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PREFACE

Mathematical and computing techniques play an important role in simulation, optimization
and management of food processing techniques. Nowadays, as the availability of powerful
and cheap hardware/software computational tools is strongly increased, the effectiveness
and reliability of modelling procedure has became a valuable alternative and support to
traditional experimental approach. In that respect, mathematical simulation is of paramount
importance in, describing phenomena, solving problems, test new ideas for a better
representation of reality.

This process derives from a sapient mixture of different and heterogeneous components,
such as the capability to develop comprehensive and consistent mathematical models
which depict with a fairly good degree of approximation food processes development,
taking in the proper account the complex phenomena of physical, chemical and biological
origin which take place, as well as the fine tuning of computational techniques either
specifically devised for those applications or borrowed from other fields. Thus, the solution
of these problems requires a strongly interdisciplinary approach in which mathematicians
efforts is coupled to the technological needs of the food scientists.

During the last decades several research groups developed mathematical models with
increasing relevance for practical application in the food area regarding risk analyses, food
safety, fermentation, texture and flavour of food products, plant control, hardware
automation, simulation in Food Sciences and Biotechnology, Food Production
Management and Economics. The next frontier will be to implement these models to better
respond to both R&D and process operation requirements. In doing this, new issues arise
such as standardisation and coupling of different simulation models.

The 4th bi-annual FOODSIM conference, conceived in 2000 by Daniel Thiel from ENITIAA
in cooperation with the European Simulation Office, will bring together model developers,
food experts and (potential) industrial users of model simulation tools. Far from being
exhaustive of the very exciting topic, the conference aim is to present a broad overview of
the state-of-the-art in using computer models in development and operation of food
products and also to give to the researchers in the field a unique opportunity to discuss
and exchange ideas.

Finally we would like to thanks to all persons and organisations, which have contributed in
making this appointment an international event. A special thanks is due also to Dr. A.
Romano for her invaluable technical, scientific and practical help.

The local organizing committee is pleased to welcome all conference delegates and to
wish them a nice stay in Naples. We hope that congress has significantly helped the
development of mathematical modelling applied to the solution of the many problems in
the food area and moreover the international cooperation.

Prof. Paolo Masi and Prof. Gerardo Toraldo

June 15-17, 2006
University of Naples Federico Il, Naples, Italy

Vil



Vi



CONTENTS

[ (=Y - T VIiI
Scientific Programme..........cooecciiiiiiirirrressss s 1
AUthor Listing ... 235

INDUSTRIAL SIMULATION PROCESS MODELS

A Dynamic Model Library for Simulation of Liquid Food Processes
Tomas Skoglund and Petr DeJMEK ...covvieeeeecciiiiiiirrrreesscscss e e s e s s e s e ennnnns 5

A New Model to Predict Residence Time Distribution in Extrusion Process
Peggy Vauchel, Régis Baron, Raymond Kaas, Abdellah Arhaliass and
B F= T3 Y = T PP 13

Applicable Models of Industrial Processes based on Process
understanding: Acrylamide Prediction
Bo Boye Busk Jensen, Alan Friis and Jens Adler-Nissen.......ccccceeeviimreeniienneess 18

Analysis of Mashing with Tucker3 Model
Martin Mitzscherling and Thomas BeCKEer .....cuuuuciiimmeeciiiereecrereeescs e e s e s e eennns 21

Identifiability of Time Varying Parameters in a Grey Box Neural Model:
Application to a Biotechnological Process
Gonzalo Acufia, Francisco Cruz and Vicente MOIreno ......coiveirenireniresirensrenseens 26

FOOD PRODUCTION SIMULATION

A model based on factorial Design to predict the Evolution of
Brettanomyces sp. Population as function of environmental Conditions

in Winemaking

Claudia Castro Martinez, Cédric Brandam, Felipe Ramén Portugal and

Pierre Streh@i@no .....ouciieeeeeeciiiiie s e 35

Improved Ventilation inside A Large Meat Carcass Chiller following
CFD Modelling
Laurent Picgirard and Pierre-Sylvain Mirade .......ccccoviimmmmmeemnscsnnnnessessssssssssnnns 40

Computational Fluid Dynamics Analysis for Design Optimisation of
a Continuous Oven for Convenience Meat Products
Siegfried Denys and Jan G. PietersS.....cccoimieeeecsiiiiiirssrssssssssssssesssssssssssssssssenens 48



CONTENTS

LIQUIDS PRODUCTION SIMULATION

Flexibility Study of a Liquid Food Production Process
Hongyuan Chen and Alan FriiS ... s 57

Artificial Neural Networks for Prediction of Beer’s Preference
Ravipim Chaveesuk and Amarin Saravanee .....ceccceeeeeerereecmssssssssseeresssmnsssssnns 62

Microfluidics Modelling of a High Throughput Microcalorimetric
Biosensor for Ascorbic Acid Quantification

Pieter Verboven, S. Vermeir, B.M. Nicolai, J. Lammertyn, V. Vulsteke,

L. Hoflack, B. Baeten and P. Van GErwen ......cccuieeiiieeiiieeiiieeiisensssesssenssssenans 67

PACKAGED FOODS SIMULATION

Multiscale Determination of Diffuse Properties in Polymers: Application
to the Prediction of Desorption Packaging Constituents into Foodstuffs
Jérbme Lézervant, Olivier Vitrac and Alexandre Feigenbaum .......cccecceiiieennes 75

A Thermodynamically Consistent Description of the Desorption of
Packaging Constituents into Foodstuffs
Ali Mougahrbel, Olivier Vitrac and Alexandre Feigenbaum.......ccccceevevveveeeeeennn. 80

Food Packaging Optimization by means of Integrated CAD/CAE and
Statistical Techniques
Mario Antonio Francese and Domenico Livio FranCese......ccccuvmmeeecererecancnrenncas 85

General Quality and Red Discoloration of modified Atmosphere packaged,
fresh-cut Endive as affected by Temperature and Oxygen Fraction
Hajo Rijgersberg and Jan L. TOP e 88

SPRAY-DRYING SIMULATION

Modelling Agglomeration in Spray Dryers
Maykel Verschueren, Ruud Verdurmen, Han Straatsma, Michiel Gunsing,
Ruud van Ommen, John Nijenhuis and Ton BackX......cccoeeemeecciiinimmnnnecmnnnnnn. 95

Modelling Spray Drying Losses in Batch, Top Spray Fluidised Bed
Coating Processes
Frederik Ronsse, Jan G. Pieters and Koen Dewettinck .....cceeeeeeciiiiiiiineccennnnnnnn. 100



CONTENTS

HEAT TRANSFER SIMULATION

Modelling of Heat Transfer in Glass Jars with Particulated Foods

Immersed in a Liquid medium

Alejandro R. Lespinard, Pablo R. Salgado, Luis A. Roche and

[20Te o] {031 o 1V F= <ot =T o] o AP 109

Fouling of Heat Exchangers in the Dairy Industry by
Coupling Flow and Kinetics Modelling
Maria Valeria De Bonis, Caterina Calamello and Gianpaolo Ruocco................ 114

Effect of Reduced Temperature during Evaporation and Crystallisation

on Sugar Quality and Energy Demand at Sugar Production — Model

Based Simulations

Quido Smejkal, Arash Bagherzadeh, Rudolf Schick,

Lutz-GUnther Fleischer and Tomas KUIZ ......oueecciimrececssirecescssssecsssssessmsssssesenas 119

DIFFUSION AND DISPERSION

Estimation of the Effective Diffusion Coefficient of Water in Fresh
Vegetables
Maria Aversa, Stefano Curcio, Vincenza Calabrd and Gabriele [0ri0...cccueuveennns 127

Taxonomy of recent Epidemic Simulation Models of Animal Infectious
Diseases
Thi Le Hoa Vo and Daniel Thiel ....rieiiecerrrecesce s vseesmssesenm e s smn e nmneenes 132

Simulation of the Dietary Exposure to Acrylamide from French Fries
for Irish Consumers
Enda Cummins, Francis Butler, Ronan Gormley and Nigel Brunton................. 137

COMPLEX FOOD PRODUCTS

How Statistical Physics can help to predict Mass Transport Properties
in Complex Food Products
Olivier Vitrac and Murielle Hayert........uemmmmmmmmeeeeeeeeeeesse e 145

Mathematical Modeling the Effect of Lipids on Dough Development

during Leavening
Annalisa Romano, Silvana Cavella, Paolo Masi and Gerardo Toraldo ............. 152

Xl



CONTENTS

FOOD QUALITY SIMULATION

A COMSOL Simulation of the Osmotic Dehydration of Mango
Juliane Floury, Q. Tuan Pham and Alain Le Bail.....couueeecciiiiiiiiieececeeeeees 159

A Comprehensive Modelling Approach for Yeast Growth and Physiology
10 =TS U2 164

Thermal conductivity Estimation of Sandwich Bread Using Inverse Method
JeaN-YVES MONEAU .....couiiiiieieeccieie e e e rnmm s e e s s nmm s s e s s e emmm e e e e s e e nnnnns 172

Determination of Thermal Conductivity of Frozen Meat by Finite
Element Modelling
Q.T. Pham, M.R. Sutjiadi, Y. Sagara and G.-S. DO.......ccrrririrrrssmmmmerereissnccsnnnes 175

Substrate and Metabolite Diffusion within Solid Medium in relation
to Growth of Geotrichum Candidum
Abdeltif Amrane, Mazen Aldarf, Florence Fourcade and Yves Prigent............. 179

Mild Homogenization and Vorticity Control
Sarghini F.and Masi P......oiiiiiieececcccsese s reescessss s s e s s s e snmns s s s s e s s e s emmmn s nnnnnees 187

SIMULATION TRAINING

A methodological guideline for the expert-operator knowledge
management in the food industry

Nathalie Perrot, Irene Allais, Roch-Boris Edoura-Gaena, Irina loannou,

Gilles Trystram and GilleS MaUTIS ......uuuuueueenennnnnnnnnnnn s 195

POSTERS

Mycotoxin Transfer along the Feed to Food Chain: A Simulation Approach
Enda Cummins, Rory Coffey and Shane Ward..........eeeeeeeeeeeemmmmmmmeeemmmeeeeeeennnenes 203

An Integrated European Approach to TSE Risk Assessment

Enda Cummins, Larry Paisley, Aline de Koeijer, Thomas Hagenaars,
Franck Guarnieri, Deirdre Murray, Amie Adkin and Christine Jacob................. 207

LATE PAPERS

Combined Transfer Phenomena in 3D Modelling of Packaged Foods
Maria Valeria De Bonis, Giuseppe Altieri, Maria Cefola and
(€77=Ta] o 7=To [0 TN a1 [0 oo o LT 211

X1



CONTENTS

Numerical Simulation of the multi extrusion Pet Food with rheologically
Complex Behavior
Thierry Marchal, Antoine Dozolme and Benoit Marchal .......c.uueeeeccceiieeeneeeeenee. 216

On Data Modeling for Batch Processes with an Application to Wine-making
Luigi Glielmo, Francesco Vasca and Oreste Riccardo Natale ......cceeeeeeeeeeeeeennes 220

An Innovative Mathematical Model for the Thermal Diffusivity Estimation

and Thermal Process Modelling
Massimiliano Rinaldi, Giampaolo Betta and Roberto Massini........ceeeeeeeeeeeeeeeees 227

X1l



XV



SCIENTIFIC
PROGRAMME






INDUSTRIAL
SIMULATION
PROCESS
MODELS






A MODEL LIBRARY FOR DYNAMIC SIMULATION OF LIQUID FOOD PROCESS
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ABSTRACT

Ongoing work in developing a general structure and a
comprehensive components library aiming at modelling
liquid-food process lines is presented. The dynamic
component models were developed in an object-oriented
library structure based on the dynamic modelling language
Modelica using the object-oriented graphical tool Dymola.
The models were based on fundamental conservation laws
and can simulate one-dimensional dynamics in liquid-food
plants including process control, in terms of flows,
pressures, temperatures and compositions. Novel solutions
were proposed to handle varying fluid properties during
changeover in heat exchangers. Examples of simulations of
cream and milk pasteurisation, juice blending and flash
boiling for de-aeration of juice are given'.

INTRODUCTION

For many decades, as a means of cost-efficient development,
the industry has taken advantage of dynamic simulation
before manufacturing (Astrom et al. 1998). In spite of its
advantages it has been considered too expensive within the
industrial field of engineering of liquid-food process lines.
Hence it has been used only occasionally in special cases.
However, gradual improvements in hardware and software
have brought about increased computational power
simultaneously with reduced costs. This has enabled
simulation for engineering of liquid-food process lines on a
more regular basis. Even though flow-sheeting, i.e.
stationary simulation (e.g. NIZO Premia) and full CFD-
simulation, e.g. (Straatsma et al. 1999a and Straatsma et al.
1999b) have been performed in food applications, to the best
of or knowledge dynamic simulation of full liquid-food
process lines has not been carried out before. Furthermore, a
dynamic component library for this purpose has never been
created before. This paper describes a case where process
line dynamic simulation, including process control, is being
introduced as a design tool in a process line supplier
company. Based on the objective of fast configuration of
process lines, a general component library was first created
based on the dynamic modelling language Modelica
(Skoglund 2003) that enables full time resolution of

" A standard PC was used: Dell Optiplex SX270 with Intel®
Pentium® 4 CPU 3.2 GHz, 1.0 GB RAM.

complete production lines including a full range of the most
interesting physical/chemical variables (Skoglund 2003).

To achieve sufficient accuracy with computational
efficiency, in-depth studies were undertaken of fluid
transitions in heat exchangers (Skoglund et al. 2006) as well
as fluid dispersion and chemical reaction (in preparation). In
this article an overview of achievements and possibilities are
described. The novelty of the work is the over all capacity of
the library as well as the separately reported ability to
efficiently simulate fluid transitions in heat exchangers.

THE DYNAMIC MODEL LIBRARY

Modern dynamic modelling tools are equation based, i.e.
take care of symbolic handling and sorting of the equations
and eventually also solves them. These features relieve the
modeller from much work that instead can be focused on the
mathematical formulations of the phenomena, e.g. physical
or chemical. A basic decision was taken to avoid black box
models as much as possible. In the present work the
equations are a mixture of ordinary differential equations
(ODE) and algebraic equations (AE). In liquid-food
applications it means that physical/chemical mechanisms are
approximated with bulk properties (i.e. lumped models)
since no partial differential equations are dealt with. In spite
of that, the important flow-direction space coordinate is
taken into account by axial discretization of some models,
e.g. heat exchangers and pipes.

The design decisions are further influenced by intended
users and usage (Skoglund 2003). Also the model builders’
aspects need to be considered. Examples of important
programming efficiency features are object orientation,
heritage and graphical interface.

Physical equations and model variables

The models were described in terms of equations of two
types. The first type concerns the fundamental laws of
conservation:

- mass conservation

- energy conservation (thermal)

- volume conservation (incompressibility)

- momentum conservation
The other type of equations concerns empirical engineering
design correlations, e.g. Fanning friction factor or convective
heat transfer coefficient.
Beside these, fluid properties (density, specific heat capacity,
viscosity etc.) as functions of temperature and composition
(water, carbohydrates, fat, etc) are an integral part of the
environment.



With the above set of equations, the system was able to
calculate dynamically many physical properties in the system
whereof the most fundamental are

- temperatures

- flow rates

- pressures

- concentrations

Library structure

A hierarchical model structure is used, with models and
model fragments that are used as building blocks in a
“Modeller’s area” and parameterized instances of component
models representing physical process components in a
“User’s area”, Figure 1.

{  Sub libraries with final 1
§ components structured by :
1 type (e.g. Valves, Pumps)

Modeller’s area

\ - ; h -
: Sub libraries with basic component models utilized 1
, in more than one final component. The sub libraries :
{ are structured by type (e.g. Valves, Pumps) i

Figure 1: Library Structure

Figure 2 shows how the possibility of building hierarchies
with heritage was utilized in the case of some vessels.
User’s area

Deaerator

PressureVessel

instance

Modeller’s area

Figure 2: Library Hierarchy to Reuse Common Code

Modelling language

Given the requirement that the modelling tool should support
solving of DAEs (system of ODEs and AEs) we have chosen
Modelica (Modelica Association; Mattsson et al. 1998; Tiller
2001) that has proven its capacity in some different
branches, e.g. thermodynamic systems (Eborn 2001;
Elmqvist et al. 2003; Tummseheit 2002). The chosen
Modelica platform was Dymola (Supplied by Dynasim AB)
that provides graphical interface, compiler and solvers.
Figure 3 shows a view of the user interface when accessing
the “Food Processing” library.

Figure 3: User Interface of the Modelling Tool, Displaying
the Library (left), a System Model (middle) together with the
Plot of a Simulation (lower left)

From the library of dynamic component models a system is
built by graphical “drag-and-drop” and graphical
connections. The component characteristics are assigned via
parameter lists associated individually to each instance of a
component.

HEAT EXCHANGER MODELS

There is a great deal in the literature about dynamic
modelling and simulation of heat exchangers e.g.
(Lakshmanan et al. 1994; Romie 1984; Romie 1999; Xuan
and Roetzel 1993), but a specific requirement of food
industry is to predict the transient changes, e.g. when
product is changed or product flushed. As an important part
of this work dynamic heat exchanger models were developed
to deal with arbitrary changes in flow rates, temperatures and
fluid compositions (Skoglund et al. 2006).

Model validation

The dynamic heat-exchanger models were validated with
pilot plant experiments (Kauhanen 2001). The experiments
were conducted with arbitrary changes in flow rate and
temperature for counter-current flow as well as for co-
current flow. Figure 4 shows the corresponding simulation
set-up into which the recorded input values of flow and
temperature were fed.
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Figure 4: Simulation Set-up of Experiment for Validation of
Heat-Exchanger models

Two different experimental results are shown in Figures 5
and 6 together with the result from corresponding
simulation.
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Figure 5: Experimental and Simulated Response of a
Temperature Step Up/Down at the Shell Side Inlet of a Co-
Current Tubular Heat Exchanger

Also frequency analysis was used to estimate how well the
model fits with experimental data over a range of
frequencies. This was carried out by process identification
based on experimental data as well as on data from
simulations. These two identified transfer functions were
then used to calculate amplitude and phase shift over a
frequency range. Figure 7 shows such a comparison of
experiment with simulation, where the simulations were
carried out with different discretization (very low; N=2 and
medium; N=6). Both the amplitude and the phase shift lies
close together over the analysed frequency range.
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Figure 6: Experimental and Simulated Response of an
“arbitrary” Temperature Perturbation at the Shell Side Inlet
of a Co-Current Tubular Heat Exchanger
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Simulation

Fluid transition

With validated heat-exchanger models the work proceeded
with introduction of fluid transitions.

The difference between the above heat exchanger model
compared with traditional dynamic models was that (i) the
heat capacity of the metal separating the cold side from the
hot side was included in the model, and (ii) the fluid
transport time was handled directly in the model by a true
transport delay handling. The latter improved the model
performance when simulating fluid transitions with a
reasonable computational time increase. Figure 8 shows a
system configuration that was applied to simulate this.



Figure 8: The System Configuration that was applied to
Simulate Fluid Transitions Water-Cream-Water

Simulations were performed to prove the model’s
computational efficiency. An example of such a fluid-
transition simulation is shown in Figure 9a. The first
transition is when cream (with 15% fat) pushes water, and
vice versa in the second transition. The first transition starts
at 100 s and the latter starts at 200 s.
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Figure 9a: Outlet Temperatures at Simulated Fluid
Transitions in a Heat Exchanger. The Transition from Water
to Cream Starts at 100 s and the Transition from Cream to
Water Starts at 200 s.

Figure 9b shows a part of Figure 9a including also the
simulation result when using a more traditional model. At
equal discretization the computational load was
approximately the same, but the simulated temperature of the
new model was closer to the exact solution. (The number of

heat transfer units in the channels varies during the transition
and are in the range from 1.1 to 1.7.)

The degree of discretization determines the achieved
accuracy. Figure 9b shows simulation results with low
discretization (N=5, i.e. 5 control volumes) and high
discretization (N=80) for both models. When increasing the
discretization, both models converged to the same solution,
shown as curves lying close together for N=80. However, at
lower discretization the simulation results of the new model
were much closer to the convergent solution, which is
clearly visible in the figure. Results from more simulations
of both models are compiled in Figure 9c. The conclusion
from these simulations was that to achieve a certain accuracy
the new model required less discretization compared to the
traditional model, corresponding to approximately 10 times
less computation time.

Further details of the model are reported in (Skoglund et al
20006)

70 fm—\ e Traditional model, N=5
New model, N=5
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Figure 9b: Expanded View of the Product Temperature (in

the Tube) during the first Transition in Figure 9a for both a

Traditional Model and the New Model, for Low (N=5) and

High (N=80) Discretization. The Curves Clearly Indicates
the Faster Convergence of the New Model
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Required CPU Time is also Shown as a Function of Degree
of Discretization.

To further analyse the propagation of the cream during the
fill-up, the simulated temperature profiles in the heat-
exchanger tube were plotted. The result is shown in Figure
10 at different moments in time. The dotted (red) line shows
the stationary temperature profile at the beginning of the
transition (at 100.0 s) just when the cream enters the tube
(channel 1). The dashed (blue) line shows the stationary
temperature profile when stable after the transition (at 150.0
s) when channel 1 is filled with cream. Of particular interest
is the temperature profile at time 108.8 s in channel 1, which
shows an exit temperature lower than the final stationary
temperature. It corresponds to the temperature dip visible in
Figures 9a and 9b.
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Figure 10: Temperatures along the Heat-Exchanger Tube at
Different Moments in Time

SIMULATION OF A MILK PASTEURISER

Based on the created library also full process lines were
configured and simulated. An example of that is the milk
pasteurizer that is shown in Figure 11a and 11b. Some of the
simulated variables are shown in Figures 12a and 12b. They
demonstrate the initial 400 s of start-up of the system, which
is interesting to simulate for performance reasons.

Figure 11a: A Milk Pasteurizer Configured with the Library
Component Models. The inner Structure of the Heat
Exchanger Model “IV_III II I” is shown in Figure 11b
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Figure 11b: The Inner Structure of the Heat Exchanger
Model that is used in the Pasteuriser in Figure 11a
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Figure 12b: Level (m) vs. Time (s) as a result of the Same
Simulation as in Figure 12a

SIMULATION OF A JUICE BLENDING PROCESS
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Most of the orange juice in Europe is blended from orange- V?TB
juice concentrate and water. Batch systems are common, but | [“; 7
in-line systems have advantages. One of the challenges when e ai /
blending in-line is to blend very accurately with 114 L foid
simultancous capacity adaptation. That is a reason for 12 _,f; /
simulating to verify that the design of the process and ' -
control meets the specifications. As with the milk pasteurizer 1.0
above, a juice blender was configured and simulated (Figure 108 /
13). Simulation results are shown in Figures 14a-e, where - . 2
Figures 14a-b show a badly tuned case, Figure 14c a well 108 o Spuietedl senser sians
tuned, Figure 14d a well tuned and improved process and 104 ,""
Figure 14e the same as 14d, but with inaccuracy of sensors |
included in the simulation. The Figures clearly show how 102 ' .
simulation can be used to test and improve design and 1005 Simulated ;E;' valuey = 75”// 5
parameter settings, and eventually get figures on dynamic Figure 14b: Expanded View of Concentration Curves in
performance (accuracy) before manufacturing. Figure 14a (°Brix). As the Flow Changes the Inaccuracy is

here worse than +1 °Brix. The Time Lag of the Sensor is

Clearly Visible

10
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Figure 14c: The same Plot as in Figure 14b but Simulation
with a Well Tuned System. The Inaccuracy is here
approximately £0.2 °Brix. The used CPU Time was 4.1 s
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Figure 14d: The same Plot as in Figure 14¢ but Simulation
with an Improved Process Design. The Inaccuracy is here
approximately +0.01 °Brix. The used CPU Time was 2 s
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Figure 14e: The same Plot as in Figure 14d but Simulation
with a Simulated Inaccuracy of Sensor of 0.22%. The
Additional Green Line is a Simulated Lab Analysis (also
with 0.22 % Inaccuracy). The system Inaccuracy is here
approximately £0.05 °Brix while the “Lab Analysis” varies

+0.09 °Brix. The used CPU Time was 14 s
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SIMULATION OF A FLASH BOILING PROCESS

De-aeration of products is essential to bring down the
content of oxygen and by that minimize oxidation of the
product. When processing of fruit juices the de-aeration is
mostly done by flash boiling of the product in a vacuum
vessel where the pressure is below the saturation pressure
corresponding to the product temperature at the vessel inlet.
Such a process has been simulated. Just as with the above
mentioned examples, a juice de-acration process was
configured and simulated (Figure 15). The de-aeration takes
place in a vessel included as a part of a pasteurisation line.
Figure 16 shows the product temperature at the vessel in-
and outlet when vacuum is applied. The control system was
designed to control the flash to a constant temperature drop
of 2 °C even during varying inlet temperature.

The simulation was used to evaluate and improve the
performance of the flash boiling regarding process design as
well as control design.

Figure 15: A Juice De-aeration Process Configured with the
Library Component Models

e Inlet temperatuie

G624 -

824
200 A00 500 600 a0 o0 00 000 1100 1200

Figure 16: Inlet Temperature and Outlet Temperature vs.
Time (s). When Vacuum is applied the Pressure Gradually
Drops until Flash Boiling Starts. The Graph Shows The
System Response to some Temperature Disturbances of the
Product at the Inlet. The used CPU Time was 56 s

1300



CONCLUSIONS

The present work has shown, by examples, a novel and
feasible approach to dynamic simulation with full time
resolution of the most interesting physical/chemical variables
in complete liquid food processing lines by building and
using a structured library of dynamic models. The adequacy
of using a modern equation-based modelling language like
Modelica was evident due to the fact that it enables focus on
the modelling rather than on solving DAEs.

Simulation results from a proposed, and recently reported,
novel model solution to handle varying fluid properties
during fluid changeover in heat exchangers were also shown.
The improved computational efficiency of this model was
illustrated.

Further modelling work is going on to extend the scope of
the present “Food Processing” library to also include fluid
dispersion and chemical reaction. This work will be reported
elsewhere.
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ABSTRACT

In this paper, a simple new model is proposed to
predict the residence time distribution (RTD) in
fully  intermeshing  co-rotating  twin-screw
extruders. This model is based on an extension of
an axial dispersion model, including control
parameters (screw speed and flow rate) and
geometrical parameters, enabling to take into
account the screw profile and the die design.
Simulations illustrate the large evolution of RTD in
the extrusion process for a BC45 extruder. This
model should provide a precious help whilst
designing installations of industrial size.

INTRODUCTION

The goal of this presentation is to describe a new
model predicting the residence time distribution in
fully intermeshing twin-screw extrusion process,
including all geometrical and control parameters.
This process offers many advantages, which have
already been largely exploited in the food and
polymer industries, and is still very promising. Its
flexibility allows to work on a large variety of raw
materials, and to get products with a wide range of
properties (Baron, 1995 or Baron & al, 1996). Its
main advantages, in addition to being a low water
demand process, are compactness, modularity and
continuity. Nevertheless, up to now, phenomena
taking place in the extruder, especially concerning
flows and transformation of the material during the
process, are not completely understood. Extrusion
is still considered as a process which is hard to
modelize, simulate, design and control.

Several authors (Ainser, 1996, Puaux & al, 2000)
have studied the residence time distribution in twin-
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screw extruders, by fitting experimental RTD
curves with different flow models. Good
correlations have been performed, especially with
the backflow cell model and the axial dispersion
model. Nevertheless those models don’t directly
take into account the geometrical parameters
(screws profile and die design) and the control
parameters (screw speed and flow rate). This point
limited the prediction value of this modelling
approach.

The new model summarily presented here, doesn't
aim at improving experimental data fitting, but may
be so far interesting in its ability to predict the
influence of screws or die design on the residence
time distribution. The validation phase is still in
progress and will not be discussed here.

Firstly, the physical considerations and hypotheses
taken into account for building this model will be
described, especially elements developed in a
previous simple model of the process (Baron,
1995). Simulations of residence time distribution, in
various extreme conditions, will then be presented
and discussed. In the last section, some possibilities
of future extensions for this model will be outlined.

EXTRUSION MODEL
Length of fully filled channel

A simplified solution of Navier-Stokes equations is
used to describe velocity, flow, length of fully filled
screw and pressure at steady state in a fully
intermeshing co-rotating twin-screw extruder.

This type of extruder consists in two screws, which
are parallel, fully-interemeshing, composed of a
same sequence of screw elements, and rotating in a
barrel. To solve Navier-Stokes equations, this
complex geometry is simplified according to
common assumptions the screw channel is
unrolled and fixed, the barrel is plane and slides on



the screw channel at V), velocity (Figure 1). The
total length of unrolled channel L,,, is artificially
divided into 7 zones, corresponding to the number
of iterations that will be used to make calculations.

Feed hopper

Barrel

SILLL DL/
Sy Jardardarda Nardariarards

Screws Die

Figure 1: Schema of a twin-screw extruder

Figure 2: The unrolled channel and the moving
plane barrel (Baron, 1995)

The flow rate Q.; in the zone i of the channel is
obtained by solving the steady-state equations,
assuming that the length of the extruder is infinite,
the fluid is incompressible and Newtonian, the flow
is isotherm, laminar and uniform along the channel.
It is assumed to be the difference between a
pumping flow rate and a drag flow rate (Janssen,
1978 or Tadmor and Klein, 1970) :

_ B 9P,
Qc’i_aiN uLi 0z
where:

- N (rd/s) is the screw speed,
- u(Pa.s) is the viscosity,
- L;(m) is the channel length of the zone 7,

- aai (Pa/m) is the pressure gradient for the

M,

zone i with respect to the curvilinear abscissa z.
Note that for Newtonian fluids this gradient, at
its steady state, is linear with respect to z.

- o and B, (m’ and m® respectively) are factors
depending on the screw geometry of the zone i,

_7Dcos(6.)W, H; Fu,i
i 2 s
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where:
- Dis the screw diameter (m),
- G is the pitch angle (rad),
- W;is the channel width (m),
- H,;is the channel height (m),
- Fq; and F,; are correcting factors enabling to
take into account the narrowness of the
channel.

This expression of Q.; holds true for each type of
element, direct or reverse screw pitch for example.

The outflow rate Q,,, being constrained by the die,
it is assumed to follow a Hagen-Poiseuille equation:

ouzﬁpd
Qou i

with:

- K (m’) a coefficient depending on the die
geometry,

- P,(Pa) the pressure at the head of the die.

Moreover, the output pressure of the zone n is
assumed to be equal to the pressure at the head of
the die, and the output pressure of zone i is assumed
to be equal to the input pressure of the zone i+/.
Consequently, pressure gradients can be eliminated
in Equation 1 resulting in the following expression
of the outflow rate Q,,; (Baron, 1995):

a+bl
c+%+l

Qout =

where:

- [ (m) is the length where the channel is fully
filled,

- a, b, cand d are piecewise constant coefficients
depending on the geometry of the screw
elements sequence:

b=a,
d=p.

At steady-state, the outflow rate is equal to the
input flow rate O, and / can be estimated by the

following equation :
kgl

b5




Residence time distribution

A largely used approach, is the description of the
flow pattern by conceptual models, consisting in
combinations of ideal reactors, which represent the
overall features of the physical flow. But the
residence time distributions commonly encountered
in a twin-screw extruder, present intermediate
characteristics between those obtained in the two
ideal limiting cases, the perfect mixing and the plug
flow. Therefore, non-ideal models have to be used,
to describe the flow of the material.

The classical tanks-in-series (cell) model and axial
dispersion model are one-parameter models. Two
parameter structures were obtained by different
extensions of the tanks in series model: the Gamma
model, the Backflow Cell model, the Fractional
Tank  Extension model, the Arithmetical
Progression model and the Geometric Progression
model (Ainser, 1996).

One of the main significant criteria for an extrusion
flow model is its ability to describe with sufficient
flexibility the axial mixing along the screw. Two
models seem to fulfil best this requirement, the one-
parameter axial dispersion model and the two-
parameter backflow cell model (Puaux & al, 2000).

In this paper, the axial dispersion modelhas been
chosen. It consists of a combination between the
convective transport and an eddy diffusion
mechanism in the axial direction. For a constant
fluid velocity v and a constant axial dispersion
coefficient D along the flow axis z, the evolution in
time and in space of the concentration of a tracer
can be described by the following partial
differential equation:
a_C:Dy_C_va_C )
at a Z2 aZ ’
where:
- C(mol/m’ or g/m3) is the tracer concentration,
- D (m?%s) is the axial dispersion coefficient,
- v(m/s) is the velocity.

We have chosen to extend this equation to the case
where D and v are piecewise constant.

The value of v depends on the fully filled length /:
- when the screw channel is partially filled
(0<z<L,u-0), the velocity depends on the

pumping effect: v=ﬂ ,

- when the channel is fully filled (L,
1<2<L,..x), the velocity depends on the global

outflow rate: V=" .

S
with :

- §(m?) the section of the channel at abscissa z,
- L, (m) the total length of the channel
(partially + fully filled).

For the axial dispersion coefficient, two cases (D1
and D2) are described in this paper :
e CaseDlI:
- for 0<z<L,,-I (partially filled zone),
D=0.002m?/s,
- for L,uI<z5L,, (fully filled zone),
D=0.02m?/s.
These values are arbitrarily chosen, so as to respect
the time scale of classical residence time
distributions in Clextral BC45 extruders.

e Case D2:

- for 0<z<L,,-l (partially filled zone),
D=0.002m?/s,

- for L,,-I<z<L,,,. (fully filled zone), the value
of D is chosen so as to be proportional to the
drag flow:

D=A(aN—-Q) , for a direct pitch element,
DZ/QIOJJV | for a reverse pitch element,

A being a constant (A=400m™ in this presentation).

The boundary conditions are defined as follow:

- for =0, Daa—g=v(c —Cin), C;, being the input

tracer concentration,

_; 9C_
- forz=L,., 3 0.

A numerical resolution by explicit finite differences
is carried out to estimate the output concentration.
The derivatives approximations at iteration point i
(i=1...n-1) are as follow:

= 2A , and
2
d §| Ci+1—2C;i+C"*‘ , With A=z;-z;.;.
aZ |i
SIMULATIONS

All simulations were performed with a pulse of 100
units of tracer concentration from t=0 to t=2 sec.

Three very simple geometry of screw (G1, G2 and
G3) for a BC45 Clextral extruder have been
considered:

- Gl: direct elements of constant pitch p
(Lye=10m, a=1,1.10°m°, A=1.10"m° and
$=2.10"m?), a cylindrical die of 4mm in
diameter and 90mm long (K=7.10""'m’),

- G2: direct elements of constant pitch p,<p;
(Lne=13,33m, =72.10°m", £=7,0.10""m",
$=1,5.10"m? and K=1,5.10""m’)

- G3: Gl + areverse screw element at the end.



Figure 1 illustrates the influence of the number of
iterations #. An outflow rate of 50kg/h, a screw
speed of 400rd/min and an axial dispersion
coefficient following case D1 were used in this
simulation. A high value of # is necessary so as to
converge towards a good final estimation. For the
next simulations, a value of 250 iterations was
retained.

5} r
— n=10
n=20
5 n=50 ||
n=100
c 4 —— n=250 |
8
®
EE f
o
f =
kel
O 2t d
1 L -
0 .
0 200 250

t (sec)
Figure 1 : Influence of n on the numerical
resolution of RTD, in the case of a geometry G1
and a axial dispersion D1

Simulation results presented in Figures 2 and 3
were obtained with axial dispersion coefficient
values following case D1.

In figure 2, various experimental conditions of flow
rate and screw speed were tested for screw
geometry G1. For high values of screw speed,
almost pure delays depending on values of &, N, S
and / were observed : it corresponded to cases
where the channel was partially filled.

In figure 3, the same experimental conditions were
tested for screw geometry G2. Decreasing the screw
profile pitch amplified the pure delay phenomenon.

Simulation results presented in Figures 4 and 5
were obtained with axial dispersion coefficient
values following case D2.

Simulation results for the geometry G1, are shown
in Figure 4. Delay and time scale of dispersion
revealed to be plausible with most of residence time
distributions in the literature.

Figure 5 presents results obtained with the same
conditions as presented in figure 4, with the
addition of a reverse element at the end of the
screw. The accumulation and dispersion of matter
induce a larger distribution of RTD, also observed
in experimental conditions.
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Figure 2 : Simulations of RTD for different values

of flow rate and screw speed, in the case of a
geometry G1 and an axial dispersion D1

N=225 rd.min"' ©=30 kg.h"'
N=225 rd.min"' 0=45 kgh' ||
N=225 rd.min"' Q=60 kg.h"'
N=400 rd.min"' Q=30 kg.h"'
N=400 rd.min"' Q=45 kgh''
N=400 rd.min™' Q=60 kg.h"'
N=575 rd.min"' =30 kg.h"'
N=575 rd.min"' ©=45 kg.h"'

N=575 rd.min™' Q=60 kg.h"'

0

150 200 250
t (sec)

Figure 3 : Simulations of RTD for different values
of flow rate and screw speed, in the case of a
geometry G2 and an axial dispersion D1
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Figure 4 : Simulations of RTD for different values

of flow rate and screw speed, in the case of a
geometry G1 and an axial dispersion D2
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Figure 5 : Simulations of RTD for different values
of flow rate and screw speed, in the case of a
geometry G3 and a axial dispersion D2

FUTURE EXTENSIONS

In the current model, viscosity is assumed to be
constant along the screw axis z. If viscosity evolves
in time, it can be taken into account, but the same
viscosity is applied instantaneously all along the
screw.

If we assume that the local gradient of pressure

oP

9z can be estimated by a finite difference

scheme, it seems possible to calculate a new
expression of Q,,, which would associate the length
of a fully filled channel and a viscosity function
along the screw axis. The fully filled length / is a
dynamic variable that can be expressed as the
difference between the inflow rate with a pure delay
and the outflow rate (Baron, 1995). All these
dynamical variables (/, Q.. N...) will be
reintroduced in the previous model.

Reactive extrusion could also be simulated by
combining Equation 3 with a term describing the
kinetics of the reaction.

CONCLUSION

This study shows that the new proposed model is
useful to predict the impact of geometrical
parameters on the residence time distribution of the
twin-screw co-rotating extrusion process. It is a
precious tool to help designing industrial
installations. Nevertheless, an important work
remains to be done to validate, adjust and extend
this approach before intensive use.
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ABSTRACT

Modelling is widely used in food processing, and a large
number of papers present a variety of models for the often
complex physical, chemical and biological processes going
on in food products. This extended abstract presents a
modelling approach that focuses on the transparency of the
model constants, to give the model robustness and better
applicability. Based on a discussion of different modelling
approaches an example is given showing that the well known
thermal inactivation kinetic model can also be used for
predicting the formation of acrylamide as a function of time
and temperature in a cereal product in an industrial
environment. The model constants (only two) specifically
relate to the process investigated.

INTRODUCTION

A wide selection of models for predicting process-product
interaction and product changes are found throughout the
literature. Many different levels of complexity are proposed,
from models based on purely curve fitting (black box
models) to models derived from the fundamental equations
of the physical, chemical and biological processes taking
place in the product during processing (white box models).
Black-box models in principle carry no information about the
system studied. This kind of models only gives the
numerical modelling of output in relation to input, e.g.
change in a particular quality parameter as a function of the
process conditions. They are usually established by curve
fitting of existing data. The curve-fitting parameters (e.g. the
constants in a polynomial fit) have in general no physical
meaning. For interpolation these models are often useful, but
they are risky to use for extrapolation.

White-box models are in principle informative, but their
establishment require many parameters to be estimated. This
can be difficult, if not virtually impossible in complex cases,
such as in food processing. Furthermore, many of the
parameters and the information they carry about details of
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reaction mechanisms are not of particular interest in for
example the optimisation of a process in industry.

Between black-box and white-box models has the grey-box
model found its place. This type of model is based on fitting
equations containing constants that are physically
meaningful to the actual process taking place in the product
e.g. during heating. All other parameters from the white box
approach, that is all those parameters that are intrinsic to the
system and therefore carry no information of direct
relevance to the process studied, are conveniently lumped
together into one empirically determined parameter based on
the study of the process under defined process conditions.
This makes the model understandable for the users and
casier to extend it to include e.g. other products as only a
few parameters needs to be re-estimated. Estimation under
new conditions is done in the same way as for the original
parameters and, finally, using the same type of model over
and over again makes it more thrustworthy, easier for users
to use and understand and easier to use for different kind of
products.

When developing a grey-box model, its robustness should be
considered. By this is meant that uncertainties and statistical
variations related to the input parameters (e.g. process
temperature) should result in a predictable and moderate
variation in the output, not to any wild and unpredictable
variations in the output. Robustness is assessed by proper
design of the mathematical expression; for example
differences between two large terms is generally to be
avoided when setting up the expression.

This extended abstract introduces the idea behind an on-
going study of using a well established model of thermal
death of microorganisms as a grey box model for prediction
of acrylamide formation in a breakfast cereal.

PROBLEM DESCRIPTION

The objective of our ongoing study of acrylamide formation
under industrial conditions is to develop a simple model for
various products in the food-processing industry that can be
easily applied to the processes with a view of reducing the
amount of acrylamide generated in the product through
changes in the process.

Three approaches were used to model acrylamide production
during the manufacture of a breakfast cereal in an industrial
case study. The first model (a white-box model) was



developed from published production pathway research
(Mottram et al. 2003, Stadler et al. 2003 and Zyzak et al.
2003) without any restrictions on model parameters, the
second similar to the first (white-box model) but with
restrictions on the model parameters, while the third was
based upon an analogy with thermal death kinetics for
microorganisms (grey box model).

EXPERIMENTAL DATA

Data for fitting model parameters were obtained in the
factory during production. Acrylamide is generated during
the final heating in an oven at a temperature (7,y,,e;) With a
reference time (#,,qa).- TO see the influence of temperature
and residence time sampling of product for acrylamide
analyses was done at two other combinations: 7}, at #,,, and
Thigh at thigh with Tlow < Tm)rmal < Thigh and thigh < lnormal < tiow-
The combination of 7 and ¢ were set by trial-and error to
give similar water contents at the outlet of the oven.

700
) 600 m & High temperature
,% 500 4 a Normal temperature -
% 400 4 mlow temperature .
s A
g 300 -
% 200
5 .
< 100 - H a .
.
0 &M, ‘ .
0.00 0.50 1.00 1.50

Normalised residence time

Figure 1: Experimental data used for fitting model constants.

MODELLING APPROACHES

White box modelling, both without and with constraints, is
done based on the chemical pathway of acrylamide
formation. From the pathway of acrylamide formation from
published research (Mottram et al. 2003, Stadler et al. 2003
and Zyzak et al. 2003) an expression was obtained by
integrating rate expressions and simplifying the equation
from sound assumptions regarding the case study:

[Acrylamide]=

A kok, (2675 K2 1 2Kk t - 2)
2 K2

Where, [Acrylamide] is the concentration of acrylamide, k;
are reaction constants for steps in the formation pathway,
and ¢ is the time the product is exposed to a roasting process.
The temperature-dependence of the reaction constants was
estimated using the Arrhenius expression.

-E

Ai

k; = Al-eF

Where 4, is the pre-exponential factor, R is the gas constant,
T is the temperature and E,; is the activation energy. The
changing temperature of the product as it is heated in the
process is modelled separately, using the fact that the
product had so small dimensions that it could be regarded as
an isothermal body in which the average temperature rose
fairly rapidly from inlet temperature to the oven temperature.
The grey box model approach is based on the well known
thermal death equation (F-value equations) based on the
time-temperature history of the product:

N t Ly T
log| — |=—— D=D,10 -

N,) D

Where N is the number of microorganisms at a specific time
(), Ny is the initial number of microorganisms, D is the
decimal reduction time at a certain temperature (7), D, is
the decimal reduction time at a reference temperature (7.
and z is the temperature change needed to changes the
decimal reduction time a factor of ten. The choice of this
model was based on the observation that acrylamide
formation data from the process can be linearised by taking
the logarithms of the concentrations (Figure 2). The analogy
to the inactivation of microorganisms is obvious, except that
the concentration increases with time for acrylamide while it
decreases in the case of microbial inactivation. Thus, the
only difference to be made is to change the sign on the slope
of the logaritimised curve to turn the classical heat
inactivation model into a formation model for acrylamide:

T,

ref

-T

C t
log| — |=— a=a,l0 *
o) a
Where C is the acrylamide concentration a specific time (7),
a is the time needed for a ten-fold increase in the acrylamide
concentration at a certain temperature (7), a,. is this time at
a reference temperature (7,.) and z is the temperature change
needed to change the reaction rate by a factor of ten.
Following the model for thermal inactivation of
microorganisms C, should be the initial amount of
acrylamide, which is zero. This is not mathematically
possible; hence, Cj is chosen to be the detection limit of the
analysis method.
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Figure 2: Experimental data and model data plotted versus
integrated time-temperature effect calculated based on the
thermal death approach.

MODELLING RESULTS AND DISCUSSION

The three approaches were not equally successful. The first
white-box approach (pathway without any restriction on
constants) produced a good model with good fit to the data
but with parameter values having no physical meaning, such
as an Arrhenius expression which implies that the reaction
rate decreases with increasing temperature! Imposing
restrictions on the white box model (pathway with restriction
on constants) resulted in a very poor model which did not fit
the data, however. Finally, the grey box approach (base on
the thermal inactivation of microorganisms) gave a good fit.
It became apparent from these model studies that the white
box approach could not be developed further without
additional kinetic information. Solutions for the parameters
exhibited difficulties in converging, especially with regards
to parameter identifiability (explained later). Thus the
development of this approach was halted until more
information from basic kinetic studies of acrylamide
formation can be incorporated into the model.

Parameter identifiability problems showed as multiple sets of
constants produced a good fit, but several other sets also
produced similar good fits. Thus it is impossible to set up a
model with constants that are meaningful as the different sets
of constants means that the reaction rates depends on what
set of fitting constants are used. The grey box approach
showed more promise as a feasible correlation, despite some
scatter in the experimental data. When scrutinising the data it
was discovered that the biggest hindrance to model fitting
came from the variability of generated acrylamide levels
over time in the examined process. The amount of variability
observed was unexpected and quite high. This stressed the
need for having a robust model. In this respect, the heat
inactivation model is a good choice, due to its simple
mathematical expression and its linearity on a logarithmic
form.

The two model constants in the thermal inactivation model
are the z-value and the a-value. Both are meaningful in the
context of the acrylamide formation; « is the time needed for
a ten-fold increase in the acrylamide concentration at a
certain temperature (7) and z is the change in temperature
needed to change a by a factor of ten. Thus based on the
units of the parameters one can get information about the
process.

CONCLUSION

For a model to be successful (that is quantitative, robust and
user friendly) the constants (e.g. temperature dependency)
must have a meaning to the user in relation to the process
modelled. The grey box model used in this work, based on
the well-known thermal inactivation model, gave a model
with only two parameters that are explainable by the process
the model represents. The model was established from a
pragmatic, visual analysis of looking at the trend of
experimental data available. The process parameter of
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primary interest to vary is the temperature, and the effect of
this is described by z in the exponential term, which is a
well-established way in food technology of modelling the
effect of temperature on the reaction rate. The approach may
be applied to other reactions, where the concentration of a
given component appears to increase exponentially with
time. Autocatalytic reactions may be a case of interest in this
respect.
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ABSTRACT

A new measurement system is presented, that delivers
online data from a mashing process. By Tucker3
decomposition it is shown that the data contain relevant
information about the quality of the employed malt. In
contrast to bilinear models the Tucker3 preserves the
three-dimensional character of batch data. Individual
factors for variable, batch and time are obtained and can be
analysed separately. An important pre-processing step is
the synchronisation of the data. Dynamic Time Warping
(DTW) is a suitable method that brings data sets to
common length and aligns the data according to its form.

INTRODUCTION

Mashing is a key process during beer production.
Endogenous enzymes break down malt components of
high molecular weight into smaller, soluble components.
As mashing forms the basis of the beer composition a
process monitoring would be necessary. However, despite
its importance for the subsequent beer quality, no online-
monitoring of the mashing has been established. No
sensors are available, that could measure the degradation
process directly and reliably.

In this paper a new approach is presented. The
measurement system consists of an array of unspecific
sensors that measure physical and chemical properties of
the mash. Each quantity is not a sufficient and reliable
measure to categorise the process, but it is shown that the
combined, i.e. multivariate, view on all measurement
quantities improves the observability.

Batch process data is of three-dimensional nature
(Nomikos and MacGregor, 1994). The data can be
organised in a three-dimensional array with dimensions
time, variable and batch number. These arrays can be
analysed by unfolding the data into two-dimensional
matrices (Wold et al., 1987; Kosanovich et al., 1996).
However, bilinear models, e.g. Principal Component
Analysis, lead to models with many parameters and cannot
account for the trilinear nature of batch data. As a result,
they are more difficult to analyse. Trilinear models, on the
other hand, may be more difficult to compute, but have
fewer parameters and are easier to interpret. This paper
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shows how batch data from a mashing process is analysed
by a trilinear Tucker3 model (Tucker, 1967).

The paper is organised as follows. First the measurement
system applied to a mashing tun will be described. Then
the Dynamic Time Warping Algorithm as a means of
synchronising batch data and the Tucker3 decomposition
for three-way data will be outlined. Finally the results of
the analysis of data from the mashing process are
presented.

MATERIAL AND METHODS
Mashing

All trials were conducted in a 60 L pilot brewhouse. 10 kg
of malt were mashed with 40 L of water. Malt was bought
from Weyermann, Bamberg, Germany. Two qualities were
available. A regular malt of good quality and a malt
produced with a shortened malting process and thus of
poor quality. A third quality was obtained by a half and
half mixture of both malt batches.

A standardised mashing procedure was defined. It
consisted of three rests at 45, 62 and 70 °C. Each rest was
held for 30 minutes. This procedure was varied by
reducing and extending the rests to 20 and 40 minutes
respectively. The heating rate between rests was controlled
to be 1 K/min. All three malt qualities were mashed at
three rest lengths. Like this 9 mashing experiments were
conducted and numbered as shown in Table 1

Table 1: Design of the mashing expreriments

Malt quality
good 50 %/50 % | poor
. 20 minutes 1 2
g g 30 minutes 4 5
40 minutes 7 8

Measurement System

The measurement system was installed in a by-pass
configuration. It consisted of a pump, a filtering hydro
cyclone and a pipe that contained the sensors (Figure 1).

The filtering hydro cyclone was used to separate the grist
from the water. This step was necessary to prevent the




capillary viscosimeters from blocking. The filtering hydro
cyclone was first introduced by (Souza et al., 2000) for
mining purposes. Unlike usual hydro cyclones, the wall of
a filtering hydro cyclone is not solid but made of a
permeable material. In this case a 50 pM mesh was used.
Instead of wusing the overflow the filtered liquid
downstream the mesh is analysed. Because of the high
tangential flow inside the cyclone, the mesh is not blocked.

Downstream the filter all sensors were located. Density
and ultrasonic velocity were measured with a DSRn 427
(Anton Paar, Austria), ph-value with InPro pH3200/ pH-
transmitter 2100 (Mettler-Toledo), conductivity with InPro
7106/Transmitter 7100 (Mettler-Toledo), viscosity with
KV100-25 (Rheotec, Germany) and a self developed
viscosimeter for low shear rates (<10/s). Starch
degradation was measured by iodine at 578 nm in a flow
injection analysis system (FIA).

Figure 1: Experimental Setup with Following Sensors
QIRT/Vel: Ultrasonic Velocity, DIR: Density, QIRT/Con:
Electr. Conductivity, QIRT pH: pH Calue,VIR: Viscosity,

QIRT/Sacc: Iodine Value.

The sensors were connected to a personal computer via a
PLC and new measurements - when available - were
logged every 10 seconds.

DATA PROCESSING

Synchronising Batch Data With Dynamic Time
Warping

Many multi-way techniques, including Tucker3, assume
that the batch duration and thus the number of data points
measured is constant. Only then the data can be arranged
in a cuboid. When dealing with process data this is rarely
the case. In order to be able to calculate a model data sets
from different batches have to be transferred to equal
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length. This can be easily achieved by interpolating the
data. However, interpolating expands or compresses the
data evenly over the whole data set. The data sets will have
a constant length but most likely they will not be
sychronised (Kassidas et al., 1998). That means that
variations caused by slight time shifts may completely
obscure the process variations.

The goal in process data analysis is to detect differences
between batches. Differences in the data can be caused by
time shifts (e.g. one step in the process takes some minutes
longer). These variations often play a minor role and do
not necessarily have an effect on the process and product
quality. Consequently variations caused by time shifts
should be eliminated whereas variations caused by other
parameters like raw materials should be preserved.

Dynamic Time Warping (DTW) is a technique that on the
one hand equalises data sets regarding their length. On the
other DTW is able to synchronise the data. That is, within
one data set DTW can expand and compress the time line
where necessary.

DTW was developed for speech recognition in the 1975
(Itakura, 1975). In the 90s it was then adapted to
synchronise batch data (Gollmer and Posten, 1996). In this
paper only a short introduction will be given. For a more
detailed description see (Kassidas et al., 1998).

DTW always synchronises two data sets. If there are more
than two sets a reference set is chosen and all other sets are
aligned sequentially. Consider two data sets T and R with #
and r data points respectively. Every data set consists of
measurements on n variables. Figure 2 gives a univariate
example. Two data sets form a grid of possible pairs. DTW
calculates the distances between the data points and
determines a sequence of paired data points that represents
the minimum accumulated distance.

(i(K).j(K))

A~

1 t

Figure 2: Non-linear Aligning of the Time Line with
Dynamic Time Warping



Local constraints are introduced to prevent excessive
warping (comp. Figure 3). Every point in the grid is
provided with a set of possible predecessors. Example a)
does not constrain the slope of the path through the grid
and is proposed by Kassidas et al. (1998). As the approach
did not perform well in this application, local constraint (b)
was chosen, constraining the slope to 2 and 0,5
respectively (Sakoe and Chiba, 1978).

1)) (i)

-1y ..
2) (@ij-1) b)

(i-1/-2)

Figure 3: Local Constraints Limiting the Possible Way
Through the Grid

For every point in the grid the accumulated distance is
calculated only considering the predecessor that minimises
the accumulated distance:

D, (i-1,j-2)+2-d(i,j—1)+d(, j)
D, (i-1,j-1)+2d(, )
D,(i-2,j-1)+2-d(i~1j)+d(i, )

D ,(i, j)=min

Where D, is the accumulated distance and d is the
Euclidian distance d(i, j): (ti — rj). W - (tl, — rj)T at the
specified grid point using W as a weighting matrix. By
introducing weights more suitable (e.g. monotonically
increasing) variables can be favoured. The indices are used
according to Figure 3b. After having calculated all
distances, the optimal predecessor is known for every
point in the grid. The optimal path through the grid is now
determined quite easily. Starting from the last possible pair
in the right upper corner (Figure 2) every preceding point
is known, leading through the grid to the first pair.

Tucker3 Decomposition

The Tucker3 decomposition was introduced by Tucker
(1967) 1t is an extension of principal component analysis
that can handle three-way data, i.e. three dimensional
fields. A detailed description of the decomposition and
algorithms for its calculation are given by Kroonenberg
(1983). In this paper the n-way Matlab toolbox was used
(Andersson and Bro, 2000).

The Tucker3 method decomposes a three-dimensional
matrix X with size / X J X K into three loading matrices A,
B, C which are linked through a core matrix G. The
decomposition can be denoted

P QO R

Xije = zzzaipquckgpqr T €k M)

p=1g=1 r=1
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Where P, Q and R stand for the number of factors in
matrices A, B, C, respectively and e is the residual error.
Figure 4 shows a graphical representation of Equation (1).

G .

X
1
Im

Figure 4: Illustration of the Tucker3 Decomposition of
Three-Way Matrix X.

Every loading matrix can be seen as a set of principal
components for the corresponding dimension of X. That is,
independent factors for time, batch and measurements are
obtained by the decomposition.

The choice of the right factor numbers P, Q, R for a
Tucker3 model is not as easy as for the bilinear Principal
Component Analysis (PCA), where the factors can be
extracted one by one with e.g. the NIPALS algorithm. In a
Tucker3 model all factors are calculated simultaneously
and a change in the number of factors leads to a new
model. That is, the factors in a (1,1,1) model differ from
the first factors in a (2,2,2) model.

In this work an alternating least squares model was used
that is able to handle missing data. This ability was used to
perform cross-validation in order to get the best suited
model. 10 % of the data were randomly removed and a
model was calculated. Then the model was used to predict
the missing data. This procedure was repeated ten times,
so that every element of X was removed and predicted
exactly once. For every model with P, Q, and R factors the
overall Predicted Residual Error Sum of Squares (PRESS)
was determined:

S ~POR
ZZ(M —x,.ij )

1 j=1 k=1

PRESS p =

1
i=

Where x is the true and %79

a (P, O, R)-model.

is the predicted value using

The determination of a Tucker3 model is rather
cumbersome as every factor combination must be
calculated separately and calculation time is increased
tenfold by the cross-validation procedure. A slight
simplification is given by the fact that certain factor
combinations are redundant (Louwerse et al., 1999). This
is expressed by the following relations:

P<QO-R
O<P-R
R<P-Q



All combinations that violate the relations are redundant
and can be omitted, e.g. a (2,1,3)-model violating the
relations does not give a better fit than a (2,1,2)-model. In
that way the number of models to be calculated can be
reduced significantly. E.g. assuming a maximum of 5
factors for each dimension, only 74 instead of 125 models
have to be considered.

RESULTS
Synchronisation with Dynamic Time Warping

The data were autoscaled to ensure a reliable
determination of the distance between points. All nine
batches were then synchronised using batch number 5
(medium quality, medium rest length) as the reference
batch. Before synchronisation batch data vary in length
(510, 690 and 870 data points, respectively) and
characteristic events like a peak in viscosity due to
gelatinization cannot be compared directly as they occur at
different points (Figure 5, upper half).
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Figure 5: Data Sets Before and After Synchronisation
with Dynamic Time Warping.

After synchronisation all batch data sets dispose of the
same length (690 data points). At the same time
characteristic events are shifted along they time line in
order to coincide. Like this batch data become
mathematically comparable. Variations between batch data
are now based on variations in the process and not on time
shifts. In this case a three dimensional array could be built
up with 690 measurements, nine batches and seven
variables.
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Tucker 3 decomposition

The three dimensional data array X was autoscaled to
allow all variables to have the same weight in the
subsequent decomposition. A cross validation was
performed to obtain the best combination of factors.
PRESS did not show a clear minimum. On the contrary,
PRESS decreased with an increasing number of factors.
Thus, the number of factors had to be chosen arbitrary.
The combination of 4 batch factors, 4 variable factors and
2 time factors was considered a careful and stable choice.

Table 1 shows the entries of the core matrix C. The eight
highest absolute values are shaded grey. Every element of
C is assigned to one combination of batch factor, variable
factor and time factor. The entries of C can be interpreted
as the importance of every factor combination to model the
original data array X.

Table 2: Core Matrix of the Tucker3 Decomposition

Variable factor
2 3 4

Time
factor 1

Batch factor

s w|io|=[=]w]e] -

Time
factor 2

The 1,1,1-combination possesses the highest absolute
weight. It cannot be interpreted technologically. Probably
this combination serves as a unspecific scaling quantity
that is contrasted by the other entries.

Six of the eight highest elements of the core matrix
concern the second and the third batch factor. Apparently,
they are important in distinguishing the batch properties.
This is shown in Figure 6. Batch factor 2 groups the
batches according to the rest length during mashing.
Batches with short rests (1, 2, 3) are assigned high values,
medium length batches (4, 5, 6) have low values and
batches with long rests (7, 8, 9) tend to be centred, with
batch 7 being an exception. In contrast, batch factor 3
contains information about the malt quality. Good malt
qualities (1, 4, 7) have rather low values and poor malt
qualities (3, 6, 9) have high values. Batches with medium
malt quality (2, 5, 8) are located in between. This shows
that the Tucker3 decomposition is a powerful tool to
analyse data and to evaluate the degree of process
observability gained by online data. In this case the
information of 40000 measurements is compressed into
one plane, proving that important process information like
raw material quality is hidden in the online data.
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Figure 6: Plot of the second and third batch factor

Another characteristic of the process data is revealed by
looking at the time factors (Figure 7). Time factor 1 is
represented by the black line and time factor 2 is
represented by a grey line. To improve orientation the
temperature profile of a mashing process is shown as well.
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Figure 7: Time Factor 1 (black), Time Factor 2 (grey) and
Temperature (bold black) Over Batch Duration.

The first time factor is low at the beginning of the process,
rises then and remains rather constant throughout the
whole mashing process. It does not differentiate the data
very much. The second factor, however, is of almost
sigmoid shape. It shows a significant shift around data
point 250, corresponding to a temperature of about 55° C.
At exactly that time starch gelatinization takes place. Time
Factor 2 indicates that correlations between data sets differ
before and after gelatinization. The same phenomenon
could be observed in a calibration application based on the
same data (Mitzscherling et al., 20006).

CONCLUSION

Tucker3 decomposition proves to be a powerful technique
to analyse data from batch processes. With this method it
is shown, that online data from a mashing process contain
relevant information about the product quality of the used
raw materials.
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ABSTRACT

Grey Box Neural Models (GBNM) constitute a real
alternative for those processes for which the available a
priori knowledge is incomplete. In this work an application
to a biotechnological process has been performed. Good
results of the GBNM acting as a software sensor for the non
measured state variables has been shown. However even if
the estimation performance is good, correct identification of
the time varying parameters is not assured. Identifiability of
these parameters has to be tested and some proposed
techniques are used in this work showing that the specific
growth kinetics and the specific production kinetics can be
identified although the last one is more difficult because of
its dependence on only one measured variable.

INTRODUCTION

In the development of dynamic system models it is better to
take advantage of a priori knowledge of a process, generally
expressed in terms of sets of ordinary differential equations
which represent mass or energy balances. In complex
biotechnological processes, the most difficult task is the
modeling of time varying parameters, such as the specific
kinetics. In order to address this problem, Psichogios and
Ungar (1992) proposed to use grey-box models which
combine a priori knowledge expressed in terms of a
phenomenological, or white-box model, with a black-box
model such as a neural network. These models have proved
to be satisfactory for dynamic systems, they have better
generalization characteristics, and they can be identified with
a smaller amount of data (Psichogios and Ungar, 1992).
Thompson and Kramer (1994) classified these grey-box
models into two principal categories: those which deliver
intermediate values (of parameters or variables) for use in
phenomenological models (serial grey-box models), or those
in parallel with the dynamic model, adjusted to compensate
for modeling errors (parallel grey-box models). Van Can et
al. (1996) showed that the series strategy resulted in grey-
box models with superior results. More recently Thibault et
al. (2000), and Acufia et al. (1999) have employed and
analyzed this type of models demonstrating their
performance and their use in complex processes.

Another problem that is often encountered concerns the
identifiability of those time varying parameters. This could
be a great problem because the aim of grey-box models is
not only to minimize the difference between the model
output variables and some targets but also to obtain a good
model of the unknown time-varying parameters in terms of
some relevant variables. So the question is how to know
when, even if the outputs are correctly estimated, we can
trust in the time-varying parameters values and hence in the
determined model. So, the objective of this work is to
develop a grey-box neural model for a biotechnological
process taking care of the identifiability of the time-varying
parameters by using some appropriate indices.

This article is organized as follow: first the biotechnological
process is described, then a section is devoted to grey-box
modeling. Identifiability methods are then presented
followed by some results and conclusions.

BIOTECHNOLOGICAL PROCESS

The bioprocess considered is the production of giberelic acid
(a vegetal growth hormone) by the filamentous fungi
Gibberella fujikuroi growing in a solid state batch culture
(SSC) at a laboratory level. A simplified model describing
the evolution of the main variables is reported in (Gelmi et
al., 2002). This phenomenological model based on material
balance laws considers 7 state variables: living Biomass (X),
measured Biomass (X,,), urea (U), intermediate nitrogen
(N)), soluble starch (S), giberelic acid (GA3), produced CO,
and consumed O,. Only the last two variables can be
directly measured on-line but for including parameter § into
the identifiability analysis we will also consider GA; as an
on-line measured variable. The model equations are the
following:

dXm ) (1)
a X

Xy kX @)
dt

av __ (3)
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W, corresponds to the specific growth rate and its
intermediate nitrogen dependence is modeled by a Monod
law. B corresponds to the specific production rate of giberelic

acid.
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The other model parameters were identified on the basis of
some specific experiments and experimental considerations.
Their values are included in Table I for controlled

temperature and water activity conditions (T=25°C,
Aw=0,992).
Table 1: Model parameters
Name/Description Value
Wi Maximum  specific | 0.28
growth rate [1/h]
,B Maximum  specific | 6.5 10"
@ | production rate [g GAs/g X h]
k Urea degradation | 1.33 10™*
constant [g/h]
kn Constant 1.1103
[g Ny/g.is.]
kq Dead constant 0.031
[1/h]
k Giberelic acid | 4.4 10°*
p degradation rate [1/h]
k. Intermediate 7.86 10°
! nitrogen production | [1/g N; g.i.s.]
rate
mg S maintenance | 0.11
coefficient [gS /gXh]
Mcoz CO, maintenance | 0.11
coefficient [g CO, /g Xh]
Mgy 0, maintenance | 0.06
coefficient [g 0, /gXh]
Y xnt Yield coefficient 20.8
[gX/gNi]
Y x5 Yield coefficient 1.21
[gX/g8S]
Y xicoz | Yield coefficient 0.58
[gX/gCO]
Y x02 Yield coefficient 2.11
[gX/g0]
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GREY BOX NEURAL MODEL

As previously mentioned GBNMs take advantage of the
combination of a priori knowledge surrounding a given
process expressed in terms of a set of differential equations
that represent the first principles that govern that process
with neural networks. The latter are responsible for the
modeling of the interaction between variables that are
relevant to the system, and certain parameters whose
expressions are difficult to model. It is a well established fact
that neural networks are capable of approximating non-linear
functions. In particular, it has been demonstrated that
perceptrons, with only one hidden layer and an adequate
number of neurons in their internal layer, are universal
approximators (Hornik ez al., 1989).

For the purposes of the present work it is important to
distinguish between two training modes for neural networks
inserted in GBNMs. The first type, also known as the direct
learning mode (Acuifia et al., 1999), uses the error generated
at the output of the neural network for the correct
determination of its weights (Figure 1).

Inputs Fhenamenalogical Output
B Dynarmic Model,

Parameters

Errar

Figure 1: Grey-Box Neural Model in its direct learning
mode.

The second type corresponds to an indirect mode by which
the error generated at the output of the GBNM is used for the
training of the neural network (Acufia et al., 1999) (Figure
2).

Inputs Pheromenological Cutputs
Dynarmic Model.

¥

Error

E 3

Parameters

Figure 2: Grey-Box Neural Model in its indirect
learning mode.

In the present work the indirect learning mode of the neural
network is used. The neural networks used are multi-layered
perceptrons with only one hidden layer. The training
algorithm is error backpropagation combined with a
Levenberg-Marquardt optimization.

The validation of the results obtained is carried out with tests
that consist in evaluating the error produced when using the
GBNM as a software sensor for the non-measured variables.
The error index used is the Index of Agreement (IA), which
is presented below :



n

0 -p)
MH=1--——
3lof+[p.f)
Where O, and p, are the observed and predicted values

respectively, in time i, and N is the total number of
data. p,"= p.—0, and0,'=0.—0, , where O, is the

median value of the observations.
IDENTIFIABILITY METHODS

The identifiability of model parameters is determined using
techniques proposed by (Brun et al., 2002, Reichert and
Vanrolleghem, 2001) based on sensitivity and uniqueness
analyses. In fact model identifiability will be quantified by
measuring the sensitivity of the model output variables to the
time varying parameters determined by the neural network
part of the grey-box model.

If we considered the measured output variables as
y=@(x,t,0), where X corresponds to the state variables

at time t and & to the unknown parameter vector then the
sensitivity matrix (dimensionless) is:

ay.
ss; = 8; ij}/z
J
i=1... number of observations
j = 1... number of parameters

(11

w; correspond to a scale factor associated with the i™ output
variable and is defined as the inverse of the measurement
error variance.

A dimensionless index of sensitivity, defined by (Brun et al.,

2002) is:

5;“”’ = (12)

Low sensitivity implies low influence of the parameter to the
corresponding output hence low identifiability of this
parameter.

Uniqueness of the parameters depends on their correlation

(Zhang et al., 2003) which is computed from the variance-

covariance matrix of the estimated parameters.

)= cov(d,,6,)
Jeov(8,,6,)-cov(8,,6,)

Corr(6,,6,

A high correlation between the parameters means that they
cannot be uniquely identified from the available
observations.
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RESULTS
Grey-Box Neural Model

The detailed GBNN considering equations (1)-(8) and the
fact that p and B depend on N is shown in Figure 3. It is to
notice that the discretized model of egs. (1)-(8) is
represented as a neural network with fixed weights. Only the
black-box has variable weights which can be identified by
backpropagation considering appropriate activation and
transfer functions. 700 data points obtained from simulation
of the complete model (eqs (1)-(10)) were used for training
purposes while 300 data points were left for validation.

Xmeasu(t)—o ] B Lmeasu(trl)
1= 00314
B N(t+1)
1
L XN
b4
1 LA
() " i y W(t+1)
1 i
i
5(8) o ! S(1)
4
GatH \ 1-440107 s % G ATl
co.w—{_} €Ol
o - O+ 1)
W} i L]
]
Jzzen~tas H »
[ foarizen™u
;
-0 /

activation function: sum of elements
transfer function: hyperbolic tangent

activation function: sum of elements
transfer function: indentity

activation function: product of elements
transfer function: indentity

Figure 3: Grey-Box Neural Model for the SSC process.

Two different tests have been built to evaluate the
performance and the robustness of the GBNM acting as a
software sensor for the first five state variables (eqs (1)-(5)).
That means that the GBNM is used in a Model Predictive
Output (MPO) mode for those five variables (only from
initial conditions) and in an One Step Ahead (OSA) mode



(Billings et al., 1992) for the other three variables (eqs (6)-
(®)):

1. Results under ideal conditions (0% error and no
perturbations).

2. Results with an initial 250% error on the living biomass
and affected by a 5% amplitude gaussian noise on all the
state variables.

The initial value used for the living biomass (without noise
and any perturbation) is 0.01 (gr/gr).

Test 1

For concision reasons only the results on the three most
relevant variables or parameters for this analysis will be
shown. A very good coherence can be seen between the
simulated and estimated values of the living biomass (X) and
the specific growth rate as it is shown in figures 4 and 5.
Good results are also obtained for the estimation of the other
state variables ( IA > 0.99). A non as good estimation of the
specific production rate can be observed. This is probably
due to the exclusive dependence of this parameter to only
one output variable (GA;) as it is shown in Table II.

Estimated and Real Living Biomass
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Real output
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002

0.015
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0 100 200 300 400 500 BOO 700 8OO 900 1000
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Figure 4: Simulated (Continuous lines) and estimated (dotted
lines) living biomass

Estimated and Real Specific growth kinetics
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Figure 5: Simulated (Continuous lines) and estimated (dotted
lines) specific growth rate.
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o x 10* Estimated and Real Specific production kinetics
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Figure 6: Simulated (Continuous lines) and estimated (dotted

lines) specific production rate.

Test 2

A large initial perturbation on the state variable (living
biomass) is quickly compensated by the GBNM acting as a
software sensor and a 5% noise affecting the output is well
filtered by the method. The error of 250% in the initial
living biomass, although is not a real case, allows to clearly
show the properties of convergence and stability of the
method, supposing that in a practical application a great error
in the initial conditions is committed, in the presence of
noisy measurements. General results are shown in figure 7,
8 and 9. The same above mentioned remark concerning the
specific production kinetics f has to be stated

Estimated and Real Living Biomass
0.035

Estirnated output
Real output
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0.02

0.018

Living Biomass

0.01

0.008

L . | | L . ) I |
0 100 200 300 400 5000 600 700 800 900 1000
Tirne: (Min)

0

Figure 7: Simulated (Continuous lines) and estimated (dotted
lines) living biomass
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Figure 8: Simulated (Continuous lines) and estimated (dotted
lines) specific growth rate.
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Figure 9: Simulated (Continuous lines) and estimated (dotted
lines) specific production rate.

Identifiability Analysis

For computing the sensitivity matrix the derivative of the

output to the corresponding parameters was determined from
the following finite difference approximation:

ay,» _ y(x,t,é’j +A6’j)—y(x,t,6’j)
26 AB

A small enough parameter perturbation Aej was used in

(13)

order to assure a small truncation error in the finite
difference approximation. The considered outputs and

and the

specific kinetics pu and f. Hence the sensitivity matrix was
constructed from the determination of:

parameters were respectively CO,,0,,GA4,

9CO, 9CO, 90, 0, IG4, IGA,
du, 9B, ow 9B ou, OB

(14
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In Table II results for the sensitivity index 87" showing

that B has no influence over CO2 and O, are presented. It can

also be noticed that £/, has no influence over GAs.

Table 2: Sensitivity index 5;’”” for different output

variables and parameters.

5l B
Co, 0.0020 [0
0, 0.0012 [0
GA, 0 0.1311

Sensitivities of each parameter to the corresponding output
variables are shown in Figures 10, 11 and 12. The greater
influence of the parameters over the output variables ranges
from 100 to 400 (min) which corresponds to the period of
greater biomass growth.
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Figure 10: Relative sensitivity for CO2 output.
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Figure 11: Relative sensitivity for O2 output.
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Figures 12: Relative sensitivity for GA3 output.

Uniqueness of parameters was analyzed from the following
correlation Table (III).

Table 3: Correlation coefficients between estimated

parameters.
Corr(6,,6,) u B
yz4 1 -0.8554
IB -0.8554 1

It can be seen that the low absolute value of the correlation
index between the parameters obtained (< 0.95) allows them
to be uniquely determined from an adequately identification
procedure.

CONCLUSIONS

GBNM constitute a real alternative for those real world
processes for which the available a priori knowledge is
incomplete, for example in a variety of industrial processes.
As in GBNM only some of the physical and/or chemical
laws that represent the model are known, and there are
unknown parameters that must somehow be estimated,
multi-layered perceptron neural networks have been
employed for their notable capacity to approximate complex
functions on the basis of observed data.

In this work an application to a biotechnological process has
been performed. Good results of the GBNM acting as a
software sensor for the non measured state variables has
been shown. Convergence and noise rejection capacities
were also some of the valuable features of this kind of
software sensor. However even if the estimation
performance is good, correct identification of the time
varying parameters is not assured. Identifiability of these
parameters has to be tested and some proposed techniques
are used in this work showing that both time-varying
parameters, the specific growth kinetics p and the specific
production kinetics B can be identified although the last one
is more difficult to be correctly identified because of its
dependence on only one measured variable (GA3;).

31

Acknowledgements: The authors would like to acknowledge

grants from the Chilean Government (FONDECYT-
1040208).
REFERENCES

Acuiia A., Cubillos F., Thibault J., Latrille E., 1999, Comparison of
Methods for Training Grey-Box Neural Networks Models,
Computers and Chemical Engineering Supplement, 23:561-564.

Billings, S., Jamaluddin, B and Chen, S., 1992, “Properties of
neural networks with applications to modeling non linear
dynamical systems”, International Journal of Control,
55(1):193-224.

Brun, R.; Kiihni, M.; Siegrist, H.R.; Gujer, W. and Reichert, P.
2002. “Practical identifiability of ASM2d parameters -
systematic selection and tuning of parameter subsets”. Water
Research 36(16):4113-4127.

Gelmi, C., Perez-Correa, R. and Agosin, E., 2002, “Modelling
Gibberella fujikuroi growth and GA3 production on solid-state
fermentation”, Process Biochemistry, 37(9):1033-1040.

Hornik, K., Stinchcombre, M. and White, H., 1989, “Multilayer
feedforward networks are universal approximators”, Neural
Networks, 2:359-366.

Psichogios D., Ungar L., 1992, A Hybrid representation approach
for modeling complex dynamic bioprocesses. Bioprocess
Engineering, 22: 547-556.

Reichert P. and Vanrolleghem P. 2001. “Identiability and
uncertainty analysis of the river quality model no.1 (RQM1)”.
Water Sci Technol, 43(7):329-338.

Thibault, J, Acufia, G., Pérez-Correa, R., Jorquera, H., Molin, P.,
Agosin, E., 2000, “A hybrid representation approach for
modelling complex dynamic bioprocesses” Bioprocess
Engineering, 22(6):547-556.

Thompson M., Kramer M., 1994, Modeling Chemical Processes
Using Prior Knowledge and Neural Networks, Computer &
Chemical Engineering, 40:1328-1340.

Van Can H, Braake H., Dubbelman S., Hellinga C., Luyben K.,
Heijnen J.,, 1996, Understanding and Applying the
Extrapolation Properties of Serial Gray-Box Models, AIChE
journal, 44: 1071-1089.

Zhang, Z.F.; AL. Ward. and G.W. Gee. 2003. “Estimating soil
hydraulic parameters of a field drainage experiment using
inverse techniques”. Vadose Zone J. 2:201-211.



32



FOOD
PRODUCTION
SIMULATION



34



A model based on factorial design to predict the evolution of Brettanomyces sp.
population as function of environmental conditions in winemaking

Claudia Castro Martinez

Cédric Brandam
Felipe Ramon Portugal
Pierre Strehaiano
Laboratoire de Génie Chimique, UMR-CNRS 5503
5 rue Paulin Talabot, 31106
Toulouse cedex 1, France
E-mail: Cedric.Brandam@ensiacet.fr

KEYWORDS

Microbial growth, lag phase, Brettanomyces, mathematic model, wine

ABSTRACT

Contamination of wines by Brettanomyces is an increasing
industrial problem. Here, we propose a model able to
predict the evolution of a Brettanomyces population as
function of environmental conditions as temperature,
ethanol concentration or dioxide sulfur concentration.
Polynomial models obtained from factorial design realized
on synthetic medium gave the lag phase, the specific
growth rate and the maximal biomass concentration as
function of these medium factors. A logistic model was
then used with the determined growth parameters to
represent the evolution of Brettanomyces population.

The factorial design showed that temperature has an
important effect on maximal biomass concentration and
specific growth rate but a negligible effect on lag phase.
Conversely, molecular sulfur dioxide had an important
effect on lag phase but a little influence on growth
parameters. Ethanol concentration played an important role
on the three parameters tested.

INTRODUCTION

In wine industry, the market competition is more and more
important with notably the arrival of “wines from new
world”. Today, the wine quality and the productivity are
factors more considered than yesterday in winemaking.
Winemaking needs micro-organisms to ferment sugars into
alcohol, to decrease acidity of wine (malo-lactic
fermentation) or to produce aromas and other sensorial
properties. With these objectives, selected strains are used
in the beginning of the fermentation. Nevertheless, natural
micro-organisms can contaminate the must because it is a
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not sterilized process. Among these contaminants, the
yeast Brettanomyces/Dekkera is particularly undesirable. It
can be found in must but also in wine (Fulgelsang 1997).
Typically, these yeasts grow after alcoholic and malo-
lactic fermentation during storage of wine in tanks, barrels,
or bottles (Chatonnet et al. 1995). They are considered as
organoleptic contaminants of wine because they produce
volatile phenols (4-ethylphenol and 4-ethylgaiacol). These
components are usually described in sensorial analysis as
responsible for “horse sweat” or “mousy taint” flavours
(Heresztyn 1986; Chatonnet et al. 1995).

For about twenty years, some works have been realized to
understand why Brettanomyces appears or not during
fermentation and wine storage. However, the influence of
the environmental factors has been little studied.
Particularly, it is known that growth of yeasts in general is
influenced by temperature and ethanol concentration but
little and controversial data are available for the genus
Brettanomyces. In winemaking, sulfur dioxide is often
added to avoid all type of contamination, but its effect on
Brettanomyces growth is not yet really evaluated.

In this context, the aim of this work was to develop a
model to predict the evolution of Brettanomyces
population in wine as function of different factors as
ethanol concentration, temperature and sulfur dioxide
concentration. A three factorial design was done to
evaluate the influence of these three parameters. We
obtained polynomial models to determine classical
parameters of yeast growth: lag phase, specific growth rate
and maximal population. A logistic model was then used to
represent the growth phase. Finally, we were able to
simulate the evolution of Brettanomyces population for a



medium with a known composition in ethanol and sulfur
dioxide and for a fixed temperature.

MATERIALS AND METHODS
Yeast strain

The Brettanomyces bruxellensis strain used in this work
was isolated in a winemaking plant in France. Its
identification was made using PCR by IDAC laboratory
(Nantes, France).

Culture media

Cultures were made on synthetic medium close to wine.
The composition was in g/L: glucose, 10; fructose, 10;
MgS0,.7H,0, 0.4; KH,PO,4 5; (NH4),SO4 0.5; yeast
extract, 0.5; citric acid, 0.3; malic acid, 3; glycerol, 6.
Sterilization was made during 15 min at 120°C.

Culture conditions

Preculture was prepared in two steps of 35 h each. First, in
medium without ethanol; then, 3% (v/v) of ethanol was
added in culture medium. The experiments were carried
out in cotton plugged Erlenmeyer flasks of 500 mL with a
300 mL working volume at 150 rpm and without aeration.
After sterilization, the medium was inoculated with 3x10°
cells/mL. Temperature was controlled. Before inoculation,
the alcoholic concentration was set to the wanted level by
addition of ethanol. The initial pH value was adjusted and
the initial free sulfur dioxide concentration was fixed.

Analytical techniques

Biomass concentration was followed by two techniques. A
correlation between the optical density of yeast suspension
at 620 nm and the cell dry weight gives weight
concentration.

Data treatment

Experimental biomass concentrations were smoothed by a
cubic spline function. The lag phase was then predefined
as the time needed to double the initial biomass (A=2X,).
The specific growth rate p, and the maximal biomass
concentration X,,,x were equally obtained from smoothed
experimental data.

The statistical software (Statgraphics, Centirion XV) was
used to analyze the results of the factorial design. In order
to determine the sensibility of the calculated parameters, an
analysis of variance (ANOVA) was done.
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RESULTS AND DISCUSSION
Role of pH

Preliminary experiments were done to evaluate the effect
of the pH on microbial growth and lag phase. The pH
values tested were 3.2 and 3.6, with no sulphur dioxide, for
two ethanol concentrations (7 and 10% v/v) and two
temperatures (18 and 25°C). The results obtained showed
that pH had no influence on the lag phase and growth (data
not showed). So, pH was not taken into account in the
factorial design as individual factor. However, it is well
known that pH plays an important role for the action of
sulphur dioxide on microbial growth. When SO, is added
in a medium, a part is combined with other constituents of
wine and a part remains free. Depending on pH value, the
free SO, is partially dissociated and transformed in
molecular SO,. Only the molecular SO, is able to enter the
cell and act on micro-organism activity. The amount of
available molecular SO, is function of pH value and free
SO, concentration. The equation used to calculate the
molecular SO, is:

FreeSO,

MolecularSO, = L0130

As consequence of this preliminary study, pH value allows
adjusting the desired initial molecular SO,.

Factorial design

A 2° factorial design with four central points was used to
determinate the significance of individual and interaction
effects of the initial ethanol concentration, initial molecular
SO, concentration and temperature on the maximal growth
(Xinax)» maximal specific growth rate (Um.x) and lag phase
(A). The value factors are presented in table 1.

Table 1. Coded factor levels and real values for the
experimental design

Factor Low value High value
D 1)
Ethanol (% v/v) 7 10
Molecular SO, 0.16 0.39
(mg/L)
Temperature (°C) 18 25

The results of the adjusted models obtained for maximal
biomass concentration, maximal specific growth rate and
lag phase as function of the more significant variables
were:

Xmax=1.80-021E+0.16 T



Bmax = 0.039 - 0.009 EOH + 0.011 T - 0.003 E*SO,m -
0.004 E*T

A = 1048 + 783 EOH + 72.5 SO,m - 109 T + 73.2
EOH*SO,m - 6.0 EOH*T - 4.2 SO,m*T

Where E is the initial ethanol concentration, SO,m the
initial molecular sulfur dioxide concentration and T the
temperature.

The analysis of variance (ANOVA) showed that p,,,x and A
presented a high correlation coefficient (>0.95) and X«
the highest coefficient (0.99). The polynomial models
could be considered statistically significant according to
the T-test with 95% of confidence.

The figures 1 to 3 show the Pareto charts for the three
studied responses. They allow visualizing the significance
of each factor on studied responses.

Maximal biomass concentration and maximal specific
growth rate.

Figure 1 concerns the maximal biomass concentration and
figure 2 the maximal specific growth rate. The ethanol
concentration (E) and the temperature (T) had a significant
effect on these two factors whereas the molecular SO,
(SO, m) was not significant. For maximal biomass
concentration, no interaction factor was significant
whereas for maximal specific growth rate ethanol-
temperature and ethanol-sulphur dioxide interactions were
little significant. Finally, the most important effects were
those of ethanol concentration and temperature for these
two growth parameters. Ethanol concentration had a
negative effect whereas temperature increased the growth
rate and the quantity of produced cells.

P=0..05 P=0.05

-0.3 -0.2 -0.1 0 0.1 0.2
Effect Estimate

Figure 1. Pareto chart of all effects on maximal biomass
concentration.
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Figure 2. Pareto chart of all effects on maximal specific
growth rate.

The inhibitory activity of ethanol can be linked to the cell
membrane permeability. Its toxicity is associated with the
solubility in membrane lipids (Leao and Van Uden 1982).
Moreover, the ethanol was found to inhibit hexokinase and
some amino-acid synthesis enzymes and thus metabolic
deficiencies on the cell reproduction (Nagodawithana et al.
1977).

On the other hand, the positive effect of the temperature
can be related to the increase of the membrane fluidity. It
is equally associated to the increase in the affinity of the
protein transport for substrates (Nedwell 1999). Silva et al.
2004 showed the same behaviour as regards of temperature
and ethanol concentration for Brettanomyces and Dekkera
in wine.

Lag phase

Figure 3 shows that lag phase was mainly affected by
ethanol and molecular SO, concentrations. These two
factors increased the lag phase. The interaction of the
ethanol and molecular SO, was also very significant with a
synergic effect. A slightly negative effect was observed for
the temperature. The other interactions were not really
significant.

Traditionally, the molecular SO, is wused as an
antimicrobial agent in winemaking (Beech and Thomas
1985). The addition of this compound in wine decreases
the specific ATPase activity and as consequence increases
lag phase. In the cell, sulphur dioxide may react with
proteins, nucleic acids and some cofactors. It can inhibit
enzymes and as consequence cells are unable to replicate
(Romano et al. 1993).



Effect Estimate

Figure 3. Pareto chart of all effects on lag phase.
Model for Brettanomyces growth

The factorial design enabled to determine the main influent
factors on Brettanomyces growth. It gave three polynomial
models to determine A, pmax and Xmax as function of
temperature and medium composition in ethanol and
sulphur dioxide.

To represent the evolution of the Brettanomyces
population, we used the logistic model (Verhulst 1845).
These model is known for its “goodness of fit” to describe
the dynamic of the biomass in a batch culture.

The general form of the logistic equation is:

X
X|1- (D
. { X}

The integration of equation 1 gives:

ax _
dt

g maxt
X,e

X(0= @

1- o
(X

max

)(1_e,umaxr)

The parameters Xmax and pmax were calculated for each
experiment with the polynomial models. As the logistic
model does not allow representing the lag phase, it must be
combined with the lag phase polynomial model.

A good correlation between experimental points and
modeled values for biomass concentrations was obtained
(> 0.95) for all the experiments.

Figure 4 shows examples of biomass profiles for 6
experiments. The temperature increase favoured the
growth rate and the maximal population but didn’t act on
the lag phase (4A). Moreover, the increase of ethanol
concentration increased the lag phase and decreased the
maximal population obtained (4B). We can equally see the
importance of initial molecular SO, on the lag phase but
also the absence of effect on the growth rate (4C).
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Figure 4. Comparison of experimental biomass values
(points) and modelled values (lines). (A) experiment at 7%
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molecular and 7 or 10% of ethanol; (C) experiment at
25°C, 0.39 or 0.16 mg/L of initial SO, molecular and 10%
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CONCLUSIONS

This work showed that high concentrations in ethanol led
to decrease the maximal biomass concentration and
maximal specific growth rate. Temperature acted equally
on growth but by increasing the maximal specific growth
rate and the biomass concentration. For the lag phase, the
initial ethanol and molecular SO, concentrations had a
great effect. The interactions between these two factors
were equally very important, increasing the lag phase.
These compounds are well known as inhibitors of micro-
organisms (Moulin et al. 1984; Du Toit and Pretorius
2000). It is interesting to remark that SO, delayed the
beginning of the growth but didn’t act on the growth rate
and on the quantity of final biomass. The mechanism of
action of this compound remains still little known. Similar
results were obtained by Medawar et al. 2003 on another
Brettanomyces strain.

In this work, we established a model to predict the
evolution of Brettanomyces population in a synthetic wine
medium. Industrially, the problem is not really the
Brettanomyces presence but some by-products as ethyl-
phenol and acetic acid produced by this yeast. The
following of this study is to determine the relation between
the growth of Brettanomyces and the production of these
undesirable compounds.
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ABSTRACT

We discuss the application of a computational fluid
dynamics (CFD) approach, first to predicting air velocities
in a large batch-type meat carcass chiller, and second to
designing low-cost technical solutions to increase
ventilation levels around the carcasses. Comparisons
between calculations and measurements revealed close
agreement in the qualitative prediction and some
inaccuracies in the quantitative prediction of airflow
velocities in both the existing and the modified chiller
configurations. Adding two rows of six fans above the fifth
and thirteenth rows of carcasses led to a marked increase in
air velocity in the volume filled by the meat carcasses as a
result of an increase in air change rate. Therefore, compared
with experimentation, CFD is a low-cost option well-suited
to testing new technical solutions designed for improving
the operation of food plants.

INTRODUCTION

Carcass chiller performance is known to be affected by
airflow distribution, equally as much in continuous-type
systems as batch-type systems.

In continuous chillers, although the movement of each
carcass means average air velocity remains the same, the
existence of poorly ventilated areas is much more harmful to
process efficiency than airflow heterogeneity because
potentially large poorly ventilated areas are liable to have a
strong and durable impact on chilling kinetics (Daudin and
Van Gerwen 1996). Mirade et al. (2002) calculated that
increasing ventilation in a continuous-type chiller from a
mean velocity of 0.17 m.s” (with variations ranging from
0.10 to 0.45m.s™) to 0.39 m.s" (with variations ranging
from 0.10 to 1.02 m.s™) led to a 14% increase in the heat
extracted from an 80 kg pork carcass. These authors also
indicated that this adjustment in ventilation level shortened
the chilling time of the carcass by only 20 min, while
increasing its total weight loss from 1.3% to 1.7%.

In batch chillers, the spatial heterogeneity of air velocity is
the main source of variations in chilling times and weight
losses, which are the two most important economic criteria
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in terms of process efficiency and homogeneity. Wooton's
study (1986) on the relative effects of various parameters
(carcass location, carcass weight, fatness, ctc.) on deep leg
temperature in beef carcasses chilled in a conventional batch
plant highlighted variations of over 10°C in the temperatures
reached at 24 h after slaughter. A multivariate analysis
showed that carcass location (i.e. air velocity distribution) in
the room was as important as carcass weight in explaining
the observed temperature heterogeneity. Kondjoyan and
Daudin (1997) calculated that the core temperature and
weight losses of 80 kg pork carcasses varied from 1.7°C to
nearly 11°C and from 1.8% to 2.8%, respectively,
depending on whether the carcasses were located close to a
fan refrigerator unit where airflow velocity, temperature and
turbulence reached 2.0 m.s™, -1°C and 40%, respectively, or
whether they were located in a poorly-ventilated area where
air velocity, temperature and turbulence reached 0.5 m.s™,
3°C and 6%.

However, there can be no ideal chiller design and operation
since each configuration suffers from specific disadvantages
leading to airflow heterogeneity which impairs process
efficiency, caused by both the air conditioning system and
plant geometry (Mirade and Picgirard, 2001).

Until now, engineers have used practical know-how and rule
of thumb in chiller design and operation, with all the
inherent risks of making mistakes. However, since
Computational Fluid Dynamics (CFD) codes have become
commercially available over the last ten years, many authors
have investigated the use of CFD as a tool for rationalising
design and operation in the food industry (Scott 1994;
Mariotti et al. 1995; Scott and Richardson 1997; Mirade and
Daudin 1998a; Hu and Sun 2000; Hoang et al. 2000; Foster
et al. 2002; Mirade et al. 2002; Xia and Sun 2002; Xie et al.
20006).

General purpose CFD codes such as Fluent or CFX were
designed for solving turbulent fluid flow problems coupled
with heat and mass transfers in a given geometry by the use
of a mesh where all the Navier-Stokes transport equations
are solved. The above-mentioned studies highlight how
CFD can be applied to improve our understanding of the
dynamics and physics of the chilling operation and thus
optimise existing equipment and help design new solutions.
Mirade and Picgirard (2001) used CFD techniques to
improve air circulation around beef carcasses in a



continuous-type chiller. Based on 2D models, they showed
that installing a jet deflector in front of the cooling battery
fans offered a good and efficient compromise between
airflow patterns and investment costs, but without
experimentally checking the beneficial effects of adding this
deflector.

The objective of this study was to improve airflow
distribution inside a 1,825 m’ batch-type meat carcass
chiller where measurements had pointed out insufficient
ventilation levels. Two types of 3-dimensional CFD model
were constructed; the first was designed to match calculated
air velocities with measurements in order to fit the
parameters of the porous media used to represent the rows
of carcasses, while the second type was designed to identify
a technical solution offering significant improvements in
ventilation levels around the carcasses. The solution
designed was then installed, and its efficiency in terms of
increased ventilation levels was assessed and compared to
the previously obtained numerical results.

MATERIALS AND METHODS
Description of the meat carcass chiller

The large batch-type meat carcass chiller investigated in this
study is illustrated in Figures la (transverse section) and 1b
(top view). The chiller was 18.9 m long on one side, 21 m
long on other side, 16 m wide and 6 m high, giving an
overall volume of over 1,825 m>. The full airflow rate blown
into the plant was 173,000 m’h, ie an air change rate of
about 95 volumes.h”'. The filling capacity of this large
carcass chiller was 375 beef carcasses arranged in 15 rows
(Figures 1a and 1b).

The air conditioning system was composed of four cooling
batteries coupled with 14 fans placed above the rows of
carcasses, near the ceiling and approximately at half-width
of the chiller (Figures la and b). Air was blown through
0.6 m-high openings located on both sides of the four
cooling batteries and extracted through the 14 fans set
underneath the cooling batteries at 4.1 m from the floor
(Figures 1a and b). These figures also include two additional
rows of six fans, detailing the change performed in the meat
carcass chiller following CFD modelling in order to improve
ventilation levels (See section ‘Air velocity fields in the
modified chiller configuration’).

The first row of carcasses was located at 0.62 m from the
side wall of the plant, and the last 1.14 m away from the
other side wall. Distance between two consecutive rows was
0.9 m, except between rows 6-7 and 10-11 where free space
reached 2.37 m and 1.17 m, respectively (Figures 1a and b).
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Figure 1: Geometry of the Large Meat Carcass Chiller
Studied: (a) a Transverse View, and (b) a Top View (the
Arrows Represent Air Inflow and Air Outflow)

Air velocity measurements

An experimental study of air velocity carried out in the
chiller yielded a diagnosis of its overall operation (Picgirard
and Mirade 2005). This diagnosis was obtained using a
method specially developed for measuring velocity by
means of a hot-film anemometer in an industrial air flow
(Mirade and Daudin 1998Db).

This method allows the average air velocity values to be
calculated quickly and accurately at up to several thousand
points via the following procedure: (i) probes are moved
slowly and continuously, and measurements are recorded at
regular intervals; (ii) a signal processing technique is
applied to the data to eliminate as far as possible any time



variations due to airflow unsteadiness, and thus obtain mean
air velocity values versus spatial co-ordinates. Measurement
accuracy is 0.1 m.s™, ie. equal to the measurement error
when using a hot-film anemometer. In addition, this method
reduces experiment duration 350-fold compared with the
standard procedure which consists in averaging
measurements over a long enough time to obtain a constant
value for mean velocity (Mirade and Daudin 1998b).

Owing to the batch operating conditions of the meat carcass
chiller investigated in this study, a purpose-built cableway-
type system (Mirade and Picgirard 2001) was used to hold
the measurement devices and automatically move them at a
slow and fairly constant velocity, at heights ranging from
66 cm to 311 cm (at 35 cm steps) and for lengths ranging
from 273 cm to 1673 cm (at 10 cm steps). The measurement
devices were multi-directional hot-film anemometers (model
8465, TSI, St Paul, USA) connected to a data-logger
(Squirrel 1000, Grant, Cambridge, England). The travel
velocity chosen for the experiments was about 2.3 cm.s™ to
be high enough to keep the experimental time short but low
enough to be negligible compared with the air velocity to be
measured.

A total of 3,480 measurement points were performed inside
the large meat carcass chiller.

CFD models

Based on the geometrical configuration presented in
Figure 1, we wused the CFD code 'Fluent 6.0.20'
(Anonymous, 2001) to build two series of numerical models
based on unstructured 3-dimensional hybrid meshes of
1,342,000 hexahedral and tetrahedral cells.

The inside of the air conditioning system was considered as
being outside the computational domain; therefore, air
inflow corresponded to the output from the openings located
on both sides of the cooling batteries, and air outflow
corresponded to the 14 fans located in the lower part of the
air conditioning system.

To simplify the mesh and thus reduce total computation
time, the carcasses filling the plant were represented by
three anisotropic mega-porous media (the first for rows 1 to
6, the second for rows 7 to 10 and the third for rows 11 to
15) coupled with the Darcy-Forchheimer approach in which
viscous resistance, inertial resistance and porosity factors
had to be adjusted according to the three spatial directions.

Due to the absence of a rational method for calculating these
factors, the first series of models was constructed to identify
the factors by visually comparing the measured fields with
the air velocity fields determined from a host of CFD
calculations, assuming that viscous resistance factor was
equal to zero whatever the spatial direction considered. This
assumption amounts to neglecting the Darcy term in
comparison with the Forchheimer term in the expression of
the momentum source term added to the standard fluid flow
equations. In other words, it means that the mean static
pressure gradient is linear with the squared mean air velocity
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within the porous medium, and not proportional to the
velocity as expressed by the Darcy formulation. This
assumption is often made in bioclimatology when assessing
airflows in greenhouses or wind circulation in forests
(Bartzanas et al. 2002) and was recently verified in a food
industry setting (Mirade et al. 2004).

Further to the analysis of the first series of simulations,
porosity factor was determined as 90% whatever the spatial
direction considered, and values of 10, 2 and 5m" were
determined for the inertial resistance factors according to the
length, height and width of the mega-porous media,
respectively.

Once the factors of the porous medium formulation were
determined, a second series of 3-D simulations was
performed to identify an efficient technical solution for
increasing air velocities within the carcass chiller.

All the solutions tested were based on adding fans. Indeed,
given the geometry of this large chiller, we decided that
adding deflectors just at the output of the air-conditioning
blowing areas would be an inefficient solution. We then
decided to test the adding of two new rows of fans that
would be located at approximately half-distance between the
output of the air-conditioning blowing areas and the lateral
walls of the chiller. The aim of these new simulations was to
optimize the number and location of these fans while
assessing the improvement in ventilation levels around the
carcasses.

In all the numerical models built, airflow was considered as
steady, incompressible, isothermal and turbulent. Main flow
turbulence was taken into account using the tried-and-tested
standard k-¢ model (Launder and Spalding 1972) when far
from the walls, which were assumed to be smooth, and
where the standard wall function was applied. The Simple
algorithm (Patankar and Spalding 1972) was chosen for
coupling pressure and velocity and introducing pressure into
the continuity equation. A first-order upwind differencing
scheme was incorporated into the computational models as
discretization scheme for the convection terms of each
governing equation. First-order schemes are known to
increase numerical diffusion due to discretization errors,
especially when the flow is not aligned with the mesh, i.e.
for triangular and tetrahedral grids (Hirsch 1988). Although
they therefore yield less accurate results, first-order schemes
give better convergence of calculation than second-order
schemes.

For all the calculations performed, an air velocity of
2.3 m.s” determined based on in situ measurements and a
turbulence rate arbitrarily valued at 10% were specified in
the inlet area corresponding to the output of the openings
located on both sides of the air-conditioning system.
Outflow-type boundary conditions were applied at the
extraction areas corresponding to the 14 fans located
underneath the air conditioning system at 4.1 m from the
floor. This is the standard type of condition used when
details on air velocity and pressure fields are unknown prior
to solution of the flow problem; it is obeyed in fully-



developed flows where the diffusion flux for all variables in
the exit direction is zero.

Calculations were performed on a 3 GHz P IV PC with
2.0 Go of RAM. Complete convergence of the discretized
differential equations required 17 h.

RESULTS AND DISCUSSION

Given the large number of simulations performed both to
calculate airflow patterns in the existing configuration and
to test technical solutions liable to improve ventilation
levels, only significant results are reported in this section,
i.e. results corresponding to the existing configuration with
porous media porosity and inertial resistance factors fitted to
90% and 10, 2 and 5m.s’, respectively, and results
corresponding to the technical solution configuration that
most significantly increased the air velocities around
carcasses at limited cost.

Air velocity fields in the existing configuration of the
chiller

Analysis of the top view located at a height of 206 cm
(Figure 2) showed a fairly strong heterogeneous airflow in
the existing meat carcass chiller configuration, with air
velocities higher than 1.4 m.s™ near the lateral walls, almost
certainly resulting from airflow flowing down, and less than
0.2 m.s” on both sides of the air conditioning system. This
uneven airflow distribution almost certainly impaired
process efficiency on account of the large poorly ventilated
areas illustrated in Figure 2, which highlights a lack of
ventilation in the areas filled by the carcasses. Simulation
also indicated a more highly ventilated area underneath the
extracting fans of the cooling batteries, with air velocities
exceeding 0.6 m.s™.
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Figure 2: Air Velocity Fields Calculated on a Horizontal
Section Located at a Height of 206 cm from the Floor in the
Existing Configuration of the Meat Carcass Chiller
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Consequently, chilling kinetics had to be altered and
variations in chilling times could occur, since beef carcasses
placed in low-velocity areas will cool far more slowly than
carcasses placed underneath the cooling batteries,
particularly if they are of higher weight.

Figure 3, which is a top view located at a height of 66 cm,
i.e. level with the neck of carcasses, shows higher air
velocities than previously (Figure 2), with values exceeding
0.4m.s"' and peaking at 1.4 m.s’ at many points. There
appeared to be unbalanced ventilation levels at this height
between the right-hand side of the chiller where air
velocities were higher than 1 m.s™' and the left-hand side,
where they were closer to 0.6-0.8 m.s.
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Figure 3: Air Velocity Fields Calculated on a Horizontal
Section Located at a Height of 66 cm from the Floor in the
Existing Configuration of the Meat Carcass Chiller
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Figure 4: Overall Comparison between Simulated and
Measured Air Velocities in the Existing Meat Carcass
Chiller Configuration

Comparisons performed between the numerical predictions
of air velocities and the 3,480 measurement points in the



existing chiller configuration revealed fairly close agreement
and correlation between the two, as indicated by the slope of
0.78 and the coefficient R* of 0.77 of the straight line
linking velocity simulation and measurement (Figure 4).
However, the CFD model underestimated the air ventilation
levels inside the chiller, since the slope was not equal to the
ideal value of 1. Overall comparison also confirmed the
poor ventilation of the full volume filled by the meat
carcassels, since all the velocity magnitudes were lower than
1.8 ms™.

Figure 5, comparing air velocity prediction against carcass
row number, shows that poor performance of the CFD
model is particularly obvious for rows 5 and 6, with a
discrepancy of about 35% on account of strong
underestimation of the air velocity predictions in these rows.
However, excluding rows 5 to 6, the discrepancy between
simulations and measurements of air velocities ranged from
less than 4% (row 14) to about 25% (rows 4 and 11), and
remained absolutely comparable to the discrepancies
commonly reported in 3-D airflow pattern modelling studies
performed in large cooling plants (Mirade and Daudin
1998a; Hoang et al. 2000).
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Figure 5: Comparison between Simulated and Measured Air
Velocities in the Existing Meat Carcass Chiller
Configuration versus Carcass Row

The data in Figure 5 confirm the findings illustrated in
Figure 2, i.e. highly ventilated areas near the lateral walls of
the chiller (rows 1 and 15) and underneath the cooling
batteries as a result of a suction effect generated by the 14
extractor fans (rows 7 to 10), surrounding more poorly
ventilated areas with air velocities lower than about 0.6 m.s™
(rows 3 to 6 and 11 to 14). It appears that the air blown
either side of the four cooling batteries mainly follows the
ceiling and flows down near each of the lateral walls, before
circulating in the free space ranging from the ground to the
carcass necks and rising back up towards the 14 extractor
fans, thus giving rise to both a clockwise airflow and a
counter-clockwise airflow.
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Several possible explanations may be put forward to explain
the limited accuracy in air velocity prediction, particularly
for rows 5 and 6: (i) integration into the CFD model of the
standard k-e model for modelling turbulence and the first-
order upwind differencing scheme as discretization scheme
for the convection terms in the fluid mechanics equations,
which are known to reduce strong gradients and give rise to
numerical diffusion (Hirsch 1988); (ii) the use of porous
media which only roughly describe the preferential paths for
airflow over the meat carcasses into the rows, and possibly
(iii) despite steadily increasing computational power and the
1,342,000 cells used for meshing the existing chiller
configuration, the potential impossibility of obtaining truly
independent results due to an insufficiently fine mesh.

However, given the adequate accuracy in air velocity
predictions for the existing configuration, the CFD code
'Fluent' (Anonymous 2001) was then applied in an attempt
to identify technical solutions for improving ventilation
levels inside the large batch chiller.

Air velocity fields in the modified chiller configuration

As mentioned earlier, the second series of 3-D simulations
was performed to identify an efficient and low-cost
technical solution to significantly improve ventilation levels.
All the solutions were based on adding fans above the
carcass rows at half-distance between the blowing areas of
the four cooling batteries and the lateral walls. The second
series of simulations aimed to optimize the number and
location of these fans, while assessing the improvement in
ventilation levels around the carcasses.

The efficient and low-cost solution chosen for increasing air
velocity magnitudes around the beef carcasses in order to
reduce chilling times is depicted in Figures la and b. It
consisted in adding two rows of six fans above the fifth and
thirteenth rows of carcasses, leading to a 50% increase in
airflow rate and air change rate inside the plant.

A comparison of Figure 6 with Figure 2 shows that adding
12 fans significantly increased ventilation levels, since large
areas with air velocities lower than 0.2 m.s”" have almost
disappeared owing to the increase in air change rate.
However, on the whole the airflow distribution still
followed the same patterns, with the most ventilated areas
located near the lateral walls and below the extractor fans
surrounding more poorly ventilated areas, on account of
there being no jet deflector installed in order to force the air
to penetrate the carcass rows. Indeed, given the geometry of
this large chiller, we decided that adding deflectors just at
the output of the air-conditioning blowing would be an
inefficient solution, and too difficult to assess.
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Figure 6: Air Velocity Fields Calculated on a Horizontal
Section Located at a Height of 206 cm from the Floor in the
Modified Configuration of the Meat Carcass Chiller where

Additional Rows of Fans Are Working

Figure 7 illustrates the positive effect generated by the
addition of two rows of six fans on ventilation levels in the
area filled by the meat carcasses. Comparison with Figure 3
clearly highlights the disappearance of the imbalance in
airflow distribution between the right-hand side and left-
hand side of the chiller. As previously, ventilation level is
higher at levels close to the floor.
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Figure 7: Air Velocity Fields Calculated on a Horizontal
Section Located at a Height of 66 cm from the Floor in the
Modified Configuration of the Meat Carcass Chiller where

Additional Rows of Fans Are Working

From a practical point of view, the solution consisting in
adding two rows of six fans above the fifth and thirteenth
rows of carcasses represents a particularly interesting
compromise between efficient gain in ventilation levels and
low investment costs. Furthermore, it also has the advantage
of being relatively simple to implement in an industrial large
volume configuration.
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Validation of the improvements numerically tested

The best solution design following the CFD investigation
was installed on-site in the large meat carcass chiller. A
second campaign of air velocity magnitude measurements
was carried out to assess the real efficiency of the CFD-
designed technical modification.

Figure 8 gives a full comparison between the air velocities
predicted by the CFD model and the measured values taken
from the second campaign of experimental investigation. As
in the case of the existing meat carcass chiller configuration
(Figure 4), the 3,480 simulated air velocities values were in
quite close agreement with the measured velocities; the
slope of the straight line reached 0.74, compared to 0.78
previously. However, the coefficient R* decreased from 0.77
to 0.71, meaning that the total dispersion of the comparison
points increased, probably due to a higher discrepancy
between calculation and measurement at several points or in
certain areas.
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Figure 8: Overall Comparison between Simulated and
Measured Air Velocities in the Modified Meat Carcass
Chiller Configuration

Even so, the correlation between the predicted air velocities
and the measured velocities remained clear. Furthermore,
Figure 8 confirms the increase in air velocities shown in
Figures 6 and 7, since air velocity magnitudes exceeded
2m.s™ and even peaked at 3 m.s™ at several points of the
modified chiller configuration, whereas all the velocity
magnitudes were previously lower than 1.8 m.s™ (Figure 4).

Figure 9 comparing air velocity prediction against carcass
row shows that, as was the case with the existing carcass
chiller configuration (Figure5), the CFD model
underestimated the air ventilation levels, particularly for
rows 2 to 6 where the underestimation exceeded 21%
(row 2) and even reached 37% (row 6). Figure 9 also
confirms the results of Figure 5, namely a strong ventilation
in the middle of the plant and for rows 1 and 15 located in



close vicinity to the lateral walls of the chiller. On the
whole, the discrepancy between simulation and
measurement was still in agreement with the discrepancies
commonly reported in the literature (Mirade and Daudin
1998a; Hoang et al. 2000).
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Figure 9: Comparison between Simulated and Measured Air
Velocities in the Modified Meat Carcass Chiller
Configuration versus Carcass Row

The air velocity measurements highlighted a strong increase
(about 39%) in mean air velocity magnitudes in the whole
volume filled by the meat carcasses following the addition
of the two rows of fans, thus corroborating the findings of
CFD modelling. In addition to this strong increase in
velocity magnitudes, the measurements also indicated a
slight decrease of 5% in mean standard deviations.

Several months after the experiment and the installation of
the additional rows of fans, the professionals who use this
large batch-type chiller have unambiguously noted a marked
reduction in mean carcass temperature values on exit from
the plant.

CONCLUSION

This study clearly shows that CFD techniques can be very
useful tools for both assessing and improving air circulation
in industrial meat carcass chillers, and thereby process
efficiency, even though the use of porous media represented
a major simplification of the filling of the plant in the
numerical models.

Following on from a first series of numerical models built to
understand air flow patterns in the existing configuration of
the large batch-type carcass chiller, a second series of
calculations was performed in order to identify a technical
solution for improving ventilation levels in the plant. In
general, comparison of calculations with measurements
revealed close agreement with the predictions of air velocity
magnitudes within the chiller.

The results reported here demonstrate that CFD is well
suited to evaluating the significance and effects of
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modifying certain operating parameters or design elements
on the performance of food processing apparatuses, and
therefore to testing new technical improvement solutions at
low-cost while saving time compared with an experimental
investigation. Further progress can be expected in years to
come as increasingly flexible CFD codes are run on PCs
with steadily increasing calculating power.
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ABSTRACT

Computational Fluid Dynamics was used to simulate air
flow, heat transfer and temperature distribution in a
continuous multi-conveyer industrial oven, developed for
cooking convenience meat products. A prototype design
was evaluated and shown to perform poorly in terms of air
flow and temperature uniformity. Based on the results, the
oven design was adapted and re-evaluated in order to
improve its performance. Adaptations included changes for
better controlling the air flow and optimising the position,
shape and size of air deflection plates, used for uniformly
distributing preheated air over the successive conveyers.
Satisfying results were obtained and Computational Fluid
Dynamics can be seen as a powerful tool to optimise the
design of food process equipment, reducing the need for
experimental work.

INTRODUCTION

Computational fluid dynamics (CFD) is a powerful design
and analysis tool to optimise processes and equipment. Also
in the food and beverage industry, it can be used to provide
physical understanding of food processing problems in
detail, through flow and thermal field predictions (Scott and
Richardson, 1997). Well-considered design of food
processing equipment, assisted by CFD studies that help in
understanding the dynamics and underlying physics of
process operations, can lead to reduced energy
requirements, increased product throughput and improved
product quality.

CFD was used to optimise the design of a multi-conveyer
industrial oven for cooking convenience meat products. The
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performance of such ovens in terms of product quality
largely depends on the uniformity (air velocity and
temperature) within the oven. Process uniformity is critical
and determines the overall quality of the treated products.
In this work, a prototype oven was used as a case study. At
the time of the research, the oven was not constructed yet.
The output of the study was used to provide guidelines with
respect to geometrical design.

OVEN DESCRIPTION

Fig. 1 shows the original design of the oven prototype. The
oven consisted of an insulated compartment and eleven belt
conveyers for transporting the products in the longitudinal
direction through the oven. Products at low temperature
enter the oven at the topmost conveyer belt and leave the
oven at the bottommost belt (Fig. la). The product
residence time is determined by the conveyer belt speed.
Pre-heated air is circulated in the oven by means of a fan.
The stream directions of air and products were
perpendicular and air could flow over the successive
conveyer belts loaded with product, as well as in the areas
between leaving and returning conveyer belts (Fig. 1b).
Obviously, the latter air flow will not directly contribute to
heat transfer to the products. Furthermore, the oven was
provided with an automatic valve (Fig. 1b) that allowed
reversing the air flow direction. Air flowed alternately in
opposite directions and products that lie on one side of the
conveyer belt experience the same process conditions as the
ones lying on the other side. For a uniform process, the air
should be uniformly distributed over the belt conveyers. For
this purpose, air deflection plates with plate linearly
increasing from top to bottom were used (Fig. 1b).
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Figures 1: Geometry of the Cooking Oven: (a) Longitudinal Section; (b) Cross Section

CFD ANALYSIS AND DESIGN IMPROVEMENTS

Because the main air flow direction is perpendicular to the
conveyer belt direction, a two-dimensional approach was
followed, i.e., air flow was simulated in a vertical cross-
section (sectional plane AA’ in Fig. 1a). Fig. 2a shows the
simplified internal geometry for the original oven design. In
the generation of the computational mesh, the insulation
layer was not included, as the CFD solver used a one-
dimensional equation to account for heat transfer through

the walls. The complexity of the upper part of the oven,
containing the heater, the fan and the valve for reversing the
air flow direction, was strongly reduced: only the air inlet
and outlet ducts were included in the CFD analysis. Based
on the 2D geometry, a computational mesh was generated
in Gambit (Fluent Inc., Lebanon, U.S.), the general pre-
processor and mesh generator for the CFD solver used in
this study. The mesh consisted of + 140,000 rectangular
control cells.
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Figures 2: (a) Simplified Geometry used in the CFD Analysis. The bold
vertical lines are Surfaces through which Flow Rates were studied; (b)
Adapted Design where the Air Inlet Area was reduced by cutting off the
Areas between Leaving and Returning Conveyer Belts, and part of the
Remaining Surface at the successive Oven Levels

The information contained in the computational grid was
imported into the commercial CFD solver Fluent (Fluent
Inc., Lebanon, U.S.). The partial differential equations
governing mass, momentum, and energy conservation in
Cartesian coordinates were solved using a first-order fully
implicit numerical algorithm (Tannehill et al., 1997).

49

Turbulent flow was modelled using the standard k-&
turbulence model with enhanced wall treatment (Tannehill
et al., 1997).

To account for conductive heat losses through the oven
walls, Fluent solves a one-dimensional equation to compute



its thermal resistance. To include this, the thermal
conductivity of the insulation material was accounted for
(value provided by the manufacturer). The thermal
boundary on the outer surface of the oven walls was
specified by a uniform convective heat transfer coefficient,
which was estimated by means of empirical equations for
the local Nusselt number (Janna, 2000). Velocity boundary
conditions were used at the inlet and outlet ducts. Inlet
velocities of 0.1, 1 and 5 m/s were considered.

In order to improve its performance, adjustments to the
original design were suggested and the new design was then
re-evaluated by means of CFD. A first adaptation was to
reduce the air inlet area in order to have a better controlled
flow. This was done by closing the areas between leaving
and returning conveyer belts, and reducing the surface
available for air inlet at the successive oven levels (Fig. 2b).
Secondly, it was attempted to improve the air flow
uniformity by adapting the width of the air deflection
plates. In the original design, the deflection plate width

increased linearly from the top level to the bottom level
(Fig. 3). A configuration, where the width of the successive
air deflection plates increased according to a quadratic
equation was also studied (Fig. 3). Finally, an improved
design was studied, where the size of the successive air
deflection plates was adapted, based on the CFD results for
the case with linearly increasing deflection plate width.
Hereto, for each oven level, the percentage difference
between the flow rate at the particular level, and the
average flow rate (total flow rate divided by the number of
levels) was calculated. Based on these results, the
deflection plate width was adapted for each level (i.e.,
decreased when the flow rate over the corresponding belt
was lower than the average flow rate and increased in the
opposite case), and a new CFD simulation was performed.
This optimisation procedure was repeated until additional
improvements in terms of flow rate uniformity were
minimal, i.e., until further optimisation only led to minimal
adaptations (< 1 mm) of the deflection plate width.
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Figure 3: Deflection Plate Width for the successive Oven Levels:
Conveyer Belt 1 refers to the Topmost Level; Conveyer Belt 11
is the Bottommost Level

RESULTS AND DISCUSSION
Original design

Fig. 4 shows velocity and temperature distributions in the
oven for inlet and outlet velocities of 0.1 and 5 m/s. The
temperature distributions indicate that heat losses through
the oven walls are better compensated for when the inlet air
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velocity is higher. An analysis of the flow rates at different
levels is shown in Fig. 5. In this figure, the flow rate
through a vertical surface between the leaving conveyer
belt and the higher level returning belt (surfaces indicated
in Fig. 2a), is included for each level. Air flow is not
uniformly distributed over the conveyer belts.
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Figures 4: Velocity (a and b) and Temperature Distributions (c and d) in the original Oven for Inlet and Outlet
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and 5 m/s (original design)

Improved designs

Based on the above described CFD results, the oven design
was adapted and re-evaluated in order to improve its
performance. When cutting off the areas between leaving
and returning conveyer belts for air flow, and reducing the
surface available for air inlet above the leaving belts,
undesired air circulation was avoided, as shown in Fig. 6a.
in this case, all oven levels were provided with a positive
air flow, meaning that no recirculation occurred. A better
performance in terms of air flow distribution, as compared
to the original design, was observed. The improvement in
terms of uniformity can also be seen in the velocity and
temperature profiles: for an inlet air velocity of 1 m/s,
temperature is quasi uniform in the complete oven (Fig. 7).
This effect is even more pronounced at higher inlet air
velocities (results not shown).

From Fig. 6a, it can be seen that the highest flow rates were
observed at levels 2 to 5, while the flow rates at the upper
and lower levels are lower. The amount of air, deflected by
a deflection plate, depends amongst others on the difference
between the width of the deflection plate and the width of
the deflection plate at the higher level. As a consequence,
when the dimensions of successive deflection plates is
determined by a quadratic relation, rather than a linear one
(Fig. 3), less air will be deflected at the upper levels, while
the lower conveyer belts will receive a higher flow rate.
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This effect is shown in Fig. 6b, where the flow rates at
successive levels are indicated for a quadratic relation of
deflection plate width. In this case, the flow rates were
higher at the lower levels, as compared to the case where
the deflection plate width increased linearly from top to
bottom, while the highest levels received less air flow.
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Figures 7: Velocity (a) and Temperature Distributions (b)
for an Improved Design where the Air Inlet Surface was

reduced (Inlet and Outlet Air Velocity of 1 m/s)
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Finally, the deflection plate configuration was optimised,
based on successive adaptations, whereby the deviation of
the flow rate over the conveyer belts from the average flow
rate was evaluated after each adaptation. Using the
aforementioned optimisation procedure, satisfying results
were obtained after two iterative optimisation routines. A
third optimisation only led to minimal adaptations of the
deflection plate width and minimal additional
improvements in terms of flow rate uniformity. Fig. 3
shows the optimised deflection plate width for the
successive levels and Fig. 6¢ shows the flow rates resulting
over the conveyer belts. While the first modification of the
design (cutting off the areas between leaving and returning
conveyer belts for air flow) could avoid undesired air
recirculation, optimising the size of the air deflection plates

improved the performance in terms of air flow and
temperature uniformity. This is shown in Table 1, where the
proportional flow rate deviation —defined as the
accumulated deviation of the flow rates (m*/s) over the
conveyer belts from the corresponding average flow rate,
divided by the average belt flow rate— is given for the
original design (with linearly increasing deflection plate
width), and for the improved designs where the areas
between leaving and returning conveyer belts were closed
for air flow. For the design where the width of successive
deflection plates followed a quadratic equation, minor
effects were observed, while the optimised case was
characterised by a more uniform air flow pattern. It can also
be observed that better performance in terms of uniformity
was obtained for higher inlet air velocities.

Table 1: Proportional Flow Rate Deviation over the Successive Conveyer Belts
from the corresponding Average Flow Rates, both for the Original and Improved

Designs
01lm/s 1m/s Sm/s
Original design 10.63 1091 11.50
Improved designs (Reduced air inlet surface)
linearly increasing deflection plate width 3.00 2.41 2.15
quadratic relation 2.29 1.85 1.71
optimised design 1.04 0.66 0.56

CONCLUSIONS

A prototype oven design was studied with CFD and showed
poor performance in terms of air flow and temperature
uniformity. Adaptations to the design and re-evaluation by
means of a CFD study could improve the expected
performance of the oven. Adaptations including cutting off
part of the surface, available to air flow through the oven
and optimising the size of air deflection plates, used for
uniformly distributing preheated air over the successive
conveyers, proved successful. By the former modification,
undesired air recirculation was avoided. The latter
adaptation (optimisation of the air deflection plate width)
improved the performance in terms of air flow and
temperature uniformity. This was illustrated by an analysis
of the flow rates at the different oven levels.

The output of this study can be used as a guideline with
respect to geometrical design of this particular oven.
Inclusion of the treated food in the performed analysis will
obviously lead to better mastering the resulting product
quality. Besides, experimental validation of the results —
after constructing the prototype— is being carried out.
However, it can be concluded that CFD reduces the
experimental effort and is a powerful tool to optimise food
process equipment.
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ABSTRACT

Applying process engineering simulation method to model
the processing of liquid food can provide a way to build a
flexible food factory that can efficiently offer a wide range of
tailored products in short delivery time. A milk production
process, as an example, is simulated using a process
engineering software to investigate the process operation
conditions and flexibility. The established simulation method
can be adapted to simulate similar liquid food production
processes through suitable modifications.

INTRODUCTION

One of contemporary challenges for food industry is that a
food factory has to offer a wide range of tailored products in
short delivery time and maintain in a cost efficient way. Food
productions become “manufacture to order” rather than
“manufacture according to sales prediction”. An economic
and efficient way in dealing with the similar liquid products
is to process all of them in the same production unit by
swiftly shifting between different productions. Different
liquid food productions have some similarities in many
degrees and potentially can be processed in the same
production line. To achieve the engineering goals, necessary
experiments and calculations for these products processing
must be identified and executed systematically and
expeditiously through using proper facilities and software
tools. Process engineering simulation method is a valuable
tool to carry out such calculation and to design and control
such multi-task flexible production unit.

Process simulation technology has been widely applied in
many industrial areas. It is proven that industrial process
design, development and operation have benefited from the
application of process simulation technology. With the help
of the process simulation technology, engineers can make
operational decisions based on profitability by capitalizing
on market dynamics, identify future opportunities, manage
and optimize plant performance, and act on these decisions in
an integrated manner across whole enterprise. Some process
simulation tools, such as aspenOne from AspenTech, PRO/II
from Simsci-Esscor, have been intensively employed in
process engineering applications, especially for liquid
material processing. These software tools provide a platform
for us to investigate food production processes.
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Liquid food processing commonly includes mixing,
heating, cooling etc. The manufacture of liquid food
products, such as milk-based liquid foods, undergoes more or
less the same processing steps but under different conditions.
An existing liquid food unit can possibly process all of the
similar liquid products. In this work, we select a milk
pasteurization unit to investigate the process operability and
flexibility under different processing conditions using a
process simulation tool. The milk production unit is
simulated using the simulation tool under clean or fouling
conditions.

Because a milk-based liquid food can be approximately
characterized by its fat content and viscosity, the physical
properties of a liquid food are used in the simulation to
identify different liquid foods. Therefore, through varying the
fat content and viscosity for the inlet liquid flow, we can
simulate different foods processing behaviours in the existing
milk production unit. As the flowsheet simulation tool is very
flexible, the built flowsheet simulator for the existing milk
process unit can also be modified and changed into another
slight different flowsheet simulation. By this way we can
explore a broad range of milk-based liquid product
productions.

MILK PRODUCTION UNIT SIMULAITON

A market milk production process, as shown in Figure 1, is
studied in this work. In the flowsheet a milk inlet flow at
7000kg/h, 13% fat content (wt) and 4°C is processed.
Sections 1-5 are five different parts of a plate heat exchanger.
The total heat transfer area of the sections in the plate heat
exchanger is 10, 9.9, 3.6, 19.6 and 6.9 m? for the sections 1-
5, respectively.

Milk product

Sect.

Hot H20
Ice H20

Homogeniser

Separator

Figure 1: Market milk production process flowsheet

A milk stream S1 (7000kg/h, 13% fat) enters section 4 at 4°C
and is heated by a hot water stream in section 3. Milk stream
S3 passes a fat standardization system and a homogenisation
unit. After the homogenisation (at 21 bar), the milk stream
temperature is about 61°C. Milk stream S5 is heated at heat
regeneration section 2. In section 1, milk stream S6 is heated



to a pasteurisation temperature 72°C by a hot water stream.
Then, milk stream S6 is hold in a holding tube, Holding.
After the pasteurisation, the milk stream is continuously
cooled in sections 2 and 4. The final product is cooled to 4°C
by a 2°C ice water stream in section 5.

Modelling and simulation work has been carried out for the
unit operations in dairy production line, especially for plate
heat exchanger. Georgiadis at al. (1998) systematically
studied the optimal design and operation of heat exchangers
under milk fouling (Georgiadis and Macchietto 2000). Gut
and Pinto (2003) modeled the plate heat exchanger with
generalized configurations. However, our simulation work is
not only focus on the modelling heat exchanger but on the
operation behaviours of the milk production unit.

Using the process simulation tool, the milk production unit
(shown in figure 1) simulation is built. In the simulation, the
heat exchange sections of the plate heat exchanger are
calculated with simple heat exchanger module. Pressure drop
and overall heat transfer coefficient of these sections are
calculated through a separated calculator module. The
calculation method for the pressure drop and overall heat
transfer coefficient of a heat transfer section is taken from
HEDH (Schliinder 1995). However, the convective
coefficient Nu and friction factor f for milk fluids are
calculated using the correlations of Shah and Focke (1988),
and Saunders (1988). In the calculation, mean plate spacing
of the studied plate heat exchanger has been adjusted from
initial estimation to match a set of experimental pressure
drop data. A pump module combining with a simple heat
exchanger module is used to represent the main physical
characteristics of a homogenisation process. In the
simulation, the built-in method or topology in the process
simulation tool is used to tear a recycle loop and give a
converged solution for the whole flowsheet simulator.

To carry out the process simulation, we have to supply the
properties of milk for the process simulation tool, because it
does not contain the physical properties of milk in its
physical property database. The physical properties of milk
have been studied and reported. Some thermal property
models of milk and milk products have been collected in
books of Rahman (1995) and Okos (1985). From literature,
we selected a set of temperature and fat content dependent
correlations to calculate milk density and thermal
conductivity. Two specific temperature and fat content
dependent correlations are also developed in this work to
model milk enthalpy and viscosity. The use of temperature
and fat composition dependent correlations in process
simulation will improve the calculation accuracy and enable
the simulation to apply for a broad range of milk product
productions.

The milk production unit in figure 1 is simulated in the
process simulation tool using the flowsheet parameters
described above. Comparing to design data, the simulation
can satisfactorily represent the temperature program of the
process under clean condition.
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In the operation of milk or other liquid food production
processes, fouling is a problem resulting in significant capital
and operating cost. The fouling is developed with process
operation time. Consequently, the process operation
parameters are adjusted from time to time according to a
designed control strategy to maintain the process at its
desired objectives. Traditionally, the system adjustment
actions depend on the online process parameter
measurements, such as temperatures. However, if we can
simulate and predict the behaviours of the production
operation under fouling, we can study and optimize the
corresponding operation adjustments in advance. Through
such simulation and prediction for the process behaviours,
we can design a predictive operation parameter control
strategy for the liquid production process, and to improve the
food product quality.

Milk fouling has been studied for some years (Schreier and
Fryer 1995; Fryer et al. 1996; Sahoo et al. 2005; De Jong and
van Asselt 2006). The equipment in a food production line,
such as heat exchanger, starts clean and becomes fouled. In
an induction period of the fouling, the heat transfer
conditions do not change significantly. After the induction
period, it is a fouling period. The heat transfer coefficient of
a heat exchanger decreases and the pressure drop increases.
Fouling models have been developed for milk fluid on plate
and tube heat exchangers (Fryer et al., 1996; Schreier and
Fryer, 1995; Sahoo et al. 2005; Nema and Datta 2005). In the
study of fouling, a dimensionless number, B, is often applied
to describe the characteristics of fouling resistance, Ry. For a
uniform deposit of thickness x and thermal conductivity A,
the fouling resistance R, =x/A. The product RU, is

defined as a Biot number, B;. Thus, the overall heat transfer
coefficient of heat transfer under fouling is given as
U
U=—>o=>" (1)
1+ B;)

where U, and U are the clean and fouled overall heat transfer
coefficient. The dimensionless number, B;, is a function of
time and other different fouling factors.

In our simulation for the milk production process, the
equation (1) is employed to account for the overall heat
transfer coefficient variations with fouling. A series of B;
values are substituted into equation (1) to represent the heat
transfer coefficient changes in different milk fouling periods.
But, these B; factors are not calculated from any milk fouling
model. Instead, the B; factors are a series of increased
numbers from O to 1, 2, 3, etc.

For a plate heat exchanger, an equation can be established
to correlate B; and mean plate spacing. Based on the
equation, the pressure drop development of the plate heat
exchanger can also be calculated according different B;
values. The equation is given as following descriptions. By
the definition of Biot number, B;, a relationship between Bi

N . U
and deposit thickness x can be derived as B, =7°x. If the

clean overall heat transfer coefficient, U,, is assumed to be a
constant, a linear relationship can be derived for the B; value
and mean plate spacing as follow:



U
B =—7(dy-d) )
where dj and d is the initial and fouled mean plate spacing
(mm), respectively, A is the thermal conductivity of the
fouling deposit (W/mK). It should point out that the equation
(2) is an equipment dependent correlation because the U is
not a constant in practice.

In the industrial operation, a process is operated and
controlled at a set of nominated or designed parameters
under system disturbance. For the market milk production
process, the operation and control parameters are
pasteurization and final product temperatures,
homogenization pressure, cream separation degree, etc.
Among of these operation parameters, the temperatures are
controlled from the adjustment of hot water temperature and
ice water flowrate. The homogenization pressure and cream
separation condition are fixed by pump output pressure and
centrifugal degree, respectively. Thus, in our simulation, the
operation and control objective for the market milk process is
expressed as a minimization of the pasteurisation and cooling
temperature deviations from their desired values subject to
manipulated variable bounds. The equation is given as
follows.

(=T -1y
min a]| ld ;”|+a2| 7 | (3a)
s.t. a<T, <b (3b)
c<F.<d (39

where Ty and F¢ are the hot water temperature and ice water
flowrate, respectively, T, and T, are the pasteurisation and

. . . . 0
cooling temperature in section 1 and 5, respectively, 7, and

T? are the desired pasteurisation and cooling temperatures in

section 1 and 5, respectively, a, b, ¢ and d are the bounds of
the manipulated variables, ¢ and @, are the weight factors
(a,+a,=1.0). Here, the hot water temperature and ice

water stream flowrate are the manipulated variables for the
system. A set of typical boundary values for the hot water
temperature (7y) and ice water (Fc) flowrate are
73<T,, <96 °C and 9000 < F <22000 kg/hr if the desired

pasteurisation and cooling temperatures in section 1 and 5
are 72°C and 4°C, respectively.

Using the operation objective for the market milk unit, we
investigate the process operability under the variation of milk
fouling and inlet milk flowrate. The minimization problem is
solved by an optimizer module in the process simulation tool.
The objective function is implemented by a separated
calculator module in the process simulation tool. The
calculation results are given as figures 2-3.

It can be seen from figure 2 that the hot water temperature
and ice water flowrate increase with fouling factor. Figure 3
shows that the hot water temperature and ice water flowrate
increase with inlet milk flowrate, where the results are
obtained at fouling factor B;=1.0. However, the calculation
shows in figure 3 that the existing milk processing unit
reaches its capacity limit around 9500 kg/hr for inlet milk
flowrate. As can be seen from figures 2-3, the process
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simulation can quantitatively describe and predict the process
operation behaviours.
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Figure 2: Hot water temperature and ice water flowrate at
different milk fouling conditions
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Figure 3: Hot water temperature and ice water flowrate at
different milk inlet flowrate

Based on the built simulation for the market milk
production unit, the unit can be also investigated in an
alternative operation method by replacing manipulated
variables from hot water temperature and ice water flowrate
to hot water and ice water flowrates, which has been
suggested and experimentally investigated by researchers
(Yoon and Lund 1994). With the new manipulated variables,
the milk processing unit is controlled through the adjustment
of hot water and ice water flowrates to reach its operation
objective, i.e. equation (3). To change the manipulated
variables to hot water and ice water flowrates, the simulation
objective equation (3) is needed to be modified. With the two
new manipulated variables, we replaced the objective
function for the built simulation and simulate the existing



market production unit operations. The simulation results are
shown in figure 4.
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Figure 4: Hot water and ice water flowrates at different inlet
milk capacity

In the simulation, the fouling factor of the system is set as
1.0 for the overall heat transfer coefficient calculation
equation (1). From figure 4, it can be seen that the market
milk unit reaches its limit around 8000kg/hr. The ice water
supply cannot support more than 8000 kg/hr milk production
for the existing process when the process uses the hot water
and ice water flowrates as manipulated variables.

PROCESS FLEXIBILITY ANALYSIS

In our work, the process flexibility illustrates the capability
of a process to operate at a range of uncertain conditions that
may be encountered during a process operation. For the milk
production unit, the uncertain conditions can be milk inlet
condition variations and milk fouling, i.e. temperature,
flowrate, fat content, heat transfer flux and pressure drop.
The variations of fat or water contents in the milk inlet flow
also reflect the processing of different milk products. One
method to find out the process flexibility is to explore a
maximum tolerance or expansion for uncertainties around a
set of nominal process operation parameters through
experimental or simulation work. In this work, we will take
the advantage of process simulation method to study the
flexibility of the milk production process.

A widely used investigation concept for the process
flexibility is proposed by Grossmann and co-workers
(Grossmann et al. 1983), and will be used in our work. From
the method of Grossmann and co-workers, the flexibility, 8,
is maximized in each vertex direction, v, belonging the set of
all vertex directions, V, (ve V) by the following optimization
formulation:

5" = max " (4a)
u,0"

s.t. process mass/energy balance  (4b)

6=0"+vs" (4¢)

where u is the vector of control or free variables (e.g. the
manipulated variables for a process), ¢ is the non-negative
scalar, v is the vertex directions, -1 or +1 (+ or — indicate
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variable increase or decrease), 6 is the uncertain parameters,
6" is the nominal or design value of the uncertain parameter

6. The flexibility index, 5*, is the smallest one among the
solutions of equation (4) as follow:
5 =min&" (5)
veV

The total number of vertex direction for N uncertain

parameters is 2N (v=1,..., 2V combinations of the +
directed deviations from the nominal values of the uncertain

parameters, 6° ).

In this work, temperature, flow rate, and fat content of the
milk inlet flow are selected as uncertain parameters for the
process flexibility investigation. The fouling effects are fixed
by setting Bi=1.0 for the milk production process, which
corresponds to a system pressure drop 240 kPa. In the
investigation, we suppose the critical point of the milk
production system is a vertex of the hyper-rectangle. Thus,
we use vertex enumeration method to implement our
calculation in the simulator for the milk production unit.

Based on the built simulator for the milk production unit,
we start with a small non-negative scalar to enumerate all
vertex directions and run the milk process simulator. We
found out that the flexibility index 8* is 0.1 for the studied
milk production unit, which means the studied three
uncertain parameters can simultaneously expand maximum
10% in all vertex directions. In another way, the flexibility
index can be expressed as the norm of uncertain parameter,

0, and nominal value of the uncertain parameter, 6°, as
following.

_ o
5=}
CONCLUSIONS

In this work, we simulate a milk processing unit using a
flowsheet simulation tool. The simulation is focused on the
milk process operation parameters, i.e. temperature, flow
rate, etc. The simulation results are in good agreement with
the design data for the milk production process under clean
condition. The simulator for the market milk production
process, then, is employed to carry out process operation
parameter and flexibility study under milk fouling condition.
It is found out that the flexibility of the milk production
process is 0.10 (maximum 10% expansion in all vertex
direction) based on the selected uncertain parameters, i.e.
milk inlet flow temperature, flowrate and fat content.

The established milk processing simulator can be adapted
to simulate similar liquid food production units through
suitable modifications. From the simulation, it is can be seen
that the process simulation tool is very efficient to be used to
investigate a new process operation method, to optimize the
process operation for different objectives and to design a
predictive control strategy for a liquid food processing unit.
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ABSTRACT

Quality, particularly appearance and flavor of beer, plays a
vital role in consumer preference. Study on the relationship
between measurable characteristics of the beer and the
degree of consumer liking via modeling approach can be
very useful. The model can predict the consumer preference
of any beer of interest and help identify significant
characteristics affecting the preference. This research
investigated the use of thirty five beer characteristics as
independent variables and ten factors obtained from
performing factor analysis on those thirty five variables for
their effectiveness in modeling the relationship. Polynomial
regression and backpropagation neural network (BPN) were
examined and compared. Results indicated that variable
reduction by factor analysis slightly improved the
performance of the models. The BPN models outperformed
the polynomial regression models in terms of prediction
accuracy and generalization capability. Significant
characteristics affecting the beer preference identified by the
best BPN were ethyl hexanoate, ethyl octanoate, 3-methyl-1-
butanol, 2-methyl-1-butanol, ethyl butyrate, 3-methyl butyl
acetate, isobutyraldehyde, bitterness units, color, and
formazin turbidity.

INTRODUCTION

Beer is one of the most popular alcoholic beverages
worldwide. The global beer market has experienced a
considerable annual growth rate of nearly 7 percent during
1997-2003, reaching US$6.6 billion in 2003 (USDA 2004).
The growth was forecasted to continue in the future. The
market growth is driven by increasing incomes and demand
for more premium prized and specialty beer. Competition
among beer breweries for consumer’s loyalty is extremely
strong. Advertising and promotion play an important role in
establishing and maintaining their market share. However, a
beer quality happens to be a major factor affecting the
buying decision and hence the brewery’s long-term
competitiveness. Beer quality is in the eyes, nose, mouth and
mind of the consumer. Consequently, breweries often
conduct a sensory evaluation to compare their existing beers,
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competitors’ beers and newly developed beers on their
consumers.

The quality of beer is a function of its appearance and flavor.
More than 800 compounds are present in beer (Meilgaard
1982) and approximately 600 of which are volatile (Maarse
and Visscher 1989). These volatile compounds influence the
flavor, consumer preference and acceptability of the beer.
Certain groups of these volatiles are alcohols, esters,
organic acids, aldehydes, sulfur compounds, amines, phenols
and other mixtures (Pollock 1981). Their concentrations in
beer vary depending on raw material such as barley, malt,
and hop, yeast strain, fermentation and aging conditions.
Alcohols are key volatile compounds in beer. Some of which
are produced during the fermentation such as ethanol, 2-
methylpropanol, 2-methylbutanol, 3-methylbutanol, and 2-
pentanol whereas the others such as 2-octanol, 2-nonanol
and 2-decanol are from hop and malt. Esters, produced by
enzymatic reaction in yeast cells, provide fruity flavor in the
beer. Major esters are ethyl acetate, 2-methylbutyl acetate,
and 3- methyl butyl acetate. Organic acids, such as acetic
acid, citric acid, 3-methhyl-butanoic acid, and 3-methhyl-
oxopentanoic acid, are often associated with sourness,
bitterness and astringency in the beer. They may come from
malt or be produced during the fermentation. Aledhyde and
ketones from raw material and being produced before or
after fermentation process, give green leaves, grassy, and
fruity flavor. Major amines in beer are pyrazines from malt
and wort boiling process. Sulfur compounds generally come
from malt and hop.

Since major physical and chemical characteristics that
constitute beer appearance and flavor are laboratory
measurable, it will be very useful to correlate these
characteristics with the consumer preference. Once the
relationship is analytically established, the brewers and
marketers can use this information for predicting the
consumer preference of the beer with a large number of
physical ~or chemical characteristic =~ combinations.
Furthermore, if the significant characteristics affecting the
beer preference can be identified, they will help support the
management decision in the product and process
improvement or product development.

This paper reviews two predictive modeling techniques :
polynomial regression and artificial neural network and
attempts to examine the potential use of both techniques in



approximating the relationship between physical or chemical
characteristics and the consumer preference of beers.
MODELING APPROACH

This research compares and contrasts two modeling
techniques including polynomial regression and the very
popular  artificial neural network, namely, the
backpropagation network.

Polynomial Regression

Polynomial regression is widely used in modeling the input-
output relationship. A polynomial regression model for m
input factors, (X, X, ..., X,,) = X, can be expressed as:

P
Y= Zﬁka(x)+ £, (1)
k=1

where there are p power functions Zy(x), e.g., linear,
quadratic, cross terms, etc. [, are the regression coefficients
which are calculated from the observed pairs of data points
via least squares estimation. &, is a random error term that is
distributed according to N(0,0). Although polynomial
regression models are straightforward to implement, they
requires restrictive assumptions on the error terms and their
performance depends on the appropriateness of the
polynomial functional forms.

Artificial Neural Network (ANN)

ANN has recently been recognized in modeling applications.
It develops a mapping from the input variables to the output
variables through an iterative learning process. The model
requires little or no prior assumption of functional
relationships and is also robust to deviations from traditional
statistical assumptions such as normal random errors,
common error variance, and no multicollinearity. Typically,
an ANN is organized into a sequence of layers: the input,
hidden, and output layers (Figure 1).

Hidden
Layer

mout  V Weight

Laver

Figure 1: Typical ANN model

The input and output layers contain nodes or neurons that
correspond to the input and output variables, respectively.
Data flow between layers across weighted connections. Each
neuron in the hidden or the output layer sums its input
signals from the previous layer weighted by the connection
weights, and applies an activation function to determine its
output signal. There are several activation functions, ranging
from a simple threshold function to complex non linear
functions such as sigmoid, hyperbolic tangent and logistic
functions. A multi-layer ANN with nonlinear transfer
functions can theoretically model any relationship to an
arbitrary accuracy and is thus termed a universal
approximator (Funahashi 1989; Hornick 1989).

Backpropagation network (BPN) is a feed forward multi-
layer neural network trained by gradient descent method
(Rumelhart et al. 1986). The training algorithm is based on
minimization of total squared error of output computed by
the network. The training algorithm involves three stages:
the feed forward of input training set, the calculation and
backpropagation of error, and the adjustment of the weights.
Limitations in the BPN are a slow learning rate due to
backpropagating errors and adjusting all weights
simultaneously as well as a difficulty in selecting its
architectures and training parameters. Due to the data-
driven characteristic, all neural network models are also
prone to overparameterization, producing a good fit on the
model construction data set but poor generalization to others.

METHODOLOGY

Data Collection and Preparation

The beer data of a Canadian brewery from Li and Petkau
(1990) were used to develop the models. These data
composed of 111 beer samples including house brands,
newly developed products, and competitors’ products
purchased from retail outlets. For each beer sample, 35
measurable physical and chemical characteristics and the
corresponding mean consumer preference rating were
collected. The preference rating were conducted on a nine-
point rating scale ranging from dislike extremely (rating 1)
to like extremely (rating 9). The data were then arranged in
the input-output pattern with the 35 analytical characteristics
as inputs and the mean preference rating as an output. Table
1 lists the 35 beer characteristics.

Effect of Variable Reduction

When there are a large number of input variables to be
included in the model, factor analysis may be used to group
or combine the variables that are correlated to each other in
the same factor. Conducting the factor analysis task leads to
a reduction in input variables which in turn facilitates a
model builder. This research investigated whether the use of
factor analysis on the data would improve the model
performance. The beer data were prepared in two patterns :
(1) using original data and (2) performing factor analysis on
the original data using principal component analysis for
factor extraction and orthogonal rotation. Factor analysis
was performed using SPSS version 12.0. The model



performance in terms of prediction accuracy was then
compared.

Table 1: Thirty Five Analytical Variables

Variabl Name Description
e
Vi pH hydrogen-ion concentration
V2 color spectrophotometric color
V3 refractive index
V4 specific gravity
V5 apparent extract | apparent amount of sucrose in
the beer
V6 real extract actual amount of solids in the
beer
V7 extract of calculated original amount of
original wort solids in the wort
V8 alcohol alcohol content of the beer
V9 remaining flavor | amount of yeast fermentable
extract extract remaining in the beer
V10 calories
V11 bitterness units amount of bitter substance in
the beer
V12 vicinal diketones | concentration of  vicinal
diketones, mainly diacetyl in
the beer
V13 air volume of air
V14 carbon dioxide volume of dissolved CO, in
the beer
V15 formazin degree of turbidity or
turbidity units haziness of the beer
V16 age days since bottled
V17 foam collapse measured by the sigma value
rate method
V18 sulfur dioxide quantity of sulfite in the beer
V19 isobutyraldehyd | in ppb
e
V20 n-propanol in ppb
V21 ethyl acetate in ppb
V22 iso-butanol in ppb
V23 n-butanol in ppb
V24 ethyl propionate | in ppb
V25 propyl acetate in ppb
V26 3-methyl-1- in ppb
butanol
V27 2-methyl-1- in ppb
butanol
V28 Iso-butyl acetate | in ppb
V29 Ethyl butyrate in ppb
V30 3-methyl butyl | in ppb
acetate
V31 2-methyl  butyl | in ppb
acetate
V32 ethyl hexanoate | in ppb
V33 ethyl octanoate in ppb
V34 2-phenylethyl in ppb
acetate
V35 ethyl decanotate | in ppb
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Model Building

The entire data, either in the original pattern or in the
pattern resulted from factor analysis, were randomly divided
into 3 parts for fitting, testing and validating the models.
The fitting data set comprised of 69 data points and the
testing data set comprised of 22 data points. These two sets
were used to build the model and select proper model
parameters. The validation data set comprised of 20 data
points for assessing the model’s generalization capability.

Polynomial Regression

First, second and third order stepwise regression models
were explored to fit the first data set. In order to minimize
multicollinearity, each input factor is expressed as a
deviation around its mean. Both forward and backward
stepwise regressions are employed with the probability to
enter and remove of 0.05. The aptness of the polynomial
regression model was investigated through residual and
normal probability plots and the variance inflation factor
(VIF) is calculated to examine multicollinearity.  All
statistical works were performed by SPSS versionl2.0.
Once the models with different functional forms were
constructed, they were used to predict the preference rating
of the testing data set to select the proper functional form.
The one with the lowest predictive error measures was
selected. The error measure used was mean absolute error
(MAE) and was defined as follows:

Z)A’i _yi|
MAE =21 —
n

()

where )71. = the predicted response value of data point i

Y, =the actual response value of the data point i

n = the total number of data points

Backpropagation Network (BPN)

One hidden layer BPN models were developed using
NeuralWorks Explorer. All variables were normalized
between —1 and 1 to be consistent with the range of
activation function. Building a useful BPN model requires
proper selection of its architecture, the training parameters,
and the stopping criteria. Various numbers of hidden
neurons (1-4 neurons), activation function (sigmoid and
hyperbolic tangent-tanH), learning rates (0.1-0.5), learning
rules (delta rule and extended delta bar delta rule),
momentum (0.1-0.5), and several sets of initial weights were
explored. BPN with various model parameters were
constructed using the first data set. In order to avoid
overtraining, the learning phase was stopped every 100
learning iterations, and the network was evaluated for its
prediction accuracy using the testing data set. Learning was
stopped when the error measure of this testing data set
continued to increase. The proper architecture and learning
parameters were selected based on the MAE of the testing
data set.



Model Validation

The generalization capability of both polynomial regression
and BPN models were evaluated using the validating data
set. The extent of model deterioration and overfit were
examined by comparing the MAE from this validation data
set with those from other data sets. The superior predictive
model should possess good prediction accuracy across all
data sets. The generalization capability becomes one of the
major criteria in comparing the models.

Identification of Significant Beer Characteristics

In addition to use the developed models for prediction or
performing what-if analysis, one can use them to gain insight
in the system behavior. The model can be used to identify
what input variables significantly affect the response.
Chaveesuk and Smith (2003) demonstrated that polynomial
regression and backpropagation network could help identify
the critical factors in capital project evaluation. For a
stepwise polynomial regression model, an inference can be
made from the magnitude of the standardized regression
coefficients. A large coefficient indicates a significant
effect of that variable. In case of BPN model, altering the
input variables by a certain percentage and calculating how
much the output changes provides the basis for observing
the important effects of the input variable. The larger the
percentage changes, the greater the effect of that input
variable.

RESULTS AND DISCUSSIONS
Factor analysis on the original data has reduced the input
variables from 35 beer characteristics to 10 factors as

summarized in Table 2.

Table 2: Factor Analysis of 35 Beer Characteristics

Facto
r

Component

F1 real extract, specific gravity, refractive index,
apparent extract, calories, extract of original wort,
alcohol

F2 2-methyl butyl acetate, 3-methl butyl acetate, iso-
butyl acetate, iso-butanol, 2-phenylethyl acetate,
2-methyl-1-butanol, 3-methyl-1-butanol

F3 ethyl propionate, n-propanol, color, pH

F4 ethyl butyrate, ethyl octanoate, ethyl hexanoate

F5 isobutyraldehyde, n-butanol, ethyl decanoate

F6 sulfur dioxide, formazin turbidity units, bitterness
units

F7 | age, foam collapse rate

F8 ethyl acetate, propyl acetate

F9 dissolved carbon dioxide, air, vicinal diketones
(VDK)

F10 | remaining flavor extract

The results has revealed that some characteristics formed a
unique group as follows : factor 1 composes of physical
characteristics and the amount of solid and alcohol in the
beer; factor 2 composes of acetate esters and volatile
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alcohols which provides banana, pear or fruity flavor and
sweet musty odor; factor 4 composes of ethyl ester which
provides apple or fruity flavor; factor 8 composes of acetate
that provides fruity and solvent like flavor; and factor 9
composes of gas or carbonation and VDK that provide
buttery or butterscotch odor.

In fitting various orders of polynomial regression models,
the stepwise procedure selected only up to a second-order
model for the 35-variable data and up to only a first-order
model for the 10-factor data. The first-order polynomial
regression model constructed from the 10-factor data
showed the highest prediction accuracy in terms of MAE in
the testing data set, followed by second-order polynomial
regression model constructed from the 35-variable data
(Table 3). This result demonstrated that performing variable
reduction via factor analysis slightly increased the prediction
accuracy of the polynomial regression model. Meanwhile,
the BPN model with 4 hidden neurons, learning rate of 0.5,
momentum of 0.5, using delta rule and sigmoid activation
function, constructed from the 35-variable data, exhibited
the highest prediction accuracy of the testing data set among
all other combinations of model parameters studied (Table
3). It also appears that the variable reduction via factor
analysis did not improve the prediction accuracy of the BPN
model.

Table 3: Prediction Accuracy of Polynomial Regression and
BPN Models on the Testing Data Set

Data Pattern Model MAE

35-vairable data | 1 order regression 0.40
2" order regression 0.32
BPN with 4 hidden neurons, 0.16
learning rate of 0.5,
momentum of 0.5, delta rule,
sigmoid activation function

10-factor data 1* order regression 0.31
BPN with 2 hidden neurons, | 0.21
learning  rate  of 0.3,
momentum of 0.5, delta rule,
tanH activation function

The generalization capability of the polynomial regression
and BPN models with proper model parameters are shown in
Table 4.

Table 4: Comparison of Model Generalization Capability

Data Model MAE
Pattern Fitting | Validating

Set Set

35-vairable | 2" order regression 0.08 0.60

data BPN - 4 hidden 0.20 0.33
neurons

10-factor 1* order regression 0.19 0.46

data BPN - 2 hidden 0.19 0.31
neurons

It is observed that all models have shown some extent of
deterioration in prediction accuracy for the validating data




set.  However, the BPN models exhibited superior
generalization capability than the polynomial regression
models. The BPN prediction accuracy degraded to a lesser
degree than that of the polynomial regression. The results
also showed that performing variable reduction slightly
improved the model accuracy in the validating data set.

Identification of important input variables is a further benefit
gained from the accurate models. Table 5 exhibits important
variables or factors identified by the polynomial regression
and BPN models. It is noted that we can also identify
significant interactions among the variables or factors if the
regression models is used.

Table 5: Identification of Significant Variables or Factors

Impact Regression BPN
Variable Factor | Variable | Factor
1 (highest) V32 F5*F6 V32 F9
2 V18*v23' V33 F2
3 V20*V26 V26 F5
4 V35*V35 V27 F3
5 V29 F6
6 V30
7 V19
8 Vil
9 V2
10 (lowest) V15

"indicates interaction between variables

Identification of influential beer characteristics or factors
will be based on BPN models since they generally possess
superior prediction accuracy as well as generalization
capability than polynomial regression models. The BPN
models constructed from 35-variable data with 4 hidden
neurons, learning rate of 0.5, momentum of 0.5, using delta
rule and sigmoid activation function pointed out that the top
ten beer characteristics considerably impacted the consumer
preference rating were ethyl hexanoate (V32), ethyl
octanoate (V33), 3-methyl-1-butanol (V26), 2-methyl-1-
butanol (V27), ethyl butyrate (V29) and 3-methyl butyl
acetate (V30), isobutyraldehyde (V19), bitterness units
(V11), color (V2), and Formazin turbidity (V15). It is
obvious that the top five variables are flavoring potent in the
beer. These ethyl esters and volatile alcohols are recognized
as secondary flavor constituents in the beer (Meilgaard et al.
1975). They together form the bulk of a beer’s flavor.
Removal any one of these constituents will produce a
noticeable change in flavor. One can distinguish one beer
from another of the same type by variations in these
constituents. Moreover, the results of identifying significant
characteristics using 35-variable model was quite consistent
with identifying using 10-factor model.

CONCLUSION

The complex relationship between a large number of
quantitative beer characteristics and consumer preference
rating could be approximated by polynomial regression and
backpropagation network models. The backpropagation
network model, however, exhibited superior prediction
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accuracy and generalization capability than polynomial
regression model. Performing a variable reduction using
factor analysis slightly improved the model accuracy.
When the best backpropagation network model was used to
identify influential variables or factors affecting the
preference rating, it indicated that flavoring constituents
were most essential. These included ethyl esters such as
ethyl hexanoate, ethyl octanoate, and ethyl butyrate, volatile
alcohols such as 3-methyl-1-butanol and 2-methyl-1-
butanol, 3-methyl butyl acetate and isobutyraldehyde. Other
important characteristics were bitterness from hops, color,
and turbidity of the beers.
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ABSTRACT

Ascorbic acid (AA) is of great importance in the human diet
due to its anti-oxidative properties and its role as vitamin in
many biochemical processes. A microcalorimetric biosensor
is presented for high-throughput quantification of ascorbic
acid in food. The transduction mechanism of the presented
method is based on microplate differential calorimetry
(MIDICAL™) technology developed by Vivactis (Leuven,
Belgium) using a novel membrane wafer sensor mechanism.
A model of the system was developed and used to explain the
effect of the physics and reaction kinetics on the sensor
signal. The model considered transient diffusion of AA and
oxygen, Michaelis-Menten kinetics and the resulting heat
transfer. The finite element method was used to solve for
concentration profiles and temperature in comparison with
the sensor response of the MIDICAL™ system. In a further
step, model-based kinetic parameter identification will be
possible.

INTRODUCTION

The importance of ascorbic acid (Vitamin C) for the human
health is well known, such as its role in biosynthesis of
collagen and in the metabolism of amino acids. Fruit and
vegetables are the main sources of ascorbic acid in the
human diet. The amount of the vitamin in these products is
an important objective parameter for nutritional quality
evaluation of the fruits. The development of fast, accurate
and cheap detection methods is requirement for routine large
scale analyses.

In the literature, a wide range of analysis methods have been
described, such as chromatography, spectrophotometry and
electrochemical methods. A review is given by Antonelli et
al. (2002). Other methods (fluorimetry, titration, UV) are
also referred to by Zeng et al. (2005).

Microcalorimetry has been presented by Wilson et al. (1995)
and Antonelli et al. (2002). The method uses the
measurement of enzymatic reaction heat of ascorbic acid
with ascorbate oxidase as a detection mechanism and has
large potential for high throughput analyses. The speed of the
reaction and the specific sensitivity of the sensor to ascorbic
acid oxidation still require attention. The role of oxygen has
not received attention to date.
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Models have rarely been used to simulate the behavior of
biosensors. However, such an approach has been shown to
improve the understanding of the mechanisms, and offer the
possibility for process improvement and design (Lammertyn
et al. 20006).

In this paper we present a model-based approach to analyze a
novel high throughput microcalorimetric technique for
detection of ascorbic acid.

MICROPLATE DIFFERENTIAL
MICROCALORIMETRY

Microcalorimetry has proven in the past to be a successful
technique for the enzyme-catalyzed measurement of a whole
range of analytes but this is the first application of a high-
throughput microcalorimetric device using a novel membrane
wafer sensor mechanism. The transduction mechanism of the
presented method is based on the microplate differential
calorimetry (MIDICAL™) technology developed by Vivactis
(Leuven, Belgium).

The microplate contains an array of 96 wells (volume 20 ul)
which allow simultaneous ascorbic acid quantification of 48
samples. The transduction principle is based on the
measurement of the difference in heat generation between
two microfluidic wells, located at the cold and the hot
junctions of a thermopile. Initially one well is filled with an
enzyme-buffer mixture whereas the other is filled with only
buffer. Afterwards the sample (max 4ul) is injected in both
wells with a nanodispenser. The exothermic reaction of AA
with ascorbate oxidase (E.C 1.10.3.3) is monitored and the
AA-content is estimated by integrating the area under the
signal curve. A high correlation (R* > 0.99) was found
between this parameter and the AA concentration in the
sample. A linearity of calibration curve was observed
between 0.5 mM and 100 mM with a limit of detection of 0.5
mM corresponding to a total amount of 0.5 nmol AA in the
sample.

BIOSENSOR MODEL FORMULATION
Model Equations

Since the enzymatic conversion of ascorbic acid into
dehydroascorbic acid is oxygen dependent, the amount of
oxygen dissolved in the buffer strongly influences the signal
shape. To study this effect in the microfluidic system and to
optimize the sensor a reaction-diffusion model was
developed in Femlab 3.1 (Comsol, Stockholm, Sweden),



describing the mass transfer and the heat generation and
dissipation in the well:

0
g 02 = VD02V02 - 7'02

) )]
EAA:VDAAVAA_"AA
)

ngT:VﬂVT'i‘qr

with O, the oxygen concentration [mM or mol m'3], AA the
ascorbic acid concentration [mM], D, and D,, the diffusion
coefficients of the two species, T is temperature [K], poc the
heat capacity [J m”® K'] and A the thermal conductivity [W
m' K'] of the different materials. The reaction heat
generation g, [W m’] equals

qr =hran

where £, (J mol) is the change is enthalpy due to oxidation
of ascorbic acid. The reaction rates ry, and ry, are calculated
from the enzyme kinetics of the following reaction that is
mediated by the enzyme ascorbate oxidase AAO (Wilson et
al. 1995; BRENDA 2006):

AAO
2AA+0, — 2H,0 +2DAA

which was modelled in a Michaelis-Menten type reaction rate
with an oxygen-dependent rate constant. The model
parameters are given in Table 1. The thermal parameters are
thermophysical properties of water and the wafer.

Table 1: Model parameters

Dos 2x10° m* s
Daa 6x10"° m*s!
Vo 0.67*0, mol m~ s at 0.5U AAO
K, 0.2 mM
h, 1.2875x10° J/mol

Geometry and Boundary Conditions

The equation system is solved for diffusion-reaction of the
species and heat transfer in a single well of the microplate.
The geometry of the system (in 2D axisymmetric
formulation) is given in Figure 1. The reaction takes place in
a microliter drop between the walls of the well. A thermopile
in the floor of the well measures the heat generation. The
drop is saturated with oxygen in equilibrium with the
surrounding air. When the reaction starts, oxygen is
consumed and the deficit is supplied by means of diffusion
from the surrounding air. Both oxygen and ascorbic acid
diffuse through the drop from regions of high concentration
to regions of low concentration. The generated heat diffuses
through the drop and the well, and is finally removed by the
surrounding air.

The species boundary conditions for equation system (1) are
axial symmetry conditions for both species on the left
boundary, zero flux on the floor and walls of the well, a fixed
oxygen concentration (20%) at the top boundary and zero
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flux of AA at the surface of the drop. The boundary
condition for heat transfer is a Neumann condition using a
heat transfer coefficient at the surface of the drop and walls,
and the thermal resistance of the membrane stack on the
floor. The heat transfer coefficient was determined from a
model optimization with respect to the measured signals. A
constant value of 25 W m™” K' was used throughout the
study. Initial conditions are uniform concentrations of the
species and uniform constant temperature.

— air with 20% O,

wall of the well —

L membrane stack with thermopile
— buffer + AA + O, + AAO (10 to 20 pL)

Figure 1: 2D Geometry of a Microplate Differential
Microcalorimeter Well with Finite Element Mesh

Finite Element Method Solution

The model is solved using the finite element method,
employing FEMLAB 3.1 (Comsol, Sweden). The mesh
consists of 1783 triangular elements and is visible in Figure
1. Backward differentiation formulas of 5 order are used for
a stable solution of the resulting differential equation system.
The transient solution (2000 seconds) is obtained in less than
a minute CPU time on a AMD Athlon 2.41 GHz Windows
XP workstation with 2Gb RAM.

RESULTS AND DISCUSSION

Profiles of Oxygen and Ascorbic Acid in the Biosensor
Well

Figure 2 shows the simulated profiles of oxygen and ascorbic
acid in the well of the biosensor for a concentration of 500
mM AA and 0.5U AAO. The available oxygen in the well is
consumed very fast and its concentration remains O in the
lower part of the well for most of the process time, while
higher values are maintained towards the surface of the drop.
During a first period the oxygen concentration profile
remains the same, balancing supply from the air and
consumption by the enzyme reaction. At the same time
ascorbic acid is steadily transformed at the surface of the



well without pronounced gradients in the well. Note that no
transformation takes place at the bottom of the well because
oxygen is not available. The transformation of AA is thus
balanced by its diffusion. In the second period, when AA has
decreased considerably, the demand for oxygen by the
reaction decreases. Oxygen then diffuses further into the well
where reaction can now take place locally.

0.35
0.3
0.25
0.2
0.15 -
0.1
0.05

0 T T T
0 0.2 0.4 0.6 0.8
height on axis of well [mm]

(@)

Oz [mM]

time
2000 s

1600 s
0-1400 s

2000 s

0 T ‘
0 0.2 0.4 0.6 0.8
height on axis of well [mm]

(b)

Figure 2: Model Simulations of Oxygen (a) and AA (b)
Concentration on the Height Axis of the Well during Enzyme
Mediated Oxidation of Ascorbic Acid (1l 500 mM AA in a

12.5 ul well)

Figure 3 confirms the above observations. In the figure
profiles of oxygen and ascorbic acid are displayed at
different points on the floor of the well. Available oxygen
depletes very fast and is only replaced by the end of the
process. On the other hand, ascorbic acid steadily decreases
due to diffusion to upper regions of lower concentration
where reaction continues to take place. From figures 2 and 3
it can be clearly observed that the whole reaction process
involves important spatial phenomena. The presented
approach allows taking these diffusion effects into account.
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Figure 3: Model Simulations of Oxygen (a) and AA (b)
Concentration in Different Points on the Floor of the Well
during Enzyme Mediated Oxidation of Ascorbic Acid (1ul

500 mM AA in a 12.5 pl well)

Figure 4 demonstrates the large effect of oxygen on the
reaction. The simulated biosensor response is shown for a
reaction that is limited or not by oxygen. In the latter case, it
is assumed that the well is continuously saturated with
oxygen. Clearly, the reality of oxygen consumption leads to a
reaction time that is 4 times longer. The sensor signal shape
is also different. In presence of oxygen depletion, the
response exposes a shoulder or plateau that indicates a
limiting effect of oxygen is manifested.

signal response

oxygen limitation

1000 1500

time [s]

0 500 2000

Figure 4: Simulated Biosensor Response as Affected by
Oxygen Diffusion (1nl 500 mM AA in a 12.5 pl well)



The effect of oxygen diffusion on the reaction kinetics of AA
oxidation was discussed by Wilson et al. (1995). In their
study, experiments were conducted with a negligible head
space to study the intrinsic effect of oxygen in the reaction
solution on the reaction rate. With their results they were
able to explain earlier studies where oxygen diffusion was
present, but not taken into account the analysis. To our
knowledge, the present study is the first to take into account
and quantify the effect of oxygen diffusion on kinetic assays
of ascorbic acid.

Model vs. Experiment

Figure 5 shows the comparison of the simulated biosensor
signal to the measured sensor response. The experimental
sensor response is the average of 4 wells. The model predicts
correctly the introduction and growth of a shoulder with
increasing concentration of ascorbic acid. At the shoulder the
transformation rate of ascorbic acid is limited by the supply
rate of oxygen from the air into the well (Figures 2 & 3). The
oxygen supply limitation ends when the curves start to
decrease. This effect does not manifest itself at low
concentrations of ascorbic acid, because the oxygen
consumption is lower and the supply limitation does not
occur. The model also captures the effect of changing the
enzyme units of ascorbate oxidase (Figure 6). The peak
signal increases and the plateau time shortens with increasing
amount of enzyme. With increasing enzyme units, the
maximum conversion rate of ascorbic acid increases. As a
result, the higher heat production causes a higher peak
response. At the same time, the amount of substrate
decreases more quickly, which reduces the size of the
plateau.

At higher enzyme units, the level of the plateau is over
predicted. This may be due to the use of simplified boundary
conditions for heat transfer. This, however, does not affect
the shape of the signal. More importantly, the model also
fails to capture the first peak at higher ascorbic acid
concentrations (Figure 5). The peak is also more pronounced
at higher enzyme units (Figure 6). Clearly an additional
mechanism that comes into play at higher substrate
concentrations is missing in the model. This will be subject
of further investigations.

signal response
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Figure 5: Model (thin lines) vs. Experimental (thick lines)
Microplate Calorimeter Biosensor Response with 0.5U AAO
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Figure 6: Model (thin lines) vs. Experimental (thick lines)
Microplate Calorimeter Biosensor Response (1pl 500 mM
AAin a 12.5 ul well)

CONCLUSIONS

For the first time, the mechanism of diffusion-reaction in a
microfluidic microcalorimetric biosensor for ascorbic acid
detection has been explained. The reaction is limited by
oxygen diffusion, and as a result the process has, even on the
microliter scale, a strong spatial aspect. The presented
model-based approach is a basis for process and sensor
design and, due to its reasonably small computational cost,
can be used for model-based kinetic parameter estimation.
The simulated sensor response corresponded well with the
experimental signal. The effect of enzyme and ascorbic acid
concentration was demonstrated.

The presented microplate differential  calorimetry
(MIDICAL™) technology was shown to be a promising
method for high throughput detection of ascorbic acid.
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ABSTRACT

Chemical substances (additives, monomers, residues) from
packaging materials can migrate into foodstuffs. Their
diffusive properties in packaging materials are required to
predict the contamination of food by packaging substances.
This work proposes a general and robust methodology for a
fast determination of diffusion coefficients (ranged between
102 and 10" m*s™) and their activation energies in plastic
materials. The methodology, which combines both spatial
(1D and 2D) and time information, was tested for spatial
scales varying between 5 mm down to 0.3 pum. Experiments
in laser scanning confocal microscopy demonstrated, that
diffusion coefficients varied significantly at microscopic
scale in semi-crystalline polymers such as low density
polyethylene. The variation was particularly significant for
length scales below 3 pm.

INTRODUCTION

The understanding of transport phenomena, which control
the desorption of substances (monomers, additives, residues)
of packaging materials into food, is a major concern to
reduce the risk of contamination of food products. The recent
EU directive 72/2002/EC (EU 2002) dedicated to food
contact materials in plastics defines both the list of
authorized substances and their acceptable limit of migration.
Besides, article 14 specifies that this amount can be either
experimentally assessed or derived from appropriated
simulations. Predictive approaches are however limited by
the availability of diffusive properties as diffusion
coefficients (D) and activation energies (Ea) for a large set of
polymers, diffusants and thermodynamic conditions.
Diffusants of interest have molecular mass ranged between

100 and 1000 g-mol™!' and diffusion coefficients (D) typically

ranged between 107!! and 1071 m?s7! in plastic materials
(EC 2003). Diffusion coefficients are conventionally derived
i) from desorption kinetics into food simulants (Aminabhavi
and Phayde 1995; Reynier et al. 2002) or ii) from the
variation of concentration profiles in the polymer (Roe et al.
1974; Moisan 1980). Both approaches are limited by the
duration (from minutes to years) required to detect a
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significant variation in the measured concentration,
respectively in the liquid phase or in the polymer. Activation
energies are inferred similarly from the variation of D with
temperature.

In order to get faster determinations of diffusion coefficients,
several authors proposed to use microscopic methods, which
reduces drastically the characteristic time required to assess a
detectable effect. First methods were based on the
measurement of concentration profiles of UV tracers by
micro-spectrophotometry (e.g. Dudler and Muifios 1996). As
other macroscopic methods, this approach required to put in
contact a virgin polymer with a source of dyes. At
equilibrium, the measurement cannot be reiterated since there
is no more discernible concentration gradient. Alternative
methods based on laser-induced photooxidation of
fluorescent tracers are more promising. Since the initial
concentration profile in the substrate is generated by an in
situ chemical reaction in presence of intense light and
oxygen, the experiments can be repeated at the same
location. This methodology, so-called fluorescence recovery
after photobleaching (FRAP), was however developed to
assess diffusion coefficients in living cells and biological
tissues (Axelrod et al. 1976; Soumpasis 1983), whose values

(above 10710 m2s') are typically far higher than those
considered in plastics. First applications to plastic materials
were operated by interferometry (Cicerone et al. 1995; Tseng
et al. 2000).

This work examines several robust experimental approaches
and identification techniques to assess low diffusion

coefficients (about 10715 mz-s'l) from a macroscopic scale (5
mm) to microscopic ones (down to 300 nm) in semi-
crystalline polymer such as polyethylene. All techniques
involve the characterization of concentration profiles in 1 or
2 dimensions for different diffusion times. General diffusion
times or Fourier times, noted Fo, and defined by Equation
(1) are used in this study:

D-t
Fo = —12 (1)

where ¢ and / are the time and the characteristic length of the
measurement. Experimentally, the equivalence between time
and space according to equation (1) is particularly efficient to
generate profiles for a wide range of D values. From the
computational point of view, this equivalence lead to new
techniques of identification of D based on homothetic
solutions of transport equations and likelihood principles.



Indeed, even in complex situations where D was not constant
during the experiment (e.g. change in temperature set), an
equivalent diffusion time may be defined by (Cranck 1975):

¢
£D-d¢ @)

Fo-=

l2

The paper is organized as follow. The theoretical section
presents the principles of the identification of D by
combining both spatial (1D or 2D) and time information. The
third section describes the experimental methodologies to
assess concentration profiles at macroscopic and microscopic
scales. The fourth section presents the results obtained for
different optimized initial concentration profiles. Since semi-
crystalline polymers as polyolefins can be considered
homogeneous only at scales larger than 50 um, the proposed
time-space methodology is first tested at macroscopic scale
with small probes (i.e. with high diffusion coefficients).
Experiments at microscopic scale were performed with a
larger probe (i.e. with a lower diffusion coefficient) below
the critical length scale of 50 um. The last section concludes
on the feasibility to measure in situ Ea values in anisotropic
materials (e.g. in oriented polymer) and down to the scale of
light diffraction.

THEORETICAL SECTION

Forward Problem

The variation on an initial concentration profile (1D or 2D),
u(z,y,t= 0] with
dimensionless diffusion transport equation:

time was calculated from the

au(I*,FO) *

2 2
gl Mol e )
dFo

dz*2 8y*2 ®

where ¢ is a dimensionless concentration or a quantity

. . T
proportional to the concentration, z* = 7 and y* = % are
dimensionless Cartesian coordinates. It is worth to notice that
the diffusion coefficient is assumed to be uniform in the
material.

Numerical Strategy of Resolution in 1D

In 1D, two particular boundary conditions were considered:
impervious boundary condition and infinite geometry (i.e. no
boundaries), for macroscopic and microscopic experiments
respectively. In finite geometries, a numerical solution was
discretized onto piecewise second degree polynomials (local
interpolants). The solution was based on 100 nodes. In
infinite geometries, the solution was expanded as global
interpolants based on sinus cardinal functions as described by
Weideman and Reddy (2000). This method is particularly
intended for solving problems on the real line (-eo,+o0).
About 100 equidistant collocation nodes and symmetric with
respect to the center of the “center” of the initial profile were
used. The collocation was constrained by adding steady
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conditions close to the boundaries () "y = (). All expanded

solutions were integrated in time according to a second order
implicit difference scheme.

Numerical Strategy of Resolution in 2D
In 2D, the solution at time ¢ was calculated in one step from
the bivariate convolution of the initial solution with a
bivariate Gaussian kernel, with zero mean and a scaled
variance, 6 , defined by the Einstein Equation:

2

D-t
0 = 4‘—;?—: 4. Fo (4)

The convolution was calculated by assuming symmetric
boundary conditions, which are equivalent to impervious
boundary conditions.

Inverse Problem

The inverse problem consisted in finding D from » different
measures of ¢ for different {tz / 17:2}

process was carried out into two stages.

The first stage consisted in finding for each profile different
from the initial one the best Fo; value, which minimizes the
criterion:

values. The whole

i=1..n

2

®)

LIPS

2 _ ~
ll - ”'LU( I*vy*) ' |:u( FOi,CE*J/*) h u( FO,‘,CE*,y*) :|
Y

where ¢ is the predicted concentration profile and W a
suitable weighting function (1D or 2D Heaviside functions),
which controls the importance of each local value.

The second stage consisted in deriving D values from the

regression line between identified {Foj and

{ti / 11‘2}
estimated in a least square sense. The consistency of
individual results is analyzed by the linearity of the data and
the absence of significant intercept.

In practice, ¥ was numerically filtered and normalized
before identification. A detailed sensitivity analysis of the
whole procedure filtering+identification was performed by
adding random noise to the initial profiles in the range of
experimental errors. Confidence intervals were calculated
from at least 100 Monte Carlo trials.

i=1.n

. values. As a result the final D value is
1=1..n

MATERIALS AND METHODS
Virgin and Formulated Polymer

All experiments were carried out on disks (& 30 mm,
thickness 70-420 um) of low density polyethylene (LDPE,
reference: Lacqtene, Atofina, France). Films were pressed by
pressing at 130°C and 6 MPa from powder including or not a
tracer. Only the central part of the disks was used in the
further experiments.

Fluorescent probes were used as tracers, their main
characteristics are summarized in Table 1. The LDPE
powder was impregnated with a solution of probe in



dichloromethane (HPLC grade, Acros, France). The powder
was used after evaporation of dichloromethane.

Table 1: Main characteristics of the tested probes.

molecular mass . analysis
probes (@-mol" 1) suppliers scale
naphthalene 128 Fluka, France macro
2-ethoxynaphthalene 172 Acros, France macro
phenanthrene 178 Fluka, France macro
pyrene 202 Fluka, France macro
rubrene * 533 Fluka, France micro

* 6,11,12-tetraphenylnaphthacene
Reference Method at Macroscopic Scale

Macroscopic concentration profiles were obtained by putting
in contact with pressure a combination of virgin and
formulated films. Our methodology is a modified version of
systems previously described by Roe et al. (1974) and
Moisan (1980). The stack of films comprised 14 films with 2
formulated films at positions 5 and 10. Experiments occurred
at 40°C for contact time varying from 17 to 96 hours. Each
film was subsequently extracted in dichloromethane (16
hours at 40°C). The concentration in the extract was
determinated by high performance liquid chromatography
(HPLC model Agilent 1100 Series, Agilent Technologies,
France) with fluorescence detection under the following
chromatographic conditions: mobile phase water 40% —
acetonitrile 60%; pre-column and column Kromasil C18

(reference 18651155, Alltech, France); flow rate 1 mL-min’!;
injection volume 10 pL; excitation wavelength 250 nm and
multi emission wavelengths analysis.

Microscopic Scale Experiments

Microscopic observations were performed on an inverted
laser scanning confocal microscope (model LSCM AOBS
SP2, Leica, Germany), with UV and visible lasers. Laser
power was controlled by acousto-optical tunable filters.
Observations were performed with oil immersion objectives
at magnification x40 and x63, with numerical aperture of
1.25 and 1.32 respectively. Intensity images (12 bits, 512
X512 pixels) were obtained by scanning along x and y axes.
The z position was accurately controlled with a piezo-electric
overstage (model Scan IM 100x100, Mirhduser, Germany).

The initial 2D intensity profile was obtained by a FRAP
technique. A predefined region was x-y scanned with the
largest scan field as possible and the maximum laser intensity
(available power per pixel about 20 mW). It was verified that
the bleaching operated also in the z direction so that the
thickness of the bleaching region was larger than 10 times the
characteristic length in plane x-y. The observations were
performed in the z symmetry of the bleached region. These
conditions ensured that mass transport might be interpreted
in the observation plane. 1D bleach patterns were based on a
combination of double and quadruple planes. 2D patterns
consisted in a partial chessboard. The variation of
concentration profiles were monitored every 2 or 5 minutes
with a laser intensity 100 times lower than the bleaching
intensity. Each profile was based on the accumulation of 4 or
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12 images to reduce Poisson noise. Accumulation was
performed in 16 bits to prevent numerical truncation. The
effect of possible bias due to a non uniform excitation or
emission in the scanned field was corrected from the initial
image acquired prior bleaching. All corrections were based
on the Beer-Lambert law.

RESULTS AND DISCUSSION

Preliminary simulations and tests demonstrated that the
mathematical well-posedness of the identification problem
was significantly improved when the concentration profile
included a change in modality (e.g. from bimodal to
monomodal). Initial macroscopic and microscopic profiles
were designed to include this feature.

It emphasized that the number of degree of freedom in spatial
information was much higher in microscopic experiments
than in macroscopic experiments. The number of time
samples were almost similar in both approaches. In
macroscopic experiments, additional regularization was
enforced by assuming the mass conservation in tracers. In
microscopic experiments with an infinite medium, the
calculated profile was constrained by steady boundary
conditions.

Typical Identifications of D Values at Macroscopic Scale

Typical results are plotted in figure 1. Figures la-1d
describes in particular the variation from a bimodal to a
monomodal distribution when Fo values were higher than 1.
Variations of the ratio #/* was obtained by modifying the
thicknesses of films (70, 210 and 420 pm) and contact times
(between 17 and 96 h).

In our conditions Fo varied between 0.3 to 7.2 with
determination coefficients higher than 0.99. No significant
bias (intercept) was detected and confirmed the reliability of
the estimation of D since it was based on independent
experiments. Identified D values were of 3.7 1072, 2.7 102,
20 10" and 9.5 10" m’s' for naphthalene, 2-
ethoxynaphthalene, phenanthrene and pyrene respectively.
Confidence intervals were lower than 10"° s m*s™.

e)

<> naphthalene

U 2-ethoxynaphthalene
~  phenanthrene

<& pyrene

O = N @ K O O N ®

Figure 1: a-d) Typical dimensionless experimental and fitted
concentration profiles: a) Fo = 0.7, b) Fo = 0.9, ¢) Fo = 2.7,
d) Fo = 3.9; e) identified Fo values against the scaling ratio
#/I? for 4 probes in LDPE at 40°C.

Typical Identifications of D Values at Microscopic Scale

Typical 1D Intensity Profiles
Typical concentration profiles as observed in confocal



microscopy for rubrene in LDPE are depicted on Figure 2.
Images include Poisson and Gaussian noise. For 1D
patterns, both noises are significantly removed by the
projection operation and no more additional filtering is
almost required. In 2D patterns, filtering based on
neighborhood is required to remove Poisson noise. Since the
same filter (conventionally an Hanning filter) is applied of all
images, it does not change the result of the iterative
deconvolution algorithm used in this work. The contribution
of an heterogeneous illumination of the background was log-
subtracted to all filtered images. The fading between images
due to additional bleaching during acquisition or possible
oscillations in z position was corrected from the average
intensity far from the bleach region.

Figure 2: Raw intensity images before and after bleaching.
The time interval between each image is of 4 min. Image
field is 465x465 pm*in LDPE at 21°C.

Projected and filtered intensity profiles corresponding to
figure 2 are plotted in figure 3. Filtering was a based on non-
causal filter of order 5. Experimental profiles were identified
as physically interpretable when a same steady inflexion
point was identified for all profiles. It is worth to notice that
the profile depicted in figure 3b is almost a negative image of
the profile depicted in figure la.

50 10 a0 200 280 300 asa 406 450 Sa0 5 T e s 0 s a0 a5 50
pisel pixel

Figure 3: Variations of projected and filtered intensity
profiles (corresponding to figure 2) with time: a) whole
scanned field, b) details.

Typical Identifications

Experimental data of figure 3 with a weighting window
centered between positions 200 and 300. The corresponding
variations of the normalized distance criterion with Fo are
plotted in figure 4. For all images different from the initial
one, a minimum was identified and optimal Fo values were
found to increase with time. It was however that confidence
intervals were overlapping. This effect was related to
filtering, the order of which was close to the typical distance
between two consecutive inflexion points (about 10 pixels).
The corresponding variation of identified Fo values with #

are depicted in figure 6¢. The relationship was linear and
unbiased. The identified D value was of 1.5 105+ 8 10" m*
s for rubrene in LDPE at 21°C. Adding random noise to raw
images did not change significantly the result.

a ~
o ~ o

normalized criterion

0.5 e,

[ 5 10 15 20 25 30 35
Fo

Figure 4: Normalized distance criterion versus theoretical Fo
values for each frame in the series depicted in figure 2.

Repeatability of D Measurements

It is emphasized that the regression lines Fo=D-#/I’ obtained
from the microscopic method are derived from a same
experiment and not from independent experiments (different
samples) as in the macroscopic method. So-calculated
confidence intervals do not provide any information on the
repeatability of the measurement in a different location.
Besides, it is underlined that D values derived from 1D
profiles were not true local values (e.g. 10 um), since the 1D
profiles were obtained from the projection on 2D profiles
along a main direction (typical size > 400 pm).

Figures 5 and 6a plot 1D and 2D patterns respectively, the
characteristic length scales of which were higher than the one
used figure 2. The corresponding regression lines Fo=D-/I’
are plotted in figure 6c.

b)

50 o0 350 208 25 300 350 400 450 500 w T
|

Figure 5: Vari;}ion of a 4 bands 1D intensitgj profile with
time: a) whole scanned field, b) details. The time interval
between each image is of 4 min with an image field of 465
um.
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[l 1D - Figures 2 & 3
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Figure 6: a-b) 2D pattern (field 465x465 pm?): a) initial, b)
after 24 min; ¢) Fo values versus #/°. 95% Confidence
intervals of regression are plotted in dotted lines.




The D values were respectively 2.8 10"°+ 1 10" m*s” and
44 10" £ 2 10" m?s'. All results yielded similar
magnitude orders for D but whose difference was higher than
the confidence intervals on each individual value. The
sensitivity analysis showed that combing the information for
different #//° reduced the uncertainty in D by a factor 5. It
confirmed also that differences obtained from different
acquisition series could not be explained by the initial noise
in the intensity images.

Variation of D Values with the Measurement Length
Scale

The dispersion of D values in space and according to the
characteristic length scale of initial intensity profile was
tested from independent bleach experiments in a same
material. The pattern consisted in a single line and its
characteristic length (thickness) varied between 0.3 pm and
11 pm. The other bleach dimension was set to 30 times the
characteristic length. Results are plotted in figure 7. The
values oscillated around 4 10" m?*s™ with a span of 7 107
m?>s”'. The amplitudes of oscillations were significantly
higher below 3 pm.

x 107" a) b)

D (m2-s'1)

x 107

10" 10° 10" 102 O 2 4 6
length scale D (m?s™)

Figure 7: a) variations of D values of rubrene in LDPE at
21°C with bleaching thickness (in pum), b) distribution of D
values.

CONCLUSIONS

A general approach was proposed to assess diffusion
coefficients from the variation of an initial concentration
profile in time and in space. The variation of the scale of
measurement was proposed as a possible alternative to
diffusion time. This approach makes it possible to reduce
drastically the time required to measure diffusion
coefficients, as those encountered in plastic materials. This
approach was tested on macroscopic and microscopic
experiments involving fluorescent tracers.

In particular, diffusion coefficients as low as 10™"° m*s™ were
measurable under a confocal microscope in less than 10
minutes (see figure 6c). However, in semi-crystalline
polymers, these properties were measured at a length scale
lower than the typical size of a representative volume of the
material. As a result, D values were found to be highly
variable with the considered position in the polymer. In the
case of rubrene in LDPE, representative D values seemed
achievable by combining at least 5 measurements.

The tested combination of different length scales (magnitude
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up to 5 10*) makes it possible to assess microscopic mass
transport in complex materials as semi-crystalline polymers:
accessibility, tortuosity, molecular interactions with the
polymer. As an example, current work aims at identifying the
distribution of local activation energies in LDPE by
monitoring the evolution of a same concentration profile
subsequently to different set temperatures. Besides, a direct
visualization of the polymer structure after labeling is tested
to relate the morphology of crystallites with the values of
diffusive properties (D and Ea).
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ABSTRACT

Simulations may replace experiments to check the
compliance of food contact materials and to assess the
exposure of consumers to packaging substances. The
reliability of simulated results depends both on the
availability of physicochemical data (diffusion and partition
coefficients) and on the consistency of physical assumptions.
This work tests the validity of thermodynamical assumptions
implied in common desorption models. The analysis is based
on experimental desorption isotherms obtained for low
density polyethylene formulated before and after processing
with two series of surrogates (linear alkanes, Uvitex OB).

INTRODUCTION

Constituents of packaging materials (additives, monomers
etc.) can diffuse into food products. The current EU directive
2002/72/EC (EC 2002a) on plastic materials defines both the
list of authorized substances and their specific migration
limits (SML). In addition, it makes it possible the use of
mathematical modeling based on diffusion and mass balance
equations to check the compliance of single layer plastic
packaging materials against SML. Besides, probabilistic
modeling has been recently proposed to perform sanitary
surveys on the contaminants of packed food products (Vitrac
and Hayert, 2005a, Vitrac et al., 2005¢c) and to assess the
consumer exposure to packaging substances (Vitrac and
Leblanc, 2005).

Previous works were mainly focused on the determination
and prediction of diffusion coefficients for different
diffusants in different plastic materials and various
temperatures (EC 2002b, Helmroth et al. 2002, Reynier et al.
2001a and 2001b and Vitrac et al. 2005b). By contrast, few
works have been performed on the determination or
prediction of apparent partition coefficients, noted K,
between packaging materials, noted P, and food or food
simulants, noted F. The importance of this parameter on the
prediction of desorption kinetics is discussed extensively in
Cranck (1975). The few values, which are available in the
literature, were reviewed by Tehrany and Desobry (2004).
The current version of the guidance document for the
application of the EU directive 2002/72/EC (EC 2003), to
which two of us participated, proposes only very rough
approximations for K for plastic additives. A value of 1 is
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proposed for hydrophobic food and a value of 107 for
aqueous food.

In addition to the urge to generate data on partition
coefficients and related models of prediction, there is a need
to provide a reliable and thermodynamically acceptable
description of equilibrium desorption curves for packaging
substances. Apparent partition coefficients, K, in closed P+F
systems are defined as the ratio of concentrations of the
diffusion species i between both phases at equilibrium:

Cipl
i, F eq

K= ()

C.
i,P eq

Their values depends how the concentrations are expressed:
in mass per mass, in mass per volume or mol per volume.
There is an alternative description derived from statistical
physics, where the partition coefficient at the PF interface I,
noted K, is connected to the partition function (i.e.

probability of occupation), noted [Zi, j| I] poon both side

j: b
of the interface as:

i, F 7

Ki=——L )

Zipl
7,,P1

Equation (2) describes the local thermodynamical
equilibrium between P and F. It is used to express the mass
transfer rate at the interface / in physical models of
desorption. This description is detailed in Gandek (1989a
and 1989b), Vergnaud (1995) and in Vitrac et al. (2006). It is
however assumed that K and K; are equal.

This work examines common assumptions on the
thermodynamics of the desorption of packaging substances
into foodstuffs. These assumptions include i) the desorption
isotherm of packaging substances obeys to Henry law, ii) the
sorption isotherm of packaging substances into food obeys
also to Henry law, iii) whole of packaging substances could
be desorbed into a food with an infinite volume, iv) all
packaging substances can diffuse in the whole equivalent
volume of the polymer (i.e. homogenized volume which
neglect the effect of the crystalline phase) and v) K=K.

The paper is organized as follows. Section 2 presents how
the magnitude of partition coefficients can be derived from
the theory of polymer in solutions and from the regular
solution theory. Section 3 describes the conditions, which
were used to assess K and K. The results are presented and
discussed in section 4. The main deviations are summarized
in the last section.



THEORETICAL SECTION: THERMODYNAMICAL
EQUILIBRIUM BETWEEN THE FOOD PRODUCT
AND ITS PACKAGING

The true macroscopic equilibrium between the food product
and its packaging material would correspond to a situation of
minimal free energy of the food-packaging system. This
equilibrium is reached by exchanging matter (packaging
substances, food substances) between both compartments.
This equilibrium has low practical use since the desorption of
plastic substances is generally faster than the sorption of food
constituents and because the industry prefer polymers which
develop low interactions with food (i.e. polymer constant
rates are chosen greater than the food product shelf-life).

Local Thermodynamical Equilibrium

In this work, we focus on the local thermodynamic
equilibrium (LTE), which controls the desorption of
packaging substances at food-packaging interface /. For the
diffusing packaging constituent i, LTE enforces the equality

on both side of the

of chemical potentials, noted{.uz‘, j}j: P>

interface /.

#1sz| I Hir|;
T T €)
‘ufef + uf“}“” #mf + ﬂﬁlFtit‘bb
i, P 7 i, Ve o F i i, 7
ref eacess .
where {#i,f ! }j:P’F and {#:.,, |1}j= pp Aare respectively the

reference and the excess in chemical potential of the
diffusant i in the phase j at the interface.

When the possible mass transport of food constituents into
the polymer is neglected, the LTE can be also expressed as
the equality of partial free molar energies of the mixtures
P+iand F+i:

9Gpy; _ [ 9GF4i
( anl l‘»PTLP ( anl sDsnp (4)

where G is a Gibbs free energy, n;, npand ny are the number
of molecules i, polymer and food. 7 and p are the absolute
temperature and the pressure respectively.

Expression of the Chemical Potential on the Packaging Side
The expression of the free energy related to the mixture Gps
can be approximated from the Flory-Huggins theory of
polymers in solution. In the case of very cohesive systems
such as polymers, it is emphasized that the free energy of the
mixture P+i is mainly related to the variation in
conformational entropy of the polymer itself. Indeed, the
presence of small molecules in the polymer reduces the
number of achievable conformations for the polymer.
According to the Flory and Huggins theory (Flory, 1953), the
conformation of the polymer is decomposed on a lattice,
whose sites can be occupied either by an equivalent polymer
unit or by a small molecule. For a solid polymer, the typical
site size is associated to the free volume of the diffusant,
which is a very rough approximation of the size of sorption
sites in polymer. Thus, the diffusant is assumed to be of
length / and the polymer of length ». The parameter r is
defined by the ratio of the free volume fractions of the
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polymer and of the diffusant. The molar entropy of the
mixture Spy; is assumed equal to the entropy of the
polymer, which is defined by the Boltzmann law:

ni+7“np

SPH zSp zR«np‘ln =_R‘7LP'1H(¢P) (5)

r-np
[ —)
number of achievable microstates
for one macrostate

where R is the ideal gas constant.

The molar enthalpy of the mixture Hp:; is mainly related to
the excess in enthalpy of the mixture and controlled by the

Flory-Huggins interaction parameter £,  :
Hpy=R-T-x , 1 9p (6)

The molar free enthalpy of the mixture Gp-; is therefore:
Gpyi=Hpyi =T+ Spy; = R‘T[”P ‘Infgp)+7,, '¢p] )

The excess in chemical potential of i in P is finally derived
by differentiating Equation (7) with respect to #;:

,ulp;r(’s‘s‘ —R-T [(1_%)¢P+Z77P ¢}%] (8)

Expression of the Chemical Potential on the Food Side

The excess in chemical potential can be expressed similarly
on the food side. For liquid food, the regular solution theory
for small molecules (Hildebrand and Scott 1964) implies r=1
in Equation (8):

ETCESS

HES =RT oy 0 (9)

Approximations of Flory-Huggins interaction parameters

Zz‘ p and 4 ;7 can be approximated from the solubility

parameters, {5k} k=i p.F » wWhich are related to the density of
cohesive energy of the pure compound £:
_ Y

= RT(@ —5]-)2 forj=P,F (10)

Ve
{5k} k=ip,F are derived in this work from the quantitative
structure property relationship proposed by Van Krevelen
(1990).

Thermodynamical Definition of Partition Coefficients

If reference potentials are chosen equal, equation (3) implies
that the activities of i in P and F are equal. If at infinite
dilution, they obey to Henry Law, one gets:

Yir- Xi,P =Yr- X,F

where { 7’1;,} ; and { Xw}

coefficients and the molar fraction of i in the phase j. By
expressing the concentration in mass per mass with the molar
concentration, the following expression of the partition
coefficient, as used in this study, is inferred:

an

are respectively the activities

=PF j=P.F



Cul, _ %0 Vo po
Yir

K, = 12
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where {P]}j: pp and {1_/]} are respectively the density of

j and the molar volume of ;.

Jj=P.F

TESTED MATERIALS

P was a low density polyethylene (Atofina, France)
processed from ground pellets by extrusion in a mono-screw
extruder (model Scamia RHED 20.11.D, France; set zone
temperatures: 120, 125, 130 and 135°C) and subsequently
calendered (final thickness about 100 pm).

F consisted in absolute ethanol (SDS, France).

Five diffusants (i=1..5) were tested, including 4 linear
alkanes: dodecane, tetradecane, hexadecane, octadecane; and
a plastic additive: 2,5-thiophenediylbis(5-tert-butyl-1,3-
benzoxazole (Uvitex OB, Ciba, Switzerland).

EXPERIMENTAL METHODS
Formulation of Plastic Films Before Processing

Reference desorption experiments were carried out on films,
whose resin was formulated prior processing. Two
formulations were prepared by soaking the powder into two
dichloromethane solutions containing either the 4 alkanes or
Uvitex OB and octadecane. The solvent was subsequently
vaporized. The tested conditions corresponded to almost
industrial conditions of formulation of plastic materials.

Formulation of Plastic Films After Processing

Since it was expected that all diffusants could be not
available for desorption due to possible trapping in
crystalline phases or insufficient dispersion of surrogates in
the polymer, a formulation after processing was also
performed. It consisted in a sorption stage at 40°C of virgin
films in ethanol solutions containing the desired surrogates
(here: Uvitex OB and octadecane). After sorption, dried
films were stored at ambient temperature during 2 weeks.

Desorption Experiments

Desorption experiments were performed on plastic strips (5x
5%0.1 mm’®) dispersed in ethanol at 40°C. A gentle stirring
effect was achieved by rotating vertically the flasks. Tested
conditions included several initial concentrations (400-2000
mg-kg') and several dilution factors, noted L. L was defined
as the phase ratio between F and P; it varied between 1.5 and
14. For all tested surrogates, equilibrium conditions (no
detectable further desorption) were obtained after 2 days.

Concentration Measurements

Concentrations in F were measured by gas chromatography
with flame ionization detection as described by Vitrac et al.
(2006). Residual concentrations in P were measured
similarly after extraction in dichloromethane.
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RESULTS AND DISCUSSION
Theoretical Prediction of the Partitioning

The approximations of the excess in chemical potential in
both phases (equations 8 and 9) at infinite dilution makes it
possible to assess where the location of the diffusant i is
more likely (e.g. in P or in F), when only a single diffusant is
added to the system P+F. Figure 1 plots the ratios of excess
in chemical potentials between P and F at 40°C when

¢ — 1,¢p — 1 and by assuming r>>1 for P.
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Figure 1: Ratio of the excess in chemical potential between F’
and P for the 4 tested alkanes (M is the molecular mass).

Since the chemical potential is much higher in F than in P,
the presence of 4 tested alkanes is more probable in P than in
F at infinite dilution. The partition coefficient K; can be
derived from equation (2) and values at equilibrium by

noting: {Zi,j|] = eXp(_GH]‘Lq /R : T)} Gisj values

j=F.P"

excess

corresponding  to [:uz.j

N _’O]j:F.P should be however

avoided, because they were not calculated at equilibrium (i.e.
for a ratio of chemical potentials equal to 1).
Experimental Assessment of Possible Deviations to
Ideality on F Side

The behavior Gj,p was tested by assessing the values of K;
and K for different equilibriums obtained for a same initial
packaging material (same formulation and subsequently
processing). Different equilibriums were achieved by
changing the dilution factor L.

Estimation of K,

The values of K; were derived exclusively from the values of
(1)
Cir ,, and by assuming that the maximum amount of i, which

should be desorbed, noted ¢

;o was unknown. The

=

principle was based on a mass balance between L and P:

(L) ;
c | -
iy, iP |,

ST (13

The unknown (7|  was eliminated by plotting the ratio

1=0

(1] (Lref) . .
C,.pl / Cir |( ,  for different L values, where L, is a reference

g

. . . . (L)
value for L. K; and its possible variations with C,, , are



L
analyzed in Figure 2 by comparing experimental C, Lq’

against theoretical ones calculated for different constant K;
values. It is highlighted that experimental and theoretical
curves presented slightly different curvatures for the 4 tested
alkanes. The equivalent K; values tended to decrease when
the concentration on liquid side was higher. For octadecane,
K; changed from 0.4 towards 0.3.

10" | 'K

L /. \Ly.
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107 -
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L

Figure 2: Variations of the normalized concentration in F
for different dilution factors L (L., = 14). All surrogates were
included in the same formulation of P. Theoretical curves for
constant K; values are plotted in dashed lines.

Estimation of K

According to equation (1), apparent K values corresponding

Y 1)
to figure 2 were calculated from C,, ; and C,, y values

(figure 2). Since all alkanes were included in the same
formulation of the polymer, K values are plotted against the
concentration of each diffusant and against the total
concentration in F at equilibrium.
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Figure 3: Variations of K values a) with the concentration
of each diffusant in P and b) with the total concentration in
diffusants in F. All values are measured at equilibrium.

For each diffusant, the assumption of constant K values was

acceptable only in a small range of (. A values. Apparent
ileg

. . . (L)
K values successively decreased and increased with (', | .
ileg

The position of the minimum appeared all the earlier than the
diffusant was smaller (figure 3a). Figure 3b shows besides
that this minimum was related to a same overall
concentration in all diffusants about 180 mg-kg". Beyond this
critical overall concentration, the drastic increase in apparent
K values was associated to the solubility limit of our mixture
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of alkanes in ethanol. A phase separation of the mixture
alkanest+ethanol would displace the apparent F+P
equilibrium as observed and would increase the desorption
rate without leading to a similar increase in K;values.
Experimental Assessment of Possible Deviations to
Ideality on P Side

In previous experiments, the non linear variation of K with

2] .
Crp ’ and the deviations between K and K; were unexpected.

(L)
Only the increase of K with C, . 3 could be explained with a

deviation to the ideality on F side. A possible deviation to
ideality in the previously tested material (i.e. formulated
before processing) was analyzed by assessing the cumulative
amount of “desorbable” substances after successive
equilibriums with ethanol (L =10). The “non ideal” behavior
of the tested material was also compared with the desorption
isotherm related to only “desorbable” substances.

Amount of “Desorbable Substances”
The cumulative amount of “desorbable” substances, which
approximates le"};“L_U, is plotted in figure 4 for P formulated

prior processing with octadecane and Uvitex OB. Desorption
yields showed that a significant amount of initial surrogates,
between 3 % and 10 % could be not desorbed. It was
therefore confirmed that apparent K values derived from
Equation (1) underestimated the true partition coefficients
below the critical overall concentration.  The
underestimations were expected to be all the higher than
C "‘Pl“ej‘ were lower or equivalently than the (| B

Ll

were lower.
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Figure 4: Cumulative extraction yields after successive
desorptions (L =10) up to equilibrium. Experiments are
duplicated.

Desorption Isotherm of “Desorbable Substances”
. . (L) (L)
The desorption isotherm Cp,,v,Lq =f [Cp,,v,Lq] related to only

“desorbable” substances was estimated by performing
desorption on materials, which were formulated after
processing. The formulation (by sorption in concentrated
solutions) and the subsequent desorption experiments were
designed to generate equilibrium concentrations in phases P
and F higher than those presented in figure 3 and close to the
expected critical overall concentration. The isotherm of
“desorbable” octadecane is compared with the apparent
isotherm obtained with materials formulated prior processing
in figure 5.

The isotherm of “desorbable” octadecane was linear and did



not present any bias (i.e. intercept). This ideal behavior
would correspond to an equilibrium obeying to Equation
(12). The partition coefficient K given by the slope of the
desorption curve was about 0.33. This value was not
significantly different from the K; value obtained in figure 3
for the highest concentration in F.

In formulated materials before processing, the apparent
isotherm was not linear. For concentrations in P lower than
180 mgkg', it was almost parallel to the isotherm of
“desorbable” substances but the amount of “desorbed
substances” was underestimated. This deviation was
consistent with a significant amount of “non desorbable”
substances, while the equilibrium of “desorbable” substances
remained completely reversible. Above 180 mgkg', the
amount of desorbed substances tended to be overestimated.
From figure 4, the negative deviation was expected to be
larger for Uvitex OB, but the results are still pending.

City (mg-kg™)

10° 10°

Ci g (mg-kg™h
Figure 5: Desorption isotherm of octadecane: for materials
formulated after processing (filled symbols) and for materials
formulated before processing (open symbols, see figure 3).
The dashed line is the regression line fitting the filled
symbols and intercepting 0 (slope=0.33+£0.01).

CONCLUSIONS

This work examines the physical consistency of assumptions,
which are generally implicitly introduced in desorption
models to predict the contamination of food products by
packaging substances. Significant deviations to Henry law on
F side were only identified for concentrations which are far
from the maximum concentration authorized in food (60
mg'kg"). On P side, it was demonstrated that a significant
amount of additives (either linear or aromatic) could be
trapped in the polymer matrix (here low density
polyethylene) and not available for desorption. Current work
aims at identifying at microscopic scale the location of
fluorescent tracers in polyolefins.
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ABSTRACT

Packaging innovation, finalized to configure food in terms of
product/service, is crucial in satisfying consumers’ needs:
pleasure, practicalness, health.

Furthermore, also in such sector, time reduction between the
R&D activity and the industrial exploitation of the results
becomes more and more strategically important.

In such scenery, “Steam Pack”, an innovative disposable
pack, has been developed for pressure cooking of food in
microwave ovens.

The development in short times of “Steam Pack”, winner of
the Oscar dell’Imballaggio 2005 (“Technology” section) and
of a World Star Packaging Award 2005, was possible thanks
to integrated CAD/CAE and statistical techniques.

The study has been carried out according to a DOE of FEM
analyses aimed to optimize the geometry of the membrane
spring, the geometry of the steam vent and the thickness of
the bowl walls.

The use of integrated CAD/CAE and statistical techniques
made possible the simultanecous handling of several
parameters, enabling optimization in short times. This
allowed to realize prototypes and start the testing stage after
just two weeks from the beginning of the design activity.

DEVELOPMENT OF
DISPOSABLE PACKAGE
COOKING

“STEAM PACK”, A
FOR MICROWAVE

Steam Pack is realized in polypropylene and consists of two
parts (Figure 1) :

* an oval-shaped bowl subdivided into two concentric
compartments, to keep food components separated until use;
» a valve, which characterizes the pack and acts also as a
plug for the central compartment. By means of such valve,
through a cyclic “open/close” process, the outflow of the
steam generated during the cooking process is optimized,
with a remarkable reduction in preparation times.
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Figure 1: sectional view of the bowl (blue) of the valve
(green) and the finished package

The bottom of the central chamber features a spring
membrane (3), which lifts the valve (1) when such valve
desengages from the dispenser (2) due to the build up of
steam generated during cooking. The valve performs open
and close cycles dragged by the thermowelded film (4)
inflating and deflating thanks to the steam. Such device
represents the key element for the correct performance of the
pack.

The development of Steam Pack called for optimization in
terms of costs, functionality, practicality of use and
handling.

As the product needs to be industrialized, further limitation
derive from the production process, logistics, and needs
resulting from the packaging of the final product.

The entire optimization process can be simplified in the
following steps:

* brainstorming, to evaluate all factors contributing to obtain
satisfying results for all requirements

» factor screening to individuate the most influential factors
for each individual requirement. Regarding this last issue we
referred to a DOE performed using reduced factorial plans
and trough the analysis of the related Pareto diagrams and
ANOVA tables

« full factorial plans and response surface method performed
on the most influential factors for each requirement with the
aim of researching optimal values for each factor (goal
driven optimization)

Following is a report on the most critical aspects, with
regards to the optimization of the spring-valve, the exit hole
diameter and thickness of the bowl wall.

Optimization of the spring-membrane
Following the factor screening performed on the membrane

operation, the three most influential factors have been pin
pointed as being: radius, height, thickness. (Figure 2)
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Figure 2: parameters influencing the geometry of the spring
membrane (radius, height, thickness)

We analysed, in particular, the influence of the three
parameters on the value of the third buckling mode, needed
to deform the membrane during packaging. The first and
second buckling mode have been overlooked as they are
considered not influential during product packaging.

The referred load environment and the three buckling modes
are shown in Figure 3.

Figure 3:1°-2° buckling mode, 3° buckling mode, load
environment

With the benefit of previous experience in designing and
adopting the principles of hybrid modelling, the target was
set for the 3rd buckling mode, for the goal driven
optimization, with relation to the value of the buckling mode
multiplier for a previously created product . During analysis
we considered the non-conservative buckling nature.

Design of experiment and results

The parameters manager of Ansys Workbench Simulation
9.0 and the integration betweeen Ansys Workbench and the
modelling software used (Autodesk Inventor Series 10)
allowed for the rapid implementation of a full factorial plan
33 (Table 1), performed during advanced optimization of
the three influential parameters for the 3rd buckling mode
identified during factor screening (radius, height and
thickness).

Tablel: Parameters and levels for full factorial

Parameter

Low Value

Center Value

High Value

Radius (mm)

25

27.5

30
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Parameter Low Value | Center Value | High Value
Height (mm) 5 7.5 10
Thickness (mm) 0.4 0.6 0.8

Following is the response surface for the 3rd buckling mode
with relation to height and thickness (Figure 4).

Response Surface - 3° buckling mode
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Figure 4: response surface of 3rd buckling mode in function
of height and thickness of the full factorial DOE

Assigning a value of 60, resulting from the buckling
analysis performed with Ansys Workbench Simulation 9.0
on a existing membrane with similar features to the desired
ones, to the 3rd buckling mode load multiplier ,as the target
of optimization , and imposing as desirable conditions of the
3 examined factors, values resulting from considerations of
economic and functional nature, we managed to determine a
set of optimal values of the three factors (radius = 28.5 mm,
thickness = 0.56 mm, height = 8.4 mm).

Optimization of the exit hole diameter

Determining the optimal diameter of the exit hole is very
important as it determines the level of the pack internal
pressure, directly influencing the final results in terms of
preservation of the nutritious substances and cooking time.
In addition it’s important to determine the existing relation
between the diameter and the generated internal pressure, to
be able to choose the best diameter for each food product.

A stationary fluidodynamic analysis has been arranged,
which boundary conditions are shown in picture 5.

In order to reduce the computational effort, the pack
symmetric properties have been exploited.

Boundary Conditions

Fluid: Water Vapour at 100°C

Inlet: Mass Flow Rate = 0.303 gr/sec
Outlet: Relative Pressure = 0 mbar




Figure 5: boundary conditions for fluidodynamic analysis

The values of the boundary conditions parameters result
from simple thermodynamic evaluations, together with the
results of a cooking test in a microwave oven performed
using a simplified prototype of the packaging.

Using a parametric CAD file, having as a sole parameter the
diameter of the steam exit hole, various fluidodynamic
analysis have been performed for different values of the
diameter. Finally, the flow of the average pressure in relation
to the diameter was outlined. (Fig. 6)
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Figure 6: diameter-pressure chart obtained through
fluidodynamics simulations

Optimization of the wall thickness

Once the pack internal pressure had been established, the
optimal thickness of the pack walls was determined.
Determination of minimum wall thickness of the oven bowl
is fundamental to make the pack as light as possible
(improving cost cut and recyclability), compatibly with
needs of production by means of injection molding and the
admissible deformations during cooking (positive internal
pack pressure) and in a cooling off phase (negative internal
pack pressure), for a correct operation.

To evaluate deformation we used Ansys/Workbench
Simulation 9.0, using the parameters manager to vary the
only used parameter: the wall thickness.

To evaluate compatibility of the wall thickness with the
production process, we used a program simulating the
injection molding process, considering different thickness of
the pack.

Analysing results from the different analysis performed , we
determined the desired thickness.
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In Figure 7 the load environment considered through the
study of deformation with Ansys Workbench Simulation 9.0
and the the results for fill analysis for injection molding
process.

Figure 7 : load environment of simulations with Ansys
Workbench 9.0 and CAD model for injection molding
process simulation

The optimal wall thickness resulted in 0.8 mm.
FURTHER FEM APPLICATIONS FOR STEAM PACK
FEM analysis have also been performed, to determine the

strength needed to keep the film and the dish together during
operation in order to individuate an optimal film and to

determine the optimal geometry of the snap fits keeping all
the pack components together. (Fig. 8)

Figure 8 : contact pressure analysis between the film and the
bowl (on the right) and the snap fits optimized through FEM
analysis
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ABSTRACT

The dependency of modified atmosphere (MA) packaged,
fresh-cut endive on storage conditions was investigated. For
this purpose the product was stored at different temperatures,
oxygen fractions and carbon dioxide fractions. The general
quality and red discoloration were observed. Two composite
Arrhenius models, incorporating the effects of both
temperature and oxygen fraction on the rates of general
quality change and red discoloration of the product were
successfully evaluated. The chosen model integrates the
temperature and oxygen effects and gives a reasonable idea
of the empirical relations underlying the development of
quality aspects of MA-packed, fresh-cut endive.

INTRODUCTION

Fresh-cut vegetables and fruit are packed in modified
atmosphere packages (MAPs), mainly to prevent dehydration
of a product that is already damaged (Jongen, 2003).
Additionally, altered gas conditions develop in the packaging
as a result of respiration processes of the product and a
specific selectivity of the packaging film. These altered gas
conditions on turn affect (i.e., slow down) these same
respiration processes (Peppelenbos 1996). Respiration is
identified as one of the most important processes in the
senescence of vegetables and fruit (Peppelenbos 1996).
However, what the relations exactly are is difficult to say and
can be different per product, cultivar, batch, growing
conditions, season, climate, origin, etc.

In this paper we model the dependence of the behavior of
MA-packaged, fresh-cut endive on (distribution) chain
conditions. How do the quality variables depend on the
combination of temperatures and gas fractions? What
proportions do the effects of anaerobic conditions and high
temperatures on the product bear to one another? In order to
answer these questions we have examined the effect of a
matrix of temperatures and oxygen and carbon dioxide
fractions on the product quality variables. The hypothesis
that we will test in this paper is that the dependency of the
rate constants of the quality variables on temperature and gas
components can be characterized using composite Arrhenius
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relationships for the effects of temperature and oxygen
fraction.

MODEL DEVELOPMENT

MA-Packed, Fresh-Cut Endive Quality Variables:
General Quality And Red Discoloration

The quality of MA-packed, fresh-cut endive is considered to
decompose in (i) general quality Q and (ii) red discoloration
R. General quality generalizes the properties “freshness”,
“voluminousness”, ‘“crispiness”, “vivid greenness of the
green parts” and “bright whiteness of the white parts (in
contrast to brown parts)” of the product. These are properties
that are generally kept under control by a low oxygen
fraction, but not zero, because of the risk of growth of
unwanted microbes (pathogens) or the occurrence of
fermentation of the product. Red discoloration, on the other
hand, is prevented most under anaerobic circumstances.
Other aspects, such as general microbial activity, are
recognized to be important in a later stage of product life,
and are not considered further in this work.

It is generally known that both high oxygen levels and low
oxygen levels can affect the general quality of MA-packed
fruits and vegetables. As these two effects cannot take place
at the same time, and the general quality is a very general
variable decomposing in a range of subvariables, we have
formulated this as an addition:

O =0, 10, D+ Dy 11, ey

However, as we will see in the observations (Section 4.1),
effects due to high oxygen levels were not observed. As a
consequence, Q and @, “merge” to one and the same
variable:

00 =0, 1, @

Primary Models: Logistic General Quality And Red
Discoloration Models

Quality variables of vegetables and fruit can be described
using logistic models (Tijskens 2004; Eccher Zerbini et al.
2006). Accordingly, we propose to describe general quality
change dQ/dr and red discoloration change dR/dt as



dependent on rates k, and kg, general quality Q, red
discoloration R, maximum general quality Qpn.x, and
maximum red discoloration R,,,,, as:

dg 0

— = -——= 3
& k, O( Q.m) (3
% = kR R (1_i) 4)
dr

Secondary Models: Composite Arrhenius Relationships

The temperature dependency of the rate constants in Egs. 3
and 4 is usually described using Arrhenius’ law. The
activation energy E can be seen as the amount of energy
required for a reaction to proceed. The thought behind
Arrhenius’ law is that chemical reactions “need energy to
“prepare” their reagents for reaction” (Nobel 1983; Tijskens
et al. 1996). Yet, Arrhenius’ law does not take other
parameters, such as the oxygen fraction, into account. Here,
we propose composite Arrhenius relationships, incorporating
the effects of temperature and other parameters, in our case,
the oxygen fraction:

(6)

Anaerobic oxygen levels are known to have a great effect on
the general quality of the product, in general. This is
formulated in Eq. 5. The effects of high oxygen levels on
general quality are, as discussed earlier, excluded in the
model. Low oxygen levels are known to inhibit red
discoloration of fresh-cut endive, which is formulated in Eq.
6. R is the universal gas constant (8.314 J/mol K), T, is the
Arrhenius  referential —temperature, and ngf'g and ng:R are
referential oxygen fractions. ¢ and f are fit parameters. This
kind of composite Arrhenius approach is seen before in the
fields of microbiology (Geeraerd et al. 1998), paper
chemistry (Vance Best 1968) and applied physics (Mizuishi
et al. 1979). By means of this approach the effects of
temperature and oxygen fraction are incorporated in
comprehensible models. The effects of the different
conditions have become comparable, and therefore their

relation has become better interpretable and debatable.
Questions like “which factor has more influence: temperature
or oxygen fraction?” can be answered now, by comparing the
temperature and oxygen fraction terms in the equations. This
may lead to a deeper understanding of the sensitivity of the
product to the different conditions in the end.

MATERIALS AND METHODS
MA-Packaged, Fresh-Cut Endive

The product that was observed was endive, cv. Natacha,
origin Spain. After harvest, the endive was transported to The
Netherlands, where it was washed, dried (spin-drying and
warm air) and packaged in bags of 0.4 kg, using an OPP film.
For a short period, the product was stored at 2-4 °C and next
transported, under cooling conditions. The experiments were
prepared at 11 °C and subsequently carried out.

General Quality Scale

Six classes of general quality were distinguished, from O
(“excellent”) to 5 (“very bad”) representing states of
freshness, voluminousness, crispiness, bright-greenness, and
bright-whiteness as indicated in Table 1. These sub-variables
were considered to be taken together. Product of class 2
general quality was considered still acceptable to sell; class 3
general quality endive was considered not acceptable
anymore. The measurements took place in a destructive way,
by emptying the bags and spreading out the endive parts, in
order to obtain a good overview and, as a consequence,
adequate judgment. The judgments were done by trained
product experts.

The general quality measurement scale was considered to be
an interval scale.

Red Discoloration Scale

Five classes of red discoloration were distinguished, from 0
(““all parts bright white”) to 4 (“all parts red”) as defined in
Table 2. Class 1 red discolored product was considered still
acceptable, class 2 not anymore. The measurements took
place together with the general quality measurements, which
were destructive). The judgments were carried out by the
same trained product experts.

Table 1. General Quality Scale Classes

Class Name Freshness Voluminousness Crispiness  Bright-greenness Bright-whiteness

0 excellent  fresh voluminous crispy bright-green bright white parts
parts

1 - fresh voluminous crispy some green parts  bright white parts
are dark-green

2 - fairly fairly voluminous fairly crispy some green parts bright white parts

fresh are dark-green

3 - not fresh  not voluminous  slack many green parts some white parts
are dark-green are brown

4 - not fresh  not voluminous  slack most green parts many white parts
are dark-green are brown

5 very bad  not fresh  not voluminous  slack most green parts  most white parts
are dark-green are brown
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The red discoloration scale was assumed to be an interval
scale.

Table 2. Red Discoloration Scale Classes

Class Description

0 bright white parts

1 some white parts are red/brown

2 fairly many white parts are red/brown
3 many white parts are red/brown

4 nearly all white parts are red/brown

Experimental Design

The product was observed for a maximum of 17 days.
Combinations of different temperatures (4 °C, 7 °C, 11 °C
and 20 °C) and oxygen fractions (0 mol/mol, 0.005 mol/mol,
0.025 mol/mol and 0.07 mol/mol) were imposed. The
packages of endive were opened up and placed in the
containers of our flow-through system. The product was left
in the package film, yet the experimented (gas) conditions
were imposed inside the package. Assessments of general
quality and red discoloration were made at the beginning of
the experiment (¢ = 0), and after 4, 7, 10, 14 and 17 days. The
number of replicates was four.

Repeated extreme values at the end of the logistic curves
were excluded, as they are considered to weigh too much in
the fit. Moreover, these measurements have to be handled
with special care as they violate the fitting assumption that all
variances are normally distributed.

The flow-through system was developed at Wageningen UR
and has often been employed to experiment product in
different imposed gas compositions. The system consists of a
number of small containers. In each of these containers,
different gas conditions can be imposed. The temperature
and the relative humidity (100% in our experiments) can be
set in every storage cell that contains the containers.

Statistical analyses

Matlab® was used for all model fits and statistical analyses.
The ODE23 solver routine was used to solve the ordinary
differential equations. The Isqgcurvefit routine was used to fit
the models to the measured data.

RESULTS
General Quality Measurements

The general quality of the fresh-cut endive depended strongly
on temperature and oxygen levels (Fig. 1). The measured
data fitted well to the proposed logistic model with
composite Arrhenius relationship (Table 3).

The measurements were carried out at two carbon dioxide
levels: 0.1 and 0.2 mol/mol. However, no significant
differences were observed between these measurements.
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Figure 1: General Quality at Different Temperatures (4, 7, 11
and 20 °C) and Oxygen Levels (0, 0.005, 0.025 and 0.07
mol/mol) During Time




Table 3. Fitting Results (7., =284.15 K and x;', =0.005

mol/mol)
Quantity Fitted value Standard error
0., (0,5]) 0.42 0.11
k. ([0,51/s)  3.7x10° 0.41x10°
E (J/mol) 5.5x10' 0.62x10"
a(l) 9.6 2.2

Red Discoloration Measurements

The red discoloration of the fresh-cut endive depended
strongly on temperature and oxygen levels (Fig. 2). The
measured data fitted well to the proposed logistic model with
composite Arrhenius relationship (Table 4).

Table 4. Fitting Results (7

ref

=284.15 K and x;, =0 mol/mol)

Quantity Fitted value Standard error
R_ ([0,4]) 0.42 0.09

k. ([04)/s)  2.4x10° 0.33x10°

E (J/mol) 3.0x10 0.61x10"
A1) 11.2 1.7

The measurements were carried out at two carbon dioxide
levels: 0.1 and 0.2 mol/mol. However, no significant
differences were observed between these measurements.

DISCUSSION

From the standard errors in Tables 3 and 4 it can be
concluded that general quality and red discoloration of MA-
packed fresh-cut endive were well described by the proposed
models, logistic models including composite Arrhenius
relationships. However, it remains important to see this in the
light of the following issues.

As can be seen in Figures 1 and 2, the measurements were
sometimes broken up too early. The quality variables of most
samples did not reach their maximum values.

The standard errors of the initial general quality and initial
red discoloration are relatively large, as compared to the
other fit parameters. We expect this to be due to the natural
variance of these parameters across batches.

The grid of oxygen fractions was quite coarse and the
interval was quite narrow (the highest oxygen fraction was
0.07 mol/mol). Because of the fact that the “anaerobic zone”
appeared to be so narrow, we recommend the inclusion of an
oxygen fraction between 0 and 0.005 mol/mol, e.g. 0.0025
mol/mol, and at least one higher fraction, e.g. 0.2 mol/mol, in
future experiments. A similar issue applies to the imposed
carbon dioxide levels.

The oxygen effects could not be divided in effects due to low
oxygen levels and effects due to high oxygen levels, as the
latter effects could not be observed in the experiments. As a
consequence, the low level oxygen effects may be
overestimated, as, likely, there will be an “overlap” between
the two effects on the general quality variable.

A disadvantage of the logistic primary models is that they
lack a mechanistic ground. There is no clue in terms of the
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Figure 2: Red Discoloration at Different Temperatures (4, 7,
11 and 20 °C) and Oxygen Levels (0, 0.005, 0.025 and 0.07
mol/mol) During Time




underlying kinetics why quality attribute rates should be
dependent on their maximum values.

Also the composite Arrhenius relationships currently still
lack physiological ground. However, as a first step in
acquiring new knowledge, we argue that one could look for
direct relationships between independent and dependent
variables that are at least “statistically” meaningful (which is
what we have done in this work).

CONCLUSIONS

The dependency of modified atmosphere packaged, fresh-cut
endive on storage conditions was investigated. For this
purpose the product was stored at different temperatures (4,
7, 11 and 20 °C), oxygen fractions (0, 0.5, 2.5, 7 mol/mol)
and carbon dioxide fractions (0.1 and 0.2 mol/mol). The
general quality and red discoloration were observed. Two
composite Arrhenius models, incorporating the effects of
temperature and oxygen fraction on the rates of the general
quality and red discoloration of the product were successfully
fitted. The chosen model integrates the temperature and
oxygen effects and gives a reasonable idea of the empirical
relations underlying the development of quality aspects of
MA-packed, fresh-cut endive.

When calibrated, the model can be used to optimize package
and transport conditions to specific demands. Computer
simulations can be carried out to evaluate the effect of
temperature peaks in the (distribution) chain on the quality
variables of the product. In co-operation with a MAP model,
the effects of temperature on product quality and the oxygen
fraction in the package (which, in turn also affects product
quality) can be evaluated.

In the future we would like to fit this model to data where
both low oxygen level effects and high oxygen level effects
were observed in a quality variable.
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INTRODUCTION

Spray drying is an essential unit operation for the
manufacture of many products with specific powder
properties. It is characterized by atomization of a solution
or suspension into droplets, followed by subsequent drying
of these droplets by evaporation of water or other solvents.
Spray drying is used for the manufacture of many
consumer and industrial products such as instant food
products, laundry detergents, pharmaceuticals, ceramics
and agrochemicals. The best known example of an instant
food product is milk powder. Consumers desire a quick
dissolution or dispersion of such powders in water or milk
without the formation of lumps. But also manufacturers
have their wishes. They require free flowing powders and
absence of dust in such a way that it facilitates the handling
of the powders. Both requirements are met by applying
agglomeration of food powders (Hansen, 1980; Retsina,
1988; Pietsch, 1999).

Agglomeration is a size enlargement process of powders,
where small particles combine to form large relatively
permanent masses, in which the original particles are still
identifiable, see also figure 1. In this way the characteristics
of a single particle are maintained while the bulk powder
properties are improved by the creation of the larger
agglomerates.

Figure 1: SEM-photograph of spray dried and agglomerated
powder (from Verdurmen et al., 2004)

In a spray dryer agglomeration can take place within the
spray of an atomizer, between sprays of various atomizers
and between sprays and dry material being introduced into
the drying chamber (e.g. by fines return, see figure 2). The
latter technique is often the most effective way to achieve
and control agglomeration in spray dryers.
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Agglomeration takes place when two sticky particles, or a
sticky and a dry particle, collide and form a liquid bridge
that is strong enough to resist mechanical deformations,
while the integrity of the particles is maintained. Various
researchers have calculated the critical viscosity for sticking
during contact times of a few seconds by applying various
models. As a result the critical viscosity appears to be in the
range of 10° — 10® Pa-s. This value has been confirmed
experimentally by various investigators (Wallack and King,
1988; Downton et al., 1982; Aguilera et al., 1995; Bhandari
and Howes, 1999). At lower viscosities the particles will
coalesce upon collision, at higher viscosities the particles
will not stick together (see also next chapter).

The critical viscosity occurs at a temperature that is called
the sticky point temperature. Roos and Karel (1991) related
the sticky point temperature to the glass transition
temperature which is characteristic for each material. For
skim milk solids for example, the stickiness and caking
zone is positioned at about 10 °C or higher above the T,
measured by DSC (Hennings et al., 2000; Roos, 2002).
Sticky points can further deviate from glass transition
points, for instance because also the dynamics of colliding
particles are also relevant. It would therefore be better to
measure sticky points directly under dynamic conditions.
However, the classical measurement techniques (Lazar,
1956) are not very accurate and show poor reproducibility
when the examined powder is not free-flowing.

In this paper a new method to measure stickiness under
dynamic conditions is presented. The method is based on a
technique called attractor comparison, which was
developed by Delft University. It can detect small
hydrodynamic changes in fluid beds by analyzing high
frequency pressure measurements by attractor comparison
methods. For details concerning attractor comparison the
reader is referred to Van Ommen et al. (2000). The method
has been implemented in an industrial software package
called DyMonT (Dynamics Monitoring Toolkit) and is
successfully being used as an early warning system for
agglomeration of sand particles in fluidised beds for
biomass combustion and gasification. In this paper it is
used to monitor the stickiness of food powder particles in a
fluidized bed while changing the conditions of the inlet air
(temperature and relative humidity). Since DyMonT is very
sensitive to small changes in the hydrodynamics it is much



more suitable for monitoring stickiness than by
conventional parameters such as the pressure drop over the
bed or visual inspection. In this paper we present some
results of stickiness measurements by attractor comparison.
The results are compared to results obtained by
conventional techniques, both statically and dynamically.

L ~atomiser wheel / nozzles
hot air inlet

fines return

-

cyclone

bag filter
concentrated §
product
vvvvvvv -
g\rllbrating fluid bed
QD ) (agglomerated) powder
nd p-e—#—

cold air

Figure 2: An industrial 2-stage spray dryer with fines
return (source: Anhydro A/S, Denmark)

Agglomeration during spray drying is considered to be a
difficult process to control. The main cause of this is the
complex interaction of the process variables: the
atomization process, the mixing of spray and hot air, the
drying of suspension droplets and the collision of particles
which might lead to coalescence or agglomeration. As a
consequence, agglomeration during spray drying is
operated by trial-and-error. In 2001 an EC-sponsored
project started, coordinated by NIZO food research,
entitled EDECAD (Efficient DEsign and Control of
Agglomeration in spray Drying machines,
www.edecad.com). The EDECAD project aimed at
developing an industrially validated computer model, using
computational fluid dynamics (CFD) technology, to predict
agglomeration processes in spray drying machines. In this
paper some CFD simulation and validation results are
presented.

STICKINESS MEASUREMENTS

The sticky-point of a powder (i.e. the combination of
temperature and relative humidity of the outer layer of the
powder leading to sticky particles) can be measured using a
stagnant layer of powder. This so-called “static sticky-
point” is of relevance for storage of powders and to
determine when build-up of a powder layer can occur at the
chamber wall or cone of spray driers.

The static sticky-point is determined by filling an open
container (d=85mm) with some powder (h=5 mm). This
container is exposed to a constant temperature in a
controlled air cabinet. The relative humidity of the
circulating air will be step-wise increased (leaving at least 6
hours between such steps) until an visual change in powder
structure is observed. This change in structure is regarded
as the static sticky-point. By repeating this procedure at
different temperatures, a static stickiness line can be
constructed.

The dynamic sticky-point of a powder can be determined
by fluidizing a powder in an experimental fluid bed
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(Bloore, 2004). This fluid bed is composed of a sintered
distributor plate and a cylinder, see figure 3.

Air  Water

humidifier

sintered phte

Fluidized bed
Figure 3: Schematic set-up of the test rig to determine
the dynamic sticky-point.

The air that is fluidizing the powder can be heated up to
100 °C and the maximum air humidity is 50 g-kg'. Air
pressure, temperature and relative humidity are measured
below the sintered distribution plate. Also the powder
temperature is measured. The pressure is measured every 5
seconds and the temperatures and relative humidity every 5
minutes. The amount of powder added is 500 grams. At a
constant air flow (adjusted to achieve sufficient
fluidization) and temperature, the relative humidity of the
air is step-wise increase every S5 minutes until the
fluidization  characteristics ~ are  changed  (visual
observation). To determine the dynamic sticky-point, visual
observations and measurements of air pressure and powder
temperature are used. By repeating this procedure at
different temperatures, a dynamic stickiness line can be
constructed.
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Figure 4: Schematic set-up of the test rig to determine
the dynamic sticky-point using DyMonT

The experimental set-up for the dynamic sticky-point
measurements by attractor comparison is schematically
depicted in figure 4. The set-up consists of the set-up shown
in figure 3 with two additional pressure probes each
containing a high frequency pressure sensor. The sensors
are connected to a data acquisition system which is used to
analyse the pressure signals. As in the conventional
stickiness experiments skim milk powder was used. The
bed height used in the experiments is approximately 15 cm
in non-fluidised state. The pressure probes are located at 5
and 10 cm from the sintered plate. An inletair flow of 133
I/min is used in the experiments, which corresponds to a
superficial gas velocity of 0.125 m/s (5.5%u,,). Experiments
are carried out at inlet an inlet air temperature of 60°C. The
humidity of the inlet air is step-wise increased, using time



intervals of 1 to 2 hours to let the system equilibrate after
each increase.

MODELLING SPRAY DRYING

Predictive computer models are helpful tools to maximize
the production capacity of available installations, to
minimize fouling of equipment and to reduce energy
consumption. These models also reduce the number of
costly and time-consuming production trials needed for the
development of new products or processes. By Verdurmen
et al. (2004) an overview has been given how different
modelling approaches can be applied to spray drying
equipment. Currently, CFD is regarded as on of the best
approaches to simulate spray drying process in detail
(Huang et al. 2003; Huang et al., 2004; Kievit, 1997;
Oakley, 2004; Straatsma et al., 1999a; Verdurmen et al.,
2004; Xia and Sun, 2002). The airflow field, the local
temperature and the local humidity inside the spray dryer
can be computed by using CFD techniques, taking into
account the coupling for mass, momentum and energy.

The difference from standard (e.g. diesel sprays used in the
automotive industry) spray calculations mainly concerns
the drying part: stickiness primarily depends on the drying
state of the outer layer of the particles. Additional sub-
models for moisture diffusion inside the particles
(Straatsma et al., 1999a) and for the relation between the
drying state and stickiness (Roos, 2002) are therefore
required to be able to compute the drying and fouling
behavior of spray drying systems.

Some powder properties (e.g. insolubility) can be related to
the moisture content and the temperature-time history of
the particles (Straatsma et al., 1999b). For these properties
the modelling techniques described above can be used. The
majority of relevant powder quality properties, however,
are related to the degree of agglomeration.

The aim of the EDECAD project has been to develop an
industrially validated CFD model, a so called Design Tool,
to predict agglomeration processes in spray drying
machines. The project has focused on agglomeration that
takes place at the upper part of the spray chamber, i.e.
between sprays and between sprays and fines return. The
modelling technique used is an extension of the Euler-
Lagrange model for the drying and fouling behaviour of
spray dryers described above.

The initial spray conditions were measured and the sub-
models for drying, collision and agglomeration were
developed and validated by the academic partners in the
project (Blei, 2003; Blei and Sommerfeld, 2004a; Blei and
Sommerfeld, 2004b; Menn, 2005; Nhumaio et al., 2004).
For a detailed description of the CFD model and its sub-
models and pilot-plant validation work carried out by the
industrial partners we refer to Verdurmen et al. (2004).

RESULTS AND DISCUSSION

Stickiness measurements
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The results of both the static and dynamic stickiness
measurements for skim milk powder are presented in
Figure 5 as a function of relative humidity of the air in the
fluid bed. The glass transition temperature of skim milk
solids as determined by DSC is also plotted in figure 5 and
is taken from literature (Vuataz, 2002).
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Figure 5: Results of the static and dynamic stickiness
measurements of skim milk powder (blue and red lines
respectively), as compared to the glass transition
temperature (black line)

These results confirm earlier observations (Hennings et al.,
2002; Roos and Karel, 1991; Roos, 2002) that the sticky
point temperature and glass transition temperature are
related, also when sticky points are measured under
dynamic conditions. The average offset between the glass
transition temperature and the static sticky-point is 13 °C,
whereas the average off-set between the glass transition
temperature and the dynamic static point is 18 °C. These
observations are also in line with a recent study by
Paterson et al. (2005), who found that for amorphous
lactose, being the dominating carbohydrate in skim milk
solids, a temperature exceeding the glass transition
temperature by 25 °C or more leads to instantaneous
stickiness, even under very short contact times, such as
those experienced in industrial fluid bed dryers. The sticky-
point curves obtained are used as input for the
agglomeration sub-model of the Design Tool, as is
described by Verdurmen et al. (2004).

Figures 6 to 8 show the results of the dynamic stickiness
measurements by attractor comparison. Figure 6 is a plot of
the inlet air temperature, the powder temperature and the
relative humidity of the inlet air as measured during the
experiments. The step-wise increase of the relative
humidity can be clearly observed in figure 6.
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Figure 6: Inlet air temperature and humidity and the
powder temperature during the experiment



Figure 7 shows the S-value for the two pressure sensors
during the experiment, using the attractor at the end of the
first increase in relative humidity as a reference (indicated
by the first green bar in figures 6 and 7).

-10 . L
00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00
Time [hr]

Figure 7: The S-value during the experiment

Figure 7 shows S as a function of the relative humidity of
the inlet air. The S values shown in figure 7 are obtained at
the end of each step-wise increase in relative humidity
(indicated by the green bars in figure 5), using the attractor
at RH = 12% as a reference.
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Figure 8: S-value as a function of the relative humidity

of the inlet air (evaluation periods used are indicated by
the green bars in figures 6 and 7)

Both curves in figure 8 show a steep increase at a
relative  humidity of approximately 22%, which
corresponds well to the dynamic sticky-point measured by
the conventional approach at 60°C (see figure 5). There is a
clear difference between the two curves, however. The
sensor located at 10 cm does not show a significant change
in S (<3) until RH=22%, whereas the sensor at 5 cm
already shows a significant change at RH=17%. Since skim
milk powder is a polydisperse system, this might be due to
stratification effects in the fluidised bed. An early change
in S before the conventional dynamic sticky point is
reached, as observed by the sensor at 5 cm, is not unlikely,
however. Glass transition at 60°C occurs at RH=12% (see
figure 5). Therefore, for RH>12% there will be a change in
the physical state of the outer layer of the powder particles,
which causing a change in the collision behaviour. This
small change in hydrodynamics can results in changes in S,
even though no change can be observed visually or in
pressure drop over the bed.

Modelling spray drying

Figure 9 shows a typical simulation result for the particle
trajectories in the pilot plant dryer which was also used for
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the validation trials. The size of the particles shown in
figure 9 is a measure for the particle diameter. The results
clearly show that the smaller particles (fines) leave the
dryer through the air outlet, whereas the majority of the
larger particles leave the dryer through the bottom of the
dryer. The results also show large recirculation pattern in
the dryer, which is not unusual especially for relatively
small particles.

Figure9: Simulated particle trajectories (the shown size is a
measure of the particle diameter and the colours represent
the particle temperature in K)

Figure 10 shows the initial particle size distribution at the
nozzle and the computed size distribution at the bottom of
the dryer corresponding to the calculation shown in figure
9.
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Figure 10: Particle size distribution at the nozzle

(measured) and at the bottom of the dryer (simulated)

Two cases have been simulated: production of infant
formulae without and with fines return. An increase in the
particle size of the powder is observed when using a fines
return configuration. This is in correspondence with
experimental observations. In Table 1 the experimental and
simulated average particle sizes are compared.

Table 1: Comparison of powder particle size distributions
of simulations and validating spray drying trials.

Model Measured |Measured
prediction |(directly at(after
dryer) transport)
average diameter 95 103 92
2., [4(v.05) [um]
£ 8 = f *
= & 2 |relative span [-] 1.0 2.7 2.0
z o 8
average diameter 130 164 103
P d (v, 0.5) [um]
2 2 2 |relative span [-]* 0.6 2.3 2.0
z o 8

* relative span is defined as (d (v, 0.9)—d (v, 0.1))/ d (v, 0.5)




It can be concluded that the simulations are giving results
in the correct order of magnitude. However, there is still a
need for further fine-tuning. Moreover, special attention
has to be paid to experimental determination of model
input parameters, especially parameters for which the
model is sensitive such as viscosity and stickiness.
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ABSTRACT

A thermodynamic model is presented for the top-spray
fluidised bed coating process. The model is based on the
bed’s discretisation into horizontal layers (or control
volumes). In each control volume, both particle population
balances and heat and mass balances for the solid, gas and
droplet phases are constructed. Model-predicted spray drying
losses were compared against experimentally determined
coating efficiencies.

INTRODUCTION

Fluidised bed coating is a process in which a particulate solid
material is encapsulated by spraying a coating polymer
directly onto a fluidised bed (Abe et al. 1998; Dewettinck
and Huyghebaert 1999). The coating polymer to be applied
could be an aqueous or organic solvent-based solution or
even a melt and is continuously sprayed into the fluidised
bed, usually by means of a pneumatic nozzle which may be
submerged in or positioned above the bed (Jozwiaskowski et
al. 1990; Link and Schliinder 1997; Zank et al. 2001; Nasr et
al. 2002). Depending on the position of the nozzle with
respect to the fluidised bed, distinction is made between top-
spray, bottom-spray and tangential-spray (Jones 1985).

The use of compressed air in a binary nozzle results in very
strong shear forces at the liquid-gas interface, producing
droplets with a size ranging from 10 to 40 um (Guignon et al.
2002). The droplet size distribution of a spray produced by a
pneumatic nozzle is characterised by the nozzle’s specific
construction, the liquid flow rate, the rheology of the coating
and, the flow rate and pressure of the atomising air (Schafer
and Wgrts 1977; Lefebvre 1988; Liu and Litster 1993; Juslin
et al. 1995; Guignon et al. 2002). It is important that a certain
ratio of droplet-to-particle size is to be respected during
fluidised bed coating. According to Liu & Litster (1993), this
ratio should be at least 10.

Due to the complex thermodynamic interactions between the
droplet phase, the particles and the gas phase, the coating
process is prone to unwanted yield-reducing or quality-
degrading side effects, such as agglomeration (Dewettinck et
al. 1998; Kage et al. 1998; Saleh et al. 1999; Nakano and
Yuasa 2001), premature droplet evaporation (Smith and
Nienow 1983; Jones 1985), attrition of friable particles

(Guignon et al. 2002) and degradation of heat-sensitive core
or coating materials (Krober and Teipel 2005).

The exhaust air of a fluidised bed coating process is usually
not saturated and consequently, premature droplet
evaporation is likely to occur before the coating solution
droplet adheres onto the particle surface (Jones 1985; Hemati
et al. 2003). The spray-dried coating material could either be
elutriated from the bed or, in case of heavier dry fines, the
spray-dried fines are entrapped within the coating film,
resulting in coating imperfections (Smith & Nienow 1983).
Besides the reduced coating quality, spray drying losses
increase production costs due to the loss in coating material
and the increased processing times required to reach the same
degree of coating compared to a process where spray drying
losses are absent (Gouin 2004).

Premature droplet evaporation is the result of a complex
interaction between several factors including the evaporative
capacity of the bed, the droplet travel distance and velocity,
the droplet impingement efficiency and the droplet adhesion
probability (Jones 1994; Dewettinck and Huyghebaert 1998;
Heinrich et al. 2003). Spray drying losses and agglomeration
are two side effects occurring at each other’s opposite end of
the bed’s drying capacity range which implies that fluidised
bed coating is often characterised by a narrow operational
region as illustrated in Figure 1.
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Figure 1. Relationship between particle growth kinetics in
fluidised bed coating and the spraying rate and fluidisation
air flow rate process variables (after Guoin 2004).

Currently, the knowledge on the different microprocesses
that are involved, such as droplet penetration, impingement,



spreading and evaporation, as well as the interactions
between the droplets and the particle-laden gas flow, is
limited. This study’s aim is the development of a mass- and
heat transfer model capable of predicting the extent to which
side-effects during fluidised bed processing occur. This paper
will be focused on the spray drying loss or premature droplet
evaporation phenomenon.

NOMENCLATURE

Symbols
a, b Coefficients in impingement efficiency calculation
d Diameter, m

DM Dry matter content, dimensionless

G Air flow rate, kg dry air/s

J Mass flow rate, kg/s

n number of control volumes

r Particle exchange rate, Hz

S Control volume

St Stokes number, dimensionless

T Temperature, K

v Linear velocity

w Particle moisture content, kg water/kg core
X Absolute air humidity, kg water/kg dry air
Y Coating mass fraction, kg coating/kg core
Greek Letters

€ Voidage, dimensionless

n Viscosity, Pa.s

0 Droplet/particle contact angle

[0} Air relative humidity, dimensionless

D Heat transfer rate, W

p Density, kg/m’

e Impingement efficiency, dimensionless
Subscripts

a Fluidising air

at Atomisation air

crit Critical

dp Droplet phase

p Particles

sol Coating solution

sd Spray dried
MODEL DESCRIPTION

Main model

The model used in this study is an evolved version of the
fluidised bed coating model presented by Ronsse et al.
(2004; 20064, b). However, whereas the original model only
included two phases — being the gas and solid phases — the
presented model is a fully developed three-phase model,
including the droplet (spray) phase. Both models are based
on the horizontal discretisation of the bed into n control
volumes (or layers, S;), each having a constant volume and
containing a constant number of particles. A schematic
overview of the model is given in Figures 2 and 3.

In modelling these 3 phases within the fluidised bed, the
following assumptions were made:
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e All three phases (droplets, gas and solids) are perfectly
mixed within each control volume S;.

e The mass flow of dry air, G,, is constant and is equal for
all control volumes (plug flow assumption)

e The continuous particle transport between the different
control volumes (layers) is expressed by the variable r;, as
the fraction of the particle population exchanged per time
unit from S; towards S;,;.

e Particles are non-porous and mechanically inert; there is
neither agglomeration nor attrition.

e The droplet phase only moves downward through the
particle bed. If no successful adhesion occurs before
complete droplet evaporation, dry fines are produced.
Dry fines are assumed to elutriate completely from the
bed by the fluidising air.

In each control volume S;, the population balance for the
particles along with the dynamic heat and mass balances for
the fluidising air (characterised by the air temperature, T,;,
and air humidity, @,; or X,;), the particles (characterized by
the particle temperature, T},;, particle moisture content, W,
and particle coating content, Y,;) and the droplet phase
(using the droplet temperature, Tq,;, droplet phase mass,
My, ;, and droplet dry matter content, DM, ;) are constructed.
A detailed description of the numerical method to solve the
model is given by Ronsse et al. (2006a)
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Figure 2. Schematic overview of the top-spray fluidised bed
coater.

In order to complete the modelling of the fluidised bed
coating process, the following variables had to be quantified:

e The heat and mass transfer rates at the air/particle and the
air/droplet interface. Using the Whitaker equation, the
dimensionless Nusselt and Sherwood numbers to estimate
heat and mass transfer rates. This equation applies to
forced convection around spherical bodies, being both
droplets and particles (Sparrow et al. 2004).

e The particle exchange rate can be calculated using
Rowe’s (1973) correlation for the calculation of particle



circulation times as a function of gas velocity (G,) in
bubbling fluidised beds.

e Heat is exchanged from the bed to the environment either
by convection of the gas (air) at the inner reactor wall
(Doss0; in Figure 3), or through contact between the
particles and the reactor wall (@ p; in Figure 3). For an
extensive overview of the different mechanisms of heat
transfer between submerged surfaces (i.e. reactor wall)
and bubbling fluidised beds, the reader is referred to
Kunii and Levenspiel (1991).

e Finally, the droplet collection rate per control volume is
unknown. In order to quantify the local droplet collection
rate, a separate droplet submodel was designed, of which
the details are given in the next section.
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Figure 3. Detail of a single modelled control volume.

Droplet Submodel

In the droplet submodel, spatial droplet distribution and local
droplet/particle collection rates are determined by tracking
the trajectories of individual droplets throughout the
computational domain. Individual droplet trajectories are
calculated based on the forces acting on each individual
droplet (gravitational and drag forces).

Assuming that the gas velocity profiles produced by the
release of compressed air in the pneumatic nozzle are similar
to a free axisymmetric jet (Donadono et al. 1980; Becher and
Schliinder 1997; Zank et al. 2001), drag force calculation is
based on the velocity profiles given by Schlichting et al.
(2004) and the empirical drag coefficient equations of Turton
and Levenspiel (1986), and Mostoufi and Chaouki (1999).
The size distribution of the droplets produced at the nozzle is
calculated according to the droplet size correlations
described by Lefebvre (1988).

Droplet-particle collision occurs when the droplet trajectory
is separated from the fluid streamline (Figure 4). The
probability of droplet trajectory separation from the fluid
streamline or the so-called ‘impingement efficiency’, ¥, is
obtained through the following empirical equation with St
being the particle dimensionless Stokes’ number, ¢ and b
being coefficients depending on the flow regime around the
receiving particle (Loffler 1988; Zank et al. 2001; Heinrich
et al. 2003):
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Depending on the kinetic energy of the droplet and the
wettability of the particles substrate, droplets remain adhered
or bounce off the particle surface once initial particle-droplet
contact has been made (Link and Schliinder 1997). Various
authors use the concept of critical impingement velocity,
above which the droplets are reflected on the particle surface
(Link and Schliinder 1997; Zank et al. 2001; Heinrich et al.
2003). The critical impingement velocity for flat, non-porous
and dry surfaces was deduced by Link (Zank et al. 2001),

g, (3tan (6/2)+tan’ (9/2))%

Vcn't 2 (2)
dy,pg, tan” (6/2)

By combining the impingement efficiency with the critical

impingement velocity the overall droplet collection

efficiency is calculated. By simulating a representatively
large number of individual droplet trajectories, the spatial
distribution in the bed of the droplet/particle collection rate
can be derived and used to solve the heat and mass balances
of the main coating model.

Droplet trajectory separation
from fluid streamline

do i Particle

Figure 4. Droplet collision mechanism and the concept of
impingement efficiency.

EXPERIMENTAL SET-UP

For the determination of the coating mass and coating
efficiency, experimental data by Dewettinck (1997) were
used. In this research work, the core material used was 1 kg
of NaCl crystals which were coated with a 5 w% sodium
caseinate solution. The adhered sodium caseinate, which is a
protein, was then quantitatively determined using the Lowry.
The coating efficiency was subsequently calculated as the
amount of protein retrieved on the particles, compared to the
total amount of coating material injected into the bed
throughout the batch coating process.
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Figure 5. Schematic overview of the Glatt GPCG-1 fluidised
bed coating unit.

All coating experiments were performed in the Glatt GPCG-1
fluidised bed unit (Figure 5) using the top-spray insert with
the nozzle in the upper position (4 = 0.225 m). In each
coating experiment, the spraying rate and the inlet air flow
rate were kept constant (Jyo = 7 gmjn'l, Guin = 1.34 x 10
kg s'l), while the particle diameter, d, atomisation air
pressure, P,, and the inlet air temperature, 7, ;, were varied
between different experiments as is shown in Table 1. Each
coating experiment was terminated when the total amount of
coating solution introduced into the bed was equal to 0.5 kg.
After finishing the coating process, coating efficiency was
determined by means of the Lowry-method.

Table 1. Studied process variables

Variable Values studied

Particle diameter (um) 250 - 350 - 450

Corresponding bed height 0.092 - 0.086 - 0.081

(m)

Corresponding particle 2.48 - 234 - 2.14
exchange rate (Hz)

Inlet air temperature (°C) 70 - 78 - 86

Atomisation air pressure 1.5 - 25 - 35
(bar)

Corresponding atomisation 1.45 - 204 - 2.38
air flow rate (g/s)

Also, during each experiment, the steady-state bed

temperature was recorded by means of a shielded T-type
thermocouple suspended in the fluidised bed approximately
0.06 m above the air distributor. The bed temperature was
used as an additional validation of the model.

RESULTS AND DISCUSSION

Thermodynamic validation

The measured bed temperature during steady state coating
regime was compared with the model-predicted bed
temperature. The results are shown in Figure 6, while the
regression analysis results are given in Table 2. In each
simulation, a total of 24 control volumes and 10000 particles
were used, while the submodel simulated a total of 5000
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droplet trajectories. More details concerning the effect of the
sample size and the number of control volumes on the model-
predicted results is given in Ronsse et al. (2006a).

From the results of the regression analysis, it could be
deduced that a good correlation was attained between the
experiment and the model, although the model tended to
overestimate the bed temperature as can be seen by the
asymmetric 95%-confidence interval of the intercept.
Previous thermodynamic validation (Ronsse et al. 2005)
revealed that the model tended to underestimate the air
temperature — and ultimately, the bed temperature — in the
lower sections of the fluidised bed. However, the method of
measuring the bed temperature by means of a shielded probe
suspended in the bed is likely to result in lower temperatures
due to evaporative cooling due to probe wetting. Indeed,
visual inspection of the temperature probe after conducting
coating experiments using coloured coating solutions often
revealed a clearly distinguishable layer of coating material
sticking on the probe. This indicates that part of the coating
material somehow must have contacted the probe in a
dissolved state, either by direct droplet contact or by
collision of wetted particles resulting in evaporative cooling
of the probe tip.
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Figure 6. Measured bed temperature during steady state
coating versus the model-predicted bed temperature.

Table 2. Regression analysis between model-predicted and
experimental bed temperature

Ti)ed,exp =a ’I;)ed,mod + b

R? 0.972
SSR 164.5
Slope, a 1.160
95% confidence .
interval of slope [1.065; 1.257]
Intercept, b -4.564

95% confidence

interval of intercept [-8.814;-0.313]

Validation of coating efficiency
The experimental spray drying losses were compared with
the model-predicted spray drying losses and the results are
graphically represented in Figure 7, while the regression
analysis is summarised in Table 3.



From these results it can be concluded that modest
correlation was achieved, given the complex thermodynamic
nature (multivariateness) of the spray drying effect. As can
be seen from the regression analysis, the model tended to
underestimate the spray drying loss (slope = 0.769), but this
could be due to the fact that any loss in coating material
throughout the process was assumed to be solely the result of
the spray drying of the coating solution. In reality, however,
effects such as attrition of deposited coating material and
subsequent entrainment of coating material in the filter will
contribute in decreasing the overall coating efficiency and
thus, the experimental spray drying losses may be
significantly smaller than the overall loss in coating material
during the process, possibly explaining the underestimation
in the model.
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Figure 7. The measured spray drying loss (expressed as the
spray-dried weight fraction of the total amount of dry matter
introduced in the coating process) during steady state coating

versus the model-predicted spray drying loss.

Table 2. Regression analysis between model-predicted and
experimental spray drying loss

Jsd,exp =a Jsd,mod + b

R? 0.701
SSR 0.058
Slope, a 0.769
95% confidence [0.528: 1.010]
interval of slope

Intercept, b 0.096
95% confidence )
interval of intercept [0.017;0.175]

CONCLUSIONS

A model has been presented to calculate the dynamic
behaviour of a top-spray fluidised bed coater. The model
combines the one-dimensional discretised representation of
the fluidised bed with a spraying submodel which serves to
calculate the individual droplet trajectories. Although the
model has shown to be quite reliable in predicting the overall
bed thermodynamics, it also has proven to be capable of
roughly estimating the spray drying losses. An additional
difficulty in this kind of validation experiments is that not the
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spray drying in se is measured, but the overall process
efficiency. The latter is also affected by attrition and
entrainment; effects which are still not implemented into the
model. As a consequence there is an underestimation of the
model-predicted spray drying losses.
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ABSTRACT

A sigmoid model is proposed for the simulation of food
temperature evolution during the processing of preserves
in low capacity sterilizers. Predicted results are compared
against a formula method (exponential), widely used in the
simulation and control of industrial processes.

The proposed model resulted to be simple and accurate for
the prediction of thermal histories of foods of different
shapes and sizes sterilized in glass jars, and may be very
useful for low volume processors. The exponential model
did not provide accurate predictions for these processing
conditions.

INTRODUCTION

Sterilization is widely used for food preservation.
Notwithstanding, only processing of foods packaged in
cans or plastic containers and continuous aseptic
processing (without containers) have been studied in depth
for the heat transfer point of view. Almost no attention has
been devoted to food processing in glass containers
(Maroulis and Saravacos 2003).

During the last years there has been in Argentina a steady
increase in the processing of low volumes of vegetable and
fruit preserves at commercial level (home-made, organic,
specialties, etc.), due to their much higher value. All these
products are presented in transparent glass containers. In
these cases, visual quality (appearance) of the products
(normally whole or sliced fruits or vegetables) is the main
quality index that costumers count on. So, it is mandatory
to provoke the minimal changes in colour, shape and
overall appearance, compatible with the destruction of
microrganisms. That is why it is necessary to count on
simple and accurate methods to predict product
temperature evolution during thermal treatment, so as to
minimize the usual thermal abuse due to overprocessing.
An additional complexity is that retort temperatures — in
these low volume batches — generally vary during
processing, increasing up to a constant value.

Few references to this subject can be found in literature.
Bimbenet and Michiels (1974) presented an initial theory
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for heat transfer in these systems (particulated foods in a
liquid medium packaged in glass containers). Some later
papers that dealt with the simulation of particular cases can
be found (Akterian and Fikiin 1994; Akterian 1995; Abril
et al. 1998; Marquez et al. 1998, 2001, 2002, 2003).

In this work an easy-to-use approximate calculation
method to predict heat penetration in particulated foods
immersed in a liquid medium and packaged in glass
containers is proposed. The method is especially useful for
heat treatments with time variable process conditions
(come-up period) and enables to relate the variation of
heating medium temperature to food temperature and to
link it to microbe destruction and loss of quality kinetics.

MATERIALS AND METHODS
Containers and Samples

To perform the tests cylindrical glass containers of 360
em’ (external diameter 0.069m), were used. The containers
were filled with cylinders, cubes or spheres of 0.010,
0.015 and 0.020 m of characteristic length L (diameter,
side and diameter, respectively). These shapes and sizes
were selected according to those of products found in the
markets. As the objective was to simulate the pasterization
and sterilization of fruits and vegetables, a test material of
thermal properties similar to those of fruits and vegetables
was used for the samples, in this case high-density
polyethylene. The amount of test material filled to each
container was calculated considering 45% of porosity. As
covering liquid a 4% solution of NaCl was added,
completing 90% of the total volume of the container.

Retort System

Tests were performed in a vertical batch retort built in
stainless steel (Figure 1.a), with a holding capacity of 27
containers of 360 cm® each. The retort is furnished with an
automatic security valve that opens at the overpressure of 1
atmosphere, reaching and maintaining a final temperature
of approximately 118 °C. This type of retort and working
temperature are typical to little-volume processors.

Data Acquisition

Temperature within the retort and at the geometric center



of the sample placed in the coldest spot of the container
(determined in exploratory runs) were measured each 15
seconds, using Type T copper-constantan (Cu-CuNi)
thermocouples. To this end, the metallic lids of the
containers were drilled in the centre to let the passage of
the thermocouple (Figure 1.b). A high-temperature
resistant seal was used to secure hermeticity around the
thermocouple in the lid. Thermal histories were measured
and registered using a multi-channel data acquisition
system KEITHLEY model AS-TC.

(b)

()
Figure 1: (a) Retort System, (b) Containers and Samples,
Showing the Insertion of Thermocouples through the Lids

Thermal Processing

Thermal processing of the simulated preserves consisted of
an initial heating stage of approximately 30 minutes, where
retort temperature increases from the initial (ambient)
temperature up to a final temperature of about 118 °C,
regulated by the security valve set to approximately one
atmosphere. This stage is followed by a second period
during which temperature maintains practically constant
during 14 minutes.

Experiments were performed by triplicate. The proposed
calculation methods — described later - were adjusted to
each thermal history, and the values of the regression
parameters were averaged for each shape and size.

Modelling of heat penetration

A) Heat penetration was modelled by means of a standard
Formula Method (Ball 1923; Ball and Olson 1957,
Holdsworth 1997). This exponential model, widely used
in industrial processing of preserves, is defined through
two parameters: f,. and j.

T -T _2303.
pao Lol 230300,
T,-T,

Being fi,. the time the system needs to traverse a natural
logarithm cycle in the semilogarithmic plot of Equation (1)
and depends on product thermal properties, shape and size
and heat transfer conditions, meanwhile j, is mainly related
container and food shapes and sizes.

Their values were calculated by linear regression of the
semilogarithmic plot of T* vs. time, being j, and f.,
respectively, the intercept and the slope of the linear plot.
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B) After the study of the shapes of the experimental
heating curves (see Figures 3 and 4) a sigmoid model,
defined by Equation (2) and characterized by four
parameters: Aj, A,, X,, and dx, is proposed.
(4~ 4,)

Being A, the pseudo-initial temperature of the slowest
heating point (°C), A, the final retort temperature (°C), X,
the time the slowest heating point needs to reach the
temperature (A;+A,)/2 and dx a parameter related to the
first derivative of Tc evaluated in X, To calculate the
parameters, a nonlinear fitting of experimental data to
Equation (2) was done using the software Origin 7.0,
prescribing parameter A, as the final retort temperature.

Calculation of Microbial Lethality

Acumulated lethalities were calculated in the usual way,
by means of Equation (3), as the integral of the lethal rate
L along the processing time. Experimental thermal
histories and those predicted by both models were used. As
reference microrganims Clostridium pasteurianum (Dijpc
=0.01 and z. = 10°C), were used.

F= J; Ldt = j:lo‘“(”’”ef)”edt 3)

Acumulated lethality values F were calculated by
approximate integration of Equation (3) with a second-
order Newton-Cotes method, using Excel 7.0.

Validation of the Model
Both prediction methods were validated comparing
simulated temperatures against experimental ones. To

perform these comparisons average absolute percent
residues, as defined in Equation (4), were used:

R:

3 |T5; 7100 (%)

1
m i e

“)

Calculated values of acumulated lethality F were also
compared, using the relative percent absolute difference
DF:

_|Fe-F

DF 100 (%) )

e

RESULTS AND DISCUSSION

Figures 2.a, 2.b and 2.c show the thermal histories of
cylinders, cubes and spheres, respectively, during thermal
processing with variable external medium temperature. In
these figures an initial period during which food product
temperature remains constant (time lag) can be observed.
This lag is a function of the material and thickness of the
container and of the size of the products (higher thickness
implies higher delay), as has been previously shown
(Mérquez et al. 2003). Respect to retort temperature, it
shows two characteristic periods: one initial with
continuous increase (firstly steady, later with lower slope)



and a second period of constant temperature, regulated by
internal pressure in the retort.
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Figure 2.a: Experimental Thermal History in Cylinders.
(©) Retort, (m) 0.01 m, (¢) 0.015 m, (A) 0.02 m
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Figure 2.b: Experimental Thermal History in Cubes. (0)
Retort, (m) 0.01 m, (¢) 0.015 m, (A) 0.02 m
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Figure 2.c: Experimental Thermal History in Spheres. (o)
Retort, (m) 0.01 m, (0) 0.015m, (A) 0.02 m
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Parameters calculated from the respective thermal histories
are presented in tables 1 and 2. In the sigmoid model,
parameter X, (min) is related to the delay of the system and
is defined as the time that the slowest heating point in the
system reaches a temperature (A;+A;)/2 °C, increasing
with the characteristic length L. Similarly, parameter j,
lowers with the increase of L (lower heating rate).
Meanwhile, dx and f;, increase with L, being related to the
increase of process time with product size (higher L means
lower heating rate).

Table 1: Parameters of the Exponential Model

Shape L (m) in fhe
0.010 2.37 22.75
Cylinders 0.015 1.78 29.29
0.020 1.35 36.60
0.010 2.81 19.76
Cubes 0.015 1.52 27.98
0.020 1.06 38.50
0.010 2.14 20.79
Spheres 0.015 1.30 29.54
0.020 0.85 38.80
Table 2: Parameters of the Sigmoid Model
Shape L(m) A, A, Xo dx
0.010  13.58 118.08 20.39 5.1
Cylinders  0.015 12.08 118.08 20.83  6.07
0.020 11.42 118.08 21.69 6.61
0.010 9.34 118.56 1559 597
Cubes 0.015 8.11 118.56 1648  6.19
0.020 6.94 118.56 17,88  6.61
0.010 11.05 118.52 1436 6.11
Spheres 0.015 9.20 118.52 1490 6.44
0.020  8.60 118.52 1595  6.69

Figure 3 shows the experimental and simulated — by both
methods — thermal history for cubes with 0.015 m of side.
As can be seen, the exponential model only works
satisfactorily at long processing times (when retort
temperature T, is constant), but at short process times
deviations are considerable. This model could be useful for
low acidity foods, were process times are long and the
initial error in predicted temperature has no weight on
overall calculated lethality.

Meanwhile, the sigmoid model predicts temperatures with
high accuracy at short and large processing times, because
it adequately considers the variation in T, This means that
this model is also useful for short processing times, as in
the case of high acidity foods. These behaviours of the
models were the same for the different shapes and sizes.
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Figure 3: Experimental and Simulated Thermal History of
a Cube of 1.5 cm Side. (¢) Exponential Model, (o)
Sigmoid Model, (-) Real

Residues calculated according to Equation (4) are shown
in Table 3. In all cases, those of the sigmoid model were
much lower than for the exponential one, always less than
10 %, showing the accuracy of the sigmoid model.

Table 3: Calculated Residues for Predicted Temperatures

L (m)

Shape Model 0.010 0.015 0.020

Sigmoid 4.56 5.13 4.94
Cylinders

Exponential 74.01  48.17 37.23

Sigmoid 2.87 3.38 3.96
Cubes

Exponential 7591  27.44  32.09

Sigmoid 9.86 9.05 9.37
Spheres

Exponential 15272 69.49 152.68

Acumulated lethalities F for all shapes and sizes, both real
and calculated, are presented in Table 4. In most cases
predicted values for both models were lower than true
values. This is good for microbiological security of
predicted work conditions, meanwhile deviations from real
values be low. This is so for predicted F by the sigmoid
model, but those from exponential model show a low
degree of accuracy, implying high quality losses and
energy consumption. These trends are reflected in
predicted relative differences (DF), which were much
lower for the sigmoid model (Table 4).

The parameters of the sigmoid model (x, and dx) obtained
through the fitting of experimental thermal histories can be
related to product size (L), as previously expressed. This is
shown in Figures 4.a and 4.b.

Figure 4.a shows that x, increases in exponential manner
with L for the three shapes, meanwhile dx increases in a
linear way, as shown in Figure 4.b. These figures allow to
interpolate for calculating their values for intermediate
sizes.
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Table 4: Acumulated Lethalities F (min) and Relative
Percent Absolute Differences

Model
Shape L (m) Real Sigmoid Exponential
F(min) | F(min) | DF(%) | F(min) | DF(%)
0.010 | 321 3.15 191 280 1290
Cylinders |.075 | 1.94 221 1407 1.19 3856
0.020 | 1.12 137 2270 0.56 50.03
0.010 | 690 515 2536 4.62 33.02
Cubes 0.015 | 474 422 1091 2.19 53.68
0.020 | 240 286 1924 0.86 64.06
0.010 | 744 561 2466 501 3271
Spheres 0.015 | 520 4.64 1077 227 56.28
0.020 | 355 3.67 328 142 59.90
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Figure 4.a: Variation of x, with L for the Different Shapes.
(m)Cylinders, (®)Cubes, ( A)Spheres
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Figure 4.b: Variation of dx with L for the Different
Shapes. (m)Cylinders, (®)Cubes, ( A )Spheres



CONCLUSIONS

A sigmoid model has been proposed for the prediction of
thermal histories in particulated foods (of different shapes
and sizes) packaged in glass containers, that can be very
practical for calculation of low-volume productions. The
also tested formula method (exponential) — normally very
useful for industrial processing conditions where constant
retort temperatures are reached almost instantaneously —
does not provide accurate results for the initial variable
retort temperature of the tested working conditions.

The proposed model predicted with good accuracy the
thermal evolution of all the tested cases, with average
relative absolute differences lower than 10%, fulfilling the
usual technical requirements.

Besides, it was found that model parameters x, and dx can
be easily related to food size for each shape, which enables
to use the model to simulate process conditions for food
sizes different from the tested ones.

Simulated acumulated lethalities were, in most cases,
lower than real ones, which is adequate from the point of
view of microbial security. The model allows to calculate
the sterilization time needed to secure microbial
inactivation and — at the same time — assuring the minimal
quality loss due to overprocessing.

NOTATION

A, Pseudo-initial temperature of the slowest heating point
C)

A, Final retort temperature (°C)

DF Relative percent absolute difference between
calculated F using real and simulated temperatures (%)

D Decimal reduction time (min)

dx Constant in sigmoid model related to the first derivate

(% = A;%JXA“ ) evaluated in x, (min)

F Acumulated lethality (min)

fi. Time to dimensionless temperature to traverse a natural
logarithm cycle (min)

jn Lag factor

Characteristic dimension (m)

Number of experiment temperatures compared
Percent residue (%)

Temperature (°C)

Time (min)

xo Time the slowest heating point needs to reach the
temperature (A;+A;)/2 (min)

z. Thermal resistance factor (°C)

~ 433 -

Subscripts

¢ Thermal center of the slowest heating product
e experimental

h heating phase

o initial

r retort

ref reference

s simulated

Superscripts
* dimensionless
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ABSTRACT

Thermal treatment of milk represents a major unit op-
eration in the dairy industry, to ensure the product’s
microbiologic safety and shelf-life increase. But during
the thermal treatments of such sensible fluids in common
Plate Heat Exchangers, proteins are often degraded and
precipitated to form fouling that greatly affect the treat-
ment efficiency and alter the product’s desired features.
Computational Fluid Dynamics simulations can then be
successfully exploited, bringing forth temperature and
velocity information, that yield for deposit distributions
when coupled to biochemical notations for thermal de-
naturation of fluid constituents.

The present work exploits such modelling of a heat ex-
changer single channel during pasteurization of milk.
The model applies for the first time a large, consistent
system of differential equations to a corrugated plate to
combine the flow, heat transfer and local transport of
(B-LactoGlobulin, the protein responsible of the subject
problem. A preliminary, 2D computation has been per-
formed with a commercial Finite Element Method soft-
ware, showing the potential of application to optimized
geometries (different corrugation shape and orientation)
and for a variety of products of known biochemical evo-
lution.

INTRODUCTION

The increasing attention on safety and quality of
medium and long time shelf-life has stimulated the ap-
plication of various and optimized thermal treatments,
in order to get flavors and nutritional values closer to
those of untreated foods.

Thermal treatment of milk and the like is one of the
most important unit operation in the dairy industry,
to ensure microbial safety and extend storage. Energy
delivery is a paramount parameter (through tempera-
ture) in controlling the alterations among the milk con-
stituents during its biochemical evolution, but it must
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be coupled with time exposure, that measures the ulti-
mate energy level. It is evident therefore that an ade-
quate temperature—time coupling is the most important
feature to be optimized in the dairy industry.

The device generally entitled to realize an indirect heat-
ing of milk is the Plate Heat Exchanger (PHE), depicted
in Fig. 1, which features a number of favorable aspects:
flexibility to allow different fluid treatment, safety, high
thermofluid efficiency, high turbulence to enhance heat
transfer and low weight /surface ratio (Shah et al. 1988).
Nevertheless, during its working cycles, the PHE is sub-
ject to a complex phenomenon which causes undesired
material accumulation along its working surfaces: foul-
ing. Fouling formation and control represents one of the
unresolved operating problems affecting a variety of in-
dustries, causing an increase of capital costs, energy and
maintenance time, and a loss of production, together
with a meaningful environmental impact. Indeed, the
plant is heavily affected as fouling causes increased pres-
sure drop, reduction of working efficiency through the
reduction of the heat transfer, and increased down—time
due to the frequent cleaning stage, with environmentally
offensive chemicals, to ensure stable processing (Burton
1988).

The fouling biochemical mechanism has been long stud-

initial plate
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Figure 1: The stacked PHE arrangement, with indica-
tion of streams. The product line with gray lines and
arrows (p), and the auxiliary fluid (thermal carrier) with
black lines and arrows (f) are reported, respectively, at
inlet (i) and outlet (o).



ied, but only partially understood due to its complex
nature. As shown by (Georgiadis et al. 1998; Geor-
giadis and Macchietto 2000; Grijspeerdt et al. 2004)
the denaturation of g-LactoGlobulin (SLG), a serum
protein, is responsible for fouling for thermal treatment
close to 90 °C, while several additional parameters in-
fluence such dynamics: milk composition, pH, plate ge-
ometry and entrained air.

Nowadays the optimization of technological process and
their operating conditions are often looked upon with
the aid of numerical modelling of transfer phenomena.
Integration of governing Partial Differential Equations
(PDEs) allows for a fundamental and quantitative way
to understand complex phenomena which is comple-
mentary to the traditional approaches of theory and
experiment. This approach is becoming increasingly
widespread in basic research and advanced technological
applications, cross cutting the fields of physics, chem-
istry, mechanics, engineering, and biology.

(Georgiadis and Macchietto 2000) proposed a mathe-
matical model by integrating a plug—flow model with
the heat convection along the flow direction and the
effects of dispersion. Fouling is considered as mono—
dimensional and steady—state, and different heat ex-
changer configurations are compared by using a specific
software to quantify the fouling distribution in the whole
device. The deposit varies linearly with time, specially
at the beginning of treatment, and is non—uniform in
the different channels considered being more localized
in the first flow passages, where temperature is higher.
Then (Jun and Puri 2006) have improved their model
by a two—dimensional geometry, though still idealized
(plates have no corrugations) showing that the temper-
ature distribution and related fouling can be more accu-
rately analyzed. A validation has been also carried out,
which compare favorably with tests, for several thermal
and fluid flow conditions. It is confirmed that the de-
posit is strongly dependent on operating conditions.
Well within this framework, in the present research line
the modelling and simulation approach has been chosen,
integrating the governing PDEs by the Computational
Fluid Dynamics (CFD). Even when dealing with com-
plex phenomena, the detailed flow field study coupled to
many other transport phenomena notations, offer a po-
tential of improved performance, better reliability, more
confident scale-up, improved product consistency, and
higher plant productivity. All these aspects will give
plant scientists and managers a much better and deeper
understanding of what is happening in a particular pro-
cess or system: it makes it possible to evaluate geometric
changes with much less time and cost than would be in-
volved in laboratory testing, it can answer many “what
if” questions in a short time and, finally, it is particularly
useful in simulating conditions where it is not possible
to take detailed measurements.

In the present work, CFD has been exploited to study
the fouling formation on the PHE surfaces, during pas-

115

B (\/\"s; -

Figure 2: The PHE’s selected channel: a sector of PHE
depicted in Fig. 1 (A); the close—up of the simplified
corrugate plate channel (B).

teurization of milk. All governing PDEs and related
biochemical notations have been solved by a Finite Ele-
ment Method (FEM) commercial solver, in order to de-
termine the temperature distribution, the velocity pro-
file and the distribution of the proteic deposit, for the
first time on a simplified corrugated plate channel. Such
model can be extended and used to show all operating
and geometry conditions such that the fouling be min-
imized, i.e. by modifying corrugation shape and orien-
tation. The application of the model could be beneficial
to the food and biotechnology industry, suggesting the
application of specific heat exchanger geometries for a
specific product or process.

PROBLEM FORMULATION

In the present work a pasteurization treatment of milk
in the first channel passage of a PHE has been studied
(Fig. 2), to analyze the SLG’s denaturation and sub-
sequent aggregation, responsible for PHE fouling. The
transfer phenomena at hand are based on the SLG’s lo-
cal kinetics mechanisms and related time evolution, de-
pending on the adopted thermal regime and flow geome-
try. The subject control volume in Fig. 2.B is formed by
2 ATSI 4340 steel, 25 cm—long and 1 mm-—thick, parallel
plates. These form a channel whose height is 4 mm; the
inferior trapezoidal corrugations have long side, short
side and height equal to 5, 1 and 3 mm, respectively,
are spaced by 2 cm and are associated to specular supe-
rior vanes.

The following considerations have been adopted:

1. The product flow is two—dimensional, in rectan-
gular Cartesian coordinates, laminar with channel
Re = 2700 and incompressible (negligible pressure
work and kinetic energy).

2. The milk flow with constant properties enters the
channel at 60 °C with a native SLG mass concentra-



tion of 5 g/l; the auxiliary flow is counter—current
saturated vapor at 97 °C.

3. The viscous heat dissipation is neglected.

4. Due to the adopted flow regime, no body force is
accounted for.

5. No-slip is enforced at every solid surface.

6. Mass diffusivities of species have been computed by
following (Jun and Puri 2006) specifications.

Furthermore, as the present work is focused on the evo-
lution of SLG, it is suitable to present here its inclusion
in the CFD formalism. The (Jun and Puri 2006) reac-
tion scheme is adopted:

1. Proteins react in both the bulk fluid and a thermal
boundary layer. Native protein N is transformed
to denaturated unfolded protein D by a first order
reaction. The unfolded protein then reacts to give
an aggregated protein A by a second order reaction.

2. Mass transfer between the bulk and the thermal
boundary layer takes place for each protein form.

3. An aggregated protein F' only fouls the channel
wall. The rate of deposition is proportional to the
concentration of protein A in the thermal boundary
layer.

4. The fouling resistance to heat transfer is propor-
tional to the thickness of the deposit F.

This scheme can be summarized by the following:

N Evp o p kpa g ke p (1)
Combining all this in a full multi-dimensional CFD
framework, the standard unsteady-state governing
Navier—Stokes, energy and mass conservation PDEs are
enforced, in conservative form and for primitive vari-
ables, to yield for velocity components, pressure, mass
fractions distributions in the fluid sub—domain, and tem-
perature distribution in both sub—domains:

V-v=0 (2)

where v is the milk velocity;

ov

1 _ o2
at+V'VV+;VP—l/VV (3)

where P is the pressure, t is the time and p and v are
the milk density and kinematic viscosity, respectively;

oT

E—l—v-VT:aVQT (4)

where T is the temperature and « is the milk thermal
diffusivity;
801’7‘

o TV Ve = DVie + Rj, — R,

()

116

Figure 3: T distribution in the channel’s inlet (A) and
outlet (B) sections.

where ¢;,. is the molar concentration of the species i
(either native N, denaturated D, aggregated A or de-
posited F' BLG), in the topological region r (in the bulk
fluid b or in the thermal boundary layer [); moreover,
R’ and R are its molar rates of creation and destruc-
tion, respectively. For sake of brevity, the interested
reader is referred to (Jun and Puri 2006) for R}, and
R!' values, in terms of Arrhenius expressions and their
combinations.

RESULTS

The problem has been attacked by using COMSOL Mul-
tiphysics v.3a, with a grid of over 5400 finite elements
and a Lagrange—Quadratic shape function, for a total
of over 71400 degrees of freedom. The number of mesh
elements and shape function type determine the accu-
racy of the final solution and the solver speed. The
large number of degrees of freedom is justified by the 9
differential equations to be simultaneously integrated in
space and advanced in time. A grid—-independency anal-
ysis was not possible due to the instability of the solver
for this study. The run has taken under five minutes of
computing time for an elapsed time of 15 h simulation,
on a Xeon server (3GHz CPU, 2GB RAM) running un-
der Windows XPPro.

Heat transfer and fluid dynamics

Temperature and velocity distributions help understand
the fouling distribution. Figure 3.A first shows the tem-
perature distribution at channel inlet, in the flow and in
the confining plates. Temperature readily changes from
its initial value of 60 °C in milk, while the walls are being
cooled—off by the fresh fluid, whereas at channel outlet,
in Fig. 3.B, due to the combined heating by the chan-
nel walls and streamwise convection, the temperature is
finally uniform at 97 °C.
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Figure 4: Streamlines (A) and v (B) distribution.

Then the flow field is reported, as streamlines, and vec-
tor velocity distribution in Fig. 4.A and B respectively.
Fluid acceleration is caused by the corrugations, and
small stagnation regions are evident down—wind from
extruding corrugations and in the corresponding vanes,
along all of the channel length.

Mass transfer

BLG denaturation (i.e the thermal damage) is initiated
in those regions where the fluid is slowed down and the
contact time with heating walls is longer. Computations
show that there is species uniformity across the channel
height (no gradient by passing from b to [ regions) there-
fore results relative to b region will be presented only. In

Mag: 370 Max: 0,272
70

B

Fin: 333 Bin; 00629

Figure 5: Effect of T (A) on cnyp (B).
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Figure 6: c4 distribution.

Fig. 5.A the temperature increase is clearly correlated
to the depletion of SLGy in Fig. 5.B: at channel outlet,
but also locally in each superior vane, due to the afore-
mentioned fluid flow effect. In Fig. 5 two colored scale
are also provided, to allow quantification of temperature
(from 60 to 97 °C), and molar concentration cyyp (from
0.06 to 0.27 mol/m?).

Figure 6 evidences the nonlinearity of the phenomena:
from comparison with Fig. 5, it is seen that the cap is
not simply complementary to the cyp.

Finally, it is seen that the most of the fouling is created
in the outlet section of the channel, Fig. 7.A, while it
appears also downwind of last corrugation (1), as well

Figure 7: cpyp, distribution at outlet (A) and last corru-
gation (B), with different zones 1 and 2.

M 1408
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Figure 8: cpy, evolution along the channel length, during
a 14 h period.

as its corresponding vane (2) in Fig. 7.B. In Fig. 8 the
fouling’s time evolution is reported along the channel,
for 5 times from PHE start—up. The formation of the de-
posited protein is nonlinear with time, as accretion rate
decreases. This Figure also serve as preliminary valida-
tion with both (Georgiadis and Macchietto 2000) and
(Jun and Puri 2006), as converting from molar concen-
tration to volume fraction, and integrating the curve at
7 h, the total value of about 5 g of fouling is calculated,
which compare favorably.

FUTURE IMPLEMENTATIONS

It is then confirmed that the fouling formation is strictly
dependent upon the wall temperature distribution, but
also on flow deceleration that impede solid deposition
by fluid abrasion. As mentioned earlier, fouling results
in expensive down—time and cleaning of heat exchanger
devices in industrial systems. In biotechnology applica-
tions, plate profiles have never been studied so far to
lengthen the down—time due to protein, enzyme, micro-
bial kinetics interaction with heat and fluid flow. An
interesting potential exists, therefore, to find optimal
PHE geometries, for each working fluid, that may ex-
tend PHE working cycles. In particular, NURBS rep-
resentations (nonuniform rational B-spline) will be em-
ployed to investigate on the potential of geometry opti-
mization.

Also, Navier-Stokes equations interdependence with bio-
chemistry can more more intriguing than the results
shown so far. In particular, NS equations can be per-
turbed by localized fouling. The resulted velocity distri-
bution can alter nonlinearly the biochemistry: favoring
excess fouling and/or favoring inadequate heating load
and sensory (Non—enzymatic browning) and functional
features of fluid food. The perturbation of flow due to
fouling accretion can be done by increasing in some finite
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element of the mesh the viscosity of flow, to a very large
value which will result in a representation of a solid,
with negligible velocity values. The cut—off condition to
vary the viscosity can be set as a condition of maximum
molar concentration in the given finite element. Local
over—heating can then be accounted for, depending on
the increase of wall conductive resistance due to fouling
accretion.

CONCLUSIONS

CFD modelling can prove useful in product, process and
system design, and in real-world problem resolution in
the food and biotech industry. In this work the foul-
ing by SLG has been attacked by a commercial Finite
Element solver, applying a well-established modelling
to corrugated—plate heat exchanger during pasteuriza-
tion of milk. Local species concentration, velocity and
temperature can be described to test new corrugation
shapes and orientations, to minimize fouling. In this
way, innovative configurations and designs can be in-
ferred and proposed.
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ABSTRACT

The industrial crystallisation of sugar is usually carried out
in 3 or 4 stages. While applying a 3-product sugar end
scheme only sugar from the first stage is sold. If a 4-product
scheme is assumed only sugar from the first two stages can
be traded due to limitations on sugar colour in solution.
Because of quality regulations sugar from all the other stages
should be dissolved and crystallised again which leads to
elevated engineering and energy costs and also to extensive
sucrose loss.

The decrease in quality between particular crystallisation
steps depends on the enrichment of non-sucrose components
in the mother liquor. Among all these non-sucrose
substances the colorants are of peculiar importance since
their concentration in the final product (sugar) is strictly
limited. A close and statistically proven dependence between
colour concentration in magma and sugar colour was found.
This function shows that an improvement in sugar quality
could be only realised by decreasing the colour loading of
magma solution.

The results of the presented study show that the reduction of
temperature in evaporation and crystallisation is feasible and
technologically reasonable. The purpose of the project is
achieved - the proposed reduction of temperature results in
improved sugar yield, better sugar quality and lower steam
consumption.

INTRODUCTION

The most important factors influencing colour formation and
sucrose degradation are time and temperature. Furthermore,
also pH value and amount of reduced sugars and amino
acids play a considerable role. The colour formation depends
linear on time and exponential on the temperature. Due to
the application of falling-film evaporators the reduction of
residence time in evaporation is already exploited and thus,
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sucrose degradation and colour formation could be
minimised mostly by temperature decrease. However, lower
temperature in evaporation influences the energy utilisation
of a sugar factory. Therefore the influence of reduced
temperature during evaporation and crystallisation on
sucrose losses, colour formation and crystallisation rate on
the one hand and energy requirements on the other hand was
investigated in more detail at Berlin Sugar Institute. Based
on these results the aim of this work was to develop a model
based simulation tool based on the commercial software
SUGARS™ which allows a preevaluation and optimization
of different processing strategies in the sugar production.

EXPERIMENTS
Sucrose degradation and colour formation

For better understanding of sucrose degradation the invert
sugar formation was investigated and the kinetics of the
sucrose degradation were determined. Hence, the formation
of invert sugar at given reaction conditions (temperature,
residence time) could be calculated.

The activation energy of sucrose degradation of
108,9+14 kJ/mol follows from the kinetic measurements.
This value is in a very good agreement with previous results
(Bohn 1970).

Based on the kinetic experiments the dependence of reaction
rate on the temperature was determined by colour formation.

The experiments gave a time-dependence of a colour index
for any reaction temperature. It is a linear function for short
time periods (Westphal et al, 1996). That means, the colour
formation could be described as a first-order reaction for the
initial conditions of the non-enzymatic browning reaction
(Smejkal et al., 2005). The reaction rate is derived from the
slopes of colour increase dF/dt (1):

d_F =k €))

dt
The formal kinetic constants & [IU/min] have been
determined for all experimental conditions. The reaction
rates for different temperatures enable the calculation of the
activation energy E, according to the theory of the reaction
kinetics, see Equation (2):

[TU/min]
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The integrated form of this equation is the Arrhenius

equation, which describes the dependence of kinetic

constants k on temperature:

k=Fk,.exp _E"j lnkz(_—l)Ea+lnkOO 3
RT RT

where k., is the frequency factor. If the natural logarithm of
kinetic constant is plotted against -1/RT, the slope of this
curve represents the activation energy of the overall
chemical reaction for a given temperature interval.

At temperatures below 100°C, the activation energy of
colour  formation is equal to  76,8+3 kJ/mol
(Ink,=26,85+0,9). The activation energy at temperatures
above 100°C reaches 112,1£2,7 kJ/mol (Ink,=38,9+0,8).
The kinetic constants k were measured with a residual from
0,068 below 100°C to 0,083 above 100°C. The standard
deviation amounts 0,0768. The experimental data are within
a confidence interval of 95%.

Furthermore, from results presented in Figure 1 could be
derived that the final reaction step of the colour formation
consists of two different mechanisms. The intersection of the
reaction mechanism occurs at 100,4 °C.
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Figure 1: Kinetic constant k as a function of -1/RT

The influence of temperature and residence time on colour
formation was also described by the equivalent heat effect
times method founded by Vukov und Patkai, 1981. This
simplified kinetic method enables to compare roughly the
sugar degradation and therewith the connected colour
formation at different temperatures. It is defined as an
equilibrium heat effect time t,, which is coupled with
residence time and reference temperature of 100°C by
equation 4:

1, _(9-100)
t Z

where Z-Parameter is a pseudo-kinetic constant and amounts
for temperatures below 100 °C 24K and above 100 °C 27 K.
The application of this method is limited to temperatures
from 80 to 120°C. The original kinetic method of Vukov
was modified using own kinetic data and the period of
validity was extended to 60-135°C. The reaction mechanism
of colour formation is changing at 100,4 °C (see above
Figure 1). Indeed, a modification of original reference
temperature of 100,0 °C in the equation 1 has almost no
influence on the calculation.

log [6]=°C “

120

The analysis of own kinetic data results for temperature
interval 65-100°C to the Z-Parameter of 31 K. This value
was evaluated from experiments with four different types of
juices (two thick juices, two types of A-sugar run-off). For
temperatures from 100 to 130°C Z-value corresponds to
26 K.

Crystallisation

Reduced  temperature in  evaporation  influences
crystallisation rate. Therefore, the influence of temperature
on the crystallisation was investigated. The cooling
crystallisation experiments were performed in isothermal
mode. The dependence of crystallisation rate on
supersaturation between 1,08 and 1,15 for thick juice
crystallisation is roughly linear. The experimental results are
presented in Figure 2. The standard deviation is equal to
0,02 and experimental data lie within a confidence interval
of 93%.

The results from Figure 2 show that the decrease of
crystallisation temperature from common 70°C to modified
60°C at chosen supersaturation of 1,1 causes reduction of
crystallisation rate of approximately 30%. That is in a good
agreement with previous published results (Ekelhof 1997).
Moreover, from the results presented in Figure 2 it can be
concluded that the decrease of crystallisation rate at lower
temperature could be compensated by slight increase of the
supersaturation (see dashed line in Figure 2). E.g.
crystallisation rate remains almost constant for conditions
demonstrated in Figure 2 (crystallization temperature 70°C
and supersaturation of 1,1 or 60°C and 1,13, respectively).

5
4,5 1

4 |
3,5

3 B
2,5 1
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Supersaturation yj (-)
=70 x60 x55°C

Figure 2: Evaluation of experimental results for thick juice
crystallisation experiments (purity 93 %) at temperatures of
55,60 und 70 °C

Similar dependence was also found at crystallisation from A-
sugar run-off.

ENERGY ORIENTED PROCESS SIMULATIONS

To analyse the technological and economical influence of
changed temperature profiles on the energy requirements
energy-oriented process simulations were performed. A
modified process variant with lower temperature in
evaporation (maximal juice temperature of 110 °C) and
crystallisation (A-sugar station working at 60 °C, B-sugar at
65 °C, see also Figure 2) was presented and compared to the
basic process variant (maximal juice temperature of
129,7 °C, A-sugar station 70°C, B-sugar station 75 °C). At
modified process variant the sugars from both A- and B-



stations were blended together in EG 2 quality. Slicing
capacity in both process variants is equal to 12 000 t/d.
Crystallisation was performed in three stages. The available
temperature difference in all crystallisation steps amounts at
least 15 K. This demands in the condensation a pressure of
approx. 0,1 bar.

The process parameters of both process simulation variants
are summarised in Table 1.

Table 1: Process parameters of the simulation

basic variant | modified variant
Heat consumption (kg/100 kg beet) 19,26 18,81
Heating surface areca— juice preheating &nz) 2100 3400
Heating surface area— evaporation (rnz) 26000 27000
Condenser losses (%) <0,1 <0,1
Thick juice dry substace (%) 73,07 73,0
Maximal juice temperature (°C) 129,7 109,9
No. of evaporation effects 5 6
Exhaust steam pressure (bar) 3,1 1,85

The calculation of k-Values [W/(K*m?)] in falling-film tube-
bundle evaporators, including its temperature dependence,
was made based on GEA-Wiegand equation. The formation
of colour in sugar production was calculated using for this
purpose developed kinetic model (see above).

Juice pre-heating and purification were performed in the
same manner, the juice was pre-heated in three heat
exchangers. The results of juice purification and pre-heating
by process simulations from SUGARS™ program are
presented in Tables 2 and 3.

Table 2: Temperature profile in basic variant

Medium Bin Sout Heating Bin A k-value
mn medium
t/h °C °C °C m’ WAKm®
Press water 2252 64,9 70,0 Vapour 5 96,4 25 2100
Circulation juice 350 64,1 78,0 Vapour 5 96,4 112 1900
Raw juice I 572,98 27,8 41,6 Falling water 52,0 340 1800
Raw juice II 572,98 41,6 49,6 Falling water 55,8 330 1800
Raw juice 111 572,98 49,6 55,0 End condensate 67,6 152 2000
Prelimed juice 2-1 5879 54,8 74,0  End condensate 100,0 320 2000
Prelimed juice 2-11 5879 74,0 80,0 Vapour 5 96,4 99 2000
Prelimed juice 2-II1 5879 80,0 83,0 Vapour 4 1059 51 2000
Juice to filtration 619,3 82,5 88,0 Vapour 4 105,9 102 2400
Thin juice I 555,38 86,3 93,0 Vapour 4 1059 170 2400
Thin juicelll-1* 461,9 96,4 104,0 Vapour 3 116,6 77 3400
Thin juice I11-2 4619 1040 1150 Vapour 2 1239 126 3400
Thin juice I11-3 4619 1150 1250 Vapour 1 129,7 184 3400
Total heating surface area 2088 m”
*Heating after pre-evaporation in 3 stages
Table 3: Temperature profile in modified variant
Medium N Sin Sout Heating Sin A k-value
m medium
t/h °C °C °C m’  W/(K.m?)
Press water 2252 64,6 70,0 Vapour 6 76,0 290 2100
Circulation juice 350 64,1 78,0 Vapour 5 80,7 320 1900
Raw juice | 572,98 2738 39,9 Endcondensate 68,0 160 1900
Raw juice II 572,98 399 55,0 Vapour 6 76,0 220 1900
Prelimed juice I 5879 54,8 65,9 End condensate 87,0 190 2200
Prelimed juice II  587,9 65,9 79,0 Vapour 5 80,7 750 2000
Prelimed juice III  587,9 79,0 83,0 Vapour 4 89,9 220 2000
Juice to filtration  619,3 82,5 88,0 Vapour 3 97,4 140 2400
Thin juice 555,38 86,3 93,0 Vapour 3 97,4 290 2400
Thin juiceIll-1* 479,2 80,7 95,0 Vapour 3 97,4 410 3400
Thin juice I1I-2 479,2 95,0 100,0 Vapour 2 103,6 160 3400
Thin juice I1I-3 479,2  100,0 107,0 Vapour 1 1099 210 3400
Sum of heating surface area 3360 m’
Heating surface area increase 1272 m’

*Heating after pre-evaporation in 3 stages

The function of A-sugar and B-sugar VKTs in sugar house
was fitted based on crystallisation rate measurements (see
also assumptions of process simulations). C-sugar station
was not modified and it worked in both process variants at
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comparable conditions. Schemes of evaporation and
crystallisation in the basic as well as in the modified process
variant are given in Figure 3 and 4.

250°C fa
15435 5

100,0°C
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77,37 Uh
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Figure 3: Scheme of evaporation and crystallization in the
basic process variant

Economical consequences

Due to the lower water evaporation in the crystallisation is
the steam consumption in the modified variant decreased by
0,45 kg/100 kg beet compared to the basic variant.
Moreover, the blending of A-sugar together with B-sugar
enables a significant reduction of A-sugar station loading.
The mass flow from the A-station will be about 39 % lower
than in the basic variant. At reduced temperature in both first
crystallisation steps the decrease of the crystallisation rate in
modified process variant could be compensated by slight
increase of supersaturation in evaporating crystallisers.
Thus, an extension of the crystallisation unit is not
necessary. However, the heating surface area for evaporation
and juice pre-heating should be increased by approx.
2300 m” compared to the basic variant, see Table 1.

Also, steam pressure from turbine entering first evaporation
effect is reduced in the modified process variant. It is
apparent that electricity production at almost same fresh
steam consumption (compared to basic process variant)
could be increased. Using fresh steam of 80 bar and 500°C
the difference remains 2800 MWh for 90-days campaign and
could be treated as an additional benefit of the modified
process variant.
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Figure 4: Scheme of evaporation and crystallization in the
modified process variant

The sucrose losses are from economical point of view the
most important parameter in the discussion of benefits of
modified process variant. They amount (based on own
kinetic calculation) in the evaporation 0,076 kg/100 kg beet
in the basic variant and 0,015 kg/100 kg beet in the modified
variant. In sugar house sucrose losses according to Vukov,
1972 are equal to 0,056 kg/100 kg beet in the basic variant
and 0,033 kg/100 kg beet in the modified variant. The
difference of 0,084 kg Sucrose/ 100 kg beet represents the
benefit of the modified variant. Thus, the non-sucrose in the
molasses will be also reduced by 0,0848 kg / 100 kg beet.
Assuming sugar/non-sucrose ratio of 1,5, the sucrose content
in molasses will be decreased of 0,126 kg/100 kg beet. The
yield of the production will be therefore increased of 0,210
kg/100 kg beet. However, the dry substance in molasses will
be reduced of the same amount.

CONCLUSIONS

During the non-enzymatic browning experiments with a
technical aqueous sucrose solution was found that the
reaction rate of overall reaction depends very strongly on
temperature. At lower temperature between 65° - 100 °C is
the colour formation suppressed. For higher reaction
(exposition) temperature increases the rate of non-enzymatic
browning reaction. At temperatures below 100°C, the
activation energy of colour formation is equal to
76,8+3 kJ/mol (Ink,=26,85+0,9). The activation energy at
temperatures above 100°C amounts 112,1£2,7 kJ/mol
(Ink,.=38,9+0,8).
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From crystallisation experiments is apparent that the
decrease of crystallisation rate at lower temperature could be
compensated by means of slight increase of supersaturation
in crystalliser.

Based on the results from above mentioned experiments a
model based simulation tool could be established which
allowed the evaluation of different processing schemes in
sugar production. In particular, the reduction of temperature
levels during sugar production promises an improvement in
sugar quality (colour) and sugar losses. However changes in
processing are strongly related to the energy demand in
different steps of the sugar production. The exemparily
presented modified process variant shows an essential
appreciable increase of required heating surface area at
reduced loading of A-sugar crystalliser. On contrary, it can
be shown that the undefined sucrose losses could be reduced
and the overall yield of the sugar factory can be thus slightly
increased. Moreover, significantly reduction of colour
formation results in high quality of B-sugar which could be
sold together with A-sugar. Therefore was additionally
reduced also loading of A-sugar station of about 39% in the
modified variant. Finally, it can be stated that the simulation
tool allows the prediction of the complex relations between
qualitative, energetic, apparative and conomical aspects in
sugar production.
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