Design and Analysis of Computer Experiments with SimExplorer

Thierry Faure, Nicolas Dumoulin, Florent Chuffart, Guillaume Deffuant
CEMAGREF — LISC
24 avenue des Landais - BP 50085
63172 Aubire cedex

email: firstname.lastname@cemagref.fr

KEYWORDS
Design of Experiment, Sensibility Analysis, Simulation,
Computing on Demand, Framework, IDE, API.

ABSTRACT

The attendees will acquire the concepts and some
practise of SimExplorer, allowing them to use it au-
tonomously for their own needs. SimExplorer is a frame-
work that includes an API' and an IDE? dedicated to
design and analysis of computer experiments. SimEx-
plorer combines blind computing on demand service ac-
cess, traceability and reporting features and sensibility
analysis tools. This tutorial exemplifies a typical use of
SimExplorer, performing a global sensitivity analysis of
a given individual-based predator prey model.

CONTEXT

The constant growth of computing power gives the pos-
sibility to run simulations of an increasing complexity.
This is particularly the case for environmental dynamics
modelling, which often involves coupled heterogeneous
sub-models (biological model coupled with meteorolog-
ical or hydrological models for instance) or individual-
based models which represent explicitly individuals of
a given population (human, plants, animals, ...). One
can expect that this growth of the model complexity will
provide a higher accuracy and a better understanding of
the phenomena at stake. Unfortunately, this expecta-
tion is very often deceived, because the computer mod-
els become themselves so complex that it is more and
more difficult to understand them, and to evaluate the
confidence to give to their results. Consequently, their
use as decision supports is seriously weakened, because
decision makers need understanding and confidence to
ground their decisions. This situation suggests to con-
sider these models exactly like complex natural phe-
nomena, that scientists try to understand. The most
important difference is that to design experiments on a
computer model is generally easier than on a natural
phenomenon [5].

Generally, it is necessary to develop a specific applica-

1ApPI — Application Programming Interface.
21DE — Integrated Development Environment.

tion to “explore” each model. This application should
often manage the generation of well controlled initial
conditions: specifically distributed lists of values, for
example: spatial distributions, networks of interactions
with specific properties (small world, scale free, ...).
Such an application represents heavy investments, and
much of the scientific quality relies upon it. The moti-
vation behind SimExplorer [3] is to invest once for all in
a tool that can be used to design and execute properly
experiments on any model. The goals are multiple:

e to externalise the development of the model ex-
ploration, in order to make available some generic
methods and tools which can be applied in most of
the cases for any model to explore;

e to favour the reusability of available components,
and therefore lower the investment for good quality
model exploration applications;

e to facilitate a quality insurance approach to model
exploration using traceability features.

SIMEXPLORER FRAMEWORK

SimExplorer is developed with a component based archi-
tecture in Java (0sGI13[4]). The graphical user interface
(qu) is based on the NetBeans Rich Client Plaform,
which includes some pluggable tools to help the devel-
opment of experimental designs, and language editors
(java, groovy, ruby). Figure 1 illustrates the basic com-
ponents of SimExplorer architecture.

IDE

Sampling Model
Tool Launcher

Statistical Reporting Information
Libraries Features System

Figure 1: SimExplorer architecture.

Sampling Tool — An experimental design aims to explore
a model upon a specific domain. The Sampling Tool is
in charge of selecting elements of this domain according
to the selected design.

30sarI — Oriented Service Gateway Interface.

Model Launcher — Model exploration requires expensive
model execution in CPU and/or memory. The model
launcher ensures the distribution of this task over cluster
or grid architecture.

Statistical Libraries — Numerical exploration of model
produces large amounts of data, that need to be ag-
gregated or graphically displayed to be interpreted.
Third party libraries could be plugged in the SimEx-
plorer runtime to improve the available analysis tools.
SimExplorer integrates the access to the R* software
and Dakota®, and other numerical tools integration is
planned.

Reporting Features — In order to disseminate and com-
municate about and experiment, SimExplorer offers re-
porting features. Reports are elaborated by collecting
data and metadata from the information system, and
organising them into a document format (web, pdf ...).
Information System — The information system stores
the steps and results of the exploration, and can be syn-
chronized with a server application that allow to share
data with other users. This component is relevant to
garantee the reproductibility of any exploration and to
improve the collaboration and the publication of results.
Service Directory — SimExplorer is based on Service Ori-
ented Architecture. Consequently, the Service Directory
component ensures service discovering through the net-
work.

Core Engine — The core engine drives services accord-
ing to the design. It uses Service Directory to discover
service and access to their methods. For example, fig-
ure 2 illustrates the dialogue between de Sampling Tool
and the Core Engine. the Core Engine address the Sam-
pling Tool using design specifications. In response, the
Sampling Tool gets asked scenarios that will be used to
evaluated the model.

design.xml

Sampling

Features

scenarios.xml

Figure 2: Sampling Tool and the Core Engine illustra-
tion.

IDE — The integrated development environment (IDE)
offers graphical user interface, and programming script
language. Its purpose is to design an exploration ap-
plication, that is achieved by building a workflow of
treatment components. The default workflow proposed
is composed of an exploration loop component and a

4R — Free software environment for statistical computing and
graphics. http://www.r-project.org/

5Dakota — Design Analysis Kit for Optimization and Terascale
Applications. http://www.cs.sandia.gov/DAKOTA/

global output processing component. The exploration
loop needs to define some exploration factors with their
definition domains, and the design of experiment that
will be used to sample the factors. At runtime, this
exploration loop component will loop for each samples
values of the factors defined on a list of nested compo-
nents to integrate the model to explore. First, input
processing components are needed to map the sample
values of the factors to the input data of the explored
model, and to generated related input files. Then, in-
formations needed for launching the model are filled in
an appropriate component depending of the technical
access to the model (binary, java archive, webservice,
...). And finally, the last step proposed for this explo-
ration loop is intended for processing the output of the
model execution, that is for gathering results from out-
put files and storing them in SimExplorer runtime for
following steps.

A screenshot of the IDE is showed on the figure 3. The
left side of the window allows to visualize and edit the
workflow of the exploration application. In the mid-
dle, editors are available according to the component
selected in the workflow. The right side of the window
presents several tools to define the data used in the ex-
ploration runtime.

Fle Exploraton Edit View Navgate Tools Window Help
=d r ATREELS
Applications « x| [Editor = [«](=)(=] [Facars » x| =
L s —
~ [[_Exploration loop GroowProcessor 2 Integer Gle
~ [Input generation &N e &l
B Prepare ihe inouts for ne simi A DY pr oS
~ [Model launcher input.Ds = factors.getValue("a"): Input Structure. [
) e e
~ [output processing // hssign size of matrix environment oy
[Add the output i the result cof| | 17PUT-NK = Tactors. getValue ("b*): [structure
~ - D
[oupw processing 77 hssign the cell size J
[pisplaythe result container input.dx = (Double)(S.0E-4) / O o
3 Run Rin Batch mode factors, getvalue("b™); O
[3 PoF viewer timeStepDurat
// set run tine step duration £ imestzpDuration
input. timeStepDuration = (3 simpuration
(int)Math. ceil (Math.pow (10, (factors . getvalue
("a") - 7))
7 variables.getvalue ("SinDurationscale®}); Outpustructure Window X
// Set the maximum run duration structure
input. sinburation = [strucure
(3nt) (input. tineStepDuration * 2000); [Rscript
0O wpie
[« — [<[>
I Runtime

Figure 3: SimExplorer IDE.

SimExplorer platform is tested by the exploration of
complex models from various applications fields (bac-
terial colony model, savanna and language dynamics) in
the European project PATRES (NEST-043268) context.

OUTLINE OF THE TUTORIAL

The attendees will acquire the concepts and some
practise of the software, allowing them to use it au-
tonomously for their own needs. The tutorial begins
with an overview the the SimExplorer software. Then,
it introduces the main methods of design of experiment.
Next, it explores the predator-prey model described in
the next section to discover pratically the SimExplorer
IDE features. After which, it gives a try to the client-

1 :

A B D D O OB O DD PO O DD VU DOOOD OD D
LA R S A N OO
A R
; A R N
7 \ﬁ,x-a,w,\\%\x\,x\,\\\’\\mx\c\mm
5 ﬁw”b\\‘a\c\o TR R R
YR TR T I DTS TRV R RS 0TV
}/;Mmmxx\%x R A A
N

fﬁ“”“ﬁ:‘;\ﬁ\ﬁ}m A NN
a\ %\%\
&)

1500

1000

R TERRTDNDs
\Q.X \};\\,\,\ >0 o
SRR T

AR SRS
% AR
AR INONCETY

O R

predators

N AR
AR RO
A
L NS S
NN B

500
|

0 500 1000 1500 2000 2500

preys

Figure 4: attractor (green point), trajectory (black
lines) and partition concepts (red and blue circles) for a
given state space.

server information system, to the distributed execution
feature and to the report generation tool. Finally, audi-
ence builds an exploration upon his own brought model.

HAWK AND DOVE PREDATOR PREY
MODEL

Hawk and Dove Predator Prey model (HDPP) is an
individual-based version of a particular Lokta-Volterra
predator prey model [1, 2]. Tt integrates individuals —
predators and preys — that are spatially located on a
2D-grid. At each time step, all predators make several
random moves, of a limited range. If they visit a site of a
grid where a pry is located, they capture the prey. Then,
they can share or struggle for the prey with the other
predators located within a given neighbourhood. Their
attitude (aggressive or cooperative) is defined for the
time step. But after each time step, the predators can
change their attitude by observing the success of the at-
titude of their predator neighbours during the last time
step. They tend to adopt the most successful attitude.
The HDPP model analysis reveals that, depending on the
values of its parameters, the model dynamics can lead
to the extinction of the predators, or a single attractor,
or two attractors, or one attractor and the extinction.
Figure 4 exemplifies the attractor, trajectory, partition

concepts for a given state space. State space is divided
into a regular grid. Each cell is characterized by the
trajectory starting from its centre. When the trajectory
get out of the cell, the new cell where the trajectory is,
is associated to the starting cell as its next. Thus, the
state space is represented as graph where circuits are
attractors, elements that compose two path to the same
attractor are in the same partition.

Individual behaviour of the HDPP model is classically
characterized by the mortality and birth rate of each
species and the prey carrying capacity parameter. Due
to the hawk and dove tactic introduction, model be-
comes sensible to the gain parameter. Finally, individ-
ual based model constraints to introduce a neighbour-
hood parameter.

CONCLUSION

The SimExplorer software will be freely available
in September 2008 under GNU GPL licence on
http://www.simexplorer.org.

REFERENCES

[1] Pierre Auger, Rafael Bravo de la Parra, Serge
Morand, and Eva Sanchez. A predator-prey model
with predators using hawk and dove tactics. Math-
ematical Biosciences, 177&178:185-200, 2002.

[2] Pierre Auger, Bob W. Koi, Rafael Bravo de la Parra,

and Jean-Christophe Poggiale. Bifurcation analy-
sis of a predator-prey model with predators using

hawk and dove tactics. Journal of Theoretical Biol-
09y, 238:597-607, 2006.

[3] Thierry Faure and Guillaume Deffuant. SimEx-
plorer: A software tool for programming and exe-
cuting experiemental designs on complex models. In
SCS International Conference on Modeling and Sim-
ulation - Methodology, Tools, Software Applications
(MS-MTSA 06), pages 218-225, 2006.

[4] Jan S. Rellermeyer, Gustavo Alonso, and Timothy
Roscoe. R-osgi: Distributed applications through
software modularization. In Renato Cerqueira and
Roy H. Campbell, editors, Middleware, volume 4834
of Lecture Notes in Computer Science, pages 1-20.
Springer, 2007.

[5] J. Sacks, W. Welch, T.J. Mitchell, and H.P. Wynn.
Design and analysis of computer experiments. Stat.
Sci., 4:409-435, 1989.

