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ABSTRACT

Modelling and model simulation are considered to be
powerful tools that are widespread amongst universities,
research institutes and industry. Industry? Looking to the
daily practice of food industry, in this case the dairy
industry, the role of models in research and development,
engineering and process control is less pronounced than one
would expect. In this paper the role and value of models in
new product development and processing in Campina, one
of the major European dairy companies will be discussed.
Subjects like the type of models that are used, the
limitations of modelling in dairy research, the success
factors for modelling, the role of universities and research
institutes, and future expectations will be treated.
The daily practice of model simulations will be illustrated
by two cases:

- foam stability

- cheese milk pasteurisation

INTRODUCTION

With a turnover of about € 3.7 billion Campina is one of
the major European dairy companies. Concerning consumer
product focus is on European countries, with emphasis on
the home markets, the Netherlands, Germany and Belgium.
Concerning ingredients for food industry and pharma focus
is world wide, with emphasis on Europe, USA and Japan.
As Campina has its roots in the Netherlands and made
important acquisitions in Germany and Belgium, R&D is
concentrated in these countries.

From the past R&D in Campina has been organised de-
central. However, in order to improve the efficiency of
R&D currently every business sector has its own R&D
center, for the white dairy sector in Wageningen, for
Cheese and Butter, in Tilburg and for Industrial products in
Veghel, all in the Netherlands. Locally R&D is still present
in Heilbronn (Germany, white sector), Aalter (Belgium,
white sector), Woerden (Netherlands, white sector) and
Rijkevoort (Cream liquors). The tasks of the local R&D
groups is limited to sales support, production support,
value engineering and line extensions. Major product
innovations are covered by the R&D centers. Recently,
June 2003, the R&D center for Campina’s white sector
started in Wageningen. Main reasons to start this center and
to start it in Wageningen are to create critical mass, to
manage synergism and to be easily connected to the
activties and institues of Food Valley Wageningen.

SUCCESS FACTORS OF MODELLING

Modelling and model simulations, can be important tools in

new product development, processing and process control.

However, compared to chemical industry, modelling in

dairy industry is not as widespread as one would expect.

There are a couple of reasons for this :

- critical mass : managing an R&D organisation there are
a couple of tools that can be used to improve the output
and effciency, e.g. project management, portfolio
management, knowledge management, statistics,
experimental design, TRIZ, SIT, QFD, ... and
modelling. Despite the fact, that one tool cannot be
replaced by the other tool, they are complementary,
decisions have to be made which tools to implement
and to support. Each tool needs its champions, its
specialists, in order to be successful in using it. This
means that only organisations of a certain size can
cover the total ‘tool box’.

- lack of acceptors : an important factor for successful
modelling is the presence of people that have a high
affinity towards modelling. Food companies have a
high level of people with an education in food
technology. Despite the fact that also in the education
of food technologists modelling has been widespread
there still is an arrears compared to e.g. chemical
engineering. Furthermore, looking to the Dutch
situation, people choosing for a food sicence education
at Wageningen University have, in general, less
affinity towards mathematics, and modelling more
specifically than people choosing to study at a
technical university.

- complexity of food systems : it can be stated that in
general food systems are far more complex than
chemical systems. Food systems can be characterised
by non-equilibrium multi-component systems that are
not well understood. Not the unit operations but the
components used and its interactions during processing
make that modelling is often of limited value.
Furthermore processing often knows a high degree of
craftsmenship, much experience and many rules of
thumb. Mathematically this often can be translated to
black box models, which of course, are of limited
value, but still can be quite effective in process control.




ROLE OF UNIVERSITIES AND INSTITUTES

A solution to some of the limitations can be found in hiring
young people with a degree in chemical or mechanical
engineering, physics or applied mathematics, but of course
they are lacking food technology know-how. Another
problem in an industrial R&D environment is often that
people move too quickly to other positions in the
organisation, thus making it difficult to organise continuity.
In the role of acceptor people cannot be replaced by
external people. However, in the role of developer, supplier
of models there is a chance for universities, institutes, small
(high) technical companies and engineering companies.
Especially in the area of CFD modelling starting
companies, spin-offs from universities, arise.

Looking to Campina and the role of universities and
institutes such as WCFS, TNO and NIZO Food Research
play an important role in model development. Examples
will be shown below. But also contacts and cooperations
with the technical universities of e.g. Eindhoven and Delft
either resulted in the development of models or in hiring
people with experience in model development. A nice
example is the PhD study of E. van Nunen on amino acid
separation by membrane electrophoriesis (van Nunen,
1997) and application of process models for optimisation
and trouble shooting of electrodialysis used for
demineralisation of cheese whey.

On the other hand much energy has been spent and will be
spent, by e.g. NIZO and WCFS, on the development of
models that will hardly or never be used by dairy and food
companies.

TYPE OF MODELS

Figure 1 showes a qualitative frequency distribution of
models used in dairy industry, and in Campina. The
question is whether real trial & error exists. Often
experience, rules of thumb and simple qualitative models
form the basis for this ‘ trial and error °.

In research and development qualitative models are
extensively used, e.g. models for casein micelles,
interaction of macro-molecules, behaviour of molecules at
the gas-liquid-interface or water-oil-interface, fouling of
membranes.

trial & error
rules of thumb -
qualitative models
mass and heat ]
balances
kinetics
thermodynamics -
unstructured models, |
static
unstructured models, |
dynamic
structured/segregated |
models

Figure 1 Type of models used

Especially in processing mass and heat balances are
extensively used for evaluation of experiments and for
design and engineering purposes. Most of the time only
static situations are covered using Excell worksheets.
Flowsheeting is often considered as being too complex and
too expensive. The threshold for hiring calculation capacity
and flowsheeting expertise seems to be too high. Although
this could be more effective a great deal of it can be
covered by  Excel sheets making flow sheeting as
alternative less attractive.

Kinetic models (in combination with mass balances) are
used in case of enzymatic reactions, inactivation of
enzymes, denaturation of proteins, microbial growth and
killing of micro-organisms. Either from a product
development point of view, or shelf life, hygiene, or fouling
of process equipment.

Thermodynamic models e.g. covering water activity,
solubility of phosphate, sorption isotherms are applied to
equilibrium conditions, which, as equilibrium will hardly be
reached, only serve as an estimate.

Dynamic models, numeric techniques, CFD are hardly used
without external support. The time and investment it needs
to keep it operational and to be effective is just too big.
Examples show, however, that when models are
incorporated in joint development projects with universities
and institutes they can be very successful.

On the other hand, not using models or model simulation is
not the main reason for not being successful in a certain
area.

In-line use of models in process control is a feature that is
just starting. One of the reasons is that a great deal of the
efficiency and quality improvement is already realised by
changing from off-line to on-line analytical techniques,
even without the automatic controls.

PROTEIN DENATURATION IN CHEESE MILK
PASTEURISATION

Dutch cheese production is roughly 600.000 tons per year,
using almost 6 billion litres of milk. Regarding this huge
volume two factors are extremely important: fat and protein
yield, and a constant quality of the cheese.

One of the parameters that affects both factors is the
amount of protein that is denatured during pasteurisation
and that is incorporated into cheese or lost in very fine curd.
For more then 15 years NIZO is developing models to
describe the effect of heat treatment on the microbial
quality of milk, on protein denaturation and on fouling of
heat exchangers. A great deal of the development has been
performed in co-operation with Dutch dairy companies. In
the 80’s-90’s Heat Card was developed and used by several
Dutch dairy companies like Campina. A couple of years
ago a new software tool, called Premia has been developed
and is currently effectively applied in the group Cheese and
Butter of Campina (de Jong et al, 2002).

Cheese milk is pasteurised on a plate and frame heat
exchanger with holding tube (figure 2 and table 1) at
constant pasteurisation temperature, e.g. 73 °C and constant
flow rate, e.g. 45 m’ per hour. In practice, however, flow



rate may differ from 37 to 50 m’/h. The effect of different
flow rates on protein denaturation can be simulated with

pasteurised milk

- [—
pre cooler reg. 1 reg. 2 heater
—>]

L1

—>| heater
raw milk

Figure 2. Layout of cheese milk pasteuriser

Table 1. Layout of 45 m’/h cheese milk pasteuriser

Section Volume T-out
[liter] (°O)

Pre-heater 65 21
Regenerative 1-up 157 55
Regenerative 2-up 34 65
Heater 105 Pasteurisation T
Holding tube 265 Pasteurisation T
Regenerative 1-down 34 63
Regenerative 2-down 105 29
Cooler 115 33

Premia, as a function of place in the pasteuriser and as a
function of run time.

Each section of the pasteuriser can be modelled separately
(figure 3) using the predefined units of Premia.

Premia process model generator
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Figure 3. Example of pre-defined section of plate and frame
heat exchanger in Premia

Combining this with the inactivation, denaturation and
fouling kinetics of enzymes, micro-organisms and proteins
yields e.g. fouling per section, degree of protein
denaturation, and degree of inactivation of enzymes and
micro-organisms. Figure 4 shows a typical temperature
profile of a pasteuriser simulated using Premia.

In production using an average flow rate of 45 m’/h a
protein denaturation of 7.2 % is obtained. However, in

80
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Figure 4. Temperature of heating medium, wall layer and
product as a function of residence time in cheese milk
pasteuriser at a run time of 6 h.

practice protein denaturation may change from 8.7 to 6.5 %
when applying flow rates from 37 to 50 m’/h, respectively
(figure 5). Concerning protein yield and cheese quality a
constant degree of protein denaturation is preferred. Using
Premia pasteurisation temperature as a function of flow rate
can be calculated giving the fact that a constant degree of
protein denaturation is required. Model simulation yield a
protein denaturation of 8 % at 45 m’/h. In order to get a
constant protein denaturation when flow rate differs from
37 to 50 m*/h temperature has to change from 71,5 to 73,8
°C, respectively (figure 6).

. N

X

7 AN

6,5 \

6 T T T T
30000 35000 40000 45000 50000 55000

Flow (kg/h)

Denatured protein (%)

Figure 5. Measured (M, fixed temperature) and simulated
(#, variable temperature) protein denaturation as a function
of flow rate.

In daily plant practice, graphs like this are being used to
control temperature of cheese milk pasteurisers. Next step
would be to connect Premia-like models directly to the
production process in order to control the degree of protein
denaturation on-line.
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Figure 6. Pasteurisation temperature as a function of flow
rate in order to obtain a constant degree of protein
denaturation in cheese milk

EFFECT OF RHEOLOGICAL PROPERTIES ON
FOAM STABILITY OF DESSERTS

There is a great interest of consumers and producers of
dairy products in aerated products. However, due to
coalescense and disproportionation aerated products are
often instable. WCFS (Wageningen Centre of Food
Sciences) investigated the stability of foams and emulsions
and developed a model describing the effect of bulk and
interfacial rheology on dissolution of air bubbles with a
diameter of 1 um to 1 mm (Kloek et al. 2001). Later on the
model has been applied by Campina to develop stable
aerated products.

Basis of the model is a description of the bulk and
interfacial rheological properties in terms of viscosity and
elasticity. As bulk and interfacial viscosity only retard
disproportionation at very high values (ng > 10° 64 and
bulk viscosity at values > 107 Pa-s), disproportionation in
food products is mainly ruled by interfacial elasticity and
bulk elasticity.

Due to the fact the pressure inside a bubble is bigger than
the external pressure gas diffuses out of the bubble. The
pressure difference due to interfacial tension is called the
Laplace pressure

AP = 26(R)/R. (1a)

where ¢ is the interfacial tension and R the radius of the of
the gas bubble,

or
P =P, + 20(R)/R = nR,T/V (1b)

when assuming that the ideal gas law is valid.

With P, representing the pressure of the medium, n/V the
molar concentration, R, the universal gas constant, and T
the temperature.

The change of surface tension as a function of bubble
radius during expansion or shrinkage can be derived from
the definition of the elastic modulus, Eq

E;=do/d(InA)="%Rdo/dR (2

Where Eqis the elastic modulus and A the surface area.
Combining equation (1) and (2) with the diffusion equation

dc/ot = DV*C 3)

with ¢ = ¢(r,t), the gas concentration, and D the diffusion
coefficient of the gas in the medium, yields, after some
rearrangements, a description of the change in bubble
diameter as a function of the interfacial elastic modulus.
Bulk elasticity can be incorporated in a similar way by
describing pressure in the bubble at the bubble boundary
(r=R) by

P=P,+26(R)R -1,=nR,T/V (4)

where 1, is the excess radial bulk stress tensor which can be
described by (Fyrillas et al 2000)

7,=2G Ry/R + %G (RyR)* =52 G (5)

where G is the bulk shear modulus.

Combining interfacial elasticity and bulk elasticity in one
model yields a description of bubble size as a function of
the interfacial elastic modulus E; and the bulk elastic
modulus G.

Table 2 shows some order of magnitude of the moduli of
various food products.

Combining these numbers with the model it can be
concluded whether interfacial elasticity of bulk elasticity, or
both, are responsible for stabilisation of an aerated product
(figure 7): e.g. in cheese stability is realised by bulk
elasticity, whereas milk shake is mainly stabilised by
interfacial elastic properties. For mousse both interfacial
and bulk elastic properties are important.

Table 2. Order of magnitude of bulk elasticity and
interfacial elasticity moduli of food products (Kloek et al

2001).

Product Eq4 G

(mN/m) (N/m?)
Beer 20 <0.01
Milk shake 20-40 0.01-1
Mousse 40-100 1-100
Dough 100 10°-10*
Cheese 10° 10*-10°

So, when designing an aerated product the graph can be
used to define whether research should be focussed on
ingredients affecting interfacial elasticity of bulk elasticity.
Whipped dairy products can be stabilised in several ways,
either by high bulk elasticity, e.g. by gel formation using
rennet or starch, or by high interfacial elasticity, e.g. using
emulsifiers.

Aiming at a low fat, pourable, aerated dairy product a new
system had to be developed. Based on the knowledge
gathered by developing the model the conclusion was



drawn that stabilisation of the gas bubbles should be
realised by increasing interfacial elasticity.

E (H/m}

Figure 7. Relative bubble radius as a function of interfacial
elastic modulus E4 and bulk elastic modulus G. The lines
indicate the relative radius at which bubbles become
stabilized (Kloek et al 2001)

The solution has been found in denaturation of protein
located at the air-liquid-interface. Using pH induced
denaturation the solution can be used in acidic dairy
products like yogurt. By mixing a stabilised, acidic, aerated
foam into a sweet dessert also stabilised sweet products can
be made.

CONCLUSIONS

Despite the fact that modelling can be a powerful tool in
food industry its application is limited due to complexity of
food systems, lack of critical mass, and lack of acceptors.
With support from universities and institutes, especially in
developing models, clear successes can be obtained in
product development as well as in engineering and process
control.
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ABSTRACT

In this contribution, we will present an overview of the
state of the art regarding the model-based optimization
of industrial food processing. The potential of modern
optimization techniques for improving industrial pro-
cesses will be discussed considering several important
problem classes. Finally, we will also outline a number
of research needs and probable future trends.

INTRODUCTION

Model-based approaches are increasingly applied in
the food and bioprocess industries (i.e., biotechnologi-
cal, pharmaceutical, environmental, etc.). In order to
increase the productivity, profitability and/or efficiency
of these processes, considerable research effort has been
devoted to their improvement via computer aided pro-
cess engineering methods. In this way, mathematical
modelling, optimization and control have become funda-
mental tools to optimally design and operate production
facilities in these sectors.

During the last decade, our group has been espe-
cially interested in robust and efficient optimization
techniques which can be used, in combination with suit-
able models, to obtain optimal or near-optimal solutions
regarding the design, operation and control of these pro-
cesses . Here we will present a review of the research that
our group (and others) have developed in this area.

PROBLEM CLASSES

Most models of food processing operations have an in-
herent dynamic nature, thus we will need to use methods
designed for the optimization of dynamic systems in or-
der to arrive to optimal decisions. There are three types
of optimization problems which are especially relevant

[1:

e Optimal control: i.e. computing optimal operating
policies: that is, given a process dynamic model
and a set of specifications, the objective is to com-
pute the optimal operating conditions which lead to
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maximum performance as measured by some pre-
defined criteria. These problems belong to the do-
main of dynamic optimization (or open loop opti-
mal control).

e Parameter estimation: or model calibration, i.e.
the usual problem of finding the parameters of a
nonlinear dynamic model which give the best fit
to a set of experimental data. This is one of the
mandatory steps in dynamic model development,
but unfortunately many modelers are not aware
of the dangers of applying standard optimization
methods for its solution.

e Integrated process design and control: to find si-
multaneously the static design variables (e.g. sizes
and number of units), the operating conditions (e.g.
flows) and other design issues (e.g. the controllers)
which minimize capital and operation costs while
optimizing certain characteristics of the dynamics
of the process (e.g. maximizing controllability)

Optimal Operating Policies

The computation of optimal operating policies for
food processing units or full plants can be used as the
kernel of a Decision Support System (DSS). Such DSS
could ensure maximum quality at minimum cost while
meeting safety and environmental constraints. Dynamic
optimization methods can be effectively used to com-
pute these optimal policies. However, the non-linear
and highly constrained nature of food processing models
can make their dynamic optimization a very challenging
task.

Dynamic optimization [2], also called open loop opti-
mal control, considers the optimization of dynamic sys-
tems in order to compute a set of time-dependent de-
cision variables (usually called controls, u(t)), during a
certain time horizon, which minimize (or maximize) a
performance index (J) of the dynamic behavior of the
system, subject to the following constraints:

e differential algebraic equations (DAEs) which de-
scribe the system dynamics

e equality and inequality algebraic path constraints



e bounds for the controls and/or states

The mathematical models of food processing opera-
tions have certain characteristics which will pose spe-
cial difficulties for their optimization: non-linear, dis-
tributed and dynamic nature, very often involving cou-
pled transport phenomena, plus a number of nonlinear
constraints coming from safety and quality demands.
Moreover, the optimal control profiles can be very rough,
often exhibiting additional difficulties, like e.g. singular
arcs. These characteristics can make the dynamic opti-
mization of food processing a hard task [3].

Therefore, the adequate election of robust and effi-
cient dynamic optimization methods is of the highest
importance. It should be noted that the state of the art
regarding the dynamic optimization of nonlinear sys-
tems is far from fully satisfactory: no existing method
can be used automatically (i.e. in an unsupervised way)
to solve any of the medium-to-high complexity problems
from this domain.

Parameter Estimation

Parameter estimation, or model calibration, is a key
step in the development of reliable dynamic models for
food processing. Given a model structure and a set of
experimental data, the objective of parameter estima-
tion is to calibrate the model (looking for parameters
which can not be measured directly) so as to reproduce
the experimental results in the best possible way.

This calibration is performed by minimizing a cost
function which measures the goodness of the fit, like the
least squares criterion. Since most food processing mod-
els involve coupled and highly non-linear phenomena,
usually described by sets of partial and ordinary dif-
ferential equations, the resulting parameter estimation
problem can be very challenging to solve. In particu-
lar, complex non-linearities might cause non-convexity,
i.e. the optimisation problem may contain several lo-
cal minima in the area of interest. Thus, traditional
gradient-based methods, like Levenberg-Marquardt or
Gauss-Newton, mail fail to identify the global solution
of the calibration problem. Further, when these meth-
ods find a parameter set which gives a poor fit to the
experimental data, the user can not be sure if the rea-
son is due to an incorrect model, or if it is an indication
of the convergence of the optimisation solver to a local
solution.

Schittkowski [4] has recently presented a thorough
review of parameter estimation in dynamical systems.
This author presents a detailed overview of local op-
timization methods (including gradient-based methods
such as Gauss-Newton, sequential quadratic program-
ming, SQP, and others) that can be used to compute pa-
rameters by a least squares fit. As Schittkowski noted,
even qualified numerical algorithms can fail, or com-
pute unacceptable answers, when using local methods.
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Examples of possible difficulties that can arise [4] are:
convergence to a local solutions, narrow curved valleys
where progress towards the solution is hard to achieve,
very flat objective function in the neighbourhood of a
solution, bad starting values for parameters, requiring a
large number of steps, badly scaled model functions and,
in particular, measurement values, or non-differentiable
model functions.

Integrated Design

During the last decade, the importance of a simultane-
ous (integrated) design approach, considering operabil-
ity together with the economic issues, has been recog-
nized (e.g. see [5] [7] [6] and the references cited therein).
It should be noted that the optimization problems aris-
ing from these formulations are very challenging. The
multimodal (non-convex) nature of these problems has
been highlighted by e.g. Schweiger and Floudas [7] and
Bansal et al. [6], among others.

A general statement can be considered taking into
account process and control superstructures which in-
dicate the different design alternatives. These state-
ments result in mixed integer optimal control problems
(MIOCPs). A simpler case is often considered, where it
is assumed that the process flowsheet is given, as well as
the process specifications. Although this problem state-
ment is obviously simpler than the above mentioned,
it has been shown to be challenging enough for many
optimization methods. Besides, it is a case often en-
countered in the real world, where many bioprocesses
have well established process flowsheets, so the process
and control superstructures are not an issue for the in-
tegrated design problem.

For this latter case, the objective is to simultaneously
find the static variables of the process design, the oper-
ating conditions and the parameters of the controllers
which optimize a combined measure of the plant eco-
nomics and its controllability, subject to a set of con-
straints which ensure appropriate dynamic behavior and
process specifications.

For many problems of interest, the simultaneous op-
timization of multiples objectives (e.g., product quality,
operating costs, capital investment, etc.) is a more real-
istic and desirable approach. These problems belong to
the field of multiobjective optimization [8]. Neverthe-
less, the associated non-linear programming problems
can be very challenging to solve. Furthermore, since
these objectives are frequently opposing, the optimal so-
lution is often not unique. Thus, the purpose of multi-
criteria optimization is to find a set of solutions which
involve optimal trade-offs between the different objec-
tives, i.e., the set of solutions which represent the rela-
tively best alternatives. In the field of food engineering,
multi-criteria optimisation has received very little atten-
tion.



ADVANCES IN OPTIMIZATION METHODS

The classes of problems discussed above are, or can
be transformed to, nonlinear programming problems
subject to dynamic (usually, differential-algebraic) con-
straints. Their highly constrained, non-linear and some-
times non-smooth nature often causes non-convexity,
thus global optimization methods are needed to find
suitable solutions.

As already mentioned, the application of direct meth-
ods (i.e. control vector parameterization or com-
plete parameterization) to optimal control problems fre-
quently leads to nonconvex NLPs subject to nonlinear
differential-algebraic constraints. Similarly, the latter
also often arise in the framework of integrated design
or parameter estimation problems. The more naive ap-
proach to surmount nonconvexity, i.e. multi-start local
methods, fails for any mildly realistic problem. Thus,
there is a clear need of robust and efficient global opti-
mization problems in order to ensure proper solutions.

The global optimization (GO) of nonlinear dynamic
systems is receiving increased attention from engineers,
mathematicians and computer scientists. In the domain
of deterministic GO methods, Esposito and Floudas [9]
[10] have recently presented approaches to solve nonlin-
ear optimal control (dynamic optimization) and parame-
ter estimation problems. This is indeed a very promising
and powerful approach, but the objective function and
the dynamics of the system must be twice continuously
differentiable, and restrictions may also apply for the
type of path constraints which can be handled. Other
groups [11] [12] are also making good progress in de-
terministic global optimization of dynamic systems, yet
several issues regarding requirements and computational
performance are still present. In any case, research along
these lines continues and it might result in breakthrough
results in the short term,

Regarding stochastic GO methods, several researches
have shown that they can locate the vicinity of global so-
lutions for nonlinear dynamic problems with relative ef-
ficiency [14] [13] [15] [3] [17] [16] [15], but the cost to pay
is that global optimality can not be guaranteed. How-
ever, in many practical situations these methods can be
satisfactory if they provide us with a ”good enough”
(often, the best available) solution in modest computa-
tion times. Furthermore, stochastic methods are usually
quite simple to implement and use, and they do not re-
quire transformation of the original problem, which can
be treated as a black box. Thus, they can handle prob-
lems with complicated dynamics (e.g. discontinuities
[18], non-smoothness, etc.).

APPLICATION TO
CESSES

INDUSTRIAL PRO-

Several successful applications of modern optimiza-
tion methods in the area of food process engineering
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will be reviewed. In particular, the dynamic optimiza-
tion of several important operations will be discussed,
emphasizing two key aspects: the need of robust yet
efficient optimization methods for the robust solution
of these problems, and the advantages of the computed
optimal operating policies over the traditional operating
conditions. The following processes will be discussed:

e Industrial thermal sterilization: widely reported as
one of the most important operations in the food in-
dustry. Many authors have presented model-based
computational methods to design and/or optimize
this type of processes (see the reviews of e.g. Silva
et al [19], Durance [20] and Banga et al [1]). In its
basic form, the dynamic optimization of thermal
processing problem seeks to find the heating tem-
perature (as a time-dependent profile) which maxi-
mizes the final nutrient retention of a pre-packaged
conduction-heated food subject to a constraint on
the microbiological lethality. Thus, there are two
conflicting demands: in order to achieve the de-
sired minimum lethality, we must process all the
regions of the food at a high enough temperature
during long enough time. But, on the other side,
the action of heat also destroys nutrients, and we
want to minimize that undesirable effect. We will
review the different approaches used to efficiently
solve these problems.

e Food dehydration: although there exist many stud-
ies dedicated to the modeling (and simulation) of
food dehydration, there are very few optimization
studies. The pioneers in recognizing and formu-
lating the dynamic optimization problems, taking
quality as a performance index, were Karel and co-
workers [21] . These researches considered the prob-
lem of maximizing product quality during air dry-
ing of a model system and of potato slabs. To solve
these optimal control problems, they used both the
maximum principle of Pontryagin and a modified
Complex method applied to a transformed problem
via control parameterization. Interestingly, they
recognized the superiority of this latter approach
(although less elegant than the PMP). However,
the modified Complex, though more robust than
gradient-based methods, is also a local method, so
it might get trapped in local optima depending on
the initial point chosen. We will present and discuss
more recent studies which avoid getting trapped in
such local solutions.

e Batch and fed-batch fermentations: these are pro-
cesses of major importance not only in the food
industry, but also in the biotechnological and phar-
maceutical sectors. A recent review [22] reveals a
very large amount of research dedicated to these
interesting processes.



e Other industrial food processes: we will also re-
view the dynamic optimization of several other pro-
cesses, including microwave heating, contact cook-
ing, freeze-drying and membrane processing.

Research Needs and Future Trends

More work is needed in a number of research avenues
in order to ensure the formulation and proper solution
of more realistic optimization problems at the industrial
level:

e Large-scale, multi-objective optimization of food
processing, considering not only unit operations but
complete plants, thus providing the kernel of truly
useful and plant-wide decision support systems

e Optimization under uncertainty: although mod-
elling of uncertainty has already been applied to
food processing [23], these type of models have not
been used to obtain robust optimal operating poli-
cies, or to derive optimal risk-management methods

e Surrogate (reduced order) models: the key idea is
that complex dynamic models can be accelerated
several orders of magnitude without loosing signifi-
cant information. Nonlinear model-reduction tools
will play a major role in order to speed and scale
up the next generation of optimization and control
tools
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ABSTRACT

Simulation tools are used to optimise
setpoints of heat treatment processes on lab,
pilot plant and production scale are used. In
this paper the use of multiresponse modelling
for understanding chemical reactions during
heat treatment of milk will be discussed. A
reaction mechanism of formation of volatile
sulfur compounds is proposed. Several heat
treatments of high-pasteurised milk will be
simulated using the proposed reaction model.

INTRODUCTION

Obtaining competitive advantage in
the market requires short time-to-market of
new product introductions and reduced costs in
operations. Short time-to-market of new
introductions can be achieved by good design
of experiments during product development
projects. The design of experiments can be
supported using simulation models that predict
the effects of processing on the quality of the
end product. However, simulation of effects
can never replace experiments, but their
number can be reduced.

The predictive models for simulation
of heat-induced changes do not have to be
based only on conversion rate models (black
box models), but can also be based on more
mechanistic models (grey or white box
models). In this paper an example of using a
mechanistic model for formation of volatile
sulfur compounds in milk during heat
treatment will be discussed.

FORMAL KINETIC MODELS
MECHANISTIC KINETIC MODELS

VS

The change of concentrations in food
products due to chemical reactions can be
mathematically described via at least two
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different approaches: formal kinetic models or
mechanistic kinetic models.

Formal kinetic models are based on
the change in concentration of a compound
over time, which can be described as:

_9€ _jsen M
dt

with C the concentration, t time, k the reaction
rate constant and n the order of the reaction.
There are two reaction orders. The first one is
determined via calculation of the initial
reaction rate at various concentration, this
order is the reaction order with respect to
concentration n,. The second reaction order is
determined via the change of concentration
over time. The two reaction orders do not need
to be the same (Van Boekel and Tijskens,
2001). The kinetic model according equation
(1) does not give information about the
mechanism of a reaction (Van Boekel and
Walstra, 1995). Furthermore the reaction rate
constants are only valid within the boundaries
of the study, e.g. extrapolation outside the
boundaries of study is not allowed (Stewart et
al., 1996).

Mechanistic kinetic models are based
on a proposed reaction mechanism that
describes the change of concentration of key
reaction compounds. Reactions in foods are
usually quite complicated. In fact just studying
the change of concentration of a single
compound does not give information about the
underlying reaction mechanism. A possible
solution for better understanding of the
underlying reaction mechanism is using
multiresponse modelling. (Van Boekel and
Tijskens, 2001). One can apply multiresponse
modelling when more than one reactant is
measured at the same time. Mathematically the
chemical reaction mechanism (2) is described

with the following coupled differential
equations (3).
A+B—Y5C+D
c—25E 2)
D+B—4F
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The reaction rate constants are estimated by
fitting the numerically solved ordinary
differential equations to experimental data.

Proposing a reaction mechanism is an
iterative process (figure 1). Some iteration
loops are ussually necessary to fit the right
model to the observed responses (van Boekel,
2000).

Identification of
key chemical
compounds of
cooked flavour,
determine
important factors

| Development
of quantitative

analytical
methods

Iterations

>
Experiments

Propose

reaction model
and fit to —
experimental

Y

results

Figure 1:General iteration cycle to propose a
kinetic model (after Van Boekel, 2000).

Estimation of parameters and model
discrimination to determine which model
should be accepted is based on Bayesian
statistics (Stewart et al., 1998). It is beyond the
scope of this paper to explain this method in
more detail. We used the software program
Athena visual workbench (www.athenavisyal
.com) for estimation of parameters and model
discrimination.

Multiresponse modelling can be used
to elucidate reaction mechanism in food
systems. It has been applied to sugar reactions
in milk (Berg, 1993), Maillard reaction
between proteins and sugars (Brands, 2002),
Maillard reactions between amino acids and
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sugars (Martins, 2003) and chlorophyll
degradation in olives (Van Boekel, 2000).

Multiresponse  modelling  requires
more experimental work, because more
responses at one time need to be analysed (Van
Boekel and Tijskens, 2001).

MODELLING OF HEAT-INDUCED
FORMATION OF VOLATILE SULFUR
COMPOUNDS IN MILK

Heat treatment of milk induces
formation of different volatile compounds.
Heated milk flavours can be devided into four
notes: cooked or sulfurous, heated or rich,
caramelised and burnt (Shipe et al., 1978).
The change of notes is correlated to the
instensity of heat treatment.

The cooked or sulfurous flavour is
mainly caused by formation of volatile sulfur
compounds. Hydrogen sulfide, sulfur dioxide,
methanethiol, dimethylsulfide and carbon
disulfide are among other volatile sulfur
compounds examples of compounds that cause
cooked flavour in heated milk (Steely, 1994).

Identification of key chemical
compounds of cooked flavour was based on
literature review. We identified hydrogen
sulfide, carbonyl sulfide, methanethiol,
dimethyl sulfide and dimethyldisulfide as key
chemical compounds of cooked flavour. These
compounds originate from protein-bound
cysteine and methionine. We developed
quantitative analytical methods (GC-MS,
HPLC and spectrofotometric methods) to
quantitate the concentrations of the key
compounds in heated milk. It turned out that
development of reliable reproducible analytical
methods required most of the effort in this
study.

The quantification of hydrogen
sulfide was difficult due to the high volatality
of it (figure 2). The reproducibility of the
method was not good,. although a trend is
visible. Therefore H,S-concentrations were
used in our parameter estimation.
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Figure 2: Formation of hydrogen sulfide
during heat treatment at 120°C. Solid line
represents model prediction.

The precursor of hydrogen sulfide is
protein-bound cysteine. In figure 3 the
concentration of masked sulthydryl groups and
free sulfhydryl groups are presented. The
concentration curve of free SH-groups seemed
comparable to the calculated concentration of
unfolded [-lactoglobulin according to the
model proposed by De Jong (1996).
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Figure 3: Masked, free and total Sulfhydryl
concentration as function of heating time at
90°C. Lines represent model predictions.

Carbonyl sulfide, COS, is a
intermediate compound in the reactions of
volatile sulfur compound. Although the origin
of COS is not yet clear to us, it is clearly
formed during heat treatment of milk (figure
4).
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Figure 4: Formation of Carbonyl sulfide (COS)
during heat treatment at 135°C. Solid line
represents model prediction.

The first reaction mechanism that was
proposed was based on a literature review on

formation of volatile sulfur compounds (figure
5).

Model 1
k1
Folded-SH Unfolded-SH
k2
k3
Unfolded-SH — H2S

k4
2* Unfolded-SH —> S-S bridge

Protein-methionine CH3-SH
a
CH3-S-CH3
R-C=0 + H2S —X 5 cos
k8
2 * CH3-SH ———> CH3-S-S-CH3

Figure 5: Reaction model of formation of
volatile sulfur compounds.

Model 1 was rejected because the
model did not fit the observed responses. 2
other models were fitted to the observed
responses and finally the reaction scheme
presented below was accepted.



Final model
k1
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4—
k2
k3
Unfolded-SH —> H2S

k4
2* Unfolded-SH — % S-Sbridge

Protein-methionine CH3-SH
G
CH3-S-CH3
R-C=0 + H2S i» COS
COS i» X

k9
R-CH-S-CH3 + CH3-SH ———> R-CH2-SH + CH3-S-CH3

k10

CH3-S-CH3 — Y

Figure 6: Reaction model 3 of formation of
volatile sulfur compounds during heat
treatment of milk.

The activation energies of all reaction
rate constants were estimated. We observed
that the reaction rate constants had different
activation energies below 100°C compared to
above 100°C (figure 7).
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Expon. (k1>95°C)

Figure 7: Arrhenius plot of reaction rate
constant vs inverse Temperature. Solid line are
model predictions.

Different temperature dependencies above and
below 95°C are often observed in whey protein
reactions in milk (Oldfield et al, 1998,
Dannenberg and Kessler, 1988, De Jong, 1996
and many others).
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OPTIMISATION OF HEAT TREAT-
MENT OF MILK

Heat-treated milk can be optimised
with respect to formation of formation of
volatile sulfur compounds. In the next example
we show a possibility to improve taste of high-
pasteurised milk, while maintaining the
inactivation of Bacillus cereus spores (12D-
reduction). We will show the difference
between direct (direct steam injection) and
indirect heat treatment (figure 8 and 9) (after
Bylund (1995).

Reactions of volatile sulfur compounds

80

Temperaturen ‘C
|
our w uoge

Figure 8: Formation of volatile sulfur
compounds as a function of time-temperature
profile of indirect heat treatment of milk at
124°C.

Reactions of volatile sulfur compounds

Temperaturen ‘C
1our u uanesuea0)

Figure 9: Formation of volatile sulfur
compounds as a function of time-temperature
profile of direct heat treatment of milk at
129°C.

The maximum heating temperature of
direct heated milk in this example was 5°C
higher than the indirect heated milk in order to
reach a 12D reduction of Bacilluse cereus
spores. The formation of volatile sulfur
compounds in direct heated is far less than in
indirect heated milk. Hence the indirect heated
milk will have a much intenser cooked flavour
than the direct heated milk.

CONCLUSIONS

Chemical reactions in food systems
like milk are complicated. We proposed a
model of reactions of volatile sulfur containing
compounds using multiresponse modelling.



We showed that heat treatment processes can
be optimised using simulation models with
respect to formation of wvolatile sulfur
compounds.
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ABSTRACT

There are many examples of the use of process modelling
and process optimisation in ICI, a specialty chemicals
manufacturing company, with a significant product portfolio
for supply to the foods sector. ICI’s core business is
organised into four international businesses (Quest Foods
and Fragrances, National Starch, Unigema and ICI Paints)
each with a range of applications in process modelling and
other types of modelling. This paper will give an overview
of the process modelling applications, particularly with
reference to applications to products for the foods sector that
have been carried out by collaboration between ICI’s
corporate Strategic Technology Group (STG) and the
international businesses.

Process Modelling is applied at a range of time and length
scales and includes:

1. Thermodynamics and  physical  properties
modelling.
2. Equation based modelling for capturing

mechanistic (steady or dynamic) models that can
be used for (steady, dynamic or mixed steady/
dynamic data) parameter estimation, optimisation,
model discrimination or model based experimental
design.

3. Fluid dynamics modelling based both on detailed
finite volume discretisation in CFD methods and
based on chemical engineering correlations.

4. Stochastic discrete event modelling for production
capacity and supply chain dynamics, identification
of key bottlenecks and their shifting behaviour and
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the impact of, dependence on and utilisation of key
resources.

The paper will present examples of current interest in some
of these categories.



SIMULATION
OF
PROCESSES
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PRODUCTS
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ABSTRACT

Recognised for its excellent mixing capabilities and its
optimal heat and mass exchange, fluid bed technology is
being increasingly applied in the food industry where drying,
coating, agglomeration and/or mixing processes are
involved. The primary factor influencing fluidised bed
processing, is the air flow and its distribution. Numerical
modelling techniques such as Computational Fluid
Dynamics (CFD) provide an important means to investigate
air flow distribution through specific equipment. In this
paper, CFD simulation results of the air flow in a Glatt
GPCG-1 lab-scale fluid bed in which stainless steel woven
wire mesh distributors were used, are presented, together
with the results of verification experiments. As an unequal
air flow inside the plenum was found to occur, CFD was
used as a design tool to investigate reactor configuration
changes in order to obtain a more homogeneous air flow
towards the distributor.

INTRODUCTION

One of the main reasons for the success of the fluidised bed
in the food industry is its ability to perform a number of unit
operations such as mixing, drying, coating and granulating,
within the same piece of equipment, either separately or
sequentially (Depypere et al. 2003). The unique features of
the fluid bed — excellent mixing capacity and high heat and
mass transfer rates — are highly dependent on the quality of
fluidisation resulting from the bubble characteristics of the
fluidising gas, which to a large extent depend on the
distributor design (Senadeera et al. 2000). In order to
understand the fluidisation hydrodynamics of a fluid bed
operation, it is essential to assess how air flow is distributed
through the equipment. This paper reports on the use of
Computational Fluid Dynamics (CFD) as a numerical tool to
enlarge this understanding. Whereas CFD software codes
were originally developed as a tool for predicting air flow
movement over planes and cars, it is equally appropriate to
use CFD for the prediction of air flow and related
phenomena inside items of food processing equipment such
as a fluid bed (Scott and Richardson 1997).

The main objective of this research was to investigate the
effect of the air distributor and the upstream air supply
system on the air flow in a top-spray fluidised bed reactor.
For this purpose, CFD simulations were performed and the
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modelling results were compared with laboratory
experiments. Where appropriate, possibilities for reactor
design alterations in order to improve air flow conditions
were numerically investigated.

MATERIALS AND METHODS
CFD Model of the Fluid Bed

To simulate fluid flow and heat transfer problems, the mass
conservation or continuity equation, the momentum
conservation or Navier-Stokes transport equations and the
energy conservation equation are numerically solved. Using
CFD, this set of partial differential equations is written in a
discretised algebraic form which can be solved to obtain data
for the flow field variables in discrete points in space and/or
time (Anderson 1995). The computational scheme used in
most commercial CFD packages is the finite volume method
(Wang and Sun 2003). This control-volume-based technique
consists of: (1) division of the domain into discrete control
volumes using a computational grid (mesh), (2) integration
of the governing equations on the individual control volumes
in the construction of algebraic equations for discrete
dependent variables, (3) linearisation of the discretised
equations, and (4) solution of the resultant linear equation
system.

Prior to the CFD calculations, the geometry was defined and
a grid was generated using Gambit 2.0.4 (Fluent Inc.,
Lebanon, U.S.), the pre-processor and mesh generator for
the CFD solver. Fig. 1 displays the 3-D meshed fluidised
bed domain as a realistic representation of the lab-scale Glatt
GPCG-1 unit under research.

? outlet

inlet

Figure 1. Gambit 3-D Meshed Domain (left) for the
Glatt GPCG-1 Fluid Bed Reactor (right)



Sequentially, the air inlet, the connection ducts comprising
the heating chamber, the air plenum, the distributor, the
tapered expansion chamber, the cylindrical extension and the
air outlet can be distinguished.

For all cases studied in this paper, a hybrid hexahedral-
tetrahedral grid of 200,000-240,000 elements was generated.
At locations where the largest gradients were expected to
occur, mesh refinement was applied: boundary layers in the
vicinity of the distributor and an increased number of nodes
near the walls. The mesh quality was evaluated using the
EquiAngle Skew (Qgas) criterion which is a normalised
measure of the element skewness. For all generated 3-D
meshes, the Qgag of at least 90% of the control volumes was
lower than or equal to 0.4. Therefore, the overall mesh
quality could be considered very good. The complete domain
was conceived as a fluid (air) zone. After meshing the
domain, the grid was imported into Fluent 6.0.20 (Fluent
Inc., Lebanon, U.S.), the CFD solver used in this study.
Before solving and post-processing the results, the boundary
conditions and the fluid and solids properties had to be
specified. The air inlet and air outlet were modelled as a
pressure inlet and a pressure outlet, respectively. The domain
walls were modelled as stationary boundaries at which the
no-slip condition was applied.

Using Fluent, the air distributor was modelled as an internal
boundary using the porous media model in which an
empirically determined flow resistance in a 3-D domain zone
is defined. Therefore, porous media are modelled by the
addition of a momentum sink in the standard Navier-Stokes
equations, contributing to the pressure gradient in the porous
cell. The momentum sink term is composed of a Darcy term
describing the viscous loss and an inertial loss term,
originating from the orifice equation:

3 3 1
Si =— ZDIJ HHJ +ZCij Ep’u]‘ujw
j=1 j=1 )

where S; is the momentum source term for the i-th (x, y or z)
momentum equation, u is the mean superficial air velocity
normal to the distributor, W is the fluid dynamic viscosity, p
is the fluid density and D and C are matrices, representing
the impermeability and the inertial resistance, respectively,
in the three coordinate directions.

In this study, the use of two different woven wire stainless
steel Robusta distributors (Sporl) in the Glatt GPCG-1
device was investigated. Table 1 shows the distributor
characteristics, together with previously determined values
for the impermeability and inertial resistance in the main air
flow direction (Z). Using the porous media model enabled to
also specify values for D and C in both the X- and Y-
direction. From previous research (data not shown), these
values were found to be at least 10 times the ones in the Z-
direction. In Table 1, the number of wires per inch (wpi) in
the one direction is denoted as warp mesh, while weft mesh
indicates the number of wires per inch in the orthogonal
direction. The filter fineness indicates the diameter of the
largest, hard spherical particles which can pass through the
distributor under stationary flow conditions.
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Table 1. Characteristics and Porous Zone Modelling Inputs
for the Distributors Used in this Study

Rob172 Rob280
Warp x weft mesh (wpi) 172 x 36 280 x 70
Filter fineness (um) 100 55
Distributor thickness (um) 650 390

Porous zone thickness (mm) | 7 7
Z-impermeability (m™) 3.40 E+08 | 7.54 E+08
Z-inertial resistance (m’') 3,204 2.361

CFD simulations were performed using a single-precision
steady-state segregated implicit solver. Flow turbulence was
simulated using the “realizable” k-&¢ model with enhanced
wall treatment, the latter being one of the available tools in
Fluent to model the near-wall region. The choice for the
“realizable” k-¢ model (Shih et al. 1995) instead of a
standard k-&¢ model was justified for a number of reasons.
Firstly, the realizable model satisfies certain mathematical
constraints on the Reynold stresses, consistent with the
physics of turbulent flows. Moreover, the use of the standard
k-¢ model resulted in convergence problems and the
occurrence of physically impossible reversed air flow at the
outlet boundary.

With respect to equation discretisation, a standard scheme
was used for the continuity equation while a first order
upwind scheme was used for both the turbulence kinetic
energy equation and the turbulence dissipation rate equation.
To reduce numerical diffusion, a second order upwind
scheme was selected for the discretisation of the momentum
and energy equations. The relationship between velocity and
pressure corrections was calculated using the SIMPLE
algorithm. Default values for all under-relaxation factors
were applied, except for the turbulence kinetic energy and
the turbulence dissipation rate. In order to enhance
convergence, the under-relaxation factors of these two
turbulence quantities were lowered to a value of 0.6.

Fluid Bed Verification Experiments

A first verification experiment consisted of the determination
of the wvelocity/pressure-drop characteristic of the
distributors, placed inside the Glatt GPCG-1 fluid bed,
operating under steady-state conditions. The air flow rate
inside the reactor was determined using a rotating vane
probe (Testo) while the pressure drop across the distributor
was measured using a 10 hPa differential pressure probe
(Testo) by recording the static pressure in two pressure taps,
located 0.04 m upstream and downstream the distributor,
respectively.

A second experiment was carried out to verify the obtained
CFD air flow patterns inside the plenum and the tapered
expansion chamber. A series of 23 adhesive type K
thermocouples with a 7 mm metal disc termination was
attached to the inner walls of these device components. Wall
temperature records were registered during steady-state
operation of the fluid bed. The inlet air temperature entering
the plenum was set at 50°C.



RESULTS AND DISCUSSION
CFD Simulation Results

Fluent 3-D simulations were carried out for a series of
different values for the reactor under-pressure, specified at
the reactor outlet. Fig. 2 shows a combined contour plot of
the velocity magnitude and velocity vector plot in a XZ-
plane through the centre of the plenum and the expansion
chamber for the GPCG-1 device in which one Rob172 and

two sequential Rob280 distributor plates, respectively, were
mounted. For both simulations, the pressure outlet boundary
condition was set at -400 Pa.

Figure 2: Fluent 3-D XZ-plane Contours of Velocity
Magnitude (m/s) (Reactor Under-pressure: 400 Pa):
(a) one Rob172, (b) two Rob280

From Fig. 2, it was seen that due to the left side entrance in
the air plenum and the relatively small plenum height, the
highest air velocities immediately beneath the distributor
were found at the right side of the plenum while a
recirculation zone was distinguished immediately below the
left side of the distributor. From this, it was clear that upon
contact with the distributor, a non-uniform air flow pattern
developed inside the air plenum. Above the distributor, a
decelerated upward air flow was observed.

This is an essential feature of the fluidised bed unit with a
tapered expansion chamber under research: a careful
selection of the air flow rate will aid to prevent particles in
the fluidised bed to become elutriated or entrapped in the
filter housing.

Furthermore, the simulations revealed that for low to
moderate air mass flow rates, both distributors succeeded in
homogenising the incoming unequal air flow. However, it
was also seen that for the Rob172 distributor at moderate to
high air mass flow rates, a slightly preferential air flow at the
right side of the expansion chamber still remained.

Experimental Verification Results

For both distributors in this study, Fig. 3 shows the
comparison between the simulated and the experimentally
recorded dependence of the distributor pressure drop on the
air mass flow rate in the laboratory-scale Glatt GPCG-1 fluid
bed unit. Although it was seen that that the CFD simulations
slightly underestimated the second order contribution of the
velocity on the pressure drop across the distributor, good
agreement was found between the simulation results and the
experimental recordings.
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Figure 3: Pressure Drop across Both Tested Distributors
versus Air Mass Flow Rate in the Glatt GPCG-1 Device:
CFD versus Experimental Results

As a verification of the air flow patterns generated using
CFD, Fig. 4 shows the measurement results of the steady-
state inner wall temperatures in the Glatt GPCG-1 device.

55
= ~ z{cm)
L
(]
01 4 ® ® 8 4
m A 4 g
t L]
L I - o
45 P
— u T
8 a 2 4 o o o o °
3 o Do 42a o
L "m|Q0 A 2 8 4, o
A A A
K A
A A
-10 A
35 L
.13 o "
N -16 LI T B |
air |
— -19 30 . F' o o B
o/
v 22 025 020 -015 010 005 000 005 010 015 020  0.25
|

(a)

Z-position (m)

(b)

Figure 4: Wall Temperature Verification Experiment: (a) Thermocouple Positions, (b) Steady-state Inner Wall Temperature Profile
at the Left (Open Symbols) and Right (Closed Symbols) Side for a Low (Squares), Moderate (Triangles) and High (Circles) Air
Mass Flow Rate (One Rob172 Distributor Positioned at z = 0 cm).
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Both the position of the thermocouples relative to the
distributor (one Robl172, zero height) and the wall
temperature profile along two sides of the plenum and the
expansion chamber are shown for a low, moderate and high
air mass flow rate (0.013/0.033/0.053 kg/s). As the incoming
air flow was heated up to a constant temperature of 50 °C at
the bottom of the plenum chamber, it was expected that the
wall temperature profile along the left and right side of the
plenum and the expansion chamber could be used as
indicative for the main air flow behaviour.

In the plenum chamber, a gradual decrease of the inner wall
temperature from the bottom to the distributor plate was
observed, with only small temperature differences at
opposed locations on both plenum sides. Through CFD, the
occurrence of a recirculation zone in the plenum was
demonstrated. By also taking into account the heat losses
through the wall, the above described temperature profile on
both plenum sides can be explained. Above the distributor, it
was seen that the temperature profile highly depended on the
air mass flow rate. The higher the latter, the slower the
temperature decrease along the walls and the more the wall
temperatures at opposed locations differed from each other.
Higher temperature values were registered at the right side of
the expansion chamber, which was in accordance with the
simulated air flow pattern in Fig. 2a.

Design Alternatives

One of the principal features of CFD is its suitability to
simulate the effect of changes in reactor design. Given the
unequal air flow in the plenum chamber, CFD was used to
evaluate a number of modifications upstream the distributor.
These changes aimed at a controlled knocking down of the
incoming air momentum. More specifically, comparison was
made with the air flow conditions for one Robl172
distributor, as shown in Fig. 2a (mass flow rate: 0.05 kg/s).
The investigated modifications consisted of three variants for
which the air inlet to the plenum remained unchanged with
respect to the original configuration of the Glatt GPCG-1
device and one variant for which the lateral air inlet was
replaced with a central inlet at the bottom of the plenum. For
a lateral air inlet to the plenum, the incorporation of a pre-
distributor, a packing of equally sized ceramic balls and an
air inlet tube extension, bent to the bottom of the plenum,
were considered separately. The pre-distributor was placed
0.1 m below the distributor and was designed to provide half
of the resistance of the latter. The pre-distributor was
modelled as a porous zone boundary condition with 7 mm
thickness. The ceramic balls (diameter: 0.04 m diameter,
density: 1300 kg/m?, void fraction: 0.45) packing was
modelled as a porous zone with 0.08 m height, positioned
0.1 m upstream the distributor. In Fig. 5, CFD simulation
results are shown for the pre-distributor, the ceramic balls
packing and the central bottom plenum air inlet
modification, respectively.

For the pre-distributor modification, it was found that the
pre-distributor was capable of establishing a partial
homogenisation of the incoming air flow, after which the
distributor successfully homogenised the prehomogenised air
flow. A similar result was obtained for the ceramic balls
packing. Where both aforementioned modifications did not
excessively increase the total reactor pressure drop, this was
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not the case with the downward bent inlet air tube extension.
The latter modification caused the required fan power to
become uneconomically high while it did not contribute to a
homogenisation of the air flow.

Figure 5: CFD Simulated Air Flow for a Modified Plenum
Chamber Design: Cases of a (a) Pre-distributor, (b) Ceramic
Balls Packing, (c¢) Bottom Plenum Air Inlet

When the lateral air inlet to the plenum was replaced with a
central bottom inlet, the main air flow inside the plenum
followed the vertical direction and a nearly homogeneous air
flow contacting upon the distributor was obtained.
Consequently, it was seen that the distributor easily coped
with its air homogenising functionality. With respect to the
findings in this section, it should off course be noticed that
the above conclusions are drawn from CFD calculations and
should be verified experimentally.

CONCLUSIONS

In this study, the effect of the air distributor and the
upstream air supply system on the air flow in a top-spray
fluidised bed reactor was investigated using a combined
CFD and experimental approach. CFD simulations were
performed for a laboratory-scale Glatt GPCG-1 fluidised bed
coating unit in which verification experiments were
conducted. The CFD modelling results for the
velocity/pressure-drop  characteristics of both tested
distributors were found to be in good agreement with the
experiment. Furthermore, the simulated air flow pattern was
confirmed by inner wall temperature recordings.

CFD modelling revealed that, due to the lateral air inlet in
the plenum chamber of the Glatt GPCG-1 apparatus, a non-
homogeneous air flow towards the distributor was
established, which posed higher demands on the distributor
performance in order to obtain a fully homogenised air flow
towards the expansion chamber. Using CFD as a design tool,
a number of possible plenum configuration changes was
investigated. With the present lateral air inlet of the plenum
chamber, the inclusion of a pre-distributor or a ceramic balls
packing layer was found to be appropriate without an
excessive increase in fan power requirement. Evidently, the
relocation of the plenum air inlet from the side to the bottom
of the plenum was also found to be beneficial towards equal
air flow conditions across the plenum cross-section.
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ABSTRACT

A descriptive growth model of the fermentation kinetic
of wheat flour doughs was considered. The fermentation
kinetic was investigated by monitoring the variation of
the dough volume vs time by means of Image Analysis.
This macroscopic result of leavening process is divided
into three stages: the lag stage, positive acceleration
stage and negative acceleration stage. The fermentation
process is a nonlinear and time-dependent process; thus
kinetic models describing the process should also be
nonlinear and time dependent. To find the best
descriptive model of the variation of dough volume
versus time (y = x(2)), fitting results of three models
were compared: Richards, Morgan-Mercer-Flodin and
Gompertz models. By comparing experimental data and
predicted values a good agreement is found and the
present models are quite satisfactory. Therefore the
modified Morgan-Mercer-Flodin model was chosen as
the best descriptive model of the leavening process.

INTRODUCTION

The description of a fermentation process will always be
a rough simplification of reality, since detailed picture
of the various biological and physical phenomena
responsible for bubbles growth during the leavening
process is not fully elucidated yet. The dough leavening
process involves biochemical, rheological and
thermodynamic phenomena, which are nonlinear
distributed-parameter processes.

From a physical point dough is a multiphase and
multicomponent system mainly composed of proteins,
lipids, carbohydrates, water and air. During
fermentation phase, the metabolism of yeasts
chemically transforms polysaccharides into carbon
dioxide, ethyl alcohol and acetic and lactic acids.
Carbon dioxide (CO,), migrates toward the initial nuclei
of air bubbles formed during kneading causing the
dough to increase in volume giving rise to a foam-like
structure (De Cindio and Correra, 1995; Autio et al.,
1997).

The present study was limited to select suitable models
that describe the variation of dough volume y only as a
function of time t, i.e. y=f{?).
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MODELS, METHODOLOGY AND MATERIALS

All doughs were prepared using commercial soft wheat
flour (43.75g, Barilla®: 7.5% proteins, 0.1% fat, 13.5%
moisture content), water (25ml), salt (1.25g), sugar
(0.5g) and yeast (Mastro Fornaio, Paneangeli®) at
different quantity: 0.6 -1.1 -1.7 -2.3 -2.9 -3.4% (w/w).
The leavening took place inside a leavening chamber,
where both temperature and humidity were kept under
control at 36 + 1°C, 70% U.R.

Figure 1 shows the typical behavior of volume
expansion on time during dough leavening given in
terms of volume expansion ratio (volume at time t /
volume at time 0). The loaf volume was determined by
a computer assisted image analyser (Jandel Sigma
Scan®Pro, 1995).

The shape is similar to the growth curve of the yeasts
and is characterized by three distinct regions: (a)
induction phase; (b) growth phase; (c) stationary phase
(Stanier et al., 1993; Prescott, 1995). Such a behavior is
accurately described in all regions by a sigmoid shaped
curve.
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Figure 1: Volume expansion on time of doughs during
leavening

Several models are available for this purpose and
experimental comparison is needed to assist in the
choice of the most appropriate model. The choice of a
model is a not trivial task and is best made according to
explicitly stated criteria. Ratkowski (1993) discussed
five important points of consideration for nonlinear
regression modeling:

1. parsimony: the model should contain as few
parameters as possible;



2. parameterization: parameters with the best
estimation properties should be used;

3. range of applicability: the data must cover the
entire range described by the model;

4. stochastic specification: the error term structure
must also be modeled;

S. interpretability: parameters
meaning are preferred.

Three of the most important sigmoidal nonlinear
regression models from literature are Morgan-Mercer-
Flodin, Richards and Gompertz models (Schepers,
2000). The Richards growth function has the following
form:

with  physical

a

e 1)
(1+e )%’

y(x) =

The general form of the Morgan-Mercer-Flodin family
function [MMF] is:

P(x) = be+ ax? ®
b+x?)’
whilst the Gompertz equation is:
y(x)=ae " )

The independent and dependent variable are x and y,
respectively.

These models contain four parameters: a, b, ¢, and d.
For this study, after some preliminary computational
tests, it is assumed that the parameter ¢ of MMF model
is equal to 1. All computations were performed by using
the curve fitting system for Windows CurveExpert 1.3
(Hyams, 1995). The models show good agreement with
the different experimental data set with correlation
coefficient greater than 0.982.

Table 1: Comparison of the three fitting results

MMF Richards Gompertz

Y(%/ao)St St. Corr. St. Corr. St. Corr.

error coef. error coef. error coef.
0.6 0.060 | 0.998 [ 0.110 | 0.994 | 0.166 | 0.989
1.1 0.038 | 0.999 [ 0.149 | 0.993 | 0.225 | 0.984
1.7 0.073 ] 0.998 [ 0.096 | 0.997 | 0.172 | 0.989
2.3 0.076 | 0.998 | 0.244 | 0.982 | 0.207 | 0.985
3.4 0.224 1 0.982 [ 0.176 | 0.989 | 0.199 | 0.983

However, the overall best results, mainly in terms of
standard error were actually obtained with MMF (see
Table 1).

This can be justified by the mathematical features of
MMF for x=0 (y’(0)=0) which describes much better
the experimental data behavior as it depicts an initial lag
phase whilst the Richards and Gompertz model do not
(Figure 2), unless specific modifications are considered
(Fujikawa et al., 2004). In other words, MMF appears
naturally adequate in describing the entire growth
process.

In conclusion, MMF (with ¢=1) according to our
experience must be preferred, since it contains just 3
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parameters, fits very well to the observations, and also
depicts the fermentation process more accurately than
Richards and Gompertz models.

4,0

3,5 4

3,0

2,5 4

2,0 4

V/Vo

Richards
Gompertz
= 0,6%

0 30 60 90 120 150 180 210

time (min)
Figure 2: Observed volume loaf and fitted regression
curves

Figure 3 shows MMF regression curves for different
yeast contents.
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Figure 3: MMF fitting curves

The meaningful growth parameters of model, which can
be expressed in terms of the curve parameters a, b, ¢
are:

1. the inflection time 7*:

o bw[w—l)} W
(d+1)

2. the value s* of the derivative at the inflection
point, i.e. the maximum specific volume
growth rate

3. the parameter d, which controls location of
inflection point

4. the maximum relative volume expansion ratio
of the loaf (a)



5. the lag time (¢ /), numerically computed as the
smallest time value in which the derivative
becomes significantly greater than zero, say
y’(t_1)>¢ for some prefixed (small) value ¢

6. the exhaustion stage (¢ e), numerically
computed as the smallest time value (after #*)
in which the derivative becomes small enough,

say y'(t e)< &

They provide an idea about speed and intensity of the
growth process. In Table 2 the parameter values
obtained from the MMF fitting curves for the
experimental data sets are shown.

Table 2: Parameters

Yeast (%) | a t* s* tl [te
0,6 3,701 89 | 0,018 [ 45 | 158
1,1 4,01]| 68 [ 0,041 | 32 | 128
1,7 3,86( 37 |1 0,048 | 11 | 117
2,3 3,72 37 1 0,065 | 14 | 88
3,4 3,63] 23 |1 0,070 [ 6 77

The parameter a which accounts for the maximum
volume expansion varies in a not monotonically
manner, whist the remaining parameters shown a
monotonically dependence on yeast concentration.

It is interesting to note that all the observed behaviors
are congruent with the influence that yeast content
exerts on physical and biological processes taking place
during dough leavening (Pyler, 1988). In fact, as far as
the volume expansion concerns, it results from the
proper balance between gas production which involves
the biological functioning of yeast and gas retention
which is largely a measure of the capability of a dough
to sustain local stresses due to bubble growth without
collapsing.

With increasing the yeast content the gas production
rate will increase and the model parameters which are
all, with except the parameter a, related to gas formation
process varies accordingly.

By contrast, the parameter a is affected by both gas
production rate and gas retention capability and the
latter will diminishes if the gas production rate is too
high. As a result an optimum yeast content is expected.
A close exponential correlation was observed between
yeast and growth parameters in all single-sample
methods (see figg. 4-7), as one would expect by
considering the kinetic nature of the gas production
process.

The highest and the lowest correlation were respectively
observed with the exhaustion stage and with the lag
time.
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A preliminary analysis shows that the regression curves
might have interesting predictive features. A
comparison between predicted values and computed
values is shown in table 3 for doughs prepared with
2.9% yeast concentration.

Table 3: Parameters

a tt st t te
predicted | 3,77 18,8 0,09 34 58
computed| 3,70 19,2 010 45 5
error% | 19 19 10,6 U4 34
CONCLUSIONS
The three-parameter Morgan-Mercer-Flodin model

[MMF M] proposed in this work appears very suitable
as descriptive of the fermentation kinetic of wheat flour
doughs.

Meaningful parameters such as maximun specific
growth rate (s*), lag time (¢ /), exhaustion stage (¢ _e),
the maximum relative volume expansion ratio of loaf
(a) were estimated from the predicted curves. Moreover
the parameters behavior with varying the yeast
concentration is congruent with physicochemical and
biological phenomena responsible for the development
of the sponge structure of leavened dough. Next step in
our research will be to consider in the growth model the
dependency on humidity and lipids. In our preliminary
study about influence of fat physical state and
concentration on dough development during leavening
(Romano et al., 2004), the MMF growth model can still
be successfully applied.
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ABSTRACT

The water loss of part-baked bread during chilling is a
problem in industry. The aim of this study is to apprehend
the potential interest of water spraying on the chilling rate
and on the reduction of water loss. A coupled heat and mass
transfers model was developed and programmed using
finite element method. The validation was carried out by
comparing center temperature variation with experimental
results. The first results given by the model in spraying
show that this technique has a small influence on the
chilling rate, but can prevent excessive water loss.

INTRODUCTION

Nowadays in industry, the French part-baked bread chilling
after partial baking is achieved in ambient air.
Consequently, loss water by evaporation can reach 3% of
the total mass of the product, which is a cost for
industrialists. The ideal would be to use a method which
would minimize the chilling time while removing loss
water. A method used in meat industry (Kuitche et al. 1996)
but not in bakery is water spraying. Spraying consists in a
water supply on the surface of the product so that water
which evaporates is water supplied, and not the constitutive
bread water.

The aim of this work is to evaluate the interest of bread
chilling using spraying on chilling rate and water loss. To
reach this objective, we developed a first simple model that
accommodates the coupled heat and mass transfers. A
simulator, based on this model, was then programmed. An
experimental stage enabled thus to identify the process and
to validate the model. From the use of the simulator,
interesting information was obtained about the chilling of
the bread when carried out in the ambient air on the one
hand, and about the chilling using spraying on the other
hand.
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MODEL

The model represents temperature and local water content
variation in a stick of French bread. Transfers are assumed
to be one-dimensional in the radial direction

Diffusion Equations
Diffusion equations are the Fourier second law for the heat

diffusion (1), and the Fick second law for the water
diffusion (2):

PCp =L -V o (VT)=0 (1)
ow
=V o(DVWV) ©)

Boundary Conditions

Surface heat transfer is carried out by convection, radiation
and evaporation.

ne(AVT)=h(T, -T)+ eo(r} ~T*)+ kL(Pv, — Pv,)

The water vapor pressure in ambient air and at the product
surface is linked to the saturated water vapor pressure
according to equations (3) and (4):

Pv, =RH P, (T,) ©)

PvS = alV Byat (TS) (4)

The saturated water vapor pressure is given by the Antoine
law:

381644
T-46.13

18.3036

P (T)=1333¢

Water activity is calculated from the surface moisture
according to the desorption isotherm at 25 °C, set up during
previous work (Hamdami et al. 2003).



Mass transfer on surface is carried out by evaporation.
n.(pdeVW)zk(Pva_va) (5)

In a first step, the case without spraying was considered. In
a second step, the case with spraying was considered. For
this second case, the condition (5) for the mass transfer on
surface is replaced by (6) which means that surface water
content is kept constant and equal to 1 according to the
sorption isotherm used.

W, =1 (6)

The loss water is computed by time integration of the
evaporated water flow

p= J: 27 R1k(Pv, — Pv, )t

Initial Conditions

Temperature and local water content are assumed constant
in the whole product, and fixed to the measured values: 99
°C and 0.96 kg water/kg dm.

Thermophysical Parameters

This simulator is a first approach of the problem. This is
why, thermophysical parameters are assumed no
temperature dependent, and thus constant. Thermal
conductivity, density, specific heat, mass diffusivity, water
activity according to the product water content, and
emissivity were determined during previous studies
(Hamdami et al. 2003; Hamdami et al. 2004). The thermal
convection coefficient was calculated using dimensionless
numbers (Taine and Petit 2003). The mass convection
coefficient was estimated from the experiments so that
experimental and simulated water losses are equal (3.7 g).
Ambient temperature and air humidity were fixed equal to
those measured during experiments. All the parameters are
given in Table 1.

Table 1: Thermophysical Parameters of the Model

R [0.03m
/ 028 m

P [182kgm?

Pin |99.4 kg m”

Cp |1930Tkg' K
A 008 Wm'K'
D 610" m" s

ho |6.6Wm?K!
k [81510°sm”
& 0.9

T, |20°C

RH |1
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SIMULATOR

The simulator was developed with Femlab 2.3, a finite
element based software. A cylindrical stick of French bread,
cross section perpendicular to his main axis, is considered.
The mesh is represented on Figure 1.

a4 e a oo .04 006

005

Figure 1: Mesh
EXPERIMENTS

Experiments were used to estimate the mass convection
coefficient, and to validate the model.

They consisted in the manufacture of French bread stick,
with determination of water loss and measure of center
temperature during chilling.

The dough composition for 100 g of flour is given in Table
2, and the manufacturing process in Table 3.

Table 2: Dough Composition

Flour 100 g
Water 60 g
Compressed yeast 3g
Salt 22¢g
Baking aid 0.7¢g

Table 3: Manufacturing Process

Mixing 3 min at 40 rpm, then 9 min at 60 rpm
Division round pieces of 140 g

1* proving ambient T, 15 min

Molding 28 cm long cylinders, 6 cm diameter
Proving 27 °C, 100% RH, 1h30

Scarification 2 cuts

Partial baking 150 °C, 12 min

Chilling 20°C,1h

The water temperature was adjusted so that the base
temperature (7, + T, + T, ) Was 42 °C. In a first stage

oom flour water
at 40 rpm, the flour, the water and the baking aid was mixed
in a spiral mixer (VMI, Montaigu, France). The yeast was




introduced after 3 min, and the salt 5 min before the end.
The division in round pieces was achieved manually. After
a 15 min rest period at ambient temperature, molding was
carried out using mechanical molding equipment (Puma,
Mitry-le-Neuf, France). Proving was realized in proving
cabinet (Panimatic, Souppes-sur-le Loing, France).
Scarification was achieved with razor blades wet
beforehand. Partial baking taken place in a baking oven
(Sofinor, Bois-Grenier, France) pre-heated with 150 °C.
The oven chimney was closed the first 7 minutes and was
opened the five last. The chilling was achieved in a proving
cabinet, in order to control the ambient temperature and
humidity. At the end of the process, the sticks had a length
of approximately 28 cm, and a diameter close to 6 cm.

The sticks were weighed just after partial baking, and after
chilling in order to calculate the loss water. During the
chilling, the center temperature was logged using a data
acquisition system (Datalog 20, AOIP, Evry, France), the
product being placed in a cell saturated in humidity and at
temperature of 20 °C.

MODEL VALIDATION

Computed and experimental temperatures at the product
center are close (Figure 2). The differences observed can be
explained by the use of constant thermophysical
parameters. Certain parameters vary significantly with the
temperature and the local water content, in particular the
thermal conductivity, and consequently might modify the
temperature variation.

— expetimental
computed

Temperature ("0}

a 500 g 1E00 2000 2500

Time {5}

2800 3000 4000

Figure 2: Comparison of Experimental and Computed
Temperatures at Center

RESULTS AND DISCUSSIONS
Chilling without Spraying

The simulator allowed firstly to evaluate the importance of
selected phenomena on the chilling rate without spraying.
For instance, the respective importance of radiation and
evaporation on the chilling can be compared. Figure 3
presents the temperature variation at the center with the
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three terms of heat transfer at the surface, without radiation
and without evaporation.

— convection+radiation+evaporation
--- convection+evaporation
- - convection+radiation

Temperature {701

mﬂ a0 o A8 J000

Time (5

250p sbop Sshd 400D

Figure 3: Computed Temperature Variation at the Center
with Convection, Radiation and Evaporation, without
Radiation, and without Evaporation

Convection is the main transfer mechanism at surface;
nevertheless, radiation and evaporation play a significant
role in the chilling. The figure shows that suppression of
evaporation delays the chilling more than suppression of
radiation. At 1700 s, the temperature difference between the
line for the three modes and the line without radiation is 3.8
°C, whereas it is 5.2 °C with the line without evaporation.

Table 4 presents water losses for the three cases.

Table 4: Water Losses with Convection, Radiation and
Evaporation, without Radiation, and without Evaporation

Convection+radiation+evaporation 37¢g
Convection +evaporation 49¢g
Convection+radiation Og

Water loss when there are only convection and evaporation
is 4.9 g, and is not any more that 3.7 g when the radiation is
present. The radiation, by accelerating chilling, limits the
water loss of almost 25%.

Figure 4 presents the time variation of the local water
content profile. Bread surface undergoes in the first seconds
a significant water loss because of importance of
evaporation when the bread is taken off the oven, then a
rehydration by water diffusion from the bread inside.

Chilling with Spraying

Spraying of bread surface has no significant influence on
the chilling rate (Figure 5).

On the other hand, water loss is stopped and water diffusion
from the surface into the center can be observed (Figure 6),
which can be a problem for the industrial.
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CONCLUSION

Spraying thus seems to be an interesting technique. It does
not significantly improve the chilling rate, but can help to
limit water losses. The model, though simple, allowed to
have an idea about the interest of the spraying technique. It
would be interesting to confirm these results by using a
more accurate model, with for example temperature and
moisture dependent thermophysical parameters. In addition,
the experiments showed that the temperature of sprayed
water had a significant influence on chilling, which
indicates that heat transfer by conduction exists between the
bread and the sprayed water. It would be necessary to
supplement the model by taking into account this transfer.
The model could then be used to optimize the method, for
example by adopting a time dependant spraying rather than
a continuous one. This method could be interesting to apply
to the baking industry with the sprayed water equal or close
to the water loss in order to compensate the evaporation;
indeed, the evaporation is the major cooling phenomenon

at the beginning of the chilling. Experiments showed that
water should be sprayed at the beginning of post baking
chilling.

NOMENCLATURE

a, water activity

Cp specific heat, J kg‘1 K!

D mass diffusivity, m* s™

h heat transfer convection coefficient, W m? K!
L latent heat of water vaporization, J kg™

k mass transfer convection coefficient, s m’!
n normal to the surface, towards outside

p water loss, kg

P vapor pressure, Pa

R radius of the French bread stick, m

RH relative humidity

t time, s

T temperature, K

/4 local water content, kg water/ kg dm
Greek Symbols

& emissivity

A thermal conductivity, W m™ K!

P density, kg m™

o Stéfan-Boltzmann constant, 5.67051 10® W m?K™
Subscripts

a ambient

dm dry mater

s surface

sat saturated
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ABSTRACT

A combined population balance and thermodynamic model
was developed using a multi-compartment representation of
a top-spray fluidised bed coater. This model enables the
prediction of the coating mass distribution changing over
time in the fluidised bed during batch operation. In addition,
this model predicts the one-dimensional thermodynamic
behaviour of the fluidised bed. An event-driven Monte Carlo
technique was chosen for the simulation of the particle
exchange. The simulation results were validated using the
results from tests on a Glatt GPCG-1 fluidised bed unit in
the top-spray configuration. This model helps in
understanding the impact of process variables and could
prove useful in the design of model predictive controllers in
fluidised bed coating.

INTRODUCTION

Coating operations have been widely employed in various
industries, including the food industry, as an effective
technique for altering the surface properties of solid
particles and consequently, to tune the effect of functional
constituents (Abe et al., 1998). Fluidised bed coating is
among the most widespread methods. In top-spray fluidised
bed coating, the solid particles are fluidised in a stream of
hot air. The coating, mostly in the form of an aqueous
solution, is applied onto the particles by spraying the
coating solution onto the fluidised bed. The supplied hot air
also delivers the energy to evaporate the coating solution
deposited on the surface of the suspended particles. The
coating solution is usually supplied to the fluidised bed by
means of a pneumatic nozzle, in which the use of
compressed air results in very strong shear forces at the gas-
liquid interface, producing droplets with a size ranging from
10 to 40 um (Guignon et al., 2002).

As the fluidised bed coating process requires a complex
equilibrium of mass and heat transfer between the particle
bed and the fluidising air, a number of side effects are likely
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to occur, resulting in the formation of out-of-specification
waste products. If the drying capacity of the supplied air is
too high, the droplets containing the solution evaporate
completely before impinging on the particle surface. The
spray-dried coating material is partially collected by the
filter system, partially entrapped within the coating film,
resulting in coating imperfections. In contrast, if the drying
capacity of the supplied air is too low, the wetted particles
tend to form liquid bridges between them. These bridges
could persist beyond the point of drying and consequently,
dry agglomerates are formed (Guignon et al., 2002).

In order to control the coating process, there is a need to
balance the drying rate and the rate at which the coating
solution is sprayed onto the particles. Attempts have been
made to construct thermodynamic models, considering the
reactor as a uniform black box (Dewettinck et al., 1999).
However, Maronga and Wnukowski (1998) demonstrated
that broad temperature and humidity profiles exist inside the
fluidised bed and consequently, the modelling of the
fluidised bed into different compartments or zones is more
appropriate.

The objective of this study was the development of a
dynamic heat and mass transfer model for the description of
coating mass, temperature and humidity fields along the
vertical axis of a fluidised bed coater. This model will serve,
in future studies, as a basis for process control to further
increase process efficiency and to reduce out-of-specification
waste product formation.

MODEL

The top-spray fluidised bed coating reactor usually has the
geometry of an inverted truncated cone. Particles are
retained by means of a perforated plate, the air distributor.
A downward aiming spraying nozzle is positioned above the
fluidised bed; the distance between the nozzle and the bed
should be kept to a minimum to avoid premature droplet
evaporation.

To develop the model, the fluidised bed was horizontally
divided into n cylindrically shaped control volumes, each
having a constant volume Vi/n and a constant number of
particles Ny/n  (Figure 1). Furthermore, particles and



process air were assumed to be perfectly mixed in each
control volume. In order to simulate the mixing behaviour
of the fluidised bed, particles are continuously being
exchanged between two adjacent control volumes and this is
expressed by the particle exchange rate r;, as the fraction of
the entire particle population exchanged between the
volumes S; and S;,; per unit of time. It was further assumed
that, for a given interface between two control volumes,
particle exchange rate was equal for any given particle,
irrespective of its properties such as particle diameter and
particle shape.

Distinction was made between two types of control volumes:
coating volumes, where droplet deposition takes place, and
non-coating volumes, where both drying and heating take
place. Furthermore, it was assumed that all spraying liquid
is deposited on the particles and the amount of liquid
deposited on each particle is directly proportional to the
particle surface.

Air outlet

T Gouwr Toutr Pout

Sn [ Coating solutior
X oot Too» DM

T L

Atomisation air
Gatr Tar Pt

Sn-c )
Py Do
I

83

Ve

S2

o
S1
TAirinIet

G Tins @

in? Tin?

Figure la: Schematic overview of the model
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Figure 1b: Control volume in detail

In each control volume the population balance for the
particles along with the dynamic heat and mass balances for
air, moisture, particles and coating material were
established. The particle/fluidum heat and mass transfer
coefficients were approximated by means of the
dimensionless Nusselt and Sherwood numbers. Heat losses
were calculated according to the fluidised bed theory as
described by Kunii and Levenspiel (1991).

To solve the model, a discrete approach consisting of an
event-driven Monte Carlo technique for the simulation of
the particle exchange was chosen. Particle exchange rates
were estimated using a kinetic submodel (Ronsse et al.,
2003). To generate the random numbers for the Monte
Carlo simulation, the Mersenne Twister pseudo-random
number generator with a period of 2'%°*-1 was selected
(Matsumoto and Nishimura, 1998).

RESULTS AND DISCUSSION

Figs. 2, 3 and 4 present the results of an example simulation
with a number of simulated particles Ny, = 1000 and with a
time step, Afg, = 1 ms. The model consisted of 8 control
volumes of which the top control volume was a coating
control volume. The simulated process consisted of two
distinct phases. In the heating phase, no coating solution
was sprayed. Next, after 500 seconds of simulated time, a
step input was given for the spraying rate. The simulated air
temperature and air relative humidity evolutions during a
coating process are graphically presented in Figure 2 and
their profiles along the reactor z-axis are shown in Figure 3.
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Figure 2: Simulated air temperature and air relative
humidity profiles of the coating control volume, Sg (==); the
highest positioned non-coating control volume, S; (—); and

the lowest positioned non-coating control volume, S; (==).
Spraying was initiated after 500 s.

In Figure 3, the loss of moisture from the coating solution
on the particle surface was very fast in such a way that
significant higher air moisture contents are predicted only in
the coating control volume (Ss). Due to evaporative cooling
in the coating region and due to the release of compressed
air at ambient temperature, air temperature was significantly
lower than the rest of the reactor. Also, a significant air
temperature decrease occurred between the control volume
situated closest to the air distributor ($;) and its adjacent



control volume (S,). This temperature difference could be
explained by the fact that the fluidised particles mainly
exchange heat in the region closest to the air distributor: the
particle-fluidum heat transfer in S; accounted for 64 % of all
heat transferred between the particles and the fluidising air.
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Figure 3: Simulated air temperature (-o-), air relative
humidity (-e-) and average particle temperature (¢)
profiles along the vertical reactor axis during steady-state
coating.

Figure 4 presents the coating mass distributions, expressed
as mass of coating material per mass of core, taken at
different times during the simulation. Due to the constant
spraying rate and assuming that no spray drying occurs, the
relationship between average coating mass and process time
is linear. The simulated coating weight distribution started
as a hyperbolic distribution and evolved to a normal
distribution when the process would have been run infinitely
long. A linear relationship (R* = 0.9995) was found between
the predicted coating mass standard deviation and the
square root of the process time.

o
IS

Fraction of particle population

Coating mass (kg/kg)

Figure 4: Predicted coating mass distributions, expressed as
kg coating per kg core material, simulated at different
times during the spraying stage. Spraying was initiated after
500 s.

The effect of variation of several parameters on the outlet air
temperature and outlet air humidity was studied. To describe
the sensitivity of the model, each parameter ({) was varied
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individually and the translation factor (1/K ) was calculated
using the equation, with Q being the output variable:

1 @ ¢

K, Q of

Based on the data presented in Figures 5 and 6, both inlet
air temperature and atomisation air temperature were found
to have the most significant effect on the combined outlet air
temperature and outlet air humidity. Next, in decreasing
order of importance, came the inlet air volumetric flow rate,
the spraying rate, the inlet air relative humidity, the
atomisation air pressure and the dry matter content. The
solution temperature and the external temperature have
virtually no effect upon the model-predicted outlet air
temperature and humidity.
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Figure 5: Translation factors describing the predicted effects
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Experimental steady-state coating data, generated by
Dewettinck et al. (1999) have been used to validate the
model in this study. In these experiments, 750 g of glass
beads with a volume weighted average diameter of 365 um
(Sovitec Micropear1®, B) were fluidised in a Glatt GPCG-1
with top-spray insert (Glatt GmbH, D). The spraying liquid
used was distilled water at ambient temperature. Reactor
outlet air temperature was measured at the top of the reactor
by means of a T-type thermocouple during steady state
coating regime.

The process variables, having the largest impact on the
thermodynamic operation point were varied and the
experimentally measured steady-state outlet temperature was
compared with the model predicted outlet temperature. The
correlation between the experimentally measured values and
the model predicted values is presented in Fig. 7. Regression
analysis performed on the model predicted and experimental
data yielded Texp = 0.996 X Ty, + 0.433 (R?=0.96).

Hereby it can be concluded that model proposed in this
paper approached closely the experiments for the tested
range of process variables.
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Figure 7: Correlation between simulated and experimental
outlet air temperature.
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ABSTRACT

An extensive risk-assessment (540 pages) of Listeria
monocytogenes in ready-to-eat foods has been carried out
(FDA/FSIS 2003). This very extensive risk assessment
contains a wealth of information. However, in order to use
the information, this needs first to be analysed. Very useful
information can be extracted, both for managing the
problem of listeriosis, as well as for the assessment of other
microbiological risks, microbiological research, sampling
of food products, etc. Deli-meats results as the most
relevant product group, followed by pasteurised milk. Very
exceptional, very high levels are of large importance for the
public health burden. Furthermore, the quantitative effect of
various interventions can be estimated by scenario analysis.

ANALYSIS OF THE ANALYSIS

The risk assessment of Listeria monocytogenes in ready-to-
eat foods (FDA/FSIS 2003) consists of a hazard
identification, exposure assessment, hazard characterisation
and a risk characterisation. In the hazard identification it is
argued to focus on Listeria monocytogenes in ready to eat
foods, and endpoints are defined as death and serious
illness for the intermediate-age subpopulation and two
readily identifiable vulnerable subpopulations: perinates
(fetuses and newborns) and the elderly (60 years of age and
older). In the exposure assessment an identification of
ready-to-eat foods associated with L. monocytogenes is
carried out from outbreaks, sporadic cases, recalls, etc.
Furthermore the amounts consumed per serving for each of
these food category and estimates of the annual number of
servings in the U.S. are estimated. Also distributions of
contamination levels at retail and growth, decline, or
inactivation between retail and consumption are
determined. Specifically for frankfurters also the effect of
reheating is included. Combination of all these data results
in frequencies and levels of contamination, i.e. the
distributions of food consumption frequency, amount,
contamination frequency and levels

In the hazard characterisation epidemiological data
(incidence) are used to anchor dose data and incidence to
estimate the dose response parameter for the three
populations. Finally in the risk characterisation the
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exposure assessment and the hazard characterisation are
coupled to determine illness from the 23 categories.
Moreover, a Monte Carlo analysis is carried out to evaluate
the effect of variability and uncertainty and scenario
analyses are carried out to quantify the effect of various
interventions and factors.

From this risk-assessment it follows (Table 1) that deli-
meats is the most important source of listeriosis.
Unexpectedly pasteurised milk is on the second place, if the
risks are considered on a yearly basis. The distribution of
levels of contamination is very large and it seems that the
very occasional very high levels are of the largest
importance of the total exposure (Table 2). These very high
levels were found due to surveys with huge amount of
samples. The global results of these investigations seem
consistent if data in a limited time period in only the US are
compared to literature data over a larger time-frame and
from all parts of the world (Table 3). It should be noted that
data presented in this table are data at retail, and before
consumption growth is still possible.

Table 1: Median Number of Cases of listeriosis
per Year in the US (FDA/FSIS 2003)

deli meats 1599 (89%)
pasteurised milk 91 (5%)
high fat and other dairy products 56 (3%)
frankfurters not reheated 31 2%)
soft unripened cheese 8
pate and meat spreads 4
unpasteurised fluid milk 3
crustaceans 3
smoked seafood 1
rest 2

Table 2: L. monocytogenes in RTE Foods (Gombas et al.
2003) 31705 samples investigated 577 positive (1.8%)

C (cfu/g)  number P(%) exposure
<0.1 402 1.3 40.2
<1 82 0.26 82
<10 52 0.16 520
<100 20 0.063 2E3
<1E3 16 0.050 1.6E4
<1E4 3 0.0095 3E4 99.1%
<1E5 0 0 0 97.6%
<1E6 2 0.0063 2E6 97.6%

total exposure is 2.0E6



Table 3: L. monocytogenes in RTE Foods (FDA/FSIS
2003) 336228 samples investigated 6459 positive (1.9%)

C(cfu/g)  number P(%)  exposure
<0.1 5219 1.6 522
<1 100 0.030 100
<10 300 0.089 3000
<100 533 0.16 5.3E4
<1E3 173 0.051 1.7E5
<lE4 92 0.027 9.2E5 98.9%
<lE5 25 0.0074 2.5E6 94.4%
<1E6 17 0.0051 1.7E7 82.3%

total exposure is 2.1E7

The effect of various interventions can be estimated on a
quantitative manner by simulating various scenarios. Also
following logic, the number of consumed products, the
concentration distribution, the storage temperature and
storage time are of relevance. But the great advantage of
this analysis is that one gets insight in the quantitative
effects of different interventions. This is therefore a strong
tool in the managing of the risk of L. monocytogenes. But in
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order to use the tool one has first to digest the information
and be very critical in using it. This should, however, not
impede from using this highly valuable source of
information.
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INTRODUCTION

The quality of products in the food industry is often strongly
connected to variations in both raw material and processing
conditions. In case of cheese production both variations in
the milk composition and variations in the processing and
storage conditions have an effect on cheese quality
parameters such as taste and texture (see figure 1) In the
modern food industry there is, therefore, a growing interest
in models that can predict variations in complex product
properties such as taste as a result of variations in
processing and storage conditions (see figure 2). Such
models can be used to optimise processes, to improve
product quality or to reduce operating costs or for product
development.
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HYBRID MODELING

Very often processing steps can be described by so-called
white-box models, which are based on physico-chemical
relations. White-box models have some advantages over
black-box models: a small amount of data is required to
develop a white-box model and it can be extrapolated
outside the range for which data is available. Taste
parameters, however, are often quantified by means of
sensory evaluations. White-box approaches can not be used
to include the sensory data in the model. In this case black-
box approaches can be used (e.g. neural networks, fuzzy
logic). The effect of changes in processing conditions on
taste parameters can therefore be described most accurately
by a hybrid model, consisting of both white- and black-box
elements (figure 3). Within the framework of a project
funded by the J. Mesdag Foundation, NIZO food research
has developed a hybrid model, CHERMO!, which is able to
predict several taste parameters of cheese as a function of
variations in the processing and storage conditions.

black box modelling
data-driven (e.g. neural networks, fuzzy logic)

white box modelling
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rokein dSheRitinh. ke example: sensory evaluations

tage: ion not p

age: can be extrap

disadvantage: often complex, development advantage: simple, fast development

time consuming

total model => hybrid model

Figure 3
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NIZO PREMIA

Over the past 20 years, NIZO food research has developed a
wide range of models for cheese production processes, based
on the results of research projects and available knowledge
and know-how. These models correspond to different
operating units and processes taking place during cheese
manufacturing (e.g. pasteurisation, renneting, acidification,
pressing, brining and storage). All these models, initially
only available as stand alone applications, were integrated
in one software platform called NIZO Premia. In NIZO
Premia all these models can be combined in a user-friendly
way to model complete cheese production processes from
milk storage tanks to storage of cheese in warehouses and at
retailers (see figure 4). The integrated modelling concept in
NIZO Premia allows the user to predict the effect of
variations in processing and ripening conditions on various
process and product properties such as cheese yield,
renneting time, the degree of denaturation of whey proteins,
inactivation of enzymes, moisture and salt content, pH of
the cheese.

G MIZ0) P ioniiso sslaken

e tor ol denens Wndon 7

model units:

1 pasteurisation
2 renneting

3 acidification
4 curd making
5 brining

6 .

| results:
| - cheese yield
. - renneting time
| = inactivation enzymes
| - denaturation whey proteins
;- salt and moisture content

CHERMO

The models mentioned above all have a white-box
character. However, as stated above, variations in
processing and ripening conditions often also have an effect
on cheese quality parameters such as taste and flavour
development. To be able to predict the taste development of
cheese during ripening as a function of processing and
storage conditions, a hybrid model (CHERMO) was
developed using the white-box elements of NIZO-Premia as
a starting point. First, the key parameters for taste
development and the relevant processing and storage
conditions were identified and summarized in knowledge
diagrams. Based on the results of this investigation the
database on which the already available NIZO-Premia
modules were based was extended with the relevant
experimental results (e.g. protein breakdown, enzyme
activities, sensory panel evaluations etc.). This resulted in a
large database based on the evaluations of about 400 cheeses
(Gouda). The database was used for model development and
validation. According to the knowledge diagrams, the
already available models were extended and additional
models were developed, e.g. for protein breakdown, for

several taste parameters (using neural networks) and for
moisture and salt diffusion (CFD* models). The extended
and added models were also integrated in the NIZO Premia
environment (see figure 5)

Figure 5

CHERMO firstly relates the relevant processing conditions
to the relevant parameters (e.g. moisture, salt, pH, enzyme
activities) in the cheese at the end of the manufacturing
process. After that the fermentation process during ripening
is modelled by considering protein breakdown as a function
of the storage conditions (e.g. temperature, relative
humidity) and the relevant, time-dependent parameters (e.g.
salt, moisture). Finally, the sensory evaluations are related
to the relevant parameters in the cheese (e.g. SN, AN, pH).

Neural networks were used to model the sensory evaluations
as a function of the relevant ripening parameters. Figure 6
shows two examples for estimated age (left) and bitter
scores (right): the neural network predictions vs. the sensory
evaluations are shown. The graph on the left hand side also
shows the results for a model based on multiple linear
regression techniques (MLR). The predictions by the neural
network are clearly better: the standard deviation for the
MLR model is 2.3 weeks and for the neural network 1.8
weeks. Figure 7 shows model predictions for the estimated
age as a function of storage temperature varying from -15 to
+18°C (left) and the salt score as a function of the brining
time varying from 80 to 110 hr. The neural network for the
age estimation correctly predicts the increase in the
estimated age of the cheese with increasing storage
temperature. The neural network for the salt score predicts a
clear switch from ‘not salt’ to ‘salt’ at a brining time of 96
hours.
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CONCLUSIONS

A hybrid model was developed which is able to predict the
effect of variations in the processing and storage conditions
on the relevant parameters in the cheese during ripening
and the sensory evaluations. By using white-box elements in
the hybrid global model the predictive capacities of the
model increase. Moreover, hybrid modelling allows for an
optimal use of the available data and knowledge since
(white-box) models that were developed in the past can be
integrated.

CHERMO was designed for practical applications. The
integrated modelling concept of NIZO Premia and its user-
friendliness, ensures user accessibility of the models.
Furthermore, the architecture of NIZO Premia allows the
user to (re)calibrate the models using in-company data. For
the black-box models this calibration procedure is essential,
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since sensory evaluations can be unique for different
companies. By using own data, companies can fine-tune
CHERMO to their own production sites.
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ABSTRACT

Spores of Butyric acid bacteria (BAB) present in cheese
milk after pasteurization can cause the late-blowing defect
in e.g. Gouda cheese. BAB spores originate from the farm
environment and farmers have to take efficient measures
to assure low concentrations in their raw milk. A
quantitative risk analysis has been performed to identify
the relative influence of various managerial and
environmental factors on the contamination of raw milk
with BAB. Concentrations of BAB in silage was found to
be the most important. High concentrations in silage
cannot be corrected through good farm hygiene or milking
practices. Silage heterogeneity seems to be the main factor
determining the average concentration of BAB in silage at
the point of feeding.

INTRODUCTION

Raw milk generally contains low concentrations of spores
of the anaerobic, sporeforming, bacterium Clostridium.
The dairy- associated species are often called butyric acid
bacteria (BAB). C. tyrobutyricum is capable of converting
lactic acid into butyric acid and causes off-flavours and
excessive gas formation, so-called late-blowing, in semi-
hard cheeses such a Gouda (Figure 1). Spores of clostridia
survive pasteurisation of cheese milk. C. ryrobutyricum
spore concentrations in cheese milk as low as 1 colony
forming unit (CFU) per ml can cause the late-blowing
defect (Stadhouders-J 1990).

C. tyrobutyricum spores in milk originate from the dairy
farm environment. In The Netherlands milk supplies of
farmers are analyzed monthly for the presence of spores of
BAB by the van Beynumé&Pette MPN-method. The farmer
receives a penalty on the milk price when two out of two
tubes with 0,1 ml raw milk test positive on BAB(MCS,
2001).
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Figure 1: Late-blowing of Gouda cheese

Since the introduction of this system in The Netherlands
22 years ago a significant reduction of the average
contamination level of BAB spores in raw milk is
achieved. This reduction has levelled off in the 1990’s
from approximately 20% to 4% BAB-positive samples.
Historical data show that the majority of the positive
samples originate from a small group of farmers, which
repeatedly test double positive on BAB (‘recidivists’)
(MCS 2001).

Because of the impact of BAB spores on cheese quality,
reducing the contamination of raw milk is of major interest
to the dairy industry. The present study aims to determine
the influence of farm management and farm environment
conditions on BAB contamination by quantitative risk
analysis and to identify effective control points. A number
of quantitative microbial risk assessment studies on
foodborn pathogens are published, but the application of
the same methods on a non-pathongenic micro-organism
and farm processes is new(Bemrah, Sanaa et al. 1998;
Cassin, Lammerding et al. 1998; Lindqvist and Westoo
2000). Since silage is considered to be the most important
source of BAB spores in the farm environment
(Stadhouders, Hup et al. 1983), the first step in the analysis
was to quantify the importance of silage in relation to a
number of control measures a farmer can apply. The
second step is to identify risk factors related to silage. In
this paper the first step is described.

Silage

Silage from forage crops, such as maize and grass, forms a
major part of the feed ration of dairy cows (up to 90%).



Silage making is the most popular method to preserve
these crops. It involves a natural fermentation process
dominated by lactic acid bacteria. The main preservation
principles of silage are a rapid decrease of pH, a relative
low water activity (a,) and the maintenance of anaerobic
conditions. The storage period of silages on the farm
varies from two weeks to more than two years.

In successful silage making growth of BAB and other
harmful micro-organisms should be prohibited. In practice,
however, growth of BAB in silage frequently occurs, in
particular in grass silages. The concentration of BAB
spores in silage varies between <10 and 107 per g silage
(Pahlow et al. 2003). The initial concentration (after
harvesting, prior to ensiling) varies between <10® and 10*
BAB spores per g, and originates mainly from soil. Factors
that influence BAB growth in silage include pH, rate of pH
decline, dry matter concentration (relates to a,,) and nitrate
concentration (Pahlow et al. 2003). Another factor of
importance is the heterogeneity of silages. As a result,
there is significant spatial variation in conditions (pH, a,,),
which may lead to local spots with conditions suitable for
growth of BAB (Pauly-TM 1999).

APPROACH

The contamination route of BAB spores in milk is shown
in Figure 2. Monte Carlo simulations were performed in
order to assess the importance of the different steps in the
route and to reveal the importance of silage quality with
respect to other factors quantitatively. In this calculation
all cows were assumed to be equal with respect to factors
such as dirt on udder pre-milking, cleaning efficiency and
mixed feed ration. Initial concentrations and transmission
rates were derived from published data (Stadhouders-J and
Jorgensen 1990) (Table 1). Growth of BAB was assumed
only to occur in silage and mixed feed ration. Since BAB
spores survive the gastro-intestinal tract and 90% of the
feed is digested the concentration of spores in the faeces
was assumed to be 10 times the concentration in the mixed
ration (Stadhouders-J and Jorgensen 1990).

Growth of BAB was modelled using an exponential
microbial growth model with lag time. Growth rate was
described as a function of pH, a,, and temperature, using
the Gamma concept (Zwietering-MH, Wit et al. 1996).
The probability of growth in the different phases of silage
(fermentation, storage and after opening of the silage) was
analysed. Profiles for temperature, pH and a,, were derived
from literature. Further assumptions were the absence of
oxygen and the presence of sufficient lactic acid for
growth. The effect of heterogeneity was also investigated.
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Table 1: Assumptions for the Main Variables in the BAB
Model (Minimum, average and maximum)

| Variable | Min. | Average | Max. | Ref. |
‘ T

Concentration in 10 10 10°
silage (CFU/g)

Concentration in 0 10° 10° 1
other feedstuffs

(CFU/2)

Fraction of silage | 0 40 80 2
in ration (%)

Temperature in 13 19 25 2
cattle house (°C)

Feeding interval 6 9 12 2
(hour)

Faeces on udder 0,1 5 10 3
(2)

Reduction by 0 50 90 3
udder cleaning

(%)

Transmission 0 0,75 1,5 3
from udder to

milk (%)

1 Measurements

2 Personal communication

3 (Stadhouders, 1990 #100)

RESULTS

The computer simulation analysis confirmed the
importance of the concentration of spores in silage for the
contamination of raw milk (Figure 3). The concentration
of BAB spores in silage is significantly more important

than other factors, including milking hygiene. Obviously,
the importance of these other factors increase when silage
with a low spore concentration is fed.

Calculation of growth in silage showed that when
conditions after ensiling are suitable for growth the long
storage time will result in high concentrations (10’ — 10°
CFU/g) at the point of feeding. Measurements of actual
silage concentrations showed lower levels of
contamination (see Table 1). This is probably due to the
heterogeneity of the silage, resulting in a dilution of the
spots with high concentrations in the remainder of the
silage with low concentrations (no growth). More research
is needed to confirm the hypothesis and to derive control
measures for farmers in order to reduce the contamination
levels in silage.

CONCLUSIONS AND FURTHER RESEARCH

Model simulations have shown the significant importance
of BAB concentration in silage with respect to the
contamination levels of raw milk. Heterogeneity of the
silage, resulting in local spots with conditions suitable for
growth of BAB seems to be extremely important for the
average concentration in the silage at the point of feeding.
Further quantitative analyses will be performed to
establish the importance of silage heterogeneity and to
evaluate possible control measures to reduce the average
concentration of the fed silage.

Concentration in silage (CFU/g)

Transmission from udder to milk (%)

Concentration in other feedstuffs (CFU/g)

Cattle house conditions (feed interval and temperature)

Reduction by udder cleaning (%)

Predictive variable

Fraction of silage in ration (%)

Faeces on udder (g)

0 0,1

Absolute value of rank-order coefficient between predictive variable and concentration of BAB in milk from 1
cow

0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9

Figure 3: Variables with the most significant impact on the contamination of raw milk with spores
of butyric acid bacteria (for assumptions for variable values see Table 1).
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INTRODUCTION

For the design of freezing operations on foods
it is important to have knowledge about their
freezing behaviour. There is an ongoing ef-
fort to predict freezing behaviour from compo-
sition data. As such, in a previous paper
we have presented a model predicting the wa-
ter activity (and equivalently the initial freezing
point) of meat products, given their composition
[van der Sman & Boer,2004]. Amongst other as-
pects this model involves 1) the estimation of bound
water, and 2) the estimation of the non-ideal con-
tribution of sodium-chloride (NaCl) to the water
activity using an approximation of the Pitzer equa-
tion. We extend this model to the prediction of
enthalpy during freezing.

THEORY

The enthalpy H(T) of frozen food at tem-
perature T can be computed as follows
[Mannapperuma & Singh,1988]:

H(T) = Z Cp,s¥s + Cpwlu(T) +
S

(epjice + AN)Yice(T) (1)
Here cp s, Cpw, Cpice are respectively the specific
heats of solids (enumerated with index s), water
and ice, Ys, Yw, Yice are the mass fractions of solids,
water and ice, and A is the latent heat of fusion.

It must be noted that in broad temperature
range (between initial freezing point and -40°C) ice
and water coexists. Due to ice formation the un-
frozen aqueous phase will be freeze concentrated,
inducing freezing point depression. The ice fraction
Yice as a function of temperature 7. Ice formation
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can be computed by integrating Clausius-Clapeyron
equation:

ED)
In ay (Yice) — Inayo = / ar (2)

1, RT?

Here a,, is the water activity of the unfrozen aque-
ous phase, which depends on the ice fraction, a,,g is
the water activity at the initial freezing point of the
food Ty, and R is the gas constant. The water ac-
tivity and the initial freezing point (where y;c.e = 0)
can be determined using the model in our previous
paper [van der Sman & Boer,2004], which is briefly
described below.

The initial freezing point T’ is related to the wa-
ter activity a0, also via Clausius-Clapeyron (using
Ty the freezing point of pure water):

1 1A

T, T_fo)ﬁ 3)

In a0 = (

The water activity of the frozen food can
be computed from the composition of the
unfrozen aqueous phase, following the model
[van der Sman & Boer,2004]. Composition is given
in mass fractions of water (y,,), proteins (y,), fat
(yy), carbohydrates (y.), ash (yasn), sodium chlo-
ride (ynaci), Where yu s is exclusive ynqci-

Below initial freezing point Ty water in food can

be in one of three states:
1) in solid state as ice crystals, 2) in liquid state in
the unfrozen aqueous phase, and 3) in an amor-
phous state as water of hydration bounded to
biopolymers. This partitioning can be expressed as:
Yw0o = Yice + Y + Yp, Where y,,0 is the total mass
fraction of water.

Due to its amorphous state, and bound wa-
ter is unavailable to dissolution of solutes. The
mass fraction of bound water 3, is assumed
to be temperature independent, and is a linear



function of the mass fractions of soluble solids
[van der Sman & Boer,2004]

s = 0.29y, + 0.10y, (4)

The water activity of the unfrozen aqueous
phase is mainly determined by its salt content. It is
assumed that the contributions of different salts in
the chemical potential (x = RT lna,,) are additive,
and therefore the Ross equation holds:

A = Ow,ashQ@w,NaCl (5)
with @y qsp given by Raoults law:

Yuw
Yw + nasthyash/Mash

(6)

Qw,ash =

and apnqc; follows the approximation of the Pitzer
equation [Chen,1990, van der Sman & Boer,2004]:

1
——— =1+ My (B + Bm™)m (7)
Ay, NaCl
The molar mass of water is M, = 18 g/mol,

the molar mass of sodium chloride is Myq.c1 =
58.15 g/mol, and the effective molar mass of ash
is Mysp, = 72 g/mol [van der Sman & Boer,2004].
The dissociation numbers of the salts are ngg, = 2
and nyqc; = 2. The molality of sodium chloride is
m, and is given by m = My.ciynact/Yw The pa-
rameter values of the approximation of the Pitzer
equation are: 3.,=1.868, B=0.0582, and n=1.618.
Due to freeze-concentration at a certain temper-
ature the molatity of NaCl can rise above its sat-
uration point (6m). In this case NaCl will crystal-
lize out of the unfrozen solution and consequently
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Gy, Neci is maintained at the value of 0.75, the wa-
ter activity of a saturated NaCl solution.

In order to compute the enthalpy one has to take
into account that the specific heats of water and ice,
and the latent heat of fusion are strongly tempera-
ture dependent. The specific heat of water shows a
thermodynamic anomaly, and can be described as
a combination of a linear function and a term with
a Boltzmann factor accounting for the anomalous
behaviour [Tanaka,2000]:

Cp,w0 T Cp,wi (T - TfO) +
Cp,wa €XP(AE,/T)

Cp,w

(8)

The parameter values are: ¢, 0 = 4.02 kJ/kg K,
cpw1 = 1.6 1072 kJ/kgK?, cpue = 0.26 1073
kJ/kg.K, and AE, 1800 K. The specific
heat of ice follows a normal linear function
[Sanz et al.,1999]:

Cp,ice (T) = Cp,ice0 + Cp,icel(T - TfO) (9)
with ¢pice0 = 2.12 kJ/kg K, and cpice1 = 7.8
J/kg.K2. The latent heat of fusion follows a poly-
nomial function [Sanz et al.,1999]:

A(T) Ao+ A (T —Tyo) +

Ao (T — Tyo)? (10)

with Ap=6004 J/mol, A1=95.23 J/mol.K, and
A2=0.14 J/mol. K2.

Lean Lamb

-30 -20

-10 10

Temperature (C)

Figure 1: Experimental (symbols) and predicted (solid lines) values of the enthalpy for 4 types of meat.
For clarity the curves are shifted with respect to each other to prevent overlap.
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RESULTS

The results of the above model are compared with
experimental data [Lindsay & Lovatt,1994]. These
results are presented in figure 1. Lindsay and Lovatt
have fitted the following equations to the enthalpy
data:

H(T)
H(T)

H, -I-Cu(T — Tfo) it T > Tf
A+ +ep(T = To)
B/(T — Tf()) T < Ty

(11)

Here A is an integration constant rendering
H(—40) = 0. ¢, is the heat capacity of the un-
frozen food at Ty, and cy is the heat capacity
of the food at approximately —40° C, where they
assumed nearly all water (except bound water) is
frozen. In Table I we have listed the values c,, cf
and Tt according 1) to the experiments of Lindsay
and Lovatt, and 2) to our model (indicated with
superscripts *). Also we have determined the Lo-
norm between experimental and the predicted H(T')
curves, defined as:

Ly=)_

In figure we have plotted the predicted and ex-
perimental values. Without any adjustments of pa-
rameters good agreement is obtained between ex-
periment and model prediction. For pork and beef
sausages the model predicts a abrupt change in the
enthalpy if NaCl gets above 6m, and crystallizes
out. Due to unavailability of the original experi-
mental data, it is not known whether the experi-
mental data also showed this abrupt change in en-
thalpy.

Also for other type of meat products good agree-
ment is found, as shown in Table I. These re-

(H(Tn) _ H*(Tn))2
NH?

(12)

sults shown there are good opportunities to develop
freezing models for meat products, purely based on
composition data.
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Table I: Comparison of model predictions and experimental values of Lindsay and Lovatt
[Lindsay & Lovatt,1994].

Name Cy c cf c} Ty T Lo
kJ/kg K kJ/kgK | kJ/kg K kJ/kgK | °C °C %
Lamb 3.62 3.66 2.19 2.02 -0.78 -0.77 | 0.01
Beef 3.64 3.67 2.26 2.00 -0.70 -0.69 | 0.01
Chicken 3.71 3.72 2.07 2.02 -0.80 -0.75 | 0.06
Pork 3.62 3.68 2.06 2.02 -0.79  -0.83 | 0.09
Venison 3.69 3.64 2.12 2.03 -0.87 -0.86 | 0.11
Mutton 3.66 3.53 2.09 2.05 -0.95 -1.09 | 0.03
Gurnard 3.77 3.73 2.14 2.00 -0.76  -0.87 | 0.28
Tarakihi 3.69 3.70 2.13 2.02 -0.79  -0.82 | 0.06
P. Sausage | 3.81 3.30 1.93 1.94 -2.23 -2.54 | 0.37
B. Sausage | 3.79 3.33 1.95 1.95 -2.34  -2.47 ] 0.13
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ABSTRACT

In this paper a generic micromechanical modelling approach
is introduced that allows for dynamical simulations of
cellular biological tissue. It is derived from the discrete
element approach in the sense that the tissue is discretised
such that microscopic features and histological aspects like
cell geometry and the cellular arrangement within the tissue
can be fully incorporated into the model. This makes
dynamical simulations of arbitrarily shaped cellular tissues
feasible in an elegant and robust way, while providing room
for future extensions to incorporate intercellular fluid
transport and tissue failure. The validity of this simulation
technique is demonstrated by a case study on the unicellular
epidermis layer of the Spanish onion (Allium cepa). The
parameters of a two dimensional model are determined using
the stress-strain relation in a tension test for longitudinal
strips. The model is then validated quantitatively against the
data for transversal strips.

INTRODUCTION

In order to come up with thorough innovations in agro-
technology, it is becoming increasingly important to deepen
our knowledge of the soft tissue mechanics in agricultural
products. A fruitful approach towards this goal is the use of
numerical simulation techniques for conducting virtual
experiments and for the indirect determination of material
properties. On the one hand such an understanding can help
to obtain the desired firmness of fruits and vegetables and
thus increase product quality. On the other hand it is an
essential tool for damage minimization during handling,
storage and transportation. Mechanical damage can be
caused by impacts, vibrations, static load and friction.

Since plant tissues are complex conglomerates of cells
whose integrity depends on the mechanical properties of the
cell wall, the cellular turgor pressure, the presence of an
adhesive middle lamella between individual cells and the
presence or absence of intercellular spaces, it is clear that the
cellular structure is a predominant factor in determining the
mechanical behaviour of such tissues (Pitt 1982; Kerstens et
al. 2001).
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A micromechanical approach is ideally suited to account for
these cellular and histological attributes on the overall
mechanical behaviour of fruits and vegetables.

In literature both  qualitative and  quantitative
micromechanical models of uniformly stressed cellular
tissues are described with symmetry and uniformity
assumptions on cell shape and cell wall deformations
(Nilsson et al. 1958; Gao and Pitt 1991). The symmetry and
uniformity assumptions made in the above mentioned work
cannot always describe the geometry of the tissue under
study, indicating the need for methodologies that can handle
random shaped cells, like finite elements (Cooke et al. 1976;
Wu and Pitts 1999; Pitt and Davis 1984). Another approach
is to tackle the problem using techniques from mechanics of
large elastic deformations (Zhu and Melrose 2003). Some
phenomena typically encountered in the study of tissue
mechanics like intercellular fluid transport or the fast
changing boundaries accompanying crack propagation
cannot be dealt with in an elegant way by the finite element
method. This is why Schembri and Harris (1996) developed
a two dimensional discrete element model to describe failure
of sugar cane tissue. They represented the parenchyma cells
and fibrovascular bundles as different kinds of rigid
polygonal objects, called discrete elements, connected by
springs mimicking adhesion and volume exclusion forces.
Then the dynamics of the tissue is simulated by tracking the
motion of every individual element through integration of
the acceleration resulting from the forces between the
elements.

The goal of this paper is to develop a model incorporating
microscopic information in order to understand macroscopic
mechanical behaviour in terms of these microscopic features.
Ultimately, the microscopic information will form the basis
for the development of models at any larger scale. In order
to achieve this goal the approach in this paper is based on the
discrete element method because of its computational
efficiency and, more important, because it allows for an
elegant incorporation of histological features, intercellular
fluid transport and tissue failure. More precisely, a two
dimensional mechanical model of an epidermis layer of
Spanish onion (Allium cepa) is constructed using this new
approach. The unicellular epidermis layer was chosen as a
test case because its cellular arrangement can be studied
using conventional optical techniques and accurate
measurements for validation were readily available.



RESULTS
Theoretical Background

The two major biological factors that determine the
mechanical response of plant tissue to an applied load are the
cell wall and the turgor pressure of the individual cells.

The cell wall consists of cellulose microfibrils and a matrix
of pectin and hemicellulose together with water (Cosgrove
1997). As long as the linear elastic range is not exceeded,
the matrix and the microfibrils will both deform elastically
and thus can be treated as one single material (K&hler and
Spatz 2002) of which the mechanical properties related to
tension will be predominantly determined by those of the
cellulose microfibrils since they are by far the least
extensible component in the cell wall (Ha et al. 1997). This
is why the cell wall has successfully been modelled as a
membrane made from a linear elastic material for small
strains (Hiller et al. 1996). Microfibrils are long and thin,
consequently they can only resist tension load while they
will offer practically no resistance to bending. This means
that the cell wall can be modelled as a flexible structure that
exhibits a linear elastic response to tension within the linear
elastic range.

The turgor pressure is the force exerted by the cell fluid in
the protoplast on its encapsulating structure. Since this cell
fluid is incompressible it can be replaced by a volume
conservation constraint per cell for modelling purposes when
limited timescales are considered. However, over longer
periods of time fluid transport may occur between cells
through plasmodesmata and other transport mechanisms.

Mathematical Model

When constructing a model, the above physical principles
have to be translated into a simplified model that can be
verified through measurement and that can be computed. In
order to focus thoughts, a two dimensional model for
deformable polygonal cells, with turgor pressure will be
elaborated upon. This model was designed in such a way
that it can deal with irregular geometries and non-uniform
loads in an elegant way, while allowing for extensions such
as tissue failure and intercellular fluid transport.

Every cell in the tissue is described as a polygon whose
corner points will be termed as nodes (see fig. 1).

plane boundary

<

-
Figure 1: 2D Model as a Projection of the Actual 3D Tissue
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These nodes are the only objects in our model that exhibit
inertia. External loads can be applied on every node in the
tissue.

When one wants to grasp the essential features of a three
dimensional tissue in a two dimensional description, it is
most convenient to conceptually divide the cell wall into two
categories. =~ The first category, the cell boundaries,
comprises the cell walls which are perpendicular to the plane
of the tissue strip (the vertical walls in fig. 1). The other
category, the plane boundaries, consists of the cell walls that
cover the top and bottom of the cells and thus are parallel to
the plane of the tissue strip (the horizontal walls in fig. 1).
The linear elastic behaviour of the cell walls for small strains
is modelled by means of massless linear springs between the
nodes (see fig. 2). Actually the two cell walls of
neighbouring cells, together with the corresponding middle
lamella are modelled as one single cell boundary spring.
The mechanical properties of the cell wall sheets that make
up the plane boundaries are modelled as an isotropic spring
network. The isotropy follows from the specific geometry of
the model and will be elaborated upon in the section ‘Initial
conditions’. The fact that the resistance to bending of the
cell wall is negligible is incorporated into the model by
representing the nodes as frictionless hinges, which allow for
free rotation of the springs representing the cell wall.

Figure 2: Schematic Model of a Cell; Black Springs: Cell
Boundaries, Grey Springs: Plane Boundaries

In summary, the following assumptions are made: 1) The
cell wall is linear elastic and offers no resistance to bending.
2) The cell wall sheets are isotropic. 3) No intercellular
spaces are present. 4) The cell fluid is incompressible. 5)
There is no intercellular fluid transport on the timescale
simulated.

When a simulation is started all parameters are set to the
appropriate values and initial conditions are applied, this
gives one enough information to calculate all forces on each
node. These forces are used to determine the new positions
of the nodes for the next time step through numerical
integration. All the information that is needed to analyse the
system afterwards is saved. The forces are evaluated with
the new positions and the above cycle is repeated until a stop
condition is met.

Governing Equations

The resultant force, Fg; ,on each node i can be written as the
sum of the spring force, Fy;, the pressure force, Fp;, and the
external force, Fg; , acting on that node. In fact the
dynamics of a node is determined by the forces that act on



the cell walls within its ‘zone of influence’ (the grey zone in
fig. 3), which reaches halfway the connected cell wall pieces.
All forces acting on the cell walls in this zone will be
lumped together in the central node.

Figure 3: The “Zone of Influence’ of Node i

The spring forces, which are due to the tension in the cell
wall, are calculated for each piece of cell wall that is
connected to the node i. Linear elastic massless springs are
used with spring constants kgcp; and kgpp; for the cell and the
plane boundaries respectively. In order to implement the
incompressibility of the cell fluid the cell volume is kept
constant, which comes down to maintaining a constant cell
surface for this two dimensional model. This is achieved by
means of a pressure force that has a proportional and a
differential action to the difference between the current cell
surface and the desired one. The proportionality factor can
be chosen in such a way that the regulation of the volume is
achieved on a smaller timescale than the dynamics of the
system, which assures volume conservation. The third factor
is the sum of the external forces acting on the i™ node, so the
resultant force on this node can be written as

Fri=Fs;+Fp; + Fg;.

From the above considerations it is clear that Fz; depends on
the position and velocities of all the nodes belonging to one
of the cells to which the node i belongs. This locality results
in a linear dependence of the computational cost on the
system size. Conform the second law of Newton this
resultant force will cause the node i with mass m; to
accelerate according to Fp; = ma;, where a; is the
acceleration of node i. The forward Euler integration
scheme is used to solve these differential equations
numerically such that the only additional information needed
to perform simulations is a set of initial conditions and the
appropriate values for the model parameters.

Initial Conditions

The initial conditions consist of an initial position for every
node, from which the rest length for every spring and the
surface of every cell in rest can be derived. Since our model
can handle any polygonal cell shape, it is possible to work
with realistic tissue samples. These can be digitalized as
shown in fig. 4 and stored as an input file that contains the
positions of the nodes together with the information of which
points belong to which cell and which points are connected
through springs.
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Figure 4: A Typical Piece of Onion Tissue (on the left) and
its Digital Version (on the right)

For tissues with a limited number of cells (such as the one in
fig. 4) it is feasible to create the appropriate input files
manually. In the experiments performed by Wei et al.,
(2001), rectangular strips of 18 mm by 3 mm were cut such
that the long axis of the cut was either parallel or
perpendicular to the long axes of the cells, resulting in
longitudinal and transverse strips respectively. Because of
these larger strips, containing circa a thousand cells, an
automated procedure had to be developed which creates a
tissue with an alternating brick structure as can be seen in the
upper part of fig. 5 and 6. The cells in the brick structure
have an aspect ratio of 4 which corresponds to the average
aspect ratio of onion epidermis cells. The springs of the
plane boundaries are initially placed under an angle of 45
degrees with the long axes of the cells to assure that they
will cause no difference in the stress measured while
stretching in the longitudinal versus the transversal direction
and thus represent an isotropic network with respect to these
two directions. The entire strips used in the experiments
measured 18 mm by 3 mm and where 120 pm thick while a
single epidermis cell measures 480 um by 120 pm on
average.

Experimental Determination of Model Parameters

The model parameters are determined from experimental
measurements performed by Wei et al. (2001). The Cauchy
strain is determined as the current length of the strip divided
by the original length and expressed as a percentage. For the
stress the forces in all the springs connecting the left and the
right half of the tissue were computed. The sum of these
forces is then divided by the initial transectional area of the
tissue to obtain the nominal stress.

The true density of onion tissue is 1040 + 90 kg/m?
(Abhayawick, 2002). From this we can calculate the mass of
a single strip (6.74 10°° kg) which has to be divided over the
3625 nodes to obtain the mass of a single node; 1.86 10 kg.
The relation between the spring constants of the plane and
cell boundaries was calculated analytically and verified
through simulations to be kscgp = 1.0265 kgpp for stretches up
to 5.3 % (the average of 3.2 % and 7.4 %). Since the spring
constants for the cell boundaries and the plane boundaries
are related to one another, they can both be determined from
one parameter optimisation in relation to the measurements
on the longitudinal strips (stretches up to 3.2 %) performed
by Wei et al., 2001 (see fig. 5).
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Figure 5: The Stretched Longitudinal Strip (initially 3 mm
by 18 mm) with the Corresponding Stress-Strain Curve

The measurements on the transversal strips (stretches up to
7.4 %) were used to validate the model predictions
quantitatively.

The proportionality factor to regulate the volume for each
cell was chosen high enough to ensure volume preservation
per cell. The maximal variation of the individual cell
volume during the entire virtual experiment was 0.05 % of
its initial volume. This variation can be made arbitrarily
small by increasing the value of this proportionality factor,
resulting in smaller timesteps and a higher computational
cost. The timestep is chosen small engough to ensure
numerical stability.

Validation

Since the model parameters were determined by taking into
account only the information of the longitudinal strip, a
qualitative agreement with the data for the transversal strip is
a powerful validation. The result of the virtual stretching
experiment for the transversal strip is shown in fig. 6. It is
clear that a very good quantitative agreement is obtained
between the simulation results and the measured data.

This implies that the cellular arrangement (the alternating
brick structure) and the elongated form of individual cells
(an aspect ratio of 4) can effectively account for the
difference in mechanical properties between longitudinal and
transversal strips.
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Figure 6: Validation of the Model with Parameters obtained
from the Longitudinal Strip Experiment

Parameterspace Exploration

In order to study the influence of the different aspects in our
model such as the relative importance of the cell and plane
boundaries and the internal pressure, some virtual
experiments were performed with different values for the
corresponding parameters. The virtual tissue used was
identical to the tissue used in the previously described
stretching experiments except for the dimensions which were
3 mm by 3 mm. To show the non-linear behaviour of the
overall tissue more clearly, the tissue is stretched up to 10 %
strain.

When no action is taken to keep the volume constant, one
can observe in fig. 7 that the tissue becomes less stiff in
comparison with a simulation in which the volume is kept
constant. This is in agreement with previous studies of the
influence of turgor pressure on tissue stiffness (Jackman,
1992; Pitt and Chen, 1983), where a stiffening of the tissue
with increasing turgor pressure is reported.

Removing the plane boundary springs results in a maximal
difference in stiffness between the longitudinal and the
transversal direction (see fig. 7).

It is obvious that there should be no difference in the
stiffness between the longitudinal and the transversal
direction when all histological information is excluded by
removing the springs that represent the cell boundaries. This
is shown clearly in fig. 7 and follows from the fact that the
plane boundaries are modelled as an isotropic spring
network.
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Figure 7: Exploration of the Parameterspace of the Model for the Longitudinal Strip (left)
and the Transversal Strip (right)

CONCLUSION

A generic modelling approach is introduced for the
dynamical simulation of cellular biological tissue. It is based
on the discrete element approach and results in a mass-spring
network with linear springs representing both the cell and
plane boundaries.  The presence of cellular fluid is
incorporated by setting a volume conservation constraint for
each individual cell. This approach is flexible enough to
incorporate histological aspects such as the individual cell
geometry and the cellular arrangement in the tissue. The
validity of this simulation technique is demonstrated through
a case study on the unicellular epidermis layer of the Spanish
onion (Allium cepa). With the model parameters optimised
from experiments on a longitudinal strip, the model is able to
generate good quantitative predictions for measurements on
transversal strips. The positive correlation between turgor
pressure and tissue stiffness was also illustrated.

The flexibility of this modelling approach enables future
extensions for the incorporation of intercellular fluid
transport, large strain deformations, tissue failure, etc. such
that progress towards well-founded simulations of the
mechanical behaviour and texture of fruits and vegetables as
well as the mechanical aspects of food processing can be
expected.
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ABSTRACT

Kinetic data on the multi-step inactivation of Lactococcus
lactis ssp. cremoris MG 1363 are obtained by use of ex-situ
staining methods and cell counts. The data reflects inacti-
vation as a function of pressure, temperature, various
additives to the substrate and pressure holding time. They
are analysed with a principal component analysis. Results
imply that metabolic activity correlates with the viablility of
cells under high pressure, while the counts of pressurized but
undamaged cells correlates with the activity of a membrane
bound transport enzyme LmrP. These correlations have been
used for the formulation of a fuzzy logic model that relates
four input variables to two intermediate (output) variables
and three dependent output variables. With current model it
is possible to predict five states of high pressure induced
inactivation in dependence of above mentioned parameters
with an accuracy in the range of the experimental error.

INTRODUCTION

High pressure treatment (HP) with pressures from 200 to
800 MPa is a novel process in food technology employed to
selectively affect the activity of food enzymes, to improve
food texture, to stabilise colour, and to inactivate
microorganisms. Compared to heat treatment, HP-technolo-
gy also allows the elimination of the spoilage and of
pathogenic microorganisms as well as the inactivation of
enzymes while retaining “fresh” attributes of food
properties. Therefore, pressure processed foods generally are
of higher quality compared to thermally treated products
(Harte et al.,, 2002; Krebbers et al., 2002). The use of
pressure processes in industrial practice requires suitable
mathematical models to predict the bactericidal effect of
pressure on relevant target microorganisms. Described here
are the effects of various pressure treatments on Lactococcus
lactis, and the development of a multi-step fuzzy-logic
model to predict pressure effects on microbial survival.

Previous investigations with L. lactis in milk buffer or milk
buffer with bactericidal or baroprotective additives have
shown that pressure treatment results in various degrees of
lethal and sublethal injury of the bacteria. Hence, successful
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inactivation of the bacteria strongly depends on environ-
mental conditions. Five relevant cell properties are available
to describe the lethal or sublethal effects of HP/temperature-
treatment on L. lactis., i. e. the viable cells (CFU), the num-
ber of undamaged cells (CFUsub), the membrane integrity
(MI), the metabolic activity (MA) and the activity of a
membrane bound multiple-drug-resistance (MDR) transport
system LmrP (LmrP).

A multi-step fuzzy model is established which accounts for
the multiple effects of HP/temperature-treatment on the
properties of L. lactis. The fuzzy logic modelling approach is
motivated by different aspects: Fuzzy logic allows the
simple integration of expert knowledge. It compensates a
large bandwidth in the experimental data arising from
variable experimental conditions. The elimination of obvious
errors in the experimental data can be carried out without
changing the overall-structure of the model. It can easily be
adapted to the requirement of a multi-level approach.
Finally, many high pressure induced effects are still
unexplained and therefore, a deterministic approach based
on clear microbiological and physical concepts seems
inappropriate at present.

The model is based on experimental data covering a
temperature range from 5°C to 50°C, a pressure range from
0.1 MPa to 600 MPa, pressure application times from 0 to
120 minutes and 21 additives. A Principal Component
Analysis (PCA) is carried out on all data in order to detect
most powerful measurands. Afterwards, the model is
established using different data based tools. To generate
knowledge out of data, fuzzy clustering is done using fuzzy
C-means algorithm. Results represent barycentres of the
data, which are then analysed with respect to their
dependency on the environmental conditions, using transfer
functions or analysis of sensitivity. Afterwards, data are
transferred to non-sharp logic, by the description of
linguistic variables. The inactivation is then described
through fuzzy rules, which have been automatically
generated by WinROSA, an evolutionary search algorithm
(Krone and Kiendl 1996). These rules are checked and
completed by a human expert on validity.

MICROBIOLOGICAL METHODS AND ANALYSIS
The quantity of the data is divided using nearly 50% for

model establishment and 50 % for model validation.
Therefore, a data pool of nearly 180 kinetics exists.



Viable Cells and Undamaged Cell Counts

After pressure treatment, cell suspensions of each vial are
diluted and plated on MI17 agar (Merck, Darmstadt,
Germany) supplemented with 1% of glucose or M17 agar
containing 3% NaCl for determination of viable (CFU) and
undamaged cell counts (CFUsub), respectively. The plates
are incubated for 24 h at 30°C under aerobic conditions, and
for 48 h to assess undamaged cells under same conditions as
described above.

Membrane Integrity

The determination of membrane integrity of pressure treated
L. lactis is carried out with the LIVE/DEAD" BacLight™
kit (Molecular probes, Eugene, U.S.A.) with propidium
iodide as membrane-impermeant probe essentially according
to the instructions of the manufacturer. 1 ml pressurised cell
suspension is harvested by centrifugation. The supernatant is
removed and the pellet resuspended in 1 ml phosphate buffer
(PBO [g1'], H,KPO, 6.8; MgSO,7H20, 0.1; MnSO,
-1H,0, 0.05). A stock solution of LIVE/DEAD® BacLight™
is prepared, the final concentration of each dye was 33,4 uM
Syto™ 9 and 200 uM propidium iodide (PI). 100 ul of each
of the bacterial cell suspensions are mixed in 100 pl of the
stock solution, mixed thoroughly and incubated for
S minutes in the dark at 30°C. The fluorescence intensities of
Syto™ 9 and PI were measured with excitation and emission
wavelengths of 485nm and 520 nm, and 485nm and
635 nm, respectively, using a spectrafluor microtiter plate
reader (TECAN, Grodig, Austria). The ratio of Syto® 9 to PI
fluorescence intensity is used as measure for membrane
integrity (MI).

Metabolic Activity

The determination of metabolic activity (MA) of pressure
treated L. lactis is carried out according to Ulmer et al.
(2000). Cells from 1 ml pressure treated cultures are
harvested by centrifugation. The supernatant is removed and
the pellet resuspended in 1 ml PBO. A stock solution of
tetrazolium is prepared mixing 4-iodonitrotetrazolium violet
(INT,  2-(4-iodophenyl)-3-(-4-nitrophenyl)-5-phenyltetra-
zolium chloride) and glucose in PBO. The final concen-
tration of each is 4 mM and 20 mM respectively. 100 pl of
each of the bacterial cell suspensions are mixed with 100 pl
of the stock solution. The absorbance is measured at 590 nm
with a spectrafluor microtiter plate reader (TECAN, Grodig,
Austria) and the results are reported as % MA.

LmrP-Actvity

Ethidium bromide (EB) is a substrate for the membrane
bound enzyme LmrP and other multi drug resistance mdr-
transport enzymes. EB stock solutions are prepared by
dissolving 40 pmol of EBI' in PBO. Cells are washed,
harvested by centrifugation and resuspended in a stock
solution of PBO and EB, the final concentration is 20 umol I
!. After this treatment, the cell suspension is stained for 2
hours at 30°C in the dark without an energy source. Then
glucose is added to a final concentration of 20 g 1". Cells

59

reenergised with glucose export EB, resulting in a lower
fluorescence of the EB-DNA complex. Immediately after
glucose addition, the fluorescence of the EB-DNA complex
is measured over 30 min in a spectrafluor microtiter plate
reader (TECAN, Grodig, Austria) using excitation and
emission wavelengths of 485 nm and 595 nm. The initial
rate of EB efflux as measured by the decrease of EB
fluorescence intensity upon glucose addition was calculated
as described (Ulmer et al., 2002) and reported as LmrP
activity (LmrP).

Data Preprocessings

For each parameter combination, measurements were carried
out at least in duplicate and, in many cases, in triplicate. An
averaging on the duplicate and triplicate data sets has been
done in order to reduce the amount of raw data. Averages
reflect the characteristics of the original data. Subsequent to
averaging data are normalised in order to shift them from
their original range to a range between zero and one. Further
logarithmic transformation is done to access data of the
states viable cells and undamaged cells for fuzzy logic
modelling.

Principal Component Analysis

A principal component analysis (PCA) is done to detect
correlations between measurands and thus to determine
those physiological properties that are most useful to
describe sublethal and lethal injury in L. lactis. Principal
components (PCs) are optimal combinations of the original
measurement quantities, wich represent new, artificial
variables. In other words, PCA performs a rotation of the
axes of a multivariate space of the original variables along
orthogonal directions of maximal variance.

Therefore, pretreated data are combined in a matrix X.
Eigenvectors and eigenvalues are then calculated out of the
correlation matrix X-X'. The transformation relation
between data matrix X and the matrix of eigenvectors can be
written as

X=8 V' )

where S indicates the matrix of un-normed scores.
Subsequently, eigenvectors are referred to as loadings as
commonly done in the PCA related literature. In order to
reduce the number of significant variables, the number of
loadings is reduced to g<n, which causes a reduction of the
score matrix to a dimension g<n and which introduces an
error E, if data X will be calculated with the reduced number
of loadings

X=S V'+ E Q).

nxm  gxm gxn nxm

The number g of significant eigenvalues is calculated using
the residual variance V of the r -th eigenvector (Vandeginste
et al., 1998).



Fuzzy Logic

The principal structure of the established model is shown in
figure 1.

Relationship between input variables and output variables
are described in the form of fuzzy rules. Two of the output
variables (CFU and LmrP) are described in dependence of
the input variables (autonomous output variable), the
remaining three output variables (MI, MA, CFUsub, termed
dependent output variables) are described predominantly in
dependence of the autonomous output variables.

input variables autonomous dependent
output variables output variables
membrane
pressure ! !
viable integrity
temperature cells undamaged
additive LmrP- cells
activity
pressure .
application me?apollc
time activity

Figure 1: Principal model structure

Fuzzy rules are built up by an “if”-part, which describes a
premise. The fuzzy “then”-part describes the conclusion.
The rules can be defined from the knowledge of an expert
(e. g. the person who carried out the experiments), or
automatically by use of the following procedure. The fuzzy-
C-means algorithm determines clusters (studied with
sensitivity analysis and transfer functions) in the
preprocessed experimental data and suggests a fuzzyfication,
i. e. a transformation of sharp data to linguistic variables.
The fuzzy sets and the desired input and output quantities
are then analysed by evolutionary search algorithms which
yield the above mentioned rules. Since the conclusion is a
linguistic variable a defuzzyfication on the basis of the
centre-of-gravity-method is employed to obtain a sharp
model output value (Kiendl 1996, Kilimann et al. 2004)

RESULTS

Pressure effects on L. lactis are studied using a pressure
range between 0.1 to 600 MPa, a temperature range from 5
to 50°C, pressure application between 0 and 120 min and 21
different food relevant additives (different pH, different
concentrations of sucrose, sodium chloride and
glycerine/betaine as well as mannitol). The data set consists
of nearly 180 kinetics to describe all 5 states in detail. Using
bactericidal additives (pH ranging from pH=4.0 to pH=6.0),
a synergistic effect with HP/temperature-treatment is
observed. In contrast, L. lactis is protected against lethal
effects of pressure in the presence of 1.5M sucrose.
Sublethal injury of the entire population occured after
treatments at 600 MPa. Addition of 4M NaCl protects the
viability of L. lactis to a pressure of up to 400 MPa. Using
600 MPa, a complete inactivation is reached after short
pressure application.

To study the effect of combined HP/temperature-treatments,
a pressure of 200 MPa and a temperature range between 5
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and 50°C is chosen. Treatments at all combinations of
pressure and temperature were also carried out in milk buffer
and the presence of 1.5M sucrose or 4M NaCl. A subset of
results is given in figure 2. Using temperatures smaller than
40°C and 1.5M sucrose, nearly no inactivation was obser-
ved. Using 4M NaCl, a total protection is achieved at
temperatures greater than 20°C.

120
100 -
80
X 60
S |z
40 {3
e
20 {% ‘?
o
0

0 20 40 60 80 100 120
pressure holding time [min]

Figure 2: MA after combined HP/temperature treatment.
Data are measured using 200 MPa.Cycles represent data
with 1.5M sucrose/ ®10°C and o 50°C, triangles represent
data using 4M NaCl/ A 10°C and A/50°C.

Results are integrated in the multi-step fuzzy logic model,
which is able to predict data in the range of used
environmental conditions. A validation of the data is done
using pressures at 250 MPa, 350 MPa, 400 MPa and
500 MPa, as well as temperatures of 10°C, 15°C and 45°C
and for the most bactericidal and baroprotective additives as
well as for milk buffer. Model prediction quality is shown
for LmrP in figure 3.

Figure 3 A represents a prediction of LmrP through the
model is in an early state of development. At that time, MA
and CFU were used as autonomous output variables.
Because of the total failure of prediction quality, the PCA
was performed to identify the most powerful measurands as
autonomous output variables and to detect correlations
between the measured states.

For the actual model, a good correlation exists between MA
and CFU as well as between LmrP and CFUsub using data
measured in milk buffer (data not shown). Using 1.5M
sucrose and 4M NaCl, other correlations are observed. Using
1.5M sucrose, MI is correlated with CFU and LmrP, MA
and CFUsub could be detected as a cluster (data not shown).
Using 4M NaCl, no correlations have been detected. The
results suggest, that different kinds of inactivation
mechanisms exist for L. Lactis. Autonomous output
variables have been denominated as is shown in figure 1.
With these settings, it was possible to predict all 5 states in a
comparable quality or better than shown in figure 3B.



predicted LmrP

-0,2 f T T T T T
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measured LmrP

Figure 3: Comparison of predicted and measured LmrP-
activity: A) before PCA, B) after PCA

CONCLUSION

In this work, the effect of combined HP/temperature
treatment is studied by means of PCA and fuzzy logic on the
basis of a data set consisting of 180 inactivation kinetics of
L. lactis. A multi-step fuzzy logic model is proposed to
describe the multiple effects of HP/temperature-treatment on
L. lactis. Similarities between CFU and MA as well as
between LmrP and CFUsub are detected and therefore CFU
and LmrP can be used as autonomous output variables.
These two variables contain all relevant information on
sublethal and lethal injury of L. lactis after pressure
treatments. From input data for the pressure level ranging
from 0.1 to 600 MPa, the application time up to two hours,
temperatures between 5 to 50°C and for different additives
to the fluid medium, a prediction of five sates of the bacteria
is possible: the membrane integrity, the metabolic activity,
concentrations of surviving damaged and undamaged cells
and the activity of a membrane transport system. The
predicted data are in very good agreement with
independently measured data. The deviation of calculated to
measured values remains below 15 % for all quantities. The
range covered by the model covers the range of practical
interest. Extrapolations are presently not supported.
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ABSTRACT during fermentation and product maturation.

The complete genome of Lactobacillus plantarum
WCFS1 has recently been sequenced within the
Wageningen Centre for Food Sciences. Lactobacillus
plantarum 1s a versatile lactic acid bacterium that is
important in many food and feed fermentation processes.
Putative biological functions could be assigned to 2,120
(70%) of the 3,052 predicted protein-encoding genes.
After prediction of gene function, the focus is now on the
development and improvement of methods and tools to go
from genome sequence to gene annotation, to pathway
reconstruction and to prediction of phenotype through
metabolic models. Important aspects are how and where to
incorporate and use experimental (genomics) data, and
how and to what extent parts of the process can be
automated.

We have set up different bioinformatics tools,
including web-interfaced databases and simulation
software. This paper described some of these tools, and
how they are used and combined with experimental data to
come to a model of the metabolic network of Lactobacillus
plantarum. The use and type of questions that can be
addressed with these type of models will be discussed.

INTRODUCTION

Food production must be consistent and safe to
provide nutrition and health for an increasing population
demanding products of ever-higher quality. Fermentation
with starter cultures containing lactic acid bacteria (LAB),
such as lactobacilli and lactococci, plays an essential role
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LAB not only play a role in fermentation. A large
diversity of species has been found in different
environmental niches, including the gastro-intestinal tract,
with several having probiotic properties. Probiotics are live
microbial food and feed supplements which are reported to
improve the microbial balance of the intestine. Mediation
presumably occurs through stimulation of the commensal
flora and competitive exclusion of pathogens.

To fully exploit their potential, LAB have been the
subject of considerable research and commercial
development. Focus has however primarily been on
empirical strain selection and the study of individual
enzymes or simple metabolic pathways. With the
genomics revolutions in biology, and hence the genome
sequencing of numerous LAB initiated in the past few
years (see Fig 1 for one of these), we now have a unique
opportunity to radically change that. Knowledge of the
complete genetic potential has paved the way for the
integration of high-throughput functional genomics data
into comprehensive models of cell-factories.



Fig. 1 Circular map of the genome of Lb. plantarum.

Bars in the outer ring indicate the genes, other gene-related
information can be projected in additional rings. Picture
generated with the in-house developed tool Microbial Genome
Viewer (Kerkhoven et al. 2004. Bioinformatics, in press)

Methods for data integration, data storage and data
analysis at the size of hundreds to thousands of genes,
compounds and reactions, are still in development, as the
amount and magnitude of data is new to biology.
Important aspects are standardization of vocabulary,
functional interactions (ontologies), biological concepts for
data integration and visualization. New software needs to
be developed, and existing tools that traditionally dealt
with only a few genes or reactions, need to be scaled up.
These developments go extremely fast, and some of the
required concepts and tools are emerging.

We have recently sequenced the genome of
Lactobacillus plantarum WCFS1 (Kleerebezem et al.
2003). Lb. plantarum is a versatile lactic acid bacterium
that is important in many food and feed fermentation
processes. Putative biological functions could be assigned
to 2,120 (70%) of the 3,052 predicted protein-encoding
genes. This paper describes the development of a model of
the complete metabolic network, based on the genome
annotation. Emphasis will be on the tools used, the
information required for the model development and the
type of questions that can be addressed.

METABOLIC NETWORK RECONSTRUCTION

For a reconstruction of the metabolic network,
information is required about the (putative) functions of
genes, and databases with information of metabolic
pathways. Annotation data describing the function of
genes, comments of curators and further additional
information are stored in an in-house developed, web-
interfaced, mySQL database. The database stores
information on different microorganisms and different
versions (updates) of the annotated genomes. Queries can
be performed, and comments can be added via the web
interface.
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Fig 2. example of many-to-many relationship between genes
(liv4 to livE), proteins (the LivABCDE transporter complex) and
the reactions (active transport of the three branched-chain amino
acids). Picture is from Simpheny™.

For information on metabolic pathways, we used
primary literature and a number of databases. These
include Kegg (http://www.genome.ad.jp/kegg/kegg2.html),
ERGO Bioinformatics Suite (Integrated Genomics),
Brenda (http://www.brenda.uni-koeln.de/), MetaCyc (Karp et
al. 2002, www.metacyc.org) and  Simpheny™
(Genomatica Inc.). All these databases contain similar
information, but there are many errors, and therefore the
different databases are supplementary but also
contradictory. Moreover, not only information about
reactions is required, but also on the enzymes that carry
out these reactions. There exist many-to-many
relationships between genes, proteins and the reactions
they carry out. For example, alcohol dehydrogenase is
encoded by one gene, but the enzyme can oxidize many
alcohols. ATP synthase, however, carries out only one
(very important) reaction, the synthesis of ATP, and it
consists of many subunits, encoded by many different
genes. The branched chain amino acid transporter
LivABCDE even combines these two features (Fig. 2).
These complicated relations between genes and reactions,
and the inevitable mistakes in the databases, make the
construction of the first model very labor intensive, but
once a first high-quality model is made, it can form the
basis of new models of other strains.

Experimental data that is required to reconstruct the
metabolic network are the potential inputs and outputs.
These comprise the substrates that the organism can
consume, the products that it can make, and the
composition of the biomass. The latter is very important to
resolve issues in membrane and cell wall biochemistry,
leading to significant sinks of, e.g., carbon and phosphate.
Half of the 20 amino acids, and 7 out of 10 known
cofactors and vitamins, needed to be supplied in a minimal
growth medium (A. Wegkamp, unpublished results),
reflecting the relatively rich environments Lb. plantarum
grows in. Yet, all but three amino acid biosynthesis routes
in Lb. plantarum appear to be complete. There are many
possible explanations, including kinetic constraints
(regulation), mutations that render genes inactive, errors in
the prediction of gene functions, and others. We are in the
process of resolving some of these issues, which has led to



many new hypotheses about the function of particular
genes and metabolic pathways.

MODELING
A specific roadmap of the metabolism of the organism

of interest is in itself extremely useful. Exploring the
network allows one to predict viability and product

Ribose metabolism

Peritose phosphate pathway

Sorbitel matabolism

Thiamine biosynthasi

Glyoolysis and TOA cycle

Gluconsogenssis

formation of knockout strains, optimal yields, and perhaps
even regulatory sites (Stelling et al. 2002). These are all
qualitative aspects of the network. Other questions that can
be addressed and that have a more quantitative nature, are:
given a certain fixed growth rate, what is the maximal by-
product formation, and which fluxes within the network go
up to achieve that? Given a certain rate of glucose uptake,
what is the maximal growth rate and what is the optimal
flux distribution to achieve that (see for an introductory
paper, Covert et al. 2001)? We use the tool Simpheny™
(Genomatica Inc.) for answering these more quantitiative
questions. Moreover, as Simpheny contains a large
database with biochemical reactions and lots of QA control
features, it facilitates in the reconstruction and quality
analysis of large-scale metabolic networks. Our current
network comprises 655 genes (21% of the genome), 540
reactions and 600 metabolites, but is still under
construction. When finished, the null space of the
network’s stoichiometry matrix will be analyzed through
Simpheny’s built-in linear programming tool, to obtain
optimal flux distributions given constraints and objective
functions.

INTEGRATION AND VISUALISATION

Within the genomics revolution, new high-throughput
methods have been developed that allow the measurement
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of activities of all the genes and or proteins in the system.
Obviously there are many relevant statistical analyses that
can be performed on these data sets. However,
visualization of the data sets in a biological context is
extremely important to help interpreting these data from a
biological viewpoint. Once the connections between genes
and reactions in a metabolic map have been defined, high-
throughput transcriptome or proteome data can be

projected on metabolic maps (Fig. 3). This can be done
with MetaCyc related software and within Simpheny™.
Moreover, these data sets can be projected on circular
maps (see Fig. 1) and on linear genome-maps through the
Microbial Genome Viewer (Kerkhoven et al. 2004.
Bioinformatics, in press).

Having a large scale metabolic model allows one to
relate the changes in activity of genes to changes in the
flux distribution. Understanding the changes on a
metabolic level will then help understanding the regulatory
mechanisms that made these changes in fluxes possible.
The metabolic model can thus form a solid biochemical
basis on which to build and interpret other functions of the
cell, such as signaling and regulatory networks.

CONCLUSIONS

In the next years, detailed analysis and comparison of the
complete genome content (presence/absence of genes for
certain metabolic routes, regulatory networks, etc.) of
many (LAB) species and strains will provide key insights
towards understanding the natural diversity of their
capabilities, roles, and interactions. This knowledge will
greatly assist efforts to select for specific traits, and to
maintain and design stable genomic arrangements in
existing strains and in new derivatives. With the



elucidation of entire genomes sequences, the future
approach to metabolic analysis will be the reconstruction
of metabolic potential using bioinformatics tools and
databases, followed by targeted experimental verification
and exploration of the metabolic network properties. For
this, models and simulations will become essential. We
anticipate that in the future, networks for particular
applications will be designed in the computer, not unlike
what is commonplace for most of today’s high-tech
products.
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ABSTRACT

Bioprocess modelling presents a challenging subject which
however requires a meticulous modelling strategy. During
the modelling process, experimental data form a key
ingredient during structure characterisation and parameter
estimation. Accurate system identification can only be
guaranteed if the experimental data contain sufficient
information on the process dynamics. In this respect,
sufficient effort should be spent on optimal experiment
design in order to maximise the information that can be
extracted from data; especially because experimental data
generation for bioprocesses usually presents a time-
consuming, labor-intensive and costly job.

This contribution summarises the bioprocess modelling
cycle emphasising the need for careful experimental data
collection. Concepts of optimal experiment design for
parameter estimation are revised using examples on (i)
microbial growth kinetics as a function of temperature, and
(if) microbial growth kinetics as a function of limiting
substrate. A two-parameter and multi-parameter estimation
problem are tackled by means of either static or dynamic
process input design. Complementary, the use of sensitivity
function analysis for model reduction is illustrated.

INTRODUCTION

This contribution summarises the bioprocess modelling
cycle emphasising the need for careful experimental data
collection. Concepts of optimal experiment design for
parameter estimation are revised using examples on (i)
microbial growth kinetics as a function of temperature, and
(if) microbial growth kinetics as a function of limiting
substrate. A two-parameter and multi-parameter estimation
problem are tackled by means of either static or dynamic
process input design. Complementary, the use of sensitivity
function analysis for model reduction is illustrated.

The paper is organised as follows. First, the bioprocess
modelling cylce is outlined. Subsequently, the general
concepts of optimal experiment design for parameter
estimation are addressed and two examples are given.
Finally, the application of model output sensitivity function
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analysis in the context of structure characterisation is
discussed.

THE MODELLING CYCLE

Mathematical modelling basically consists of the following
tasks, to be performed within an iterative cycle: collection of
available mechanistic process knowledge, experimental data
collection, data processing, system identification, and model
validation (e.g., Ljung, 1999). System identification in itself
basically consists of three main phases, for all of which prior
(mechanistic) knowledge, experimental data and modelling
objectives are to be considered as inputs. Relationship
detection is the qualitative detection of the causal
relationships between state variables. The quantitative
description for such relationships is obtained through the
structure  characterisation (SC) and the parameter
estimation (PE) steps. A mutual feedback between the two
latter identification steps is indispensable, as the theoretical
identifiability of the model parameters (also called structural
identifiability of the model) is determined by the model
structure itself. On the other hand, practical identifiability of
the model parameters depends on the amount of information
that can be extracted out of experimental data.

Within a biological context mathematical modelling and
system identification are not straightforward. As an example,
unique and accurate estimation of kinetic parameters out of
an arbitrary experimental data set is most often not possible
(e.g., Holmberg and Ranta 1982, Bernaerts et al. 2000).
Frequently occurring reasons for this problem are, e.g., (i) a
too small amplitude of process output sensitivities with
respect to the model parameters, (i7) correlation of model
parameters, (iii) measurements with limited accuracy and/or
small measurement frequency, and (iv) a lack of
measurements for certain (biologically important) state
variables (e.g., Ljung 1999, Vanrolleghem and Dochain,
1998).

In order to overcome these problems, experiments for
bioprocess identification need to be carefully designed.
Experimental data need to be sufficiently rich (in other
words, they should contain a lot of information concerning
the process dynamics) in order to enable correct model
structure characterisation, and accurate and unique
parameter estimation. The information content can be
optimised by using concepts and techniques of optimal
experimental design (OED): the (time-varying) process
inputs are designed such that the resulting process outputs



have maximum information content, and this within the
validity region of the proposed model.

Mathematical models for biological systems are mostly
(highly) non-linear models which are empirically derived
from experimental data. As there is a lack of generally
applicable structure characterisation techniques for non-
linear systems, the structure characterisation problem is
usually formulated as a model discrimination problem: the
most suitable model has to be selected out of a pre-specified
(finite) set of candidate models. The available literature on
experimental design for structure discrimination is relatively
limited. Often the discrimination criterion is parameter
dependent, implying that a parameter estimation step is
involved during optimisation of the discrimination criterion.

The methodology for optimal experiment design for
parameter estimation, however, is well-established. The
overall objective is to define the experimental protocol such
that the model parameters can be estimated uniquely and
with the greatest statistical confidence, i.e., the estimated
values approach the true parameter values with a minimum
error. Hereto, a persistently exciting inputs yielding data that
contain sufficient information needs to be found.
Optimisation of the experimental protocol includes
specifications on initial conditions, experimental inputs
(treatment combinations or dynamic inputs), sample spacing,
sensor location, and others. In the domain of system and
control engineering, the methodology of optimal experiment
design (based on the so-called Fisher information matrix)
was already introduced by Mehra in 1974. However, it is
only during the last decade that these concepts for the design
of input signals for identification experiments are applied in
the domain of bioprocess modeling.

OPTIMAL EXPERIMENTAL
PARAMETER ESTIMATION

DESIGN FOR

General concepts

Once the model structure has been characterised (i.e., the
model structure is taken to be correct), optimal experiment
design for parameter estimation (OED/PE) can be addressed
to establish accurate and unique parameter estimation. The
corner stone of OED/PE is the Fisher information matrix
(F), the application of which is based on the following
interesting properties (e.g., Walter and Pronzato, 1997).

» The inverse of the Fisher information matrix
corresponds to the Cramér-Rao lower bound on the
parameter covariance matrix for any unbiased estimator.

= Based on the linearisation of the model output in the
vinicity of true process parameters p’, it can be
demonstrated that the expectation value of the
identification cost E(J(p)) for a parameter set p slightly
different from the optimal parameter set p can be
approximated by (Munack, 1989):

EUe+a))=p-p’) F®)-p-p) (1)
The Fisher information matrix thus quantifies the shape

of the cost hypersurface near p*, and levels of equal
identification cost form hyperellipsoids defined by
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expression (1). In addition, the Fisher information
matrix determines the statistical joint confidence region
of parameter estimates (e.g., Bates and Watts, 1988).

The Fisher information matrix thus provides an approximate
quantification of the attainable parameter estimation quality
(in the neighbourhood of the true parameter vector p’) for a
particular experiment. Depending on the model system
(inputs and outputs), and the experimental conditions to be
optimised, the Fisher information matrix is defined as
follows.
= For a multiple output system and discrete-time
measurements, the Fisher information matrix reads as

follows:
T

F(p)=2{@(tf,p>} 'Q‘{@(n,p)} @

[ op - op
where (0y/Op) represents the sensitivity matrix of the
model outputs to the parameters, Q is a weighting
matrix usually chosen equal to the inverse of the
measurement error covariance matrix, », is the number
of observations for each model output, p’ is the vector
of true model parameters. The elements of F thus
consist of products of the sensitivities summed over all
data points. In case that the measurement errors are
mutually independent and Gaussian distributed N(0,6%),
the measurement error covariance matrix is a square
matrix with the error variances 6> on the main-diagonal
and zeros on off-diagonal positions. The measurements
errors may, however, depend on the independent
variable, e.g., time (c(t)).

= For continuous-time design, the Fisher information
matrix for an experiment of duration t; can be written as
follows.

*

P=p

i T
F(p) = | [@(n,m} -Q-P (ri,p)} a0
p - op

P=pP
The summation over the data points in (2) is replaced by
an integral over the interval [t ,t]. Strictly speaking, this
transition from a discrete function to a continuous
function implies solving a slightly different problem;
however, the errors observed as a consequence of such
approximation are much smaller than errors, for
example, introduced by linearisations in the solution of
the experimental design problem (Espie and Machietto,
1989, and cited references ).

1, p=p*

Optimal design criteria are specific real-valued functionals
of F expressing the efficacy of an experiment with respect to
the parameter identifiability and the estimation accuracy
expected from the collected experimental data. The criterion
selection shall depend on the requirements imposed by the
application. In general, experiment designs of which the
determinant of the corresponding Fisher information matrix
is equal to zero, are termed non-informative and models
parameters are practically not identifiable (Goodwin and
Payne, 1977). Equally, a zero eigenvalue of F indicates that
the experimental data cannot yield unique parameter values.
Some prevalent design criteria are listed in Table 1. Mehra
(1974) and others emphasise that the resulting optimal



design depends on the chosen information criterion, meaning
that a careful criterion selection is needed.

Table 1: Examples of optimal design criteria for parameter
estimation (see, e.g., Munack 1991, Steinberg and Hunter
1984, Vanrolleghem et al. 1998, Walter and Pronzato,

1997).
Criterion Interpretation
D-criterion: Minimise geometric mean
min[det(F)] of parameter estimation

error
Minimise arithmetic mean
of parameter estimation

A-criterion:
min[trace(F")]

error
E-criterion: Minimise largest
max[Amin(F)] parameter estimation error
Modified E-criterion: Equalise parameter
min[A(F)] estimation errors

The optimal design problem can be formulated as an optimal
control problem which can be solved using techniques
described in Barton et al. (1998): (i) indirect approaches
based on the Pontryagin minimum principle, or (ii) direct
approaches where the problem is transformed into a non-
linear  programming problem by control input
parameterisation. Application of the Pontryagin minimum
principle requires specific mathematical optimisation
techniques as well as a large computational capacity as
numerical calculations become computationally involved. As
a results, this is not always practical for complex nonlinear
biological models. On the contrary, the control input may be
parameterised yielding a finite dimensional optimisation
problem. In many publications, the control input is
parameterised by using piecewise constant or piecewise
linear functions ([see, e.g., Espie and Macchietto, 1989,
Korkel et al., 1999, Sydall et al., 1998, Asprey and
Macchietto, 2000). Within the biological context, practical
feasibility as well as model validity must be taken into
account. The trade-off between (i) excitation of the
biological system for a higher information release, and (if)
guaranteed balanced growth which is the basic assumption
when using unstructured growth models, can be taken into
account as an additional cost (penalty function) in the design
criterion or by constraining the domain of admissible inputs
(see, e.g., Baltes et al,, 1994 and Bernaerts et al., 2002,
respectively).

As the true parameters p  are a priori unknown during
experiment design, they are replaced by some initial guess,
i.e., the so-called nominal parameters p°. These nominal
parameter values can be extracted from literature or
estimated from preliminary experiments. For linear models,
optimal design results will not depend on the parameter
values. On the contrary, the optimal experiment designs for
non-linear models are function of the selected nominal
parameters, which has implications for OED/PE. The
optimality of the designed experiment will be determined by
the agreement between the nominal and true model
parameters. As suggested by, e.g., Steinberg and Hunter,
1984, Walter and Pronzato 1997, a sequential design
strategy, i.e., the iterative application of the optimal
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experiment design may be needed to obtain convergence
from p° to p’. The parameter estimates are updated after
each trial and the next design is performed with the aid of
the improved estimates. The design cycle is repeated until
the parameter estimates are sufficiently close to p’. Exact
values for p° cannot be expected due to (i) inevitable
measurement errors, and (/7)) model non-linearity. For non-
linear models, it is advisable to include all previous
experiments into the parameter estimation procedure, hereby
minimising the possibility for biased parameter estimation
(Walter and Pronzato, 1997).

Example 1: optimal dynamic experimental design

Unique estimation of the parameters of the Monod growth
kinetics by means of optimal experiment design for
parameter estimation, for example, has been extensively
explored (e.g., Ejiofor et al., 1994, Merkel et al., 1996,
Munack 1989, 1992, Munack and Posten, 1989). Optimal
feed rate profiles (determining the substrate concentration)
within a fed-batch process are designed to allow
simultaneous parameter estimation from (a single set of)
biomass data. The following example considers the growth
of and the production of indol-3-acetic acid (IAA) by
Azospirillum brasilense Sp245 (see, Smets et al., 2004).

Azospirillum brasilense Sp245 produces indol-3-acetic acid
(IAA) when grown on malate in the presence of tryptophane.
Malate is used as a carbon source and the biomass growth
obeys the Monod kinetics. In a first research step, batch
experiments were performed during which the biomass
growth, the consumption of substrate, the IAA production
and the consumption of tryptophane (i.e., an essential
precursor) were measured. Based on the available data, two
prototype models, either considering IAA production as
growth-related or not, have been proposed. Dealing with
batch data, accurate estimation of the Monod parameters is
impossible as can be easily decuded from a contour plot of
the identification functional or the condition number of the
Fisher information matrix. Multiple parameter combinations
yield the same descriptive quality. To achieve accurate
Monod parameter estimation, a fed-batch feeding strategy
should be applied. Fed-batch experiments inspired by the
optimal feeding strategy for product optimisation are here
designed according to the OED/PE methodology explained
above (see, e.g., Versyck et al, 1999, Van Impe et al.,
1995). The optimal feeding profile consists out of a batch
phase followed by a (singular) feeding phase which keeps
the substrate concentration in the bioreactor at a constant
level. The process input is optimised with respect to the
modified E-criterion which has the advantage of knowing
the optimum solution beforehand. The sole degrees of
freedom during optimisation are the initial substrate
concentration and the substrate concentration during the
singular feeding phase. It can be shown that multiple optimal
solutions (i.e., combination of set points yielding a condition
number of F equal to one) can be found. Further selection of
the process input can thus be driven from a practical point of
view.

Example 2: optimal static experimental design



When the model is an explicit function of the independent
variable, the OED/PE reduces to the optimal selection of
(static) treatment combinations of the independent variable.
As an example, the estimation of the cardinal values
describing microbial growth kinetics as function of
temperature is given. Microbial growth within the entire
growth temperature domain can be described by the
Cardinal Temperature model with Inflection point which
embeds four model parameters (Rosso, 1995). Finding the
optimal dynamic temperature input for such four-parameter
estimation problem is not straightforward. As a possible
onset to solving this complex parameter estimation problem
static optimal experimental designs are computed (see,
Bernaerts et al., 2003, Gysemans et al., 2004, Bernaerts et
al., 2004).

During static optimal experimental design, the maximum
specific growth rate is considered as the measured model
output and an optimal combination of temperature treatment
levels needs to be found. Besides common design criteria
focusing on parameter estimation accuracy, G-optimal
design maximising the model prediction accuracy is
considered (Steinberg and Hunter, 1984). For nonlinear
models as often in the field of bioprocess modelling or in
this case predictive microbiology, this prediction accuracy is
not always linearly related with the parameter estimation
accuracy.

A model output sensitivities analysis yields a first indication
of relevant temperature inputs. Although lowering the
information content of a set of experiments, boundary values
on the design region need to be imposed during optimisation
to exclude unworkable experiments and partly account for
the wuncertainty on the nominal parameter values. Optimal
design results show that, opposed to the frequently applied
equidistant or arbitrary treatment placement within a
factorial design, typically four informative temperature are
selected and replicate experiments are to be performed at
certain levels. Informative experiments are typically placed
at points with an extreme model output sensitivity.
Constrained G-optimal designs show great similarity with D-
optimal designs (minimising the overall parameter
estimation error variance).

SENSITIVITY FUNCTION ANALYSIS AS A TOOL
FOR MODEL REDUCTION

Knowledge-based modelling of advanced biological
processes typically escalates into mathematical relations
including (i) a large number of state variables, and (if)
complicated kinetic expressions containing a large number
of model parameters. Inspired by the use of sensitivity
functions in the context of optimal experiment design for
parameter estimation, a sensitivity function analysis is
introduced as a powerful tool to reduce the complexity of
knowledge-based models (thus contributing to structure
charactisation) (Smets et al., 2002).

Example

Mathematical models for microbial conversion processes
essentially describe two kinds of phenomena (Bastin and
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Dochain, 1990). Firstly, the (micro-)biological, chemical,
and biochemical reactions that transform some reactants into
some products. Secondly, mass transfer processes due to
exchanges with the environment. The number of reactions
and species that are involved in the process may be very
large. An accurate description of such complex systems can
therefore result in very involved models containing a large
number of state variables and model parameters. These
should all be calibrated against experimental data. Since full
state measurements are in general not available and
parameters of complex model structures are hardly
identifiable a trade-off should be searched for between
model parsimony and goodness-of-fit and this with respect
to the goal of the model.

In this context, a generic methodology based on sensitivity
function analysis is developed to reduce the model
complexity at the level of the kinetics, while maintaining the
high predictive power. As a case study, the influence of the
dissolved oxygen concentration on the cyfN gene expression
in Azospirillum brasilense Sp7 is modelled. As a first
modelling approach, available mechanistic knowledge has
been incorporated into a mass balance equation model with 3
states and 14 parameters which has been identified on batch
experiments with a time-varying dissolved oxygen
concentration. The large differences in order of magnitude of
the model parameters identified on the available
experimental data indicated (i) possible structural problems
in the kinetic model, and, associated with this, (i7) a possibly
too high number of model parameters.

For the given experimental inputs, the 3x14 sensitivity
functions of the model outputs with respect to the model
parameters are computed. To allow proper comparison
between all sensitivities, each sensitivity is rescaled by
multiplying with the corresponding parameter value
(yielding so-called semirelative sensitivity functions).
Essential model parameters are selected based on the
comparison of the order of magnitude of its sensivity
function to the average order of magnitude of the sensitivity
function related with considered state variable. Only model
parameter with substantially larger sensitivities ought to be
retained. Doing so, the original model could be reduced to a
mass balance equation model containing 7 model
parameters.
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ABSTRACT

In this paper, the methodology of optimal experiment
design is applied to design an optimal temperature profile
for the estimation of the two kinetic model parameters from
the Square Root model. This model describes the
temperature dependence of the specific growth rate of
microorganisms within the suboptimal growth temperature
range. The optimization problem 1is solved by
parameterization of the control input, i.e., the temperature,
and by subsequent optimal selection of the degrees of
freedom of the parameterized input with a Sequential
Quadratic Programming method. In previous work, first and
second order polynomials were optimized. Imposing
necessary constraints, the latter resulted in an optimal step
temperature profile. In this study, piecewise-constant
functions allowing for multiple step temperature changes
are optimized. Results show that the dynamic optimization
problem becomes difficult to solve as the problem becomes
ill-conditioned when the number of degrees of freedom
increases; but, overall, a single step spanning the full range
of valid temperatures seems to be the most optimal.

INTRODUCTION

To render reliable predictions, models nust be accurate.
This means that models must contain, besides a proper
model structure, parameter estimates of high quality. Given
an accurate model structure, high quality parameter
estimates can only be obtained on the basis of informative
data. The information content of data can be maximized by
optimal selection of the experimental input. This can be
achieved by the technique of optimal experiment design for
parameter estimation.
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Optimal experiment design for parameter estimation has
already been applied in several research domains, including
the domain of predictive microbiology. The models
developed in this domain predict the evolution of
microorganisms in foods. In (Bernaerts et al. 2000;
Bernaerts et al. 2002) the technique was applied in order to
acquire unique estimates for the two parameters of the
predictive Square Root model (Ratkowsky et al. 1982). This
model describes the maximum microbial growth rate (U,,..)
as function of temperature () in the suboptimal growth
range. Dynamic optimal experiment design consists, in this
case, of the selection of the most optimal temperature
profile. To solve this optimization problem, the authors
firstly parameterized the temperature input as a first and
second order polynomial and optimized the degrees of
freedom of these polynomials within the region of model
validity. A quadratic temperature profile equivalent to a
step spanning the suboptimal growth temperature domain
was proven to yield the most unique parameter estimates.
On the basis of this result, a step profile was also
considered for optimal estimation of the Square Root
parameters. Optimization of its degrees of freedom resulted
in a profile equal to the optimal quadratic profile.

Since the number of input parameterizations considered in
(Bernaerts et al. 2000; Bernaerts et al. 2002) is limited, it is
possible that even more optimal profiles exist. In this paper
it will be examined if this is the case. Hereto, piecewise-
constant temperature profiles are optimized. The interval
lengths of these profiles are gradually shortened. The
shorter the length of the intervals is, the more the
temperature profiles approximate continuous functions.
Unfortunately, this also often makes the optimization
problems more difficult to solve since the number of
intervals to be optimized usually increases. In this paper, it
is investigated to which extent convergence to global
solutions is hampered when more intervals are involved.

In summary, the goals of this study are: (i) optimize
piecewise-constant temperature profiles in order to examine



if the optimized step profile presented in (Bernaerts et al.
2000; Bernaerts et al. 2002) is the most optimal profile for
estimation of the Square Root parameters, ¢i) study to
which extent convergence to global solutions is hampered
when the number of degrees of freedom of the piecewise-
constant functions is increased.

The paper is organized as follows. In Section 2, the model
under study is presented. In the third section, the
technique of optimal experiment design for parameter
estimation is briefly explained, followed by a description of
how this method is applied on the case study. In Section 3,
the optimal step profile discussed in (Bernaerts 2002), is
displayed. In Section 4, the optimized piecewise-constant
temperature profiles are depicted. These profiles are
discussed in Section 5. In the sixth section, the optimized
piecewise-constant profiles are compared with the optimal
step profile. Some general conclusions are finally
formulated in Section 7.

CASE STUDY: THE SQUARE ROOT MODEL
PARAMETERS

The Square Root model (Ratkowsky et al. 1982) describes
the temperature (7) [°C] dependence of the microbial
maximum specific growth rate (t,,,.) [h'l] in the suboptimal
temperature range:

o T@) =b-(T=T,.) (D)

The model parameters are b, a regression coefficient [°C"' h°
2], and T,,, the (theoretical) minimum temperature for
growth [°C].

The combination of the growth model of Baranyi and
Roberts (1994) (Eq. 2) with the Square Root model of
Ratkowsky et al. (1982) (Eq. 1) describes the microbial
growth under suboptimal time-varying temperature
conditions 7(#), under the assumption that microorganisms
adapt immediately to changing temperatures.

dn__0@) T _ )
a1+ 00) oo (T @) - [1 = exp(n(t) —n,,,,)]
dQ )

n(t) denotes the natural logarithm of the cell density
[In(CFU.mI™)], 7, is the natural logarithm of the maximum
cell density [In(CFUmlI")], Q(t) is a measure for the
physiological state of the cells.

DESIGN OF OPTIMAL EXPERIMENTS FOR UNIQUE
ESTIMATION OF THE SQUARE ROOT MODEL
PARAMETERS

For a proper comparison between the information content
of the step profile discovered by (Bernaerts 2002) and the
information content of the piecewise-constant temperature
profiles optimized in this study, the approach followed to
design the optimal experiments should be identical for the

76

vast majority. The two approaches may only differ in the
parameterizations used to solve the optimization problem.

This section comprises of three subsections. In the first
subsection, the common part of the two approaches is
discussed. Afterwards, the difference between the two is
highlighted. Finally, it is explained which computer
language is chosen and which routines are used to perform
the optimizations.

Common part

Optimal experiments are designed on the basis of the Fisher
information matrix F (Walter and Pronzato 1997). Selection
of the most informative experiments is namely achieved by
minimization/maximization of a scalar function of F. The
type of scalar function determines which aspect of the
parameter estimation quality is optimized. Different design
criteria are described in literature (e.g., Steinberg and
Hunter 1984). In this case, the Modified Ecriterion is
applied. This criterion minimizes the condition number of
the Fisher information matrix, ie., (A(F)), hereby
guaranteeing unique parameter estimation.

Optimal dynamic experiments are designed instead of
optimal static experiments. The latter approach consists of
the selection of the optimal set of temperatures a which
static experiments should be performed. In the former
approach, however, the evolution of the temperature
during one experiment is optimized. Performance of this
dynamic experiment will yield cell density data n(?) from
which the Square Root model parameters, i.c., p=[b Tl »
can be estimated. The former approach is more
advantageous since it provides information on the
microbial dynamics under dynamic conditions and since it
can be time-saving.

Mathematically, the above discussed optimal design
problem can be formulated as follows:

[AF*)] ®

admissible T(t)

with

oo M(—2_Y2on I(e_Yon,
ooy ) R o) 2 W

(dn/dp) represents the sensitivity function vector. For
reasons explained elsewhere (Bernaerts et al. 2000;
Bernaerts et al. 2002), fully relative sensitivity functions
[(p/n)(On/p)]pp are used. The vector p = [b Ty 1"
contains the true parameters. Since these true values are a
priori unknown, they have to be replaced by nominal
model parameters p’. Specific values applied in this work
are: p’ =[5261 x 102°C" - h'"? 8.689°C] (Escherichia coli
K12 MGI655), n(0)=In(10°), ©Q(0)=200 (representing
absence of initial lag) and 7, = In(3 x 10°) (Bernaerts et al.
2000; Bernaerts et al. 2002; Bernaerts 2002).




During optimization, constraints have to be imposed on the
temperature ('€ [Ty, Thien]=[10°C 37°C]) to ensure that the
temperature profiles are restricted to the suboptimal
temperature range, i.e., the validity region of the Square
Root model.

In general, dynamic optimization problems can be solved
using (i) direct approaches where the problem is
transformed into a nonlinear programming problem by
control input parameterization, or (i) indirect approaches
based on the Pontryagin minimum principle (see, e.g.,
Banga et al. 2002). In this case, the direct approach is
selected. Application of the Pontryagin minimum principle
requires specific mathematical optimization techniques as
well as a large computational capacity as numerical
calculations become computationally involved, and is thus
not used in this case.

The direct approach consists of the parameterization of the
control input and the subsequent optimal selection of the
degrees of freedom of the parameterized input with respect
to the cost criterion. In this case, the control input is the
temperature 7(¢) and the cost criterion is Eq. (3).

Parameterization approaches

Approach followed in (Bernaerts et al. 2000, Bernaerts et
al. 2002).

In previous research, linear, quadratic and step profiles
were considered as parameterizations of the control input,
T(t). The duration of these experiments was determined by
the following stop criteria: the experiment was stopped
when (a) the maximum cell density was approximately
attained, or when (b) A(F) reached a minimum. A survey of
this research is given in the next section.

Approach followed in this paper.

In this study, the control input is parameterized as
piecewise-constant profiles. This approach is illustrated in
Figure 1. Intervals of equal length At are considered. In
each interval, a constant temperature is assumed, i.e., 7}, 75,
... These temperatures are the degrees of freedom that have
to be optimized according to criterion (3). The number of
degrees of freedom is determined by the length of the
intervals and by the final time #; In this paper, different
interval lengths are considered, namely, A7 = 25h, 20h, 10h
and 5h. The experiment duration, ¢; is determined by the
two stop criteria described above. In this approach,
however, it is also useful to a priori fix the experiment
duration (the reason for this is given below). The results
obtained with this approach are presented in Section 5.
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Figure 1: Illustration of Control Input Parameterizations
Based on Piecewise-constant Functions.

Programming language

Programs are written in Fortran using NAGroutines
(Numerical Algorithms Group) for (i) optimization (E04UCF)
and ¢7) random initialization (GOSFAF). EO4UCF uses a
Sequential Quadratic Programming (SQP) method. Pseudo-
random initializations of all degrees of freedom are
generated by the GOSFAF routine. For all optimization
problems, 200 initializations are initially applied. If this
number does not suffice to find a global minimum, 2000
pseudo-random initializations are generated. When even
more initializations are required, 4000 pseudo-random
numbers are used. Furthermore, in that case, an additional
NAGroutine is used, namely the GOSCBF-routine. This
routine is used to set different internal seeds used by the
pseudo-random number generator mechanism (GOSFAF). In
this way, different sequences of pseudo-random numbers
can be generated which is not possible when solely the
GOSFAF-routine is employed.

REFERENCE OPTIMAL TEMPERATURE INPUT

As discussed above, linear, quadratic and step profiles
were considered in (Bernaerts et al. 2000; Bernaerts et al.
2002). Firstly, linear and quadratic profiles were optimized.
This resulted in a quadratic temperature profile equivalent
to a step spanning the admissible temperature range. Based
on this result, the optimization of a step profile was
considered. The degrees of freedom of a step profile are:
the initial temperature 7; [°C], the time of the temperature
shift 7, [h], and the final temperature 7, [°C]. Optimization
yielded a step profile equivalent to the optimal quadratic
temperature profile (see Table 1 and Figure 2). The optimal
experiment duration of this profile is equal to 73.203h
because the maximum cell density is approximately attained
at that time (see Figure 3). At that time, the condition
number of the Fisher information matrix, i.e., A(F), is also
almost minimal. A prolongation of the experiment would
only lead to an insignificant decrease of the condition
number.



Table 1: Optimized Step Temperature Profile

T, [°C] I, [°C] Loun [D] t; [h] A
10.00 37.00 61.429 73.203 4.094
45
4o T Thigh 1
35+ q
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Figure 2: Optimized Step Temperature Profile.
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Figure 3: Optimized Step Temperature Profile with
Accompanying Growth Curve.
RESULTS FOR THE PIECEWISECONSTANT
TEMPERATURE PROFILES

In this section, the optimized piecewise-constant
temperature functions of which the duration is determined
by the above-specified stop criteria are shown, followed by
the experiments with fixed duration.

Experiment duration determined by stop criteria

In Table 2, the results obtained for the interval lengths 25h,
20h, 10h and Sh are summarized.

Fixed experiment duration

The experiment duration is first fixed at t/*= 73.203h, i.e., the
experiment duration of the optimized step temperature

profile. Secondly, the influence of an elongation or
shortening of the experiment duration is investigated.
Hereto, the experiment duration is varied between (i) .= t/,
i.e., end of interval after ¢ and (i) t; = 1", i, end of
interval before tf* (see Figure 1).

Experiment duration fixed at t;=t;= 73.203h.
In Figure 4, the optimization results obtained with interval

lengths of (i) 25h, (i7) 20h, (ii7) 10h and (iv) 5h are depicted.

Influence of an elongation or shortening of the experiment

duration.
For At = 20h the optimization results for experiment

durations varied between #, = ¢/ and ¢, = ¢/ are summarized
in Table 3.

Table 2: Most Optimal Temperature Profiles Resulting from
200 Initializations (*), 2000 Initializations (°) or 4000
Initializations (). 74, Indicates the Time at which the
Largest Temperature Shift Occurs.

At [h] | Degrees of freedom 7; [°C] | # [h] Lopif A(F)
(withi=1,...,10) [h]
*25 | 10.00-10.00-37.00 54719 | 50h | 4.237292
*20 | 10.00-10.00-10.00-37.00 71.786 | 60h | 4.101809
°10 | 10.00-10.00-10.00-10.00- | 71.855 | 60h | 4.101809
10.00-10.00-37.00-36.47
°10 | 10.00-10.00-10.00-10.00- | 78.161 | 60h | 4.101809
10.00-10.00-37.00-21.93
"5 110.00-10.00-10.00-10.00- | 49.033 | 45h | 4.304204
10.00-10.00-10.00-10.00-
10.00-37.00

Table 3: Most Optimal Temperature Profiles Resulting from
200 Initializations. #,,, Indicates the Time at which the
Largest Temperature Shift Occurs.

t [h] Degrees of freedom T; [°C] | s [h] A(F)
(with i=1,....4)

60.000 10.86-10.02-37.00 40h 5.391754
61.000 10.86-10.02-37.00-26.5 40h 5.391754
62.000 10.86-10.00-37.00-17.10 40h 5.391754
63.000 10.86-10.00-37.00-19.70 40h 5.391754
64.000 10.00-10.00-10.00-37.00 60h 5.309592
65.000 10.00-10.00-10.00-37.00 60h 4.393988
66.000 10.00-10.00-10.00-37.00 60h 4.134375
67.000 10.00-10.00-10.00-37.00 60h 4.103630
68.000 10.00-10.00-10.00-37.00 60h 4.101870
69.000 10.00-10.00-10.00-37.00 60h 4.101810
70.000 10.00-10.00-10.00-37.00 60h 4.101809
73.203 10.00-10.00-10.00-37.00 60h 4.101809
80.000* 10.00-10.00-10.00-37.00 60h 4.101809

* The same results are obtained with ¢,= 71.000h, 72.000h,
74.000h, 75.000h, 76.000h, 77.000h, 78.000h and 79.000h.
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Figure 4: Most Optimal Temperature Profiles (-) with Accompanying Growth Curves (--) Resulting from 200 Initializations (The
Upper Plots and the Left Lower Plot) or 4000 Initializations (Right Lower Plot). The Initializations of the Degrees of Freedom are
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DISCUSSION OF RESULTS

The following general conclusions can be made with
respect to conditioning of the optimization problem,
number of intervals, type of temperature input, interval

length and experiment duration.

Conditioning of the optimization problem. As can be
seen in the tables and figures displayed above, several
temperature profiles have a similar information content,
i.e., their corresponding condition numbers only differ
slightly. This points out that the optimization problem
is rather ill-conditioned (i.e., there is only a weak
minimum), which makes it difficult to obtain global

solutions.

Number of intervals. The higher the number of
intervals is, te more difficult it becomes to find a
global solution. The number of initializations
necessary to find the global minimum namely increases
with increasing number of intervals. This can be due to
the fact that the problem becomes more ill-conditioned.
The influence of the number of intervals on the

79

solvability of the optimization problem can be
illustrated by Figure 4. This figure shows that, when ¢,
is fixed to #,, a limited number of initializations, namely
200, is sufficient to find the presumable global
minimum when only three, four or eight intervals need
to be optimized Ar = 25h, Af = 20h and Ar = 10h).
Increasing the number of intervals to 15, leads to an
increment in the number of initializations necessary

(i.e., 4000).

Type of temperature input. Table 2 and Figure 4 show
that optimization of piecewise-constant profiles either
yields step profiles from T}, to T, (At = 25h and At =
20h) or two-step profiles consisting of the same
positive step across the whole suboptimal temperature
range followed by a negative step (Af = 10h and A7 =
5h). For the latter case, it must however be remarked
that the temperature after the second temperature jump
is systematically equal to the initialization value.
Moreover it can be replaced by any other temperature
value without changing the condition number of the
Fisher information matrix accompanying this profile
(simulation results not shown). This indicates that the



temperature in the last interval is not important; it has
no influence on the information content of the profile.
Consequently, this temperature can be replaced by
Thign, Which converts the two-step profile into a simple
single-step profile.

In summary, this study points out that the most
optimal temperature structure for estimation of the
Square Root parameters is a step profile spanning the
admissible temperature range. This can however not
be known with certainty, since the number of intervals
tested in this study is limited.

Interval length. The points in time where temperature
shifts can take place are, in this case, discrete and not
continuous as is the case for, e.g., the optimization of a
step profile. With other words, f,; cannot adopt each
value. The interval length determines which values it
can take. For example when Az = 20h, #,,, can take the
following values: 20h, 40h, 60h,...

The value of ¢, has an important influence on the
information content of the temperature input. Table 2
exemplifies this. From this table it can be derived that
the optimization of a piecewise-constant temperature
profile with intervals of 25 hours leads to a less
informative profile (A(F) = 4.237) than is obtained with
a profile with interval lengths of 20 hours A(F) =
4.102). The difference in information between the two
profiles is due to the difference in 7, (= 50h versus
Lo = 60h).

Experiment duration.

* 1 determined by stop criteria versus t; a priori
fixed. In this study two different approaches are
applied to determine the optimal experiment
duration. The first approach makes use of stop
criteria. With these stop criteria a precise value for
the optimal ¢, can be obtained. From Table 2, it can
however be derived that with this approach a large
number of initializations is necessary to find the
most optimal profiles. For the case A¢f = 5h, the
global minimum is even not found with 4000
initializations. Therefore, a second approach is also
considered. In this approach, the optimal experiment
duration is determined by testing several a priori

fixed experiment durations. As a starting point, #,is
firstly fixed at ¢'= 73.203h, i.., the experiment
duration of the optimized step profile (see Table 1).
Afterwards, it is tested if longer or shorter
experiments give better results. A comparison of
Figure 4 with Table 2, shows that with the latter
approach less initializations are necessary to find
the solution compared to the first approach. For
example, when Ar = 10h, 200 initializations are
necessary when the experiment duration is fixed
versus 2000 initializations when the duration is
determined by stop criteria. The disadvantage of
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this method is, however, that numerous a priori
fixed experiment durations should be tested in order
to find the precise value of the optimal #,

Optimal experiment duration when t,is determined
by stop criteria. Experiments are stopped when the
maximum cell density is approximately attained (data
not shown). The experiments can already be
terminated earlier since the change of A(F) is limited
after the stationary phase is reached.

Optimal experiment duration when tis fixed. The
experiments optimized in this paper should be ended
after the microorganisns have entered the
stationary phase and #,should not interfere with the
most optimal value that #,, can take at a certain
interval length. This can be deduced from the
following reasoning. Table 3 shows that when the
interval length is equal to 20h, (i) a prolongation of
the experiment duration from t/-* has no effect, (ii) a
shortening of the duration (a) has limited effect on
the optimality of the profile if #is greater than or
equal to 68h, (b) lowers the optimality of the profile
if #is less than 68h and greater than or equal to 64h,
and (c¢), in all other cases, induces a change in the
time at which the temperature step takes places,
hereby decreasing the information content of the
profile. In this context, it must be remarked that the
microorganisms enter the stationary phase at
approximately 68h, when a step from 7}, to T, at
60h is applied (see Figure 4).

In these results the following general pattern can be
recognized. A prolongation of the experiment
duration from #; has no effect on structure and
information content of the optimal profile (case (7)).
Similarly, a shortening from #, has limited effect as
long as the decreased f; is part of the stationary
phase (case (i)(a)). A shortening does, however,
influence the optimality of the profile when the
experiment is ended before the stationary phase has
started (case (ii)(h)). If decreased f, interferes with
the most optimal value that 7, can take at a certain
interval length, then a less optimal value is adopted
by g hereby lowering the information content of
the profile (case (i7)(c)).

COMPARISON BETWEEN THE REFERENCE OPTIMAL
TEMPERATURE INPUT AND THE OPTIMIZED
PIECEWISE-CONSTANT PROFILES

Optimization of piecewise-constant temperature profiles
yields temperature steps from the lower bound 7}, to the
upper bound 7). Thus, the parameterization method used
in this study gives rise to the same temperature structure
as the parameterization method used in (Bernaerts et al.
2000; Bernaerts et al. 2002). This strengthens the suspicion
that a step profile is the most optimal profile for estimation
of the Square Root parameters.



The parameter estimates that can be obtained with the
reference optimal temperature input are sligthly more
unique (A(F) = 4.094) compared with the estimates that can
be obtained with the most optimal piecewise-constant
profile presented in this paper A(F) = 4.102). This is
caused by the different values of 7. In the former case,
Lo 18 optimal (fy,; = 61.429h), while in the latter case, #y,;is
suboptimal (y;; = 60h). The optimal time of the shift can
only be found in case of the step profile, since in that case
tyi can adopt each value and is not dependent on the size
of the intervals. In theory, the most optimal value for f;
can also be found with piecewise-constant functions if the
interval length is infinitesimally short. But with the method
proposed in this paper this will be almost impossible, given
the fact that the dynamic optimization problem is difficult to
solve when a high number of intervals is involved.

CONCLUSIONS

Piecewise-constant temperature profiles have been
optimized for optimal estimation of the Square Root model
parameters. The results indicate that the most optimal
temperature input for estimation of the Square Root
parameters is probably the step profile presented in
(Bernaerts 2002). This is a temperature step spanning the
complete admissible temperature range and encompassing
an optimized fy; To be fully certain, optimization of
piecewise-constant temperature profiles with zigh numbers
of intervals also need to be performed. This will be a next
step in the investigation. This can however be a difficult
task since the number of initialization necessary to solve
the optimization problem increases when the number of
intervals increases. Consequently, application of another
optimization method than the Sequential Quadratic
Programming method used in this paper can be useful.
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ABSTRACT

This contribution focuses on the presentation of GInaFiT
(Geeraerd et al. Inactivation Model Fitting Tool), a freeware
Add-inn for Microsoft® Excel aiming at bridging the gap
between people developing predictive modeling approaches
and end-users in the food industry not disposing over
advanced non-linear regression analysis tools. More
precisely, the tool is useful for testing eight different types of
microbial survival models on user-specific experimental data
relating the evolution of the microbial population with time.
The eight model types are: (i) classical log-linear curves, (ii)
curves displaying a so-called shoulder before a log-linear
decrease is apparent, (iii) curves displaying a so-called tail
after a log-linear decrease, (iv) survival curves displaying
both shoulder and tailing behavior, (v) concave curves, (vi)
convex curves, (vii) convex/concave curves followed by
tailing, and (viii) biphasic inactivation kinetics. Next to the
obtained parameter values, the following statistical measures
are automatically reported: standard errors of the parameter
values, the Sum of Squared Errors, the Mean Sum of Squared
Errors, the R? and the adjusted R?. The tool is downloadable
via the KULeuven/BioTeC-homepage

http://www.kuleuven.ac.be/cit/biotec/index.htm at the topic
“Downloads” (Version 1.3, Release date July 2004).

INTRODUCTION

Microbial inactivation, whether due to a thermal or non-
thermal food processing technique like high hydrostatic
pressure, pulsed electric field, ohmic heating, ..., can exhibit
one of the eight shapes illustrated in Figure 1 (see, for
example, Xiong et al. 1999, Mafart et al. 2002 or
Devlieghere et al. 2004). It is clear that the classical concept
of loglinear inactivation modeling fails to assess accurately
the majority of these survival curves.

In this research, the focus is on the development of a user-
friendly interface enabling easy identification of (one of)
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these curvatures on an experimental data set provided by the
end-user. After testing several of the possible models
included in GInaFiT, the models can be compared based on
some reported statistical measures.

Log10(N)
Log10(N)

time

Figure 1: Commonly Observed Types of Inactivation Curves.
Left plot: Linear (V, shape I), Linear with Tailing (x, shape
II), Sigmoidal-like (o,shape I1I), Linear with a preceding
Shoulder (O, shape IV). Right plot: Biphasic (V,shape V),
Concave (x, shape VI), Biphasic with a Shoulder (o, shape
VII), and Convex (O, shape VIII)

MODEL STRUCTURES INCLUDED IN GINAFIT

In total, eight different model types are implemented in the
current GInaFiT version (Version 1.3), covering all but one
(namely, shape VII) of the eight shapes of survival curves.
The eight different model structures are grouped in four
Menu Items, as will be explained in the next paragraphs. For
each Menu Item, the shapes of survivor curves covered are
indicated in brackets.

Menu Item 1 : Log-Linear model (shape I)

The first menu item provides the end-user with the possibility
to use the traditional log-linear approach for describing
microbial inactivation curves (see, for example, Anonymous,
2000). In static conditions, this can be written as

log 10(N(0)) — —max L

log(10) @)

log10(N) = log LO(N (0)) — %

Herein, N represents the microbial cell density [cfu/mL],
N(0) the initial microbial cell density [cfu/mL], k,,, [1/time



unit] the first order inactivation constant and D [time unit]
the decimal reduction time. In this model it is assumed that
all cells in a population have equal heat sensitivity and that
the death of an individual is dependent upon the random
chance that a key molecule or “target” within it receives
sufficient heat (Cole et al. 1993). Despite the world-wide use
of this model, especially in the canning industry for the so-
called “12D process” of the proteolytic strains (Group I) of
Clostridium botulinum spores (ICMSF 1996), a lot of
deviations have been observed (particularly at lower
temperatures and for vegetative cells) indicating that
inactivation kinetics are not always following first order
loglinear relationships (Anonymous, 2000) as was also
illustrated in Figure 1. This observation was at the basis of
the development of a number of non-loglinear modeling
equations as covered by the remaining GInaFiT Menu Items.

Menu Item 2 : Biphasic model (shapes I, IT and V)

Cerf (1977) proposed a two-fraction model, which can be
formulated as follows

log10(N) =10g10(N (0)) +1og10( f - exp(—k a1 - 1) +
(I=f)-exp(—kpmax 2 - 1))

Herein, f is the fraction of the initial population in a major
population, (1-f) is the fraction of the initial population in a
subpopulation (which is more heat resistant than the previous
one), k. and k. [1/unit time] are the specific inactivation
rates of the two populations, respectively. The model
describes biphasic curves, which were generally considered
to represent a mix of two species or strains having different
heat resistances. Biphasic inactivation curves have been
observed in the framework of thermal inactivation (see, e.g.,
Cerf 1977, Humpherson et al. 1998), non-thermal
inactivation due to lethal water activity (Shadbolt et al. 1999)
or lethal pH levels (Shadbolt et al. 2001). Zhang et al. 1994,
amongst others, support biphasic Pulsed Electric Field
inactivation curves. Given this experimental evidence, it is
explicitly included in GInaFiT that k,,,,; is always larger then
kmav2, implying the faster inactivation of the most sensitive
population.

Menu Item 3: Log-Linear model with shoulder and/or
tailing (shapes I, I, I and IV)

The dynamic model, consisting of two coupled differential
equations, reads as follows (Geeraerd et al. 2000).

d_N:_kmax'N' 1 . 1_Nres
dt 1+C, N
dcC
£ =—k..-C 2
dt s e @

Herein, C, is related to the physiological state of the cells [-],
ke 18 the specific inactivation rate [1/time unit], and N, is
the residual population density [cfu/ml]. The model has four
degrees of freedom: two states N(0) and C.,0), and two
parameter values k.. and N,.. The first factor at the right-
hand side of Equation (2) models the loglinear part of the
inactivation curve and is equivalent to the classical first-order
inactivation kinetics (as in Equation (1) when written in
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dynamic format). The second factor describes the shoulder
effect and is based on the hypothesis of the presence of a
pool of protective or critical components C. around or in
each cell (Mossel et al. 1995). Gradually, this pool is
destroyed. In case of a shoulder, 1/(1+C,0)) takes on a small
(positive) value. Towards the end of the shoulder region
1/(1+C(t)) becomes (approximately) equal to one, due to the
component C, undergoing heat inactivation following a first-
order model. Finally, the last factor of Equation (2) implies
the existence of a more resistant subpopulation N,,,, which
can be framed within the established mechanistic or vitalistic
concepts (Cerf 1977). For more details about the derivation
of this model as based on literature arguments (Mossel et al.
1995, Cerf 1977), reference is made to (Geeraerd et al.
2000).

This model can exhibit a loglinear behavior with and without
shoulder and/or tailing revealing a smooth transition between
each phase. It is important to remark that, for this model,
tailing is considered for a population remaining constant in
time or, otherwise stated, not undergoing any significant
subsequent inactivation. This is in contrast with the Whiting
model (Whiting, 1993) able to describe shape VII curves
(see Figure 1, right) or the afore-mentioned biphasic model.

The model structure has been successfully applied to survival
data of different micro-organisms and different treatments,
such as, Listeria monocytogenes and Lactobacillus sakei
during a mild thermal inactivation (Geeraerd et al. 2000),
Monilinia fructigena and Botrytis cinerea during a pulsed
white light treatment (Marquenie et al. 2003), the Acid
Tolerance Response (ATR) of Salmonella enterica and L.
monocytogenes (Greenacre et al. 2003) and the inactivation
of L. monocytogenes in a pH-modified chicken salad during
cold storage (Guentert et al. 2003).

The explicit solution of the original dynamic model reads as

follows, after substituting C,(0) by eXmS1 1 with §,

[time units] a parameter representing the shoulder as derived
in (Geeraerd et al. 2000).

ekmaxsl
+N
RN G -

Observe that in this formulation, all parameters have a clear
biological/graphical meaning, which is interesting with
respect to the parameter estimation procedure for this
nonlinear model (initial values are easy to obtain) and
because they can be interpreted afterwards.

N(t)=(N(0)-N,,,)- e Fmt (

Menu Item 4: Weibull type models (shapes I, VI and
VIII)

The Weibull model, when applied to describe microbial
inactivation (see, for example, Peleg and Cole, 1998, Van
Boekel 2002), is the cumulative form of the distribution of
the individual heat resistance of microbial cells. In GInaFiT,
it is the version as proposed by Mafart et al. (2002) which is
included based on the possibility to reduce in a natural way
to the classical log-linear model (depending on data
behavior).



p
10g10(N) = log 10(N(0)) — (é)

Herein, 6§ [min] is a scale parameter and can be denoted as
the time for the first decimal reduction, and p [-] is a shape
parameter. For p > I, convex curves are obtained, while for
p<l1, concave curves are described.

Van Boekel (2002) and Mafart et al. (2002) observed a
strong correlation between parameters 0 and p. The
dependency of the parameters is due to the model structure
(i.e., an error in § will be balanced by an error in p). This
drawback can be circumvented by fixing the value of p (see
also, e.g., Peleg and Penchina 2000). Fixing the p-parameter
is one of the options under Menu Item 4 of GInaFiT. In this
case, a pop-up window appears asking the user which value
of p he wants to select. In practice, this option is suitable
only when describing a range of different inactivation curves
individually (for example, collected at increasing constant
temperature values) by using the full Weibull model.
Afterwards, if an average p-value seems appropriate, this
mean value can be used for all curves (as illustrated in
Mafart et al 2002) by using this additional option under
Menu Item 4.

The last option under this Menu Item, is the model recently
proposed by Albert and Mafart (2003), and which is able to
describe concave, convex or linear curves followed by a
tailing effect. The model can be written as follows.

t 4
)
loglO(N) =1oglO[(N(0)—N ) - 10[ +N
Parameters have the same meaning as in the Weibull model
(for 8 and p) and as in the Geeraerd et al. model (for N,).
The obtained curvature is more smooth then the Geeraerd et
al. model presented above.

res ]

STATISTICAL MEASURES INCLUDED IN GINAFIT

The following statistical measures are generated for each of
the eight models included in GInaFiT:

1. The Sum of Squared Errors (SSE), obtained by summing
the squared differences between the experimental data
and the model prediction, both in log10-scale.

2. The Mean Sum of Squared Errors (MSE), which can be
derived by dividing SSE by the number of degrees of
freedom, i.e. the number of data points minus the
number of parameters/initial values used (two, three or
four). MSE, being the variance of the residuals, is
assumed to be a measure for the true variance on the
experimental data.

3. The two, three or four parameter values identified,
together with their Asymptotic Standard Error. This
Standard Error is obtained by taking the square root of
the diagonal elements of the asymptotic variance-

covariance matrix AVC, with AVC = MSE - (J r.J yl .

Herein, J corresponds to the Jacobian matrix containing
the partial derivatives of the model output with respect
to the model parameters evaluated at each experimental
time instant. Generally, an underestimation of the actual
confidence range of the parameter estimates by using
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Standard Errors for a non-linear model is to be expected
as covariance terms are neglected. More appropriate
measures for non-linear models include the construction
of joint confidence regions (see, for example, Beale
1960) or a Monte Carlo analysis based on knowledge of
the experimental error. These measures are not included
in the present version of GInaFiT.

4., Rz, the coefficient of determination which equals 1 -
SSE/SSTO, with SSTO the sum of the squared
differences between the measured values and the mean
of these measured values.

5. Rzadj, the adjusted coefficient of determination (see, for
example, Wonacott and Wonacott 1990), which equals

o2 (n-1)-RZ—k+1

adj &

with n the number of data points and k the number of

parameter values (two, three or four). In comparison

with the original R, the Rzadj attempts to penalize the

inclusion of an irrelevant variable, in casu, a redundant

parameter.

PROGRAMMING LANGUAGE

For the development of this tool Microsoft® Excel was
chosen based on three criteria: (i) Microsoft Office is
commonly available on most personal computers, (ii) MS-
Visual Basic offers a large flexibility for automating the
process and developing the user interface, and (iii) the Solver
Add-In for the non-linear parameter estimation of the
selected model structures is available. In order to make the
installation as user-friendly as possible the tool is written as
an Add-In for MS-Excel available to the user at any time as
an additional Menu Item.

In order to guarantee the convergence of the non-linear
optimization, GInaFiT has some built-in constraints on the
parameter values to be estimated, for example, k,,,, > 0 and
N.,.s < N(0) for the Geeraerd et al. model.

AN ILLUSTRATIVE CASE-STUDY ON THE
THERMAL INACTIVATION OF ESCHERICHIA COLI
K12

Data generation

Survival data of early stationary phase cultures of E. coli
K12 MGI1655, a surrogate for the food-borne pathogen E.
coli O157:H7 are collected. The inactivation experiment
takes place in BHI broth in capillaries immersed in a constant
temperature circulating water bath at 56.6°C (GR150-S12,
Grant). Cell density is determined by plate counting on BHI.

Importing data into GInaFiT and model application

The user selects in an open MS-Excel sheet the experimental
data consisting of time (first column) and the (decimal
logarithm) of the population observed (second column).
Next, the user selects in the menu item GInaFiT the model of
his choice, as shown in Figure 2.
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Cerf. 1977 Biphasic Modgl

Geerzerd et al., 2000: Log-Linear + Shoulder
Geeraerd et al., 2000 Log-linear + Tal
Geeraerd et'al., 2000: Log-Linear + Shoulder + Tal

Mafart et al., 2002, Vel
Mafart et al., 20021 Welbl, Fixed p-parameter
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Table 1. Statistical Measures Obtained when Applying the
Models (1: Log-Linear, 2: Biphasic, 3: Log-Linear +
Shoulder, 4: Log-Linear + Tail, 5: Log-Linear + Shoulder +
Tail, 6: Weibull, 8: Weibull + Tail) Available in GInaFiT
Version 1.3 on the Experimental Data Set at Hand.

Disclairer & Stpport
S anay Model SSE MSE R? R” i
types

1 3.95 0.3291 0.9374 0.9322
2 3.95 0.3949 0.9374 0.9186
3 0.33 0.0304 0.9947 0.9937
4 3.95 0.3590 0.9374 0.9260
5 0.33 0.0335 0.9947 0.9931
. .. . 6 0.55 0.0502 0.9912 0.9897
Figure 2: Screendump of the Additional Menu-Item GInaFiT 3 055 0.0502 09912 09336

and the Eight Model Types Available

Based on the model selected by the user the tool will perform
the parameter estimation/calibration minimising the Sum of
Squared Errors criterion. For end-users having already a
qualitative idea of the general shape of their survival curves,
the choice for one or some of the available model types is
obvious. On the other hand, if the end-user does not have a
clear idea yet, the different types can be tested and compared
based on their Adjusted R*.

GInaFiT will deliver error messages when parameters which
are fairly unlikely or unreliable are obtained, for example, a
negative shoulder length or an estimated value of the residual
population N, lower then the smallest measured population
value.

GInaFiT model outputs

Experimental data are fitted
with seven out of the eight
models of the tool and their
fitting capacity is compared
based on the available

LOG10(N) LOG10(N) Squared difference Par:

Even more important than these statistical measures, are
some observations following the parameter estimation.
Firstly, the biphasic model fit (model 2) is actually equal to
the log-linear model fit (model 1). The unnessary f parameter
is estimated as being zero. Secondly, for the models with
tailing (4, 5, and 8), the program warns that this tailing is not
substantiated by the data and that a model without tailing
should be selected. Nevertheless, convergence for the
residual population value N, is still obtained (at a very low
level with an unrealistic high Standard Error, which also
indicates the redundance), while the other parameter values
converge to the ones obtained by model 3 or 6, respectively.
The GInaFiT output for model 3 is shown in Figure 3. The
minimum variance of parameters obtained in the case of
model 3 if compared with model 6 (not shown) indicates that
the former model is the most suitable for this experimental
case study.
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CONCLUDING REMARKS

GInaFiT Version 1.3 is useful to quickly test in a quantitative
and user-friendly way a range of microbial survival models
on user-specific data, and to derive the associated parameter
estimates, standard errors, and some goodness-of-fit
indicators. The software, which is currently available for
Office97 (English and French), Office2000 (English) and
OfficeXP/2002 (English), will be distributed under a
freeware license agreement. If necessary, the GInaFiT code
will be adapted in order to be suitable for other languages.

In the future, it is envisaged to incorporate the last one of the
remaining survivor curve types (biphasic with a preceding
shoulder). More importantly, an extension towards the
influence of several (possibly interacting) environmental and
processing factors like temperature, pH, water activity,
recovery conditions, food structure and composition, ... on
the shape and extent of the microbial survival curves is
necessary. This step would enable food producers to have an
overall view on the influence of their processing conditions
on microbial survival, and hence, to assess in an accurate
way their processes performances in the framework of, for
example, tackling Food Safety Objectives.
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ABSTRACT

In the food processes, it is relevant to build tools taking
human measurements into account for the control of the
sensory quality of the food products. Despite the
methodology used to formalize these measurements, they are
subject to more imperfections (imprecision, unreliability,...).
Our aim is to take these imperfections into account in our
approach of modelling by processing them in the built
models. When it is possible, we try to extract high level
informations and some guidelines towards an optimized
cooperation between the operator, the sensors and the
process.

INTRODUCTION

Finished food products must meet specific sensory, sanitary
and technological requirements. Among these requirements,
sensory properties are essential because they condition the
choice and the preferences of consumers [1]. As a
consequence, it is relevant to develop methods which allow
firstly to measure those properties on the manufacturing line
and secondly to integrate them in a feedback control of food
processing [2]. In this context, the use of the fuzzy symbolic
approach for representing human assessments and reasoning
in a decision support system is interesting to help people in
charge of the process control (operator) [3]. These systems
have as inputs sensory measurements made by the operator
at line during the manufacturing and/or instrumental
measurements. It allows a cooperation between the human
operator and the automation system. However, the operator
sensory measurements are subjected to higher imperfections
than the conventional sensory measurements. The causes
are, for example, the place of the measurement (operator
influenced by his environment: temperature, humidity, light)
or the time of the measurement (pressure due to the need to
control, several tasks to do at the same time). From a model
developed on an application dealing with the control of a
cheese ripening process, we are looking for determining the
impact of the imperfections, coming from the expert
evaluations, on the fuzzy model output. In this paper, we are
concerned with two aspects of this kind of imperfections: the
lack of a sensory measurement and the imprecision of the
sensory measurements.
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The paper is organized as follows. The first section explains
the model developed on the application of cheese ripening.
The methodology of the experimental analysis and results
are presented in the second section.

THE FUZZY SYMBOLIC APPROACH APPLIED TO
CHEESE RIPENING

Having a mathematical support to represent human
assessments and reasoning expressed by linguistic
expressions is one of the originate motivation of fuzzy
subset theory [4,5]. A fuzzy symbolic description of
phenomena consists in affecting degrees (between 0 and 1)
to considered terms, e.g. 0.8/High;0.2/Medium;0./Small. The
latter can be directly obtained from human assessments or
indirectly from the numeric measurements by the concept of
fuzzy symbolic measurement, the meaning of terms being
encoded in their associated membership functions [6,7]. The
interest of the fuzzy symbolic approach is thus the
possibility to take both numeric and linguistic assessments
into account and also to process such information further, e.g
making information fusion.

This approach was applied to build a decision support
system in cheese ripening [8], that is a ageing process lasting
about one month. This system was established to inform an
operator on the potential drift of the sensory trajectory of the
cheese each day in order to help him to control the process.
To control the process, the operator uses a variable called
ripening degree which represents an indication of the
ripening state at a time t of ripening. This variable is
assessed on an ordinate scale (from 4 (state A) for a cheese
no ripened cheese to 0 (state E) for a ripened cheese) with
graduations of 0.25. Despite these graduations, the operators
say that their sensitivity on the ripening degree is 0.5. That is
why the two sensitivity levels 0.5 and 0.25 are tested for the
validation of the model (see fig. 2). The explanatory model
of cheese ripening is shown on figure 1. This model takes
five variables as input data : the ripening time and four
sensory variables : the cheese coat (MS1), its color (MS2),
its humidity (MS3) and its consistency (MS4). The output of
the model is the ripening degree.
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Fig. 1. Principle of the ripening model

The proposed model consists of three steps. The first step
allows to transfer the sensory measurements made on an
ordinate scale (from 1 to 6) in a symbolic space (different
symbols are defined for each sensory measurement). In the
second step, the deviations are calculated for each sensory
measurement in comparison with the objective trajectories of
the sensory measurement. The third step allows to combine
the deviations on each sensory measurement by rules treated
in a fuzzy symbolic mathematical frame [7]. The used rules
depend on the ripening time. Table 1 presents the rule base
for the period from day 8 to day 12. It corresponds to a
standard ripening degree C.

Table 1. Rules base for the standard ripening degree C (day 8 to
day 12)

L —NRipening
degree

Deviations on
cheese coat .
Deviations on (Very few (Few (Medium (Very
cheose covered) covered) covered) covered)
consistency
No proteolysis) | late (-1 late(-1) | late(-05 | |
early
(Few proteolysis) late (-0.25) | Standard (+0.5)
state
(Medium EARLY. E‘?ﬁf Y
proteolysis) +1)
EARLY
EARLY (+2) +2)

For example: at day 10 of the ripening time, the cheese coat
is measured to 3 and the cheese consistency to 2. The
corresponding fuzzy linguistic descriptions are: for cheese
coat medium covered with a membership degree of one and
for cheese consistency: few proteolysis with a degree of 1.
The standard trajectory of these measurements give the
following symbols like standards at day 10: medium covered
and few proteolysis. So, deviations of both these
measurements are equal to 0. Table 1 combines these
deviations to obtain the ripening degree: the cheese is in
standard state C at day 10.

EXPERIMENTAL IMPACT ANALYSIS OF SENSORY
MEASUREMENT IMPERFECTIONS

In this paper, we propose a methodology in two parts to
analyze the impact of sensory measurement imperfections.
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The first one is an analysis of the degradation of the
structure of the model led by a lack of a sensory
measurement. The second one is an analysis of sensitivity of
the input variables, it consists in propagating imprecision of
input measurements on the model output.

1 Impact of lack of a sensory measurement

To reproduce the lack of a sensory measurement, an input
sensory measurement of the model is deleted. This deletion
corresponds to a degradation of the ripening model. It brings
information on the importance of each sensory measurement
in the structure of the model. The identification of
measurements that are more important than others can
induce a more attentive assessment by the expert for this
measurement : increased vigilance , repetition of the
measurement or addition of an information to confirm the
sensory measurement.

Method. Six degradations are made. We obtain six damaged
models (table 2). Each degradation corresponds to the
deletion of one sensory measurement for the three first
damaged models and two sensory measurements for the
three last damaged models. For example, for the first
damaged model (MD1), the sensory measurement deleted is
the humidity of the cheese (MS3), so the inputs of the model
staying are the cheese coat (MS1) and the cheese
consistency (MS4). The input data, color of the cheese
(MS2), is considered as having little impact on the model to
find the ripening degree, but it is useful at the end of the
ripening to determine a default of color. Therefore, this
measurement is deleted for each degradation of the ripening
degree model.

Table 2. Composition of the different damaged models

Name of Variables | Variables Name of . Variables
the . he Variables of .
of deleted | of input . of input
damaged P- stavin damaged | deleted input stavin
model p ying model ying
MD 1 MS3,MS2 | MS1,MS4 [ MD4 MS;ié\/lISZ, Ms4
MD 2 MS1,MS2 | MS3,MS4 [ MD 5 MS&;\A/{SL MS1
MD 3 MS4,MS2 [ MS1,MS3 | MD6 MS;/iSI\;ISZ’ MS3

The deletion of one or several sensory measurements leads
to a cancellation of the rule tables of the ripening model,
giving the ripening degree. This task is realized with the help
of the expert by a reformulation of the original rules. For
example, from table 1 shown in part 2, we obtain after the
deletion of the measurement cheese consistency table 3.

Table 3. Rules base for the standard ripening degree C with
deletion of the cheese consistency




DEVIATIONS Very few Few Medium Very
ON CHEESE covered covered covered covered
COAT
RIPENING LATE EARLY
DECREE DEFECT -0.5) STANDARD (+0.5)

In this way, for the original model, the standard state was
defined by a cheese coat medium covered and a cheese
consistency few proteolysis. Now for the damaged model
MD1 (cheese consistency deleted), the standard state is
defined only by a cheese coat medium covered.

The answer of the damaged model (ripening degree) is
considered like compatible if it does not differ from the
expert answer more than the tolerance thresholds (fixed in
function of the precision degree of the human measurements:
0.25 and 0.5 on a scale 0-4). The performance of the model
is defined as the number of answers compatible in
comparison with the number of cheeses to assess. To
compare the performances of the different damaged models
with the performance of the original model, they are plotted
on a histogram (see fig.2).

Results. On the figure 2, are presented the performances of
the different damaged models in comparison with the
original model.

Performances

]
£
2
=
[e]

Fig. 2. Performance of the original and the damaged models
at two thresholds

A degradation of the model structure linked to the cheese
humidity (MD1) does not act upon the performances of the
model whatever the different thresholds tested. But, when
the degradation of the structure of the model is linked to the
cheese consistency (MD3), it leads to a loss of 15 % for the
two thresholds.

A degradation of the structure of the model linked to the
cheese coat (MD2) leads to a decrease of the performances
unequalled for the two thresholds. For a threshold of 0.5, 2
% of compatible answers are lost and 8 % to a threshold of
0.25. If the measurement cheese humidity is also deleted
(MD4), we notice a loss of 3% of compatible answers to a
threshold of 0.5 and 9 % to a threshold of 0.25.

This analysis enables to conclude that the sensory
measurement with the highest impact is the cheese
consistency. It is responsible for 97 % of compatible
answers to a threshold of 0.5. Moreover, we can conclude to
a strong impact of the cheese coat to give a more refined
answer.
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2 Impact of sensory measurement imprecision

Method. The principle of this analysis is to propagate in the
model an imprecision applied on an input variable, the others
input variables being fixed. The study is achieved on
ripening kinetics, obtained on a pilot able to represent the
different ripening dynamics. An example of kinetic is shown
on figure 3.

4,5
° 4
® 3,5
g‘ 3
> 25
£ 2
s 1.5
= 1
[
0,5
0 ]
0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32
Ripening time (days)

Fig. 3. Evolution of the ripening degree versus the ripening
time

This kind of analysis enables to answer the following
questions : What is the impact on the model output (the
ripening degree expressed on a 4 to 0 scale) if we increase
the imprecision on the input measurements? How does the
model  propagate the imprecision (amplification,
attenuation)? These questions are particularly important
when, for example, a crusting default appears on the cheese
and increases the imprecision in the cheese consistency
measurement (MD4). Another more fundamental question is

“what kind of high level informations about the aid
operator system built can be deduced from such an
approach?”. To achieve this study, we associate a fuzzy
number to each input variable as to represent this
imprecision. The fuzzy number associated to the cheese
consistency input variable (MD4) characterizing the operator
measurement is represented as example figure 4. Thus, for a
measurement MD4 = 3 achieved by an operator, its
imprecision is represented by a fuzzy number centered on 3
with a half support (Sinput/2)of 0.5. It means that the
measurement is actually included between 2.5 and 3.5 with
a possibility to be 2.8 for example, three times higher than
the possibility to be 2.6. Experimental simulations are
achieved processing different fuzzy numbers as input for
each given variable from Sinput = 0.5 to Sinput = 3. The
properties of monotonicity of the model of cheese ripening
allows us to propagate the imprecision of the inputs in the
model, using the extension principle defined by [9].
Simulations are computed input by input. Others inputs are
fixed to a standard value. For example, for computations
about the measured cheese consistency, cheese colour is
fixed to yellow, cheese humidity to few humid and cheese
coat to medium covered from day 8 to day 16 and to very
covered from day 16 until the ripening end. The result is an
output fuzzy number describing the ripening degree. The
half support (Soutput/2) of this fuzzy number is compared to
the imprecision brought by the expert measurement about
the ripening degree, which is between 0.5 and 0.25 upon the
period of the kinetic.Thus if Soutput/2 > 0.5, we consider
the model “very sensitive” to the imprecision propagate on a



given input variable; if 0.25<Soutput/2 <0.5, we consider
the model “sensitive” to imprecision and finally if Soutput/2
< 0.25, we consider the model robust to the imprecision
propagate on a given input variable and as a consequence
“no sensitive” to imprecision. The experimental simulations
are achieved on a data basis representative of three different
characteristic dynamics of ripening acquired during
experiments led on a pilot with around 20 points each one.

7 N
1+
0,5 L

0,25

Structured scale

Fig. 4. Evolution of the ripening degree in function of the ripening
time

Results. Figure 5 is an example of results acquired for
simulations concerning the sensitivity of the model to the
measurement cheese consistency (MS4) for a given
representive kinetic of ripening. We notice that the impact of
the imprecision on this measurement is crucial between the
8th and 24th days with a maximum of sensitivity at around
16-18 days. It means that in this period a strategy of
measurement or state estimation, in cooperation with the
operator, should be established in order to avoid imprecision
as much as possible. For example, the strategy could be to
duplicate the sensory measurement in this period or to check
the sensory measurement using an indirect measurement. An
hypothesis could also be deduced from this result : the
maximum of sensitivity is indirectly linked to a key
microbiological instant in the cheese consistency
elaboration. To complete the analysis of all the results,
figure 6 presents an aggregation of the results acquired
during those simulations on one kinetic. If the operator
precision on his sensory measurements is not really high
between the 4th and 24th days (+/- 4 days), consequence on
his evaluation is critical only after the 8" day (model
“sensitive”) and the key measurement on this period is the
cheese consistency variable. Such a result offers a sort of
guideline to improve the estimation of the degree of ripening
achieved by the operator . It leads to focus on the periods
where (i) a strategy of indirect measurement could be really
interesting to develop and (ii) a better understanding or
estimation of the state variables is enhanced.
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Fig. 5. Results of the propagation of different fuzzy numbers (from
support 0.5 to support 3) describing the input variable cheese
consistency on the half support (Soutput/2) of the output of the
model : the degree of ripening- comparison to the operator
imprecision on this value-kinetic 3.
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Fig. 6. Synthetic representation of the results obtained about the
impact of the imprecisioons on the input measurement on the model
estimation.

CONCLUSIONS

The contribution of this paper is to bring information on the
impact of imperfections coming from the expert evaluations,
on a fuzzy symbolic model describing cheese ripening.
Especially, the experimental analysis made allows to
indicate the sensory variables that must be measured in
priority and also variables for which precautions must be
taken to achieve a « precise measurement ». In this sense,
the cheese consistency is the most important sensory
variable. Moreover, we observed that the sensitivity of the
model to the measurements increased during the second half
of the ripening period. A better understanding or estimation
of the state variables could be value added in this period.
This study opens an interesting avenue with regards to the
issue of food process control. Experimentations are in
progress to analyse other kinds of imperfections identified in
the application like the structure of the model.
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ABSTACT

This paper presents a review of modelling and Advanced
Process Control (APC) when applied to both evaporators
and spray dryers. APC techniques such as neural networks
and model based predictive controllers are already an
accepted technology. A number of case studies are
presented. However, some of these techniques are only
applied to a process when it is operating in steady-state or
in some cases they are only applied when specific products
are being manufactured. There is an increased demand for
value added products, which will result in a move away
from long production runs of a single product type.
Therefore with an increased frequency of product changes
and shorter run times, start-up and shut-down will become
more frequent. As a result, start-up and shut-down are
taking up a greater percentage of production time and more
consideration needs to be given to possibilities for energy
savings and other efficiencies such as product recovery and
water treatment during these times.

INTRODUCTION

Preserving foodstuffs by drying and thereby depriving
micro-organisms of the water necessary for growth has
been known for centuries. Skim-milk powder has a
maximum shelf life of about 3 years while whole milk
powder has a maximum shelf life of about 6 months (Alpha
Laval 1995). The first recorded reference to the
manufacture of milk powder was by Marco Polo who
observed the Mongol soldiers producing milk powder by
drying milk in the sun in the 13™ Century (Kelly et al.
2003). Today milk powder is produced on a large scale in
modern plants most commonly consisting of multiple effect
falling-film evaporators and spray dryers (Masters 1985;
Pisecky 1997). A flow diagram of the general process of
milk powder production is given in Figure 1 (Luo 1998).

Multi-effect
Evaporator

Pre-
treatment

Liquid

Milk
Milk [

Powder

Spray
Dryer

Figure 1: Milk Powder Production Process
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Drying is one of the most important and most energy
intensive industrial operations. It is estimated (Mujumdar
and Passos 2000) that thermal dehydration processes
account for approximately 9 to 25% of national industrial
energy consumption in developed countries. It is noted that
the specific energy consumption of the spray drying process
is about 10-20 times higher than the energy consumption of
a multi-effect evaporator. Therefore it is desirable to
remove as much moisture as possible in the evaporation
stage. There is however a limit to the amount of moisture
that can be removed in the evaporation stage. If the total
solid content of the concentrate is too high then the product
becomes too viscous which will hinder the subsequent
drying process. Less variation in the total solid content of
the concentrate leaving the evaporator allows this limit to
be closely approached without violating it and therefore
improves the efficiency of the overall process (Verdurmen
and De Jong 2003).

The remainder of the paper is organised as follows, firstly a
discussion about the current methods used in modelling of
evaporators and spray dryers. Then methods of control that
are commonly used are presented. Then a number a number
of case studies of the application of APC to industrial
evaporators and spray dryers are presented. Finally, the
paper concludes with suggestions for possible
improvements to current methods and possibilities for an
increase in the use of APC.

MODELLING STRATEGIES

In the dairy industry both the evaporator and spray dryer
are controlled separately. The overall goal of each operation
is to control the final moisture content of the product. In
general, two distinct kinds of models exist (van Wijck et al.
1994). These are black-box modelling and physical or first
principles modelling (also known as white-box modelling).
Both  approaches offer certain advantages and
disadvantages.

Traditionally, food science focused on white box modelling
(Perez-Correa and Farias 1995; Zbicinski 1995). These
models give an insight into the physical phenomenon that
occurs during the evaporation and drying. They are also
accurate over a wide operating range. However, they
require an extensive knowledge of physical properties such
as heat and mass transfer coefficients, viscosities



dimensions of machinery, etc. A major problem is that
some of the required properties maybe unknown and
therefore certain assumptions may have to be incorporated
into the model. These assumptions affect the accuracy of
the model and can limit the range of validity of the model.
Development of a white-box model can be a time
consuming task, in comparison to the black-box techniques,
and may require significant calculation time on a computer.
However, mathematical models that can predict the
properties of the final product would be of great benefit to
the food industry, in particular if these models are used to
optimise the process control in relation to desired product
quality instead of selecting process controls to achieve pre-
determined values of temperatures, pressures, flow rates
etc. from past process knowledge (De Jong et al. 2002).

Black-box models are developed using data extracted from
the process in conjunction with an identification technique.
The most commonly used methods are neural network or
fuzzy logic models. A black-box model does not contain
the physical details of a process and is very specific to the
process and product on which they are trained. An
alternative to using a single black-box model to represent
the entire process it is to build an overall model that
comprises of a number of sub-networks each modelling a
specific element of the overall system (Russell et al 2000).
This sub-network approach offers benefits in terms of
model flexibility and interpretability.

The main advantage of the black-box approach is that
minimal knowledge of the process being modelled is
required. Once there is sufficient data then it is possible to
estimate a model. Also, black-box models can be very
accurate around the specific operating region for which
they are trained. A major drawback of black-box modelling
is that changes in product properties or process conditions
cannot be predicted. Therefore if any changes do occur then
the entire identification procedure must be repeated for the
new conditions.

CONTROL STRATEGIES

In general, there are two distinct types of control strategies.
The first technique aims to maintain constant values of
process conditions, e.g. temperature, flow, pressure etc., at
values that have been selected using experience gained over
years of plant operations. The methodology of this is that
constant process conditions will result in a constant product
quality. Therefore it is possible to build a database of
process conditions that ensure the desired product quality
(Kelly and Kelly 2000). However, a problem occurs due to
the fact that a small standard deviation in process
parameters may result in a large deviation in product
properties. In the second strategy, APC, process set-points
are determined by mathematical models, which determine
the interaction between process and product properties.
Currently the models used in this instance are black-box
models with little or no physical or chemical background.
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Evaporators

The control of evaporators mainly focuses on producing
concentrate with a constant total solid content at a constant
flow rate. (De Jong and Verdurmen 2001). A variation in
the total solid content of the concentrate leaving the
evaporator is one of the major sources of disturbances in
the drying process. It is also important to match the flow
rate of the concentrate leaving the evaporator to the rate
that the dryer is using the concentrate. Failure to achieve
closely matched flow rates increases the need for large
buffers in the process. The main variables manipulated to
control the evaporator are the flow-rate of the product
entering the process and the steam used for evaporation.

A control strategy commonly used is the implementation of
a number of Single-Input Single-Output (SISO) PID
controllers each used to ensure a specific parameter of the
process is maintained at the desired set-point. This strategy
is used in conjunction with the methodology described
earlier where constant product properties are achieved by
ensuring constant process conditions. However a multiple
effect falling film evaporator consists of a number of
complex interacting systems and therefore the use of SISO
PID loops will perform poorly in comparison to multi-
variable controllers. If the multi-variable option is used then
the use of an accurate model, either first principles or black-
box, is essential to the overall success of the scheme.

Spray Dryers

The control of spray dryers focuses mainly on the final
moisture content of the powder. In modern dryers infrared,
resistance or capacitance are often used to determine the
moisture content of a product. While moisture content is
one of the most important properties of a dried product it is
also important to note that other properties, such as bulk
density, insolubility index, instant properties are important
to the overall quality of powder produced. Often the
temperature of the outlet air is used to determine the
amount of drying that has taken place in the dryer. The
variable manipulated to achieve the desired moisture
content is usually either the feed rate of the concentrate
entering the dryer or the temperature of the air entering the
dryer. The product flow rate is usually the parameter that is
selected as the variable to be manipulated, as it is generally
the cheaper option. This method can require the use of large
buffers between the evaporator and dryer as it becomes
more difficult to match the feed rate of the product leaving
the evaporator with the feed-rate used by the dryer.

As was the case in the evaporator it is quite common to use
a number of SISO PID loops to maintain process
parameters at set-points which have been established
through prior experience as giving a dried product of a
certain quality. This approach also suffers from the same
drawbacks reported for the evaporator case. Therefore there
are incentives to using model based multi-variable
controllers. Again the model can be either a first principles
model or a black-box model. Very few first principles
approaches have been reported (Straatsma et al 1999a;



Straatsma et al 1999b) and since the use of neural networks
is a specialised field specialised software packages can be
required. Some of the commonly used software packages
for APC are described in the case studies presented in the
following section. A number of examples of these packages
being applied to evaporators and spray dryers with the
resultant benefits are also presented.

CASE STUDIES

A number of successful applications of model based multi-
variable controllers have been reported. A selection of the
tools used is Connoisseur, Process Perfector, Predictive
Controls, MonitorMV, QuickStudy and Q-MAST. A
number of different benefits have been reported resulting
from the application of these tools. The following
subsections detail some of the results achieved on industrial
examples.

Ingredia Dairy Ingredients

Invensys’ Connoisseur”™ was successfully applied at
Ingredia Dairy Ingredients, France, to an evaporator and
dryer (APV 2004). Invensys is the market leader in the
application of commercial APC for evaporator and dryer
processes. Connoisseur Model Predictive Control is a
comprehensive APC software tool that uses plant data to
identify and model the significant cause and effect
relationships in a process.

Ingredia Dairy Ingredients produces a wide range of liquid,
concentrate and powdered food for the dairy and
confectionary market. The aims of the company when
applying APC was to increase product yield, improve
energy efficiency and produce a more consistent product
quality. The results reported due to the application of
Connoisseur at Ingredia Dairy Ingredients were improved
product quality through a reduction in the variation of key
variables by 40-50%, a reduction in heat energy used per
ton of powder by 2-3%, an increase in plant throughput and
an extra 0.2% powder produced per litre of liquid feed. Due
to these improvements it is estimated that a return on
investment payback period of less than twelve months will
be achieved.

Abbott Laboratories

Abbott Laboratories, Ireland, also installed Connoisseur to
control their evaporator and dryer plant (APV 2003).
Abbott Laboratories is a global, broad-based health care
company devoted to the discovery, development,
manufacture and marketing of pharmaceutical, nutritional
and medical products. In the plant in Ireland infant
nutritional products, such as infant formula and follow-on
formula, are manufactured using evaporators and spray
dryers. The solution employed in Abbott Laboratories was
to use a number of model predictive controllers, linked
together to provide co-ordinated control of the overall
process. The evaporator controller ensured a concentrate
with consistent total solid content was passed to the dryer.
The dryer controller consisted of two multivariable
controllers connected in cascade. The main dryer outlet
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temperature controller takes its set-point from the powder
moisture controller. Finally an optimiser was used to
oversee the whole process and set targets for parameters
such as throughput rates to ensure maximum production is
achieved while matching the evaporator feed rate to the
drying rate. This eliminated worries about level control
issues in the relatively small dryer balance tank used by
Abbott Laboratories. The recorded process improvements
were an increase in the powder production rate of up to
10% and an energy efficiency improvement of 5%. A
reduction in the variation of the total solid level of
concentrate leaving the evaporator was also achieved
allowing this value to be held closer to its optimum value.
As stated earlier, this has the advantage of improving
efficiency (due to more water being removed in the
evaporator which is more energy efficient). Again the
return on investment period was estimated to be less than
twelve months.

Fonterra

Pavilion’s Process Perfecter” was applied at Fonterra’s
Kauri K2 milk powder plant in New Zealand to the two
evaporators and one spray dryer (Pavillion 2003).
Pavilion’s Process Perfector software solution is a dynamic,
non-linear, multi-variable model predictive controller and is
widely applied in a number of multi-variable manufacturing
environments. Process Perfecter combines steady-state
optimisation with model predictive control to deliver an
advanced process control solution capable of managing
process set-points and transitions. The following paragraph
describes the application of Process Perfecter to a Fonterra
milk powder production plant.

Fonterra is a leading multinational dairy company. Fonterra
manufactures and markets over 1.8 million tonnes of
product annually. The two falling film evaporators feed the
spray drying process and processes 6.5-9 tonnes per hour.
The main objectives of this project were to reduce the
variations in total solid content leaving the evaporator by
50% and to reduce the variation of the moisture content of
the dried powder by 50%. When Process Perfector was
applied to the evaporators the variation in total solid content
was reduced by 68-73% allowing the total solid content
targets to be increased without violating the viscosity limits.
A 0.5% increase in total solids from the evaporator can lead
to a 2% increase in dryer throughput. In the case of the
spray dryer the variation in moisture content was reduced
by 52% and also the variation in the chamber outlet
temperature was reduced by 43%. Overall, this allowed the
target moisture to be moved closer to the maximum
specification limit thereby producing additional powdered
product for the same raw milk feed.

FMC FoodTech Citrus Systems

FMC FoodTech Citrus Systems, Florida, used QuickStudy®
and Q-MAST" in the control of an evaporator used to
concentrate orange juice (Morris 2001). QuickStudy and Q-
MAST are an adaptive, model predictive controller
software and process modelling software respectively and



are designed by Adaptive resources. The overall goal of the
APC was to more tightly regulate the final Brix of the
concentrated orange juice to minimise post-blending, post-
processing and waste. Typically only the product feed rate
is the control variable used. In this case the feed
concentration and the steam pressure are measured and
using these it is possible to predict the effect of changes on
the final product and what correction action to take to
account for variations in these parameters. To develop a
model of the process several hundred data points were
taken and used in Q-MAST to create a model of the process
using statistical modelling. QuickStudy then uses this
model in the control of the system. The model is also
evaluated online and updated with new data as the process
is running. When QuickStudy was applied to the process it
was possible to reduce the variation of the Brix from its
typical value of =1 degree Brix to a variation of 0.1 degree
Brix. Although it was not measured, it was believed that
this reduction in variation will lead to an increase in
throughput and reduced fouling that will result in longer
production runs between CIP cycles.

British Sugar

British sugar operates nine beet sugar refining processes in
the UK producing sugar and molassed sugar beet animal
feed. Mixing beet fibre together with molasses produces the
animal feed. This is then dried and usually palletised.
British Sugar introduced a model based predictive
controller, implemented by Predictive Control Ltd., with
the intention of controlling the moisture level of the product
to eliminate under-drying and over-drying, better control of
product temperatures to ecliminate the need for pellet
cooling to minimise energy costs (Caddet 2000). The result
of implementing the model based predictive control
strategy was an energy savings totalling GBP 32,900 per
year. Product yield was increased by 0.86%, which is worth
a total of GBP 61,600 per year. Product quality was
improved resulting in a reduction in reworking off-
specification product from 11% to 4%. Based on these
figures it is estimated that the return on investment period
will be 1.4 years.

CONCLUSIONS

From the case studies listed above the advantages of
applying APC to evaporators and dryers is obvious. There
is a reduction in total solid content of the concentrate and
moisture content of the powder in all cases, a reduction in
the amount of energy used, an increase in the throughput of
the plants and extra product being produced per litre of
liquid feed. All these factors result in a more efficient
process with a more consistent quality of product being
produced. In these case studies the modelling was
performed using black-box techniques and will suffer from
the drawbacks earlier.

It is not uncommon for such APC being used only when the
process has reached steady-state. Therefore, both start-up
and shut-down procedures are often performed manually be
the plant operators. As the variation of products being used
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in evaporators and spray dryers increases it is becoming
more common to produce a large number of products and
therefore the length of time that a single product is being
produced is decreased. Therefore, start-up and shut-down
becomes more frequent. The possibilities for savings,
similar to those achieved using APC during steady-state, is
also possible during start-up and shut-down. Another
problem with the introduction of new products is that the
models obtained previously may not be valid for this
product. Therefore the entire process may have to be
remodelled for this new product. Often this results in APC
only being applied to certain products.

However, it is clear that the industry has actually accepted
advanced control systems as an effective weapon to
maximise product quality and output. If a first principle
model of the process were used in the APC strategy then
this model would also be valid during start-up and shut-
down. It also offers the potential for overcoming the
difficulty of adding new products. Once the properties of a
new product are known it would be possible to uses these
properties in the equation governing the operation of the
evaporator and spray dryer and thereby easily construct
new models of the process.
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NIZO PREMIA

A substantial amount of the knowledge and experience of
research institutes and universities never reach the food
industry. The main bottleneck is the interpretation of the
scientific research results. Thus the objective is to find a
way to benefit the food industry by application of these
results in practice. Experience with industrial projects
shows that predictive kinetic models are an effective tool to
apply state-of-the-art knowledge in the factory. NIZO food
research has been working on predictive (kinetic) models for
the food industry for the past 20 years. A lot of models have
been developed covering a wide range of products and
processes. Three types of predictive models can be
distinguished:
1. Process models
Describe process units in terms of model reactors (e.g.
temperature vs. time profiles). Examples are: models for
holding tubes, (plate) heat exchangers, falling film
evaporators, spray drying, etc.
2. Product models
(mostly) Kinetic predictive models that describe the
transformation of food components and contaminants.
For example: Models to predict the concentration of
micro-organisms in final products as a result of growth,
adherence, release and inactivation in process
equipment, kinetic models that predict the
transformation of food components related to the food
properties recognised by the consumer (e.g. viscosity,
colour, shelf-life) etc.
3. Cost models
Predictive models that estimate the effect of process
operation on production costs.

NIZO food research has developed a user friendly, dynamic
and flexible software framework (see figure 1), called NIZO
Premia, that can be used behind an office desk (off-line) to
calculate product properties and optimise process condition.
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Figure 1. Schematic representation of the NIZO Premia
framework

NIZO Premia (PRedictive models ready for industrial
application) makes it possible to use all predictive models
and combined them with each other to generate a
production chain (see figure 2).
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Figure 2. Production process of cheese predicted with NIZO
Premia

Processes can be defined via the process generator (see
figure 3) and kinetic parameters can be defined via the
product editor (see figure 4).
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Figure 3. Process generator within NIZO Premia
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Figure 4. Component editor within NIZO Premia

Simulation results can be displayed in graphs and tables (see
figure 5).
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Figure 5. Graphs and tables generated with NIZO Premia



PREMIC

Predictive models as described turn out to be an effective
tool to translate scientific knowledge to practical
applications in the food factories. The most effective way to
ensure the benefits of using predictive models would be to
integrate them into process control systems.

NIZO food research and Honeywell have developed a model
based process control (MBC) system that is focused on
optimal product quality and minimal operating costs, called
Premic (PREdictive Models ready for Industrial Control).
Based on actual process data and the composition of the raw
materials the models can predict the state of the process
(e.g. amount of fouling, bio-film thickness, energy usage)
and the state of product (degree of contamination, stability,
texture). This means that the process can be controlled on
product specifications instead of process conditions. In
figure 6 the Premic system is shown in general terms. Based
on process design (e.g. dimensions, apparatus configuration,
in-line measured process conditions) the temperature-time
history of the product is calculated with the process model.
Together with the given composition this information is
used to predict the product properties using the kinetic
product models. The predicted product properties are
compared with the given desired product properties. In the
optimization module the production process set points are
optimized to meet the desired product properties as closely
as possible with minimum operating costs.

Figure 6. Schematic representation of predictive-model
based process control in food processing

A screenshota of the system is shown in figure 7.
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Figure 7. Screenshots of the Honeywell-NIZO food research
product Premic

In the ideal situation the process is controlled based on the
desired product specifications and minimum operating
costs. The system corrects itself automatically when:
e Fouling changes the temperature-time history of the
product
The product specifications change
The composition of the raw materials changes
Disturbances occur (e.g. temperature changes, flow
instabilities)
The estimated savings amount up to 10-50 % in production
costs.
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ABSTRACT

For most semi-batch crystallization processes, it is still
difficult to obtain on-line relevant information about the
purity of sugar solutions. Consequently, very few studies
dealing with the estimation of the purity, can be found in
the literature.

Therefore, the aim of this article is to present a new
method of on-line measurement of the purity of cane sugar
factory juices used during the crystallization.

The first results reinforce the reliability of neural networks
and recommend their uses to estimate the purity which is a
significant parameter when dealing with crystallization
supervision.

INTRODUCTION

As part of developments we have undertaken in
collaboration with Bois Rouge sugar mill (BRSM, groupe
USDA, Saint-André, La Réunion), we are aiming at
optimising two manufacturing processes: crystallization
(Lauret et al. 2000) and evaporation (Benne et al. 2000).
This aim is based partially on the improvement of the
supervision of the physicochemical variables representative
of the processes evolution, among which the purity of the
cane sugar factory juices constitutes an essential parameter.
Traditionally, this information is measured in laboratory
from manually taken samples. Two major constraints result
from this:

° the duration of the analysis and the number of
products limit the multiplication of
measurements;
the out-line measurements are available only after
an analysis time incompatible with an automated
management.

Based on the works of (Dubourg 1938), (Ponant and
Nebout 1962), (Parker 1958; Parker 1959) and (Ponant
and Windal 1976), a neuronal estimator of the purity was
developed. While breaking sampling constraints, this soft
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sensor allows to estimate the purity from on-line
measurements: brix, conductivity and temperature.

This paper describes the implementation of the neural
model and presents the results of a soft sensor tested in
simulation from experimental data.

PROPOSITION OF A SOFT SENSOR FOR THE
MEASUREMENT OF THE PURITY OF CANE
SUGAR FACTORY JUICES

The limits of the conductimetric method for on-line
measurement

Ponant and Windal’s works show that the conductivity y of
a sugar solution at a given temperature T is expressed
according to the brix Bx and the purity P :

y=A(100-P)xe*™ 1))
BX
X: ——
100 - B,
P=100-ky"

Several conductimetric studies undertaken in laboratory
from BRSM solutions show that n depends on the
temperature and the purity, just as ¥ max A, ¢ (Ponant and
Windal 1976) and k (Pidoux 1961). Under these
conditions, the correlation (1) does not allow to deduce P
from the measurements of y, Bx and T.

The introduction of complementary relations (Ponant and
Windal 1976) allows to directly express y according to Bx,
T, P and n (correlation (2), figure 1):

T
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. is the value of the brix for a temperature T and a

purity P with maximum conductivity (Ponant and Windal
1976).
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Figure 1: Example of representation of the evolution of
conductivity according to the Bx.

The correlation (2) being not reversible, we propose to
identify a function P(Bx, T, y) from a systemic approach.
Established on line, the identified model constitutes a soft
sensor of purity (Cheruy 1998).

Soft sensor structure

It is a neural network (NN) of perceptron type with 3
inputs, a hidden layer allowing a number of sigmoid
neurons to define and 1 output. Figure 2 represents the
neuronal model with brix, temperature and conductivity
measured on-line as inputs, and purity as output.

Figure 2: Neural model with three inputs and one ouput
IMPLEMENTATION OF THE SOFT SENSOR

The identification of a neural model is based on the
estimation of the weighting coefficients Wij and Wjk
(Figure 1) from example databases {inputs, outputs}, it is
the learning phase. To have a sufficient number of

Bx (%)
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available informations, we generated a learning database
from experimental and simulated data.
Identification of mi,x and n as polynomial function

This step is based on experimental values of Bx, T, miax
and P measured from about 50 factory juices. Thus, the
identification of miax and n as functions of T and P is
realised by multiple polynomial regression at order 4,
according to the nonlinear canonical analysis (Makarenkov
and Legendre 1999).

Generation of database

A 3000 samples database of the triplet [Bx, T, P] has been
generated from the Monté Carlo method. For that, we have
realised a draw at random, for each one of these variables,
according to a normal law. Table 1 gives the (X) average

and the (o) standard deviation of these distributions for
the brix, the temperature and the purity.

Table 1: The (X) average and the(c) standard deviations
of brix, temperature and purity.

X c
Bx (%) 70,3 11,6
T (°C) 69,9 5,8
P (%) 72,6 13,0

This choice of (X) and (o) allows to have values of Bx, T

and P representative of the experimental conditions
observed in sugar factory. Thus, we calculate y' .y and n
corresponding to 3000 examples of couple [T, P] from
multiple polynomial regression at order 4 (Makarenkov
and Legendre 1999).

The relation (2) gives the value of y for these 3000 samples
(Figure 3).

* T
T — Multiples Y max
Polynomial
p'__,| (Regression | |  Reation |,y
B

* Values generated from
the Monté Carlo method.

Figure 3: Summary diagram to obtain the conductivity
Identification of the Neural Network (NN) model
The training (learning and validation) phase of the NN
model is based on 2000 samples of the simulated database.

The selected architecture presents 12 hidden neurons with
a MQE (Mean Quadratic Error) of about 0.002.



TEST OF THE SOFT SENSOR IN LABORATORY

Tested in simulation on the 1000 other samples of the
generated database, and on experimental values measured
in laboratory, the NN model presents good capacities of
generalization.

For example, applied to a cane sugar factory juices of
purity 53.3 %, brix 68.5 %, conductivity 11.12 mS.cm™
and temperature 65°C, the prediction model gives a value
of purity equal to 52.7 %, which represents a relative error
of 1.21 %.

Table 2 and figure 4 show the comparison between
experimental measurements and model estimations for a
set of factory solutions (constant purity: 53.3 %).

Table 2: Comparison between experimental (P_exp) and
model (P_model) values.

Bx (%) | P exp (%) | P model (%)
68.5 53.3 52.0
65 53.3 51.9
63 53.3 51.9
60 53.3 53.4
58 53.3 53.6
55 53.3 52.6
53 53.3 52.2
50 53.3 52.2
48 53.3 52.1
45 53.3 53.8
Purity (%)
T ! ! ! !
L
: : : —e— purity model
R R S
PN . N
e R Rt T S
sl . . . .
45 50 55 60 65 70

Bx (%)

figure 4: Comparison between experimental and model
purities.

We can note that the estimated values are very close to the
experimental measurements.

More generally, the study of the error distribution shows
that around 75% of estimations present less than 2 points
of purity (figure 5). Furthermore, the best results concern
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the value from 50% to 75% (figure 6, table 3), which
corresponds to our interval of interest.

Proportions (%)
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20

7 5 3 4 1 3 65 7 9 1 13 15 17
Error during the generalization

Figure 5: Error values during the generalization step.

Mean absolute
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Purity (%)

Figure 6: Evolution of the mean absolute error associated
with intervals of purity

Table 3: Correspondence between the abscissa values and
the purities values.

e | e
1 [50;55[
2 [55;60[
3 [60;65[
4 [65;70[
5 [70;75[
6 [75;80[
7 [80;85[
8 [85;90[




CONCLUSION

In sugar factory, the lack of experimental information,
among which the purity of feeding solutions (syrup,
standard liquors, molasses, etc), hinders the development
of computerised supervision and control applications. The
proposed soft sensor giving good estimations from the
generated database, we plan on-line validations in situ
(July 2004). Its introduction at Bois Rouge should
eventually allow to solve mass balances taking into account
this essential parameter, all along the production line.
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ABSTRACT

Inherent time-varying nonlinearity and complexity usually
exist in chemical processes. The main objective of this
study is to propose a full approach for the modeling and
control of a pH neutralization process thanks to fuzzy
logic. The Gustafson and Kessel’s fuzzy clustering
algorithm is an interesting way to modelize a non linear
process such as the pH neutralization process. Presented
results will show the efficiency of this approach.

INTRODUCTION

Since the beginning of our collaboration with local
industries in Reunion Island, our aim and main objective is
to perform the processes using new technologies.
Industrial sugar processes are complex and need high
performance control and modelisation strategies. Fuzzy
logic is one of the tools that we propose to use.Since its
introduction in 1965, fuzzy set theory has found
applications in a wide variety of disciplines. Modeling and
control of dynamic systems belong to the fields in which
fuzzy set techniques have received main interest, not only
from the scientific community but also from industry.
(Babuska 1998; Grisales 2002). The purpose of our work
is to evaluate this modelling. We have chosen to apply
fuzzy techniques to an academic problem pH
neutralization process which presents strong non linearity.
This paper is organized into three parts : In a first part, we
present the fuzzy modeling concepts through the main
models we use. In a second part, we introduce the fuzzy
clustering principle with c-mean and Gustafson-Kessel’s
algorithms. Finally, we present an application and its
results on pH neutralization process.

CONCEPTS OF FUZZY MODELING SYSTEM

L.A. Zadeh, the father of the fuzzy logic, was the first to
suggest the employment of fuzzy sets to describe complex
systems. This description, like human reasoning, is based
on IF-THEN type of rules (If Antecedent Then
Consequent). The considered information accepts, due to a
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special treatment, uncertainty and/or imprecision, and
imitate mechanisms of apprenticeship. Fuzzy modeling of
systems is typically divided into two categories which
differ from their capacity to represent different type of
information. The first one is the Mamdani’s type of model,
based on experiment, the second one, is the Takagi-
Sugeno’s type of model, which is suitable to a data based
approach (Babuska and Verbruggen 1996). Equations (1)
and (2) give the rules respectively used by the different
models.

Rules of a Mandani’s type of model : (1)
R:gf (X, is 4) and (X, is A) and..and (X, is A
Then (Y is B.)

Rules of a Tagaki-Sugeno’ type of model : 2)
R:If (X, is A) and (X, is A) and..and (X, is A}
Then (Y'= f'(X}n X))

FUZZY CLUSTERING AND IDENTIFICATION

Cluster analysis is the classification of objects according to
their similarities and the arranging of data in groups.
Clustering techniques, suitable for quantitative and/or
qualitative data, determine the belonging of an object in a
group simultaneously and attribute level of adherence. The
similarity of these objects is defined as the mathematical
concept expressed with a norm of the distance between :
the data row vectors, or a data row vector and a prototype
object of the group. (Grisales 2002).

Fuzzy clustering c-means : FCM

Most of the fuzzy clustering algorithms are based on this
type of clustering. It uses reciprocal distance (induced
norm) to compute fuzzy weights(Bezdek 1981). The idea
of FCM consists in using the weights that minimize a total
weighted mean-square error.(Zhang 2001).

Clustering with fuzzy covariance matrix

To detect different geometrical forms of the clusters in the
space of data, Gustafson and Kessel have extended the
FCM algorithm with an adaptative norm of the distance.
Thus, each group has its own induced norm matrix which
are used as optimization variables in the c-means



functionals to enforce each group to adapt their distance
norm to the local topological structure of the data.

IDENTIFICATION OF A PROCESS, APPLICATION
TO A PH NEUTRALIZATION REACTOR

We use a knowledge based model (mathematical model)
of the pH neutralization process to simulate the output of
the process at each sample time. Then we identify the
Takagi-Sugeno’s type of fuzzy model using these data.
The simulation and calculation platform is the software
Matlab® v6.5 and the Fuzzy Model IDentification
Toolbox (FMID Toolbox).(Babuska 1998).The knowledge
model has been developed and validated by Saint Donat.
(Saint-Donat et al 1991).

Description of the process

The process that we have simulated (Figure 1) is a mix of
acid (acetic acid) and base (sodium hydroxide) in a reactor
perfectly agitated in a constant volume. The knowledge
model depends on, firstly, the water ionic product,
secondly, the acidity constant and thirdly on the different
material assessments of acetate and sodium (Grondin-
Perez 1994). Thus, pH neutralization process would be
assumed as an academic problem of non-linearity.

pH |A,g;'tator [Reactor
Acid Flow + Base Flow
K | ‘l

Base Flow

A A

Acid Flow|

Figure 1 : Continuous Stired Tank Reactor.
Applying identification

The process is a SISO system, with sodium hydroxide
flow as an input (acid flow is constant) and pH as an
output. We choose following values (7able I) (Grondin-
Perez 1994) :

Acetic acid dissociation constant | K, = 1.8e-05

Water dissociation constant K, = le-14

Volume of the Reactor in liters VvV =1000

Flow rate of acid in liter/min D, =281

Acid/Base concentration in mol/l | C,=0.3178, C, =0.05
Sample time T, = 40 seconds

Table 1 : Parameters of the pH neutralization reactor.

The learning data base is composed with a set of
normalized commands between 0.1 and 0.9 with a
precision of 2e-4 and of the corresponding outputs. This
represents a data base of 5000 inputs and outputs (Top of
the figure 2).
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Takagi-Sugeno’s type of linear modeling

Using the input-output data base (flow of sodium
hydroxide— pH) and FMID Toolbox, we have identified
the model with the Gustafson and Kessel’s algorithm.
Parameters of the fuzzy model are as follows (Table 2) :

Fuzzy parameter m=2

Number of clusters (rules) c=9

Antecedent : type of calculation ante = 2 (projection)
Stop criterion of the algorithm tol = 0.01

Number of input/output/pure delay | n,=1,n,=0,n,=0

Table 2 : Parameters of the fuzzy model.

Local models of the consequent and membership
functions of the antecedent are represented Figure 2,
generated from the data base, and the Takagi-Sugeno’s
type of rules which describe the dynamic of the system.
There, we can see that the fuzzy model is a piecewise
linear representation of the input-output database (Top),
with their membership levels (Bottom).
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Figure 2 : Local models of the consequent and
membership functions of the antecedent.

We choose linear functions

Ifuis A, then of the consequent, f':

y(k) = 1.16%10"u+1.27%10"

R:If (X is A)
Then Y'=da X +b

3)
Ifuis A, then
y(k) = 1.88*10"u+9.22%107

With, g, e R” a row vector
Ifuis A; th

y(ll(l)li 2‘324:1':).111“.09*10.1 of parameters and p,, the
offset. This is the Takagi-
Sugeno’s linear type of
model. Here, the main
interest is to decompose a
non linear behaviour into

local linear sub models.

Ifuis Ao then
y(k) =2.67%10"u+6.05%10"!

Table 3 : Example of Rules




VALIDATION OF THE MODEL

Validation of the fuzzy model is based on the evaluation
of the error between the output of the knowledge model,
considered as a reference of the model, and the output of
the fuzzy model in response to the same input. This
response is a 5000 points long PRBS (pseudo-random
binary sequence). A variance based criterion (4), where ¥
is the ideal output and Y the prediction of the fuzzy

model, gives the following result : 96.5 %. This is near of
the ideal result : 100%.

gt Vatidution

1 A0 fa B

O
Humber pf listing paints

Figure 3 : Comparison between the output of the process
and the output of the fuzzy model.

This figure (Figure 3) illustrates the comparison between
the output of the process (mathematical model) and the
output of the Takagi-Sugeno’stype of fuzzy model.
Variance based criterion : (Babuska 1998).

[1-(var(Y -1,))]
var(Y)

VAF =100% )

SYSTEM CONTROL

To control this system, we have used a forward fuzzy
model (Figure 4) :

Optim
Isenonlin
[ ]

Tset(k) —

—)| Doping lw Process P yik)

Figure 4 : Scheme of the control system.

We have used of Isqgnonlin which does belong to the
Optimization Toolbox of Matlab as the optimization
algorithm. This algorithm, based on the Levenberg-
Marquardt method, minimizes a least square non linear
criterion. The doping module is a simple algorithm which
increases (dopes) variations of the command. Results are
presented in Figure 5.
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Figure 5 : (Up) Setpoint consign and output of the process,
(Down) Corresponding command.

On this figure (Figure 5) we can see that the setpoint
consign, continuous line, is well followed by the output of
the process (++). To validate the control of the system, we
use the variance based criterion, the result is 97%, and this
is an excellent result.

CONCLUSION AND PERSPECTIVES

The use of the fuzzy clustering technique with Gustafson-
Kessel’s algorithm has allowed to group a set of data
generated by a non linear system into a fuzzy set of data
which locally describe linear models. Takagi-Sugeno’s
type of models is built by a concatenation of its local sub
models. The results show that this modeling is very
efficient, and does present the benefit of allowing an easy
way to control the system. The application of these
techniques to a pH neutralization process has shown its
efficiency. The main objective of this work was to test
these methods on an academic problem presenting
interesting nonlinear properties in order to be able to apply
them on food industry processes. Perspectives of future
works could be oriented through different kind of process
control structure, particularly those based on inverse fuzzy
models, but also through the use of other optimization
methods, like genetic algorithms.
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General introduction

While according to Kumpe and Bolwijn
(1990) the emphasis in the sixties was on
efficiency, in the seventies on quality, and
in the eighties on flexibility, since the
nineties the emphasis has been on
innovation. So without exaggerating we
can say that we are living in the age of
innovation.

Successful innovations rarely take place in
a single instant. They evolve while they
are being developed in the laboratory,
drawing room or work floor, or in contact
with  customers during the market
development stage. Using the innovation
provides an understanding of its strengths
and weaknesses. The weaknesses will
lead to further improvements and a
constant flow of innovations. Innovations
are the result, then, of the actions of a
number of players and can be seen as a
process rather than a single event.

An innovation can be defined, according to
the Austrian economist Schumpeter, as a
new combination that may consist of the
following elements:

1. The applicaton of a new
technology in an existing product,
service or process

2. The introduction of a new
application in the form of a
product, service or process using
a new combination of technologies

3. The opening up of a new market
to an existing or new product or
service
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4. The introduction of a new
organizational form, work method
or market approach

All these 4 elements, new technologies,
new applications, new markets and
adaptations of the organization, will
contribute to the innovation during its
trajectory from start to maturity.

To innovate successfully therefore
knowledge about all 4 elements have to be
used and integrated. Nobody masters all
these fields. You need a team of people
with different expertise that complements
each other. Innovation is therefore very
much a team play.

The innovation process

In most organizations there is no lack of
ideas. Despite this, very few ideas
eventually make it to the market. In most
organizations the level of innovativeness is
disappointingly low. An important question
is how to ensure that more ideas are
successful.

The innovation process can be seen as a
knock-out race, with only 1 in 10 ideas at
best reaching the market. Within the
general innovation process (the funnel) we
can place a mortality curve. A mortality
curve is given its shape by positioning the
number of ideas against the development
timeline. Most ideas are quickly
abandoned while they are being
developed into a product concept.

This is presented in the figure on the
following page.



Mortality curve
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Figure 1. Mortality curve

I

n this figure we have divided the
development of the idea into a product or
service into 4 phases: 1. from idea to
concept, 2. from concept to plan, 3. from
plan to the release of the product or
service, and 4. from release to market
introduction. Most companies adhere to a
similar phased approach to the
development process, with the first 2
phases being considered pre-project
phases that precede the actual
development.

Research indicates that some 10% of all
ideas are eventually realized. A mere
fraction of the ideas that make it to the
implementation  stage  succeeds in
achieving its commercial objectives. This
knock-out race is indicated in red in the
mortality curve presented above.

If we could decide at an earlier stage
which ideas are viable, this would enable
us to divert more means to their
development. This would also increase the
likelihood of an idea being commercially
successful. This is indicated in green in
the mortality curve presented above.

The possibility of improving the mortality
curve depends on the speed with which

we are able to collect information
regarding the idea and wuse that
information to formulate a go/no-go
decision.

If we manage to speed up and broaden
the collection of information at the start,
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this may lead to a swifter and more
informed go/no-go decision, and
consequently result in better plans with
regard to the remaining projects. This
means we are looking for a way to shift the
red curve towards the green one.

We can do this by improving the
information gathering or learning process
in the various phases. It is important to
note that the kind of learning process
taking place in the first two phases is
different from the one taking place in the
last two phases. In the first two phases we
have to get an idea of the customer.
Which customers are interested in the
product idea (market definition and market
segmentation)? What will determine
whether or not he or she will buy the
product (customer value proposition)?
What product attributes and functionalities

will create customer value (product
definition)? Who are the competitors and
what are they offering (competitor
analysis)?

When general answers to these questions
are provided, the question arises at which
price the product or service can be offered
(revenue model). What is the size of the
market? What are the production costs?
What investments have to be made in
terms of development and production
facilities? What are the costs involved in
distribution and market development (cost-
benefit analysis and defining the business
case)? It is only when these questions are
answered that a company can decide



whether or not the idea is financially
interesting.

To answer these questions it is not
enough just to gather data. We need a
model to interpret the data and transform
them into useful information. First we have
to make a model of the customer, the
market and the development and
production process, before we are in a
position to come up with the questions that

will enable us to collect information
regarding the customer, market and
competition.

At the beginning a model of the product
and customer will be drawn up, which if

needed can be adjusted in discussions
with others (articulation and modelling).
After developing the model we will have to
start by validating this model that we have
concerning the  customer, market,
production process, etc.

This takes place through qualitative
customer and market research. After that
research is conducted we collect the data
through qualitative research and use them
as input for our model. We can then see if
we can offer the customer better value
than our competitors, whether the margin
is large enough and the expected market
share sufficiently big to turn the project
into a commercial success.

The Innovation Cycle Model

Figure 2. The innovation cycle model

The drafting, validation, and adjustment of
the product, customer, market and
production process models are called
“double loop learning”. When we have
developed the right models it is merely a
matter of optimization. This means that the
product characteristics are defined in such
a way as to achieve maximum customer
value, in a market segment that is
sufficiently attractive, at an attractive price
and at minimal production costs.
Optimization ideally takes place during the
development phase. This learning process
is called “single loop learning”.

Technicians are trained in the methods
and techniques to set up and test technical
models perfectly1. Marketers are trained to

! They often start with rough outlines, which
become increasingly specific. Later on the
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do the same for customer and market
models, as do production staff for the
production and business models, while
controllers use their own specific financial
models to determine whether or not a
project is still commercially attractive. To
draw up a valid financial model, however,
information from the production and
commercialization models is needed, and
vice versa. In addition, during the
optimization of the product features and
process there will be a continuous need
for feedback from the market as well as
financial calculations. In other words, the
models have to match. This is presented
in the figure above.

graphic models are transformed into physical
models, often via computer models that are
used to conduct various simulation tests.



“Drafting, validating and filling
these models has to take place
in a multifunctional team”

These models must provide us with
answers about the questions such as
about market segmentation, customer

Decision Tree
analysis

Multi criteria
decision P\

anaiys

Engineering
specifications

Modularization/
Architecture

Field force
analysis

Activity based
cost accounting

Figure 3. Relations between business issues and the innovation cycle model

In this course we will discuss most of the
models as pictured in the figure above.
Therefore at this moment we will only
mention these topics but not define them.

In addition, criteria have to be defined to
monitor the project’'s progress and the
decision-making process concerning the
termination, continuation or adjustment of
the innovation (valuation c.q. decision
models). In general, these criteria will be
deduced from a long-term vision and
strategic plan. On the other hand any
knowledge gained in the course of the
project has to lead to adjustments of the
strategy and even the long-term vision.
Innovation teams have to be able to
respond quickly to opportunities. A large
degree of self-management is needed to
give entrepreneurship and innovation a
chance.

Whereas in the pre-project phase the
development and validation of concepts

through the drafting of interrelated
business-technical and financial and
economic models is essential, in the

development phase it is of vital importance
to use these models to optimize product

Scenario/Risk
analysis
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value proposition, market positioning cost
benefit analysis etc can be answered.

In the figure below we have defined these
questions and mapped these to the
various types of models such as technical-
, business-, organizational- and valuation
c.q. decision models.

Cost-benefit analysis

Stakeholder
analysis

Customer/imarket

definition

Product
definiton

Competitor
analysis

Customer value

proposition

Business
model

Competence
gap analysis

Business
process analysis

and market  positioning. In  the
implementation and commercialization
phases it is necessary to check
continuously  whether or not the

assumptions on which the models were
based are still valid. This makes it possible
to respond quickly to any changes in
customer wishes, competition, economic
bottlenecks etc. Such changes may lead
to a new phase in the innovation process.

We are slowly approaching the area of
Innovation Management. We have
discussed the cyclical nature of
innovations as well as the central role
played by the various models. We will now
introduce and briefly discuss the
Innovation Management Cycle model. The
Innovation Management Cycle Model®
provides a general framework within which
the above-mentioned processes and
issues regarding Innovation Management
can be placed.

Innovation Value Chain and
Innovation management



The Innovation Value Chain

Main activities of Innovation Management
Within Innovation there are three main
activities: ‘innovation’, ‘development’ and
‘commercialization’. ‘Innovation’ refers to
all activities aimed at combining various
observations into ideas that can then be
transformed into concepts or models, and
eventually be developed into business

plans. ‘Development’ has to do with the
development of plans into
products/services and process within the

established frameworks concerning
quality, time, costs and scope.
‘Commercialization’ is all about the

activities that are needed to maximize the
added market value of the
products/services during the various
stages of their life cycles.

The Innovation Value chain

From idea to plan, to product,
to market introduction, and to market renewal

Critical
Success Factors

INNOVATE

DEVELOP

COMMERCIALIZE Main Activities

EROM
CONCEPT.
TO PLAN

FROM
PLANTO
RELEASE’

TO IDEA

TO CONCEPT

FROM IDEA

FROW RELEASE:,
INTROBUCTION

FROM OBSERVATION

Steering
Management
Activities

Phases of
Primairy Process

FROM GROWTH.
TO MATURITY.
FROM MATURITY.
TO RENEWAL

Supporting
Management
Activities

Critical
Success Factors

Figure 4. The Innovation Value Chain

With this activity the
begins all over again. Market trends,
bottlenecks in  existing  processes,
emerging technologies, etc. are observed
and must be transformed in an adequate
way into new and unique business ideas.

Innovation cycle

Critical success factors

Within Innovation there are five critical
success factors. In ‘innovation’, the focus
is on generating unique business ideas
that will allow an organization to
distinguish itself. These ideas are then
developed into business concepts and
plans with the emphasis on a maximum
value  creation for the  various
stakeholders.

As far as ‘development’ is concerned,
speed and efficiency are essential. It is
important to realize a short time-to-market
and an optimal allocation of resources.
During ‘commercialization’ the innovation
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has to be optimally exploited, which
means that profitability is the critical factor.
The fifth and final critical success factor
refers to the process as a whole. To
ensure a continuous creation of value it is
important to treat Innovation as an
integrated process. That means that the
right balance has to be struck between
facilitating, communicating and monitoring.

Controlling/supporting management
activities

Within Innovation Management there are
two clusters of management activities:
controlling and supporting management
activities.

Innovations have to be controlled with
regards to value creation, risk and
performance. Supporting management
activities refer to process, -competence
and resource management. We will
discuss these steering and supporting



management activities in more length
during the subsequent sessions of this
course.

Management of the Innovation

Process:

Innovation is a never ending, cyclic
process and management must address
this cyclic character. We have depicted
that in the figure below.

OBSERVATION

T0 [DEA.

The “Innovation Management Cycle”

PLAN RELEASE

FROMRELEASE
10
WIROBUCT)

Frou g
INTRODUCTION T
TOGRWATH =

Figure 5. The Innovation Management Cycle Model

The innovation process in the pre-project
phase from business idea to business plan
is sometimes named ideation and its
management idea management. This is
one of the most critical phases of the
innovation process. In that phase the real
innovation take place. Although without
the other parts of the process the
innovation will never materialize and
innovation stays a hollow phrase.

During the development phases data are
collected. Through a cycle of drafting,
testing and redrafting the optimal product
is developed. Here the process is
predominantly aimed at realizing the plans
and optimizing the  product-market
combination. When we relate the test
results to the decision-making criteria that
have been developed, a decision can be
reached as to how to proceed.

During this development phase many
projects may run in parallel. Resources
are allocated to the projects. However the
future always enrolls differently than
anticipated. There is a competition for
resources among these projects and
constantly decisions have to be taken
about reallocations of these resources to
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these projects. This is the field of portfolio
management.

The commercialization phase above all
has to do with the commercial exploitation
of the developed product. It is important
that continuous monitoring take place to
determine whether or not the assumptions
regarding  customers, market and
competitors are still valid. Changes in the
market or the emergence of new
technologies may lead to new
technological, product and market
developments.

When the innovation is implemented we
have to monitor constantly the
environment and the activities inside the
company to control whether we are still on
course. When we monitor changes in
customer preferences, or the introduction
of some competitive products or emerging
disturbing technologies we have to react
and adjust our strategy.

After adjustment of the innovation
strategies these strategies have to be
planned and translated into a roadmap. In
this way the whole process of ideation and
idea management start all over again.



Below we have listed a number of
problems we came across in the various
organizations we have supported the last
years. We have sorted these problems in
4 areas according to the subsequent
phases of the innovation process.

From idea to project or business plan:

* Not enough good business ideas.
Too much inward looking!

* Many good ideas, but too few are
introduced successfully into the
market!

+ Development of the business case
and business plan takes too long
and is chaotic. There doesn’t exist
a real process!

From project plan to exploitation

*+ Too many projects; none of the
projects are stopped in time, most
are just fading away!

* Too low productivity; Developers
are involved in too many projects
and most of their time is wasted in
meetings discussing why they
missed milestones!

* Projects are not in
strategy!

line with

From exploitation to renewal; Auditing
and business reviewing

« Too many red ftraffic lights, but
how to improve the situation?

* How to recognize disruptive
technologies before it is too late?

Strategy Development and planning

» Opportunities are missed and
entrepreneurial coworkers are
leaving the company or are
becoming frustrated. How
combining long term strategic
planning with emerging
entrepreneurial strategies?

» Tactics replaces strategy. How to
combine short term plans with
long term vision?

+ How to translate strategic
objectives into project selection
criteria?

“Well-planned is half-finished” and “look
before you leap” are statements that
certainly apply to innovations. On the other
hand we must beware of the danger of
“Paralysis by Analysis”. The figure
presented below shows that any additional
work required at the outset will offer
substantial rewards further down the line,
where it is possible to save time and
resources because less work has to be
done.

Well planned and structured is half complete

Increasing the effort in planning and structuring projects
leads to cycle time (t2 < t1) and total effort reductions of
35% -50%

Resources

Additional
work for
planning and
structuring

the prp :

.
|

f

i

.

Extra Effort and
Rework
prevented due
detailed upfront

Rlanning o

Time

252

Figure 6. Relation between allocation of resources during the innovation process phases and
time to market and costs

In addition to saving costs the yields are
higher because the product or service can
be marketed at an earlier date, thus
ensuring a longer product life cycle and a
larger market share. A good preparation in
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the pre-project (innovation) phase has to
do with the development and validation of
the models of the customer, market and
business models, and financial and
economic models (business case) in



relation to (a) technical model(s) of the are essential to the translation of these
product or service. These models indicate data into information).
what data have to be collected, and they
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