SCIENTIFIC
PROGRAMME

DEVELOPMENTS
IN
GAMES

Enhancing The Immersive Experience

STUART SLATER

School of Computing
Wolverhampton University
E-mail: s.i.slater@wlv.ac.uk

KEYWORDS

Game Design and Immersive Environments.

ABSTRACT

Today’s market place is being continually bombarded
with game-releases. It is hoped to illustrate how
immersion in the context of computer games, is an
important ingredient in the success of these games,
and which elements in a computer game combine to
create an effective immersive experience for the
gamer. Final comments relate to current research
involving enhancing immersion in isometric tile-based
strategy games, by allowing the user more control
over their game environment.

INTRODUCTION

I lose count of the number of times I have gone to my
local cinema to sit through a movie and two hours
disappear in a seemingly much shorter time. Then, at
other times, watched another movie with a big budget,
famous action stars and “state of the art” special
effects, and continually looked at my watch wondering
how much longer the movie had left to go. The first is
an example of an immersive experience: the fact that
the viewer was so absorbed in this fictional world that
time didn’t matter and the second is an example of a
non-immersive experience, where for some reason the
“world” didn’t captivate the viewers, who stay to
merely get their moneys worth.

So why, when a famous star is signed up, and
a mega budget is allocated, do some movies fail to
provide an immersive experience for the viewer? Why
do moviegoers sometimes walk away feeling
disappointed with a film? Let’s rephrase these
questions with the computer games industry in mind
to: Why do some games fail to provide an immersive
experience for the gamer? Why do some gamers feel
disappointed after watching a “cut scene” from the
latest action game, then wait possibly months to buy
the game before discovering to their expense that the
game does not live up to their expectations or the
hype? Surely these game buyers will become
disillusioned with that particular game or games
company in a similar way that action stars lose favour
in movies that do badly at the box office, and what of
the studios/publishers who have other titles under

development based on these games? According to
Foster, Karlov, Kay and Thoma' the top 20 games
take 90% of all profits, with the next 20 titles taking
5% leaving only 5% to all others, indicating that many
games may fail to make a profit or even, break even
which could mean the end of the developer involved.
This leads to the purpose of this paper: to examine the
elements involved in computer games that combine to
maximise the chances of commercial success.

IMMERSION?
Let’s begin by looking at three words that have been
noted from recent conferences: ‘addiction’,

‘absorption’ and ‘immersion’.

The Cambridge International Dictionary of English?
has the following related definitions.

Addictive: Addictive could be used of any activity that
you cannot stop doing once you have started.

Absorb: to take (something) in, esp. gradually
If someone's work, or a book, film, etc. absorbs them,
or they are absorbed in it, their attention is given
completely to it.

Immerse: to involve completely in something

The term “addictive game” could indicate some kind
of unhealthy preoccupation with a video game, maybe
at an extreme a gamer playing 24 hours a day, missing
work/school, and generally exhibiting anti-social
behaviour when the stimulus of the game is removed.
But more positively, a gamer who gets immersed in
the game environment and wants to see the game
through to the end, or the office worker playing
solitaire daily could be described by some as being
addicted.

Absorption is the initial part of the game, when the
user is absorbed by the characters and plot, is slowly
drawn into a world created for them by the designers,
and let loose to explore and interact with that
environment, leading to immersion when the player
eventually comes to feel in control of the game, and
begins exhibiting signs of emotional attachment to a
base they build or an enemy that they have taken some
time to defeat.

mailto:s.i.slater@wlv.ac.uk

A POSSIBLE IMMERSIVE
WALKTHROUGH

What are the key elements that combine to create an

immersive experience?

e The cinema goer/games buyer gets a teaser trailer
of the up and coming movie/game to whet their
appetite. (The Introduction)

e They wait anxiously then buy a ticket for their
local multiplex, or buy the game. (The Purchase)

e Now comes the crunch: the titles come up and the
movie starts. The first 15 minutes of the movie will
determine whether or not the other elements of the
experience have a chance to further immerse the
viewer. With a computer game, the first 15
minutes (including the loading) of the game have a
similar effect: can a plot be formed, characters
introduced, and is the game easy enough for the
gamer to get into within 15 minutes, so that they
are hooked and become absorbed in the fictional
world. (The First 15 Minutes — The Hook)

e Success so far: the gamer has brought the game,
and within 15 minutes is hooked. Now the next
important element of immersion is needed, the
story. Does the story unfold in a logical manner
and take the user from section to section, from
scene to scene. Can the gamer follow the plot?
Does the gamer get emotionally involved with
characters enough to feel more when the player
beats the end-of-level bad guy, or the villain gains
the upper hand? Does each section of cut scene
following the completion of a level fit in with the
story and involve characters the gamer has already
encountered or are they just added “eye-candy” for
the gamer? (Emotional Involvement)

e What good is a dramatic scene in a movie or
game without the music that helps create emotional
involvement? When you near the bad guys lair
does the music go deep and foreboding, and when
you complete the level is the music uplifting. Does
a gun sound like a gun, a dog bark as it should, and
does the gunfire reverberate as in an empty room?
(Sound)

e Do the in-game graphics live up to the initial hype
of the trailer? Mainstream gamers want to be awed
by spectacular special effects and cutting-edge
graphics (Graphics).

e Villains that challenge the hero: what use is John
Connor without the brutal Terminator foe always
one step ahead. The aliens against the marines in
Aliens Vs Predator. Do the aliens in the game react
as in the movies; are they cunning and sly, then
can you mow down a room-full with your assault
rifle, or do they behave against your
preconceptions, thus spoiling your fun? (Artificial
Intelligence).

e How much figuring will the gamer have to do to
get started? Is the interface in the style of the rest
of the game? Is the user “pushed out” to a DOS
screen or new window in order to change options,
thus breaking the immersive game experience?

Avoiding frustration is the key here. (The
Interface)

e Finally the ‘fun factor’, the romance aspect in a
love story, and the aliens in space movies each is
expected by the viewer, so why disappoint them.
In first person shooters (FPS) its always the guns
the user can collect, in isometric tile-games it’s the
build options. But what use these options without
well designed, challenging worlds and villains to
use them on. (Level Design).

THE HOOK: FIRST 15 MINUTES

It has been said many times that the start of a film is
important, the first 15 minutes must draw in the
audience and woe them with the hero’s plight against
some kind of adversary, putting the hero in harms
way. Only after the initial 15 minutes does the story
and background fully unfold. So what of a parallel
with gaming? “With gaming a player must be actively
engaged by a new game within 15 minutes of starting
play or we risk losing that player forever Shelley. So
what is the typical format of the first 15 minutes in a
computer game: the loading of the game, the initial
screens, and the introduction to the game, usually non-
interactive video, that sets the scene ready for the
gamer to get started with some action.

Introductions are sometimes video such as in Red
Alert 2 (Westwood) or alternatively use game graphics
like Half Life (Sierra) and Halo (Bungie). Both
methods are effective if they help to immerse the
player in the world, and then introduce characters that
the player will encounter in the game. Some games try
to build a feeling for the world during the titles, such
as Unreal (Id) which takes the gamer on a tour of a
castle with some very effective music included for
atmosphere building.

With all the thrilling video is there a risk that the
gamer can become too immersed in the video? This
must be a concern because if the game isn’t as good
visually as the introduction then the user might be
disappointed. After the introduction, the game should
be easy and straightforward to get into and allow the
user to have some fun, not overly complicated or non-
intuitive, leaving the user with a failed purchase.

SETTING THE SCENE: VIDEO

Video can help to increase the realism and add to the
immersion of a computer game, but beware of going
too far. During the early 90’s a wave of games came
that were almost entirely video such as Ripper (Take
2), Black Dahlia (Interplay/Take 2) and Gabriel
Knight: The Beast Within (Sierra) didn’t do that well.
Many of these games featured stars such as Dennis
Hopper and Christopher Walken, and allowed limited
interaction by the user, but what developers failed to
grasp at that time was that most games players don’t
like limited plots that don’t allow much freedom of
movement i.e. the gamers do not feel in control.

113

Many of the top 20 games feature “cut
scenes” to seemingly boost the stories a prediction
come true from David Stripins of Factor 5 made at the
GDC 2001. They occasionally feature famous stars,
such as Michael Biehn in Tiberian Sun (Westwood)
but again if players have to sit through endless cut
scenes then they are going to get bored and the
immersion is reduced. Also “cut scenes” that seem to
build up characters in plots that are then not seen
anywhere in the actual game are common, and affect
the players’ involvement in the story. As to the
direction these introductions and scene changes take,
be it video or using in-game graphics, this is difficult
to predict, especially with the advent of new features
on graphics cards, such as “Cine FX” on the next
generation of Nvidia graphic cards that promise “real-
time cinematic effects in real-time”™ Freeman and
Nvidia’s CG programming language.

CAPTURING THE IMAGINATION:
THE STORY

The story or plot of the game should be easily
identifiable; games such as Command and Conquer
(Westwood) have self-explanatory titles so the user
can quickly understand what is expected of them.
Many FPS are simply getting from one side of a level
to the other with hazards placed in the path of the
gamer, complemented with encounters with bad guys.
Games in this mould are Tomb Raider, Quake, and
Unreal. Others have more difficult objectives to
understand. Most of the successful and addictive
games of all time have simple easy to understand
plots, such as Tetris and Pac Man. Games with overly
complicated plots will probably be played very little
and end up being traded in for the next version of
Doom.

CREATING EMOTION: SOUND

The use of sound as a medium for aiding immersion
can be seen in movies where music is used to enhance
dramatic scenes of romance or danger, thus adding
emotional content

One of the major success stories of 2002 (on the X-
Box) was Halo. Halo utilises music and sound to help
immerse the player, the goal being that the audio sets
the mood and gives the player information about what
is happening (Marty O’Donnell, Bungie, GDC2002).
Music can enhance a player’s experience of a game,
but too much music playing constantly can seriously
lessen the impact, as in Age of Empires 2 and to an
extent in the Command and Conquer games that
feature ongoing music. Technology in sound cards is
nearing the sophisticated level of movies, with Dolby
5.1 being featured on most new sound cards such as
Creative Labs Audigy and Extigy range, indicating
that immersive sound from the hardware vendor’s
point of view, may help boost sales, and hopefully
games developers will incorporate the new technology
into more games.

THE AUDIENCE GASPS: GRAPHICS

Graphics in games are said by many to be the
important selling point on games. Games buyers flip
the box over in the games store and are dazzled by the
screen shots of the games, they watch the videos
showing at games stores promoting the latest
action/adventure game, and see stunning screenshots
in magazines so no wonder they buy the games.

So what have developers been delivering between
1998 and 2002?

Graphics in FPS haven’t seemingly changed
in quality since Unreal (Epic) and Quake 3(Id) simply
because many subsequent games have used the
reusable engines created during the development of
these titles i.e. Half Life (Quake 2 engine) and Deus
Ex (Unreal engine). This is simply the tip of the
iceberg with Aliens VS Predator, Medal of Honour
Allied Assault (Quake 3) and many more.

What could developers be doing?

With Unreal being released in 1998, and
Quake 3 1999 gamers have been presented with reused
engines continually, whilst at the same time the movie
industry has moved on in leaps and bounds in
animation and computer-based visualisation effects.
Benchmarking software such as 3D Mark 2001/SE
features some polygon-rich graphics rendered on the
PC platform that I personally haven’t seen the likes of
in any games (except for the Max Payne section of
course). Many gamers have been left waiting for those
cutting edge graphics always promised on boxes or in
adverts until now.

What are developers now promising?

There are 2 significant events due in late
2002 early 2003, Doom 3 (id Software/Activision) and
Unreal 2 (Legend Entertainment/Infogrames), which
promise to take FPS into a new dimension by utilising
much of the technology available over the last 2 years
especially in the area of graphics card acceleration and
features. Whether they will or won’t is yet to be seen,
though initial videos and screen shots do look
encouraging. We should bear in mind that the engine
for Unreal 2 will also be used for Thief 3 and Deus Ex
2 (PC Gamer February 2002).
Other genres of games, such as strategy sports games,
must certainly follow suit with improved graphics to
satisfy the avid gamer. Games like Sim City 4
(Maxis/EA) and Colin McRae 3(Codemasters) look
likely to move their respective style of games forward
and satisfy the hungry gamer for the present time.

CHALLENGE: ARTIFICIAL
INTELLIGENCE (AI)

Players are increasingly moving to multiplayer on-line
games because Al is getting increasingly less of a fun
prospect. Why don’t the Al engineers repair bridges in
Red Alert 2, where an easy win is achieved on island-
based maps when player’s can cut themselves off from
the Al in order to build up unit numbers before wiping
out the opponent. Why, in games like Unreal, doesn’t
the AI use sniper weaponry? These are obvious
features gamers expect but are overlooked by
developers. Improved Al is promised, with many new
single-player games, but so far not many offer any real
challenge, Doom 3 and Unreal boast improved Al as a
key feature in the single-player versions of these
games.

SECOND NATURE: THE INTERFACE

Many will remember the days of Doom and
Wolfenstein where the user had limited options on
screen, and only a few keys to get going in the game.
Using arrow keys and the space bar you can run
around and have some fun without having to wade
through manuals to find out what key ‘z” does. These
games may have other options that the user can use
such as “strafe” and “run” but the user doesn’t need
them to begin with.

Features to be avoided include cryptic options, and
cluttered and intimidating interfaces® (Versluis).

ROCKETS AND GUNS RATHER THAN
ARROWS AND STICKS: LEVEL
DESIGN

Look at the differing commercial success of strategy-
based games that have 20™ century technology
compared to those utilising feudal technology i.e.
Total Annihilation Kingdoms (Cavedog) against its
predecessor. There are those that do well that are more
adventure such as Baldur’s Gate, but Command and
Conquer style games seem to be more popular with
newer technological weaponry.

So Level design has not always got to offer a lot of
freedom for the player, as in FPS, but it has to be a
little interesting consider Daikatana by John Romero
of Doom fame: the game starts with interesting levels
then soon becomes repetitive and boring, so that the
player quickly loses interest.

Put interesting things in to perk the users’ interest, let
them explore a little, blow up trees if they want to, but
don’t allow them to wander for miles without a quick
way back, else they will get bored and stop playing.
An interesting addition to many FPS is the easy to
find, hidden chamber or level: this adds interest to
these styles of games but is missing from many recent
FPS. Remember, it is the challenge to the gamer, to
beat the designer in their world, which spurs them on.
There must be no villain that can’t be beaten, no route

that cannot be traversed, no secret button that can’t be
found.

BLAST AWAY: HAVING FUN

What’s the point of a “Physics enhanced” game that is
realistic and has real world models, if the player can’t
have fun? Games players like to enjoy doing things
that they are not supposed to do, such as killing
friendly non-player characters (NPC), shooting toilets
as in Duke Nukem, or crushing blast doors as in Deus
Ex, which was incidentally found to be fun in play test
and retained in the final release (Smith). Non-plot
additions, such as in Duke Nukem and others, add a
fun factor for some gamers, so they should not be
overlooked in development. Wouldn’t it be nice to be
able to kill that first bad guy in Unreal when you first
pick up the blaster? Killing friendly characters and
have their friends shoot at you as in Deus Ex might be
classified as a little anti-social to many, but can still
add to the gamers’ fun, and let’s them feel more in
control in this virtual environment. Surely a fun game
once completed can be replayed and the user can
spend some time looking for hidden things and
exploring areas of the map that they originally didn’t
notice, searching for all those hidden features, or
switch on “God Mode” found in many games, and
decimate everything in sight.

ENHANCING AN
ENVIRONMENT

A typical isometric-tile based strategy game such as
“Command and Conquer” (Westwood) involves the
user collecting resources from maps that are
subsequently used to create offensive and defensive
units. The gamer then uses these attacking units to
defeat an opposing computer or real human opponent.

Because of the nature of this style of game one or even
hundreds of units can be sent from one side of the map
to the other meaning that the elevated isometric
perspective is well suited to large-scale battles. But
what of the single unit sent on a scouting mission to an
enemy base or the spy sent in to steal technology?
Wouldn’t it be interesting if the player could zoom in
on these characters and almost turn an isometric tile
based game into a first person shooter simply by
zooming in on the unit? What of large battles where
the user could zoom in on troops to watch the action
close up. Would these kind of additional features
improve the immersive experience for the gamer? On
the flip side what design and development difficulties
underlie such a crossing of game genres?

The most obvious difficulty is that traditionally
isometric based games uses 2D sprites/graphics to
generate both terrain and units, which means that
zooming in is difficult and certainly the user would
not be able to look behind a 2D building. The only
solution to allow a game to be scaled in this way is to
utilise a 3D API (Application Programming Interface)
such as Direct 3D or OpenGL to render meshes with

IMMERSIVE

textures created from a suitable package such as 3ds
max (versions 4 or5) or MAYA. Then create detailed
maps, units and buildings with full 3D scalability
achieved through a combination of Hardware
acceleration, 3D modelling packages and optimised
code.
Utilising the Direct 3D 8.1 the following features were
identified as easily attainable with suitable 3D models:
e Creation of an isometric map using meshes and
textures.
e Allow gamer to zoom right into a unit or building.
e Allow the gamer to see behind buildings by
allowing them to rotate freely in the game world.

The next logical step would be that at a predefined
magnification the view would become a first person
shooter allowing a whole new experience for the
gamer. The gamer could then play the engineer
infiltrating a base to steal or destroy it or even a spy
sneaking into a base to steal new technology. When
they have had enough or completed the task the view
can be returned to a typical isometric view, combine
this with an interesting plot idea concerning monsters
in the 1920’s trying to take over the world and some
detailed graphics and several of the eclements
identified to improve immersion are in place.

CONCLUSIONS

The initial development of a 3D mesh based approach
for creating a tiled world rather than 2D tiles
highlighted 2 initial issues: The first was a
performance issue which would prevent the game
being played on lower performing PC’s (Less than
PIII 866Mhz + no Hardware graphic accelerator). The
second was the additional development time needed to
design and code 3D models. But the obvious
advantages is, allowing the gamer far more control
over their game environment and thus enhancing an
aspect of immersion in the game world.

OMEGA RESING

SECL SR

3 B

<. Py
%

OMEGA REING

Previous images show initial development of a 3D tile
based game that allows the player to zoom into the
map.

LAST WORDS

The mixing of game genres is not altogether new, in
Halo; the gamer can change from a FPS to a driving or
flying game almost seamlessly.

Does an immersive environment necessarily mean
commercial success?

The simple answer is “not necessarily”. With a mass
of games being released on a weekly basis the
publishers must entice the gamer to at least try the
game via shareware or a free “cover disk” demo, with
the hope that the released game isn’t a commercial
failure and so subsequent titles are put at risk. What is
certain is that a well-balanced, immersive and fun
game is more likely to succeed.

REFERENCES

1. Foster et al.

“Financing a Game Development Start-up in Today’s
environment”

AKIN GUMP Technology Ventures

Game Developers Conference 2001

2. Cambridge International Dictionary of English
http://dictionary.cambridge.org

3. Bruce Shelley (Ensemble Studios)
“Guidelines for Developing Successful Games”
Game Developers Conference 2001

4.Vince Freeman

Previewing the NVIDIA NV3x Architecture
July 29, 2002

www.sharkyextreme.com

5. John Versluis (Inevitable Software)
“Scripting for Artists”
Game Developers Conference 2001

6. Harvey Smith (Ion Storm)
Game Developers Conference 2002

BIOGRAPHY

Stuart Slater began programming in the early 80’s
finally completing a game for the Commodore 16 in
1985. He is currently working as a Lecturer in IT and
Computing at the University of Wolverhampton, and a
member of the “Games Simulation and Artificial
Intelligence” research group. His main interests are
developing computer games, and helping others
understand the fundamentals of computer game design
and development.

http://uk.cambridge.org/elt/cide
http://www.sharkyextreme.com/

A COMPARATIVE ASSESSMENT OF RECENT
HYBRID AI TECHNIQUES FOR GAMES

Julian Churchill, Richard Cant, David Al-Dabass
Dept of Computing and Mathematics
The Nottingham Trent University

Nottingham NG1 4BU
david.al-dabass@ntu.ac.uk

KEYWORDS
Combinatorial Game Theory, Game Tree Search, Genetic
Algorithms, Go, Neural Networks

ABSTRACT

This paper investigates a selection of artificial intelligence
methods that are applicable to board games. In particular it
focuses on the ancient oriental game of Go, a subtly
complex game, which so far computers have found very
difficult to play well. Amongst the techniques looked at
here are neural networks, alpha-beta type tree search
algorithms, temporal difference methods and rule based
expert systems. The balanced combination of these and
other techniques provide a promising avenue of research.
Several programs are looked at including Honte, Many
Faces of Go, NeuroGo and work done by Martin Muller
towards Explorer in the combinatorial game theory field.
We look some experiments with these techniques and how
they can be used for particular situations.

INTRODUCTION

The topic of artificial intelligence techniques for games is
an increasingly popular subject. Since the success of a
variety of Al methods, such as alpha-beta pruned minimax
search, neural networks and genetic algorithms, in the
realms of chess, Othello, checkers and many other zero-
chance games, research has been leaning towards a game
considered by many to be the most challenging of these
types of games; Go.

Go is a board game with its origins in China. It is played on
a 19x19 grid, stones being placed in turn by each player,
one black and one white, on the intersections. The aim is to
surround your opponent’s stones to capture them whilst
attempting to secure areas of empty intersections, known as
territory. Figure 1 shows an example position on a 7x7
board, note that games are usually played on a 19x19 board.
Due to the large board size and the simple unrestrictive rule
set the game can yield very complex situations. In terms of
search space it is many times larger than that of Chess, so
much so that even the most sophisticated game tree search
methods available at the moment have failed to produce
even an average human equivalent Go playing computer
program. There are quite a lot of resources available on the
internet concerning computer Go and a worldwide

community of programmers, some of whom actually make
a living from writing and selling their programs. A mailing
list where computer Go enthusiasts can exchange thoughts
and discuss new ideas is available [13] and the Computer
Go Ladder [1] exists for programmers to test their programs
against one another in an ongoing league.

Figure 1 - An Example Go Position

TECHNIQUES

A variety of techniques are available for programmers to
choose from, mix and match, or hybridise in novel ways.

Basic game tree searching is the simplest of these
techniques and simply means using a method to analyse
possible board positions to some given or dynamic number
of moves ahead in the game to find the most favourable one
immediately reachable from the current position. Arguably
the most popular search algorithm used by computer
programmers when tackling board games is the minimax
algorithm [9]. This algorithm constructs and analyses a
game tree, given the assumption that each player will
always be trying to increase their score as much as possible
whilst reducing their opponent’s score. Of course this
requires a reliable method of scoring a board position (an
evaluation function), which it turns out is quite a challenge
in the case of Go.

Genetic algorithms are based on the genetic evolutionary
process. Sets of genes, sometimes termed chromosomes,
each encode a possible solution to a given problem. They
can be combined and mutated if the algorithm specifies and
at each evolutionary step will have a fitness value

calculated for each potential solution. This allows biased
population reproduction as in the survival of the fittest
principal and for the best available solution to be selected
when required.

Artificial neural networks are modelled on the brain. An
artificial network is constructed using neurons and
connections between them, which have assigned weights
that affect the transmission of impulses between the
neurons. The weights can be modified by a variety of well-
known algorithms to ‘teach’ the network to recognise
patterns of input and associate appropriate output responses.
Probably the most important quality of ANNs is their
ability to generalise over sets of training patterns so that
given a never before seen input pattern, an appropriate
output response can be generated.

THE CONTENDERS

Neural networks have a handful of papers representing
efforts in that direction including evolutionary methods to
generate weight sets for networks. Richards et al. [11]
discuss their experiments in using the SANE method to
evolve networks to play Go and Donnelly et al. [3] explore
the use of genetic algorithms and neural networks for
positional evaluation and the problems with encoding
neural network structures for use with genetic algorithms.

Honte

A program called Honte by Fredrik Dahl [2] has achieved
some success using neural networks for a variety of
purposes. It uses conventional Al methods, such as alpha-
beta game tree search, in conjunction with three neural nets,
the first of which was trained by supervised learning to
score potential moves given the local contents of the board
surrounding the move. A second one was trained to
estimate the safety of groups of stones with the Temporal
Difference learning algorithm and the third uses TD
learning again, to estimate territory.

NeuroGo

Probably the most impressive result from the neural
network field so far has been from Enzenberger’s program
NeuroGo [5] which, through it’s public participation in the
Computer Go Ladder [1], has shown itself to be a
consistently well performing program, lending weight to the
scientific methods used in the program. NeuroGo uses the
Temporal Difference algorithm, self-play and a
dynamically connected network, which allows the structure
of the network to change to better represent the spatial
attributes relating stones to each other and to empty points
on a Go board.

Schraudolph et al. and Temporal Difference
Schraudolph et al. [12] have previously carried out similar

work to Enzenberger in an attempt to capture some
essential but elusive properties of human evaluation of Go

board positions. The effect of placing a stone can have
repercussions right to the very end of the game, so the fate
of future board positions are directly linked to previous
ones. This is true not only through time, but through space
also, where a stone may affect another one or a group of
stones later in the game, but in a seemingly unconnected
area of the board when the stone was placed. A prime
example of this is how occasionally in games of Go a
formation of stones occurs that is referred to as a ladder.
This structure will sometimes occur when one player is
fighting to save some stones from capture and the other is
trying to capture the said stones. This race to capture may
run across the board and the move sequence can be read out
precisely until either a board edge is hit or some other
stones are run into. These other stones may have the effect
of allowing the player being chased to escape or to allow
the chaser to capture and are called ladder breakers because
they disturb the ladder formation causing it to stop. For
anyone but a novice Go player these ladder breaker stones
are obvious when the path of the ladder is clear and so often
the fate of a ladder is decided by a single stone that may be
on the other side of the board and without even having to
start the ladder running. Schraudolph et al. used the
Temporal Difference training algorithm to try to capture
some of the relationship between successive board states in
a neural network that represented a board state evaluation
function. It was found that an undifferentiated network, one
with a raw input representation of the board state took
significantly longer to train and did not reach such a level
of play as an appropriately structured network with a
carefully considered input representation. The networks
produced managed a good level of play on a small board
(9x9), enough to beat Many Faces Of Go set to a low skill
level.

Golem

Another attempt at incorporating neural network techniques
into a Go program came from Enderton [4] called Golem.
The paper describes a fairly standard process of identifying
groups of stones (not directly connected, but may be
connected given some conditions) and then using a hard
coded territory estimation algorithm to give an evaluation
value for a position. Golem used a one-ply search to find
the best move and also used two neural networks to give
estimates of how good a particular move is. One was for
speed and was used in move ordering within the search tree,
the second was used to prune the initial set of moves
considered in the one-ply search.

Many Faces of Go

One of the leading programs in the computer go arena for
many years, Many Faces of Go uses a combination of
techniques such as a rule based expert system, low to high
level abstract knowledge about board positions and the
relationships between stones, updated incrementally, a
joseki database storing standard corner patterns of play and
a pattern database of 8x8 patterns with partial move trees
attached. The program uses hard coded algorithms to

determine the relative score for examined board positions,
which is linked to the move suggesting rule based system,
for instance if the program knows it is many points behind
it will play more risky moves.

Explorer and Combinatorial Game Theory

Combinatorial game theory was and is becoming an
increasingly popular topic, particularly when considering
end game positions. Mueller’s thesis [8] contains some
important work with the game of Go in this area.

GNUGo

A popular open source program called GNUGo [7] is a
participant in the Computer Go Ladder [1] and provides an
example of a Go playing program with no machine-learning
element to it. It uses extensive hard coded knowledge and
databases and follows the standard procedure of
information gathering, move generation and move
selection.

An important point noted from this survey was that whilst
most researchers have achieved a degree of success, albeit
mostly against trivial opponents, they have only
infrequently approached the level of play that commercial
programs are currently operating at. These programs, such
as Many Faces of Go [6] and Michael Reiss’ Go4++ [10],
nearly all use extensive expert knowledge in the form of
move sequence databases and hard coded rule systems that
have been finely tuned over many years. Even these
however, are far from reaching a professional level of play.
At present one of the best programs around, Many Faces Of
Go version 11.0 claims it’s hardest playing level to be
around 8 Kyu. This is 15 grades below professional level
given a beginner starts at 30 Kyu and after 1 Kyu you start
counting Dan grades at 1 Dan upwards to 7 Dan for
amateurs. Professional grades go from 1 Dan to 9 Dan by
smaller increments. 1 Dan professional is roughly
equivalent to 7 Dan amateur and at 9 Dan the scales
roughly coincide. Personal familiarity must also be taken
into account, for instance a human 8 Kyu would reliably
beat Many Faces at it’s hardest level after a short exposure
time, so adaptability to opponents and the ability to learn
from game to game must be a feature considered for future
Go programs.

EXPERIMENTS AND METHOD DEVELOPMENT

Following on from the work done during my MSc project,
which provided a basis for this work, I have developed a
suite of programs to allow a range of experiments to be
conducted. The software is flexible enough to allow easy
adaptation to new ideas and methods that may be developed
and may need to be tested and experimented with. Some
initial experiments have been carried out already in an
attempt to find a fruitful path for the research to follow. A
fair amount of time has been spent on training neural
networks to discover how they could best be used within a
Go playing program and to find out the limits of such

methods within this problem domain. Amongst the
experiments run to date are the varying of parameters to the
learning algorithms, in particular game specific parameters
which affect the way training data is generated for the
networks to learn, encoding and presentation of the training
data to the neural networks and a brief look at temporal
difference methods for incorporating temporal knowledge
of the game of Go into a static board evaluation function.

An exploration of intelligent search techniques has been
made to see what might be appropriate to implement or
expand upon in this research. Within the area of hard Al the
minimax variant MTD(f) [9] has been investigated and
implemented in conjunction with machine learning
methods, in the present case neural networks, to control the
size of the search tree. This method of tree pruning has
shown itself to be very worthwhile, even if only used at its
simplest level, which is to order nodes in a search tree,
rather than using the nets as an pruning heuristic. It would
be considered inadmissible as opposed to alpha-beta
pruning because it may yield a small chance that the
optimum solution will be missed. Increasing the nets move
ordering/pruning accuracy can reduce this chance, but the
risk will never be completely removed, only limited.

A recent development has led to research efforts in the area
of genetic algorithms with a view to use genetic algorithm
methods to tackle the search tree depth problem which has
proven to limit the effectiveness of game play even with
neural network additions, for pruning and move ordering, to
the MTD(f) algorithm. At present developing an
appropriate algorithm to make good use of the benefits of
the genetic paradigm to evolve partial game trees is the
focus of the research.

Mave Suagester

one of
HiMoveSuggester }
Board Area \ Selected
Position —— Flr!der I Move
{optional) HHMoveSuggester EvalFunction

+GameTree one of
\-/>

Liberty Count

Figure 2 - Move Selection Process

Figure 2 shows the move selection sequence from an initial
board position to a final choice of move that the program
makes every time a new move is requested.

A further stumbling block encountered was the difficulty in
developing a good quality, reliable evaluation function for

the game tree search to use. For Go, there is no obvious
suitable function. Much work has been done by other
researchers involving training neural networks and using
evolutionary methods to find a viable evaluation function
with some reasonable results being found [3,11]. Initially
some experiments were done with the temporal difference
neural network training method but the results were not
really relevant to the research and more interesting
directions had presented themselves by this point.
Preliminary investigations were made into evolutionary
techniques to evolve an evaluation function, in particular
competitive co-evolution of a neural network, rather than
the gradient descent method used by the standard neural
network training techniques. However taking previous
research and the likely complexity of a good Go evaluation
function, time and resources may become a limiting issue.

Move Finder networks

After experimenting with various network designs, a class
of networks termed ‘move finder networks’ were
developed. The intended use for this category of nets was to
aid game tree pruning and search by allowing us to
immediately discard low scoring moves or pick a selection
of moves that achieved a boundary score or higher and to
order nodes in the search tree to enable algorithms such as
alpha-beta search to run more efficiently. To begin with
simple 3 layer networks using one input neuron per board
intersection and symmetric input values to represent the
contents of the intersection were used.

The networks were centred on each legal move in a board
position and produced a score from their single output
neuron to indicate the plausibility of the suggested move.
The size of the receptive area around the legal move had to
be considered since that would dictate the size of the input
layer, for instance with a 9x9 area of board around the
move, 81 input neurons would be required. At this point it
seemed the more board area that could be input to the net
the better and training and testing was carried out with 5x5,
7x7, 9x9, 11x11 and 13x13 input area sizes. Reasonable
results were obtained up to 9x9, after which the training
time was found to be to long to realistically train anything
useful. The training data for these networks was extracted
from a collection of professional tournament games in SGF
format acquired from the Internet.

Apart from changing the input area size some nets were
trained to see if the skill level of the players who played the
training games had an affect on the quality or speed of
training. Little information was gained from these particular
experiments however they were repeated for later
generations of move finder network.

Non-Repeating Training Data

For the next phase of experiments it was thought that non-
repeating training data, as opposed to the standard

repetition of a training set, would fare better for this
particular problem. The move finder networks produced so
far had shown that they performed well on their own
training sets however did not adapt very well to unseen
input. The solution to this was to use one of the Internet Go
Servers to acquire game records.

The server actually used was called NNGS and many
thousands of games from all skill levels were found there
and of course with each day more games are played and so
more game records produced with which to train the
networks. There were further problems concerning training
time and quality of the networks output that I felt might be
improved by finding more appropriate input
representations.

Initially the receptive area was set to 9x9 and the input
representation involved separating the possible intersection
states to give the network extra degrees of freedom, so we
had 3 input units for each board intersection, each
representing one of the possible intersection states our
colour, their colour and empty. Using the notions our colour
and their colour helped to remove some redundancy in the
training set due to colour symmetry in the training patterns
and so meant that a concept learnt for the black player was
also learnt for the white player. A further thought that had
cropped up whilst experimenting with the first phase of
networks was that due to the limited local area the networks
would perform badly when near an edge that was just out of
sight of it’s receptive field.

One solution to this is simply include the whole board as
input, however this had already been discounted as
unfeasible due to the previous experiments revealing that
the time and resources it had taken to train those networks
was substantial. An alternative solution was to include two
input units to indicate the distance to the two nearest board
edges. This combined with symmetry handling for the
board states in the training database code allowed the
networks to minimise the amount of training required to
learn edge and symmetrically related concepts.

Refining the Net

This particular architecture learnt a lot faster and to a higher
standard than the first phase, so much so that the networks
were now reliable enough to use for pruning game trees and
ordering moves in a proper Go playing program. Now the
task was to refine the nets as much as possible and to look
at other factors that may further improve performance. The
training set contained much redundancy, effort to remove as
much symmetry duplication as possible lead to the surprise
discovery concerning the use of the training set. From the
first set of experiments and partly due to the small amount
of available training data at the time, the training sets were
used in an unusual fashion.

For each move, in each training example game, the
following 5 moves were also assigned scores on a sliding
scale but with the same board state as the initial move. This

gave 6 times the amount of training data available and also
appeared to speed up the training. As an experiment in this
second phase some networks that had been trained to their
apparent capacity had the move look ahead switched, which
was 6 by default, to 0 so only the actual move for each
board position was used. This immediately produced a
distinct increase in output quality by 3-4% and then settled
again.

The same immediate increase was seen when changing the
training set contents from games from all levels of player to
only those played by Dan rank amateurs (high level
players) but the increase was not cumulative when using
both modifications at the same time. An attempt was made
to train nets starting on only Dan rank and also to start with
no look ahead as each of these conditions had proven to be
beneficial before however all of these nets failed to make
any significant progress through training, appearing to have
very quickly got stuck in a local minima. Unfortunately the
reasons for this are not clear at the moment but I hope to
find a reason behind this apparently odd behaviour.

Architecture Problems

There were still evident and emerging problems with the
network architecture as the network design moved into its
third phase. When the move being scored was near to the
edge, units that represented points off the actual board were
simply all set to 0. However, as mentioned before, the edge
of the board is very important in Go, so as well as
extending the 2 units previously used to encode the board
edge distances to 18 units (9 per edge, indicating distance
of between 1 and 9) an extra state neuron per board point
was added to represent off board points. Yet again the
training time was reduced and the quality of results
increased even though the number of neurons in each
network had steadily gone up and so the number of
calculations required had gone up also. Time was still a
problem though, if not in training then in practice. Whilst
the networks helped speed up the game tree search for the
actual Go playing program they were still taking up a lot of
processor time and the trade off between resources and
results was reaching its optimum. By analysing the
networks in operation I found that I had allowed too many
hidden units to be used in each net. The training was run
again, after a better estimate as to the necessary number of
hidden units required and the training and operation speed
was increased by a large factor. In fact this led on to trying
larger local areas as input to the nets, now that extra
resources were freed up. The most successful network to
come out of this research so far has been a third phase
13x13 input area network. As figure 2 shows this network
(newBPN13x13b.bpn) edged past the 9x9 version
(newBPN3b.bpn) at around 100,000 epochs and stabilised
just after. In general the 13x13 network plays better in Go
test games, but occasionally the 9x9 version picks up the
correct move where the 13x13 doesn’t. It can only be
assumed that due to the difference in local receptive field
size, the networks are learning mostly similar concepts with

a few unexpected but possibly important differences. It
would certainly be interesting to find out why one performs
better than the other in these situations and is relevant to
improving the playing ability of the Go program.

Amongst some of the latest ideas for input representation
have been to include more pre-processed Go specific
knowledge. To make an adaptable, useful and easily
generalized system the training has so far avoided any real
specific knowledge from the problem domain. Other
researchers have used specific knowledge to train networks
with moderate success [5,12] so a network with extra
information about the status of stones surrounding the
proposed move was developed. This showed no
improvement over the best networks trained to date.

45

40 4

35

——newBPN3Lookahead0.bpn

30 ——newBPN313x13b.bpn L

——newBPN3b.bpn
25 =

20

Average Rank Of Professionals Move

IR I I N N N I NN
PSPPSR L SRS S

SRR A R S S SR U S S S S SR
NIEE SN RV S RN RN R SO QR SIS

Epochs Trained

Figure 3 - Training Performance of NNs

CONCLUSIONS

One of the most obvious problems with computer Go
playing programs at present is that after a human opponent
has played against the program a handful of times, they can
very easily identify and exploit weak spots in the programs
play. A method to rectify this computer Go hurdle would
most likely involve machine-learning techniques such as
neural networks to allow the program to adapt its tactics to
the opponents style of play. This in itself opens up many
complex problems such as how to define tactics for this
game, where often there will be many moves in a game that
are played for reasons involving indistinct, abstract Go
concepts such as shape.

A good review of research in the computer Go arena has
been published which considers some of these issues and
proposes more possible lines of research [14]. All in all Go
is a very challenging game for computers and humans alike
and looks set to push the boundaries of artificial
intelligence in the coming years and certainly warrants
greater consideration by the AI community as a whole.

References

(1]

(2]

(6]

[7]

(8]

Computer Go Ladder 2002, See
http://www.cgl.ucsf.edu/go/ladder.html

Dahl, F, “Honte, a Go-Playing Program Using
Neural Nets”, from Workshop Notes: Machine
Learning in Game Playing. 16th International
Conference on Machine Learning (ICML-99),
Bled, Slovenia, 1999, available on the Internet at
http://www.ai.univie.ac.at/icml-99-ws-
games/papers/dahl.ps.gz

Donnelly, P, Corr, P, Crookes, D, “Evolving Go
Playing Strategy in Neural Networks”, 1994,
available on the Internet at
ftp://www.joy.ne.jp/welcome/igs/Go/computer/egp

snn.ps.Z

Enderton, H, “The Golem Go program”. Technical
Report CMU-CS-92-101, School of Computer
Science, Carnegie-Mellon University, 1991,
available on the Internet at
ftp:// www.joy.ne.jp/welcome/igs/Go/computer/gol
em.sh.Z

Enzenberger, M, “The Integration of A Priori
Knowledge into a Go Playing Neural Network”,
1996, available on the Internet at
http://www.markus-enzenberger.de/neurogo.html

Fotland, D, “Knowledge Representation in the
Many Faces of Go”, 1993, available on the

Internet at http://www.smart-
games.com/knowpap.txt

GNU Go, latest version can be found at
http://www.gnu.org/software/gnugo/gnugo.html

Miiller, M, “Computer Go as a Sum of Local
Games: An Application of Combinatorial Game
Theory”, PhD thesis, ETH Ziirich, 1995, available
on the Internet at
http://www.cs.ualberta.ca/~mmueller/publications.
html

Plaat, A, “MTD(f), A Minimax Algorithm Faster
than NegaScout”, 1997, available on the Internet at
http://www.cs.vu.nl/~aske/mtdf.html

[10]

[11]

[12]

[13]

[14]

Reiss, M, Go4++, information can be found on the
Internet at
http://www.reiss.demon.co.uk/webgo/compgo.htm

Richards, N, Moriarty, D, Miikkulainen, R,
“Evolving Neural Networks to Play Go”, Applied
Intelligence, 1996, available on the Internet at
http://www.cs.utexas.edu/users/nn/pages/publicati
ons/neuro-evolution.html

Schraudolph, N, Dayan, P, Sejnowski, T,
“Temporal Difference Learning of Position
Evaluation in the Game of Go”, Neural
Information Processing Systems 6, Morgan
Kaufmann, 1994, available on the Internet at
ftp://bsdserver.ucsf.edu/Go/comp/td-go.ps.Z

Computer Go Mailing List, see
http://www.cs.uoregon.edu/~richard/computer-

o/index.html

Muller, M, “Computer Go: A Research Agenda”,
1999, available on the Internet at
http://www.cs.alberta.ca/~mmueller/publications.h
tml

Networked team games
Fiona French, Nic Hollinworth, Nigel Medhurst, Xavier Viader
London Metropolitan University
London, United Kingdom

Abstract

In this paper, we describe the design of a
networked, multiplayer game designed for
first year students taking a flexible learning
course in “Introduction to Multimedia
Coding” at London Metropolitan University.
The game aims to motivate students, to
help them consolidate their knowledge, to
introduce them to teamwork, to provide
them with peer support and to give them
the opportunity to make social contacts.
The prototype version of the game has been
successful in meeting some of these
objectives and feedback from students has
clear implications for future developments.

Introduction

In Higher Education, there is currently a
strong emphasis on the development of
flexible learning courses which can be
delivered online. Such courses facilitate
government and institutional aims of
widening participation by producing an
alternative means of learning. There is also
a potential marketing advantage. When a
course has been developed and proved itself
to be successful, institutions may choose to
offer it nationally or internationally, thus
attracting a more diverse range of students
and extending their traditional geographical
limits.

Collis and Moonen (2001) maintain that the
key idea in flexible learning is to provide
learner choice. Areas that could potentially
become more flexible include location,
delivery of resources, types of
communication and interaction within the
course, programmes of study and methods
of assessment. From the students' point of
view, online courses provide the opportunity
to access materials from home at convenient
hours and to combine study more easily

with full-time or part-time work. Learning
becomes self-directed, rather than
structured by teacher-led sessions, which
should promote autonomy.

Brookfield (1995) suggests that adults
engaged in self-directed learning “...use
social networks and peer support groups for
emotional sustenance and educational
guidance.” However, a potential
disadvantage of distance learning is the lack
of opportunity for teamwork, as it is likely to
be difficult to arrange meetings with other
students if there are no scheduled lectures
or tutorials. This is particularly a challenge
for first year students, who need
opportunities to socialise and network.
The designers' intention was to counteract
this problem by introducing a playful, team-
based activity to complement the online
learning resources.

The Game has been designed as an ice-
breaker for first year undergraduates taking
a flexible learning course in “Introduction to
Multimedia Coding”. The game itself is
simple and in its prototype phase. As an
optional component of a flexible learning
package, it introduces the concept of
teamwork to first year students, by giving
them the challenge of taking part in a
multiplayer competition which requires them
to work together to complete levels of the
game.

Team Play

Play is traditionally a social activity and this
is an aspect that has been missing from
many computer games. Recent
improvements in networking technology and
hardware have given rise to a renewed
potential for networked multiplayer games,
and this is revitalising the gaming industry.
Smith (2001) acknowledges that MPGs are

the future of game design, noting out that
at present they rely on the agency of other
players to provide the majority of their
excitement and interest. The next
generation of gaming consoles (PS2, X-Box)
has built-in internet connectivity, allowing
players to become involved in online games.
Mobile devices, such as the GBA, may soon
be seriously challenged by mobile phones
that can play java games and have colour
displays and internet access.

The current climate suggests that social
gaming will involve competing against other
players in an open arena. While this may be
more stimulating and less predictable than
trying to beat a computer program, it
reveals limited possibilities for collaboration
between players and associated practise of
communication skills, such as negotiating,
turn-taking, presenting information and
seeking resolution, all of which are qualities
that make games attractive to educators.

McGenere (2000) categorises games as
cooperative, competitive and individualistic,
and points out that cooperative games
provide opportunities for teamwork, which in
itself can be a highly motivating factor for
players. Kirriemuir (2002) indicates five
distinct benefits that can be associated with
the use of computer games in a relevant
educational context: (i) band-eye
coordination; (ii) developing strategic skills;
(iii) developing team, social, communication
and resource sharing skills; (iv)
encouraging curiosity and experimentation;
(v) familiarity with technology.

Bekoff's observations (2002) of pack animals
lead him to believe that a sense of fairness
is innate, because social play could not exist
without it. Animals who are active in
playing with each other bond better with the
pack and are less likely to be forced to go
off as lone hunters. From a biological point
of view, being a good player aids longevity
and the potential to reproduce. Bekoff
concludes that morality has evolved through
play because it helps animals, including
humans, to flourish in a social environment.

Real teams and virtual teams

Multimedia students need to learn how to
work successfully together, so that they can
complete team-based assignments.
Teamwork also provides them with essential
training for work within their industry.

McGrath's taxonomy for group activities
(1984) includes conflict, power struggles
and competitions as part of the ritual
leading towards performance. These kinds
of interactions have all been evident in the
performances of multimedia students trying
to work together, but the most successful
and creative teams are almost always made
up of students who enjoy each others'
company and learn to collaborate. Panitz
(1996) defines collaboration as: “...a
philosophy of interaction and personal
lifestyle,” contrasting it with cooperation,
which is defined as: “...a structure of
interaction designed to facilitate the
accomplishment of an end product or goal.”
Students must learn to cooperate with each
other, or their team will fail; if they learn to
collaborate, they will probably have some
fun, be motivated to succeed and gain
tremendous satisfaction from participating in
groupwork.

Research has been done into the
pyschological profiles of people working in
teams in a real environment (Belbin, Myers-
Briggs, McGrath) and also in the field of
computer-supported collaborative work,
both in an educational and a work context
(Davis, Brookfield, Chandler, Nunamaker).
Certain phenomena seem to be recurrent,
such as the tendency for team members to
slip into familiar roles, and for some to
participate actively while others “lurk.”

Davis (1997), writing about virtual
communities, points out that under normal
social conditions, certain expectations have
to be fulfilled in order for someone to be
accepted as part of a community. In
cyberspace, however, many people are not
willing to engage in social exchanges.
Nunamaker (1997) highlights the difficulty of

getting users of online systems to maintain
their engagement over time. Interaction
between players in online games has been
investigated by Manninen (2001), who noted
that the majority of communication took
place outside the game system. However,
from an educational perspective, this is not
necessarily a disadvantage, as the purpose
of including a multiplayer game is to actively
encourage social contact between players
away from the computer screen.

Description of The Game

Playing the game is optional. Students who
wish to participate email their tutor for a
login and password to the game
environment. They are assigned to a team
of four players and given email contact
details for the other team members.
Students are encouraged to make real
contact with their team, so that they can
cooperate during play and help each other
gain high scores.

The game consists of a number of levels,
loosely related to the content of the course.
Some levels require the players to recycle
information they should have acquired
during the course. These could be
interpreted as a type of self-assessment
activity, where the player has an opportunity
to practise before submitting a final score.
Other levels of the game are experiential
and aim to simulate for players the
experience of, for example, sensory
deprivation. These are linked to course
components dealing with accessibility and
cognitive processing. Examples of game
levels are described below.

All team members need to achieve a
minimum score in order for the team to
move on to the next level. Each player's
score is added to the total. There is a score
screen that shows how each team is
progressing and reveals which teams are in
the lead.

welcome to The Game... LLOSE SCORE
peosseonnoonaensacr).

TEAM SCORE |
in da heuse 23

Team 13 38

mMecca 113

Iidas 111

Q0E0 107

red 40

T 23

VANS 30

L | [10

- 10
rmanchester

R@‘LOX\ | .ia)ﬂ

“Scoreboard” screen

Level 1 — Team log-in

The initial challenge for the team is to meet
each other, exchange information and input
relevant data to the game, such as choosing
a team name and a representative icon.
The point of this exercise is to initiate

conversation and promote cooperation
between team members, who may not have
previously met. Only when all team
members have successfully completed the
task with identical information does the
team gain access to Level 2.

Level 2 — Know your enemy

This is a version of the ubiquitous shoot-em-
up, with course tutors for targets. The twist
is that players can be awarded plus or minus
points, depending on who they hit. The

intention is to ensure that students know
which members of staff to contact about the
course and that they know their tutors'
names and can recognise them.

“Know your enemy” screen

Level 4 — Hit the Spot

This is the first of a series of games that
explore perception. For example, some
variables, such as colour, can be recognised
very quickly, but are limited in range. It
takes longer to distinguish between different

shapes that are the same size, and yet the
range of possibilities is infinite. Players gain
a high score if they have a fast reaction
time. They have to match the object
revealed behind a sliding screen with a
moving miniature button.

o0

hits: MISEE Aanonds

Sl S N S

oNN .
Hal: ..

“Hit the Spot” screen

Level 6 — Treasure Hunt

In this level, players are gradually deprived
of visual data and have to rely on audio
effects in order to navigate the game
environment. There are practice games,
which train the player to recognise particular
sounds and interpret their meaning,
followed by a scoring game which only
shows a black screen. Players have to avoid
mines and find golden cups, guided by

different sounds that indicate their relative
position and proximity to danger or buried
treasure.

Evaluation of prototype

The prototype game was tested in a
workshop environment, where it was easy
for team members to meet face-to-face and

exchange ideas and information. The
session was timetabled and organised, but
not mandatory, allowing disinterested
parties to continue with alternative activities.
The players were second year students who
were familiar with many but not all of their
colleagues. They were put into teams with
students with whom they did not normally
work. It was clear that most of the students
enjoyed the experience of playing
synchronously and sitting together to
discuss the game. This led to the decision
that in future implementations, a scheduled
introductory session would be preferable to
leaving novice players to make their own
arrangements to form teams.

Manninen (2001) suggests that co-operative
incentive structures that reward individual
group members based on the performance
of the group can stimulate peer pressure
and lead to participation and coordination of
effort. This was found to be the case during
gameplay, when team members helped
each other to complete levels so that the
whole team could continue. During the
session, the atmosphere was loud and
enthusiastic. One student commented: "It
was a very good way of helping build
communication and spirit.”

Of the eleven teams, each consisting of four
players, the scoreboard revealed one clear
winning team (623 points), four potential
challengers and five teams who did not
progress past level 1. Some players gave up
if they encountered any technological
hitches. They were easily bored and
unwilling to test an imperfect application. As
the game was designed to be persistent and
tackled by players in turn at different times,
the player status was tied to the log-in
mechanism. This meant that players were
obliged to log in again at the end of every
level in order to proceed, which was quickly
revealed to be a flaw.

Observation of players and feedback from
students was useful and constructive. Some
levels were difficult to complete. It could
be argued that the application provided
insufficient feedback for novice users.
However, this was often treated as a

problem-solving activity, which promoted
communication.

Conclusion

The game seemed to meet the immediate
objectives of promoting teamwork and
providing opportunities for social contact
between students. It would be an
interesting activity to use at the start of a
first year course. Large classes can be
intimidating and this could be a friendly and
fun method for helping students to break
the ice, as well as practise their computer
skills.

Consolidation of knowledge was not
assessed in this evaluation, although some
of the levels were quizzes that related to
course material. Self-assessments are often
popular with students, as feedback is
computer-generated and therefore
immediate, performance is private and
exercises can be repeated at the student's
own pace. While it would be useful to know
if quizzes helped students to recycle course
material, it would be a pity to tarnish the
game with the Ilabel “edutainment,”
condemned by Jenkins (2001) as having ...
all of the entertainment value of a bad
lecture and the educational value of a bad
game..."”

It will be interesting to discover whether
teams persist over a semester in the gaming
environment and whether they manage to
transcend the typical obstacles facing
groups in a collaborative virtual
environment.

References

Bekoff, M (2002) Virtuous Nature, New
Scientist 13 July 2002, Reed Business
Information Ltd.

Belbin, Meredith (1993). 7eam Roles at
Work. London: Butterworth and
Heinemann.

Brookfield, Steven (1995) Adult Learning: An
Overview. In: A. Tuinjman (ed.) (1995)

International Encyclopedia of Education,
Oxford: Pergamon Press.
http://nlu.nl.edu/ace/Resources/Documents/
AdultLearning.html

Chandler, H. E. (2001). 7he complexity of
Online Groups: A case study of
asynchronous distributed collaboration. ACM
Journal of Computer Documentation, 25:1-
2.

Davis, M. (1997), Fragmented by
technologies: a community in cyberspace.
In: Interpersonal Communication and
Technology Journal Vol. 4 No 1/2.
http://jan.ucc.nau.edu/~ipct-j/#byissue

Game Boy Advanced: Nintendo
http://www.gbacentral.net/

Jenkins, Henry (2001) MIT Games-to-teach
Project
http://cms.mit.edu/games/education

Kirriemuir, J (2002) T7he relevance of video
games and gaming consoles to the Higher
and Further Education learning experfence.
JISC 2002

http://www.ceangal.com/

Manninen T. (2001) Virtual Team
Interactions in Networked Multimedia
Games - Case: "Counter-Strike” - Multi-
player 3D Action Game. In Proceedings of
PRESENCE2001 Conference, May 21-23,
Philadelphia, USA, Temple University

McGrath, J., & Hollingshead, A. (1994).
Groups interacting — with technology.
Thousand Oaks CA: Sage.

McGrenere, 1. (1996) Design: Educational
electronic multi-player games A literature
review. (Technical Report No. 96-12).
Department of Computer Science, University
of British Columbia, Vancouver, BC, V6T
174, Canada.

http://citeseer.nj.nec.com/mcgrenere96desi

gn.html

Myers-Briggs Type Indicator: Working out
your Myers-Briggs Type

http://www.teamtechnology.co.uk/tt/h-
articl/mb-simpl.htm

Nunamaker, J. F. (1997) Future research in
group support systems: needs, some
qguestions and possible directions.
International Journal of Human-Computer
Studies, 47, 357-385.

Panitz (1996) A Definition of Collaborative vs
Cooperative Learning. Published online in
Deliberations.
http://www.lgu.ac.uk/deliberations/collab.le
arning/panitz2.html

Play Station 2: Sony
http://www.playstation.com/

Smith, Harvey (2001) The Future of Game
Design: Moving beyond Deus Ex and other
dated paradigms. Keynote for Multimedia
International Market 2001; published online
by International Game Developers
Association.
http://www.igda.org/Endeavours/Articles/hs
mith printable.htm

X-Box: Microsoft
http://www.xbox.com/

http://nlu.nl.edu/ace/Resources/Documents/AdultLearning.html
http://nlu.nl.edu/ace/Resources/Documents/AdultLearning.html
http://jan.ucc.nau.edu/%7Eipct-j/
http://www.gbacentral.net/
http://cms.mit.edu/games/education
http://www.ceangal.com/
http://citeseer.nj.nec.com/mcgrenere96design.html
http://citeseer.nj.nec.com/mcgrenere96design.html
http://www.teamtechnology.co.uk/tt/h-articl/mb-simpl.htm
http://www.teamtechnology.co.uk/tt/h-articl/mb-simpl.htm
http://www.lgu.ac.uk/deliberations/collab.learning/panitz2.html
http://www.lgu.ac.uk/deliberations/collab.learning/panitz2.html
http://www.playstation.com/
http://www.igda.org/Endeavours/Articles/hsmith_printable.htm
http://www.igda.org/Endeavours/Articles/hsmith_printable.htm
http://www.xbox.com/

REAL-TIME VIDEO BASED MOTION CAPTURE SYSTEM AS INTUITIVE 3D GAME INTERFACE

Yoshiaki Akazawa, Yoshihiro Okada, and Koichi Niijima

Graduate School of Information Science and Electrical Engineering
Kyushu University
6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580 JAPAN
{y-aka, okada, niijima}@i.kyushu-u.ac.jp

KEYWORDS

Motion capture, Motion recognition, Interface, 3D games

ABSTRACT

This paper proposes a real-time, video based motion capture
system using one video camera and simulates its use as an
intuitive interface for interactive 3D games. Since
conventional video based motion capture systems need many
cameras and take a long time to deal with many video
images, they cannot generate motion data in real time.
Therefore they cannot be used as a real-time input device for
a standard PC. To deal with this problem, the authors have
already proposed a motion capture system using one video
camera (Akazawa et al, 2002a). It takes video images of the
upper part of the body of a person and generates upper body
motion data, e.g., X, y, z position of hands, a face rotation,
etc.. Since the system employs a very simple motion-
tracking algorithm, so it generates such upper body motion
data in real time. This paper especially focuses on the
tracking of hands motion on the top of a desk, and proposes
the use of its motion data as 3D game input data instead of
that from a mouse device.

1. INTRODUTION

This paper treats a video-based motion capture system using
one video camera. Many researches on the motion capture
system have been made so far because motion data has
become in great demand for CG animation productions and
3D game productions. Conventional video based motion
capture systems use many video cameras to obtain accurate,
desired motion data so they cannot generate motion data in
real time since it takes a long time to deal with many video
images. Consequently it is impossible to use them as a real-
time input device for human motion. Moreover such
systems are very expensive so they are not suitable for an
input device of a standard PC. To overcome this problem,
we have already proposed a real-time, video based motion
capture system using only one video camera to be used as an
input device for a standard PC (Akazawa et al, 2002a).
Since our system uses a very simple motion-tracking
algorithm based on color and edge distributions, it is capable
of tracking the upper part of the body of a person, e.g.,

hands, a face, etc, and generates their motion data in real
time. Our system is easily extended to track the lower part
of the body of a person as well as the upper part of the body
and to generate more accurate 3D motion data by using two
video cameras (Akazawa et al, 2002b).

This paper mainly describes the characteristics of our
proposed motion capture system consisting of one video
camera as an input device to be used instead of a mouse
device for intuitive 3D game interface. The focus is on the
tracking of hands motion. The system takes video image of
the hand from one video camera and extracts its X, y z
position data. This information can be used as an input data
like that from the mouse-device motion. Furthermore, the
system recognizes specified shapes of the hand, e.g., a paper
or a stone shape. This information can be used as an input
data like the mouse-device button press or release. In this
way, our motion capture system can be used as an intuitive
interface in place of a mouse device for various application
software including games. In this paper, we also clarify its
usefulness by showing some 3D games.

[Related work]

Many works on the video based motion capture system have
been made so far (Gravrila, 1999). Recently motion capture
systems without using any markers have been studied (Wren
et al, 1997). Their standard method for tracking the human
motion is based on the construction of a 3D shape as voxel
data from several silhouette images (Snow et al, 2000).
However, this process needs huge computation time. Some
particular techniques and other constraints are necessary to
reduce this computation time. Weik and Liedtke proposed a
hierarchical method for 3D pose estimation (Weik and
Liedtke, 2001). Luck et al. proposed a real-time algorithm
by reducing joints of a human body and their degrees of
freedom (Luck el al., 2001). These systems use four video
cameras at least and need a huge performance space. Our
system uses only one video camera. Already some methods
that use one video camera are proposed, but our method is
simpler than those. Musse et al. proposed hand sign
recognition method using a neural network. This system can
recognize many hand signs. However the system has to use
data glove while our system uses only one video camera.

The remainder of this paper is organized as follows. Section
2 explains system overview. Section 3 explains tracking
algorithm. Section 4 shows example games. Finally,
Section 5 concludes the paper.

2. SYSTEM OVERVIEW

First of all, as an overview of the system, this section briefly
describes its hardware architecture and software architecture
separately.

2.1 Hardware architecture

The system hardware consists of a standard PC, a video
capturing board, and a video camera. If there are two
systems connected with each other through the network as
shown in Figure 1, they communicate with each other and
work collaboratively. This hardware generates motion data
by extracting person's image from each frame of video
camera images and by computing the difference between
two adjoining person's images. This motion data is used as
an input data for other applications. Using the network
communication facility (network thread in Figure 2), this
motion data is sent to other applications running on another
computer through the network.

2.2 Software architecture

The software architecture has two main threads, i.e., tracking
thread and application thread, as shown in Figure 2.
Tracking thread tracks the person's motion, generates motion
data and sends it to a 3D graphics application, i.ec.,
application thread. Visualization thread displays a person
image as animation according to the motion data on a
display screen. This is used for checking the motion
tracking. Finally network thread 1is a network
communication facility itself. Tracking thread sends motion

LAN cable
¢ Video cable to Digital camera
B L] capture board e
= . Q Digital . Q
ML Video cable to
capture board
computer | computer 2
Figure 1: Hardware architecture
. . Control E. : |
: Application the other ™ Application |} Communicate
: Thread appliction| |} Thread |:With the other
s i user]
’ Tracking |} Visualization Tracking |} Visualization
1 Thread |: Thread :| Thread |:|Thread
’ Network L o Network
\ Thread ~ Network | Thread
e

Computer 1 Computer 2

Figure 2: Software architecture

data to other 3D graphics applications running on a different
computer through this tracking thread.

3 TRACKING METHOD

This section explains how to track the person's motion.
Before tracking, the system requests an initializing process.
And then the system starts the tracking process.

3.1 Initializing process

As previously mentioned, the system tracks the person's
motion by extracting person's image from each frame of
video camera images and by computing the difference
between two adjoining person's images. First of all the
system needs to store a background image excluding a
person as an initial treatment.

After storing the background image, the system starts to
track the motion. For each video frame in the tracking
process, the system extracts the silhouette of a person by
subtracting the stored background image from the current
video image, and extracts a person’s image using this
silhouette as shown in Figure 3.

As explained in the next subsection, since the motion
tracking is based on the color information, the system needs
to store an initial state of the color information of the
person's image. The system requests the user to perform
his/her initial pose in order to obtain the color information of

silhouette image extracted image

background image

Figure 3: Image extraction process

right hand left hand
initial position adjust size of
of focus areas focus areas

L]

initial position
of focus areas

Figure 4: Initial pose setting

each tracking area of the user’s body as shown in Figure 4.

3.2 Tracking hands

The motion tracking is mainly carried out based on the color
information of each specific area of the body. Strictly
speaking, the median point of the color information is used
as the center of the corresponding focus area. It is calculated
using Equation 1.

1 z’” 1 Z’”
c = c (l)7 c = c (l) ()

where X, Y. are the centroid coordinates of the color
distribution. X.(i), Y.(i) are the X, Y coordinates of the i-th
color point, and 7 is the number of color points.

However, practically the color information is insufficient for
robust motion tracking. For example, the color of the skin is
uniformly distributed over the arm as shown in Figure 5. If
the user wants to track his/her hands, its color centroid is
influenced by the arm color and it moves to the center of the
arm area gradually. Consequently the system will loose the
focus area. To compensate this weakness, we employ new
measure concerning the edge distribution in addition to the
color information. Similar to the color information, the
median point of the edges, which are the contour pixels of a
focus area, is used as the center of the area. It is calculated
using Equation 2.

X =yxor=1yren o
n o n i

where X,, Y, are the centroid coordinates of the edge

Force direction Focus area

of edge centroid

Centroid
of edge

Force direction

of color centroid of color

Figure 5: Computing focus point

1
Forcus Focus
area

Near Far

Figure 6: Depth values based on their focus area size

distribution. X,(i), Y.(i) are the X, Y coordinates of the i-th
edge point and 7 is the number of edge points.

The edge centroid is always located on the upper part of the
hand. So the system does not loose the focus area. However,
the edge centroid is strongly influenced by the change in the
shape of hand. Therefore, we use weight values for both the
color centroid and the edge centroid. As a result, the focus
area becomes stable. The centroid of the focus area is
calculated using Equation 3.
Y - wX, +wX,

P

,Y :WCYC+W€},€

p

3
w, +w,

w.+Ww,
where X),,Y,, are the centroid coordinates of the focus area. w,
is the weight of the edge and w, is the weight of the color.

3.3 Motion data

As described in the previous subsection, our system
generates x, y location data for each tracking area. This is
enough for most applications. Especially when using our
motion capture system as a mouse device, this is enough.
However, for some cases it is not enough. For example, in a
virtual reality application, usually we need 3D position data
for manipulating a 3D object. Therefore, we employ another
measure concerning the depth.

The depth value is determined by the size of a focus area as
shown in Figure 6. This reason is easy to understand
because the size of an object far from the camera position is
smaller than that of the near one.

distance

Paper shape Stone shape

Figure 7: Shape recognition by edge distribution

—— Stone ---=---paper

count/edge distribution
: ot

0 02 04 06 08 1

distance/radius of focus area

Figure 8: Edge distribution: two typical histograms
of a stone shape and a paper shape

3.4 Shape recognition

Furthermore the system recognizes some shapes of a specific
object besides generating motion data. Currently the system
can recognize the hand shapes, e.g., a stone and a paper. To
recognize a requested hand shape, the system has to
calculate the difference between a current hand image and a
candidate hand shape image. We employ a very poplar
method; to calculate the difference between two images, the
system compares the histograms of their edge distributions.
A histogram is generated from the following Set D . This set
means how each point of the edge is distributed from the
centroid of the hand image as shown in Figure 7.

D:{DlaDza"'nDn} “4)

where D; is i-th edge distance from the centroid of the focus
calculated by the following equation.

Di:\/(xi_X)2+(yi_Y)2 Q)

where X and Y are centroid coordinates of the focus area
calculated by Equation 3. x; and y; are the coordinates of the
i-th edge.
Figure 8 shows two typical histograms of a stone shape
image and a paper shape image. Since their images of
different shapes of hand have different histograms, therefore,
by calculating the error between the histograms of a current
hand image and a candidate stone shape image, and the error
between the histograms of the current hand image and a
candidate paper shape image, and then finding them
minimum, the system recognizes the current hand image to
be a stone shape image or not.

Histograms comparison

To calculate an error between the histograms of a current
hand image and a candidate shape image, i.e., a stone shape
or a paper shape, we have to prepare histograms of such
candidate shape images in advance. Figure 9 shows the two
candidate histograms of a stone shape and a paper shape.
These candidate histograms were calculated from the data
actually captured by our motion capture system. Strictly
speaking, each of these candidate histograms is obtained
through some processes. First process is to generate ten
histograms from ten different sets of capture data of the
same hand shape. Second process is to normalize each of

‘ —e—stone —®—paper ‘
1200
- *
g 1000 K A
S 800 *
3 |
X600 \
=
£ 400 i e
o
=200
0
1 5 9 13 17 21 25 29 33 37 41 45 49
class mark

Figure 9: Base histograms of two shapes

these ten histograms. Normalization is adjusting the
maximum rank size and the total amount. Final process is to
calculate the average of these ten normalized histograms and
to take it as a candidate histogram. Each candidate
histogram is represented as the following Set H .

H={H,H,,.H,| ©)

where 7 is the number of ranks. H, is i-th rank value.

Then our motion capture system calculates errors between
each of these candidate histograms and the histogram of the
current hand image actually captured. We employ Euclidean
distance as an error metric. Each error is calculated using
the following equation.

E:\/(Hl _H'1)2 +(H2 _H'2)2 +"'+(Hn _H'n)z (N

where H; is i-th rank value of the histogram of a current
video image. H; is i-th rank value of the candidate histogram
of a stone shape image or a paper shape image.

Finally, the system outputs a symbol value according to the
result of calculated errors. Currently the system recognizes
only two hand shapes. However, it is possible to recognize
more other shapes by preparing corresponding candidate
histograms. In this way, this shape recognition method is
very simple and useful. However, this method is insufficient
to recognize more complex hand signs. So, we will
implement more efficient technique to enable our system to
recognize more hand signs (Cui and Weng 1996).

Noise removal about hand shape symbol

As previously mentioned, our system generates position data
as the center of the hand image in real time. However such
position data does not match the true center position of the
hand. Especially when the user moves his/her hand quickly,
its error between the generated position data and the true
center position come to be bigger as shown in Figure 10. In
this case, the system calculates the incorrect histogram of a
hand shape distribution, and outputs an incorrect symbol
value. This data becomes a noise. To recognize the hand
shape correctly, the system removes this noise as follows:
The following Set S is a sequence of symbols that the system
outputs as the result of hand shape recognition.

§=(00,000,000,100,000000,LLLLLLLLLLOLLLLLLI) (8)

correct focus point==~<_
~

direction of
the hand move

calculated focus point

Figure 10: Failure case because of rapid movement

where 0 and 1 indicate a paper shape and a stone shape
respectively.

As is easily understood, there are two noise values in S. The
ninth symbol 1 is the first noise value and the 28th symbol 0
is the second noise value. It is easy to remove these noise
values because if the length of a subsequence of the same
symbols is less than, for example, five, the subsequence
must be noise. In this way, our system removes noise values
and outputs the correct Set S~ as follows.

§=(0,000,0000,000000000LLLLLLLLLLLLLLLLLI) (9)

As explained in this section, our system outputs 3D motion
data of each hand and a symbol value corresponding to its
shape. This data is almost similar to the one output by a
mouse device. Next section introduces some 3D game
examples that use our motion capture system as an input
device instead of a mouse device.

4. EXPERIMENTS
4.1 3D game examples

In this section, we introduce two board game examples, i.e.,
chess and reversi games as shown in Figure 11 and Figure
12. These games are developed using IntelligentBox (Okada
and Tanaka, 1995, Okada and Itoh 2000), which is a
constructive visual 3D software development system.

M intelligentBox - 18

TrLE BRE FTW OBEQ DOFOW ALIH

) siela| 30 slololslafe

WEQ) DFIW ALTH

o 5 o] e i P s ST T S T

g PushButithqx
RotationBox
PushButtonBox

Figure 12: Reversi game

IntelligentBox provides various software components as 3D
visible, manually operable reactive objects called boxes. For
example, as shown in Figure 11, each chessman rides on a
XYMoverBox. This box moves along left-right direction and
forward-backward direction according to the user’s mouse
device operation. As shown in Figure 12, each reversi chip
is also attached to a XYMoverBox. The user moves each
chip by his/her mouse device operation. Although, in this
way, a mouse device is originally the input device for these
games, our motion capture system also becomes the input
device for these games as follows.

Figure 13 shows a composite box that communicates with
the motion capture system and handles a mouse device.
Strictly speaking, a VM CBox communicates with the motion
capture system and reads hand motion data. A
VirtualMouseBox handles a mouse device according to the
hand motion data. Three StringBoxes represented in wire
frame are attached to the VirtualMouseBox. These boxes
display a mouse-device X, Y position and left-button click
information. Using this composite box, the user can move a
chessman or a chip by his/her hand motion as shown in
Figure 14. When the user wants to grasp an object, he/she

[intellieentBox —

Figure 13: A composite box that communicates
with the motion capture system and handles a
mouse device

Ll

L‘Hl‘,lk-: A
object

release the object

Figure 14: User control

it 1 : z
i
Options Gapture(C) Network) Help

Filz Edit

RO RO ALPH

Debue Felease "WC3ZF2TMP aaab

CAPTEST.D.. Captestdsp Captestdsw

T . I

GCaptestnch captestobj Caplestopt Gaptest

+ b
C' @ i
captestsym commepp ommh comm

Makefile RGa18569 RGaB8457 RDal8t

(5]

L}

3

SHELLAPLH captestexe

/ |
Axs—t|| & B EE S || 252 | B Ukpspar2dos | ERIGMER002 fin. | BRirtamations! p.[TF TntelligentB.. JGAPTESTIE | Slrconclusiontls

frame 1 frame 2 frame 3

Figure 16: The change of position in three video
frames

takes a grasp action and simultaneously mouse device left-
button click information becomes true. Then, he/she moves
the object to where he/she wants to place, and releases it by
his/her release action. In this way, the user can feel
immersion as if he/she played the real board game.

In the actual case, you play a chess or reversi game with
your opponent. Network collaboration environment for this
case will be build as follows. IntelligentBox also provides a
network communication facility as a particular box called
RoomBox (Okada and Tanaka 1998). Multiple RoomBoxes
on a different computer share specific user-operation events
with each other. Therefore those RoomBoxes virtually
provide multiple users with a shared 3D space. Then using
the RommBox, it is possible to build network collaboration
environment rapidly and easily. Needless to say, technically
it is possible to use RoomBox on Internet. However, if you
want to build actual playable network games using RoomBox
on Internet, IntelligentBox has to employ advanced network
technology, e.g., client-server mechanism, particular

W 5 il ol) el 5]

|
i L‘-““"‘
|

JpTi=
]
i; ik ‘

4 b *|‘

¥

«"| 3.
-
&

—&— motion data

300

y position

1 6 11 16 21 26 31
X position
—e&— smooth data
300
250
= 200
2
=150
=
-3
>.100
50
0
1 6 1 16 21 26 31
X position

Figure 17: The changes of x, y position and the

corresponding smooth data

network protocol and so on since RoomBoxes on different
computers communicate with each other by a standard peer-
to-peer socket connection.

4.2 Performance

As for the performance of our system, the sampling rate,
when its resolution is 320x240 pixels, is around ten fps on
the standard PC (Pentium IV 2.0 GHz, 1.5GB) with one
video camera. In this experiment, both the motion capture
system and [IntelligentBox ran on the same PC. Generally
ten fps is enough for most interactive 3D applications.

4.3 Discussion

As described in the previous sections, our system generates
motion data from the information of video images.
Generally speaking, since the video camera is very sensitive
to the light and easily affected by photo-noise, so video
images can undergo change. As a result, as shown in Figure
16, even if hand in three different video frames has almost
the same shape and position, corresponding calculated focus
points are different from each other and then position values
generated by the system vibrate as shown in the upper chart
of Figure 17. This becomes serious problem when using our
system as an input device that generates absolute position
values. To solve this problem, we will make motion data
smoother as shown in the lower chart of Figure 17.

5. CONCLUDING REMARKS

This paper proposed the real-time, video based motion
capture system as intuitive 3D game interface. Since
conventional video based motion capture systems use many
video cameras and take a long time to deal with many video
images, they cannot generate motion data in real time.
Therefore they cannot be used as a real-time input device for
a standard PC. On the other hand, our proposed system uses
only one video camera and generates motion data in real
time since our system employs a very simple tracking
algorithm based on color and edge distributions of tracking
focus areas. So our system can be used as an input device
for a standard-PC. In this paper, especially we clarified
usefulness of our system as intuitive input interface for 3D
games by showing some example games.

As a future work, the very common problem concerning
motion capture systems is an occlusion problem. Although
we did not mention it in this paper, we have already

proposed one solution for it and we will report it in
MVA2002 conference (Akazawa et al, 2002¢). Furthermore,
we will develop more example games and evaluate their
performance to improve our algorithm.

REFERENCES

Akazawa, Y., Okada, Y. and Niijima, K. 2002a. “Real-Time
Motion Capture System Using One Video Camera Based on
Color and Edge Distribution”, Proc. of CSCC2002 (Recent
Advances in Circuits, Systems and Signal Processing), WSEAS
Press, 368-373.

Akazawa, Y., Okada, Y. and Niijima, K. 2002b. “Real-Time Video
Based Motion Capture System Based on Color and Edge
Distribution, Proc. of /EEE Int. Conf. on Multimedia and Expo,
Vol. II, 333-336.

Akazawa, Y., Okada, Y. and Niijima, K. 2002¢c. “Robust Tracking
Algorithm Based on Color and Edge Distribution for Real-
Time Video Based Motion Capture Systems, to appear in JAPR
Workshop on Machine Vision Applications 2002.

Cui, Y. and Weng, J. 1996 “Hand Sign Recognition from Intensity
Image Sequences with Complex Background.” in Proc. IEEE
Conf. Computer Vision and Pattern Recognition, 88-93

Gravrila, D. M. 1999. “The Visual Analysis of Human Movement:
A Survey.” CVPR, Vol. 73, 82-98.

Luck, J., Small, D. and Little, C.-Q. 2001. “Real-time Tracking of
Articulated Human Models Using a 3D Shape-from-Silhouette
Method.” Robot Vision 2001, LNCS 1998, 19-26.

Okada, Y. and Tanaka, Y. 1995. “IntelligentBox: A Constructive
Visual Software Development System for Interactive 3D
Graphic Applications.” Proc. of Computer Animation '95, IEEE
Computer Society Press, 114-125.

Okada, Y. and Tanaka, Y. 1998. “Collaborative Environments of
IntelligentBox for Distributed 3D Graphics Applications.” The
Visual Computer, Vol. 14, No. 4, 140-152.

Okada, Y. and Itoh, E. 2000. “IntelligentBox: Its Aspects as a
Rapid Construction System for Interactive 3D Games.” Proc. of
First International Conference on Intelligent Games and
Simulation, SCS Publication, 114-125.

Snow, D., Viola, P and Zabih, R. 2000 “Exact Voxel
Occupancy with Graph Cuts.” in Proc. IEEE CVPR.

Wren, C., Azarbayejani A., Darrel, T. and Pentland, T. 1997.
“Pfinder: Real-Time Tracking of the Human Body. ” IEEE
Trans. Pattern Anal. and Machine Intel., Vol. 9, No. 7, 780-785.

Weik, S. and Liedtke, C.-E. 2001. “Hierarchical 3D Pose
Estimation for Articulated Human Body Models from a
Sequence of Volume Data. > Robot Vision 2001, LNCS 1998,
27-34.

Musse, S. R., Osorio, F. S., Garat, F., Gomez, M. and Thalmann, D.
2000. “Interaction with Virtual Human Crowds Using Artificial
Neural Networks to Recognize Hands Postures.” Workshop
on Virtual Reality 2000, 107-118.

EMERGENT MODELLING IN GAMESDEVELOPMENT

Dr Lubo Jankovic
InteSys Ltd
University of Birmingham Research Park
Vincent Drive, Edgbaston
Birmingham B15 2SQ, United Kingdom
E-mail: L.Jankovic@e-intesys.com

KEYWORDS

Emergence, emergent modelling, bottom-up modelling,
complexity, artificial life, games devel opment.

ABSTRACT

Conventional modelling in games development is based
on a top-down approach, in which the developer determines
all possible states of the model. However, with an increase
of the number of components of the modelled system, this
approach becomes inefficient and incapable of describing
complex phenomena, such as animal movement in
biologica systems and behaviour of complicated
mechanisms in technological systems. As everything in the
top-down approach depends on the developer, it is aso
more difficult to achieve a wide range of different scenarios
and different outcomes of the game using this approach. At
the same time, the top-down approach demands a lot of
expertise from the developer in intricate details of systems
they model, which can only be obtained by studying the
theory of these systemsin detail.

Emergent modelling, however, is based on the creation
of simple models of components, so that the system model
is obtained spontaneously, as result of interactions of these
components, without explicit programming. The paper
describes principles of emergent modelling and its potential
in games development in comparison with top-down
modelling.

INTRODUCTION

This paper investigates the concept of emergent
modelling and its role in games development. It draws a
contrast between top-down modelling and emergent
modelling, and demonstrates advantages of the latter from
the function and resources point of view. Using examples of
student work, it discusses how emergent modelling can
provide performance and resource advantages.

Two M odelling Paradigms

The concept of top-down modelling originated in
parallel with the development of the digital computer and
was well suited for procedural programming, where the
code was developed for strictly sequential operation. On the
basis of this approach, the developer models the system as a
whole and determines all states of the model.

The ingpiration for top-down modelling goes back much
further than the invention of the digital computer and
procedural languages. It is believed that an extensive use of
traditional mathematics had led to models that could not
reproduce much more than the simplest behaviour in natural
systems (Wolfram, 2002).

Conversely, emergent or bottom-up modelling was
made possible through the invention of object oriented
programming. However, this was only a necessary but not a
sufficient condition for emergent modelling. Simple rules
on a component level and component interaction
architecture produce a self-organised model of the system
as awhole that emerges without explicit programming.

We discuss the origins and the notion of emergence in
the next section.

THE ORIGIN AND NOTION OF EMERGENCE

Although the phenomenon of emergence was aready
evident in 1940's, in early cellular automata models (von
Neumann, 1966), no attempt to establish a formal
framework was made until recently (Holland, 2000).
Although Holland’s work established basic principles of
emergence, a more formal investigation of the subject is
needed before a theory can be devel oped.

Despite the absence of a formal theory, many authors
have recognised emergence as a necessary condition for
complex behaviour. Conway’s Game of Life (Berlekamp et
a., 1985) relied on emergence to create self-sustaining
patterns in cellular automata, while others used emergence
to create life-like flocking behaviour of artificial agents
named “boids’ (Reynolds, 1987).

Numerous works in the field of cellular automata relied
on emergence to achieve complex behaviour and, based on
emergence, four classes of complex behaviour of cellular
automata were established (Wolfram, 1986). Subsequently,
emergence was used as one of pre-requisites to establish a
new field of Artificial Life (Langton, 1992).

Emergent behaviour occurs as result of interaction of
system components driven by simple rules on a component
level. Through this interaction, the system will self-organise
and exhibit behaviour that cannot be predicted on the basis
of rules acting on individual components. It can be said that
in systems with emergent behaviour the whole is more than

the sum of parts. None of the components are aware of the
behaviour of the system as a whole and they do not take it
into account in their behaviour.

Emergence is therefore a phenomenon of self-organised
system behaviour that occurs as result of interaction of
components driven by simple local rules acting on a
component level, where no component is aware of the
behaviour of the system asawhole.

EMERGENT MODELLING PRINCIPLES

We explain here some basic principles for achieving
emergent behaviour of computer models.

Interaction Framework

A Dbasic requirement for emergent behaviour is
component interaction. Individual components need to
supply outputs to and receive inputs from other components
(Figure 1a).

These inputs and outputs must be of matching types, so
that, for instance, a Boolean output channel from one
component can only be received into a Boolean input
channel of another component. If these components all
originate from the same class, then the class needs to have
pairs of inputs and outputs of the same type so that in some
instances only inputs and in some instances only outputs
will be used, after instantiation into its working copies.

However, this direct connectivity between individual
components does not allow for an easy expansion and
maintenance of the model, as addition of new components
requires additional hard coding.

@) @

b)

©)

Figure 1: Component Interaction: &) Direct; b) Through a
Common Interface; c) Through a Container Environment

A much more efficient architecture of emergent models
has a common communication line between all components
(Figure 1b), so that new components can simply be added
into the model by instantiation and without any additional
hard coding. However, it was found to be much more
practical to convert this communication line into a more
elaborate container environment that provides infrastructure
for operation of the emergent model (Figure 1c).

Within this container environment there are severd
connectivity topologies between the components that will
depend on the nature of the modelled phenomenon and will
aso influence the computational intensity of the model.
These different topologies are discussed below.

Full Connectivity

Full connectivity of system components may be required
when modelling systems such as groups of animals, where
each component needs to be aware of each other component
(Figure 2).

Figure 2: Emergent Model of a Shoal of Fish

This connectivity is still local, as components are
connected to each other one pair at a time. However, as
Figure 3 shows, this does not come without a computational
cost. As each of the N componentsis at al times influenced
by each other of the N-1 components, the computational
intensity of this type of connectivity is proportional to N2,
This means that the execution speed of the model will
reduce considerably, with a factor of 1/N?, as the number of
components increases.

Neighbourhood Connectivity

Neighbourhood connectivity is suitable for models with
rigid spatial structures, such as mechanisms, or cellular
structures (Figure 4). This type of connectivity does not
alow the components to change their spatial relationship
with reference to other components, and therefore the scope
of application is limited to systems that do not require
spatial flexibility.

w g
Figure 3: Full Connectivity

-interaction of each node with each other gives N?
computational intensity

s %
3%

Figure 4: Emergent Model of a Mechanism

O

However, as Figure 5 shows, the interaction of the entire
system of components can be calculated in one pass,
making the computational intensity proportional to the
number of components N.

Figure 5: Neighbourhood Connectivity
— N computational intensity

Component to Component Connectivity

Component to component connectivity lies between the
full connectivity and neighbourhood connectivity, and it has
advantages of both topologies (Figure 6). As components
can be gpatialy distant, this topology does not have the
rigidity of neighbourhood connectivity. And as the
interaction of the entire system can be calculated in one
pass, its computational intensity is proportional to the
number of components N.

Depending on the application, the components are
connected either statically or dynamically, and in the latter
case they do not have a fixed spatial relationship and may
be connected on demand.

Figure 6;: Component to Component Connectivity
—local interaction between spatially distant components
created either statically or dynamically produces
computational intensity proportional to N

This can create a very efficient and flexible model.
However, the algorithm that creates the connectivity
topology, such as component vison or component
connectivity demand rules, may add to the overall
computational intensity of the model.

IMPACT ON CAPABILITIESAND RESOURCES

In this section we compare top-down modelling and
emergent modelling from the point of capabilities of models
and impact on development resources.

In top-down models, the entire state-space of the model
is determined by the developer. It is therefore conceivable
that this state-space cannot be infinitely large.
Consequently, the state-space of a game developed using
the top-down approach will have a limited number of
situations, scenarios, and outcomes, and the size of the
state-space will be directly proportional to the resources
used for the development process.

In emergent models, as only models of components are
developed, and the system model is created through self-

organisation of interacting components, there is a lot less
reliance on the developer. And as the state-space of the
model depends on component interactions alone, it can
become infinitely large. Consequently, a game developed
using the emergent approach will have an infinitely large
state-space and an unlimited number of scenarios and
outcomes.

As top-down models are based on classical theories of
the modelled systems, they have a prerequisite of a
considerable expertise in specific fields of science and
engineering. For instance, to model the human body using
the top-down approach, the developer needs to have
expertise of inverse kinematics. Yet when such modd is
developed, not only that the underlying code would be
much more extensive, but the behaviour of the model will
have severe limitations concerning the number of
components, connection topology, and degrees of freedom
that these components can have.

These restrictions do not apply to emergent models.
Modelling the human body will not require any special
underlying theory and can be done without inverse
kinematics. The developer will therefore not need to be an
expert in this particular field. The underlying code will not
be as extensive as in the top-down approach, and the
behaviour of the model will not have limitations concerning
the number of components, component topology, and
degrees of freedom.

EMERGENCE IN GAMES

In this section we discuss some examples of student
work on games development based on emergent modelling.
The examples do not represent fully developed games.
They were produced as Virtua Reality coursework by
Computer Science students at the University of
Birmingham, and were restricted to mini-projects
(Jankovic, 2000). All models were developed in VRML,
Java, and JavaScript.

Figure 7 shows a helicopter with physics based flight
model, implemented on a component level. Running the
model feels redlistic as it involves inertia, whilst a laser
beam searches for targets automatically.

Figure 8 shows a pool game that has physics based
collision rules for the balls. Multiple collisions between the
balls, the table, and the cue, and the resultant angles and
velocities of the movement of balls make this model feel
very realistic, and game

Figure 7: Emergent Model of a Helicopter Using Principles
of Physics on a Component Level

Figure 8: Emergent Model of a Pool Game

Figure 9 isan illustration of a driving game, where each
car is modelled as an independent component, roaming
freely in the modelled environment. The user controls one
car and is given random driving instructions on the fly.
Success and failure scores are recorded after each action.

Figure 9: Emergent Driving Game
— it enables the user to take the role of one of the agentsin
the model

Figure 10 shows a golf game, in which principles of
physics integrated on the component level create realistic
behaviour of balls, as consequence of collisions with the
club, ground, and forces and angles used to hit the ball. This
is an analogue model of the game of golf, and the situations
in the model resembl e those in the physical game.

Figure 10: Emergent Golf Game
— it uses principles of physics on acomponent level to
create realistic behaviour of golf balls

Figure 11 shows emergent tanks which roam around an
urban battlefield. The tanks try to increase their fitness by
destroying other tanks, and can do so on their own, but the
user can take control of one of them and play the game.

Figure 11: Emergent Behaviour of Tanksin an Urban
Battlefield Game - a bird-eye view

All of the above games have several things in common:
they were developed in relatively short time, but still
comprise immensely complex models; the model behaviour
is very redlistic and convincing; the state space of the
models is unlimited; there is an unlimited number of
scenarios and outcomes; the developers were not expertsin
relevant fields, such as physics, flight mechanics, traffic
modelling, or others; only the first principles were used for
component modelling; the system behaviour was not
explicitly programmed, but emerged by itself.

LIMITATIONS

However, there are some limitations of emergent
models. Certain types of architectures of emergent models
are very sendgtive to the number of components. In cases
where full connectivity between system components is
required (Figure 3), the computationa intensity of the
model is proportional to the square of the number of
objects, thus considerably reducing the execution speed of
the model with an increase of the number of components.
This can be overcome by partitioning the space into sub-
regions, and providing a dynamic connectivity on demand.

Also, in cases where extreme inputs are applied on the
system components, a mismatch between a discrete time
step required and the achievable frame rate can occur
(Jankovic and Dumpleton, 2000). The resultant
unpredictable behaviour can be overcome by reducing the
time step, but with a detrimental effect on speed.

CONCLUSIONS

The paper compared top-down modelling and emergent
modelling in the context of games development. As the top
down modelling requires all states of the model to be
determined by the developer, the scope of such models is
limited, as they can produce only simple behaviour.

Emergent modelling is based on creation of simple
component models, which through special interaction
architectures gives rise to system model behaviour without
explicit programming. As the state space of the system
does not depend on the developer, emergent games have
unlimited number of situations and outcomes that are not
explicitly programmed. Unlike in the top-down modelling,
the developer only needs to apply simple rules on a
component level, and does not require a special expertise of
the theory of the modelled systems. This can result in
savings of development resources, both in terms of
developer training and the devel opment process.

Student projects that involved development of simple
games confirmed these issues. The models described
involved golf and pool games, combat helicopter
simulation, car driving instruction and an urban battlefield
for tanks. Although the games were developed in relatively
short time as mini-projects, they still had an immense
complexity and an unlimited number of outcomes. The
students were not experts in the fields of traffic simulation,
flight mechanics, and object dynamics, but were till ableto
implement first principles on a component level and get
very realistic behaviour, reminiscent of real systems.

Although there are some limitations of emergent
modelling related to full connectivity of large number of
components and also to extreme inputs applied in discrete
time steps, emergent modelling can make games more
realistic and more fun, as well as save on development
resources. Future work will involve the analysis of winning
strategies in games based on emergence.

REFERENCES

Berlekamp, E. R.; J. H. Conway; and R. K. Guy. 1985. Winning
Ways for your Mathematical Plays, Vol. 2: Games in
Particular. Academic Press.

Jankovic, L. 2000. “Games development in VRML.” Virtual
Reality, Val. 4, No. 5, 195-203.

Jankovic, L. and J. Dumpleton. 2000. Emergent modelling of
complex systems in VRML. In Proceedings of Eurographics
UK 2000, Swansea 4-6 April, 17-24.

Langton, C. 1992. "Life at the Edge of Chaos'. In Artificial Lifell,
ed. Langton, C. at al. Addison-Wesley, 41-91.

Reynolds, C. W. 1987. Flocks, Herds, and Schools: A Distributed
Behavioral Model. Computer Graphics. Vol. 21, No. 4, 25-34.

Von Neumann, J. 1966. Theory of Self-reproducing Automata, ed.
A. W. Burks. University of Illinois Press.

Wolfram, S. 1986. Theory and Applications of Cellular Automata.
World Scientific.

Wolfram, S. 2002. A New Kind of Science. Wolfram Media, Inc.

AUTHOR BIOGRAPHY

The author obtained his PhD in Mechanical Engineering
from the University of Birmingham in 1988. He is Senior
Lecturer at the UCE, Honorary Lecturer at the University of
Birmingham, and the founding Director of InteSys Ltd. His
research interests are in the field of Science of Complexity
and application of its principles to dynamic modelling and
analysis of behaviour of complex systems.

RENDERING
ALGORITHMS

GENERATING DYNAMIC MOTIONSFOR ARTICULATED FIGURES

Stefan M. Griinvogel
Laboratory for Mixed Realities,
Institute at the Academy of Media Arts Cologne
Am Coloneum 1,
D-50829 Cologne, Germany
E-mail: gruenvogel@Imr.khm.de

KEYWORDS
Skeletal animation, motion model, motion tree, motion clip op-
erator

ABSTRACT

For creating real-time animations of 3D characters we intro-
duce motion models, which model a certain kind of motion like
walk or wave. Each motion model has its own set of parame-
ters controlling the specific characteristics of a motion. These
parameters can be changed while a motion model is executed,
thus this allows a change of the characteristics of a motion in
real-time. The motion models produce animations by applying
operators on short clips of animation and blending the results
together. The parameters of the motion model determine the
operators and the animation clips which are used to create the
appropriate animation.

1. INTRODUCTION

Real-time animation of 3D characters is often done by blending
or masking short clips of mations produced by mation captur-
ing or keyframe-animation (Theodore, 2002). The clips for are
short animations which can stand for their own like e.g. a high
foot-kick a low foot-kick, a slow walkloop, a fast walk loop
and so on. If in the real-time application a clip is played (for
example the walk look) and then the user switches to another
movement (e.g. a run loop), then either a short transition from
one movement to the other is calculated or there is a a third
connecting clip between these two motions. Furthermore dif-
ferent clips not concerning the same joints of the character can
be mixed by masking, i.e. if we have e.g. a wave motion and
a walk motion, then the arms are animated by the wave motion
and the feet and the pelvis by the walk motion.

The main drawback of considering motion as a small pieces
of unchangeable animations is that in reality every human
movement can be done in a great variety. For example, a walk
movement can be described by its style (e.g. happy, aggres-
sive, John Wayne), by its speed or by the frequency of the feet
touching the ground. A jump movement can be characterised
by the hight and the width of the jump.

Furthermore, motions often can be divided into parts which
played consecutively, build the whole animation. These parts
also are dependent on the style or the special way the motion is
executed.

Motivated by the above points we adopted the notion of
the motion models which was introduced by Grassia (Grassia,

2000). Motion Models denote motions like walk or wave which
produce their animation depending on given parameters. We
expanded this concept for real-time animation, where the pa-
rameters of a motion model can be changed during its anima-
tion is played. The advantage is, that this results in an abstract
interface for each motion, which can create a motion in high
varieties.

2. PREVIOUS WORK

(Badler et al. , 1993) specify motions in the Jack System by
control parameters which describe bio-mechanical variables.
They also introduce motion goals, which are low level tasks
their animation system can solve. A similar approach is stud-
ied in (Hodgins et al. , 1995).

Within the Improv-System (Perlin & Goldberg, 1996) hu-
man motions are described and parametrised by so called Ac-
tions. These Actions can be combined by blending them or
building transitions between them. Their parameters denote
possible perturbations of the original motion data by coherent
noise signals. Perlin and Goldberg also state, that it is not al-
ways possible to combine every given motion with any other
at the same time. For example it makes no sense to combine
a stand pose with a walk motion. Taking this into considera-
tion, they divide Actions into different groups, like Gestures,
Sances etc. These groups provide the necessary information
about the allowed combinations with other motions.

In (Sannier et al. , 1999) and (Kalra et al. , 1998) a real-
time animation system VHD is presented which allows users
to control the walking of a character with simple commands
like walk faster.

Grassia (Grassia, 2000) introduces the term motion model,
which we adopt. Motion models represent elementary tasks
which can not be divided further. The level of abstraction of the
motion models resembles the approach in (Perlin & Goldberg,
1996). The idea is that every human motion belongs to a certain
category e.g. walk, run, wave with hands, throw, which can
stand for itself. Each motion model has its own parameters
which controls the process of motion generation.

3. SYSTEM ENVIRONMENT

Before going into the details of the motion models we first
present the current system environment for the animation of
characters. Each character is represented by an animation en-
gine (cf. Figure 1) which creates the animations in real-time.
The animation engine receives commands controlling the char-

acter like e.g. start or stop a walk movement or positioning the
character at an arbitrary position. The animation engine sends
the produced animation data to the trick_17 render engine.

commands

time controller

Y
| motion controller |—>| motion buffer |—>| shmitter |

animation engine

A
trick_17 render engine|

Figure 1: The System Environment.

The animation engine consists of three components each
running in a separate thread. Time is discretized in frames by
the time controller and the animations of the character are pro-
duced with a fixed frame rate.

The motion controller receives commands for the animation
engine and produces the overall animation of the character. The
motion buffer reads and buffers the animation data from the
motion controller and finally the submitter interface send the
data to the trick_17 rendering engine. For each frame a com-
plete posture of the skeleton of the character is send to the ren-
der engine. The trick_17 renderer then calculates the mesh de-
formation of the character according to the posture and renders
the picture.

4. THE SCOPE OF MOTION MODELS

Though there exists no definition which motions should be
modelled as motion models and which not, there are some ba-
sic rules.

The purpose of a motion model is to produce motions which
can stand for their own. This means it should be able to recog-
nise that the resulting movement of the body has started, ex-
ecuted and finally finished. Thus one has to think about the
complexity and the purpose of the movement a motion model
describes. The movements should not be too elementary like
the rising of the left foot at the beginning of a walk movement.
But they also should not be too complex. An example for a
too complex motion would be the task to take a chair from one
room and bring it to another room. For this purpose one has
to localized the chair, then grasp it, doing path planning for
finding the way to the next room and so on.

Motion Models describe on the one side basic fundamental
movements like walking, running, jumping. On the other side
motion models also describe motions which need various infor-
mations to make adjustments of the environment (e.g. throwing
a ball, grasping a bottle). Complex tasks (like the chair exam-
ple above) which are too complex for modelling them as a mo-
tion model can be divided into subtasks. Then each of these
subtasks can be animated by a motion model.

Method
getActiveJoints()

Description

Returns the joints for which
there is actual data available
getFrame(Frame ¢) | Returns for frame ¢ for each ac-
tive joint the rotation or transla-
tion values if available

start() Returns the start frame of the
clip
length() Returns the length of the clip

Table 1: The AbstClip Class

5. BUILDING BLOCKS OF MOTION MODELS

Each instance of an animation engine represents one character.
The character is defined by a tree structure (called character
model) describing its skeleton. Because the mesh deformation
of the character is done by the trick_17 renderer by the posture
of the skeleton, we do not store the mesh data in the animation
engine.

Motion models are a very simple common interface, the Ab-
stMotionModel class. Every motion model is derived from this
class. Motion Models get initialised by a character model and
a source of the pre-produced animation clips. They have a
doCommand-method which is used by the motion controller to
control the generation of animation sequences within a motion
model. At present, the motion controller receives commands
like start, stop and stop_hard. The start command contains pa-
rameters which further describe the resulting motion. These
parameters are motion model specific. E.g. the walk motion
model has parameters controlling the style (happy, sad, etc.)
and the speed of the walk. The parameters of a motion model
have to be chosen in such a way, that the important character-
istics of a motion can be influenced. The stop command just
advises to motion model to correctly stop its motion at the ac-
tual state. If in a walk motion the stop command arrives at the
motion model during the left foot is still in the air, the motion
model correctly finishes this last step. The stop_hard method
just finishes the motion immediately, i.e. as soon as the motion
model receives this command it stops producing the animation
which can result in an (for the observer) incorrect movement
of the left foot. Although the visual result in the last case is in
general not convincing, this effect is sometimes needed.

The building blocks of motion models are base motions and
clips. The idea is that each motion model creates a certain mo-
tion by modifying and blending motion data according to the
given parameters. As a basis each motion model has small se-
quences (base motions) of pre-produced animations which are
used for mixing and blending.

The abstract AbstClip class (c.f. Table 1 and Figure 2) is the
common interface for animation data. By start() the start frame
and by length() the length of the animation is returned. The
getActiveJoints method returns the joints of the skeleton for
which the clip actually produces animation data. The getFrame
method returns for each valid frame two arrays of data. The
first array represents translation values for the joints (given by
3D vectors) and the second the rotation values (given by unit
quaternions). Played one after another, the array for each valid

frame builds the animation of the skeleton.

ClipPrimitie

| AbstCIipAggregate|
t

Timeshift | [Timewarp| [Filter] | Loop| [Reert |

Figure 2: The Clip Classes.

The class ClipPrimitive actually holds pre-produced anima-
tion data. These animations are manipulated by the classes de-
rived from the AbstClipAggregate (cf. Figure 2). These de-
rived classes are operators on clips. Because every operator is
an AbstClip, it can also be used for the input to other operators.

Here we give a brief description of the implemented opera-
tors.

o TimeShift(Frame nShift, AbstClip * pkClip)
Shifts a clip on the timeline by nShift frames.

o Filter(FilterCoef * pkFIR, AbstClip * pkClip)
Filter the animation data with a FIR filter (cf. (Mallet,
1999), (Lee, 2000)). The impulse response coefficients
of the filter are given by pkFIR. This can be used e.g. to
smooth noisy animation data.

e Loop(int nLoops, AbstClip * pkClip)
Repeats pkClip either nLoops-time if nLoops > 1 or re-
peats the clip an infinte times otherwise. This is the only
operator which can produce infinite length clips from fi-
nite ones. If pkClip has infinite length nothing is done.

¢ Revert(Frame nNewStart, AbstClip * pkClip)
Reverts pkClip in time at the frame nNewStart.

o TimeWarp(Array< TimeWarpKeys> *pkWarpKeys, Abst-
Clip *pkClip)
Applies a time warp on the underlying clip (cf. (Witkin
& Popovi€, 1995), (Grassia, 2000)), which squeezes or
stretches the animation over time.

¢ Blend(Frame tO, Frame t1, Frame A, Frame B, AbstClip
*pkFirst, AbstClip * pkSecond)
Blends the pkFirst clip to the pkSecond clip. t0 and ¢1 set
the start frame of the first resp. second clip. A denotes the
frame where we start to interpolating from the first to the
second clip, B the frame where we blended completely to
the second clip.

First Clip

Second Clip

T T T T Frame

e Embed(FrametO, Frametl, Frame A, Frame B, Frame C,
Fame D, AbstClip * pkFirst, AbstClip * pkSecond)
Blend from the pkFirstClip to the pkSecond clip and back
to the pkFirstClip. The parameters ¢0,¢1, A and B are
the same as in Blend. At frame C' pkSecond is blended
back to pkFirst, and at D only the animation of pkFirst is
played.

First Clip

Second Clip

T T T T T T Frame

Note that often the algorithms within the operators for infi-
nite length clips are different from the finite length clips. E.g.
for finite length clips the algorithms in the Filter clip can be
highly optimized (cf. Wickershauser (Wickershauser, 1994)).
Special care is also needed if two clips are blended or embed-
ded with different sets of active joints.

By so far we have not implemented any operators, which ef-
fect a given ClipPrimitive such that the resulting clips has a new
style. One could think for example of noise functions applied
on certain joints or the techniques used in (Perlin & Goldberg,
1996). But this could be a very promising approach to create
variations of the motions without exchanging ClipPrimitives.

6. CREATING MOTION WITH MOTION TREES

Motion models create animations by combing ClipPrimitives
with the clip operators described in the previous section.

As an example we consider the walk motion model. Walking
can be divided into three phases: the start phase, where we start
to walk from a standing posture, the walk loop and the stop
phase ending again in a standing posture. As the motion model
walk gets the command to start at a specific frame ¢q with a
specific speed w; , it creates the following term,

Blend(TimeShi ft(to, WalkStart),
Loop(TimeW arp(W1, WalkCycle))). (1)

This term can be visualized in the operator tree (which we call
motion tree) shown in Figure 3 (A).

The two ClipPrimitives WalkStart and WalkCycle contain
the animations for first and the second phase of the motion.
The WalkStart gets time-shifted to the start frame ¢q of the ani-
mation. The WalkCycle is time-warped with warp-keys W7 re-
sulting from w; for controlling the speed of the animation. The
result is looped for an infinite time producing an infinite-length
clip and is blended with the end of the time-shifted WalkStart
clip. The result is a clip which lets the character start walk-
ing. If the motion model started and the current animation is in
the WalkCycle loop (i.e. the animation is produced by the right
branch in tree of Figure 3 (A)) one can simply change the speed
of the character. As the motion model receives the command
to change the speed to ws, it replaces expression (1) by

Blend(TimeShift(t1,
Loop(TimeW arp(W1, WalkCycle)),
Loop(TimeW arp(Ws, WalkCycle))). 2

Here t; is to plus the time passed since the last full pass of
TimeW arp(Wy, WalkCycle), and W, are the appropriate
keys which are derived from the speed w.

l | I
[walksat |[Walkgle | [|Walk@e |[Walkgle

Figure 3: Walk Motion.

The style of the motion can be easily altered by changing
the underlying ClipPrimitives. As an example, assume that the
ClipPrimitives WalkStart and WalkCycle represent neutral mo-
tions, and we also have a WalkCycle_happy, representing a mo-
tion which expresses more joy and dynamic. If we currently are
in the WalkCycle phase of the walk motion then the style of the
motion can be changed by creating the motion tree as in Figure
3 (B), which is a visualization of the following expression:

Blend(TimeShi ft(t1, WalkCycle),
Loop(TimeW arp(W1, WalkCycle_happy))). (3)

There the WalkCycle clip is played to its end and then blended
with the looped WalkCycle_happy clip.

For correctly blending and manipulating these ClipPrimi-
tives additional information is need. E.g. for blending the
WalkCycle into the WalkCycle_happy it is important to know
the frame, when the feet of the character touch the ground and
when they lift off. These information is used to determine the
correct parameters for the Blend clip.

Thus each ClipPrimitive object within a motion model be-
longs to a base motion (cf. (Grassia, 2000)). Base maotions
consist of ClipPrimitives and Annotations, which hold the ad-
ditional information for the animation data. These are on the
one hand informal annotations, like the style of the motion (e.g.
aggressive, tired, happy) and on the other hand special spatio-
temporal relations.

Thus a motion model can hold several records of base mo-
tions each representing the movement in a different style. The
commands from the motion controller determine the special pa-
rameters which are used for the construction of the motion tree
with the help of the Annotations.

7. THE MOTION CONTROLLER

The motion controller receives commands from the animation
engine, controls the motion models and produces the overall
animation of the character.

The command set of the animation engine is fairly simple.
There are two classes of commands. The first class controls
the behaviour of the animation engine (e.g. resetting or posi-
tioning the character). The second class of commands (motion
commands) is used for starting, stopping or changing the an-
imations of motion models. The motion commands also hold
parameters which are specific for the motion model. To keep an
overview over the active motion models the motion controller
administers the motion commands in a command list. Only
those commands are kept in the list for which the correspond-
ing motion model still produces animation data.

The motion controller also holds a motion tree which is build
from the motion trees of the active motion models. This is
done by passing through the command list and getting for each
command the motion tree of the appropriate motion model.
Then the motion trees from the motion models are blended and
mixed together with the help of the clip operators from Section
5.

A rebuild of the motion tree is only necessary, if a new com-
mand is appended to the control list or the state of an active
motion model is changed (e.g. by changing parameters or by
stopping the motion model). In both cases, the concerned mo-
tion model builds its motion tree anew. The motion trees of the
other mation models stay unchanged. The motion controller
then deletes its old motion tree and builds a new one by pars-
ing through the command list and composing the motion trees
from the motion models.

At a first glance this seems to be an expensive operation. But
practical experience shows that only very few motion models
are active at the same time. Every human has only a finite
number of parts of the body, thus this defines a natural limit
of the number of motions a character can do simultaneously.
Thus besides the cost of building the motion tree of the changed
motion model, we only have to blend a few motion trees.

The hard task for the motion controller is to find the right
operators for mixing the motion trees of different motion mod-
els together. Before starting a new motion model the motion
controller first checks if the joints the motion model needs are
in use by other motion models. Each motion model contains
a list of the joints and parts of the body which are crucial for
the motion. The animation of these joint can not be blended
with other animations without destroying the task of the motion
model. If these joints are currently blocked by another active
motion models then the motion command is rejected. Other-
wise the animation of the corresponding joints are blended to
the new animation. As an example consider Figure 4 where we
started the wave motion model while the walk motion model
is executed. At the moment we only have few motion models
thus the parameters for the mixing operators between motion
models are prescribed for each combination of motion models.
Because for a growing number of motion models the complex-
ity increases geometrically, automatic methods for mixing mo-
tion models have to be explored. First approaches can be found
in (Grassia, 2000).

Figure 4: Blend of the motion model walk and wave.

8. EXPERIMENTAL RESULTS

We have implemented an experimental version of the anima-
tion engine with Visual C++ under Windows 2000 and Gnu
gcc under Linux on a PC with 1100MHz AMD processor. For
graphical output we use our trick_17 renderer, which runs with
minor changes both under Windows 2000 and Linux by using
OpenGL and GTK+. For test purposes we used a character
with about 9000 Polygons and 3.6Mb texture, which was cre-
ated in Maya and exported into the proprietary file format of
the trick_17 renderer. We use the computer’s keyboard to inter-
actively steer the character. The base motions were generated
by keyframe animation in Maya and sampled at 30 frames per
second.

The performance of the animation engine is promising: we
have not found delays or a break in the continuity of the ani-
mation which could come from creation of the motion trees in
the motion models or in the motion controller.

9. CONCLUSION

To summarise, motion models create movements which can
stand for their own. They provide a high level interface for
each motion and allow to change a movement during it is exe-
cuted by the character. Multiple Motion models can be played
at the same time.

For creating the transition of a higher number of motion
models, further research has to be done. Also the use of clip op-
erators which can change the characteristics of animation clips
has to be investigated.

ACKNOWLEDGEMENTS

I would like to thank Thorsten Lange for his support on the
trick_17 render engine.

This work was supported by the BMBF grant 01 IR A04 C
(mqube - Eine mobile Multi-User Mixed Reality Umgebung).

REFERENCES

Badler, Norman I.; Phillips, Cary B. and Webber, Bonnie Lynn.
1993. Smulating Humans: Computer Graphicsand Con-
trol. Oxford University Press.

Grassia, F. Sebastian. 2000. Believable Automatically Syn-
thesized Motion by Knowledge-Enhanced Motion Trans-
formation. Ph.D. thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh.

Hodgins, Jessica K.; Wooten, Wayne L.; Brogan, David C. and
O’Brien, James F. 1995. Animating Human Athletics.
Computer Graphics, 29, 71-78.

Kalra, Prem; Magnenat-Thalmann, Nadia; Moccozet, Laurent;
Sannier, Gael; Aubel, Amaury and Thalmann, Daniel.
1998. Real-Time Animation of Realistic Virtual Humans.
| EEE Computer Graphicsand Applications, 18(5), 42-57.

Lee, Jehee. 2000. A Hierarchical Approach to Motion Anal-
ysis and Synthesis for Articulated Figures. Ph.D. thesis,
Korea Advanced Institute of Science and Technology, De-
partment of Computer Science.

Mallet, Stéphane. 1999. A Wavelet Tour of Sgnal Processing.
Academic Press.

Perlin, Ken and Goldberg, Athomas. 1996. Improv: A System
for Scripting Interactive Actors in Virtual Worlds. Com-
puter Graphics, 30, 205-218.

Sannier, Gael; Balcisoy, Selim; Magnenat-Thalmann, Na-
diaand Thalmann, Daniel. 1999. "VHD: A System for Di-
recting Real-Time Virtual Actors. The Visual Computer,
15(7/8), 320-329.

Theodore, Steve. 2002. Understanding Animation Blending.
Game Developer, 9(5), 30-35.

Wickershauser, Mladen Victor. 1994. Adapted wavelet analysis
from theory to software. A K Peters.

Witkin, Andrew and Popovi€, Zoran. 1995. Motion Warping.
Computer Graphics, 29, 105-108.

AUTHOR BIOGRAPHY

Stefan M. Grunvogel was born in Ellwangen, Germany and
went after his military service to the University of Augsburg,
Germany where he studied mathematics between 1990 and
1997. After finishing his diploma thesis in 1997 he worked
as a postgraduate at the University of Augsburg in the field of
mathematical control theory and finished his dissertation “Lya-
punov spectrum and control sets” in 2000. After this he worked
for debis before moving in 2001 to the Laboratory for Mixed
Realities in Cologne. There he develops a real-time anima-
tion system and a choreography editor for the augmented real-
ity project mqube (BMBF grant 01 IR A04 C).

EFFICIENT MIP-MAPPED TEXTURE COMPRESSION BY VECTOR QUANTISATION
AND WAVELET DECOMPOSITION

Stephen J. McGlinchey
Applied Computational Intelligence Research Unit
University of Paisley, Scotland
Email: megl-ci0@paisley.ac.uk

KEYWORDS
Texture compression, vector quantisation, neural networks,
fast decompression

ABSTRACT

In order to make efficient use of video memory, game
developers often use image compression techniques for
textures used in 3D environments. A disadvantage of most
widely used image compression methods is that they require
a significant amount processing to reconstruct compressed
images. In this paper, we propose a vector quantisation
method using the Scale Invariant Map, which allows fast
decompression of textures. Combining this algorithm with
wavelet decomposition, we show that our method is
particularly suited to mip-mapped textures.

INTRODUCTION

The capacity of video RAM in most games consoles and PC
graphics cards is something that often restricts artists and
programmers. Although hardware capabilities have grown
in accordance with Moore’s law, games software tends to
push hardware to its limits, making the game developer’s
job a difficult one. The vast amount of artwork in many
modern 3D games requires programmers to use image
compression techniques in order to allow more storage
capacity for textures, and to maintain a reasonably high
image quality.

Some widely used lossy compression algorithms make use
of a transform coding method such as block discrete cosine
transform (DCT) or discrete wavelet transform (DWT),
followed by a coefficient quantisation stage, and finally,
predictive entropy coding is used to optimise the resulting
bitstream. This strategy has been used with great success,
and has formed the basis of the JPEG standard, and also, the
more recent JPEG2000 standard.

Despite the widespread adoption of compression algorithms
such as JPEG, these algorithms are not particularly suitable
for use in games, where decompression has to be carried out
very quickly in real-time. (Ivanov 2001) Therefore, other
methods

have been proposed as alternatives that are more
suitable for use in games, many of which use
implementations of wvector quantisation (VQ). VQ
algorithms rely on training a set of codebook vectors on
an image, then transforming the image into a set of
codebook indices. These indices are then stored along
with the codebook vectors. VQ compression of images
is an iterative process, and it can be computationally
expensive, but it has the important advantage of
allowing very fast decompression.

When developing an image compression method for
use at run-time in video games, we propose that the
primary aim is that decompression of images should be
fast. High quality of decompressed images is very much
a secondary goal. The method that we propose in this
paper allows very fast decompression, and also supports
progressive decompression for mip-mapped textures.
Therefore, when the smallest mip-mapped level of a
texture is required, only a small amount of
decompression is necessary. If the same texture is later
required at a higher mip-map level, then some more
decompression can be performed, which builds on the
decompression already done. This is in contrast to some
existing methods that require an entire texture to be
decompressed. If mip-mapping is required, then
reduction of the texture into various mip-map levels is
an additional processing requirement. Experiments
show that our method also produces decompressed
images of a reasonably high quality, and without the
“blocky” effect often seen with other VQ methods.

VECTOR QUANISATION

VQ aims to approximate vectors by transforming them
from a continuous distribution into a finite set

V= {wl,wz,...,wK} of K discrete values (a
codebook) whilst minimising the distortion of the data.
Each vector X in the data set D can then be coded as
an index ¢(X) € V' of the codebook, which normally

has a far smaller storage requirement than the original
vector. The coded value can then be used to reconstruct

mailto:mcgl-ci0@paisley.ac.uk

the original vector, albeit with some distortion d (equation

1.
d =x-r(q(x)) (D

Over an entire data set with N vectors, the mean squared
error (MSE) is given by equation (2).

1 N
MSE=—2, [x —rax))| @
i=1

The main problem with VQ is finding an optimal set of
codebook vectors, such that the MSE is minimised. There
are many different approaches to this problem, but amongst
of the most common are the k-means clustering algorithm
(MacQueen 1967), the EM algorithm (Bishop 1995), and
the Self-Organizing Map (Kohonen 1997).

It is common practice when compressing images by VQ, to
use fairly small vectors, such as a 4x4 block of pixels. Any
attempts to increase the size of this block result in
reconstructed images that are noticeably blocky. This
problem can be alleviated to some degree by increasing the
number of reference vectors in the codebook. However, this
adds to the storage overhead of the codebook, and also
increases the computational cost of training. Our method
does not have this limitation, and we shall show that larger
vectors can be used with no noticeable degradation in the
reconstructed images.

THE SCALE INVARIANT MAP

Another common method for finding an optimal set of
codebook vectors is Kohonen’s Self Organising Map
(SOM) (Kohonen 1997). The scale invariant map (Fyfe
1996, McGlinchey and Fyfe 1997) is an unsupervised
artificial neural network based the SOM. Kohonen’s SOM
is a biologically inspired artificial neural network that learns
an ordered set codebook of vectors from a data set. The map
consists of a set of nodes arranged in a low-dimensional
space (normally one or two dimensions). Each node has a
weight vector (or codebook vector) associated with it, which
maps the node to a point in data space. The data space
normally has a much higher dimensionality than that of the
map, so the SOM forms a non-linear mapping from a high-
dimensional data space onto a low-dimensional manifold.
After training of the network, the distribution of the
codebook vectors in the data space should reflect the
distribution of vectors in the training data. The SOM is a
special case of VQ, with an additional topology-preserving
property — nodes that are close together on a SOM map to
points in data space that are also close together.

A scale invariant map also consists of a regular array of
nodes arranged on a lattice. Due to computational

tractability considerations, maps normally have few
dimensions (three or fewer). Each node iis connected
to an array of sensory nodes X via a set of weights,

W, . The map is trained on a set of training data, and

the result is an ordered set of codebook vectors. During
training, input vectors X are randomly selected from a
training set. For each training vector, a winning node,
¢, is chosen , according to some competition criteria.
The criteria that we recommend for this application is
to select the node whose weight vector has the closest
orientation to the input vector (equation 3).

¢ =min, (:91.)

XW,

(€))

where cos(6,) = —————
[w |l
The next step is to update the weight vectors of the
winning node and the other nodes close to it, such that
their orientation is becomes closer to that of the input

vector. The neighbourhood of the winner, N . » 1s the set

of nodes that are deemed to be close enough to the
winner for the winner to affect them. A neighbourhood

function hci can also be used such that nodes closer to

the winner are affected more than nodes further away.
The weight update rule is given by equation 4.

Aw. =h n(x—w,_)VieN, 4

This training method is based on the negative feedback
network (Fyfe 1993), but with a neighbourhood
function applied to it.

After sufficient training, this network will form a
mapping based on the distribution of orientations held
in the training set. This is the crucial difference between
the scale invariant map and the SOM. Our motivation
for using the scale invariant map for VQ compression
of images is that often, images have similar patterns
that repeat, but with varying intensities. A scale
invariant method allows these similar regions to be
grouped under the same class, saving the requirement in
codebook size. The scale invariant map has already
been used in remote sensing applications. (MacDonald
et al. 1999).

WAVELET DECOMPOSITION

The Daubechies 2D wavelet transform refers to a set of
basis functions defined recursively from a set of scaling
coefficients and functions. The transform is applied as a
series of decomposition levels. At the first
decomposition level, the source image is separated into

four sub-bands — LL (low-pass vertical and low-pass
vertical), HL (high-pass vertical and low-pass horizontal)
and similarly for the LH and LL sub-bands. The LL sub-
band represents a downsampled low-resolution version of
the original image, and the other sub-bands represent
downsampled residual versions of the original image. Using
the Daubechies 5/3 wavelet, the process is reversible, and
each of the four subbands can be used to reconstruct the
source image. At the next decomposition level, the LL sub-
band of the first decomposition level is then decomposed
into the four sub-bands. This recursive procedure is iterated
for as many decomposition levels as necessary. Figure 1
illustrates this procedure for two decomposition levels. For
a more complete description of this procedure, the reader is
referred to (Antonini et al. 1992).

Some image compression algorithms such as JPE