6™ INTERNATIONAL NORTH-AMERICAN CONFERENCE

ON
INTELLIGENT GAMES AND SIMULATION

GAMEON-NA 2011

3" INTERNATIONAL NORTH AMERICAN SIMULATION
TECHNOLOGY CONFERENCE

NASTEC 2011

EDITED BY

Mei Si

SEPTEMBER 28-30, 2011

RENSSELAER POLYTECHNIC INSTITUTE
TROY, USA

A Publication of EUROSIS-ETI

Printed in Ghent, Belgium

Cover art:

DRAGON COMMANDER is © 2010-2011 Larian Studios. DRAGON COMMANDER and
DIVINITY are the trademarks of Larian Studios. All rights reserved.

6" International North-American Conference
on
Intelligent Games and Simulation

3" North American Simulation

Technology Conference

TROY, USA

SEPTEMBER 28-30, 2011

Organized by
ETI
Sponsored by
EUROSIS

Rensselaer Polytechnic Institute

Co-Sponsored by

Ghent University Larian Studios
UBISOFT GR@M
GAME-PIPE The MOVES Institute
Model Benders LLC Binary lllusions
University of Skovde BITE

Higher Technological Institute

Hosted by

Rensselaer Polytechnic Institute
Troy, USA

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

EDITORS

Conference Chair
Mei Si, Rensselaer Polytechnic Institute, Troy, USA

Conference Co-Chair
Michael Lynch, Rensselaer Polytechnic Institute, Troy, USA

PROGRAMME COMMITTEE

Game Development Methodology
Track Chair: Licinio Roque, University of Coimbra, Coimbra, Portugal
Esteban Walter Gonzalez Clua, Universidade Federal Fluminense, Brasil
Gabriele D'Angelo, University of Bologna, Bologna, Italy
Oscar Mealha, University of Aveiro, Portugal
Jari Multisilta, University of Tampere, Finland
Ana Veloso, University of Aveiro, Portugal

Physics and Simulation

Graphics Simulation and Techniques
Stefano Ferretti, University of Bologna, Bologna, Italy
Yan Luo, National Institute of Standards and Technology, USA
lan Marshall, Coventry University, Coventry, United Kingdom

Facial, Avatar, NPC, 3D in Game Animation
Yoshihiro Okada, Kyushu University, Kasuga, Fukuoka, Japan
Joao Manuel Tavares, FEUP, Porto, Portugal

Rendering Techniques
Joern Loviscach, Fachhochschule Bielefeld, Bielefeld, Germany

Artificial Intelligence

Artificial Intelligence and Simulation Tools for Game Design
Antonio J. Fernandez, Universidad de Malaga, Malaga, Spain
Christian Thurau, Fraunhofer Institute, Schloss Birlinghoven, Germany

Learning & Adaptation
Christian Bauckage, Franhofer 1AIS, Sankt Augustin, Germany
Christos Bouras, University of Patras, Patras, Greece
Andrzej Dzielinski, Warsaw University of Technology, Warsaw, Poland

Intelligent/Knowledgeable Agents
Nick Hawes, University of Birmingham, United Kingdom
Wenji Mao, Chinese Academy of Sciences, Beijing, P. R. China

Collaboration & Multi-agent Systems
Sophie Chabridon, Groupe des Ecoles de Telecommunications, Paris, France

Opponent Modelling
Ingo Steinhauser, Binary lllusions, Braunschweig, Germany
\Y

PROGRAMME COMMITTEE

Peripheral

Psychology and Affective Computing
Bill Swartout, USC, Marina del Rey, USA

Artistic input to game and character design
Richard Wages, Nomads Lab, Koln, Germany

Storytelling and Natural Language Processing
Ali Arya, Carleton University, Ottawa, Canada
Jenny Brusk, Gotland University College, Gotland, Sweden
R. Michael Young, Liquid Narrative Group, North Carolina State University, Raleigh, USA
Clark Verbrugge, McGill University, Montreal, Canada

Modelling of Virtual Words
Ruck Thawonmas, Ritsumeikan University, Kusatsu, Shiga, Japan

Online Gaming and Security Issues in Online Gaming
Pal Halvorsen, University of Oslo, Oslo, Norway
Andreas Petlund, University of Oslo, Oslo, Norway
Jouni Smed, University of Turku, Turku, Finland
Knut-Helge Vik, University of Oslo, Oslo, Norway

MMOG's
Chris Joslin, Carleton University, Ottawa, Canada
Michael J. Katchabaw, The University of Western Ontario, London, Canada
Alice Leung, BBN Technologies, Cambridge, USA
Mike Zyda, USC Viterbi School of Engineering, Marina del Rey, USA

Serious Gaming

Wargaming Aerospace Simulations, Board Games etc....
Roberto Beauclair, Institute for Pure and Applied Maths., Rio de Janiero, Brazil
Henry Lowood, Stanford University Libraries, Stanford, USA
Jaap van den Herik, Tilburg University, Tilburg, The Netherlands

Games for training
Michael J. Katchabaw, The University of Western Ontario, London, Canada
Gustavo Lyrio, IMPA, Rio de Janeiro, Brazil
Tony Manninen, University of Oulu, Oulu, Finland
Martina Wilson, The Open University, Milton Keynes, United Kingdom

Games Applications in Education, Government, Health, Corporate, First Responders and Science
Paul Pivec, RaDiCAL
Daniela M. Romano, University of Sheffield, Sheffield, United Kingdom
Russell Shilling, Office of Naval Research, Arlington VA, USA

Games Interfaces - Playing outside the Box

Games Console Design
Chris Joslin, Carleton University, Ottawa, Canada
Anthony Whitehead, Carleton University, Ottawa, Canada

PROGRAMME COMMITTEE

Mobile Gaming
Stefano Cacciaguera, University of Bologna, Bologna, Italy
Sebastian Matyas, Otto-Friedrich-Universitaet Bamberg, Bamberg, Germany

Perceptual User Interfaces for Games
Tony Brooks, Aalborg University Esbjerg, Esbjerg, Denmark
Lachlan M. MacKinnon, University of Abertay, Dundee, United Kingdom

Gaming Robots
Leon Rothkrantz, Delft University of Technology, Delft, The Netherlands

NASTEC

Conference Chair
Mokhtar Beldjehem, St.Anne's University, Nova Scotia, Canada

Honorary Chairs

Lotfi A. Zadeh, Berkeley University, CA, USA
Ronald Yager, lona College, New Rochelle, USA
Madan M. Gupta, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Hojjat Adeli, The Ohio State University Columbus, OH, U.S.A.
I. Burhan Turksen, University of Toronto, Toronto, Canada

International Programme Committee

Ajith Abraham, Norwegian University of Science and Technology, Norway
Hojjat Adelli, Ohio State University,Columbus, OH, USA
Esma Aimeur, University of Montreal, Montreal, Canada
Troels Andreasen, Roskilde University,Roskilde, Denmark
Riad Assied, Petra University, Amman, Jordan
Bilal M. Ayyub, University of Maryland College Park, MD, USA
Mourad Badri, University of Quebec Trois-Rivieres, Canada
Linda Badri, University of Quebec Trois-Rivieres, Canada
Valentina Emilia Balas, Aurel Vlaicu University of Arad, Arad, Romania
Marek Balazinski, Ecole Polytechnique de Montreal, Montreal, Canada
lldar Batyrshin, Kazan State Technological University, Kazan(Tatarstan), Russia
Nabil Belacel, National Research Council, New Brunswick, Canada
Mohamed Bettaz, INI/MESRS, Algiers, Algeria
Prabir Bhattacharya, Concordia University, Montreal, Canada
Loredana Biacino, Universita degli Studi di Salerno, Salerno, Italy
Ranjit Biswas, Institute of Technology & Management, Gurgaon, India
Ulrich Bodenhofer, Johannes Kepler University, Linz, Austria
Piero P. Bonissone, General Electric, USA
Gloria Bordogna, Istito par le Technologie Informatche Multimediali, Milano, Italy
Patrick Bosc, ENSSAT, University of Rennes, France
Boubaker Boufama, University of Windsor, Windsor, Canada
Mounir Boukadoum, UQAM, Montreal, Canada
Ivan Bruha, McMaster University,Hamilton, Ont., Canada
Pascal Bruniaux, ENSAIT, Roubaix, France
Bill P. Buckles, University of North Texas, USA
Liberato Camilleri, University of Malta, Msida, Malta
Joao P. Carvalho,INESC-ID, Lisboa University,Lisboa, Portugal
Allaoua Chaoui, University of Constantine, Algeria
Guanrong (Ron) Chen, City University of Hong Kong, China
Agnieska Cichocka, Unvesity of Lodz, Poland
Alain Colmerauer, University of Aix-Marseille I, Marseille, France
Michel Dagenais, Ecole Polytechnique de Montreal, Montreal, Canada

\

PROGRAMME COMMITTEE

Mourad Debbabi, Concordia University, Montreal, Canada
Scot Dick, University of Alberta, Canada
Ibrahiem M. M. El Emary, King Abdulaziz University,Jeddah, Kingdom of Saudi Arabia
Talbi EI-Ghazali, Universite des Sciences et Technologies de Lille, Lille, France
Jinan Fiaidhi, Lakehead University, Canada
Christian Freksa, University of Bremen, Germany
Claude Frasson, Universite de Montreal, Montreal, Canada
Adam Galuska, Silesian University of Technology, Poland
Gabriel Gerard, Universite de Sherbrooke, Sherbrooke, Canada
Gianggiacomo Gerla, Universita degli Studi di Salerno, Salerno, Italy
Robert Godin, UQAM, Montreal, Canada
Peter Grogono, Concordia University, Montreal, Canada
Madan M. Gupta, University of Saskatchewan, Canada
Abdelwahab Hamou-Lhadj, Concordia University, Montreal, Canada
Sami Harari, University of Toulon and the Var, Toulon, France
Yutaka Hata, University of Hyogo, Japan
Eyke Haellermeier, Philipps-Universitaet Marburg, Marburg, Germany
Ahmed Ibrahim, RCC Intitute of Technology, Concord(Toronto), Canada
Enso lkonen, University of Oulu, Finland
Igbal H. Jebril, King Faisal University, Kingdom of Saudi Arabia
Yao JingTao University of Regina, Sask., Canada
Brigitte Jumard, University of Concordia, Montreal, Canada
Janusz Kacprzyk, SRI, Polish Academy of Sciences, Warsaw, Poland
Okyay Kaynak, Bogazici University, Bebek(Istanbul), Turkey
James M. Keller, University of Missouri, USA
Bettina Kemme, McGill University, Montreal, Canada
Etienne E. Kerre, Ghent University, Ghent, Belgium
Taghi M. Khoshgoftaar, Florida Atlantic University, USA
Frank Klawonn,University of Applied Sciences Braunschweig/Wolfenbuettel, Wolfenbuettel, Germany
Erich Peter Klement, Softwarepark Hagenberg, Hagenberg, Austria
Mario Koeppen, Kyushu Institute of Technology, Fukuoka, Japan
Amit Konar, Jadavpur University, Kolkata, India
Donald H. Kraft, Louisiana State University, USA
Vladik Kreinovich, The University of Texas at El Paso, El Paso, Texas, USA
H. K. Kwan, University of Windsor, Canada
Guy Lapalme, Universite de Montreal, Montreal, Canada
Frank L. Lewis, University of Texas at Arlington, Worth(TX), USA
Pawan Lingras, St. Mary University,Hamilton, NS, Canada
Hakim Lounis, UQAM, Montreal, Canada
Edwin Lughofer, Softwarepark Hagenberg, Hagenberg, Austria
Mourad Maouche, University of Philadelphia, Amman, Jordan
Trevor Martin, University of Bristol, United Kingdom
Alexander Mehler, University of Bielefeld, Germany
Jean Meunier, Universite de Montreal, Montreal, Canada
Ali Mili, New Jersey institute of technology, USA
Guy Mineau, Universite de Laval, Laval, Canada
Zelmat Mimoun, University of M'hamed Bougara - Boumerdas, Algeria
Gautam Mitra, Brunel University, UK
Malek Mouhoub, University of Regina, Sask., Canada
Sudhir P. Mudur, Concordia University, Montreal, Canada
Mike Nachtegael, Ghent University, Ghent, Belgium
Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
Jian-Yun Nie, Universite de Montreal, Montreal, Canada
Abdellatif Obaid, UQAM, Montreal, Canada
Fakhreddine O. Kerray, University of Waterloo, Canada
Sankar Kumar Pal, Indian Statistical Institute, Kolkata, India
Costas P. Pappis, University of Piraeus, Piraeus, Greece
Gabriella Pasi, Istito par le Technologie Informatche Multimediali, Milano, Italy
Frederick E. Petry, Naval Research Laboratory, MS, USA
Helene Pigot, Universite de Sherbrooke, Sherbrooke, Canada
Bhanu Prasad, Florida A&M University, USA
Vi

PROGRAMME COMMITTEE

Witold Pedrycz, University of Edmonton, Edmonton, Alberta, Canada
James F. Peters Ill, University of Manitoba, Canada
Henri Prade, University of Paul Sabatier, Toulouse, France
Shahram Rahimi, Southern lllinois University,Carbondale, Il., USA
Djamal Rebaine, UQAC, Chicoutoumi, Canada
Marek Reformat, University of Edmonton, Edmonton, Alberta, Canada
Burghard B. Rieger, University of Trier, Trier, Germany
Stuart H. Rubin, Space and Naval Warfare Systems Center, USA
Daniel Rodriguez, University of Alcala, Madrid, Spain
Imre J. Rudas, Budapest Technical University, Budapest, Hungary
Houari Sahraoui, University of Montreal, Montreal, Canada
Aziz Salah, UQAM, Montreal, Canada
Johann Schumann, RIACS/NASA Ames, USA
Antoaneta Serguieva, Brunel University, West London, United Kingdom
Siti Mariyam Shamsuddin, Universiti Teknologi Malaysia, Malaysia
Pierre Siegel, University of Aix-Marseille |, Marseille, France
Constantinos I. Siettos, National Technical University of Athens, Athens, Greece
Nematollaah Shiri, Concordia University, Montreal, Canada
James F. Smith, Ill, Naval Research Laboratory, Washington, DC, USA
Roman Slowinski, Poznan University of Technology, Poznan, Poland
Mu-Chun Su, National Central University, Taiwan, China
Dutta Sumitra, INSEAD, Fontainebleu, France
M.N.S. Swamy, Concordia University, Montreal, Canada
Hideyuki Takagi, Kyushu University, Fukuoka, Japan
Hamid R. Tizhoosh, University of Waterloo, Canada
Jose A. B. Tome, INESC-ID, Lisboa University, Lisboa, Portugal
Enric Trillas, European Centre for Soft Computing, Mieres(Asturias), Spain
Edward Tsang, University of Essex, United Kingdom
Hans Vangheluwe, McGill University, Montreal, Canada
Athanasios Vasilakos, University of Western, Macedonia,Greece
Xizhao Wang, HeBei University, China
Ronald R. Yager, IONA College, New Rochelle, N.Y., USA
Takeshi Yamakawa, Kyushu Institute of Technology, Kyushu, Japan
Mustapha Yassine, National University of Amman, Amman, Jordan
Ting Yu, University of Sydney, Sydney, Australia
Nevin Vunka Jungum, University of Mauritius, Mauritius
Sahnoun Zaidi, Universite de Constantine, Algeria

Reality Mining and Surprise Modelling
Danny Van Welden, KBC, Brussels, Belgium

Industrial Simulation
Guodong Shao, NIST, Gaithersburg, USA

Ecological sustainable development and Innovative technologies for a bio-based economy
Philippe Geril, ETI Bvba, Ostend, Belgium

Vi

GAME’ON-NA
2011

NASTEC’2011

© 2011 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Multidisciplinary Society for
Modelling and Simulation Technology. Permission is granted to photocopy portions of the publication for personal use
and for the use of students providing credit is given to the conference and publication. Permission does not extend to
other types of reproduction or to copying for incorporation into commercial advertising nor for any other profit-making
purpose. Other publications are encouraged to include 300- to 500-word abstracts or excerpts from any paper
contained in this book, provided credits are given to the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be
used in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in these Proceedings have been peer reviewed
EUROSIS-ETI Publications are ISI-Thomson and INSPEC referenced
A CIP Catalogue record for this book is available from the Royal Library of Belgium under nr.12620

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Greenbridge NV,
Wetenschapspark 1, Plassendale 1, B-8400 Ostend, Belgium.

EUROSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400
Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium
Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium
Cover Pictures by Larian Studios, Ghent, Belgium

EUROSIS-ETI Publication

ISBN: 978-9077381-65-6
EAN: 978-9077381-65-6

X

Preface

On behalf of the Rensselaer Polytechnic Institute | would like to welcome you to
GAMEON-North America 2011-NASTEC’2011, and to the fair city of Troy.

This year’s event, smaller in size than normal no doubt because of the present
economic climate, nevertheless succeeds in bringing together a number of
presentations covering such wide-ranging fields as Game Methodology and Al,
Game Graphics, Motion in Graphics, Serious Gaming and Industrial Simulation
offering the participants a broad overview of present-day gaming and simulation
research.

As well as the peer-reviewed papers, Game-On 'NA 2011-NASTEC’2011
features a number of invited talks highlighting research done in the field of
computer gaming. These talks are by Heidi Boisvert, Creative Director &
Founder, futurePerfect Lab and by David Thue of the University of Alberta,
Canada.

To finish of the research theme we will visit the Games Labs at Rensselaer
Polytechnic Institute.

Again, welcome to Troy and have a good conference.
Mei Si
Conference Chair

Rensselaer Polytechnic Institute
Troy, USA

Xl

Xl

CONTENTS

Preface ... e e s Xl
Scientific Programme ... 1
X W) Lo gl I T3 1 o ' R 75

GAME METHODOLOGY AND Al

Procedural Generation of Sokoban Levels
Joshua Taylor and 1an Parberry ... ciiieeecciiiremesnssrnmssssssssssssssssmssssssssnsssssnens 5

Deploying Fuzzy Logic in a Boxing Game
Hamid Reza Nasrinpour, Siavash Malektaji, Mahdi Aliyari Shoorehdeli
and Mohammad Teshnehlab ... s 13

GAME GRAPHICS

Fast Believable Real-Time Rendering of Burning Low Polygon Objects
in Video Games
Dhanyu Amarasinghe and [an Parberry ... ciieecciiireccsereeesssesseesss e remmnnes 21

Very Fast Real-Time Ocean Wave Foam Rendering Using Halftoning
Mary Yingst, Jennifer R.Alford and lan Parberry.....ccoeeeecccciieeeseeeessscseeneens 27

MOTION IN GAMING

Experimental Soccer Robot Identification Using Light-Emitting Diodes
Eliska Ochodkova, Tomas Kocyan, Vaclav Svaton and Jan Martinovi€............ 35

SERIOUS GAMING

Didactic Games System: Fifteen Years of Development in Military
Simulation

Gustavo Henrique Soares de Oliveira Lyrio

and Roberto de Beauclair SEiXas. ... 45

Evaluating Game Engines for Incorporation in Military Simulation

and Training

Jennifer L. Winner, Stephen F. Nelson, Rebecca L. Burditt

F= o 172 =T o 0 o o | N 52

An interactive Policy Simulator for Urban Dynamics
Terry Lyons and Jim DUgQan ...ccceeevrrrmmssssssssssssssssssssss s 57

XMl

CONTENTS

NASTEC

Optimization of Production Maintenance Policy based on the Production
Rate with a Discrete Event Simulation
Jérémie Schutz and Nidhal REZJ.....ciuueeemmmciiiiiiiirereeecceese e e e e s e e e

Y%

SCIENTIFIC
PROGRAMME

GAME
METHODOLOGY
AND
Al

PROCEDURAL GENERATION OF SOKOBAN LEVELS

Joshua Taylor and Ian Parberry
Dept. of Computer Science & Engineering
University of North Texas
Denton, TX, USA
Email: ian@unt .edu, JoshuaTaylor@my.unt.edu

KEYWORDS
Procedural generation, Sokoban, puzzle.

ABSTRACT

We describe an algorithm for the procedural generation of
levels for the popular Japanese puzzle game Sokoban. The
algorithm takes a few parameters and builds a random in-
stance of the puzzle that is guaranteed to be solvable. Al-
though our algorithm and its implementation runs in expo-
nential time, we present experimental evidence that it is suf-
ficiently fast for offline use on a current generation PC when
used to generate levels of size and complexity similar to those
human-designed levels currently available online.

INTRODUCTION

In puzzle games the level design can make the difference be-
tween a game that is trivially easy or completely impossible.
It is difficult to find the balance between the two, where the
levels are challenging but still solvable. Here we present an
algorithm that automates the generation of Sokoban puzzles
of a given difficulty.

Sokoban is a puzzle game played on a rectangular grid. The
goal is for the player’s avatar to push boxes onto marked
goal squares. The challenge comes from the placement of
the walls, goals and boxes and the restriction that the avatar
is only strong enough to push one block at a time and can-
not pull blocks at all. The simplest way of explaining it is
to show a picture, for example Figure 1, which shows a level
with a single box and a single goal. This figure and the other
screenshots in this paper are from JSoko (Damgaard et al.
2010).

Culberson has shown (Culberson 1998) that Sokoban is
PSPACE-complete, meaning that it is in a sense at least as
difficult as almost any one-player game. (Most games that
are hard in this sense are for two or more players.) This,
together with its simple rules, makes Sokoban a challeng-
ing candidate for procedural generation of puzzle instances.
Completely random Sokoban levels are extremely likely to
be unsolvable, or if they are solvable, then they are likely to
be very easy. Even hand-made levels suffer from this prob-
lem unless the person making the level is an experienced
Sokoban level designer.

Most other research done on Sokoban has been geared to-
wards solving existing Sokoban puzzles (Junghanns and
Schaeffer 1997, Botea et al. 2003). Some work has also
been done on estimating the difficulty of a given Sokoban
problem (Jarusek and Peldnek 2010a, Ashlock and Schon-
feld 2010). Relatively little research has been done on gen-
erating new Sokoban levels (Murase et al. 1996, Masaru
et al. 2003), although there are several existing generator pro-
grams (Miihendisi Accessed 2011). Additionally, there has
been some research on generating levels for other PSPACE-
complete puzzle games (Servais 2005).

The interested reader is invited to visit our Sokoban Gener-
ator webpage (Taylor and Parberry 2011) for supplementary
information. This includes some more detailed instructions
for the novice on how to play Sokoban, several hundred pro-
cedurally generated Sokoban levels, a link to an open source
Java implementation called JSoko on which to play-test those
levels, a short video showing JSoko’s solution to some of
our levels, some larger color images from this paper, and the
archived data from the experiments performed to generate the
performance data for the tables and figures that will appear
later in this paper.

OBJECTIVES

Any procedural generation system should satisfy several cri-
teria (Doran and Parberry 2010): novelty, structure, inter-
est, controllability and speed. Our Sokoban level generator
possesses these qualities as follows: Novelty: The genera-
tor produces a new and different puzzle on each run. Struc-
ture: The puzzles are nontrivial yet not impossible to solve,
without requiring verification of this by use of an automated
solver. Interest: Players should find the prospect of solving
the puzzles attractive. This is left for future work; Develop-
ment is currently underway. Controllability: Designers have
control over the size and difficulty of the generated levels.
Speed: The generator can run offline on a modest computer
and generate at least one challenging puzzle, or hundreds of
nontrivial puzzles per day.

Our primary aim is to generate reasonably difficult, but not
impossible, Sokoban levels. There are two reasons for this.
Firstly, these levels are the kind that are hard for a human
to make, at least without a lot of experience. Secondly, we
believe that in puzzle games, difficulty is related to interest.

(D @ 3)

Q) &) (6)

Figure 1: Solving a simple Sokoban level. The aim is to push the box to the square marked with the “X” at top left using the
yellow bulldozer. The white arrows indicate player actions. The six images show, from left to right, (1) the start configuration,
(2) push the box one place right, (3) reposition the player below the box, (4) push the box two places up, (5) reposition the player
to the right of the box, and (6) push the box two places to the left into the final configuration.

Interesting puzzles are neither too difficult nor too easy (at
least for most players), and yet it is these puzzles that are the
most difficult to generate.

METHOD

The idea of working backwards from the goal towards the
start is not new (Takes 2007), but previously it has only been
used to solve existing levels. Here we use that idea to gen-
erate new levels. Our algorithm consists of three high-level
steps, each of which will be described in more detail in its
own subsection below.

1. Build an empty room.
2. Place goals in the room.
3. Find the state farthest from the goal state.

EMPTY ROOMS

To build an empty room, we use a method somewhat similar
to that of (Murase et al. 1996). We begin by choosing a width
and height for the level. This is done by simply picking a ran-
dom number within a user-specified range. The level is then
partitioned into a grid of 3 x 3 blocks. Each block is then
filled in using a randomly chosen and randomly rotated or
flipped template. The templates consist of a 3 x 3 pattern of
walls and floors surrounded by a border of blanks, walls and
floors (see Figure 2). The borders cause neighboring tem-
plates to overlap. A non-blank tile must match any pattern it
overlaps, whether it is placed before or afterwards.

This overlap helps to create interesting levels by preventing
some bad configurations from being generated. For exam-
ple, the pattern consisting of a single wall in the middle sur-
rounded by a ring of floor will become a large dead-end un-
less there are at least two floor tiles adjacent to each other
and that pattern. Since the templates are randomly rotated
and flipped before being placed, this is very easy to enforce
by simply placing two adjacent floor tiles in the border of
that template and leaving the rest blank.

Figure 2: Templates used to design an empty room.

If the generator places blocks in such a way that it cannot fill
in one of the cells with any of the available templates, it will
discard that attempt and start over. The run time of this step
is very small compared to the rest of the algorithm, so even
throwing away several partial room shapes does not create
any noticeable loss of speed.

Finally, there are some post-processing checks to make sure
the level will work well with the remaining steps. Any level
that fails one or more of these tests is discarded.

e The level is checked for connectivity. There should be
one contiguous section of floor. There is one special

case here. The templates that allow the player to pass
through, but will not allow a box to pass, are checked
as if there was a wall tile separating the two sides. This
only affects this check, and that tile is counted as a floor
tile in all other cases.

e Any level that has a 4 x 3 or 3 x 4 (or larger) section
of open floor is discarded. By observation, such levels
tend to make levels with very bushy, but not very deep
state spaces. This makes it very hard to generate the
level, but not much harder to solve it.

o The level must have enough floor space for the planned
number of boxes, plus the player and at least one empty
space.

o If the level contains any floor tiles surrounded on three
sides by walls, it is discarded. This is a somewhat aes-
thetic choice, but such tiles are either obviously dead
space if there is no goal there, or an easy place to get
boxes out of the way otherwise, so we think it improves
the quality of the resulting levels somewhat.

PIACING GOALS

Goal placing is done by brute force, trying every possible
combination of goal positions. This is admittedly very inef-
ficient. Many human made levels place the goals in certain
patterns, such as a rectangle of contiguous goals, but by do-
ing a brute force search for the best places to put the goals,
some obvious patterns emerge.

One pattern that seems to hold for most, but not quite all, of
the levels generated so far is that the goals are touching either
a wall or another goal. Whether forcing this would provide
a significant speed-up, or a significant drop in the quality of
the resulting levels has not yet been investigated.

Our generator uses a timer that checks it has exceeded its
allotted time. If it has, it will terminate and return the best
result so far. To help ensure that that result is something
interesting, even if not the best, the positions for the goal
crates are checked in random order. This is done by creating
a shuffled list of the empty spaces on the board.

FARTHEST STATE

For each placement of the goals the system finds the farthest
state from that goal state, that is, the state with the longest
shortest path from itself back to the goal. Over all goal states,
the farthest farthest state is returned as the output of the gen-
erator. Thus, the distance from the goal state to the start state
is the metric by which we judge the resulting levels, as well
as influencing the algorithm used to search the state space.
The definition of distance is crucial. In Sokoban there are
four common distance metrics. The simplest is just the move
count, incremented every time the avatar moves. As a mea-
sure of the difference between states, this does not work very

well. Just making a large labyrinth with only one obvious so-
lution will still give a high distance, but will be fairly trivial
in the end.

The number of box pushes, incremented each time the avatar
moves into a square containing a box, is not much different
than the move count. A level that required the player to push
boxes down long hallways would give a high score, but again
would not be difficult, just tedious.

The box lines metric is more interesting. It counts how many
times the player pushes a box, but any number of pushes of
the same box in the same direction only count as a single box
line. From our observations, the number of box lines corre-
sponds fairly well with the difficulty of the resulting level.
We are currently using the box line metric in our generator.

The last metric is box changes. It counts how many times the
player stopped pushing one box, in any direction, and began
pushing another. This may be an even better measure of dif-
ficulty, and may improve the overall speed of the generator,
but it is more difficult to implement.

Any metric except for the move count allows us to abstract
out the avatar position. Instead of keeping up with which
square the avatar is in, we keep up with which group of con-
tiguous floor squares it could reach. This abstraction pro-
vides a significant decrease in the time it takes to generate
the set of further states.

All of this is done in reverse compared to how Sokoban is
played. The reason for this is to prevent the generator from
having to consider invalid moves. Any state reachable when
moving in reverse will be solvable when played normally.

Unfortunately, none of the usual search algorithms are suit-
able for this problem. The most obvious way to find the far-
thest state is to use a breadth-first search, returning the last
state found, but since moves in Sokoban are not reversible,
the only way to prevent repetitions is to store a list of all
visited nodes. For Sokoban, or any other PSPACE-complete
problem, this will quickly fill up the available memory. Iter-
ative deepening is unsuitable for similar reasons. Informed
searches, like A* or IDA*, are unsuitable because the target
is very vaguely defined, meaning we have no clear indication
when to stop the search. To get around these problems, we
use a form of iterative deepening twice, trading off the high
memory requirements for a somewhat slower algorithm.

proc Go(goal) =

startSet := MakeStartSet(goal);

resultSet := startSet;

depth := 1;

do
prevSet := resultSet;
resultSet := Try(startSet, resultSet, depth);
if resultSet = () then exit fi;
depth := depth + 1;

od;

Go := (prevSet, depth).

proc Try(startSet, prevResults, depth) =
resultSet := Expand(prevResults);
tempSet := startSet;
for i := 1 to depth do
resultSet := resultSet — tempSet;
tempSet := Expand(tempSet);
od;
Try := resultSet.

MakeStartSet takes the goal state and places the player into
each available contiguous floor area. Expand takes a set of
states and returns the set of states one step farther. What
those states are depends on which metric is being used, which
is why the choice of metric has such an impact on the running
time. Go is almost a standard iterative deepening algorithm.
It takes the goal, calls MakeStartSet to set things up and
then calls Try one depth at a time. What is different here is
the end condition. Go calls Try until it fails and then returns
the previous set of results. Try takes the starting set, the pre-
vious results and a target depth. It then calls Expand on the
previous results. Then it starts over expanding the start set,
subtracting that from the results. What is left after the target
depth has been reached is all of the nodes that can be reached
in depth steps, but no sooner.

GENERATING LEVEL SETS

Our generator returns the set of all levels that are as far from
the goal state as possible. This can be anywhere from one
to a few hundred levels, and some are obviously better than
others. We have an additional layer over the generator that
attempts to select a good level from those generated and then
collects the results of several runs into a level set. Addition-
ally, it makes an attempt to reject levels that are much too
easy, or are too similar to levels already in the level set. Fi-
nally, when the target number of levels has been reached, it
attempts to sort them by some measure of difficulty.

The questions of what is better and what is not good
enough both rely on the same, rather arbitrary, measure.
We take the candidate level and give it a score based on
a number of factors. To begin with, the score is 100 -
(pushes — number of sibling levels + 4 - lines — 12 -
boxes) + Random(0, 300), where pushes is the number
of box pushes in the solution, sibling levels is the number of
other levels the generator found at the same depth, lines is
the number of box lines in the solution, boxes is the number
of boxes in the level and Random is just a random number
between the given values. While this is, again, fairly arbi-
trary, the rationale is that both more pushes and more lines
make the level more difficult, while levels with many sib-
ling levels seem to be less interesting, just by observation.
The number of boxes is subtracted not because more boxes
makes the level less interesting, but because the number of
lines needs to exceed the number of boxes by a certain factor

for the level to have a better chance of being a good level.
The random factor is mainly there to break ties.

Some other checks are made after getting the base score. Any
trapped box is worth -100000 points, which is almost guar-
anteed to get the level rejected. Any box touching a wall
is worth -150 points, a box touching the player is worth 50
points, and a box touching another box is worth 30 points.
Finally, a goal area touching a goal area is worth 30 points.
These constants can be adjusted by the individual designer
to suit his or her intuition about features possessed by good
Sokoban levels. Any level with a final score of 0 or less is
rejected. The base score is quite a bit higher than the scores
for most of the various other checks though, so not many lev-
els are rejected at this point. This same score is then used to
choose the best level from those generated, assuming any are
left.

Once a level has passed all of the other tests, the program
checks to see whether or not it is too similar to another level
already in the set. Currently, this just re<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>