
is used, and the path is from left bottom position to the top
right point. A* algorithm path finding approach with map of
ratio 1:20 is kept as comparison.

On the 5x5 partitioned map, each territory is allowed to access
to the other 24 territories, since there is no clog settled on the
map. The shortest path is 1 step; the longest steps would be 4.
In average, the steps one territory needed to reach all the
others is 60.

(1+4)2%24=60 (2)

The total path for every territory to reach others could be 25
times of the previous calculation. But the paths from A to B

and B to A are taken as the same path. So the number of paths
could cut into a half.

60*%25/2=750 (3)

According to the estimation of complexity estimation one, the
cost for checking 750 steps is 10500.

750 * (3 * (1+3) +2) = 10500 “)

With this preparation time, the cost from A to B, such like the
task estimated in complexity estimation one, compared with
A¥* algorithm path finding approach with map of ratio 1:20 is
shown on Table 4.

Table 4: complete processes comparison

Repeat | Territory based path A* algorithm with ratio
times | finding approach 1:20

1 11264 1386

2 12028 2772

3 12792 4158

16 [22724 22176

17 23488 23562

18 24252 24948

19 25016 26334

It truly take more time to cover the cost of preparation, but if
the execution times are large enough, territory based path
finding approach is more efficient then A* algorithm.

CONCLUSION

Territory based path finding algorithm is developed specially
for online game environment. Upon the rarely restarted game
hosts, it minimize the cost of preparation. And with map large
enough for players to adventure without striving for game
resource with other players, partitioned map could play a better
role to increase the efficience of path finding job.

This approach shift heavy load out of players’ execution time
and acquire support from different technique such as database
searching and computer-assisted drawing. It increases the
efficiency of path finding job by completly changing the
searching job into data comparing and simple function
computation.

FURTHER RESEARCH

Territory path finding approach is simulated upon basic
estimation on this paper. Digitalized implementation is
expected to get more precise result.

Not only time cost, resource cost such as memory occupied or
the preparation time for server restarting is object to monitor.
Furthermore, map recognition and map auto partition are
valuable topics to make this approach automation.

20

Acknowledgement: This work is being supported by NSERC
Discovery Grant.

REFERENCE

Dechter, Rina; Judea Pearl (1985). "Generalized best-first search
strategies and the optimality of A*". Journal of the ACM 32 (3):
pp. 505 - 536.

Dijkstra, E. W.: "A note on two problems in connexion with graphs".
In Numerische Mathematik, 1 (1959), S. 269-271.

McGuire, Morgan. 2004. "Observations on Silhouette Sizes",
http://graphics.cs.brown.edu/games/SilhouetteSize/index.html.

Stentz, A. 1994. "Optimal and efficient path planning for partially-
knownenvironments." In proceedings of Robotics and
Automation International Conference (San Diego, CA, USA. 8-
13 May 1994). IEEE, 3310-3317 vol .4.

Wikipedia. 2008. "Mob (computer
http://en.wikipedia.org/wiki/Mob_%28Gaming%29

gaming)",

AUTHOR BIOGRAPHY

Jia-jia Tang got Bachelor of Education from National University of
Tainan in Taiwan in 1999. She has worked around 10 years for for
content and commercial website constructing company, pc game
developing company and online game developing company. She is
now a MSc student in Computer Science Department, University of
Northern British Columbia.

Liang Chen is currently Professor of Computer Science, Professor of
Interdisciplinary MSc Program, & Chair of Computer Science at
University of Northern British Columbia. Dr. Chen’s research areas
are: pattern recognition, image processing, computational geometry,
intelligent language tutoring system, data mining, bioinformatics; and
the computational intelligence fields, including fuzzy systems, neural
network, and fast approximate practical algorithms for solving some
NP hard problems. He is also interested in the voting schemes in
political election and scientific research.

DYNAMIC MOTION PATCHES IN CONFIGURABLE ENVIRONMENTS
FOR CHARACTER ANIMATION AND PATH PLANNING

Kelson Gist and Xin Li
DigiPen Institute of Technology
5001 — 150" Ave. NE

Redmond, WA 98052 U.S.A.

KEYWORDS
3D In-Game Animation, Real-time Motion Synthesis, Path
Planning, Virtual Environments, Video Games.

ABSTRACT

We present a framework for path planning and character
animation with interactive objects in large environments. Our
work extends the motion patch algorithm to allow dynamic
environments to be crafted from a set of small building blocks
with embedded animation data. We develop a set of data
structures and path planning mechanisms that support real-time
interaction, avoidance, and traversal of dynamic objects in the
environment, as well as methods for expanding the types of
locomotion available to a character.

1 INTRODUCTION

As the complexity of virtual environments in video games
grows, so does the need for expressive characters that can
interact with their surroundings in varied and subtle ways. As
the number of actions that a character can perform and the
number of behaviors that a character can express grows, so too
does the complexity of handling the dramatically increasing
interrelationships of a character’s animations.

A wealth of research has been devoted to realistic character
locomotion, physically-responsive characters, and to the
efficient synthesis of novel motions and transitions from a pre-
existing set of animations. One problem in the field of animation
that is particularly relevant to video games is the direct
interaction of characters with their environment. Although video
game environments have grown vast and intricate, providing a
rich set of interactions and a framework that allows seamless
transitions from one action to another remains a difficult
problem, especially for dynamic environments.

21

The motion patch algorithm, developed by Lee et al (2006)
provides a framework for efficiently allowing realistic character
interaction with a virtual environment. In the motion patch
algorithm, animations are not held in a graph or state machine
internal to the character. Instead, they are embedded directly
into the environment, encapsulated in small building blocks, the
aforementioned motion patches. When an environment is
crafted from these patches, their animations are connected in a
process called “stitching,” resulting in a structure that supports
both a rich and varied character interaction with the
environment and efficient planning of the actions available to a
character at a given location in the environment.

However, this algorithm is unsuited for some video game
applications. The environment constructed from motion patches
must be static at run-time even as more and more video games
allow partially or fully dynamic environments. Also, motion
patches are designed to hold a limited range of character
locomotion speeds and cannot easily encapsulate motions of
different paces.

We present a set of adaptations and extensions to the motion
patch algorithm to leverage its strengths in efficient and realistic
motion synthesis in complex environments while ameliorating
some of the issues that make the algorithm less suitable for
many video game settings. In this paper, we first describe how
the motion patch algorithm can be adapted to efficiently support
dynamic motion patches. Second, we supply a set of robust path
planning mechanisms to support goal-oriented autonomous
characters and efficient interaction with dynamic motion
patches. Third, we elaborate a multi-layer approach to motion
patches to support the varied gaits and character speeds common
in many video games. In addition, we describe how tilable
motion patches can be generated from a minimal set of
animations, rather than a large corpus of motion capture data.

2 RELATED WORK

One of the most important structures for synthesizing
realistic motion from small, potentially disparate, clips is the
graph. The concept of forming a path of nodes whose edges
reflect the costs of connecting a pair of nodes lends itself well to
the problem of motion synthesis.

Schodl et al (2000) demonstrate how short video clips can be
concatenated into long, smooth animations by identifying
correspondences between individual frames and computing the
cost of transitioning from one clip to another at a given pair of
frames. Kovar et al (2002) apply this technique to motion
synthesis. Combined with a branch and bound depth-first
search, their algorithm demonstrates that motion graphs can
produce not only long, high quality motion segments from short
clips, but also segments satisfying a set of user-defined
constraints, including character poses, motion types, and path
following.

Arikan and Forsyth (2002) develop motion graph techniques
that similarly allow motion synthesis according to user-defined
constraints from a database of short motion clips. They
implement a hierarchical graph structure that generalizes motion
clips into a reduced set of clusters. Motion is synthesized
efficiently using a coarse high-level graph and then refined by
replacing the clustered clips with their constituent low-level
clips. Although the hierarchical graph structure allows more
efficient searching than the motion graph employed by Kovar et
al (2002), neither approach achieves real-time motion synthesis.
Lee et al (2002) also utilize a clustering approach to decrease
the search space of a motion graph and outline methods for
achieving online character control at interactive rates, as well as
path following according to a set of user-defined constraints.

Because reducing the search space of the motion graph is
paramount to achieving real-time motion synthesis, a variety of
techniques have been employed to consolidate sets of keyframes
or motion clips into a small number of groups that can be
efficiently searched while maintaining the flexibility of large,
unstructured graphs. Gleicher et al (2003) condense a motion
graph into a set of interconnected hub nodes that can be
concatenated to produce real-time user-controlled motion.
Parametric motion graphs (Heck and Gleicher 2007) separate
the different types of motion within a motion graph into
parameterized spaces, allowing for flexible, real-time interactive
character control. McCann and Pollard (2007) and Treuille et al
(2007) develop real-time character controllers based on
reinforcement learning. Treuille et al demonstrate that
reinforcement learning can be used to support local obstacle
avoidance with both static and dynamic objects.

Path following is an important aspect of motion synthesis.
Although motion graphs can produce high quality motion that
follows a path, their structure is not ideal for navigating a virtual
environment. Since spatial relationships are only implicitly
defined in the graph structure, the computational cost of
synthesizing motion along a path increases exponentially with
the length of the path. To efficiently synthesize motion along a
path and evaluate the quality of motion generated, several
algorithms have been developed that define a motion graph with
respect to the environment. Choi et al (2003) construct spatially-

22

explicit graphs in static environments that allow efficient
obstacle avoidance and path planning. Reitsma and Pollard
(2004) demonstrate that by “unrolling” a motion graph and
embedding the graph into a static environment, the effectiveness
of the motion graph for character navigation and interaction in
the environment can be evaluated. In Precomputed Search
Trees, Lau and Kuffner (2006) precompute the set of paths that
a character can follow by unrolling a Finite State Machine
(FSM) representation of a motion graph into a 2D grid, then
transforming the environment to the grid space to perform path
planning. This allows efficient path planning supporting moving
obstacles and a special subset of object traversal animations.

Although this method efficiently combines motion synthesis
and path planning in dynamic environments, it has two notable
disadvantages. First, the size of the precomputed search tree
(PST) grows exponentially with each object traversal animation
added to the actions available to the character. The second
disadvantage of precomputed search trees is that object
interaction is defined relative to the character, rather than
relative to the object in question. Because of this, animations in
which the character physically interacts with an object must be
restricted or post-processing must be performed to ensure valid
contact between the character and the object.

In the motion patch algorithm, Lee et al (2006) define a
spatially-explicit motion graph formulation by embedding
motion clips into small 3D objects, then using these objects as
building blocks to construct the environment. A special, tilable
motion patch is constructed to handle locomotion. The tilable
motion patch is a small, square grid that contains a precomputed
set of paths from one edge of the grid to another edge. Each
entry and exit point on the grid is specified by a node that
contains the position, orientation, and pose of the character.
Paths through the motion patch are specified as motion
segments that connect a pair of nodes. Additional motion
patches are constructed from the set of interactive objects.

When an environment is constructed, the tilable motion
patches are overlaid across the environment, and the object
motion patches are ‘“stitched” into these tiles, providing an
efficient representation of the actions and animations available
to the character at every location in the environment. Path
planning is performed in a two step process. First, a high-level
path is generated from tile to tile in the environment. Then, the
low-level path is computed from the set of motion segments that
connect the nodes in the tiles of the high-level path.

Although motion patches very effectively encapsulate the
rich set of object interaction available to a character in a
complex environment, environments constructed with motion
patches must remain static at run-time. The tilable motion
patches also restrict the types of motions available to a
character. The locomotion encapsulated within a tilable patch
must be nearly uniform in pace for optimal balance between
connectivity and memory footprint. Finally, motion patches do
not provide an optimal structure for object traversal and goal-
oriented behavior and path planning but are, instead, optimized
for crowd simulation with local, wandering behavior simulation.

W e W W WY W

Figure 1: Left: A sample locomotion patch divided into an 8x8
grid of cells with 8 nodes (shown as spheres) along each edge. The
beginning of each motion segment is colored red while the end is
colored blue. Right: A sample path from an entry node on the
lower edge to an exit node on the left edge. In this example, the
entry and exit nodes have 0° and 45° orientations, respectively,
relative to their edge.

3 OVERVIEW

The search and stitching procedures that are used to manipulate

dynamic object patches and synthesize character animation with

path planning, obstacle avoidance, object traversal, and object

interaction are outlined in Section 4 in the following order:

e Section 4.1 describes coarse high-level path planning that is
used to select the set of tiles that a character will pass through.

o Section 4.2 defines the costs and heuristics for low-level path
planning.

o Section 4.3 discusses how occlusion and stitching are handled
with respect to dynamic object patches.

o Section 4.4 describes how a path is updated as object patches
move.

Section 5 outlines how different locomotion types can be

efficiently managed using multiple layers of tiled locomotion

patches, and how multiple layers are integrated into path

planning. In Section 6, a method for generating a tilable

locomotion patches from a handful of specific motion segments

is described. Finally, the results and conclusions are discussed

in Sections 7 and 8.

4 PATH PLANNING WITH DYNAMIC OBJECT PATCHES

Two distinct kinds of motion patches are constructed: tilable
locomotion patches and object patches.

Locomotion Patch. The locomotion patch is a prototype
generated for a single type of locomotion, such as walking or
running, and encapsulates the complete set of paths that a
character can follow within a small square grid of approximately
two cycles in length. The paths through the patch are
represented as discrete motion segments that connect two nodes
on the edge of the grid (Figure 1). By tiling instances of a
locomotion patch uniformly across the environment and
connecting the overlapping nodes of adjacent tiles, long
animations can be efficiently synthesized by concatenating the
motion segments from node to node. Although the locomotion
patch encapsulates all locomotion data of a particular type, each
tile possesses independent occlusion and stitching data that
reflects the state of the objects overlapping the tile.

Object Patch. An object patch contains the set of animation
data of the character interacting with the object. The animation
data is specified relative to the object. Each instance an object
in the simulation will have a corresponding instance of the
object patch. The motion segments of the object patch are
divided into two groups: traversal and interaction animations.
Any motion segment that depicts the character passing by the
object as though it were an obstacle is classified as a traversal
animation. These might include vaulting over a wall or ducking
under an arch. Other animations, in which the character interacts
with the object as a starting or goal state, are classified as
interaction animations. The former are incorporated into path
planning, so that a character can realistically navigate the
environment. The latter can only exist as starting or goal states
in the path planning.

At run-time, the dynamic object patches are allowed to move
freely across the ground plane and rotate about the vertical axis.
In order to allow a character to interact with and traverse an
object, the object patch must be stitched into the locomotion
patches. Stitching (Section 4.3) occludes the motion segments
in the underlying locomotion tiles and connects the motion
segments of the object patch to those of the tiles.

Figure 2: Path planning occurs in two stages. First, the high-level
path is computed as the set of tiles from the start position to the
goal position. Next, the low-level path is computed as the set of
motion segments that connect each pair of tiles in the high-level
path and fulfill all constraints on a character’s initial and goal
states.

To allow object patches to move at run-time, the bulk of the
stitching procedure is withheld until the information is needed
by the path planner. This form of lazy evaluation is necessary to
prevent wasted computation on moving object patches whose
stitching and un-stitching have no impact on a character’s
navigation. In order to increase the efficiency of path planning,
two additional organizational structures are applied to traversal
animations. First, the traversal animations are divided into a set
of coarse containers, called density bins, which surround the
object patch. The traversal animations are sorted into bins based
on their starting and ending position relative to the object patch.
At run-time, these bins provide rapid occlusion detection for
traversal animations (Section 4.3). Second, the traversal

23

animations are divided by layer based on the type of incoming
and outgoing locomotion (Section 5).

4.1 High-Level Path Planning

Path planning occurs in two stages (Figure 2). A high-level
path is constructed as a list of tiles that will be traversed on the
path to the goal. At the lower level, a path of motion segments
is computed from node to node through each tile. The high-
level graph structure has nodes formed by the individual tiles
and edges formed by the adjacency between tiles. Although the
cost computation is somewhat more involved, the search
heuristic at a given tile is simply the distance of the tile from the
goal position:

hH(t)ZHG_tc

()

where G is the position of the goal and t. is the position of the
center of tile .

Because dynamic object patches are not stitched into the
environment, the complete set of valid paths through a tile
containing one or more dynamic object patches is not known.
Thus, in order to prevent dead-ends and to properly allow object
avoidance and traversal to occur, the high-level path planner
must be provided with knowledge of the state of the tiles and
overlapping object patches. Rather than simply using
passable/impassable costs for the edges of the high-level path,
the cost reflecting the size of the tile is combined with two cost
metrics that gauge the likelihood that a character will be able to
navigate a tile. The avoidance probability describes the
likelihood that motion segments connecting two tiles remain
non-occluded by the object patches in the tile. The fraversal
probability describes the likelihood that the presence of object
patches has introduced traversal animations that a character can
use to successfully navigate from one tile to another. Using
these probabilities, a high-level path can be computed, such that
dead-ends are avoided in the low-level path and stitching is
performed only in highly localized scenarios and with
confidence of success. Lazy evaluation of the avoidance and
traversal probabilities is utilized to ensure that large
environments due not suffer from superfluous computation.

Avoidance Probability. The avoidance probability utilizes the
coarse occlusion data of a tile to approximate the proportion of
non-occluded motion segments connecting the entry nodes of
one edge to the exit nodes of another edge. In each tile, the
avoidance probability, v, is computed from each incoming
edge j to each outgoing edge k, resulting sixteen potential
probability values. When the avoidance probability of a tile is
computed, cell-level occlusion is performed for each of the
overlapping dynamic object patches. Each tile stores a bit field
with an index for each cell. Cells occluded by object patches
are marked with a 0 while non-occluded cells are marked with a
1. For efficiency reasons, the individual motion segments in the
tile are not checked for occlusion. The avoidance probability is
computed as the weighted proportion of non-occluded paths
based on evenly distributed samples from one edge to another.

Traversal Probability. Whereas the avoidance probability
describes the likelihood that a path can be found that does not
pass through any of the occluded cells of the tile, the traversal

24

probability describes the likelihood that new paths have been
created by the presence of object patches (Figure 3). For
example, consider an object patch consisting of a low wall that
covers the breadth of a tile but contains traversal animations (i.e.
animations of the character vaulting the wall). The avoidance
probability describes whether the character can go around the
wall without leaving the tile while the traversal probability
describes whether the character can go over the wall. The
traversal probability has two major components: accessibility
and density. The accessibility, y;, of an object patch, i, is a
precomputed value defined as the ratio of the number traversal
paths created by the presence of i to the number of motion
segments occluded by i, taken as an average sampled at a
number locations in the locomotion patch:

v, = {avg (L) < [0: W],y <[0: A})
i(x,)

where T4, is the number of traversal paths created by stitching
i at location (x,)) and O, is the number of paths occluded by i.
The accessibility of an object patch reflects the impact of the
object patch on path planning through a tile. An object patch
with accessibility close to 1 will create a corresponding traversal
path for almost every path that it occludes while an object patch
with a low accessibility will offer few if any traversal paths.
While the accessibility describes the likelihood that a single
object may be traversed, density defines the negative impact that
groups of object patches have on one another. For example, a
character may be able to hurdle a chair that is in his path, but if
a number of chairs are grouped closely together, the character
may not be able to hurdle a single chair without landing on
another chair. Although this generalization does not apply to all
types of object patches, it acts as a simplifying assumption to
avoid expensive iterative stitching procedures.

e

Figure 3: An example run locomotion tile is shown with a
horizontal line of chairs. The avoidance probability for this tile
will be low in the vertical direction because the chairs occlude
most of the paths between the top and bottom edges. On the other
hand, given that the character possesses a chair hurdling animation,
the traversal probability will be high despite the proximity of the
chairs because the traversal animations in the direction of motion
will be mostly non-occluded.

To compute the density, the collision bounds of the object
are extended to contain the entry and exit points of the traversal
animations of the object patch. The bounds are then subdivided
into a set of coarse bins that surround the object patch. The
traversal animations in the object patch are subdivided into the
density bins. During the collision detection phase of the

simulation, the extended bounds of the object are used in an
additional broad-phase collision check. The position of each
collision is computed and mapped to one of the bins. That bin is
then marked as occluded. During low-level path planning, these
bins will be used to quickly cull occluded traversal animations.
The density, py, of an object patch with respect to entry and exit
edges j and k of the overlapping tiles is computed as the
weighted average of the number of bins that are occluded. Each
bin is weighted according to its proximity to the entry and exit
edges. The traversal probability 7; of an object patch can then
be defined as:

T = yi(1-pj) 3)

With the traversal probability computed for pair of edges in
the tiles containing the object patch, the traversal probability for
the tile can be computed as the maximum traversal probability
of the tile’s object patches weighted by proportion of cells in the
non-occluded tile. Finally, using the avoidance probability, vy,

and the traversal probability, 7;, the high-level cost for the tile in
each entry and exit direction can be defined as:

gulty) =l @

maX(Ujk > T)

where £ is a constant reflecting the length of the tile and o
weights the influence of the avoidance and traversal
probabilities on the cost. The maximum of the two probabilities
is used because a high probability in either avoidance or
traversal indicates that the tile can be incorporated into the high-
level path with confidence even if the alternative probability is
low.

4.2 Low-Level Path Planning

In Section 4.3 the impact of dynamic object patches on
search is discussed. In this section, the costs and heuristics for
low-level path planning are outlined. The low-level search is
based on minimization of three criteria: distance traveled,
change in orientation, and effort. In minimizing these criteria,
the shortest, straightest, and easiest path is sought. In each
motion patch (both locomotion and object patches), the cost of
each path is precomputed as the weighted sum of the length,
total curvature, and approximated effort per unit time.

g,(P)=a[lds+ B[1d6+ T (5)

In Equation 5, s is the distance metric, € is the orientation of
the root, and 7 is the approximated effort, while o, f, and y are
used to weight these criteria respectively where a is the weight
per unit meter, § is the weight per unit radian, and y simply
weights the unit-less value 7. A user-supplied 7 value is used to
approximate the effort although physically-based computation
of T could be used to automatically generate 7 values for each
motion. The integrals of Equation 5 are approximated with the
summations for each keyframe in the motion segment.
Although the summations are pre-computed, the weights are
applied at run-time to vary the cost according to the setting. A
hurried character will weight distance and orientation more than
effort, and thus, be more amenable to leaping or climbing over
obstacles, while an unhurried character will prefer a longer, but

less strenuous, route. Within each entry node to a tile, the set of
exit nodes is stored, along with the costs of the connecting path.

The heuristics for the search estimate the cost to the goal
based on the state of the character at the exit node of the path.

h(P)=a |G| +Bcos (GeO)/|G) (7

The vector G is the vector from the end position of the path
to the goal position. The vector ¢ is the normalized orientation
vector of the body root at the end of the path. The distance
heuristic defines the minimum distance to the goal from the end
of the path while the orientation heuristic defines the minimum
change in orientation that must occur to reach the goal.

4.3 Occlusion and Stitching with Dynamic Object Patches

Although the costs and heuristics of low-level path planning
are unaltered by the presence of dynamic object patches, the
path planning algorithm must efficiently handle the occlusion of
paths by dynamic patches and the dynamic stitching and pruning
of object patch animations.

When occlusion is performed on static object patches, the
bounds of the object occlude a set of cells within one or more
tiles. Each of these cells stores a list of the motion segments
that pass through. When a cell is occluded, each of these
motion segments is disabled. One of the interesting
ramifications of this method is the reduction of the search space
as the amount of occlusion increases, leading to faster low-level
searching in more crowded environments.

The occlusion procedure is altered with dynamic object
patches. First, each motion segment in the locomotion patch has
a precomputed bit field, which stores the list of cells that the
motion segment passes through. Rather than disabling motion
segments, this bit field is used to quickly assess whether the
motion segment is occluded. As object patches move throughout
the environment, no occlusion is performed. However, each tile
stores the list of currently overlapping object patches. It is
during high-level path planning that occlusion is performed.
When the high-level path planner expands a node of its graph,
which correspond to individual tiles, a bit field with an entry for
each cell in the tile is reset, such that each bit stores a ‘1,’
meaning that cell is currently non-occluded. Then, for each
overlapping object patch, the set of occluded cells in the tile is
computed, and their corresponding bit entries are set to ‘0. As
discussed in Section 4.1, the resulting tile bit field is used to
compute the avoidance probability. The motion segments within
the tile are not disabled by dynamic occlusion. When the low-
level path planner expands one of the individual nodes within a
tile, the set of motion segments that lead to the next tile in the
high-level path are identified and checked for occlusion. A bit-
masking technique is used to determine whether a motion
segment is occluded.

(B, & B, # B,) = Pis occluded (®)

Using the bitwise & operator, the cells containing motion
segment P are checked against the occluded cells of the tile . If
Bpis unaltered by the operation, each cell that P passes through
is non-occluded. If one of the cells containing P is occluded, the

25

corresponding bit in Bp is changed from ‘1’ to ‘0,” and the
integer value of Bpis altered. Using the A* search optimizations
described in Cain (2002), the results of the node expansion are
stored, and the occlusion is computed only once. Furthermore,
using the costs and heuristics outlined in the previous section,
the low-level path planner will, in most cases, only need to
expand a small subset of the nodes in each tile of the high-level
path, meaning that dynamic occlusion will not need to be
performed on the majority of the motion segments that form the
low-level search space.

Like dynamic occlusion, dynamic object traversal reduces
the amount of precomputation performed when an object patch
is placed. As object patches move about the environment, the
density bins of each object patch are updated as described in
Section 4.1. When the high-level path is computed, each object
patch overlapping a tile the high-level path updates its traversal
probability. When the high-level path is complete, an
intermediate step is performed before low-level planning to
identify the best traversal paths through each tile and estimate
the costs of those traversal paths. For each object patch in the
tiles of the high-level path whose traversal probability is above
the minimum threshold, the best traversal animation is
computed using the low-level cost and heuristic defined in
Section 4.2 and maintained in a high-level observer of the path
planner. As the low-level path planner computes the paths from
tile to tile, the observer records the new cost and heuristic for
each tile based on the individual motion segments. If the cost
and heuristic of the best path through a tile exceeds the
estimated cost and heuristic of the best traversal animation
through the tile, the traversal animation is stitched (Figure 4)
and the traversal motion segments are added to the low-level
graph, and the path planning resumes as before. To reiterate, the
best traversal animations for each object patch are computed and
stored in a high-level structure corresponding to the list of tiles
in the high-level path. Traversal animations are ignored until
the cost and heuristic of the path through an individual tile
exceeds those of the traversal animation. At this point, the
traversal animation is stitched, and the new paths created by the
traversal are added to the low-level graph.

.

animation is stitched into a tile. The image shows the character
jumping over a chair that has been stitched into a tile
constructed from run locomotion. The red paths emanate from
an entry node to the entry stitch of the traversal animation. The
blue paths begin at the exit stitch of the traversal animation and
continue to the exit nodes of the tile.

26

Stitching of traversal animations is performed similarly to
the method in Lee et al (2006). The first and last keyframe of
the traversal animation are used in two independent stitching
procedures. In stitching, the position, orientation, and pose of
the character at the stitch keyframe are used to index a single
cell in the underlying motion patch. For each motion segment
passing through the cell, the error is computed with respect to
the stitch keyframe, and a connection is formed between the
motion segment and the stitched animation where the error is
below the threshold value. For a traversal animation, this results
in » motion segments that can transition into the traversal from
an entry node, and m motion segments that can transition out of
the traversal and proceed to an exit node (not necessarily in the
same tile). The entry and exit motion segments are checked for
occlusion independently. An additional bit mask is applied to
Equation 8 to ignore portions of the incoming and outgoing
motion segments that are no longer used.

Although traversal animations may be stitched as necessary,
the stitching of other animations occurs only when the initial or
goal state of the character lies within an object patch animation.
For example, the character may begin or end his path sitting in a
chair, but sitting and other interaction animations in the chair
object patch are ignored during path planning. When the initial
state or goal state lies in an object patch, the cost and heuristic
are computed for each motion segment in the object patch that
meets the constraints, and the best motion segment is selected,
stitched, and the resulting connections are added as nodes in the
low-level graph. If the animation reflects the initial state, these
nodes become the initial set of unexplored nodes. If the
animation reflects the goal state, these nodes become the goal
nodes of the low-level path, as well as used to constrain the
high-level path. The beginning and ending tiles, additional to
the valid exit and entry edges, respectively, to these tiles are
specified by the starting and goal nodes of the search algorithm.

4.4 Planning in the Presence of Moving Object Patches

Although dynamic objects patches are free to move at run-
time, in many cases, not all will be in motion at any given time.
Two physical states are defined for those patches: asleep and
awake. An asleep patch has no velocity and the sum of the
forces acting on the object patch imparts no acceleration on the
object patch. An awake patch has either non-zero velocity or
acceleration. During path planning, object patches that are
asleep are incorporated in global high- and low-level path
planning, while object patches that are awake are handled only
in local obstacle avoidance. When an object patch transitions
from the awake state to asleep or vice versa, the low-level path
isupdated. The motion segments are checked for occlusion and
all occluded segments are removed and iteratively replaced by
the low-level path planner.

Local obstacle avoidance is performed on moving object
patches by predicting the short-term future state of the next two
tiles in the character’s path. The bounds of nearby object
patches are extended in the direction of the velocity according to
magnitude of the velocity. Occlusion is then computed in the
next two tiles on the path, and the low-level path is updated to
incorporate the presence of the moving object patches. By
finding the motion segments that are not occluded by the

extended bounds of the object patches, paths through the tiles
can be found that avoid collision with nearby objects.

5 AMULTI-LAYER APPROACH

When optimizing motion patches for character animations
with different paces (e.g. walking and running), it quickly
becomes evident that there is no one-size-fits-all for locomotion
patches. A motion patch created for walking animations will
not support run animations since a single cycle of a run
animation will not fit within the bounds of the patch. On the
other hand, even the smallest possible motion patch designed to
handle run animations will exponentially increase the number of
walk paths required to cover the area and will substantially
deteriorate the responsiveness of a walking character.

To address this issue, a multi-layered set of locomotion
patches is crafted to handle the different paces of animation
discretely. The animations are organized into sets representing
the different types of locomotion. A locomotion patch is then
constructed for each set of animations. These motion patches
have dimensions and boundary node spacing that vary according
to the pace of the locomotion. At run-time, the sets of tiles are
layered independently across the environment

Figure 5: Top: Path generated in walk layer. Character avoids
the line of chairs. Bottom: Path generated in run layer. Character is
able to take advantage of one of the chair’s jump traversal animations,
allowing the character to take a shorter route to the goal.

Transitions between layers are handled dynamically using a
precomputed blend table. For each pose in a given locomotion
patch, the blend table stores the pose and relative position and
orientation of the character after a blending to the locomotion of
another layer. When a transition is desired, the current pose of
the character is used as an index into the blend table. The
position and orientation of the character after the blend are
computed by concatenating the character’s current position and
orientation with those stored in the table. The position,
orientation, and end pose are then used to stitch the blend into
the desired layer, which provides the set of motion segments
that the character may follow in the desired layer.

Path planning with multiple layers is handled in a
straightforward manner. A high-level path is computed for each
layer, the layer with the lowest weighted cost is selected, and
low-level path planning is performed in that layer (Figure 5). If
the initial state of the character belongs to a different layer, the
transition from the initial state to the desired layer is appended
to the starting path, and the low-level planning begins in the
state in which the transition enters the layer. Similarly, if the
goal state is not contained within desired layer, the reverse
transition from the desired layer to the goal state is computed
and the final state of the character in the desired layer is set as
the goal for the low-level path planner.

6 CONSTRUCTING MOTION PATCHES WITH
MINIMAL ANIMATION SETS

Because of the fluid and unstructured nature of motion
capture data, fitting a motion segment precisely to the set of
start and end positions, orientations, and poses that form the
nodes of a locomotion patch becomes a significant challenge. In
the office demo of their tilable motion patch algorithm, Lee et al
(2006) use 40 minutes of motion capture data to construct the
locomotion patch, desk patches, and behavior patches. With
sampling at 30 frames per second, this results in over 72,000
keyframes. Because the motion patch is generated from
unstructured motion data, a large number of motion segments
are required to fully specify a tilable patch.

Using a space curve following technique combined with
parametric motion blending, a tilable locomotion patch can be
constructed with only a handful of animations. The animations
are clustered into a small set of poses using k-means clustering
(Duda et al 2000). In space curve following, the relative
distance of the root between consecutive keyframes is mapped
to a space curve, such that a character’s location is bound to the
curve. The orientation of the character is defined by the tangent
of the space curve at the character’s location, rather than the
accumulation of relative orientation changes from a fixed
starting orientation. This method allows a character animated
with a straight locomotion animation to make turns while
maintaining realistic foot contact.

The disadvantage of this method is that turning along a space
curve lacks the nuanced postures that accompany a physically-
based turn. To ameliorate this issue, simple parametric motion
blending (Kovar and Gleicher 2004) is applied to blend features
of the turn animations into the space curve animation based on
the curvature of the space curve. The turn animations are
parameterized by the relative change in the orientation of the
root from keyframe to keyframe. Then, when animation is
being synthesized along a space curve, the change in tangent of
the curve is computed and the turn animations are blended with
the forward animation. The blend is weighted by the
parameterized value of the turn animations. Using this method,
the nuanced postures of the turn animations are smoothly
applied to the character as he follows the space curve.

A space curve is used to synthesize the animation from node
to node in the tilable patch. A cubic Hermite curve is applied, in
which the positions of the start and end node form the start and
end positions of the curve, and the direction of the start and end

27

tangent vectors of the curve are based on the desired orientation
of the character at the start and end nodes. The length of the
space curve is optimized to ensure that it is a multiple of the
distance covered by one cycle of the locomotion animation. By
optimizing the length of the curve, the poses at each node can be
regulated. The optimization process scales the magnitude of the
start and end tangent vectors of the curve to appropriately
shorten or length the curve. The maximum curvature of the
Hermite curve is specified to be within the range of the
curvature of the turn animations. Curves that do not fall within
this threshold are culled. Motion segments are synthesized to
connect each pair of nodes in the tilable patch. The entry and
exit orientations of the character at each node are limited to 45°
increments. This increment provides a balance between
flexibility of the paths from node to node and the increase in
memory required to handle additional entry and exit
orientations.

7 RESULTS

To test our theory, we generated two tilable locomotion
patches using the space curve following approach outlined in
Section 6. The first motion patch contained walk animations and
was generated using only five animations, a straight walk and a
slow and fast turn in each direction. The second patch contained
run animations using an analogous set of five run animations.
Each patch had a side length of approximately the distance
covered in two cycles of the underlying straight locomotion.

Figure 6: An example of motion synthesis and path planning in a
large scene constructed with dynamic motion patches. In the path
shown, the character avoids pillars and chairs in his path and
hurdles two lines of chairs that cannot be easily avoided.

We began with a single object patch formed from a chair and
three animations: sit down, stand up, and hurdle the chair. The
hurdle animation was rotated around the chair in 10° increments
to allow flexibility in traversal of the chair. We also created
object patches containing simple obstacles with no animations.

Using the two layers of locomotion patches, the chair object
and the obstacle object patches, we were able to create large,
densely populated environments. At run-time, we allow the user
to specify the start and goal states, configure the environment,
and set the character’s path-finding weights to influence his
behavior. With these tools, the character can plan paths from
location to location or from action to action while avoiding,
interacting with, and traversing objects in the scene. A character

28

dynamically transitions from walk to run or vice versa as the
user and path planner dictate.

Static Scene Dynamic Scene

Scene 214 <1
Precomputation
Time (s)

0.176 0.222

Average Search
Time (s)

Average Path 14.6
Length (s)

Average 4.34
Stitches/Path

Table 1: Runtime statistics for 20 random paths generated in a
sample scene (Figure 6). Paths were sampled in both the walk and
run layers with object interaction (sitting/standing) and object
traversal (hurdle). In the “Static” trial, occlusion and stitching
were precomputed using the methods outlined by Lee et al (2006).
The “Dynamic” trial used only dynamic motion patches whose
occlusion and stitching were performed using our methods.

Although our algorithm introduces additional computational
costs to path planning with respect to the motion patch
algorithm of Lee et al (2006), we found that these costs were
within real-time constraints for sequences of animation upwards
of ten to twenty seconds in length. The most significant cost
introduced by dynamic motion patches is the localized, run-time
stitching performed during object traversal interaction. On a
2.2GHz AMD Athlon 64 3700+, each stitching procedure
required approximately 10ms computation time. Although this
cost can be significant when characters are performing a series
of very brief animations involving frequent object interaction,
this does not reflect the typical behavior of goal-oriented agents.
In the average case, in which 10 or more seconds of motion is
synthesized, dynamic motion patches incur an average 25%
computational overhead with respect to their static counterparts
(Table 1). In these situations, the computational costs of our
additional path planning metrics and dynamic occlusion were
negligible when compared to the cost of stitching.

Using the static occlusion and stitching methods described in
Lee et al (2006), two to three seconds were required to occlude
the overlapping walk and run tiles, and stitch the blended
animations into each layer of tiles. Using dynamic occlusion
and stitching, the computational cost of placing an object patch
instance is constant. This allows many dynamic objects to be
placed and moved freely without degrading the performance.
Furthermore, in the presence relatively slow-moving (< 1m/s)
objects with sparse collisions, local obstacle avoidance can be
performed to dynamically update a character’s path and
animation.

8 DISCUSSION

The motion patch algorithm developed by Lee et al (2006) is
primarily geared toward crowd simulation in large environments
with a wealth of interactive objects. With our adaptations and
contributions to motion patches, including support for dynamic
objects, robust path planning, and support for multiple
locomotion types, our algorithm applies the strengths of motion
patches to goal-oriented autonomous agents in large, dynamic
environments. Like motion patches, our algorithm very
effectively handles complex and realistic interaction with
objects in the scene. Our algorithm is best suited to simulations
that seek to provide a small number of characters with a rich set
of animations and interactivity in a dynamic environment. But,
although dynamic motion patches support rich and varied
character interaction with the environment, dynamic motion
patches do not exhibit the same degree of interconnectivity
between objects that can be achieved with static motion patches.

Like precomputed search trees (Lau and Kuffner 2006), our
work combines motion synthesis, path planning, obstacle
avoidance, and object traversal. By embedding animations into
the objects themselves, more realistic interaction with the
objects can be achieved and a much larger set of objects can be
incorporated with minimal precomputation and little cost to
memory.

Finally, dynamic motion patch framework, while flexible in
dealing with objects, remains fairly rigid with respect to
locomotion. Using multiple layers, a few character gaits can be
realistically handled, but the algorithm is not ideal for characters
with a wide range of locomotion types. Parametric motion
blending could be used to extend the range and types of motion,
but in the current framework, any blended motion would need to
be expressible as a direct analog of one of the existing
locomotion types. For example, sneaking locomotion could be
blended into the tilable walk patch, but only if the blend
respected both the pace and foot contact of the original
locomotion. This would be necessary to ensure that the motion
segments and transitions in the patch were not invalidated by the
blend. These restrictions on pace and foot contact also limit the
range of character morphologies that can be expressed in the
motion patch data. The formation of a generalized motion patch
that integrates varying locomotion types and character
morphologies could significantly add to the flexibility of motion
patches.

ACKNOWLEDGEMENTS

We thank Michelle Lu for providing the character model and
animation data.

REFERENCES

Arikan, O. and D.A. Forsyth. 2002. “Interactive motion generation
from examples.” Proceedings of the 29th Annual Conference on
Computer Graphics and Interactive Techniques (San Antonio,
T.X., July). ACM, New York, N.Y., 483-490.

Cain, T. 2002. “Practical optimizations for A* path generation.” A/
Game Programming Wisdom. Charles River Media, 146-152.

29

Choi, M.G.; J. Lee; and S.Y. Shin. 2003. “Planning biped locomotion
using motion capture data and probabilistic roadmaps.” ACM
Transactions on Graphics (TOG) 22, No.2 (Jul), 182-203.

Duda, R.O.; Hart, P.E.; and D.G. Stork. 2001. Pattern Classification
(2nd ed.), John Wiley and Sons.

Gleicher, M.; H. Shin; L. Kovar; and A. Jepsen. 2003. “Snap-together
motion: assembling run-time animations.” Proceedings of the 2003
Symposium on Interactive 3D Graphics (Monterey, C.A., Apr. 27-
30). ACM, New York, N.Y., 181-188.

Heck, R. and M. Gleicher. 2007. ‘“Parametric Motion Graphs.”
Proceedings of the 2007 symposium on Interactive 3D graphics
and games (Seattle, W.A., Apr. 30- May 2). ACM, New York,
N.Y., 129-136.

Kovar, L.; M. Gleicher; and F. Pighin. 2002. “Motion graphs.”
Proceedings of the 29th Annual Conference on Computer Graphics
and Interactive Techniques (San Antonio, T.X., Jul. 23-26). ACM,
New York, N.Y., 473-482.

Kovar, L. and M. Gleicher. 2003. “Flexible automatic motion
blending with registration curves.” Proceedings of the 2003 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
(San Diego, C.A., Jul.26-27). Eurographics Association, Aire-la-
Ville, Switzerland, 214-224.

Kovar, L. and M. Gleicher. 2004. “Automated extraction and
parametrization of motions in large data sets.” ACM Transactions
on Graphics (TOG) 23, No.3 (Aug), 559-568.

Lau, M. and J.J. Kuffner. 2006. “Precomputed search trees: planning
for interactive goal-driven animation.” Proceedings of the 2006
ACM SIGGRAPH/Eurographics ~ Symposium on Computer
Animation (Vienna, Austria, Sep.2-4). Eurographics Association,
Aire-la-Ville, Switzerland, 299-308.

Lee, J.; J. Chai; P.S.A. Reitsma; J.K. Hodgins; and N.S. Pollard. 2002.
“Interactive control of avatars animated with human motion data.”
ACM Transactions on Graphics (TOG) 21, No.3 (Jul), 491-500.

Lee, K.L.; M.G. Choi; and J. Lee. 2006. “Motion patches: building
blocks for virtual environments annotated with motion data.” ACM
SIGGRAPH 2006 Papers (Boston, M.A., Jul.30-Aug.3), ACM,
New York, N.Y., 898-906.

McCann, J. and N. Pollard. 2007. “Responsive characters from motion
fragments.” ACM Transactions on Graphics (SIGGRAPH 2007)
26, No.3 (Jul), To appear.

Reitsma, P.S.A. and N.S. Pollard. 2007. “Evaluating motion graphs
for character navigation.” . ACM Transactions on Graphics
(TOG) 26, No.4 (Oct), Art.18.

Schodl, A.; R. Szeliski; D. Salesin; and 1. Essa. 2000. “Video
textures.” Proceedings of the 27th Annual Conference on

Computer Graphics and Interactive Techniques. ACM, New York,
N.Y., 489-498.

Treuille, A.; Y. Lee; and Z. Popovi¢. 2007. “Near-optimal character
animation with continuous control.” ACM SIGGRAPH 2007
Papers (San Diego, C.A., Aug.5-9), ACM, New York, N.Y., Art.7.

PLAYABLE MAPS / SENSITIVE MAPS
MATERIALIZING THE LEARNER’S MENTAL MAP

Sandro Varano

Map Crai Umr n°694/Cnrs/Culture

Ecole Nationale Supérieure
d’ Architecture de Strasbourg

8, Boulevard du Président Wilson

67000 Strasbourg — France
varano@crai.archi.fr

KEYWORDS
Video games, cartography, archacology and architecture,
learning system, mental map.

ABSTRACT

Video games and cartography are hybrid forms because they
are supporting representation, creation, diversion and
learning.

Through the use of video games and cartography, the
research work consists of proposing a three-dimensional
map able to improve the acquirement of archaeological and
architectural knowledge.

By materialising the learner’s mental map, the realization of
a 3D map allows the learner to create new writing and
reading modalities, and borrow signs of various disciplines.

INTRODUCTION

Since the beginning of the first electronic games, numerous
studies have been made in relation to their impact on the
player’s psyche. Some theorists consider video games as an
instrument liberating the mind and facilitating imagination
and creation.

Other researchers are interested in the notions of video
games and education. According to Jacques Perriault, games
are really instructive: they teach discovering game rules and
this involves a learning process (Perriault 1998). It is
important for him to locate these ludic practices compared to
the constructivist hypothesis: active knowledge is only
created by the person himself.

At the same time, experiments in the communication of
archaeological and architectural heritage are increasing.
Thanks to the attractions of multimedia, namely interactivity
and multimodality, web sites and CD-ROMs have the
capacity to transmit heritage information to the public. But
ultimately they miss real cognitive or educational purposes.

Video games and multimedia systems dedicated to the
communication of archacology and architecture have
common points, because they propose to the user the same
interface metaphors. The multiple “location metaphors”
which the multimedia designer David Cohen perceives

30

Jean-Claude Bignon and Didier Bur
Map Crai Umr n°694/Cnrs/Culture

Ecole Nationale Supérieure
d’ Architecture de Nancy

2, rue Bastien Lepage BP 40435

54001 Nancy — France
{bignon ; bur}@crai.archi.fr

when he approaches the interactive interfaces are examples:
plan, map, compass, figures of time, etc, (Cohen 1995).

David Bolter and Richard Grusin invented the concept of
“remediation” (Bolter and Grusin 1998) to explain the
mutual influence of media. According to them, all of the
media, whether recent or old, are evolving mutually.

Video games borrow forms and contents from the other
media establishing new codes and proposing new aesthetics.

In this article, we suggest investigating the characteristics of
video games to identify those which may be used for the
conception of an instructive and communicative system.
Then, we will base our analysis on examples of cartography.
The sensitive approach of cartography shows that the
perception of a world, a territory, a space or an itinerary, is
subjective.

Finally, as a proposal, we will outline a visualization and
immersion tool as an aid to understand archaeological and
architectural knowledge.

VIDEO GAMES SUBSERVE PERCEPTION AND
REPRESENTATION

Video games as learning systems

Since the 1980’s, researchers have attempted to analyze the
relationship between video games and education, while
questioning the knowledge they transmit in an informal and
unconscious way.

Among them, Patricia Marks Greenfield wonders what the
effects are that video games have on the way of thinking and
perceiving things. In this sense, video games would shape
the cognitive process, which has a universal aspect, arriving
at the expression “cognitive socialization” (Greenfield
1987).

Apart from the fact that they encourage the command of
complex systems and develop research skills through
induction, video games strengthen the capacity to interpret
flat and static images in three dimensions, as well as improve
the necessary abilities to transform, manipulate and mentally
connect dynamic and changing images. The mechanism
consisting of mentally connecting successive different
screens enables Patricia Marks Greenfield to introduce the
notion of the “mental map” (Greenfield 1994) of the player.

This ability is reinforced by television and cinema that do
not show the entire space at once, but bits at a time. The user
then makes a spatial assembly that consists of mentally
gathering all the bits to rebuild space.

Video games as signs systems

Video games incite the exchange of “multimedia” codes:
visual, sound, and sometimes more: vibrations, etc. How to
approach the semeiological reading of these universes?

Regarding our relation with signs, Christian Vandendorpe
notices similarities in the cognitive mechanisms while
reading a story or playing a video game: “it seems that Riven
(Barba and DeMaria 1997) can be considered as a pseudo-text,
because its reading requires activities of concatenation,
recall and selection. This reading uses skills of observation,
deduction, abduction and Problem-solving. The word
"reading" is used here in the sense of connecting data
collected by sight and submitting them to interpretation”
(Vandendorpe 1998).

In the video game, interpretation is a common practice. The
player interprets the various messages (in many forms),
which are placed in his path. Exploration and clues
discovery, sometimes require making notes on paper (Figure
1). He can then create a story in its own way, by thinking
and structuring acts.

Figure 1: Riven player’s annotations (Dlugosz)

Video games as artworks

The video game narration is an expression firstly of the
game designer, creating ludic mechanisms, and secondly of
the player, creating his own story. The scenaristic structure
in which the player evolves is perceived by the latter as a
device giving sense to his actions. This device establishes
the intelligible framework giving cognitive and practical
tools for creating. According to Jacques Henriot, no
structure is in itself and by itself ludic, what makes the toy is
the game of the player (Henriot 1989).

In his essay, Eddy Leja speaks about an artistic expression
specific to video games: “having seen that certain game
designers are artists, we must ask ourselves if they are the
only persons directly concerned by video games who are
capable of creation and expression? I shall term “ludo-
artistic expression” this expression specific to video games,
which is the privilege of the player and not the designer”

31

(Leja 2003). Leja defines the game designer and the player
like artists and he suggests that the videoludic expression is
not an individual action.

THE MAP AS A SUBJECTIVE REPRESENTATION

According to Philippe Rekacewicz, cartography is governed
by both science, “with quantitative and qualitative data”, and
art, as “a work consisting of movements, colours and
shapes”, but also “lie and manipulation” (Rekacewicz 2006).
The cartographer is a scientist, an artist or a liar, or all three
at once, because he is free to show the territory in his own
way.

The map is initially thought of as a picture, on which
selected elements will be assembled in harmony. The author
then decides about their representation. Some elements are
reinforced, while others are hidden. The map becomes the
personal expression of its author. The poster History of Life
on Earth (Figure 2) is considered first as an artwork. The
final result demonstrates real aesthetic research to reflect the
evolution of life on earth.

Figure 2: History of life on earth (Finn 2007)

The choices of the cartographer to realize his map will
depend on his sensitivity: he can for example, decide to
represent the experiences of a place, transposing the physical
reality of the place into the imagination.

The school Fustel de Coulanges, in Strasbourg, suggested to
its art students, an exercise with the school journey as the
topic (Figure 3).

Figure 3: Drawing a school journey

Although the journey is the same for all the students, the
diversity of work shows that walking in the city solicits the
senses and the emotions of the bystander. The picture is an
individual perception of a daily itinerary.

PROPOSAL HYPOTHESIS

Based on the idea that video games are intrinsically
educational, several sub-hypotheses can be formulated.

The reconstruction project for the Vianden Castle
(Luxemburg), having a pedagogical aim, is a support to this
work.

The Vianden Castle was constructed between the 11th and
14th centuries on the foundations of a Roman “castellum”
and a Carolingian refuge. It is one of the largest feudal
residences of the Romanesque and Gothic periods in Europe.

Real time exploration based on riddles

Assisting in acquiring of knowledge is undertaken using
spatio-temporal paths (to move freely in a virtual
environment, inspect, choose, act, return, etc) of a strategic
nature. The establishment of a narrative context leads the
learner to a total and intuitive understanding of the Vianden
Castle.

We can add a number of particularities concerning the
motivation of the user: giving him a desire to explore a
world, finding clues, meeting obstacles, and following rules.
It’s the principle of exploration games, where the player
discovers the story by solving riddles. Vincent Mespoulet
and Anne Scholaert show the educational value of the CD-
ROM Crusader: Adventure Out of Time, by combining plot
and historical content and by placing the clue in the heuristic
process (Mespoulet and Scholaert 1999).

Several aspects of the Vianden Castle are considered for its
restitution (Table 1).

Table 1: Examples of levels and quests for the Vianden

Castle
Quest 1 Quest 2 Quest 3
Level 1: | Architectural | Restoration | Archaeologica
temporal details works 1 excavations
aspect
Level 2: Volume Passages Structure
spatial typology and
aspect openings
Level 3: | Tapestries Weapons Jewels
object
aspect
Level 4: Rivalry Families Rural
characte between population
r aspect Counts

Each aspect corresponds to a level (Figure 4). Each level has
several entry points to begin a quest. The quests offer
various riddles to be solved (R1.1: riddle 1 of quest 1, R1.2:

32

riddle 2 of quest 1, etc) and the learner chooses the order of
the clues.

Quest 3:
Archaeological
excavations

{EVEL 12
Temporal aspect

Figure 4: Principle of the hierarchy of level-quest-riddle

If we consider the Vianden Castle as a pseudo-text, we can
then interpret the three kinds of cognitive operations:
e Concatenation, the operation of sequencing of
spaces,
e Recall, linking the signs and clues,
e Selection, where the solving of the riddle involves a
synthesis in the reading.

Materialising the learner’s mental map

We refer to the notion of “mental map” described above,
while reinterpreting it. Our approach consists of
materialising these maps by using several ludic mechanisms.

The learner materialize an idea or a mental image during the
exploration: this is a screenshot projecting a particular point
of view. It becomes presentation and representation support
of the information (drawings, text, images, sounds, etc)
rendering perceptible a passage point of the path.

The learner’s mental map is formed by successive additions
of the mental images materialized during the exploration
(Figure 5).

PLAN - VIANDEN CASTLE - PERICD &

Figure 5: The path in the Vianden Castle

This becomes a real three-dimensional map encouraging the
user to adopt a ludic attitude (Figure 6):

e The map is used as a guidance and locating tool,

o it allows the user to represent and organize ideas,

e it assist the memorization process of knowledge.

Figure 6: The screenshot-assembling to create a 3D map

Such materialization thus maintains a process of knowledge
construction resembling a creative activity.

Visibility of the process of knowledge construction
through traces

We have seen that the understanding of the castle involves
two parallel activities: a reading activity during the
exploration and a creative activity during the construction of
the three-dimensional map.

Throughout the creation of this map, the learner outlines his
path. For that, he must be able to detect relevant elements in
the castle, and use a three-dimensional map to make useful
conclusions and debrief his path and his deductions: locate,
sketch, formulate a hypothesis, give prominence to points of
view, correct, etc.

During “concatenation” and “recall”, visual or sonorous
information is reproduced on bi-dimensional pages (Figure
7).

ENVIROMMENT BUREENEMIT
% ¢

Sensitive s
sty

Hanroadfiion drem

Senuitive sl
a4 i

{viddno}

Figure 7: The screenshot number 4 gathers and connects
multimodal information, found in the database or on Internet

3D connections are possible on pages or between them
(Figure 8). The 3D links can report waypoints in the castle
for example, or link clues.

33

The free play of associations by similarity allows the
formulation of the metaphor and interpretation.

LINK BETWEEN CLUES
Figure 8: The links between pages 3 and 4

During “selection”, The learner updates his path through the
reading of the 3D map. He identifies and tries to understand
the links. The theory established leads to the solving of the
riddle.

The map is under the visual control of the user, and can be
appropriated according to his pace and his own interests.

Sensitive areas allow round trips between the three-
dimensional map and the Vianden Castle. A rapid movement
system is thus established to come back to the path.

e This feedback system allows him the revision or the
correction of information.

e The learner has several points of view: internal
focus (subjective view during the exploration of the
castle), zero focus (during the reading or creation of
the map).

The three-dimensional map preserves the traces and the risks
of the path. The learner can begin a new quest or a new map.

CONCLUSION

First, video games would transmit capacities and knowledge,
and they would develop skills transferable to other activities.
Secondly, the approach of cartography shows that spatial
perception and visualization are subjective.

Consequently, this article suggests enriching the conception
of educational products, combining the potential of video
games with the methods of representation of archaeological
and architectural heritage.

During the exploration of the Vianden Castle, the user
creates a three dimensional map by materializing his mental
map.

This map helps the learner by facilitating the representation
of the information and by increasing their memorization.

It would be interesting, on the one hand, to specify a model
by defining the properties of information (as knot) and links
(as arcs), on the other hand, to define an experimental
protocol in order to know if this map really participates in
knowledge memorization.

REFERENCES

Barba R. and DeMaria R. 1997. “Riven : The Sequel to Myst”.
Cyan Worlds Inc, Broderbund Inc.

Bolter J. D. and R. Grusin. 1998. “Remediation: understanding new
media”. MIT Press.

Cohen D. 1995. “Interfactives ou I’écran agi. Les métaphores a
’écran”. In Ecrits. Images. Oral et Nouvelles technologies.
Actes du séminaire 1994-1995. Under the responsability of
Marie-Claude Vettraino-Soulard, Université Paris 7-Denis
Diderot.

Dlugosz Chris. Url: http://chrisdlugosz.net/misc.shtml

Finn B. 2007. “History of life on earth”. lapetus Press.

Greenfield P. M. 1987. “Video games as tools for cognitive
socialization”. In: Computers, Cognition, and Epistemology, an
International Symposium, Sandbjerg Slot, Danemark, (April).

Greenfield P. M. 1994, “Video games as cultural artefacts”. Journal
of Applied developmental Psychology, vol 15, n° 1, (January-
March).

34

Henriot J. 1989. “Sous couleur de jouer”. José Corti, Paris.

Leja E. 2003. “Le jeu vidéo estil un art?”
http://www jiraf.org

Mespoulet V. and A. Scholaert. 1999. “Croisades ou 1'énigme dans
l'acte pédagogique”. CD-Rom : Crusader: Adventure Out of
Time, Wanadoo Edition, 1999. Url: http:/histgeo.ac-aix-
marseille.fr/a/div/d013.htm

Perriault J. 1998. Communication at the symposium: Pour ne plus
avoir peur des jeux video, (March).

Rekacewicz P. 2006. “La cartographie, entre science, art et
manipulation”. In Le monde diplomatique.

Vandendorpe C. 1998. “La lecture de 1’énigme”. In: Alsic, vol.l,
n°2, [http://alsic.u-strasbg.fr/Num2/vanden/alsic_n02-
rec2.htm].

Url :

CONTENT
ADJUSTMENT

36

Content-Adjustment Mechanism for Console Gaming

Jiajia Tang and Liang Chen
Computer Science Department
University of Northern British Columbia
3333 University Way, Prince George, BC,

Canada

E-mails: jtomline@gmail.com, Ichen@ieee.org

KEYWORDS
Self-adjusting, extending content, custermor service, design
loop.

ABSTRACT

Based on a rarely noticed advantage of console games, that is,
the independence of user ability estimation, a so called content
adjustment mechanism for console games, is proposed. We
would improve already released products by adding such a
mechanism to them.

This paper will show how this new mechanism could be
applied to different game types and the way it helps players to
play through the entire game.

INTRODUCTION

With the advantages of user interactions and the effectiveness
of user controlling mechanisms, online games have sprung up
into a very profitable part of the gaming industry. As its
predecessor, the console game, although having most types of
games, encounters cutbacks in market value and could be
eliminated completely from the market due to competition with
online games. In spite of introducing internet services to make
it attractive, it seems that loyalty toward console gaming has
not been significantly improved.

This paper promotes a content adjustment mechanism for
console gaming in order to raise the loyalty of players and
increase the portion of legal users by introducing on-line
functionalities in helping players and continually promoting
already released products on the basis of Al approaches.

The term, “console game”, means slightly different from the
more popular meaning, which indicates games designed for
console machine such as PS3 or XBOX360. This term means
“stand alone software game product”, or “off-line game
product”. Since PC game contains the most various game types,
this paper is based on stand alone PC game.

37

CONCEPT

Players of online games share the same environment (De Roure ,
1997) and therefore it is unfair to apply different criterion to
each user; the gamers of console games seldom communicate
with each other directly, which makes it possible to adjust
game content by players’ ability. This special advantage of
console games is due to user-independency estimation
criterion, which has not been implemented yet. This motivated
us to suggest an on-line content adjustment mechanism for
console games.

Based on this mechanism, evaluating and adjusting Al can be
inserted into a game: When a player encounters difficulties in
progressing, Al could find the problems, make adjustments
and report it to the game producer. If a player fails too often or
seems to be unable to proceed anymore, the Al will produce
new game scripts to help the player continue the tour.

There are some advantages to doing so. First, it could extend
the life cycle of a game and players’ tolerance would not
decrease too soon because of their encountering too many
difficulties they couldn’t solve. Second, with help from online
service providers, players can play through the entire area
which has been carefully designed by the game designer —
which might be attractive enough to keep the players. Third,
game designer could improve the future product base on the
automatic feedback, or even develop new content standards for
game development. It works as customer relationship
management system for business purpose (Jin et. al. 2006).

The targeted group is entry level “playful” participants.
Serious players and hackers rarely run into difficulties, and
have enough skills and capability in solving problems by
themselves. Basing on their technical skill, they may able to
play through the entire game by through “cracking” or
“pirating” it. On the other hand, new players need constant
help and tend to buy a legal version instead of an illegal one
which needs more technical skills. They are the ones that need
special care from game producers. The whole progress could
be represented as Fighre 1.

difficulty report
technical

conten
support

e

L
Developer

knowledge base for
next design loop

new confent

Figure 1: Content-adjusting progress
DESIGN

The Content Adjustment Mechanism for Console Games
contains two portions:

In Progress Events

In order to make the program adjust itself automatically, game
events should be designed as independent objects during
development, and content should be written in script style.
Therefore, the adjusting Al could support players by adding
clues or taking out some steps.

The adjusting Al supports online service for players connected
to the producer’s host machine. When the game’s progress is
found to be damaging players’ tolerance, the content
adjustment mechanism will send a proper substitute script to
the player’s side, which could help players go through the
whole story in a way different from the standard.

The adjusting Al shall record noteworthy parts of the player’s
progression, and occasionally send that data back to the
producer. This will help designers to write new scripts for
players in different levels. This feedback could be consulted
for future game development; furthermore, the accumulation
of feedback could help to design standards for different game

types.

In Content Design

Since the adjusting Al needs to send requests for help, the
producer needs a host to support it constantly. Console gaming
becomes a long term service instead of a simple “one-off”
product.

In order to help the adjustment AI make decisions
automatically and assign suitable, meaningful feedback,
designers have to break down the game’s progression and
classify all events. Design for this part is more complicated
than the in progress part.Designers need deploy different
assistance for different game types.

For example, we show below how Content Design should
deploy for different games:

38

Action games:

An action game needs players’ immediate reaction. The whole
game is bound up by a series of motions. To provide assistance,
designers could try to simplify some motions and add some
auto-completing functions.

Platforming games:

This game type, shown as Figure 2, requires players to go
through pre-designed maps. In order to help, providing more
supporting items, reducing enemies or changing attributes of
mobs may help players to break through their problems.

Figure 2: example of platforming games

Adventure games:

This kind of games hides core items in environment. New
gamers and players with cultural backgrounds other than the
designers may encounter more many difficulties beyond the
designers’ original assumption. Designers could provide
assistance by making key items more significant, providing
clue of item usage or inserting the pattern of thinking into the
content script.

Simulation games:

There are many kinds of simulation games. For driving
simulation, auto-adjustment, reducing simultaneous procedures
or providing helpful advice may assist players. For tycoon
games, new game scripts could help players to analyze their
timeline of achievements, advising on possible improvements
and give clues of job priority in order to achieve the
requirement.

It is worth noting that content adjustment mechanisms
provides only a prototype, there is much custom work to be
done in implementation, due to the tremendous amount of
game categories. To ensure the progress feedback from players
are efficient and useful, designers should carefully define all
event types and feedback standards so that the feedback are
able to indicate precisely what the problems are.

CONCLUSION

Games should concentrate on releasing gamers’ pressure in the
real world, and help gamers of all different types expand their
imagination and experience, which are the core value of games
for different ages. Letting players pass a challenge does not
affect the merit of a game, but the inability of users to pass a
challenge does. Designers are story-tellers. In their stories,
there are trivialities and heroics, but there should be someone
listening to the stories thoroughly to make the virtual tourism
meaningful.

This indicates that we should make it possible for players go
through all the exciting events and scenarios before they lose
their confidence in playing the games.

In the age of the internet, designers need not ask themselves
know everything, but need to exploit ways of improving their
product consistently. Online games add content continuingly to
maintain their services (Armitage et. al. 2006). It is an advantage
compared to traditional console games, but console games now
have this ability as well. Console game producers should not
take their product as a one-time sale product anymore; they
should adapt new mechanisms to provide meaningful service
consistently on line.

By adapting the content to players that the designers want to
attract, designers can write substitute content for player groups
beyond of their expectation, and adjust content to be more
suitable, by consulting with the feedback received. It helps
products extend their influence over a wide range and keeps
the issue of taking care of unexpected/untargeted players from
interfering with the release date.

Not only “playful” gamers get benefits from this mechanism.
Due to the game content written by scripts, it makes adding
new drama possible. Serious gamers could retrieve more
challenging content via an online service. It allows games to
have a longer life cycle, and convinces players to register for
legally accessing an online service.

Furthermore, it could give an approach to providing long term
updates for off line “membership” players, with or without
membership fees, as online games currently do.

FURTHER RESEARCH

This paper is based on the ongoing commercial architecture,
such like CRM, online game updating technique and design
loop, proposing designs for different game type, but not
actually implemented. It will take great time to exam the
effective in game industry.

In order to implement content-adjustment mechanism, it need
to encrypt this mechanism into many game products, and go
through many project cycles to check if customers keep
interests in games which their opinion is communicable to

39

designer, and if designers are benefited by knowledge base of
customers’ feedback.

It needs a lot of support, and I expect to see game industry is
benefited by this mechanism.

Acknowledgement: This work is being supported by NSERC
Discovery Grant.

REFERENCE

Armitage, Grenville; Mark Claypool;, and Philip Branch. 2006:
Networking and online games,Wiley.

De Roure, David; Roure. 1997: Introducing the declarative dungeon,
Springer Berlin / Heidelberg

Jin, Peng; Yunlong Zhu; Sufen Li; and Kunyuan Hu, 2006:
Application Architecture of Data Mining in Telecom Customer
Relationship Management Based on Swarm Intelligence,
Springer Berlin / Heidelberg, 2006

AUTHOR BIOGRAPHY

Jia-jia Tang got Bachelor of Education from National University of
Tainan in Taiwan in 1999. She has worked around 10 years for for
content and commercial website constructing company, pc game
developing company and online game developing company. She is
now a MSc student in Computer Science Department, University of
Northern British Columbia.

Liang Chen is currently Professor of Computer Science, Professor of
Interdisciplinary MSc Program, & Chair of Computer Science at
University of Northern British Columbia. Dr. Chen’s research areas
are: pattern recognition, image processing, computational geometry,
intelligent language tutoring system, data mining, bioinformatics; and
the computational intelligence fields, including fuzzy systems, neural
network, and fast approximate practical algorithms for solving some
NP hard problems. He is also interested in the voting schemes in
political election and scientific research.

AN ITERATED SUBDIVISION ALGORITHM FOR
PROCEDURAL ROAD PLAN GENERATION

Nicholas Rudzicz

Clark Verbrugge

School of Computer Science, McGill University

Nicholas.Rudzicz@mail.mcgill.ca

ABSTRACT

The generation of detailed virtual environments is an in-
creasingly resource-consuming task for videogame devel-
opers. This has encouraged the investigation of proce-
dural techniques for creating content from landscapes to
textures to—much more recently—cities and their con-
stituent road-scapes. This paper introduces the Iterated
Subdivision algorithm, a straightforward, flexible, and
easily customised approach to the generation of road
plans for virtual cities. The use of such an algorithm re-
sults in a significant savings in terms of developer time
and resources—extending the possible scope of games—
and furthermore allows rapid prototyping in order to
test newly-created game assets.

INTRODUCTION

As both the graphical power and storage capacity of
modern computers become steadily cheaper and more
powerful, video games are driven towards greater lev-
els of scale and detail. However, this comes with an
associated increase in game development costs, both in
terms of time and developer resources. In order to meet
expectations, game developers are required to hire addi-
tional artists, buy additional toolsets, and spend larger
fractions of a game’s budget simply to provide the game
world with sufficient environmental content. Accord-
ingly, there has been a growing interest in procedural
generation of a variety of in-game assets, including whole
cityscapes. The latter present an interesting problem, as
cities and human settlements in general tend to exhibit
much more regular and meaningful patterns than can be
found in natural environments. As such, any attempt to
generate them procedurally (i.e., randomly) must nev-
ertheless maintain the appearance of some underlying
structure.

The procedural generation of cities can itself be de-
composed into several smaller tasks: road plan gener-
ation, generation of buildings and green spaces, popu-
lation with NPCs and vehicles, and so on. The first
of these items—and indeed, generally considered the
most important and initial step in city generation—is
the construction of a road plan upon which the city can

40

clump@cs.mcgill.ca

be built. Here we present an Iterated Subdivision algo-
rithm designed for this task. Our approach is fast, sim-
ple to conceptualise, and can easily be tuned according
to the specific requirements of the game environment.
By including simple constraints and exploiting our tun-
ing parametrisations we can produce a variety of road
plan styles suitable for city simulation. This design pro-
duces realistic results, and is particularly suited to the
rapid development of large-scale game worlds as well as
to rapid prototyping for game testing purposes, or even
on-line road plan generation.

Specific contributions of this paper include:

o We develop a simple algorithm for road plan genera-
tion suitable for game development. This approach
is extremely fast and accommodates arbitrary city
boundaries.

e To further improve realism we incorporate various
constraints that enhance output appearance. Our
generated road plans are capable of modelling both
structured and unstructured city designs.

e Different game environments mean a wide variety
of road properties may need to be supported, and
moreover these may not be constant throughout
the city. Our technique allows the use of density
map information to represent arbitrary, spatially-
localised parametrisation.

The next section describes related work in the field
of content generation in general, and city generation
in particular. This is followed by the main section
of this paper presenting our Iterated Subdivision al-
gorithm, along with quality constraints and a number
of parametrisation options, and showing representative
output. In the final section we discuss possibilities for
improvement to the algorithm design as well as future
work on the software itself.

RELATED WORK

Although procedural content generation is the subject
of an increasing amount of research in recent years, it
is not entirely new to the field of videogame develop-
ment. Early “dungeon-crawlers” such as Nethack pro-
duced randomly-generated dungeons for the player to

navigate, and both Adams and Buck have performed
similar work in recent years [Adams, 2002, Buck, 2003].
These approaches each consider game dungeons as sets
of “interesting” rooms connected by either a maze or
graph topology, and set about examining the various
(random) ways that these connections can be made.

Similarly, procedural landscape generation has been
popular for many years and has achieved a certain level
of sophistication. The popular and enduring Civiliza-
tion series of games provide randomised terrain and set-
tlements based on a small set of input parameters se-
lected by the user. Though these terrains generally be-
lie the grid-based engine on which they are built, other
techniques—as outlined by Ebert—employ algorithms
such as Perlin noise, fractals, or displacement and ero-
sion to generate continuous, highly realistic terrains for
visualisation purposes [Ebert et al., 2002].

However, while games like Nethack and Civilization
have been able to significantly increase their longevity
through the use of randomised content—ensuring a
new gaming experience each time they are played—
commercial videogames employing procedural content
(whether implicitly or explicitly) are still vastly outnum-
bered by those featuring traditional, manually-created
content. In the case of procedural city generation, the
greatest share of work is instead to be found in the fields
of visualisation and simulation. Here, various levels of
content are often generated: streets, buildings, green
spaces, and so on; however, each approach requires an
initial road plan to be generated in order to give the re-
maining steps a structure on which to build. Generally,
algorithms for this road plan generation have taken the
form of L-Systems or agent-based approaches.

L-Systems

One of the earliest and perhaps most successful ap-
proaches to procedural road plan generation involves
the use of Lindenmeyer Systems, or L-Systems. In its
simplest form, an L-System is a deterministic string
rewriting algorithm: given an alphabet of symbols,
a set of production rules, and a starting string (ax-
iom), the algorithm uses the rules to repeatedly and
simultaneously replace multiple substrings with new
strings. Using this process, it is possible to realisti-
cally model branching structures, as shown by both
Lindenmayer [Lindenmayer, 1968] and Prusinkiewicz
[Prusinkiewicz et al., 1988] in their modelling of cell and
plant growth, respectively.

Parish and Miiller build on the work of Linden-
mayer and Prusinkiewicz, using L-Systems to model
the growth of urban road networks [Miiller, 2001,
Parish and Miiller, 2001]. Their L-System implemen-
tation is extended, however: first, the L-System is

“self-aware” in that it can form closed loops with it-
self (i.e., new roads can create cycles by connect-
ing with pre-existing ones); and second, the L-System
is highly parametrised—for instance, it can be made
to follow population density or terrain elevation, or
follow more grid-like patterns as opposed to radial
ones. This modified L-System approach has proven
very successful in generating realistic road networks
[Parish and Miiller, 2001].

Agent-based approaches

Lechner and Watson explore the wuse of au-
tonomous agents in the creation of road networks
[Lechner et al., 2003, Watson, 2006]. A collective of
independent “developer agents” is built, with each
individual being assigned a specific type of urban
content—roads, residential areas, industrial plots, and
so on. Each type of agent is attracted and repulsed
by different characteristics of the underlying terrain
and existing city objects (residential agents are drawn
to waterfronts, for instance, while road agents are
drawn to unconnected lots), and when the agents are
“released” into the world, cities and road plans emerge
from their interaction and competition for virtual real
estate and resources. While this model perhaps most
accurately represents the dynamic growth of cities
under competing forces, the authors admit that the
results are presently very coarse-grained and on a
much smaller scale than desired [Lechner et al., 2003].
Furthermore, as in any agent-based approach, results
are highly unpredictable, though Watson has suggested
means for users to significantly influence the final
product by placing strong attractors (or “honey”) in
various areas of the virtual world [Watson, 2006].

ITERATED SUBDIVISION

While the previous methods for road plan generation
have proven successful in a number of ways, they come
at the cost of programming complexity. Our approach
to the problem is based on an efficient and conceptually
simple method that nevertheless retains the flexibility
and realism exhibited in previous algorithms. Since this
approach relies exclusively on the repeated subdivision
of polygons, it has been dubbed the [lterated Subdivi-
sion (ItSub) approach. This initial algorithm is ex-
tended first through the imposition of various internal
constraints to ensure realistic outputs, and finally by
allowing custom parametrisation of the output through
a modular use of bitmaps. The following subsections
describe these steps in detail.

41

Algorithm 1: Iterated Subdivision
Input: Polygon P, Anin, Amas
Output: Sui0t, Sroads

1 Soversized — P
2 Sroads — @
3 Sallot — (Z)
4 repeat
5 Pworking — oversized-pop()
6 Lyiscct < Puworking-getAcceptableBisector ()
7 {plap2} — Pworking-biseCt(Lbisect)
8 Sroads «— Oroads Y Lbisect
9 if py.area > A4, then
10 | Soversized < Soversized U Y4
11 else
12 | Sallot — Sallot U yal
13 end
14 if po.area > A4, then
15 | Soversized — So’uersized U p2
16 else
17 | Sallot — Sallot U P2
18 end
19 until |Soversized‘ ==0
Algorithm

The Iterated Subdivision algorithm draws inspira-
tion from Tarbell’s Substrate visualisation, which
was noted to produce “intricate city-like structures”
[Tarbell, 2008]. This result is achieved by placing a
number of random seed vectors on a two-dimensional
“canvas,” and repeatedly drawing roughly perpendicu-
lar line segments from these initial vectors and other
newly-created segments. Appearance and quality are
driven by the method for assigning new line-drawing
vectors, and the allowable range of sizes for the result-
ing space division.

In its simplest form, the ItSub algorithm requires as in-
put a predefined, simple polygon P, and a minimum and
maximum area—A,,;, and A,,q., respectively—for the
resulting subdivisions, or allotments. We discuss fur-
ther parametrisation below. The algorithm then bisects
P randomly, resulting in two new polygons. The latter
are either accepted or rejected based on their individ-
ual areas: larger polygons are subdivided further, while
those of an acceptable size are set aside as completely
subdivided.

The process just described is summarised in Algorithm
1. The key component of the algorithm is the set of
“oversized” polygons, Soyersized, containing all polygons
with an area greater than A,,... Initialised with only
the original polygon P, Syyersizeq returns polygons one
at a time. A random bisecting line, Ly;scct, is generated
within this working polygon by choosing a random edge

42

in the latter, and a random point along this edge. A
random line drawn through this edge (not parallel to
the edge itself) will then bisect the polygon and return
two new polygons, p; and ps. These resulting polygons
are evaluated individually. First, if either polygon is too
small (having an area less than A,,;,), the bisecting line
is rejected and a new one generated; otherwise, Ly;sect
is accepted. Then, if a polygon is still oversized, it is
added back into S,yersized, While if its size is acceptable,
it is added to Sgi10¢, Which represents the final set of all
generated polygons, or allotments. Likewise, Lp;scct is
added to S,oqds, the set of all road segments generated
by the algorithm; note that, while S;.,4q4s could theoret-
ically be rebuilt from the knowledge contained in S0
and vice-versa, the two are stored explicitly to facilitate
any subsequent post-processing steps. The algorithm
then proceeds until there are no more oversized poly-
gons in Syyersizeq 1O process.

Acceptable polygons

The choice of bisecting lines is clearly critical to the
visual success of the algorithm, and various constraints
can be applied to the ItSub algorithm in order to ensure
realistic road plan generation. Minimally, A,,.. is neces-
sary to ensure that the algorithm eventually terminates,
and A,,;n is used primarily for aesthetic reasons, to en-
sure allotments, the spaces between roads, are above
some minimum size. A further “shape” criterion is also
necessary; even if they cover sufficient area allotments
should typically have a usable shape, in accordance with
realistic city design.

The result of a naive implementation of ItSub, without
any shape constraint, is shown in Figure 1. Here, the
generated polygons satisfy the condition of being smaller
than the supplied A,,q.; on the other hand, it is clear
that the algorithm is generating too many long, overly
narrow “stripes.”

W

M

"ﬂ'l .
T

I
i
w‘l i ’ i

Figure 1: Unconstrained ItSub output displaying undesir-
able “stripes”

i J] |

Figure 2: Comparison of allotments with small diameter-
to-width ratios (left) and larger ones (right).

Imposing a shape constraint requires reducing the
range of “acceptable” polygons returned by the
Pyorking-get Acceptable Bisector() function. Previously,
it was sufficient that a polygon P; have an area larger
than A,.;,. To remove the appearance of stripes,
however, it is necessary to examine the ratio between
the largest and the smallest spans of the polygon—
that is, the ratio between the polygon’s diameter and
width, as defined by both Preparata and Toussaint
[Preparata and Shamos, 1985, Toussaint, 1983]. As this
ratio approaches infinity the polygon becomes increas-
ingly “striped” and elongated; conversely, as it ap-
proaches unity, the polygon is contracted. Acceptable
polygons are thus redefined to be those that are larger
than A,,;n, as well as having a bounded diameter-to-
width ratio below some threshold R,,,.. The effects of
varying R,... are demonstrated in Figure 2; tests have
shown that using R,,.. = 16 provides acceptable re-
sults, and this value is used in all subsequent figures.

Branching angles

The previous description of the ItSub algorithm sug-
gested that a bisecting line (providing it is “acceptable”)
is chosen to pass through a polygon at a random point,
and at a random angle. In practice, however, this leads
to completely arbitrary road paths, as seen in certain ar-
eas of Figure 1, particularly near the top of the image.
While a certain amount of arbitrariness is expected in
urban road plans, it is unrealistic when evident in any
large proportions. To avoid this, branching angles can
be constrained to lie within specific intervals. In the cur-
rent implementation, branching angles are initially as-
sumed to be perpendicular to the starting edge, and are
then perturbed by a small amount in either direction.
The perturbation is defined by a Gaussian distribution
as shown in Figure 3, whose parameters—mean and
standard deviation—can be defined at runtime. As dis-
cussed elsewhere (see [Parish and Miiller, 2001]), many
modern cities exhibit more than one distinct “style” of
road plan—Ilarge-scale patterns emerging from the spe-
cific orientation of a collection of adjacent roads. The
manipulation of branching angles described above allows
for at least two styles of road plan to be generated with
ItSub: Manhattan and Arbitrary, as shown in Figure 4.

Figure 3: Gaussian distribution of possible branching angles

Manhattan-styled roads, named after the city in which
they are most conspicuous, exhibit a grid-like pattern,
with angles that rarely deviate from 90°. Such a road
plan can be achieved by setting the standard deviation,
o, of the aforementioned Gaussian distribution to zero.
Thus, effectively all roads will branch at right angles to
their starting point, giving the grid-like effect intended.
These types of roads are generally prevalent in modern,
rigourously-planned or commercial neighbourhoods.

Conversely, arbitrary road plans are more typical of
older neighbourhoods, in which urban planning was of
much less importance than simple expedience; examples
can be seen at the southern tip of Manhattan island, as
well as in Montreal’s Old Port district. Producing such
roads using ItSub is again achieved by manipulating the
value of ¢ as described above. For Arbitrary road pat-
terns, o is significantly increased, which leads to a wide
variety of road branching angles, as required.

USER INPUT

The discussion of ItSub thus far has ignored the issue of
user input; all parameters have been assumed to be fixed
at runtime. It is, however, advantageous—perhaps even
necessary—to allow these parameters to vary within a
particular generation run in order to produce an urban
road plan with a variety of features. Given the visual

T T /

Figure 4: Two styles of road patterns: Manhattan (left) and
Arbitrary (right)

43

nature of the generation task, and similar to other tech-
niques in the literature, our approach makes use of input
bitmaps to provide this flexibility to the user. These
bitmaps are standard greyscale images, as shown in
Figure 5, that can be custom-drawn by the user, and
whose purpose is to illustrate the variation of a specific
trait—such as population density or characteristic road
pattern—across a city map.

Population density

The vast majority of cities display some degree of varia-
tion in population and road density patterns across the
urban area; in fact, it would challenging to find a city
that does not exhibit such variation. Previously, how-
ever, our ItSub algorithm has assumed uniform density
during the generation process. In order to overcome this
constraint and allow users to define regions of higher
or lower density within a given city, greyscale bitmaps
are used as input—Ilighter areas indicating high density,
darker areas indicating low density.

Note that adding steps to the ItSub algorithm to ac-
count for user-defined density maps does not signifi-
cantly alter the technique; the trivial case, where no
density map is provided, is identical to the algorithm
described above. If the input is given, however, some
extra processing is required during the polygon-testing
phase. Whereas previously, a newly-generated polygon
was compared against A, and A,,q. directly, these
values must be somewhat modified upon the introduc-
tion of a density map. First, an axis-aligned bounding
box is created around the new polygon. The bound-
aries of this box (defined by the vertices of the poly-
gon) are then mapped onto the bitmap, and the aver-
age of the greyscale values within this box is calculated.
Finally, this average is used as an inverse weight on
Apin and A, q..—polygons mapped onto a lighter area
of the density map will be compared against smaller
values of A,,;, and A,,q., resulting in much shorter and
densely-packed roads in these areas. Conversely, poly-
gons mapped to darker areas will be compared against

Figure 5: The use of a greyscale density map (left) influences
the size of generated allotments (right).

44

larger bounding values, and will tend to be subdivided
less, resulting in larger allotments. The use of a density
map is shown in Figure 5.

Road pattern

The choice of road pattern can also be influenced by
user-defined bitmaps in a similar fashion. As before, a
given greyscale bitmap is used to describe the influence
of a given road pattern (Manhattan or Arbitrary) over
a particular area, ranging from low influence (dark) to
strong influence (light). Note that in the case of road
pattern bitmaps, the parameter to be controlled is the
branching angle of a road from a specific point, as op-
posed to the overall area of a full polygon, as was the
case with density maps. As such, instead of mapping the
bounding box of the working polygon onto a bitmap, it
is rather the branching point itself that undergoes map-
ping. A small selection of pixels in the surrounding area
in the bitmap are examined, and an average greyscale
value is computed. This value then determines the influ-
ence of a particular road pattern on the given branching
point.

Importantly, there are now two such bitmaps to evalu-
ate. The procedure described above is carried out on
both the Manhattan- and Arbitrary-influence bitmaps,
and the resulting averages compared. The new branch-
ing angle is then chosen to reflect the pattern that has
the greatest influence on the branching point. The use
of a road pattern bitmap is demonstrated in Figure 6.

ANALYSIS

Given the full definition of the ItSub algorithm, it
is beneficial to examine the procedure’s performance.
To do this, experiments were conducted in which the
total number of road segments generated was gradu-
ally increased, with the expectation that computation
time will be roughly linear in the number of roads
generated—since exactly one segment is produced per

|

Figure 6: A bitmap showing the distribution of Arbitrary-
styled roads (left) and the resulting road plan (right).

1
A

"
H
T
T

i\
!
I
T

\
)
1\\\

1:‘1
i\
A
\

i
i
i\

f‘
|

Figure 7: Results of applying a simple implementation of ItSub to a representation of Manhattan island. Top-left: bitmap
representing Arbitrary road plan distribution—see arbitrary branching angles towards left side of the image. Top-right: bitmap
representing density distribution—Ilight grey background ensures a minimal density in all areas. Bottom: resulting road plan.
Greenspace is constructed by removing generated road segments within a given area.

polygon examined, and there are no comparisons to per- No bitmaps All bitmaps
form between polygons, etc. Operating on initial poly- Roads | Time (ms) | Roads | Time (ms)
gons of varying size (512x512 pixels, and multiples of 200 386 60 944
5, 10, and 20 times this polygon), road plan generation 1015 1190 301 1710
was executed a number of times, and the overall num- 2043 2437 639 2459
ber of road segments generated were averaged, along 4074 4392 1366 3521
with total computation time. This experiment was con- - - 4259 9877
ducted first on the base algorithm using none of the
three input bitmaps (density, Manhattan, or Arbitrary), Table 1: Influence of number of roads generated on algo-
and then with all three included, to determine whether rithm running time.
the calculations involved in examining these bitmaps
would significantly affect running time. Experiments 10000 L
were conducted on an AMD Sempron 1.6Ghz notebook 000 Gt ’
with 768MB of RAM running Xubuntu 7.10. Results = '."
are shown in Table 1. % cooe L= -

. . . E 4000 - e
As observed in this table and the associated graph, run- i - ‘/
ning time increases roughly linearly as more roads are 2000 g B .
generated. Furthermore, as expected, the use of in- o '/
put bitmaps initially increases running time of the algo- a 1000 2000 3000 apap

rithm. Interestingly, in the case of the two larger maps Number of roads

running time was either unaffected by bitmap usage or
actually decreased by nearly a full second. This can
be explained by examining the number of roads gener-

Figure 8: Number of road segments vs. algorithm run time
(from Table 1). Solid line shows tests using no bitmaps,
dashed line shows tests using all bitmaps.

45

ated: when a density map is used, fewer road segments
are generated due to the existence of sparser areas, and
so the overall running time of the algorithm is shorter.
Thus, while the use of input bitmaps does incur some
overhead, this can be effectively negated when using
density maps. Note that the number of actual roads gen-
erated is not directly under user control, and is instead a
consequence of bitmap constraints as well as the size of
the initial polygon. Nevertheless, the algorithm main-
tains an exceptional speed: the road network pictured
in Figure 7 was regenerated multiple times, averaging
1200 individual roads and running for 2.25 seconds on
average.

CONCLUSIONS & FUTURE WORK

The combination of simple constraints and bitmap
parametrisation makes the Iterated Subdivision algo-
rithm very modular, simple to use and modify, and scal-
able up to large city sizes. Basic constraints ensure basic
output quality, while the bitmaps make local specialisa-
tion trivial, with variations in road plan seamlessly inte-
grated throughout the final output. Realistic examples
are shown in Figures 7 and 9, both demonstrating the
results of applying the ItSub algorithm to real-world
geography—the islands of Manhattan and Montreal, re-
spectively.

Of course there are many areas to improve and investi-
gate as future work. Currently, the parametrised defi-
nition of road density allows users to influence the size
of generated allotments, approximating transitions be-
tween “downtown” cores and less-developed areas. How-
ever, future parametrisation might involve more explicit
definitions of urban versus suburban allotments—again
through the use of input bitmaps. Such input would not
only influence the density of roads and allotments, but
could be extended to influence the types of buildings
generated in each allotment, should such a process be
implemented.

One consistent difficulty in generating road plans such
as those presented in this paper is the generation of an
initial bounding polygon. Since ItSub requires an initial
polygon P as input, the latter must be defined manu-
ally beforehand. Though a simple square polygon would
suffice for prototyping purposes, more complex figures,
such as the maps shown in Figures 7 and 9, generally re-
quire much more complex polygons to be defined. While
this can be performed manually, the main purpose of
developing ItSub is to automate the process of creating
cityscapes. Thus, some work remains to be done in au-
tomatically generating these initial bounding polygons,
and would likely take some inspiration from the field of
pattern recognition and feature extraction.

An interesting observation of the ItSub algorithm is

46

that it lends itself extremely well to recursion and/or
parallel processing: once a polygon is subdivided, each
resulting sub-polygon could then be further subdivided
within a separate process, or as a recursive call. It
is hypothesised that a multi-threaded approach (with
some considerations for a minor synchronisation issue)
would provide the algorithm with a significant perfor-
mance boost, while a recursive implementation would
provide only negligible improvements, due to inefficien-
cies in maintaining a potentially large call stack. How-
ever, tests are required to explore both possibilities.

Finally, efforts are currently underway to integrate the
ItSub algorithm into a content generation tool, in or-
der to provide a quicker means of testing the vari-
ous parametrisations described in this paper, and to
observe its applicability within an actual content cre-
ation pipeline. It is being developed alongside McGill’s
“Mammoth” MMOG project [MAMMOTH Team, 2008],
and will soon be available for testing.

Acknowledgements

This work was supported by the Natural Science and
Engineering Research Council of Canada.

REFERENCES

[Adams, 2002] Adams, D. (2002). Automatic genera-
tion of dungeons for computer games. Undergraduate
dissertation, University of Sheffield.

[Buck, 2003] Buck, J. (2003). Random dungeon design:
The secret workings of Jamis Buck’s dungeon gener-
ator. Website. http://www.aarg.net/~minam/dungeon_
design.html, last visited Jul. 18, 2008.

[Ebert et al., 2002] Ebert, D. S., Musgrave, F. K.,
Peachey, D., Perlin, K., and Worley, S. (2002). Tez-
turing and Modeling: A Procedural Approach. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

[Lechner et al., 2003] Lechner, T., Watson, B., Wilen-
sky, U., and Felsen, M. (2003). Procedural city mod-
eling. In Ist Midwestern Graphics Conference, St.
Louis, MO.

[Lindenmayer, 1968] Lindenmayer, A. (1968). Mathe-
matical models for cellular interaction in development
— i. filaments with one-sided inputs. Journal of The-
oretical Biology, 18:280-289.

[Miiller, 2001] Miiller, P. (2001). Design und Implemen-
tation einer Preprocessing Pipeline zur Visualisierung
prozedural erzeugter Stadtmodelle. Master’s thesis,
ETH Ziirich.

Figure 9: Application of ItSub to the island of Montreal. Top-left: Map of road density—mnote the correspondingly variable
density in the final image. Top-right: Map of “arbitrary” road patterns—note the more random branching angles on the right
half of the island, and around the area of minimal road density.

[Parish and Miiller, 2001] Parish, Y. I. H. and Miiller,
P. (2001). Procedural modeling of cities. In SIG-
GRAPH ’01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive tech-
niques, pages 301-308, New York, NY, USA. ACM
Press.

[Preparata and Shamos, 1985] Preparata, F. P. and
Shamos, M. 1. (1985). Computational Geometry: An
Introduction. Springer-Verlag New York, Inc., New
York, NY, USA.

[Prusinkiewicz et al., 1988] Prusinkiewicz, P., Linden-
mayer, A., and Hanan, J. (1988). Development mod-
els of herbaceous plants for computer imagery pur-
poses. In SIGGRAPH ’88: Proceedings of the 15th
annual conference on Computer graphics and interac-
tive techniques, pages 141-150, New York, NY, USA.
ACM.

[Tarbell, 2008] Tarbell, J. (2008). Substrate algo-
rithm. Gallery of Computation website. http://
complexification.net/gallery/machines/substrate/,

last visited Jul. 18, 2008.

[MAMMOTH Team, 2008] MAMMOTH Team (2008).
Mammoth massively-multiplayer online game. Web-
site. http://mammoth.cs.mcgill.ca/, last visited Jul.
18, 2008.

[Toussaint, 1983] Toussaint, G. T. (1983). Solving ge-
ometric problems with the rotating calipers. In Pro-
ceedings of IEEE MELECON’83, pages A10.02/1-4,
Athens, Greece.

[Watson, 2006] Watson, B. (2006). Modeling land use
with urban simulation. In SIGGRAPH °06: ACM
SIGGRAPH 2006 Courses, pages 185-251, New York,
NY, USA. ACM Press.

47

WALLBUILDING IN RTS GAMES

Abhishek Chawan
DigiPen Institute of Technology
5001 150th Ave NE,
Redmond, WA, 98052
USA
email: abhishek.chawan@gmail.com

Dmitri Volper
DigiPen Institute of Technology
5001 150th Ave NE,
Redmond, WA, 98052
USA
email: dvolper@digipen.edu

4 June 2008

KEYWORDS
ATl wall building, RTS, greedy, terrain analysis

ABSTRACT

Real-Time Strategy Game (RTS) wall building is an im-
portant part of the gameplay. There are many factors
that should be taken into account, like the wall should
be inexpensive to build yet produce as large interior area
as possible; it should protect the town and make it self-
sufficient. In this paper we use a greedy algorithm to
solve the problem. We use several optimizations to al-
low the algorithm to maintain a balance between the
economic and strategic approach of wall building.

INTRODUCTION AND BACKGROUND

One of the most popular computer game genres Real-
Time Strategy Game (RTS) has gain popularity in the
very early years of the video-game industry. Started
as a turn-based military game it evolved into a com-
plex multi-player real-time game combining economy
and strategy. With the increased complexity of the game
it is more and more difficult to create a non-playing char-
acter (computer player) that is capable to challenge an
experienced human player.

Due to the complexity of the problem, RTS Al usu-
ally has a layered design. Following (Ramsey 2004) the
Multi-Tiered Al Framework includes the following man-
agers: building, unit, resource, research, combat and
civilization. The interplay of these managers is quite
complicated and is beyond the scope of this research.
We will concentrate on one important task of the build
manager — the wall-building.

A Wall in an RTS game is a static defenses mechanism
that is placed around the base or city to slow down the
attackers (Teich and Davis 2006). Wall can be made
from any material depend on the game. Basic func-
tionality of any wall in an RTS game is to protect the
town from quick raids of the opponent army. Normally
walls are tough to break compared to other structures.
To breach the wall, the opponent needs a larger force.
When the city is under attack the enemy has to destroy

48

the wall which stops or delays the attacker and allows
the defending player to regroup.

Many old RTS games which used to run on slow com-
puters adopted the strategy that the entire Al wall will
be defined statically to save processing time. In this
method all the maps used to have map points, which
were defined using map generator tools by the program-
mer. This was a very effective process since all these
points were defined by human, which gives some advan-
tage to Al

More recently games adopted a policy to create walls
dynamically because of extra processing power and the
fact that most games allow maps to be dynamically gen-
erated. Still some games use predefined structures be-
cause most of the algorithms fail to work efficiently on
random maps.

Convex hull algorithm is used by various games. Most
prominent use of this method can be seen in Empire
Earth II (Teich and Davis 2006). This game makes use
of the algorithm to generate a tight wall around the
town. There are two drawbacks: this method does not
allow space for growing and it does not take into account
the available natural resources like water or mountains.
A very promising approach is defined in (Grimani 2004).
It uses greedy algorithm to grow the wall by starting
with a minimal configuration that surrounds a single
tile of the map. Then, using a series of locally optimal
steps,the algorithm gives the wall to grow until the inner
area reaches the desired size. The the algorithm makes
use of natural resources by incorporating them into the
wall. The main drawback of this approach is the short-
sightedness of the greedy algorithm,which we discuss it
more in the next section.

DEFINITIONS

First of all we need a formal definition of the wall, we are
following terminology defined in (Grimani 2004). We as-
sume that the terrain map is a collection of tiles — mini-
mal, atomic parts of the terrain, so that each tile may be
occupied by at most one object. Tiles are connected in
a regular manner — for the purpose of this discussion we
assume the square lattice and Moore’s neighborhoods.

The wall is then a collection of wall segments that sat-
isfies the following conditions:

e ecach wall segment has exactly two wall segments
adjacent to it, two tiles are adjacent if they
have a common edge (since we consider Von Neu-
mann neighborhood, diagonal connections are not
counted).

o all wall segments are linked in a circular manner in
such a way that if we start from one wall segment
and traverse segments clockwise or anti-clockwise
we should reach the starting point without ever
passing the same segment twice.

e there should be at least one interior tile.

e interior area should be a connected collection of
tiles (since we consider Von Neumann neighbor-
hood, diagonal connections are not counted).

Notice that the first condition is not restractive — if a
wall contains a subset of 4 wall tiles forming 2 x 2 square,
it can be optimized by removing one of them. The latter
action does not change the separation property of the
wall, but at the same time makes the wall cheaper to
build. Moreover, if the removed wall segment was adja-
cent to the interior area, the removal of the tile makes
the interior area bigger.

ORIGINAL GREEDY ALGORITHM

Greedy algorithms require two parameters: a starting
location and a stopping criteria. The starting location
is a location which we need to protect by building a wall
around it. Usually the starting location is chosen at the
town center. The stopping criteria is a boolean expres-
sion that incorporates several conditions: whether the
interior area is big enough, whether the cost of build-
ing the current wall is in the allowed range, etc. More
conditions may be added depending on the game needs.
The algorithm then proceeds in a greedy fashion in a
series of moves. Each move is a two-step process which
first removes a single wall segment from the current wall
structure, and then builds a wall around the space where
the removed tile was located. There are two conditions
to be satisfied by each move

e there should be a net gain of at least one interior
tile

e the new set of wall segments should form a wall

The algorithm also requires a heuristic. Heuristics or-
der the tiles in the current wall structure and returns
the tile that should be removed during the next itera-
tion. The two main goals of the heuristic function are to
maximize the interior area while minimizing the cost of
the wall. Therefore heuristic value of each tile is initial-
ized with the cost of walling off, which is the number of

[
L]
(T

[N
LT
(e

LI
L]
[[

Figure 1: Several steps of the greedy algorithms.

tiles (wall segments) that should be added to the wall to
incorporate the node into the interior area. Notice that
this condition alone can create walls stretched in one
direction and produce a very inefficient elongated inte-
rior area, especially if one direction may be preferred
due to a particular way of breaking ties. To generate a
more aesthetically pleasing wall which grows equally in
all directions, one more variable is added to the heuristic
function — the distance from the starting location. This
variable gives preference to the node that is nearest to
the starting point.

To make the distance variable less significant we need
to multiply the cost of walling off with a large con-
stant which is equal to maximum distance from center
of town. The choice of constant guaranties that the cost
of walling off is more significant even at maximum dis-
tance.

f(n) = c-u(n) +d(n) (1)

where n is a tile from the wall, ¢ is the large constant
(usually chosen to be equal to the max distance), u(n)
is the cost of walling off tile n, d(n) is the distance from
the starting location to tile n.

IMPROVED ALGORITHM

The existing wall building algorithm is very fast and
produces a good wall structure. The main character-
istic is that the wall looks aesthetically appealing to a
human player. The algorithm also handles the advance
issues like map edges and takes some advantage of the
natural barriers. Unfortunately it can only use natural
barriers if they are close to the starting location, more-
over, the shape of the barrier is not taken into account.
The algorithm is ”unaware” of whether the barrier is
mostly inside the wall (thus occupying useful area). In
some scenarios the algorithm stops right before a long
flat natural barrier due to the shortsightedness of the
greedy method. Figure 2 shows some of the problems:
one can see that by extending the wall by a couple more

49

Figure 2: An example of a resulting wall when using
the original greedy algorithm. Black tile represents the
natural barriers.

tiles, the barrier may be incorporated into the wall which
will reduce the total cost of the wall.

Another drawback of the algorithm is that it requires a
fixed starting location. The starting location has to be
provided by another AI module, which creates an unde-
sired separation of duties, since the choice of the starting
location and the resulting wall are closely related.

To overcome this problems we propose a modified algo-
rithm. Our algorithm is still based on the greedy ap-
proach. The key differences are

e a simple influence map is implemented to battle the
shortsightedness of the greedy algorithm.

e instead of growing the wall structure from a min-
imal configuration we implement the shrinking
strategy that starts with a big wall encompassing
the player’s territory and then proceed by remov-
ing tiles from the inner area till an acceptable wall
perimeter /inner area are obtained.

e we eliminate the fixed starting location, instead we
use a reference point which may be dynamically
changed by the algorithm.

INFLUENCE MAP

Barriers are not the only type of natural resources in
a typical RTS game, there are also resources like water
and minerals that may be taken into account. The two
types should treated differently when it comes to wall-
building, the undestructible barriers best used when in-
corporated into the wall, while non-reusable resources
like water or minerals should be defended and, if pos-
sible, included into the interior area to make the town
self-sufficient. To achieve this goal we use an influence
map which is then used in the heuristic function.
Implementation of the influence map: we attach an in-
fluence value to each tile depending on its type. Then

50

an influence map is constructed by aggregating the in-
fluence values of the neighbors. For the purpose of this
paper will use a Von Neumann’s neighborhood of radius
2. Depending on the size of the tiles the radius may be
increased. The formula is as follows

i(n) = iv(n')/In—n'| (2)

where n’ is a tile in the Von Neumann’s neighborhood
of n.

The exact choice of influence values varies for different
cell types depending on the game preferences. Some
common considerations are:

e the types that may be be used in the construction
of the wall, like rocks, get a positive value,

e types that should be kept inside, like fresh water
or, say, gold, get a negative value.

This way tiles that are close to a natural barrier get a
positive influence map value, while those close to natural
resources are negative. When the values are added to
the heuristic function, they increase the chance that a
tile that is close to a barrier is removed from the inner
area. As a result, the barrier is incorporate into the
wall, while for nodes that surround a natural resource
the heuristic becomes small and those nodes will not be
removed from the inner area, thus keeping the resource
inside.

DYNAMIC REFERENCE POINT

The greedy algorithm assumes a fixed starting location,
a reference point, which is the center of the town. In
many situations this assumption is natural, for example
when a player already has some buildings that should
be defended. But there are cases when the player has
more freedom in choosing the location, such as when a
wall is the very first structure, and a bad choice of the
fixed reference point may have negative effect on the
final result.

In our algorithm the reference point is defined as dy-
namic. A new reference point is calculated for each it-
eration of the algorithm. The main effect of this modifi-
cation is that wall may now shift towards advantageous
areas, for example, areas that provide many natural bar-
riers, or resources.

The implementation of the dynamic point reference may
be done is several ways, for example center of gravity of
the inner area, center of gravity of the wall, etc. Most of
these algorithms are fairly expensive, yet produce very
similar results. Therefore we chose the most lightweight
algorithm — we simply calculate the minimum and the
maximum positions of wall segments available in both
coordinate axes. If we denote the corresponding values
Tmins TmazsYmin, ANd Ymaz, the next reference point is
given by ((Zmaz — Tmin)/2), (Ymaz — Ymin)/2)-

Figure 3: An example of a resulting wall when using
the improved greedy algorithm. Black tile represents
the natural barriers. Gray tile represents water — non-
reusable resource.

SHRINKING APPROACH

To take the full advantage of the dynamic reference
point, we allow the wall structure to shift to a more
preferable location, for example, a location with many
resources. Unfortunately the currently algorithm does
not have any information about resources ”far-ahead”.
To solve this problem we implement a shrinking strat-
egy that starts with a big wall encompassing the player’s
territory and then proceeds by removing tiles from the
inner area. The idea is that during the process the wall
gets ”stuck” in areas rich in resources.

One can notice that both influence map and shrink-
ing are design to overcome the shortsightedness of the
greedy algorithm, the difference is that the influence
map allows the algorithm to see just with a influence
map few tiles ahead, while shrinking works on a much
bigger scale.

HEURISTIC FUNCTION
Implementation of the heuristic function:

f(n) = c-(=u(n) +i(n)) +d(n) 3)

where n is the current tile, ¢ is the large constant, u(n) is
the cost of walling off, d(n) is distance from the reference
point, i(n) influence map value of the tile.

RESULTS

Figure 3 shows the wall structure after applying the new
algorithm. The resulting wall is better than the original
algorithm since it makes sure that all resources are inside
the wall and if utilizes natural barriers more efficiently.
Even though the inner area is slightly smaller that in the
original algorithm, the wall is strategically better than
the original one. This result is the combined effect of
the shrinking and the influence map. There is a problem
though the mountain ridge at the top of the map is not

used to the full advantage. One can easily spot a way
to improve the wall structure by extending the interior
by 1-2 cells in the direction of the ridge, which will al-
low saving about 8 wall segments, as well as expanding
inner area. The problem lies in the fact that influence
is undirectional, nodes that are on the either side of
the ridge (outer and inner with respect to the reference
point) have about the same negative influence from the
ridge, and thus become candidates for removal from the
interior. In the case when the wall just approached the
ridge this is beneficial, since the wall will get attracted
to the ridge, thus the barriers will get incorporated into
the wall. But then later when the barrier is already a
part of the wall and algorithm needs to remove more
interior nodes, the preference will be given to the nodes
with higher heuristic, which are exactly the nodes that
are adjacent to the ridge (more precisely those adjacent
nodes that are closer to the reference point). Once the
nodes are removed, the wall is forced to go along the
ridge. The problem will be addressed later in the algo-
rithm with directional influence.

DIRECTIONAL INFLUENCE

To address some of the issues with the previous imple-
mentation we introduce a notion of directional influ-
ence. The first step is to calculate influence map values
which is done as in the previous algorithm, but then
we add an additional parameter which is sensitive to
the “side” of the barrier or resource. Here is a basic
example of what we want to achieve: consider 2 nodes
having exactly the same influence map values one on
the outer side of a barrier (with respect to the reference
point) and the other on the inner side. Identical heuris-
tic values will force the wall to attach to the first natu-
ral barrier as probable as detaching from the other one.
Which contradicts the common sense: attach (incorpo-
rate) natural barriers into the wall as soon as possible,
but detach as late as possible. The solution for this
problem should take into account the relative position
of the barrier with respect to the wall. We implemented
that by producing a negative influence towards the ref-
erence point and positive outwards. To achieve this we
calculate two quantities

o distance between the influential tile (the tile whose
effect we are including into the influence map value)
and the reference point

o distance between the current tile and the reference
point

Now if the first quantity is greater than the second,
the influence gets a negative value, otherwise a positive
value.

The result of using directional influence values is show
on Figure 4. As we see, the wall was able to attach
to the motion and produce a very aesthetically pleasing
structure.

51

Figure 4: An example of a resulting wall when using the
improved greedy algorithm with directional influence.

Figure 5: An example of a resulting wall when using the
improved greedy algorithm and undirectional influence.

The algorithm with directional influence also handles
polarized maps (maps with resources on the opposite
ends of the map) much better the the undirectional one,
see Figures 5 and 6.

TIME COMPLEXITY

The new algorithm usually requires more steps since
we start with a large inner area with big enough ini-
tial walls. Formally the number of iterations performed
by the original algorithm is exactly the final area of the
town. While the new algorithm starts with a big walled
area and precedes by removing tiles, so the number of
iterations is equal to the the initial area minus the fi-
nal area of the town, which may be orders of magnitude
bigger than the original algorithm. But one has to take
the following into consideration:

e the new algorithm is able to detect the best loca-
tion for the town by traversing a large area, which
alleviates the work of the Al manager in charge of
choosing the town center.

e the size and configuration of the initial wall is deter-

52

Figure 6: An example of a resulting wall when using the
improved greedy algorithm with directional influence.

mined by the game design and may be quite small

e wall building is not something you have to do every
frame. Typical game will require 1-10 towns. More-
over, the algorithm may be distributed over several
frames without sacrificing the pace of the game.

INITIAL WALL CONFIGURATION

The exact configuration and size of the initial wall is
decided by some other Al manager and various factors
may be considered in determining it. Initial wall selec-
tion may depend on game status, if for example, game
allows fogged (“fog of war” term in RTS refers to ar-
eas on the map that are not available to the player)
areas then the initial wall will have a natural require-
ment of being inside the area which is observable at the
current moment. If this area is too big, some other con-
siderations may be used, possibly including some chance
element. Since the initial wall selection is still very im-
portant to get a good final wall we can start with a large
area and divide it into equal parts and use each part as a
initial wall, choosing the best result as the final answer.
This is similar to a random restart strategy often used
in combination with local search techniques to decrease
the suboptimality.

CONCLUSION

As results show, the improved greedy algorithm gener-
ates better walls than the original one. The Original
algorithms major focus was on minimizing the cost of
wall building and maximizing the interior area. The new
algorithm considers this as well, but also tries to make
wall structure more strategic by keeping the available
resources inside the town area. The original algorithm
is shortsighted and can stop right before a natural bar-
rier without incorporating it into the wall. The new
algorithm solves this problem by switching to a shrink-
ing approach and using an influace map. Furthermore

the inference is implemented as a directional, allowing
the natural barriers to be “sticky” — the algorithm at-
taches the wall to the barrier as yearly as possible, but
“releases” it as late as possible. Natural resources are
treated in the reversed manner — forcing the wall to keep
the resource inside for as long as possible. Additionally,
shrinking allows the algorithm to explore a bigger area,
which in conjunction with the dynamic reference point
allows the wall structure to shift towards a more influen-
tial area i.e.an area that contains many resources and/or
natural barriers.

It should be noted that there are still situations when
the new algorithm performance is inferior to the original,
especially if one only looks at quantitative values like
town area. Even though cost-to-area ratio is not always
on the same level as the original algorithm, the strategic
properties of the wall help us create self-sufficient town
by taking into account defensive and economic compo-
sition, which should be beneficial in a long run.

One of the most promising future directions of research
is to implement Mip-Map method which can signifi-
cantly increase the area that is traversed by the algo-
rithm without sacrificing processing time. Also cur-
rently resources are assained to be impassable structures
which might not be the case always the case and hence
future algorithms should handle this case.

REFERENCES

Grimani M., 2004. Wall building for RTS Games. In
S. Rabin (Ed.), AI Game Programming Wisdom 2,
Charles River Media, Inc., Rockland, MA, USA.

Ramsey M., 2004. Wall building for RTS Games. In
S. Rabin (Ed.), AI Game Programming Wisdom 2,
Charles River Media, Inc., Rockland, MA, USA.

Teich T. and Davis 1., 2006. AI Wall Building in Empire
Earth II. In AIIDE. 133-135.

AUTHOR BIOGRAPHIES

ABHISHEK CHAWAN graduated in 2003 from
Mumbai University. After working for 3 years in
game industry for companies like Mobile2win, LG
Electronics and Gameloft, Abhishek joined the Mas-
ters of Computer Science program at DigiPen In-
stitite of Technology. Abhishek is available at
abhishek.chawan@gmail.edu

DMITRI VOLPER is an Assistant Professor at
DigiPen Institite of Technology. His interests include
AT, multi-agent systems and differential geometry.

53

54

INTERACTION
AND
IMMERSIVE
PLAY

56

TOWARDS IMMERSIVE MULTIMODAL GAMEPLAY

Mitchel Benovoy,! Mark Zadel,? Rafa Absar,® Mike Wozniewski,! and Jeremy R. Cooperstock!
Centre for Interdisciplinary Research in Music Media and Technology
and !Centre for Intelligent Machines, 2Schulich School of Music, *School of Information Studies
McGill University
Montreal, Quebec, Canada
{benovoym@cim, rafa.absar@mail, zadel@music, mikewoz@cim, jer@cim}.mcgill.ca

KEYWORDS
Immersiveness, multimodality, projection display, posi-
tion tracking, gestural input, usability testing

ABSTRACT

We describe a computer game design that employs in-
terface mechanisms fostering a greater sense of player
immersion than is typically present in other games. The
system uses a large-scale projection display, video-based
body position tracking, and bimanual gestural input for
interaction. We describe these mechanisms and their
implementation in detail, highlighting our user-centered
design process. Finally, we describe an experiment com-
paring our interaction mechanisms with conventional
game controllers. Test subjects preferred our interface
overall, finding it easier to learn and use.

INTRODUCTION

In game terminology, immersiveness is used to describe
the degree to which a player feels a virtual environment
mimics his or her experience with the real world. The
video game industry has seen significant improvements
in graphics detail and realism in recent years, but the use
of standard displays and controllers continues to limit
the degree of player immersion. Game controllers, key-
boards and mice fail to exploit the rich capabilities of
gestural expression and capture the subtleties of our in-
teraction with the real world. This paper describes the
design and implementation of a gaming system adapted
to first or third person games, which offers a high sense
of player immersion by using large-scale projection dis-
plays, multimodal feedback, body tracking, and biman-
ual gestural control. We demonstrate the capabilities
of the system through a game we have designed: Snow-
down.

Previous research has investigated how immersion is
achieved and to what degree it succeeds. Brown and
Cairns (2004) hypothesized that the more a game feels
real, the greater the sense of immersion the player expe-
riences. Cheng and Cairns (2005) observed the immer-
sion of a player in a game and then introduced incon-
sistencies in its visual and physical laws. They found

that once immersion was achieved, it was surprisingly
difficult to break. These findings suggest that the qual-
ity of a game experience may be advanced significantly
through improvements to the level of immersion.

Our approach to improving immersiveness is based in
the belief that a system’s user interface is its most im-
portant determinant of user experience. Starting from
conventional game systems, we make improvements to
both the input and output mechanisms. First, Snow-
down is designed for a large-scale display, covering much
of the player’s field of view. Second, body tracking is
used for controlling the avatar’s position in space, while
other actions are accomplished through gestures resem-
bling their real-world equivalents. This engages the user
in a highly physical interaction.

These interface designs are described in further detail
below, with a focus on the importance of body tracking
and gestural interaction. The user testing process is
also discussed, and an experimental evaluation of the
interface is presented, comparing our interaction model
to the paradigm of traditional computer games.

RELATED WORK

The advent of low cost consumer hardware for human
body tracking, multimodal input and output, and pow-
erful 3D game development engines enables the deploy-
ment of computer games that are far more engaging than
those of only a few years ago. This section provides an
overview of related work in these fields.

Body Tracking

Estimating the pose of a moving body in six degrees-
of-freedom (DOF') has been the subject of considerable
previous literature, involving both outdoor and indoor
tracking technologies. High quality hybrid GPS sys-
tems have been used in location-aware games, providing
acceptable accuracy for the intended applications. For
example, Piekarski and Thomas (2002) use differential-
GPS and a digital magnetic compass to achieve suitable
positional resolution in large outdoor environments (2-5
meters for position, + 1 degree for orientation). Indoor
tracking systems present technical challenges that are

57

often resolved with cumbersome or expensive infrared
(IR) or radio (RF) systems (Want and Hopper, 1992;
Philipose et al., 2000). Active Badges, introduced by
Want and Hopper (1992), and similarly, the Local Po-
sitioning System (Shen et al., 2004) emit a unique op-
tical signal at a regular frequency. Sensors or cameras
mounted at fixed positions process the received signals
to determine the identity and location of each tag, typ-
ically corresponding to a unique user. Such approaches
are limited by the range of the optical signal, sensitivity
of the receiver, in particular to ambient illumination,
and occlusion effects, which often require installation
of multiple receivers throughout the environment. For
indoor environments, vision-based methods are gener-
ally less expensive and easier to deploy. Piekarski and
Thomas (2002) use a fiducial marker system to register
body position when the user enters into a building. An
upward-pointing camera, mounted on the user’s back-
pack observes fixed sized markers and from their geom-
etry, determines position and orientation. Motivated by
the ease of use, low cost, and flexibility of this approach,
we implemented a similar tracking method for players
in Snowdown.

Multimodality

The HCI community has long maintained that major
improvements in computing will be related not just to
processing speed, but to interaction, responsiveness and
transparency (Corradini et al., 2003; Dray, 1995; Car-
rol, 2001). Onme approach to interface improvement is
to employ multimodal interaction techniques (Bernsen,
2002). For example, the PlayStation EyeToy! uses a
webcam connected to the game console to track ges-
tures using an illuminated wand held in one of the user’s
hands. The device allows the user to point and activate
virtual objects, navigate through menus, and drag-and-
drop content from one location to another using man-
ual gestures. Furthermore, combining visual and au-
ditory feedback in a location-based quiz game (Klante
et al., 2005) was seen to result in improved performance
and positive user experience. Our game takes a similar
approach, incorporating both audible and visual cues
as feedback wherever our usability tests indicated this
to offer an improved experience. Bimanual input of-
fers additional benefits, including time-motion efficiency
through the increased degrees of freedom and a decrease
in cognitive load (Leganchuk et al., 1998).

DESIGN AND IMPLEMENTATION

Snowdown uses a simple game concept, a snowball fight,
that can be grasped easily by non-gamers, permitting a
wide audience to begin playing without any instruction.

1EyeToy by Sony Computer Entertainment Inc.

http://www.eyetoy.com

58

As a research project, our goal was not the development
of the game as a commercially viable end-product but
as a study of the interaction experience and immersion
paradigm offered by consumer technologies available to-
day. However, one could imagine such a system eventu-
ally being deployed in public entertainment centres or
home entertainment rooms. The physical space require-
ments of our prototype system are roughly fulfilled by
the size of large living rooms.

Each player attempts to throw snowballs at the oppo-
nent, scoring points and lowering the opponent’s health
with every hit. Snowballs are gathered by a shoveling
gesture. Players can also block incoming snowballs by
raising a shield or ducking, both enacted by their corre-
sponding physical gestures. The game ends when either
player’s health drops to zero. Players are represented
by avatars, seen on the projected display from a third-
person view of the environment, as illustrated in Figure
1.

The game uses two Wii-controllers? (or Wiimotes) as
primary input devices. A fiducial tracking system, de-
scribed in Section 3.3, tracks the three-dimensional po-
sition of both players, driving the on-screen characters.
In the event that the tracking system is not deployed,
alternatives were implemented to control player motion
and other actions using only the Wiimotes.

Figure 1: In-Game Screenshot — The players can be seen
standing in front of a snow fortress, which provides cover
from the opponent’s snowballs.

Gestural Interaction

An important objective of our game design was that
interaction with the game should feel natural to the
user. We thus make extensive use of real-world phys-
ical gestures, leveraging the kinesthetic feedback these
provide, as well as audio and visual feedback from the
game engine, to enhance the feeling of immersion. The
actions used for throwing, shoveling, and activating the
shield are relatively large-scale in motion. This both
physically engages the user with the game and aids in
gesture recognition, which is performed using only the

2Wii Controller by Nintendo Inc.

http://wii.nintendo.com/controller.jsp

onboard accelerometers of the Wiimotes. The gestures
are illustrated in Figure 2 and described below.

Throwing The dominant hand swings overhead, end-
ing with a quick snap, releasing the snowball.

Shoveling The non-dominant hand jerks toward the
ground twice in succession, as if thrusting into the
SNow.

Blocking/Shield Both hands are crossed and held in
front of the player’s chest. To disengage, both
hands are pointed toward the ground. The ratio-
nale for the choice of this somewhat unnatural ges-
ture is provided below.

The two main features used for gesture recognition are
the inclusion of a jerking motion and sensing the force
of gravity on the controllers. These can be detected reli-
ably using simple algorithms; for example, a large spike
in the accelerometer data is indicative of either a throw-
ing or shoveling gesture. The shield gesture detector
looks for gravity acting on the controllers in a certain
direction. For this gesture, added recognition robustness
is achieved if both hands perform clearly distinguishable
actions. In all cases, the accelerometer data is converted
to spherical coordinates before processing. This permits
an easy identification of the direction in which force is
being applied to the controller. Forces can only be mea-
sured with respect to the Wiimote casing, so we assume
that the controllers are held in their typical orientation.
Obvious problems with recognition accuracy result when
this assumption is violated.

Evolution of the Gestural Vocabulary

The gestures evolved over the course of project devel-
opment due to technological constraints. This evolution
serves to illustrate the limitations of gesture recognition
using only accelerometer data, as well as what designs
may be more challenging. We had originally intended
to provide each player with a virtual shovel, held in
the non-dominant hand. This would be used both for
picking up snowballs with a real-life shoveling action
and acting as a shield when raised. However, because
accelerometer data can only sense relative forces and
orientations, these gestures proved difficult to detect.
In particular, without the absolute position of the con-
troller available, it was not possible to place the shield
correctly in Space.3 For ease of prototyping, gesture
parsing was carried out in Pure Data (Puckette, 1996),
using the Wiimote external® to obtain sensor informa-
tion. The gesture messages are forwarded to the main

3This could be resolved by the addition of an absolute ori-
entation sensing device, such as Nintendo’s recent unveiled Wii
MotionPlus add-on.

4Wiimote external for Pure Data.
http://mikewoz.com/index.php?page=pd-stuff.

C++ game application using a UDP loopback socket
architecture, supported natively by Pure Data. Further
improvements to gesture recognition would be possible
using machine learning techniques such as neural net-
works or discriminant analysis.

Video-Based User Tracking

To track the players in 6 DOF, we implemented a video-
based system utilizing fiducial markers, as pictured in
Figure 3. The markers can be any asymmetric patterns
surrounded by a black square. To reduce cost and im-
plementation complexity, the markers are detected by
a single head-mounted camera oriented toward the ceil-
ing, as shown in Figure 4. In our system, we distributed
26 markers, each measuring 8 x 8 cm, over a ceiling area
of approximately 4.5 x 2 m. Using the freely available
ARToolkit API?, a program was developed that ana-
lyzes each captured frame to find markers and output
the position and pose of the camera with respect to the
detected marker.

Hiro

Figure 3: Prototypical Fiducial Marker

Once the physical pose of the player is computed, the
avatar is updated accordingly. At present, we only map
the positional z, y, and z coordinates, as the roll (x-axis
rotation) and pitch (y-axis rotation) parameters were
found to be unstable. The z (height) value is used as an
indication of the player’s crouching state. The mapping
scales physical parameters to fit the range of motion
in the virtual space, using the same scaling factor to
each axis for coherency. This implies that the allowable
virtual play area should be proportional to that of the
physical space. No avatar animations, such as throwing
or shovelling motions, were portrayed by the avatar.

Our prototype implementation operates at 15Hz on an
Athlon64 1.6Ghz system combined with a Unibrain Fire-
i Firewire camera. Worst-case tracking inaccuracy con-
strained to translational movements was measured as
approximately 10 cm in all directions at a distance of
1.6m from the ceiling. Unfortunately, any out-of-plane

5 ARToolKit. http://www.hitl.washington.edu/artoolkit.

59

(a) Throwing

(b) Shoveling

(c) Shielding

Figure 2: Example Interaction Gestures

rotation of the camera results in significant positional er-
ror, due to numerical instability in the transformations
employed by the fiducial marker tracking (the developers
of this APT have indicated that a revision to address this
problem is forthcoming). Although we instructed our
participants to avoid tilting their heads during testing,
this constraint is clearly unacceptable for an immersive
game experience.

Although beyond the scope of our work, increased ac-
curacy and robustness could be obtained by combining
Kalman filtering and robust statistical methods (Park
et al., 1999).

(a) Tagged Ceilling

(b) Head-Mounted Camera

Figure 4: Fiducial Marker Tracking Setup

USER TESTING AND EVALUATION

Before committing to any design decisions, we itera-
tively evaluated and refined the system to address us-
ability issues. This was accomplished by a series of tests
as the game evolved from a low-fidelity prototype to a
fully functional one. Since the overall concept diverged
significantly from conventional game interaction, our us-
ability testing required different paradigms.

60

Whereas most games or software applications require
physical contact with the system through standard in-
put devices, such as a keyboard, mouse, gamepad, joy-
stick or even touchscreen, each of which have familiar
affordances, our game design involves minimal use of fa-
miliar objects such as buttons or keys. Using gesture
recognition and body tracking as the main means of in-
put, we cannot assume a high likelihood for transfer
of knowledge from other interactive computing applica-
tions. However, we consider this an advantage, since our
goal is to exploit the gestural vocabulary from real-life
interaction with everyday physical objects.

Following established principles of user centered design,
we first developed a low-fidelity 3D prototype (Snyder,
2003) adequate for testing the system design on users.
This took the form of a game environment built from
styrofoam, cardboard and toy figures, and incorporated
visual and audio output using the Wizard-of-Oz tech-
nique (Salber and Coutaz, 1993). A snapshot of the
physical mock-up of the game and one of the user test
sessions is shown in Figure 5. From this initial proto-
type testing phase, we evolved to a minimal computer
prototype and then to increasingly functional ones, each
time iteratively testing and incorporating changes.

Comparison Between Paradigms

In order to measure the overall effectiveness of biman-
ual interaction and physical body tracking of our game,
we devised an experiment to compare our system to an
equivalent keyboard-mouse interface without automated
body tracking. The goal was to measure and assess dif-
ferent aspects of gameplay, immersion and overall user
experience, both quantitatively and qualitatively.

Overview

In the keyboard-mouse setup, pointing and selecting
the various menu items is accomplished with the mouse
while snowball fighting gameplay is limited to keyboard
entry. Predefined keys were assigned to navigate, throw
a snowball, crouch, activate shield, collect snowballs or
pause the game. When possible, these key mappings
were chosen by following the conventions of first-person-
shooter type games. In the multimodal version of the
game, bimanual input and body tracking are used, as
previously described. In both scenarios, test subjects
were given five minutes to familiarize themselves with
the controls by playing the game against a randomly
moving opponent. This was followed by a ten-minute
trial in which the subject was asked to play (and win)
as many games as possible within the allocated time.
A post-test questionnaire was administered to each par-
ticipant to rate different aspects of gameplay and im-
mersion. The subjects were asked to give a subjective
rating, on a scale of 0 to 5, of the level of immersion,
level of enjoyment, and ease of learning. This was fol-
lowed by an informal open-ended interview where the
participants were encouraged to share their impressions
of the two systems and qualitatively characterize them.

Participants

Seven participants (four male and three female) aged
between 20 and 49, each with varying levels of gam-
ing experience were studied. All had at least five years
of computing experience and indicated themselves to
be moderate to frequent computer game players. The
style of games they preferred varied from sports to role-
playing to action games, but all indicated mainly using
the keyboard and mouse to play, with one user also hav-
ing limited experience with a game controller similar to
a Sony PlayStation type controller.

Results

The multimodal version of the game was preferred by all
test subjects, some of whom commented on what they
called a “refreshing new gameplay experience”. Ratings
for both the level of immersion (4.6 out of 5) and level
of enjoyment (4.1 out of 5) were rated higher than the
keyboard-mouse equivalent (3.3 and 3.1, respectively).
Similarly, the multimodal system was judged to be eas-
ier to learn, receiving a score of 4.8 vs. 3.1 for the
keyboard-mouse version. These results are all found to
be statistically significant (p < 0.01) using Student’s ¢-
test. These results are summarized below in Table 1.
Interestingly, there was little difference between the av-
erages of number of games won in the ten-minute trials
for the multimodal and keyboard-mouse versions of the
game, which were 13 and 15, respectively, and not sta-
tistically significant (p > 0.05). This suggests that win-
ning a game and enjoying the actual gameplay should
be viewed independently. Clearly, the kinesthetic ad-
vantages of the multimodal version led to a more ef-

fective user experience, but not necessarily improved
competence. The informal interview provided added in-
sight to the user’s experience. Most participants vocally
expressed the “natural feel” and “intuitiveness” of the
multimodal system. Although none of the users com-
mented on the inaccuracies of the motion tracking, two
participants mentioned the lack of robustness for the
shield activation gesture. No quantitative evaluations of
the gesture recognition rate was performed. As a cau-
tionary note, one user mentioned that the physical effort
required to accomplish some of the gestures might lead
to fatigue, and thus, require him to stop playing earlier
than with the keyboard-mouse setup. This, of course, is
a natural and expected consequence of our intended in-
teraction paradigm. Another user questioned the prac-
ticality of the tracking system for home use, given the
space requirements. With regard to areas for possible
improvement, greater robustness of gesture recognition,
improved graphics effects, and incorporation of the hap-
tic feedback capabilities of the Wiimotes were suggested,
the last by veteran gamers.

Table 1: Subjective Rating Results of Game Playing
Modalities

Multimodal | Keyboard-Mouse
Level of immersion 91% 66%
Level of enjoyment 82% 62%
Ease of learning 96% 62%

CONCLUSION AND FUTURE WORK

We have presented the design and implementation of
a computer game intended to give players a more im-
mersive experience than is typically possible with stan-
dard input and output devices. This is done by ex-
ploiting the capabilities of gestural control through the
Wiimote, tracking of body position, and incorporating
a large-scale projection display. User testing found a
significant preference for our combination of input and
output modalities, although future possibilities exist to
enhance the level of multimodality and immersiveness of
the game, including the use of spatialized audio, stereo
video, and haptic feedback. As a benefit to future game
developers, more extensive studies with a broad range
of gamer types will be helpful to determine the value of
each of the multimodal features of the system in isola-
tion, as well as the cognitive load introduced through
their combination, in particular in a highly interactive
gaming environment. This latter concern has potential
implications to a wide variety of applications beyond
that of games.

In further development, it will be desirable to tune the
current set of gestures, ideally with the goal of matching
them more closely with their real world analogs. The in-
teraction can also be expanded with additional actions,

61

(a) Physical Mock-Up

(b)

Wizard-of-Oz Testing Technique — The tester

(crouching) controls the physical avatar to mimic the
test subject’s actions.

Figure 5: Usability Evaluation

mapped to other motions appropriate to the game con-
text. Major enhancements will include the incorpora-
tion of continuous parametric information from the ges-
ture recognizer to drive the game elements more respon-
sively and the use of pattern recognition techniques to
improve recognition performance.

REFERENCES

Bernsen N., 2002. Multimodality in language and speech
systems: From theory to design support tool. In
B. Granstrom (Ed.), Multimodality in language and
speech systems, Kluwer Academic Publications. 93—
148.

Brown E. and Cairns P., 2004. “A grounded investiga-
tion of game immersion”. In Proceedings of Conf. on
Human Factors in Computing Systems (CHI). 1297—
1300.

Carrol J.M., 2001. Human-Computer Interaction in the
New Millennium, ACM. 27-37.

Cheng K. and Cairns P., 2005. “Behaviour, realism
and immersion in games”. In Proceedings of Conf. on
Human Factors in Computing Systems (CHI). 1272—
1275.

Corradini A.; Mehta M.; Bernsen N.O.; Martin J.C.;
and Abrilian S., 2003. “Multimodal input fusion
in human-computer interaction”. In Proceedings of
NATO-ASI Conf. on Data Fusion for Situation Mon-
itoring, Incident Detection, Alert and Response Man-
agement.

Dray S., 1995. “The importance of designing usable
systems”. Interactions, 2, no. 1, 17-20.

Klante P.; Kroesche J.; Boll S.C.J.; Creutzburg R.; and
Takala J.H., 2005. “Evaluating a mobile location-

62

based multimodal game for first-year students”. In
Proceedings of SPIE. vol. 5684, 207-218.

Leganchuk A.; Zhai S.; and Buxton W., 1998. “Man-
ual and Cognitive Benefits of Two-Handed Input: An
Experimental Study”. ACM Transactions on Human-
Computer Interaction, 5, no. 4, 326-359.

Park J.; Jiang B.; and Neumann U., 1999. “Vision-
based Pose Computation: Robust and Accurate Aug-
mented Reality Tracking”. In Proceedings of the 2nd
IWAR’99, IEEE Computer Society. 3.

Philipose M.; Fishkin K.P.; Fox D.; Hahnel D.; and Bur-
gard W., 2000. “Mapping and Localization with RFID
Technology”. In Proceedings of IEEE Intl. Conf. on
Robotics and Automation. vol. 1, 1015-1020.

Piekarski W. and Thomas B., 2002. “ARQuake: the
Outdoor Augmented Reality Gaming System”. Com-
munications of the ACM, 45, no. 1, 36-38.

Puckette M., 1996. “Pure Data”. In Proceedings of the
Intl. Computer Music Conf. 269-272.

Salber D. and Coutaz J., 1993. “Applying the Wizard of
Oz Technique to the Study of Multimodal Systems”.
In Proceedings of EWHCI. 219-230.

Shen C.; Wang B.; Vogt F.; Oldridge S.; and Fels S.,
2004. “RemoteEyes: A Remote Low-Cost Position
Sensing Infrastructure for Ubiquitous Computing”.

In 1st International Workshop on Networked Sensing
Systems. 31-35.

Snyder C., 2003. Paper Prototyping: The Fast and Fasy
Way to Design and Refine User Interfaces. Morgan
Kaufmann.

Want R. and Hopper A., 1992. “Active badges and per-
sonal interactive computing objects”. IEEE Transac-
tions on Consumer Electronics, 38, no. 1, 10-20.

Modelling Highly-Structured Turn Based Games Using Interaction Beliefs

N. B. Szirbik!, G. B. Roest!, M. Stuit'

! The Agent Lab, FEB, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands, +31 50 363 (8125)

Abstract. Some specific sports or action environments
that are desirable to be implemented as one-to-one semi-
strategy computer games have a very well formalised
structure. The set of moves and postures is not only finite
but quite limited, and it is easy to identify relations
between the previous and future states. The best candidate
to bring under the structural scrutiny is Japanese
swordfighting. The research into this reveals that
modelling the kendo scene is rather easy, and if Petri nets
are used, it is easy to extend these with other aspects like
time, synchronisation, adaptation, and also to keep always
a sound and verifiable formal model.

Keywords: Turn base action games, two player swordfight
scene model, Petri nets, agent-based interaction models

1 Introduction and Background

This paper shows how a swordfight scene can be modelled
using a formalism inspired from agent research. This
formalism is based on the well established field of Petri
nets, and the paper shows also how the correctness and
consistency of the model can be checked by using
dedicated tools for verification. It is explained how this
modelling technique can be used in a two-player game
(where one is controlled by user/player, and the other is
controlled by the computer), and how the long term
development of such a game can be envisaged.

The current situation on the game market shows that
swordfight action games are notoriously simplistic. These
allow only for a few actions (move, hit, block), and
translation of real skill from the player is barely realistic.
Typically, the game playing degenerates into ‘“button

63

smashing” and creates only frustration for experts in the
real thing. One explanation is the lack of adequate
interfacing, but there is another reason, more subtle,
related to the way these games are developed.

Games design can be classified in two major
approaches. The most encountered one, due to the level
of realism it allows to achieve, is the iterative
prototyping. It can be said that in this approach, the
programmer (who works within certain constraints) is
also the designer. Iteration after iteration, the final
features of the game emerge. This creates a “reality” of
its own, which of course, can be extremely exciting for
the players, who can achieve that much desired state of
flow (“to be in the zone”), making the game attractive
and even addictive. The current technology for such
development — at least for games with human characters
— also tries to achieve the “realistic impression”, by
starting even from biometric measurements of real
humans (motion capture), and transposing them in the
3D scenes of action, like in the work of Chai and
Hodgins [2005].

What is argued in this paper is that games that try to
emulate a swordfight between a user and computer
generated character can be constructed in the “opposite”
way. This method is more similar to the way board or
card games are designed. It studies first the structure, the
rules, and the formal body of knowledge that exists about
the specific field. For swordfights and sword inspired
sports like fencing and kendo, the latter is the first
obvious candidate for research, due to hundreds of years
of refinement, registered accumulated experience, and
also a high level of formalism in technique explanation
and training.

This paper uses kendo to explain the proposed
modelling technique. Kendo is a martial art with a large
following in Japan and many other countries. It involves

fighting with bamboo swords (Shinai), using special
equipment (uniform and protective armour), following the
ancient traditions of Japanese sword fighting. Endless
discussion on web forums argue about the lack of a
realistic game of kendo, about the difficulties to implement
it, and the rumours of vendors having this kind of games in
development, the latest being a Wii Nintendo kendo player
for 2009.

The paper presents in section 2 the rationale for
modelling the kendo dual player scene with discrete
mathematical tools — a full example of such a model is
presented in the Appendix. Extensions for this modelling
technique are also presented, and in section 3, the potential
usage in a game is explained, and some ideas for the future
are hinted.

2 Modelling the abstract view of the scene

If the kendo match (Shiai) or the forms of kendo training
(free sparring, like Ji-geiko, or practice, like Kihon) is to
be analysed from a completely discrete perspective,
abstracting from the “continuous” aspect, it is remarkable
how easy it is to build an almost complete, but still
relatively simple model. From a single player game, agent-
based design perspective, there are two entities involved,
the player-controlled avatar (PcA), and the computer-
controlled opponent (CcQO). In an analogy to a Kihon
practice (which repeats a simple technique for defence or
attack) the PcA will represent the Kakari-te (trainee) and
the CcO will be the Moto-dachi (instructor). The input that
can be given to the avatar by the player at this level of
abstraction is limited only to the selection of a type of
attack or defence, as it will be explained.

In very traditional kendo clubs, the “way of Shugyo”
kind of training is defined as the intensive practice of
Kihon where the trainee and the instructor repeat the same
choreographed routines in order to improve various
techniques (Waza). For example, Ippon-uchi no Waza (or
Kihon_1) consists of a clean strike from the Kakari-te to
each of the four allowed hits in kendo: Men — almost
vertically on the top of the helmeted head, Kote —
vertically one the glove-protected wrist of the right hand,
Do — lateral on the armoured flanks and chest, and Tsuki —
a thrust move on the protected throat. During the strike,
the arms and the legs are moving synchronously. The

irgki-ashi (Igwer body)
&

ke (upper| body)

hon-det?
hoice_

Failure
to hit_1

footwork is also strictly regulated and should be very
accurate. In the case of a simple Men strike, the
synchronous leg movement is called okuri-ashi (floating
step — can be in four directions). The complete strike
could be decomposed in the sequence: 1 (right foot slides
forward + shinai is lifted above the head), 2 (left foot
slides forward + shinai makes a large vertical swinging
arc and hits target). The move is started from a neutral
posture (Kamae) where the kendoka stands upright,
facing the opponent, handling the shinai on the centre
line and having the feet slightly apart and parallel, with
the right foot in front. During the strike movement, and
in general in kendo, only the arms and the legs are
moving; leaning back and forward or laterally is
considered unaesthetic and bad practice (or an attempt to
cheat), because anyway it is ineffective to try to dodge a
fast moving shinai. Therefore, for modelling, it is
enough to focus only on the discrete aspects of the arms
movement and of the footwork.

The number of valid kendo (involving upper body and
arms) moves is limited, and the same stands for the
allowed lower body (legs and feet) moves. There is a
strong relation between the upper body movement and
the footwork, and specifically in Kihon, there is also a
strict relation between the moves of both kendokas. For
example, for all four strikes in Kikhon 1, the Moto-dachi
will execute a backward okuri-ashi. If it is considered
that the number of upper body movements is N and the
number of lower body movements is M, the number of
possible kendo movements is (N+1)*(M+1) — to include
also the still “move” (no movement). An initial and
simplified analysis based on [Ozawa, 1997] yields a total
of 30 allowed upper body moves and 10 lower body
moves, hence a total of 341 combined moves, but only
less than half of these are allowed or useful as
combinations. For example, a Harai-waza (a small
deflection of the opponent’s shinai) is only possible if
both shinais are in contact. If the deflection is attempted
in the same time with a move backwards (without the
opponent moving forward) it will have no effect.

The relative position to each other leads to another
essential element in the discrete modelling of the scene,
which is the distance between the kendokas. This has
been also formally discretised by the kendo theory, for
example the typical attack distance (when the shinais
cross each other in the first quarter of their length) is
Issoku-itto-no-ma. Another distance is To-ma (where the

A

Both read € repare for e Issoku
to start, Nuki-waz.
E E

Distance
change

uri-ashi (I

wer body)

ike (uppel body)

ppon o

oto-dacili

e

End
waza

Distance
change_1

e T
Ch'\ka—m} =)
E

Good

A

Waza

Ifermedixe

durn to face opponent @
&
Go centel

E E

Figure 1. Nuki-Waza modelled as a Petri net in the CPN tools (state-space analysis reveals this to be a sound net).

64

shinais tips barely touch), which is safe from a Men strike,
but it is still possible for a Kote strike. If the kendokas are
closer (the shinais cross each other in the second quarter of
their length) they stand in Chika-ma, and if they are in
close contact (pressing each other via the handles of their
shinai) they stand in Tsuba-zeriai. In a simplified version,
the number of discrete distances modelled is five. Another
element of the relative position to each other is how much
they deviate from the central line, and this one is also
modelled in a discrete way, having 9 possible (simple)
situations, therefore there are 45 possible states to model
the relative position.

If the whole body movement (143 possibilities
investigated in this research, notation: BoM) are modelled
as state transitions and the states represent still postures
(like Kamae — 13 investigated in this research, notation
PoS), one kendoka can be modelled as a finite state
automaton (FSA) with 13 states and 143 transitions. From
one kendoka perspective, a Waza (technique), can be
modelled as a sequence (PoS;->BoM—>PoS;[->BoMy~
>PoS,]") of postures and moves, executable in the FSA as
a chain of transitions from one state to the other. However,
if the two kendokas are represented by a single FSA that
combines the FSAs of both and also the FSA modelling
the relative position, the number of states will explode to
132*45=7605 states, with more than 25000 transitions.
From a modelling perspective, this is not acceptable.

A Dbetter solution when this state number explosion
occurs (and there are elements to model that are loosely
coupled and can act quasi-independently of each other) is
to use a Petri net, which allows for a huge reduction of the
representation of the state space [Jensen, 1992]. Another
important advantage will be that the resulting model of the
scene can be extended with continuous elements like
timing and synchronisation between the elements — which
is possible in Petri nets. The PoS(es) will be modelled as
Petri net places and the BoM(s) as Petri net transitions. For
example, the practice Kihon_5 (Nuki-waza) can be
modelled like in figure 1. This Waza has the following
formal description [KKH] as: “Moto-dachi strikes
[actually, tries] Men [head] from Issoku-itto [medium
distance] with one okuri-ashi [step forward]. [In the same
time] Kakari-te does a sharp right hiraki-ashi [lateral cross
step] and strikes Moto-dachi’s right Do [flank], whilst
avoiding the Men attack. Kakari-te’s body and feed should
finish facing towards Moto-dachi [who is supposed to do
the same].”

To execute the resulting model — which is a sound Petri
net (i.e. it has no deadlocks or livelocks, and other
properties — it has been verified by using state space
analysis in the CPN tools [Jensen & al, 2007]) a token is
placed in the Ready place. Three tokens are generated by
the “Prepare” transitions in the initial posture (kamae) and
distance (Issoku) places. The strikes are happening in
parallel, and one, two, or zero tokens can appear in the
Ippon places. The rest of the Waza is synchronised, that is,
all the moves have to be executed together. After the Waza
finishes, in the “Result” place there will be always at least
one token. If there are two tokens in “Result” that means
that at least one kendoka hit its target — and the firing of
the transition “Good” or “Failed” will indicate which one —
of course, in this situation an execution log is needed. If

65

there are three tokens, there is a draw. To introduce
timing in a simple way, a time stamp can be attached to
each arc towards the strike transitions. In a game based
on this model this time stamp can be computed from the
play settings of the instructor (which is CcO) and input
from the player. If the player has a better time (shorter),
he always wins. A game based on this model can be
designed to have a selection of the Waza by the player —
who as a trainee is supposted to be the first to hit, and his
reaction time will decide the result. A hint to start should
be given to the player, and he has to react immediately
after this hint.

Unfortunately, the number of techniques (Kihon
repertoire) is rather limited, and such a game will
become boring very fast and will have also a limited
degree of realism (real matches are typically longer than
a simple Waza execution, albeit a sought-after kendo
goal is to win as fast as possible). Instead of modelling
only the Kihon and be able to select one Waza at a time,
the game could be combinatorially expanded by using
the concept of “tactic” [Honda, 2004]. Although explicit
tactics are considered as a negative aspect of training by
the ultra-traditional kendo practitioners, many coaches
consider these useful for the trainees to develop their
understanding of Kendo in the process of thinking,
learning, practicing and creating tactics. Another reason
to apply tactics is due to the granularity of conscious
action. Wazas are just very short sequences of moves
which are becoming executed subconsciously after a
short training. Later, with higher skill and mastery,
Wazas are combined into longer sequences, and the
granularity of subconscious action decreases. This in the
long run leads to the ability of Mushin, that is, to do
continuously kendo almost subconsciously, in a “state of
flow”, depending mostly on the instinctive perception of
the opponent and the situation. However, this is difficult
to achieve by a beginner or even for holders of Kyu and
1 and 2™ Dan grades (these are kendo-skill formal
qualifications). For these kendokas (and even for those
up from 3™ to 5™ Dan grades), it is useful to develop
tactics consciously and try to build them up to the level
of subconscious execution.

A tactic is a succession of Seme (pressure) and Wazas.
A simple one [Honda, 2004] is: “pretend to attack Men
after using Osae [feint action, pushing opponent’s Shinai
down] -> make the opponent defend Men -> then
actually attack Kote or Do”. This can be developed into
slightly more complicated ones. To build a tactic with
the same formalism as above means just to put together
individual player Petri net descriptions of each Waza. To
execute Ji-keiko based on two separately developed
tactics (one of the PcA and one of the CcQ) the two Petri
nets representing these tactics have to be connected. The
difference from formalising a Kihon (where two Wazas
are choreographed together to end at the same point, with
success, draw or failure), is that in this case, the two
tactics may not be “aligned”, a situation that translates
into the real situations of dual blocks, retreats, or
passing. That means that the development of a tactic has
to identify as many endings as possible. Two endings are
mandatory to be described: one is when Ippon (correct

hit) is registered, and one when the attack (or defence) is
open ended, and both kendokas are ready to start again.

In the appendix, the model of the above mentioned
tactic is presented (see figureFigure 2). For a kendoka in
Ji-geiko, it is not sufficient to conceptualise his own
moves and postures only, but also to predict what the
opponent is expected to do. To formalise this kind of
understanding, the now mature concept of Interaction
Belief — IB, see [Stuit & al, 2007], is used. The IB is a
Petri-net with swim lanes, showing the expected
behaviours of humans or software agents who interact with
a certain purpose. One swim lane describes the behaviour
of one participant in the interaction. The IB represents
always a situated view (an agent belief, see [Rosenschein
& Kaelbing, 1995]) meaning that one swim lane
corresponds to the owner of the IB (the “me” lane),
representing its intended behaviour before engaging in an
interaction. The other swim lanes (there are at least two in
total) represent what the owner of the IB expects the other
participants to do. An interaction belief should be always a
sound Petri net, with as many alternatives as possible, and
with a clear ending. In figureFigure 2, the places and
transitions are not modelling only PoS(es) and BoM(s) but
also places can be mental states (like “intimidated”, and
“fooled”), or feedback from the opponent, or an effect on
the scene (like “tip up”, and “aiming kote™). Also, some
places and transitions are necessary to achieve the
syntactic consistency of the Petri net, or to follow safe
design guidelines to avoid deadlocks (the IB in
figureFigure 2 has been also checked with CPN tools), and
these have no direct meaning for the kendo scene. The
central swim lane does not represent the behaviour of an
interaction human participant, but it describes the
evolution of the relative position and contains transitions
that fire if certain events (like a hit or a fail) have taken
place. For the game kendo scene, all IBs (in this case, the
trainee kendoka’s belief about a certain tactic) will have
the same construction.

To execute this IB (e.g. by step-by-step simulation in
CPN tools), three tokens have to be placed in the topmost
three places. Three tokens will always appear at the end,
either one in the “WIN” or “Lose” places, and two in the
last two position places, either one in each of the “Ready”
places, plus one in one of the position places. The end
position (i.e. Petri net marking) shows if the tactic
succeeded or it failed and in the latter case the tokens can
be transferred in the begin places of another tactic
(preserving the relative position and the posture of the
kendokas). Both the Petri nets presented here are classical
Petri nets, and these lead to rather complicated models.
Also, this means that any modelled choice (a token leaving
a place with multiple outgoing arcs) is interpreted as a
nondeterministic choice. If coloured Petri nets are used,
then the complexity of the models is reduced, and also
choices can be regulated by arc expressions, which yield
Boolean values based on the colour of the tokens that are
allowed to traverse them. Also, crucial to add to these
models are the time stamps, which can be computed in
various ways for the PcA and CcO, and these will in fact
always decide the outcome. In real interactions, each
participant has its own IB, and it is possible that these are
not matching (what one agent is expecting other to do is

66

different from what the other intends to do and vice-
versa). In a game design, it is possible that the player is
defining its own tactics and the game is provided with a
set of built-in tactics that are used by the CcO. In this
case, the outcome is non-decidable. Then the game has
to be performed as a turn base game, where the tactic
assigned to the PcA is executed step by step and the
mismatches (the impossibility to build a meaningful or
leading-to-win kendo scene) are showed to the player.
This has to intervene and re-construct the next move or
position in the IB, in a way that brings the player to the
advantage, or at least allows the player to escape the
initiated tactic and start another one (the CcO will select
also one, randomly or based on the observation of the
player). For this kind of game playing, the challenge for
the designer is to find a simple programmable method
that allows for the automatic building of the mid swim
lane. Some useful patterns have been already identified.

Another possibility, based on the work of Meyer and
Szirbik [2006], is to have automatic alignment on the
CcO side, which will enable the game to build its own
tactic during the construction/execution of the tactic of
the player, in a way that brings the CcO to advantage.
This will enrich the game, increasing the variety of CcO
tactics from a fix programmed number, to a near-infinite
combinatorial number of newly ad-hoc developed
tactics. Machine learning applied to adapt to various user
profiles can also improve the quality of tactic selection
by the CcO, and it could make the game more
unpredictable and interesting.

3 Usage of this method and conclusion

The game scene dynamic modelling technique presented
can be used to implement the core mechanism of a kendo
game, or any similar action-game (European fencing,
various sword fight techniques, pole fight, etc) with the
condition that it has a very well defined structure
(moves, postures, rules). In a first phase implementation,
with simple time stamp formulas, it can be used to
analyse and construct tactics by the kendokas who want
to prepare for Ji-geiko and understand better their
(subconscious) actions. A minimal graphical interface to
show the kendo scene is necessary, and also another one
to edit the tactics in the most user friendly way, allowing
the user to select moves from a set available to the PcA
given the current state / scene situation, abstracting from
the internal Petri net details. However, a soundness
enforcing mechanism is necessary, and it can be
achieved relatively easy, by using internal Petri net
modifying operations that preserve the desired properties
[Meyer & Szirbik, 2007]. The game can have a pre-
defined set of tactics (based on well established ones
[Honda, 2004]), already checked for soundness, that can
be studied, edited, reversed (CcO’s swim lane becomes
PcA’s swim lane and the player has to modify it in a way
to win). New tactics should be possible to be added by
the player (or built automatically by the game). During
the turn based execution of the tactics, roll-backs and
variant investigation should be possible, and also an easy

management of the tactic library (classification, search)
should be achieved. Next, more dynamic can be added, by
executing the tactics in real-time, allowing the player (via
a more sophisticated interface, e.g. Wii) to input reaction
times, and most importantly, to select easily the next tactic
(until win/lose). A possible solution is to use tactic name
utterance, with robust voice recognition technology.
Finally, for a more distant future, when game interface
technology and costs will be feasible, realism can be used
by haptic interfaces and 3D immersion for visualisation.
Feedback to the player could be provided also in terms of
the correctness of moves and compliance/deviation
to/from the selected tactic. Tactic building can become
more “hands-on” and less dependent on a tactics editor.

In conclusion, the main advantage of this approach is
that it allows for a step-wise and incremental development
of the tactics and the game itself, and most important, it
uses a very well established formalism that allows formal
verification and model checking of various properties, in
conjunction with existent powerful open source tools. An
intuition is also that a game designed in this “structural”
approach will allow the translation of player’s real skill
into the game sessions, and will benefit the game industry
by allowing expert kendokas to include their tactical
experience in the future games.

APPENDIX

“Me” swimlane In-between

References (selection for the extended abstract)

Chai, J., and Hodgins, J. K., (2005), “Performance animation
from low-dimensional control signals”, ACM Trans. Graph.
24, 3: 686-696.

Honda, Sotaro, (2004), “Tactics in kendo”, at
hitp://www.kendo.org.uk/pmwiki.php/Main/Tacticsinkendo

Jensen, Kurt (1992), Hierarchical Colored Petri nets. Chapter in
Book: Coloured Petri Nets: Basic Concepts, Analysis
Methods and Practical Use. 89-119. (1992).

Jensen, K., Kristensen L.M., and Wells, L., (2007), “Coloured
Petri Nets and CPN Tools for modelling and validation of
concurrent systems”, International Journal on Software
Tools for Technology Transfer, 9 213-254.

KKH: Kihon-Keiko-ho, at
http://www.scribd.com/doc/2234985/bokuto-ni-yvoru-kihon-

kendo-waza

Meyer, G.G., and Szirbik, N.B., (2007), ‘“Anticipatory
Alignment Mechanisms for Behavioural Learning in Multi
Agent Systems”, (eds. M. V. Butz et al.), vol. LNAI
4520:325-344, Springer.

Ozawa, Hiroshi, (1997), “Kendo — the definitive guide”,
Kodansha International Europe Itd. Aldwych, London.

Rosenschein, S. J., and Kaelbling, L. P. 1995. “A situated view
of representation and control”, Artificial Intelligence
73:149--173.

Stuit, Marco, et al, (2007), “Interaction beliefs: a way to
understand emergent organisational behaviour”, Proc. of
The ICEIS 2007 Conference, vol. “Software Agents and
Internet Computing”, 241-248.

Issoku

U Opponent’s swimlane
(medium dista

ce)

| }
| |
| [}
i i
Kamae : : Kamae
L Tio down success : intimidated Reacts
| P | Steps back unpredictably
L N !
t >
| |
| |
' Failed Not intimidated
| intimidation Chika (short tiistance) Intermediate
Kamae
| 1 > posture
| Tio u success : fooled
Pretend to attack Men | b up |
| |
Steps back & ks low
| l\’ot fooled
|
Wait | Issoku |
&) | Failed feint teps back &blocks high
decide ! feedback |
| Reacts_
l’/ | 1 unpredicfably
1 |
|
| |
| Stays until
| : on Kote It gets hit or
| N | issed
> T .
Dosirike Kote-strike : : Not finished
& hiraki ashi & no step | Failed strike uccess | ot Ippon
R | [
—>
Issoku | .
| i D Readies for
Aiming do . success, ppon Do counterattack
|
Tactic Failed > : | [
I__u__l ok
Failed gtrike |
Select new tactic | Acknowledged
Tactic Succeeds & |
| Lose
— /1
v |
Lateral : Ready
|

O

chika

Figure 2. Model of a full tactic (Seme + Feint + two alternative Wazas + multiple ends) as a colourless (classical) Petri net with swim lanes

67

USING GENETIC ALGORITHMS TO EVOLVE CHARACTER
BEHAVIOURS IN MODERN VIDEO GAMES

T. Bullen and M. Katchabaw
Department of Computer Science
The University of Western Ontario
London, Ontario, Canada N6A 5B7
tbullen@uwo.ca, katchab@csd.uwo.ca

KEYWORDS

Artificial intelligence, bots, genetic algorithms, evolutionary
algorithms, computer and video games

ABSTRACT

Artificial intelligence is an important aspect to nearly every
modern video game. Providing this, however, is all too often an
arduous task, even for the most expert developers. The
behaviours of non-player characters in a game are typically
defined and guided by a large collection of parameters; it is
usually quite difficult to determine the best values for these
parameters to achieve the desired behaviour considering the
state of the game and the player involved in playing it. Some
form of adaptation to adjust and tune these behavioural
parameters would be extremely useful in addressing this
problem.

This paper examines the use of genetic algorithms to adapt
and refine character behaviours in video games. In doing so,
non-player characters can be evolved to a fitness level
appropriate to the game and its player, providing a more
enjoyable experience in the end. This paper discusses our
approach to using genetic algorithms, and describes a prototype
system built using the Unreal Engine that implements this
approach in its non-player characters. This paper also presents
experimental results from using this prototype system; to date,
these results have been quite positive, demonstrating great
promise for the future.

INTRODUCTION

In recent years, artificial intelligence has increasingly become
one of the most critical factors in determining the success or
failure of a video game (Tozour 2002). This trend is expected to
continue, with some saying that the key to more entertaining,
enjoyable, and immersive games in the future lies in the
artificial intelligence contained within them (Bourg and
Seemann 2004).

Unfortunately, developing the artificial intelligence for a game
is one of the most challenging tasks a programmer can
undertake (Rabin 2002). Indeed, creating non-player characters
that behave in a believable and realistic fashion, while working
in the game to provide an appropriate challenge to the player, is
incredibly difficult (Baillie-de Byl 2004). Such characters are

68

typically defined and guided by a large collection of behavioural
parameters whose interactions and dependencies can be
complex and difficult to predict (Laramée 2002; Sweetser 2004;
Thomas 2006). Configuring all of these parameters for game
characters manually is a tedious, expensive (in terms of time and
money), and potentially error prone process. Consequently, an
approach is necessary to automate behavioural parameter
configuration, to adapt and refine character behaviours as
necessary for a game.

Our current work explores this problem through the use of
genetic algorithms to develop non-player characters. This is
done by using evolutionary processes to adapt behavioural
parameters of the characters to a level of fitness suitable for the
game context and player in question. Doing so has the potential
to provide the player with a more enjoyable and appropriately
challenging experience, without the problems and costs that are
usually associated with the manual tuning and configuration of
these behavioural parameters (Laramée 2002; Sweetser 2004;
Thomas 2006). With evolution and adaptation already
identified as highly important directions to the future of artificial
intelligence for non-player characters in video games (Bourg
and Seemann 2004), now is the time to study and explore this
area further.

To this end, we have developed a mutator module for Epic’s
Unreal Engine (Epic Games 2005) that applies genetic
algorithms to its non-player characters, also known as bots.
This mutator enables Unreal bots to evolve as the game is
played to adapt to their surroundings, the rules of the game, and
the opponents they are facing. Our mutator module was then
used in a series of experiments conducted using Unreal
Tournament 2004 (Digital Extremes 2004) to investigate and
determine the effects of the genetic processes put in place within
the bots.

This paper presents the results of our current and on-going
work in this area. We begin by providing background
information on genetic algorithms and evolutionary computing,
as well as a discussion of related work in this area. We then
describe our approach to genetic algorithms to evolve character
behaviours, and introduce our proof of concept system using the
Unreal Engine. We then present experimental results from
using this prototype to date, and discuss our experiences in
using it so far. We then conclude this paper with a summary
and a discussion of potential directions for continued research
and development in the future.

BACKGROUND AND RELATED WORK

Genetic algorithms have been used in numerous contexts for
quite some time, including artificial intelligence, as discussed in
(Russell and Norvig 2003). Genetic algorithms have also been
examined in the particular context of artificial intelligence for
video games, including (Baillie-de Byl 2004; Bourg and
Seemann 2004; Buckland 2002; Laramée 2002; Sweetser 2004)
and several others, although much of this attention is relatively
recent.

A Brief Overview of Genetic Algorithms

The essence of a genetic algorithm is much the same across
domains: computational problems are encoded in such a way
that natural evolutionary processes can be applied to them to
produce optimal or near-optimal solutions (Laramée 2002). The
general flow of the process is depicted in Figure 1, and
discussed in the sections that follow.

Problem
Encoding

Population
Initialization

Evaluation

Selection

Evolution

Population
Replacement

Figure 1: The Flow of a Genetic Algorithm

Problem Encoding

To use genetic algorithms to solve a problem, we must think
of our problems from a genetics perspective. For our purposes,
genetics concentrates on the transmission of traits from parents
to offspring (Baillie-de Byl 2004). These traits are determined
by the genes present in the chromosomes of the entities in
question. In the end, these traits define the various
characteristics and capabilities of an individual.

When dealing with genetic algorithms, we encode problems in
this fashion, defining the various traits of a problem and its
solutions through the use of genes. Typically, genes tend to be
data variables containing values representing the traits in
question, although it is possible for them to be elements of logic
or code instead (Laramée 2002).

Population Initialization

To begin the process, we need a population of individuals,
with each individual a potential candidate for solving the
problem at hand. Each individual is defined by generating the
collection of genes that determine its various traits. This can be
done using some form of random process, or by some more
informed process that creates individuals that should be
inherently better suited to solving the problem at hand than a
randomly generated one.

The latter of these options, however, must be used with care,
as it could create a population that lacks the genetic diversity to
contain the best solution to the problem, as sometimes the best
solution comes from the most unlikely of candidates. With care
though, a more informed population generation process can lead
to a more efficient execution overall, in some cases.

Evaluation

The evaluation process determines which individuals in the
population are the most successful. Typically, this is done
through the application of a fitness function that assigns a score
to each individual in the population. The closer an individual is
to solving the problem, the higher its assigned fitness score.
Naturally, the fitness function is very problem specific, and the
overall success of the genetic algorithm is heavily dependent on
the selection of an appropriate fitness function (Sweetser 2004).

Selection

After a fitness score has been assigned to each individual in
the population, a mechanism is needed to select which
individuals will become parents and reproduce to create
offspring for the next generation of the population. There are
many approaches to this selection process, as discussed in the
literature listed earlier in this section.

Evolution
During reproduction, each parent transmits a portion of their

genetic material to their offspring. The process is not simply
one of copying, but usually involves other activities, most

69

importantly crossover and mutation (Laramée 2002). Crossover
involves mixing gene components from the chromosomes of
each parent so that the resulting offspring has a combination of
traits from the parents involved in its creation. Mutation is a
random change to a gene that creates variation in the offspring
so that, in some respects, the offspring can be unlike its parents.
This prevents stagnation and premature convergence in a
population, but care must also be taken to avoid too many
changes that make the genetic algorithm too random and too
inefficient (Sweetser 2004).

Population Replacement

When a new generation of individuals has been created as
described above, they enter the population, potentially
displacing and replacing individuals from previous generations.
Depending on the genetic algorithm in question, this may be a
total replacement of all individuals, or some select individuals
from previous generations may be allowed to survive. Once the
new population has been assembled, the process repeats. After
sufficient repetitions, the population will evolve and a suitable
solution to the problem will hopefully be found amongst the
population during evaluation.

Related Work

As mentioned earlier, genetic algorithms have been applied to
artificial intelligence for video games in the literature before,
including (Baillie-de Byl 2004; Bourg and Seemann 2004;
Buckland 2002; Laramée 2002; Sweetser 2004). While this
work has done an excellent job of introducing genetic
algorithms in this context, applications of genetic algorithms in
this work have been quite limited to rather simplistic characters
and scenarios, without examining games of a commercial scope
or magnitude. It is also unclear how much experimentation was
conducted in this work, as presentation of results was also rather
sparse for the most part.

Further work in this area has examined more advanced genetic
algorithms for game artificial intelligence, including (Buckland
2004; Laramée 2004; Thomas 2004; Thomas 2006). While
presenting some rather interesting and practically useful
techniques, this work is again limited in terms of its proof of
concept and experimental results.

More rigorous application of genetic algorithms to video
games is starting to appear in the literature, however, with
(Spronck and Ponsen 2008) being a notable example. This work
uses genetic algorithms to generate strategies for real-time
strategy games. While there are many caveats to this work, as
described in (Spronck and Ponsen 2008), the work is quite
promising and demonstrates the potential for using genetic
algorithms in this area.

There has also been interesting applications of genetic
algorithms in commercial video games, as discussed in
(Sweetser 2004), including Cloak, Dagger, and DNA, the
Creature series, Return Fire II, and Sigma. Spore, developed by
Maxis for Electronic Arts and expected to be released in late
2008, also makes use of genetic algorithms and evolutionary

70

computing in a variety of ways. Unfortunately, the extent to
which these approaches have been used in these and other
commercial games, as well as their ultimate success, is unclear.

Consequently, while there has been considerable discussion on
using genetic algorithms for artificial intelligence in video
games, there is also considerable room for additional research,
development, and experimentation to explore this area further.

OUR USE OF GENETIC ALGORITHMS

In our current work, we are studying the use of genetic
algorithms to evolve character behaviours in video games.
Consequently, our population will consist of non-player
characters with their traits and characteristics encoded as the
genes used during evolution.

Using the Unreal Engine as a Research Platform

Instead of creating our own simple game or game scenarios to
explore genetic algorithms in this way, we instead chose to use a
commercial game system as our research platform. This allows
us to focus on issues and experiments related to genetic
algorithms, as opposed to the construction of the game itself and
its characters. For this purpose, we chose to use Epic’s Unreal
Engine (Epic Games 2005). The Unreal Engine is a fairly
popular engine among developers and hobbyists, providing a
reasonably large collection of games suitable for study. This,
and our own prior experience with the Unreal Engine, made it
an ideal candidate for use in our current work.

Since we were using the Unreal Engine in this work, our
system for genetic evolution was developed using UnrealScript.
While a C or C++ approach is preferable to provide support
across a variety of games and game engines in the long term,
most game engines used in industry do not provide code-level
access to their engines or only do so in a cost-prohibitive
fashion, including the Unreal Engine. UnrealScript fortunately
provided all the access that was required for our current work.

Adding genetic evolution to the Unreal Engine involved
manipulations of its non-player characters, known as bots, as
well as its game rules, as shown in Figure 2. Each Unreal game
type has a Game Info object that defines the game in question.
Among other things, this object contains a collection of game
rules defining various aspects of how the game is played, and a
collection of mutators. Mutators, in essence, allow
modifications to a game and gameplay at run-time while
keeping the core elements and game rules intact.

In our case, we developed a Genetic Evolution Mutator to
bootstrap the genetic evolution code within the Unreal Engine.
Upon loading, this mutator instantiates a collection of Evolution
Rules and adds them to the list of game rules in the engine to
control the evolutionary process depending on the configuration
of the mutator. This mutator also modifies the Pawn class from
which all Unreal bots are derived, to remove its reference to the
default artificial intelligence controller and replace it with one to
a new bot controller that contains a genetic algorithm. Making
this change forces all newly constructed Unreal bots to use the

Game Info

Game Rules

Mutators

4

Evolution
Rule

Genetic
Evolution
Mutator

/Default
Artificial Intelligence
Controller

/Artificial Intelligence D
Controller Containing
Genetic Algorithm

+—\—ﬁ/

Controller
Reference

T
)]
=
pun

.

Figure 2: Additions and Modifications to the Unreal Engine to Support Genetic Algorithms

new controller instead of the default one. This new controller
determines the behaviour of the bots making use of the
controller, and consults the Evolution Rules to control the
genetic evolution of the bots to refine and adapt their behaviour.
In doing things in this fashion, we do not need to make changes
to the core of the Unreal Engine code, and only need to deploy
our mutator to enable genetic evolution in the Unreal bots.

Using Genetic Algorithms in Unreal Tournament 2004

In adding to and modifying the Unreal Engine as described in
the previous section, we can now use genetic algorithms in
Unreal-based games. The selection of chromosomes, genes,
fitness functions, selection criteria, and other elements of
genetic algorithms as discussed earlier in this paper, however, is
dependent on the particular game making use of this engine.

For our purposes, we used Unreal Tournament 2004 (Digital
Extremes 2004), as it is one of the most popular Unreal-based
games, and it was readily available at our disposal. Unreal
Tournament 2004 is a first-person shooter game that supports a
wide variety of different game types and sets of game rules,
individual and team-based games, and single player,
multiplayer, and spectator modes of play. (In spectator mode,
games can be played with no human players, and the game’s
display is used to observe the game’s progress.) Consequently,
there are many gameplay options provided within this game,
enabling a wide variety of experimentation with genetic
algorithms using just this single package.

Problem Encoding

Since Unreal Tournament 2004 is a first person shooter,
gameplay primarily revolves around killing other players (both

71

humans and bots) while trying to stay alive yourself.
Consequently, most player activity focuses around completing
these objectives, as well as collecting items that facilitate these
objectives (such as weapons, ammunition, health packs, armor,
and so on). Some game types supported by Unreal Tournament
2004 have additional objectives as well, such as capturing a flag
from your opponent’s base, controlling critical points in the
game world, and so on. These gameplay objectives represent
the problem that we are trying to solving using genetic
algorithms.

The bots in the game form the population, and their various
characteristics and traits collectively form the chromosomes and
individually can be considered the genes for our genetic
algorithm. Since we are primarily interested in refining the
behaviour of these bots, we focus on traits that influence a bot’s
decision making processes and have an impact on the outcome
of the game, as opposed to traits that only affect their visual
appearance or voice within the game. As a result, we consider
the following traits of Unreal bots in the set of genes and
chromosomes within our genetic algorithm:

e Accuracy: Determines how good a bot is at hitting its
target when shooting at it.

e Alertness: Determines how aware a bot is of changes to
their surroundings.

e Aggression: Determines how engaged a bot is during
combat and how they react to combat.

e Jumpiness: Determines how much a bot will use jumping,
especially as an evasive maneuver.

e Strafe Ability: Determines how much a bot will use
strafing, especially as an evasive maneuver.

e Combat Style: Determines how a bot engages in combat,
either up close or far away, or somewhere in between.

Include Combat Style Chromosome

Include Favourite Weapon Chromosome
Include Jumpiness Chromosome

Include Pickup Threshold Chromosome
Include Retreat Threshold Chromosome
Include Stakeout Threshold Chromosome
Include Strafe Ability Chromosome

No Evolution Between Generations

Chromosome Selection Method

Fitness Function

Figure 3: Configuration Screen for Genetic Evolution Mutator

e Reaction Time: Determines how quickly a bot responds to
changes to their surroundings.

e Favourite Weapon: Determines which weapon a bot will
prefer to use, given the choice.

e Retreat Threshold: Determines how likely a bot is to
disengage from combat when facing a stronger opponent.

e Pickup Threshold: Determines how likely a bot is to seek
out a better weapon than the one it is currently using.

e Stakeout Threshold: Determines how long a bot will
continue to hunt for an opponent outside its field of vision.

There are other traits that a bot possesses, but their effects are
not documented, and so they are currently being studied further
before inclusion within our genetic algorithm. Our mutator can
be configured at run-time to determine which traits to include or
exclude from evolution, as shown in Figure 3, providing a great
deal of flexibility and control over the process.

Population Initialization

The initial population of bots to use in our genetic algorithm is
generated through a random selection from all of the available
bots within the game. This, of course, is a subset of all of the
bots that are possible through a completely random assignment
of all trait values.

This population initialization decision was made as a great
number of the bots possible in the game are extremely
ineffective at playing the game well, and these bots needed to be
culled for efficiency reasons. Since additional arbitrary bots can
be easily added to the bot roster for the game, there can still be
as much diversity as needed in the initial population used by the
genetic algorithm.

72

Evaluation

For evaluation purposes, we have defined a number of fitness
functions, primarily aimed at assessing a bot’s success in killing
its opponents and/or avoiding its own death. These include the
following:

e Gross Kills: Fitness is determined by the total number of
opponents killed during the game. This will favour bots
that tend to kill opponents, regardless of the consequences.

e Deaths: Fitness is determined by the number of times the
bot was killed during the game. This will favour bots that
are survivalists, regardless of how many opponents they kill
in the end.

e Net Kills: Fitness is determined by the total number of
opponents killed, minus the number of deaths incurred in
doing so. This will favour more balanced and cautious
bots.

e Kill/Death Ratio: Fitness is determined by a weighted ratio
of kills to deaths. This is calculated so as to favour killing
activity during the game, although this can be easily tuned.
This fitness function was introduced as an improvement
over the Net Kills fitness function, as this function would
rate a bot with 0 kills and 0 deaths the same as a bot with 10
kills and 10 deaths, even though the latter was more
actively participating in the game.

It is not obvious which fitness function results in bots that
provide the most enjoyable experience to the player.
Furthermore, it is unclear how well these functions apply to
games with objectives beyond a simple kill-or-be-killed
deathmatch, or when team play is involved. Experimentation is
needed to study these issues and explore them further.

Selection

A number of methods, as described in (Baillie-de Byl 2004),
have been defined for selecting bots to be parents to generate
offspring in our genetic algorithm. Each of these selection
methods makes use of either the raw fitness score from the
evaluation process, or a fitness ratio, which is the individual’s
fitness divided by the population’s total fitness. These methods
include the following:

e Stochastic Roulette: Each potential parent from the
population is allocated a portion of a circular roulette
wheel, the size of which represents its fitness ratio. A parent
is selected for mating by conceptually spinning the wheel
and picking the parent on which the wheel stops. The fitter
parents have a bigger portion of the roulette wheel and so
have a better chance of being selected to produce offspring.

e Remainder Stochastic: A parent is selected for mating
based on its fitness ratio, converted to an integer on a scale
from 0 to 100. This value determines the number of times
the potential parent is allowed to mate.

e Ranking Mating: In this simple approach, potential parents
are ordered based on their fitness; parents near the top of
the order are selected to produce offspring more times than
those lower down. A cut-off point can be configured with
this method, below which bots are not allowed to mate due
to their poor performance during evaluation.

As with traits and fitness functions, the selection method used
in our genetic algorithm can be adjusted by configuring our
mutator, as shown in Figure 3.

Evolution

The genetic algorithm used in this work employs both
crossover and mutation in creating offspring from parents
selected using one of the above methods. Crossover is
accomplished by swapping segments of chromosomes from
parents using a random process when constructing offspring.
Mutations occur randomly in offspring, with the offspring
receiving traits that were not from one of their parents, but were
instead randomly generated. The probability of mutation
occurring is again a parameter configurable in our Unreal
mutator.

Population Replacement

In our genetic algorithm, population replacement is again
configurable in our mutator. By default, the entire population is
replaced by offspring after evolution has occurred. Options
exist, however, to keep bots selected either by fitness or
randomly from one generation to the next.

EXPERIMENTAL RESULTS AND EXPERIENCES

Using the Unreal-based prototype system described in the
previous section, a series of experiments was conducted to study
the use of genetic algorithms in evolving bot behaviour in
Unreal Tournament 2004. This section presents highlights of

results from this experimentation, and discusses some of the
observations made and insights gained in the process.

Experimental Environment

Our experimental environment consisted of a lab of 20
workstations, allowing us to conduct multiple experiments in
parallel. Each test system in the lab was a dual-core 3.0GHz
Pentium D system, with 2GB RAM, a 250GB hard drive, and an
ATI X800 graphics accelerator card. The operating system in
this case was Microsoft Windows XP SP2. As such, the test
systems greatly exceeded the recommended system
requirements for Unreal Tournament 2004.

Deathmatch Experiments

In this experimentation, we studied our prototype system with
bots playing a standard deathmatch game. The game was set in
one of the largest levels provided in Unreal Tournament 2004,
Tokara Forest, to allow the largest possible number of bots in
the game at once.

In total, 32 bots were allowed in the game, split into two
groups of 16 bots each. The first group of bots made use of the
genetic algorithm as described in the previous section to evolve
over time. The second group of bots was a fixed control group
that did not evolve over time. Both groups were selected
randomly at the beginning of each repetition of the experiment;
there were five repetitions in total, providing five different
starting points for evolution against five different control
groups.

All bots were configured to be of a “masterful skill” level.
The genetic algorithm was configured to allow all of the traits
discussed earlier to be affected by evolution, with a 0.2%
chance of mutation. Fitness was calculated using the Kill/Death
Ratio, and parent selection was done using the Stochastic
Roulette method.

The game itself was configured to run until either 20 minutes
had elapsed, or a target kill level of 100 kills was achieved by
one of the bots. The experiment was then configured to repeat
through 25 generations of evolved bots, with evolution
occurring after each game was completed and before a new
game was started.

Figure 4 presents results from this set of experiments, plotting
the fitness difference between the evolving bot population and
the control population through each generation of evolved bots.
This fitness difference was calculated as the mean evolved bot
fitness minus the mean control bot fitness across all replications
of the experiment. As the bots using the genetic algorithm
evolved, the fitness difference increased, indicating that the
evolved bots improved against the control group over time. To
make this trend easier to see, Figure 5 sums the fitness
differences from Figure 4 into fifths. (The first bar in the graph
in Figure 5 is the sum of the first five fitness differences from
Figure 4, and so on.) From Figure 5, an improvement in
evolved bot fitness is quite apparent over time.

73

0.5

Fitness Difference

0
‘f 3 5 7 9 1"
-0.5

13 15

Generations (Games)

Figure 4: Fitness Differences Between Evolved and Control
Bots in Deathmatch Play

Fitness Difference
O =~ N W H OO N 0 ©

1 2 3 4 5

Generations (Games) Summed into Fifths

Figure 5: Fitness Differences Between Evolved and Control
Bots in Deathmatch Play, Summed into Fifths

Team Deathmatch Experiments

Following the success of the pure deathmatch experimentation
as described above, we conducted a similar set of experiments
except that the bots were organized into teams. While the best
overall team score determines the victor in this type of game,
the best strategy for success is to largely play the same as a pure
deathmatch, with a few exceptions (Suit et al. 2007).

Consequently, our team deathmatch experiments were
conducted with the same configuration as our pure deathmatch
experiments, except that the evolved bots formed one team and
the control bots formed the other. The teams then competed
against one another following the same rules as before. Figure 6
presents the fitness differences measured in this case.

1.8
1.6
1.4
1.2

0.8
0.6
0.4
0.2

Fitness Difference

1 3 5 7 9 11 13 15 23 25

Generations (Games)

Figure 6: Fitness Differences Between Evolved and Control
Bots in Team Deathmatch Play

74

Once again, the evolved bots demonstrated an improved
fitness over time compared to the control group. This trend is
readily apparent in Figure 7, which sums the fitness differences
from Figure 6 into fifths.

Fitness Difference
o =~ N W A~ OO N

1 2 3 4 5

Generations (Games) Summed into Fifths

Figure 7: Fitness Differences Between Evolved and Control
Bots in Team Deathmatch Play, Summed into Fifths

As indicated in (Suit et al. 2007), taking the same strategy in
the team deathmatch as used in a pure deathmatch was a
reasonably successful approach. A more highly tuned fitness
function to take into consideration some of the exceptions to this
strategy in team play is under development, and might produce
even better results in the future.

Other Observations and Comments

Experimentation in both of the above cases showed little
improvement in evolved bot performance past 25 or 30
generations. At that point in time there was simply not much
genetic diversity left in the population.

To assess the general playing ability of the evolved bots once
evolution showed little additional improvement, we played
additional games with the fully evolved bots. In one scenario,
we pitted the fully evolved bots against the same control group
in a different Unreal Tournament 2004 level. In another
scenario, we pitted the fully evolved bots against an entirely
different control group in the same level in which evolution took
place. In both cases, there was still a difference in fitness
between the evolved and control groups, indicating that
evolution still retained some of its benefits, but the difference
was between 10 to 30% smaller than before, depending on the
scenario. This suggests that evolution in this case is at least
somewhat dependent on the context.

So, while bots can be evolved during game production using
genetic algorithms for efficiency reasons, these bots will still
require further online adaptation to become better suited to the
individual player of the game. Improvements in fitness were
observed after 10 to 15 generations, which might be acceptable
to some players, but could be too long for others. As a result,
we may need to accelerate the evolution process, perhaps by
having multiple generations of bots in each game played, as
opposed to only one generation per game. This possibility
needs to be explored in further experimentation, as forcing
evolution prematurely might not result in the improvements in
bot performance desired.

It was also observed during experimentation that evolved bots
almost universally maximized their accuracy trait. This makes
sense, since improved accuracy in shooting at opponents only
has benefits to the bots, without any negative consequences.
While this might challenge a player, it could do so in a way that
is rather frustrating, as a bot could succeed by making nearly
impossible shots in a super-human fashion, while a human
player could not possibly do the same regardless of their skill.
Consequently, we are currently conducting further experiments
that do not allow the accuracy trait to be adjusted, forcing bots
to improve in other ways that could produce more rewarding
gameplay to the player. Initial results are quite promising.

CONCLUDING REMARKS

With artificial intelligence becoming increasingly critical to
the success of modern video games, it is important to study
methods of improving non-player character behaviour in games
to produce a more rewarding experience for the player. Our
current work represents an important step in this direction, using
genetic algorithms to evolve and adapt character behaviours.

This paper presents the results from our work, describing an
Unreal-based prototype system for genetic evolution of Unreal
bots, and presenting experiments conducted using Unreal
Tournament 2004 to assess the suitability of genetic algorithms
to improve game artificial intelligence. Results to date have
been quite promising, encouraging further research in this area.

There are several possible directions for continued research in
the future, including the following:

e Additional experimentation is clearly beneficial to further
research in this area. The experiments presented in this
paper only scratch the surface of what can be done using
our prototype system. There are still many configuration
options to be explored more fully, including the traits used
during evolution, the fitness functions used, and the method
used to select parents for generating offspring.

e User testing during experimentation is also important. So
far, the success of evolved bots has been measured only in
terms of their fitness. In the end, it is important to also
determine if the evolved bots deliver a more enjoyable and
satisfying experience to a human player.

o [t is also important to study the use of our prototype system
in other Unreal-based games. This may include porting our
system to Epic’s Unreal Engine 3.0, the most recent version
of the engine in release.

e Applying our approach to games based on other game
engines would also be interesting, and would provide
additional platforms for further research, development, and
experimentation in this area.

REFERENCES

Baillie-de Byl, P. 2004. Programming Believable Characters
for Computer Games. Charles River Media.

Bourg, D. and Seemann, G. 2004, AI for Game Developers.
O’Reilly Media Inc.

Buckland, M. 2002. “Genetic Algorithms in Plain English”.
Available online at http.//www.ai-junkie.com. Last accessed
June 2008.

Buckland, M. 2004. “Building Better Genetic Algorithms”.
Appeared in Al Game Programming Wisdom 2. Charles
River Media.

Digital Extremes. 2004. Unreal Tournament 2004 — Editor’s
Choice. (August).

Epic Games. 2005. Unreal Engine 2, Patch-level 3369.
(December).

Laramée, F. 2002. “Genetic Algorithms: Evolving the Perfect
Troll”. Appeared in Al Game Programming Wisdom.
Charles River Media.

Laramée, F. 2004. “Advanced Genetic Programming: New
Lessons from Biology”. Appeared in Al Game
Programming Wisdom 2. Charles River Media.

Rabin, S.. 2002. “Preface to Al Game Programming Wisdom”
Appeared in AI Game Programming Wisdom. Charles River
Media.

Russell, S. and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Second Edition. Pearson Education, Inc.

Spronck, P. and Ponsen, M. 2008. “Automatic Generation of
Strategies”. Appeared in AI Game Programming Wisdom 4.
Charles River Media.

Sweetser, P. 2004. “How to Build Evolutionary Algorithms for
Games”. Appeared in AI Game Programming Wisdom 2.
Charles River Media.

Suit, B. et al. 2007. “Unreal Tournament 2004/Team
Deathmatch”. Appears in Strategy Wiki: The Free Strategy
Guide and Walkthrough Wiki. Accessible online at:
http://strategywiki.org/wiki/Unreal _Tournament 2004/Team
_Deathmatch. Last accessed June 2008.

Thomas, D. 2004. “The Importance of Growth in Genetic
Algorithms”. Appeared in AI Game Programming Wisdom
2. Charles River Media.

Thomas, D. 2006. “Encoding Schemes and Fitness Functions
for Genetic Algorithms”. Appeared in Al Game
Programming Wisdom 3. Charles River Media.

Tozour, P. 2002. “The Evolution of Game AlL.” Appeared in
Al Game Programming Wisdom. Charles River Media.

75

76

GAME
SCRIPTING

78

Using Lua as Script Language in Games Coded in Java

Gustavo Henrique Soares de Oliveira Lyrio
Roberto de Beauclair Seixas

Institute of Pure and Applied Mathematics — IMPA
Estrada Dona Castorina 110, Rio de Janeiro, RJ, Brazil 22460-320
e-mail: {glyrio,rbs}@impa.br

Computer Graphics Technology Group — TECGRAF
Catholic University of Rio de Janeiro — PUC-Rio
Rua Marqus de So Vicente 255, Rio de Janeiro, RJ, Brazil 22453-900
e-mail: {glyrio,rbs}@tecgraf.puc-rio.br

KEYWORDS
scripting language, Lua, Java, LuaJava, language bind-
ing.

ABSTRACT

Lua is a programming language that has been well
accepted by the game development community as a
script language. That is because Lua offers a series of
methods to allow the use of C functions inside Lua code
and vice-versa. When developers choose to code a game
in Java, apparently Lua is not an option anymore.

The objective of this work is to show that Lua can also
be used as script language for games coded in Java. For
that developers just need to know the LuaJava library
and a few tips.

INTRODUCTION

Through the years of game development the use of
scripts has became more and more popular. Today
almost all games use scripts in many different as-
pects. Describing attributes of different characters,
objects, creatures, coding artificial intelligence, di-
alogs, events, history or even in configuration files.
Scripts can even provide players a tool for build their
own game modifications. Scripts are essential nowadays.

When Lua language was born the majority of game
developers where coding in C/C++, and they loved
Lua because with almost no effort they could exchange
data with a script language that is easy to write, read
and even extend. That’s because Lua is open source
and also coded in C. So that’s how Lua became popular.

As a little example of the Lua’s popularity between
the game development communities, we can list some

79

notable games that use Lua as scripting language and
with other roles. Crysis, Far Cry, Grim Fandango
and Escape from Monkey Island, Grand Theft Auto
San Andreas, Ragnarok Online, SimCity 4, Star Wars
Battlefront and Battlefront 2 also Empire at War,
World of Warcraft and many others.

Nowadays we can see a lot of games and game engines
that use Java as a programming language. The idea of
this work is offer to developers that use Java a way to
also use Lua in their game scripts.

The advantages of using a script language are well
known. It provides rapid development and easy of
deployment, because you don’t have to recompile de
code after every change [Cassino et al., 1999]. Also,
script languages offer good integration with existing
technologies such as programming languages and are
easy to learn and use. And, we can also say that script
languages provide dynamic coding because its code can
be generated and executed in runtime.

But, as everything that comes with advantages, brings
together disadvantages, scripting languages are not
different. They assume a presence of a “real” pro-
gramming language. They are not conductive to best
practices in software engineering and code structure,
such as object orientation. And also they are tuned
toward a specific application, such as PHP for World
Wide Web.

That’s where Lua come in hand. The Lua language
was not created just to be a scripting language, but a
short, efficient and extensible programming language
[Terusalimschy, 2006]. So it brings the script languages
advantages, but doesn’t come with the disadvantages.

Lua offers extremely fast development and is also very
easy to learn, write, and understand. It’s interpretable

so, you don’t have to compile. It also offers dynamic
code and integrates with C programs. And with the
LualJava library, integrates with Java too.

About the disadvantages of the language we can say
it’s true that if the programmer doesn’t use discipline,
Lua code can become a mess. But the language syntax
allows the implementation of object orientation or
component based development [Ierusalimschy, 2006].
Also Lua is a general purpose language, so it can handle
a lot of different applications using a lot of extension
libraries such as LuaSQL, CGILua, and IupLua and, at
least but not last, LuaJava.

THREE TIPS FOR GAME SCRIPTING US-
ING LUAJAVA

LualJava is a scripting tool for Java. The goal of this
tool is to allow scripts written in Lua to manipulate
components developed in Java [Cassino et al., 1999).
LuaJava allows integration between Lua and Java
in both directions: manipulation of Java objects by
Lua scripts and manipulation of Lua objects by Java
programs [Cassino et al., 1999]. The access to Java
components is made from Lua without any need for
declarations or any kind of preprocessing.

In this paper we have choose to work using Java
objects inside Lua scripts because in that way we can
create generic objects and make scripts to change the
value of its attributes producing a clean, and easy to
understand, code.

The first thing we need to do when we want to handle
Java objects inside Lua is to create a LuaState. The
LuaState will control access to the Lua environment.
We will be able to create a LuaState by doing this:

LuaState luaState;
luaState = LuaStateFactory.newLuaState();

After creating a LuaState, we now need to open the
LuaJava libraries. This will be done by the following
instruction:

luaState.openLibs();

Now that we have built our environment we are ready
to start writing Lua code. This should be done in a
Lua file (.lua). Now that we have an environment and
Lua file, we just need to put all together. It should be
done calling the /tt LdoFile method. This method tells
the Lua environment to read the Lua file passed as a
parameter. The instruction should be:

80

luaState.LdoFile(<luafile location>);

Once we have seen all the methods to create a Lua
environment and use it inside a Java project, let’s put
all together in a classic Hello World example.

void Main() {

LuaState luaState;

luaState = LuaStateFactory.newLuaState();
luaState.openLibs();
luaState.LdoFile("helloworld.lua");
luaState.close();

}

helloworld.lua file:

print("Hello World")

LualJava also offer many other features. We will take a
closer look at two of these features which will be im-
portant to our scripting schema figuring in our second
and third tips. The first feature is how you call a Lua
function to be executed inside the Java scope. The sec-
ond one is how do you use a Java object inside a Lua file.

To use a Lua function in Java you need to get the
Lua global variable that stores the function, that will
be done by calling the method getGlobal passing the
function’s name as a parameter:

luaState.getGlobal (<function name>) ;

After that we just use the LuaState call method.
That method is particularly important because it first
parameter is the number of parameters passed to the
function. But how do you pass those parameters? That
will be explained by our third tip.

To pass a Java object to Lua we will use the method
pushJavaObject and pass it as a parameter of a
function. The instruction sentence is:

luaState.pushJavaObject (<object>);

So, with these two features we will be able to pass a
Java object as a parameter to Lua function. Use it
inside that function and call the function inside the
Java scope. That will allow us to create a class that will
handle scripts for us as we will see in the next section.

Building a LoadScript class

Now that we have seen how LuaJava works, let’s build
a class that will handle all scripts in our game. That

class will have only one attribute, our LuaState. The
constructor of our class will receive only one parameter
that will be the path for our script file. Inside our
constructor, we will create the Lua environment with
LuaStateFactory.newLuaState and openLibs meth-
ods, and execute the Lua file received as a parameter
by the constructor.

Our class will have two methods: closeScript
and runScriptFunction.closeScript just call
luaState.close to terminate the use of Lua environ-
ment.

runScriptFunction will get a Lua function received
as parameter and call it passing a Java object, also
received as parameter, to that function.

We have built a class to handle all our scripts. In the
next section we will see how we use that class.

LOADSCRIPT CLASS

import org.keplerproject.luajava.LuaState;
import org.keplerproject.luajava.LuaStateFactory;

public class LoadScript {
LuaState luaState;
/*x
* Constructor
* @param fileName File name with Lua script.
*/

LoadScript(final String fileName) {
this.luaState = LuaStateFactory.newLuaState();
this.luaState.openLibs();
this.luaState.LdoFile(filename);

¥

/*x

* Ends the use of Lua environment.
*/

void closeScript() {
this.luaState.close();

¥

/%%

* Call a Lua function inside the Lua script to insert
* data into a Java object passed as parameter

* @param functionName Name of Lua function.

* @param obj A Java object.

*/

void runScriptFunction(String functionName, Object obj) {
this.luaState.getGlobal (functionName) ;
this.luaState.pushJavaObject(obj);
this.luaState.call(l, 0);

}

}

¥
Using Lua script files

For a short example of everything that we have saw
until now, let’s consider a game with a huge among of
different monsters. It could be something like Blizzard’s
Diablo or World of Warcraft. Our monsters will have
four different attributes: race, life, attack and defense.
Let’s suppose that the game has one hundred different
kinds of monsters, it one with different attribute values.

81

What would you do to model those monsters? Build a
monster class and one particular class for each kind of
monster? That would be very bad.

You should consider build the monster class with our
previous made script class.

The monster class will receive a new attribute called
script. The class constructor will receive the new
monster race as a parameter and load its script calling
the LoadScript class. After that, we just call the
method runScriptFunction calling “create”. Then
each race will have a Lua script file that will load the
monster instance with the race attributes.

Let’s take a look in the code:

MONSTER CLASS

public class Monster extends Creature {
/* Info */
protected String race;
protected int defense;
protected int attack;
protected int life;
/* Script */
private LoadScript script;
public Monster(String race) {
/* Loads Lua script for this race.*/
this.script = new LoadScript(race+".lua");
/*Call Lua create function.*/
script.runScriptFunction("create", this);
}
public String getRace() {
return race;
¥
public int getDefense() {
return this.defense;
}
public void setDefense(int defense) {
this.defense = defense;
}
public int getLife() {
return this.life;

¥

public void setLife(int life) {
this.life = life;

¥

public void setAttack(int attack) {
this.attack = attack;
¥
public int getAttack() {
return this.attack;
}
}

Analyzing the code above us can see that the first
line is the monster class declaration. Then the next
four lines declare the class attributes relative to the
information about monsters. Next we have an attribute
that is our brand new class LoadScript. After the
attribute declarations we can find the class constructor.
As we saw above, the constructor receives a string
with the monster’s race and in its first line call the
LoadScript constructor to store in the attribute script
the Lua file that stores the values for the attributes of
that monster race. The next line calls the Lua function
create that will set the new monsters with the values
set in the script. The next lines are just some gets

and sets methods to be used inside Java scope if needed.
The following code shows how a Lua script should be:

SAMPLE SCRIPT FILE

function create(monster)
monster:setRace("Sample Monster")
monster:setDefense (10)
monster:setAttack(10)
monster:setLife(100)

end

The script file consists only in a Lua function that
call the set methods defined inside monster Java class,
setting the values for that specific monster race. To
create a new monster the developer just needs to copy
the file, change its name to the new monster race name
and the values passed to the methods inside it.

RESULTS AND CONCLUSIONS

The presented technique has been used to build both
monster and players scripts for an experimental 2D
MMORPG that’s still under construction.

The Lua scripts made the insertion of new characters
(monster or players) pretty easy, because produced a
very clean and organized script file and made us able to
copy an already made script, just replacing the values
with the data from the new character. That made
possible to produce new monsters for the game as fast
as we could generate new combinations of attribute
values.

For a quick development of a test platform we made use
of Golden T Game Engine (GTGE) that is freeware and
offers an advanced cross-platform game programming
library written in Java language. GTGE is developed
by Golden T Studios. Also we have used some graphics
of RPG Maker XP for testing purposes only. RPG
Maker XP is developed by Enterbrain, Inc. (Figure 1).

FUTURE WORKS

We intend to continue to work in the development of
the 2D MMORPG using the Lua scripts. As project
next goals we can detach: replacing the RPG Maker
XP graphics and make use of LuaJava library to bind
other Lua libraries such as LuaSocket (for network
communication) and LuaSQL (for database access),
into Java code.

REFERENCES

K. Arnold J. Gosling, 1997, The Java Programming Lan-
guage. 2nd Edition, Addison-Wesley.

82

Figure 1: Screenshot of the test environment builded
using GTGE and RPG Maker XP graphics. You can
see the player character in the center, and three different
monsters (Crow, TroubleMaker, TroubleMaker Leader)
created using Lua script files.

R. Terusalimschy, 2006, Programming in Lua. Second
Edition, Lua.Org.

R. Terusalimschy et. al, 2006, Lua 5.1 Reference Manual,
Lua.Org,

C. Cassino et al., 1999, LuaJava - A Scripting Tool for
Java, PUC-RioInf. MCC02/99, February.

BIOGRAPHY

ROBERTO DE BEAUCLAIR SEIXAS works
with Research and Development at Institute of Pure
and Applied Mathematics - IMPA, as member of the
Vision and Computer Graphics Laboratory - Visgraf.
He got his Ph.D. degree in Computer Science at
Pontifical Catholic University of Rio de Janeiro -
PUC-Rio, where he works with the Computer Graphics
Technology Group - TeCGraf. His research interests
include Scientific Visualization, Computer Graphics,
High Performance Computing, GIS, Simulation Sys-
tems and Warfare Training Games. Currently he is the
advisor of the Warfare Games Center of the Brazilian
Navy Marines Corps.

GUSTAVO HENRIQUE SOARES DE
OLIVEIRA LYRIO works with the Computer
Graphics Technology Group - Tecgraf. He got his

B.Sc. in Computer Engineering at Pontifical Catholic
University of Rio de Janeiro - Puc-Rio. His interests
include Computer Graphics and Warfare Training
Games. Currently he is developer of the Warfare
Games Center of the Brazilian Navy Marines Corps.

AUTOMATING CINEMATICS AND CUT-SCENES IN VIDEO GAMES
THROUGH SCRIPTING WITH ACTIVE PERFORMANCE OBJECTS

V. Bonduro and M. Katchabaw
Department of Computer Science
The University of Western Ontario
London, Ontario, Canada N6A 5B7
vbonduro@uwo.ca, katchab@csd.uwo.ca

KEYWORDS

Storytelling, automation, active performance objects, story
scripting, cut-scenes, cinematics, video games

ABSTRACT

Storytelling is widely recognized as an important element of
modern video games. Unfortunately, it can be exceedingly
difficult for writers to directly author and integrate story content
into games on their own. Instead, they must rely on
programmers, artists, and other personnel on the development
team to implement their stories. This complicates the story
creation process needlessly, increases costs, reduces time
available for other tasks, and causes writers to lose creative
control over their works. As a result, tools and supports are
necessary to enable writers to generate story content for games
directly, without the need for outside assistance.

This paper continues our earlier work that used specialized
story scripting elements to automate the production of
cinematics and cut-scenes for video games. These elements
allow writers to specify their stories in a well-defined, structured
format that can be acted out automatically by software. Our
current work goes beyond this earlier work to enable more
flexible, dynamic, and enriched performances through the use of
Active Performance Objects. This paper presents these
advancements, as well as our most recent experiences with
using this engine to recreate cinematics and cut-scenes from a
variety of existing commercial video games.

INTRODUCTION

Storytelling can be one of the most important and compelling
aspects of modern video games (Bateman 2007; Glassner 2004;
Krawczyk and Novak 2006), and in some cases is regarded as
one of their most defining aspects (Davies 2007). As new
hardware and technologies create more opportunities for stories
in games, and shifts in player audiences increase the demand for
the inclusion of quality stories in games, the importance of
storytelling in games will only increase (Chandler 2007).

While story creation is naturally the responsibility of writers
on the development team (Bateman 2007; Moreno-Gera et al.
2007), these writers traditionally must work with programmers,
artists, and others on the team to integrate story content into the
game being developed due to the complexity involved and

domain expertise required. This results in the traditional story
creation process depicted in Figure 1.

Result

(Reviewed

Game
Engine

\

Figure 1: Traditional Story Creation Process

Wiriter

Consultation

Programmers/
Artists

Implement
Script

¢ Read By

This process, however, can be expensive in terms of budget
and scheduling resources for the programmers and artists
involved (Cutumisu et al. 2007), which is problematic
considering the limitations often in place in creating story
content for games (Bateman 2007). Furthermore, this
introduces a gap between storyteller and story implementation
(Cutumisu et al. 2007), in which mistakes, miscommunication,
and differences in opinions and vision can impact the creative
process and overall story quality as a result.

For these reasons, a simpler, more streamlined story creation
process for games is necessary—a need recognized for some
time by industry practitioners (Bateman 2007; Cutumisu et al.
2007). Automating storytelling can alleviate these issues by
allowing writers to tell their stories in games with minimal
outside support required, if any. Following this approach, tools
and supports would allow writers to convey their stories in
natural language, graphically, or in some other simple form,
while automation prepares this story content for use with little
or no human intervention required, as shown in Figure 2.

Result

(Reviewed

Storytelling
Engine

Writer

<¢——Rendered By

Figure 2: An Automated Approach to Story Creation

83

Aside from in-game storytelling embedded in gameplay,
cinematics and cut-scenes are two of the more common
techniques for storytelling in games, conveying story through
visuals and audio, typically presented much like a dramatic
piece (Krawczyk and Novak 2006). Our current work is a
continuation of our earlier work in this area towards the
development of a Reusable Scripting Engine designed
specifically for automating cinematics and cut-scenes in games
(McLaughlin and Katchabaw 2007; Zhang et al. 2007).

Our earlier work primarily focused on the core elements of the
Reusable Scripting Engine, and scripting elements for
representing story. It was found in practice, however, that this
earlier work was not flexible or powerful enough to support
much of what is found in cinematics and cut-scenes in video
games. Such performances are more varied and dynamic, with
rich and active content, and so serious changes to our engine
were required to achieve higher levels of quality in our work.

This paper introduces and discusses the details of our new
approach to automating storytelling, using Active Performance
Objects to address the issues discussed above, as well as the
refactoring of our Reusable Scripting Engine platform to
support this new approach. This paper also describes our most
recent experiences through using our new engine to recreate
cinematics and cut-scenes from a variety of commercial games.

The remainder of this paper is organized as follows. We begin
by presenting related work in this area, both from research and
industrial perspectives. We then describe the design and engine
architecture of the approach to automated storytelling taken in
our own work. We then present the implementation of our
proof of concept system, the Reusable Scripting Engine, and
discuss our experiences from using this in recreating cinematics
and cut-scenes from a variety of commercial video games.
Finally, we conclude this paper with a summary and a
discussion of directions for future work.

RELATED WORK

This section discusses relevant related work, both from
research and industrial perspectives. Unfortunately, work
towards automation to directly support writers in their
storytelling and story creation efforts for video games is
relatively scarce. Nevertheless, progress is being made, and
related work has many lessons to teach us, even if direct support
for writers is not being offered.

One notable work is ScriptEase (Cutumisu et al. 2007), an
innovative pattern and template-driven approach, primarily
aimed at in-game storytelling and behaviour control of non-
player characters. In theory, the same framework could be
extended to support cinematic and cut-scene generation, but this
has not been done to date.

Work towards the <e-Game> engine (Moreno-Gera et al.
2007) is also very promising. While primarily targeted at the
development of adventure games, the XML-based <e-Game>
language could be used to assist in the creation of cinematics
and cut-scenes. The language, however, is geared towards game

84

creation, and was not specifically designed with cinematic and
cut-scene creation in mind. (In fact, according to (Moreno-Gera
et al. 2007), it would appear that cinematics and cut-scenes are
intended to be handled using pre-rendered movies instead of
being acted out by the engine itself.)

Interesting work also comes in the form of Bubble Dialogue
(Cunningham et al. 1992), developed primarily as a tool to
investigate communication and social skills, particularly in
educational settings. Bubble Dialogue, however, is intended to
be a stand-alone tool not suitable for embedded use in video
games, and it is questionable whether its interface, designed for
novices to easily construct stories, would be expressive, flexible,
and powerful enough for professional game writers.

The Behavior Expression Animation Toolkit (BEAT) (Cassell
et al. 2001) is also relevant to story automation for games. Text
is input to the system to be spoken by an animated character.
As output, speech is generated, along with synchronized
nonverbal behaviours that appropriately match the text
according to rules based on human conversational patterns.
This system is quite powerful and flexible, but as noted in
(Cassell et al. 2001), lacks many of the elements necessary to
provide a complete performance on its own. It is designed,
however, to plug into other systems for this purpose, and so
could rely upon our own Reusable Scripting Engine for this
support. Likewise, our system could benefit by having
interesting and appropriate behavioral animations that are made
possible by BEAT, and not available in our current prototype.
The work is quite complementary.

Work towards interactive storytelling in games, such as the
work in (El-Nasr 2007; Gordon et al. 2004; Mateas and Stern
2003) and other examples discussed in (Magerko 2007), is also
related, in that it involves story automation and story
representation. In this case, automation tends to involve the
synthesis of story emerging from the interactions between
player and non-player characters in the game, with artificial
intelligence controlling the non-player characters, according to
authored constraints on behaviour. Our work, on the other hand,
does not deal with interactivity, and so storytelling is driven
entirely by the originally authored story. As a result, story
representation for interactive stories can be significantly more
complex, as additional elements are required to support and
specify interactivity. This makes the process of story creation
for interactive stories more like programming and,
consequently, less friendly to writers with little or no
programming experience. Our approach, on the other hand,
avoids this complexity and burden on writers for cut-scenes and
cinematics, where interactivity in the story is not required.

Other related work can be found in an interesting commercial
video game entitled The Movies (Lionhead Studios 2005).
While this game allows players to construct their own stories for
their own films, the general approach and interface might not be
the most productive or easiest one for writers to use in crafting
stories for use in other games.

From an industrial perspective, as noted in (Cutumisu et al.
2007; Moreno-Gera et al. 2007), the video games industry has

Reusable Scripting Engine

Figure 3: Reusable Scripting Engine Architecture

adopted a variety of standard and custom languages to be used
in the development of games. These languages are used for
many purposes, including the scripting of cinematics and cut-
scenes. Unfortunately, while these languages improve and
simplify matters somewhat, they are still rather complex and
technical in nature. Consequently, writers still must rely upon at
least some programming talent to integrate their stories into
games (Cutumisu et al. 2007).

While the literature in this area has made many interesting and
important contributions to storytelling in video games, much
work is still required to fully assist writers in the story creation
process.

DESIGN AND ENGINE ARCHITECTURE

As shown earlier in Figure 2, our approach to the automation
of storytelling in video games is driven largely by a story script
which is written by a writer and then rendered and acted out
using a software engine, the Reusable Scripting Engine in our
case. The architecture of this engine and the flow of story
content through it are depicted in Figure 3, and discussed in the
sections that follow.

Writer

The writer is the creator of story content for a game, and as
such is primarily responsible for the creation of a script that
captures this story, defining the setting and characters involved
in the story and complete with all of the dialogue and stage
directions required to enact the story. Fortunately, as shown in
Figure 1, writers must already script such story elements for
cinematics and cut-scenes constructed according to traditional
story creation processes (Bateman 2007), so the need for this
information is not a new imposition created by the automation.

Script

For automation to be effective, stories must be scripted in a
precise and formal manner to avoid potential ambiguity and
confusion over the interpretation of the script by the software
automating its presentation. Consequently, there is a need to
provide a structured approach to scripting for storytelling within
video games for automation efforts to be successful.

Instead of developing our own custom language for specifying
stories for games, as is frequently done in the literature in this

85

area, we turn to efforts towards standardization, led by the Text
Encoding Initiative (TEI). These efforts have developed an
XML-based specification for marking up various kinds of texts,
including performances and dramatic pieces (The TEI
Consortium 2008a). TEI guidelines provide an extensive set of
tags for structuring dramatic pieces and identifying all of the
elements listed above that must be defined for cinematics and
cut-scenes in video games.

As discussed in (McLaughlin and Katchabaw 2007), however,
some extensions and modifications were needed to the base TEI
guidelines to adapt them for use in video game scripts, to
provide more formality and precision where it was needed, to
link game content and assets into story scripts, and to filter out
elements that were unnecessary in this context. A complete
discussion of the various scripting elements supported by our
Reusable Scripting Engine can be found in (Zhang et al. 2007).

As an example, consider the story script excerpt in Figure 4.
This script is for a scene from the video game Trauma Center:
Second Opinion for the Nintendo Wii platform (Atlus 2006),
and is used in experimentation presented later in this paper.
This story script is interpreted as follows:

1. The scene begins by preparing the set for the scene, the
consultation room. Initially, lighting is set to a level of 0%,
indicating that the set will be dark to begin with. Stage
directions then begin playback of background music, set to
loop indefinitely. A lighting change occurs, to raise set
lighting to a level of 100%, to fully illuminate the set. This
is done over a period of 1 second. This is followed by a
pause of 2 seconds before the performance continues.

2. Dialogue then begins, with the narrator introducing the
scene.

3. Stage directions have the performance pause to wait for
input from the player, to ensure they have had the chance to
read the dialogue. Any input is acceptable to continue the
scene. A beep sound effect is then played to acknowledge
the input, as was done in the original game. The actor Mary
is then directed to quickly enter from stage right and stay on
the right half of the scene.

4. Mary then says her line in her default tone, since no tone
was specified. (The results of this can be found later in
Figure 5.) Since no voice-overs occurred in the original
game, none were included with this line of dialogue either.

5. At this point, the scene pauses as discussed in Step 3, and a
lighting change occurs to dim scenery lighting to 25%. The
lighting on Mary, however, is preserved, causing her to
stand out while the narrator introduces her in the next line
of dialogue.

6. The scene pauses once again as discussed above, and the
narrator completes the introduction of Mary. After this,
lighting is restored to normal levels, and the scene
continues appropriately.

86

id="standardProcedure"
‘D="consultationRoom"
dghtingLevel="0">
<stageDirection>

<musicPlayback id="bgMusic"
loop="on"/>

<scene

<lightingChange level="100"
subject="scenery"
duration="1"/>

<pause duration="2"/>
</stageDirection>
<dialogue speaker="narrator">
<line>- Hope Hospital,
Consultation Room - </line>

</dialogue>

<stageDirection>
<waitFor event="anyInput"/>
<soundPlayback id="beep" />

<movement castll
type="enterHorizontal"
rtLocation="offRight"
& on="onRight"
speed="1000" />
</stageDirection>
<dialogue speaker="mary">
<line>The patient has been
moved to \nthe pre-op
area.</line>
</dialogue>
<stageDirection>
<waitFor event="anyInput"/>
<soundPlayback id="beep" />
<lightingChange level="25"
subiject="scenery"
duration="1"/>
<pause duration="1"/>
</stageDirection>
<dialogue speaker="narrator">
<line>Mary Fulton, age 39: Hope
Hospital's \nveteran
surgical assistant.</line>
</dialogue>
<stageDirection>
<waitFor event="anyInput"/>
<soundPlayback id="beep" />
</stageDirection>
<dialogue speaker="narrator">
<line>She's kind and well-
liked, so nobody\n
mentions she tends to
ramble too much.</line>
</dialogue>

i

Figure 4: Scripting Used to Recreate Standard Procedure Scene
from Trauma Center: Second Opinion

Authoring Tools

As one can imagine, XML is not the most natural or
convenient method of expression for writers to use in authoring
their stories. Requiring writers to produce stories with manually
embedded TEI tags needlessly complicates the process, and
imposes a barrier to story creation. To assist in the process of
working with TEI tags, there are numerous authoring tools
available that adhere to TEI guidelines for importing existing
works or writing them from scratch (The TEI Consortium
2008b). Several of these packages plug into existing word
processing software, or otherwise work with this software, to
ensure that writers can work with familiar tools and still take
advantage of the TEI guidelines. This can greatly facilitate the
story creation process, particularly when it comes to automation.

Script Reader

As the name implies, the Script Reader module in the
Reusable Scripting Engine reads in the story script and
processes it to prepare it for use in the engine. This requires the
module to parse the XML representation of the script to find the
elements of the story, verify the correctness and completeness of
the script, and fill in any missing or assumed elements of the
story where possible.

When the script is deemed ready for performance, the Script
Reader generates lists of all of the set pieces, actors, and props
involved in the performance, along with a stream of actions
from the script that carries out this performance. These actions
include dialogue, stage directions, and guidelines for managing
interactivity with the user. This information is then passed on to
the Director module to have the performance executed.

Director

The primary role of the Director in the engine is to control the
flow of a performance. In doing so, the Director manages the
Script Reader and Stage Manager modules to oversee the entire
production and presentation of the cinematic or cut-scene. As
such, it handles internal object management and communication
tasks as required for the engine.

The Director module is also responsible for managing any
interactions with the user of the engine, which, as discussed
below, could either be the player of the game in question or the
game itself, depending on the context. These interactions could
include interactivity control to regulate the flow of the cinematic
or cut-scene, as well as any other access required to the engine.

Stage Manager

The Stage Manager module is responsible for ensuring that the
performance is carried out according to the directions of the
Director, including what to do, how to do it, and when to do it.
The Stage Manager also reports back to the Director on the
status of the production as it progresses.

In our earlier work in (McLaughlin and Katchabaw 2007;
Zhang et al. 2007), the Stage Manager was directly responsible

for the coordination and rendering of all of the various elements
of the performance on its own. While this approach was simple
and straightforward, it also lacked the flexibility and expressive
power to deliver rich performances with a variety of active and
dynamic content, such as animations.

To resolve this problem, the Stage Manager was redesigned so
that it was no longer directly responsible for the rendering of the
performance. Instead, these responsibilities were delegated to a
collection of Active Performance Objects and a dedicated
Renderer module, with the Stage Manager responsible for
managing the Active Performance Objects according to the
directions of the Director.

Active Performance Objects

In our earlier work, set pieces, props, and actors only existed
as data contained within the Stage Manager. As necessary, the
Stage Manager consulted this data to carry out the performance.

In our current work, each set piece, prop, and actor is
encapsulated by an Active Performance Object. Each such
object is now responsible for its own use and behaviour in the
context of the performance according to guidance from the
Stage Manager. Furthermore, each Active Performance Object
is responsible for managing and maintaining its own data,
current state, and associated assets, to ensure that it is ready for
rendering by the Renderer when the time to do so comes.

If an Active Performance Object is dynamic and changes over
time, it contains its own thread of execution to assist in the
above tasks as necessary. Coordination between Active
Performance Objects is handled by the Director or Stage
Manager, depending on the coordination required.

Through proper use of Active Performance Objects, a
performance can now contain a large collection of independent
or cooperating active eclements that are all at work
simultaneously. This provides a considerable amount of power
and flexibility in constructing a rich and high quality
performance. For example, it is now possible through the use of
Active Performance Objects to have an animated set, with
multiple actors moving around in the background, while actors
in the foreground engaged in dialogue, complete with
voiceovers synced with facial animations. This type of rich
performance was simply not possible under our earlier engine.

Renderer

The Renderer module in the Reusable Scripting Engine is
ultimately responsible for the rendering of the performance to
the user. It does so by iterating through and working with the
collection of Active Performance Objects and composing a
scene from these objects based on their current states in the
performance.

To do its work, the Renderer also has its own thread of
execution. This allows it to work independently of the Active
Performance Objects to collect and push graphics and audio data
out to system devices when this data is required.

87

User

As mentioned earlier, the user of the Reusable Scripting
Engine can either be the player of the game or the game itself,
or perhaps both at the same time. This, naturally, depends on
the context and the game in question.

The player of the game can interact with the Director module
in the engine to pause or skip the performance, tune
performance options, and so on. The player also ultimately
watches the performance as it is rendered by the Renderer
module. The game itself is a user of the engine in that the game
may also need to control the flow of the performance, depending
on the situation. Furthermore, the game may also need to tune
performance options at various points during its life time.

ENGINE IMPLEMENTATION

Based on the architecture discussed in the previous section, we
have implemented a prototype engine for Microsoft Windows
XP, written in C# using Microsoft Visual Studio 2005
Professional Edition, with .Net Framework 2.0. The prototype
has also been tested and runs perfectly on the various versions
of Microsoft Windows Vista.

To enable script processing, Microsoft’s XML Software
Development Kit was used, as it provides easy to use and robust
XML processing and handling facilities when working in this
environment. For graphics and audio support, Microsoft
DirectX was used. This provided us with clean, standard, and
efficient support for both 2D and 3D graphics, as well as audio
support, all in a single package.

Our engine implementation provides both a standalone
processor that can generate cinematics and cut-scenes on its
own, and a module that can be linked in with other code. These
options provide developers with flexibility in how they integrate
the engine into an existing game project.

Our implementation choices are also compatible with
Microsoft’s XNA Game Studio Express, meaning that we can
target both the Windows platform and the Xbox 360 with our
engine. While we have primarily carried out development on
the Windows platform thus far, Xbox 360 support is currently
under investigation as well.

EXPERIENCES TO DATE

Initial experimentation with our Reusable Scripting Engine in
(McLaughlin and Katchabaw 2007) involved recreating scenes
from movies and television shows such as the Princess Bride
(Goldman 1987) and The Simpsons (Stem 1993). To
demonstrate the engine’s suitability for use in video games, our
work in (Zhang et al. 2007) successfully applied our engine to
the game Trauma Center: Second Opinion, mentioned earlier in
this paper.

To demonstrate and evaluate the capabilities of our new
engine architectures with Active Performance Objects, we
recreated cinematics and cut-scenes from a variety of different

88

commercial games, from various genres and platforms, using a
variety of artistic and presentation styles. In doing so, we were
able to provide a suitable test of our engine’s flexibility,
expressive power, and functionality. Our experiences with three
of these games are discussed in the sections below in detail.

Trauma Center: Second Opinion

In our first experimentation with the new version of the
Reusable Scripting Engine, we started with the Trauma Center:
Second Opinion performance used in our earlier work, as
described above. This was done to ensure that the redesign of
our approach to use Active Performance Objects was successful
and did not impact the ability of the engine to carry out
performances. As expected, no problems whatsoever were
encountered in doing so.

While this initial experimentation with Active Performance
Objects was successful, there was nothing in the performance
that was active that required their enhanced capabilities. As a
result, we extended and embellished our original Trauma
Center: Second Opinion performance, to provide a more
interesting test, as shown in the screen shot in Figure 5.

: Figure 5: A Scene from a Performance from Trauma Center:
Second Opinion Using the Reusable Scripting Engine

In the scene shown in Figure 5, we added a computer display
as a prop that did not appear in the original performance, as seen
in the middle of the figure. This display was animated with a
changing image and a flicker effect that changed its illumination
and that in the scene around it. These animations were
controlled by the Active Performance Object that encapsulated
the display prop.

Improvements were also made to the dialogue area visible at
the bottom of Figure 5, improving its appearance, and adding an
animated dialogue icon indicating that the user could advance
through the performance. Additional dialogue rendering modes
were added to allow the user to force the complete rendering of
a line of dialogue before it was typed out character-by-character,
as was done in the original performance.

All in all, the improved Reusable Scripting Engine handled
these tests quite well in executing this performance.

Metal Gear Solid

While the Trauma Center: Second Opinion experiments were
successful, they barely started to test the capabilities of the
Active Performance Objects in the new engine. Consequently,
we reconstructed a scene from Konami’s Metal Gear Solid for
the Sony PlayStation (Konami 1998).

Naomi, the Chiefl What happened!?

Figure 6: A Scene from a Performance from Metal Gear Solid
Using the Reusable Scripting Engine

This scene is more complicated than the Trauma Center:
Second Opinion performance, with an animated set, animated
actors, voiceovers linked to dialogue, and so on, with each of
these elements encapsulated by Active Performance Objects.
As shown in the screen shot in Figure 6, the setting is the Codec
communication system in the game, which has an animated
signal indicator in the middle of the scene. The actors are both
animated in several ways. First, their images expand at the
beginning of the scene, as if they were in displays being turned
on. Second, their images flicker and scroll with static lines
throughout the scene, again to create the illusion as if they are
on some sort of display screen. Finally, their faces are animated
while delivering lines of dialogue, to make it look as if they are
speaking. Each line of dialogue delivered is linked to a
voiceover; this, together with the facial animation above,
provides a reasonably impressive performance.

Constructing this scene also required the addition of new
rendering and playback modes. Unlike Trauma Center: Second
Opinion, whose cinematics and cut-scenes were driven by the
user advancing the performance, the performance in Metal Gear
Solid was intended to play out on its own, without interaction
from the user. If the user interacted with the performance,
however, it would switch to a user-driven mode. This also
necessitated the development of new handlers to support a wider
variety of interactions with the user.

In the end, the Reusable Scripting Engine was able to recreate
the scene from Metal Gear Solid quite well, even though it is
substantially different from the Trauma Center: Second
Opinion scene. This demonstrates the flexibility and robustness
of our approach.

Chrono Trigger

To further demonstrate the capabilities of the new Reusable
Scripting Engine and its Active Performance Objects, we
recreated a scene from Square Soft’s Chrono Trigger for the
Super Nintendo Entertainment System (Square Soft 1995). As
can be seen from the screen shot in Figure 7, this game used a
very different style and approach to story presentation in
comparison to the other performances examined so far.

Using the Reusable Scripting Engine

A major difference in the Chrono Trigger scene is that there
are now several animated actors involved in the scene, with all
of them animated or moving at once, making the performance
considerably more complex. The scene shown in Figure 7
contains eight such actors, although some are periodically
obscured by the dialogue area. Each actor is again encapsulated
by an Active Performance Object that manages its animation
and movement, and coordinates its activities with the Director
and Stage Manager in the engine, to ensure that the actors are
moving and are animated in unison as necessary.

The range of movements required in the Chrono Trigger
performance necessitated the development of new stage
directions and new mechanisms for tracking and controlling
movements in the engine. Previous scenes were relatively
simple, with movement needs handled by simple directions such
as “Enter, stage right” and “Exit, stage left”. Chrono Trigger,
on the other hand, required arbitrary actor movements, and so
new methods were required to identify arbitrary movement
targets in a scene and new stage directions were required to
enable these movements to be scripted by the writer of the story.

89

Despite the additional complexities introduced by the Chrono
Trigger story, the Reusable Scripting Engine was again able to
faithfully recreate the scenes in its own performances quite well.

CONCLUSIONS AND FUTURE WORK

Storytelling is an important aspect of modern video games,
and plays a central role both in drawing in players initially and
in keeping them playing over the long term (Krawczyk and
Novak 2006). With the success or failure of games depending
on their story elements, it is becoming increasingly important to
provide tools and supports to allow writers to directly produce
story content for games, without requiring programming
background and expertise. This allows stories for games to be
crafted more efficiently and more effectively, easing the
development process and potentially increasing the quality of
the games as a result.

Our current work in this area addresses this need for tools and
supports by providing a Reusable Scripting Engine that is
capable of producing high quality cinematics and cut-scenes for
a wide variety of video games based on scripts provided by
story writers. The use of Active Performance Objects in our
current work enables the use of dynamic and active content in
stories to create a richer experience for the user. Results from
using our prototype engine to date have been quite positive,
demonstrating the flexibility and expressive power of our
approach to automating storytelling.

Possible directions for continued work in this area in the
future include the following:

e Recreating cinematics and cut-scenes from other video
games is still an important next step. This will not only
provide further validation of our approach and engine, but it
will also help to uncover further additions necessary to our
work.

e Support for 3D cinematics and cut-scenes is also necessary,
and is made possible through our use of DirectX. This will
require the addition or refinement of stage directions to
enable our scripting to work in a truly 3D space.
Fortunately, our recent experiences with the Reusable
Scripting Engine, in particular in the construction of the
Chrono Trigger performance, have given us insight into
storytelling in an open 2D space that might carry over into a
3D space as well.

e There is currently considerable interest in dynamic story
elements in video games that allow the flow of story to
change depending on in-game events. Our engine can and
should be extended to support these efforts.

e Our Reusable Scripting Engine should be ported through
XNA to the Xbox 360. This platform is attractive to
academic, independent, and hobbyist developers, and so
providing automated storytelling support would be very
beneficial to development efforts in this area.

90

REFERENCES

Atlus. 2006. Trauma Center: Second Opinion. Published by Atlus.

Bateman, C. 2007. Game Writing: Narrative Skills for Videogames.
Charles River Media.

Cassell, J., Vilhjalmsson, H. and Bickmore, T. 2001. BEAT: The
Behavior Expression Animation Toolkit. SIGGRAPH 2001
Conference. Los Angeles, California, (August).

Chandler, R. 2007. Game Writing Handbook. Charles River Media.

Cunningham, D., McMahon, H. and O’Neill, B. 1992. “Bubble
Dialogue: A New Tool for Instruction and Assessment”,
Educational Technology Research and Development, Volume 40,
Number 2.

Cutumisu, M., Onuczko, C., McNaughton, M., Roy, T,
Schaeffer, J., Schumacher, A., Siegel, J., Szafron, D.,
Waugh, K., Carbonaro, M., Duff, H. and Gillis, S. 2007.
“ScriptEase: A Generative/Adaptive Programming Paradigm for
Game Scripting”. Science of Computer Programming, Volume: 67,
Issue: 1. (June).

Davies, M.. 2007. Designing Character-Based Console Games.
Charles River Media.

El-Nasr, M. 2007. Interaction, Narrative, and Drama Creating an
Adaptive Interactive Narrative using Performance Arts Theories.
Interaction Studies, Volume 8, Number 2.

Glassner, A. 2004. Interactive Storytelling: Techniques for 21"
Century Fiction. A K Peters Limited.

Goldman, W. 1987. The Princess Bride.
(September).

Gordon, A., van Lent, M., van Velsen, M., Carpenter, M. and Jhala, A.
Branching Storylines in Virtual Reality Environments for
Leadership Development. 2004. Sixteenth Innovative Applications
of Artificial Intelligence Conference (IAAI-04), San Jose,
California, (July).

Konami Computer Entertainment Japan. 1998.
Published by Konami.

Krawczyk, M. and Novak, J. 2006. Game Development Essentials:
Game Story and Character Development. ~ Thomson Delmar
Learning.

Lionhead Studios. 2005. The Movies. Activision.

Magerko, B. 2007. A Comparative Analysis of Story Representations
for Interactive Narrative Systems. Third Annual Artificial
Intelligence for Interactive Digital Entertainment Conference.
Marina del Rey, California. (June).

Mateas, M. and Stern, A. 2003. Facade: An Experiment in Building a
Fully-Realized Interactive Drama. Game Developer's Conference,
San Francisco, California, (March).

McLaughlin, M. and Katchabaw, M. 2007. “A Reusable Scripting
Engine for Automating Cinematics and Cut-Scenes in Video
Games”. Loading ... The Journal of the Canadian Game Studies
Association, Vol. 1, No. 1, (May).

Moreno-Gera, P., Sierra, J., Martinez-Ortizb, 1. and Fernandez-
Manjona, B. 2007. “A Documental Approach to Adventure Game
Development”. Science of Computer Programming, Vol. 67, Issue
1. (June).

Square Soft. 1995. Chrono Trigger. Published by Square Soft.

Stern, D. 1993. “Duffless.” The Simpsons Episode 9F14. 20th
Century Fox Broadcasting Company. (February).

The TEI Consortium. 2008a. “TEI P5: Guidelines for Electronic Text
Encoding and Interchange.” Available at: http://www.tei-
c.org/Guidelines/P5. (Last accessed June).

The TEI Consortium. 2008b “TEI Tools”.
http://www.tei-c.org/Tools. (Last accessed June).

Zhang, W., McLaughlin, M., and Katchabaw, M. 2007. Story Scripting
for Automating Cinematics and Cut-Scenes in Video Games.
Proceedings of FuturePlay 2007. Toronto, Canada, (November).

20™ Century Fox.

Metal Gear Solid.

Available at:

Generation of Variations in Repetitive Motion using Bilinear Factorization

Chao Jin
Thomas Fevens
Sudhir Mudur
Department of Computer Science and Software Engineering, Concordia University
Montreal, Quebec, H3G1HS8, Canada
email: {chao_jin, fevens, mudur}@encs.concordia.ca

KEYWORDS
Skeletal Animation, 3D In-Game Animation, Machine Learn-
ing

ABSTRACT

We present a machine learning-based method for incorporat-
ing perceivable variations in repetitive motion while retaining
its principal characteristics. The basis for our method is pro-
vided by asymmetric bilinear factorization of a given motion
segment. In the first step, we use locally linear embedding
(LLE), a nonlinear manifold method, to compute a distinct
characteristic for the given motion segment in the form of
a curve in lower dimension space. Next using generalized
radial basis functions we formulate the second factor, a re-
construction matrix which maps a point in LLE space to a
motion frame. Keeping the distinct characteristic unchanged,
perturbations of the reconstruction matrix yield variations of
the same motion. Further, to join the varied motion segments
into a longer animation sequence, we present an embedding
space method. A distinguishing feature of our approach is
that it can be applied to both skeleton-based and mesh-based
animation. Through experimental results, we show that our
method provides an animator with a very useful tool to spec-
ify variations in repetitive motion sequences.

Introduction

Two instances of the same action in different shots or scenes
performed by the same actor will not be exactly identical. In
spite of this, most 3D games and other applications with ani-
mated 3D characters rely on building up and using a repertoire
of basic motions that are called upon repeatedly. Often only
short basis motions exist. This is because creating animation
sequences manually is a difficult and time consuming process.
Realistic motion behavior would require that repeated actions
carried out by these animated digital characters incorporate
variations that make different instances of the performed ac-
tion appear slightly different. However, it is certainly non-
trivial to be able to introduce such variations in a given motion
while ensuring that the principal characteristics of the given
motion are not altered.

The three primary approaches to creating basic motions are
keyframe animation, physically based animation and motion

91

capture driven animation Parent (2001). Incorporating varia-
tions through keyframe animation would require the specifi-
cation of how the keyframes change for different instances
of the motion. It is well known that the specification of
keyframes for a single motion is itself a highly skilled and
labor intensive task. Specifying variations in motion curves
of key frame parameters in a controlled manner such that the
principal characteristics of the motion are unaltered is tremen-
dously difficult. The physically based methods provide much
higher level control to the animator by requiring specifica-
tion of only a few physical properties of the character and
constraints, and then solving for the entire motion as a con-
strained optimization problem. As well as being far too com-
putationally intensive and frequently unstable, these methods
are not very intuitive to be used interactively by the anima-
tor. It is also unclear as to what guidance can be provided
to the animator to manage changes in the physically based
parameters for incorporating variations. The third approach,
motion capture, depends entirely on data captured via a live
performer from one or more instances of that action. Given
that considerable effort is involved in getting usable anima-
tion data for one instance of the motion, it is clearly far too
much effort to directly capture different motion variations.

A simple motion variation method is to introduce suitable
noise in the motion. However, during the processor, physi-
cal properties are very hard to maintain especially for mesh
based models. Another approach is to string and blend to-
gether motion fragments derived either from a longer motion
sequence or searched from a database of pre-created motion
fragments. This method will also meet problems when it hits
the mesh models. In most cases, the assumption is that reuse
of motion fragments will retain the principal characteristic in
the motion. A more detailed review of motion variation meth-
ods is given in the next section.

The method presented in this paper is based on the well-
accepted hypothesis in human perception that any repeated
motion can be assumed to contain an invariant component,
which we shall call as the given motion characteristic, and
which distinctly characterizes all instances of the same activ-
ity. We factor out this invariant from a given motion sequence
and the introduce variations in the remainder. Our approach
differs from earlier work in three distinct ways —

1) We present a powerful technique for computing a bilinear
model for the entire motion, which supports generation of mo-

Joining
constrains

Vered Sequence) pts, ([her seauerce
Validation
checks

Input Sequence
Mesh/Skeleton

Bilinear Factorization

Figure 1: Workflow for creating motion variations

tion variations while preserving its principal characteristics.
For this, we use the asymmetric bilinear model Tenenbaum
and Freeman (1997), Jin et al. (2007) applied to a motion. We
first apply the unsupervised machine learning method called
locally linear embedding (LLE) Saul and Roweis (2000) to
the entire motion data. This yields a representation of the mo-
tion characteristic as a curve in low dimensional space. Next
we formulate a reconstruction function which takes a point in
LLE space and generates a frame. This function uses gener-
alized radial basis functions (GRBF) and is formulated in the
form of a reconstruction matrix. It is this reconstruction ma-
trix that encapsulates the variation in motion. Applying sin-
gular value decomposition (SVD) to the reconstruction ma-
trix results in a set of scalar variables which can be adjusted,
say, with controlled randomness, to provide variations in the
given motion. This is described in detail in section 3. 2) We
have devised an effective method of joining together varying
instances of a motion segment for generating a longer repeti-
tive motion sequence. The segments are composed together in
LLE space while at the same time preserving desired physical
properties for the ”join” using property maps in LLE space
Jin et al. (2007).

3) An important and significant by-product of the above two
processes is that our method works equally well for skeleton
and mesh-based models.

The complete workflow for our method is shown in Figure
(1). The initial input consists of the geometric data in the
frames (or keyframes) for a given motion. The animator may
choose to select all of the geometric elements in each frame
(typically, for skeleton animation it is joint angle data and for
mesh animation it is vertex data), or may choose a subset of
the geometric data, the subset that can be varied. The first step
is bilinear decomposition and the singular value decomposi-
tion of the reconstruction matrix. Next, targeted variations
are created as described later in sub-section 3.4. Validation
checks are carried out for each frame in the varied motion
segment. This consists of different types of checks — say, for
skeleton model, the balance of every frame or foot-ground po-
sition, or for a mesh model, constancy of volume or area of
the mesh model. Here inverse kinematics is also used to make
small value adjustments that are required to satisfy any hard
constraints such as maintaining contact with the floor. Once
a validated variation of the given motion segment is gener-
ated, the next step is to join it with the preceding motion seg-

92

ment; this is described in sub-section 3.5. In section 4 we
describe results of experiments using our implementation of
the method. In section 5, we conclude with a brief analysis of
our method and its potential for further extension.

Related Work

The problem of creating varying motion sequences in a con-
trolled fashion has received considerable attention in past re-
search. There are two main categories — those which work on
modifying the frames in a given single motion and others that
work on generating varying motion sequences by composing
motion fragments.

Variations in a given motion

These are techniques analogous to adding texture to im-
ages/surfaces. Variations are often generated through the
addition of noise functions, such as Perlin-noise Perlin and
Goldberg (1996) or hand crafted noise functions based on
biomechanical considerations Bodenheimer et al. (1999).
Frequency analysis of motion and subsequent addition of
noise (texture) has also been another approach. Unuma et
al. Unuma et al. (1995) use Fourier analysis to manipulate
motion data by performing interpolation, extrapolation, and
transitional tasks, as well as to alter the style. Bruderlin and
Williams Bruderlin and Williams (1995) apply a number of
different signal processing techniques to motion data to al-
low editing. Pullen and Bregler Pullen and Bregler (2000)
create cyclic motions by sampling motion signals in a ‘signal
pyramid’. Lee and Shin Lee and Shin (2001) develop a multi-
resolution analysis method that guarantees coordinate invari-
ance for use in motion editing operations such as smoothing,
blending, and stitching. Similarly statistical analysis based
techniques which are usually based on principal component
analysis have also been proposed Grzeszczuk et al. (1998),
Mataric (2000).

Yet other research in creating motion variations is in the area
of editing a given motion to adapt to different constraints
while preserving the style of the original motion. Witkin and
Popovi¢ Witkin and Popovi¢ (1995) warped motion data be-
tween keyframe-like constraints set by the animator. Motion
clips are combined by the overlapping and blending of the
parameter curves. They showed that whole families of real-
istic motions can be derived from a single captured motion
sequence using only a few keyframes to specify the motion
warp. The physically based space-time constraints method of
Witkin and Kass Witkin and Kass (1988) was applied to adapt
a set of motion data to characters of different size. Popovié¢
and Witkin Popovi¢ and Witkin (1999) describe a physics
based method in which editing is performed in a reduced di-
mensionality space. In Sun and Metaxas (2001), Sun and
Metaxas provide different solutions for automatic gait gen-
eration based on the use of sagittal elevation angles, uneven
terrain handling and high level control over path specifica-
tion. Their work is targeted towards easy-to-use, real-time,
and fully automated animation system, specifically for walk-

ing motion.
Variations through Motion Fragment Composition

Analogous to the video texture concept Schadl et al. (2000),
Sattler ef al. Sattler et al. (2004) propose an algorithm to cre-
ate new user controlled animation sequences based only on a
few key frames by the analysis of velocity and position co-
herence. The simplicity of the method is achieved by car-
rying out the calculations on the main principal components
of the reference animation, thus reducing the dimensionality
of the input data. Brand and Hertzmann Brand and Hertz-
mann (2000) have used hidden Markov models along with
an entropy minimization procedure to learn and synthesize
motions with particular styles. In Li et al. (2002), motion
data is divided into motion textons. A statistical model is
learned from the captured data which enables the realistic
synthesis of new movements by sampling the original cap-
tured sequences. Motions are synthesized by considering the
likelihood of switching from one fexton to the next.

Another approach is to search an existing database of motion
fragments to produce new motions driven by parameters such
as speed or style of motion Glardon et al. (2004). In the work
of Pullen and Bregler Pullen and Bregler (2002), the animator
sets high level constraints and a random search algorithm is
used to find appropriate pieces of motion data for the “joins”;
the frames in the pieces that blend one motion fragment to an-
other. Similarly, missing degrees of freedom in a motion are
fetched from a motion capture database. In the work of Lee
et al. Lee et al. (2002), animations are created by searching
through a motion data base using a clustering algorithm. Ko-
var et al. Kovar et al. (2002) introduced the concept of a mo-
tion graph which contains original motion and automatically
generated translations. Hus ef al. Hsu et al. (2004) present an
example based human motion generator by interpreting input
control specification to create a designed target motion. More
recently, Shin and Oh Shin and Oh (2006) have presented the
idea of “’fat graphs” for user controlled character motions.
Our method for providing high level control for incorporating
motion variations works on a given motion segment data for
a repetitive action, either in skeleton form or in mesh form.
It does not fragment the given motion data nor does it search
in a database of previously created motions. It does not re-
quire the animator to specify changes to keyframe data. It is
not meant to be used for introducing stylistic changes in mo-
tion. Instead, it is geared more towards providing an animator
with simple interactive controls for introducing fine variations
in any given repetitive motion so as to make it appear more
natural.

Proposed method

In order to provide the right perspective for our framework, let
us look at the following example. Consider an animation se-
quence with N frames showing a character performing a sin-
gle cycle of a repetitive action, say, a human walking, running,
jumping etc., or a horse galloping, trotting etc. Let us assume

93

that the character’s deformable geometry is defined with n de-
grees of freedom (DOFs), denoted by f, and the whole set of
data in N frames denoted by F. For a skeleton-based charac-
ter, n denotes the number of joint angle variables. For a mesh
model, n is three times the number of the vertices. With-
out loss of generality, we shall present our approach using
skeleton-based walking. Since the walking motion is defined
as continuous deformation of the skeleton, f can be considered
as a function of parameter u with the animation sequence de-
fined between the start g to the end of the motion segment
u;. Thus, at any intermediate pose u; € [ug,u;], we can view
the corresponding skeleton f; as a point in the high dimen-
sional space R". In the same sense, the entire walking motion
can be treated as a curve in the R” space, with u as the curve
parameter.

Asymmetric Bilinear Model Decomposition

For a given motion segment depicting a repetitive action, we
aim to learn a decomposable generative model that explicitly
consists of the following two factors:

Motion characteristic A representation of the intrinsic fea-
ture configuration, distinguishing characteristic in that
motion. This factor is very similar in different instances
of that motion.

Variable part in the motion Parameters which can vary
with each instance, but do not significantly affect per-
ception of the characteristic in that motion.

The idea of decomposing motions has been explored by a
number of other researchers. Most often, these decompo-
sitions are in the format of content + style Grochow et al.
(2004), Hsu et al. (2005), Liu et al. (2005) or in the format of
signature + action Alex and Vasilescu (2002). In all the above
cases, the aim is to learn similarity/difference in classes of
motions. In our case decomposition is carried out for a given
motion segment. We assume that frame f is a function of b
(variable part of the motion), and the ¥ (motion character-
istic). The dimensionality of b and y are n and N, respec-
tively. We learn a frame-based generative mapping model in
the form:

ey

We assume that ¥(-) is a bilinear function given in its most
general form by:

y:(by) —f

f=Y o by 2
ij

where each ;; is a n-dimensional vector of parameters used
to transform the motion characteristic component and vari-
able component into skeletons. Following the development in
Tenenbaum and Freeman (1997), we combine the interaction
terms @;; with b, and get the Equation (2) into an asymmetric
two factor model form:

f=B-y 3)

where B denotes the matrix of the variable parts of the mo-
tion, and y is a vector of coefficients specific to the motion
characteristic.

With locally linear embedding, we can learn the motion char-
acteristic in the form of a nonlinearly embedded representa-
tion of the motion manifold in a low dimensional Euclidean
embedding space, RY. The embeddings describe the distin-
guishing information of the motion, such as walking, run-
ning and dancing. Then with generalized radial basis func-
tions (GRBF), we can map from embedding space to orig-
inal space: RY — R" using a nonlinear mapping function:
R? — RN and a linear mapping: RV — R". By setting the
non-linear mapping as our Y, and linear mapping as our B,
we obtain our bilinear model.

Computation of Motion Characteristic

Manifold learning addresses the problem of finding low-
dimensional structure within collections of high-dimensional
data. It has achieved huge success in the fields of pattern
recognition, machine learning and image processing, which
usually handle high dimensional data Elgammal and Lee
(2004), Elgammal (2005). It also has been studied and used
in many practical applications, such as data classification and
data mining for the last several decades. It has led to many
impressive results about how to discover the intrinsic features
of a manifold.

Classical techniques for manifold learning, such as princi-
pal components analysis (PCA), and multidimensional scal-
ing (MDS), are designed to operate when the sub-manifold is
embedded linearly, or almost linearly, in observation space.
Works such as GTM Bishop et al. (1998) involve iterative op-
timization procedures to “improve” towards more successful
nonlinear representations of the data. However, such algo-
rithms often fail when nonlinear structure cannot simply be
regarded as a perturbation from a linear approximation. Lo-
cally linear embedding (LLE) Saul and Roweis (2000) is one
of the highly promising methods for unsupervised learning
that addresses this problem. It has been shown that LLE meth-
ods can embed nonlinear manifolds into low-dimensional Eu-
clidean spaces for any high dimension data.

Given the assumption that each data point and its neighbors
lie on a locally linear patch of the manifold, each point can
be reconstructed as a weighted combination of its neighbors.
The objective is to find the reconstruction weights that min-
imize the global reconstruction error. An optimal solution
for such an optimization problem can be found by solving
a least squares problem. Since the recovered weights reflect
the intrinsic geometric structure of the manifold, an embed-
ded manifold in a low dimensional space can be constructed
using the same weights. The embedding is determined by
solving for a set of points to minimize the reconstruction error
with fixed weights. This is achieved by solving an eigenvector
problem.

The 3 major steps in the LLE algorithm are described below:

1. For each f; € F, we form the subset F; = {f; € F|f; #f;,

94

and f; is one of the k nearest neighbors of f;}, where k is
a user controlled parameter.

2. For each f; € F, we build the reconstruction weights, w;;,
with its k£ neighbors, with the minimal reconstruction er-
ror,

g = A(f;,f;))

where A(-) is a function to measure the difference be-
tween two skeleton poses, and f; is a reconstruction of f;
using its k nearest neighbors:

i

k k
= Z Wijfj7 Zwij: 1. (5)
Jj=1f;€F; j=1

3. Compute the embedding based on the reconstruction
weights w;;. LLE converts the minimization problem to
an eigenvalue problem. The optimal embedding is the
bottom eigenvectors of the symmetric, sparse matrix M:

M=(1-W)(I-W) (©)

Figure 2: LLE embeddings of two skeletons (A and B) per-
forming walking and running actions. a) A walking; b) B
walking; ¢) A running; and d) B running.

Compared to other methods, LLE has the following advan-
tages: i) Since the weights w;; are symmetrical, for any par-
ticular data point, they are invariant to rotation, re-scaling and
translation of the data points and their neighbors. By enforc-
ing) iWij = 1, the solution also achieves translation invari-
ance; ii) More importantly, by assuming the local linear trans-
formation, LLE discovers the intrinsic characteristic present
in high dimensional data; iii) It leverages overlapping local
information to uncover global structure. This is achieved by

computing successively different dimensions in the embed-
ding space and by computing the bottom eigenvectors from
Equation (6) one at a time.

We carried out a number of experiments
on different types of motions. The skele-
ton animation data for this was obtained from

(http://mocap.cs.cmu.edu/) and the mesh animation data from
(http://people.csail.mit.edu/sumner/research/deftransfer/-
data.html). The dimensionality of embedding space is 3.
Figure (2) shows LLE results on two motions, walking and
running. As can be seen from the results, the embeddings
for walking and running by the same person are distinctly
different. On the other hand, the embeddings are very
similar for two different persons with same number of DOFs,
performing the same action individually.

Reconstruction Matrix Formulation

As mentioned earlier, we use generalized radial basis func-
tions (GRBF) Poggio and Girosi (1990) to formulate the vari-
able part of the motion. This method is widely adopted for
height interpolation or for deformable models and can be ex-
ecuted in real time for the sizes of models used in our experi-
ments. Of particular interest are functions of the form:

N
fi=pi(e)+) aijo(le—e;l) (M
=

where e is any point in embedding space (e € R?, d is the di-
mensionality of embedding space); e; are the reference points;
o are real coefficients; p(e) is a linear polynomial function
with real coefficients ¢ of e; and ¢(-) is a real-valued basis
function. Typical choices of ¢(-) are biharmonic (¢ (u) = u),
triharmonic (¢ («) =), thin-plate spline (¢ (1) = u*log(u)),
multiquadric (¢ (u) = Vv u? +a?), Gaussian, etc.. To ensure
orthogonality and to keep the problem well posed, we impose
the following constraint:

m

N

Z a;pje;)) =0, j=1,.. (8)
i=1

where m is the dimensionality of vector c.

Using the asymmetric bilinear model form of Equation (3),
but with extended dimensionality, the whole mapping can be

written in matrix form as:

f,=B" y'(e) ©)

where B’ is an extended n x (N +d + 1) matrix composed of
two submatrices: an n x N matrix B with jthrow [0y, ..., 0tjy]
and an n x (d + 1) matrix C with jth row [c]], and y'(e) is
an extended matrix composed of ¥ = [¢(|e —ey]),...,9(Je —
ey|)] and the vector [1,e’]7.

For the N frames case, the B and C can be calculated directly

by solving the linear system:
BT
) < (&)

(: > (
041
(10)

A P
Pl 0(gstyw(a+1)

95

where A = ¢(|e — ¢;|) is the kernel matrix. If we use the poly-
nomial part of the GRBF in Equation (7) which has the form
p(e) =[1,e!] ¢, then P is the matrix with the ith row (1,e]).
We carried out a number of experiments to confirm that (rea-
sonable magnitude)) changes in the variable part do not alter
the action in the motion. To do this, we randomly perturbed
the values (small perturbations) in the reconstruction matrix,
and created a new animation sequence. Another option would
have been to keep the reconstruction matrix unchanged, but to
vary the characteristic curve in LLE space. However, the re-
sult of even small variations in the embedding curve is far
more unpredictable. Hence, creation of controlled or targeted
variations while maintaining the distinguishing characteristic
of a given motion would be very difficult, and certainly not
something that an animator would find easy to specify.

Variation Control Factors for Targeted Variation

While we have seen that perturbations of the motion recon-
struction matrix indeed yield motion variations that leave the
distinguishing action in the motion unaltered, the large matrix
form makes it rather unwieldy for use by an animator, except
for simple matrix transformations, or uncarpeted random per-
turbations. Ideally, we would like to provide the animator
with just a few handles to specify motion variation and fur-
ther would like these controls to be related to features of the
skeleton. For this, let us again consider our example of the
walking motion. It has a deformable skeleton with 62 DOFs,
and consists of 150 frames. This results in a reconstruction
matrix with 62 rows and 150 columns. Singular value de-
composition (SVD) is a common technique for the analysis
of multivariate data Alexa and Miiller (2000). Let B denote
an n x N matrix of real-valued data with rank r. The equation
for SVD of B is as follows:
B=USVT (11)
where U is an n X n matrix, S is an n x N diagonal sparse
matrix, and V7 is an N x N matrix. Both U and V are orthog-
onal. And the elements of S are only nonzero on the diagonal,
and are called as singular values. By convention, the ordering
of the vectors is determined by high-to-low sorting of singu-
lar values. Another important property is that the squares of
singular values A; are equivalent to the eigenvalues of the co-
variance matrix of B.
Singular values A; of the matrix B can be used to control mo-
tion variation, and we denote them as variation control fac-
tors (VCFs). They provide simple to use control handles,
as change in a single scalar value results in a variation over
the entire motion. Moreover, through various experiments
we observed that these scalar variables have some interesting
properties which makes their use simple and intuitive. Vari-
ations in animations can be procedurally encoded as suitable
changes in VCFs for each instance of the animation. In order
to assist the animator to associate scalar variables in VCFs
with the different features of the character, we can easily pre-
compute a table showing the DOFs significantly affected by

features i features i
root 1,5,48 root 22,34,36
position 49,50 orientation | 37,39,41
lower back 18,47 upper back | 42,43,45
thorax 40, 52 head 44, 46
53, 54
lower neck 18,47 upper neck 30,31
right humerus 32,35 left humerus | 20,21,29
right radius 7,28 left radius 23
right wrist 25 left wrist 6,27
right hand 12,19 left hand 2,51
right thumb 55 left thumb 9
right femur 4 left femur 8,16
right tibia 33 left tibia 39
right foot 10,13,15 left foot 11,14,17
right toes 3 left toes 3

Table 1: Association between VCFs and DOFs. i is the index
of VCFs.

each scalar variable, for any given motion. Significant affect
is assumed when the change in the motion curve of any DOF
exceeds a given threshold. Table (1) shows an example of one
such table computed for the walking motion. This table can
be used by animators to decide on VCFs that need to be var-
ied according to which features are to be changed (See exper-
imental results). An interactive tool is easily developed with
intuitive control for specifying skeleton feature based varia-
tions.

The following are our observations about VCFs:

Local effect Only a small subset of DOFs is affected by
change in any one of the A; variables. Further, in-
crease/decrease in the value of A; causes the affected
DOFs also to increase/decrease in a corresponding fash-
ion. A map of A; variables and affected DOFs can be
used by the animator to make adjustments according to
whether certain DOFS are to be changed or not. This
is illustrated in (3). We scaled A; by factor of 1.1, and
generated the variation in motion. By comparing the av-
erage change in every DOF, shown in Figure (3) a) and
the motion curve for every DOF shown in Figure (3) b),
we observe that A; affects DOF No. 3 significantly, and
DOF No. 54 and DOF No. 30 to a lesser extent. Other
DOFS are affected only slightly.

Additive ability Changes in individual values are additive,
as can be expected for SVD. We can either change A;
and A; separately, or change the two together. The final
effects of the two operations are same. Figure (4) illus-
trates this with an example. We scaled A; by a factor of
1.1 to create variation A of the animation sequence, and
scaled A; by a factor of 1.1 separately to create variation
B. The modified motion curves for affected DOFS for A
and B are shown in (4) a) and (4) b); then we scale both
together by the same factor, and obtain the variation AB;
modified motion curves for the same DOFs are shown

96

151 a)

0s5F
) o
dteles Soctood PRI Y ozmmT
10 20 30 40 50 60
ar b)

Figure 3: Locality of VCFs value. The horizontal axis of a)
the DOFs; vertical axis of a) the average changes of every
DOFs in percentage. The horizontal axis of b)the frames; and
vertical axis of b) the difference value of DOFs.

5F—— . - -

thmxmw&“%uﬂmwﬂﬂué

)
' . L r L L
10 20 30 40 50 60 70 80 90 100

Figure 4: Tllustration for showing additive property of VCFs.
The horizontal axes of a), b), ¢) and d) are frames; and the
vertical axes are difference value.

in (4) ¢). (4) d) shows the difference between the varia-
tion of AB alone and the sum of the variation A and the
variation B. For an animator this gives the flexibility of
carrying out changes individually.

Changes in DOFs, though small, do not guarantee satisfac-
tion of hard constraints, such as, feet having to be always in
contact with the floor etc. Validation checks are applied for
every frame after we add variations and create new motion
sequence. For skeleton models, we check balance — by pro-
jecting the root on the ground, the projection point should lie
on the line segment between two feet. If this constraint is not
satisfied, we modify the VCFs. Also, we check the position of
the feet, and make sure that the feet are touching the ground.
If this constraint is not satisfied, we use simple per frame IK
algorithm to adjust it Kovar et al. (2002). For the mesh model,
we check changes in mesh volume. If constraints are not sat-
isfied, we modify the VCFs. We have noted that because of
the locality property of VCFs, we can interactively converge
to a valid variation quite easily. Also, in all our experiments,

Figure 5: Overlapping motion fragment in LLE space (paral-
lel curve segments inside the circle)

we have used all the DOFs in the skeleton. It is also possible
to carry out the method for a subset of DOFs, and then let in-
verse kinematics pick constraint satisfying optimal values for
non-picked features.

Joining Two Motion Segments

To join two motion segments smoothly is non-trivial. The tra-
ditional approach is to carry out this operation in the frame
space. For skeleton models this usually amounts to ensur-
ing smooth changes in individual DOFs through the use of
suitable interpolants. For mesh models, it is obviously much
harder. And simple interpolation may result in unnatural so-
lution. What would be needed is more similar to morphing,
a computationally expensive operation. In our work, we pro-
pose a method that blends two segments directly in an em-
bedding space. Because the variation in segments is created
from the input sample, we can ensure that the sampling rates
of the varied segment is the same as the original. The first
task in joining the segments together is to determine the tem-
poral relation of the two segments. There are two cases: 1)
the two segments have a overlapping period where the two
motions exists at the same time; or 2) there exists a gap in the
time sequence where neither segment exists. To determine
which case the given input belongs to, we put the two seg-
ments together and apply LLE to them. As Figure (5) shows,
if in embedding space, the motion curves of the two segments
have parallel portions, then it belongs to the first case; else if
the motion curves of the two segments have a gap between
them, then it follows that this is the second case.

In the first case, we blend the two motion curves in embed-
ding space, then convert the new blended sequence back to
frame space. This approach is based on the observation that
parallel parts actually represent the same motion with slight
perceivable differences. Therefore, we can search the area in
between these parallel segments in the embedding space for
similar motion. The solution should satisfy two constraints:
1) the blending result should be smooth; 2) the blended frame
should satisfy the desired physical properties, such as, bal-
ance for skeleton models and volume for mesh models. For
the second case, we predict the motion curve in the gap us-
ing the fixed physical properties constraints with the method
described in Jin et al. (2007), which works well both for skele-

97

Figure 6: Smooth join in LLE space

ton and meshes and uses pre-computed property maps in LLE
space. Figure (6) shows the result of smooth blending in the
LLE space.

Experimental Results

To demonstrate the capabilities of our proposed method, we
carried out a number of experiments on both skeleton and
mesh based animations.

Skeleton animation: As can be seen in Figure (7), the tar-
geted features for this variation are the left and right tibia.
When changes are made to VCF numbers 33 and 39 these
features are affected. At the same time, for other DOFs, the
variations are very small to notice. Given the input walk-
ing animation with 150 frames, we modulate VCF number
33 and 39, which are associated with left and right tibia, with
scalar factor s. The first row shows the frame No. 19 and
the second row shows the frame No. 80. When s = 1, (the
middle column), it represents the original frames. The first,
second, fourth and fifth columns show the variations created
with s = 2,1.5,0.75,0.5. From this result we can observe
that when we increase the value, the left and right thighs
move toward each other; and when we decrease the value,
the two move away from each other. This example demon-
strates quite clearly that the locality and additive properties of
VCFs make this method simple to use for targeted variations.
We also demonstrate the experimental result of creating vari-
ations from a given walking segment and joining variations
altogether to create a 7 times longer walking sequence in the
accompanying video.

Mesh based animation: In Figure (8), we show results of our
method on mesh based horse galloping. The original motion
sequence has 12 key frames, and each frame has 8431 ver-
tices. The 12 frames form a circle. After bilinear factorization
and SVD decomposition, we have totally 13 variables to con-
trol the variation added to the sequence with the 13th frame
representing the first frame of next circle and placed at the
end to close the sequence. Correspondingly we set 13 mod-
ulation factors s; as {1.3,1.4,1.3,1.3,1.2,1,1,1,1,1,1,1,1},
representing the scaling of VCFs. We demonstrate the orig-
inal and the new animations in separate rows. Each column
shows corresponding frames for original and the newly cre-
ated animations. We also show the difference between our
generated sequence and original input visually in detail. For

a)s=2 b) 1.5 c)1 d)0.75 ¢€)0.5

Figure 7: Skeleton-based Variation. s is the VCF factor. s = 1
represent the original frames, shows in c¢); and variations are
shown in a), b), d) and e).

example, in column 3, we show the same frame from the fixed
visual angle. As displayed in the first two rows, although the
two meshes both represent the No. 10 keyframe, the angle
between the two back legs are different, as shown in row 3.
In the figure, the first row shows the No. 2 and 10 keyframes,
and the second row shows the variation results we have gen-
erated. In third row, we compare and display the difference
of front hooves, tail, back legs, and back hooves. For ex-
ample, in third row, we observe that compared to the input
keyframe 10, the height of the lifting left front leg is lower;
the tail is more straight, and the angle between two back legs
are smaller. All these variations are achieved under the con-
straints that the mesh volume is invariant during the motion.
This is done using pre-computed LLE property maps Jin et al.
(2007).

Conclusion and Future work

We have presented a new method to create perceivable varia-
tions in a given motion while ensuring that the principal char-
acteristics of the given motion are kept invariant. The method
works for an articulated model as well as mesh models. We
believe that the idea of factorizing a given single motion into
a distinguishing characteristic part and a set of variation con-
trol factors is both interesting and powerful, and needs to be
explored further. While computing LLE space embedding
for large models can be time consuming, reconstruction of
frames from the embedding space is not, and can be done
in real time. From an implementation perspective we plan
to investigate the possibility of computing the LLE embed-
ding in a background thread, while the animation variations
are being displayed. We also plan to investigate the possibil-
ity of automatically deriving the control factor changes given
changes in motion curves for different animation variables.
Familiarity of animators with keyframe animation techniques
would make this a particularly attractive interface for speci-
fying variations. Another direction that we plan to explore is

98

the transfer of style from one character’s motion to another
based on suitable transformations to the variable part of that
motion.

Acknowledgments

The data used in this project was obtained from CMU’s
motion capture database(http://mocap.cs.cmu.edu), which
was created with funding from NSF EIA-0196217; and MIT
Computer Science and Artificial Intelligence Laboratory
(http://people.csail.mit.edu/sumner/research/deftransfer/-
data.html). We also thank Jim McCann for making available
ASF/AMC viewer online.

REFERENCES

Alex M. and Vasilescu O., 2002. Human Motion Signatures:
Analysis, Synthesis, Recognition. In ICPR "02. 30456.

Alexa M. and Miiller W., 2000. Representing Animations
by Principal Components. Computer Graphics Forum, 19,
no. 3, 411-418.

Bishop C.M.; Svensen M.; and Williams C.K.I., 1998. GTM:
The Generative Topographic Mapping. Neural Computa-
tion, 10, no. 1, 215-234,

Bodenheimer B.; Shleyfman A.V.; and Hodgins J.K., 1999.
The Effects of Noise on the Perception of Animated Human
Running. In Computer Animation & Simulation ’99. 53—
63.

Brand M. and Hertzmann A., 2000. Style machines. In SIG-
GRAPH ’00. 183-192.

Bruderlin A. and Williams L., 1995. Motion signal process-
ing. In SIGGRAPH ’95.97-104.

Elgammal A.M., 2005. Learning to Track: Conceptual Man-
ifold Map for Closed-Form Tracking. In CVPR ’05. San
Diego, CA, USA, 724-730.

Elgammal A.M. and Lee C.S., 2004. Inferring 3D Body
Pose from Silhouettes Using Activity Manifold Learning.
In CVPR ’04. vol. 2, 681-688.

Glardon P.; Boulic R.; and Thalmann D., 2004. PCA-Based
Walking Engine Using Motion Capture Data. In CGI "04.
292-298.

Grochow K.; Martin S.L.; Hertzmann A.; and Popovi¢ Z.,
2004. Style-based inverse kinematics. ACM Transactions
on Graphics, 23, no. 3, 522-531.

Grzeszczuk R.; Terzopoulos D.; and Hinton G.E., 1998. Neu-
roAnimator: Fast Neural Network Emulation and Control
of Physics-based Models. In SSIGGRAPH ’98. 9-20.

Hsu E.; Gentry S.; and Popovic J., 2004. Example-based con-
trol of human motion. In SCA *04. 69-77.

Keyframe 10

riginal

Variation

Keyframe 2

Original

Figure 8: Mesh-based Variation

Hsu E.; Pulli K.; and Popovi¢ J., 2005. Style translation for
human motion. ACM Transactions on Graphics, 24, no. 3,
1082-1089.

Jin C.; Fevens T.; Li S.; and Mudur S.P, 2007. Motion
learning-based framework for unarticulated shape anima-
tion. The Visual Computer, 23, no. 9-11, 753-761.

Kovar L.; Gleicher M.; and Pighin F., 2002. Motion graphs.
In SIGGRAPH °02. 473-482.

Lee J.; Chai J.; Reitsma P.S.A.; Hodgins J.K.; and Pollard
N.S., 2002. Interactive control of avatars animated with
human motion data. ACM Transactions Graphics, 21,
no. 3, 491-500.

Lee J. and Shin S.Y., 2001. A Coordinate-Invariant Approach
to Multiresolution Motion Analysis. Graphical Models, 63,
no. 2, 87-105.

Li Y.; Wang T.; and Shum H.Y., 2002. Motion texture: a two-
level statistical model for character motion synthesis. In
SIGGRAPH ’02. 465-472.

Liu CK.; H. A.; and Popovi¢ Z., 2005. Learning physics-
based motion style with nonlinear inverse optimization.
ACM Transactions on Graphics, 24, no. 3, 1071-1081.

Mataric M.J., 2000. Getting Humanoids to Move and Imitate.
IEEE Intelligent Systems, 15, no. 4, 18-24.

Parent R., 2001. Computer Animation: Algorithms and Tech-
niques. Morgan Kaufmann.

Perlin K. and Goldberg A., 1996. Improv: A System for
Scripting Interactive Actors in Virtual Worlds. In SIG-
GRAPH ’96. 205-216.

Poggio T. and Girosi F., 1990. Network for Approximation
and Learning. Proceedings of the IEEE, 78, no. 9, 1481—
1497.

99

Popovi¢ Z. and Witkin A.P., 1999. Physically Based Motion
Transformation. In SIGGRAPH °99. 11-20.

Pullen K. and Bregler C., 2000. Animating by Multi-Level
Sampling. In Computer Animation. 36-42.

Pullen K. and Bregler C., 2002. Motion capture assisted an-
imation: texturing and synthesis. ACM Transaction on
Graphics, 21, no. 3, 501-508.

Sattler M.; Sarlette R.; and Klein R., 2004. Probabilistic Mo-
tion Sequence Generation. In CGI *04. 514-517.

Saul L.K. and Roweis S.T., 2000. Nonlinear dimensionality
reduction by locally linear embedding. Science, 290, 2323—
2326.

Schodl A.; Szeliski R.; Salesin D.; and Essa I.A., 2000. Video
textures. In SIGGRAPH ’00. 489-498.

Shin H.J. and Oh H.S., 2006. Far graphs: constructing an
interactive character with continuous controls. In SCA ’06.
291-298.

Sun H.C. and Metaxas D.N., 2001. Automating gait genera-
tion. In SIGGRAPH ’01.261-270.

Tenenbaum J.B. and Freeman W.T., 1997. Separating Style
and Content. In Advances in Neural Information Process-
ing Systems. vol. 9, 662.

Unuma M.; ichi Anjyo K.; and Takeuchi R., 1995. Fourier
principles for emotion-based human figure animation. In
SIGGRAPH °95. 91-96.

Witkin A. and Kass M., 1988. Spacetime constraints. In

SIGGRAPH ’88. 159-168.

Witkin A. and Popovi¢ Z.J., 1995. Motion warping. In SIG-
GRAPH ’95. 105-108.

100

GAME
Al

102

VARIABLE RESOLUTION A*

Kyle Walsh
RemoTYV, Inc.
258 Bradley Street, Suite 2F
New Haven, CT 06510
kwalsh@remotv.com

KEYWORDS: Game Al, Path-finding, A*
ABSTRACT

We argue that A*, the popular technique for path-finding
for NPCs in games, suffers from three problems that are per-
tinent to game worlds: (a) the grid maps often restrict the
optimality of the paths, (b) A* paths exhibit wall-hugging
behavior, and (c) optimal paths are more predictable. We
present a new algorithm, VRA*, that varies map-resolution
as needed, and repeatedly calls A*. We also present an exten-
sion of an existing post-smoothing technique, and show that
these two techniques together produce more realistic look-
ing paths than A*, that overcome the above problems, while
using significantly less memory and time than A*.

INTRODUCTION

Path-finding for intelligent Non-Playing Characters or
NPCs (henceforth agents) is one of the classic problems in in-
teractive games. Traditionally, the predominant approaches
are either offline precomptuation (e.g., Floyd-Warshall’s all-
pair-shortest paths) or on-line path-finding with A* [5]. In
this paper, we focus on the latter approach, and address some
issues with A*, pertaining to the game community.

There are at least three issues with A*, particularly relevant
to gaming, that have not been addressed adequately, to the
best of our knowledge. These are:

o Although A* paths are theoretically optimal, the under-
lying grid structure of the walkable surface often lim-
its the optimality of the resulting path. For instance,
even if a straight line path exists between the source
and the goal nodes, the A* path may be segmented (see
Figure 1, left & middle). The resulting paths look un-
realistic [8]. The game industry handles this problem
by post-processing the A* path, by techniques such as
rubber-banding and smoothing [1, 9]. Our position on
this approach is that if we are to rely on post-processing,
then it might be sensible to spend less time on the A*
search. Other relevant approaches, such as Theta* [8]
and Field D* [4] solve this problem by propagating in-
formation along the edges of the grid without restricting
the paths to grid edges, but they are no faster than basic
A*, and also suffer from other problems, noted below.

Bikramjit Banerjee

University of Southern Mississippi

Hattiesburg, MS 39406

Bikramjit.Ranerjee@usm.edu
http://www.cs.usm.edu/~baner jee

o A* (as well as Theta* and Field D*) produces the so-
called wall-hugging behavior. Shortest paths tend to
skirt walls or other obstacles while passing as close to
them as possible. This leads to agents hugging walls
while navigating around them. See Figure 1 (right)
for an illustration. This problem is typically dealt with
by surrounding obstacles with a pseudo-obstacle band
where agents are not allowed to tread. However, this
solution calls for tedious manual augmentation of the
maps, that we seek to avoid.

e A major consequence of the optimality of A* paths
is that they tend to be unique, and hence predictable.
Game players who can predict the possible paths that
Al agents can take, can find it easy to lay ambushes
or otherwise utilize that predictability to their advan-
tage, ultimately leading to monotonicity and a reduc-
tion in the players’ interest over time. However, if the
Al agents can make their paths less predictable, it can
produce more challenging and interesting game play on
the part of the players.

Figure 1: Some problems with A* in game environments.
Left & Middle: Optimality of A* paths are constrained by
the underlying grid; Right: Wall hugging with A*.

Clearly, less predictable paths are unlikely to be optimal.
We prescribe sacrificing optimality for greater variation in
game-play and longer-lasting player interest. It is noteworthy
that forsaking optimality does not make path-finding trivial.
A game agent still needs to find a realistic looking [8] path
between the start and goal locations. In this paper, our objec-
tive is to prescribe a technique that

e is faster than A* in producing a quick, dirty (but valid)
path,

e employs improved rubber-banding technique to refine
this path into a realistic looking final path,

103

o is highly unlikely to produce wall-hugging behavior,
e can produce paths that are unpredictable to the players.

We introduce the Variable Resolution A* (VRA¥*) algo-
rithm for 2D grid surfaces. The idea is to gradually raise the
resolution of the map as needed, to do A* searches, instead
of applying A* to the maximum resolution map right-away.
The idea is similar to iterative deepening A* (IDA*) [10], but
instead of increasing cutoff traversal costs, we use increasing
resolution in each iteration. It is likely that a lower resolution
will yield a valid path, and the total number of expansions of
all A* searches up to that resolution may be fewer than a full-
blown A*. The justification comes from existing analysis of
IDA*, where the last iteration is usually almost as expensive
as the total cost. So if VRA* manages to find a path with less
than the full resolution, then the saving should be substantial.
The resultant path may or may not be optimal. For instance,
in Figure 1(a), VRA* will produce a valid path with the low-
est possible resolution (viz. two cells/nodes, one including
the start point, and the other including the goal), and this
path will also be optimal compared to the longer path pro-
duced by applying A* on the highest resolution map. How-
ever, in many cases, the path produced by VRA* could be
longer than A*, and less predictable.

A second contribution of this paper is to extend the rubber-
banding approach from [1] to paths that contain line seg-
ments, rather than paths that are sequences of cells on a grid
map. Due to lack of space in this paper, we handcraft just one
map, that showcases the characteristics of VRA*, and show
that this rubber-banding technique produces a reasonable fi-
nal path.

BACKGROUND: A* SEARCH

A* [5] is one of the most popular path-finding techniques
in interactive games. It is fundamentally an informed search
technique [10], using problem-specific knowledge to find so-
lutions more efficiently than uninformed/blind search. Given
a graph, a source/start node and a goal node, A* attempts
to find a minimal-cost path between the source and the goal
nodes, by using an evaluation function to select the lowest
scoring nodes for expansion, i.e., the nodes that are most
promising to be on the optimal path. Expansion of a node
produces its children (i.e., adjacent nodes), and an accumu-
lation of such nodes that have not been expanded themselves,
is called the “fringe”. Usually the fringe is stored in ascend-
ing score values in a suitable data structure, such as a min-
heap. Heuristic functions (constructed from domain knowl-
edge) are often used as the evaluation functions (h(n) for
node n). They yield the estimated cost of the cheapest path
from a given node to a goal node. An admissible heuris-
tic [10] never overestimates the cost to reach a goal. It as-
sumes the cost of solving a problem is less than it actually
is. Using an admissible heuristic in an informed search al-
gorithm prevents exploration of paths that are costlier than
the optimal path. The total cost (or the evaluation function)
of a node n is given by f(n) = g(n) + h(n), where g(n) is

104

the actual cost of the path from the start node to n. Simply
put, the cost g(n) takes into consideration moves made up to
the current point, while the heuristic attempts to estimate the
future cost, usually considering the proximity of the current
location to the destination. The heuristic can be calculated in
several different ways, but the commonest in game program-
ming is the Euclidean distance, since it is guaranteed to never
overestimate the actual path length, whether 4-connectivity
or 8-connectivity is considered.

COMPLEXITY REDUCTION OF PATH-FINDING

In path-finding, there are many cases in which a large num-
ber of neighboring nodes in a region do not carry much dis-
tinctive path information; e.g., if the map is such that an NPC
must cross a swamp on the way to its goal, several paths
across the swamp may have only slightly different costs. It
may be wasteful to analyze the swamp at a fine resolution,
but this cannot be avoided in an A* search. Although A*
is a fast and popular method for traversing these types of
spaces, there is still room for improvement. In fact, hierarchi-
cal A* [6] exploits this characteristic to abstract such similar
nodes into larger zones, to reduce the number of nodes, and
consequently, the complexity of A* in a bottom-up fashion.
However, this requires either the prior knowledge, or prior
exploration of the terrain. In contrast, we propose a top-down
approach, called VRA*, that exploits low resolution wher-
ever possible, and only uses higher resolution where neces-
sary (such as in the vicinity of irregular obstacles). VRA*
only acquires enough terrain knowledge to find a valid path.

Similar top-down approaches have been used in the past.
Tozour [11] has used quad-trees for efficient path-finding. In
this approach, the map is divided into four rectangles, and
then each rectangle that includes any obstacle is further sub-
divided into four rectangles, and this process continues un-
til no further subdivision is necessary. Since paths are con-
strained to pass through the centroids of any quad, they of-
ten look unrealistic. One solution to this problem has been
known in robotic navigation. Framed quad-trees [3] impose
high resolution cells along the borders of large quads, but
the resulting improvement in path quality comes at the price
of increased number of search nodes. Moreover, the quad-
tree approach also requires prior analysis of the terrain, much
of which may be unnecessary unless a search looks through
these regions. In contrast, VRA* does not require any prior
analysis. It creates a variable resolution map on the fly, and
only resolves those regions that are pertinent to the path be-
ing searched. On the flip-side, VRA* does suffer from the
same limitation to the path quality as quad-trees, but we pro-
pose an extended rubber-banding approach to mitigate this
problem, instead of increasing the search-cost as in framed
quad-trees.

The basic idea of increasing the search resolution comes
from the Parti-game algorithm [7]. This algorithm exploits
techniques from game theory and computational geometry
to adaptively partition a high dimensional space in variable
resolution, for fast reinforcement learning. To the best of

our knowledge, this idea has never been applied in conjunc-
tion with A*. We exploit a line rasterization technique from
computer graphics for this adaptation, and show that along
with our proposed rubber-banding for post-smoothing, we
can produce reasonable-looking paths at a lower cost than
A*.

VRA*

In this section we present an algorithmic overview of
VRA*. The details of the individual steps are presented in
subsections later. We call the search space that A* would
normally search on, the highest resolution search space (or
HRSS), and it can be of any size. Before running VRA*, as
is customary in A*, a cost table is generated based on the
connectivity of the graph at the highest resolution. By using
connectivity data from the highest resolution as used by A*,
it is ensured that detecting obstacles at lower resolutions will
be consistent between A* and VRA*. After generation of the
cost table, VRA* splits the search space into two nodes: one
containing the origin point, and the other, the goal point. The
area of these cells need not be identical; the important part is
only that there are two cells. This lowest resolution gives the
current resolution search space (or CRSS) at the start.

Following these preprocessing steps, an A* search is per-
formed on the CRSS (i.e., the two node search space). The
cost of traveling between nodes at the CRSS cannot be sim-
ply looked-up as in A*, because the cost table corresponds
to the HRSS, not the CRSS. To solve this problem, we use a
line rasterization approach at the HRSS, to compute the link
costs at the CRSS. If beginning at the start point, the ras-
terized cost starts from that point; otherwise, the rasterized
cost starts from the centroid of the current cell. Similarly,
if aiming for the goal, the rasterized cost ends at that point;
otherwise, the rasterization aims for the centroid of the target
cell.

The rasterization produces both the link costs between
traversable nodes at the CRSS, as well as an indication of
which nodes do not have any link between them (i.e., infinite
cost links). Thus it produces a graph with all link costs at
the CRSS. If A* on this graph fails to return a path, then one
or more cells are split, to produce a revised CRSS. Since the
new CRSS is only slightly different from the previous CRSS,
some rasterized costs that are unchanged can be reused, but
others have to be re-computed. Splitting of selected nodes in
the search space would continue until either a path is found,
or the highest resolution is reached, i.e., CRSS = HRSS. If
no path can be found at the highest resolution, then no path
exists. However, we expect to find a valid path, if it exists,
long before the highest resolution is reached.

Cost Table Generation

Before any code is run related to VRA* or A*, obstacles
must be placed on the HRSS grid, as well as the start and
goal points selected. After this is complete, the HRSS is pro-
cessed into a two-dimensional array that serves as a cost ta-
ble. The array indices corresponds to the (x,y) coordinates of

a tile of the HRSS. A tile is either traversable, or an obsta-
cle tile. Traversing between open tiles carries unit (or user-
defined) cost. Tiles that have obstacles on them are given
infinite cost. Since all the obstacle checks are done in this
preprocessing step, computation time is saved during run-
time because the algorithm need only index into the cost ta-
ble to check for collisions, instead of running an obstacle test
several times.

Generating the Start and Goal Nodes

Start and goal nodes are generated by computing the mid-
point between the start and goal points, and then comparing
the x and y distances between the start and goal points to de-
termine which axis to split on. If the x distance is greater,
then the split line will be generated at the x coordinate of the
midpoint, and likewise if the y distance is greater. This parti-
tions the map into two regions, and creates our initial nodes
in the search space. A* will be run on this CRSS but in all
likelihood, a straight path will not exist between the start and
the goal nodes, unless all obstacles are out of sight between
these nodes.

Rasterized Link Cost

The computation of the rasterized link cost follows the
well-known Bresenham’s line rasterization technique [2], to
find a rasterized path between the centroids of two nodes on
the CRSS. Bresenham’s line algorithm has been popular in
raster graphics, to render a line on the screen pixel by pixel.
In our case, the cells in the HRSS act as the pixels.

The rasterized path is a sequence of cells on the HRSS that
the agent would have to step through, to travel between two
nodes in the CRSS, in an approximately straight line. How-
ever, there could be obstacle cells on this path, but this can
be easily checked with the cost table. If the cost look-up at
any point is infinite, this means we have encountered an ob-
stacle, and the nodes being tested are not connected. The test
returns failure, and the nodes are marked for splitting. If the
cost is not infinite, then the test succeeds, and a path between
the centroids of the two nodes (in the CRSS) exists. The cost
at each cell on the rasterized path, from the HRSS cost-table,
is summed and used as the overall cost of traversal between
the two points.

Splitting Cells for Variable Resolution

As mentioned before, the cell splitting method was inspired
by the work of Moore and Atkeson in their Parti-game algo-
rithm [7]. Their algorithm would start with the lowest pos-
sible resolution of the search space, and increase resolution
of cells when and where necessary, by splitting cells. These
splits would occur around obstacles, or as they described, on
the borders of winning and losing cells. Winning cells were
cells that were traversable, and losing cells were cells of in-
finite cost. Only splits that were needed were performed,
and the algorithm continued on its way until the goal was
reached.

105

VRA* puts this same logic to use with a little variation: it
only splits one cell. The choice to split just one cell was made
as an optimization because splitting several cells is often un-
necessary in VRA*, because we are performing A* searches
on each search space instead of just continuously navigating
the same search space like Parti-game does. Cells marked
for splitting by the line tests that occurred in the previous A*
search are put into a list. If a path is not found, then before
the next A* search is called, only the first cell on the list is
split. This cell is either a cell along an obstacle, or a cell
containing an obstacle. The cell is split into two, along its
longest axis, and the two new cells are added to the list of
cells to produce the new CRSS for the next A* search. The
centroids of each new cell are computed and stored so the
rasterization test has a target point to start from and aim for,
in its execution. Figure 2 depicts an example of a cell split

Figure 2: Tllustration of the cell-splitting process.

before and after an A* search. On the left is the initial VRA*
search space: a start point (in red), a goal point (in green),
and an obstacle (in black). The start and goal have their own
cells (outlined in yellow), and only two cells are present at
this point. Notice that the two cells are not of equal areas,
rather the partition occurs along the middle of the y-distance
between them (because the y-distance is larger than their x-
distance). Since a straight path does not exist between these
two points, both cells will be marked for splitting, but ulti-
mately only one will be split. Assuming that this is the top
cell, on the right, the end result of the split is shown. As ex-
plained above, the non-start and non-goal cells’ centroids are
used as the points of interest for the rasterization test.

Finding Neighbors

In A* on a uniform grid, finding the neighbors of a cell is
simple. In 4-connectivity cases, this calls for simply check-
ing the 4 neighboring directions of the current node. If they
are reachable, then they are linked up to the parent node
as neighbors. The same holds for the 8-connectivity cases,
when incorporating diagonal neighbors. In VRA*, however,
nodes can be of varying sizes, and there may no longer be any
simple relationships at their junctions. For instance, a cell
could have one or many neighbors to its left. So the edges of
nodes must be checked for overlap, to identify neighbor sta-
tus, and then the rasterization test is called afterwards as the

106

final check on neighbor connectivity. Both checks perform
very fast in our VRA* implementation, and account for very
little in the overall path-finding times reported.

POST-SMOOTHING

The paths produced by VRA* are non-optimal. In most
cases, it is possible to improve the paths through the process
of post-smoothing as applied to A* [1]. We use the basic idea
of this post-smoothing algorithm (which was developed for
the highest resolution grid) and extend it to VRA* where the
final grid may have different resolutions in different regions.
Assuming that VRA* produces the path (p1, ps, ..., pn), the
post-smoothing algorithm accepts this path as input and re-
turns an edited path where p; and p,, (i.e., the start and goal
points) are left unchanged, but some intermediate points are
possibly changed or deleted. The main logic is similar to [1],
where if a line-of-sight exists between p; and p;o then p; 41
can be eliminated, to produce a shorter path (rubberbanding).
We replace the line-of-sight test with the rasterization test.

If p;+1 cannot be deleted as stated above, then unlike [1],
we try to shift this point as close to p;+o as possible, us-
ing a binary-search on the line segment (p;41, p;+2). This
also reduces the path length by the triangle inequality. It is
also possible to search for a replacement of p;; on the line
segment (p;, pi+1), or just call the post-smoothing procedure
twice, once with the original path (p;,ps, ..., pn), and then
again with the reversed processed path (p,, ,...,p1). In the
next section, we show the final path with and without post-
smoothing, to demonstrate its effect.

EXPERIMENTS

We have tested VRA* on several handcrafted maps. We
present the results of applying just A*, VRA* without post-
smoothing, and VRA* with post-smoothing on one of these
maps (due to space constraint), along with the associated
numbers such as total memory used, number of A* searches
invoked by VRA*, total number of all expansions (over all
A* searches) used by VRA* as well as regular A*, total path
build time, and also the rasterization test and splitting times
(including neighbor finding) used by VRA*, for comparison
of A* and VRA*. The difference in the quality of path pro-
duced by VRA*, without and with post-smoothing, testifies
to the efficacy of our extended rubber-banding approach.

In the map shown in Figure 3 (for both A* and VRA*),
the start point is shown in red, the goal point in green, the
obstacles in black, the nodes in the closed list in red, the
nodes in the open list (fringe) in green, and the final path
in blue. In Figure 3, although the A* path is truly optimal,
its wall-hugging behavior is most acute. In part (b), it is
clear that VRA* has gotten rid of the wall-hugging behavior,
but the paths are clearly not realistic-looking for intelligent
agents. However, after applying the post-smoothing steps,
the paths from VRA* (part (c) in the figure) looks more real-
istic. This map highlights that the result of VRA* can be less
predictable than A*, since the path follows the opposite arm
of the "H’, compared to A*. If a player had laid traps along

one
Menmory Usage: 67428
ches: 8

femory Usage: 3481
Expansions: 316
Splting Time: 0000000 §

(©)

Figure 3: The result of applying A* (a), VRA* without post-smoothing (b), and VRA* with post-smoothing (c).

Table 1: Comparison of figures of merit between A* and VRA*, for Figure 3.

A* VRA*
Memory (bytes) Expansions Total time (sec) | Memory (bytes) Expansions Total time (sec)
| 348192 316 0.141 | 67428 29 0.01 |
the expected arm, (s)he would be surprised that the agent has ACKNOWLEDGMENTS

snuck up behind him/her. We believe this element of sur-
prise can be sufficiently appealing to players, to compensate
for the loss of optimality.

A comparison of the figures of merit for the H-map in Fig-
ure 3, is shown in Table 1. We see that VRA* uses an order
of magnitude less memory than A*, and produces a post-
smoothed path in time that is an order of magnitude lower
than A*. Although not shown in this paper, the result was
similar in many other maps. Note that the number of expan-
sions for VRA* is the total over all calls to A* that it makes.
Also note that the total time under VRA* is the total time it
takes to produce a path, and it includes all of the rasterization
tests, splitting time and the time to compute neighbors in an
irregular, variable resolution map. Moreover, the time differ-
ence between unprocessed and post-smoothed VRA* paths
is minuscule. The key to the time saving with VRA* is the
low number of cells that it has to process.

SUMMARY

In this paper, we have have presented a new algorithm,
VRA*, for path-finding on game maps, exploiting a variable
resolution, in a top-down fashion. We augment this tech-
nique with a post-smoothing approach that extends an ex-
isting approach. Experiments on some hand-crafted maps
show that VRA* uses significantly less time and memory,
and along with the post-processing technique suggested, it
produces realistic-looking paths that overcome some of the
problems with A*. In the future, we intend to study VRA*
more systematically on maps from actual games (such as
Baldur’s Gate), and compare its performance to several vari-
ants of A*.

The authors thank the reviewers for helpful comments.
This work was supported in part by a start-up grant from the
University of Southern Mississippi.

REFERENCES

[1] A. Botea, M. Muller, and J. Schaeffer. Near optimal hierarchical
path-finding. Journal of Game Development, 1(1):1-22, 2004.

[2] J. E. Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems Journal, 4(1):25-30, 1965.

[3] D. Chen, R. Szczerba, and J. Uhran. A framed-quadtree approach

for determining euclidean shortest paths in a 2-d environment. /JEEE

Transactions on Robotics and Automation, 13(5):668-681, 1997.

D. Ferguson and A. Stentz. Using interpolation to improve path plan-

ning: The Field D* algorithm. Journal of Field Robotics, 23(2):79—

101, 2006.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the

heuristic determination of minimum cost paths. IEEE Transactions

on Systems Science and Cybernetics SSC, 4(2):100-107, 1968.

[6] R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonald.
Hierarchical A*: Searching abstraction hierarchies efficiently. In
AAAV/IAAL Vol. 1, pages 530-535, 1996.

[71 A. Moore and C. Atkeson. The Parti-game algorithm for variable
resolution reinforcement learning in multidimensional state-spaces.
Machine Learning, 21, 1995.

[8] A. Nash, K. Daniel, S. Koenig, and A. Felner. Theta*: Any-angle

path planning on grids. In Proceedings of the 22nd AAAI Conference

on Artificial Intelligence, volume 2, pages 1177-1183, Vancouver,

BC, Canada, 2007.

S. Rabin. Game Programming Gems, chapter A* Aesthetic Optimiza-

tions. Charles River Media, 2000.

[10] S.Russell and P. Norvig. Artificial Intelligence: A Modern Approach.

Prentice Hall, 1995.
[11] P. Tozour. Search algorithms and search space demo 1.0.
http://www.ai-blog.net, 2005.

[4

=

[5

—_

[9

—

107

GOAL ORIENTED BEHAVIOR TREES: A NEW STRATEGY FOR CONTROLLING AGENTS
IN GAMES

Yingying She
Peter Grogono
Department of Computer Science and Software Engineering, Concordia University
1515 St. Catherine St. West, Montreal, Canada H3G 1M8
E-mail: yy_she@cse.concordia.ca , grogono@cse.concordia.ca

KEYWORDS
Artificial Intelligence, Game, Robotics, Goal, Agent

ABSTRACT

Recently, the importance of agents in human-like intelligence
and behavior has been identified in different aspects of game
design. More and more advanced Artificial Intelligence (AI)
techniques have been adopted in games. This paper presents
an approach of game AI techniques in goal-oriented design
for behavioral control of game agents. The motivation be-
hind this is to determine whether combination of certain Al
techniques can describe logic for a whole game. This pa-
per is just the beginning of a research project which is de-
veloped a game design application, the Gameme system, for
non-professional game designers. In this paper, after intro-
ducing Gameme, we present a goal processing architecture
which facilitates the development of game agents capable of
responding to their environment and planning for their ac-
tions appropriately. We introduce a new data structure —
Goal Oriented Behavior Tree (GOBT) — which is tested in
some preliminary goal-oriented designs in offline and agents’
automatic learning and planning in real-time. Our results
show that the GOBT and related goal processing architecture
were able to make a difference in agents control for real-time
goal processing in games. Finally, we conclude with a brief
description of future work.

BACKGROUND AND RELATED WORK

Al has been incorporated in games for many years. Game
developers have used some forms of Al to give seemingly
intelligent life to game characters. Our approach takes inspi-
ration from robotics; especially, the multiple agent control
theories. Benson and Nilsson (1996) defined the term agent
as computer systems that perceive and model their environ-
ments and take actions in those environments to achieve and
maintain goals in Teleo-Reactive Programs. Our approach
is also based on the conventional Al techniques, such as
the Rule Based System (RBS) and the Finite State Machine
(FSM). RBSs constitute the best currently available means
for codifying the problem-solving know-how of human ex-
perts (Hayes-Roth 1985). One advantage of RBSs is that they
mimic the way people tend to think and reason given a set of

108

known facts and their knowledge about the particular prob-
lem domain. Another advantage of this sort of RBSs is that it
is fairly easy to program and manage because the knowledge
encoded in the rules is modular and rules can be coded in
any order (Schwab 2004). FSMs are featured with an event-
based and triggering-transition mechanism and became ex-
tremely popular in game development over the last decade.
However, FSMs are not applicable when states and transi-
tions increase exponentially. It becomes extremely difficult
to synchronize multi-behaviors together. It is not suitable for
intelligent agents control and goal-oriented behaviors plan-
ning in games.

Potential users of Gameme are non-professional game de-
signers who do not have any programming knowledge. The
Gameme system uses a modular architecture consisting of
three components: the User Interface (UI) module; Core (AI)
module; and 3D/Sound Engine module. A game created by
Gameme is a set of game logic which is a ramification of the
core module in Gameme. The core module, performing as an
Al middleware, interacts with the User Interface module and
the Graphics and Sound module. The idea of the core design
is that the core is composed of a set of discrete sub-modules,
such as FSM module, RBS module, GOBT module. These
modules perform together as a generator of game logic, and
can be combined dynamically and hierarchically to increase
the flexibility and adaptability of game characters. Conse-
quently, the core module not only generates representations
of game characters and logical relationships among them, but
also render the game logic in real-time.

APPROACH: GOAL-ORIENTED DESIGN

Most games come with goals. Game design is goal-oriented
design since playing a game requires achieving goals. The
intuitive way to design a game is to set goals for players to
achieve. So goal design can be the starting point of the entire
game design. From the game designers’ point of view, goals
are predefined and have characteristics, such as dynamic, op-
tional, inferable and continuous.

In the offline goal-oriented design, after game designers de-
cide goals based on their characteristics, Gameme has to pro-
vide a data structure to manage goals. Furthermore, a goal in
a game can be divided into a series of sub-goals. So, the pro-
cess of designing a game consists of a series of sub-systems

designs; and each sub-system has its own goal. It is analo-
gous to the Tree data structure and its operations. In the core
Al module, the goal-oriented design is presented as GOBTs.
The GOBT can be used to describe goals in certain game
scenarios; and it is a part of the pure game logic which is
output by Gameme. It can ensure that certain activities in
the game are done; ensure that a narrative structure is main-
tained (Bjork and Holopainen 2005). In addition, it provides
the possibility to expand goals by doing combination opera-
tions among GOBTs for several goals.

Real-time goal processing is a new challenge encountered by
Al game developers. Orkin (2005) discussed the benefits of
using real-time planning in the paper. These benefits include
dynamical planning for NPCs, easily shared and reused be-
haviors in modular architecture. In the game logic created
by Gameme, the real-time goal processing means that NPCs
and PCs should have the ability to sense the environment
and to decide the next step reaction in time. So the design
of the real-time goal processing architecture should include
attention-focusing mechanism for multi-goals, goal planning
mechanism and goal learning mechanism in order to create
intelligent, autonomous and believable agents in game.

We consider the adoption of virtual simulation of robotics
agent control theories into game design. All NPCs and PCs
can be agents in games. The goal planning mechanism, or au-
tomatic planning is conducting certain plans for agents. The
planning is mainly based on goal planners such as GOBTs.
GOBTs are created in offline game design and considered as
automatic goal planners to be used in real-time goal plan-
ning. The goal attention-focusing mechanism requires game
designers to specify Priority Factors for different goals in of-
fline, such as tables 1 and 2 in the Xman GOBT example be-
low. The goal learning mechanism is collecting related real-
time information for agents’ goal planning. Usually, these
three mechanisms are combined together in real-time to ma-
nipulate agents. The learning mechanism gets related infor-
mation to planning mechanism; the attention-focusing mech-
anism provides Priority Factors to planning mechanism. The
learning mechanism has to consider a number of factors,
such as agents’ characteristic, game environmental informa-
tion and game goals, etc.

A Goal Processing Architecture

We provide an agent architecture to be used in the goal pro-
cessing in Gameme. The Goal Processing Architecture is a
part of the core Al module of Gameme. This architecture has
a “Arbitrator” to communicate with agents’ planners, such
as GOBTs. The novel arbitrator combines functionality of
sensor, goal processing mechanisms and goal sending. The
sensor functionality is perceiving change states in each agent
and deposit these perception in the arbitrator. Also, the arbi-
trator can send decisions to agents regarding their next exe-
cution states. The architecture consists of three towers. This
architecture was inspired by the Teleo-Reactive Architecture
designed by Nilsson (2001). The architecture is running in
cycles. In each cycle: (1) The perception tower accepts cur-

i .
+ Game environmental

t
t
$ - -
; information
3

Figure 1: The Goal Processing Architecture

rent game environmental information from working memory
to the arbitrator. (2) The predication tower has pre-defined
Priority Factor tables of goals and rules. It filters information
sent from the perception tower; allocates it to preloaded rules
and Priority Factor tables; proposes possible actions based
on rules; calculates Priority Factor. Finally, it decides which
game state is to be executed in this cycle. (3) The action
tower is similar to a trigger for agents’ activities. It sends
decisions to agents.

The AI Core Module plays an important rule in Gameme.
All sub-modules in the core AI module collaborate together
to accomplish offline and real-time goal processing. In de-
tail, this design requires real-time communication and trans-
formations among FSMs, RBSs and GOBTs, etc. There are
two special design aspects in Gameme to match this design.
One is the Arbitrator; another is the infrastructure classes in
C++. The Arbitrator takes care of the real-time communica-
tion among sub-modules. And the inheritance hierarchy in
infrastructure classes makes transformations among FSMs,
RBSs and GOBTs easy and fast.

The Goal Oriented Behavior Tree

A game is a complex system which is composed of lots of
small modules. People use natural language to describe their
requirements as behaviors in a complex system. And the
complex system exhibits a set of behaviors. In general, the
behavior tree is used to design complex systems in a graph-
ical representation. In order to fit the goal-oriented nature
of game design, we design a novel data structure GOBT to
describe certain game scenarios. Translations of discrete be-
haviors and subsequent integration of behaviors into GOBTs
help us uncover problems with original textual game design
ideas.

A GOBT contains a set of behaviors, and is arranged in a tree
structure. For example, in the Figure 2, the Node B/ is the
root of the behavior tree. If we assume that the node B/ is
the current node, then nodes B2 and B3 are conditions of B/,
and B4 is the action of BI. B2 is the goal of the subtree in
the dashed circle; or we can say B2 is the root of the subtree.
The GOBT is a data structure which has the following special
properties: (1) The root node of a tree is the node with no

109

parents. There is exactly one root node in a rooted tree. A
leaf node has no children. (2) A directed edge (upwards)
refers to the link from a condition (of a node) to the node
itself; a directed edge (downwards) refers to the link from
a node to its result. (3) Each node can be a condition or
action of another upper level node; and it has a boolean value
which is used to indicate its status. A node in a GOBT can
be a game goal or a game state. (4) AND Nodes are nodes
that have the same parent node and are connected by arcs;
if we consider nodes indicated as B/ and B12 in Figure 2,
their logical relationship is AND. (5) An OR Node is a node
without an arc connected to other nodes with the same parent;
if we consider the nodes indicated as B2 and B3 in Figure 2,
their logical relationship is OR. (6) A Continuous Node is a
node indicated by a double circle; it represents a game state
that remains False indefinitely. For example, B7 in Figure 2
is a continuous node.

(1)

Figure 2: The Structure of a GOBT

The GOBT is an agent control structure that direct the agent
toward a goal in a manner that takes into account changing
environment circumstances. It matches the goal-oriented de-
sign for game scenarios in working backward from a goal
condition node. It is executed by searching for the shallow-
est True node and executing the action nodes linking to the
node. The Execution Order for each GOBT indicates the path
of traverse the tree in order to accomplish the goal which is
the root node. In addition, the GOBT is a simple automatic
(planning) system which has the ability of regressing con-
ditions through continuous nodes. Each continuous node is
continuously executed by discrete steps; it has a Termination
Condition (TC). The continuous node is executed by contin-
uously evaluated TC as long as its TC remains False. If the
TC becomes True, the continuous node is terminated, and
the follow-up node will be True and executed. Also, compo-
sitions of GOBTs define system compositions of any given
set of goals. From a constructive perspective, GOBTs’ com-
positions allow us to formalize and integrate graphically all
the fragments of composition expressed in each individual
goal. In addition, as general tree operations, GOBTs support

110

depth and level first traversals in order to cooperate with goal
planning and execution.

A GOBT Example

This section will describe an example of goal selection for
one agent “Xman”. The design idea in natural language is
“Xman needs food to live but must also avoid being eaten
by monsters”. Based on the single sentence, Xman has two
goals that can be expressed, with suitable elaboration, in
GOBTs. Game designers can design the GOBT by following
two steps. The first step is to decide main goal and subgoals.
The second step is to expand the goal sequence by adding
rules and states to generate the GOBT. The third step is to
generate Execution Order for a GOBT.

GOBT “Eat” (see Figure 3):

Goals for “Eat”:
Gl: Xman eat food
G2: Xman go to food
G3: Xman search food
G3 — G2 — Gl

Rules for “Eat’:
R1: Iffood is reachable, eat it
R2: Iffood is visible, go to it
R3: Ifthere is no food, search for it

States for “Eat”:
S1: eating food
S2: go to food (TC=arrive food position)
S3: search for food (TC=find food)
S4: there is no food

Execution Order:
$4—-G3—-83—-G2—852—Gl—Sl1

GOBT “Evade” (see Figure 4):

Goals for “Evade”:
gl: Xman evade
g2: Xman alert
g2 — gl

Rules for “Evade”:
rl: If there is no monster, Xman do nothing
r2: If there is a monster, Xman keep an eye on it (alert)
r3: If a monster approach to the Xman,
Xman run in opposite direction (evade)

States for “Evade”:
sl: Xman run in opposite direction
(TC = switch to another goal/state)
s2: Xman keep an eye on the monster
(TC = monster approach)
s3: there is a monster around
s4: Xman do nothing
Execution Order:
4 — 53— g2 — 52— gl —sl

There are couples of continuous nodes in this example. For
instance, the S3 node in GOBT “Eat” keeps looking for food.
The TC for this node is “find food”. If so, the node G2, which
is the follow-up node in the Execution Order, becomes True.
Sometimes, the continuous node don’t have follow-up node;
for example, the node s/ in GOBT “Evade”. Then the follow-
up node is the first node in the GOBT “Evade” Execution
Order. Below is the textual description for steps of creating
GOBTs for seeking food and avoiding monsters. Figures 3
and 4 show GOBTs in diagrammatic form.

jQ

&
3 {a3)
® ®

Figure 3: The generation of GOBT “Eat”

(@)

®

Figure 4: The generation of GOBT “Evade”

In games, an agent might have multiple goals. Each goal
is presumably achievable by a GOBT; for example, one tree
in this example is about Xman eating, and another is about
Xman evading a monster. During game rendering, most goals
must be attended to, although some are more important than
others. In general, it will not be possible to satisfy all open
goals simultaneously. The interesting thing is then that the
game core module has to switch between these two GOBTs
in real-time game playing. Based on the monster’s position,
the core module has to decide whether to let the Xman con-
tinue eating food or switch to evade status. The mythological
agent “Buridan’s donkey” failed to solve this problem and
died. The donkey’s problem was that he worked with oppos-
ing forces: when the forces balance, he did not move (as if
he used vector addition: v+ (—v) = 0). Biological agents
tend to work with thresholds, rather than sums. Let the food
“force” be F and the monster “force” be M, and let the action
A be given by A =F — M. Then,

A>0 — eat

111

A<0 = evade

Thus, after we have the GOBTs “Eat” and “Evade” for
Xman, in order to calculate the threshold A, the next step
is to assign values to each node in these two trees. We call
this value the Node Factor.

Step 1 (Weight Factor): Each node in the GOBT has an in-
teger value which is used to indicate the Weight Factor
of the node. When the arbitrator decides to switch be-
tween goals, the Weight Factor is used in the threshold
calculation. We can start from the left-most leaf in the
GOBT based on Execution Order and assign 1, 2, ...,n
to all n nodes in the GOBT.

Step 2 (Priority Factor): Among different goals, there is
still a Priority Factor for each goal which is indicated by
a single GOBT. In this example, keeping alive is more
important than eating food. So we can make the Priority
Factor for GOBT “Eat” as 0, and GOBT “Evade” as 1.
Finally, we can calculate Node Factors in GOBTSs using
Equation (1).
Node Factor = Weight Factor 4 Priority Factor (1)
Factor tables are predefined and stored in the perception
tower in the arbitrator as reference for goal planning. If two
nodes have different Node Factor values, the higher one will
be taken. If two nodes from different GOBTs have the same
Node Factor value, the Priority Factor will be taking account
in making the decision.

Table 1: Node Factors in the GOBT “Eat”

S4 G3 S3 G2 S2 Gl S1

Weight Factor 1 2 3 4 5 6 7
Priority Factor 0 0 0 0 0 0 0
Node Factor 1 2 3 4 5 6 7

Table 2: Node Factors in the GOBT “Evade”

s4 s3 g2

WeightFactor 1 2 3 4 5 6
Priority Factor 1 1 1 1 1 1
Node Factor 2 3 4 5 6 17

s2 gl sl

Goal learning and planning requires agents to have the ability
of automatic responding from other agents’ behaviors such as
the monster’s position in this example. It can be imagined as
attaching a sensor and a trigger to the agent in order to let
it has real-time environmental information and present suit-
able reactions. This is benefited from the structure of GOBTs
which are automatic planners. Also, this is implemented by

the goal arbitrator which allows the node with highest Pri-
ority Factor to be executed in run-time. In this example,
the monster is randomly moving around; and its behaviors
are described as a FSM in the game logic. The arbitrator
perceives information about the monster’s position, and de-
cides which node will be executed next step in GOBTs “Eat”
or “Evade”. The arbitrator also perceives currently executed
node ID from GOBT “Eat” or “Evade”. If there is no need
to switch goal, the arbitrator will not send out decision in-
formation, but only accept game environmental information
from working memory in each cycle.

The arbitrator is a macro-controller to make overall plans
and take all factors into consideration among game agents.
There is no direct message exchange between GOBT “Eat”
and GOBT “Evade”. In detail, here is a explanation of how
arbitrator works. In one cycle, the perception tower receives
Xman’s and monster’s position. The predication tower calcu-
lates distance between Xman and Monster. Then, it looks for
matching rules in order to determine whether the Xman is in
danger. If so, and the Xman is in a state of the GOBT “Eat”,
the tower decides to switch the Xman to a state in the GOBT
“Evade” since it has higher Priority Factor. If the Xman is
not considered to be in danger, the predication tower decides
not to change current goal of the Xman, and the Xman keeps
executing the next state in the GOBT “Eat”.

Why GOBTs?

This paper provides a heuristical example about how to use
GOBTs in the case of single agent with multiple goals. With
the characteristics of GOBTs and the agents’ goal processing
architecture introduced in this paper, we can extend the us-
age of GOBTs to complex agents control. Some might argue
that they can build the very same behaviors with a FSM as
the GOBT example. Indeed, FSMs have become extremely
popular over the last decade in game industry, and have been
used to build some pretty successful games. However, FSMs
still have problems, and game developers are seeking more
reliable logic models. The GOBT is a hierarchical logic
model which is customized for game development. Except
the factor that GOBT is enlightened from the goal-oriented
design, we discuss key reasons about how game Al devel-
opers can benefit from this form of hierarchical logic in this
section. (1) GOBTs can have multiple conditions and action
nodes; they can express AND and OR logical relationship in
a very simple and easy way. On the other hand, general FSMs
have to extend to multiple hierarchical structure in order to
have the same result. (2) GOBTs are deliberative based on
the natural aspect of the tree traverse. They are capable of
searching ahead in real-time, and provide different solutions
for agents’ behavioral planning. On the other hand, FSM is a
linear automation, and can not provide long-term goal plan-
ning. (3) GOBTSs provide flexibility in scale. The composi-
tion and decomposition of GOBTSs is much easier than that
of FSMs. FSMs, even hierarchical ones, are not suitable for
too many levels of logic. (4) GOBTs are suitable for design
logic in layers and modulars. It is similar to provide options

112

for game designers to design logic in different levels of de-
tail. It can avoid agents’ behavioral planning and decision
making affected by tiny animation detail in games.

CONCLUSION AND FUTURE WORK

Taking inspiration from robotics, we have proposed an ap-
proach of goal-oriented design which can be used in agents’
behavioral control in games. GOBTSs and the goal process-
ing architecture allow game agents handle goal-directed be-
haviors gracefully. The GOBT is one of the sub-modules
of the core Al module in Gameme. Inside Gameme, agents
are capable of planning their own goals based on environ-
mental information. Agents are directed toward a goal based
on continuous evaluation of perceptual inputs. We are cur-
rently developing the Gameme system. However, we be-
lieve the GOBT data structure and the goal processing ar-
chitecture with the arbitrator can be applied to a wide range
of game types. We do not recommend totally abandon-
ing FSMs in game design. Using FSMs to describe simple
state transitions is still suitable for certain game agents. By
extending game Al implementation from FSMs, RBSs and
GOBTs can make the game AI more powerful and intelli-
gent. This approach also promotes code reuse both within
and across games. By careful use of preferred properties we
can generate different behavior from the same basic classes
in Gameme. We are working on the core Al module and are
planning to extend the functionality of the core Al module by
adding new modalities of Al techniques. Evaluating this type
of system requires applying them to real situations. First, we
still have to design more experimental game scenarios to test
the AI modules in Gameme. Secondly, we would like to test
Gameme with a number of different games types. Later, a
simple GUI will be added to Gameme. Most importantly we
are currently planning user trials in order to provide a formal
evaluation.

REFERENCES

Benson S. and Nilsson N., 1996. Reacting, Planning and Learning
in an Autonomous Agent. In Machine intelligence 14: applied
machine intelligence, Oxford University Press. 29-62.

Bjork S. and Holopainen J., 2005. Patterns in Game Design,
Charles River Media. First ed., 323.

Hayes-Roth F,, 1985. “Rule-based Systems”. Communications of
the ACM, 28, 921-932.

Nilsson N., 2001. “Teleo-Reactive Programs and the Triple-tower
Architecture”. Electronic Transactions in Artificial Intelligence,
6, 99-110.

Orkin J., 2005. "Agent Architecture Considerations for Real-Time
Planning in Games”. In Artificial Intelligence and Interactive
Digital Entertainment. 105-110.

Schwab B., 2004. Al Game Engineering Programming, Thomson
Delmar Learning. 212.

AUTHOR
LISTING

114

Absar R. ..o, 57
Banerjee B.ccccevveeneens 103
Benovoy M.cceevreeeeens 57
Bignon J.-C. ...ceeeeeeeeee. 30
Bonduro V.ceeeeiiinennn 83
1011510 [. 68
BUrD. eccceeeeeeeees 30
Chawan A......cceeeeeeeeeee 48
(O] o1 I 15
ChenLl.cceeeiiiiiineeeeee, 37
Cooperstock J.R........... 57

de Beauclair Seixas R..79
de Oliveira Lyrio G.H.S.79

Fevens T. .ccccciinnennenn. 91
(TS GO 21
Grogono P.....ceeeiciiunnnnns 108
Hudlicka E.ccccerrennneen. 5
Jin Ch s 91

115

AUTHOR LISTING

Katchabaw M................ 68/83
1, G 21
MUudur S. ..ooeeeereeiereees 91
Roest G.B...cvireeeireenens 63
Rudzicz N. ..oveeireniirennnes 40
She Y e 108
StUit M. ceeeeeceeeeceeeeees 63
SzZirbik N.B..cooreeerreenrees 63
Tang J. cvvcccveeennennnnes 15137
Varano S. ..eeevereeeerennns 30
Verbrugge C.....cceeeeeeeee. 40
Volper D. cuceeeeeieriieeees 48
Walsh K. coeeeiieeeieeeeceees 103
Wozniewski M. ..ooeevrennns 57
Zadel M. ieeeeeceeeeeenns 57

