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PREFACE

Phenomenal advances in computer technology together with progress in the areas of
mathematical modelling in recent decades have made simulation procedures very powerful
tools for the analysis and design of almost all types of industrial and economic processes.
Accurate and reliable predictions about the outcome of complex natural transport processes
and performance of novel designs for industrial equipments are routinely made using modern
simulation methodologies. The annually held international Industrial Simulation Conferences
(ISC), organised and run by EUROSIS in conjunction with various organisations, provides an
important forum for the presentation and exchange of new ideas related to the development
and application of computer simulation techniques in a very diverse and wide ranging area of
industrial relevance.

We are very pleased to be able to co-organise the 7™ ISC at Loughborough University with
EUROSIS. In continuation with its rich tradition, the 1ISC’2009 will provide an excellent
overview of industrial simulations and related research within the European Community and
the rest of the world. The varied simulation work presented in the conference relate to a wide
ranging problems of industrial importance. These include robotics and automotive industry,
sensors and process control, traffic simulation, multibody simulation, biomedical engineering,
data mining, manufacturing processes, chemical engineering, etc. More information on the
areas of the conference can be found in the programme. Although various engineering
disciplines are covered as separate themes, the focus of the conference remains
interdisciplinary. This allows one from a particular area to learn from the simulation methods
in another area and apply them in his/her areas of research.

The present proceedings consists of the papers which were selected after a rigorous
refereeing process for presentation at ISC’2009. We received 76 papers for the conference
out of which 69 were accepted. We are pleased to see a high standard of the papers
originating from many countries in the world. The conference programme will be further
enhanced by keynote lectures by three renowned experts, namely, Prof Allison Noble
(Oxford University, UK), Prof Adel Sharif (University of Surrey, UK) and Professor Philip
Eames (Loughborough University, UK), an invited lecture by Mr Duncan Forgan (University
of Edinburgh, UK), software demonstration and a number of visits to various laboratories at
Loughborough University.

Loughborough is a town in Leicestershire, central England with a population of more than
57,000 as of 2004. It is about 90 minutes away from London by train and only a short
distance away from major cities of Leicester, Nottingham and Derby. It is the administrative
centre for the Charnwood district and home to Loughborough University. Loughborough
University, which is celebrating its centenary in 2009, has been at the core of many scientific
and technological advances and continues to excel as a premier research and teaching
institute in the UK. For example, the Sunday Times University Guide awarded the university
the coveted ‘University of the Year title for the year 2008-2009 in recognition of its excellent
all-round performance among all the higher education institutes in the UK

On behalf of the Organising and International Programme Committees of ISC’ 2009, we
would like to welcome you to Loughborough. We are certain that ISC’2009 will provide an
important platform for the development of new opportunities, collaborations, ideas and
inspirations.

Diganta Bhusan Das, Vahid Nassehi, Lipika Deka
Editors, Conference Proceedings, ISC 2009, Loughborough, UK
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PARMAX — A PREDICTOR FOR DISTRIBUTED TIME SERIES

Dan Stefanoiu, Janetta Culita
Dept. of Automatic Control and Computer Science
,,Politehnica” University of Bucharest,
313 Splaiul Independetei 060032 Bucharest, ROMANIA

E-mails: danny@indinf.pub.ro, jculita@yahoo.com

KEYWORDS
Prediction, MIMO-ARMAX models, distributed signals,
prediction quality, Particle Swarm Optimization.

ABSTRACT

Within this article, the problem of multi-variable signals
prediction is approached. Such signals are provided
especially by natural phenomena with geographical
distribution. Presumably, the set of time series generated by
the same source are more or less correlated each other.
Instead of processing each time series independently, they
can be seen as measurable outputs provided by some open
MIMO system. Therefore, modeling and forecasting of
system behavior can rely on multi-dimensional ARMAX
models. The research based on this idea led us to
construction of PARMAX predictor. Optimal structural
indices of MIMO-ARMAX model can be found by means of
an evolutionary strategy: Particle Swarm Optimization.

1. INTRODUCTION

Evolution of many natural phenomena can be monitored
with higher accuracy when the observation and measurement
are accounting not only the time variation of some
parameter, but also its distribution over a geographical area.
Take for example the snow thickness monitoring application
on White Valley from French Alps (see Figure 1).

eco
(wireless)

eco-sensor
(wireless)
-

Figure 1: Snow Thickness Measuring on White Valley

The monitoring system consists of 3 layers. The lowest level
layer includes on-field wireless sensors (eco-sensors).
Signals are first gathered by eco-nodes, then labeled and
transmitted at middle level layer — a versatile acquisition
interface referred to as VISA [Stefanoiu 2008a]. VISA
performs primary filtering and data organizing, before
sending them to the highest level layer — a laptop in charge

with monitoring. In this context, by monitoring, one
understands data prediction mainly.

When using a stand alone sensor, the main problem is to
locate it in such a vast environment. As Figure 1 is
suggesting, the thickness varies both in time and space. A
network of wireless sensors is seemingly more suitable to
perform monitoring than isolated sensors. Several time series
(ts), from different locations are thus provided. Data coming
from different channels are in general more or less
correlated. For example, the snow melting on top may
increase the thickness at the bottom of the valley (especially
when avalanches are produced). Assume that the monitoring
goal is to predict the snow thickness in order to prevent
avalanches. It is very likely that better prediction results be
obtained when considering the collection of all data sets,
rather than when building independent prediction models for
each of them.

A quick approach to the prediction problem is to use data
fusion techniques [Wang 2005], followed by prediction.
After fusion, a unique ts results [Stefanoiu 2008a] and, thus,
on one hand, some prediction model can easily be
implemented. On the other hand, after fusing the data, much
of the prediction information provided by each sensor is lost,
which strongly limits the prediction accuracy.

A different approach is described within this paper. One
considers that sensors provide data as result of unknown
colored noises that stimulate an open and quasi-ubiquitous
system. The system has in fact a continuous collection of
variable states. Placing a finite set of sensors at different
locations, in order to perform measuring, is equivalent to
sampling the system both in time and space. While the time
sampling is governed by Shannon-Nyquist rules, sampling
the system over space is by far more empirical. To the best
of our knowledge, no general rules of space sampling are
currently available. However, apparently, simulations have
shown that the prediction quality is less affected by the
sensors location than by their number.

This paper is structured as follows. Section 2 succinctly
describes the construction of MIMO-ARMAX predictors.
Section 3 is devoted to Particle Swarm Optimisation (PSO)
[Kennedy 1995] — an evolutionary technique to find optimal
structural indices of prediction model. The performance of
PARMAX predictor is demonstrated within the last section,
within an application of temperature monitoring. A
conclusion and the references list complete the article. (More
details can be found in [Stefanoiu 2008c].)



2. KERNEL OF PARMAX: MIMO-ARMAX MODELS

In a previous research [Stefanoiu 2008c], a comparison
between classical prediction methods (based on ARMA
modeling) and a wavelet-based method has been realized.
But the analyzed ts were mono-variable. In case of multi-
variable ts, the SISO-ARMA model can be extended to a
MIMO-ARMAX model [Soderstrom 1989], according to the
rationale described in this section.

Let 1;={yj}j€rny be the set of ny ts provided by some

distributed set of sensors and denote the maximum number
of acquired data by N . Before any other operation, data of

% have to be synchronized. Synchronization may involve

interpolation (e.g. spline type) and re-sampling, such that
each data set includes exactly N, samples. This allows

. T .
construction of output vector y:[yI yny] , which

belongs to some MIMO system. Thus, a general MIMO-
ARMAX model can be assigned to data set % :

A(q")yzB(q")u+C(q’l)e. (1)
In equation (1), AeR™" (q’1 ) , BeR™™ (q’1 ) and
CeR”™ (q’l) are matrix polynomials, u e R™ is the input

vector (nu channels) and e R"™ is the vector of Gaussian
uncorrelated white noises. Two main problems have to be
solved, to identify the model (1) from data % : specifying

the model structure and estimating the input signals. If all
polynomials of matrices A, B and C are non null, then
identification is extremely difficult to perform. Firstly,
because the number of parameters to estimate is quite large
(even for small number of input-output channels). Secondly,
because the output channels are mixed within the AR part
(the left side of equation (1)). Therefore, some simplifying
hypotheses are necessary. One of the most natural
assumptions has been adopted within MATLAB environment:
each output vary independently on the other outputs, solely
as result of stimulation with inputs and noises. This means
the matrix A is diagonal. The second assumption regards
the white noises: since they are uncorrelated each other, only
one noise per output channel can be kept. Thus, the matrix
C is diagonal as well. As direct consequence of the two
hypotheses, the MIMO-ARMAX model can be split into ny

MISO-ARMAX models (with natural notations):
A, (q’l )yj =B, (q’1 )u +C, (q’l )ej , Vjelny. (2)
This time, B, e R™™ (q’l) is a row vector of polynomials.

Identification of MIMO-ARMAX model reduces now to
estimation of parameters for each MISO-ARMAX model,
separately. Although models (1) and (2) are not equivalent
(in the second one, correlation between outputs was
removed), identification is now affordable. Despite output
channels isolation, as it will be shown, prediction can be
performed only when solving all equations (2) at each step.
Thus, correlations between outputs are indirectly encoded by
the collection of MISO-ARMAX models.

Obviously, since only the output data set % is available, it is
necessary to derive a method for estimating the inputs u.

The main idea is to come back to the unknown perturbations
that stimulate the system to evolve. Since the hidden
correlations between output channels have been removed,
they can partially be reconsidered by selecting colored noises

of measured data as inputs. More specifically, let {ej} _

jelny
be the white noises corrupting the measured data. By
filtering, they are producing colored noises that corrupted
output channels. Since the perturbation of channel ; has

already been accounted by the MA part of equations (2) (the
second right term), only noises of the other output channels,

{e.}. — -, are affecting the data through input channels.
1)iel,ny,i#j

Consequently, nu=ny—1 and u,=e, Vie@, i#]J.

Practically, matrix B (of (1)) has null diagonal, in this case.
The colored noises are then: v=Be.

Since the filters are unknown, estimating inputs means
estimating filters parameters. Fortunately, the measured data
encode the information regarding colored noises. This allows
identification of filters with some accuracy. Given the
equations of model (2), it is natural to consider that filters
belong to the same models class. A simple assumption yields
expressing the filters equations: each output data set is a
colored noise produced by the corresponding white noise.
Consequently, data for each channel can roughly be modeled
by means of a (SISO-)ARMA filter:

A(at)y =Cilat)e,. Vielm. @)
where A’ and C; are (singleton) polynomials for each

output channel jel,ny. Identification of models (3) is
simply performed via Minimum Prediction Error Method
(MPEM) [Soderstrom 1989]. Moreover, the procedure based
on MPEM returns estimates of white noise values. (By
convention, estimated parameters or signals carry a hat over
their notations.) After identification of models (3), the
prediction error on each channel can roughly be estimated.
This error actually stands for the input on some channel:

iy=6=A(a" )y +[1-C(a") e, VieLny, @

Equations (4) allow not only estimating the inputs of model
(2), but also predicting them with sufficient accuracy. The
final running MIMO-ARMAX models are then:

Aj (q_l )y/ = Bj (q_l )ﬁ +Cj (q_l )el > v] € l’ny > (5)
where @€ R” gathers all rough estimates of white noises
and B, =0, Vjelny. After estimation of inputs,
identification of model parameters and white noise values

relies on MPEM as well. Actually, approximating ARX
models return more refined estimated values of white noises:

ny

& =AT(a" )y, - 2 Bli(a)a,. Vielny., (6

i=l,i#j
where A" and B’,’B, are polynomials with degrees no and
nf, respectively. (Usually, no and nf are sensibly larger
than the degrees of polynomials in (5).)

After estimation of parameters, the optimal predictor can be
enabled. The following equations show how the output
predicted data are recursively computed, on a prediction

horizon of length K 21 (forany ke N, +1,N +K):



3, kIN, |==a,3,[k-1IN,]|--~a,,, 5[ k—na;|N, ]+

+ i |:l;j,i,1fl,-[k—l]+..~+l;j’i’nb/‘ifli[k—nbj’i]:|+

i=1,i# ]
+¢,8[k—1]+- +cjm j[k nc] @)
k1=, [kIN, |+6,,9,[k=1IN, [+-+6,, 3, [N, +1IN, |+

o 1[N, T+ 8y, T = o -

S Bk B i k-p]] =) ()

i=li#j
By definition, predicted outputs are equal to measured
outputs on measuring horizon 1, N, . Obviously, as the last
equation shows, predicted inputs are equal to predicted white
noises on prediction horizon N, +1,N, +K . Equations (7)
and (8) have to be iterated successively for any prediction
instant k. Moreover, next predicted values cannot be
estimated unless all output channels have previously been
predicted (since all inputs must first be predicted). So, before
approaching the next prediction step, all channels have to be
predicted at the current step. This mechanism expresses the
attempt to consider correlations between different outputs,
even though the MIMO-ARMAX model is composed by
several MISO-ARMAX models. (In case of isolated SISO-
ARMA models, each channel can independently be predicted
on the whole prediction horizon, without waiting for the
other channels.)

The performance of PARMAX predictor can be assessed by
means of prediction quality (PQ) criterion, which is defined

as follows, for any channel ;e @ :

100

\/ZGI k
Mo SNR,, \[SNR

where: SNR, . and SNR ; are signal-to-noise ratios of

PQ, = [], ®

1+

data on channel j, during the measuring horizon and
prediction horizon, respectively; &;, is the estimated

standard deviation of current prediction error, on channel ;;

A is the estimated standard deviation of noise e, on

m,j
measuring horizon. The SNRs are defined as follows:
c c
SNR,, ,=—= & SNR,  =—-2, (10)
> 2 7\’2

m,j pJ

where: o, , is the standard deviation of measured data,

G, Is the standard deviation of data on prediction horizon

and ii ; 1s the estimated variance of overall prediction error.
The latter is simply expressed below:

=_i v, [N+ k]-p [N kN an
=1

A

2
P

As of &,,, the following recursive equation has been

proven:

&, =6, A, Vs VkeN +LN +K, (12)

where 6.2/“,\,, =0 and {f( ik }k N are the coefficients of endless

division between polynomials C, and A, (starting from

their free terms). Obviously,

N

1o >

2y 2 1 . 2
My =y 2O =52 a-5, [k IV, ]) - 43)

y y

The bigger the norm of vector PQ:[PQ1 PQW]T, the
better the performance of PARMAX algorithm.

3. SELECTING OPTIMAL PREDICTORS VIA PSO

Despite the simplification applied to MIMO-ARMAX
models, their complexity could still be high. Even in case of
networks with small number of sensors, accurate prediction
requires large number of parameters to be identified. For
example, if ny=4, and the maximum values of structural

indices na (degree of A polynomials), nb (degree of B
polynomials), and nc (degree of C polynomials) is 30, then

the best predictor (in terms of ||PQ|) has to be selected

among more than 30% =2.29.10*" identification models
(when accounting the rough SISO-ARMA models as well).
One copes thus with an NP hard optimization problem.

The problem can be approached by means of an evolutionary
strategy, based on some heuristic. From all such strategies,
the PSO [Kennedy 1995] has been preferred, for the
convenient trade off between convergence speed and
algorithm complexity it exhibits.

The principle of PSO is illustrated in Figure 2.

e

Figure 2: Principle of Particle Swarm Optimization

A population of entities referred to as particles is initiated to
run on some trajectories, starting from initial positions.
Trajectories are adaptively adjusted on the run, according to
some fitness function (that has to be optimized). The goal is
to concentrate the population around some optimum of
fitness function and to increase the chance that the optimum
be global over the searching space.

The population of particles is denoted by P:{xp}

pel.P
Positions of particles are actually accounted in 2 (as
vectors of some Euclidean space). Usually, the number of
particles ( P ) varies from 50 to 500. The population evolves
towards optimum through generations. At every generation,
particles take new positions, which can be updated by means
of additive corrections, like below:

X" =x"+ A, VpelP, Vm=0, (14)

P

where m is the generation index. Corrections are computed
as displacements of particles with some speeds with AT

delay, i.e.: Ax" =v/™'AT . Speeds can also be updated:
m m m m
X", =X Xo, —X
mtl _ omom m  p0 P m  P0 P
Vo TH0 Y, +}\‘p,c m+1 Ay m+1 4
p.c Ts

Vpel,P, Vvm=>0,(15)



where:
> w, €[0,1] is the particle mobility factor,
» X, is the best position of particle, on its way from the
beginning to the current generation;

» X, is the best position reached by a particle of the

whole population (from the beginning to the current
generation);

» M\, .€[0,2] is the normalized cognitive variance of
particle positions with respect to its best position;
» A7 €[0,2] is the normalized social variance of all

particles positions with respect to the best population
position;
> r;f;l >AT is the delay of particle transition from

current position to its best position;
> "' >AT is the delay of population transition from

current positions of its particles to the best population
position.

The PSO algorithm has been modified from its traditional
design, in order to match PARMAX. Thus, its parameters are

adaptively set, according to ||PQ|| criterion. The particles are
split in 4 parts, depending on the nature of structural indices
in PARMAX (which are degrees of polynomials, in fact):

T
_ T T T 2ny+5
X—[nt Xt Xawx Xam | €N , (16)

where n1€0,5 is the degree of polynomial trend [Stefanoiu
2008c]. The other compounds in (16) are:

Xy =[na, nc,]” €N? (for rough ARMA models); (17)
=[na nb, - nb,, nc]T e N?H
(for ARMAX models); (18)
X, = [nao no n, n,, ]T eN”*!
(for AR and ARX approximating models); (19)
For example, if the number of channels is 4 (ny =4 ), then

X sruax

every particle accounts 13 structural indices. Their values are
integer, so that the corrections in (14) have to be rounded to
the nearest integer.

The following definitions are given for arbitrarily set m >0
and p el,P, in order to express the variables in (15). The
mobility factor is:

el el
T T

where x7, is the worst position of particle, on its way from

(20)

the beginning to the current generation. The relative
cognitive variance is computed in two steps. First, the
absolute variance is evaluated:

1 ’"( 2 2
m m 1
pe \/m+1 ZO p’ ?

Then the variance is normalized with respect to minimum
and maximum values, after updating them with (21):

. Q1)

def Gm _ Gm )
m  _ p-c p,c,min
Mpe =25 - 22)
(¢ -G

P,c,max p.c,min

In a similar manner, the relative social variance can be
evaluated. The absolute value leads to the relative value:

def 1 P 5 def 6m _Gm )
N ) L v I e R PX)
§ P p B s Gm _ Gm
p=1 §,max §,min

It is practically impossible to detect the transition delays.

Therefore, they are selected at random. More specifically,
LR} . m+l _ m+1 Eon)

the transition frequencies V', =1/t (cognitive) and

v =1/1"" (social) are randomly generated in (0,1/AT].

Equation (15) is the searching engine of PSO strategy. Three
terms are contributing to update the speed. The first one is
based on the current speed. The weight applied by the
mobility factor shows that the former speed is strongly
attenuated when the particle is close to its best position. This
means the particle is rather attracted by such a position. The
second term quantifies the cognitive motivation of particle to
move, in terms of driven speed. As the population evolves,
every particle acquires some experience that can determine
its future behavior. As result of particle experience, the
cognitive speed becomes important when the trajectory is
drifted away with respect to its best position. Finally, the
third term expresses the influence of population on each
particle behavior, naturally referred to as social speed.
Depending on particle position versus population best
position and variance, the social speed increases either when
the population is dispersed or the particle is far away from
the best position.

The evolutionary character of PSO algorithm is involved by
the randomly selected transition frequencies. Population can
thus escape from the capture of some local optimum, by
jumping onto another zone. Like most of the evolutionary
procedures based on populations, the trade-off between
diversity and convergence is important. Diversity of
population allows one to check for optimum in many zones
of searching space and, thus, to increase the chance of global
optimum finding. On the contrary, convergence (or particles
swarm) is necessary to avoid searching oscillations. The key
parameter of this trade-off monitoring is the absolute social
variance. Three populations can evolve in parallel: the
current one, the elite (that keeps all the best positions) and
the anti-elite (that keeps all the worst positions). Every time
the product between social variances of current generation
and elite overflows or underflows some bounds, the
diversity-convergence trade-off is unbalanced. Over-floating
points to abnormal increase of population diversity, i.e. to
oscillatory behavior. To reduce it, crossover between current
generation and elite can be performed. Under-floating is
caused by concentration of both populations around some
optimum, which may decrease the chance to reach for the
global optimum. In this case, diversity is increased by
performing crossover between current generation and anti-
elite. By crossing over two particles x, and x, with speeds

v, and v, , respectively, two offspring are obtained:

X, =vx,+(1-y)x, & X, =yx,+(1-7)x,, (24)
with corresponding speed values:

Vi=yw +(1-v)v, & V,=yv, +(1-7)v,, (25)
where ye[0,1] is selected at random (uniformly). When
crossover is applied on current population and elite or anti-



elite, all of them of size P, the offspring population consists
of 2P particles. Only the most fitted (P —1) offspring are

selected to complete the current population, after removing
all its particles, but the most fitted one. (Maybe this one is
the global optimum and must be kept.)

The PSO algorithm is initiated to run starting from some
initial population (usually, uniformly distributed inside the
searching space). To stop the procedure, several tests can be
performed. Two very effective tests are the following: the
maximum number of iterations was touched (say 100) or the
most fitted particle succeeded to survive within the elite
population for several generations (say at least 5).

The overall strategy of PARMAX algorithm consists of the
following main steps:
1. Perform data acquisition on several channels.
2. Estimate the optimal SISO-ARMA prediction model (3)
for every channel (independently on the other channels).
In this case, the particle includes only the structural
indices of ARMA models, i.e.: nt, na,, nc, and na,.

3. Perform prediction, like in (7) and (8). In this case, there
are no inputs, so the corresponding terms have to be
removed in equations (7) and (8).

4. Estimate the input signals (4) on measuring horizon, by
means of SISO-ARMA prediction models.

5. Estimate the optimal MISO-ARMAX models (5) from
output acquired data and input estimated data. This time,
the particle configuration is given by definition (16), i.e.
it includes the ARMA structural indices as well.
(ARMA indices previously estimated in step 2 are
cancelled.)

6. Perform prediction, according to equations (7) and (8).
Recall that predicted inputs are actually estimated white
noises.

Steps 2, 3 and 4 are not really necessary for PARMAX.
(They belong to PARMA.) Step 5 actually includes them.
Repeating them only for SISO-ARMA models allows
comparing the performance of both predictors. Note however
that optimal SISO-ARMA models in step 2 are usually
different from optimal SISO-ARMA models estimated inside
step 5, because the PQ criterion operates with different
predicted data.

4. SIMULATION RESULTS AND DISCUSSION

The PARMAX procedure has been implemented within
MATLAB environment. There are many implementation
details that cannot be described within this paper (but can be
found in [Stefanoiu 2008c]). One can only mention here the
strategy of optimal structural indices selection (for both
PARMA and PARMAX predictors). Obviously, the PQ
fitness function based on definitions (9) cannot be evaluated
unless data on prediction horizon are acquired as well. It
follows that all ARMA(X) models have to be identified from
N, -K, data, instead of N, data. The last K, data are

preserved as test horizon for the PSO algorithm. More
specifically, after identification of some ARMA(X) model,
its prediction performance is tested on the last K, data
(which have not been involved in identification). Usually,
K, emax{3,K/2},K . After selecting the best predictor on

the test data set, the optimal structural indices are just
employed to identify a new model based on the whole data
set (i.e. including the test data). Usually, the prediction
performance decreases on the prediction horizon, comparing
to the test horizon.

The goal of implementation is to perform a comparison
between PARMA and PARMAX algorithms in terms of
prediction quality. If data from different channels are inter-
correlated, PARMAX is expected to perform better than
PARMA.

The application consists of temperatures monitoring in two
cities, which are located at 60 km each other, slightly below
the latitude of 45°. For each city, minimum and maximum
temperatures are daily acquired, starting from November 23,
2007, until March 24, 2009. Data look like in Figure 3 and
were transmitted via internet to the central processing unit.
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Figure 3: Minimum and maximum temperatures of two cities

Given the short distance between cities and their
geographical position (in a middle of a plane), one can easily
notice correlations between the four channels. Beside this
feature, some other characteristics of data can also be
outlined. For example, noises are corrupting in a different
manner the channels. Therefore, data are, at the same time,
apparently independent. Another property is related to the
seasonal behavior. Normally, the measuring horizon is too
short to detect the main period (the acquisition period should
be almost twice). It follows that PQ will increase whenever
the prediction model is able to detect the right periodic
variation of each ts.

One of the most important advantages of PSO algorithm is
the possibility to perform the search either on a parallel
machine or on several computers of a network at the same
time. When wusing a single regular computer (e.g.
laptop/notebook), finding the optimal structure of prediction
model might be a lengthy operation. But ecological or
meteorological data are provided by slow systems. For
example, the temperature ts above are collected daily. For an
amount of 500 data per channel and a population of 10
particles per channel, PARMA runs about 30’, while
PARMAX needs about one hour on a regular computer. On a
parallel machine, the delays are reduced approximately 8
times. In this research, the simulations were performed on 8§
regular computers in a network. The population size (P)
varied in range 5:15 particles per channel. Thus, practically,
the overall population included at least 20 particles per
computer, which means at least 160 particles. The other
configuration parameters have been set as follows:



o prediction horizon length (K ): 5;

e maximum number of generations ( M ): 100;

e minimum survival factor (S ): 5;

e maximum degree of trend ( NT'): 5;

e maximum structural index for AR part (NA): N,/3;

e maximum structural index for MA part (NC): N, /3;
e maximum structural index for X part (NB): N, /2

e maximum structural index for AR part of approximating
models (Nau): N, /2

e maximum structural index for X part of approximating
models (NB): N, /2.

This leaves a large searching space for optimal structural
indices. The last K data have been removed completely.
They are accounted only after the final prediction data have
been estimated, in order to compute PQ. (Thus, when
searching for optimal structure of prediction model, only
N, -K,-K data are employed.)

After running PARMA on the temperature ts (with
N, =482 data), the best results are illustrated in Figures 4,

6, 8 and 10 (for each channel). In parallel, Figures 5, 7, 9 and
11 display the best results of PARMAX. Each of which
includes 3 variations: the original ts together with its optimal
trend (top), the estimated white noise on measuring horizon
(middle) and the zoom on prediction horizon (bottom). The
PQ values are depicted on the latter. One can see that:

PQ’;,, =[67.8353.66 49.11 66.52] - |PQ,;,, [ =119.65;

PQ 0y =[69.97 72.37 59.71 71.82] = |PQ pppur | =137.32.

(26)
Since the correlation between channels is so obvious, the
superior performance of PARMAX versus PARMA is an

expected result. Beside this general remark, the simulation
results yield several insights.

The fact the measuring horizon is not large enough to allow
detection of seasonal variation decreases the performance of
both predictors. As one can see from Figures 4, 5 and 9, the
trend tried to decode data periodicity by increasing the
polynomial degree to its maximum value. However, for the
other models the trend degree is bounded by 3. Normally, the
trend should not include the periodic variation, because
polynomials are unbounded in vicinity of infinity and, thus,
the prediction can fail very easily. In this application, higher
degree trend is accepted because the prediction horizon is
quite short, comparing to the measuring horizon. PARMA
detected a period on channel 3, since the ts is closer here to
symmetry than for the other channels. The period is almost
half of N, . Simulations have proven that, without seasonal

compound, PARMA systematically fails on channel 3.
Oppositely, PARMAX removed any seasonal variation and
tried to replace its contribution by colored noises.

As already mentioned, data are affected by different noises
on different channels. The second variation of all figures
shows that the estimated SNR varies along channels. In
general, the higher PQ, the higher SNR and the smaller white
noise variance.

10

The third variations of all figures are grouped in couples
(one for each channel). In order to focus on details, the
vertical axis has been scaled differently from a variation to
another. Actually, scaling is uniquely determined by the
confidence tube. Large aperture of tube usually involves
small value of PQ, even though the predicted values might
be close each other. Prediction on channels 2 and 3 is quite
remarkable (even at eastern end of prediction horizon,
where, usually, predicted values are less accurate). This is
somehow surprising, since the ts belong to different cities
and, moreover, are representing opposite temperatures
(maximum and minimum, respectively). But the correlations
between data are mostly hidden and cannot simply be “read”
on time variation, regardless the user’s experience.

For data with less correlation than the above ones, the
superior performance of PARMAX over PARMA is not so
obvious. Usually, PARMAX performs better on some
channels only and its fitness (the norm of PQ) can even fall
below the PARMA fitness. In this case, PARMA should be
preferred, due to its smaller complexity and higher speed.

5. CONCLUSION

Lately, there is an increasing interest in handling and
monitoring distributed data, on different purposes. In case of
ecological or meteorological data, prediction is an important
goal. This article introduced a method of prediction based on
multi-dimensional identification models from ARMAX
class. An evolutionary strategy (PSO) was employed to
speed up the searching for optimum prediction model. The
resulting algorithm can be implemented on a mobile
computer. Prediction can thus directly be performed inside
the system that provides the data. Whenever the measuring
channels are correlated, multi-dimensional prediction models
should be constructed instead of singleton models for each
channel in isolation.
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ABSTRACT

Refined descriptive sampling is designed to improve upon
the descriptive sampling method for experimentation in
simulation. The former reduces significantly the risk of
sampling bias generated by descriptive sampling and
eliminates its problem related to the sample size. In this
paper, we propose an optimal parallel Monte Carlo
simulation algorithm using refined descriptive sampling
and evaluate in parallel architecture, performance measures
of a Pert network and the Newsboy problem.

INTRODUCTION

Monte Carlo method also called random sampling (RS) can
solve a large variety of problems, but both kinds of
variations (set effect and sequence effect) are present in a
randomly generated sample that provides an imprecise
evaluation of each simulation estimates (which is a function
of the input values). Given the relationship between the
lack of precision and the method itself, it was born a
remedial new paradigm. The latter says that is not always
necessary to generate sample values randomly to describe a
stochastic behaviour. Then, new deterministic methods, like
Quasi Monte Carlo (Owen 1998), Latin hypercube
sampling (Loh 1996), Descriptive Sampling (DS) (Saliby
1990) as well as Refined Descriptive Sampling (RDS)
(Tari-Ourbih 2005) were derived from this paradigm.

By the way, we can find several work on the parallelization
of Monte Carlo methods but all kinds of variations are still
present in a randomly generated sample and simulation
estimates remain affected by such sampling errors through
Monte Carlo parallel algorithms already proposed for
example in (Alme et al.1998; Okten et al. 2006; Tuffin
2000).

In this paper, the best sampling procedure: RDS is selected
to improve upon the accuracy of simulation estimates and
its safe implementation is suggested in parallel architecture
to reduce the cost of running simulation experiments.

RDS is based on a deterministic selection of the input
sample values. Subsets of regular numbers are first
generated, then, randomly shuffled and finally observations
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of the input random variables are generated as required by
the simulation since the dimension of subsets are prime
numbers generated randomly. This method was proposed
by (Tari and Dahmani 2005a) to make DS safe, efficient
and convenient. It is safe by reducing substantially the risk
of sampling bias, efficient by producing estimates with
lower variances and convenient by removing the need to
determine in advance the sample size. (Tari and Dahmani
2005b, 2005¢) compare the efficiency of DS and RDS on a
flow shop system and a production system showing that
RDS produces better results than DS and RS.

However, RDS procedure is regarded as an algorithm of
dependent instructions capable to be executed just in
sequential way. The only instruction able to be parallelized
is related to the loop of the array filling up with regular
numbers but it is not well-suited to parallelization because
of the high communication cost that may be generated.
However, MC simulation using RDS involves repetition
and this feature is specially well-suited to parallelization.
Then, to ovoid such communication cost, parallelism of the
number of replicated runs is proposed using RDS to
generate input distributions. We have then carried out a
parallel Monte Carlo simulation program running only on
machines with distributed memory. Accordingly, the Single
Program Multiple Data (SPMD) model has been selected
for a better programming related to the replicated runs
which consists on multiple processing of the same
algorithm over samples of different data. The Message
Passing Interface (MPI) library has been suitably chosen to
be used with such model. The selected library supports both
the language C/C++ and FORTRAN and allows the data
exchange between the processors. The selected library fits
well our requirements; nevertheless we can find other
libraries like Parallel Virtual Machine (PVM) (Gest et al.
1994), Portable Programs for Parallel Processors (P4)
(Butler and Lusk 1994) and Open Multi Processing
(OpenMP) (Chergui and Lavallée 2006).

The use of SPMD model provides an optimal efficiency of
the proposed parallel algorithm; this paper also evaluates in
parallel architecture performance measures of both
problems, Pert network and Newsboy problem. In the
designed parallel software (The simulation programme of
each application is written by using the C++ compiler and
run on Pentium 4 under the operating system Linux), we
used RDS algorithm given in (Tari and Dahmani 2006) to
generate input refined descriptive sample values and the



built in generator of the computing environment to generate
both prime numbers and integers to permute the regular
points related to RDS method (The built in pseudo random
number generator used is the rand() function of the C++
compiler under Linux).

THE USE OF REFINED DESCRIPTIVE SAMPLING

RDS is concerned with a block that must be situated inside
a generator aiming to distribute regular samples of prime
number sizes when required by the simulation. We stop the
process when the simulation terminates.

In this procedure, each run is determined by a block of
different prime numbers. The values of refined descriptive
sample vary between different runs since the sample size is
a prime number randomly selected. The generation process
of the sample values is deterministic whereas the generation
of the prime numbers and the sequence of the sample
values are random.

Without loss of generality, we assume that one input
random variable X drives the simulation and one output
random variable with k parameters 6’j , J=12,..,kto be

estimated is observed through simulation.
The refined descriptive samples

Suppose that m prime numbers have been used in a
simulation run. Formally, in RDS, regular sample values
are generated for any input random variable X as required
by the simulation using the inverse transform method such

as
= H_l rf g-1
i+ P

for i:1,2,...,pq and ¢=1,2,....,m

(x )i -1

i+
i1 Pi

where {’ﬁllz,f'_llpi’r; :,_Ilpi,...,rijllpi}

for g=12,.,m are considered as subsets of dependent
regular points of prime size p,, p,,..., p,, uniformly
distributed between [0,1] and are obtained by the following

formula
o _i—-05
YN

for i:1,2,...,pq and ¢g=12,..,m .

and H 'is the inverse cumulative function of the input
random variable X .
The refined descriptive samples of prime number size p,

are obtained by:
1) Generating the subsets of regular points
of size a randomly chosen prime number p,, g =12,...m

2) Randomizing their sequence for any p,
3) Computing the refined descriptive samples values of the
input variable as required by the simulation.

RDS simulation estimates
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In a simulation study, a logical model is built and used as a
vehicle for experimentation. So, experiments are carried out
on the model and producing in a given run, the following
m estimates of the parameters € s J=1 2,...k

r;;l' ) forj=12,..k

2 , .
(Yr)j =F; (’”11+p1 ,r22+pl ""’V;;Wu ) forj=12,.,k

(Yr); = Fj (rll s r22 peees

i=iPi

mo_ ™ 2 Pm P
(Yr)j F’(rl+2:n_llpi’r2+ ::.pi,...,r " Jfor] 1,2,....k

such as

m
Sz
i=1

and conventionally

0
ZP:‘ =0.
i=1

where Fi,j =12,.,k is a simulation function usually

defined by a program that relates the input variables with
each estimator.

Therefore, in a given run, the use of RDS method leads to
the following sampling estimates of & =1 2,...k,

defined by the average of these estimates
m

1 ; .
(vr), _;;(Yr)j for j =1,2,...k
If Nreplicated runs are needed to run a simulation
experiment, it is then, necessary to consider N blocks of
my, m,,..., my refined descriptive samples.

Prime number generator

We first generate an unspecified integer number. Then,
we multiply it by two and we add one in order to make the
generated number, an odd number since all prime numbers
are odd except number 2 which is ignored. Finally, we test
if the odd number is a prime number by successive division
on odd numbers, starting from three with a step of two. If it
is a prime number we use it in running simulation by
generating observations of input random variables,
otherwise we go back to generate another unspecified
integer. In this manner, we reduce the time allocated to the
generation of prime numbers by 75%, we then reduce the
time of sequential running simulation experiments and by
the way, we reduce again the parallel time by reducing the
computation time.

Motivation of parallelism

Simulation modelling involves both repetition and iteration.
In statistic, it is well known that replicated runs is
compulsory to have statistical results close to the optimum,
such as, each run generates output parameters of the



simulator and at the end of the simulation, we compute
averages for each considered parameter. Such situation
requires a large computing load and a significant amount of
memory for a computer. It is then a time-consuming
approach. Even (Taylor et al. 2002) explore the use of net
conferencing during simulation studies. It is obvious that a
simulation study is expensive in time, memory and more
generally in necessary resources (Ahn and Danzig 1996).
Indeed, the traditional simulation tools could be unusable
when complex systems are studied. We are then confronted
with the problem of the best compromise between the
precision of simulation estimates and the cost of the
experiment. The latter of course must be balanced against
the benefits that can be gained from the use of simulation,
by the same way, the precision of the estimates that are
often an order of magnitude greater than the cost.
Unfortunately, the limited means of available sequential
computation make this goal difficult to achieve. Therefore,
a parallel simulation procedure is compulsory for solving
the above problem. The aim of this work is to introduce
parallelism to take advantage of computing power.
Parallelism is regarded as a means of reducing the cost in
time and memory of a program solving a complex problem.

THE PROPOSED PARALLEL SIMULATION

In this section, we propose a parallel Monte Carlo
simulation using refined descriptive sampling method. Let
us suppose Q +1 processors taking part in the simulation

experiment. We appoint one processor as a master and the
remaining Q by the slaves' processors.

In order to carry out a simulation experiment, the master
distributes the program of each developing simulation
model between the available slaves processors, such as each
processor carries out the same copy of such program.
Indeed, in parallelism, the program distribution is done in
turn between the various processors but in the proposed
parallelization, the master distributes to each processor both
the program and the number of replicated runs, only once.
The reception of simulation results by the master is done in
the same manner. This sort of distribution reduces the
communication cost.

It is well known that the parallel processing of a program
by more than one task is independent with each task being
able to execute the same or different statement at the same
moment. Therefore, the proposed parallelization is
straightforwardly a replication of the whole RDS program
on various processors. Given the regular number generation
of RDS, its parallelization is easy and simplified regarded
to the load balancing. The latter is one of the most
significant concepts in the process of parallelism. Given a
simulation experiment of N simulation runs, the load
balancing can be introduced if NV is greater than O . We can

pass around the load balancing if the considered application
is regular that generates a number of runs multiple of a
slave processor number. Consequently, instead of carrying
out N replicated runs as in the case of a sequential program,

% runs. At the end

of the simulation, each processor computes and sends its

each slave processor will carry out just
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simulation results to the master that computes, in its turn,
the final results for each parameter under study.

Consequently, these % runs are regarded as one simulation

experiment and we deduce that the developed simulation
model is regular and the load balancing is then not taken
into account. This sort of parallelization is called
distribution of computation (Lin 1994). In this manner, we
reduce the time of parallel running simulation experiments
by reducing the computation time.

In the proposed parallelization, the number of messages is
reduced from two N to twoQ then the influence of the

communication cost is highly controlled and therefore it is
regarded as an insignificant time compared to the
computation time. Then,

T paratier = cOmputation time

To ensure the independence of the generated prime
numbers related to the sampling method itself, we suppose
independent prime numbers generators on each processor.

SAMPLE PROBLEMS

In this section, we evaluate in parallel simulation,
performance measures of a pert network and the newsboy
problem. Before each simulation run, we generate randomly
a prime number p using the prime number generator given

in subsection 2.3. A value of the sample is then generated to
be used in the simulation experiment. We stop generating
sample values when the simulation terminates. In each
sample problem, we choose the same input parameters for
all carried out experiments.

We summarize each experiment by computing the mean
and variance of the estimates of the output random
variables parameters.

The parallel algorithm

In this sub-section, we define the main steps of the
proposed and implemented parallel algorithm.
Begin
1. The Master reads the simulator parameters
N : Number of replicated runs

T : Simulation period

And other parameters related to the studied problem

2. The Master distributes the parameters to each slave
processor
For k from0Oto Q-1

Send the simulator parameters to the processor &
N
o
the sample problem using RDS algorithm given in (Tari and
Dahmani 2006) to generate input refined descriptive
samples

4. Gathering together the simulation results obtained on
each slave processor.

For k£ from0 to Q-1 send all computed estimates of the

3. Each slave processor carries out == simulation runs of

% runs to the Master

5. The Master computes the overall mean of each studied



parameter based on all runs
6. Display the final results by the Master
End

THE PERT NETWORK

This problem concerns a simple pert network already
studied by (Kleindorfer 1971). As shown in figure 1, this
network has eight activities. All activities durations are
independent and identically distributed random variables
following a discrete uniform distribution defined by

fd)=02 d=1,.,5

Figurel : The simulated Pert network

In this problem, there is one response variable with two
parameters the mean and the standard deviation to be
estimated. The observed response variable is the total
project duration. Its parameters are both estimated by DT
and Sp;.

Four simulation experiments of different replicated runs
were carried out on the studied problem, where each run
was defined by 50 observations of the total project duration.
We take Q =5 in each experiment and for different number
of runs N , the observed results of the mean and variance of

both estimates DT and § pr are given in table 1 below.

50 200
Estimate N Mean | Var | Mean | Var
DT 10.13 | 036 | 10.13 | 0.41
Spr 2.24 1.05 2.3 0.92

250 300

[Estimate N

Mean | Var | Mean | Var
DT 10.11 | 042 | 10.13 | 041
Spr 2.3 0.95 2.29 0.95

Tablel: Empirical results showing the parallelization
efficiency for different experiment

We can see from table 1 that the growing up of the number
of replicated runs does not affect the observed results.

THE NEWSBOY PROBLEM
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Problem description

This problem concerns a simple inventory problem already
studied by (Kaufmann and Faure 1975). Daily, a newsboy
buys B issues of a newspaper at 0.5£ each. The selling price
is 1£. At the end of the day, all remaining issues are
restored and the salvage price for surplus newspapers is
0.2£ each. Daily demand (D) is independent and identically
distributed according to the following statistical distribution
where f stand for frequency and Cf stand for cumulative
frequency

D|f|Cf|D|f|Cf|D | f|Cf|D]| f|Cf
010 [0 131 ]17[26]4 [64[39] 1 [9%
1 [0]0 1413 ]20[27]3]67/40] 2 |96
2 |1 |1 ]15]3]123]|28]3 70|41 0 |96
311 [ 211613 126(29]4 7442|197
4 (113171 4]30(30] 2 [76[43] 1 |98
S |12 [5]18]3 (33313 [79(44| 0 |98
6 |1 [ 611914 37323 [8[45| 0 |98
711 [ 7120]3140(33]|2 [84]46| 1[99
811 [ 8 121|4 [44|34[2 |8 (470 |99
912 110]22| 5 (4935 2 [88[48]| 0 |99
102 (1223 4 [53(36| 1 [8[49[ 1 100
1101 [13[24| 4 [57(37]2 [91]50| 0 100
123 [16]25| 3 |60[38| 2 [93>50[ 0 |100

Table2: Cumulative frequency of daily demand

The newsboy wishes to know the quantity B of newspapers
to purchase in order to maximize its daily profit. Then, the
simulation purpose is to study the daily profit distribution
P varying the quantity to be bought until 50 and then,
searching the optimal profit value and the corresponding
quantity to be purchased. In this problem, there is one
response variable with the mean parameter to be estimated

by P.
The Newsboy Algorithm

Begin
For1, B=1 until 50 do
For2, j=1 until 100 do

Simulate daily demand D with RDS algorithm and compute
the expected profit,
If B< D then expected profit = Bx0.5

Otherwise expected profit = Dx0.5—(B—-D)x0.3

End if

End for 2

Save the daily expected profit value

Compute the mean of the daily expected profit over 100
working days

Save the expected profit mean value

End for 1

For 3, i=1 until 50

Look for the optimal expected profit

Look for the corresponding quantity B of newspapers to
purchase



End for 3
Display the optimal profit and the optimal quantity to

purchase
End

Empirical results

Six simulation experiments of different replicated runs were
carried out on the newsboy problem, where each run was
defined by 100 days for each bought quantity. We simulate
the daily demand distribution according to table 2 and the
newsboy problem according to the above algorithm. The
summarized results of the mean and variance of the

estimator P are given below together with the number of

replicated runs and the optimal quantity of newspaper to
purchase.

N 20 40 70 100 | 200 | 350
Mean(ﬁ) 801 | 791 | 806 | 7.75 | 7.89 | 7.53

B 22 23 26 23 22 21
Var (ﬁ) 30.83 | 13.15| 8.03 | 491 | 258 | 1.1

Table3: Empirical results showing the parallelization
efficiency for different experiment

We can see from the simulation results of table 3 that the
minimum variance is obtained with 350 replicated runs. We
then, suggest to the Newsboy to purchase a quantity of
newspaper equal to 21 in order to make a profit of 7.53£.

CONCLUSIONS AND REMARKS

It is well known that the parallel time of running
experiments is inversely proportional to the number of
available processors. Then, for a given number of runs,
whatever the number of processors is, the parallel
simulation results are similar to those obtained sequentially,
but the parallel time of running simulation experiments is
different and for a given sequential time, it decreases when
Q increases according to the following formula,

T,

_ " sequentiel
T parallel — Q

The principal interest of the proposed MC parallelism using
the best sampling RDS procedure is its running speed while
preserving the assets of the sampling method, its efficiency
and safety. Since this method works by replication, then it
was naturally parallelized. Given the scalability advantage
of the SPMD model, the proposed parallelization is more
appropriate with a large number of replicated runs and it is
related to both, the algorithm of RDS procedure and the
resolution algorithm of a complex problem. A Pert network
and the newsboy problem were simulated in parallel
architecture to confirm this fact, but any other application
can be solved by the proposed parallel algorithm.
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ABSTRACT

Modeling and simulation (M&S) techniques are increasingly
being used to solve problems and aid decision making in
many different fields. Results of simulations are expected to
provide reliable information for decision makers. But
potential errors may be introduced during the M&S
development lifecycle. It is critical to ensure to build the
right model and the model is built right. M&S community
has had intensive Verification and Validation (V&V)
research. But V&V activities are often not formally
performed in most of the cases. For those who perform
V&V activities, they normally wait until development of the
simulation modeling is finished. Practical and solid
validation techniques are hence needed. In this paper, the
authors propose a validation methodology that allows
parallel simulation development and model parameter
validation, i.e. first the simulation model can be built with
unknown parameters included; and then, those parameters
can be estimated using a built-in constraint optimizer.
Finally the initially unknown parameters are replaced with
the found optimal values. The model is then ready for future
output prediction. As an example application, a simple
supply chain cost simulation model was discussed using the
proposed methodology.

INTRODUCTION

In order to perform the study of the real world problem
scientifically, we often have to make a set of assumptions
about how it works. These assumptions, which usually take
the form of mathematical or logical relationships, constitute
a model that is used to gain some understanding of how the
corresponding system behaves. If the relationships are
simple enough, one may just use an analytic solution that is
a mathematical function to express it and obtain exact
information on questions of interests. Unfortunately, most
real-world problems we are trying to solve are too complex
for an exact mathematic function to represent and there may
be many parameters that are unknown. They must be studied
by means of simulation. That’s why simulation is regarded
as second only to “math programming” among 13
operations-research techniques (Law and Kelton 2000).

MA&S is the process of constructing a model of a system that
contains a problem and conducting experiments with the
model for a specific purpose of solving the problem and
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aiding in decision-making. M&S is particularly valuable for
Department of Homeland Security (DHS) applications and
manufacturing applications, because it can provide a non-
destructive and non-invasive method of observing a system
and also provide a way to test multiple inputs and evaluate
various outputs (Jain and McLean 2006). For example, in
DHS applications, simulations allow users to reconstruct a
comprehensive representation of real-world features during
disaster response. Simulation models can help the decision
makers determine staff and resource levels in hypothetical
terrorist attack scenarios (Shao and McLean 2008) (Shao
and Lee 2007). But for the developers and users of the
simulation models, the decision makers using the results of
these models, and individuals affected by decisions based on
such models are all concerned with whether a model and the
simulation results are correct (Sargent 2007). Even though
M&S community has had intensive V&V research (DOD
2001), V&V activities are often not formally performed in
most of the cases. Validation efforts have often been limited
to the use of less rigorous techniques, such as face validation
and traceability assessment (Sargent, et al., 2000). Practical
and solid validation techniques are hence needed to make
sure the simulation model is validated and the simulation
results are credible.

The contribution of this paper is to propose a novel
validation methodology that allows parallel simulation
development and model parameter validation. The technique
integrates constraint optimizer that performs the parameter
validation for M&S. First the simulation model can be built
with unknown parameters included; and then, those
parameters can be estimated using a built-in constraint
optimizer. Finally the initially unknown parameters are
replaced with the optimal values. After validating the
simulation results using corresponding set of input data, the
model is ready for future output prediction. The constraint
optimizer uses Constraint Optimization Regression in Java
(CoReJava) that implements Regression Analysis (RA) to
estimate the parameters based on a training data that could
either be historical data or experimentation data (Brodsky, et
al. 2008).

The rest of the paper is organized as follows: next section
identifies the V&V needs and issues. Then related work and
technologies are discussed. The parameter validation
technique is presented. A methodology to validate the
technique, and a simple supply chain example modeled
using CoReJava and a simulation tool are introduced.
Finally the paper is concluded with future works and
discussion.



VERIFICATION AND
ISSUES

VALIDATION NEEDS AND

During the development lifecycle of M&S, risks associated
with potential errors in creating the model (programming
errors) and inadequate fidelity (errors in accuracy when
compared to real-world results) may be introduced (Cook
and Skinner 2005). To guarantee that you have a valid
model and simulation that produces correct results, V&V of
the model and data used for the simulation must be
employed throughout the life cycle of an M&S application.

Balci (Balci 2007) defines the model V&V as follows:
“Model validation is substantiating that the model, within its
domain of applicability, behaves with satisfactory accuracy
consistent with the study objectives. Model validation deals
with building the right model. It is conducted by running the
model under the “same” input condition that drive the
system and by comparing model behavior with the system
behavior. Model verification is substantiating that the model
is transformed from one form into another, as intended, with
sufficient accuracy. The accuracy of transforming a problem
formulation into a model specification or the accuracy of
converting a model representation in micro flowchart into an
executable computer program is evaluated in model
verification.”

Figure 1 is the Sargent’s circle - a simplified version of the

M&S process (Sargent 2007). The problem entity shown in

the figure could be a real or proposed system, idea, situation,

policy, or phenomena to be modelled.

1. Conceptual model validity should answer the questions: Is
the description of the system sufficient and correct? Is it
valid for the intended use?

2. Computerized model verification deal with the questions:
Is the numerical implementation of the model correct? Are
the numerical algorithms employed correct and fully
converged?

3. Operational validity answers the questions: Are we able to
predict the experiment(s) in sufficient detail? How do we
formulate quantitative validation metrics given a specific
application?

4.Data validity answers the questions: Is the experimental
data used in the comparisons a sufficiently accurate
description of reality? How do experimental uncertainties
affect predictive performance? Are the experiments used
in the validation exercise appropriate?

To perform a complete validation of the model, appropriate
validation techniques need to be applied to each step. Figure
2 shows the simulation modeling process steps and each of
them may be a source of errors that will influence the
validity of the model. For example, incorrect conceptual
modeling will make the model invalid for the intended use.
Lack of calibration of the parameters will not produce an
accurate function that sufficiently describes the problem.
Implementation error will make the simulation model invalid
even if the conceptual model is valid. The use of poor
quality input data will increase the risk of providing
incorrect results to the users, i.e. trash in will have trash out.
Unsatisfied operational conditions will cause wrong
estimates. Results comparison is to compare the observed
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data and the simulation outputs. A large number of data are
needed to have a meaningful evaluation of model
performance in statistical terms. We should note that the
model predictions and measured data will never match
exactly; treads over time are one of the most useful tools to
evaluate model performance (Donatelli and Stockle 1999).
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RELATED WORK AND TECHNIQUES

This section discusses the related research work, techniques,
and tools for the proposed methodology.



Law and Kelton suggested that quantitative techniques
should be used whenever possible to test the validity of
various components of the overall model (Law and Kelton
2000). An important technique for determining which model
factors have a significant impact on the desired measures of
performance is sensitivity analysis, the factors may be the
value of the parameters, or the choice of a distribution, etc.
One approach to determine the sensitivity of the factors is to
use statistical experimental design. In experimental-design
terminology, the input parameters and structural
assumptions composing a model are called factors; the
output performance measures are called responses. Factors
can be quantitative or qualitative, controllable or
uncontrollable (Law and Kelton 2000).

In (Doebling and Hemez 2007), model validation is also
defined as “The process of assessing and improving
confidence in the usefulness of computational predictions
for a particular application” and “Solving the right
equations.” Model validation is an application-specific
process. Fidelity of the model relates to agreement with real
world/test data, validity relates to suitability for the specific
application. Validity of a model is defined over a region of
the parameter space.

Model validation supporting technologies include:

e Metamodeling - simplified relationship between model
parameters and response features,

e Design of Experiments - generate metamodels & plan
validation tests,

e Parameter Optimization - quantify unmeasured variables,
calibrate surrogate mechanics models, and

e Data Compression - extracting features from simulation
and test data.

Machine learning techniques enable us to estimate the
system parameters with specified confidence intervals using
historical data, predict the outcome by given a new input,
identify adjustment to the system parameters to meet
performance requirements (Zabaras 2003).

Brodsky, Luo and Nash proposed and implemented the
language CoRelJava, which extends the programming
language Java with Regression Analysis (RA), i.e. the
capability to perform parameter estimation for a function. In
a Java program, some parameters are not a priori known, but
can be learned from training sets provided as input. Existing
RA software typically requires inputting a data structure that
describes the parametric functional form, or assumes this
data structure to be fixed. The problem, however, is that in
many applications, a functional form is not explicitly
available. CoReJava allows the user to encode complex
computational processes in Java, in which some parameters
used are not a priori known. Unknown parameters can be
learned from a training data set. The CoRelJava compiler
analyzes the structure of the learning function method to
automatically generate a constraint optimization problem, in
which constraint variables correspond to parameters that
need to be learned. The objective function to be minimized
is the summation of squares of errors with respect to the
training set, and then solves the optimization problem using
the non-linear optimization solver - A Mathematical
Programming Language (AMPL)/SNOPT. (Brodsky, et al.
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2008) provides detail descriptions of language syntax, use,
and semantics of CoReJava.

AMPL is a comprehensive and powerful algebraic modeling
language for linear and nonlinear optimization problems, in
discrete or continuous variables. A few solvers such as
CPLEX 11, SNOPT, and MINOS are free to download
from (Bell Lab 2008).

PROPOSED PARAMETER CALIBRATION AND
VALIDATION METHODOLOGY

The proposed novel validation methodology will focus on
the parameter calibration and validation as shown in Figure
2. A validated set of system parameters for a specific
problem function will allow users to properly characterize
the system under study. There is no universal model that
would work with an unaltered set of parameters for all
conditions. Adjustment of parameter values must be done
within the range known for the parameters. Calibration
assumes the availability of observed data to adjust model
parameters in order to match model outputs to measured
data.

Depicted in Figure 3 is the model parameter calibration and
validation approach. In practice, most of the validation
processes do not start until the completion of M&S
development. In our proposed methodology, the validation
of the simulation model can be parallel to the development.
First we build the simulation template with unknown key
parameters included. We can think of it as a black-box
model. To do this, we need to first analyze the data available
and decide what we should measure and what parameters we
do not know and need to be estimated. Then we start the
parameter validation process, that is to find out the “correct”
model parameters. This can be done by applying an RA tool.
The RA module will find the best estimate of the unknown
parameters by learning from the available training data sets.
The training data sets may be either real world historical
data or experiments data. RA is one of the metamodeling
techniques for investigating and modeling the relationship
between variables. As input to RA, a parametric functional
form can be either linear or non-linear,
e.g., f(q.%,%)=px + Py +p3x;, and a set of training
examples, e.g., tuples of the form (x,x,,x;,f), where fis

an experimental observation of the function f value for an
input (x,x,,x3) . The goal of RA is to find the unknown

parameters, e.g., that “best approximate” the

P1>P2,P3
training set. Once we find the optimal set of the parameters,
we replace the variables in the simulation template with the
parameters values. The simulation model then becomes a
white-box model. By feeding in new inputs, the simulation
can produce and predict valid outputs. When compare the
simulation results to the historical data, we hope that the
simulation results will be as closely as possible to the
collected data within a confident interval. If the comparison
results are not satisfied, simulation template needs to be
verified, or the parameters needs to be re-estimated using
more data or new data, even the simulation model execution
scenarios, conditions need to be checked to make sure
sufficient runs are performed. After iteratively comparing



with the training data and modifying the model, we can
eventually obtain a more validated model over that particular
parameter domain and valid data range.
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VALIDATION METHOD FOR THE PROPOSED
TECHNIQUE

In order to validate the proposed technique, we need large
sets of historical data. Based on the different category of the
collected data, we can divide the data into at least two
groups, for example, use one set of data to train and next set
of data to validate the result. We should use one of the
groups as the RA training data, once we derived the best
estimate model parameters values, the other data sets can be
used to verify the result. We can check if the differences
between the simulation outputs and the real collected data
are within a confident interval.

We use a simple example to explain the proposed
methodology. Figure 4 depicts a simplified supply chain cost
model, a functional form may be given that computes the
total cost of manufacturing, given three products to be
produced. This functional form may have unknown
parameters, e.g., the unit costs and the required quantities of
component materials to produce specific products.

The manufacturer produces three products using three
components. The quantities of component materials needed
are functions of the required quantities of products. The cost
of the produced products is the total cost of the required
components. Thus, the cost of manufacturing is a function of
the required quantities of products. However, the
coefficients of this function, i.e. the unit cost of each
component and the amount of each component material to

24

produce 1 unit of each product may be unknown and subject
to RA, which is provided by CoReJava.

Required
Quantity by
Component Product
Material 1 Unit Product 1
Price
Component
Material 2 Unit Product 2 Total Cost
Price
Component
Material 3 Unit Product 3
Price

Figure 4. A Simple supply chain cost example

The example historical data as training data set is listed in
Table 1. Each row is a learning set. Each learning set
includes three product quantities and the actual total cost
recorded. The size of the table is decided by the
information the user has collected (Brodsky, et al. 2008).

Table 1. Input learning set

Product 1 Product 2 Product 3 Actual Total
Quantity Quantity Quantity Cost

8 5 9 20

9 7 6 18

7 6 14 25

10 11 12 29

5.5 12.1 9.8 31.1

11.2 9.6 6.5 25.33

Figure 5 shows the simulation result using CoRejave for a
product set of (64.2, 50.4, 35.5) as inputs, i.e. the productl
quantity is 64.2, product2 quantity is 50.4, and product3
quantity is 35.5. We need to determine the actual total cost
for this set of products. In Figure 5, the two-dimensional
array reqMatQty represents the quantity of each required
material to produce one unit of every product. The array
matUnitCost represents the unit cost of every material. The
data includes the values of coefficients (matUnitsCost and
reqMatQty arrays) and the total cost (Brodsky, et al. 2008).

For comparison purpose, a simulation model of the same
problem was also developed using a simulation software,
which does not have a RA module. Data in Table 1 alone is
not sufficient for constructing the model. Important data
such as component unit price, and amount of components
material needed is not available. A triangular distribution is
typically used in a model for a source of randomness when
no system data are available. T (0.3, 1, 3) is chosen for that,
we used the min_Bound value in CoReJava example as the
minimum value of the triangular distribution, which is 0.3
and used the max_Bound value in CoReJave example as the
maximum value, which is 0.3, for the triangular distribution,
then arbitrarily choose a mode value as 1. From the results
showed in Figure 6, we can see that the results are far apart
from the results of CoReJava. This is because the model did
not incorporate the existing data sets. From the results



comparison, we can see this model did not accurately
describe the problem. By using the proposed technique, the
parameters are ensured to be learned based on the past
historical data. The model will properly represent the
problem. The results will be within a confident interval of
the existing data. That makes the proposed model more valid
for the specific application.

At Un it
ot Tl

{lawal

fiaval rsgMacQuyiz]

fiaval The cost to py

@

et of products: 1T.08T7IZT4A29933337

Figure 5. Simulation result using CoRelJava.
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Figure 6. Same example modeled using distribution

CONCLUSION

M&S techniques are increasingly used to solve problems
and aid decision making in many different fields. Results of
simulations are expected to provide reliable information for
the decision makers. However potential errors may be
introduced in the process of the M&S development lifecycle.
It is critical to make sure to build the right model and that
the model is built right.

This paper demonstrated a novel approach of unknown
parameters calibration and validation through constraint
optimization based on training data sets within a data range.
The technique proposed a parallel process of developing and
validating the simulation model, before every parameter is
known. A simulation template can be built with unknown
variables in it. By using a built-in RA module that learns the
training data sets, the best estimates of the variable values
can be derived. This will help to ensure the accurate
relationship between indepedent inputs and dependent
output. Future work may include the development generic
UML model for the RA module. That will provide a
software independent design of the validation technique.
Any interested simulation software vendor can implement it
as a module of their product. Also more implementation for
real world problems may be needed to wvalidate the
technique.
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