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Preface

NASTEC (North-American Simulation Technology Conference) is a series of conferences
initiated by Eurosis after in-depth discussions with Dr. Mokhtar Beldjehem and North-American
simulationists, addressing issues regarding modeling and simulation (M&S). The first NASTEC
2008 is being held at Mc Gill University, Montreal, Canada, which is its birth place. It has attracted
simulationists, researchers and practitioners, attendees from academic, industry and government
agencies in an exchange of ideas and shared experiences. NASTEC aims to be the feast of
simulationists in North-America.

The intent of the NASTEC'2008 event is to nurture the spirit of cooperation and strive to improve
the quality of life in this global village through excellence in hybrid soft computing research and
education by engineering of next-generation intelligent hybrid soft computing systems for
modeling, simulation, software engineering, web computing and virtual reality systems at the
service and for the benefits of the humankind.

Computer simulation is being acknowledged as the “third leg” of scientific discovery and analysis,
along with theory and experimentation. Simulation technology aims at building the software digital
factory. The field of modeling and simulation in general has made significant progress; part of it is
reflected in the present proceedings volume. NASTEC 2008 was able to attract top-level and
forefront research; the field itself has brought along a number of new development, unheard of a
couple of years ago. The themes to be discussed this year center around novel issues in
connection with modeling and simulation: soft computing for modeling and simulation, simulation-
based software engineering, web computing and virtual reality systems. The program consists of
15 high-quality papers. Beyond these papers that have undergone a review process, NASTEC
2008 is proud to host three abstracts by Prof. Lotfi A. Zadeh the creator of fuzzy and soft
computing, invited talks by Prof. Johann Schumann from NASA Intelligent Systems Division, Prof.
JingTao Yao from the University of Regina, Prof. Peter Grogono from Concordia University, and
Prof. Brigitte Jumard from Concordia University.

We are grateful to a number of people without whom we would not have been able to put the
program together. They include our local program committee and international program
committee, which have done an excellent job: We got 4.5 reviews per paper on the average. We
would also like to thank many external reviewers who have helped “in the background,” and who
made sure that we stuck with our schedule. We are grateful to the large number of authors who
have considered NASTEC as the target for their work, and even though we could not
accommodate every submission, we hope that the reviews will be helpful to many people. Last,
but not least, we are indebted to the staff of Eurosis, Ecole Polytechnique de Montréal and Mc
Gill University for making this event a reality.

NASTEC’08 General Conference Chair
Mokhtar Beldjehem

Honorary Conference Chairs

Lotfi A. Zadeh

Ronald Yager

Madan Gupta
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Message from the Chairs

The organizing committee welcomes you to the 2008 North-American Simulation Technology
Conference (NASTEC 2008), held in Montreal, Canada, from August the 13th to August the 15th,
2008. This meeting, co-sponsored by the EUROSIS, is the first of a series of conferences dealing
with simulation technology.

The intent of the NASTEC'2008 event is to nurture the spirit of cooperation and strive to improve
the quality of life in this global village through excellence in hybrid soft computing research and
education by engineering of next-generation intelligent hybrid soft computing systems for
modeling, simulation, software engineering, web computing and virtual reality systems at the
service and for the benefits of the humankind.

Computer simulation is being acknowledged as the “third leg” of scientific discovery and analysis,
along with theory and experimentation. Ultimately, simulation technology aims at building the
cost-effective software digital factory.

The three-day program aims to extend and advance the use of modeling and simulation (M&S)
technologies in an informal setting arranged to encourage broad discussion about theory,
methodologies, best practices and results. Participants will hear, learn and discuss opportunities
and problems in using soft computing, simulation-based software engineering, web computing,
virtual reality, their synergies and interplays in connection with modeling and simulation
breakthroughs to the advancement of the simulation technology and related applications. To
promote interaction and discussion in the audience, sufficient time is allotted to presenters not
only to introduce their achievements, but also to engage in extended discussions with the
participants. Subjects of discussion include, but are not restricted to, examination of approaches
and results, the rationale underlying particular methodologies, experimental and theoretical
examinations, practical difficulties, insights, and extensions to other application areas.

We believe that NASTEC 2008 constitutes a seed for the upcoming NASTEC series: the quality
of accepted papers is still very high, evidencing the real interest and attractiveness of this
meeting and the relevance of this scientific and application area in the worldwide scene. This
conference will be held in parallel with the North American Simulation and Al in Games
Conference (GAMEON-NA). The organizers decided to adopt this structure due to their many
common aspects and shared technologies: the parallel organization will allow for more
interaction, networking and collaboration among the participants in the two events, and for cross-
fertilization of research ideas, more sharing of advanced knowledge and stimulating experiences.
We think you will find NASTEC 2008 a challenging and productive experience.

We hope that you will enjoy the feast of simulationists, the Montreal UNESCO City of Design, the
Island of Montreal, the Mc Gill University location, the culture, the food and the Mount Royal:
Montreal will be an exciting experience!

NASTEC'08 General Conference Chair
Mokhtar Beldjehem

Honorary Conference Chairs

Lotfi A. Zadeh

Ronald Yager

Madan Gupta
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GRANULAR COMPUTING:
A NEW PARADIGM IN INFORMATION PROCESSING

JingTao Yao
Department of Computer Science, University of Regina, Regina, Canada S4S 0A2
Email: jtyao@cs.uregina.ca
URL: http://www2.cs.uregina.ca/~jtyao

INTRODUCTION

Granular computing (GrC) has emerged as one of
the fastest growing information processing paradigm in
computational intelligence and human-centric systems.
It has been gaining popularity in the past ten years.
GrC is often loosely defined as an umbrella term to
cover any theories, methodologies, techniques, and tools
that make use of granules in complex problem solving.
As a new paradigm for the problem solving, GrC may
be viewed differently from philosophical, methodologi-
cal and application perspectives. In this talk, I will give
a brief introduction to granular computing and discuss
its present developments and research directions.

HISTORICAL VIEW OF GRANULAR COM-
PUTING

The concept of granular computing was initially called
information granularity or information granulation
related to the research of fuzzy sets in Zadeh’s early
paper (Zadeh 1979). The term granular computing first
appeared within literature in 1997 (Yao 2007).

Although the term granular computing is new, the ba-
sic notions and principles of GrC occur under various
forms in many disciplines and fields (Yao 2004, Zadeh
1997). Similar views are shared by research in belief
functions, artificial intelligence, cluster analysis, chunk-
ing, data compression, databases, decision trees, divide
and conquer, fuzzy logic, interval computing, machine
learning, structure programming, quantization, quotient
space theory, and rough set theory.

GRANULES, GRANULATION AND GRANU-
LAR RELATIONSHIPS

Granules, granulations and relationships are some of
the key issues in the study of GrC (Yao 2005).

A granule can be defined as any subset, class, object,
or cluster of a universe. These granules are composed
of finer granules that are drawn together by distin-
guishability, similarity, and functionality (Zadeh 1997).

A group of concepts or objects can be considered as a
granule by their spatial neighborhood, closeness, and
cohesion. Although granular computing is intended to
deal with imprecision, uncertainty and partial truth,
the granules may be of crisp or fuzzy format. A granule
may have different formats and meanings when used
in a particular model. For example, in a set-theoretic
setting, such as rough sets and cluster analysis, a
granule may be interpreted as a subset of a universal
set, while in structured programming, a granule can be
a program module (Yao 2004). Granules at the lowest
level are composed of elements or basic particles of
the particular model that is used. For instance, the
finest granules are words in an article universe. They
are formed with basic particles, i.e., letters. They may
be considered as singleton granules in some special cases.

Granulation involves the process of construction and
decomposition of granules (Yao 2005). It is an opera-
tion performed on granules. Construction involves the
process of forming a larger and higher level granule with
smaller and lower level granules that share similarity,
indistinguishability, and functionality. Decomposition
is the process of dividing a larger granule into smaller
and lower level granules. The former is a bottom-up
process. The latter is a top-down process. This defini-
tion is slightly different with the dictionary definitions
of granulation, the act or process of forming some-
thing into granules, i.e. decomposition of granulation.
Writing an article could be viewed as granulation.
The lower level granules, i.e., worlds, are constructed
into an article, a high-level granule. Granulation and
computation are two important and related issues of
granular computing research. Granulation deals with
the construction, interpretation, and representation of
granules. Computation deals with the computing and
reasoning with granules and granular structures.

Relationships amongst granules may be classified
into two types, interrelationship and intrarelationship.
Granulation, regardless of direction, is dealing with re-
lationships between granules. The relationship involved
in construction granulation is considered as an interre-
lationship and the decomposition granulation as an in-



trarelationship. Interrelationship is the basis of group-
ing small objects together. Granular computing involves
structured human thinking. A high-level granule repre-
sents a more abstract concept and a low-level a more
specific concept. The level of abstraction may be repre-
sented in terms of coarse and fine relationships.

SCHOOLS OF GRANULAR COMPUTING
RESEARCH

One of the important developments of granular
computing is the triarchic theory of granular com-
puting (Yao 2008). Instead of simply defining what
granular computing research is, one may understand
the scope of granular computing from the philosophical,
methodological and computational perspectives. The
philosophical perspective concerns structured thinking.
Granular computing combines analytical thinking for
decomposing a whole into parts and synthetic thinking
for integrating parts into a whole. It is important
to consider the conscious effects in thinking with
hierarchical structures when using granular computing.
The methodological perspective concerns structured
problem solving. The techniques for effective human
problem-solving, such as systematic approaches to
finding a solution, effective problem definition princi-
ples, and practical heuristics and strategies to check
solutions to a problem, builds major foundations to
granular computing. The computational perspective
concerns structured information processing. Granular
computing also focuses on the application of its theory
to knowledge-intensive systems.

Rough sets and fuzzy sets play important roles in
GrC development (Yao 2007). An important fuzzy
aspect in granular computing is to view granular
computing as human-centric intelligent systems.
Human-centered information processing was initiated
with the introduction of fuzzy sets. The insights have
led to the development of the granular computing
paradigm (Bargiela and Pedrycz 2008, Zadeh 1997).
Shifting from machine-centered approaches to human-
centered approaches is considered one of the trends in
GrC research. For example, one may integrate different
agents in which each pursues its own agenda, exploits its
environment, develops its own problem solving strategy
and establishes required communication strategies,
to form a more effective human-centered information
system (Bargiela and Pedrycz 2008).

Another school of thought is rough-granular computing.
One may form granules with different criteria from a
rough computing point of view (Skowron and Stepaniuk
2007).  Granules are constructed in computations
aiming at solving optimization tasks. General optimiza-
tion criterion based on the minimal length principle
may be used. In searching for optimal solutions, it

is necessary to construct many compound granules
using some specific operations, such as generalization,
specification or fusion (Skowron and Stepaniuk 2007).
The dominance-based rough set approach is another
representation of rough set-based GrC methodology.
This approach extends the classical rough set approach
by utilizing background knowledge about ordinal eval-
uations of objects and about monotonic relationships
between these evaluations (Slowinski 2008).

Other important granular computing research areas in-
clude interval computing, topology, rough logic, quo-
tient space, neural networks, fractal analysis, and quo-
tient space theory (Yao 2009).

FUTURE OF GRANULAR COMPUTING

In order to broaden and deepen the study of granu-
lar computing, one may focus on its foundations and
definitions. Important issues, such as the formalization
and understanding of granules, granulation, and gran-
ular relationships of various granular computing tech-
niques should be emphasized. Applying individual tech-
niques for real applications are essential. Communicat-
ing with other disciplines and adopting non-traditional
techniques to granular computing research will broaden,
enhance, and solidify granular computing research.
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Verification and Validation of Neuro-adaptive Aircraft Control Systems

Johann Schumann
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ABSTRACT

Traditional fixed-gain control has proven to be unsuc-
cessful to deal with complex changing systems such as
a damaged aircraft. Control systems, which use a neu-
ral network that can adapt toward changes in the plant,
have been actively investigated and test flown as they
offer many advantages. We will briefly introduce adap-
tive flight control and will discuss the specific challenges
for the verification and validation (V&V) of such sys-
tems. Since performance and safety guarantees cannot
be provided at development time, we have developed
novel tools and approaches to support V&V and cer-
tification, which use a Bayesian approach to monitor
sensitivity and performance (confidence) of the neural
network during flight.

INTRODUCTION

Adaptive control systems in aerospace applications have
numerous advantages: they can automatically fine-tune
system identification and accommodate for slow degra-
dation and catastrophic failures (e.g., a damaged wing
or a stuck rudder) alike. A variety of approaches for
adaptive controls, based upon self-learning computa-
tional models such as neural networks or fuzzy logic,
have been developed (e.g., Rysdyk and Calise (1998)).
Some are in actual use (e.g., in chemical industry) or
have been flight-tested (e.g., the NASA Intelligent Flight
Control System (IFCS, Bosworth and Williams-Hayes
(2007))). However, the acceptance of adaptive con-
trollers in aircraft and other safety-critical domains is
significantly challenged by the fact that methods and
tools for analysis and verification of such systems are
still in their infancy and no widely accepted V&V ap-
proach has been developed. Reliability of learning, per-
formance of convergence and prediction for a nonlinear
adaptive controller is hard to guarantee. The analysis of
traditional controllers, which have been augmented by
adaptive components require technically deep nonlinear
analysis methods.

Figure 1 shows the basic architecture of the adaptive
controllers developed within NASA’a IFCS project: pi-
lot stick commands 6,4 are mixed with the feedback,
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Figure 1: Basic IFCS Adaptive Control Architecture

current sensor readings 6 (e.g., airspeed, angle of attack,
altitude) to form the desired behavior of the aircraft.
Then, the controller calculates the necessary movements
of the control surfaces (e.g., rudder, ailerons). If the
aerodynamics of the aircraft changes radically (e.g., due
to a structural damage), there is a deviation between
desired and actual behavior of the aircraft. The neural
network is trained during flight (“online”) to minimize
this deviation. Different types of NNs (DCS, SigmaP1i,
and MLP) have been investigated within this project.

V&V AND CERTIFICATION ISSUES

Clearly, an adaptive aircraft controller is a highly safety-
critical component of aviation software, and therefore,
it has to undergo a rigorous V&V and certification pro-
cess. Due to the nonlinearity of adaptive controllers,
traditional linear analysis techniques and tools cannot
be used. Rather, more complex non-linear techniques
like Lyapunov stability analysis must be used. In gen-
eral, adaptive controllers require advanced learning al-
gorithms, which dynamically modify internal parame-
ters (e.g., weights). For such algorithms, no standard-
ized way of performing performance analysis and V&V
exists and certification authorities are very reluctant to
certify novel components, architectures, and software al-
gorithms.

For such learning algorithms, in general, the conver-
gence time cannot be bounded a priori and there is no
guarantee that the global optimum can be reached. The
estimation of safety and stability envelopes is strongly
related with the performance of the neural network. We
therefore have developed a number of tools, which dy-
namically (i.e., during flight) monitor the performance
and sensitivity of the neural network. Using a Bayesian
approach, these tools can provide statistical up-to-date
evidence on how the neural network is behaving. We
also have developed software V&V process guides to
support V&V of adaptive control systems.



PARAMETER SENSITIVITY ANALYSIS

The sensitivity of a controller with respect to input per-
turbations is an important performance metric for any
controller. In a neuro-adaptive system, the internal con-
trol parameters are changing while the system is in oper-
ation. We are therefore also interested in the parameter
sensitivity for the neural network. A statistical formula-
tion this provides sensitivity s and parameter confidence
0723. If we assume a Gaussian probability distributions
and the probability of the output of the neural network
as p(o|P,x) for output o with network parameters P
and inputs x, we can easily calculate sensitivity and pa-
rameter confidence for each parameter P.

sonsitivity wierror bar

s i

neuron number

Figure 2: Parameter sensitivity and confidence for DCS
(top) and Sigma-Pi (bottom) before and after training.

Fig. 2 (top) shows the sensitivity of the IFCS DCS ref-
erence vectors before (1) and after training (r). Small
circles correspond to high parameter confidence. The
bottom row shows the mean sensitivity and parameter
confidence (as error bars) for each of the 60 weights in
the Sigma-Pi IFCS network Schumann and Liu (2007).
Before training, all weights have similar sensitivity; af-
ter training, however, only 7 weights have consistently
high sensitivity, i.e., their value really contributes to the
output. This observation provides statistical evidence
that a dramatic reduction of the network size from 60
to 7 neurons was justified.

NETWORK CONFIDENCE

The Confidence Tool Gupta and Schumann (2004) pro-
duces a quality measure (confidence, 02) of the NN out-
put using a Bayesian approach. This tool has been de-
veloped for the IFCS Sigma-Pi adaptive controller ans
successful test flights on a NASA F-15 aircraft have been
carried out in early 2006. A similar performance met-
ric (validity index) has been defined for DCS Liu et al.
(2005). Figure 3(top) shows the control augmentation
signal that the NN produces to compensate for failure
(stuck stabilator surface).. o2 of the network output in-
creases substantially, indicating a large uncertainty in

the network output. Due to the online training of the
network, this uncertainty decreases very quickly. A sec-
ond and third pilot command (¢ = 11s, ¢t = 17s) shows
that the network has successfully adapted to handle this
failure situation (much smaller peaks in o2).
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Figure 3: Confidence value o over time (top) and pilot
doublet commands (bottom). Failure at ¢t = 1.5s.

CONCLUSIONS

Our Bayesian approach allows different models (e.g.
networks with different numbers of hidden units, or dif-
ferent network types such as multi-layer perceptrons,
Sigma-Pi, RBF, or DCS) to be compared using only the
training data. More generally, the Bayesian approach
provides an objective and principled framework for deal-
ing with the issues of model complexity.

In aeronautics, the performance of an aircraft is defined
in terms of its handling quality (e.g., the Cooper-Harper
rating). Current research aims to relate our performance
metric with the aircraft handling quality. With the real-
time availability of handling quality estimates, our val-
idation tools can be used to alert the pilot and provide
assistance/support to decision making.
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ABSTRACT

Evolutionary Computing and Artificial Life apply in-
sights from evolutionary biology to software applica-
tions. Our understanding of evolution is itself evolving.
Viewed in the light of modern evolutionary theories, the
assumptions of Evolutionary Computing and Artificial
Life are often naive and sometimes even wrong. How
does evolution really work? Can we exploit recent dis-
coveries to expand the possibilities of software? Can
software be truly creative?

BIOLOGY AND COMPUTATION

The idea of developing computer algorithms based on bi-
ological evolution has excited researchers since the early
days of computing. The first proposals were made in the
1950s, and several streams of evolutionary computing
(EC) emerged in the 1960s. Yet it is only in the last few
years that EC has demonstrated truly impressive per-
formance. Evolutionary programs have yielded walking
robots, high quality amplifiers, sensitive antennas, and
a wide range of more esoteric devices. In one field alone
— circuit design — EC techniques have reinvented sev-
eral circuits that were discovered and patented recently.
These successes have been due to a confluence of theory,
experience, and hardware developments.

In this paper, we use “EC” as an inclusive term for
a variety of particular stratdegies, such as genetic al-
gorithms, genetic programming, evolutionary program-
ming, and techniques based metaphorically on ants,
swarms, and weeds. EC is intended to be analogous
to Darwinian evolution, which we will refer to as Evolu-
tionary Biology (EB). As EC has evolved during the last
few years, so has our understanding of EB. Although the
basic principle of evolution — “survival of the fittest”,
in Spencer’s well-known aphorism — its implementation
is now known to be much more complex and interest-
ing than was previously thought. In summary, evolu-
tion requires a population of individuals that reproduce
with wvariation and an enwvironment that associates a
cost with reproduction.

In nature, fecundity is the only criterion for fitness. If
absurdly long tail-feathers help males to have more off-
spring, then males will have absurdly long tail-feathers.
EC introduces a fitness function: individuals are first

evaluated and only then allowed to reproduce. This re-
verses the natural order of events, in which the fitness
of an individual can be assessed only at the end of its
reproductive life. The fitness function transforms EC
from whimsical experimentation to useful engineering.

STRENGTHS AND WEAKNESSES

Viewed as a form of engineering, EB and EC share
strengths and weaknesses. The following quote is of-
ten used to argue that even Darwin had doubts about
the evolution of eyes (Darwin (1859)):

To suppose that the eye . . . could have been
formed by natural selection, seems, I freely
confess, absurd in the highest possible degree.

But this sentence is only the introduction to Darwin’s
argument showing how evolution should be expected to
produce eyes, concluding that

.. . the difficulty of believing that a perfect and
complex eye could be formed by natural selec-
tion . . . should not be considered subversive
to the theory.

The fossil record provides little evidence of evolving
eyes. Yet experiments suggest that the evolution of an
eye might require no more than 350,000 years — a blink
of an eye, so to speak, in evolutionary time (Nilsson and
Pelger (1994)). These experiments assume the existence
of a means of detecting light: we might object that dis-
covering a light detector that eyes can use seems to be
an even harder problem than evolving the eye. In fact,
early single-celled organisms discovered how to detect
light, using the gene Pax 6 and the protein rhodopsin.
All contemporary eyes are based on this gene and pro-
tein and are almost certainly adaptations of the first
light detectors.

From eyes and similar examples, it is easy to get the
impression that evolution leads to robust and adaptive
organisms. This is perhaps the main reason for the in-
terest in EC. It is certainly true that some organisms are
robust and adaptive. But evolution also builds quaint,
Rube Goldberg contraptions that just happen to work
in an environment that changes only slowly.

Even worse, evolution often leads to solutions that
would never be accepted by engineers. One example



will suffice (I will mention others in the talk). Again, it
concerns eyes. Our retinas are constructed inside-out:
the light receptors are behind the retina and the nerve
fibres to the brain are in the front. This is a consequence
of a simple, basic fact about evolution: change occurs
in small increments, and each increment must be better
than the previous. Big changes, temporary backward
moves, and redesign cannot occur. Squids were luck-
ier: their optical nerves are connected to the back of the
retina.

The products of EC sometimes have the same quirki-
ness as the results of EB. This function (Rooke (2002)),
evolved to produce an artistic image, is easily distin-
guishable from functions designed by people:!

cos (mul (div (div (pi, dist (mul
(0.703097, dist (div (0.777147, sin
(div (y, minus (-2.19658, cos (x))))),
cos (cos (sin (y))))), sin (y))),

cos (plus (cos (plus (atan (sin (cos
(x))), mul (x, x))), spiral ( (y,
0.418353)))), 0.494688)))

One problem that EC must address is how to combine
evolutionary strategies with good engineering practice.

FUTURE DIRECTIONS

Most work in EC is based on a very naive model of
EB. For many purposes, this clearly does not matter,
since EC has had striking successes. But EB is much
more interesting than the simple genotype to phenotype
mapping suggests, and I believe that there is much to be
gained by studying EB and incorporating its techniques
into EC. In this section, I briefly describe aspects of EB
and pose challenges (in italics) for EC.

When the genetic code was first discovered, biologists
assumed that each kind of organism would have its own
kind of genes and that a complex organism, such as
a person, would have hundreds of thousands of genes.
Both assumptions are now known to be quite wrong.
To a first approximation, all organisms have the same
genes. The genes that assemble the segments of a fruit
fly are the genes that assemble the backbones of ver-
tebrates. The genes that enable a bacterium to derive
energy from sugar are the same as the genes that we use
for the same purpose. Obviously, there are differences:
plants do not need genes for eyes. But the commonal-
ities are striking. EB achieves the software engineer’s
perennial dream of reuse. The same set of genes are
used to assemble an enormous variety of different bod-
ies. Can EC achieve software reuse by exploiting evolu-
tionary ideas?

Variation is obtained by gene switching networks that
control gene expression using both environmental fac-

IThis function should not be read as a criticism of Rooke’s
admirable work but rather as a typical example of the unpre-
dictability of evolution.
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tors and other genes. Evolution’s motto seems to be “if
it ain’t broke, don’t fix it”. Epistasis — interaction be-
tween genes — is the means by which EB obtains huge
variety from a relatively small set of genes. Can EC
exploit epistasis to build complex systems from simple
components?

Perhaps the biggest difference between EB and most EC
is that the genome controls all phases of the organism’s
life cycle. Our genome’s work starts when the fertilized
egg splits into two, then four, then eight cells. Later,
the same genome controls the varied functions of each of
the trillion or so cells in our adult bodies. The genomes
of other organisms perform even more astonishing tasks:
the genome that causes a larva to eat a leaf later tells the
butterfly how to find pollen. Can EC produce programs
that grow, learning as they do so?

There are similarities as well as differences between EC
and EB. Programming languages are sometimes criti-
cized for being fragile by comparison with biological ar-
tifacts. A misplaced comma can change the meaning of
a program, or make it fail altogether. But biology is no
different in this respect: a single error in the genome
may be fatal. The techniques that nature has evolved
to compensate for fragility follow good engineering prac-
tice, including redundant encoding, high fidelity copying
followed by error detection and correction, and storing
information in a stable and inactive molecule. Given
a simple but unreliable mechanism, can we use EC to
evolve an equivalent but highly reliable mechanism?
Finally, the languages used in EC systems such as Tierra
and Avida are based closely on programming languages.
Can we develop a language for EC that is biologically
inspired? 1 consider this to be the “grand challenge” of
EC.

CONCLUSION

Evolutionary computing is an exciting and growing field
with many significant successes to its credit. But its bi-
ological foundations have plenty of features waiting to
be understood and exploited, ensuring dramatic devel-
opments in the near future.
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TOWARD HUMAN LEVEL MACHINE INTELLIGENCE -- IS IT ACHIEVABLE?
THE NEED FOR A PARADIGM SHIFT

Lotfi A. Zadeh""

In the fifties of last century, the question "Can machines
think?" was an object of many spirited discussions and
debates. Exaggerated expectations were the norm, with no
exceptions. In an article "Thinking machines—a new field
in electrical engineering," published in January 1950, I began
with a sample of headlines of articles which appeared in the
popular press in the late forties. One of them read "Electric
brain capable of translating foreign languages is being
built." Today, half a century later, we have translation
software, but nothing that approaches the level of human
translation. In 1948, on the occasion of inauguration of
IBM's Mark 1relay computer, Howard Aiken, Director of
Harvard's Computation Laboratory, said "There is no
problem in applied mathematics that this computer cannot
solve." Today, there is no dearth of problems which cannot
be solved by any supercomputer. Exaggerated expectations
should be forgiven. As Jules Verne said at the turn of last
century, "Scientific progress is driven by exaggerated
expectations."

Where do we stand today? What can we expect in the
future?

Al was born in 1956. Today, half a century later, there is
much that Al can be proud of—but not in the realm of
human level machine intelligence. A telling benchmark is
summarization. We have software that can passably
summarize a class of documents but nothing that can
summarize miscellaneous articles, much less books. We
have humanoid robots but nothing that can compare in
agility with that of a four year old child. We can automate
driving a car in very light city traffic but there is nothing on
the horizon that could automate driving in Istanbul. Far too
often, we have to struggle with a dumb automated customer
service system which we are forced to use. Such experiences
make us keenly aware that human level machine intelligence
is an objective rather than reality.

In an article "A new direction in Al—toward a
computational theory of perceptions," Al Magazine, 2001, I
argued that, in large measure, the lack of significant progress
in many realms of human level machine intelligence is
attributable to Al's failure to develop a machinery for
dealing with perceptions. Underlying human level machine
intelligence are two remarkable human capabilities. First, the
capability to perform a wide variety of physical and mental
tasks, such as driving a car in heavy city traffic, without any
measurements and any computations. And second, the

" Dedicated to Peter Walley.

capability to reason, converse and make rational decisions in
an environment of imprecision, uncertainty, incompleteness
of information, partiality of truth and partiality of possibility.
A principal objective of human level intelligence is
mechanization of these remarkable human capabilities.

What is widely unrecognized is that mechanization of these
capabilities is beyond the reach of classical, Aristotelian,
bivalent logic. What is needed for this purpose is fuzzy
logic. Al's deep commitment to bivalent logic has impeded
its acceptance of fuzzy logic. In my view, achievement of
human level machine intelligence is infeasible without the
use of fuzzy logic.

What is fuzzy logic? What does it have to offer? There are
many misconceptions about fuzzy logic. The following
précis of fuzzy logic is intended to correct the
misconceptions. Fuzzy logic is not fuzzy. Basically, fuzzy
logic is a precise logic of imprecision and approximate
reasoning. In fact, fuzzy logic is much more than a logical
system. It has many facets. The principal facets are logical,
fuzzy-set-theoretic, epistemic and relational. Most of the
applications of fuzzy logic involve the concept of a linguistic
variable and the machinery of fuzzy if-then rules. The
formalism of linguistic variables and fuzzy if-then rules is
associated with the relational facet. The cornerstones of
fuzzy logic are graduation, granulation, precisiation and the
concept of a generalized constraint. Graduation should be
understood as an association of a concept with grades or
degrees.

In fuzzy logic, everything is or is allowed to be a matter of
degree or, equivalently, fuzzy. Furthermore, in fuzzy logic
everything is or is allowed to be granulated, with a granule
being a clump of attribute values drawn together by
indistinguishability, equivalence, proximity or functionality.
Graduated granulation or, equivalently, fuzzy granulation is
inspired by what humans employ to deal with complexity,
imprecision and uncertainty. Graduated granulation
underlies the concept of a linguistic variable. When Age, for
example, is treated as a linguistic variable, its granular
values may be young, middle-aged and old. The granular
values of Age are labels of fuzzy sets.

A concept which plays a pivotal role in fuzzy logic is that of
a generalized constraint, represented as X isr R, where X is
the constrained variable, R is the constraining relation and »
is an indexical variable which defines the modality of the
constraint, that is, its semantics. The principal generalized

! Department of EECS, University of California, Berkeley, CA 94720-1776; Telephone: 510-642-4959; Fax: 510-642-1712;
E-Mail: zadeh(@eecs.berkeley.edu . Research supported in part by ONR N00014-02-1-0294, BT Grant CT1080028046, Omron
Grant, Tekes Grant, Chevron Texaco Grant and the BISC Program of UC Berkeley.
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constraints are possibilistic, probabilistic and veristic. The
fundamental thesis of fuzzy logic is that information may be
represented as a generalized constraint. A consequence of
the fundamental thesis is that the meaning of a proposition,
p, may likewise be represented as a generalized constraint.
The concept of a generalized constraint serves as a basis for
representation of and computation with propositions drawn
from a natural language. This is the province of NL-
Computation—computation with information described in
natural language.

NL-Computation opens the gate to achievement of human
level machine intelligence. The validity of this assertion rests
on two basic facts. First, much of human knowledge, and
especially world knowledge, is described in natural
language. And second, a natural language is basically a
system for describing perceptions. What this implies is that
NL-Computation serves two major functions: (a) providing a
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conceptual framework and techniques for precisiation of
natural language in the context of human level machine
intelligence; and (b) providing a capability to compute with
natural language descriptions of perceptions. These
capabilities play essential roles in progression toward human
level machine intelligence.

In summary, achievement of human level machine
intelligence is beyond the reach of bivalent-logic-based tools
which Al has in its possession. What is needed for this
purpose is addition of concepts and techniques drawn from
fuzzy logic to AI’s armamentarium. However, what should
be stressed is that fuzzy logic is merely one of many tools
which are needed to achieve human level machine
intelligence. What is obvious is that achievement of human
level machine intelligence is a major challenge which will be
very hard to meet.
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ABSTRACT

In this paper, we will discuss interval-valued and in-
tuitionistic fuzzy sets as a model for grayscale images,
taking into account the uncertainty regarding the mea-
sured grayscale values, which in some cases is also re-
lated to the uncertainty regarding the spatial position
of an object in an image. We will demonstrate the prac-
tical potential of this image model by introducing an
interval-valued morphological theory and by illustrating
its application with some examples. The results show
that the uncertainty that is present during the image
capture not only can be modelled, but can also be prop-
agated such that the information regarding the uncer-
tainty is never lost.

INTRODUCTION

Images are among the most important information car-
riers in today’s world. This importance is not only due
to the simple fact that an image can contain an enor-
mous amount of relevant data, but also to the scientific
and technological achievements of the last decades. The
wide availability of image capturing devices and the easy
way to develop images and to make them public (e.g.
using the internet) has even enhanced this evolution.

Since their introduction, fuzzy set theory [30] and fuzzy
logic have given rise to many applications, also in image
processing. This is not a surprise, since uncertainty and
imprecision are encountered in many image processing
applications, e.g. to determine whether a pixel is an
edge-pixel or not or whether a pixel is contaminated
with noise or not [21, 22], or when measuring the degree
to which two images are similar to each other [26]. In
other cases, the theory is used as a tool to construct
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image processing operators. The latter typically oc-
curs in the field of mathematical morphology. The ba-
sic morphological operators dilation, erosion, opening
and closing constitute the fundamentals of this theory
[23], and transform an image into another image, us-
ing a structuring element. As an extension from binary
to grayscale morphology, different fuzzy morphological
models have been introduced [9, 18, 24]. These models
were based on the observation that, from a formal point
of view, grayscale images and fuzzy sets are modelled in
the same way, and consequently tools from fuzzy set the-
ory could be applied in the context of image processing.
However, it is only until quite recently that (extended)
fuzzy set theory has been used to model the uncertainty
that occurs with the image capture itself. In particular
the extensions based on interval-valued and intuitionis-
tic fuzzy set theory have very nice interpretations in the
context of image processing [3, 4, 19, 20].

The goal of this paper is to extensively discuss the poten-
tial of extended fuzzy set theory — in particular interval-
valued and intuitionistic fuzzy set theory — to model nu-
merical and spatial uncertainty, due to image capture,
in grayscale images (Section 2). In order to demonstrate
the applicability of this image model we will introduce
an interval-valued morphological theory, and we will il-
lustrate this theory with some examples (Section 3). We
end our paper with concluding remarks and directions
for future research (Section 4).

MODELLING THE UNCERTAINTY OF IM-
AGE CAPTURE

The interval-valued approach

The grayscale value of a pixel in a grayscale image in-
dicates the amount of black or white present at that
specific location in the image. All approaches to math-
ematical morphology use these values to transform the
original image. However, one always assumes that these



grayscale values are certain, although in practice, due
to the circumstances in which images are sometimes
captured, the measured values might be uncertain and
merely indicate a likely value of the image at a specific
position. The uncertainty regarding the grayscale value
is an immediate fact if one takes into account that any
device will round captured values up or down to the fi-
nite set of allowed values. The uncertainty grows if sev-
eral takes of an image reveal different grayscale values
for some pixels. This might be the case under identi-
cal recording circumstances, and will surely arise when
these circumstances change (e.g. a scenery that is illu-
minated by either a sunny or a cloudy sky; see Figure
1). Not only the recording circumstances can play a role
here. Indeed, pixels that belong to the edge of an ob-
ject might slightly shift position in different takes (e.g.
when the camera slightly shifts position; see also Figure
1). This could result in large differences in the measured
grayscale value of a specific pixel, and consequently in a
large uncertainty regarding the real value of that pixel,
i.e. for that specific spatial position in the image.

For all these reasons, it can be useful not to work with
grayscale values but with grayscale intervals, where the
interval represents the set to which the actual grayscale
value belongs. Such an interval will be small for a pixel
that belongs to a larger object in the image and that was
captured under more or less identical circumstances, but
will be large for a pixel that was captured under differ-
ent circumstances or that belongs to the edge of a larger
object in the image. In this way, the approach of using
intervals not only models uncertainty regarding the mea-
surement of values, but also regarding the measurement
of spatial positions.

Specifically in mathematical morphology, also regarding
the values of the pixels in the structuring element some
uncertainty might exist, even though it is chosen by the
user. Indeed, if one wants the structuring element to
reflect the importance or weight that is associated with
a pixel at a certain position w.r.t. the center of the
structuring element, one might not be completely sure
how to estimate that weight. The use of an interval with
likely values might be a solution in that case.

In the above context, grayscale images and/or struc-
turing elements are actually characterized by interval-
valued fuzzy sets. An interval-valued fuzzy set (IVFS)
corresponds to a mapping A from a universe U into
the class of closed intervals [u1,pe] C [0,1]. Thus,
A(u) = 11 (w), 2 ()] for every u € U. Tf iy (u) = piz(u)
for all u € U then the interval-valued fuzzy set reduces
to a classical fuzzy set. Interval-valued fuzzy sets have
been used successfully to implement Zadeh’s paradigm
of computing with words [17] and have become increas-
ingly important in applications of rule-based systems
and approximate reasoning [7, 10, 25].

The important thing here is that interval-valued fuzzy
set theory allows us to model the uncertainty regard-
ing the grayscale values. In the evolution of fuzzy mor-
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phology this is quite an important step, since we are
making the transfer from tool to model. Techniques and
tools from interval-valued fuzzy set theory can then be
used to construct a corresponding morphological model
and to define morphological operators that can process
interval-valued images. The potential of fuzzy set the-
ory is then fully used, i.e., the theory is employed both
as tool and as model.

Note that interval-valued representations also occur nat-
urally in several other image processing problems, e.g.
in inverse halftoning [6], and that they also occur in the
context of wavelets [5]. In a different context, not as a
model but rather as a tool, they have also proven to be
usefull in edge detection applications [2].

To visualize the place of interval-valued (and intuition-
istic) fuzzy morphologies in the field of mathematical
morphology, we have summarized several approaches in
Table 1, depending on the nature of the image and the
structuring element.

Table 1: Approaches to mathematical morphology.

| Image | Structuring element | Approach
binary binary binary morphology
grayscale binary grayscale morphology
(threshold approach)
grayscale grayscale grayscale morphology
(umbra approach)
+ fuzzy morphologies
interval interval interval-valued
fuzzy morphologies

To visualize the use of interval-valued fuzzy sets as an
image model, we discuss an example in Figures 1 and 2.
Figure 1 shows three different takes of the cameraman
image: a take with a cloudy sky, a take with a sunny sky
and a slightly distorted take. These different takes re-
veal that the measured grayscale value of several pixels
are uncertain. For the cloudy/sunny take the uncer-
tainty is due to the recording circumstances (resulting
in different grayscale values for the same pixel); for the
cloudy/distorted take the uncertainty is due to the un-
clear spatial position of the objects in the image (result-
ing in different grayscale values for mainly these pixels
that are on the edge of an object).

To take this uncertainty regarding the grayscale values
into account, we construct interval-valued representa-
tions of the cameraman image. Starting from the three
different takes (cloudy/sunny/distorted), we select for
every pixel the lowest grayscale value from the images,
resulting in the lower bounds of the grayscale intervals.
Similarly, we select for every pixel the highest grayscale
value from the images, resulting in the upper bounds of
the grayscale intervals. The image with the lower bound



values and the image with the upper bound values are
shown in Figure 2. The difference between the lower
bound and upper bound images is also shown. The in-
terpretation of this difference is quite nice: the higher
the difference for a certain pixel (i.e., the higher the
width of the correspoding interval, and the brighter the
pixel in the corresponding image), the higher the uncer-
tainty regarding that pixel. In this case, the interval-
valued representation takes both numerical and spa-
tial uncertainty into account. This example illustrates
the natural way in which the interval-valued approach
makes sense in image processing.

The intuitionistic approach

Other considerations can lead to other extensions of
fuzzy mathematical morphology. For example, given a
grayscale image, one can assign two separate [0,1]-valued
degrees (to the grayscale value of) every pixel, the first
one indicating the belief that the pixel has this specific
grayscale value and the second one reflecting the de-
gree of certainty that it differs from the given grayscale
value. Consequently, in such a model a pixel gets a spe-
cific grayscale value and is associated with two values.
In contrast to the previous model, the grayscale values
are fixed (i.e. no intervals occur), but the uncertainty
regarding the measured value is associated with a couple
of [0,1]-valued degrees.

The approach we just explained starts from the numeri-
cal point of view, i.e. we are trying to model the uncer-
tainty regarding measured grayscale values. However,
just as in the previous case, this approach can also be
looked at from a spatial point of view. Indeed, for a pixel
that belongs to the edge of an object there might be
quite a lot of uncertainty regarding its grayscale value,
depending on the fact whether the pixel actually is part
of the object or just belongs to the background of that
object. This spatial uncertainty, which is strongly con-
nected to the numerical uncertainty (i.e. the uncertainty
regarding the measured value), can also be modelled by
the two separate [0,1]-valued degrees mentioned above.
The latter of both points of view is the basis for the
works [3, 4], while we used the first point of view in [19].
Regardless from which viewpoint is chosen, using the
above approach we are actually considering intuitionis-
tic fuzzy sets [1]. Intuitionistic fuzzy sets (IFS) gener-
alize Zadeh’s original definition by defying the law of
the excluded middle which claims that if u belongs to
a degree i to a fuzzy set A then u does not belong to
A to the extent v = 1 — u. In IFS theory, the degrees
of membership and non-membership do not have to add
up to 1. Instead, IFS theory only requires that this pair
satisfies the inequality p+ v < 1.

Formally, a grayscale image A is in this context rep-
resented as a mapping from the universe U to the set
{(pt, V)| + v < 1}. Thus, A(u) = (u(u), v(u)) for every
ueU. Mv(u) =1—p(u) for all w € U then the intu-
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Figure 1: Different captures of the cameraman image:
top = take with cloudy sky, middle = take with sunny
sky, bottom = take with distortion.



Interval-valued
cloudy/sunny/distorted take of the cameraman image:
top = lower bounds, middle = upper bounds, bottom =
representation of the interval width. The uncertainty is
due to both numerical and spatial uncertainty.

Figure 2: representation of the
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itionistic fuzzy set reduces to a classical fuzzy set.
Intuitionistic fuzzy set theory also arises in image
processing from a different perspective, just as this is the
case for interval-valued fuzzy set theory (see the discus-
sion in the previous subsection). We refer to the works
[27, 28, 29] for some applications in which intuitionistic
fuzzy sets are used in the context of enhancement and
pattern recognition.

The equivalence between both approaches

The class of IVFS as well as the class of IFS can
be regarded as L-fuzzy sets (in some universe) where
L = (L,<p) represents a complete lattice; a complete
lattice is a partially ordered set in which every family
of elements has a supremum and infimum. An L-fuzzy
set A in U is characterized by an U — L mapping [14].
When L = [0, 1], L-fuzzy set theory reduces to classical
fuzzy set theory.

In case of IVFS the corresponding complete latice
(L', <y1) is defined by:

LT = {[z, y]|[z,y] € [0,1]},
[z1,y1]) <pr [z2,92] © 21 < 22 and y1 < yo.

Infimum and supremum of a set S = {[zs, ys] C [0,1]|s €
Is CN,} are given by A S = [inf, x5, inf, ys] and \/ S =
[sup, x5, sup, ys.

In case of IFS the corresponding complete latice
(L*,<p~) is defined by:

L* = {(z,y)|zx +y < 1},
(x1,11) <p+ (@2,y2) © 1 < z2 and y1 > yYo.

Infimum and supremum of a set S = {(zs,ys) € [0,1] X
[0,1]|s € Is C N} are given by A S = [inf, x5, sup, ys]
and \/ S = [sup, xs, infs ys].

Although the interval-valued approach (using grayscale
intervals) and the intuitionistic approach (using fixed
grayscale values, but associating them with additional
values expressing some confidence) seem to be com-
pletely different in the context of image processing, they
actually are exactly the same from a formal point of view
[10]. The correspondence between these two extensions
of fuzzy set theory is given by:

[xvy] = (33, 1- y)v

where [z,y] represents a closed interval in interval-
valued fuzzy set theory, and (z,1 — y) represents a cou-
ple of membership and non-membership degrees in in-
tuitionistic fuzzy set theory.

Since both approaches are identical, we can choose one
model for further exploration and development. In gen-
eral, there is a preference for the interval-valued model
because of its very natural interpretation, and because
of the fact that the input for this model, i.e. the in-
tervals of grayscale values, can directly result from the
image capture process.



APPLICATION OF INTERVAL-VALUED
FUZZY SET THEORY IN MATHEMATICAL
MORPHOLOGY

Since we have established interval-valued fuzzy set the-
ory (or, equivalently, intuitionistic fuzzy set theory) as a
model for grayscale images, the next challenge is to con-
struct other building stones to develop image processing
theories. In this paper, we focus on mathematical mor-
phology to illustrate this process.

Interval-valued fuzzy morphology

Binary morphology was developed to process binary im-
ages, and quite soon extended to grayscale morpholgy
by using the threshold approach [23] and the umbra ap-
proach [16]. Fuzzy morphology was an alternative ex-
tension, based on the extension of the underlying logical
framework of the morphological model, i.e. using fuzzy
logical operators as extensions of their binary counter-
parts [9, 18, 24].

This extension can also be realized in the case of
interval-valued fuzzy sets. The logical aspect of interval-
valued fuzzy set theory has already been largely inves-
tigated [8, 11, 12]. The richness of interval-valued fuzzy
logical operators immediately leads to a wide variety
of morphological models, depending on the choice of
the underlying conjunctor and implicator. In [19, 20]
we have developed a specific interval-valued morpho-
logical model. The corresponding dilation and erosion
are based on the following interval-valued Lukasiewicz-
operators: the so-called pessimistic t-norm

T4 (z,y) = [max(0, z14+y1 —1), max(0, x1+y2—1, x2+y1—1)],

and the so-called optimistic implicator

Iy (x,y) = [min(1, 1—z1 +y1, 1 —22+y2), min(1, 1—z1+ys2)],

with & = [z1,22] and y = [y1,92]. These operators
are adjoint and lead to several interesting properties in
mathematical morphology.

In order to simplify the expressions for the interval-
valued dilation and erosion, we will make the following
identifications regarding the grayscale image A and the
structuring element B, both modelled as interval-valued
fuzzy sets:

B(u —v)
Alu) =

[bl(u - U)’bQ(u - U)] = [ 7f’bg]7

[a1(u), az(u)] = [af; a3].

The following expressions can be derived for the interval-
valued fuzzy dilation D{,V and erosion E{V corresponding
with the above mentioned Lukasiewicz-operators, for all
vin U:

Dyy (A, B)(v) =

V [max(0,a¥ +b} —1), max(0,ay + by —1,a% + 0y —1)]
ueU
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E{,(A,B)(v) =
A [min(1,1+a¥ —bY,14+ay —bY), min(1, 1+ al — b})].
ueU

An edge detection application

Consider the following grayscale structuring element B:

0.5 0.8 0.5
B=1] 08 1 08
0.5 0.8 0.5

Note that, for simplicity, we use a certain structuring
element, i.e., a structuring element that can be repre-
sented as a classical fuzzy set; also note that the under-
lined element corresponds to the center of the structur-
ing element.

Consider the interval-valued representation of the
cloudy/sunny/distorted take of the cameraman image
as shown in Figure 2. Using the above structuring ele-
ment, we can perform the interval-valued dilation D{,V
and the interval-valued erosion E};,. These morpholog-
ical operators result in new interval-valued images, of
which we can display the lower bound image, the upper
bound image, and the difference between them (indi-
cating the uncertainty for every pixel). This is done in
Figure 3 for the dilation and in Figure 4 for the erosion.
We can take it one step further by taking the difference
between the dilated and eroded images. This difference
should result in an edge-image, just as in the case for
regular grayscale images. Note that the difference be-
tween two intervals [z1,x2] and [y, y2] is defined as the
interval ([12, 13]):

[36’1 - yzamaX(l’l —Y1,T2 — yz)]

The results are displayed in Figure 5, again together
with the difference between the lower bound edge-image
and the upper bound edge-image to visualize the uncer-
tainty regarding these results. One can see that the
lower bound edge-image contains nearly no informa-
tion (this image results from the difference between the
lower bound dilated image and the upper bound eroded
image), while the upper bound edge-image produces a
more interpretable image.

More specifically, we can make the following observa-
tions and conclusions regarding the edge-images. The
upper bound edge-image contains real edges and false
edges. In this case the false edges are mainly due to
the distorted take of the cameraman image. These false
edges are situated near the left and right border of the
image (lines) and near the lower part of the camera-
man contours (edges appear double, slightly shifted). At
the same time, we observe a high uncertainty regarding
these (real and false) edges. Knowing the “real” camera-
man image, we know that the uncertainty for the edges
near the left and right border and near the lower part of
the cameraman contours actually should result in a re-
jection of the edges, while this is not the case for (most



of) the other detected edges. Onme of the future chal-
lenges will be to make an automated decision about the
nature of the uncertainty, i.e., either due to numerical
uncertainty or either due to spatial uncertainty.

In any case, and this is an important conclusion, one
can observe that the uncertainty that was present in the
original representation of the cameraman image is prop-
agated through the (interval-valued) morphological op-
erators and the edge detection application. This means
that the information regarding the uncertainty is not
lost. On the contrary, it is fully taken into account and
can be used and exploited in further processing.

CONCLUDING REMARKS AND FUTURE
RESEARCH

In this paper we have discussed the important evolu-
tion of fuzzy set theory in the context of mathematical
morphology. Fuzzy set theory was introduced in this
field as a tool, used to construct alternative extensions
of binary morphology to grayscale morphology. It was
however until quite recently that extensions of fuzzy set
theory have allowed us to actually model uncertainty
that comes along with image capture — and modelling
uncertainty, that’s what fuzzy set theory is all about. In
particular, we have extensively discussed the interval-
valued and the intuitionistic approach. We have shown
that these theories cannot only be used as image models
but also allow the construction of corresponding math-
ematical morphologies, which lead to specific morpho-
logical operators and related applications such as edge
detection. Both aspects — the modelling and the con-
struction of morphologies — are important, since we need
operators to process grayscale images modelled using
interval-valued or intuitionistic fuzzy sets.

Future research will have to focus on the further de-
velopment of the morphological models. A thorough
theoretical study is a must, and should be accompanied
with a deep exploration of practical applications such
as edge detection, segmentation, etc. In particular, it
will be interesting to see how the uncertainty regarding
the measured grayscale values is propagated, and how
these results can be interpreted and used in practice. Of
course, the specific choice of the underlying morphologi-
cal model will be quite important, and should be clearly
motivated.
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ABSTRACT

We propose a novel computational granular unified
framework that is cognitively motivated for learning if-then
fuzzy weighted rules by using a hybrid neuro-fuzzy or fuzzy-
neuro possibilistic model appropriately crafted as a means to
automatically extract or learn fuzzy rules from only input-
output examples by integrating some useful concepts from
the human cognitive processes and adding some interesting
granular functionalities. This learning scheme uses an
exhaustive search over the fuzzy partitions of involved
variables, automatic fuzzy hypotheses generation,
formulation and testing, and approximation procedure of
Min-Max relational equations. The main idea is to start
learning from coarse fuzzy partitions of the involved
variables (both input and output) and proceed progressively
toward fine-grained partitions until finding the appropriate
partitions that fit the data. According to the complexity of
the problem at hand, it learns the whole structure of the
fuzzy system, i.e. conjointly appropriate fuzzy partitions,
appropriate fuzzy rules, their number and their associated
membership functions.

INTODUCTION AND MOTIVATIONS

A production system (or a rule-base) the core of a
knowledge-based (or a rule-based) system, is basically a
formalism for representing knowledge about any area of
problem-solving. A program written as a production system
is a collection of “production rules,” which takes the form of
“If Left-Hand-Side Then Right-Hand-Side.” Where Left-
Hand-Side corresponds to the condition part and Right-
Hand-Side corresponds to the action (or consequent) part.
Such a representation is highly modular, is uniform i.e. all
the knowledge of the system is expressed in the same format.
It is mentioned that the domain expertise is organized in
chunks, or equivalently granules of knowledge, and
subsequently each chunk can be learned as a production rule
which represents the expert’s answer to a “what if” situation.
This way of organizing knowledge in discrete chunks which
interact with each other for drawing conclusions by
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inference is very natural way of modeling human cognitive
processes (Newell and Simon 1972). In addition, the
flexibility, the compactness, the approximation capacity, the
expressiveness power, the non-linearity, and explicit
embedded management of uncertainty provided by a fuzzy
production rule make fuzzy production systems or fuzzy rule
based systems privileged and very attractive candidates when
compared with conventional rule-based systems. Fuzzy rules
attempts to capture the “rules-of-thumb” approach generally
used by domain experts for decision-making in complex
environments. However to determine the required
appropriate number of (fuzzy) rules and to elicit these rules
from the domain expert remains a knowledge engineering
challenge, especially for complex large scale problems for
conventional and fuzzy systems alike.

In solving problems the human starts from a coarse
description but if needed iterates and goes gradually to a
fine-grained description or in-depth details enabling more
understanding of the underlying problem until reaching a
point where one can effectively find a solution and so stops
and does not need any more details. At this point, an excess
of precision is not needed (is not necessary) because a
certain satisfying trade-off between precision (level of
details) and generality of description has been reached and is
sufficient and enough for finding a satisfactory approximate
solution to the specified problem.

Those problem-solving mechanisms are frequently used by
humans in modeling of and/or dealing with complex real
world problems. When dealing with practical real world
problems, there is an acute need for representing and
manipulating imprecision, as it seems that the human mind is
indeed conceptually somewhat fuzzy. Most of the time,
humans do not use precisely (or crisply) defined terms but at
the same time they do manage to communicate and resolve
problems effectively. Zadeh has proposed the adoption of
Approximate Reasoning (Zadeh 1971, 1979, 1984) and
recently Zadeh has suggested that the challenge now facing
Al is to produce systems exhibiting “common sense”
reasoning, rather than purely logical deduction only, and he
points to soft computing (Zadeh 2001).

When using the rich concept of fuzzy sets (Zadeh 1965,
1971) as a basis for possibility theory (Zedeh 1973, 1978)
the automatic learning of fuzzy systems using a data-driven
approach becomes a problem worth solving because a
solution would enable us to build faithfully reliable systems
in a more ergonomic convenient cost-effective fashion in
various ICTs ranging from diagnosis, modeling, simulation,



vision, pattern recognition, information retrieval, process
control to software engineering and so on.

On one hand, soft computing has been proposed by Zadeh
(Zadeh 1994) and according to him (Zadeh 2001)“It may be
argued that is soft computing rather than hard computing that
should be viewed as the foundation of Artificial Intelligence
(AI).” What is important to note is that soft computing not
just a mixture. Rather, it is a synergistic partnership or a
forum in which each of the partners contributes a distinct
methodology for addressing problems in its domain. In this
perspective, the principal constituent methodologies in soft
computing are complementary rather than competitive; in
particular synergy through hybridization ensures the
emergence of desirables properties. The possibility of
making fusion of the merits of each one for improved quality
is feasible. Since 1990, hybrid soft computing and in
particular hybrid fuzzy-neuro or neuro-fuzzy systems have
invaded the computer world and constitutes one of the most
exciting current topics of research (Beldjehem 1993; Yager
and Zadeh 1994; Sinha and Gupta 1999; Pal and Ghosh
2000; Gupta et al. 2002), the advances are also spectacular
due to its newness, perspectives and power. Numerical
multi-layered networks as well as fuzzy models have been
proved to be universal approximators. This has motivated
their development and adoption in a large spectrum of
successful industrial applications.

On the other hand, the concepts of granulation and
abstraction in a fuzzy set theory setting have long been
suggested by Zadeh (Zadeh 1976), his co-authors (Bellman
et al. 1966) and advocated by others in an Al (Hobs 1985;
Giumchglia et al. 1992) setting, in vision engineering (Marr
1982) setting, and in algorithm design (Foster 1992). It is
attracting intensive research too and has led to the
development of granular computing as an emerging
computing paradigm (Yao 2000; Pedrycz 2001; Liu et al.
2002). It has been recently revisited by Zadeh himself
(Zadeh 1998) who proposes retargeting it as a design
paradigm and/or a methodology in connection with and
under the “umbrella” of soft computing.

Bearing in mind that any workable model either mental
(human) or computational (machine) is necessarily only
abstraction and approximation of the reality, triangular
and/or trapezoidal membership functions (MFs) might be
used as they are in fact only approximation means to
represent data, concepts, objects, entities, relationships,
classes and even relations of the real world problems. Bell-
shaped and even free-form membership functions may be
used too. We consider that the granularity of a fuzzy
partition for a variable is of utmost importance as it reflects
the level of details (or resolution) required in describing such
a variable, whereas the overlapping is connected to the
inherent fuzziness in defining the boundaries between
classes (granules) of such a variable. Of course a granule is
also defined by a fuzzy set represented by a MF. Thus it
reflects too a gradual rather then abrupt membership of an
object to the class (granule).

The structure of the rest of the paper is as follows; in section
IT we introduce a new model based on a novel learning
design methodology. Section III describes the statement of
the learning problem including representation issues,
hypothesis generation, formulation and testing, learning
algorithm, learning by hybrid fuzzy-neuro Min-Max
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networks. The section IV is devoted to the formulation of the
learning problem including algorithmic issues of the learning
problem, resolution and approximation of a Min-Max
equations system, and the presentation of an abstract
computational model of a learning session. In section V we
conclude and give some perspectives for our future work.

A NOVEL LEARNING METHODOLOGY
Motivations for our learning methodology

Fuzzy logic (Zadeh 19965, 1971, 1973. 1979) may be
considered as a basis for knowledge and meaning
representation and is particularly suited for dealing with
natural language. We believe that it is the concept of
possibility/necessity distributions (Zadeh 1978), rather than
the truth, that will play the primary role in manipulating such
knowledge for the perspective of drawing conclusions.
Possibility theory (Zadeh 1978; Yager 1986; Dubois &
Prade 1988; Olaf 1998) provides a formal framework for
representing and dealing with ignorance, and uncertainties
prevalent in modeling real world problems in a flexible
computerized manner straightforwardly. However it is well
accepted that crafting manually fuzzy systems to resolve
complex large scale real-world problems is a difficult task
that is not always obvious for both the designer (the
knowledge-engineer) and the domain expert. This is due
partly to the cognitive limits of the human being (Miller
1956), but also to the difficulty of understanding the
intricacies of dimensionality and inherent complexities and
peculiarities of large scale real world problems. Not to
mention the lack of precision in the human-human
interaction and communication that affects significantly the
knowledge acquisition process during the tandem
knowledge-engineer/domain expert relationship.
Furthermore once it is undertaken it is labour-intensive,
costly, error prone, time-consuming, and done on a trial-and-
error basis in an adhoc manner and hence need to be totally
or partly automated. This is known as the knowledge
acquisition bottleneck problem or the Feigenbaum bottleneck
and is a common problem for all AI approaches. Soft
computing as an automated knowledge acquisition
methodology aims at remedying such a problem.

Various soft computing (SC) techniques have been used to
tackle this learning problem from various points of views.
However they are based on some idealizing assumptions and
no one adopts a holistic approach to resolve such a problem
globally, i.e, finding conjointly appropriate fuzzy partitions,
fine tuning the membership functions of the labels used in
the rules as well as identifying the structure of the fuzzy
system (both the required number of rules and rules
themselves explicitely) simultaneously. In practice the
required number of rules of the system is not known in
advance. Indeed learning fuzzy if-then rules is a difficult
multi-parameter optimization problem! We have previously
devised, developed, formally validated and deployed a
hybrid fuzzy-neuro system called Fennec (Beldjehem 1993,
1994, 2002, 2004, 2006, 2008) that was successfully applied
to a difficult problem of biomedical diagnosis on Proteins/
Biological Inflammatory Syndromes (B.L.S) as well as to a
complex handwriting pattern recognition problem. Based on
our previous work, we propose herein an integrated



framework to modify the model and extend its ability and
scope of applicability by integrating some useful concepts
from the human cognitive processes and adding some
interesting granular functionalities. The rational behind using
levels of granularity is obvious for the reader.

High level of details A

v

v

Low level of details

Figure 1 From a coarse fuzzy partition to a fine-grained
fuzzy partition

The basic ideas underlying our framework stems from the
following interesting remarks about human cognition: Let us
first focus our attention on the human problem solving
process. In solving problems the human starts from a coarse
description but if needed iterates and goes gradually to a
fine-grained description or in-depth details enabling more
understanding of the underlying problem until reaching a
point where one can effectively find a solution and so stops
and does not need any more details. At this point, an excess
of precision is not needed (is not necessary) because a
certain satisfying trade-offs between precision (level of
details) and generality of description has been reached and is
sufficient and enough for finding a satisfactory approximate
solution to the specified problem. Thus after each iteration
(increment) a gain of information is obtained enabling more
in-depth and more understanding of the underlying situation.
Thus, the human converges to a solution gradually by
leveraging the level of details. See Figure 1 for more details
in connections with a granular soft computing (GrSC)
setting. Low levels of details allow coarse or general
descriptions reflecting crude approximations whereas high
levels of details allow specific descriptions reflecting more
or less relatively precise approximations (crisps at the
extreme). It is appealing and convenient to mimic
mechanically or to emulate computationally such a cognitive
process in order to automatically build faithfully by learning
an appropriate “good” fuzzy system that exhibits both a high
accuracy and a good performance for any problem at hand.
This motivates us in building a learning system able to use
such abstraction and granulation mechanisms in a fashion
that is akin to the way humans achieve problem solving
process. In general the required level of details necessary in
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describing rules as well as the required number of rules for
solving a problem depends to the degree of complexity of the
problem at hand and are unknown and hence we propose to
detect and determine them by learning within our
framework.

THE STATEMENT OF THE LEARNING PROBLEM
Description of the Learning Process

The learning is parametric as well as structural. It has to deal
with the complexity of the problem and to discover
appropriate knowledge chunks, and approximation heuristics
for the problem at hand. Taking into account the degree of
complexity of the problem at hand as well as the empirical
knowledge contained in the training set, the learning
subsystem:

e Identify explicitly the appropriate fuzzy partition for
each variable by learning. They are used only as
references to generate fuzzy hypotheses. For each
variable the appropriate number of granules and the
slopes of which will be determined during learning. This
information could be either kept or thrown away once
the learning is completed without loss of information for
the system. As they constitutes only means for
generating appropriate membership functions of fuzzy
rules and are not used during inference.

¢ Find the appropriate membership functions for both the
antecedents and consequents of every potential rule that
is needed to model the problem at hand.

e  Ultimately, build the appropriate “good” collection of if-
then fuzzy rules (the rule base or knowledge base that
consists of a set of linguistic rules), that fits “best” the
data that consists of I/O pairs of the training set.

In order to build an automatic workable computational multi-

pass learning model some design assumptions are made:

e At each cycle for each input variable X; the system
generates dynamically a fuzzy partition of ¢ granules
(starting with ¢=2, and incrementing ¢ by 1 or 2 at each
cycle until reaching a satisfying point). This point
constitutes the stopping criterion of our learning
mechanism and it reflects too the accuracy level
required for the system. It is worth mentioning that
increasing ¢ alone does not affect the algorithmic
computational complexity of the learning process! It is
the number of input variables (n) of the system when it
is very large that affects it significantly. We assume to
have a reasonable value for n which is almost the case in
most classes of real world problems.

e An output variable may be deal with as an input one, but
for the sake of simplicity and programmability we
assume that a fuzzy partition is given (known a priori
for each output variable) and prepared cautiously by the
domain expert. As the domain expert is more faced with
the difficult problem of capturing relationships between
the combinations of inputs variable in relation with a
given output variable. In general, for a given output
variable the actions (or classes) are well categorized (the
number and names of granules are known) by the
domain expert even thought the slopes of associated
MFs have to be questioned during learning.



FORMULATION OF THE LEARNING PROBLEM
Hypothesis Generation, Formulation and Testing

How to characterize and to represent a fuzzy partition? What
operators are needed in manipulating a fuzzy partition?
During learning-time, only one operator is needed to create a
fuzzy partition having the required known granularity c. It is
the repartitioning operator. It consists to divide dynamically
during learning-time the universe of discourse into c¢
overlapping granules. It works from scratch, i.e., there is no
need for splitting, or fusion or expanding. A partition is used
as reference only and its granules do not necessarily
constitute MFs for actual rules as they are only used for
formulation of initial fuzzy hypotheses during the generation
by the systematic exhaustive search algorithm and they are
both scale-dependents and context-dependents. We have no
other assumption about the fuzzy partition and we are not
interested to argue in such matters like “good” partition. The
learning will be done at the rule level rather than at the
partition level and hence learning a “good” rule is indeed a
crucial issue of utmost importance. A fuzzy partition is
illustrated in Figure 2 (observe how the rightmost and the
leftmost granules are shaped); it is a parameterized family
(sequence) of membership functions that cover the universe
of discourse for every variable either input or output. It is
created dynamically by the execution of the repartitioning
operator of granularity equals to ¢ during learning-time. In
fact, it is obtained by superposition of two wave functions
defined over the same universe of discourse X ranging in the
interval [anpm, amax]. Thus, it is straightforward to extract
parameters of granules (MFs) from a given fuzzy partition,
as each granule may be considered as an indexed term of the
family (or sequence).

A Hai(x) Mai(X) Hac(X)

»
|

Amin ai ai dc Amax
Figure 2 A fuzzy partition of granularity c=5 thatis a
superposition of two wave functions.

A fuzzy partition is represented by vector of ¢ parameters,
where c is the granularity level. A fuzzy partition might be
thought of as a sequence of granules, each of which is
represented by an indexed term. This makes sense as they are
computed and manipulated easily like ordinary terms during
learning-time. In general as illustrated in Figure 2, every
value x of the universe of discourse corresponds to at most
two granules. A;, A, . .. A;... A, are just synthetic
linguistic labels interpreted by fuzzy sets of normalized MFs.
A fuzzy partition might be thought of as a synthetic alphabet
that the system create by learning for future hypotheses
generation. Thanks to this flexible scale-dependent
representation, regardless the range of the universe of
discourse of an input variable, the terms of the fuzzy
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partition sequence are explicitly expressed straightforwardly
as follows:

The first term (or granule)

(az_x)/(az_al)’ lf asx<a,

1 otherwise

My (x) :{

For i=2, 3. .. c-1, where c is the granularity of the partition
or the i-th term

(x— ai—l)/(ai —da;, )
i (x)=1(a,, —x)a,, —a,),

if a,_,<x<a,

i-1 —

lf ai <XSCI,—+1

0 otherwise
And finally the last term
(x - acfl ) /(ac - acfl )’ lf ac—l S X S ac'

Mg (X) = {

1 otherwise

Learning by Hybrid Min-Max Fuzzy-Neuro Network

Fuzzy rules attempts to capture the “rules-of-thumb”
approach generally used by domain experts for decision-
making. However it is well accepted that crafting manually
fuzzy systems to resolve complex large scale real-world
problems is a difficult task that is not always obvious for
both the designer (the knowledge-engineer) and the domain
expert. Fuzzy (weighted) rules have been advocated, used,
studied and interpreted by many authors (Zadeh 1971;
Cayrol et al. 1982; Dubois et al. 1988; Beldjehem 1993;
Yager 1996) and machine learned by Beldjehem (Beldjehem
1993). We will focus in dealing with a multi-input single-
output (MISO) system as any multiple-input multiple-output
(MIMO) system could be converted to a certain number of
MISO systems. Let us start with a model overview: As in
Beldjehem (Beldjehem 1993) we consider herein to design a
fuzzy-neural possibilistic network according to the scheme
Fuzzy to Neural (or to switch from fuzzy systems to neural
networks). We use fuzzy if-then weighted rules that are
herein of the control type instead of the classification type as
in (Beldjehem 1993, 1994, 2002, 2004, 2006, 2008) and
such a rule looks like:

If (X is Wi, cp) and (X, is Wy, Cy,) and (X3 is Wis, Ci3)
and (Xsis wys, i) Then Yy is Vi

cij 1s a weight that represents the grade of importance of " X;
is wij " in relation with the output Y. Thus, conversely the
weight a; =1- c; represents the grade of unimportance of
“Xj is wy”in relation with the same output Y.

Referring to Figure 3, we propose herein a feed-forward
fuzzy-neural possibilistic network. We begin with a brief
description of the model: two types of weights are associated
with the connections.



X1

X2 X3 X4 Xs

Figure 3 Schematic representation of the hybrid fuzzy-
neuro possibilistic Min-Max model used.

Type 1: Direct connections between input cells (X;) and
output cell (si) with only synthetic linguistic weights (wy;),
interpreted as labels of fuzzy sets, characterizing the
variations of the input cells ("X is wy; ") with the output cell
(s), in this case we have a=[0,0]=0. Thus (I1(Xj;wy) v 0)
= [1(Xj;wy;)- Thus the connection between a hidden cell and
output cell simply disappears from the graph allowing direct
connection.

Type 2: Connections between input cells (Xj) and output
cells (sy) via intermediate cells (Hyj), weights associated to
connections between input cells (Xj) and intermediate cells
(Hyj), are herein artificial or synthetic linguistic (wyj),
weights associated to connections between intermediate cells
(Hyj), and output cell (si) are herein numerical intervals (ay;
<([0,1]), instead of a scalar value ranging in the interval
[0,1]) (ay; € [0,1]).

wij are unknown artificial or synthetic linguistic weights and
ayj are unknown confidence interval that reflects a domain of
possible values of unimportance for the corresponding
connections. Thus providing much more flexibility for the
network.

A learning session starts with a “blank” fully connected
hybrid fuzzy-neuro network without a priori information
concerning the weights, i.e. the weights might be thought of
as “placeholders” only. Learning is parametric as well as
structural. Let us consider now cell activation for an arbitrary
output cell (sy), as illustrated in Figure 3, where only
connections used in activation of s, appear. From the
semantic point of view, such a figure reflects a neural
representation of an if-then fuzzy weighted rule of control
type. Let [1(Xj; wij) = Sup [wij N X|] be possibility measure
associated to fuzzy sets wy; and Xj. And let N(Xj; wy;) = Inf
[wij N Not X;] be necessity measure associated to fuzzy sets
wij and X; . In general our model is governed by the three
abstract fuzzy approximate equations as shown below.

(M
2
)

T = Ajepassy (11 (Xj»ij)v ay)
Nk = Nje1.23.5) (N(Xjawkj) \ akj)
i =M, ]

Observe that Maximum (v) limits lower amplitudes of
inputs, we have (I1(Xj; wkj) v ag) = ay if TI(Xj; wkj) <ay,
and amplifies higher ones (I1(Xj; wkj) v ay) = [1(X;; wkj), if
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[1I(Xj; wkj) = ay, so the Min-Max composition indicates a
somewhat excitatory character. It is worthwhile to notice that
Min-Max composition as containing Min and Max
operations is strongly nonlinear. Furthermore, such model
has been formally validated and it has been shown recently
(Beldjehem 2006, 2008) that Min-Max composition
preserves the value approximation property. Observe that
when ag = 1, the term [I(X;; wkj) v ag (respectively
N(Xj;wij) Vv ay ) is deleted in the application of Minimum
(A). Thus ensuring the interpretability and transparency of
the model. It is now clear that a, reflects a notion of
unimportance, we point out herein that it is strongly hard if
not impossible to make values assignment to grades of
unimportance in practical applications, we will propose a
mechanism to learn such grades of unimportance. Thus the
fuzzy-neuro possibilistic network might be thought of as a
transparent learning device of any non-linear mapping of
inputs into an output. Its has been proved too that Max-Min
composition preserves the value approximation property
(Papis 1991) in connections with fuzzy systems setting.

RESOLUTION OF THE LEARNING PROBLEM
The Learning Algorithm and Implementation Issues

During a learning session the same learning algorithm is
used for each output variable Y;. Let us briefly describe the
learning algorithm that is composed of many cycles, each of
which is executed as follows: For each output variable Y;
and for each granule belonging to the fuzzy partition that
corresponds to Y;. Iteratively, an initial fuzzy hypothesis
corresponds to a combination of certain number of MFs
(each of which corresponds to granule of an input variable)
is created (formed) by a systematic exhaustive search
procedure. Once a fuzzy hypothesis is formed it is loaded or
incorporated in the hybrid fuzzy-neuro network weights for
test purposes, its components (elements) will be adjusted to
fit the training data. Such hypothesis is considered as a
potential candidate to be a rule and then is questioned and
adjusted during learning by the means of a hybrid fuzzy-
neuro possibilistic network using a successive approximation
algorithm of systems of Min-Max relational equations. This
adjustment is repeated until finding the ones that minimize
the signal error. Hence another new combination is then
generated and we repeat the same procedure. Thus the
obtained adjusted hypotheses that minimize the cost over all
possible combinations and that were embedded in the
weights of the hybrid fuzzy-neuro possibilistic network are
kept in a temporary learning table.

The algorithm proceeds by increasing the granularity and
repeats the same cycle, until reaching a satisfying point. In
general the learning is stopped when either a certain level of
accuracy has been reached or it is impossible or it is
computationally worthless to seek minimizing the error
much more, i.e. this situation means that increasing the
granularity is no more interesting. In general this point
constitutes a trade-offs between tractability and low cost
solution. Learning need to find an approximate solution that
is not necessarily precise (or crisp) optimal one but at the
same time it builds a model that do manage to resolve the
problem at hand effectively. At the end one or more of the



obtained adjusted hypotheses that minimize the cost (over all
considered granularity levels) constitutes a valid hypothesis
and is transferred and stored in a knowledge base (KB) of
the system as it consists effectively of a new learned rule.
The system check whether or not a rule is new, i. e. whether
or not it is already included the KB, and if necessary,
transmits it to the KB, in an intelligible form for the storage
(Hash table data structure). Assume the system get two or
more valid hypotheses, after checking each one, each one is
eventually added to the KB as a new rule. The advantage is
that by construction (learning) we build a production system
with no contradictory rules and thus giving a high
satisfactory performance. This is in fact a built-in quality
attribute.
Thanks to these granular functionalities, this novel learning
algorithm constitutes a departure from the conventional ones,
in that it conjointely determine dynamically during the
learning-time the required satisfying number of rules
necessary to model the problem as well as the rules
themselves  explicitely. Intuitively, this number is
proportional to the degree of complexity of the problem at
hand.
The resolution of fuzzy relations equations constitutes a
good tool in fuzzy modeling especially for dealing with
inverse problems. The fuzzy relational calculus theory (Di
nola et al. 1989; Beldjehem 1993) provides us with a set of
analytic formulas expressing solutions for some types of
equations and their systems. However, the existence of
solutions of the system is not known in advance. This makes
any preliminary analysis rather tedious if not impossible.
We reformulate the problem of solving a system of Min-Max
from interpolation-like format to approximation-like one.
This means that instead of trying to find exact solution, we
try to find the best approximate solution. Any scalar and any
element of vectors or matrices are assumed to have its value
in the interval [0, 1]. Formally; our problem can be stated as
follows: "Given an m x n matrix R and an n vector b, find
an m vector a such that (a A R 2 b) where A is the Min-
Max composition and D denotes the fuzzy inclusion
operation. Let us consider the case when there is no solution
for the system (it does not satisfy the necessary condition,
ie. aARDb).
This can be also reflected by only computing a distance. Let
A, A’ be fuzzy subsets of U and a, o’ be the corresponding
grades of membership vectors. By ||o-a’|] we denote the
number max (Jo;-0’i]), i.e. the maximum of the absolute
1

values of the differences between all element of a and o’. It
might be interpreted as the signal error subject to be
minimized. Equivalently by using this distance rather than
the fuzzy inclusion concept we get the same results; and for
this reason we use such a distance |[a AR - b | in our
implementation of the system. It corresponds to minimal
distance, hence a is the best approximator. Thus, since our
algorithm is valid for both interpolation-like and
approximation-like formats, it allows to resolve the more
general following problems: "Given an m x n matrix R and
an n vector b, find all m vectors such that a A R > b". This
algorithm is used as approximation procedure by the learning
algorithm in our system. The learning consists mainly in
crunching (approximating) systems of Min-Max equations
while manipulating abstract synthetic linguistic concepts
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(labels, hypotheses). It can be shown that the best
approximator (from the fuzzy inclusion point of view)
corresponds to the lower bound a of the inf-semi-lattice. It
can be computed straightforwardly using the ¢ resolution
operator only. It has been shown by a worst-case analysis
that our computing algorithm has a linear complexity of ®
(m x n) (Beldjehem 1993). In order to illustrate the
functioning and the behavior of our approximation algorithm
let us hand-execute it on the following example, R and b are
known. The ¢ operator is defined as follows (Beldjehem
1993)

s oo

Firstly, we compute the lower bound a of the inf-semi-lattice

y if

0 otherwise

X<y

(05 06 0.1 03 0.6]
07 0 08 04 07
R 08 03 05 07 06
04 08 06 08 07
04 04 07 1 0.6
09 1 1 1 0.8 |
b=[03 03 05 04 05]
a =v (R g b), where v stands fo MAX
a=[0503 0 0 0 0]

By performing the Min-Max composition, we have
b =[0.3 0.3 0.5 0.4 0.5] (the target vector)

aAR =[0.4 0.3 0.5 0.4 0.6]

laAR -b]|=0.1

Observe the surprising remarkable approximating power of a

Abstract Computational Model of a Learning Session

We are interested herein by establishing the computational
abstract model of learning, learning implements a kind of
successive approximation of Min-Max system process, and
find weights of the hybrid fuzzy-neuro networks that fits
“best” the data that consists of pairs I/O of the training set.
Formally, from the computational point of view, for each
output (sy), a learning session consists to resolve or to
approximate (r + 1) systems of Min-Max equations, as
follows:

aAR® b
aARP b

aAR® b



Learning consists to prefer (validate) the configuration (the
fuzzy hypothesis) of the best approximate solution (from the
fuzzy inclusion point of view), i.e. which minimizes the local
cost function and hence the corresponding deep structure. In
other terms the learning process finds incrementally the
"best" deep structure which corresponds to the following
matrix R ¥ : 1€ [0,r] such that:

aARY > aAR(l)Qb,Vj=0...r
Or equivalently,
laARY-b ||>|aARY-b ||, Vj=0...r

Learning tries progressively by successive approximation to
minimize the local cost function by the generation and the
approximation of a new system. Thus, this approximation
algorithm constitutes the mathematical machinery of
learning. It has been shown that this system is a universal
approximator (Beldjehem 2006, 2008), furthermore it is now
clear that the ultimate aim of learning is to generate a
consistent system which correspond to exact solution (or to
establish a universal interpolator), however it seems that is
not always the case in practical applications. In general the
value of the local cost function may be seen as a quality
index for a learning session or a performance index for the
system. Learning has high speed due to its simplicity and
analytic nature. The learning consists mainly in crunching
(approximating) systems of Min-Max equations while
manipulating abstract synthetic linguistic concepts (labels,
hypotheses). Indeed the fuzzy learning process may be
thought of as a new kind of algorithmic fuzzy optimization
or rather algorithmic fuzzy approximation.

CONCLUDING REMARKS

We have developed a cognitively motivated granular
computational framework for learning fuzzy systems. This
allows the automatic learning of fuzzy if-then knowledge
bases (or rule bases) of systems which are large scale, too
complex or too ill-defined to admit of precise quantitative
analysis, description or control strategy. It may be thought of
as an automatic means or a learning device for capturing the
description of ill-defined concepts, relations and decisions
rules. Such a framework integrates conjointly both the
perceptual and the cognitive aspects of the human problem-
solving process and ensure a granular processing of the
underlying input from different granularity levels. It is the
first attempt in the field. Implementation of a system called
Neofennec (that is an upgraded or refined version of Fennec)
working under the proposed framework is underway. The
“good” rule-base (RB) is obtained automatically from
training examples. Its inference engine has the inherent
ability to generalize, which permit it to classify unseen
examples accurately. During learning-time the system finds
automatically the adequate levels of details (granularities) for
the problem at hand. It is possible using a linguistic
approximation to build automatically a true linguistic fuzzy
system by learning. We believe that hybrid soft computing,
machine learning, knowledge-based systems, performance
evaluation have to learn from each other, and could be
integrated or fused synergistically (not competitively) in
order to build next generation of intelligent computational
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systems. Such systems exibit performance-accuracy trade-
off, adaptability, transparency, interpretability, robustness,
tractability, tolerance for uncertainty, categorization abilities,
value approximation and therefore ensuring evolvability and
generalization capacities.

On one hand we have used a systematic exhaustive search
algorithm that explores and generates all possible fuzzy
hypotheses available in the space-state representation of
fuzzy partitions. Even though the algorithmic complexity
worst-case analysis showed that it is of exponential
complexity @ (c"), for practical problems when the number
of input variables (n) is reasonable and regardless of the
granularity (c) the learning quickly converges. How ever
when n becomes very large, regardless of c, the learning will
be faced by combinatory explosion as the number of possible
hypothesises to generate risks to increase exponentially, this
is known as the curse of dimensionality, and is a common
problem for all AI approaches. To remedy such a problem
we propose three solutions to attempt to optimize the code
and reduce the computational learning complexity, the first
solution consists to use pruning techniques either by cutting
the search tree once the learning reach a satisfying solution
(a level of accuracy) or by using some heuristics. Good
heuristics that implements intelligent search (not exhaustive)
are indeed cognitively motivated too. The second solution is
to exploit the parallelism of the learning algorithm; there is a
room for parallel implementation. In order to speed up the
learning process, the learning may be easily implemented in
a parallel machine of SIMD (single instruction multiple data)
type, as the same algorithm is used for each output variable
and for every granule of its fuzzy partition. In SIMD
machines, all processors execute the same instruction stream
on a different piece of data. This approach can reduce both
hardware and software complexity.

Another promising alternative that constitutes the third
solution is to use an evolutionary algorithms (EA) as in
(Pedrycz 1997; Cordon et al. 2001), EAs are optimization
techniques based on the mechanics of natural selection and
natural genetics. EAs has a great power for global
optimization and do not need to know the model previously.
EAs also do not require the continuity of the parameters.
Therefore EAs can easily handle the multi-parameter
problems and for this reason it seems appealing and
convenient to use EAs too in our framework. Thus an EA
may replace the generator of hypotheses subsystem in our
framework. Instead of using an exhaustive search to generate
all possible fuzzy hypotheses to test, it may be possible to
use an EA that converges to the “best” hypothesis by
evolution rather than trying all possibilities. EAs can
effectively contribute significantly in our framework thanks
to their learning and optimization capabilities. In particular
to try to fuzzify concepts used by EAs to obtain and use
fuzzy fitness functions (or fuzzy cost), fuzzy crossover,
fuzzy mutation and so on to ensure smooth evolvability
during learning.

Even though we are more interested in (soft) computation
rather than (natural) cognition, i.e. in developing new,
powerful and useful tools that learn for resolving real-world
problems, we believe that as we understand better how to
build these computational systems we’ll start to have
theories that are powerful enough to explain some aspects of
the human cognition.
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ABSTRACT

The biological oxidation of ferrous ion by iron oxidizing
bacteria is potentially a useful industrial process for the
removal of H,S from industrial gases, desulphurization of
coal, removal of sulfur dioxide from flue gas, the treatment
of acid mine drainage and the regeneration of an oxidant
agent in hydrometallurgical leaching operations. The main
purpose of this study is to predict the ferrous biooxidation
rate by immobilization of a native Sulfobacillus species on
the LDPE particles in a packed-bed bioreactor using artificial
neural network (ANN). Five control factors, including
temperature, initial pH of feed solution, dilution rate, initial
concentration of Fe'* and aeration rate are considered in the
experiments. One of the most powerful optimizers,
Differential Evolution (DE) algorithm is used to find the best
number of neurons for a hidden layer and their weights. The
prediction results by wusing the proposed ANN are
satisfactorily.

INTRODUCTION

The use of microorganisms capable of oxidizing H,S and
producing elementary sulfur or sulfate from a complete
and/or incomplete metabolism has been considered a
potential alternative for the large-scale treatment of this gas
(Ebrahimi et al. 2003; Oprime et al. 2001). In the bioprocess
of H,S removal an aqueous Fe,(SO,); solution is used as an
absorbent. H,S is absorbed and oxidized to elemental sulfur.
At the same time, Fe®" is reduced to Fe*" according to
H,S +Fey(SO,); — %L +2FeSO, +H,50, (1)

Elemental sulfur is removed from the solution by a separator,
and the reactant Fe*' is regenerated from Fe?" by biological
oxidation in an aerated bioreactor according to the following
reaction:

2FeSO, + H,S0, +0.50, —acteria_,

Fey(SO,); + H,0

Biological removal of sulfur dioxide from flue gas has also
been reported in the literature (Gasiorek 1994). This process

)
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is based on the wet scrubbing of the gas stream with a ferric
sulfate solution:

SO, + Fey(SO,), + 2H,0—2acteria_y

3)
2FeSO, +2H,S0,

The resultant ferrous sulfate solution is deoxidized to the

ferric state, using iron oxidizing bacteria. The ferric sulfate

solution produced is then recycled to the wet scrubbing

tower to repeat the cycle.

The process of microbiological desulphurization have been
applied for quality improvement of coals used as a fuel or a
raw material in the chemical industry. In the nature the
pyritic sulfur oxidation of coal is a process that happens
quite slowly. This process can be accelerated in the presence
of certain microorganisms. Biological desulphurization has
attractions because it operates at close to ambient
temperatures and involves no associated loss of coal carbon
(Rubiera et al. 1997).

Mostly, in these biological processes the iron-sulfur bacteria
species such as A. ferrooxidans, A. thiooxidans and
Sulfobacillus are used (Fecko et al. 1991; Mousavi et al.
2006a; Mousavi et al. 2006b). These bacteria belong to the
chemoautotrophs whose unique feature is the ability to
receive energy required for life processes from inorganic
sulfur compounds and carbon atoms required for cell build
up from assimilated carbon dioxide.

In recent years, most studies (Long et al. 2004; Mesa et al.
2004; Mousavi et al. 2007) have been aimed at improving
the rate of biooxidation of Fe'. Many types of reactors
operating under both batch and continuous regimes have
been studied in order to obtain better results using A.
ferrooxidans and less attention has been paid to Sulfobacillus
species, on the other hand, there is no scientific literature
about the application of ANN to predict the ferrous iron
biooxidation rate in the bioreactors.



A number of publications quote the successful application of
ANN in various research fields such as process control and
estimation (Jules et al. 1990; Yousefi and Handroos 2006;
Yousefi et al. 2007), pattern recognition (Shuta et al. 2002),
fault detection and property prediction (Jayshankar and
Bhagwat 2002). Several authors have successfully
implemented ANN in various areas of food and fermentation
technology such as modelling and control (Ferriera et al.
2001; Kulkarni et al. 2004), dynamic modelling and state
estimation (de Assis and Filho 2000; James et al. 2002), and
optimization (Tholudur and Ramirez Fred 1996).

This paper describes a case study investigating the
parameters that influence biooxidation rate of ferrous iron
using a native Sulfobacillus species in a packed-bed
bioreactor. Concentration of Fe™ in effluent of bioreactor
and rate of ferrous biooxidation are the key factors for
evaluating the performance of bioreactor. Factors such as
temperature, initial pH, dilution rate, initial Fe®
concentration and rate of acration affect the biooxidation rate
of ferrous ion. The main objective was using of ANN
approach to predict the biological oxidation rate of ferrous
iron.

MATERIALS AND METHODS

The details of materials and methods used in this study, were
described in the previous work (Mousavi et al. 2007). Below
a brief description has been provided.

The microorganism used in this study was originally isolated
from the sphalerite concentrate of Kooshk lead and zinc
mine. The bacterium was determined as Sulfobacillus
species, which may be distinguished by its morphology,
chromosomal DNA base compositions and by its abilities to
grow autotrophically on reduced sulfur. These species are
iron- and sulfur-oxidizing, gram-positive and sporulating
rods (Norris et al. 1996). The composition of the medium for
growth and maintenance of cells, was as follows:
FeS0O,.7H,0: 44.2 g, (NH4),SO4: 3 g, MgS04.7H,0: 0.5 g,
K,HPO,: 0.5g, KCI: 0.1 g, Ca(NOs),: 0.01 g and Yeast
Extract: 0.2 g in 1020 mL solution (Atlas, 1997). To culture
the bacteria, 200 mL of the medium was transferred into a
500 mL Erlenmeyer flask and was incubated with
Sulfobacillus culture, 10% (v/v), on a rotary shaker at 180
rpm and 60 °C. The initial pH was set to 1.5 with 1N H,SO,
solution.

The biological oxidation was studied in a bioreactor shown
in figure 1. Bioreactor design was based on a glass column
with inlet for air and outlet for effluent at the bottom. The
main part of bioreactor was biocatalyst bed with 7 and 45 cm
in diameter and length, respectively. Total operating volume
of bioreactor was about 2 L. The temperature of bioreactor
was controlled using an external jacket. The reactor was
aerated at different aeration rates and the flow rates for fresh
media were regulated with a peristaltic pump during the
experiments. To provide a uniform temperature inside the
bioreactor and to increase the residence time of the reactant
in the biocatalyst bed, part of the liquid collected in the
collection container was re-circulated to the top of the
bioreactor using a peristaltic pump at a flow rate of 1.2 Lh™".

32

e,
=

(o]
EJ
6218

o [ull
(%]
(%]
(%]
5
5

s |

5, Hi

2 3%

Figure 1: Schematic of packed—bed bioreactor used in this
study. 1- fresh feed; 2,3.,4- peristaltic pumps; 5- influent air;
6- packed bed; 7- effluent air; 8- jacket; 9- reservoir; 10-
Particles support; 11- recycling stream; 12- water bath; 13-
effluent solution.

Sulfobacillus cells were immobilized on LDPE particles of 3
mm diameter as support. The particles had a density of about
930 kg m™. Batch culture for the immobilization of cells was
performed in 1000 mL Erlenmeyer flask containing 400 mL
of mineral medium and 600 biomass support particles. The
medium was inoculated with cell suspension, 10% (v/v), and
incubated on a rotary shaker for 72 h at 150 rpm and 60 °C.
Before complete consumption of ferrous iron had occurred,
the spent medium was replaced by fresh medium followed
by three consecutive runs without inoculation. After
immobilization of cells in batch culture has been achieved to
a constant level, support particles were placed in the
bioreactor. The bioreactor influent solution contained ferrous
sulfate, which was converted to ferric sulfate by bacteria
present on the surfaces of particles. The bacteria were
inoculated to the column while it was operated as a batch
reactor. Once more than 95% Fe?* oxidation was established,
the reactor column was changed to a continuous mode of
operation. Steady-state conditions were used at each flow
rate for estimating the rate of ferrous iron oxidation. After a
change in the flow rate, steady-state conditions were
achieved when no further change occurred in the iron
oxidation rate. The time required to achieve steady-state
conditions at each flow rate varied depending on the flow
rate. Experiments were performed in four different levels of
dilution rate (based on the total volume of the liquid in the
bioreactor). It should be mentioned that the concentration of
ferrous iron in the bioreactor influent solution was adjusted
to 12 g/L for all of experiments.

Determination of ferric and total iron concentration in
bacterial solutions was based on the method described by
Karamanev et al. (2002). Difference between concentrations
of total iron and ferric iron led to obtain ferrous
concentration in the solution. The observation of free
bacteria in the solution was done by visual count, using a
Thoma chamber with an optical microscope. The pH of the
cultural suspensions was monitored at room temperature
with a pH meter calibrated with a low pH buffer.



NEURAL NETWORK DESIGN

An artificial neural network is used to improve the reliability
of the bioreactor behaviour’s prediction. The obtained
neural network can be used to optimize the conditions for
bioreactor’s inputs to get the best performance. ANNs
provide an approximate model structure to fit the
experimental data.

An ANN consists of massively interconnected nonlinear
memoryless processing elements known as neurons or nodes.
The strength of the connections between the neurons is
called the weight. Each neuron accepts a weighted set of
inputs with a bias given by (Rumelhart et al. 1986)

P
“)

n= Elw ;X +b

where P and w; are the number of elements and the
interconnection weights of the input vector x;, respectively,
and b is the bias for the neuron. Note that the knowledge is
stored as a set of connection weights and biases, which have
to be adjusted in order to allow the network to perform a
required task. Then, the neuron responds with an output. For
this aim, the sum of the weighted inputs is processed through
an activation function, represented by £, and the output that it
computes is

f(n):f(.gwixi+b) %)

Basically, the neuron model emulates the biological neuron
that fires when its inputs are significantly excited, i.e. n is
big enough. There are many ways to define the activation
function, such as a threshold function, log-sigmoid function
and hyperbolic tangent sigmoid function. One of the most
commonly used functions satisfying these requirements is
the hyperbolic tangent function as follow;
(6)

S =( e/ (e ™)
Using a suitable learning method, ANNs can be trained to
perform a particular function by adjusting the values of
connections, i.c. weighting coefficients, between the
processing nodes. The training process continues until the
network output matches the target. The error between the
output of the network and the desired output is minimized by
modifying the weights. When the error falls below a
predetermined value or the maximum number of epochs is
exceeded, the training process is terminated. Then, this
trained network can be used for simulating the system
outputs for the inputs that have not been introduced before.
The architecture of an ANN is usually divided into three
parts: an input layer, hidden layers and an output layer. The
information contained in the input layer is mapped to the
output layer through the hidden layers. Each neuron can
receive its input only from the lower layer and send its
output to the neurons only on the higher layer.

The performance of the ANN based prediction is evaluated
by a regression analysis between the network outputs, i.e.
predicted parameters, and the corresponding targets, i.c.
experimental values. The criteria used for measuring the
network performance are the root mean square error and
absolute fraction of variance. The root mean square error is
given by
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NP 2
RMSE = \/(I/NP) 2 (a-p) s (7

where, RMSE is the root mean square error, NP is the
population size of both sets a and p. Finally, the absolute
fraction of variance (regression constant), a statistical
indicator that can be applied to multiple regression analysis,
is determined from

NP NP

2

R" = 1—( ) (ai—Pi)z/ ) Pins )]
i=1 i=1

The regression constant ranges between 0 and 1. A very

good fit yields an R* value of 1, whereas a poor fit results in

a value near 0.

Utilizing a standard back propagation algorithm the input
vectors with five variables and the corresponding target
vector with variables from the training set were introduced to
the network for training. The training procedure adjusted the
weighting coefficients using the Differential Evolution
algorithm for Global optimization. This algorithm is a
widely used iterative optimization technique that locates the
global minimum of a function. The output of the network
was compared to the desired output at each presentation, and
an error was computed. The training process is terminated
when the maximum number of epochs is exceeded or the
performance goal is met. Figure 2 shows the schematic
structure of neural network. In the figure the biases are not
shown. The five inputs are temperature, initial pH of feed
solution, dilution rate, initial concentration of Fe" and
aeration rate gotten from experimental tests that are shown
as A, B, C, D and E respectively. The output of system is
biooxidation rate of ferrous iron shown as F. Table 1 shows
the maximum and minimum values for the inputs. The
hidden layer consists of 15 neurons, so the total number of
proposed neural network has 106 weights and biases.

Hidden layer

Figure 2: The structure of the ANN for modelling the
experimental bioreactor

Table 1: Maximum and minimum values of inputs

Parameter Units Min Value | Max Value
A °C 40 65
B - 0.5 3
C h' 0.1 0.5
D gL’ 1 15
E mL min 50 300
F gL' h’ 1.1 7.8

The performance of an ANN is

affected by

the

characteristics of the network, such as the number of hidden
layers and the number of nodes in each hidden layer. For



instance, too few neurons may yield underfitting, but too
many neurons may result in overfitting, which means that all
the training data fit well, but the neural network does not
satisfactorily predict new test data that have not been
presented in the training process. On the other hand, there
are no definite methods to determine the optimal number of
hidden layers and the optimal number of neurons on each
hidden layer. Therefore, by trial and error with different
ANN configurations, the network was selected to consist of
one hidden layer with 15 neurons along with input and
output layers. Choosing the weights is important in the
ANN. To avoid the local minimum problem, the differential
evolution (DE) algorithm is used to find the offline weights
(Storn and Price 1995).

Differential evolution is a simple and powerful population
based, direct-search algorithm for globally optimizing
functions defined especially on functions with real-valued
parameters. In this paper a class of DE presented by Corne et
al. (1999) is used.

RESULTS AND DISCUSSION

In order to develop the ANN, the available data set from the
experimental work was divided into training and test sets.
The data set consists of 59 input-output pairs. While 84% of
the data (50 input-output pair) set was randomly assigned as
the training set, the remaining (9 input-output pair) 16% was
employed for testing the network.

The activation function in the hidden layer was chosen
as the tangent sigmoid function. All the input and output
values were normalized by pre-processing so that they fall in
the interval [—1, 1] using the following equation:

p, = 2(p—min(p)/max(p) ~min(p) -1, (9)

where p, is the normalized form of the vector p.

After the training process has been finished, the network is
ready for prediction. Then, the input vectors from the test
data set were presented to the trained network. The responses
of the network, i.e. the predicted output, were compared with
the experimental ones for the performance measurement.
The computer code solving the back propagation algorithm
and measuring the network performance was implemented
under the Matlab/ Simulink environment. Figure 3 shows the
schematic diagram of the procedure.

)
Normalized B DE
Algorithm
Normeized C
D)

<<
Normaiized D Nei HW{

Normalized &
Generation

—
—

Normaiized! Bio-oxidation rate »

Normalized E

fiF) _’EI

Figure 3: Schematic diagram of training utilizing differential
evolution algorithm

34

The initial upper and lower bounds are [1,-1], respectively.
Note that generally the number of the population (NP) is five
times the number of unknown parameters (D). Here, because
of a computer memory saturation problem, the maximum NP
was 250. The results show that DE can find the global
minimum cost for the system. Depending on the expected
value of the cost and its absolute fraction of variance, the DE
finds the proper weights. The cost of the system is defined as
follows:

(10)

e(k) = Frger (k)= Fyyy (k). (11)

where Frager (k) and F,, (k) are the outputs of real test

k=50 5
Fe,(Zig) = kzl e(k)”,

and ANN for each training data.

The number of neurons for hidden layer was ascertained by
trial and error, and the most suitable number of neurons was
chosen in such a way that the training results were converge
out to the experimental data. Figure 4 shows that the best
number of neurons for ANN which is a network with 15
neurons in hidden layer. The proposed ANN gives results in
good agreement with the experimental data.

0.5 4
0.45 1
0.4 1
0.35 1
0.3 1
0.25 1
0.2 4
0.15 1
0.1 1
0.05 1

0 T T T T 1
0 5 10 15 20 25

Number of Neurons in hidden layer

Cost

Figure 4: Costs for training data with various numbers of
neurons in the hidden layer of ANN

Figures 5 and 6 show the training set and test set results,
respectively. There are very good agreements between the
normalized predicted data by ANN and normalized
experimental data. On the basis of such good trainings, the
resulting ANN are capable enough to simulate the other half
of data by their application to the relevant networks gave
such simulated data as depicted. In these figures, normalized
simulated and experimental data are compared. An excellent
agreement can be seen in between them. The equation in the
form of Y=AX+B appearing in figure 5 and 6 is the equation
of the adapted least regression line with best state as Y=X
happening when all the points fall exactly on a line at 45°,
i.e. the network predicts results exactly the same as the
experimental ones. Constants of the equation however, show
the deviation of the state from the ideal one. In addition to
the equation, the regression constants (R*-value) which are
also appeared in these figures show the agreement of trained
and simulated data with experimental data. In an ideal
situation, when these parameters are exactly similar, R* = 1.



Figure 7 shows all the predicted data (59 input-output pairs) for predicting the biooxidation rate by ANN. Figure 8 is the
and their experimental data. The figure shows a very good plot of the cost when the differential evolution algorithm is
agreement for all data set. used to search for the global minimum of the defined cost.
The figure shows that the total cost after 28732 generations

151 yz= 0.9738x converges and remains constant, so the related weights are
R® = 0.9947 the best value for the proposed ANN.
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Figure 5: The proposed ANN training result 0 10000 20000 30000 40000 50000 60000
Generation
1.2 4 Figure 8: Training costs of Proposed ANN using Differential
Evolution algorithm
g 19
é Figure 9 is used to verify the robustness of the obtained
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The applicability and capability of the ANN modelling
approach for predicting the biooxidation rate of ferrous iron
-1.5 - in the presence of Sulfobacillus species in a packed-bed
Normalized Actual Data bioreactor was investigated. For this aim, totally 59 test runs
. covering a wide range of operating conditions were
Figure 7: The ANN all data result performed on an experimental system. Then, an ANN model
o based on an artificial neural network was developed to
The Global minimum cost for the proposed ANN was 0.034 predict various performance parameters. Based on the five
and the related weights are used as final values of weights input parameters, the trained ANN model was used for
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predicting the performance of the system in terms of the
temperature, initial pH of feed solution, dilution rate, initial
concentration of Fe'* and aeration rate. The performance of
the ANN predictions was measured using the root mean
square error and absolute fraction of variance. The ANN
model usually demonstrated a good statistical performance
with the absolute fractions of variance in the range of
0.9883-0.9947. The best number of hidden layer neurons
and their related values for the weights of neural network
were investigated by using differential evolution algorithm.
The results show a good agreement between predicted
biooxidation rates of ferrous iron and experimental data. The
robustness of proposed weights of the neural network was
examined. This study reveals that biooxidation rate can
alternatively be modelled using ANN within a high degree of
accuracy.
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ABSTRACT

The paper introduces a novel pheromone deposition
approach to improve the performance of traditional ant
system algorithm that employ constant deposition rule. We
select the rank based ant system model, an extension of basic
ant system algorithm, to compare the proposed deposition
rule with the standard one. A simplified analysis of basic ant
system dynamics is carried out to find the parameter range
for system stability in both kind of deposition approach. A
roadmap of connected cities where the shortest route
between two given cities is to be found out is chosen as a
problem environment and extensive simulations are
performed to find the ranges of major controlling parameters
for best performance of the proposed approach. Experiments
reveal that our method, with this empirically obtained
optimum parameter set, outstrips its traditional counterpart
by a large margin. Finally, we attempt to establish an
algebraic relationship between the parameter set of the
algorithm and the feature set of the problem environment.

INTRODUCTION

Ant Colony Optimization (ACO) is a paradigm for
designing metaheuristic algorithms for combinatorial
optimization problems. While roaming from food sources to
the nest and vice versa, ants deposit on the ground a
substance called pheromone. Ants can smell pheromone and
choose, in probability, paths marked by stronger pheromone
concentration. Hence, the pheromone trail allows the ants to
find their way back to the food source or to the nest. ACO
algorithms simulate this behavior of ant colony to solve
difficult NP hard optimization problems.

Ant System (AS) is the earliest form of ant colony
optimization algorithm that has been modified by numerous
researchers till date. Rank Based Ant System (AS,,.x)
model is one such improved model. Our paper extends the
AS model by introducing an exponential pheromone
deposition approach, contrary to the uniform deposition
approach used in classical AS algorithms. We attempt to
solve the deterministic AS dynamics using differential
equation. The analysis helps in determining the range of
parameters in the exponential pheromone deposition rule to
confirm stability in pheromone trails. The deterministic
solution to the AS dynamics undertaken here does not
violate the stochastic nature of the AS because a segment of
trajectory here is always selected probabilistically.

A uniform pheromone deposition by an ant cannot ensure
subsequent ants to follow the same trajectory. A non-
uniform non-decreasing time function, however, ensures that
subsequent ants close enough to a previously selected trial
solution will follow the trajectory, as it can examine
gradually thicker deposition of pheromones over the
trajectory. Naturally, deception probability (D.Merkle and
M. Middendorf 2002) of the ants will be less, consequently
improving expected convergence time and final solution.

The paper is structured in 6 sections. In next section, a brief
introduction of AS and AS,,, is provided. We formulate a
scheme for the general solution of the Ant System in third
section. Stability analysis with complete solution to ant
system dynamics for different pheromone deposition rules is
undertaken in fourth section. Comparative study of the
proposed and classical AS,,, is carried out in the
penultimate section. Conclusions are listed in final section.

ANT SYSTEM AND RANK BASED ANT SYSTEM: A
REVIEW

The theory of ant system can best be explained in the
context of TSP(M.Dorigo and L.M. Gambardella. 1997). The
basic ACO algorithm for TSP can be described as follows:
procedure ACO algorithm for TSPs
e  Set parameters, initialize pheromone and ants’ memory
while (termination condition not met)

Construct Solution
Apply Local Search ( optional)
Best Tour check
Update Trails
end
end ACO algorithm for TSPs

Ant System (AS) (C. Blum and M. Dorigo 2005; M.Dorigo
et al 1996) was the earliest implementation of the ACO
algorithm. Basically it consists of two levels:

1. Initialization: 1.Any initial parameters are loaded. 2.
Edges are set with an initial pheromone value. 3. Each
ant is individually placed on a random city.

2. Main Loop:

Construct Solution: Each ant constructs a tour by
successively applying the probabilistic choice
function which can be described as follows:

(Tija )~(TlijB)/ Z (Tika )~(Tlikﬁ) ifq<q,
k: keNK

PR () =11 if (") yrma iy, ) 0 Py e NE} with g>q, - f (1)

0 if(tij“).(nijﬁ) - max{(tika).(nikﬁ) ‘keNFiwith q>q,

where P/(j) is the probability of selecting node ; after node i
for ant k. A node j € Ni* (N{* being the neighborhood of ant &
when it is at node i) if j is not already visited. 7; is the



visibility information generally taken as the inverse of the

length of link (3,k) and 7 is the pheromone concentration

associated with link (3,k). ¢q, is a pseudo random factor
deliberately introduced for path exploration. o,  are the
weights for pheromone concentration and visibility.

e  Best Tour check: Calculate the lengths of the ants’
tours and compare with best tour length so far. If there is
an improvement, update it.

e  Update Trails: 1. Evaporate a fixed proportion of the
pheromone on each edge. 2. For each ant perform the
‘Ant Cycle’ pheromone update.

Now, let us consider a small segment of the tour by an ant.
Let i and j be two successive nodes, on the tour of an ant and
7;#) be the pheromone concentration at time t associated
with the edge of the graph joining the nodes i and ;.

(1)

@ ®

node i node j

Fig. 1: Defining 7;(?)
Let p>0 be the pheromone evaporation rate and Az‘,-jk(t) be
the pheromone deposited by ant k at time t. The basic
pheromone updating rule in AS is then given by,

t(O=(1-p)T(t- D+ 3 Az, (1) @)
k=1

In AS,,. algorithm, introduced by Bullnheimer et al in
1999, each ant deposits an amount of pheromone that
decreases with its rank. Additionally, the best-so-far ant is
allowed to deposit the largest amount of pheromone. The
pheromone updating rule (2) is therefore modified as,

w—1
HO=1-P)T(EDF Y (w-rAz (@) TwAT”  3)
r=1
where A7 is the amount of pheromone deposited by ant of
rank 7 on the arcs it has visited and is defined as follows:

. {I/C", if arc (i,j) belongs to T"
At =

i

}, C" being the length

0 , otherwise

of the tour 7" constructed by ant of rank r. Az',-jb" in (3) is

bs . .. bs
defined as ATi‘bS _ 1/C™, if arc(i,j) belongs to T , where
Y 0 , otherwise

C™ is the tour length of the best-so-far tour 7 . In each
iteration, only (w-1) best ranked ants and best-so-far ant is
allowed to deposit pheromone.

The other two algorithms which achieve superior
performance compared to AS are Elititst Ant System
(M.Dorigo et al 1991; M.Dorigo et al 1996) and Max-Min
Ant System (T. Stiitzle and H. H. Hoos. 2000). Ant Colony
System (ACS) (M.Dorigo and L.M. Gambardella. 1997),
Approximate Non-deterministic Tree Search (ANTS) (V.
Maniezzo. 1999) and Hyper Cube Framework for ACO (C.
Blum et al. 2001), on the other hand, achieve improvement
over AS by modifying its basic structure.

There is another set of algorithm of ACO where
amelioration is achieved by introducing newer kind of
pheromone evaluation strategy. In general, it is assumed that
pheromone evaluation is done only locally by ants. Michels
and Middendorf (1999) first extended this local view of ants
by introducing a look-forward strategy. Here, every ant takes
also the quality of the next possible decisions into account.
The first global pheromone evaluation strategy was proposed
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later on by Merkle and Middendorf (2000). They termed the
strategy as summation evaluation which takes into account
all the former and next possible decisions along with the
local one. Merkle et al (2000) later showed how a
combination of local pheromone evaluation and weighted
summation evaluation strategy can help improve the
performance even further. We, however, exclude detailed
discussion of these algorithms and will concentrate only on
AS and AS, . algorithm in particular.

DETERMINISTIC FRAMEWORK FOR
OF BASIC ANT SYSTEM DYNAMICS

SOLUTION

This section focuses on the development of deterministic
framework using differential equation. It follows from (2),

Tij(t)-’[ij(t- 1 )=-p’[ij(t— 1 )+ i A Tijk (l)
k=1

m

dz-’ m
:j:—prﬁ;%"(z) .‘.(D+p)2'i/.:§Arﬁ"(t) @)

where, D =d/dt is the differential operator.

Evidently, (4) gives the solution for the ant dynamics. Now,
to solve (4), we have to separate the complimentary function
and the particular integral. We consider two different forms
of Az;-jk(t) corresponding to both forms of deposition rule and
try to determine the complete solution of z;(?).

Evaluation of Complimentary Function (CF):

The complimentary function of (4) is obtained by setting

m
ZAfijk () to zero. This gives only the transient behavior
k=1

of the ant system dynamics. Therefore, from (4),
(D+p)r; =0,=D=—p

Thus, the transient behavior of the Ant System is given by
CF: t(t)=Ae”™" o)
where A is a constant which is to be found out from initial
condition.

Evaluation of Particular Integral for Both Forms of
Deposition Rule:

The steady state solution of the ant system dynamics is
obtained by computing particular integral of (4) .
Case I: AT,»jk( t)=Cy , constant, where C, >0,
Case 1II: AT,jk(t)I Cy(1-e"7) , where C > 0 and T> 0.
The particular integral (PI) for the Ant System can be
obtained from (4). This is given by,

1 m

k
T. = AT.." (t
Y D+pi Y )

Case I: When Az’,jk( t)=C} , we obtain from (6)

(6)

m
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D+ka::l k P /p /;1 k
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P pop? lcz::l kop kz:1 =

Case II: When Ar,jk(t)=Ck( 1-e"7), we obtain from (6),
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STABILITY ANALYSIS OF ANT
DYNAMICS WITH COMPLETE SOLUTION

SYSTEM

In this section, we obtain the complete solution of the ant
system dynamics for determining the condition for stability
of the dynamics.

Case I: For constant deposition rule, the complete solution
can be obtained by adding CF and PI from (5) and (7)

m
respectively and is given by, Tij(t)=Ae'pt+ Y lp.
k=1

A0, T(0)=AT Y, [ p = A=1,(0) =,/ p
Therefore, the conf;ete solution is, .

GO, (0) =X/ ple™ Y,/ p ©)
It follows from (9) that fl:lla system is stak/;l::a for p>0 and
converges to steady state value i ¢, / p as time increases.

k=1
The plot below supports the above observation.
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Fig.2. 7;i(t) versus t for constant pheromone deposition

Case II: For exponentially increasing pheromone deposition,
the complete solution is,

_ m m _ 1
Li(O=ATHY G/ p-d G /(p—?)
k=1 k=1

Now, at t=0, T;;(0)= A+Zc / p— ZC /(p__)

k=1

m m 1
A=1,(0-3.G/p+3 G/ (p=—)
pam = T

<O [0~ Zg+2 G e Zg

k:](p_j) =P

G( —t/T

—1 (10)
T

Clearly, the system is stable for positive values of p and T

m
and converges to z ¢, / pinits steady state.
k=1
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Fig.3. 7;i(t) versus t for exponential pheromone deposition
with T=10

SIMULATION RESULTS

As our problem environment, we choose a roadmap of
connected cities where the shortest route between two given
cities is to be found out. We represent the cities as nodes and
the paths connecting these cities as edges. Therefore, in
effect, the problem environment takes the form of a
connected graph. Implementation of ACO algorithm in such
problem is little different from that of TSP. All ants, in this
problem, are placed on the source node and they are allowed
to construct tour to reach the destination node in the shortest
possible route. At each intermediate step, ant decides its next
position by the same probability based selection approach as
given in (1). The interpretation of the terms in equation (1) in
context of this problem is also exactly the same as given
carlier in context of TSP. The only difference lies in the
termination condition of the algorithm. In TSP, ant stops
moving if it finds a dead end or reaches the beginning node.
In this problem, ant terminates its tour on occurrence of a
dead end or on reaching the destination node.

In constant deposition approach, ant deposits uniform
pheromone on all edges belonging to the tour of the ant. But
in exponential deposition approach, pheromone deposited by
ant increases as it moves closer to the destination node. This
implies that edges lying closer to the destination node
receive greater amount of pheromone than those lying closer
to the source node. To find the optimum parameter range of
ACO algorithm with such approach we performed
simulations on seven different node distributions with
200,220,235,250,265,280,300 number of nodes. We,
however, owing to space constraint, present results for only
two such distributions with 200 and 300 number of nodes.

Result for Roadmap I:

Fig 4: Graph with 200 nodes

The bold black line in above figure shows the theoretical
minimum path as found by Dijkstra’s algorithm. In most
optimal solutions for this problem environment with 200



nodes, number of edges belonging to a tour is in between 8
and 10. 7, therefore, is set at a value 6.0 following the
philosophy of the proposed deposition rule. Both a and B are
varied in the range of 0.5 to 5.0 in steps of 0.5 and the
solution accuracy and convergence time of the proposed
method are observed. The results with w=6 and 25 number
of ants are presented below. Proposed method works best for
0o=1.0 and B=3.5 as obvious from figures (5) and (6). A
comparative study of the two kinds of deposition rule is also
presented in figure 7. We use 0=1.0 and =5.0 (Bullnheimer
et al 1999; M. Dorigo and T. Stutzle. 2005) for simulating
the standard AS,,, algorithm. Also, p is set at a value 0.1 in
both deposition rules. The plots of figure 7 reveal that the
proposed method outperforms the traditional one in terms of
both solution quality and convergence time.

wanation of opitmom pathiength with alphse and beta

Fig 5: Variation of optimum path length with a and

wariation of convergenss s with alpha and bata

plot of best pathlength so far

= uniform deposition

= exponential deposition
theoretical minimum

20 40 60 80 100 120 140 160 180 200

Fig 7: Comparative study of two deposition rules with 200
nodes

Result for Roadmap II:

Here we consider a graph with 300 nodes. The proposed
algorithm works best with o=1.0 and p=4.0. T here is set at
8.0 as number of edges in most optimal solutions lie between
10 and 15 for such environment. A comparative study of two
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deposition rules over this environment is presented in figure
11. The proposed method again outshines its traditional
counterpart. The optimal solution found by the proposed
method almost matches the one found by Dijkstra’s
algorithm.
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Fig 8: Graph with 300 nodes
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Fig 10: Variation of convergence time with a and
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Fig 11: Comparative study of two deposition rules with 300
nodes

For other 5 environments, optimum performance was
achieved at 0=1.0 and =3.5 or 4.0. Thus, it can be estimated
that the proposed method works best for values of o and B
lying in the neighborhood of these values.

Establishment of algebraic relationship:

We now attempt to establish a relationship between the
features of problem environment and optimum values of a



and f. The two parameters which we select as problem
environment feature are i) Node density: number of nodes
scattered per unit area ii) Standard deviation of nearest
neighbor distance: which is the standard deviation of length
of smallest edge associated with all nodes. We vary o over
the range 0.7 to 1.3 and B over the range 3.2 to 4.3 in steps of
0.1 (i.e. over the range that we have obtained from previous
set of experiments) and run the proposed algorithm on 49
different node distributions to record the optimum values of
a and B for each such distribution. The plots along with the
algebraic relationship are presented below. The surface
fitting through the data points was performed using a tool
TableCurve3D V 4.0. The algebraic equations discovered
help in finding almost accurately the optimum values of o
and B when problem feature set is known in advance.

Bt oof Blphis
S Siasiany Siier

Fig 12 : Surface Fitting for variation of a
Function: Cosine Series Bivariate Polynomial Order 6
(x":xscaled 0 tom y":y scaled 0 to m, x = no of nodes in 200 sq units,
y =standard deviation)

o =a+bcos(x")+ccos(y")+dcos(2x")+ecos(x")cos(y")+Hcos(2y')+
gcos(3x'")+hcos(2x")cos(y")+Heos(x")cos(2y'")+Hjcos(3y'")+
kcos(4x")+Hcos(3x")cos(y")+meos(2x")cos(2y")+
ncos(x")cos(3y'"")+ocos(4y'")+pcos(5x")+qcos(4x")cos(y'")+
rcos(3x")cos(2y"")+scos(2x")cos(3y'")+tcos(x")cos(4y'" )+
ucos(5y")+vcos(6x")+aacos(5x")cos(y'")+abcos(4x")cos(2y")+
accos(3x")cos(3y'"")+adcos(2x")cos(4y")+aecos(x'")+cos(Sy'")+
afcos(6y").
a=0.93,b=-0.052,¢=0.12,d=-0.042 ,e=-0.16,f=-0.09, g=0.027, h=0.037,
i=0.093, j=0.014, k=-0.050,1=-0.092,m=-0.065,n=-0.073,
0=-0.029, p=0.012, q=0.059, r=0.098, s=0.103, t=0.142, u=0.004, v=0.04,

aa=0.04, ab=0.009, ac=0, ad=-0.082, ae=-0.030, af=0.005.
Bl of Bate
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Fig 13 : Surface Fitting for variation of
Function: Fourier Series Bivariate Polynomial Order 2*3
(x":xscaled 0 tom y":y scaled 0 to )
p=a+bcos(x")+ccos(y")+dsin(x")+esin(y")+fcos(2x")+gcos(2y")+hsin(2x
")+isin(2y'")+jcos(3x")+keos(3y'")+sin(3x")+msin(3y")+ncos(x")cos(y")
+ocos(x")sin(y")+psin(x")cos(y'")+
qcos(x")cos(2y")+reos(2x")cos(y")+scos(x")sin(2y"" )+
tsin(2x"")cos(y"")+usin(x")sin(y")+vsin(x"")cos(2y")+
aacos(2x")sin(y"")+absin(x")sin(2y")+acsin(2x")sin(y").
a=-0.116, b=-0.086, c=-0.124, d=7.134, e=-0.264, {=4.270,
2=-0.450, h=-0.019, i=-0.003, j=-0.089, k=0, 1=-1.210, m=0.129,
n=-0.085, 0=0.044, p=0.179, q=0.043, r=0.197, s=0.023, t=0.180,
u=-0.455, v=0.160, aa=-0.448, ab=0.054, ac=-0.075.
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CONCLUSIONS

The paper presents a novel approach of stability analysis as
well as a new kind of pheromone deposition rule which
outperforms the traditional approach of pheromone
deposition used so far in all variants of ant system
algorithms. Our works are on progress and we are trying to
compare the two kinds of deposition rule using other variants
of ant system algorithms like MMAS and EAS and find
optimum parameter setting of ACO algorithm with proposed
deposition rule for such models also.
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COMPUTATION WITH IMPRECISE PROBABILITIES

Lotfi A. Zadeh""

An imprecise probability distribution is an instance of
second-order uncertainty, that is, uncertainty about
uncertainty, or uncertainty” for short. Another instance is an
imprecise possibility distribution. Computation with
imprecise probabilities is not an academic exercise—it is a
bridge to reality. In the real world, imprecise
probabilities are the norm rather than exception. In large
measure, real-world probabilities are perceptions of
likelihood. Perceptions are intrinsically imprecise, reflecting
the bounded ability of human sensory organs, and ultimately
the brain, to resolve detail and store information.
Imprecision of perceptions is passed on to perceived
probabilities. This is why real-world probabilities are, for the
most part, imprecise.

What is important to note is that in applications of
probability theory in such fields as risk assessment,
forecasting, planning, assessment of causality and fault
diagnosis, it is a common practice to ignore imprecision of
probabilities. The problem with this practice is that it leads
to results whose validity is in doubt. This underscores the
need for approaches in which imprecise probabilities are
treated as imprecise probabilities rather than as precise
probabilities.

Peter Walley's seminal work "Statistical Reasoning with
Imprecise Probabilities," published in 1991, sparked a rapid
growth of interest in imprecise probabilities. Today, we
see a substantive literature, conferences, workshops and
summer schools. An exposition of mainstream approaches to
imprecise probabilities may be found in the 2002 special
issue of the Journal of Statistical Planning and Inference
(JSPI), edited by Jean-Marc Bernard. My paper "A
verception-based theory of probabilistic reasoning  with
imprecise probabilities,” is contained in this issue but is not a
part of the mainstream. A mathematically rigorous treatment
of elicitation of imprecise probabilities may be found in "A
behavioural model for vague probability assessments," by
Bert de Cooman, Fuzzy Sets and Systems, 2005.

The approach which is outlined in the following is rooted in
my 1975 paper "The concept of a linguistic variable and its
application o approximate reasoning,” Information
Sciences, but in spirit it is close to my 2002 JSPI paper. The
approach is a radical departure from the mainstream. Its
principal distinguishing features are: (@
imprecise probabilities are dealt with not in isolation, as in
the mainstream approaches, but in an environment of
imprecision of events, relations and constraints; (b)

" Dedicated to Peter Walley.

imprecise probabilities are assumed to be described in a
natural language. This assumption is consistent with the fact
that a natural language is basically a system for describing
perceptions.

The capability to compute with information described in a
natural language opens the door to consideration of
problems which are not well-posed mathematically.
Following are very simple examples of such problems.

1. Xis a real-valued random variable. What is known
about X is: (a) usually X is much larger than
approximately a; and (b) wusually X is much
smaller than approximately b, with a < b. What is
the expected value of X7

2. X is a real-valued random variable. What is known
is that Prob(X is small) is low; Prob(X is medium) is
high; and Prob(X is large) is low. What is the
expected value of X?

3. A box contains approximately twenty balls of
various sizes. Most are small. There are many more
small balls than large balls. What is the probability
that a ball drawn at random is neither large nor
small?

4. 1 am checking-in for my flight. I ask the ticket
agent: What is the probability that my flight will be
delayed. He tells me: Usually most flights leave on
time. Rarely most flights are delayed. How should
I use this information to assess the probability that
my flight may be delayed?

To compute with information described in natural language
we employ the formalism of Computing with Words (CW)
(Zadeh 1999) or, more generally, NL-Computation (Zadeh
2006). The formalism of Computing with Words, in
application to computation with information described in a
natural language, involves two basic steps: (a) precisiation of
meaning of propositions expressed in natural language; and
(b) computation with precisiated propositions. Precisiation
of meaning is achieved through the use of generalized-
constraint-based semantics, or GCS for short. The concept
of a generalized constraint is the centerpiece of GCS.
Importantly, generalized constraints, in contrast to standard
constraints, have elasticity. What this implies is that in GCS
everything is or is allowed to be graduated, that is, be a
matter of degree. Furthermore, in GCS everything is or is
allowed to be granulated. Granulation involves partitioning

! Department of EECS, University of California, Berkeley, CA 94720-1776; Telephone: 510-642-4959; Fax: 510-642-1712;
E-Mail: zadeh(@eecs.berkeley.edu . Research supported in part by ONR N00014-02-1-0294, BT Grant CT1080028046, Omron
Grant, Tekes Grant, Chevron Texaco Grant and the BISC Program of UC Berkeley.
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of an object into granules, with a granule being a clump of
elements drawn  together by  indistinguishability,
equivalence, similarity, proximity or functionality.

A generalized constraint is an expression of the form X isr R,
where X is the constrained variable, R is the constraining
relation and »is an indexical variable which defines the
modality of the constraint, that is, its semantics. The
principal modalities are: possibilistic (» = Dblank),
probabilistic (» = p), veristic (» =v), usuality (» = u) and
group (r = g). The primary constraints are possibilistic,
probabilistic and veristic. The standard constraints are
bivalent possibilistic, probabilistic and bivalent veristic. In
large measure, scientific theories are based on standard
constraints.

Generalized constraints may be combined, projected,
qualified, propagated and counterpropagated. The set of all
generalized constraints, together with the rules which govern
generation of generalized constraints from other generalized
constraints, constitute the Generalized Constraint Language
(GCL). Actually, GCL is more than a language—it is a
language system. A language has descriptive capability. A
language system has descriptive capability as well as
deductive capability. GCL has both capabilities.

The concept of a generalized constraint plays a key role in
GCS. Specifically, it serves two major functions. First, as a
means of representing the meaning of a proposition, p, as a
generalized constraint; and second, through representation
of pas a generalized constraint it serves as a means of
dealing with p as an object of computation. It should be
noted that representing the meaning of p as a generalized
constraint is equivalent to precisiation of p through
translation into GCL. In this sense, GCL plays the role of a
meaning precisiation language. More importantly, GCL
provides a basis for computation with information described
in a natural language. This is the province of CW or, more
generally, NL-Computation.

A concept which plays an important role in computation
with information described in a natural language is that of a
granular value. Specifically, let Xbe a variable taking
values in a space U. A granular value of X, *u, is defined by
a proposition, p, or more generally by a system of
propositions drawn from a natural language. Assume that
the meaning of p is precisiated by representing it as a
generalized constraint, GC(p). GC(p) may be viewed as a
definition of the granular value, *u. For example, granular
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values of probability may be defined as approximately 0.1,
..., approximately 0.9, approximately 1. A granular variable
is a variable which takes granular values. For example,
young, middle-aged and old are granular values of the
granular variable Age. The probability distribution in
Example2 is an instance of a granular probability
distribution. In effect, computation with imprecise
probability distributions may be viewed as an instance of
computation with granular probability distributions.

In the CW-based approach to computation with imprecise
probabilities, computation with imprecise probabilities
reduces to computation with generalized constraints. What
is used for this purpose is the machinery of GCL. More
specifically, computation is carried out through the use of
rules which govern propagation and counterpropagation of
generalized constraints. The principal rule is the extension
principle (Zadeh 1965, 1975). In its general form, the
extension principle is a computational schema which relates
to the following problem. Assume that Y is a given function
of X, Y= g(X). Let *g and *X be granular values of g and X,
respectively. Compute *g(*X).

In most computations involving imprecise probabilities what
is sufficient is a special form of the extension principle
which relates to possibilistic constraints. More specifically,
assume that f'is a given function and f{X) is constrained by a
possibility distribution, 4. Assume that g is a given
function, g(X). The problem is to compute the possibility
distribution of g(X) given the possibility distribution of f.X).
In this case, the extension principle reduces the solution of
the problem in question to the solution of a variational
problem (Zadeh 2006).

In summary, the CW-based approach to computation with
imprecise probabilities opens the door to computation with
probabilities, events, relations and constraints which are
described in a natural language. Progression from
computation with precise probabilities, precise events,
precise relations and precise constraints to computation with
imprecise probabilities, imprecise events, imprecise relations
and imprecise constraints is an important step forward—a
step which has the potential for a significant enhancement of
the role of natural languages in human-centric fields such as
economics, decision analysis, operations research, law and
medicine, among others.
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ABSTRACT

Monte Carlo Validation of Protocol Analysis is an
original computer simulation approach used to validate
qualitative and subjective coding performed in protocol
analysis. The coding of the protocol is a subjective task
that is very time-consuming. Subjectivity generates most
variability in the resulting coding. The variability from the
coders is parameterized and new coding data are simulated
using Monte Carlo approach. These numerous simulated
coded sequences are used to validate the stability of the
models derived from the protocol analysis. The simulation
generates codes with random variations of the qualitative
interpretation within an observed range of variability. This
enables the researcher to determine under which
qualitative parameter ranges the resulting model remains
invariable, or to evaluate the sensitivity of the model to
these parameters. This new approach makes a contribution
to the need for evaluating the validity of a model derived
from a unique experiment based on time-consuming
protocol analysis.

INTRODUCTION

Cognitive sciences use protocol analysis as a suitable
approach for studying cognitive behaviors.  Protocol
analysis, which is based on a transcript of observational
data, is often used as the basic approach in empirical
studies (Ericsson and Simon, 1993). Human behavior is
characterized by coding schemes, and statistical tools are
used to derive models of the behavioral patterns emerging
from the tasks under study.

The Monte Carlo simulation approach has been
developed to understand the impact of the coders’
subjectivity on a model derived from a protocol analysis of
design meetings. The observational approach used was to
videotape the meetings, and then have a specially trained
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typist transcribe the videos to produce a document called a
protocol transcript.

A transcript entry is called a (verbal) move. The
protocol transcript is an accurate written representation of
all the moves performed by the participants during the
meeting. The protocol must be encoded to enable efficient
statistical analysis. The coding scheme defines the
formalism to encode the protocol, and should be capable of
encoding the moves adequately and yet be formal enough
to support quantitative analysis.

The coding of the video sequences is a subjective task
that is very time-consuming. Consequently the coding
activities are the weak link in any study based on protocol
analysis, in that two coders who perform the same move
characterizations may have a different interpretation of the
moves and may not replicate exactly the same coding
scheme.

A coder who replicates his previous coding session
later on is likely to end up with different code sequences.
This behavior is natural, and it is unrealistic to expect
exactly the same coding patterns from two coders, or even
with the same coder. The reasons for discrepancies
between codes are numerous and natural. Coding is a
subjective activity based on the assignment of qualitative
codes to natural moves, and many statistical tools have
been developed to evaluate the reliability of coding
activities.

The traditional scientific approach to validating models
derived from experimental studies is to replicate the
experiments. Experimental replication is multipurpose. It
validates the appropriateness and reliability of the
observed data, the correctness of the statistical analysis
and the significance of the results. However, observational
empirical studies, unlike exact sciences such as physics or
chemistry, cannot be replicated for validation purposes.
Difficulties come from the impossibility of using the same
people, in the same environment, carrying out the same
project. Thus, replications of observational empirical
studies involving human behaviors are impossible, since
the teammates will have learned from previous
experiments, and different individuals are likely to exhibit
different behaviors.



What is often recommended is to analyze the reliability
of an empirical study before deriving a model based on
these studies. In the case of protocol analysis, reliability is
associated with stability between coders (Baer, 1977), such
stability being obtained by measuring the degree of
similarity between the resulting codes. Stability could also
mean that a coder codes in the same way during the entire
experiment, to verify that the coder will not introduce bias
in one way or another during the various coding sessions
(Medley and Mitzel, 1963).

Measurement ~ validity is  defined by its
representativeness and adequacy (Kerlinger, 1973, Curtis,
1980), validity often being confirmed by human experts
(Herbert and Attridge, 1975). Indeed, a detailed analysis
by experts of the experimental setup may be necessary to
judge the validity of the experiment. Another approach
would be to measure the same phenomena in various ways
and then compare the results (Campbell and Fiske, D.
1959).

There is also another problem with observational
empirical studies, which is the nature of the subjective and
qualitative components of the coding that generate
variability in the protocol analysis. This problem is of
general interest, since it occurs for any observational
empirical study involving the measurement of human
behavior.

This paper presents a novel approach based on Monte
Carlo Coding Replication (MCCR), which enables the
validation by simulation of the coding performed in the
protocol analysis. The approach consists in measuring the
variability of protocol analysis on a representative sample
of the data, and then simulating the coding with the same
variability for all the transcripts. The impact of the coding
variability obtained from various simulated coders is
analyzed on the model resulting from the protocol
analysis.

The idea behind MCCR is to simulate the replication of
the coding in the protocol analysis. The simulation
generates codes with random variation of the qualitative
interpretation within an observed range of variability. This
enables the researcher to determine under which
qualitative parameter ranges the resulting model remains
invariable, or to evaluate the sensitivity of the model to
these parameters.  This approach is different from
statistical analysis, where the volume of data is related to
the statistical significance of the results. For example, in a
protocol analysis, the number of coded events determines
the statistical significance of the analysis, but says little on
the impact of the different coding on the analysis.

The purpose of MCCR is to study, based on computer
simulation of qualitative parameter variability, the stability
of the model derived from the observational study initially
coded by the human coder.

CASE-STUDY

The use of the MCCR approach and the impact of its
application are illustrated on data from protocol analysis
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and resulting models that have already been published.
(D’Astous et al, 2005). The model at the time it was
published did not take into account the results obtained
subsequently from the MCCR approach presented in this
paper.

The reliability of the coding of the transcript moves
into a sequence of codes based on the coding scheme was
validated according to accepted practices, such as the
kappa coefficient, to compare codes from two different
coders. This paper presents an approach to measure the
impact of coding variability between reliable coders on the
resulting models.

For the purposes of this research, the variability of
coding has to be characterized. Coder variability was
measured from session 2, which was judged the most
representative of the seven sessions that were coded.
Session 2 was coded three times. Coder A, who
collaborated in defining the coding scheme, did the first
coding, called Version 1. One year later, at the beginning
of this project, coder B, trained by coder A, did a second
coding of session 2, called Version 2. Coder B continued
coding in the other sessions, and six months later did a
third coding of session 2, called Version 3.

This approach provides three coded versions of the
same session with different coder characteristics. Versions
1 and 3 provide the information for the usual inter-coder
agreement studies, while Versions 2 and 3 provide some
information on the stability of the code according to the
experience of the coder. Statistical studies were performed
on the three versions.

The codes were shown to be reliable, according to
accepted practices (Cone, 1977, Cooil and Rust, 1994).
Table 1 presents the Perreault and Leigh reliability index
(1989) for the three versions. These indices, obtained
from two different statistical approaches, are above a
threshold estimated to signify good agreement between
coders. It is interesting to note that the best agreement is
between Versions 1 and 3, which were coded by
experienced coders. Versions 1 and 3 were used in this
paper for demonstrating the MCCR approach.

Table 1: Perreault and Leigh Reliability Index

Versions Reliability Std dev
Index
Version 1 and 2 0.73 0.024
Version 1 and 3 0.83 0.020
Version 2 and 3 0.79 0.022

The reliability and appropriateness of the coding
scheme constitute a major issue. Much iteration was
required to define the coding scheme. Once an acceptable
set of activities had been defined, two coders were trained
to measure the reliability of the coding scheme. The
problem addressed in this paper was to determine how the
variations in coder practices affect the resulting models.



Table 2 presents the number of occurrences of each
code for Versions 1 and 3. Codes are labelled A,B,C,D and
E. For example, the first element in the first line (A) and
first column (A) indicates that 11 moves were coded as A
in both Versions 1 and 3. The element in the second
column indicates that three moves coded A in Version 1
were coded B in the Version 3. Column 3 shows that no A
move in Version 1 was coded C in Version 3. The last
column gives the total number of moves with a particular
code in Version 1. The last line gives the total number of
moves with a particular code in Version 3. For example,
moves were coded A 20 times in Version 1 and 16 times
in Version 3, with 11 moves coded A in the two versions.
The values on the diagonal are the exact coded agreements
for the two versions. There are similar tables of code
occurrences for Versions 1 and 2, and Versions 2 and 3.

Table 2: Number of Codes from Version 1 and 3

The reliability indices presented in Table 1 show that
all three coded versions of session 2 are reliable for
discourse analysis. With the present state of the art, it is
not possible to claim that one version is better than
another. The main challenge is to understand and quantify
the impact of this variability on the models derived from
this protocol analysis, where only one coder coded all the
sessions.

SIMULATION PROCEDURE

The following presents a new approach to replicating
coding activities based on Monte Carlo simulation.
MCKCR is based on the following three hypotheses:

1. The reference session, which is session 2 in this
case, is representative of all sessions, and
consequently the variations between coders
observed for this session are representative of the
variations for any of the sessions.

2. The simulated data will not generate hidden
dependencies between the data, and the generated
data will be similar to real data.

3. The coders are stable, and their coding is
homogeneous throughout all the sessions.

The first hypothesis is necessary to reduce the effort
required to measure variability, which is quite time-
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consuming. In theory, all the sessions could be unique and
variability could be measured on each of them. Pragmatic
considerations and the homogeneity of the seven sessions,
in terms of reviewing activities, make the first hypothesis
reasonable. The second hypothesis is guaranteed by the
parameters of the normal distributions used for the
simulations, which are specific to, and derived from, each
session. The third hypothesis is self-evident, and is verified
by statistical analysis of the resulting codes. MCCR is
based on two parameters. The first takes into account the
qualitative and subjective differences observed between
coders in the reference session. The second takes into
account the profile of moves within the simulated session.

Table 2, presented previously, shows the differences in
the qualitative coding of moves between the coder of
Version 1 and the coder of Version 3. To enable
meaningful simulation, we also need the intrinsic
characteristics of each session, since each session is
unique. The move duration is an intrinsic property of
moves within a session. Table 3 shows the average
duration of a move respectively for the moves of sessions
1 and 3. For example, the A moves, which were coded A
in the two versions, have an average duration of 21.3
seconds with a standard deviation of 11.8 sec.

Table 3: Average Move Duration

The A moves of version 1 that were coded B in
Version 3 have an average duration of 8 seconds, with a
standard deviation of 1.7 seconds.

MCCR SIMULATION EXAMPLE

The simulation procedure is illustrated, on a small
sample of codes. It is easy to follow and can be readily
generalized to the whole sessions. All simulated sessions
have first to be coded by one coder for which an
agreement matrix exists. Within a session, each code is
simulated individually, and then all the codes are
reassembled to compose a new simulated session.

To summarize, MCCR 1is performed on complete
protocol analysis performed by a well-trained coder. The
coding is redone in a representative session, called the
reference session, by another well-trained coder or by the
same coder later on. The reliability of the two coded
protocols is measured with known tools, such as
agreement indices or kappa coefficients. Qualitative



differences between the coders, which are interpreted as
the qualitative variations in the coding scheme, are
characterized by a probability matrix derived from the two
codings of the reference session. Profiles of coded moves
are characterized by the average and standard deviation of
their durations. These parameters are used to specify the
parameters of the normal distributions of the random
generator. All codes are simulated according to the
distribution specifications provided by the reference
session. Sequences of simulated codes are built according
to the specific code duration within a given session. A
simulated session of exactly the same duration is obtained
with a coding variability that is within the range shown for
the reference session. The kappa coefficient is computed
on the simulated sessions to validate their reliability. As
many simulations as needed could be performed to obtain
a statistically significant and stable model.

MCCR provides a new version of the human-coded
version that is likely to have, on average, the same
characteristics, as a version obtained by another coder. It
will have the same number of codes with a variability that
will be within the characteristics measured in the reference
session. MCCR is efficient and could be performed
hundreds of times in any given session, which means that
the whole spectrum of coding variability can be explored.

COMPARING SINGLE-CODER AND SIMULATED
MODELS

This section shows the impact of the MCCR approach,
as applied to review meetings, in comparing the exchange
pattern model derived from protocol analysis performed by
a single coder and the model derived from multi-simulated
coding.

All the observed meetings that composed the empirical
study were coded by experienced coders, and an intercoder
variability study on one of the representative sessions and
10 series of simulations of the meetings were performed.
This is equivalent to having recoded the transcript ten
times with ten different coders who have statistically the
same behaviors within reliable variability. More
simulations did not add any new information to the model.
This approach enables us to see whether or not the
resulting model would have been different if different
coders had been used, or, put differently, to see the core of
the resulting model that is invariant under the qualitative
components of the coding.

Figure 1 shows the patterns resulting from the single-
coder model on the left-hand side and patterns from the
simulated Monte-Carlo model on the right-hand side.

The models shows the links between the exchanges.
The Monte-Carlo model obtained from 10 simulations of
the coders variability illustrates three with full dot punched
links that were not observed from the single coder model
analysis.

The simulated model confirmed the salient features of
the single-coder model. MCCR may resolve ambiguities
that arise from the qualitative components of the coding.
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CONCLUDING REMARKS

MCCR enables us to analyze the impact of individual
qualitative variability on coding transcripts from protocol
analysis. It is much easier to perform than real replication
of the protocol analysis by different coders, and requires
far less resources. Moreover, it provides information on
the components of the resulting models which are sensitive
to the qualitative components of the coding.

Observational studies are difficult to realize in an
industrial environment, and analysis of the data is very
time-consuming. MCCR is a new method developed to
extract from the observed model the components related to
the subjective and qualitative components of the
observations. This method is of general interest and can be
applied to any observational study.
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Figure 1: Single-Coder Model (left-hand side) and the
Simulated Model (right-hand side).
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ABSTRACT

The EM algorithm is a popular method for computing
maximum likelihood estimates. It tends to be numerically
stable, reduces execution time compared to other
estimation procedures and is easy to implement in latent
class models. However, the EM algorithm fails to provide
a consistent estimator of the standard errors of maximum
likelihood estimates in incomplete data applications.
Correct standard errors can be obtained by numerical
differentiation. The technique requires computation of a
complete-data gradient vector and Hessian matrix, but not
those associated with the incomplete data likelihood.
Obtaining first and second derivatives numerically is
computationally very intensive and execution time may
become very expensive when fitting Latent class models
using a Newton-type algorithm. When the execution time
is too high one is motivated to use the EM algorithm
solution to initialize the Newton Raphson algorithm. We
also investigate the effect on the execution time when a
final Newton-Raphson step follows the EM algorithm after
convergence. In this paper we compare the standard errors
provided by the EM and Newton-Raphson algorithms for
two models and analyze how this bias is affected by the
number of parameters in the model fit.

1. INTRODUCTION

A limitation of the EM algorithm is that the estimated
information matrix, in contrast to the case for gradient
methods such as Newton-Raphson, is not a direct by-
product of maximization. Procedures for obtaining the
information matrix within the EM algorithm have been
suggested by several authors.

An approach for computing the Fisher information matrix
within the EM framework was suggested by (Louis 1982).
His methodology is based on a result by (Fisher 1925) that
showed that, given the incomplete data, incomplete data
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scores are conditional expectations of the complete data
scores. The author derives a procedure for extracting the
observed information matrix when the EM algorithm is
used to find maximum likelihood estimates in incomplete
data problems. The technique requires the computation of
the complete data gradient vector and the Hessian matrix
but does not require those associated with the incomplete
data log- likelihood function. A criticism of this approach
is that the procedure is often computationally demanding
and hard to implement because it requires the computation
of both a complete-data score vector and second derivative
matrix.

An alternative approach for computing the Fisher
information matrix using gradients only was suggested by
(Meilijson 1989). Methods that only require gradients are
easier to compute analytically and less demanding to
compute numerically. An appealing advantage of this
procedure, in contrast to the approach suggested by (Louis
1982), is that once the individual scores have been
identified there is no additional analysis to perform.
Meilijson’s methodology is based on a result by (Fisher
1925) in which the evaluation of individual score vectors
of the incomplete data is a by-product of the application of
the E-step of the EM algorithm. The Fisher information
matrix may be consistently estimated by the empirical
variance-covariance matrix of these individual score
vectors and the M step may be replaced by a Newton-type
step. This permits a unification of EM methodology and
Newton methods. A demerit of Meilijson’s technique is
that it applies only to specialized cases in which the
observed data are independent and identically distributed
samples.

Another approach for computing the observed information
matrix is the well-known supplemented EM (SEM)
algorithm, suggested by (Meng and Rubin 1991). The
SEM algorithm numerically differentiates the EM operator
M(@) and uses a result by (Dempster, Laird and Rubin

1977) that relates the Jacobian of M(¢) to the Hessian
matrix H (@) , both evaluated at @ . The authors claim that

their algorithm can be applied to any problem to which
EM has been applied, assuming that one has access to the
complete-data asymptotic variance-covariance matrix.
(Segal, Bacchetti and Jewell 1994) point out that the SEM



algorithm requires very accurate estimates of ¢ and so

they can be much more expensive to obtain than the EM
estimates. (McCulloch 1998) remarks that for many
problems the method of obtaining standard errors using
the SEM algorithm can be numerically unstable.
(Jamshidian and Jennrich 2000) point out that, algorithms
that numerically differentiate M(¢@) may suffer from the

error magnification problem when the EM algorithm is
slow. The authors remark that algorithms that numerically
differentiate the score vector g(¢) are appropriate for all

maximum likelihood applications and they do not suffer
from the error magnification problem.

The variance-covariance matrix can be obtained by other
techniques that do not use numerical differentiation.
Bootstrapping uses computer intensive resampling and
treats a given sample as the population. An empirical
probability distribution is constructed from the sample of
size n in which the probability of each observation is 1/n.
K random samples each of size n are drawn with
replacement from this empirical distribution where some
of the observations in a sample may be duplicated. The
EM algorithm is then performed on each sample to
calculate the vector of parameters @, . Hence a probability

distribution is constructed from all the resampled
parameter estimates in which the probability of each @, is

I/K. This distribution is the bootstrapped estimate of the
sampling distribution of ¢ which can be used to provide

estimates for the standard errors. The primary advantage
of bootstrapping is that no assumptions about the shape of
the sampling distribution are made. Jackknifing is a
different resampling technique in which a single
observation is omitted at a time. Thus, each sample
consists of n-1 observations formed by deleting a different
observation from the sample. A jackknifed estimate of the
sampling distribution of ¢ can be obtained in a similar

way to the bootstrap procedure. (Agresti 2002) remarks
that bootstrap and jackknife procedures are useful tools for
estimating standard errors when samples are small or data
is sparse.

2. A GENERAL MODEL

A latent class model relates a set of observed multivariate
categorical variables to a latent variable which is discrete.
Latent class analysis, unlike cluster analysis, uses a model-
based approach that combines conventional statistical
estimation methods to classical clustering techniques. In
this methodology latent classes are defined by the criterion
of conditional independence where the observed variables
within each segment are statistically independent. The
assumption of conditional independence has been widely
used in latent class modelling. It is directly analogous to
the assumption, in the factor analysis model, that observed
variables are conditionally independent given the factors.
This implies that the observed correlations between the
items are due to the clustered nature of the population,
whereas within a cluster, the items are independent.
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To illustrate the procedure, we fit a latent class model to a
data set as suggested by (Camilleri and Green 2004) using
the EM algorithm and a Newton-type algorithm. The aim
is to assess the bias of the standard errors between these
maximization procedures. The EM algorithm for fitting
latent class models is implemented using GLIM software
(Generalized linear interactive models). The Newton-type
algorithm is implemented using the facilities of GLLAMM
(Generalized linear latent and mixed models). GLLAMM
software uses numerical first and second derivatives of the
log-likelihood and produce standard errors by maximizing
the marginal log-likelihood using Raphson algorithm. The
GLLAMM framework accommodates a large class of
models including structural equation, multilevel, latent
class and longitudinal models.

Let ¢ =(a,p,m) be the vector comprising the parameters

of the latent class model with K segments. The »" density
function is of the form

¢0)=>7.P(Y,=y,|aB,) (1)

k=1

P(Y, =y,

7, are the unconditional probabilities that sum to 1 and

represent the proportion of respondents that are allocated
to each segment. The marginal or conditional probability
P(y, = r|a,[i .) follows the Proportional Odds model

suggested by (McCullagh 1980)

P(y, =rla.p)=F(a,+xB)-F(a,_ +xB) (2

In this model y,, is a rating response elicited by the n"
respondent for the ;”item; a is a vector of threshold
parameters; B is a vector of regression parameters and
X ; are item covariates. The choice of F'(.) is the Logistic
distribution which leads to the logit link.

The likelihood function of the data set is obtained by
taking the product of the N density functions.

N K

L(e)=[]X7-P(Y, =y,

‘LB/:) 3)

The log-likelihood function is given by:

N K
l((p) = Zanﬂk .P(Yﬂ =y,
k=1

n=1

o.B,) )

Maximum likelihood estimation can be carried out via
standard numerical optimization routines such as the
Newton Raphson method or alternatively using the EM
algorithm. The popularity of the EM algorithm arises from
its computational elegance, particularly for latent class
models. The idea behind the EM algorithm is to augment
the observed data by introducing unobserved data, A,

indicating whether the »™ respondent belongs to the &"
segment.



An effective procedure to fit a latent class model with K
segments is to maximize the expected complete log-
likelihood function using the iterative EM algorithm.

L(o | A) =TT T[%-P(Y, =¥, lo.8,)] R

n=l k=1

The complete log likelihood / (q)| A) is given by:

N K
l(o|A)=Y [\, InP(Y, =y,

n=1 k=1

o.f,)+2,.In(n,)] (6)

The complete log-likelihood function /(¢|A) has a simpler

form compared to /(¢) given by (4) and the derivatives
are easier to compute.

Each iteration is composed of two steps: an E-step and an
M-step. In the E-step, E[/(¢ |A)] is calculated with respect

to the conditional distribution of the unobserved data
A=(\,L,,....,A,) given the vector of observed responses

y, and using the provisional parameter estimates ¢ . This
is achieved by using Bayes’ theorem to estimate 4, .

P(Y =y |o,
E(ﬂ'nk): Kﬂk ( . y" ¢ ﬁk) :pnk (7)
Z”k'P(Yn =Y., a:Bk)
k=1

In the M-step, E[l(q)|A)] is maximized with respect to
¢ . This is achieved by replacing 4, by their expected

posterior probabilities p, . So

Ell(0|A)] =Y. [ pn P(Y, =y, |a.B,) + pIn(m)] - (8)

n=1 k=1

The two terms on the right hand side of the expression can
be maximized separately. The maximization of E[l((p|A)]

with respect to 7z, is straightforward and can be worked
directly by differentiation. The maximum of E[l((p|A)]

with respect to 7, , subject to the constraint ZlKﬂ'k =1,is

obtained by maximizing the augmented function.

3 pulnz, ~5 7, -1) ©)

k=1 n=1 k=1
S is the Lagrange multiplier. Setting the derivative with

respect to 7, equal to zero yields

. 1 &
ﬁk:—ank for £=1,2,..,.K

n=1

(10)

The maximization of E[l((p|A)] with respect to @ and B,

in GLIM is performed by transforming the polychotomous
responses as a vector of 0-1 indicators. This allows the
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use of Poisson likelihood in model fitting by considering
each term of > "> " p .InP(Y,=y,|a.B,) a weighted

Poisson log-likelihood function. This maximization step
can be accommodated using the OWN model facilities of
GLIMA4.

Since the probabilities, p,, are unknown then the iterative
procedure is initiated by setting random assignment to
these probabilities. The algorithm alternately updates the
parameters a,B,m and the prior weights, p, until the
process converges.

Maximum likelihood estimation in GLLAMM is carried
out via a Newton-Raphson algorithm. The algorithm uses
numerical first and second derivatives of the likelihood
function, which is computationally demanding and time
expensive even with few model parameters. The Newton-
Raphson algorithm can be derived by considering an
approximation of 0l(¢)/d¢ using a first order Taylor
series expansion around the parameter ¢” evaluated at the

m™ iteration.

oi(e)_allor) (o)
o h o 0@og'

(0-0") (1)

Gradient methods are iterative and updated parameters can
be evaluated by setting 0/(¢)/d¢ to zero. Denoting the

gradient vector and Hessian matrix by g(¢”) and H(¢"),
the updated parameters are given by:

0" =¢"~H(¢") g(o") (12)

If the log-likelihood is quadratic in the parameters, as in
the case of linear regression models, the equations can be
solved in closed form and maximum likelihood estimates
¢ are found in a single iteration.

3. RESULTS OF THE STUDY

Although the EM algorithm yields maximum likelihood
estimates of the parameters it fails to provide standard
errors of these parameter estimates as a by-product of the
iterative algorithm. On the other hand, a Newton-type
algorithm provides correct standard errors; however, there
is a computing cost associated with our patience in waiting
for an output. It is well known that Newton-type methods
require good starting values and a fast convergence is only
guaranteed if these starting values are near the solution.
Another problem is that obtaining first and second
derivatives numerically is computationally intensive and a
Newton-type algorithm may become very expensive
particularly when fitting models with a considerable
number of parameters. This paper compares the standard
errors of the parameters provided by the EM and Newton-
Raphson algorithms for two models and contrast execution
times when using GLIM and GLLAMM software.



GLLAMM software can fit proportional odds models by
specifying the family to be binomial and the 1ink to
be ologit. This link corresponds to the logit link functions
appropriate for ordinal data. The syntax nrf specifies the
number of latent variables; the syntax nip specifies the
number of latent classes (segments) and the syntax ip(fn)
yields non-centred latent classes. Some of the terms in the
GLIM output were intrinsically aliased. In order to get a
similar solution using GLLAMM we had to constrain
these parameters to zero using the constraint define
command in GLLAMM.

It was noted that estimation with GLLAMM using a
Newton-type algorithm took about fifty times longer
compared to GLIM using an EM algorithm. For problems
with large numbers of parameters and latent variables,
Newton-type methods can become infeasible and
computationally demanding. When the computer cost is
too high one is motivated to use GLIM’s EM algorithm
solution to initialize GLLAMM’s Newton Raphson
algorithm. This reduces considerably the execution time
for GLLAMM. It was noted that when a final Newton-
Raphson step was applied to GLIM’s EM solution after
convergence the algorithm always converged in at most
three iterations yielding a solution which was concave. In
spite of this improvement, estimation with GLLAMM still
took about five times longer compared to GLIM.

In the first illustration a Latent class model was fitted to a
data set (Camilleri and Green 2004) that provided rating
scores to a number of items (profiles) described by three
car-attributes. The linear predictor included brand as a
sole main effect with four categories. The latent variable,
segment, was interacted with each level of brand and the
model was estimated with two latent classes, four latent
variables and a logit link function. A 7-point scale was
used for the rating scores yielding 6 threshold (cut-point)
parameters. The GLIM solution required 34 iterations and
took 3 minutes to converge. The log-likelihood of this
solution was 9807.98. The parameter estimates elicited
from the EM algorithm were then used as starting values
for the Newton-Raphson algorithm. GLLAMM required
three iterations and took 9 minutes to converge. The log-
likelihood of the GLLAMM solution was 9807.62.

Term GLIM Output GLLAMM Output
Estimate St Error Estimate St Error
Cutpl -4.061 0.134 -4.063 0.177
Cutp2 -2.816 0.127 -2.814 0.171
Cutp3 -1.858 0.124 -1.856 0.169
Cutp4 -0.927 0.122 -0.925 0.168
Cutp5 0.118 0.121 0.119 0.167
Cutp6 1.362 0.126 1.364 0.168
Brand(1).Seg(1) -2.871 0.177 -2.870 0.274
Brand(1).Seg(2) -1.149 0.140 -1.148 0.191
Brand(2).Seg(1) -0.636 0.174 -0.636 0.270
Brand(2).Seg(2) -0.603 0.139 -0.603 0.189
Brand(3).Seg(1) -2.628 0.176 -2.629 0.332
Brand(3).Seg(2) -1.360 0.140 -1.360 0.190
Brand(4).Seg(1) -2.541 0.177 -2.541 0.273
Brand(4).Seg(2) Aliased Aliased Aliased Aliased

Table 1: Parameter estimates and standard errors elicited
the EM and EM+NR algorithms.
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Another interesting observation is that GLIM provided
deflated standard errors where the deflation for each
standard error varied from 24% to 47%. The cause for this
deflation is that the EM algorithm has to estimate KN
missing or unobserved values 4, together with the model

parameters.

In the second illustration another Latent class model was
fitted to the same data set. The linear predictor includes
brand and a two-level door attribute as main effects and
the interaction of brand with a quadratic function of price.
The latent variable, segment, was again interacted with
each term. The model was estimated with two latent
classes, thirteen latent variables and a logit link function.
The GLIM solution required 34 iterations and took 10
minutes to converge. The log-likelihood of this solution
was 9004.64. Using GLIM’s parameter estimates as initial
values, GLLAMM required 3 iterations that took 36
minutes to converge. The log-likelihood of the GLLAMM
solution was 9003.24 and the amount of deflation of
GLIM’s standard errors compared to GLLAMM’s varied
from 0% to 19%.

Term GLIM Output GLLAMM Output

Estimate | St Error | Estimate | St Error
Cutpl -0.631 0.843 -0.634 0.877
Cutp2 0.043 0.843 0.045 0.877
Cutp3 0.604 0.843 0.602 0.877
Cutp4 1.181 0.843 1.180 0.877
Cutp5 1.802 0.843 1.803 0.877
Cutp6 2.513 0.843 2.513 0.877
Door(1).Seg(1) -1.295 1.135 -1.297 1.214
Door(1).Seg(2) -0.314 0.044 -0.312 0.053
Door(2).Seg(1) -0.799 1.135 -0.798 1.214

Door(2).Seg(2) Aliased | Aliased | Aliased | Aliased
Brand(2).Seg(1) -0.436 1.079 -0.434 1.090
Brand(2).Seg(2) 1.082 1.188 1.080 1.213
Brand(3).Seg(1) -0.275 1.078 -0.273 1.090
Brand(3).Seg(2) 0.625 1.189 0.623 1.215
Brand(4).Seg(1) -0.569 1.083 -0.567 1.104
Brand(4).Seg(2) 1.597 1.186 1.597 1.233
Brand(1).Price.Seg(1) 0.410 0.213 0.411 0.218
Brand(1).Price.Seg(2) 0.406 0.234 0.405 0.244
Brand(2).Price.Seg(1) 0.598 0.212 0.598 0.218
Brand(2).Price.Seg(2) 0.319 0.233 0.317 0.244
Brand(3).Price.Seg(1) 0.515 0.212 0.515 0.216
Brand(3).Price.Seg(2) 0.246 0.234 0.246 0.241
Brand(4).Price.Seg(1) 0.494 0.212 0.494 0.218
Brand(4).Price.Seg(2) 0.133 0.233 0.131 0.244
Brand(1).PriceSq.Seg(1) | -0.017 0.014 -0.017 0.014
Brand(1).PriceSq.Seg(2) || -0.043 0.016 -0.043 0.016
Brand(2).PriceSq.Seg(1) | -0.030 0.014 -0.030 0.014
Brand(2).PriceSq.Seg(2) || -0.037 0.015 -0.037 0.016
Brand(3).PriceSq.Seg(1) | -0.026 0.014 -0.026 0.014
Brand(3).PriceSq.Seg(2) | -0.033 0.016 -0.033 0.016
Brand(4).PriceSq.Seg(1) | -0.023 0.014 -0.023 0.014
Brand(4).PriceSq.Seg(2) || -0.023 0.015 -0.023 0.016

Table 2: Parameter estimates and standard errors elicited
the EM and EM+NR algorithms.

An interesting observation is that when complex models
are fitted the discrepancy between GLIM’s standard errors
compared to GLLAMM’s was smaller. An explanation for
this occurrence is that the proportion of model parameters



compared to the proportion of missing values increases
when more terms are included in the model fit. It was also
noted that when complex models are fitted a higher
proportion of the posterior probabilities approach 0 or 1.
This is due to the fact that complex models explain the
heterogeneity in the data better than simple models.

4 CONCLUSIONS

Newton-type algorithms are essential to elicit correct
standard errors for the parameter estimates; however, these
algorithms are extremely slow since they use numerical
first and second derivatives of the log-likelihood. This
execution time problem becomes more severe when the
number of latent variables in the latent class model is
increased. Estimation with a Newton-type algorithm may
take fifty times longer compared to estimation with an EM
algorithm. The study proposes using the EM algorithm
solution as an initialization step. Equipped with very good
starting values the final Newton-Raphson step converges
quickly. This procedure guarantees correct standard errors
of the parameters estimates and reduces execution times
considerably. Another interesting finding is that the bias
between the correct and incorrect standard errors obtained
respectively by Newton-type and EM algorithms becomes
less conspicuous as the model complexity increases.
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Abstract

Petri nets have been used for the modeling and sim-
ulation of molecular biology systems for almost two
decades. Different methodologies and techniques have
been developed; a modeling and simulation software tool
designed specifically for biological applications has been
implemented. In this paper, we discuss the integration
of some of these methodologies and techniques into a
unified modeling and simulation framework where Petri
net theory is used to validate biological models, simulate
them and finally, analyze the simulation data.

Introduction

Computational modeling is increasingly used in cellular
biology for the interpretation of biological data. Models
mediate between theory and reality. If a model repli-
cates experimental data, then it is a good approxima-
tion of realty until it is disproven. In the last few years,
modeling and simulation tools have been developed and
adapted to biological and biochemical models. A vast
majority of modeling tools is based on differential equa-
tions, but other formalisms, like Petri nets, offer addi-
tional possibilities and techniques useful for modeling.

The Petri net formalism is a formal method in com-
puter science that has been applied in numerous do-
mains to analyze systems composed of concurrent and
parallel processes. Computational and communication
systems, but also industrial, business and manufactur-
ing processes are examples of fields and applications
where the use of Petri nets have been reported. Since
the original work of Reddy et al. (1993), this formalism
has also been used for the analysis of biochemical sys-
tems: several contributions have been made in order to
use and adapt Petri net techniques to the specificities
of biochemical models. Some of these are qualitative
approaches for the analysis and validation of Petri net
models and they can be very useful to verify their prop-

erties. Others are quantitative approaches for the study
of the dynamics of models through simulation with hy-
brid and or stochastic processes. Some contributions are
cited in this paper but articles on the subject are avail-
able for an exhaustive review (Hardy and Robillard,
2004; Matsuno et al., 2006b).

The goal of this paper is to discuss how a unified mod-
eling and simulation methodological framework can be
based on Petrinets. Such a framework using a graph for-
malism complements mathematical methodologies like
differential equations. The structure of this framework
is shown in Figure 1. Also, recent advances in the ap-
plication of Petri net techniques for the analysis of the
simulation data of biochemical systems are presented in
this paper. The two main threads of this article are the
adaptation of the invariance properties of Petri nets to
different biochemical concepts and the use of different
types of Petri nets at each phase of the modeling and
simulation process.

The next section introduces the Petri net basics. Sec-
tion 3 presents the Petri net-based techniques for the
validation of metabolic and signaling pathway models.
Section 4 reviews the simulation of biochemical mod-
els with a hybrid Petri net formalism. The last section
presents new adaptations of some Petri net concepts to
the analysis of the simulation data of signaling pathway
models.

Basic Petri net concepts

This section introduces some basic concepts of Petri
net theory that are useful in the context of biological
modeling. These concepts constitute only a subset of
the whole theory. For a complete presentation of the
Petri net theory, readers should consult David and Alla
(2004). Among the Petri net concepts, we present the
invariants. Invariants have been linked to different en-
tities in biochemical models and we will show in later
sections how this relationship can be used for model val-
idation and simulation data analysis.

The original Petri net formalism is a modeling language
depicting systems as directed bipartite graphs, i.e. di-
rected arcs linking nodes from two disjoint sets named
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Figure 1: Modeling and simulation process from experimental observations to knowledge using a Petri net framework.
The bottom rounded rectangles present the activities that can be performed with Petri nets at each phase of this

process when applied to molecular biology.

places and transitions. Places are the passive elements
of the model, like entities and states. Transitions are
the active elements of the model, like processes and
events. Directed arcs represent the causal relations be-
tween places and transitions. These arcs are weighted,
the default value being 1. In the graphical representa-
tion of a Petri net, places are displayed as circles and
transitions as rectangles. In Petri net models of a bio-
chemical system, places and transitions most often rep-
resent molecular substances and chemical reactions re-
spectively. Also, the weights of the net’s arcs commonly
represent the stoichiometric coefficients of chemical re-
actions.

The dynamic elements of a discrete Petri net are called
tokens. Places contain an integer number of tokens,
called mark, and transitions withdraw tokens from or
add tokens to places. This process of withdrawing and
adding tokens is called transition firing. The firing of a
transition can happen only when the transition precon-
ditions are met. If a firing occurs, then the transition
postconditions are met. The transition firing has two
consequences: tokens are removed from input places, as
stated by the preconditions, and tokens are added to
output places in a number corresponding to the weights
of the output arcs.

The state of a Petri net model is given by the token dis-
tribution in its places. The token distribution is called
the marking. Most of the time, a firing modifies the
marking, thus changing the state of the model. In bio-
chemical Petri net models, the tokens are molecules.
The molecules change their forms (tokens moving from
place to place) as they form molecular complexes, un-
dergo chemical modification, etc. (transition firings).
In this kind of Petri net model, the marking indicates
the distribution of the molecules between the different
molecular substances.

The conceptual framework of Petri nets is usually used
to understand "how” a system works. Part of this un-
derstanding comes from a mathematical analysis of Petri
nets. This is possible because the Petri net formalism
is more than just a graphical representation. Petri nets
can also be expressed in a linear algebra fashion. The
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properties determined with this mathematical represen-
tation serve to achieve a qualitative and structural anal-
ysis of a system and a validation of a model. Some of
these properties are named invariants, they are struc-
tural properties of Petri nets. In biochemical models, in-
variants usually have a mass conservation meaning. In
the next paragraphs, we present the theoretical back-
ground on Petri net invariants. We will elaborate on
their biochemical meaning in the next section.

The structure of a Petri net model, i.e. the arrangement
of places, transitions and arcs, can be expressed by a ma-
trix. This is the incidence matrix W. One dimension
of the incidence matrix is the number of places of the
model, and the other dimension is the number of tran-
sitions. Each element w;; of the matrix indicates the
token change at place 7 after firing transition j. From
the incidence matrix, it is possible to determine the in-
variants. Among all the reachable markings of a model,
some quantities do not change, even when transitions
are fired. This first type of invariant is the marking in-
variant (p-invariant). Every p-invariant of a Petri net
model is a positive vector x that is a solution of the
following equation:

xI' W =0 (1)

A p-invariant characterizes a conservation component
of the model, which is a set of places over which the
weighted sum of the tokens is constant for every reach-
able marking.

Among all possible firing sequences of a model, some
repetitions are possible. This second type of invariant
is a firing invariant (t-invariant). Every t-invariant of a
Petri net model is a positive vector y that is a solution
of the following equation:

W-y=0 (2)

A t-invariant characterizes a repetitive component of the
model, which is a firing sequence composed of several
transitions causing a return to the model’s initial state.
In other words, the transition firings of a repetitive com-
ponent together have a null effect on the marking of the
model.



The invariant properties of Petri nets and different types
of Petri nets can be useful at each phase of the model-
ing and simulation process shown in Figure 1. In this
figure, the first layer represents the three activities of
this process: modeling, simulation and data analysis.
The second layer represents the progression from exper-
imental observations to knowledge. Of course, a feed-
back loop from simulation to experimental observations
is also present to validate the modeling. This loop is
not present in the figure but modeling is an iterative
process. The third layer represents the techniques that
can be implemented with Petri net theory. The next
three sections present these techniques.

Validation of biochemical models with Petri nets

The validation of biochemical models with Petri nets
is done by analyzing the structure of the modeled path-
ways. This means that only the topology of the intercon-
nections between molecular substances, usually specified
by stoichiometric coefficients, is considered. Validation
approaches do not deal with the kinetic details of the
reactions. By validating a model, it is possible to detect
inconsistencies. This validation also allows the verifi-
cation that the model respect some logical and tempo-
ral properties. A validation should be performed before
any sophisticated questions are asked about the behav-
ior of the model. The Petri net models appropriate for
this kind of validation are constructed with the assump-
tion that many chemical reactions can be considered as
irreversible (the flux in one direction is negligeable in
comparison with the flux in the opposite direction). To
accomplish a model validation, consistency criteria must
be established. The invariants of Petri nets are fine tools
to define such criteria. The relationship between the in-
variant properties and concepts of biochemical models
has already been discussed in the literature. This rela-
tionship depends on the nature of biochemical models.

In metabolic pathways models, the marking invariants
express the conservation relations of metabolites and
the firing invariants are related to the elementary flux
modes (Zevedei-Oancea and Schuster, 2003; Voss et al.,
2003; Heiner and Koch, 2004). At steady state, some
molecular quantities should remain constant and some
enzymatic reactions are essential to maintain this state.
These two biochemical concepts correspond to Petri net
invariants. The marking invariants can be linked to the
constant molecular quantities and the firing invariants
can be connected to the steady state flux modes. Con-
sequently, the analysis of a model and the identification
of its invariants confirm expected characteristics of the
model.

In signal transduction models, marking and firing invari-
ants represent different biochemical concepts. A signal-
ing pathway is considered active when enzymes change
state to transmit a signal. The total concentration of
all forms of a signaling enzyme is modeled as a constant

quantity. This conserved quantity is a marking invari-
ant in a Petri net model. In signaling pathway models,
the firing invariants are associated to the different signal
flows of the pathway. The result of these two relation-
ships is that the marking invariants of Petri net signaling
models can be used for checking the biological plausibil-
ity of the different groups of enzymatic molecules and
the firing invariants can be used for checking the biolog-
ical meaning of certain signal flows. Structural analysis
and validation approaches based on these relationships
between invariants and biochemical concepts in signal-
ing pathways have been developed (Sackmann et al.,
2006; Li et al., 2006). With these approaches, the ar-
chitecture of the information flow can be decomposed
and a simpler picture of the signal networking of these
systems can be generated.

Once a model has been validated, the next step is to
perform a quantitative analysis using simulation.

Simulation of biochemical models with Petri nets

The Petri net formalism described so far and used in
the presented validation approaches is the original form
of this formalism, known as the place-transition net.
This modeling language can represent discrete, non-
deterministic, asynchronous systems. Other types of
Petri nets have been developed to enhance the mod-
eling capabilities of the formalism. For example, con-
tinuous and hybrid Petri nets are extensions to the
original theory enabling the modeling of continuous
quantities and timed processes. Continuous Petri nets
were developed to model systems involving flows. This
type of Petri nets can represent a system of ordi-
nary differential equations using continuous places and
transitions (Matsuno et al., 2000). The marking of
a continuous place is represented by a real number.
A continuous transition has a speed. Hybrid Petri
nets were developed to combine elements of discrete
and continuous natures. This last Petri net extension
is a hybrid simulation methodology and it has been
used to model and simulate different biochemical sys-
tems. Models of genetic regulation networks (Doi et al.,
2006; Matsuno et al., 2006a), metabolic pathways
(Chen and Hofestadt, 2003; Matsuno et al., 2003a) and
signal transduction pathways (Matsuno et al., 2003b;
Koh et al., 2006; Troncale et al., 2006) have been the
objects of quantitative analyses using Hybrid Petri nets.
To transform a discrete Petri net model that has been
validated into a hybrid Petri net model that can be simu-
lated, dynamic information must be added to the model.
A discrete or continuous type must be assigned to each
place and transition of the model and parameters must
be specified. For discrete transitions, this parameter is
a timed delay between events. This value can be deter-
ministic or stochastic. For continuous transitions, the
parameter is a speed rate equation. Finally, the places
are given initial values corresponding to initial concen-
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trations.

A hybrid methodology is appropriate for the simulation
of many biological systems for two reasons. First, be-
cause certain biological systems combine discrete and
continuous processes; this is especially true of informa-
tion flow through signaling networks in various parts of
the neuron (Jordan et al., 2000). Second, because some
explicit dynamic parameters cannot be obtained exper-
imentally, thus discrete elements are more appropriate
for approximating those parameters. Overall, a hybrid
model might be more realistic than a continuous model.
The simulation data of hybrid Petri net biochemical
models are usually quantitatively analyzed with concen-
tration graphs to study the behavior and dynamics of
the models. This straightforward analysis approach has
been used in the previously cited examples. However,
for complex models, Petri net techniques can also be
useful for a more sophisticated analysis of the simula-
tion data to achieve a system-level understanding of the
models’ behaviors. This new idea is explored in the next
section.

Analysis of the simulation data of biochemical
models with Petri nets

Systems biology can be summarized as the search for
”a system-wide perspective on component interactions,
[this perspective] is required so that network proper-
ties, such as a particular functional state or robustness,
can be quantitatively understood and rationally manip-
ulated.” (Sauer et al., 2007) A number of systems bi-
ologists turned to computational methods and tools in
their search for this system-wide perspective of biolog-
ical systems (Ideker et al., 2001). These methods com-
prise computational modeling and simulation method-
ologies, but also computational techniques for data anal-
ysis. Recently, we have developed two Petri net-based
techniques for the analysis of the simulation data of hy-
brid Petri nets. Both techniques are tailored for signal
transduction models. They use the invariant properties
of Petri nets and their relations to biochemical concepts
to process the raw simulation data and hopefully high-
light some systemic characteristics of models.

The first technique is a visualization method of simula-
tion data (Hardy and Robillard, 2007). This technique
can be summarized in two points. First, it uses the
graphical representation of Petri nets to map the sim-
ulation data onto the topology of models by coloring
its places according to their marking. This animated
display presents simultaneously the structure of a bio-
chemical system and its dynamics. Looking at these
two dimensions all together facilitates the observation
of the model systemic behavior. Second, it uses the
marking invariants to color the model structure. This
novel use of this Petri net attribute enables the visu-
alization of the simulation data of signaling pathway
models according to their main feature. This main fea-
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ture is that the propagation of signals in pathways is
the result of the activation and deactivation of enzymes
through conformational changes as they turn ”on” and
7off”, rather than the production and consumption of
metabolites. The effect is to show in a simple manner
the concentration distribution of the different confor-
mations of an enzyme, thus informing the viewer of the
global state of this enzyme. Since using the marking
invariant property for data visualization is a way to em-
phasize the basic mechanism of signal transduction, the
result is a more significant display. This type of pre-
sentation of the simulation data is not unique to Petri
nets since other tools implements the idea of a map-
ping of simulation data onto a graph (Qeli et al., 2003;
Rost and Kummer, 2004), but the system-meaningful
display of signal transduction models created with mark-
ing invariants is exclusive to a Petri net technique.
The second Petri net-based technique is a method for
the analysis of the dynamics of signal propagation
(Hardy and Robillard, 2008). This method is a com-
bination of the mathematical identification of the mark-
ing and firing invariants from Petri net theory with a
graph exploration algorithm. It has three main features.
First, the marking invariant analysis serves to generate
a simplified graph representation of a signaling network
model. Instead of showing the entire Petri net model
and the fine details of every enzymatic activity, this sim-
plified graph displays only the interconnections between
different enzymes. Second, the firing invariant analy-
sis serves to identify the network components acting as
relays of the informational flux. The activity of these re-
lays, computed from the simulation data, provides tem-
poral information about the signal propagation. Third,
it is possible to characterize special transduction paths
as regulation motifs, such as positive and negative feed-
back loops, with a formal definition of these motifs. This
method can be a key tool to help computational biolo-
gists deciphering the information processing capabilities
of complex cellular signaling networks

The next steps toward a unified Petri net frame-
work for systems biology

The Petri net methods previously presented have been
developed to support different phases of the modeling
and simulation process. Despite the apparent continu-
ity in these applications of Petri net theory to compu-
tational systems biology, their successive use in a single
project is not without obstacles. Developed indepen-
dently, not all of these methods have been implemented
into software tools, and the ones that use available soft-
ware have different file formats for the model specifica-
tions. For the moment, the unified framework is only of
a conceptual nature and centered on Petri net theory.
This section is a discussion about the next steps to take
toward a concrete unified Petri net framework.

Some methodologies presented in this paper are based



on existing Petri net tools. The Integrated Net Analyzer
INA (Starke, 2003) has been used to perform invariant
analyses. Also, Cell Illustrator (Nagasaki et al., 2003) is
a Petri net model editor and simulator developed specif-
ically for molecular biology. On the other hand, some
methodologies presented in this paper have just been
theoretical contributions up to now. To be more widely
used, software implementation is an unavoidable step
for the establishment of a unified Petri net framework.

For existing tools, the compatibility between specifica-
tions format is still a hurdle. Two solutions can be
adopted to solve this problem. Format conversion soft-
ware is one solution. Such software is not available for
the moment but is in preparation. A unique file format
could also be developed and adopted. One format has
already been proposed (Chen et al., 2002), but the com-
munity did not embrace it, probably because the need
for a consensual format has not been felt until now.

Regardless of a growing interest for Petri net methods
in the last years, the application of this formalism for
molecular biology models remains fairly recent and un-
derused. More biologists need to adopt this formalism
and develop Petri net-based models of biological sys-
tems in order to have more integrated tools be designed
and implemented. For this to happen, a greater num-
ber of collaborations between biologists and computer
scientists must be established.

Conclusion

The application of the Petri net theory to molecular
biology is reaching a turning point. After 15 years of
research on this subject and an increasing number of bi-
ologists adopting this formalism, it is now time for the
basis of a unified modeling and simulation framework to
be established. In this paper, we presented various Petri
net-based methods and discussed how they can be inte-
grated into a single framework. These methods are used
for structural analysis and model validation, for quan-
titative analysis via simulation and for the analysis of
system dynamics from simulation data. Their common
point is mostly how their use of Petri nets invariants for
their different significations in biochemical models.

Petri nets are a handy and valuable formalism to biolo-
gists. It has a simple and clear graphical representation,
similar to the representations already familiar to them.
It can also model biological systems more realistically by
dealing with the inherent uncertainties related to exper-
imental measurements of the dynamic parameters of the
cell. Instead of an accurate kinetic modeling, Petri nets
can support simpler mathematical functions. Finally, as
we have suggested in this paper, Petri nets offer a unified
conceptual framework, assisting biologists to transform
experimental observations into knowledge.

Acknowledgement

This work was supported in part by the grant A-0141
from the National Sciences and Engineering Research
Council of Canada and a NSERC Postgraduate Schol-
arship.

References

Chen, Ming, Andreas Freier, Jacob K&hler, and Alexan-
der Riiegg. “The biology Petri net markup language.”
In Proceedings of Promise’2002, edited by J. et al. De-
sel. 2002, volume 21 of Lecture Notes in Informatics,
150-161.

Chen, Ming, and Ralf Hofestadt. “Quantitative Petri
net model of gene regulated metabolic networks in
the cell.” In Silico Biology 3, 3: (2003) 347-365.

David, René, and Hassane Alla. Discrete, Continuous,
and Hybrid Petri Nets. Berlin: Springer, 2004. 524

p.

Doi, Astushi, Masao Nagasaki, Hiroshi Matsuno, and
Satoru Miyano. “Simulation-based validation of the
p53 transcriptional activity with hybrid functional
Petri net.” In Silico Biology 6: (2006) 0001.

Hardy, Simon, and Pierre N. Robillard. “Modeling and
simulation of molecular biology systems using petri
nets: modeling goals of various approaches.” Journal
of Bioinformatics and Computational Biology 2, 4:
(2004) 595-613.

“Petri net-based visualization of signal trans-
duction pathway simulations.” Computational Biol-
ogy and Chemistry (submitted).

“Petri net-based method for the analysis of
the dynamics of signal propagation in signaling path-
ways.” Bioinformatics 24, 2: (2008) 209-217.

Heiner, Monica, and Ina Koch. “Petri Net Based Model
Validation in Systems Biology.” In Proceedings Appli-
cation and Theory of Petri Nets 2004, Bologna, Italy,
June. Berlin: Springer, 2004, volume 2679 of Lecture
Notes in Computer Science, 216—237.

Ideker, Trey, Timothy Galitski, and Leroy Hood. “A
new approach to decoding life: Systems biology.” An-
nual Review on Genomics and Human Genetics 2:
(2001) 343-372.

Jordan, J. Dedrick, Emmanuel M. Landau, and Ravi
Iyengar. “Signaling networks: the origins of cellular
multitasking.” Cell 103, 2: (2000) 193-200.

Koh, Geoffrey, Huey Fern Carol Teong, Marie- Veronique
Clement, David Hsu, and P.S. Thiagarajan. “A de-
compositional approach to parameter estimation in

61



pathway modeling: a case study of the Akt and
MAPK pathways and their crosstalk.” Bioinformatics
22, 14: (2006) e271-280.

Li, Chen, Shunichi Suzuki, Qi-Qei Ge, Mitsuru Nakata,
Hiroshi Matsuno, and Satoru Miyano. “Structural
modeling and analysis of signaling pathways Based
on Petri nets.” Journal of Bioinformatics and Com-
putational Biology 4, 5: (2006) 1119-1140.

Matsuno, Hiroshi, Atsuchi Doi, Masao Nagasaki, and
Satoru Miyano. “Hybrid Petri net representation of
gene regulatory network.” Pacific Symposium on Bio-
computing 341-352.

Matsuno, Hiroshi, Sachie Fujita, Atsushi Doi, Masao
Nagasaki, and Satoru Miyano. “Towards biopathways
modeling and simulation.” In Proceedings of the 24"
Conference on Applications and Theory of Petri Nets
(ICATPN 2003), edited by W. M. P. van der Aalst,
and E. Best. Springer-Verlag, 2003a, volume 2679 of
Lecture Notes in Computer Science, 3—22.

Matsuno, Hiroshi, Shin-Ichi T. Inouye, Yasuki Okitsu,
Yasushi Fujii, and Satoru Miyano. “A new regula-
tory interaction suggested by simulations for circa-
dian genetic control mechanism in mammals.” Jour-
nal of Bioinformatic and Computational Biology 4, 1:
(2006a) 139-153.

Matsuno, Hiroshi, Chen Li, and Satoru Miyano. “Petri
Net Based Descriptions for Systematic Understanding
of Biological Pathways.” IEICE Transactions on Fun-
damentals of Electronics, Communications and Com-
puter Sciences E89-A, 11: (2006b) 3166-3174.

Matsuno, Hiroshi, Yukiko Tanaka, Hitoshi Aoshima,
Atsushi Doi, Mika Matsui, and Satoru Miyano.
“Biopathways representation and simulation on hy-
brid functional Petri net.” In Silico Biology 3, 3:
(2003b) 389-404.

Nagasaki, Masao, Atsushi Doi, Hiroshi Matsuno, and
Satoru Miyano. “Genomic Object Net: 1. A platform
for modeling and simulating biopathways.” Applied
Bioinformatics 2, 3: (2003) 181-184.

Qeli, Emir, Bernd Freisleben, Daniela Degenring,
Aljoscha Wahl, and Wolfgang Wiechert. “MetVis: a
tool for designing and animating metabolic networks.”
The FEuropean Simulation and Modelling Conference
2008 333 — 338.

Reddy, Venkatramana N., Michael L. Mavrovouniotis,
and Michael N. Liebman. “Petri net representa-
tion in metabolic pathways.” In Proceedings of the
First International Conference on Intelligent Systems
for Molecular Biology (ISMB), edited by L. Hunter,
D. Searls, and J. Shavlik. AIII Press, 1993, 328-336.

62

Rost, Ursula, and Ursula Kummer. “Visualisation of
biochemical network simulations with SimWiz.” IEE
Systems Biology 1, 1: (2004) 184 — 189.

Sackmann, Andrea, Monika Heiner, and Ina Koch. “Ap-
plication of Petri net based analysis techniques to sig-
nal transduction pathways.” BMC Bioinformatics 7,
1: (2006) 482.

Sauer, Uwe, Matthias Heinemann, and Nicola Zamboni.
“GENETICS: Getting Closer to the Whole Picture.”
Science 316, 5824: (2007) 550-551.

Starke, Peter H. “INA — The Integrated Net Analyzer.”,
2003.

Troncale, Sylvie, Fariza Tahi, David Campard, Jean-
Pierre Vannier, and Janine Guespin. “Model-
ing and Simulation with Hybrid Functional Petri
Nets of the Role of Interleukin-6 in Human Early
Haematopoiesis.” Pacific Symposium on Biocomput-
ing 11: (2006) 427-438.

Voss, Klaus, Monika Heiner, and Ina Koch. “Steady
state analysis of metabolic pathways using Petri
nets.” In Silico Biology 3, 3: (2003) 367-387.

Zevedei-Oancea, lonela, and Stefan Schuster. “Topolog-
ical analysis of metabolic networks based on Petri net
theory.” In Silico Biology 3, 3: (2003) 323-345.



A GRANULAR UNIFIED FRAMEWORK FOR A MACHINE VISUAL SYSTEM

Mokhtar Beldjehem
Ecole Polytechnique de Montréal
C.P. 6079, succ. Centre-Ville
Montréal QC H3C 3A7, Canada
E-mail: mokhtar.beldjehem@polymtl.ca

KEYWORDS

Novel layered granular vision architecture, visual front-end
module, mid-level module, fuzzy set, fuzzy partition, level of
details, decision levels, granular soft vision (GrSV), Min-
Max fuzzy-neuro model, granulation, value approximation,
abstraction, non-linear digital filters, soft computing,
hybridization, X-rays images.

ABSTRACT

We propose a novel unifying framework for building a novel
layered granular architecture for a machine visual system
that accommodates a large spectrum of potential vision
problems. Thus removing the ad hoc nature of present
solutions and providing the basis for a new generation of
machine visual systems. Such a framework works by
integrating some useful concepts from the human vision and
cognitive processes and adding some interesting granular
functionalities of human vision. It advocates further
hybridization of non-linear digital filters and soft computing
in implementing such a next generation of intelligent
machine visual systems. Our focus herein will be on the low
level and mid-level stages of such a framework. The goal is
to build an automatic system that can be used for degraded
multi-modal image processing, including X-rays, MRI,
Sonar, etc for diagnosis, recognition, registration and
information fusion multipurposes. For illustration purposes,
an investigation concerning its application to a real world
problem is also provided. We are interested by an application
to automatic detection and classification of patients’ spines
affected by Idiopathic Scoliosis from X-rays images.

INTRODUCTION AND MOTIVATIONS

It is well-accepted that vision problems are ill-posed, ill-
defined and computationally intractable. Nevertheless it is
possible to find feasible solution for a large class of practical
vision problems. Our aim is at building a general unifying
framework enabling the building of an effective modular
machine visual processing system in a coherent fashion.
Consider our case study, detection and classification of
patients’ spines affected by Idiopathic Scoliosis from X-rays
images, thanks to the fuzziness of the human senses
(perception) and the accuracy of human visual system
(HVY); a radiologist can detect the pedicles and locate them
manually. Why a machine (program) could not? This is due
may be to the ability of the mechanism of the perception of
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the variation in image brightness by the HVS but also it is
connected to the concepts of visual logarithmic non-linearity
and spatial adaptability of the HVS. Logarithmic non-
linearity has led to the so-called homomorphic image
processing.

Our approach is well motivated and based on psycho-
cognitive considerations of the theory of first global vision
(Marr 1982). This is what motivates our approach, taking
into account Marr ideas (Marr 1982) “...vision is the process
of discovering from images what is present in the world and
where it is.” Some principles of the gestalt theory, and in
particular the active vision systems approach from them we
take our guiding design principles and in conformance with
the software engineering point of view: rather than building
in an ad hoc manner a visual system for every given problem
at hand, it is more attractive and advantageous to try to build
a flexible machine visual system able to handle and
effectively solve a large number of vision problems using
visual data/information/knowledge processing.

The concepts of granulation and abstraction in a fuzzy set
theory setting have long been suggested by Zadeh (Zadeh
1976), his co-authors (Bellman and al. 1966) and advocated
by others in an Al (Hobs 1985; Giumchglia et al. 1992)
setting, in vision engineering (Marr 1982) setting, and in
algorithm design (Foster 1992). It is attracting intensive
research too and has led to the development of granular
computing as an emerging computing paradigm (Yao 2000,
Liu and al. 2002, Pedrycz 2001). It has been recently
revisited by Zadeh himself (Zadeh 1998) who proposes
retargeting it as a design paradigm and/or a methodology in
connection with and under the “umbrella” of soft computing
(SC). Bearing in mind that any workable vision model either
mental (human) or computational (machine) is necessarily
only abstraction and approximation of the reality, triangular
and/or trapezoidal membership functions (MFs) might be
used as they are in fact only approximation means to
represent image data, concepts, objects, entities,
relationships, classes and even relations of the real world
vision problems. Bell-shaped and even free-form
membership functions may be used too.

We consider that the granularity of a fuzzy partition for a
variable is of utmost importance as it reflects the level of
details (or resolution) required in describing such a variable,
whereas the overlapping is connected to the inherent
fuzziness in defining the boundaries between classes
(granules) of such a variable. Of course a granule is also



defined by a fuzzy set represented by a membership
function. Thus it reflects too a gradual rather then abrupt
membership of an object to the class (granule).

As early pointed out in (Marr 1982) vision is indeed a
data/information/knowledge-processing task. In order to
meet such design requirements and to put them working in
practice we propose to use and integrate the concepts of
modularity, abstraction, granularity, grouping, operator
size, scale-space representation. Thus our current work is on
the mainstream of what has been called vision engineering
(Marr 1982, 1993) and/or perceptual engineering (Nevatia
1982; Jain 1988; Zadeh 2001).

A CASE STUDY FOR ILLUSTRATION PURPOSES

We are interested by an application to automatic detection
and classification of patients’ spines affected by Idiopathic
Scoliosis from X-rays images. Idiopathic Scoliosis is a
pathological condition that can induce a deformation of the
spine; it is generally diagnosed soon in the infantile, juvenile
or adolescence periods. Scoliosis is an ancient disease that
remains incompletely understood despite a collective
medical experience that approaches 4000 years. In order to
understand the disease and to document the shape of the
scoliotic spine, various research studies have been conducted
about the positions and orientations of vertebrae in scoliolitic
patients. Idiopathic scoliosis is the most common type of
spinal deformity confronting orthopedic surgeons. Its onset
can be rather insidious, its progression relentless, and its end
results deadly. Proper recognition and treatment of idiopathic
scoliosis help to optimize patient outcomes. Once the disease
is recognized, effective ways exist to treat it. Our focus
herein is on both visual low level and mid-level processing
of an X-rays image. See (Mould 1981) for technical details
about X-rays images.

Because of the fuzzy nature of conventional X-rays, they are
usually examined by two or sometimes three radiologists.
Conventional X-rays photography has depended on the
absorption of X-rays in different tissues to form an image.
Dense tissue, like bones (vertebras), absorbs more X-rays
while soft material like flesh, absorbs less, to create an image
of light and dark areas, with images of soft tissue (including
pedicles) that lack details and appear fuzzy. Furthermore we
are faced by various problems inherent to X-rays image such
as highly degraded (very) noisy, low contrast, and the
superposition of various structures due to the projection on
photographic plate technology used. Characterizing the
spinal deformation consists on evaluating the Cobb angles.

The aim of this investigation is to devise an algorithm that
automatically detect and localize pedicles enabling
computing of the Cobb angles. It is pointed out that
idiopathic scoliosis is a complex 3-dimensional deformity.
Cobb angles are used as clinic indices to reflect the degree of
gravity and are used as references points for the 3D
reconstruction of the spine. However segmentation of
pedicles is a difficult problem as their contours are thin and
weakly contrasted. It is worth mentioning that this phase is
only a means not a goal as it prepares for next phases of 3D
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image reconstruction and registration or diagnosis useful for
both visualization and surgical purposes. For example, this
will enable to track the curve progression that varies based
on time and on the idiopathic scoliosis group in which a
patient belongs (i.c., infantile, juvenile, adolescent).

Due to the nature of an X-rays image, conventional methods
used for pre-processing and segmentation are seldom useful
in dealing with such a situation. As they need to adjust
manually several parameters, a task that has to be undertaken
frequently on a case-by-case basis in an intuitive manner and
that is not always obvious for the clinicians or surgeons for
whom the algorithm is only a black box.

A NOVEL MACHINE VISION METHODOLOGY

The automatic machine visual system that we are interested
to design and build will have modular granular three-levels
architecture reflecting three layers of abstractions :

e Level 1 (low level): Perceptual stage that corresponds to
the raw visual data processing layer. This layer is
inspired from the basic idea of “guessing what is
important without knowing why.”

o Level 2 (intermediate level or mid-level): Interfaces
stage  in-between  perceptual/reasoning  that
corresponds to some kind of visual information
processing layer! That is somewhat a task such as
attempts to attach meaning to visual data when
manipulating those data but without reasoning
about those data. For example, segmentation
features and primitives selection/extraction falls in
this layer. Thus, basically it includes procedures
that connect to the raw data and relate it to high-
level representations. Defining properties of
segments and relationships among segments too fall
in this layer. This level may be thought of as a
mapping and it should be physically and logically
independent from the low level stage.

e Level 3 (high level): Reasoning stage (cognition,
linguistic), that correspond to the knowledge
representation and reasoning layer (or a problem-
solving layer). Thus, it is contextual by nature and
consists of semantic manipulation and is by
excellence task-oriented, i. e. oriented toward the
resolution of the problem at hand and is application-
dependent. Its underlying bulk task is basically
implementation issues of how to
analyze/understand/recognize/interpret/classify the
contents of the image. This level may be thought of
as decision making ability and should be physically
and logically independent from the intermediate
level stage. The focus of attention herein is on
resolution of the problem at hand including related
tasks. Basically it consists of description of scenes
and objects in relation to an object. This
corresponds in the HVS to directing attention
towards some interesting structures in the scene and
description of scenes and objects in relation to an
object.



Thus to summarize the framework aims at building a system
that starts from low-level raw image data to squeeze or
grasp gradually a high-level knowledge-based computational
model for vision problem-solving. It is worth mentioning
that each level is physically and logically independent of
levels below it. This logical and physical independence
means explicitly, that both logical and physical changes in
level 1 do not affect level 2 and level 3. And changes in level
2 do not affect level 3. It is conceptually clear herein within
our framework that we distinguish between the concepts of
data (raw), information and knowledge. Indeed, intuitively
there is a barrier between perceiving (without semantic) and
interpreting (with semantic or meaning). As one can perceive
objects without assigning meaning to them, whereas
interpreting is pure cognition in essence and involves both
linguistic and reasoning. Reasoning has to be related to a
given task and hence constitutes the high level processing.
Drawing conclusions or making inference (by deduction, by
induction, by analogy, etc.) about the objects and their
relationships falls in this high level stage.

We are interested herein by building two modules: the first
module works at the low level as a visual front-end
computational module that operates on the raw pixel values
without any type of pre-processing. It constitutes an interface
between the raw image data and the reasoning process. No
specific assumption will be made about how higher-level
processes are to operate on the output. In other terms it has
to be reasoning-independent, therefore this approach will be
applicable to a variety of reasoning strategies and finally the
system could cope with large number of problems. The
second module works at the mid-level and plays the role of a
mapping in-between the low level and the high level.

Fuzzy logic (Zadeh 19965, 1971, 1973. 1979) may be
considered as a basis for knowledge and meaning
representation and is particularly suited for dealing with
Machine Vision problems. We believe that it is a good
candidate that constitute the interface between low-level and
high-level vision. We believe that it is the concept of
possibility/necessity distributions (Zadeh 1978), rather than
the truth, that will play the primary role in manipulating such
vision knowledge for the perspective of drawing
conclusions. Possibility theory (Zadeh 1978; Yager 1986,
Dubois & Prade 1988; Olaf 1998) provides a formal
framework for representing and dealing with ignorance, and
uncertainties prevalent in modeling real world vision
problems.

However it is well accepted that crafting manually fuzzy
systems to resolve complex large scale real-world problems
is a difficult task that is not always obvious for both the
designer (the knowledge-engineer) and the domain expert.
This is due partly to the cognitive limits of the human being
(Miller 1956), but also to the difficulty of understanding the
intricacies of dimensionality and inherent complexities and
peculiarities of large scale real world problems. Furthermore
once it is undertaken it is labour-intensive, costly, error
prone, time-consuming, and done on a trial-and-error basis
in an adhoc manner and hence need to be totally or partly
automated. This is known as « the Knowledge aquisition
bottleneck » problem or the Feigenbaum bottleneck and is a
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common problem for all Al approaches. Soft computing as
automated knowledge acquisition methodology aims at
remedying such a problem.

The basic ideas underlying our framework stems from the
following interesting remarks about human vision: Let us
first focus our attention on the human vision process. In
solving vision problems the human starts from a coarse
description but if needed iterates and goes gradually to a
fine-grained description or in-depth details enabling more
understanding of the underlying problem until reaching a
point where one can effectively find a solution and so stops
and does not need any more details. At this point, an excess
of precision is not needed (is not necessary) because a
certain satisfying trade-offs between precision (level of
details or resolution) and generality of description has been
reached and is sufficient and enough for finding a
satisfactory approximate solution to the specified vision
problem. Thus after each iteration (increment) a gain of
information is obtained enabling more in-depth and more
understanding of the underlying situation. Thus, the human
converge to a solution gradually by leveraging the level of
details.

High level of details A

v

v

»

Low level of details

Figure 1 From a coarse fuzzy partition to a fine-grained
fuzzy partition

See Figure 1 above for more details in connections with a
granular soft vision setting. It is appealing and convenient to
mimic mechanically or to emulate computationally such a
vision process in order to automatically build faithfully by
means of hybrid Min-Max fuzzy-neuro learning (Beldjehem
1993) of an appropriate “good” fuzzy visual system that
exhibits both a high accuracy and a good performance for
any problem at hand. This motivates us in building a
learning system able to use such abstraction and granulation
mechanisms in a fashion that is akin to the way humans
achieve vision problem solving process. In general the
required level of details for solving a problem depends to the
degree of complexity of the problem at hand and is unknown
and hence we propose to detect it during learning-time.



Fuzzy and in particular hybrid Min-Max Fuzzy-Neuro
Systems (Beldjehem 1993, 1994, 2002, 2004, 2006, 2008)
have proved to be more reliable in terms of robustness and
effectiveness over conventional ones in resolving a spectrum
class of real world vision problems and moreover they have
been validated formally (Papis 1991; Beldjehem 2006,
2008) that they preserve the value approximation topological
property and it is likely that they are too plausible
Biologically ! Examples of such map in Biology are : in
connection with the human vison, the retinotopic map which
takes input from the retina (at the eye) and maps it onto the
visual cortex (back of the brain) in a two dimensional map.
But also, the somatosensory map which maps our touch
centres on the skin to the somatosensory cortex. And also
the tonotopic map which maps the responses of ours ears to
the auditory cortex. Each of these maps is believed to be
determined genetically but refined by usage. Thus the
MinMax Fuzzy-Neuro possibilistic network might be
thought of as a transparent learning device of any non-linear
mapping of inputs into an output that is being proved
formally (mathematically) to be tolerant to small changes in
input.

NON-LINEAR DIGITAL FILTERS

Non-linear digital filters (Pitas 1990; Lindeberg 1994) for
the segmentation and restoration of images have proved to
be more reliable in terms of robustness and effectiveness
over conventional linear ones.

In order to tackle this problem appropriately, we propose to
perform the following tasks on the X-rays image using non-
linear models:

Low level: Smoothing, image enhancement and
restoration (noise reduction and contrast enhancement)

The main interest is to try to suppress and remove
unnecessary and disturbing details, such that later stage
processing task can be simplified and so as that significant
structures (pedicles in our case study) can be extracted from
the X-rays image without any prior information. In general
image enhancement is necessary to support the human visual
perception. Due to the limited authorized weak X-rays dose
during acquisition, the radiographies are highly degraded
images. Restoration is still a mandatory preprocessing step in
order to reduce and remove noise, to eliminate irrelevant
details and to enhance relevant structures.

Conventional linear filtering by regularization is unsuited to
deal with X-rays image as it tries to more fuzzify the
contours and may be to destroy them, whereas anisotropic
diffusion tries to keep and enhance them and hence
constitute a promising approach. Partial differential
equations (PDEs) allow the modeling of such regularization.
PDEs belong to one of the most important parts of
mathematical analysis, are closely related to physical world.
One of the main interests in using PDEs is that the theory is
well established. Moreover PDEs enable the combination of
the scale-space theory with mathematical morphology.
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We propose to develop new smoothing kernels for highly
degraded image using PDEs and diffusion fields. This filter
incorporates specific diffusion fields and since each of which
account for characteristics of a given application, it brings a
new degree of freedom to it, in order to address various
problems of greater practical interests. Other alternative that
consist to replace a diffusion field by a non-linear tensor will
be also investigated.

The real challenge is to keep the shape of pedicles
unchanged while reducing the noise we propose to develop a
new chock filter for image enhancement while ensuring
contrast intensification between ill-defined regions of the X-
rays image.

Intermediate level:
knowledge

Image segmentation with prior

The problem of image segmentation plays a key role for the
later high-level stage. We suggest using the mumpford-shah
framework; we propose to develop new methods for object
extraction through the level set method that is parameter free
and can account for topological changes and integrate visual
cues. This is achieved by minimizing the Mumford-Shah
functional. Better segmentation results are expected by
incorporating information. Biplanar radiography of scoliotic
patients is routinely performed at North-American hospitals.
Thus, a sufficient amount of data is available for analysis.

This motivates us in trying to exploit the a priori information
concerning the shape and perimeter of a pedicle. In fact a
pedicle has a close to ellipsoidal shape. We propose to
develop an algorithm similar to Cremers for segmentation of
pedicles. This necessitates building a pedicles database. We
will extract manually the pedicles contours from available
vertebras radiographies. Spinal deformation affects neither
the shapes of vertebras nor the shapes of pedicles. It affects
only their localization and spatial orientation. Our novel
model is one-object driven problem that incorporates an
information distance into the popular region-based active
contour (the Mumford-Shah framework), along with prior
knowledge. This method has several advantages: it uses most
of the laws of the Gestalt theory (pixel grouping by a
characteristic, regularity of the border, prior knowledge), and
is computationally tractable.

HYBRIDIZATION OF NON-LINEAR DIGITAL
FILTERS AND SOFT COMPUTING

Since 1990, soft computing and in particular hybrid fuzzy-
neuro or neuro-fuzzy systems have invaded the computer
world and constitutes one of the most exciting current topics
of research (Beldjehem 1993; Yager and Zadeh 1994; Sinha
and Gupta 1999; Pal and Ghosh 2000; Gupta and al.
2002), the advances are also spectacular due to its newness,
perspectives and power. Moreover it has been proved that
soft computing (Zadeh 1998; Pal and Ghosh 2000) can also
be applied successfully in dealing with grey level images,
and for this reason we are exploring the possibility of
hybridization of non-linear filters and soft computing



models, in particular synergy through Aybridization ensures
the emergence of unexpected desirable properties. We
believe that hybridization is a promising methodology and is
technically feasible and there exist some gaps to bridge as
they are complementary rather than competitive.

In the sequel; we will focus on the relevance of soft
computing to the problem: Soft computing provides non-
limear computational models that have human like decision
making capabilities for processing and analyzing of
visual/image data. It could be effectively incorporated
everywhere within the three levels. Consider the problem of
object extraction from a graytone image such as an X-rays:
(How can one define exactly the target or object region in
the image when its boundary is ill-defined?). Any
conventional hard thresholding made for the extraction of
the object will propagate the associate uncertainty to
subsequent stages (e. p., thinning, skeleton extraction,
primitive selection, etc.) and this might, in turn, affect
feature analysis and recognition. Decision taken at a
particular stage will have an impact on the subsequent
stages. Grey information is expensive and informative and
has to be kept until making a decision at the highest level.

Fuzzy logic algorithms are based on the ground of the
rigorous and the formal mathematical of fuzzy sets theory
and they could effectively play the numerical-symbolic
interface role as well as they could be incorporated in
various stage of our framework thanks to their flexibility, in
particular extracting fuzzy primitives (features) allows
capturing the inherent vagueness of edges and segmented
outputs of image regions for recognition purposes.
Uncertainty in an image pattern may be explained in terms of
grayness ambiguity or spatial (geometrical) ambiguity or
both. Regions in an image are not always crisply defined,;
uncertainty can arise within every phase of the
aforementioned tasks. It seems appealing and convenient to
use soft computing techniques. Grayness ambiguity means
“indefiniteness” in deciding whether a pixel is white or
black. Spatial ambiguity refers to “indefiniteness” in the
shape and geometry of a region within the image. Grayness
ambiguity measures are reflected by index of fuzziness and
entropy, whereas spatial ambiguity measures are represented
by fuzzy geometrical properties. It is convenient, natural and
appropriate to avoid committing our selves to specific (hard)
decisions (e. g., segmentation, edge detection, and
skeletonization):

e by allowing the segments or skeletons or contours
to be fuzzy subsets of the image

e The results of image segmentation should be fuzzy
subsets rather than ordinary subsets

e In general, the subsets being characterized by the
possibility (degree) to which each pixel belongs to
them.

Soft computing provides the machinery for solving such a
problem. We will obtain different fuzzy segmented version
of the same image. These different outputs correspond to
different ambiguity values (or decision levels). In fact if the
gray levels are scaled to lie in the range [0, 1], a graytone
image can be viewed as a fuzzy set. Therefore all fuzzy
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operators including, contrast intensification, erosion,
dilation, a-cuts, etc. are straightforward to implement. But
now, with soft computing techniques, it is possible to obtain
pin sharp pictures, which not only reveals bones ... but
muscles, pedicles, blood vessels and cartilage flesh. Soft
computing exploit the tolerance for imprecision, uncertainty
and partial truth to achieve tractability, robustness and low
solution cost

Explicitly hybrid soft computing could be adequately applied
in all levels namely at the point level, local level, global
level, object level (pedicle). The real income will be to keep
the shape of pedicles unchanged while reducing the noise,
for deferent decision making purposes. Furthermore the
detection algorithm should be invariant to translation and
rotation. Thus, the pedicles will be segmented accurately
over patients adopting different position and having various
deformations. Integrating a priori knowledge about the close
to ellipsoidal shape of a pedicle is possible and can guide the
segmentation procedure. To detect edge we measure the rate
of change of gray level (membership value) at each pel.

On the other hand, an evolutionnary algorithm (EA) as in
(Pedrycz 1997; Cordon et al. 2001) is an optimization
technique based on the mechanics of natural selection and
natural genetics. It has a great power for global optimization
and does not need to know the model previously. It also does
not require the continuity of the parameters. Therefore EA
can easily handle the multi-parameter problems and for this
reason it seems appealing and convenient to use genetic
algorithms too. As non-linear filters involve the tuning and
optimization of several parameters, EAs can effectively
contribute significantly in image enhancement thanks to their
learning and optimization capabilities. In particular to try to
fuzzify concepts used by genetic algorithms to obtain and
use fuzzy fitness functions, fuzzy crossover, fuzzy mutation
and so on, ensuring smooth evolvability, using SVMs should
also be considered for such a task as another feasible
alternative.

Various architectures for integrating non-linear digital filters
and soft computing are possible : From loosely-coupled,
through tightly coupled, to fully integrated and intelligent
cooperation.

A promising perspective should be to try to design new
fuzzy non-linear filters, fuzzy-neuro or neuro-fuzzy filters,
rule-based filters, and/or new fuzzy morphological operators.
This can be achieved either by trying to fuzzify the existing
known non-linear filters and morphological operators or by
radically building new ones from scratch. Approximate
models based on if-then fuzzy rules integrating human-like
processing should constitute a promising privileged
approach. This is in fact due to their transparency and
interpretability.

A segmentation problem might be formulated as a clustering
problem and thus wusing techniques from clustering
algorithms such as fuzzy C-means techniques constitute an
effective promising approach in segmentation of an X-ray



Image. We may too combine them using cascade non-linear
digital filters followed by C-means strategy or conversely.

In practice we might either fuse or embedd symbiotically or
combine non-linear digital filters with soft computing
models using a cascade strategy. The possibility of making
fusion of the merits of each one for improved quality is
feasible. Ultimately such hybridization methodology will
contribute to the conception and design of next generation of
hybrid evolvable soft non-linear fuzzy filters ensuring
performance close to the accuracy of human visual system
(HVS).

CONCLUDING REMARKS

This work might be thought of as an attempt to engineer
granular soft vision (GrSV) systems that operates at the low
level as well as at the mid and high levels. Implementation of
the two visual front-end and mid-level modules working
under such a framework is underway. Such convenient easy
to develop, easy to debugg and easy to maintain layered
granular architecture accommodates well and overcomes
the complexity of the software engineering of the visual
system leaving us only focusing on algorithms issues that
will allow the implementation of a coherent solution.

We believe that non-linear digital filters and soft computing
models have to learn from each other, and could be coupled
synergistically (not competitively) in order to build new
generation of hybrid models for the segmentation and
restoration of grayscale images. A challenge is to build such
hybrid models having advantages of performance, non-
linearity, accuracy, stability, robustness, adaptability,
tractability, tolerance for uncertainty, edge preservation and
detection properties. The possibility of making fusion of the
merits of each one for improved quality is feasible.

We have addressed major problems of greater practical
interest. Algorithms and models that are being developed in
the course of our project will have generic applicability in
various applications, in particular to mention only a few, in
Sonar, in OCR of contents from strongly degraded
documents, systems employed in brain surgery on humans
and other medical imaging problems.

Even though we are more interested in vision engineering
rather than (natural) vision, i.e. in developing new, powerful
and useful vision tools that learn for resolving real-world
vision problems, we believe that as we understand better
how to build these computational vision systems we’ll start
to have theories that are powerful enough to explain some
aspects of the human visual system (HVS).

We hope that this paper will be a starting point for more
integration of non-linear digital filters and soft computing
models that will definitely allow building flexible machine
vision systems that mimic the human visual system (HVS)
tackling practical industrial and medical complex real world
vision problems of great importance.
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The advantages of this hybrid methodology might be
summarized as follows:

e To benefit from the synergism of non-linear digital
filter and soft computing models (complementarity
rather than competitity to ensure capability
enhancement)

e To benefit from the advantages of each one and
avoid the weaknesses of each one, to cope with the
complexity of multifaceted real-world vision
problems

e To start from low-level raw data to squeeze or grasp
high-level knowledge-based computational models
for problem-solving. To obtain clarification and to
allow verification and validation

e To overcome the problem of knowledge
engineering known as « the Knowledge aquisition
bottleneck » or the Feigenbaum bottleneck

e To learn a high level representation (expressed in
terms of IF/THEN Fuzzy production rules)

e To work at a higher level of abstraction during
inference and classification (third level or high level
stage)

e To ensure
tradeoffs

e To build physically, biologically and cognitivilly
motivated vision models

e To understand and replicate the human visual
system (HVS), the human perception, cognition and
intelligence

good  performance-interpretability

According to Zadeh (Zadeh 1994) “The exploitation of
tolerance for imprecision and uncertainty underlies the
remarkable human ability to understand distorted speech,
decipher sloppy handwriting, comprehend nuances of natural
language, summarize text, recognize and classify images and
more generally, make rational decision in an environment of
uncertainty and imprecision.” This ability is what granular
hybrid soft computing (GrSC) systems try to capture by
learning and emulate computationally in general and what
soft computing can bring especially to machine visual
systems and non-linear digital filters.

An extension and greater improvement of the framework and
the model are worth further consideration. We hope that this
will serve as a starting point or a pointer for those interested
in pursuing this line of vision engineering research.
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A NEW FRONTIER IN COMPUTATION—COMPUTATION WITH
INFORMATION DESCRIBED IN NATURAL LANGUAGE

Lotfi A. Zadeh""

What is meant by Computation with Information Described
in Natural Language, or NL-Computation, for short? Does
NL-Computation constitute a new frontier in computation?
Do existing bivalent-logic-based approaches to natural
language processing provide a basis for NL-Computation?
What are the basic concepts and ideas which underlie NL-
Computation? These are some of the issues which are
addressed in the following.

What is computation with information described in
natural language? Here are simple examples. I am planning
to drive from Berkeley to Santa Barbara, with stopover for
lunch in Monterey. It is about 10 am. It will probably take
me about two hours to get to Monterey and about an hour to
have lunch. From Monterey, it will probably take me about
five hours to get to Santa Barbara. What is the probability
that I will arrive in Santa Barbara before about six pm?
Another simple example: A box contains about twenty balls
of various sizes. Most are large. What is the number of small
balls? What is the probability that a ball drawn at random is
neither small nor large? Another example: A function, f,
from reals to reals is described as: If X is small then Y is
small; if X is medium then Y is large; if X is large then Y is
small. What is the maximum of /7 Another example: Usually
the temperature is not very low, and usually the temperature
is not very high. What is the average temperature? Another
example: Usually most United Airlines flights from San
Francisco leave on time. What is the probability that my
flight will be delayed?

Computation with information described in natural
language is closely related to Computing with Words. NL-
Computation is of intrinsic importance because much of
human knowledge is described in natural language. This is
particularly true in such fields as economics, data mining,
systems engineering, risk assessment and emergency
management. It is safe to predict that as we move further
into the age of machine intelligence and mechanized
decision-making, NL-Computation will grow in visibility
and importance.

Computation with information described in natural
language cannot be dealt with through the use of the
machinery of natural language processing. The problem is
semantic imprecision of natural languages. More
specifically, a natural language is basically a system for
describing perceptions. Perceptions are intrinsically
imprecise, reflecting the bounded ability of sensory organs,

" Dedicated to Peter Walley.

and ultimately the brain, to resolve detail and store
information. Semantic imprecision of natural languages is a
concomitant of imprecision of perceptions.

Our approach to NL-Computation centers on what
is referred to as generalized-constraint-based computation,
or GC-Computation for short. A fundamental thesis which
underlies NL-Computation is that information may be
interpreted as a generalized constraint. A generalized
constraint is expressed as X isr R, where X is the constrained
variable, R is a constraining relation and r is an indexical
variable which defines the way in which R constrains X. The
principal constraints are possibilistic, veristic, probabilistic,
usuality, random set, fuzzy graph and group. Generalized
constraints may be combined, qualified, propagated, and
counter propagated, generating what is called the
Generalized Constraint Language, GCL. The key underlying
idea is that information conveyed by a proposition may be
represented as a generalized constraint, that is, as an element
of GCL.

In our approach, NL-Computation involves three
modules: (a) Precisiation module; (b) Protoform module;
and (c) Computation module. The meaning of an element of
a natural language, NL, is precisiated through translation
into GCL and is expressed as a generalized constraint. An
object of precisiation, p, is referred to as precisiend, and the
result of precisiation, p*, is called a precisiand. Usually, a
precisiend is a proposition, a system of propositions or a
concept. A precisiend may have many precisiands.
Definition is a form of precisiation. A precisiand may be
viewed as a model of meaning. The degree to which the
intension (attribute-based meaning) of p* approximates to
that of p is referred to as cointension. A precisiand, p*, is
cointensive if its cointension with p is high, that is, if p* is a
good model of meaning of p.

The Protoform module serves as an interface
between Precisiation and Computation modules. Basically,
its function is that of abstraction and summarization.

The Computation module serves to deduce an
answer to a query, g. The first step is precisiation of ¢, with
precisiated query, g*, expressed as a function of » variables
uy, ..., uy. The second step involves precisiation of query-
relevant information, leading to a precisiand which is
expressed as a generalized constraint on u, ..., #,. The third
step involves an application of the extension principle,
which has the effect of propagating the generalized

! Department of EECS, University of California, Berkeley, CA 94720-1776; Telephone: 510-642-4959; Fax: 510-642-1712;
E-Mail: zadeh(@eecs.berkeley.edu . Research supported in part by ONR N00014-02-1-0294, BT Grant CT1080028046, Omron
Grant, Tekes Grant, Chevron Texaco Grant and the BISC Program of UC Berkeley.
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constraint on uy, ..., #, to a generalized constraint on the
precisiated query, g¢*. Finally, the constrained g* is
interpreted as the answer to the query and is retranslated into
natural language.

The generalized-constraint-based computational
approach to NL-Computation opens the door to a wide-
ranging enlargement of the role of natural languages in
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scientific theories. Particularly important application areas
are decision-making with information described in natural
language, economics, systems engineering, risk assessment,
qualitative systems analysis, search, question-answering and
theories of evidence.
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ABSTRACT

The standard development of human machine interfaces
needs the respect of ergonomic norms and rigorous ap-
proaches, which constitutes a major concern for com-
puter system designers. The increased need on easily
accessible and usable interfaces leads researchers in this
domain to create methods and models that make it pos-
sible to evaluate these interfaces in terms of utility and
usability. This paper presents a study about the simula-
tion of a human machine interaction with an interface of
a contextual assistant, using the cognitive architecture
ACT-R emphasizing on the time execution of tasks. The
results of our model were consistent with those obtained
by the Fitts Law model which is a powerful analytical
method for evaluating human machine interfaces, devel-
oped in this study mainly to support our results.

INTRODUCTION

The evaluation of Human Machine Interfaces (HMI) is
becoming increasingly important and constitutes an in-
tegral part in the development cycle of computer sys-
tems. While the development of interfaces presents some
challenges, their evaluation needs rigorous methods to
ensure they fulfill the initial specifications and the qual-
ity of accessibility, usability and usefulness (Nielsen and
Phillips, 1993; Eugenio et al., 2003). Two main ap-
proaches for evaluation are currently used, empirical
approaches and analytical approaches. Empirical ap-
proaches are essentially based on performances or opin-
ions of users gathered in laboratories or other experi-
mental situations. These approaches are user-focused.
Unlike the empirical approaches, analytical approaches
are not based directly on the user performance, but
rather, on the automated examination of interfaces us-
ing well-defined structures and rigorous analysis tech-
niques.

The HMI should be resumed by the actions of pushing
buttons displayed on a screen. According to this ap-
proach the Fitts law estimates the time needed to reach
the targets displayed on the interface. Nevertheless, the
HMI implies three human components, which must be
taken in account. The first component is perceptual.
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In our case the human perceives the signal in a visual
manner. The second one is cognitive. Here the human
retrieves in his memory the object required and reasons
to satisfy specific goals. The third one is motor and
necessitates pressing on the selected button.

In this study, we aim to evaluate the interaction with
an interface of a contextual assistant developed for cog-
nitively impaired people. The aim of this application is
to assist people while preparing meals in their kitchen
by using cognitive assistance (Pigot et al., 2005). Due
to the related population and the kind of errors they
commit we need to take in account the cognitive part
involved in the HMI. We then use a powerful analytical
method based on cognitive models, emphasizing the cog-
nitive analysis of the tasks and the time execution. We
choose to base our analytical method on the cognitive
architecture ACT-R (Anderson et al., 2004). Thanks to
ACT-R the interaction is decomposed in rules simulat-
ing the cognitive behavior of a human using the con-
textual assistant. We first present an overview of the
cognitive architecture ACT-R and of the contextual as-
sistant. Once the task simulated is defined, the model,
we developed, is introduced and the results of the simu-
lation are compared to the time estimated by the Fitts
law to interact with the contextual assistant.

BACKGROUND

In this section we present an overview of the cognitive
architecture ACT-R, and then we introduce the contex-
tual assistant application and the interface to be mod-
eled.

Cognitive architecture ACT-R

The cognitive architecture ACT-R is built to simulate
and understand human cognition (Anderson et al., 2004,
2005). It consists of a set of modules integrated through
a central production system. ACT-R is an hybrid archi-
tecture that combines two subsystems: symbolic system
including semantic and procedural knowledge, and sub-
symbolic system evaluating knowledge activations. The
subsymbolic system assigns activations to chunks (se-
mantic knowledge) and rules (procedural knowledge).



The activation level is one of the criteria to choose
the more predominant knowledge available at a specific
time. In ACT-R the perceptual and motor modules are
used to simulate interfaces between the cognitive mod-
ules and the real world (Byrne, 2001; Bothell, 2004).

Visual and Motor Modules of ACT-R

The visual module that is part of the perceptual mod-
ules, has two subsystems, the positional system (where)
and the identification system (what) that work together
in order to send the specified chunk to the visual module.
The positional system is used to find objects. When a
new object is detected, the chunk representing the loca-
tion of that object is placed in the visual-location buffer
according to some constraints provided by the produc-
tion rule (Bothell, 2004). The identification system is
used to attend to locations which have been found by the
positional system. The chunk representing a visual loca-
tion will cause the identification system to shift visual
attention to that location. The result of an attention
operation is a chunk, which will be placed in the visual
buffer (Byrne, 2001; Bothell, 2004). The motor mod-
ule contains only one buffer through which it accepts
requests (Bothell, 2004). Two actions are available in
ACT-R, to click with the mouse or press a key on the
keyboard.

Contextual Assistant

The Contextual assistant application is developed to
assist persons with cognitive disabilities (Pigot et al.,
2007a; Lussier-Desrochers et al., 2007). The aim is to
foster autonomy in the daily living tasks and particu-
larly during complex cooking tasks such as preparing
pancakes, or spaghetti (Pigot et al., 2007b). The cook-
ing task is decomposed of steps displayed on a touch
screen. The two first steps consist of gathering the uten-
sils and ingredients necessary to the recipe (Figure 1).
The other steps explicit the recipe using photo and
video on the screen as well as information dispatched all
around the kitchen. The contextual assistant is specif-
ically designed to help people remembering the places
where the objects are stored. To do so, the contextual
assistant contains an interface called the locate applica-
tion displaying the objects to search. When an object
is pushed in the main interface, the contextual assistant
looks for the location of that object in the environment
using techniques of pervasive computing and indicates
the location by highlighting the appropriate locker con-
taining that object as shown in Figure 2. In this study
we simulate the first two steps of the spaghetti recipe.
They consist of first knowing the list of objects to gather,
either utensils or ingredients, and then to use the locate
application in order to find each object.

The contextual assistant interface is displayed on a
1725L 17" LCD Touchscreen, with 13.3" (338 mm) hor-
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4
CHERCHER |
UN OBIET |

Figure 1: Main interface of the contextual assistant

izontal and 10.6" (270 mm) vertical useful screen area.
It is configured to 1024 x 768 optimal native resolution
running Macintosh. The screen is fixed under a closet
nearby the oven in order to be easily accessible and also
protected against the cooking splashes.

Figure 2: Locker state when an object is pushed

MODELING THE INTERACTION WITH
THE CONTEXTUAL ASSISTANT USING
ACT-R

In this section, we present the modeling process of the
tasks involved in our study, which are gathering uten-
sils and gathering ingredients, emphasizing on the per-
ceptual and cognitive parts, using the perceptual motor
modules of ACT-R.

Task analysis: gathering utensils and ingredients

We model the first two steps of the recipe, gathering
utensils and gathering ingredients. The interactions
with the touch screen are simulated without taking in
account the time taken by the subject to pick up the
objects in the environment. The two first steps require



three subtasks (Figure 3). The first subtask consists
of activating the locate application in order to locate
each object required by the recipe. This is done by
pushing the button "LOOK-FOR-OBJECT" (in French,
"CHERCHER-UN-OBJET"), which is displayed on the
main interface of the contextual assistant (Figure 1).
The second subtask is to locate each object, either uten-
sils or ingredients, needed in the current step by pushing
the button corresponding to the object in the locate ap-
plication. The third task consists of coming back to
the main application in order to know the next step of
the recipe. The tree decomposition is presented in fig-
ure 3, where the translation in English is available to
compare the tasks tree from the interface of Figure 1.
The nodes in capital indicate the action to click on the
named button, while the other nodes represent tasks to
be decomposed.

LGOK-FOR-GBIECT
“CHERCHER-UN-GBJET™

SHMALL-SAUCEPAN
“PETITE-CASSEROLE”

Get out
Utensils
Task

Lozating the
Utensils

LADLE
“LOUCHE”?

HELP-ME-TO-DO-THE-TASE
M’ AIDER-A-FAIRE-LA-TACHE"

Figure 3: Tree representing the gathering utensils task

Gathering ingredients and utensils model

The model developed aims to simulate the HMI during
the two first steps of the recipe. In that task, three dif-
ferent interfaces are involved, the interface of the locate
application and the two of the contextual application
displaying the utensils and ingredients needed in the
recipe. The model uses ACT-R to emphasize the cogni-
tive processes involved when looking for an object and
choosing the button to push. It is decomposed of three
phases, the visual phase, the recognizing phase and the
motor phase. The visual phase consists of localizing the
object to perceive and then identifying it. We consider
that all buttons displayed on the screen are objects, ei-
ther the button used to locate a utensil or ingredient, or
the buttons to navigate in the interface. The first one
is the button "LOOK-FOR-OBJECT" as described in
Figure 3. Then, all the utensils needed in the recipe are
presented in the visual interface of ACT-R. Finally, to
complete the first step of the recipe, the button "HELP-
ME-TO-DO-THE-TASK" is presented in order to come
back to the main interface of the contextual assistant
and pursue the second step of the recipe. Each object
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of the interface is displayed at defined coordinates (x,
y) on the screen. These coordinates specify the request
made to the visual-location buffer of ACT-R, which cre-
ates a chunk representing the location of the specified
object. After that, the identification system identifies
the name of the object and creates a chunk placed in
the visual buffer. The location and identification phases
last 185 ms (Bothell, 2004; Byrne, 2001). The objects
are presented to the visual module of ACT-R by the
mean of a list of all the objects (buttons of the inter-
face) to be pushed on. Figure 4 shows some ACT-R
productions responsible of the visual encoding phase.

(P start—application

=goal> ISA begin ; Initializing the model
—imaginal>
+visual—location >
; Making request of the wvisual—location buffer
ISA visual—location
attended nil
+goal> ISA get—object
state find—location )
(P attend—utensil
=goal> ISA get—object
state find—location

; Move attention to the location
; screen—zxz 122 and screen—y 250

=visual—location >
ISA visual—location
screen—x 122

screen—y 250
?visual> state free

—
—

+visual > ISA move—attention
screen—pos =visual—location

—=goal> state attend )

Figure 4: Example of some ACT-R productions respon-
sible for the visual encoding phase

The recognizing phase begins when the chunk of the ob-
ject is placed in the visual module. This phase implies to
recover that specific chunk from the declarative memory.
The result of this phase is a chunk that represents the
object with some characteristics as color, localization on
the screen, name, and kind of object. The motor phase
consists of activating the motor actions via a request to
the motor buffer in order to click on the object. The
three phases process is applied for each object displayed
in the interface for the two steps of the recipe. The
gathering utensils and ingredients model finishes when
the last object of the ingredient list is reached.

The ACT-R model is developed using the ACT-R 6 envi-
ronment. No noise is introduced in the perceptual motor
modules. no retrieval error is modeled in the recogniz-
ing phase. These restrictions lead to a deterministic
model. Figure 5 shows an example of execution traces
of the ACT-R model for the visual encoding and the
shift attention actions respectively. The visual-location
request takes place at time 0.050 seconds and the re-
quest to move-attention is made at time 0.100 seconds.
The encoding needs still 0.085 seconds to be completed
and store the chunk into the visual buffer.



0.000 PROCEDURAL PRODUCTION-SELECTED START-APPLICATION
0.000 PROCEDURAL BUFFER-READ-ACTION GOAL

0.050 PROCEDURAL PRODUCTION-FIRED START-APPLICATION
THE SUBJECT STARTS TO LOOK FOR NEW OBJECT

0.050  PROCEDURAL MODULE-REQUEST VISUAL-LOCATION

0.050 PROCEDURAL HODULE-REQUEST GOAL

0.050 PROCEDURAL CLEAR-BUFFER IMAGINAL

0.050 PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

0.050 PROCEDURAL CLEAR-BUFFER GOAL

0.050 VISION Find-location

0.050 VISION SET-BUFFER-CHUNK VISUAL-LOCATION LOC1
0.050 GOLL CREATE-NEW-BUFFER-CHUNK GOAL ISA GET-OBJECT
0.050 GOAL SET-BUFFER-CHUNK GOAL GET-OBJECTO
0.050 PROCEDURAL CONFLICT-RESOLUTICH

0.050 PROCEDURAL PRODUCTION-SELECTED ATTEND-UTENSIL
0.050  PROCEDURAL BUFFER-READ-ACTICON GOAL

0.050  PROCEDURAL BUFFER-READ-ACTION VISUAL-LOCATION
0.050 PROCEDURAL QUERY-BUFFER-ACTION VISULL

0.100 PROCEDURAL PRODUCTION-FIRED ATTEND-UTENSIL

SHIFT ATTENTION TO A SPECIFIED LOCATION ON THE SCREEN

0.100 PROCEDURAL NOD-BUFFER-CHUNK GOAL

.100 PROCEDURAL HODULE-REQUEST VISUAL

.100  PROCEDURAL CLEAR-BUFFER VISUAL-LOCATION

.100  PROCEDURAL CLEAR-BUFFER VISUAL

.100 VISION Hove-attention LOC1-0 XIL

.100 PROCEDURAL CONFLICT-RESOLUTICN

.185 VISION Encoding-complete LOC1-0 MIL

.185 VISION SET-BUFFER-CHUNK VISUAL TEXT1

<

ooooooo

Figure 5: Example of execution trace of the ACT-R
model for the visual encoding action

Results of the ACT-R model

Figure 6 shows the progress of time depending on
progress in the task of get out utensils and get out in-
gredients respectively. The first task (get out utensils)
lasted 6510 ms and the second task (get out ingredients)
lasted 8101 ms, the overall time to complete the whole
task equal to the sum of the two previous times: 7107 +
8101 = 15208 ms. The time taken to gather the utensils
and ingredients is linear depending on the number of
objects to search. No differences are observed between
the object locations on the screen.

Time (s)

12 3 4 5 6 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24

Obhjects

Figure 6: Progress of time depending on progress in the
tasks of get out utensils and get out ingredients

MODELING THE INTERACTION WITH
THE CONTEXTUAL ASSISTANT USING
FITTS LAW

In order to support and validate our results, we used
the Fitts Law model, widely used in the evaluation of
human machine interfaces. In the Fitts Law, the move-
ment time is proportional to the target amplitude and

inversely proportional to the target width.
Fitts Law model

In human machine interfaces, the formulation of Fitts
Law (Fitts, 1954) states that the movement time (MT) is
function of target amplitude (A) and target width (W).
Our model is based on the Mackenzie’s [1995] version
of Fitts Law in which the movement time (MT) follows
the equation:

]V[T:a—i—b*logz(%—i-l) (1)

The second term of the equation (1): logQ(% +1) is
known as the index of difficulty ID, where a and b are
constants derived empirically. They can be interpreted
by the y-intercept and the slope of a predictive linear re-
gression equation (MacKenzie, 1995) (MacKenzie et al.,
1991). In our study, the user- interface interaction is
based on the use of a touchscreen, assuming that users
remain standing at a distance of 30 cm from the touch-
screen, and point directly on the displayed objects by
touching them using their index finger. The index finger
is held down before starting the interaction, which con-
stitutes the start position. After each pointing action,
users returned their index finger to the start position,
and the procedure continued like that.

Results of the Fitts Law model

Table 1 shows the index of difficulty values obtained
when applying the formulate logz(% + 1) on some ob-
jects displayed in the interface, and the corresponding
predicted movement time (MT) obtained by applying
the equation (1). The target amplitude (A) remains
constant while the button width (W) varies as seen in
figure 1.

Object-Name A \W% 1D MT

(em) (cm)  (bits) (ms)
BIG-SAUCEPAN 30 5.8 2.625 614.125
NEXT-BUTTON 30 7.6 2.306 553.834
LOOK-FOR-OBJECT 30 3.8  3.152 7T13.728
MUSHROOMS 30 5.8 2.625 614.125

Table 1: Index of Difficulty values for some Objects in
the Interface and the corresponding movement time

The total time of the whole task applying the Fitts Law
is estimated using the following equation:

MTroa =y MT; (2)
=1

Where n represents the number of objects used by the
user in the interface, and MT; the corresponding move-
ment time of each object. The total movement time of



the whole task applying the equation (2) is: 14977 ms
(14.977 s).

COMPARISON OF RESULTS

The results of the predicted time of the task gathering
utensils, gathering ingredients and the predicted time of
the whole task in both models ACT-R model and Fitts
Law model are shown in Table 2.

Tasks ACT-R Fitts Law
Predicted time of getting out 7107 6954
Utensils Task (ms)
Predicted time of getting out 8101 8023
Ingredients Task (ms)
Predicted time of the 15208 14977

whole Task (ms)

Table 2: Time estimation of gathering utensils task,
gathering ingredients task and the whole task in both
models ACT-R and Fitts Law

The ACT-R results are consistent with the Fitts Law
model as shown in Figure 7. The predicted time to
point each object is very close in both models ACT-R
and Fitts Law.

]

2 0.4

Ti

12 3 4 5 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24
Objects

Figure 7: Comparison between the predicted time of
each object using ACT-R model and Fitts Law model

GENERAL DISCUSSION

The ACT-R model we developed is proved robust and
efficient in our analysis. In fact, the results obtained by
the ACT-R model were consistent with those obtained
by the Fitts Law model in terms of the predicted time
execution of tasks as mentioned previously; this demon-
strates that cognitive models and particularly ACT-R
can give good predictions in the evaluation of HMI. The
results of the ACT-R model show that, the size of ob-
jects in the interface is not taken into consideration, and
our model does not make difference in the predicted time
of the pushing "HELP-ME-TO-DO-THE-TASK" but-
ton for example, and the pushing "WOODEN-SPOON"
object; these two actions have the same predicted time
which equals to 597 ms. Unlike ACT-R model, the Fitts
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Law model takes in account the object’s size in the inter-
face. The predicted time for the pushing "HELP-ME-
TO-DO-THE-TASK" button using the Fitts Law is 713
ms and the predicted time for the pushing "WOODEN-
SPOON" object is 614 ms. However, some differences
are noted as presented in Figure 7. The simulation of
the HMI with the object number 11 and 13 takes more
time with the Fitts Law. It corresponds to buttons rep-
resenting the action "HELP-ME-TO-DO-THE-TASK"
and "LOOK-FOR-OBJECT" respectively. This is due
to the smaller size of these buttons (width = 3.8 cm),
compared with the size of the other objects. On the
other side, the object number 12 necessitates less time to
be pushed. It corresponds to the button representing the
action "NEXT", which has the largest size (width = 5.8
cm) in the interface. The simulation of the HMI with the
object number 1 as shown in Figure 7, takes more times
with the ACT-R model, it corresponds to the button
representing the action "LOOK-FOR-OBJECT". This
is due to the initialization of the model such as the goal
buffer, the retrieval buffer and the visual buffers. In
the ACT-R model, the focus is essentially on the vi-
sual encoding and recognizing of objects and how to
interact with the interface using motor actions. This
is supported by some scientific literature such as the
use of cognitive models in the evaluation of expert cell
phone menu interaction (Amant et al., 2007). The re-
sults of the ACT-R model are considered suitable and
correct comparing them to those obtained by the Fitts
Law model. In fact, as shown in Table 2 the estimated
time of the whole task in the ACT-R model (15208 ms)
is very close to the Fitts Law model time estimated to
14977 ms. We believe nevertheless, that our study lays
out new perspectives of research in this domain par-
ticularly how to use perceptual motor modules of the
ACT-R architecture to simulate the HMI.

CONCLUSION

The main goal of our study is to evaluate the HMI of
a contextual assistant by simulating the HMI, focusing
on the time execution of tasks. We used the cogni-
tive architecture ACT-R as a powerful tool to develop
our model. Our ACT-R model consists of two parts,
the model of the interface of the contextual assistant
which represents the environment to interact with, and
the model of the cognitive processes required to interact
with the interface. The perceptual part of the cognitive
processes constitutes the difficult part in our ACT-R
model, due to the scarcity in the documentation about
the perceptual module in the literature. The results of
the ACT-R model were compared with those obtained
by the Fitts Law model, developed in this study in or-
der to argue and support our results. The results of
our model were consistent with the results of the Fitts
Law model. Our model gives a good prediction of user
performance, which makes it powerful and realistic.



FUTURE IMPROVEMENTS

The model we developed constitutes the first step of the
evaluation of HMI using a contextual assistant. Three
futur improvements will add scientific validity to our
model. First, the results of our model were compared
with those obtained by the Fitts Law model. The re-
sults of the Fitts Law model are not always good and
exact, but have a certain percentage of errors. It would
be interesting to do some experiments with real per-
sons to collect real data and compare them with our
results. Second, our model is deterministic and does
not make errors. It should be extended to allow errors
in the pointing actions. These errors are essentially re-
lated to memory problems that may occur in the task
modeling (Serna et al., 2005; Dion and Pigot, 2007) and
during the interaction with the interface of the contex-
tual assistant. Finally, the action of searching an object
is resumed to the HMI with the touch screen. The con-
textual assistant offers an interaction with the environ-
ment to help people recovering utensils and ingredients
dispatched in the kitchen. It would be interesting in the
future to model this part and simulate the movement of
users picking up the objects in the kitchen. Therefore,
the extended model should simulate people making a
task with contextual assistant and the errors commit-
ted by people with cognitive impairments.
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