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Some problems in Business and
Service Systems
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We have a set of activities to carry 
out. Each of them can generate a 
known profit. Our production 
system has a limited capacity and 
it cannot handle all the activities. 

The question is how can select the
good subset of activities by 
respecting the production system
contraints, in order to maximize
the total profit.

Similar problem: efficient 
diversification of investments.

Machine M1

Machine M2

Machine M3

activities

Portfolio selection

Production system

with a limited capacity
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Example 2: logistical problems

Assign customers to vehicles,

Determine routes of vehicles
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solution
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We aim to buy electronic market places at low and to sell them at high 
prices (see Schmidt, EJOR).

We (the trader) own an initial asset A at time t = 0. We can obtain 
dynamically a price quotation m ≤ p(t) ≤ M at every time t = 1, 2, . . . , T. 
Parameters m and M are known in advance. Hence, we have to decide at 
time t if accept this price for selling. Trading is closed once we accepted 
some p(t). If we did not accept any price until time T − 1 we will be obliged 
to accept the last proposed price at time T . 

General problem: buy and sell at given periods.

p(t)

Online Trading Problems in Financial Markets

t T0

m

M sell
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Network design 

DATA & CRITERIA:DATA & CRITERIA:
connection costs
number of users
route frequencies
ecological impact
service quality
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solving a scheduling problem can 
be reduced to the organization of a 
set of activities (jobs or tasks) by 
exploiting the available capacities 
(resources). This execution has to 
respect different technical rules 
(constraints) and to provide the 
maximum of effectiveness 
(according to a set of criteria or 
objectives). (see Carlier & Chrétienne) 

Machine M1

Machine M2

Machine M3

Machine M4

tasks

resources

Scheduling problems
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Example: the organization of a transportation 
network

• Here, the problem consists in establishing a planni ng indicating 
the different schedules of buses and stations to be  served. 
• The buses, which represent the resources , have to pass at 
precise times, by precise stations according to a f ixed order 
(precedence constraints). 
• The tasks consist hence in transporting the travellers from a  
station to another. 
• At every moment of the day, the number of traveller s waiting in a 
station is variable. The frequency and the capacity  of buses 
assigned to the used ways must be coherent with the  objective . 
One can find other types of constraints as those imposed in the 
case of a correspondence (in this case, the arrivin g bus has to wait 
for another bus so that some travellers will be abl e to reach their 
destination).
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: station

: Node

: Bus

: Tramway

Line 1

Line 2

Line 3

Line 4

� schedule the trips in order
to:

Maximize the service 
quality

Respect the temporal 
contraints

� organize the transportation 
network

Objective

Example: the organization of a transportation 
network (Dridi & Kacem 2004)
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Common structure
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Discrete Optimization Problems

• The mentioned problems has a common structure. This  structure is
based on the four following elements:

1. Parameters: The parameters are all the necessary data to define  the 
problem and the constraints.

2. Decision variables involving discrete variables (binary variables and 
integer variables) : They represent the decisions to take in order to 
construct a feasible solution and to optimize one o r several criteria.

3. Objectives: The evaluation measures allowing us to select the m ost 
satisfactory one.

4. Constraints: The technical requirements limiting the possible va lues of 
the decision variables.
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Constraints

• According to the studied problem, one can distingui sh two classes 
of constraints: the endogenous constraints and the exogenic
constraints. 
• The endogenous constraints represent some conditions directly 
related to the system to be optimized and to its pe rformance 
(resource capacity, availability dates of resources , sequences of 
operations to be performed or ranges of products... ). 
• The exogenic constraints are generally imposed by external 
element independently from the considered system (d ue dates 
imposed for each activity, priorities of some activ ities, priorities of 
some customers, tardiness permitted for some activi ties...). 
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Criteria and objectives

• Among the set of feasible solutions, we have to sel ect the most
satisfactory one. 
• The notion of “satisfaction” depends on a criterion already defined. 
• The criteria represent some objective functions we can use to 
evaluate and to compare the performances of the fea sible solutions. 
• The criteria can be conflicting: in this case, we c onsider the 
multiobjective/multicriteria optimization.
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Complexity and diversity
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Complexity

- Illustration: let us consider the total tardiness minimization problem on a 
single machine on which a set of N independent jobs (activities) has to be 
performed. The problem consists to find a sequence of jobs with the aim 
of minimizing the total tardiness where every job is characterized by a 
processing time and a due date. 
- Obviously, we have N possibilities for determining the job to be 
scheduled in the first position. Then, N-1 remaining jobs will be candidate 
to the second position. More generally, we will have (N-i+1) possible 
remaining jobs to put in the i-th position. Hence, we deduce that there are 
N.(N-1)...(N-i+1)...2.1 possible sequences (i.e., N! possibilities). 
-To select one of these solutions, we need to measure the performance of 
each solution. 
- Let suppose for example that N = 10 and we have a computer able in 
0.1 s to explore the search space (constituted of the N! sequences), to 
evaluate these sequences and to select the best one. Moreover, let us 
assume that the same computer spends the same time for evaluating 
sequences of different values of N. 
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Complexity

-This phenomenon is called the combinatorial explosion. 
- Most of discrete optimization problems are combinatorial and belong to a 
special class of hard problem: the NP-Hard class. 
- Most of researchers think we cannot construct polynomial time 
algorithms for solving problems of the NP-Hard class (see Garey & 
Johnson 1979).

136 billions of years!25

220 centuries20

4 days15

Computation timeN
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Diversity

-The diversity leads to the specificity of any discrete optimization problem.
- Consequently, we cannot imagine a generic solution. 
- Such a diversity is due to the existence of different and numerous 
industrial configurations and systems to optimize. 
- Numerous classes of problems are related to different structures and 
types of systems. 
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Example: diversity of production systems

M1 M2 M3 M4

Job 1

Job 2

Job 3

M1
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M3

M4

Job 1

Job 2

Job 3
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Job 1

Job 2

Job 3
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Used approaches
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Heuristic Methods

- These methods cannot usually yield an optimal solution. 
- They are fast and they can ensure a compromise between quality and 
computation time if they are rigorously implemented. 
- The use of these methods can be recommended when the studied 
problem has a high level of hardness (for example, the NP-Hard problems 
in the strong sense). 
- Any effective heuristic needs a minimum effort in its design (local-
optimality properties). 
- The results that we can obtain by a heuristic can be experimentally 
evaluated by comparing to the literature results. 
- The performance of a heuristic can also be compared to some lower 
bounds and/or by establishing its worst-case performance analysis.
- Different types of heuristics exist and are widely-used. 

- constructive heuristic methods (based on some priority rules), 
- local-search methods based on the exploration of the 
neighbourhood of an existing solution (Tabu Search, Simulated 
Annealing...) 
- population-based methods consisting in iterative improvements of a 
set of solutions (Genetic Algorithms, Swarm Particle Optimization, 
Evolutionary Algorithms, Ant Colonies...). 
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Heuristic Methods

- The disadvantage of these methods consists in the empirical 
performance of solution (we cannot evaluate the difference with the 
optimal solution). 
- Another type of heuristics can overcome this disadvantage by yielding a 
guarantied performance for any instance of the problem. 
- These heuristics can be obtained by using the polynomial approximation 
techniques and the performance analysis in the worst-case. 
- This type of methods is generally very hard to construct and to analyze 
(see Pinedo). 
- They allow us to simulate the system performance by fixing the decision 
variables in a simple and fast way.
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Exact Methods

-when the structure of the problem is suitable it is 
possible to reach an optimal solution by applying 
an exact method. 
- necessity of tools capable to explore implicitly the 
search space. 
- this exploration allows us to reduce the space of 
visited solutions to a sub-space in which at least 
one optimal solution exists. 
- we can discard the sub-spaces of dominated 
solutions in order to reduce the computation time. 
- this technique can be applied for arborescent
methods (branch-and-bound algorithms, polyhedral 
approaches, integer programming methods, 
dynamic programming…). 
-It can be applied based on the following elements: 
heuristic solutions, lower bounds, dominance rules, 
valid inequalities, cuts, exploration strategies, 
recurrence relations... 
-the elaborated exact methods allow us at least to 
improve the heuristic solutions when the optimal 
solution cannot be reached in reasonable 
computation time.
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Example: Minimizing the weighted
tardiness costs on a single production 

system under
a common due date assumption

I. Kacem. Fully Polynomial-Time Approximation Scheme for the Weighted 
Total Tardiness Minimization with a Common Due Date. 
Discrete Applied Mathematics (ELSEVIER), 2010, 158:9, 1035-1040.
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Formulation

- The problem is to schedule n jobs/activities on a single machine 
(production system), with the aim of minimizing the total weighted 
tardiness cost of jobs.
- Every job i has a processing time pi and a weight wi (tardiness penalty).
- The machine is available at time 0 and can process at most one job at a 
time.
- The jobs have a common due date d.
- Without loss of generality, we consider that all the data are integers and 
that jobs are sorted in the WLPT order : p1/w1 ≥ p2/w2 ≥ … ≥ pn/wn. 
- Due to the dominance of the WSPT order (the inverse one of WLPT), an 
optimal solution is composed of two sequences of jobs assigned before 
and after the due date. In the sequence before the due date any order is 
optimal (early jobs). In the sequence after the due date the jobs must be 
scheduled in the WSPT order (Smith).
- Assumption: d<P where P is the total processing time.
- The problem is NP-Hard in the ordinary sense.  
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• This type of problems has been studied in the literature
under various assumptions (Cheng 2005, Abdul-Razaq
et al 1990, Lawler 1977, Potts & Van Wassenhove
1985).

• Fathi et al (1990, IIE Transactions): the problem has a 2-
approximation algorithm. 

• Kellerer & Strusevich (2006, TCS): dynamic
programming in O(n.P.Ub^2) time.  

• Kellerer & Strusevich (2006, TCS): FPTAS in 
O(n^6log(W)/(eps^3))

• This work: 
– New DP in O(n.d) time,
– New FPTAS in O(n^2/eps) time.

Some previous works
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Job 5 is scheduled 
before d

Chromosome before mutation: Chromosome after mutation:
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Mutated genes

Crossover position

Example of a heuristic: a genetic algorithm

The problem can be
solved by a binary
genetic algorithm. 

In the chromosome, 
the value 0 is
associated with an 
early job and the
value 1 is
associated with a 
tardy one.
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Example of an exact method: New Dynamic
Programming
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New Dynamic Programming



31

UB

0
Complexity of A: O(nd)

t

f

d

d

New Dynamic Programming: Illustration 
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PRINCIPLE: modification of the 
execution of an exact algorithm

Fully Polynomial Time Approximation Scheme
(FPTAS)

DEFINITION: Given ε>0, an FPTAS finds (1+ ε)-
approximation with a time-complexity polynomial 
in (1/ ε) and in the input size.
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Conclusions
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• The discrete optimization problems are the key 
of numerous management and economic issues 
in different business and service systems. 

• Despite the hardness of such problems, it is 
usually very interesting to formulate, to 
understand and to solve them. 

• The managers and researchers should continue 
to work together in order to progress on these 
important problems. 

• Substantial gains can be reached in the financial 
and scientific fields. 


