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Preface

Game technologies have been evolving over the last couple of years and coming
into force into the main stream of computing. As a result, games development
started to influence system analysis and design, development methodologies and
software architectures. However, games were the playground of Atrtificial Intelligence
researchers prior to their transformation into the lucrative market they currently fulfill
with dedicated technologies.

Artificial intelligence research has had a fascination with games from board strategy
games such as chess, puzzle games, paradoxes to simulation games. Simulation
games in particular provided testbeds for many Al methodologies and theories such
as Al planning, intelligent agents, and cognitive architectures. In fact, one may claim
that Al simulation gave the birth to the elaborate video games of today. Nonetheless,
these same games are providing a driving force to rediscover and in some cases
rework Al techniques in both contexts of computational intelligence and cognitive
sciences. For example, emotions and perception are two important aspects of
believable characters that often use agent technologies as their underlying
architecture with other elements of Al such as planning, heuristic search and
machine learning.

Game technologies influence does not stop at Al and simulations. It currently
extends to main stream computing as mentioned. This in fact gave birth to a new
field of game research that is serious gaming. Serious gaming research focuses on
the application of game technologies to serious applications which impact on two
important areas of software development: methodologies and user interfaces.

This year's GameOn conference provides a meeting place to researchers from all
disciplines of gaming research where Al researchers, game designers, software
architects, computer graphics and simulation systems developers can interact and
exchange ideas.

Dr. Aladdin Ayesh
GameOn 2010 General Chair
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AN EVALUATION OF DIFFICULTY HEURISTICS IN GAME DESIGN USING A
SIMULATED PLAYER

Fergal Costello
Department of Information Technology
National University of Ireland, Galway, Ireland
Email: f.costello2@nuigalway.ie

KEYWORDS
Artificial Intelligence, Game Methodology
ABSTRACT

In this paper we present our research in the area of au-
thoring tools development. The over arching goal of
this work is to provide mechanisms that can be used to
measure the design characteristics of games. We aim
to develop a framework that can offer designers ongo-
ing informative feedback on the difficulty of a level as
they build prototypes, thus allowing them to gauge their
designs. We outline a number of measures, which we hy-
pothesise can be useful in predicting the difficulty of a
level. In this work we present details of our exemplar
game, and the reasons for choosing it as our test bed.
We incorporate a naive strategy for simulating a player’s
performance in any given instance of this game. In or-
der to verify the usefulness of our measures, we under-
take an extensive set of experiments using this simulated
player. We present the results illustrating the relation-
ship between our measures and the performance of the
simulated player.

INTRODUCTION

Though still in its infancy, the technological strides that
have been made in the computer games domain over the
last number of years has been phenomenal. The cur-
rent depth and breadth of three-dimensional worlds has
allowed game designers to create more elaborate game
play experiences, but its has also brought about added
complexity in development time. With the industry
showing no signs of slowing down, it is up to design-
ers to create more immersive environments, while also
managing the game-play experience to make sure that
the users find the worlds fun and compelling.

In an industry in which the budget for AAA game ti-
tles can run up into tens to hundreds of millions of dol-
lars, rapid prototyping is more important now than ever.
The current practice for creating of game worlds follows
a four stage iterative approach of: conceptualise, plan,
execute and refine (Castillo and Novak, 2008). Using
this approach an idea is conceived, expounded on pa-

Colm O’Riordan
Department of Information Technology
National University of Ireland, Galway, Ireland
Email: colm.oriordan@nuigalway.ie

per, built using a digital content creation (DCC) tool
and then refined. This refinement involves play testing
to work out what parts of the level are fun to play, and
which are not, which mechanics work and which ones
don’t. In this testing, users’ experiences may be moni-
tored and recorded to give the designers an insight into
the quality of world. Based on this feedback, the re-
finement may be unobtrusive and small parts amended,
or, in the worst case scenario, the entire level needs
to be completely redesigned. Changes can fall under
many categories and may include, among others, rewrit-
ing agent behaviours, redesigning the flow through the
level, modifying placement of objects, changing script
based events, altering shading and lighting and other
aesthetic features. Any of these costs incurred can rep-
resent a large expense for game developers, especially if
they occur later in the development processes (as is true
for any software engineering task).

The effort of this research is to investigate ways in which
work of designers can be supplemented by automated
testing of their designs using techniques driven by arti-
ficial intelligence. We are exploring ways by which such
techniques can be incorporated into a design tool, thus
allowing for decisions to made about a game mechanic
or level. as their are being built, from early prototypic
stages. We see this as a possible way of alleviating some
of the issues surrounding the development processes of
contemporary games and not as a way of replacing de-
signers. This paper illustrates work we have undertaken
in defining a set of measures for quantifying difficulty
and outlines a set of experiments we have performed in
showing correlation between some of those measures and
a simulated player’s experience in the designs.

The remainder of this paper is laid out as follows. The
next section outlines the related work in the field. Then
we introduce the abstract game we utilise to test our
hypotheses. From here we discuss a set of heuristics for
this game, which we believe capture its difficulty. Next
we outline the experimental set up and results, which
discuss the correlation between our measures and the
outcomes. Finally, we conclude and discuss future work
of this research.



RELATED WORK

One of the fields of research related to this work is that
of Dynamic Difficulty Adjustment, which modulates in-
game systems to respond to a particular player’s abili-
ties over the course of a game. Hunicke presents a sys-
tem, termed Hamlet, which maps the state of a game
world to a set of adjustment actions to intervene on be-
half of the player (Hunicke, 2005). Generally speaking,
this approach adjusts the game mechanics such as the
amount of damage the player can inflict on enemies, and
the amount enemies can inflict on players, enemy accu-
racy, spawn locations etc. Adjustment of these values
serves as a way to adapt to a player’s ability. Similar
research has been undertaking in the notion of dynamic
scripting. In his work, Spronck developed an unsuper-
vised online learning technique, where scripts of rules
are extracted from a rule-base as NPC opponents are
instantiated. The probability that a rule is selected for
use in a script is proportional to how well it performed
previously (Spronck et al., 2004). This coupled with his
work on difficulty scaling (Spronck et al., 2006), means
that a game can be adapted automatically, to modify
the challenge posed to a player, by further enhancing
the probabilities by which rules are selected.
Yannakakis and Hallam present work that focuses on the
contributions made by an opponent’s behaviour to the
entertainment value of a game (Yannakakis and Hallam,
2006). They argue that because “interest” and “enjoy-
ment” aren’t explicitly definable, there is no evidence
that an opponent’s behaviour (in a learning context)
may be fun to play against. With this in mind, they
developed a set of neural networks to model player sat-
isfaction (interest) and they investigate how qualitative
factors such as challenge and curiosity contribute to en-
tertaining experiences.

Some researchers have focussed their effort on guiding
the automated approaches of procedural content genera-
tion to incorporate design considerations, thus allowing
for factors such as difficulty and an interest based util-
ity to be intrinsically managed. In her work, Smith dis-
cusses a way of generating two-dimensional platformer
levels by first generating a rhythm for the level and
then blocking out these rhythm segments with geomet-
rical grammar according to a set of physical constraints
(Smith et al., 2009). Similarly, Togelius presents an ap-
proach that can generate tracks for driving games using
evolutionary computation. They first use player mod-
elling to capture a player’s driving style and then use
this data to guide the evolution of a set of tracks that
the player may enjoy (Togelius et al., 2007).

ABSTRACT GAME

As previously mentioned we use an abstract game on
which to test our hypotheses. Before discussing mea-
sures of difficulty, we first outline this game on which

Figure 1: Abstract game, with two agents with their
fields of view visible, following paths assigned to them,
navigating around simple geometrical shapes. The small
diamonds are nodes on the navigation graph and the
cross hair acts as the target.

these measures will be derived and evaluated. This game
is an instantiation of the patroller-intruder game, which
has received much attention in recent years as a way of
developing patrolling strategies for mobile robots (Basil-
ico et al., 2009; Amigoni et al., 2010). We believe that
this type of game is a good abstraction of many contem-
porary computer games, where one set of agents out-
number and oppose a single agent in the environment.
The latter is analogous to a human player playing a
computer game trying to overcome a set of non-player
characters (the patrollers) in order to progress from one
encounter to the next. A more explicit mapping, how-
ever, would be to commercial games that incorporate
stealth as their primary gameplay mechanic. As this
game stems from a game theoretic background, the de-
scription of the environment in the literature generally
involves a grid of cells, with agents moving from cell to
cell in discretised intervals. In our instantiation, how-
ever, we have adopted a more conventional game envi-
ronment implementation with continuous update cycles,
and agents driven by rigid body dynamics and steering
behaviours. The goal state of each round of the game
is based on the following: if the intruder attains the
goal, it is marked as a win, if they are perceived by
the patrollers, it is marked as a loss, and if neither of
these states is achieved within a given time interval, it is
marked as a time out. A screen capture of this game is
presented in Figure 1. We believe that a simulation envi-
ronment further enhances our findings and lends weight
to our hypotheses as opposed to using a purely abstract
framework, which would be harder to evaluate and val-
idate in a computer games context. It is important to
note however, that the heuristics we use to calculate the
difficulty were derived from the abstract game.



MEASURES OF DIFFICULTY

In previous work we posited that a set of heuristics could
be used to measure the difficulty of an abstract game
level (Costello and O’Riordan, 2009). We developed
these heuristics from intuition, and this section outlines
how we have incorporated these into our current frame-
work. Although we discussed a number of measures in
the previous work, we only tackle two of the measures
in this paper, namely:

1. The number of patrollers in the environment

2. An approximation of the area of the scene that is
covered by the patrollers

The first of these is merely a record of the number of
patrollers in the environment. The second is more com-
plex in nature, as it estimates how much of the scene is
perceived by the patrollers with respect to the underly-
ing navigation graph used by the agents. This can be
formally expressed as:

N
Length; x Perc;
Measures = E (1)
pard Area

where N is the number of patrollers in the scene, Length
and Perc are the length of the patrol path and the per-
ception ability respectively of patroller ¢ and Area is the
area of the scene.

The following sections explore correlations between our
heuristics and the results of our experiments involving
a simulated player.

EXPERIMENTAL SETUP

The experimental setup is as follows: we create five dif-
ferent scenes (level layouts). For each scene, we create a
large number of instantiations. We create 50 runs with
zero patrollers, 50 runs with one patroller, and so on,
up to and including seven patrollers. This resulted in
400 scenarios per scene. For each of these, the target
is randomly placed in the world and the paths of the
patrollers are randomly assigned. At the end of each
round we record the values of the two heuristic mea-
sures, described in the previous section, calculated for
that instantiation. We also record the outcome of the
round noted as a win for the intruder, a loss for the in-
truder or a time out. The time interval chosen for each
round was three minutes, as we felt this was adequate
for the size of the levels we were using (1600x1200 pix-
els). Finally, for this experiment set we utilised a naive
simulated player, who executes a random walk through
the environment in order to reach the goal. It has no
notion of exploration, nor of self preservation from the
patrollers. Although it may be limited in its expected
performance, we feel that this is an adequate base case

Measure 1 Values for Scene 4

= Timeout
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(b) Scene 5

Figure 2: The number of intruder wins, losses and time
outs for Scenes 4 and 5 organised by the number of pa-
trollers in the scene.

for the simulated players we hope to implement in fu-
ture work. The next section presents and discusses the
results of these experiments.

RESULTS
Measure 1 - Number of Patrollers

We first describe the results pertaining to the simpler of
the two measures — the number of patrollers present.
We hypothesise that as we increase the number of pa-
trollers, the difficulty of the environment should in turn
increase. The graphs presented in Figure 2 show the
number of successes, failures and time outs for a subset
of the scenes run as part of the experiments — Scene 4
and Scene 5. The data shows that with zero patrollers in
the scene there are zero failed outcomes for either scene.
What is interesting however is that Scene 4 has an un-
usually high number of time outs compared to all other
scenes at this patroller level. This may be the result of
the layout of the scene and suggests that there are other
measures of difficulty in effect not accounted for, such
as the geometrical layout of the level. As is presented in
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Figure 3: Estimated perception ability plotted against
patroller count averaged across each scene.

Figures 2a and 2b, and indeed across all data sets, we
see that as we add just one patroller, the level of diffi-
culty (the number of losses) increases. As the patroller
count increases, the number of intruder successes de-
creases. For the later values of patroller count (5, 6 and
7), there is little difference in the number of successes
with the intruder failing in nearly all cases.

Measure 2 - Estimated Perception Ability of Pa-
trollers

More interesting features are visible from the results ob-
tained when calculating heuristic 2, an estimate of the
probability of perception of an intruder. In present-
ing Figure 3, we show measure 2 averaged across each
scene at different patroller count levels. As expected, as
the number of patrollers increase, so too did their esti-
mated ability to perceive the intruder. It is interesting
to note, however, that we observed variances in the rate
of growth across the different environments. Scenes 0, 1
and 5 have a linear growth up until about 4 patrollers
and then they taper off as they approach one.

Scene 3 and 4 behave differently, in that they approach
one at a constant linear rate. We note that this may
be with respect to the geometrical layout of the scenes
themselves. These two were more open environments,
thus shorter paths are calculated on average and hence
the probability of detecting an intruder may not be as
high as compared to the other scenes, which have more
geometry, around which an agent may have to navigate.
This seems to highlight that geometrical features of an
environment also contribute to the difficulty, and this
is something we may look at in future work. We also
clustered results per scene based on difficulty ranges.
Again, a subset of these results are presented in Figure
4. Figure 4a represents the results pertaining to Scene
0. As expected, for high levels of difficulty (0.8-1.0),
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Figure 4: Measure 2 values for scenes across all patroller
counts into heuristic value ranges

there is the highest levels of failures. For lower levels of
difficulty, the simulated player performs better, winning
a higher ratio of games. It is worth noting that this
scene has a high level of occluding geometry, and most
rounds were classified with the highest level of difficulty
according to our heuristic. Figure 4b reflects the results
for Scene 3. For the easiest level (0.0-0.2) the simulated
player performs well, winning 40% of its games. As the
difficulty increases, the player performs less effectively.
From the results of that scene we see a more even dis-
tribution of measure 2 values across all difficulty ranges.
Again, this captures some of the nuances of the actual
physical layout of the scene and its more open nature.
One feature of these results is that we have been able
to show that across different scenes we can highlight a
useful guide of varying difficulty levels on a per scene
basis. Some environments will be most difficult with
4 patrollers, and adding a 5'* may not add any extra
complexity not already captured; whereas other scenes
may require more patrollers to achieve maximum diffi-
cult levels.

Finally, in Figure 4, we present results detailing the level
of failure and success of the intruder across the different
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Figure 5: Clustering across all scenes and all patroller
counts for measure 2, expressed as a percentage of the
number of rounds within each interval

scenes for the difficulty level as recorded using measure
2. This highlights that overall, measure 2 is very closely
related to the success of the player, such that, as the
value for the measure increase, so to do the number of
intruder failures.

CONCLUSIONS

In this paper we discussed our research effort into evalu-
ating a set of simple heuristically guided measures that
could be used to approximate the difficulty of a game
world for an agent to overcome. For this task we have
presented a framework based on the patroller-intruder
game. We showed empirically that measures based on
patroller count, path length and approximated percep-
tion abilities could be used to give a good prediction for
the performance of a naive simulated player. Moreover,
we highlighted that simple measures could inherently
capture features pertaining to the physical layout of the
environment and its influence on the difficulty of a level.
In future work we wish to further explore the set of
viable heuristics, including the number of paths for the
intruder, the deceptive nature of paths and to learn a
means to optimally combine a set of these measures to
provide a strong indicator of difficulty. We would also
like to tackle the experiment set again with a larger set
of simulated players of varying abilities.
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ABSTRACT

This work presents the current development of a Goal-
Oriented Action Planning Architecture to be used in
the DVRMedia2 Framework AI Engine. The purpose of
this research is to model complex behaviors to be used
for massive simulations, with thousands of virtual char-
acters acting in a congruent manner in emergency sit-
uations, where first responders and civilian population
could be senzibilized and trained.

INTRODUCTION AND CONTEXT

When modeling non-player character behavior for any
game, one way to obtain realism is the use of action
planning schemes (Funge et al. 1999, Hoang et al. 2005,
Orkin 2006, Panzoli et al. 2008) that incorporate per-
ception of the environment and goal selection.

In this context, we are dealing with a serious game where
emergency evacuations can be simulated to sensibilize
and train the general civilian population as well as the
first responders.

Behavior modeling

To effectively model crowd behavior, it is necessary to
first model individual behavior that is coherent with the
simulated virtual environment (Thalmann et al. 2000).
In order to behave in a believable way these artificial
actors must act according to their surrounding environ-
ment, being able to react to environmental changes and
also to the actions of human-operated avatars in the
virtual world (Ulicny and Thalmann 2001).

Reactive behaviors, such as adapting to the changes in
the environment, are not enough to create realistic au-
tonomous actors. Creating realistic behaviors also de-
mands the representation and manipulation of the per-
ceived information (Shao and Terzopoulos 2005). This
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is what we call cognitive behaviors and once integrated
to the reactive ones, we can truly speak of complex be-
havior.

Once the individual behaviors are realistic, a multi-
agent system could be used to replicate the individ-
ual into crowds, this however, creates an homogeneous
crowd behavior that might or not appear realistic.

Psychological Factors

Psychological or human factors in behavior that have
been considered for crowd simulations are part of the
artificial actors’ internal state which provides certain de-
gree of individuality and also reflects differences in per-
ception and emotion, such as fear (Pelechano and Badler
2006), hunger (Shao and Terzopoulos 2005), tiredness
(Edward et al. 2009), etc.

These variations provide the actors with realistic be-
haviors under emergency conditions, enabling the sim-
ulation of panic situations where real people are unable
to act due to fear. Also, certain behaviors are tied to
specific internal states, limiting their execution to prede-
fined levels of said state. In this manner we can simulate
an stampede when fear overcomes the crowd.

CONCEPTUAL BRAIN MODEL

The conceptual model for the artificial brain shown in
Figure 1 includes the following modules:

Perception Module

The perception module contains the information that is
available to the artificial actor about his environment
through his senses. This includes what the actor can
“see” —such as the place where he is and threats present—
and what he can “hear” —such as other actors in the
same area.

To effectively store this information it is divided into
three different substructures: region information con-
tained in the database (Torres-Lopez and Larios-Rosillo
2009); Voronoi neighbors (Martinez-Vargas et al. 2009);
and perceived threats (Pelechano and Badler 2006).
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Figure 1: Brain Architecture

The perception module represents what is available to
the senses all the time and as such it gets updated every
simulation cycle with fresh information. In later parts of
this work the perception module will also handle virtual
actor communication, such as sharing threats with other
actors and acquiring knowledge from them.

Knowledge Module

The knowledge module contains the information about
the world that has already been internalized by the ac-
tor, as well as his own internal state. This also includes
a set of smart objects of which the actor is aware and
the regions to which the actor can move from the present
one.

Smart objects announce themselves to the environment,
as well as the actions associated with them. Those ac-
tions are then added to the individual actor’s action lists
and are available to the Action Module for their execu-
tion.

Knowledge of adjacent regions is also stored as knowl-
edge, as it is not always available to the actor’s senses,
so he must “remember” where he has been as well as
the places he can move to.

Internal State

The internal state deserves a more detailed view as it
is, along with the individual action lists, the basis of
individual actor behavior. The internal state represents
the status of the actor as a series of values that influence
its behavior.

Certain specific goals and actions will only be included
in plans when the actor’s internal state reaches certain
thresholds, for example, a character will panic when his
fear has reached a certain value.

There is also a relationship or hierarchy in which the in-
ternal state’s values are to be recalculated, as proposed
by (Edward et al. 2009). This relationship, called be-
havioral network, also reflects what internal state values
influence other parts of the artificial brain.
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Action Module

The action module handles the decision-making pro-
cesses of the virtual actor. This includes assigned or
desired goals which the actor must accomplish; a list of
actions available to accomplish the goal and an action se-
quencer or planner that combines actions to fulfill goals.
Once a valid action sequence or plan has been created,
it is stored for its step-to-step execution.

A goal is any condition that the actor wants to satisfy
(Orkin 2003), or a specific state of the virtual world,
which can be composed as a set of conditions, that the
actor needs to reach. For example, the SecureArea
goal implies that the virtual actors must eliminate any
threats to the best of their abilities, that is, using only
the actions available in their action lists.

The action lists, as per (Orkin 2004), represent the dif-
ferent actions available to a Fireman, a Trained Civil-
ian and a —implicitly untrained— Civilian. When the
Securelrea goal is fed to the Action Sequencer each dif-
ferent actor will create a different plan containing their
available actions:

e Fireman: The fireman will include his AttackFire
action to repeatedly attack the fire until it is put
out or another goal takes precedence.

e Trained Civilian: The trained civilian will include
his AttackFireOnce action to use an extinguisher
on the fire, then evacuate orderly.

e Untrained Civilian: The untrained civilian, having
no available actions to deal with the fire, will use
his Run action to secure himself, as he is unable to
secure the area.

In the specific case of the Fireman, his action plan might
first need to find a fire extinguisher, go to it, grab it and
then come back to the fire and use the actions made
available by the extinguisher smart object to attack the
fire and satisfy his SecureArea goal.

CURRENT WORK

We are currently using the JMonkey Engine (Powell
2003) to develop a serious game where we can sim-
ulate evacuations of massive structures such as stadi-
ums, shopping malls, government offices, industrial com-
plexes, etc. While JME is a good choice for our graphi-
cal needs, an additional communications layer, based in
the JADE (Bellifemine et al. 2003) is also being imple-
mented. This layer will also allow for the distribution
of the goal-management and plan generation aspects of
the conceptual brain model.

Our results show (??) that even when running 2500
agents, the graphical performance did not suffer from
quality loss, and that the real limit was the Virtual Ma-
chine’s inability to launch additional threads.
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simulation

CONCLUSION AND FUTURE WORK

We find the current results promising and will continue
to develop in this direction, adding modules as part of
the agent’s behaviors as they are developed and using
the obtained values to optimize the maximum number
or agents that should be running per peer in a large scale
simulation.

The generated behavior model and Al engine could be
used, as part of the DVRMedia2 framework, to simulate
evacuation of massive structures such as stadiums, shop-
ping malls or education facilities in the region holding
over 1000 personnel.
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ABSTRACT

Modern games often feature highly detailed urban envi-
ronments. However, buildings are typically represented
only by their facade, because of the excessive costs it
would entail to manually model all interiors. Although
automated procedural techniques for building interiors
exist, their application is to date limited. One of the rea-
sons for this is because designers have too little control
over the resulting room topology. Also, generated floor
plans do not always adhere to the necessary consistency
constraints, such as reachability and connectivity. In
this paper, we propose a novel and flexible technique for
generating procedural floor plans subject to user-defined
constraints. We demonstrate its versatility, by showing
generated floor plans for different classes of buildings,
some of which consist of several connected floors. It
is concluded that this method results in plausible floor
plans, over which a designer has control by defining func-
tional constraints. Furthermore, the method is efficient
and easy to implement and integrate into the larger
context of procedural modeling of urban environments.

INTRODUCTION

Game worlds increasingly often feature highly detailed
open worlds. Notable recent examples include Assassin’s
Creed, GTA IV and Oblivion, where players can explore
beautiful cities, of which each building has been modeled
by hand. Manual modeling of these city models involves
an enormous amount of effort, putting a huge burden
on the budget for game development companies. In
particular, this is the reason that, in games, city buildings
either have no interior (they consist only of a fagade)
or a fixed set of interiors is repeated all over the city.
Urban environments are therefore one of many areas
where automated procedural generation methods can
excel, by providing a limitless amount of varied content
for a fraction of the cost.

The procedural generation of a city entails a number of
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ingredients, each with its specific procedures and genera-
tion techniques: district topology (city center, suburbia),
road network (ring road, streets), division of open space
into parcels (building lots), building facades, floor plans
(room layouts) and interior furniture (chairs, tables).
In this paper, we focus on an important if somewhat
neglected ingredient: floor plans. We propose a novel
and flexible technique for generating procedural floor
plans subject to user-defined constraints. Using these
constraints, game designers control both the topological
layout of the building (e.g. which room comes next to
which other room) and the areas of the room. Further-
more, the method guarantees reachability of all rooms
and over multiple floors.

The remainder of this paper is structured as follows.
We first survey previous work on procedural modeling
of urban environments, focusing on floor plan genera-
tion. Then we present our constrained growth method
for procedural floor plans. We show several example
building interiors generated by this technique. And last,
we discuss our method advantages and limitations, and
propose future extensions and potential applications.

RELATED WORK

Procedural modeling techniques have been proposed for
almost every aspect of virtual worlds, ranging from land-
scapes to buildings. An extensive survey of procedural
modeling techniques can be found in Smelik et al. (2009).
Regarding buildings, L-systems, previously applied to
plant models (Prusinkiewicz and Lindenmayer 1990),
were among the first automated techniques used for
building facades (Parish and Miiller 2001). In recent
years, more specialized rewriting systems have been pre-
sented for this purpose: the split grammars (Wonka et al.
2003) and shape grammars (Miiller et al. 2006).

Here, we focus on procedural techniques for building floor
plans, i.e. the creation of a suitable layout of the different
rooms inside a building. Greuter et al. (2003) create a
floor plan as a combination of 2D shapes. However, this
floor plan is only used for extruding building fagcades.

Shape grammars, typically applied to building facades,

can also create floor plans, as shown by Rau-Chaplin
et al. (1996) in their LaHave House project. Their system



generates a library of floor plans, each of which can be
customized and automatically transformed into assembly
drawings. It uses shape grammars to create a plan
schema containing basic room units. Possible groupings
of individual units are recognized to define functional
zones like public, private or semi-private spaces. After
generating the required geometric data, such as the room
unit dimensions and the location of walls, a specific
function is assigned to each room. The rooms are filled
with furniture, by fitting predefined layout tiles from an
extensive library of individual room layouts.

Martin (2006) proposes a graph-based method, in which
nodes represent the rooms and edges correspond to con-
nections between rooms (e.g., a door). This graph is
generated by a user-defined grammar. Starting from the
front door, public rooms are added. Each of these public
rooms is assigned a specific function (dining room, living
room, etc.). Subsequently, private rooms are attached to
the public rooms and, finally, stick-on rooms like closets
or pantries are introduced. This graph is transformed to
a spatial layout, by determining a 2D position for each
room. For each node, depending on the desired size of
the room, a specific amount of ”pressure” is applied to
make it expand and fill up the remaining building space.
Hahn et al. (2006) present a method tailored for generat-
ing office buildings. Starting from the building structure,
they first position all elements that span across multiple
floors, e.g. elevator shafts, staircases. Then, the building
is split up into a number of floors. On each of them a
hallway subdivision is applied, adding straight hallway
segments or rectangular loops. Next, the remaining re-
gions are subdivided into rooms, for which geometry is
created and appropriate objects are placed. A notable
feature of this system is that each step is executed just
in time: based on the player’s position, floors and rooms
are generated or discarded. A discarded room can be re-
stored exactly in its previous state, by re-using the same
random seed in the procedure, followed by re-applying
all changes to its objects, caused by the player.

Marson and Musse (2010) introduce a room subdivision
method based on squarified treemaps. Treemaps recur-
sively subdivide an area into smaller areas, depending
on a specific importance criterion. Squarified treemaps
simultaneously try to maintain a length to width ratio
of 1. Their methods input is the basic 2D shape of the
building and a list of rooms, with desired dimensions
and their functionality, e.g. social area, service area and
private area. First these functionality areas are added
to the treemap. These areas are again subdivided to
create each room. Possible connections between room
types are pre-defined; based on this, doors are placed
between the rooms in the generated floor plan. Using
the A* algorithm, a shortest path is determined, visiting
all rooms that need a connection with the corridor. This
path is transformed into a corridor, and all rooms are
adjusted to make room for it.

Tutenel et al. (2009) applied a generic semantic layout
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solving approach to floor plan generation. Every type of
room is mapped to a class in a semantic library. For each
of such semantic classes, relationships can be defined. In
this context, constraints typically define room-to-room
adjacency, however, other constraints can be defined as
well, e.g. place the kitchen next to the garden, or the
garage next to the street. For each room to be placed,
a rectangle of minimum size is positioned at a location
where all defined relation constraints hold, and all these
rooms expanded until they touch other rooms.

A general overview of the application of constraint solv-
ing in procedural generation can be found in (Tutenel
et al. 2008). Particularly, several approaches define the
creation of room layouts as a space planning problem.
Charman (1993) gives an overview of constraint solv-
ing techniques that, although not specifically focused
on space planning, can be applied to these problems.
He compares several space planners and discusses the
efficiency of these solvers. Due to many recent improve-
ments on constraint solving techniques, his efficiency
concerns are no longer relevant. However, the discussed
planners are still suitable for layout solving. For instance,
the planner he proposed (Charman 1993) works on the
basis of axis-aligned 2D rectangles with variable position,
orientation and dimension parameters, for which users
can express geometric constraints, possibly combined
with logical and numerical operators.

These constraint solving techniques create rectangular
shapes, subject to dimension and adjacency constraints.
However, they are typically quite complex and can still be
time consuming. Moreover, many of them cannot handle
irregular shapes, e.g. L-shaped or U-shaped rooms, which
incidentally also holds for many of the other techniques
discussed above. This is one of the main drawbacks of all
these approaches. Our growth-based approach generates
more flexible results, and does that faster than other
constraint solving techniques.

FLOOR PLAN GENERATION METHOD

This section discusses a novel method for procedurally
generating floor plans. The problem of generating floor
plans is primarly a problem of generating the appropri-
ate layout for rooms, i.e. their location and area. We
believe that a proper procedural floor plan is one that
follows the same principles (and, as a consequence, the
appearance) of real building architecture. Our method
has drawn its inspiration from real life architectural floor
plans, where geometric grids are used as a canvas for
hand drawing building interiors. Fig. 1 illustrates a real
architectural floor plan example, where a point grid is
visible. Our method uses a grid-based algorithm for
placing and growing rooms within a building layout. We
describe how this algorithm hierarchically creates a floor
plan by generating building zones followed by its room
areas, both of which are constrained by adjacency and
connectivity relationships.
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Figure 1: Example of a real architectural floor plan,
using a geometric point grid

Hierarchical layout

The building layout is defined in a hierarchic manner.
Certain types of rooms can be grouped, allowing the
building to be subdivided in zones for these room groups,
followed by subdividing these zones into sub-zones, or
into specific rooms. This approach is similar to the
method of Marson and Musse (2010), which was dis-
cussed above. An example of a simple hierarchic building
layout is shown in Fig. 2. In this example, we subdivide
a house into two zones: a public zone and a private zone.
The public zone is then subdivided into a dining room,
a kitchen and a living room and the private zone into
a hallway, two bedrooms and a bathroom. This entails
that the room generation algorithm is applied twice, once
for each level in the hierarchy. Note that this hierarchy
can of course have more than two levels.

Because of the hierarchic approach, we do not allow
adjacency constraints to be defined between two rooms
from different zones. We can however put adjacency
constraints between a room and a parent zone, e.g. in
the previous example, we can demand that the hallway
from the private zone is adjacent to the public zone to
allow a connection with this public zone through the
hallway.

Bathroom
Private zone Bed‘;‘"’m Bed;oom
Hallway
Dining room
Public zone Living room
Kitchen
(@ )

Figure 2: This is an example of a hierarchic subdivision
of a building. (a) shows a building subdivided into
two areas, (b) shows these areas subdivided into their
required rooms.
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Room placement

Our method uses a grid as the basis for the room place-
ment and expansion process. There are two advantages
in using this representation. Firstly, it maps closely to
the way architects design floor plans. Secondly, it is effi-
cient to traverse and expand in a 2D grid, which allows
our floor plan generation method to execute fast. Our
grid representation (a matrix) does not limit a floor to a
rectangular shape. We fit non-rectangular buildings in a
grid that includes space marked as outdoor.

The method starts with a building footprint polygon,
which we rasterize into the 2D grid. Additional input
includes:

e the grid cell dimension in meters (e.g. 0.5m);
e a list of room areas to generate;

e for each room area its corresponding house zone
(public, private, hallway) and its preferred relative
area (or size ratio);

e adjacency and connectivity constraints.

The output it produces is a floor plan, consisting in room
areas, interior and exterior walls, and doors.

In the room placement phase, the initial positions for
each room are determined. For this, we create a separate
grid of weights of the same dimensions as the building
grid. Initially, cells inside the building get a weight of
one and cells outside get a weight of zero. Many of the
rooms in a building are preferably placed next to an outer
wall. Therefore, to apply this constraint, the weights
are altered. A straightforward way to do this would be
to set weights of cells not connected to the outside to
zero. However, placing initial positions adjacent to a
wall does not always result in plausible results, as they
tend to cause less regular room shapes. Therefore, we
use a different approach. Based on the size ratio of the
room and the total area of the building, we can estimate
a desired area of the room. Cells positioned at least a
specific distance (based on this estimated area) away
from the walls are assigned a weight of 1. This results
in much more plausible room shapes.

This phase also deals with the defined adjacency con-
straints. The adjacency constraints are always defined
between two rooms, e.g. the bathroom should be next
to the bedroom, the kitchen should be next to the living
room, etc. When selecting the initial position of a room,
we use the adjacency constraints to determine a list of
rooms it should be adjacent to. We check whether these
rooms already have an initial position. If there is, we
alter the weights to high values in the surroundings of
the initial positions of the rooms it should be adjacent to.
This typically results in valid layouts; however there is a
small chance that the algorithm grows another room in
between the rooms that should be adjacent. To handle
this case, we reset the generation process if some of the
adjacency constraints were not met.



Based on these grid weights, one cell is selected to place
a room, and the weights around the selected cell are
set to zero, to avoid several initial positions of different
rooms to be too close to each other.

Room expansion

We use a growth-based method for determining the pre-
cise shape of rooms. Our algorithm gradually grows
rooms from initial room positions until the building inte-
rior is filled. The expansion process is done by appending
adjacent grid cells to rooms.

Algorithm 1 outlines the expansion of rooms in our
method. It starts with a grid m containing the initial
positions of each room. It then picks one room at a time,
selected from a set of available rooms (SelectRoom), and
expands the room shape to the maximum rectangular
space available (GrowRect). This is done until no more
rectangular expansions are possible. At this point, the
process resets rooms to the initial set, but now considers
expansions that lead to L-shaped rooms (GrowLShape).
In a final step, the algorithm scans for remaining empty
cells and assigns them to a nearby room (FillGaps).

Algorithm 1: Room expansion algorithm

in : A list of rooms to be placed [
in : A list of room area ratios r
in :A building grid m

out: A floor plan defined in m

rooms < BuildRoomSet (]);
while rooms # () do
room «+— SelectRoom(rooms,r);
canGrow «— GrowRect (room, m,r[room]);
if —canGrow then
| rooms\ {room};
end
end
rooms «— BuildRoomSet (1);
while rooms # () do
room < SelectRoom(rooms,r);
canGrow < GrowLShape (room,m);
if —canGrow then
| rooms\ {room};
end
end
if HasEmptySpaces(m) then
| FillGaps(m);
end

In SelectRoom the next room to be expanded is chosen
on the basis of the defined size ratios r for each room.
The chance for a room to be selected is its ratio relative to
the total sum of ratios, defined in . With this approach,
variation is ensured, but the selection still respects the
desired ratios of room areas.
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The first phase of this algorithm is expanding rooms
to rectangular shapes (GrowRect). In Fig. 3 we see an
example of the start situation (a) and end (b) of the
rectangular expansion phase for a building where rooms
black, green and red have size ratios of, respectively, 8, 4
and 2. Starting with rectangular expansion ensures two
characteristics of real life floor plans: (i) a higher priority
is given to obtain rectangular areas and (ii) the growth is
done using the maximum space available, in a linear way.
For this, all empty line intervals in the grid m to which
the selected room can expand to are considered. The
maximum growth, i.e. the longest line interval, which
leads to a rectangular area is picked (randomly, if there
are more than one candidates). A room remains available
for selection until it can not grow more. This happens if
there are no more directions available to grow or, in the
rectangular expansion case, if the room has reached its
maximum size. This condition also prevents starvation
for lower ratio rooms, since size ratios have no relation
with the total building area. In Fig.3 (b), all rooms have
reached their maximum size.

Of course, this first phase does not ensure that all avail-
able space gets assigned to a room. In the second phase,
all rooms are again considered for further expansion,
now allowing for non-rectangular shapes. The maximum
growth line is again selected, in order to maximize ef-
ficient space use, i.e. to avoid narrow L-shaped edges.
In this phase, the maximum size for each room is no
longer considered, since the algorithm attempts to fill all
the remaining empty space. Furthermore we included
mechanisms for preventing U-shaped rooms. Fig. 3 (¢)
illustrates the result of the L-shaped growth step on the
previous example. The final phase scans the grid for
remaining empty space; this space is directly assigned
to the room which fills most of the adjacent area.

With the described mechanism, our growth algorithm
generates valid floor plans. Even with all the constraints,
each room layout problem has many valid solutions.
Therefore, there is quite some variation in generated floor
plans. Since our grid-based algorithm is fast enough, we
can collect multiple alternative solutions for each situa-
tion. We execute our growth algorithm N (parametriz-
able) times, obtaining N different but valid floor plans.
We can either randomly select one of alternatives, or
we can evaluate and rank the solutions (by e.g. prefer-
ence for smaller hallways or the least amount of corners
in room), and pick the best solution. Post-processing
will convert the grid to a geometric representation of
rooms, and ensures the creation of doors and windows
or extrusion of walls.

Room connectivity

Our method ensures connectivity between rooms by pro-
cedurally placing inner doors. This process is more
elaborate than simply making all rooms reachable from
e.g. the entrance of the building. For plausible results,
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(a)

Figure 3: Example for the room expansion algorithm: (a) initial room positions (b) rectangular growth (where rooms

reached their maximum size) (¢) L-Shape growth.

room connectivity needs to influence and be influenced
by the topology of the building. We achieved this us-
ing connectivity constraints combined with a specialized
connectivity algorithm.

Connectivity constraints, declared as input, state that
two rooms should be directly connected. Stating that
room A should be connected to room B will create a door
that opens from room A to room B. These constraints
influence the room layout, as they are also interpreted
as adjacency constraints. After placement and expan-
sion of rooms, we proceed to a post-processing phase,
in which, among other things, our connectivity algo-
rithm is executed. For this, the grid representation is
no longer appropriate, as it is more natural to consider
inner walls rather than room areas. Therefore, in this
post-processing phase matching inner walls for the rooms
are created first.

The connectivity algorithm places doors in these walls,
influenced by the building topology and connectivity
constraints. It should ensure the common connectivity
principles of a building (e.g. hallway always leads to
adjacent public rooms), while the constraints should only
be used to declare specific cases. Our aim is to emulate
real life architecture in its basic connectivity concepts,
independent of style or type of buildings. Therefore, we
use the notion of private and public rooms to decide on
door placement. The goal is to create full connectivity,
while respecting room privacy.

Our algorithm starts by placing doors between rooms
for which connectivity was explicitly declared. Next,
it connects any hallway to all of its adjacent public
rooms. Unconnected private rooms are then connected,
if possible, to an adjacent public room. Publics rooms
with no connections are connected to an adjacent public
room as well. Finally, our last step is a reachability test.
We examine all rooms and if any is not reachable from
the hallway, we use the adjacency relationships between
rooms to find a path to the unreachable room, and create
the necessary door(s).

With this algorithm, public rooms (and in particular the
hallway) have priority to become focal points, in terms
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of connectivity to private rooms. We wanted to bring
about the situation where, for example, two adjacent
private rooms are connected through a common public
room, instead of having a direct door between them. The
hierarchical layout ensures rooms distribution in such a
way that this setup is possible.

The creation of an inner door is implemented in a simple
manner. First, we select a shared wall between the two
rooms to connect, in which the door fits. Next, we
randomly select a segment of that wall and place the
door in its midpoint. Finally, doors are assigned to open
towards the destination room with its hinge towards the
closest corner of the wall.

— F——1 —
Kitchen Bathroom
Hallway
WV
Living room
Bedroom
— — =

Figure 4: Example of a relatively simple floor plan in-
cluding four rooms and a hallway.

RESULTS

This section provides examples of floor plans generated
with our method. The first example is a relatively simple
rectangular building (11 x 9 m), for which no hierarchy is
defined, and which should contain four rooms (a bedroom,
a bathroom, a kitchen and a living room) and a hallway.
We defined a connectivity constraint between the kitchen
and the living room. An example of a generated floor
plan for this building is shown in Fig. 4. Notice that the
connectivity constraint is satisfied, and that all rooms
are reachable. Generating these kind of floor plans takes
less than 100 ms.
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Figure 5: Two examples of a more complex floor plan, built up of a public zone with a great room and kitchen and
dining room, a private zone with a master bedroom and walk-in closet, master bathroom and a private zone with a

hallway, a bathroom and two bedrooms.

In our second example, we show more complex floor
plans, inspired from real floor plans of North-American
style villas. The building (which is L-shaped, measuring
17 x 20 m with a top part of 7 x 9.5m and a bottom part
of 17 x 10.5 m) is subdivided into three areas: one public
and two private zones. There are adjacency constraints
defined between the public area and the two private
areas. The public area includes a great room and a room
for a kitchen and a dining area. These rooms have a
connectivity constraint defined. The first private area
includes a master bedroom with an adjacency constraint
to the public area, a master bathroom and a walk-in
closet both connected to the master bedroom. The
second private area includes a hallway with an adjacency
constraint to the public area and three other rooms (a
bathroom and two additional bedrooms), all connected
to this hallway. Two floor plan examples for this building
are shown in Fig. 5.

One clearly notices L-shaped areas not only for the indi-
vidual rooms but also for the different areas within the
floor plan. This creates more varied and less restrictive
results than methods that are limited to rectangular
rooms. Because of the increased complexity these floor
plans take longer to generate: on average around one
second per floor plan.

In our method, we included a simple mechanism for
placing exterior elements, i.e. outer doors and windows.
These wall elements are declared as requirements for
each room. They are placed using the same method as
for inner doors. The results show that these elements
are placed correctly, if there is space available. In the
future, it would be interesting to consider generating
these elements automatically.
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Multiple floors are also supported by our method. When
generating the ground floor, a staircase (or elevator)
room is generated. In the subsequent floors, this room
is duplicated, fixed to the same position as the floor be-
low. Adjacency and connectivity constraints for staircase
rooms still hold as in normal rooms. Our results show
that room expansion in higher floors is not affected by
the initial duplication of the staircase. Rooms expand
naturally around the staircase, respecting all constraints.
An example of a two floor house is shown in Fig. 6.

Discussion

We discussed how our floor plan generation method
is suitable for procedural building generation, since it
provides fast and plausible floor plans. However, there
is some room for improvement. Firstly, our connectivity
algorithm identifies between which two rooms a door
needs to be placed, but the actual location of the door
is at random within the selected wall segment. This
sometimes creates situations where the walk paths inside
the building are not optimal. A smart approach for
positioning these doors would be a helpful extension.
Another potential issue arises from the fact that we
currently can not constrain the dimensions of a specific
room. Our approach often creates L-shaped rooms, which
might not be desirable in some particular cases. An
example of this is a garage, which needs to have specific
dimensions such that a car can be efficiently parked. An
L-shaped garage makes not much sense in that respect.
Constraints on the width-to-height ratio of a particular
room could improve the methods ability for handling
these cases.
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Figure 6: An example floorplan of a two floor house. Downstairs (left of the figure) an entrance, connected to a toilet,
a staircase and a kitchen and living room, upstairs, the staircase is repeated and is connected to a hallway which in
turn is connected to two bedrooms (one of which is connected with a study) and a bathroom.

Since we use a grid-based algorithm, buildings with ar-
bitrary angles are not supported. However, there are
straightforward extensions for such cases as well. As in
the technique used by Greuter et al. (2003), a building’s
outer shape can be created by combining multiple ge-
ometric shapes. If all of these basic shapes would be
constrained to axis-aligned polygons (with an arbitrary
rotation in reference to the buildings orientation), these
parts could be hierarchically subdivided into separate
areas with our approach, and later combined into one
complete building.

CONCLUSIONS

We can conclude that the method presented here effi-
ciently generates valid and plausible building floor plans.
We validate it in two ways. First, we visually compared
floor plans generated by our method with many real-
world plans of North-American houses, with which they
typically matched well. However, although the method
is very suitable for generating floor plans of houses, for
highly regular structured spaces, such as some types
of office buildings, more simple and specialized subdi-
vision methods would be more efficient and effective.
Second, we have consulted with architects and other
experts on the output generated, and received valuable
feedback. This has already resulted in further tuning of
the method’s parameters and constraints, for example
on plausible adjacencies and desirable floor topologies.
In the near future, we also expect this feedback to lead
to the introduction of additional consistency tests.

An area which we could improve upon is the scoring
mechanism for rating the set of alternative layouts gener-
ated by the method. This score could be a combination
of the adjacency constraint satisfaction with a number
of heuristics, e.g. minimum amount of internal doors,
minimum amount of internal wall segments, etc.

Our implementation of the method performs well, due
to its low complexity and efficient data structures. Al-
though it is by far not optimized, it is still suitable in the
context of dynamic generation of virtual worlds, where,
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e.g., the interior of procedural buildings is generated
within a small frustum around the player.

As future work, we would like to embed this method in
the broader context of generating fully featured procedu-
ral cities. For this, we would have, among other things,
to integrate the method with a facade generation sys-
tem, resulting in complete buildings. Also, by using our
semantic layout solving approach (Tutenel et al. 2009),
we could fill the procedural interiors with appropriate
furniture.

In our view, the constrained growth floor plan generation
method is a small but significant step towards the goal
of realistic and full-featured procedural cities.

REFERENCES

Philippe Charman. Solving Space Planning Problems
Using Constraint Technology. In Nato ASI Constraint
Programming: Students’ Presentations, TR CS 57/93,
Institute of Cybernetics, Estonian Academy ofSciences,
Tallinn, Estonia, pages 8096, 1993.

Stefan Greuter, Jeremy Parker, Nigel Stewart, and Geoff
Leach. Real-time Procedural Generation of ‘Pseudo
Infinite’ Cities. In GRAPHITE ’03: Proceedings of
the 15t International Conference on Computer Graph-
ics and Interactive Techniques in Australasia and
South FEast Asia, pages 87-94, New York, NY, USA,
2003. ACM. doi: http://doi.acm.org/10.1145/604471.
604490.

Evan Hahn, Prosenjit Bose, and Anthony Whitehead.
Persistent Realtime Building Interior Generation. In
Sandboz ’06: Proc. of the ACM SIGGRAPH Sympo-
sium on Videogames, pages 179-186, New York, NY,
USA, 2006. ACM. doi: http://doi.acm.org/10.1145/
1183316.1183342.

F. Marson and S.R. Musse. Automatic Generation of
Floor Plans Based on Squarified Treemaps Algorithm.
IJCGT International Journal on Computers Games
Technology, 2010. Accepted for publication.



Jess Martin. Procedural House Generation: a Method for
Dynamically Generating Floor Plans. Research Poster
presented Symposium on Interactive 3D Graphics and
Games, 2006.

Pascal Miiller, Peter Wonka, Simon Haegler, Andreas
Ulmer, and Luc Van Gool. Procedural Modeling of
Buildings. In SIGGRAPH °06: Proceedings of the
33" Annual Conference on Computer Graphics and
Interactive Techniques, pages 614-623, New York, NY,
USA, 2006. ACM.

Yoav I. H. Parish and Pascal Miiller. Procedural Model-
ing of Cities. In SIGGRAPH ’01: Proceedings of the
28" Annual Conference on Computer Graphics and
Interactive Techniques, pages 301-308, New York, NY,
USA, 2001. ACM.

P. Prusinkiewicz and Aristid Lindenmayer. The Algo-
rithmic Beauty of Plants. Springer-Verlag, New York,
NY, USA, 1990.

A. Rau-Chaplin, B. Mackay-Lyons, and P. Spierenburg.
The LaHave House Project: Towards an Automated
Architectural Design Service. In Proceedings of the
International Conference on Computer-Aided Design
(CADEX), Hagenberg, Austria, September 1996.

Ruben M. Smelik, Klaas Jan de Kraker, Tim Tutenel,
Rafael Bidarra, and Saskia A. Groenewegen. A Sur-
vey of Procedural Methods for Terrain Modelling. In
Proceedings of the CASA Workshop on 3D Advanced
Media In Gaming And Simulation (3AMIGAS), Ams-
terdam, The Netherlands, June 2009.

T. Tutenel, R. Bidarra, R.M. Smelik, and Klaas Jan de
Kraker. The Role of Sematics in Games and Simula-
tions. ACM Computers in Entertainment, 6:1-35, 2008.
doi: http://doi.acm.org/10.1145/1461999.1462009.

Tim Tutenel, Rafael Bidarra, Ruben M. Smelik, and
Klaas Jan de Kraker. Rule-based Layout Solving and
its Application to Procedural Interior Generation. In
Proceedings of the CASA Workshop on 3D Advanced
Media In Gaming And Simulation (SAMIGAS), Ams-
terdam, The Netherlands, June 2009.

Peter Wonka, Michael Wimmer, Francois Sillion, and
William Ribarsky. Instant Architecture. In SIG-
GRAPH °03: Proceedings of the 30" Annual Con-
ference on Computer Graphics and Interactive Tech-
niques, pages 669-677, New York, NY, USA, 2003.
ACM.

ACK<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>