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PREFACE

Dear Colleagues,

It is with a great pleasure, that | welcome you in Brest for this 8" FOODSIM conference.

Brittany is the main area for agriculture and agro-industry in France, and Brest, the main
town concerned by this scientific and economic field of activity. As you will see, in our
conference center; Océanopolis, sea research is very important in Brest, but agrifood
research is also an important element in Brest University with microbiology labs, toxicology
lab, plant physiology lab... One of the most interesting and original centers is probably the
European Virtual Reality Center located in the vicinity of Brest, where new simulation
techniques are developed and applied to biology and food research.

This FOODSIM conference is the unique location, where scientists from such different
geographical and research areas can meet: research groups from Europe (Belgium, France,
Italy, Spain, Poland) but also from the USA, Mexico, Vietnam, Brazil, Argentina or Senegal
with specialties in microbiology, food processing, computer science, risk analysis,
electronics, etc. | hope that this diversity will mix and provide new ideas to everybody in
order to develop each other’s research area with new concepts, theories and practices in
order to solve industrial problems. | also hope that new collaborations could come to fruition
during this meeting.

To conclude, Brest is an old town as you can see, with its own Castle, the Tanguy Tower,
and the picturesque Rue St Malo. Unfortunately, being a major military port, Brest was almost
completely destroyed around the end of the 2" World War. Today the new Brest is largely
focused towards the future which, from a research and industrial point of view, is called sea,
computing and food research. And last but not least, Brest is situated on a magnificent bay
that | encourage you to discover if you decide to stay a few days in our town

Have an excellent 8" FOODSIM conference.

Pr AC Roudot
FOODSIM'2014
General Conference Chair
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ABSTRACT

Scale up of food process operations is an important task
faced by many scientists and engineers. Traditionally, this
problem has been approached by experiments (e.g. via
design of experiments, followed by modeling of data),
relying on our vast experience and intuition, using simple
theoretical analysis, and in recent years through the use of
computer simulation. In this paper, we discuss the use of
dimensional analysis as a complementary technique to
simulation that can further enhance its impact and
effectiveness. In particular, we evaluate a certain aspect of
a seasoning tumbler operation in industrial food
production as an example of the application of this concept
by combining the so-called Buckingham-Pi Theorem with
the use of computer simulation.

INTRODUCTION

Scientists and engineers are often confronted with the
question of how to scale up a new unit operation or
process, or predict its performance with limited ability to
test. In many instances, we can be successful in answering
these questions by judiciously designing and executing
experiments (e.g. via design of experiments (DOE),
followed by modeling of data), relying on our vast
experience and intuition, using simple theoretical analysis
(for system that such analysis is tractable), and in recent
years through the use of computer simulation. However,
there are circumstances where the use of dimensional
analysis (DA) can further augment the aforementioned
tools — to simplify the experimentation (whether real or by
computer simulation), ensure that the appropriate range of
parameters relevant to the problem is explored, provide
physical insights, and bring confidence in model
predictions. This is especially true in cases where the
fundamental science of the problem is highly convoluted,
with many potential parameters that can impact the
process. DA — in the form of Buckingham-Pi Theorem —
can help simplify the analysis of such problems.

This paper does not introduce any particularly new
concepts on dimensional analysis, nor does it report any
specific application with real data. Rather, it attempts to

illustrate its application and benefits in food process
engineering by briefly describing the basic methodology of
Buckingham-Pi Theorem, and by exploring a few
examples of how DA can complement computer
simulation. While the mathematical execution of the
theorem is important (and sometimes tedious), it is often
the thought process of extracting the relevant physical
parameters of the problem prior to the analysis most
enlightening, and the evaluation of the output after the
mathematical analysis most useful. This work endeavors
to highlight these two most stimulating parts of the whole
process of using dimensional analysis — and in doing so, it
is the authors’ hope that the readers will consider
dimensional analysis as part of their simulation toolbox in
the future .

Many articles have been written on the mathematical basis
of dimensional analysis (Eddey, 1945; Evans,
1972;Vignaux, 1992; Sonin, 2004), including the seminal
paper by Buckingham (Buckingham, 1914) that led some
to synonymously equate dimensional analysis with the
“Buckingham-Pi Theorem.” Additionally, the literature
has many excellent articles detailing the application of this
methodology in a wide variety of areas, such as molecular
physics  (Camblong, 2001), automobile dynamics
(O'Brien, 2004), explosive detonation (Schmidt, 1995),
ocean engineering (Hughes, 1993), and food engineering
(Cheng, 2008; Thurairajasingam, 2002; Rainieri, 2008).
As such, only the basic concept of dimensional analysis —
as described in Buckingham’s paper — 1is discussed here;
for those readers that are interested in more detailed
discussion, the above list would serve as a good starting
point. More recently, statisticians have begun combining
the use of DA with DOE (Albrecht, et al., 2013; Islam &
Lye, 2007) and those concepts can be applied not only to
real experiments, but also “experiments” performed via
simulation.

BASIC THEORY

If a given problem can be described by » physically
relevant and dimensional variables (x;, x, x3 ...x,), then
these variables can be expressed functionally as

F(x;, x5 x3 ..x,) =0

M
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Furthermore, if there are & dimensionally independent
physical quantities that are necessary to describe these n
variables, then Buckingham’s theorem states that Eqn.1
can be equivalently recasted as

w(I1,,11,,..IT, ,)=0 2

Where I, Il, Il,, are dimensionless and independent
variables, constructed from the original dimensional
variables (x;, x; x3, ...x,):

IT =x""x," ..x,™ 3)
It is well to point out that the theorem does not uniquely
define the set of these dimensionless variables, nor does it
necessarily prescribe the functional relationship, .
However, the fact that the two equations above are
equivalent provides the first hint of the usefulness of
Buckingham’s work — that the number of variables
describing the problem has been reduced by k& through
simple rearrangement of the variables, and as such, can
significantly reduce the number of simulations necessary
to model the problem.

A familiar example: flow in a pipe

To illustrate how the theorem is applied to a physical
problem, we turn to the familiar problem of pipe flow.
The friction factor, A, is frequently used to assist in the
calculation of pressure drop or head loss for a given
flowrate. It is a function of the Reynolds number (Nyg) and
the pipe roughness factor (¢/R), as commonly shown in the
Moody chart (Moody, 1944). The chart is based on the
compilation of many experiments in which various
relevant parameters, such as velocity (u), density (p),
viscosity (u), pipe radius (R), pipe surface roughness (&)
are altered. The complexity of trying to express how the
friction factor depends on these parameters can be
daunting:

A=A, 1, p,R,¢,...) 6]

So, why does the Moody chart so effectively capture this
dependence? Afterall, it is not immediately apparent that
the friction factor should functionally be dependent on,
and only on, Ngpg and (e/R):

A= z(%';NRm (5)

In the case of the pipe flow problem, a cursory
examination of the appropriate form of the steady-state and
dimensionless Navier-Stokes equation and boundary
conditions would confirm this, as only these two
parameters appear in the problem:

Qz
e ©
& Rel g2 ra
B.C1 u=0 r=1+%
R
BCc2 Z_o F=0
o

Unfortunately, not all problems are readily described by
well-established  equations  where  straightforward
manipulation of the terms will point to the correct
parameter dependency. Buckingham-Pi Theorem is useful
in such situations. The following illustrates how it leads to
the same conclusions regarding the pipe flow friction
factor by examining the relevant physical parameters of
the problem.

The procedure is straightforward. First, consider the
problem and list all variables and the units associated with
each:

Pipe radius, R [L]

Pipe wall roughness, ¢ [L]
Fluid density, p [m/L’*]

Fluid viscosity, z [m/L/t]
Average flow velocity, u [L/t]
Pressure gradient, VP [m/L*/t]

AN e

Here, the use of the square brackets [ ] denotes the units of
the variable. Here, [L] represents a unit of length, [m] for
mass, and [t] for time. From this, one can form the
dimension matrix. &, the number of dimensionally
independent physical parameters, is given by the rank of
the matrix:

Hence, k¥ = 3 and the problem is described by three
dimensionless and independent variables

(n—k=6-3=3).

We now select any 3 independent physical parameters
(known as “repeating parameters”) from the list as the
basis to derive the dimensionless variables (IT’s). The
choice of these parameters is completely up to the reader,
so long as they are dimensionally independent of each
other. The final outcome may depend on the chosen
repeating parameters, but is mathematically the same
regardless. Here, we will choose R, 7 and p. Then, the IT’s
are constructed with the repeating parameters and each of
the remaining parameters:



I, =R’ p¢e 7)
T, =R%u¢p/ 1 (3)
I; =R&u"p'vp )

To satisfy that each IT is dimensionless, each set of the
exponents (a, b, ¢)... (g, A, i) are selected accordingly, for
example:

[ =L+ i P[] (10)
So,

b=0
c=0
a+b-3c+1=0=a=-1

and consequently,
My =¢/R an

Similarly, it can be shown that:

7] 1
My = = 12
2R Nep (12)
and,
H3:$ (13)
pu” /R

Therefore, according to Eqn. 2,

Il :f(nl;HZ) (]4)
or.

VP £
v (1s)
puz/’R R RE

Since the pressure gradient is proportional to the friction
factor (Whitaker, 1981) for pipe flow, Eqn. 15 is therefore
equivalent to Eqn. 5.

Implication of the analysis

It is well to reiterate that Eqn. 15 is derived from simply
identifying the relevant physical parameters of the problem
and straightforward application of the Buckingham-Pi
Theorem, with no a priori knowledge of the detailed
physics, mathematical model (Navier-Stokes Equation) or
any experimental data. But what are the practical
advantages of having done the analysis?

The first advantage facilitates understanding the physics of
the problem. In most instances, dimensionless numbers
are useful when interpreted as a ratio of two quantities.
Here, the dimensionless parameters are Ny, and &R. The
former, Reynolds number, is probably one of the more
well-known dimensionless numbers and most readers
know that it can be viewed as a ratio of the momentum

force to the viscous force. In pipe flow, the magnitude of
the Ngg governs the flow regime — transitioning from
laminar to turbulent as Nyg approaches around 2000 for
smooth pipe (&R~0). Of course, the Buckingham-Pi
Theorem does not predict the numerical value of this
transition; nonetheless, it is very useful as it does allow
one to predict the nature of the flow as long as Ng. is
known. The second dimensionless parameter, &R, is the
ratio of the surface roughness to the pipe dimension.
Physically speaking, it implies that as far as flow behavior
in a pipe is concerned, the roughness of the pipe is relevant
only as it relates to the pipe dimension: a surface
roughness of 30 microns (peak-to-valley) can have totally
different implications to the flow between a tubing of |
mm and a sewer pipe of 3 meters in diameter.

The second advantage concerns simulation efficiency. In
the analysis, we have identified 6 parameters. For
discussion purpose, assume for a moment that we know
nothing of pipe flow, but are interested in determining the
pressure gradient, VP, as a function of the rest of the
parameters:

VP =F@u,R,¢&,p, 1) (16)

The number of simulations, even with suitable application
of design of experiment (DOE), can be daunting. On the
other hand, if recasted via the Buckingham-Pi Theorem,
the problem can be more compactly described by Eqn. 5.

The number of simulations required is now significantly
reduced. For example, a straightforward factorial design
in dimensional space would require 2°= 32 experiments vs.
2% = 4 experiments in the dimensionless space. Even with
more sophisticated use of DOE, the number of simulations
needed to explore the functional dependence of the
pressure gradient on the relevant parameters is necessarily
more without the benefit of dimensional analysis.

FOOD PROCESSING EXAMPLE

D

C

Figure 1: Tumbler Configuration



We now turn to a food processing related problem —
understanding the application of seasoning to a food
product in a tumbler (Figure 1).

For illustration purpose, we look at the tumbling action
only, and the product is spherical. In this example, we will
determine the dependency of the average product dwell
time, tp, in the tumbler.

Similar to the previous example, the first step of the
analysis is to list all the relevant physical parameters and
the associated units.
The dependent variable tp [t] (product dwell time in the
tumbler) is governed by the following independent
physical parameters:

1. Angle of inclination of the tumbler, &[1]

2. Diameter of tumbler, D, [L]

3. Length of tumbler, L, [L]

4. Height of flights of tumbler, H; [L]

5. Pitch of flights of tumbler, P¢[L]

6. Rotational speed of tumbler , o, [t

7. Throughput of product, Q. [mt™']

8. Characteristic size of product, D, [L]

9. Density of product, p, [mL"~]

10. Gravitational acceleration, g [Lt™]

11. Coefficient of friction between product and tumbler
wall, f1ye [1]

12. Coefficient of friction between product, u. [1]

13. Normal spring stiffness of product, K, [mt™]

14. Normal damping of product, N, [mt™]

15. Tangential spring stiffness of product, K, [mt?]

16. Tangential damping of product, N, [mt™]

The last six parameters are required to describe the
particle-particle and particle-wall interactions, based on
the Hertz-Mindlin contact force model (Di Renzo & Di
Maio, 2004). For this problem, we will assume tumbler
incline angle, product density, gravitational acceleration,
the coefficients of friction, and the spring stiffness and
damping (both normal and tangential) remain constant.
The generalized Buckingham-Pi theorem (Sonin, 2004)
states that Np, the number of dimensionless groups that
govern the process, is equal to: Np = (n-k) — (ng-kg)

where
n = number of independent parameters=16
k = number of dimensionally independent parameters
ng = number of fixed parameters = 9
krg = number of dimensionally independent parameters
among the fixed parameters

k is equal to the rank of the parameter-units matrix, and kg
is equal to the rank of the fixed-parameter-units matrix.
For the tumbler example, both the parameter-units and the
fixed-parameter-units matrices have a rank of 3, therefore,
ND =7.

The procedure to identify the dimensionless parameters is
similar to the previous example, and it can be readily
shown that:

ip Ewat (17)
Q@ Ly He Pt D
- oD p, g D¢ D¢ Dy Dy
2
D
We shall define N = Q°3 and Npg = D
oD pe g

Implication of analysis

It is instructive to briefly review the physical interpretation
of each of the dimensionless parameters. The first term,
which involves the throughput of product, can be shown to
be related to the loading of the tumbler.

The second parameter, w,2D,/g , can be viewed as the
ratio of the centrifugal force to that of the gravitational
force acting on the chips, which is sometimes referred as
the Froude number (Ng) and impacts the path of the
product through the tumbler. The rest of the terms are
based on the geometric dimensions of the system.

Application Example

To illustrate one benefit of DA, let’s assume a simulation
model has been constructed based on an existing pilot
scale tumbling process, as shown in Figure 1. The
following parameters are fixed as below:

1. 6=5°

2. D=762cm

3. Li=127cm

4. Hy=44cm

5. P;-16.0cm

6. @=0.083-0.1835"
7. Q.=0.016-0.029 kg/s
8. D.=3.81cm

9. p.=I18kgm’
10. g=9.8 m/s*
1. uye=04

12, pee=0.7

13. K,=0.5 kg/s”
14. N, = 0.5 kg/s”
15. K, =0.5 kg/s’
16. N,=0.5 kg/s”

Using Discrete Element Modeling (Zhu, Zhou, Yang, &
Yu, 2007), the trajectory of the spherical particles going
through the tumbler is obtained numerically using CD-
Adapco DEM software package. Typical output is as
shown in Figure 2, from which average residence time data
can be calculated.



Particle Residence Time (s)
0.05 5.64 11.23 16.82 22.41 28.00

Figure 2: Residence time simulation results

The average dwell-time is calculated for a range of Npg
and N Figure 3 is a dimensionless dwell-time contour
map as a function of Np and Npg. All the other
dimensionless variables are constant.
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Figure 3: Dwell time contour map

0.0020 0.0025

Furthermore, a power law type equation can be fitted to
the simulation results to predict the dwell time:

4 -0.135 0.0787

lD (S) =—N L .‘IVFR (1 8)
ay

As experimental validation is time-consuming and
expensive, let’s assume that the model has been validated
at the pilot scale for a limited number of conditions. In
many practical situations, scaling up to commercial scale
can be done by pilot-scale testing and simulation
techniques. In this example, the goal is to target a
commercial product in which the dwell time in the tumbler
is 30 seconds; however, the product is twice as big, and

that the throughput is at least five times as high as the pilot
scale system: tp= 30s, D=7.62cm and 0.15<Q.<0.30 kg/s.

It is reasonable to scale the equipment to be geometrically
twice as big as the pilot equipment. One can proceed by
building a full scale unit to test (very expensive and time-
consuming), or update the computer simulation model
with the new geometry (much less expensive, but still
time-consuming), or use DA to assess feasibility.

Since the geometric dimensions are scaled twice as big, all
the dimensionless geometric factors remain the same and
therefore, Eqn. 18 is valid. Substituting the commercial-
scale parameters, one can solve for the required N and
Neg to achieve the required 30 second dwell in the tumbler.
The red line in Figure 2 shows the conditions needed at the
required range of throughput. The corresponding tumbler
rotational speed is shown in Table 1.

Table 1: Throughput vs. tumbler rotational speed

Throughput (kg/s) Tumbler RPM
0.15 7.2
0.20 6.8
0.25 6.5
0.30 6.3

To confirm the theoretical prediction, one additional
simulation has been performed in which the geometry of
the system is doubled. The average dwell time was
calculated for N;=0.02 and Npr=0.002 for comparison to
the original simulation; results are shown in Table 2.

Table 2: Comparison of throughput for N;=0.02 and

Npr=0.002
Scale Simulation Simulation
Average Dwell Standard
Time (s) Deviation (s)
Pilot 29.5 30.5
Commercial 7.8 6.7

As shown, the dwell time and standard deviation of the
simulation at the two different scale are similar, but not
identical. This is because the model is written to introduce
the spheres into the tumbler at a predefined injection plane
(constrained to a certain area) near the inlet. The model
then injects spheres at random locations in the plane, and
there is some randomness in the number of spheres added
per time step - but the model delivers on average the
desired throughput. The slight difference between the
average dwell time and standard deviation is attributed to
the randomness in how the spheres enter the tumbler.
Figure 4 shows the histogram of the dwell time in the two
simulation runs.
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Figure 4: Histogram of Dwell Time

The additional simulation required approximately two
engineering hours to modify the simulation model, and
eight hours of simulation run time. To recreate the dwell
time contour map as shown in Figure 3 for the larger
spheres would have added a total of two days of an
engineer’s time and about two weeks of simulation run
time. The use of dimensional analysis can significantly
reduce the resource needed in this type of scale-up
problems.

CONCLUSIONS

This work discusses the use of the Buckingham-Pi
Theorem to augment the traditional approach of computer
simulation for the exploration and analysis of new
engineering process. Based on the concept of dimensional
analysis, the method can provide important insights which
can help guide the engineer or scientist in understanding
the relevant physics and chemistry of the problem.
Furthermore, in many instances, it can not only reduce the
number of simulations to ensure optimal usage of
experimental resources, but also enhances and provide
confidence in scale-up calculations. One food industry
scale-up example is shown to highlight the methodology.
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ABSTRACT

Despite all EU efforts to tackle food poisoning and
spoilage, about 5,400 outbreaks and 1.3 billion tons of
food waste are reported annually, with a significant impact
on EU economy and public health. Modelling and
simulation of microbial dynamics as a function of
processing, transportation and storage conditions is a
useful tool to guarantee food safety and quality. The goal
of this research is to improve an existing methodology in
order to build accurate predictive models based on
multiple environmental conditions. The effect of multiple
environmental conditions on microbial dynamics is often
described by combining the separate effects in a
multiplicative way (gamma concept). This idea was
extended further in this work by including the effects of
the lag and stationary growth phases on microbial growth
rate as independent gamma factors. A mechanistic
description of the stationary phase as a function of pH was
included, based on a novel class of models that consider
product inhibition. Experimental results on Escherichia
coli growth dynamics indicated that also the parameters of
the product inhibition equations can be modelled with the
gamma approach. This work has extended a modelling
methodology, resulting in predictive models that are (i)
mechanistically inspired, (ii) easily identifiable with a
limited work load and (iii) easily extendable to additional
environmental conditions.

INTRODUCTION

In 2012, 5,363 foodborne outbreaks, causing 5,118
hospitalizations and 41 deaths were reported in the EU.
(EFSA and ECDC, 2014). Next to health issues, foodborne
outbreaks have a significant economic impact due to
productivity losses, marketing campaigns and financial
compensations. For instance, the cost of foodborne illness
is estimated at £ 1.5 billion and $ 77.7 billion for the UK
and USA (UK FSA, 2011; Scharff, 2012). These data
show that food safety has a major impact on global
economy and public health. Food safety can be improved
by studying the effect of food processing, transportation
and storage conditions on microbial growth. In predictive
microbiology, mathematical models are developed to
describe the effect of environmental conditions on
microbial dynamics, allowing accurate predictions of
microbial behaviour during the complete life-cycle of food
products.
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In the field of predictive microbiology, a distinction is
made between different types of models: (i) primary
models describe a microbial response with time for a
single set of environmental conditions and (ii) secondary
models quantify the effect of environmental conditions on
primary model parameters (Whiting and Buchanan, 1993).
A typical microbial growth curve described by a primary
model includes a lag, exponential and stationary phase of
growth. During the stationary phase, the growth rate
decreases due to e.g. depletion of a limiting substrate or
production of growth-inhibiting metabolites, until the
concentration of cells remains constant. Little attention is
paid to the description of the stationary phase of growth in
predictive microbiology. Many authors argue that only the
lag and exponential phase of growth are of importance
since many spoilage and pathogenic microorganisms have
already caused spoilage or compromised food safety when
reaching the stationary phase. However, the growth
inhibiting effects during the stationary phase affect the
growth rate in a large part of the full growth curve.
Additionally, the stationary phase provides e.g. an
indication of interactions among species (McMeekin,
2013). Therefore, a better description of the stationary
phase will also lead to a better understanding of the
microbial growth. Knowledge of these inhibiting effects is
even more important in experiments with optical density
measurement, since the corresponding cell densities are
often much higher than cell concentrations gathered by
viable plate counting, and thus, the effect of the stationary
phase on microbial growth is much more pronounced.
Secondary models including the effects of multiple
environmental conditions on the maximum specific growth
rate are often built by assuming that these different
environmental factors have separate effects. This
assumption was first introduced by McMeekin et al.
(1987) and later formalized as the gamma hypothesis by
Zwietering et al. (1993). This hypothesis allows to build
models describing the separate effects of environmental
conditions on the maximum specific growth rate. The
multiplicative combination of these independent gamma
factors results in an expression describing the global
effect. The advantage of this approach is that the effect of
additional environmental conditions can easily be
integrated by adding new factors to an existing model. In
several studies, the gamma approach has been
acknowledged to successfully describe the combined
effect of different environmental conditions on maximum
specific growth rate (Wijtzes et al., 1995; Wijtzes et al,,
2001; Leroi et al., 2012; Lambert and Bidlas, 2007a;
Lambert and Bidlas 2007b). However, other studies
suggest that interactions between environmental factors



should be considered at the growth limits (Presser et al.,
1998; Augustin and Carlier, 2000; Le Marc et al., 2002;
Coroller et al., 2005 and Baka et al., 2013).

The availability of high quality experimental data is
decisive for building accurate predictive models, so that an
efficient experimental design is essential. During these
experiments, it is possible to apply either static or dynamic
environmental conditions. With static experiments, a
single value for the maximum growth rate can be obtained
from every growth curve through independent parameter
estimations. These values are subsequently used for the
parameter estimation of a secondary model. This approach
was for instance implemented by Le Marc et al. (2002) to
compose a model based on the gamma concept, which
describes the combined effect of temperature, pH and
organic acid concentration on the growth rate of Listeria
spp. Alternatively to static experiments, dynamic
experiments offer the possibility to collect more
information from a single growth experiment by applying
a range of environmental conditions. These dynamic
experiments can be combined with optimal experiment
design (OED) techniques. The aim of this technique is to
collect an optimal amount of information for either
parameter estimation or model discrimination. Dynamic
experiments were first combined with OED in the field of
predictive microbiology by Versyck et al. (1999). The
great potential of the combination of dynamic experiments
and OED was later confirmed by e.g. Van Derlinden et al.
(2010), who designed a single dynamic growth experiment
capable of providing sufficient information for an accurate
estimation of the cardinal temperatures and optimal growth
rate of E. coli K12. However, this technique also has
limitations. With dynamic experiments, it is often required
to combine data from multiple experiments in a single
parameter estimation. This may lead to a large number of
parameters to be estimated when examining the effect of
multiple environmental conditions on the microbial growth
rate. The total number of parameters is also high due to
many experimental parameters, such as the initial cell
density, which are often unknown and should thus be
included in the parameter estimation. In the same way, the
maximum cell density from the growth model of Baranyi
and Roberts (1994) can be included as a separate
parameter for every growth curve since it depends on
substrate consumption and metabolite production, which
are in turn affected by environmental conditions. However,
including this empirical value of the maximum cell density
in parameter estimations also has drawbacks. At high cell
densities during dynamic experiments, growth is inhibited
by both the environmental conditions directly and the
inhibiting effects of the stationary phase. During a
parameter estimation, these effects are hard to distinguish,
potentially leading to wrong or inaccurate estimations of
the parameters of secondary models.

To identify a full growth model, a modelling strategy with
both static and dynamic experiments can be used. (i) In a
first step, all environmental conditions should be kept at
optimal or reference values during one or more static
experiments. This allows the estimation of the optimal
growth rate. (ii) Static experiments can be used to
investigate the effect of environmental conditions on the
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lag phase, stationary phase and maximum specific growth.
(i11) Using newly gathered, or already existing information
on the description of the lag and stationary phase, OED
can be used to gather information on the secondary models
in an efficient way.

In this paper, the gamma concept will be extended towards
primary models, by including the effects of the lag and
stationary phase as gamma factors. A more mechanistic
description of the stationary phase, based on product
inhibition, will also be included in this model. To this end,
static experiments are performed at different pH levels
with Escherichia coli K12. This microorganism is often
used as a surrogate for the corresponding pathogenic
species, involved, for instance, in a large outbreak in 2011,
with 3,816 human cases and 54 deaths (EFSA and ECDC,
2013). The goal of this work is to develop a general
modelling approach to build more mechanistic models,
which requires a limited amount of experimental effort.
This modelling approach will also contribute to the quality
of parameter estimations from dynamic experiments.

MATERIAL AND METHODS
Bacterial strain

Escherichia coli K12 MGI1655 (CGSC#6300) was
acquired from the E. coli Genetic Stock Center at Yale
University. A stock culture was stored at -80°C in Brain
Hearth Infusion broth (BHI, Oxoid), supplemented with
20% (w/v) glycerol (Acros Organics).

Inoculum preparation

The inoculum was prepared in a three step procedure: (i) A
10 pL loopful of the stock culture was spread onto a BHI
agar plate, (BHIA, BHI supplemented with 14 g/L
technical agar nr. 3, Oxoid) and incubated overnight at
37°C. (ii) Then, a single colony was transferred into a
50 mL Erlenmeyer containing 20 mL BHI and stored at
37°C for 9 h. (iii) Finally, 20 pL of the stationary phase
culture was inoculated into 20 mL fresh BHI and
incubated at 37°C for 17h. A 1:800 dilution of this
preculture was used to inoculate the bioreactors at about
1.1x10° CFU/mL (or 7 In(CFU/mL)). The exact volume of
preculture to be added to the bioreactor was calculated for
each experiment based on the optical density of a 1:10
dilution of the preculture (reference absorbance 0.130 at
600 nm).

Experimental method

Experiments were performed in computer controlled
bioreactors (BioFlo 3000, New Brunswick Scientific Inc.).
The reactor vessel was filled with 3.5 L BHI. Temperature
was controlled at 37°C for all experiments. pH was
controlled at different constant values (5.0, 6.0, 7.0, 8.0,
8.5 and 9.0) by addition of acid (1 N H»SOs, Sigma-
Aldrich) or base (1 N KOH, Thermo Fisher Scientific).
The reactor was aerated with filtered air at 2 L/min and
stirred at 400 rpm. To avoid foaming, 500 pL of an anti-
foaming agent (Y-30 emulsion, Sigma-Aldrich) was added
to the bioreactor prior to the experiment. Approximately
every hour after inoculation, a sample was taken from the
bioreactor and the appropriate dilutions were made in BHI



and plated onto BHIA plates using a spiral plater (Eddy
Jet, IUL Instruments s.a.). These plates were incubated at
37°C for about 15 h and then colonies were counted to
obtain viable cell numbers (CFU/mL). Experiments lasted
between 12 and 36 h.

Models

The primary growth model of Baranyi and Roberts (1994)
is often used in predictive microbiology. This model was
used here to set a benchmark for the comparison with
other models. The equations are written using the natural
logarithm of the cell density n [In(CFU/mL)] and the
natural logarithm of the physiological state of the cell

q -]
dn(t)

1
i Himax (PH) - (W)

(1 —exp(n(t) — Npax))

withn(t = 0) = ny

dq(t)

—gr = Mmax (pH)

with q(t = 0) = q,

where L, [1/h] is the maximum specific growth rate at a
given pH value and n,,,, [In(CFU/mL)] is the maximum
cell density. In this work, a novel class of secondary
models is built by combining the effect of pH, lag and
stationary phase on the growth rate (gamma factors) with a
basic primary model. The gamma factor representing the
inhibiting effects of the stationary phase is based on the
product inhibition factor of the P-model developed by Van
Impe et al. (2005):

dN(t) Q) P(t)
dt = Wnax(PH) - (W) . (1 — —E) -N(t)

with N(t = 0) = N,

d
Qdit) = Umax (PH) - Q(0)

with Q(t = 0) = Q,
dP(t)

Q) P(t)
BPTR Yo/n * Mmax (m) : (1 —K_p) “N(t)

withP(t=0)=0

with N [CFU/mL] the cell density, @ [-] the dimensionless
physiological state of the cell, P [M] the concentration of
growth inhibiting metabolic products, Kp [M] the
maximum concentration of growth inhibiting metabolic
products, Yp,y [M/(CFU/mL)] the yield of growth
inhibiting metabolic products. This model was chosen
since it has an equal quality of fit as the widely used
Baranyi and Roberts model, but includes a more
mechanistic description of the stationary phase through
product inhibition. The assumption was made that no
inhibiting product is present in the bioreactor at the
beginning of the experiment.
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To describe the effect of pH on the maximum specific
growth rate y, ,n(pH), the Cardinal pH Model (CPM,
Rosso et al., 1995) was used:

p-max(pH) )
pH < pHmin' 0
= {pHpin < pH < pHpgy, Hope * Yu,pH (PH)
pH > pHpax, 0
yu,pH(pH)

_ (pPH — pHpin) - (PH — pHinay)
- 2
(PH = pHpin) * (PH = PHinax) — (PH — pHope)

with ¥, ;4 [-] the reduction of the maximum specific
growth rate due to a deviation from the optimal pH
(pHype) at which the maximum specific growth rate is
equal to the optimal growth rate (W,pe [1/h]). pHyp, and
PHyax are the limits of the pH range where growth is
possible. The CPM model is presumed to be symmetrical,
meaning that only two cardinal pH values have to be
estimated (here pH,;, and pHope).

Parameter estimation and confidence intervals

Model parameters were estimated using the Isgnonlin
routine of the Optimization Toolbox of Matlab version
7.14 (The Mathworks, inc.). A multistart routine was built
to help finding the global minimum of the optimization
function. This routine was executed at least 25 times for
every parameter estimation. The 95% confidence interval
of every parameter p; was calculated based on the
Student’s t-distribution:

[Pi + t0.975,n5—np ’ ‘,Srzf,i]

where 1, and n, are respectively the number of samples
and the number of parameters and thus ng —n, is the
number of degrees of freedom. S;i is the variance on the
parameters and is found as the main diagonal elements of
the variance covariance matrix which is approximated as

the inverse of the Fisher Information Matrix (F):

R th MSE = —>F
“use /S W T n-n,
v = p
sZ, = V(i,i)

with J the Jacobian matrix, MSE the mean sum of squared
errors and SSE the sum of squared errors (Walter and
Pronzato, 1997). The MSE value is used as an indicator for
the goodness of fit.

RESULTS AND DISCUSSION
Effect of pH on the growth of E. coli K12

To build the model, a set of six static experiments was
performed at different pH values. The results from these
experiments are shown in Figure 1 and Figure 2. A typical
sigmoidal shape is found for all six growth curves.
Figure 1 shows the growth curves in an acidic and neutral
environment. These growth curves show that both the
maximum specific growth rate and maximum cell density



decrease when the environment becomes more acidic with
respect to a neutral environment. Figure 2 shows the
growth curves in an alkaline environment. Here, both the
maximum specific growth rate and maximum cell density
decrease as the environment becomes more alkaline. The
growth curves at pH 7.0 in Figure 1 and at pH 8.0 in
Figure 2 are very similar regarding maximum specific
growth rate and maximum cell density.
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Figure 1: Growth curves from static experiments with E. coli
K12 at pH values of 5.0, 6.0 and 7.0.
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Figure 2: Growth curves from static experiments with E. coli
K12 at pH values of 8.0, 8.5 and 9.0.

Parameter estimation with Baranyi and Roberts model

As pointed out by Van Impe et al. (2005), the model of
Baranyi and Roberts is widely used due to its (i) easy
implementation, (ii) applicability under dynamic
conditions, (iii) good quality of fit, and (iv) biological
interpretability of most of the model parameters.
Accordingly, this model is ideal to set a benchmark for a
good model fit of the experimental data shown in Figure 1
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and Figure 2. In this parameter estimation, different values
are estimated for n;, Q;, Wnax and ng,,, for every
experiment, since these parameters are dependent on the
environmental conditions. The fit of the Baranyi and
Roberts model is shown in Figure 1 and Figure 2.
Parameter estimates are listed in Table [. In Figure 3 and
Figure 4, the effect of pH on parameter estimates is
illustrated. Since this research focuses on the exponential
and stationary phase of the growth curve, the results of
Wnax and ny,,, are presented here. Both 1,4, and 1,4,
show lower values in more acidic and alkaline

environments compared to neutral conditions. This was
also described in the previous section, directly from the
growth curves. The MSE of this parameter estimation is
0.037.

6.0 1.73+0.06 22.10+0.14
7.0 2.20+0.09 22.24+0.21
8.0 2.05+0.08 22.26+0.15
8.5 2.07+0.08 21.89+0.12
9.0 1.62+0.07 20.33+0.15

Table 1: Parameter estimation values and 95% confidence bound
Jor pmax and Bmax using the model of Baranyi and Roberts.
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Figure 3: The effect of pH on the maximum specific growth rate:
individual parameter estimates with 95% confidence bounds
(symbols) and the fit of the CPM model (continuous line).
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Description of the modelling approach

The first step in composing a primary growth model is to
start with the following first order differential equation (or
the In-transformed equivalent):

dAN(t) |
i u() -N() with N(t = 0) = N,
or dz&t) =u() withn(t =0) =n, )

in which u(?) [1/h] is the specific growth rate. In this
paper, the primary model for the evolution of the cell
density with time will not be extended itself to describe the
effects of the lag and stationary phase. Instead, the growth
inhibiting effects during the lag and stationary phase are
described as gamma factors y;(*) and y,(-), respectively.
These gamma factors are combined with the gamma factor
of the CPM model:

Pl() = Hopt " V1 QK ]"u,pH(pH) AQ 3)

The gamma factor, representing the effect of the lag phase
on the maximum specific growth rate, is provided with the
same structure as the factor describing the lag phase in the
model of Baranyi and Roberts. This mechanistically
inspired factor is based on Michaelis-Menten kinetics
(Baranyi et al, 1993). Consequently, the following
definition for the gamma factor y;(*) and additional
differential equation are included in the model:
1
() 1+ exp(—q(t))

d 5
% = Umax(PH) with q(t = 0) = qo ©)

For the dimensionless physiological state of the cell Q(t),
the gamma factor is expressed as: Q(t)/(1 + Q(t)), where
Q(¢t) is an exponentially increasing value. This leads to
calculations where two very large values are divided by
one another and thus, large numerical errors may occur or
even undefined values, if infinity is divided by infinity.
These problems are avoided in the above equations by
using the natural logarithm of the dimensionless
physiological state of the cell q(t).

C)

Next, an equation is required to express the growth
inhibiting effects during the stationary phase as a gamma
factor. The description of the stationary phase in the
Baranyi and Roberts model is based on the logistic model
of Verhulst (1838) and is expressed with a maximum
carrying capacity, called nmac in this instance. However,
this maximum carrying capacity is not related to the
underlying mechanisms that inhibit growth and is thus an
empirical parameter. Van Impe et al. (2005) proposed to
use additional equations to describe the consumption of
growth-limiting substrates (S-model) and/or the production
of growth inhibiting toxic components (P-model). These
equations were combined with factors that describe the
inhibiting effect of substrate depletion and toxic products
on the growth rate, resulting in a more mechanistic model.
This modelling technique was successfully applied in
Poschet et al. (2005) to make a more complex model
describing coculture growth based on lactic acid
formation. The structure of the P-model is given in
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Materials and methods. As a case study, this model will be
further extended to incorporate the effect of pH, using the
gamma approach. The factor describing the effect of the
stationary phase can also be defined as a gamma factor:

dP(t)
dt

Since product concentrations were not experimentally
determined, these equations are rewritten using the
inhibiting product concentration relative to the maximum
inhibiting product concentration p(t):

= Y%' n() - exp(n(l’))

¥s() =1 -p(t) (6)
Yp 7N
PO _ T 0.
i K u() - exp(n(o))

withp(t =0)=0

In the equations above, Yr/Kp can be reduced to a single
N

parameter Y [mL/CFU], which expresses the ratio between
the yield of growth inhibiting metabolites Ypr and the
N

maximum concentration of a growth inhibiting metabolites
Kp.

The gamma factor describing the effect of pH on the
growth rate is expressed using the CPM model.

Parameter estimation with the extended P-model

A parameter estimation was performed on the full dataset
using the model described by Equations (1)-(7). The CPM
model was used to express the dependence of the
maximum specific growth rate on pH and the parameters
PHyin, PHope and p,pe are shown in Table 2. The
obtained CPM model is shown in Figure 3. Individual
parameters for the yield coefficient i were estimated since
these are still dependent on the environmental pH. These
yield coefficients are inverted and In-transformed (Table
3) to allow comparison with the description of the
stationary phase in the Baranyi and Roberts model through
the values of n,,,, (Table 1). Due to the small deviation
between the maximum specific growth rates and the CPM
model (Figure 3), the MSE value of the extended P-model
(0.042) is slightly higher than the MSE value of the
Baranyi and Roberts model (0.037). Figure 1 and Figure 2
also clearly show that the extended P-model provides an
accurate fit to the experimental data.

pHmin 4.48+0.06
pHupt 7.44+0.05
Hopt [1/h] 2252005

Table 2: Parameter estimation of CPM parameters with 95%
confidence bounds.



5.0 19.03+0.10
6.0 22.11+0.15
0 22.24+0.22
8.0 22.25+0.15
8.5 21.89+0.13
9.0 20.32+0.16

Table 3: Parameter estimation of yield coefficients for individual
growth curves with 95% confidence bounds.

The obtained parameter 1, or it’s components Yp and Kp,

N

have biological meaning and can also be modelled as a
function of environmental conditions. This approach has
already been performed for e.g.: the effect of pH, substrate
and oxygen on lactic acid production (Fu and Mathews,
1999); the effect of temperature and pH on citric acid
production (Ambati and Ayyanna, 2001); the effect of
temperature and pH on bacteriocin production (Messens et
al.,, 2002 and 2003) and the effect of temperature on
ethanol fermentation (Phisalaphong et al., 2006). Most of
these models are, however, of an empirical nature. In the
general gamma approach, the yield parameter i could be
expressed as:

Y= 1/)o:th ' yl//,pH(pH)

where yy, oy (pH) represents the change in production rate
of inhibiting product relative to optimal conditions.
Similarly to the gamma approach for the maximum
specific growth rate, this expression allows several effects
to be investigated separately and to be combined
afterwards, with or without interactions. Following the
assumption of product inhibition with E. coli K12, this
gamma factor can be built based on experimental data of
the metabolite production. The effect could be explained
for instance through the presence of different
concentrations of undissociated weak acids and bases at
different pH values, since these components are
responsible for changes in the intracellular pH (Repaske
and Adler 1981).

The modelling methodology proposed here has the
following benefits: (i) different experiments are performed
for the identification of different model parameters to
allow for accurate and unambiguous parameter
estimations, (ii) the model structures contain general
information about microbial behaviour, making them
suitable for general use (e.g. properties of the Cardinal
Temperature Model from Rosso et al., (1993)) and (iii)
models containing the effect of many environmental
effects can be built with a limited experimental load.

CONCLUSIONS

In this paper, a modelling methodology is presented to
build more mechanistic predictive models with a limited
experimental load. As a case study, the P-model was
extended to describe the effect of pH on the growth of E.
coli K12. In this model, the inhibiting effects during the
lag and stationary phase are also included as gamma
factors along with the CPM model. The effect of the
stationary phase on the growth rate was described by a
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gamma factor that considers product inhibition. A
comparison between the extended P-model and the
Baranyi and Roberts model revealed that the first one has a
good fitting capacity. Based on the new model structure
and results from the parameter estimation, it was
concluded that the yield of growth inhibiting metabolites
and/or the maximum growth inhibiting metabolite
concentration are also a function of pH. Consequently,
these parameters can also be described with a gamma
approach. The results presented in this research contribute
to a global modelling methodology that allows to build
accurate predictive models with multiple environmental
conditions and requires only a limited experimental effort.

ACKNOWLEDGEMENTS

The research was supported by the KU Leuven Research
Fund: OT/10/035, PFV/10/002 (Center of Excellence
OPTEC-Optimization in Engineering); the Research
Foundation Flanders (FWO): FWO KAN2013 1.5.189.13,
FWO-G.0930.13 and the Belgian Federal Science Policy
Office: IAP VII/19 (DYSCO). Author Jan Van Impe holds
the chair Safety Engineering sponsored by the Belgian
chemistry and life sciences federation essenscia.

REFERENCES

Ambati, P. and C. Ayyanna. 2001. “Optimizing medium
constituents and fermentation conditions for citric acid
production from palmyra jaggery using response surface
method.” World Journal of Microbiology & Biotechnology,
17:331-335.

Augustin, J.C. and V. Carlier. 2000. “Modelling the growth rate
of Listeria monocytogenes with a multiplicative model
including interactions between environmental factors.”
International Journal of Food Microbiology, 56: 53-70.

Baka, M.; E. Van Derlinden; K. Boons; L. Mertens; J.F. Van
Impe. 2013. “Impact of pH on the cardinal temperatures of £.
coli K12: Evaluation of the gamma hypothesis.” Food
Control, 29: 328-335.

Baranyi, J.; T.A. Roberts and P. McClure. 1993. “A non-
autonomous differential equation to model bacterial growth.”
Food Microbiology, 10: 43-59.

Baranyi, J. and T.A. Roberts. 1994. “A dynamic approach to
predicting bacterial growth in food.” International Journal of
Food Microbiology, 23: 277-294.

Coroller, L.; V. Guerrot; V. Huchet; Y. Le Marc; P. Mafart; D.
Sohier; D. Thuault. 2004. “Modelling the influence of single
acid and mixture on bacterial growth.” International Journal
of Food Microbiology, 100: 167-178.

EFSA (European Food Safety Authority) and ECDC (European
Centre for Disease Prevention and Control). 2013. “The
European Union summary report on trends and sources of
zoonoses, zoonotic agents and food-borne outbreaks in
2011.” EFSA Journal, 11: 3129-3378.

EFSA (European Food Safety Authority) and ECDC (European
Centre for Disease Prevention and Control). 2014. “The
European Union summary report on trends and sources of
zoonoses, zoonotic agents and food-borne outbreaks in
2012.” EFSA Journal, 12: 3547-3758.

Fu, W. and A.P. Mathews. 1999. “Lactic acid production from
lactose by Lactobacillus plantarum: kinetic model and effects
of pH, substrate, and oxygen.” Biochemical Engineering.
Journal, 3: 163-170.

Lambert, R.J.W. and E. Bidlas. 2007a. “An investigation of the
Gamma hypothesis: A predictive modelling study of the
effect of combined inhibitors (salt, pH and weak acids) on the



growth of Aeromonas hydophila.” International Journal of

Food Microbiology, 115: 12-28.

Lambert, R.J.W. and E. Bidlas. 2007b. “A study of the Gamma
hypothesis: Predictive modelling of the growth and inhibition
of Enterobacter sakazakii.” International Journal of Food
Microbiology, 115: 204-213.

Le Marc, Y.; V. Huchet; C.M. Bourgeois; J.P. Guyonnet; P.
Mafart and D. Thuault. 2002. “Modelling the growth kinetics
of Listeria as function of temperature, pH and organic acid
concentration.” International Journal of Food Microbiology,
73:219-237.

Leroi, F.; P.A. Fall; M.F. Pilet; F. Chevalier; R. Baron. 2012.
“Influence of temperature, pH and NaCl concentration on the
maximal growth rate of Brochothrix thermosphacta and
biotective bacteria Lactococcus piscium CNCM 1-4031.”
Food Microbiology, 31: 222-228.

McMeekin, T.A.; R.E. Chandler; P.E. Doe; C.D. Garland; J.
Olley; S. Putro and D.A. Ratkowsky. 1987. “Model for
combined effect of temperature and salt concentration/water
activity on the growth rate of Staphylococcus xylosus.”
Journal of Applied Bacteriology, 62: 543-550.

McMeekin, T.; J. Olley; D. Ratkowsky; R. Corkrey and T. Ross.
2013. “Predictive microbiology theory and application: Is it
all about rates?” Food Control, 29: 290-299.

Messens, W.; P. Neysens; W. Vansieleghem; J. Vanderhoeven
and L. De Vuyst. 2002. “Modeling growth and bacteriocin
production by Lactobacillus amylovorus DCE 471 in
response to temperature and pH values used for sourdough
fermentations.” Applied and Environmental Microbiology,
68: 1413-1435.

Messens, W.; J. Verluyten; F. Leroy and L. De Vuyst. 2003.
“Modelling growth and bacteriocin production by
Lactobacillus curvatus LTH 1174 in response to temperature
and pH values used for European sausage fermentation
processes.” International Journal of Food Microbiology, 81:
41-52.

Poschet, F.; K.M. Vereecken; A.H. Geeraerd; B.M. Nicolai and
J.F. Van Impe. 2005. Analysis of a novel class of predictive
microbial growth models and application to coculture
growth.” International Journal Food of Microbiology, 100:
107-124.

Presser K.A.; T. Ross and D.A. Ratkowsky. 1998. “Modelling
the growth limits ‘growth/no growth interface) of
Escherichia coli as a function of temperature, pH, lactic acid
concentration, and  water activity.” Applied and
Environmental Microbiology, 64(5): 1773-1779.

Phisalaphong, M.; N. Srirattana and W. Tanthapanichakoon.
2006. “Mathematical modelling to investigate temperature
effect on kinetic parameters of ethanol fermentation.”
Biochemical Engineering Journal, 28: 36-43.

Repaske, D.R. and J. Adler. 1981. “Change in intracellular pH of
Escherichia coli mediates the chemotactic response of certain

17

attractants and repellents.” Journal of Bacteriology, 145(3):
1196-1208.

Rosso L.; J.R. Lobry and J.P. Flandrois. 1993. “An unexpected
correlation between cardinal temperatures of microbial
growth highlighted by a new model.” Journal of Theoretical.
Biology, 162: 447-463.

Rosso L.; J.R. Lobry; S. Bajard and J.P. Flandrois. 1995.
“Convenient model to describe the combined effect of
temperature and pH on microbial growth.” Applied and
Environmental Microbiology, 61(2): 610-616.

Scharff L. 2012. “Economic burden from health losses due to
foodborne illness in the United States.” Journal of Food
Protection, 75(1), 123-131.

UK FSA (Food Standards Agency). 2011. “Foodborne disease
strategy 2010-15.” UK Food Standards Agency Report.

Van Derlinden; E., K. Bernaerts and J.F. Van Impe. 2010.
“Simultaneous versus sequential optimal experiment design
for the identification of multi-parameter microbial growth
kinetics as a function of temperature.” Journal of Theoretical
Biology, 264: 347-355.

Van Impe, J.F.; F. Poschet; A.H. Geeraerd and K.M. Vereecken.
2005. “Towards a novel class of predictive microbial growth
models.” International Journal of Food Microbiology, 100:
97-105.

Verhulst, P.F. 1838. “Notice sur la loi que la population suit dans
son accroissement.” Correspondance Mathématique et
Physique, 10: 113-121.

Versyck K.J.; K. Bernaerts; A.H. Geeraerd and J.F. Van Impe.
1999. “Introducing optimal experimental design in predictive
modelling: A motivating example.” International Journal of
Food Microbiology, 51: 39-51.

Walter, E. and L. Pronzato. 1997. Identification of parametric
models from experimental data. Springer, Germany, Berlin.

Wijtzes, T.; J.C. De Wit; J.H. Huis in ’t Veld; K. van ’t Riet;
M.H. Zwietering. 1995. “Modelling bacterial growth of
Lactobacillus curvatus as a function of acidity and
temperature.” Applied and Environmental Microbiology,
61(7): 2533-2539.

Wijtzes, T.; F.M. Rombouts; M.L.T. Kant-Muermans, K. van ’t
Riet; M.H. Zwietering. 2001. “Development and validation
of a combined temperature, water activity, pH model for
bacterial growth of Lactobacillus curvatus.” International
Journal of Food Microbiology, 63: 57-64.

Whiting, R.C. and R.L. Buchanan. 1993. “A classification of
models for predictive microbiology — a reply to K.R. Davey.”
Food Microbiology, 10: 175-177.

Zwietering, M.H.; T. Wijtzes; F.M. Rombouts and K. van ‘t Riet.
1993. “A decision support system for prediction of microbial
spoilage in foods.” Journal of Industrial Microbiology, 12:
324-329.



An individual-based model for anaerobic dynamics of Escherichia coli colonies

Ignace Tack, Filip Logist, Estefania Noriega Fernandez, Jan Van Impe

CPMF? - Flemish Cluster Predictive Microbiology in Foods - www.cpmf2.be
OPTEC - Center of Excellence Optimization in Engineering - www.kuleuven.be/optec
BioTeC - Chemical and Biochemical Process Technology and Control - cit.kuleuven.be/biotec,
Department of Chemical Engineering, KU Leuven,

Willem de Croylaan 46 box 2423, B-3001 Leuven, Belgium

E-mail: {ignace.tack|filip.logist

KEYWORDS

predictive microbiology, individual-based modeling,
microbial colony dynamics, mixed acid fermentation

ABSTRACT

Traditional models in predictive microbiology describe
microbial dynamics in homogeneous liquid food systems.
However, most food systems have a semi-solid structure,
in which microbial cells grow locally as colonies. Due to
the high cell density in these colonies, the environment
becomes inhomogeneous as a result of nutrient over-
consumption and cell product accumulation.

Hence, the individual cells exhibit strongly different
behavior according to their position in the colony.
Consequently, an individual-based modeling approach,
considering the cell as the basic modeling unit, is most
appropriate to describe colony dynamics in full detail.
In this paper, an individual-based model is developed
for anaerobic colony behavior of Escherichia coli K-12.
From the simulation, characteristic colony dynamics
emerge, such as a linear radius increase. These dynamics
result from the pH drop and concomitant cellular stress
in the colony center due to accumulation of lactic acid.

INTRODUCTION

In the whole food production and supply chain, accurate
assessment and control of microbiological quality and
safety are required. In the EU, 5363 foodborne out-
breaks were reported in 2012 (EFSA and ECDC, 2014),
implying the need for more effective control measures.
For this purpose, mathematical models are developed in
predictive microbiology to describe and predict micro-
bial behavior as a function of environmental conditions
resembling food processing and storage (Buchanan,
1993).  Most of these predictive models consider
microbial population dynamics in liquid food systems.
However, most food products have a semi-solid structure
where microorganisms grow locally as colonies.

The relatively high cell density in these colonies induces
a local increase in the cellular uptake of organic
nutrients (e.g., glucose) and oxygen. Ultimately, the
overconsumption of these substrates leads to nutrient
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depletion due to nutrient diffusion limitations in the
food system. Under anaerobic conditions, e.g., in
vacuum-packed food products, F. coli converts glucose
through the mixed acid fermentation process leading
to the excretion of weak lipohilic acids into the
environment, such as acetic, formic, lactic and succinic
acid (Clark, 1989). This local production of weak acids
causes a gradual acidification of the colony environment,
inhibiting microbial growth (Malakar et al., 2000).

As nutrient and oxygen limitations start in the colony
center, individual cells in the colony exhibit different
behaviors along the colony radius. Hence, microbial
colony dynamics are most appropriately described by a
spatially-explicit individual-based model (IbM) with the
cell as the basic modeling unit, in contrast to traditional
predictive models considering the global behavior of the
microbial population in the whole food medium.
Several IbMs are already available for the description of
microbial colony dynamics, e.g., Bacsim (Kreft et al.,
1998) and INDISIM (Ginovart et al., 2002). Based on
these models, the MICRODIMS IbM for colony behavior
has been developed at the KU Leuven/BioTeC research
group in user-friendly IbM software toolkits (Verhulst
et al., 2011). However, IbMs including the excretion of
weak acid metabolites under anaerobic conditions have
not been implemented yet.

Therefore, a metabolic model has been developed for
anaerobic E. coli K-12 MG1655 growth on glucose, since
this bacterial strain is frequently applied as a model
organism for pathogenic FE. coli strains in predictive
microbiology, an increasing trend of E. coli infections
is observed in the EU from 2008 to 2012 (EFSA and
ECDC, 2014), and due to the abundant information that
is available about this organism from systems biology.
This metabolic model is subsequently incorporated in
MICRODIMS to simulate anaerobic colony behavior of
E. coli. The relative importance of the glucose depletion
and environmental acidification pattern is investigated.

MATERIALS AND METHODS

The extended version of MICRODIMS is described by
means of the ODD protocol of Grimm et al. (2010).



Overview

Purpose

The aim of this model is to describe a two-dimensional
monolayer colony of Escherichia coli K-12 MG1655 in
a homogeneous gel medium under anaerobic conditions.
More specifically, the growth-limiting effects of glucose
depletion and weak acid accumulation are compared.

Entities, state variables and scales

The simulation contains two types of entities: microbial
cells and their environment.

In the graphical display, cells are represented as a disk.
FEach individual cell is defined by its radius, mass, spatial
coordinates, and maximum specific glucose uptake rate.
A list variable stores the progress of ongoing DNA
replication cycles, according to the cell reproduction
model of Cooper and Helmstetter (1968). Finally, the
cell color indicates the cell activity level; growing micro-
organisms are green, starving cells are shrinking and
turn red.

The two-dimensional environment represents a 200
pm x 200 pm section of a 200 pm thick gel system,
discretized in equally-sized square units. These square
patches are characterized by their glucose, acetate,
formate and lactate concentration. The pH value in
the environmental unit is defined by the weak acid
concentrations. As the simulation of local acidification
and cellular glucose competition is the primary goal of
the IbM, the patch dimension is selected to be in the
same order of magnitude as the cell size, viz., 2 um
(Kreft et al., 1998).

Process overview and scheduling

The IbM contains four process categories: intra-
cellular processes, intercellular interactions, interactions
between the cell and its surrounding medium, and
diffusion processes in the medium.

Cell growth and maintenance, DNA replication and cell
division, and cell starvation are intracellular processes.
Due to the high cell density in a colony, biomass growth
causes pressure between the colony organisms or, equi-
valently, spatial overlap of neighboring cell disks in
the simulation, which is relieved by cell shoving. In
order to sustain growth and other active intracellular
processes, cells take up glucose from the surrounding
medium. Under anaerobic conditions, this glucose
consumption leads to the release of acid metabolites into
the environment. Local glucose uptake and metabolite
excretion result in concentration gradients and diffusion
of these substances in the medium.

In the process schedule, i.e., the order in which
the aforementioned processes are executed, two time
resolutions are applied: a smaller time step Aty of
0.0005 min for processes with fast dynamics (i.e.,
diffusion, glucose uptake, cell growth and maintenance,
and metabolite excretion) and a larger time step At
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of 0.1 min for cellular functions with slower dynamics
(cell reproduction and shoving). The slow processes
are executed as follows: firstly DNA replication and
cell division, and secondly cell shoving. During a large
time step, the fast cellular processes are completed 200
times in a logical order: glucose uptake, cell growth,
maintenance and starvation, and lastly the release of
weak acids to the environment. Each small time step,
the order in which the microorganisms execute their
actions, is shuffled to avoid favoritism with respect to
nutrient uptake. Finally, the diffusion process levels
glucose and weak acid concentration gradients caused
by nutrient uptake and metabolite excretion.

Design concepts

Interaction
Glucose depletion results in intercellular nutrient
competition.  Metabolic production of weak acids

involves an environmental stress condition for microbial
cell growth.

Apart from these two cellular interactions mediated by
the surrounding medium, the simulated microorganisms
interact in a more direct way by repelling each other in
case of spatial overlap.

Emergence

It is observed when and to which extent cell starvation
emerges from the simulation due to glucose over-
consumption and the presence of weak acids in the
colony center. Due to cell starvation in the colony
center, the increase of the colony radius slows down.

Sensing

When the cell is starving, the progress of all ongoing
DNA replication and cell division cycles is inhibited to
prevent detrimental cell reproduction leading to inviably
small cells. Hence, it is important that the microbial cell
senses the glucose and weak acid concentrations in the
environment to stop its reproduction processes in time.
In addition, the cell is able to detect overlap with its
neighbors in support of the cell shoving mechanism.

Stochasticity

The IbM includes two stochasticity sources: the
direction in which daughter cells are positioned after
cell division, and a stochastic element on the maximum
specific glucose uptake rate of the cells to take into
account cell variability and growth asynchrony.

Observation

To wvalidate the model against observations and
experimental data in literature, the evolution of the
colony radius is set out in a time chart. The colony
radius is defined as the distance between the center
of the square environment, where the inoculum cell is
situated, and the microorganism furthest away from this
position.



Secondly, the total cell number and the share of starving
cells is monitored in a time graph. A third type of time
graps illustrates the evolution of glucose concentration,
pH and weak acid concentrations in the center of the
environment. From these time plots, the dynamics and
causes of the cell starvation zone in the colony center
are inferred.

Finally, the local glucose depletion and acidification
patterns, and concomitant cell starvation are presented
in graphical displays presenting the environmental pH,
and glucose or weak acid concentrations.

Details

Initialization

At the start of the simulation, one cell is positioned
in the center of the environment. This inoculum cell
has an initial mass equal to the cell mass required to
initiate DNA replication. The environment has a homo-
geneous initial glucose concentration Cg ;nq of 1.0 g/L
or 5.56-10~2 mol/L. Initially, the food system does not
contain any acid substances or oxygen.

Boundary conditions

The environment is characterized by Dirichlet boundary
conditions, i.e., at the environmental boundaries, the
glucose and weak acid concentrations are held constant
at their initial value. This implies that the environment
is surrounded by an infinitely large glucose reservoir or
metabolite sink without diffusion limitations.

Submodels

Glucose consumption. Cellular glucose uptake from
the environment is assumed to follow Monod kinetics:

Atl S S,max KS + CS,(q',,j) J
In this formula, Cg ;) [mol/L] is the glucose
concentration of the environmental wunit with
coordinates (i,j) in which the cell is situated,
AS(’Z.J.) [mol] the glucose uptake by cell k from its

environment, Kg [mol/L] the Monod half-saturation
constant, v& [mol/min] the glucose uptake rate of cell

) k mol . . .
E, 45 max {m} the maximum specific glucose

uptake rate, and X% [gDW] the cell mass. If the glucose
amount in environmental unit (¢,7) is smaller than
AS{‘;J), the nutrient uptake reduces to the available
amount of glucose.

To take asynchrony in cell growth and division into
account, the maximum specific glucose consumption
rate of a cell is composed of a deterministic and a

normally-distributed stochastic part:

qgmaz = qgfm,az . (1 + CV) (2)

with ¢g',,,. the mean maximum specific glucose uptake
rate over all the cells, and CV [-] the coefficient of
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variation of the maximum specific glucose consumption
rate.  Numerical values for the parameters in the
nutrient uptake process are included in Table 1.

Cell growth and maintenance. Consumed glucose
is in the first place employed to meet maintenance
requirements, and secondly to support cell growth and
reproduction. The specific glucose uptake rate gg is
linked to the cellular maintenance needs and micro-
bial growth according to the model of Schulze and Lipe
(1964):

qs = +ms, (3)

Yx/s

with g [min™'] the specific cellular growth rate,
Yx /s [gDW/mol] the theoretical cell yield coefficient on

mol

glucose, and mg | —~i==— | the maintenance coefficient.
S ’ gDW-min

This leads to the following expression for the biomass
growth rate of cell k:
AXF
Aty

=t XF = (g5 —ms) Yxss- X5 (4)
The maintenance and biomass yield coefficient depend
on the intracellular metabolic flux distribution. Under
anaerobic conditions, energy is generated as ATP by
conducting glucose through the glycolytic pathway to
pyruvate (see Figure 1). Subsequently, depending on
the environmental pH, pyruvate is converted to lactic
acid, or acetyl-CoA and formic acid. At low pH,
cells exhibit a homolactic metabolism mediated by the
lactate dehydrogenase (LDH) enzyme, while acetyl-CoA
and formic acid are mainly produced through pyruvate
formate lyase (PFL) at neutral or higher pH values, as
illustrated in Figure 2. Hence, the maintenance and cell
yield coefficient are expressed as a linear combination of
these coefficients under both metabolic regimes:

Yxis = a- Yyl +(1-a)-Yifh (5)
ms = a-mEP" 4+ (1—a)-mEr, (6)
1 -

= (‘l’)

1+ exp(1.9547 - (pH — 5.7809))

with « the normalized version of the sigmoid function
in Figure 2. The biomass yield coefficient of the
PFL metabolism Y’ /IEL is derived by means of a flux
balance analysis (FBA) with the 1AF1260 metabolic
model of Feist et al. (2007) in the COBRA toolbox
for MATLAB® (Becker et al., 2007). For the LDH
metabolism, the biomass coefficient Y¢/%" is obtained
by eliminating the PFL reaction in the 1iAF1260
model. The production of succinic acid from phospho-
enolpyruvate (PEP), depicted in Figure 1, and its
concomitant influence on the biomass yield coefficient
is not taken into account, as it is negligible with respect
to the excretion of the other acid metabolites for wild
type E. coli strains (Stokes, 1949; Clark, 1989).
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Figure 1: Anaerobic metabolism of F. coli. Glucose is
converted to phosphoenolpyruvate (PEP) and pyruvate
through glycolysis. From PEP and pyruvate, metabolic
products are formed in reactions catalyzed by lactate
dehydrogenase (LDH), pyruvate formate lyase (PFL),
phosphotransacetylase (PTA), acetate kinase (ACKA),
alcohol dehydrogenase (ADH), and formate hydrogen
lyase (FHL). The underlined metabolic products are
excreted to the environment.
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Figure 2: Lactic acid yield coefficient Y75 fitted as a
sigmoid function of pH (MSSE = 0.0022). Experimental
data (o) are taken from Stokes (1949). The maximum
lactic acid yield Yg‘/gfmmin the homolactic LDH
metabolic regime at low pH values is determined by
means of an FBA analysis with the 1AF1260 metabolic
model (Feist et al., 2007) in the COBRA toolbox for
MATLAB (Becker et al., 2007).

The cellular maintenance requirements are influenced
by the environmental pH and the presence of weak
lipophilic acids. Decreasing pH values have an
inhibitory influence on cell growth, proportional to the
extracellular hydrogen ion concentration (Cole et al.,
1990). Weak organic acids exhibit an additional growth-
restrictive effect, principally in their undissociated form
(Eklund, 1989). The lipophilic undissociated acid enters
through the cell membrane, and disturbs the intra-
cellular pH by dissociation. It is hypothesized that
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growth inhibition by weak acids is linearly dependent
on the undissociated acid concentration, similar to
the aforementioned proton effect.  Therefore, the
maintenance coefficient in both the LDH- or PFL-
mediated metabolism is expressed as

* * A% [H+] B 10—7 * [bri]
ms =mg,..; + A" —[H+,. 107 + B*. Z —[Uq‘. —

(8)
In this formula, the maintenance coefficient consists of
three terms: (i) the reference maintenance coeflicient
Mg e 5 ina medium at neutral pH and without weak
acids, (ii) supplementary maintenance requirements due
to increasing extracellular proton concentrations [H™],
and (77) an additional maintenance term taking the
effect of undissociated weak acids [U;] into account.
The coefficients A* are calculated by filling in this
general maintenance coefficient definition in Equation 4,
and considering the specific case of a glucose-rich
food system free of weak acids in which the proton
concentration is equal to the minimimal hydrogen ion

concentration inhibiting cell growth, [H, . |

0= (qglmax - ”n'g”,'m:f - ‘4*) : Yv)?/S

A% . ok
= A" = qS,ma.’r mS,ref‘

(9)

In a similar way, the coefficients B* are calculable from
the minimum inhibition concentration of undissociated
acetic, formic and lactic acid, [U; min], experimentally
measured by éstling and Lindgren (1993).

Metabolite excretion. Figure 1 illustrates how
glycolytic pyruvate is converted to excreted metabolites.
At low pH values, formic acid is decomposed to water
and carbon dioxide before excretion by means of the
formate hydrogen lyase (FHL) complex. However, in
the pH range from 6.0 to 7.5, the stability of the formate
dehydrogenase FDHy component of the FHL complex
reduces drastically (Axley et al., 1990). In Figure 3, the
fraction of decomposed formic acid 3 is depicted as a
sigmoid function of pH:
3 1

1 +exp(11.3021 - (pH — 6.3133))°
On the basis of the sigmoid functions « and §,
mathematical expression for the specific metabolite
excretion rates are derived:

(10)

ga = (I-a)-
PFL
CPFL mg .
YA/s" - as + —PFr - darerlas=o | 5 (11)
mS,ref
o = (1-F)-(1-a)-
PFL mght 19
YF/S' - gs + W : QF,'ref|qs:0 s (12)
MG s
o = @~
SLDH ) 'n’l'%DH |
YL,/S “g4s + ‘ﬁf “QLreflgs=0 | » (13)
Mg rer



with g4, gp, and qp the specific production rates of
acetic, formic, and lactic acid, respectively. These
specific excretion rates are linked to the specific glucose
uptake rate, ¢, by the maximum production yield
coefficients of the excreted metabolites, }72'79" in the
respective metabolite production regime. Reference
specific excretion rates at zero glucose concentration,
Gi,reflgs=0, are obtained from flux balance analyses in
the COBRA toolbox. Values for these parameters are
included in Table 1.

Cell starvation. Microbial cells starve when
their maintenance requirements are not met and,
consequently, their specific growth rate is negative. Cell
division and DNA replication processes, addressed in
one of the next paragraphs, stop progressing in starving
cells.

Diffusion. Diffusion of glucose and acid metabolites
through the isotropic food medium is modeled by means
of the second law of Fick in two dimensions:

oC; 0’C;  0°C;
7 - Di : G + P 3
ot ox? o2

with C; [g/L] the concentration of substance i,
D; [um?/min] the diffusion coefficient of substance i
in the food system, x [pm] and y [um] the spatial
dimensions, and ¢ [min] the temporal dimension.

This partial differential equation does not have an
analytical solution for the applied initial and boundary
conditions.  Therefore, Equation (14) is discretized
according to the Alternating Direction Implicit (ADI)
scheme of Peaceman and Rachford (1955), in order
to solve the PDE numerically as a difference equation
by means of the computationally efficient Thomas
algorithm (Thomas, 1949).

The diffusion coefficients D; are influenced by the
gel matrix structure. At a temperature of 37°C, the
diffusion coefficient of glucose in a 5% (w/w) agarose

(14)
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Figure 3: Fraction of decomposed formic acid 3 fit as a
function of pH (MSSE = 0.0085). Experimental data (o)
are taken from Blackwood et al. (1956), Higgins and
Johnson (1970), and Karel and Robertson (1989).
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gel has a value of 6.7925 -1071% m? /s or 40755 pm? /min
(Andersson and Oste, 1994), approximately 75% of the
glucose diffusivity in water at the same temperature.
Diffusivities of acetic, formic and lactic acid are included
in Table 1.

Updating the environmental pH. In an
environmental unit, the pH is determined by the
concentration of weak acids. The hydrogen ion
concentration is equal to the sum of the dissociated
acid molarities [D;] and hydroxyl concentration. Using

the definitions of the acid and water dissociation
constants, K, ; and K,
HT-1D;
Kw,i — w:m—zﬂ(a.z? (15)
Ui
K, = [H*]-[0H), (16)

this leads to the following quintic equation for the proton

concentration:

[H P +a-[H ) +b- [H P+ [HY?+d-[H | +e =0,
(17)

with the coefficients

a = Koa+K.r+Ki.r, (18)
b = Kea - (Kor—I[A])+Kor- (Ko —[F])+
Ka,L : (KaA - [L]) - ]\,.HH (19)
¢c = Koa-Kir-Kor—
Koa-(Kop+Kop)- [Al+ Ky) —
Kor-(Kea+Kap)- [F]+ Ky) —
Ko ((Kga+ Kar)- L+ Ky), (20)
d = —Kor-Kaop-(Kaa-[Al+Ky) -
Koa-Kaop- (Ko [F]+Ky)—
Koa Kop- (K- [L]+ Ky), (21)
e = —Koa - Kor Ky Ky, (22)

where [A], [F], and [L] are the total concentration of
acetic, formic and lactic acid in both dissociated and
undissociated form. Equation (17) is solved by means of
Halley’s method. This iterative algorithm is initialized
with a value [H¥]o of 0.01 mol/L in order to ensure that
the algorithm converges to the largest root of the quintic
equation, which is the real proton concentration.

DNA replication and cell division. The cell gen-
eration cycle consists of two or three stages: (i) the C-
phase in which the cellular DNA is replicated, (i) the
D-phase between the completion of DNA replication
and cell division in two equally large daughter cells, and
(4i1) a possible B-phase between cell birth and initiation
of DNA replication in the daughter cells. In Figure 4,
the duration of the C + D-period [min] is fitted as a
function of the specific cellular growth rate:
3.50 - (Mkt)—().GSS

for 0 min < z* < 0.011 min
for p* > 0.011 min

C+D = (23)

67.92
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Figure 4: C'+ D-period fitted as a function of the specific
cellular growth rate p* (MSSE = 13.93 min?). Symbols
represent batch data for E. coli K-12 listed in Table 3 of
Michelsen et al. (2003) (o), chemostat data from Table 4
in Michelsen et al. (2003) ((), and E. coli K-12 data
selected from Table 1 in Helmstetter (1996) ().

The C-phase is initiated at a critical ratio X¢ [gDW] of
the cell mass to the number of ongoing DNA replication
rounds (Donachie, 1968). Consequently, cell masses at
which the DNA replication is initiated, are

Xinit _ e
T
= Xipir = X°-m;
X271 with j=0,1,2,... (24)

The critical initiation ratio is derived from the mean cell
mass at division X7 [gDW] in exponentially growing

cultures (Dens et al., 2005):

Xy = XC - exp(u - (C'+ D))

2-ppw-V™

¥C = 2. X7 \
“ Z-exp{p™-(C+D))?

= ST (CTD))

= = (25)

with, V™ [L] the mean cell volume, X} [gDW] the mean
cell mass at birth, ppw [gDW/L] the density of dry
biomass, and Z [-] the ratio of the mean cell mass to
the mean cell mass at birth. This Z ratio has a value
of 1.377 for cells with a specific growth rate C'V of 0.10
(Koch, 1993).

Wold et al. (1994) observed a linear decrease of X© as
a function of the mean specific growth rate:

XY™ = E—F-u™ or (26)
Yl m 'ex)/ . C .. 1 m {37
V(™) Zow @ (OED) (F — F - y™). (27)

The E and F constants are determined by fitting
Equation (27) to the mean cell volume data of Volkmer
and Heinemann (2011) as a function of specific growth
rate: E = 610.7 fgDW and F = 8315.1 fgDW . min.

Cell shoving. Cellular movements are hindered due
to the structure of the food system. On the other
hand, due to biomass growth, an outward pressure
emerges in the colony as cells avoid spatial overlap.
This pressure is relaxed by cell shoving. In the cell
shoving mechanism, the vector sum of all positive over-
lap radii with neighboring microorganisms is calculated
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Symbol Value Reference
PDW 301.6 gDW/L Godin et al. (2007)
v 0.10 Koch (1993)
Dy 7092.7 pm? /min Azevedo and Oliveira (1995)
Dp 1.17 * Dy Cussler {1984)
Dy, 5101.4 um?/min (Gyaas et al., 1995)
Dg 4075.5 pm? /min Andersson and Oste (1994)
R 107395 mol/L Baka et al. (2013)
Kg 2.994 107 % mol/L Thssen et al. (2007)

L 6.992 1072 iAF1260 model

£ 5.085 1075 iAF1260 model

4.756 Speight (2005)
K, g 3.751 Speight (2005)
PR 1, 3.858 Speight (2005)
pEaw 13.64 Speight (2005)

1.529 1075 iAF1260 model

aFreflag=0 1.012 .10~5 iAF1260 model
AL reflgg=0  2.007 1073 DWW 1AF1260 model
9% aw 17.3 -16™3 mol/L Portnoy et al. {2010)
1.3 et al. (1998)
UA min 6.25 1077 mol/L ng and Lindgren (1993)
Uk min 1.075 1073 mol/L ng and Lindgren (1993)

4.75 1073 mol/L Ostling and Lindgren (1993)

UL min
DH iAF1260 model

1.713 mol/mol

19.465 gDW/mol iAF1260 model
0.801 mol/mol iAF1260 model
1.699 mol/mol iAF1260 model
27.075 gDW/mol

1.377

iAF1260 model
Koch (1993)

Table 1: Parameter values for the IbM simulation

for each cell. The overlap radius r, [um] of a cell with
a neighboring organism is defined as

To =8 T+, —d, (28)
with 74, [m] and r, [pm] the radius of cell k and its
neighbor n, d [pm] the distance between the centers of
these two cells, and s [-] a factor to obtain realistic
minimum distances between neighboring cells in the
simulation.

Software

MICRODIMS is implemented in Java with the Repast
Simphony software toolkit (North et al., 2013). Repast S
is selected over other software toolkits for its simulation
speed, and because Java provides efficient array struc-
tures and for-loops to iterate over array elements. These
features are required for an efficient implementation of
the ADI diffusion scheme with the Thomas algorithm.

RESULTS AND DISCUSSION

Cell growth inhibition in colony center

In the colony center, cell growth is inhibited by glucose
depletion or environmental acidification. From the IbM
simulation, it is concluded that the pH drop in the
colony center is the determining growth-limiting factor
and that glucose depletion is negligible under anaerobic
conditions, as illustrated in Figures 5 and 6. Figure 7
shows that this pH decline is induced by the excretion of
lactic acid, while the accumulation of acetic and formic
acid is insignificant. However, the minimum inhibitory
concentration of undissociated lactic acid is not reached.
The growth-limiting pH effect starts to get important
around ¢ = 25 h, when the first starving (red) cell
emerges from the simulation (see Figure 8).
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Figure 7: Presence of weak acids in the environment
center over time.
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Figure 8: Emergence of a cell starvation zone in the
colony center due to environmental acidification.

Colony growth

The acidification of the colony center has implications
on the colony dynamics. Firstly, cell starvation emerges
and spreads, mainly in the colony center, as presented
in Figure 8. In general, cells are growing faster at the
colony boundary. Figure 9 depicts that the number
of growing cells stays more or less constant after the
emergence of cell starvation.

Secondly, Figure 10 demonstrates that the colony radius
growth consists of three phases: a superlinear phase
at the start of the simulation (I), a linear phase after
the growth-limiting effect of decreasing pH and cell
starvation become significant (IIT), and a transition
phase between both (II). The transition phase begins
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Figure 10: Three-phase colony radius dynamics: super-
linear phase (I), transition (II), and linear phase (III).

when the first starving cell emerges around ¢ = 25 h
(Figures 8 and 10). This simulated colony radius
evolution has been experimentally observed by Mitchell
and Wimpenny (1997).

CONCLUSION

An individual-based model (IbM) has been developed to
describe the dynamics of anaerobic monolayer colonies.
Colony dynamics are qualitatively reproduced, such as
the linear radius increase and emergence of a starvation
zone in the center. The IbM demonstrates that these
phenomena are caused by the pH decrease in the colony
center due to the cellular excretion of lactic acid. Hence,
this IbM is a first step in the simulation of surface colony
dynamics on vacuum-packed food products.

The general merit of individual-based modeling
in predictive microbiology is the elucidation of
experimentally observed colony behavior in terms
of cell physiological mechanisms and interactions.
Incorporation of this knowledge in classical differential
equation models for colony growth will allow rapid and
more accurate assessments of microbiological quality
and safety in structured food systems.
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Abstract

Retrogradation of starch and water loss have an effect of
the same intensity on the firmness increase in the phe-
nomenon of bread staling. To understand the transfer
of water during staling, we developed three models. In
the first two models, crust is considered as a membrane
characterised by its water vapour permeability. In the
third model, crust is considered a material similar to
the crumb but with its peculiar characteristics. In the
first model, internal pressure is constant and equal to
atmospheric pressure. In the second and third models,
the dry air content is determined by solving the corre-
sponding mass balance; air pressure and total pressure
are deducted afterwards. The aim of this study is to
compare the results of the three models and to conclude
on their individual interests. The first two models give
relatively similar results, but the third one has signifi-
cant differences.

INTRODUCTION

Staling of bread is defined as its firming over time, and
results in a loss of smoothness (Roussel and Chiron
2002). Besides modification of textural properties,
modification of aromatic properties are noted. This
evolution is perceptible for a product like sandwich
bread, packed in an tight packing. Retrogradation of
starch is essential for staling (Hug-Tten et al. 1999),
but water migration plays an important part through
its distribution among the bread components. In fact,
bread with crust loses its freshness quickly, while bread
without crust stays fresh (Bechtel et al. 1953, Besbes
et al. 2014). However the effect of the presence of the
crust is exerted on the exchange of water between the
crumb, the crust and the atmosphere, not on the starch
retrogradation.  According to Ronda et al. (2011),
the starch retrogradation and the loss of water have
an effect of same intensity on the increase of bread
firming. Water migration results in a balancing of the
water content between the crust and the crumb at the
macroscopic scale, and in redistribution of the moisture
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between the components at the microscopic scale. This
equilibrium is unstable and may drift towards softening
of the crust and drying of the crumb.

Water transfer in a product is driven according to
various mechanisms: molecular diffusion (gas phase),
convection and liquid capillarity. Several authors used
a simple model based on molecular diffusion in dense,
homogeneous and isotropic media with the second
Fick’s law to describe the mass transfer (Datta 2005).
Mass transfer in liquid water form, or in vapour water
form, were not differentated. Other authors prefer the
using of the Fick’s law in separating liquid water tansfer
and vapour water transfer. For instance the works
of Thorvaldsson and Janestad (1999) may be quoted.
Nevertheless, the Fick’s law alone does not explain the
mass transfer in porous media because the diffusion
is not the only responsible mechanism. Therefore, it
is necessary to add to the diffusion term a convection
term based on the Darcy’s law: the transfer is then due
also to a pressure gradient. A synthesis of formulations
of heat and mass transfer problems was achieved by
Datta (2007a).

To understand the mechanisms of water transfer in
bread during staling, we developed models of the sys-
tem. Modelling a process involves a number of assump-
tions and choices for the equations. This is why a same
process can be described by several models, the most
complex in its equations being not necessarily the wiser.
For bread staling we tested three models. The aim of
this work is to compare the results given by these three
models and to conclude as to their respective interests.

MODELLING

The Models

The modelling is greatly inspired by the model of
Whitaker (1977) developed for the drying process, with
some adaptations to our staling problem. The problem
is an isotherm one. Thus, there is no heat transfer equa-
tion. We are interested in particular in three quantities
varying in time and 2D-space. These three variables are
local content of liquid water, water vapour and dry air.



The geometry is a slice of sandwich bread, horizontally
disposed in order to eliminate the gravitational effect.
For the two first models, the crust is supposed to be a
membrane characterised by its water vapour permeabil-
ity. In the first model, the pressure of the bread slice
is assumed equal to the atmospheric pressure. Thus we
have two governing equations, one for liquid water and
one for water vapour, the dry air content being deduced
with algebraic equations. In the second model, the dry
air content is calculated using a differential equation
similar to that used for the water vapour. Then, the
pressures of water vapour, dry air and the total pres-
sure are calculated with algebraic equations. In, the
third model, the crust is a domain with its own char-
acteristics (density, porosity, etc.) different from the
crumb. The content in dry air is calculated, as in the
2nd model, using the corresponding mass balance.

First Model

The variation of the local water content, Xj;,, is de-
scribed by Darcy flow (due to liquid pressure: Py, =
P — P,) with addition of an evaporation-condensation
volumetric rate, I:

\Xi ku
OXia _ G|y Fie g (p - py| =1
q

ot oy

(1)

where P, is the capillary pressure. Since liquid water is
strongly bound to starch, total pressure driven flow is
not significant in our case, so the following expression is
used:

0 Xiiq

97 V- (D1ig V Xpig) — I (2)

where Dy;q is the capillary diffusivity of liquid water,
defined as (Datta 2007b):
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The variation of water vapour, Xy, is represented by a
diffusion equation with the corresponding source term:

0 X pap

Pvap
=V- P (1—5)Dy, V—- I

(4)
The air-vapour diffusion coefficient D, is weighted by
the ratio of gas volume on total volume, i.e. the porosity
® multiplied by the gas fraction in the pores, 1 — §; S
is the water saturation in the pores, and p, is the gas
density.

The evaporation-condensation rate is supposed propor-
tional to the difference between the equilibrium water
vapour, a., Psq:(T'), and the vapour pressure in the pores
Pyup. @y is the crumb water activity, and Pyq(T) is
the saturation pressure of the water vapour at temper-
ature 7"

I=C (aw Psat(T) - Bm,p) (5)
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C is the proportionality coefficient. The crumb water ac-
tivity was experimentally determined to fill a table func-
tion of the local water content (table not given here).
This table is interpolated using piecewise cubic func-
tions.

The water vapour pressure is derived from the perfect
gas law:

M ng(lff S) (©6)
vap

where R is the perfect gas law constant, and M, is the
molar mass of water vapour.

This first model is characterised by a total pressure sup-
posed as constant and equal to atmospheric pressure.
Thus, the dry air pressure is derived by substracting
the water vapour pressure to the total pressure:

Poop =

Pair =P - -P'uap (7)

Then, the dry air content X,;, is derived using the per-
fect gas law:

Pair My ® (1= S)

—Xair =
‘ RT

(8)

where M,;, is the molar mass of dry air.
The water vapour and dry air densities can be calculated
from mass concentrations in the porous matrix:

Xva.p

Poap = o (1 — S) (9)
Xai'r
it T T 71 o 1
Pair = F (1 8) (10)

The saturation pressure is calculated with the Dupré
formula, formula usable from -50 to 200 °C:

Pyt (T) = 133.32 £46.784= 6435 _3.868 In T (11)
where T is in K and P, in Pa. The problem is isotherm,
thus P,,; is constant.
The pores saturation is calculated with the following
equation:

_ Kuig.

pliq (])

for which py;, is the density of liquid water.
Lastly, the gas density is the sum of dry air and water
vapour densities:

(12)

Pg = Puap + Pair (13)
Boundary conditions:

The mass transfer with the ambient is assumed to be
only in gaseous phase. Consequently, the liquid water
flow at the surface is equal to zero, as well as at the
left and bottom boundaries because of the symmetries
(see Fig. (1)). Thus, in all boundaries, the boundary
condition for liquid water is

- (Dliq A% Xliq) =0 (14)



with n being the outward normal to the boundary.
Regarding X,qp, on left and bottom boundaries, the
vapour flow is equal to zero,

n- l:pg & (1~ 8)Dyy V ”—’} =0 (15)

Pg

and at the surface is determined by the water vapour
permeability of the crust WVP:

Pua,p,a - Puap
€

n- [pg ®(1—8)DuV ”;’”’} =WVP
g
(16)

where e is the crust thickness. The vapour pressure in
the ambient is calculated conventionally by

Pvap,a =RH Rsat(T) (17)

with RH the relative humidity of ambient.

Second Model

In the second model, X ;. is calculated using a diffusion
equation similar to the one used for X,,,,, but without
the evaporation-condensation term:

0 Xir Pair

=V |p,®(1—-5)D,, V 18
The equation (8) is rewritten to calculate Py,
Xai,r RT
Py = ——0 20 19
U N ® (1 - S) (19)
and also the equation (7) to calculate P:
P = Pvap + Poir (20)

The boundary conditions are unchanged.

Third Model

The third model involves all mechanisms included in the
second model, but it incorporates explicitly the pres-
ence of the crust. An external layer (5 mm-thickness) is
added to crumb (Fig. 1 b) to represent the crumb-crust
composite system. Furthermore, crumb and crust have
different properties, mainly due to differences in struc-
ture developed during baking. For instance, the follow-
ing expressions inspired from (Datta 2007b) and fitted
to our product were used for the capillary diffusivity of
liquid water:

Dliq,(’rumb =15 10*9 6(*2'&}-2 Xme) ®

. -9 (—2.842X,,5)
Dliq,crust =110 6( ms) P

(21)
(22)

Regarding the water activity of crust, a water sorption
isotherm obtained at 15 °C is used (Besbes et al. 2013).

Boundary conditions are the same as before, where the
WVP

€

value represents a mass transfer coefficient. In
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the interface crumb-crust, continuity condition of flows
is applied (no consumption/generation at interface).

Parameters

The models constants either are known physical con-
stants (Dgy, R, Myap, -..), peculiar values to our prod-
uct (Dyiq, ©, WVP, ...), or the environmental parame-
ters 7' and RH. They are given in Table 1.

Table 1: Models Parameters
Physical constants
D, (m?s7') 2.34107°
R (Jmol™' K1) 83145
Myap (kgmol™!) 18.021073
M yir (kgmol™!) 28.96103
Pliq (kgm™3)  998.98
Product constants
Dyig* (m?s71)  1.341071°
(I)crumb 0.811
D rust 0.750
C (sm™2) 5107%
Papp,s,crumb (kg Hli3) 192
papp,s,cr‘ust (kg 111_3) 330
WVPpP (kgm~ts7!Pa"t) 4.67107%
e (m) 0.005
Environmental parameters
T (C) 15
RH 0.9

a 1st and 2nd model.

Initial conditions

For the first model, the initial conditions necessary to

solve the two differential equations were:
Xjig = 160kgm™ (X, = 0.83)
Xopap = 8 1073 kg m™?

(23)
(24)

For the second model, the boundary condition necessary
to solve Equation (18) was added:
Xair = 0.785 kgm™> (25)

For the third model, initial conditions for crust are also
necessary:

Xpig = 75.9kgm™  (X,ns = 0.23) (26)
Xpap = 7.210 3 kgm™> (27)
Xair = 0.815kgm ™3 (28)

Programming, Geometry and Mesh

Programming was achieved using Comsol 4.2 and 4.3.
The geometry used the symmetries of the product: a
quarter of bread slice was drawn. In order to validate
the models by use of comparisons between numerical



Figure 1: Geometry and Mesh. a: 1st and 2nd Models,
b: 3rd Model

results and measurements of average water content on
some areas of the slice, these areas were represented by
discs on the entire surface of the slice. This resulted in
a modification of the mesh (Fig. 1).

PARAMETER ESTIMATION AND MODEL
VALIDATION

The models were validated by comparing the numeri-
cal and experimental average water content of circular
areas. The evaporation coeflicient C' can not be experi-
mentally determined. C' was used as a fitting parameter
to find the experimental results at best.

RESULTS AND DISCUSSION

The following figures present the time variation of the
main variables at points shown on Figure 1 (0 mm,
0 mm) (central point), (15 mm, 15 mm), (25 mm,
25 mm) and (35 mm, 35 mm) (surface point).

Time Variation of Main Variables

The analysis presented in this paragraph is performed
on the results given by the first model. The local water
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content is given on a dry basis, X,,s, according to the use
in food process engineering. The relationship between
Xiiqg and X, is
X
_ q
Xms - T

Papp,s

(29)
where pgpp.s is the bulk density of dry matter.

Xms and I X,,s monotonically decreases, starting by
the surface (Fig. 2 a). This results from an evaporation
zone which propagates from the surface towards the
centre (Fig. 3 a). In fact, the time variation of the I
profile on a segment (0,0)-(35,35) reveals that at certain
times there is condensation around the evaporation
peak.

Xovap and Pu,p:  the vapour content first increases
near the surface, then at the central area (Fig. 4).
The vapour pressure in ambient always is lower than
the vapour pressure at the product surface. Thus,
there is always a vapour flow from the crust towards
the ambient. Nevertheless, X4, increases because is
supplied with evaporation inside the product. This
evaporation rate is important because the wvapour
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pressure is always lower than the equilibrium pressure
given by the sorption isotherm. The equation for I
(Eq. ((5)) means that the vapour pressure is different
from the equilibrium pressure. That is questionable.
A noteworthy point is that P, decreases while X,
increases (Fig. 5). That is explained by the pores
saturation, S, which decreases quickly enough so that
the vapour pressure increases instead of decreasing,

according to the equation Py, = % ?i—“‘;’ (Fig. 6).
vap w /
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Xair and P,;: the air pressure increases because the
total pressure in the product is equal to Py, and the
vapour pressure decreases. Consequently X;, increases
(Figs 7 a, 8 a).

S: the pores saturation decreases over time at the four
points. Again, the phenomenon begins at the surface,
and then propagates towards the centre. At the end of
the simulation, the saturation just started to decrease
at the central point (Fig. 6).

Differences between the Three Models

The results obtained with the two first models are
quite similar. Nevertheless, there are some differences.
For the second model, compared to the first, curves
often present the same shape, but amplified. A slower
inward propagation of the phenomena can be observed.
However, there are noteworthy differences for I, X,
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P,;-. Besides, P is calculated in the second model and
not in the first one:

I: the evaporation rate presents the same variation
at the surface but the peak is much higher, 0.008
instead of 0.0023kgm™?s~! (Fig. 3 a, b). For the point
(25,25), I stays at 0 except at the end of the simulation,
where there is a trend for evaporation at 710°s, and
then a condensation phase before returning to zero
evaporation. With the first model, an evaporation peak
of 0.001kgm™s~! was obtained at about 510%s. For
the points (15,15) and (0,0), evaporation remains 0 for
the two first models.

Xair and P, at the surface, in the first model, P,
increases. In the second model, the Dirichlet condition
imposes that P,;. be constant and equal to air pressure
in ambiant air (Fig. 7 b). For the other points, at
the beginning a rapid increase is noticed, then a
plateau before a slower increase, with the three curves
almost the same. However, in (25,25), P,;- begins
to decrease at the end of the simulation, at 810°s.
Py = M]j:@ )1‘_—”5” This equation explains the plateau
which comes from the change of X,;. given by the
diffusion equation. However, for X;., the three curves
are not the same (Fig. 8 b). The decrease in (25,25)
comes from the ratio ,}fj", because of a significant
decrease of water saturation at the surface.

P: in the first model the total pressure is fixed constant
and equal to atmospheric pressure. In the second
model, the total pressure is the sum of P, and F,.
The results of this model show a pressure which changes
over time, the curves similar to F,;., although P,,,
decreases (Fig. 9 a). In fact, the P, values are about
100 times the values of P,,,, which explains this result.

When analysing the results of the third model, some
others differences are found, which is expected due to
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the incorporation of the crust to the system. Firstly,
the evolution of variables at interface point (35.35) is
affected by the presence of the crust, which initially
has lower water content and associated water activity
(0.836) than crumb (and even than ambient; RH = 0.9)
(Fig. 2 b). In this sense, the interface point presents
a different behaviour being the intermediate between
the (slow) dehydration of crumb and the gain of
moisture of crust during the process. Regarding the
evaporation term, it is one order higher than previous
models and it is located at interface (Fig. 3 ¢); inside
crumb, evaporation seems to be not significant. This
can be explained by the difference established between
vapour pressure given by water activity and vapour
pressure given by transport equations (see definition of
I, Eq. (5)).

With respect to air pressure, air concentration and total
pressure, a first increase in all zones is found (Figs 7 c,
8 ¢, 9 b), but then values tend to equilibrium accord-
ing to transport resistance (inner crumb) and ambient
conditions (interface crumb-crust). Finally, some points
inside crust were analysed to assess the expected mois-



ture increase during staling, which has been verified;
values tend to equilibrium given by relative humidity of
ambient (results not shown).

CONCLUSION

A priori, the first model is more simple and gives useful
results, but the second model is more realistic based on
equations, since it supposes the same mechanisms for
air and water vapour. Furthemore, the third model,
although more complex than the other ones, represents
better the real system crumb-crust.

Adjustment of properties and parameters is still under
work in order to validate the proposed hypotheses. The
presented models can be useful for different objectives:
the first and second models could be implemented to
assess water loss properties of crumb during staling, in
a relatively easy way; the third model could be utilised
to obtain additional information about the crust, once
properties depending on structure are known.

These models have to be still adjusted by varying envi-
ronmental parameters (temperature and humidity), and
some parameters peculiar to the product as the water
vapour permeability, the diffusion coefficient of liquid
water, the evaporation coefficient.
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ABSTRACT

Drying/cooling stages in the animal feed sector aim to bring
hot, damp pellets produced by a press into thermal and
hygrometric balance with the ambient air, in the quickest and
most cost-effective manner possible. The purpose of this
manufacturing stage is to perform both at once: drying and
cooling. This is a delicate process as the ambient air used
acts both as a drying and cooling vector. Industrialists have
demonstrated poor management of this operation and have a
tendency to over-dry/excessively cool the pellets to ensure
the stability over time, which has both a substantial energy
and economic cost.

This paper aims at introducing simulated cooler operating
conditions in order to enable industrialists to anticipate their
actions and to design operation regulation and control. A
hybrid approach has been proposed and discussed.

INTRODUCTION

Industrialists must resolve the problem of the contradictory

objectives of final pellet moisture, the energy spent by the

process and cohesion of pellets in real-time. To do so they

require:

- Relevant information in real-time,

- Control algorithms related to ventilation,

- Software tools to be able to manage the great diversity of
pellet types and drying/cooling technologies, and to be
able to design optimized processes (reverse engineering).

The objective is therefore to develop a new direction for
optimizing drying/cooling process performance in livestock
feed production factories. One needs to implement intelligent
measurement and simulation in order to improve the product
quality management and to optimize the energy efficiency of
the process. Thus we will contribute to reducing greenhouse
gas emissions.

This objective involves improving knowledge of
drying/cooling processes and the behavior of pellets during
this process. Knowledge is furthered in this field by technical
and scientific bibliographic studies (Fairfield 2003; Maier
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and Bakker-Arkema 1992), industrial instrumental test
campaigns and characterization of the behavior of pellets
during drying and cooling in pilot tests. This will enable
creation of a software simulator.

In this paper, we show that hybrid approach allows a more
accurate model of the drying-cooling process.

This work is part of OPSERA research project managed by
TECALIMAN and funded by ADEME.

PELLET COOLER

In product conservation, the cooling/drying process is a must
step, as it is impossible to stock hot and humid animal feed-
pellets without quality damage and microbial problems.

This operation consists in drying and cooling the hot-humid
pellets through forced convection phenomenon. Ambient air,
basically dry and colder than the product, is blown inside the
vessel containing hot and humid pellets provoking water
evaporation, drying the pellets. The cooling process can also
be adjusted by the air inlet temperature, although it is not
done yet currently (see Figure 1).

The drying process implies mass (moisture content) and heat
(enthalpy) exchanges between the air and product. The
ambient air, which is in countercurrent with the hot product
flow, becomes progressively hotter by the contact with this
one.

¥ and humid air

S Y S Y Y
LYy v e v v - v - -

Figure 1: Common Vertical Cooler



These exchanges will depend on the following factors:

- Product temperature after the press stage (where hot-
humid pellets are formed),

- Air velocity (i.e. flow rate) inside the cooler,

- Production flow rate,

- Pellets size,

- Ambient air properties ...etc.

The initial temperature of pellets may vary between 50°C and
90°C and their relative humidity are generally between 14%
and 17%. Industrialists’ goal will be to achieve a temperature
of 5 to 10°C above the ambient and humidity below 14%
(based on the regulation) at the output. A very dry product is
however not recommended by industrialists, as it means also
loss of economic value.

The final quality of pellets will be related to their: hardness
(resistance to compression) and durability (resistance to
frictions), which will be measured after the cooling-drying
phase.

There are also other types of coolers, such as a horizontal
cooler, which has air flow perpendicular to the product
direction. Nevertheless, this is not discussed in this article.

MASS BALANCE - HEAT TRANSFER COUPLING

The following assumptions are considered for the pellets:
e Shape is assumed to be an infinite cylinder;

e Isotropic behavior is assumed within them (heat and
mass transfers are in the radial direction);

e Conduction heat transfer between them is negligible;
e  Shrinkage is negligible;

e  Thermal expansion coefficient is negligible;

e Evaporation only occurs at the surface.

It was developed for thin and thick layer drying.
Furthermore, the heat and mass Biot number values (Bi,, and
Bi,,) are respectively between 0.1 and 100 and much higher
than 100. Therefore, the following phenomena are
considered (Bird et al. 2002):

e Heat conduction and liquid water diffusion within
the particles;

e Water evaporation and heat and mass convection at
their surface.

One usually assimilates the thick layer as a series of thin
layers for which the only transfers are between air and
particle, and a thin layer as a single particle (see Figure 2).
Moreover, thick layer drying involves energy and mass
transfer in air, after each thin layer crossing (Courtois 1991;
Courtois et al. 1991, 2001). The heat and mass Peclet
number values (Pe, and Pe,) are much higher than I,
therefore a plug-type airflow and no pressure variation are
assumed.
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Partial differential equations (P.D.E.) are discretized in space
using volume finite approach, O.D.E. are solved using the
MATLAB solver, named ode23tb®.

Thick Layer

Thin Layers Succession

[4 AR ymducg

Figure 2: Thick layer decomposition

HYBRID APPROACH

Mathematical model called hybrid system combines both
discrete and continuous events in a single formalism. It is
very adapted to systems with various phases. The main
application of this approach is real-time systems where the
processes are controlled on-line.

A hybrid system is composed of continuous and discrete
dynamical parts. A way to represent correctly this
combination is using Aybrid automatons/ automata (Alur et
al. 1995; Henzinger 1996). They can be seen as finite state
automata for which continuous-time model is added to each
discrete state, called location. A hybrid automaton is defined
by a finite set of vertices, called locations, continuous state
space, a set of transitions between locations, a set of invariant
and a set of applications associated at each location.

In food process control and modeling field, several
references can be found in literature (Boillereaux et al. 2002;
Fibrianto et al. 2003a and b). Those papers deal with heat
transfer modeling in food thawing and freezing using high
pressure technology. Hybrid approach has successfully
overcome the modeling problem of discontinuities due to
phase changes (liquid-melting-solid) of water as well as
pressure steps generating discrete changes of thermo-
physical properties. Technically the pressure is regulated
around several setting points.

Regarding vertical cooling-drying process, the dynamics can
be divided into three stages: filling phase (increasing pellets
level without extraction), steady stage (extraction phase by
maintaining the pellets level) and draining phase (extraction
stage by decreasing pellets level), as shown in Figure 3.
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Therefore, one can design hybrid automata describing the
system dynamics during filling phase as follow (Figure 5).

FI’~1
dxieq = Flao)
a SRS
s = X T V)
4= [Xoup Toups Yino Ta 1n] € €
with init.cond.=prev final cond.
+ new layer conditions

gt
Xigy = ixii* Tp ¥, rf:]H} ;
= [Xoup, T Yins Ten] € €
with init.cond.=prev.final cond,
+ new fayer conditions

n,=nb. added layers
related to a step

dx; i .
= fx.u)

Figure 3: Three stages in cooling-drying process

By considering hybrid approach, one can express a ramp as
steps succession, as described by Figure 4. The hybrid model
in this case can be implemented on the filling and draining
phases.
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Figure 4: Three cooling-drying stages by hybrid approach

This approach facilitates the use of layer-decomposition
methodology previously mentioned. Each step will represent
a specific number of layers and can be modeled by a
continuous-time system describing the dynamics of product
temperatures and moisture content (i.e. humidity), as well as
those of air. During filling phase, the number of layers
increases according to the steps, while it decreases during the
draining phase.

Mathematically, the process can be represented by Equation
(1), where x includes the state variables, such as the moisture
content (humidity) and temperatures of product (X, and 7,
respectively) and also of air (Y and 7a respectively) at
various positions with respect to time.

ox€,r -
%éf«,t}f, (1)

Here, the thermo-physical properties are basically known or
can be easily identified.

The continuous system dynamics of the drying model uses
the thick-thin layers drying approach involving energy and
mass transfer equations, which can be found in the literature
(Courtois 1991; Courtois et al. 1991, 2001).

o

layer; = layer,; + nj\ = [T V)

>
" layer,,, = layer, +n,

= X Toup ¥in Tain] €€
with init.cond.=prev.final cond.
+ new fayer conditions

Figure 5: Hybrid automata in filling phase

Now let us focus on the steady phase. This stage contains
indeed discontinuities due to extractions, which usually occur
in regular interval. This phenomenon can also be seen as
discrete events between continuous systems (see Figure 6).
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