
 
 
 
 
 

10TH INTERNATIONAL CONFERENCE 
 

ON  
 

SIMULATION AND MODELLING 
 

IN THE 
 

FOOD AND BIO-INDUSTRY 
 

2018 
 
 
 
 

FOODSIM'2018 
 
 
 
 
 

EDITED BY 
 

Jan F.M. Van Impe 
 

and 
 

Monika E. Polańska 
 
 
 
 
 
 

APRIL 8-12, 2018 
 

GHENT, BELGIUM 
 
 
 
 

A Publication of EUROSIS-ETI 
 
 
 

Printed in Ghent, Belgium 
 

I

IVXLCDM



 

 

 

II



10th International Conference on 

Simulation and Modelling 
in the 

Food and Bio-Industry 
 

GHENT, BELGIUM 
 

APRIL 8-12, 2018 
 
 

Organised by 
 

ETI 
The European Technology Institute 

 
In Cooperation with 

 
13th International Trends in Brewing Symposium  

 
Katholieke Universiteit Leuven 

Technology Campus Ghent 
 
 
 

Sponsored by 
 

EUROSIS 
The European Simulation Society 

 

Ghent University 
 

University of Skövde 
 
 
 
 

Hosted by 
 

Katholieke Universiteit Leuven 
Technology Campus 

Ghent, Belgium 

III



 
EXECUTIVE EDITOR 

 
PHILIPPE GERIL 

(BELGIUM) 
 

EDITORS 
 

General Conference Chairs 

Jan F.M. Van Impe, KU Leuven, Campus Gent, Belgium - IPC Chair 
Monika E. Polańska, KU Leuven, Campus Gent, Belgium - OC Chair 

OC - Organizing Committee 

Monika E. Polańska - OC Chair 
 Simen Akkermans 

Maria Baka 
Gerda Friant 

Philippe Nimmegeers 
Cindy Smet 

and all staff of  
BioTeC+ Chemical and Biochemical Process Technology and Control 

KU Leuven, Campus Gent, Belgium 
https://cit.kuleuven.be/biotec 

IPC - International Programme Committee 

Jan F.M. Van Impe, KU Leuven, Campus Gent, Belgium - IPC Chair  
Simen Akkermans, KU Leuven, Campus Gent, Belgium 

Antonio Alonso, CSIC-IIM, Vigo, Spain 
Lourdes Amigo, CSIC, Madrid, Spain 

Maria Baka, KU Leuven, Campus Gent, Belgium 
Serafim Bakalis, University of Nottingham, Nottingham, United Kingdom 

Eva Balsa-Canto, CSIC-IIM, Vigo, Spain 
Ursula Gonzales Barron, Instituto Politécnico de Bragança, Bragança, Portugal 

Paula Bourke, Dublin Institute of Technology, Dublin, Ireland 
Teresa Brandão, Universidade Católica Portuguesa, Porto, Portugal 

Bert Bredeweg, Universiteit van Amsterdam, Amsterdam, The Netherlands 
Vasco Cadavez, Instituto Politécnico de Bragança, Bragança, Portugal 

Enda Cummins, UCD, Dublin, Ireland 
Luis Dias, Instituto Politécnico de Bragança, Bragança, Portugal 

Juliette Dibie-Barthélemy, UMR AgroParisTech/INRA, Paris, France 
Ilija Djekic, University of Belgrade, Belgrade, Republic of Serbia 

Ferruh Erdogdu, Ankara University, Ankara, Turkey 
Matthias Filter, Bundesinstitut für Risikobewertung, Berlin, Germany  

Denis Flick, UMR AgroParisTech/INRA, Paris, France 
Ourania Gouseti, University of Nottingham, Nottingham, United Kingdom 

Anet Režek Jambrak, University of Zagreb, Zagreb, Croatia 
Alexandros Koulouris, Alexander ΤΕΙ of Thessaloniki, Thessaloniki, Greece 

Kostas Koutsoumanis, Aristotle University of Thessaloniki, Thessaloniki, Greece 
Ivan Leguérinel, Université de Bretagne Occidentale, Quimper, France 

Evelyne Lutton, INRA-Grignon, Thiverval-Grignon, France 
Isabel Mafra, University of Porto, Porto, Portugal 

IV



 

IPC - International Programme Committee 

 
Bart Nicolaï, KU Leuven, Leuven, Belgium 

Philippe Nimmegeers, KU Leuven, Leuven, Belgium 
Nathalie Méjean Perrot, INRA-Grignon, Thiverval-Grignon, France  
Artemio Plana-Fattori, UMR AgroParisTech/INRA, Paris, France 

Cristina Luisa Silva, Universidade Católica Portuguesa, Porto, Portugal 
Panagiotis Skandamis, Agricultural University of Athens, Athens, Greece 

Torstein Skåra, Nofima, Stavanger, Norway 
Cindy Smet, KU Leuven, Campus Gent, Belgium 

Petros Taoukis, National Technical University of Athens, Athens, Greece 
Bas Teusink, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands 
Efstathia Tsakali, University of West Attika (TEI-Athens), Athens, Greece 

John Tsaknis, University of West Attika (TEI-Athens), Athens, Greece 
Vasilis Valdramidis, University of Malta, Msida, Malta 

Eirina Velliou, University of Surrey, Guildford, United Kingdom 
Pieter Verboven, KU Leuven, Leuven, Belgium 

Olivier Vitrac, INRA, Paris, France 
Dana Ziuzina, Dublin Institute of Technology, Dublin, Ireland 

V



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 2018 EUROSIS-ETI 

 
 
Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s). 

Statements are not necessarily representative of nor endorsed by the European Simulation Society. Permission 

is granted to photocopy portions of the publication for personal use and for the use of students providing credit 

is given to the conference and publication. Permission does not extend to other types of reproduction, nor to 

copying for incorporation into commercial advertising nor for any other profit-making purpose. Other 

publications are encouraged to include 300- to 500-word abstracts or excerpts from any paper contained in this 

book, provided credits are given to the author and the conference. 

 

All author contact information provided in this Proceedings falls under the European Privacy Law and may not 

be used in any form, written or electronic, without the written permission of the author and the publisher. 

Infringements of any of the above rights will be liable to prosecution under Belgian civil or criminal law. 

 

All articles published in these Proceedings have been peer reviewed 

 

EUROSIS-ETI Publications are ISI-Thomson, IET, SCOPUS and Elsevier Engineering Village referenced 

Legal Repository: Koninklijke Bibliotheek van België, Keizerslaan 4, 1000 Brussels, Belgium 

CIP 12.620 D/2011/12.620/1 

 

Selected papers of this conference are published in scientific journals. 

 

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, 

Greenbridge Science Park, Ghent University Ostend Campus, Wetenschapspark 1, Plassendale 1, B-

8400 Ostend, Belgium. 

 

EUROSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-

8400 Ostend, Belgium 

 

Printed and bound in Belgium by Reproduct NV, Ghent, Belgium 

Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium 

Cover pictures are reproduced under Wikimedia Commons 

 

EUROSIS-ETI Publication 

ISBN: 978-9492859-01-3 

EAN: 978-9492859-01-3 

VI



 

 

 

PREFACE 
 
 

 
Dear Colleagues, 
 
 
Welcome (back) in Gent on KU Leuven’s local Technology Campus, to attend the FOODSIM’2018 
conference! 
 
Apart from being organized in one of the most friendly cities worldwide, this 10th edition of the 
FOODSIM conference (an anniversary!) offers a very attractive scientific programme to all colleagues 
interested in mathematical modeling, simulation, and model based design and optimization of food 
products and processes. Besides a variety of Technical Sessions devoted to Sustainable Food Systems 
Engineering, Food Safety and Spoilage, Quantitative Risk Assessment, Food Process Systems 
Engineering, Innovative Food Production and Processing Technologies, Food Business and Economics, 
a dedicated session presents recent advances in Multi-Scale Modeling Methods. Other programme 
highlights include 3 state-of-the-art Tutorial and Workshop presentations and a Poster Session 
organized by the Erasmus Mundus MSc students (European Master BiFTec - Food Science, Technology 
and Business), thus highlighting the importance of Quantitative Food Science in both teaching as well 
as training of early stage researchers. 
 
The organizing KU Leuven/BioTeC+ team celebrates its 25th anniversary. Quite a few presentations 
highlighting our recent experimental and computational work are integrated into the various 
sessions.  
 
As in the previous edition, FOODSIM is running in parallel with another food related event on our 
campus, Trends in Brewing. The organizers of both events expect significant synergies. First of all, 
participants can easily attend lectures or even full sessions from the parallel event, including 
Workshops and Poster Sessions. Second, FOODSIM participants may be interested in visiting the 
attractive Trends in Brewing Technical Exhibition, while the 3 FOODSIM Keynote Lectures are 
definitely of interest to a new TiB audience as well. Third, an extra FOODSIM (musical) Keynote open 
to all is organized at the occasion of 25 years of KU Leuven/BioTeC+ and 10 years of FOODSIM. Last 
but not least, both events share the Social Programme, with specialty beer tasting as one of the daily 
highlights and the optional visit to a Belgian brewery to conclude the conference in style.  
 
The FOODSIM programme has all ingredients needed to provide you with a rewarding experience at 
the interface of science and “savoir vivre”. The organizers look forward to lively discussions and hope 
to provide you with a forum for networking and intensified collaboration. Many thanks to all involved 
in the organization and in the reviewing process! 

 
 
 
 
 

  
Jan F.M. VAN IMPE, IPC Chair & Monika E. POLAŃSKA, OC Chair & 

KU Leuven/BioTeC+ Research Division 
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ABSTRACT
Microbial cells evolved a remarkable ability to adapt to 
environmental conditions, or to withstand otherwise 
detrimental mutations, which makes them often very 
resilient to man-made interventions.  These properties arise 
from the integrative functioning of biological networks. 
Functional genomics has allowed the cost-effective 
measurement of the network components; however, we still 
mostly fail to understand how their interactions lead to 
cellular function and adaptation. For this, modeling is 
required. 
Current mainstream constraint-based metabolic modeling 
efforts largely focus on the metabolic network only, albeit at 
genome-scale. They are based on reaction stoichiometry 
only, but nonetheless can be extremely valuable for mostly 
exploratory analysis of the metabolic potential of an 
organism. However, because these “Flux Balance Analysis” 
(FBA) methods lack important parts of the cell –with their 
associated constraints- they often fail to predict changes in 
common regulatory strategies. 
One view that is becoming dominant in cellular physiology, 
is that physical and (bio)chemical constraints limits protein 
content and synthesis, impacting on how resources are 
partitioned over growth and stress processes to optimize 
fitness (“cellular economics”). Such constraints can lead to 
(evolutionary) trade-offs and can explain a large number of 
microbial physiological phenomena, such as overflow 
metabolism or catabolite repression. Current efforts in the 
modeling field aim to include such resource constraints into 
the constraint-based modeling format.  
We have developed theory to understand what the solution 
is to a flux maximization problem under resource 
constraints. We found that Elementary Flux Modes (EFMs), 
mathematical definitions of minimal patways, are the flux 
maximisers. Although the number of EFMs is enormous (in 
the millions), the number of active constraints determines 
the maximum number of active EFMs at optimum. So 

complexity of the flux space seems to be determined by the 
constraints, not by the seemingly infinite possibilities. 
Still, the resource allocation perspective is developed for 
steady-state growth under constant environments. What 
happens during dynamic growth conditions is largely 
unexplored. Such analysis requires dynamic models, one of 
which is dynamic FBA.  
We conclude that the constraint-based modeling approach is 
a powerful and versatile approach to explain the physiology 
of a cell through the interactions of its molecular 
components and the governing physico-chemical and 
biochemical constraints.   
 
 
CONSTRAINT-BASED MODELING AT STEADY 
STATE 
 
Adaptations involve the consideration of wise allocation 
of limited resources 
Cells adapt their cellular composition and protein 
expression according to environmental conditions. 
Accumulating data and theory have established that proper 
resource allocation is an important driver for such 
adaptations. In E coli, the expression level of the lac system 
maximized a benefit-minus-cost function (Dekel and Alon, 
2005); overexpression of non-functional protein causes a 
reduction in growth rate (Snoep et al., 1995; Kurland and 
Dong, 1996; Shachrai et al., 2010). Ribosomal content 
scales linearly with growth rate(Scott et al., 2010), which is 
the expected optimal partitioning for growth rate (Bosdriesz 
et al., 2015). Protein titration studies (in labstrains grown in 
labmedium to which cells are quite well adapted) very often 
show optimality around wild type level, with strong decrease 
in fitness upon lowering protein level, and a decrease at 
higher expression level (Mijakovic et al., 2005; Teusink et 
al., 2011).  In yeast, but also E coli (Ihssen and Egli, 2004) 
there is an inverse relationship between stress resistance and 
growth rate (Zakrzewska et al., 2011; Levy et al., 2012), to 
the extent that the general stress response is now viewed as 
a growth rate response (Brauer et al., 2008). One 
explanation is that at high growth rates less resources are 
being spent on stress proteins, and more on ribosomes (Dhar 
et al., 2013). Thus, adaptation is resource management, 
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weighted (or traded-off (Szekely et al., 2013)) against 
effectiveness (or benefit) of the possible strategies.
 
Models of growth: current state of the art 
Current mainstream quantitative approaches in cell 
physiology are too limited to predict, from costs and 
benefits, which factors, and to what extent, contribute to the 
tipping of the balance into different directions. 
Traditionally, costs associated to unicellular growth are 
related to ATP use. Based on flux measurements at different 
growth rates, the total rate of ATP production by catabolism 
is estimated and equated to growth-associated ATP 
requirements – the ATP costs for making biomass (Neijssel 
and Teixeira de Mattos, 1994; Feist and Palsson, 2010).  
This method assumes that full coupling exists between ATP 
production and ATP consumption by growth-related 
processes and results in a growth-dependent ATP 
requirement and a maintenance rate at zero growth 
(Teusink et al., 2006). These parameters are used in the 
roughly two different approaches that are being used to 
subsequently model cellular growth:  
(i) course grained “Monod-type” models consisting of one 

equation that links growth rate to the availability of 
nutrients; 

(ii) stoichiometric genome-scale metabolic models that 
predict, most often through optimisation, the flow of 
material towards new cells (biomass) based on inflow 
of nutrients. The latter approach requires hundreds to 
thousands of equations for mass-balancing each 
metabolite in the metabolic network.  

The coarse-grained models lack molecular details but 
incorporate (some) kinetics and hence can truly predict rates 
from nutrient concentrations, according to the so-called 
Monod equation of variants thereof. However, they are so 
coarse-grained that the interesting “intracellular” biology is 
lost. These models are most useful for predictive biology 
(estimating likelyhood of microbial outgrowth (Peleg and 
Corradini, 2011)) and evolutionary models. 
 
At the other end of the spectrum, the genome-scale 
metabolic models capture all the gene-to-protein-to-reaction 
associations of a cell, and hence have the full molecular 
detail of metabolism (Francke et al., 2005). However, note 
that only the stoichiometry of the reaction (i.e. which 
compounds take part in each reaction) is captured, not the 
kinetics of the corresponding enzymes. Workflows exist that 
use whole-genome sequences, bioinformatics, additional 
biochemical knowledge (“legacy data”) and experiments to 
construct and validate the metabolic network (Thiele and 
Palsson, 2010). It is available for a great number of 
organisms (Oberhardt et al., 2009), including human(Thiele 
et al., 2013). Given the reaction network structure, growth is 
subsequently modeled as a sink for biomass components, 
such as lipids, proteins, RNA and DNA, as specified in the 
biomass equation(Feist and Palsson, 2010): 
 
x1 protein + x2 lipid + x3 RNA + … xn Xn + y ATP -> 1g 
biomass + y ADP   
    

Here xi specifies how much of each component is 
represented in biomass, and y represents the part of the 
experimentally-derived growth-related ATP expenditure 
unaccounted for in these models (Teusink et al., 2006). 
Typically, these stoichiometric models can only account for 
about 50% of the total ATP produced by catabolism 
(Stouthamer and Bettenhaussen, 1973; Förster et al., 2003; 
Teusink et al., 2006). Thus, the network should supply the 
biomass components and ATP in the proper ratio’s, defining 
feasible flux distributions. In steady state, the “solution 
space”, i.e. the space of feasible flux distributions, is very 
large. Therefore, in Flux Balance Analysis (FBA), 
optimization is used to find optimal (steady-state) flux 
distributions to maximize (or minimize) some objective 
function, often the biomass equation (Orth et al., 2010; 
Santos et al., 2011). Many variants to this approach exist 
(Lewis et al., 2012) but FBA remains the most-often used 
technique. 
In this formalism, two immediate limitations are at play. 
First, the solution space is necessarily bounded by 
constraints on uptake rates (Schuster et al., 2008; Teusink et 
al., 2009), as obviously, an optimum is difficult to find in an 
infinite space. Hence, the highest yield strategy will 
maximize the flux (Teusink et al., 2009). Under fixed 
glucose uptake, respiration will therefore always lead to 
higher growth rate than fermentation in this formalism 
(Teusink et al., 2006). Second, the biomass equation is 
fixed, even though components in the cell do change with 
growth rate (as discussed above). Hence, although genome-
scale metabolic models have been successful in prediction of 
reaction essentiality and for exploring metabolic 
engineering strategies (Oberhardt et al., 2009), in their 
most-widely used form they are inherently limited in 
predicting metabolic adaptation strategies.  
 
Example of a success story with FBA 
We have recently (Branco Dos Santos et al., 2017) 
developed a metabolic reconstruction of the human 
pathogen Bordetella pertussis, the causative agent of 
whooping cough. We have used data from two deeply 
sampled batch fermentations to parametrise the energy 
requirements, to resolve some ambiguities in the network 
and to derive at a proper biomass composition. We 
subsequently explored the network to find all possible 
growth nutrient combinations that would support growth. 
Surprisingly, B. pertussis was always considered a fastidious 
organism requiring rich growth media, but we predicted and 
experimentlly validated that it is able to grow –slowly- on 
cysteine as the only C, N and S source. In fact it grows on 
many rather minimal media. 
Two more discoveries were made through the model; first, 
B. bordetella secretes relatively high amounts of 
nucleobases and nucleotides as N-products (found as means 
to close the N-balans in the model). Second, we found that 
thiosulphate could replace organic S-sources that during 
industrial production of pertussis toxin caused toxicity 
problems. In the end, a simpler growth medium led to a 
more than twofold increase in toxin yield (Branco Dos 
Santos et al., 2017). 
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Many aspects of cell biology are not captured in current 
genome-scale modeling approaches 
Despite these successes, from a predictive modeling 
perspective there are three major shortcomings of the 
current mainstream genome-scale modeling approaches. 
First, the inherent kinetic limitations of enzymes is poorly 
represented, only via some bounds on particular (uptake) 
reactions rates only. In particular the role of ribosomes, the 
protein-synthetic machinery of the cell, sets important 
indirect limitations to the fluxes in the metabolic network, 
as it has to synthesize all the enzymes that carry out these 
reactions, including itself. The latter represent the self-
replicating core of cellular growth, which we believe is an 
essential ingredient of a growth model (Molenaar et al., 
2009). Second, it fails to adequately capture major other 
constraints on cell growth as discussed above, rooted in 
physics and chemistry. Third, ‘costs of living’ are largely 
ignored, and only captured in y, the growth-associated 
maintenance. These shortcomings are being recognized and 
new formats are being developed that promise to provide a 
rich, genome-scale perspective on growth and adaptation. 
 
Costs of living  
The costs for growth and survival, and for adaptability, 
relate to: 
(i) protein-synthesis related costs (protein turnover; 

protein misfolding; protein trafficking; protein 
modifications; RNA synthesis and turnover; metabolic 
precursors and energy for polymerisation) 

(ii) replicative costs (proofreading; DNA modifications 
such as methylation; chromatin remodelling)  

(iii) cell division costs (cell-wall remodeling, organel and 
genome partitioning)  

(iv) other maintenance costs related to e.g. ion and pH 
homeostasis, possibly cytoskeleton maintenance etc.  

(v) investment in stress resistance at the expense of 
growth-promoting proteins 

 
Some of these will be growth-rate dependent, other most 
probably not. Clearly, a number of these costs will be very 
difficult to quantify, but for quite a few of them, high-
throughput methods have been developed to provide 
reasonable estimates.  
 
Genome-scale modeling approaches capturing some of 
these aspects 
In recent years, a number of approaches have been 
developed to implement physicochemical constraints and 
costs into the genome-scale modeling framework - for 
review, see (Goelzer and Fromion, 2017). These include 
flux-minimization to favor shorter pathways (Holzhütter, 
2004), upper bounds on total flux weighted by some 
crowding factor for protein (Beg et al., 2007; Vazquez et al., 
2008), limits on membrane occupancy (Zhuang et al., 2011) 
or very recently bounds on protein based on catalytic 
activities were proposed (Adadi et al., 2012). In all cases 
only a limited set of all relevant costs and constraints were 
taken into account, and without quantitative assessment of 
the possible impact of others. Conversely, genome-scale 

models have been used to compute (metabolic) costs of 
proteins for comparative purposes (Barton et al., 2010). 
Recently the ME matrix was introduced, in which the 
Metabolic network and the network for Expression, i.e. 
transcription and translation, were combined in excruciating 
detail (Thiele et al., 2012). Thus, for flux to go through a 
metabolic reaction, also flux has to go through the 
transcription and translation reactions for the associated 
protein, based on “coupling constants” (Thiele et al., 2010, 
2012). Other studies incorporated constraints at the level of 
protein expression, cell morphology and flux to enzyme 
level in different ways, but with the same general idea 
(Goelzer et al., 2015; Nilsson and Nielsen, 2016; Reimers et 
al., 2017).  
Most of these studies use growth rate as the sink for 
individual proteins, which are now variables of the model 
that need to be balanced: thus, rather than having a fixed 
total protein amount in the biomass equation (see above), 
protein composition can and will change with growth rate. 
This means, however, that the growth rate now appears in 
mass balances, making the optimisation non-linear and hard 
to solve for large systems of variables. The solution to this 
problem is to fix the growth rate and minimise for nutrient 
uptake. Mathematically, the solution will be the same as for 
maximising the growth rate under a constraint uptake rate. 
However, in this way, we implicitly assume that uptake rate 
is indeed constraining growth! This led us to think about the 
expected solutions of models that aim to maximise flux 
under protein constraints. 
 
Maximising flux requires thinking about elementary flux 
modes 
When an objective flux is maximized under a total protein 
constraint (the so-called specific flux, with symbol q), then 
the optimal flux distributions are highly structured, 
irrespective of the kinetics and feedbacks used. We have 
mathematically proven that the flux will have to go through 
an elementary flux mode (EFM), which is a mathematical 
definition of a minimal pathway: EFMs connect 
extracellular sources and sinks through a (or combinations 
of) metabolic pathway in which none of the reactions can be 
removed without loss of steady state. The proof can be found 
elsewhere, but whenever the internal metabolite levels are 
fixed to arbitrary values (so also the optimal values), the 
optimisation problem becomes a linear program, and the 
resultant solution space is spanned by rays that represent 
EFMs. Optimal solutions lie on these rays, making EFMs 
the maximisers. 
However, the approaches used in the genome-scale, 
stoichiometric models, do not use total protein as a 
constraint, but uptake rate, i.e. they assume a constraint at 
the membrane. This led us to think that more than one 
protein pool could act as a constraint. It turns out, that when 
flux is maximised under n protein constraints, the number 
of active EFMs in the optimal flux distribution is smaller or 
equal to n. 
This result has one important consequence in the way we 
can think about complex metabolic networks: despite the 
fact that in such networks thousands of reactions occur, and 
millions of pathways can be defined, in the optimal state, 
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the degrees of freedom are determined by the number of 
prevailing constraints.  
 
 
CONSTRAINT-BASED MODELING UNDER 
DYNAMIC CONDITIONS 

The modeling and theory described so far dealt with 
microbes at steady state under constant conditions. This of 
course is an idealisation for most conditions in a microbe’s 
life. There are different approaches to extend the constraint-
based modeling approaches to dynamic conditions, 
depending on the available (kinetic) information and the 
time-scales.  
 
Dynamic FBA combines population dynamics with 
genome-scale reconstructions 
In so-called dynamic FBA ordinary differential equations 
describe the dynamics of both the growth-limiting 
nutrient(s) and the biomass. Using enzyme-kinetic 
functions, prevailing nutrient levels are converted into 
corresponding uptake constraints, and FBA is used to 
calculate the instantaneous, maximal steady-state growth 
rate under those constraints. The resulting growth rate is 
used to compute the biomass over time. The key 
assumptions of this approach are that indeed uptake is the 
dominant constraint for growth rate, and that the time scale 
of the nutrient dynamics is much larger than that of internal 
dynamics; this allows for pseudo steady state of the internal 
metabolic network. 
When applied to metabolic models only, the approach really 
is very similar to a Monod-type model, except that the 
biomass yield is now well-informed by genomic details. For 
this reason, dynamic FBA has been applied to microbial 
ecosystems (Hanemaaijer et al., 2017). One of the key 
problems, however, is the optimisation at each time 
integration step, which prevents predictions of delayed 
return-of-investment strategies in ecosystems. Nonetheless, 
especially when these models become combined with 
resource allocation constraints that allow for shifts in 
growth strategies, we expect these type of models to be an 
important corner stone towards more realistic and molecular 
population dynamic models. 
 
 
CONCLUSIONS  
 
Constraint-based modeling once started with the steady state 
analysis of stoichiometric networks of metabolic reactions. 
This is still an excellent way to quickly move from genome 
to potential physiology. The constraints are steady state 
(mass balance constraints) and capacity constraint, i.e. 
constraints on the values of the flux. In recent years, 
resource allocation constraints, have been added, which on 
the one hand adds richness in the behaviour of the models, 
and on the other hand removes degrees of freedom in the 
potential states of the cell. Through these developments, a 
predictive molecular systems biology comes into reach.  
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ABSTRACT 
Since centuries, agriculture, food and biological 
systems are strongly linked to human expertise, 
albeit such knowledge has been capitalized and 
shared often at a local level, only. Since the 
beginning of the last century, swept away by 
productivism, modern agriculture and food 
production have put cumulated human knowledge 
aside. Facing new challenges like sustainability in a 
changing context, holistic approaches cannot be 
managed “manually” ab initio and there is a clear 
need for computing decision-support tools to tackle 
these new issues. Moreover, new approaches 
should be built centred on humans and for humans. 
The heart of our purpose is to shift the focus again 
on human and local expertise, guided by powerful 
computing interactive systems. 

INTRODUCTION 
Since centuries, agriculture, food and biological 
systems are strongly linked to human expertise, 
albeit such knowledge has been capitalized and 
shared often at a local level, only. Scientific and 
technical experts have tried to study complex food 
and biological systems for a while. Generally lot of 
heterogeneous experiments have been achieved in 
different conditions and statistical analysis allows 
extracting various characteristic features leading to 
a local or partial understanding of the system in the 
mind of the expert. Nevertheless the task is far 
more complex if a global understanding of those 
systems is needed, even if experts have sometimes 
partial intuitions on it (Perrot et al., 2011) )(Van 
Mil et al., 2014)(Perrot et al., 2016). The heart of 
our purpose in this paper is to shift the focus on 
human, intuitions and local expertise, guided by 
powerful computing interactive systems. 

 If we refers to the cognitive human behavior, as it 
is described in the community of intelligent 
systems (Lucentini and Goodwin, 2015), a point 
widely studied is the cognitive architectures and the 
way that data is captured from the environment, 
stored and further processed. Basically, cognitive 
architectures refer to two paradigms: symbolic and 
sub-symbolic. It gives the possibility to infer, for 
some aspects, like experts decision for process 
management, data exploration, fault tolerance, 
learning, systematicity and so on, how the human 
behavior will be. It is just a question of analyzing if 
an architecture is based on a symbolic, sub-
symbolic or mixed approach. 
Symbols, as described by (Lucentini and Goodwin, 
2015), “are entities which make reference to 
another objects by means of a totally arbitrary 
convention, a law or a class. They are a widely 
used form of representation, for example the word 
car is a symbol for a real car, because there is a 
convention that the word car in a specific language 
refers to those types of elements”.  The sub-
symbolic level, is not using symbols as the 
symbolic one and is more a “bottom-up” approach 
emerging from neuronal connections, non 
explicitly conscientize by the experts. 

Our challenge for this article is to present 
experiences led in our laboratory to guide through 
man machine interactions, the emergence of a 
model integrating symbolic and sub-symbolic 
human knowledge. It is dedicated to food and 
biological complex systems.  

HUMAN IN THE LOOP 
For our approach, we rely on the ability of experts 
to create patterns giving them the possibility to 
reason in an uncertain environments. Indeed, 
experts, faced with complexity when coping with 
their dynamic environment and constraints, 
develop a considerable ability to focus their 
attention and organize the space of reasoning 
around dynamic patterns, based more on 
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experience than on rules (Ballester et al., 2008). 
Such patterns are scripts that embody in an 
efficient way knowledge of viable stereotyped 
event sequences. For example, it has been 
described in (Sicard et al., 2011) applied to a 
cheese biological ecosystem: the process is 
represented in the expert’s mind in the form of 
chronological standard change patterns and drift 
from standard trajectories that lead to defects on the 
cheese, like bad odours or bacterial contaminations. 
This mechanism of information aggregation allows 
the experts to anticipate the appropriate system 
state to intervene in, and, if needed, to correct early 
drift trajectories. The experts are thus able to 
manage a certain amount of complexity in an 
uncertain environment. In multiscale living 
biological global systems, patterns are organized in 
space and time (various land parcels and climatic 
conditions for example for agronomic problematics 
such wine, wheat crop..., various space and growth 
time for living ecosystems for example food, 
marine or gut ecosystems).  

Figure 1: An approach of human integrated in the 
computing loop. A first step is delivered by the 

expert from his symbolic knowledge and integrated 
by the computer side in the form of explicit links, 

graphs, rules,…A second step emerge from the 
iterative interaction between human and computer 
through a model exploration at different level after 

a computing step of calculus. 

One of the efficient coding mechanisms used by 
experts is the cognitive mechanism of ‘chunk’ 
recognition (Chase and Simon, 1973). A ‘chunk’ is 
a grouped set of clustered variables, closely related 
to each other, taken from a situation and associated 
to each other. Chunks are used to describe a part of 
a standard trajectory, directly linked to a particular 
state, which could require to be stabilized or 
corrected. These variables are acquired through the 
perceptions of experts. For example, winemakers 

anticipate the quality of their wine using mental 
chunks based on their perception of the quality of 
the soil of a parcel and its localisation, the way the 
grapevine has been conducted, etc. Nevertheless, 
chunks are not easy to handle as they are not 
usually in the form of explicit knowledge and 
sometimes refer to the subsymbolic level of the 
expert cognition. As a consequence, very often they 
are not exploited as functional knowledge to create 
computational models suitable for decision making. 
Some of the patterns can be explicit on a graph or 
in the form of rules. For the subsymbolic ones, our 
hypothesis is that it can emerge from the 
exploration of the result of a model if relevant 
computing tools and visualisation techniques are 
implemented for man-machine interactions.  

We propose a parallel between the approaches of 
computational cognitive (Sun, 2008)(Mc Clelland, 
2009) developed to model human cognition 
devoted to symbolic and sub-symbolic levels and 
the computing tools we develop to embed human in 
the computing loop. From this parallel, the idea is 
to build a tool able to deal with and integrate those 
different levels of human knowledge into the loop 
of modeling. Every simulation model is here a way 
to embed a part of the human knowledge on a 
biological system. The challenge of this paper is 
more precisely to present different studies were the 
use of computational models in this spirit is 
developed. It is based on human, machine learning, 
optimization and visualization. The purpose, more 
than a compilation of studies is to enhance our 
vision of “the human in the loop” through different 
experimentations. We thus focus on the knowledge 
available at the different level of human cognition. 
We observe symbolic and sub-symbolic levels and 
especially the mental patterns the experts have in 
mind. We exemplify this approach on a series of 
systems like in cheese ripening process, wheat 
culture management, wine odor prediction or 
bacteria freeze drying. Two axes are explored: food 
and biological systems exploration and food and 
biological properties 

The approach tested and experimented (figure 1) is 
an approach coupling (1) an algorithm enabling the 
effective description of the human symbolic 
knowledge in the form of rules, classes or links 
between variables or classes (step 1) ;(2) an 
approach of machine learning including a crucial 
optimisation step proposing different alternative of 
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representation (step 2) explored iteratively through 
a visual interface. The idea is to open from this 
iterative exploration process the door to the sub-
symbolic knowledge emergence. Two ingredients 
are important for that: the way we use optimisation 
and visualization techniques. 

OPTIMISATION AND EMERGENCE 
The idea of optimisation takes its roots in the 16th 
and 17th centuries notion of “modernity”, when 
philosophers where advertising the issue of 
becoming “owner and master” of nature (“Discours 
de la méthode” (Descartes,1637), in a mathematical 
framework (Galilée (Martin, 2002)). Thanks to 
modern computation capabilities, managing and 
predicting natural phenomena becomes more and 
more a reachable challenge. However optimality, in 
any domain, raises various fundamental  questions, 
in particular regarding the purpose of optimisation 
(are we able to address the appropriate issues with 
the help of modern computational tools?) and the 
methods (are we able to address the right issues 
with the right tools? ).  
A subsidiary question is also: Do we not believe 
too much in computation? Improvement may be 
another perspective, more appropriate, in particular 
for an interactive/iterative process of problem 
solving involving human knowledge. 
In this work, we revisit the use of stochastic 
optimisation heuristics and in particular 
Evolutionary Algorithms, exploited in an iterative 
and interactive context, to better address complex 
questions. Evolutionary Algorithms (EAs) are 
stochastic methods that copy, in a very abstract 
manner, the principles of natural evolution that let a 
population of individuals be progressively adapted 
to its environment (Goldberg, 1989). This 
progression results in an improvement of the fitting 
of the individuals to its environment, this can be 
exploited as an optimisation heuristic: an optimal 
adaptation is reached asymptotically. 
An EA considers populations of potential solutions 
exactly like a natural population of individuals that 
live, fight, and reproduce, but with a natural 
environment pressure replaced by an artificial 
optimization pressure. Reproduction consists of 
generating new individuals-solutions using the so-
called genetic operators that, by analogy with 
nature, are called mutation if they involve one 
individual, or crossover if they involve two parent 
solutions. A fitness function, computed for each 
individual, is used to drive the selection process, is 

thus improved, and ultimately optimized by the 
EA. 
In an interactive context, an improvement scheme 
seems adequate and enough, as the optimisation 
aim is often not fixed and varies with interactions 
with experts. Additionally, EA are convenient for 
building interactive schemes; there is actually a 
large interest of the community into interactive EA 
(IEA). Interactions with the optimi-
sation/improvement EA may take place at various 
levels (interactive evaluation of results, 
reformulation of optimisation function, 
modification of current solutions, interactive tuning 
of the parameters of the algorithm). 

VISUALIZATION TECHNIQUES 
Visualization is a field of computer science 
concerned with the creation and study of visual 
representations of data (Card et al., 1999). It makes 
use of our powerful visual cortex and wealth of 
experience to reach insights from data, amplified 
through human-computer interaction. For a 
visualization to be interactive, it needs to support 
human input to control some aspects of the visual 
display. Additionally, a good interaction response 
rate needs to be met to ensure real-time perception 
of task execution.  

Visualization can be a valuable asset in the context 
of modelling. For example, creating robust 
computational models necessitates tools to explore 
the behaviour of models and tune their underlying 
representations, but not only. From our experience 
visualization can empower modelling by bringing 
in:  

� human-computer interaction metho-
dologies that facilitate the study of the 
visible and hidden roles humans play in 
modelling (Lutton et al., 2016); 

� more intuitive representations of often 
complex multiscale models (Chabin et al., 
2017). These visualizations can facilitate 
collaboration between the various 
stakeholders involved in the modelling 
process (e.g. data owners, domain experts, 
modellers, decision makers); and 

� interactive tools to explore the behaviour 
of the constructed models, and ultimately 
allowing for enrichment and modification 
(Sacha et al., 2016). 
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EXPERIENCES OF HUMAN IN THE LOOP: 

Food and biological system exploration 

Explore to find a camembert-type cheese ripening 
viable trajectory. 

This experiment was led under the frame of a 
french ANR project (INCALIN) and a FP7 
European project (DREAM). The challenge was to 
work with the experts and a distributed high 
performance calculation structure to discover 
relevant viable trajectories of cheese ripening 
(Sicard et al., 2012). The viability study is achieved 
on a space dimension of 5: Two control variables: 
relative humidity and temperature of the ripening 
chamber; Three state variables: the cheese mass, 
cheese surface temperature and respiration rco2. 
The trajectories are considered relevant if the 
cheese are in a given target of sensory quality at the 
end of the process of ripening and if the ripening 
time is reduced. 
In a first step (see Step 1, figure 1) explicit 
knowledge is described by the experts in terms of a 
constraint set, a subset of the three dimensional 
state space: cheese mass, cheese surface 
temperature and respiration level (see article 
(Sicard et al., 2012)). It can be represented as a 
tube including all the values in which the state 
variables should stay at each time. The bound 
values stem from the experimental limits and the 
legal norms (viability tube represented figure 2).  

Figure 2: Viability tube of the ripening process of a 
camembert type cheese (upon Sicard et al., 2009). 

In a second step (Step 2, figure 1), 45 654 840 
simulations are performed on a computing cluster 
of calculus and a Pareto front of the results is 
explored visually by the experts. On the basis of 
this first exploration, new constraints are proposed, 
emerging from the visual exploration of the 
experts, and a new Pareto front is explored and 
iteratively, till a satisfying solution is found by the 
experts. 

This exploration applied to a cheese ripening 
process, has led us to find an original viable 
trajectory for the industry, satisfying the 
manufacturing constraints while maintaining the 
quality target for the ripening process. This 
trajectory has a 8-day ripening time, whereas the 
standard is 12 days. This trajectory was validated 
on a ripening pilot. The microbial equilibrium was 
preserved so as the cheese sensory properties (see 
figure 3). 

a

b
Figure 3: The cheese sensory evaluation after 

having tested the emergent trajectory following the 
exploration experiments: -a- in black: cheese 
sensory evaluation at the end of the ripening 

process for the classic trajectory (day 12); -b-in red: 
cheese sensory evaluation at the end of the ripening 

process for the classic trajectory (day 8). The 
cheese sensory characteristics for the two 

trajectories (classic and optimized) are almost the 
same. 

Explore to find sustainable strategies for wheat 
culture. 

We organised a Pareto front visual exploration 
session to help a domain expert investigate various 
fertilization strategies for wheat growth. Our expert 
had a research question pertaining to azote 
fertilisation strategies. In particular, she wanted to 
find strategies that work well regardless of the 
climate or the weather. To achieve this, in a first 
step we constructed a Pareto front from simulation 
files produced by the expert using an existing soil 
crop model called Azodyn (Jeuffroy et al., 1999). 
This model takes soil characteristics and predicts 
the consequences of azote (N) fertiliser 
management strategies, in terms of daily crop 
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growth, yield, grain protein content and N losses to 
the environment. The Pareto front was constructed 
by maximising yield, and both minimising loss and 
the final N dose. These objectives were selected by 
the experts, to help them answer their research 
question. In a second step, the exploration session 
was carried out iteratively using a large tactile 
display (figure 4) and an interactive visualization 
system coupled to an evolutionary algorithm 
(Cancino Tionca et al., 2012)(Boukhelifa et al., 
2017) (figure 5). 

Besides helping the expert answer their research 
question, the objectives of this workshop were 
three-fold: (a) to get feedback and evaluate our 
approach of interactive model exploration, (b) to 
collect data on expertise related to each application 
domain, and (c) to establish opportunities for 
automatic learning and user interaction leverage 
points. 

Figure 4: Model exploration session with a domain 
expert using interactive visualization. 

During this exploration session, the domain expert 
reported finding interesting fertilisation strategies 
that she did not investigate previously (thus new 
research questions). More interestingly, in 
collaboration with this domain expert, we were 
able to generate decision rules for the different 
fertilisation strategies that she explored. In the 
future, we plan to test these rules, by generating a 
new dataset based on the new findings, and re-
launching the simulation and exploration. We have 
also gathered a rich dataset on interactive model 
exploration (videos, notes and log files), which we 
plan to analyse.  

Figure 5: EvoGraphDice: The visualization tool we 
used for the exploration session. In this view the 

expert selected a view showing yield versus. Azote 
doze. The green selection corresponds to favorable 

fertilization strategies according to the ‘yield’ 
criteria.  

Food and Biological properties prediction 

Predict flavor of red wine 
In food science, sensory properties are important 
and not always easy to predict. For example the 
analysis of the aromatic component of food 
products is usually performed by separating, 
identifying and quantifying the molecules included 
in an extract. Such well-established procedure 
provides a list of key odorants but does not give 
any information about the perceptual influence of 
mixed compounds. This is a major problem for the 
prediction of the food overall sensory profile on the 
basis of its chemical content. To solve this issue, 
we developed an approach of “human in the loop”, 
applied to the prediction of the odor of 16 red 
wines (Roche et al., 2017). We worked with 
experts, sensory databases and computational tools 
coupling fuzzy logic and genetic algorithms for 
fuzzy model parameters optimization. This model 
queries analytical and sensory databases in order to 
predict the flavor profile (figure 6).  
In a first step (see Step 1, figure 1) explicit 
knowledge is initially described by a panel of 4 
experts (flavorists) in the form of rules. They were 
asked to describe in basic odor qualities 4 to 15 
sensory descriptors useful to characterize red wines 
but not specific to it (e.g. bell pepper, blackcurrant 
fresh, cherry cooked, cherry stone, strawberry 
fresh). Basic odor qualities are also linked to 
analytical data by the experts in the form of 
ontologies (A. Roche, N. Perrot, T. Thomas-
Danguin, “Odor perceptual space: From odorant 
descriptors to odor qualities”, in writing). 
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In a second step (see step 2, figure 1), a model is 
proposed linking all the knowledge in a model 
coupling ontologies, fuzzy reasoning to compute 
the rules proposed by the flavorits and a genetic 
algorithm performing an optimization of the fuzzy 
rules parameters using a data basis collected during 
experiments. It estimates the intensity of each 
sensory descriptor for a wine on the basis of its 
composition in terms of odor active compounds. 
After several iterations with experts, a final model 
is proposed to predict the wine sensory properties. 
Applied to a series of datasets on 16 red wines.  
The results of prediction are in good agreement 
with the actual values with the two projections on 
the first two principal components of a PCA, 
statistically significantly correlated (Monte-Carlo 
test p = 0.003). 

Figure 6: From analytical data to flavor perception 
of red wines: a question of human in the loop. 

Predict and discover knowledge of a multiscale 
involved process: a “theory building tool” applied 
to bacteria freeze drying  
In many real-world modelling case studies, the 
amount of data available is often not enough to 
apply fully automated tools such as black-box 
machine learning algorithms. At the same time, 
additional knowledge on the problem is usually 
available, in the form of implicit proficiency 
developed by experts of the domain. In such 
situations it is fundamental to allow human users to 
interact with the machine learning tools, and make 
their knowledge explicit. LIDEOGRAM (Life-
based Interactive DEvelopment Of GRAphical
Models) (Chabin et al., 2017) is a tool 
implementing this specific vision: The goal is to 
provide experts with a design tool for modelling 
complex system processes. In LIDEOGRAM, each 
non-input variable for a case study is modelled as a 
mathematical formula dependent on other variables 
in the problem. Interacting with a graphical 
representation of the system, users are involved in 
three steps: In a first step (see step 1, figure 1), sets 
of variables and classes grouping some or all the 
variables can be created, and a first graph of links 
between those variables and classes can be 

proposed. Starting from the relationships described 
by the user-defined graph, in a second step (see 
step 2, figure 1), a machine learning approach 
based multi-linear regression will propose 
mathematical formulas, each one a different trade-
off between complexity and fitting. This process 
ultimately creates a multi-scale model, where each 
part of the process is defined with respect to 
variables at a lower scale, following the 
dependencies given by the initial user-defined 
graph. In a final step, experts select mathematical 
formulas of their choice, iteratively, until a 
satisfactory result is reached. LIDEOGRAM has 
been successfully applied to a case study involving 
freeze-drying of bacteria, where a model developed 
interacting with a human expert was able to deliver 
better result than one obtained through a purely 
automatic approach (see Figure 7 for a screenshot 
of the interface used in the experiments).  

Figure 7: Screenshot of LIDeOGraM. The left side 
shows a graphical model representing the meanness 

of the local models obtained by symbolic multi-
linear regression. The top-right part is the list of 

equations proposed for the selected node, and the 
bottom-right part shows a plot of the measured 
versus predicted data associated to the selected 

equation.

Computational models such a LIDEOGRAM are 
useful tools for hypothesis generation: through 
simulations, users can explore unseen scenarios, 
and ultimately exploit the model as a theory-
building device (Sun, 2008). At the same time, this 
approach can be used to create new knowledge by 
summarizing information, in a process similar to 
chunking in cognitive models (Lucentini and 
Goodwin, 2015). While we advocate for the use of 
models to explore the implications of ideas, 
especially for assessing their sufficiency, 
optimality, and empirical adequacy, such 
explorations must nevertheless be carried out with 
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care. Reaching broad conclusions from the 
shortcomings of particular models, in particular, is 
difficult: Even if a modeler can show that a model 
fits all available data perfectly, the work still 
cannot tell us that it correctly captures the 
processes in the tasks that it addresses (Mc 
Clelland, 2009). 

CONCLUSIONS 
In this paper, an approach centered on human and 
human embedded in the computing loop is 
presented. It is based on human, machine learning, 
optimisation and visualisation. Different studies 
were the use of computational models interacting 
with human are presented. Those experimentations, 
show clearly the value added of such a paradigm 
and open a road for future research in food and 
biological modelling. 
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ABSTRACT 
 
There is significant progress and spread of use of non-
thermal processing applications in research and industry. 
United Nations (UN) has issued the 2030. Agenda for 
Sustainable Development (2015) with 17. Sustainable 
Development Objectives that should have impact to the 
development projects and future programs in the world. 
Regarding those objectives scientists and researchers are 
starting to use novel techniques in order to obtain valuable 
output products. Likewise, in food industry engineers and 
scientist are trying to develop processes and methods in 
order to assure food safety, have quality product and “save 
the planet” - to be sustainable. Therefore, one need to see 
the whole picture, from raw material, through process, 
product and waste by means of energy, economy and 
environment. 
 
 
INTRODUCTION 
 
Non-thermal processing techniques include: 
electrotechnologies, UV light, cold pressure (high pressure 
processing), hydrodynamic cavitation, ionizing radiation, 
ozonation, oscillating magnetic fields, pulsed light, 
supercritical and subcritical fluid processing, 
biopreservation, electrohydrodynamic processing and 
electron beam processing (Jambrak, Herceg, Šubarić et al., 
2010). 
Technologies such as high pressure, UV light, pulsed light, 
ozone, power ultrasound and cold plasma (advanced 
oxidation processes) have shown promising results for 
inactivation of microorganisms. The purpose of using non-
thermal technologies is to assure food safety using shorter 
processing time, lower energy uptake, lower carbon 
footprint and lower temperatures. The efficacy of 
inactivation of microorganisms is greatly enhanced by 
combination of conventional (thermal) with non-thermal, or 
non-thermal with another non-thermal technique. The key 
advantages offered by non-thermal processes in combination 

with sub lethal mild temperature (<60oC) can inactivate 
microorganisms synergistically (Jambrak and Herceg, 2014). 
 
MODELLING OF PROCESSES TOWARDS SAFETY, 
QUALITY AND SUSTAINABILITY  
 
In order to assure food safety mathematical modelling is an 
essential tool. More specifically, predictive microbiology 
focusses on the quantitative description of the microbial 
behavior in food products, for a given set of environmental 
conditions. Therefore, by combining experimental data, 
microbial knowledge and mathematical techniques, 
inactivation following non-thermal technologies can be 
accurately predicted and controlled. 
Predictive models can be classified in different ways: (i) 
black box (empirical) vs. white box (mechanistic) models, 
(ii) based on spatial scale (macroscopic- mesoscopic- 
microscopic models), (iii) based on data collection methods 
(e.g., viable plate counts, flow cytometry) and (iv) kinetic 
and probabilistic models. 
However, overall quality of food products (juices, nectars, 
milk etc.) can be deteriorated (Jambrak, Šimunek, Petrović 
et al., 2017). Aromatic profile and sensory characterisation 
of ultrasound treated cranberry juice and nectar. Ultrasonics 
Sonochemistry 38: 783-793.. The aim of this use of 
mathematical modelling is use quality index in evaluating 
effects of each non-thermal technology on quality 
characteristics of food material that is processed. For that 
purpose mathematical models for calculating a total quality 
index (TQI) can be introduced. Mathematical index of TQI 
in order to evaluate total quality can be calculated.  
 
Fruit juice example 
All parameters have to be transformed where the 
relationship between quality index and optimal values is 
considered as linear. Linearity is also only an assumption 
because it is difficult to demonstrate its existence, 
particularly around the limit values (Molnár, 1995).  
Parameters of the first kind for which there is a target value, 
i.e. the measured value of untreated juice . The following 
rule applies - the nearer to the target values the parameter 
is, the better the quality is, equation 1: 
 

    /1/ 
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Where: QI – quality index for a parameter; xi – measured 
value in the subset of values; T - target value; xmax – 
maximal value in the subset of values; xmin – minimal value 
in the subset of values. The following quality parameters 
can be included in this group (viscosity, conductivity, aroma 
profile, pH etc.).  
Parameters of the second kind have the following rule: the 
smaller the value is, the better the quality is. For this type of 
parameters, QI is calculated based on equation 2: 
 

   /2/ 

 
Where: 
QI – quality index for a specific quality parameter; xi – 
measured value in the subset of values; xmax – maximal 
value in the subset of values. Two aroma profile parameters 
can be included in this group (ester group, aldehyde group 
i.e).  
 
Parameters of the third kind have the following rule: The 
higher its value, the better the quality is. For this type of 
parameters, QI is calculated based on equation 3: 
 

; xi ≤ xmax  /3/ 

 
Where: 
QI – quality index for a specific quality parameter; xi – 
measured value in the subset of values; xmax – maximal 
value in the subset of values. Antioxidant potential 
parameter can be included in this group. 
We can assume a new Euclidean space RN (N is the number 
of quality parameters) where all quality indexes are 
considered as vectors QI = (QI1, QI2, . . . , QIN) RN (Horn 
and Johnson, 1985). Upon calculation of all QIs, the 
Euclidean norm of the vector, whose components are the 
indexes QIN, will represent the total quality index (TQI) 
equation (4) (Finotti et al., 2007). Optimal values for all 
three types of indexes are “0”.  

      /4/ 

 
As a conclusion, the “rule of thumb” is that the farther from 
the origin the vector, the worse is its “TQI” and the nearer 
the origin the vector, the better is its “TQI” (Finotti et al., 
2007).  
 
Model 1 – Normalized index 
Every component of the vector represents the normalized 
distance of the parameters from its optimal or target value 
(Finotti et al., 2007). Depending on the values, for equation 
(1) it is theoretically possible to have values QI ≥ 1, bearing 
in mind that the higher the QI is, the worse is its quality. 
Therefore in some occasions it is recommended to 
normalize the index meaning that when QI ≥ 1 we 
normalize it by assigning the value QI=1.  
 
Total quality index - Model 2  

Molnar proposed a slightly different approach assuming 
normalized values between 0 and 1, with 0 representing the 
worst and 1 the best food quality (Molnár, 1995). The 
transformation equation QI = f(xi) needs to fulfil the 
requirement that the maximum measured value is ascribed 
to 1, and the minimum value to 0 in the case of desirable 
attribute, and vice versa for undesirable attribute (Curic et 
al., 2008).  
For the purpose of this paper, the following equation was 
used: 

  /5/ 

Where: 
QI – quality index for a specific quality parameter; xi – 
measured value in the subset of values; xmax – maximal 
value in the subset of values, xmin – minimal value in the 
subset of values. T – target value - values from i.e. untreated 
juice. 
Total quality index was calculated as a sum of normalized 
quality indexes relative to the ideal quality of a product 
(untreated juices), equation 6: 

     /6/ 
 
Several properties of main quality characteristics of juices, 
beverages, liquid foods and nectars are sensory properties, 
rheological properties, ºBrix, acidity, color etc.. The 
complexity of food matrix like juices/nectars in relation to 
various non-thermal treatments (with the purpose of 
assuring food safety) and quality parameters becomes a 
challenge for researchers to develop (mathematical) models 
and analyze data in terms of a quality score.  
 
Quality function deployment (QFD) is another innovative 
quality tool introduced in Japan in the 60s. It was defined as 
a ‘‘method for developing a design quality aimed at 
satisfying the customer and then translating the customer’s 
demands into design targets and major quality assurance 
points to be used throughout the production phase’’. Its 
customer centricity to product/process innovation 
emphasizes its benefit. But even if we assure food safety and 
preserve food quality we need to take care to have low 
carbon food print of non-thermal process comparing to 
traditional one, and to have “zero waste” or to re-use it. 
 
Life Cycle Assessment is the main methodology applied to 
assess the environmental impact of products and it has been 
increasingly applied to products of the agri-food. It is a 
scientific method that includes the following steps outlined 
in ISO 14040: mapping the process, setting the scope and 
boundaries, collecting data, calculating, evaluating and 
interpreting the results with the aim to propose 
environmental improvements. The LCA, simplified LCA or 
non-LCA models have the objectives to quantify the 
environmental performances in the whole food product 
chain. Regarding the approach three main types occur: 
LCA, variations of LCA and non-LCA models. Depending 
on the model, the following criteria apply: (i) if the model is 
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generic or specific for food industry; (ii) if it is user 
friendly/or not; (iii) if it is free/payable; (iv) if it is focused 
on one environmental impact or several; (v) besides 
environment, if it focuses on some other sustainability 
dimension (economic, social) (vi) if it requires specific 
environmental knowledge, etc. LCA has great potential for 
driving the development of products and processes. Through 
LCA novel processing can be compared with existing 
commercial alternatives and environmental hotspots can be 
also identified.  
For non-thermal technologies, when they are evaluated from 
an environmental point of view there are many difficulties 
like lack of real data for the inventory phase (lab scale 
information or theoretical data) and the definition of the 
novel foods, since new products or processes might have 
unique properties. Therefore, there is need for an approach 
for the environmental analysis of non-thermal food 
technologies. Through evaluating environmental impacts 
through LCA of some traditional and novel food 
preservation technologies, we can contribute to the 
development of more sustainable food products. Some 
general improvements can be defined towards 
environmental issues in order to select the more adequate 
preservation method when designing new food products. 
 
CONCLUSION 
 
By performing modelling and optimization of non-thermal 
processing and subsequent sustainability evaluation 
approach (life cycle assessment) it will be feasible that this 
approach allows minimization of environmental impact as 
well as significant reduction of energetic needs. The whole 
picture needs to be looked from fundamental approach 
(basic interdisciplinary science), raw materials, through 
processes and technologies, and then to final product taking 
care of waste (by-product) and management for its re-usage. 
Usage of non-thermal processing and their combination 
(synergy) will ultimately focus of reduction of waste and 
energy necessities while producing high quality products 
with minimal environmental and naturally social impact. 
Scientists need to assure e3 (ecologic, economic and 
environmentally friendly) non-thermal process in order to 
assure safety, quality, and sustainability.  
 
REFERENCES 
 
Curic D, Novotni D, Skevin D, et al. (2008) Design of a quality 

index for the objective evaluation of bread quality: Application 
to wheat breads using selected bake off technology for bread 
making. Food Research International 41(7): 714-719. 

Finotti E, Bersani AM and Bersani E. (2007) Total quality indexes 
for extra-virgin olive oils. Journal of Food Quality 30(6): 911-
931. 

Horn RA and Johnson CR. (1985) Matrix Analysis Cambridge 
University Press. New York. 

Jambrak AR and Herceg Z. (2014) Application of Ultrasonics in 
Food Preservation and Processing. Conventional and Advanced 
Food Processing Technologies. John Wiley & Sons, Ltd, 515-
536. 

Jambrak AR, Herceg Z, Šubarić D, et al. (2010) Ultrasound effect 
on physical properties of corn starch. Carbohydrate Polymers 
79(1): 91-100. 

Jambrak AR, Šimunek M, Petrović M, et al. (2017) Aromatic 
profile and sensory characterisation of ultrasound treated 
cranberry juice and nectar. Ultrasonics Sonochemistry 38: 783-
793. 

Molnár PJ. (1995) A model for overall description of food quality. 
Food Quality and Preference 6(3): 185-190. 

 
BIOGRAPHY 
 
ANET REŽEK JAMBRAK, Associate professor, was born 
on 26 December 1980. in Zagreb. She graduated from the 
Faculty of Food Technology and Biotechnology of the 
University of Zagreb in 2002. and in year 2008. she 
defended her doctoral dissertation (thesis) titled "Influence 
of Ultrasound on Physical and Functional Properties of 
Whey Proteins". According to the decisions of the 
Biomedical Sciences Committee, she was titled Scientific 
Research Officer on 18 January 2011, and in the position of 
Scientific Advisor (permanent title) on 24.11.2017. She 
became Associate professor in 2013 at the same Faculty. 
She also has strong international collaboration with 
renowned scientists. She was trained abroad in 2005. at the 
Faculty of Health and Life Sciences at Coventry University, 
UK through the scholarship "British scholarship trust" and 
in 2009. at the University of Avignon, France, as a invited 
lecturer and researcher in the field of "green" ultrasound 
and microwave extractions. In the period from 2007. Anet 
Režek Jambrak has published over 80 significant scientific 
papers, published in top scientific journals with high impact 
factors (citation more than 1100, h-index 18). She is also a 
co-author of 10 chapters in scientific books, most of which 
are renowned world publishers Elsevier, Springer, Wiley-
Blackwell and Nova Science Publisher. She is the winner of 
many awards and acknowledgments, most notably the 2016. 
Young Scientist Award from the International Union of 
Food Science and Technology (IUFOST). In 2011. she 
received award for Young Scientist “Vera Johanides” from 
Croatian Academy of Engineering and 2009. State Prize for 
Science for Young Scientists awarded by the Parliament of 
the Republic of Croatia and the Government of the Republic 
of Croatia. Since 2016. she is a member of the International 
Academy of Food Science and Technology (IAFoST) - Early 
Career Scientist. 
 

21



22



Tutorial 
and 

Workshop 
Presentations 

23



24



Sustainability in food industry:
Towards a unified multi-objective decision making framework

Philippe Nimmegeers, Satyajeet Bhonsale, Carlos André Muñoz López, Ihab Hashem, Jan Van Impe
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ABSTRACT

The growth of world population, the associated soci-
etal challenges and regulations push the food industry
to become more sustainable. Improvements are required
on multiple aspects: sustainable use of resources, lim-
iting environmental impact and competitiveness, while
ensuring safe process operation, food quality and food
safety. Existing food manufacturing sytstems are mainly
designed to maximize the production without keeping
other aspects of sustainability in mind. Model-based
optimization techniques accounting for sustainability in-
dicators can be used to improve the in these aspects.
In addition, many sustainability measures exist related
to one or more of the three sustainability pillars (soci-
ety, environmental and economic). These sustainabil-
ity measures are often conflicting, as optimizing one of
these measures often worsens the performance of an-
other measure. Hence, achieving sustainable opera-
tion can therefore be seen as a multi-objective problem.
Many advanced techniques have been developed in dif-
ferent fields, but these do not find their way to food in-
dustry. Furthermore, a generic, standardized approach
is missing. Therefore, there is a need for a unified frame-
work that can be used for sustainable design, operation
optimization and decision making in food industry. In
this article, the current state of the art with respect
to sustainability in food industry and multi-objective
optimization are presented. In addition, software tools
developed at KU Leuven/BioTeC+ are introduced in
the frame of enabling a sustainable food process design
and operation. To conclude a strategy for developing
a multi-objective decision making framework has been
proposed.

INTRODUCTION

In 2015, the world population reached 7.3 billion and
predictions of the United Nations state that the world
population will reach 9.7 billion and 11.2 billion by 2050

and 2100 respectively according to the United Nations’
report on the world population prospects (2015). Con-
sequently, food demand will increase as it is expected
that prosperity and healthcare will do the same. As a
limited amount of natural resources is available, an effi-
cient and complete use is required. Hence, a sustainable
food industry is of utmost importance Zisopoulos et al.
(2017).
It has been proven that dynamic optimization and com-
puter aided process engineering (CAPE) can improve
food production and processing Banga et al. (2003).
During design and operation of (bio)chemical plants,
optimal decisions have to be taken considering multiple
and often conflicting sustainability objectives (e.g., max-
imizing production while minimizing greenhouse gases
emissions).
Several mathematically equivalent trade-off solutions
exist for these multiobjective optimization problems.
The systematic generation and efficient presentation
of these optimal alternatives to decision makers be-
comes a key step in the optimal design and operation
of (bio)chemical/food (processing) plants. Hence, deci-
sions have to be made in an efficient and well informed
manner as (i) the economic profitability has to be en-
hanced; (ii) socio-environmental impacts must be com-
puted, reduced and reported and (iii) trade-offs between
risk and process performance, originating from model
uncertainties, have to be accounted for Azapagic and
Clift (1999).
Major challenges for computer-aided decision making
(CADM) in the design and operation of food processes
in view of sustainability are:

1. Inclusion of socio-environmental sustainability ob-
jectives. Up till now mainly economic return is con-
sidered in model-based process design and opera-
tion. A systematic inclusion of socio-environmental
indicators, resulting in a MOO frame, is thus desir-
able.

2. Availability of interactive methods and software
tools. To support DMs, a user-friendly tool combin-
ing efficient solvers for MOO problems with interac-
tive visualization methods is required. The tool has
to be compatible with widely spread CAPE tools.
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3. Validation for industrial applications. To convince
industry, the methods and tools have to be vali-
dated on a challenging industry relevant case study,
which preferably exhibits complex characteristics
such as a large scale, nonlinear and dynamic model.

Research on these aspects will spread the use of sustain-
ability indicators in computer aided decision making in
food industry and enable to systematically quantify and
assess the trade-offs among these sustainability indica-
tors.
In the next section, the current state of the art is dis-
cussed with respect to sustainability in food industry.
The third section covers the concept of multi-objective
optimization. Subsequently, multi-objective optimiza-
tion tools developed at KU Leuven/BioTeC+ are pre-
sented in the frame of enabling a sustainable food pro-
cess design and operation. To conclude a strategy for
developing a multi-objective framework is proposed.

SUSTAINABILITY IN FOOD INDUSTRY

The assessment of sustainability in food industry has
gained interest throughout the last decade. Examples
of efforts that have recently been taken in food indus-
try are summaried in this section. Two main streams
can be considered. On the one hand, exergy analysis is
a valuable tool to draft Sankey or Grassmann diagrams
and identify parts of the studied process in which energy
is wasted. On the other hand life cycle assessment tech-
niques are popular to assess the environmental impacts
of a studied food process.
Zisopoulos et al. (2017) have reviewed exergy analysis
and exergy indicators as a tool to assess sustainability
in food industry and identify opportunities to avoid the
production of waste streams, or reusing waste streams
along the whole food chain. However, currently used
approaches lack clarity and care should also be taken
with respect to nutrition aspects. Therefore, Zisopoulos
et al., (2017) stress the need for a systematic framework
for exergy analysis in food industry.
Pardo and Zufa (2012) studied the environmental im-
pacts of four thermal and non-thermal food preservation
techniques (autoclave pasteurization, microwaves, high
hydrostatic pressure and modified atmosphere packag-
ing) through life cycle assessment wih SimaPro using
the ReCiPe methodology Goedkoop et al. (2009; 2013).
In Do et al. (2014) a decision support framework for
selecting thermal process technologies in the food in-
dustry has been developed by combining a rule-based
technique and a fuzzy analytic hierarchy process. The
selection comprises two steps and results in the rank-
ing of potential technologies for a particular product.
This decision support aims at helping in the selection
of thermal process technologies at an early development
phase.
Tran et al. (2017) recently presented an optimized

integer-programming mathematical model by applying
an integrated environmental indicator for selecting alter-
natives in cleaner production programs, based on goal
programming. This model has been validated with a
cassava starch factory.
These examples indicate that different strategies are
used for assessing the sustainability of food manufac-
turing processes. Furthermore, different different sus-
tainability measures can be used. In the next section a
multi-objective optimization formulation is presented to
cover different indicators in making decisions regarding
the design or operation of food manufacturing processes.

MULTI-OBJECTIVE OPTIMIZATION

In multiobjective optimization (MOO) two or more,
typically conflicting, objectives are simultaneously opti-
mized (e.g., maximizing productivity while minimizing
energy losses). A multi-objective optimization problem
could be written as follows:

min
u∈Rnu

[J1(x,u), . . . , Jn(x,u)] (1a)

subject to:

0 = f(x,u) (1b)

0 ≥ g(x,u) (1c)

with J = [J1, . . . , Jn] ∈ Rn the set of objective func-
tions defined by (independent) optimization variables
u ∈ Rnu and states x ∈ Rnx , with f ∈ Rnx denoting the
right hand side of the model equations and g denoting
the nc equality and inequality constraints.
The solution of such a multi-objective optimization
problem is a Pareto front, showing the optimal trade-off
solutions. These trade-off solutions indicate that there
cannot be improved with respect to one objective, with-
out worsening with respect to another objective.
The feasible space Ω of the optimization problem is de-
fined as the set of states and optimization variables
which satisfy all the constraints and bounds set in Equa-
tions (1b) and (1c) Vallerio et al. (2015).
Different approaches to solve multi-objective optimiza-
tion problems and constructing a Pareto front are sum-
marized in Logist et al. (2010):
Numerous applications exist with respect to multi-
objective optimization in food industry. War (2016)
presented a survey on solving optimization problems in
food manufacturing industry.
Validi et al. (2014) presented a multi-objective optimiza-
tion approach minimizing CO2 emissions from trans-
portation and total costs in the distribution chain for
a two layer supply chain in the distribution of milk in
Ireland using NSGA-II.
In Send́ın et al. (2010) an efficient and robust multi-
objective optimization technique has been presented and
applied to the thermal sterilization of canned tuna fish
and pork puree.
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TOOLS DEVELOPED AT KU LEU-
VEN/BIOTEC+

At KU Leuven/BioTeC+multi-objective optimization is
one of the key research topics. This research has resulted
in the development of two toolkits which can be applied
to food manufacturing processes: Pomodoro Bhonsale
et al. (2016) and INPROP Muñoz López et al. (2018).
If a mathematical model equations and parameters are
known for a studied food manufacturing process, the
inhouse developed software toolkit Pomodoro could be
used. Pomodoro is a Python-based toolkit which can
be used to solve dynamic optimization problems using
state of the art discretization schemes with orthogonal
collocationa s default. The user needs to specify the
process model, objective functions and any applicable
constraints and Pomodoro discretizes the problem and
solves it. Furthermore, Pomodoro contains a multiob-
jective toolkit which contains state of the art gradient-
based multiobjective optimization algorithms and a
ParetoBrowser Vallerio et al. (2015) that can be used
for the visualization. Pomodoro uses casADiAndersson
(2013) to compute exact Hessians and Jacobians and
passes it to IPOPT Wächter and Biegler (2006) which
solves the optimization problem.
INPROP Muñoz López et al. (2018) is a free Matlab-
based INterface for PROcess OPtimization that pro-
vides a platform to apply gradient-based multiobjec-
tive optimization of processes simulated in Aspen Plus.
Starting from the process implemented in the equa-
tion oriented mode of Aspen Plus, INPROP uses Ac-
tivex(.COM) protocols to link the simulation backup
file (*.bkp) and the Open Object Model Framework
(OOMF) to transfer the required model information to
the optimization framework in Matlab. The user needs
to specify the location of the simulation files, define the
subset of dependent and independent variables that are
required for the formulation of the objective functions
and constraints and define these functions. INPROP
uses vectorization methods, Normal Boundary Intersec-
tion (NBI) and Normalized normal constraint (NNC) to
reformulate the multiobjective problem and to allow the
use of NLP solvers. INPROP transfers the models gra-
dient information from the equation oriented engine of
Aspen Plus and uses Casadi to analytically determine
Jacobians and approximate the Hessians to finally pass
them to IPOPT (which solves the optimization prob-
lem). This approach allows using INPROP to efficiently
optimize the process regarding diverse objectives (e.g.
exergy, economics, LCA, logistics).

A FRAMEWORK FOR MULTI-CRITERIA
DECISION MAKING IN FOOD INDUSTRY

The problem of enabling a uniform strategy for sustain-
able interactive decision making in the food industry
could be addressed by developing a user-friendly (soft-

ware) platform which integrates methods and tools to
improve process sustainability.

Firstly, a set of standardized tools could be developed to
aid decision makers (DMs) in quantifying and compar-
ing sustainability indicators in process design and oper-
ation. With respect to this multi-objective optimization
allows to trade off incommensurable quantities without
using aggregate objectives (i.e., Cost-Benefit Analysis
(CBA) Pearce et al. (1989)), a step often used in Life
Cycle Assessment (LCA) leading to subjective and sub-
optimal solutions Azapagic and Clift (1999). This in-
volves the inclusion of widespread indicators (e.g., car-
bon footprint Wright et al. (2011)) and less used ones
(e.g., exergy efficiency Rosen and Dincer (2001)).

Secondly, efficient numerical methods are required for
the solution of MOO problems, enabling real time in-
teractive decision-making. This should allow DMs to
solve and interpret complex decision problems by in-
teractive exploration of multidimensional Pareto sets.
The graphical representation of Pareto sets poses sig-
nificant cognitive hurdles for DMs, especially if high-
dimensional Pareto sets are involved. The efficient visu-
alization of high-dimensional data is a problem encoun-
tered in many different fields and applications (e.g., data
representation and exploration). Minimization of risk
due to model uncertainties should also be considered in
the MOO framework, leading to trade-offs with process
performance.

Once the numerical tools are developed, an interface for
computer aided decision making tool would be a next
step. Such a computer aided decision tool allows to
make trade-offs in a practical setting as for instance the
tradeoff between between production and energy recov-
ery. This tool should be developed in collaboration with
stakeholders in food industry to match the features of
the decision making tool with the practical DM’s needs.

CONCLUSIONS

The aim of this article was to highlight the impor-
tance of model-based multi-objective optimization in the
frame of achieving a more sustainable food industry. An
overview of the current state of the art with respect to
sustainability in food industry and multi-objective op-
timization have been presented. Furthermore, two soft-
ware tools, Pomodoro and INPROP both developed at
KU Leuven/BioTeC+, are introduced in the frame of
enabling a sustainable food process design and opera-
tion. Finally a strategy for the development of a multi-
criteria decision making framework has been proposed.
The work required to converge to such framework re-
quires the involvement of different stakeholders in food
industry.
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Abstract

The aim of this tutorial is to introduce the tool Po-
modoro which has been developed to solve (multiob-
jective) dynamic optimization arising in various fields.
We aim to present the user-friendliness of Pomodoro
through case studies relevant to the food and brew-
ing sector. The optimal experiment design of fed-batch
bioreactor for production of baker’s yeast is considered
as the tutorial case study.

INTRODUCTION

Optimal control or dynamic optimization, which deals
with calculation of time varying trajectories which opti-
mize a given objective for a system of differential equa-
tions, has found a variety of applications in a number
of engineering disciplines. Applications of off-line opti-
mal control in the (bio)-chemical industry vary ranging
from calculation of optimal feeding profiles of fed-batch
bioreactors (e.g., Liu et al. 2013), optimal operation pro-
files for batch reactors (e.g Benavides and Diwekar 2012)
to parameter estimation and optimal experiment design
(e.g., Telen et al. 2014).

Pomodoro is a toolkit based on CasADi (Andersson
2013). Pomodro equipped to handle not only single
objective dynamic optimization problems, but also
multiobjective, and model predictive control and model
based estimation problems. In this tutorial we will
focus on the single objective case and the multiobjec-
tive Pareto Browser will not be considered. Pomodoro

provides an efficient framework for researchers and
engineers without a background in optimal control
to implement their case studies in a straightfor-
ward symbolic way. The toolkit can be obtained from
https://cit.kuleuven.be/biotec/software/pomodoro

Mathematical background and methods

This section serves to give a brief mathematical overview
of the problem classes which can be solved using

Pomodoro along with the various techniques which can
be used to solve them.

Dynamic Optimization

Formulation

The optimal control or dynamic optimization problem
(OCP) is described as

minimize
x(·),u(·),p

J =

∫ ξf

ξ0

L(x(ξ),u(ξ),p)dξ +M(x(ξf ),p)

(1a)

subject to 0 = f (ẋ(ξ),x(ξ),u(ξ),p, ξ) ; ξ ∈ [ξ0, ξf]
(1b)

0 = bi(x(0),p) (1c)

0 ≥ cp(x(ξ),u(ξ),p, ξ) (1d)

0 ≥ ct(x(ξf),u(ξf),p, ξf) (1e)

where x represents the state variables, u the control
variables, and p the fixed parameters. The process dy-
namics are defined by a set dynamic equations f over the
interval of the independent variable ξ ∈ [ξ0, ξf]. It has to
be noted that although the optimal control solution is
obtained over the interval of the independent variable,
the final value (ξf) may also be an optimization variable,
e.g., final time in batch operation. The initial conditions
of the system are contained in the equality constraints
of Eq. 1c, while the Eq. 1d-1e represent the path and
terminal constraints acting on the system. The objec-
tive functional can consist of both the Lagrange term L
and the Mayer term M. It is assumed throughout this
paper that all the functions are twice differentiable.

Numerical solution

The most common approach to solve the OCP is the di-
rect approach which converts the optimal control prob-
lem into an nonlinear program (NLP), which is then
solved using appropriate algorithms. The proposed soft-
ware utilizes the orthogonal collocation of Biegler (2007).
There exist other direct methods like the single shoot-
ing and multiple shooting which make use of numerical
integrators to solve the ODE systems. Orthogonal collo-
cation, on the other hand, fully discretizes the state and
control variables which act as the optimization variables
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in the NLP. Due to the large size of the NLP obtained by
such discretization, dedicated optimization algorithms
which exploit the structure of the system efficiently are
required.

Software framework

In this section the design details of the software
Pomodoro are discussed. The entire software consists
of three main blocks which interact with each other and
with CasADi to generate the solution. These blocks are
Pomodoro itself, Pareto Browser, and SolACE. In this
tutorial we will focus on Pomodoro.

Pomodoro

Figure 1: Outline of Pomodoro.Pomodoro utilizes CasADi
to formulate the dynamic optimization problems. The
discretization routines for controls and states inherit
from the class Expression which allows the user to im-

pose constraints on individual collocation points.

The basic structure of Pomodoro is outlined in Figure
1. The entire Pomodoro tool is written in Python which
also acts as the interface of the software. The problem
specifications are input by the user in the Python sym-
bolically. Pomodoro then contains the routines which
convert these symbolic equations into an NLP. Following
the orthogonal collocation strategy, the state variables
are discretized by third order polynomials using Radau
collocation points (in the class LagrangeStates), while
the control variables are discretized as piecewise con-
stant(in the class PiecewiseConstant). These classes
inherit properties from their base class Expression.
Expression allows the user to get and pass information
on any individual collocation (or discretization) point,
or at any time instance. This is a major advantage as
now a constraint can be imposed easily at any time in-
stance in the problem. This is helpful especially during
parameter estimation problems when equidistant sam-
pling times are not possible.
The class Problem acts like a buffer to collect all the

information about the (discretized) states and controls,
system ODEs, objective functions, and constraints. The
problem is then passed to the Solver class which initial-
izes the NLP solver, and on command the solve prob-
lem. The default solver is set to be IPOPT (Wächter
and Biegler 2006), although other solvers like CasADi’s
inbuilt SQP solver can also be used. It is, however eas-
ily possible to extend this class to include other solvers
available commercially or as open source. CasADi pro-
vides the solver with exact jacobian and hessian infor-
mation by efficiently exploiting the automatic differen-
tiation techniques. The solution of the NLP is passed
back to the class Problem through the Expression rou-
tine, which makes the numerical solution at any individ-
ual collocation point available.

Case Study

The case study in consideration is the optimal exper-
iment design (OED) of a fed-batch fermentation of
baker’s yeast (Barz et al. 2010). The goal of OED is to
design excitation such that maximum information can
be obtained out of the experiment. For further details
on OED the reader is referred to Telen et al. (2014).
In this example, the aim of the experiment is to obtain
data for parameter estimation. The fed batch bioreac-
tor system is modeled by a dynamic system with Contois
kinetics as follows:

dx1

dt
= (r − p2 − u1)x1 (2)

dx2

dt
= −rx1

p1
+ u1(u2 − x2) (3)

r =
θ1x2

θ2x1 + x2
(4)

Here, x1 and x2 denote the biomass and subsrate con-
centrations in g/L. The parameters to be estimated are
[θ1, θ2]. The nominal values used in computation are
θ∗ = [0.30, 0.03]. The other parameters are assumed to
be known as p = [0.55, 0.03]. The initial substrate con-
centration is fixed at 0.01 g/L and the initial biomass
concentration is obtained as a result of the optimization.
The objective function used is the A criterion which con-
siders minimization of the trace of inverse of the Fisher
Information Matrix .

J = min [trace (F−1)] (5)

Figure 2 shows the result of the optimization. The con-
trol profiles obtained lead to the maximum information
content as defined by the A-criterion.

During the tutorial, the OED problem will be formu-
lated and solved using Pomodoro. We will go through
the case step by step and show details of implementa-
tion.
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(a) State trajectories for the OED problem. x1 is the biomass and
x2 is the substrate concentration. The time is given in hours.

(b) Control trajectories for the OED problem. u1 is the dilution
and u2 is the substrate concentration in the feed. Time is given in
hours.

Figure 2: OED results yielding the maximum information content. Pomodoro

Conclusions

The software toolkit Pomodoro for optimal control was
discussed and used to solve an relevant case study. In
the presentation, the audience will be shown step by
step implementation of the case study.
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Code listing for the OED problem

1 import time
2 import numpy as NP
3 #import pomodoro
4 from pomodoro . problem . problem import Problem
5 from pomodoro . s o l v e r . s o l v e r 2 import So lver2
6 from pomodoro . d i s c s . exp r e s s i on import

Express ion
7 from casad i import ∗
8 t = time . time ( )
9 prob = Problem ( )

10 p1 = 0 . 5 5 ; p2 = 0.03
11 lb = [0 . 0 , 0 . 0 , −1 . 0 e7 ,−1.0 e7 ,−1.0 e7 ,−1.0 e7 ,−1.0

e7 ,−1.0 e7 ,−1.0 e7 ]
12 ub = [ 2 5 . 0 , 2 5 . 0 , 1 . 0 e07 , 1 . 0 e07 , 1 . 0 e07 , 1 . 0 e07 , 1 . 0

e07 , 1 . 0 e07 , 1 . 0 e7 ]
13 tend = prob . setTimeRange ( 0 . 0 , 3 0 . 0 )
14 x = prob . addStates (9 , lb , ub , method=[ ’

LagrangeStates ’ , 1 0 ] )
15 x . load ( ’OED BY state ’ )
16 u = prob . addControls ( 2 , [ 0 . 0 5 , 5 . 0 ] , [ 0 . 2 0 , 3 5 . 0 ] ,

method=[ ’ PiecewiseConstant ’ , 1 0 ] )
17 x0 = prob . addParameters ( 1 , 1 . 0 , 1 0 . 0 , 2 . 0 )
18 t = prob . addFixedParameters ( 2 , [ 0 . 3 , 0 . 0 3 ] )
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19 u . load ( ’OED BY control ’ )
20 x1 = x [ 0 ] ; x2 = x [ 1 ] ; dx1dt1 = x [ 2 ]
21 dx1dt2 = x [ 3 ] ; dx2dt1 = x [ 4 ] ; dx2dt2 = x [ 5 ]
22 F11 = x [ 6 ] ; F12 = x [ 7 ] ; F22 = x [ 8 ]
23 t1 = t [ 0 ] ; t2 = t [ 1 ]
24 rhs = Express ion (SX. z e r o s (9 ) )
25 r = ( t1 ∗x2 ) /( t2 ∗x1 + x2 )
26 drdt1 = x2 /( t2 ∗x1 + x2 ) + t1 ∗ ( ( dx2dt1 ∗( t2 ∗x1 +

x1 ) − x2 ∗( t2 ∗dx1dt1 + dx2dt1 ) ) / ( ( t2 ∗x1 + x2
) ∗( t2 ∗x1 + x2 ) ) )

27 drdt2 = ( t1 ∗dx2dt2 ∗( t2 ∗x1 + x2 ) − t1 ∗x2 ∗( x1 +
t2 ∗dx1dt2 + dx2dt2 ) ) / ( ( t2 ∗x1 + x2 ) ∗( t2 ∗x1 +
x2 ) )

28 rhs [ 0 ] = ( r − p2 − u [ 0 ] ) ∗x1
29 rhs [ 1 ] = (−1/p1 ) ∗ r ∗x1 + u [ 0 ] ∗ ( u [ 1 ] − x2 )
30 rhs [ 2 ] = x1∗drdt1 + r ∗dx1dt1 − p2∗dx1dt1 − u

[ 0 ] ∗ dx1dt1
31 rhs [ 3 ] = x1∗drdt2 + r ∗dx1dt2 − p2∗dx1dt2 − u

[ 0 ] ∗ dx1dt1
32 rhs [ 4 ] = (−1/p1 ) ∗( r ∗dx1dt1 + x1∗drdt1 ) − u [ 0 ] ∗

dx2dt1
33 rhs [ 5 ] = (−1/p1 ) ∗( r ∗dx1dt2 + x1∗drdt2 ) − u [ 0 ] ∗

dx2dt2
34 rhs [ 6 ] = dx1dt1∗dx1dt1 + dx2dt1∗dx2dt1
35 rhs [ 7 ] = dx1dt1∗dx1dt2 + dx2dt1∗dx2dt2
36 rhs [ 8 ] = dx1dt2∗dx1dt2 + dx2dt2∗dx2dt2
37 prob . addOde(x , rhs )
38 prob . addConstra ints ( x1 (0 ) − x0 , 0 . 0 )
39 prob . addConstra ints ( x2 (0 ) , 0 . 0 1 )
40 prob . addConstra ints ( x [ 2 : ] ( 0 ) , 0 . 0 )
41 Acr i t = (F11(−1) + F22(−1) ) /(F11(−1)∗F22(−1) −

F12(−1)∗F12(−1) )
42 prob . addObject ive ( Acr i t )
43 s o l v e r = So lver2 ( prob , p r i n t l e v e l =5,max i ter

=10000)
44 s o l v e r . s o l v e ( )
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ABSTRACT
Molecular mechanisms play a key role, both at a 
fundamental and processing level, in innovative taste 
systems, functional and nutritional ingredients, and 
integrated solutions for the food, beverage and 
pharmaceutical markets. Incorporating an under-standing of 
such mechanisms into data coming from experiment and 
consumer preferences can provide greater insight to, and 
control of the relevant processes at play. This work will 
touch on several examples where advanced simulation at a 
molecular, meso- and multi-scale level can shed light into 
the mechanisms at play. 

INTRODUCTION

From a field of wheat or a herd of cows, the industry 
research laboratory or the processing plant, to the kitchen 
the mouth, and digestion, the complexity and centrality of 
food to life is second only to life itself.  Food manufacturers 
are faced by six key challenges, their products must be:  
tasty, healthy, safe, affordable, have consumer appeal, and 
be sustainable. Each of these demands poses significant 
scientific challenges ranging from:  

(a) Quantum effects such as the creation and breakage 
of covalent bonds entailed in the hydrolysis of 
sugars, fats and proteins; and,  

(b) Classical effects occurring at nanometer length 
scales such as the folding and unfolding of proteins 
as can occur in the processing of milk, or the non-
covalent binding of tastants to receptors in the 
tongue; and,  

(c) mesoscale properties of  colloids, gels and foam, 
important for example for storage, rheology, and 
perceptions of texture.  

While experimental methods play a central role in food, 
elucidating nanoscale effects is difficult and in most cases 
impractical. However, computer based simulation at these 
length and time scales is possible, provided suitable 
statistical methods, algorithms/software and massively 
parallel platforms are available, combined with people 
having the requisite skills for their exploitation.  

Software Development Infrastructure for Simulation 

E-CAM, the European Union H2020 Centre of Excellence 
mission is to address these needs, as an infrastructure for 
Advanced Simulation Software Development, Training, & 
Industry Collaboration in applications ranging from Food 
and Pharmaceuticals to Advanced Materials. The E-CAM 
infrastructure is built on four pillars: State of the Art 
Workshops, Industry Scoping Workshops, Long term 
Industry Pilot Projects, and extended software development 
workshops (ESDW’s). ESDW’s combine software module 
generation with “training by doing” bringing modern 
programming standards and techniques into the work 
practices of the participants, in its four core scientific areas: 
classical molecular dynamics (MD), electronic structure, 
quantum dynamics, and meso/mult-iscale modeling. 
Participation to E-CAM workshops is essentially open to 
anyone with a genuine interest in the themes of each 
meeting, and free.  This is possible because E-CAM is in 
fact a partnership of 16 CECAM (Centre Européen de 
Calcul Atomique et Moléculaire) nodes, 3 PRACE
(Partnership for Advanced Computing in Europe) Centres, 
and 1 Centre for Industrial Computing. 

FOOD SCIENCE AND INDUSTRY CHALLENGES TO 
SIMULATION

The six key challenges faced by food manufacturers 
mentioned earlier pose equally interesting and significant 
challenges to science. To address the demand that a product 
be tasty, healthy and safe, one must consider the processes 
involved: these include taste perception; the absorption of 
nutrients occurring during the disassembly of food 
structures involved in digestion, and generally some form of 
heat treatment.  

The Complex Sensation of Taste 

The sensation of taste is extremely complex, involving 
mastication and saliva, the release of volatile compounds, 
olfactory receptors (one cannot completely separate the 
sense of taste from the sense of smell), taste receptors, the 
texture of food, neuroscience, and indeed genetics. What can 
a simulator do when confronted by such complexity? At a 
molecular level, it is now possible to simulate at least in part 
G-Protein Coupled Receptors (GPCR’s) and ion-channel 
receptors that play a central role in olfaction and taste. 
GPCR’s are trans-membrane proteins that consist of three 
domains: the extracellular domain (ECD), which lies 
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outside the cell (ligands such as tastants or odorants bind to 
it), the so called transverse membrane domain (TMD), and 
the intracellular domain (ICD), to which G-proteins are 
attached. When agonist or antagonist ligands bind to the 
ECD, a complex set of conformational changes ensue, 
which can lead to release from the ICD of parts of the G-
protein (although they remain bound to the plasma domain), 
and a complex set of down-stream intra-cellular and even 
inter-cellular signaling. A full molecular dynamics 
simulation of a single GPCR protein including model 
membranes and water under physiological conditions 
typically requires a unit cell of 20-30 nanometers on each 
side, and about a million atoms.  In addition, a reasonable 
initial condition for the atomic co-ordinates of GPCR 
structure is also needed, which can be provided in part (but 
rarely fully) via X-RAY and NMR data, bio-informatics and 
homology. With current hardware, 100-200 computing core 
per day are needed to simulate just 20-30 nanoseconds of 
real time. One can do a bit better if one combines CPU with 
GPGPU’s. Nevertheless, it should be clear that to reach 
biologically relevant timescales using brute force simulation 
methods even for super computers is still very much beyond 
us, but all is not lost.  It is in fact now frequently possible to 
overcome this timescale challenge by using sophisticated 
statistical sampling methods, which are collectively known 
as rare-event methods, and are the focus of the first E-CAM 
core scientific area, classical MD.   

Rare-event Methods & Taste Receptors 

Many processes in nature and technology are characterized 
by rare but important events, which occur on time scales 
orders of magnitudes longer than basic molecular motions 
(essentially 10-15 seconds which is the timescale associated 
with vibrations of hydrogen bonds). Examples of such rare-
events can include transitions from one meta-stable 
conformation to another. Rare-event methods allow nearby 
conformations of the GPCR to be explored including 
quantitative information regarding their relative free 
energies, reaction mechanisms such as the complex 
conformational changes that occur on ligand binding, and 
associated time-scales. Rare-event methods provide in 
principle, the means to identify the dominant relevant 
conformations, order parameters, and reaction paths, and to 
validate the correctness of the latter. In this context, 
statistical/machine learning tools such as cluster analysis are 
also being increasingly used.  Taste receptors frequently are 
found has dimers or other complexes allowing the sensing 
of a very wide combination of tastes. An alternative to 
detailed molecular simulation of GPCR systems via 
simulation known as Coarse Graining is also possible, and 
can be quite effective (Ponzoni et al 2017), despite the fact 
that may details of the GPCR may not be known.  

Meso-scale/Multiscale Modeling and Taste Receptors 

Coarse graining (CG) also known as meso-scale modeling 
involves mapping many atoms to a single coarse grained 
effective atom, and building a simulation scheme for the 
coarse grained representation of proteins and macro-

molecules.  There is a diversity of such mapping schemes, 
and great debate regarding their relative merits and 
capabilities. CG may include water explicitly or in may treat 
water implicitly. Where it is reasonable to using a CG 
mapping where each amino acid is represented by a single 
CG atom, and water is treated implicitly, biologically 
relevant time scales can be reached. Indeed it is also 
possible to combine rare-event methods with CG. Another 
alternative is to treat certain degrees of freedom at a full 
atomistic level of detail, and others at a coarse grained level, 
trying to combine computational speed with atomic detail 
where it is critical.  

Machine Learning 

Despite the great progress that has taken place regarding the 
development of rare-event methods, predicting the sensation 
of taste that an individual may have for a tastant is 
daunting.  On very novel approach that has developed over 
the last 5 years is to combine molecular and meso-scale 
simulation with machine learning and Quantitative 
Structure Activity Relationships.  These allow physiological 
response data, or even the opinions of human tasters to be 
combined with atomistic, molecular and meso-scale 
descriptors.  The interest in doing this is that molecular 
structures can be modified through minor changes in their 
chemistry, and processing.  

Safe Food 

Ensuring food is safe and free of pathogens is a critically 
important step in food processing. Heat treatment remains 
the main approach. Heating also plays a crucial role to make 
many foods palatable and digestible for humans.  But 
excessive heating can also destroy the nutritional benefits of 
some foods, and give rise to unpleasant tastes. Molecular 
Simulation and in particular rare-event methods can be used 
to determine whether a given protein is likely to irreversibly 
unfold to conformations that may limit bio-availability, or   
be associated with unpleasant tastes.   

Food Safety & Diagnostics 

From the perspective of molecular simulation, at a 
molecular level, Food, Pharma, and biology pose very 
similar challenges, and as a consequence, the methods used 
to explore their properties are often the same. This is also 
true for a wide array of diagnostic tools used primarily for 
food safety, including:  Rapid Microbiological Methods; 
Molecular (DNA/RNA) Diagnostics; and immune-
diagnostics. In the context of food, such methods are used to 
detect pathogens, allergens, pollutants, and to confirm the 
genetic origins of food.  As these diagnostic tools operate at 
a molecular level, it should not be surprising that simulation 
can greatly facilitate their development and optimization, as 
has been demonstrated by one of the E-CAM industry pilot 
projects in the development of a molecular switch sensor 
technology which can be used for detecting analytes/bio-
markers for pathogens/allergens etc. in food. It integrates 
recognition and labeling (i.e. flagging the presence/absence 
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of the target) and switch into a single simple modular 
recombinant protein (see Fig. 1 for an example involving 
single chain variable fragment antibodies and fluorescent
proteins). In model simulation studies the switch gives rise 
to an order of magnitude reduction in the error associated 
with the measurement of bio-marker concentrations in 
assays.  

Enzymatic Hydrolysis 

Proteins, carbohydrates and fats normally must be broken 
down to small molecular units before they can be absorbed 
into the cell and be of nutritional benefit via enzymatic 
hydrolysis. This entails the combined use of water and 
enzymes to break constituent bonds. A key type of enzyme 
in the context of fat, are lipase proteins, an example of 
which is illustrated below in Fig. 2. 

The breaking of bonds involves quantum mechanical effects, 
albeit primarily of the electronic ground state, which is the 
focus of one of the scientific core areas of E-CAM.  That 
said, a full brute force simulation of enzymatic hydrolysis is 
really not feasible at the moment with quantum methods, as 
the number of atoms involved would be impractical, 
probably of the order of 50000 atoms at least. However it is 
possible to use a hybrid simulation scheme that combines 
molecular dynamics for most degrees of freedom where a 
quantum description is not necessary, with a quantum 
description of the much smaller set. An alternative approach 
is to use molecular dynamics with a semi-empirical 
probabilistic scheme, which breaks and even creates bonds 

depending on the local conditions around reactive sites. And 
yet another approach is to use machine learning, where 
quantum simulation is used to train an effective force-field, 
allowing molecular simulation to be performed which can 
be virtually indistinguishable from a quantum description, 
provided the system does not significantly encounter 
environments to which it was not trained. The latter are 
being developed within E-CAM, and elsewhere. 

Affordable Food 

Several factors can affect the relative affordability of food. 
These include the costs of: the raw material, processing, 
storage, and transport. While the choice for example of 
protein source, based on animal protein is an important 
issue, we shall focus our attention to processing, storage, 
and transport, and consider a few representative examples. 
One of the key steps in much of food processing is drying, 
for instance of milk and other proteins. Apart from the 
obvious benefit of reduction in volume or weight, it also can 
increase substantially the lifetime of a food, facilitating 
storage and transport. However the process of drying can 
cause proteins to unfold, revealing hydrophobic residues, 
which in hydrated form of the protein are not in contact 
with water. In such cases, when the dried food is re-
hydrated, it may not return to its original stage, but instead 
be transformed irreversibly into a hydrophobic and 
indigestible complex. 

Predicting when aggregation will occur can be difficult. In 
the context of protein aggregation, one problem is that salt 
and protonation/deprotonation of titratable sites (typically 
acidic or basic amino acids) can occur as the pH of a 
solution is varied, and simultaneously proteins may fold or 
unfold, and when proteins are at their iso-electric point, 
which corresponds in principle to when the pK of the 
protein equals the pH of the solution, they may suddenly 
aggregate (see Fig. 3). But for large proteins the situation 
can be very complex. Nevertheless there exist several 
computational schemes which frequently give reasonable 
results including lambda-dynamics (Donnini et al 2016) 
(which builds on classical molecular dynamics), and a 
simple but surprisingly effective coarse grained method 
(Barroso da Silva and Mac Kernan 2017). 

One of the E-CAM industry pilot projects is working on this 
problem, which turns out to be closely related from a 
physical and chemical perspective to solubility, which is 
important for food and pharma, for example, in the 
purification of  nutraceuticals (food grade molecules known 

Figure 3: Aggregation can depend critically on hydration

Figure 2: is an example of a lipase enzyme
involved in the hydrolysis of fat

Figure 1: A snap-shot of the molecular switch sensor 
where the sensing elements are ScFv antibody fragments
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to be of  significant health benefit, typically phytochemicals) 
and active pharmaceutical ingredients. In the context of 
nutraceuticals (and pharmaceuticals), another important 
question is ensuring bio-availability. Frequently 
nutraceuticals either are poorly soluble, or have a very 
unpleasant taste. One approach that has been developed over 
the last ten years or so is to encapsulate the nutraceutical in 
a soluble matrix or gel. Classical MD can be used to 
estimate the diffusion rates of active ingredient through the 
ematrix, while mesoscale simulation can be used to 
determine the relative stability of the encapsulating 
structure.  

Adsorption of proteins onto steel surfaces 

The issue of solubility is also closely related to the fouling of 
metals pipes by organic matter, such as can occur in the heat 
treatment of milk, and other proteins.  In principle this is a 
question that can be addressed using rare-event methods, 
provided a reasonable accurate force-field is known for 
metal-organic matter interactions.  E-CAM is developing 
such a force field by combining molecular dynamics, 
electronic structure calculations, with machine learning.  
The advantage of this approach is that once the force field is 
parameterized, it offers the possibility of simulation metal-
organic matter and water interactions at the cost of classical 
molecular dynamics, which otherwise would be prohibitive 
for large systems.  

FREE ENERGY METHODS  

Many processes in nature and technology are characterized 
by rare but important events, which occur on time scales 
orders of magnitudes longer than basic molecular motions 
(Dellago et al 2017). Such processes, which, for instance, 
include chemical reactions, protein folding and first order 
phase transitions, are difficult to simulate with classical 
molecular dynamics (MD) simply because of the extreme 
time scales involved. The main goal of E-CAM in this 
context is to develop software tools capable of dealing with 
rare events and complex free energy properties, thus 
extending the time scales accessible with regular MD.  

Two fundamental problems of statistical mechanics are 
intimately tied to the time scale problem of classical 
molecular dynamics simulation. (1) The calculation of the 
populations of meta-stable states of an equilibrium system. 
Such populations can be expressed in terms of free energies 
and hence this problem boils down to the efficient 
calculation of free energies. (2) The sampling of transition 
pathways between long-lived (meta-stable states and the 
calculation of reaction rate constants. 

Whereas the first problem is a static one and does not 
necessarily require the “real” dynamics of the system to be 
followed, free energies are often computed using molecular 
dynamics. Since the understanding of rare but important 
events also requires the calculation of free energy barriers, 
which are related to rare configurations, such simulations 
are affected by the rare event problem. In principle, this can 

be solved by running MD simulations for a very long time. 
In the best of cases such simulations will be expensive, but 
often they are simply unfeasible on current computers. 
Similarly, rare transitions between long-lived states can be 
found by running an MD simulation until the transition of 
interest occurs. However, within the accessible computing 
time the event may never happen. In the past decades, 
several powerful algorithms have been developed to 
overcome the time scale problem both for free energy 
computation and for rare event sampling. Typically, these 
methods apply an appropriately constructed bias or 
constraint, which artificially increases the likelihood of the 
rare event in a way such that it is possible to correct for the 
bias and restore the true probability of the event. In contrast 
to straightforward molecular dynamics, for which a number 
of excellent software packages are available (e.g., 
LAMMPS, Charmm, Gromacs, NAMD, etc.), methods for 
free energy computation and, in particular, for rare event 
sampling have not yet been implemented, with the required 
efficiency and scalability, into widespread simulation 
packages. One objective of  E-CAM is to close this gap and 
develop well tested and robust software modules for free 
energy computation and rare event sampling. 

ELECTRONIC STRUCTURE METHODS

The intelligent design and exploitation of materials for 
technological applications, or of new drugs, relies on our 
ability to describe and manipulate matter at a microscopic 
level. To do this, it is essential to know how atoms interact 
to form molecules and more complex materials. Interactions 
can be described empirically by creating models that 
reproduce known macroscopic properties of the material 
(e.g. melting temperature). They can also, in principle, be 
computed by solving the microscopic equation that describes 
the physics of interacting electron and nuclei in atomic 
systems. This equation, known as the time-independent 
Schrödinger equation, is one of the cornerstones of quantum 
mechanics. It is unfortunately too complex to solve, in 
general, both analytically and numerically. Several 
approximate methods then exist to tackle the problem. 
Currently, the best compromise between efficiency and 
accuracy is provided by a framework known as Density 
Functional Theory (DFT), which has been successfully 
applied to determine a wide range of properties of atoms, 
molecules, and complex materials. The software modules 
developed in the electronic structure work package in E-
CAM, tackle specific ingredients necessary for DFT 
calculations of the interactions. They have been conceived to 
be transferable (i.e. they can be incorporated in many of the 
codes in use) and scalable (i.e. they can be used on 
computers at the highest end of current technologies), and 
are available to the entire community of practitioners in the 
field. As mentioned earlier, the use of machine learning to 
develop neural network based potentials trained using 
quantum data allows large systems to be simulated using 
classical MD essentially reproducing exactly the quantum 
properties of the system (in the sense of the method used to 
train the neural network). Currently such simulations are 
limited to at most four different atomic species. However 
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other neural network based approaches are also being 
developed within E-CAM which while less precise, and 
capable of modeling more species and important metal-
protein interactions.  

MESOSCALE & MULTISCALE SIMULATION

The inclusion of atomistic or electronic detail and the short 
time-steps required in most quantum and classical MD 
calculations limit the system size and the total time 
accessible with these methods. For phenomena of relevance 
to academia and industry that occur on longer time and 
distance scales (such as protein folding and docking, 
polymer and surfactant structuring, lubrication and blood 
flow) it is useful to integrate out some of the underlying 
degrees of freedom and to develop coarse-grained models. 
These meso-scale models can be studied using suitably 
adapted simulation techniques from classical simulations 
and by developing new techniques that go beyond the 
particle-based description. Equally important and 
challenging is the requirement to work across more than one 
length or timescale at the same time, using multi-scale 
simulation techniques targeted at the production of new 
materials with tailored macroscopic properties (for example, 
dislocations, grain and phase boundaries, active sites). 
While considerable theoretical work exists in this domain, 
there is no generally accepted code in the community that
covers a sufficient range of length scales and phenomena. 

The most recent E-CAM state-of-the-art workshop aimed to 
identify (i) current challenges, (ii) the existing software 
solutions and their limitations, and (iii) need for further 
development of meso- and multiscale methods and codes. 
This approach was motivated by the desire to propose the 
kind of software required to bridge different descriptions 
(quantum, classical, continuum) in a systematic bottom-up 
scheme, in which input parameters are computed at the 
higher resolution and then used in the lower resolution 
model.  Explorations of new directions led to discussions on 
the methodologies of systematic static and dynamic coarse-
graining, including inverse Monte Carlo, Newton inversion, 
discretisation, Mori-Zwanzig formalism etc.  

Several moderated round table discussions took place during 
the meeting that helped provide a focus on key difficulties 
and challenges for meso-scale/multiscale simulation. Here 
we highlight one relevant to food science. 

Industrial manufacturing typically involves processing 
where materials are in far from equilibrium conditions. Yet 
virtually all simulation methods have been developed for 
systems that are either in equilibrium or close enough to it 
that the corresponding force-field parameters and initial 
conditions are a good estimate of reality, for instance, in 
regimes where linear response is valid. However, such 
assumptions are frequently not valid, for example, for 
complex glassy polymeric systems, or driven systems and so 
on. An additional complication is that there is no theory on 
how such systems can be treated, despite their great 
practical industrial importance. 

E-CAM INDUSTRY PILOT PROJECTS & FOOD

There is one E-CAM pilot project that is focused on Food 
and Pharmaceutical Proteins. The goals of this project are as 
follows. 1. To study the changes in structure and function 
that occur to protein complexes, antibodies and 
pharmaceuticals due to changes in hydration, salt and pH 
levels; 2.  Optimize the functionality of a class of novel 
protein based biosensors including the effect of the changes 
above; and, 3. Build and develop further R&D interactions 
with industry. The technical problem and solution of  
building rationally designed protein based sensors of bio-
markers that are cheap, easy-to-use, accurate, robust for use 
either in the living cell or in miniature low cost devices  
forms the core  of our innovation.   
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Food production has to take into account a number of global 
challenges, such as growing demand for food worldwide, 
climate change, food loss, changing diets, and water scarcity, 
as well as competing claims, including the need for animal 
feed, fibre for clothing and biofuels for energy. Global 
warming is likely to lead to greater incidence of agricultural 
yield shocks in certain regions, land fragility, and seed 
fragility, and will add to the complexity of the challenges at 
hand.  
A Master’s course with a specific integrated and international 
outlook would fill an increasing need and result in the 
transfer of knowledge, experience and standards to 
developing countries, as well as promote an excellence of 
European education. Hence, the project group developed a 
unique proposal within the Erasmus Mundus framework, 
European Master of Science in Sustainable Food Systems 
Engineering (FOOD4S - ‘food force’).  
Quality assurance and monitoring of the programme is of 
utmost importance for the management board. The survey on 
‘satisfaction analysis on teaching performance’ is currently 
being performed for the preceding Erasmus Mundus 
programme, on which the FOOD4S proposal has been built. 
The results will be used to improve the ongoing and 
perspective programme in terms of particular aspects. 
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The general aim of Erasmus Mundus, as a co-operation and 
mobility programme in the field of higher education, is to 
promote the European Union as a centre of excellence in 
learning around the world. By supporting European top-
quality Masters Courses it enhances the visibility and 
attractiveness of European higher education in third 
countries. Selected courses intend to offer high quality 
education, promote the European dimension in higher 
education through joint curricular development, inter-
institutional co-operation in teaching and supervising 

students, inter-institutional transfer of knowledge, joint 
recognition of qualifications, support mobility streams within 
Europe and between the EU and third countries, and finally 
contribute to the worldwide attractiveness and 
competitiveness of the European Higher Education Area 
(EHEA). Promotion of European co-operation within the 
Erasmus Mundus programme aims to develop long-lasting 
collaborative models among European universities for the 
delivery of international joint study (training / research) 
programmes with an integrated mobility component, and is in 
line with the objectives of the Bologna Declaration.  
The newly proposed programme contributes also to 
strengthening European Innovation Capacity by providing 
knowledge in an area where many gaps exist. The tangible 
embedding of food safety and energy sustainability; 
environmental impacts of food production (Life Cycle 
Assessment); effects of climate change on food safety, 
sustainable food production and quality; predictive 
modelling and quantitative (microbial, chemical) risk 
assessment, providing predictive tools for the food industry, 
policy makers and managers to formulate and implement risk 
management policies and controls with the view to protecting 
human health, will also have a major impact on uplifting 
Europe's innovation capacity. Current quality assurance and 
control tools are insufficient in dealing with the emerging 
threat of climate change, demonstrating the need for a 
concerted multidisciplinary effort to address this issue. In 
response to this challenge, predictive modelling tools can be 
applied to evaluate the effects of climate change on food 
safety with regard to managing this new treat for all 
stakeholders, including industry, government and regulatory 
agencies.  
Not a single course currently exists, where the essential 
elements of risk assessment, predictive modelling and 
computational optimisation are brought together with both 
sustainability principles of food production and food 
processing as well as energy and food chain concepts, within 
one coherent structure at a level for master’s students. 
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Transformations are taking place in agribusiness like never 
seen before. As global population and income rises, 
agriculture has become a key focus in a world that needs 
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more food and energy. The industry is facing challenges 
driven by the globalization of food production and 
distribution, growing food price volatility, the rising 
importance of environmental sustainability, rapid 
technological innovation and new demands for biofuels 
(Munang et al. 2011). There are many different views as to 
what constitutes a 'sustainable' food system, and what falls 
within the scope of the term 'sustainability'. Strictly speaking 
sustainability implies the use of resources at rates that do not 
exceed the capacity of the Earth to replace them. For food, a 
sustainable system might be seen as encompassing a range of 
issues such as security of the supply of food, health, safety, 
affordability, quality, a strong food industry in terms of jobs 
and growth and, at the same time, environmental 
sustainability, in terms of issues such as climate change, 
biodiversity, water and soil quality (Thompson et al. 2010; 
Frison et al. 2011). The value of world agriculture and agri-
food trade has also increased in response to recent trade 
liberalization and economic growth. Producers are operating 
in a changing landscape of increased international 
competition, evolving consumer needs, supply and 
production challenges and complex legal requirements.  
On the one hand, awareness of consumer and product safety 
has probably never been so high. Food safety and energy 
sustainability has become a priority research area worldwide 
as the global food supply evolves. The consumers are now 
warier about the origin, traceability and safety of the food 
they eat. At the same time, making improvements to the food 
chain to reduce energy consumption and to `prolong shelf life 
is essential for food security and sustainability but represents 
a significant challenge for the industry. Food safety and 
quality worldwide faces increased pressures and challenges 
arising from the globalisation of food trade, intensive 
production systems and changing consumer preferences 
(King et al. 2017).  
On the other hand, it is estimated that the food chain is 
causing significant environmental impacts due to CO2 
emissions and enormous food waste (Adekomaya et al. 2016; 
Wittman et al. 2016; Acevedo et al. 2018). Most of this can 
be avoided, and the vast majority of the remainder used as a 
resource into the food chain. Life Cycle Assessment (LCA) 
and related tools (such as carbon or water footprints) have 
proved to be an essential element on the evaluation of the 
environmental performance of food value chains (Biswas et 
al. 2010; Abecassis 2018).  
In response to this challenge, predictive modelling tools can 
be applied to evaluate the effects of climate change on food 
safety with regard to managing this new treat for all 
stakeholders, including industry, government and regulatory 
agencies. Predictive modelling and quantitative 
(microbial/chemical) risk assessment play a crucial role in 
food quality and safety, providing tools which are used by 
the food industry, policy makers and managers to formulate 
and implement risk management policies and controls with 
the view to protecting human health and environment 
(Tamplin 2017; Acevedo et al. 2018). As highlighted in the 
EU SCAR report (2015), ICTs dominate innovation in our 
times and it can not only be supportive in innovation 
processes but also change research. Also in the farm sector 
and the food chain, the use of ICT has increased 
siginificantly over the last decade. However, this is just the 

start of what could become a revolution in agriculture. It has 
the potential to change the way farms are operated and 
managed and it will change the farm structure as well as the 
food chain in unexplored ways. ICT could support labour 
efficiency, resource efficiency and close the gap between the 
producer and the consumer. It is therefore not only relevant 
for conventional farming but also for organic farming and 
short supply chains. This means that an agenda for research 
and innovation topics should be based on a careful mapping 
of agricultural issues (challenges and opportunities) with the 
potential contribution of ICTs (favoured over other 
solutions) and to see where development of those ICTs then 
makes sense. 
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The long lasting cooperation and the existing fully 
complementary expertise of six European partners (���
�������� ���!�� ��"#!#�#�� $%� ��&'�$�$()�� ��!��*"!#)�
�$���(�� ���!��� 	�'+�#� ��!��*"!#)� $%� 	..�!�/� �&!��&�"��
��!��*"!#)� $%� �+�#+�� +�/� �*��&'� �+#!$�+�� ��"#!#�#�� %$*�
	(*!&��#�*+�� ��"�+*&'� 0� ���	) evolved into the 
development of novel and unique project, 
�*$.�+���+"#�*�
$%� �&!��&�� !�� ��"#+!�+���� �$$/� �)"#�1"� 
�(!���*!�( 
(FOOD4S ‘food force’). This interdisciplinary programme in 
innovative fields assembles a broad coverage of areas and 
subjects that could not be provided at any single institution 
alone. It offers an education which is at the same time broad 
and in-depth aiming to foster and develop knowledge and 
awareness of scientific trends in food science, safety and 
quality, food product and process design, sustainable 
production, ecological footprint and quantitative methods 
and risk analysis in food systems in a global context as 4S 
stands for Science, Sustainability, Safety and Simulation. 
The needs analysis revealed there is a requirement for such 
oriented programmes in education and professional field. 
The proposal is also in line with the strategic objectives of 
the WHO European action plan for food and nutrition policy 
in protecting the food chain, prevention and control of 
foodborne contamination and food safety management, 
which makes FOOD4S very topical. Participation in the 
programme is not only beneficial to graduates but to the 
European Union as a centre of excellence in learning and is 
strengthening European Innovation Capacity.  
 
FOOD4S is designed as a 2-years master programme of 120 
ECTS. The Programme will commence with four compulsory 
modules (total of 30 ECTS) offered by KU Leuven, 
Technology Campus Ghent. These courses will provide 
students with the fundamentals of the programme, which are 
captured by the 4 S’s: Science, Sustainability, Safety and 
Simulation. Then students are given a choice between two 
blocks of modules (to be taken as a whole). University 
College Dublin (UCD) offers a module block on 
(Computational) Risk & Safety and Dublin Institute of 
Technology (DIT) offers a module block on Innovative 
Technology. Each path in Ireland is awarding another 30 
ECTS. In the second year of studies, students will select a 
module block of University of Malta (UMalta) or Anhalt 
University of Applied Sciences (UAnhalt) dealing with, 
respectively Energy & Food Chains or Sustainable 
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production. The module blocks organised by UCD and 
UMalta are primarily computationally oriented while the 
module blocks of DIT and UAnhalt are mainly technology 
oriented. Students can freely combine a module block of DIT 
or UCD on the one hand with one of UMalta or UAnhalt on 
the other hand, thus aiming towards a computational 
orientation or technological orientation, or a mixture of 
these. This allows students to differentiate based on the 
knowledge and skills they desire to develop (Figure 1).   
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1. Taught modules tracks 
 
The programme will also require the students to undertake a 
professional competence module as well as to work on a 
scientific project (and to submit a thesis) in one of the partner 
institutions. Proper selection of the professional competence 
module location and the Master thesis subject further allows  
strengthening of the computational, technological, or mixed 
profile. The award of the European Master of Science degree 
will be based on the successful completion of the modules 
(80 ECTS), professional competence module (10 ECTS) and 
the Master thesis (30 ECTS). It is envisaged to deliver a joint 
degree to all successful graduates.  
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The consortium is committed to maintaining its academic 
standards across all courses and enhancing the quality of its 
learning and teaching provision. Quality assurance will be 
based on both internal and external assessment measures. 
The KU Leuven system of internal quality review will be 
fully implemented throughout the course, and will be 
supervised by the quality management service of the 
coordinating partner KU Leuven 
(https://www.kuleuven.be/english/education/quality): 
• COBRA - INTERNAL QUALITY ASSURANCE 
METHOD - stands for Cooperation, Reflection and Action, 
with attention for Checks & Balances. KU Leuven has 
various instruments to monitor and stimulate the 
development of educational quality (e.g. student university-
wide surveys, blueprint and programme action plan) 
• EXTERNAL QUALITY ASSURANCE – Programme 
assessment and accreditation - KU Leuven takes care of and 
accounts for the quality of its educational policy and quality 
assurance.  
In addition to the central quality system of KU Leuven, the 
FOOD4S course will also apply an additional joint 

questionnaire on �+#!"%+&#!$�� +�+�)"!"� %$*� "#�/��#"� $��
��&#�*�*"� +�/� #�+&'!�(� 1�#'$/", which allows for an 
immediate and individual electronic fast-format assessment 
of every lecturer in every module. These actions will be 
conducted both for the course units taught at KU Leuven and 
the course units taught in the other consortium partner 
institutions. Essentially, this tool provides the lecturer with 
an idea of the perception by students on their teaching 
activities and hence, identifying ways to improve teaching 
performance. The short questionnaire includes questions on 
the teaching style and methods, the teaching materials and 
content and the appropriateness of that lecture/topic in the 
module. At the end of each module, all students are requested 
to fill in the online questionnaire for each lecturer who was 
active in this module. Students fill in the survey anonymously 
using an online learning platform Toledo. 
 
The proposed project is yet to be approved for funding by the 
EACEA upon submission with the current call for proposals 
EAC/A05/2017. The satisfaction analysis has been thereby 
based on the preceding programme, European Master in 
Food Science, Technology and Business (BiFTec), on which 
the current FOOD4S proposal has been built 
(www.biftec.org).  
 
�	����	������	�	�������
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32 lecturers teaching to three cohorts of students (2015 to 
2017) in 12 different modules offered among the consortium 
partners have been assessed by this means. 80% of students 
responded to each online questionnaire on the specific 
teaching staff. The results have been gathered and presented 
in Figures 2-10.  
 
 
 

 
Figure 2. Satisfaction analysis on Choice of Learning Content 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Satisfaction analysis on Teaching Time 
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Figure 4. Satisfaction analysis on Teaching Performance 
 
 

Figure 5. Satisfaction analysis on Structure of the Lecture 
 
 
 
 
 
 

Figure 6. Satisfaction analysis on Contact with the Students 
 
 
 
 
 

 
Figure 7. Satisfaction analysis on Self-confidence of the lecturer 

 
 
 

 

Figure 8. Satisfaction analysis on Pace of Teaching 
 
 

 
Figure 9. Satisfaction analysis on Availability of Learning Materials 
 
 
 
 
 

Figure 10. Overall Teaching Assessment 
 
Overall analysis of the satisfaction on the teaching 
performance and its particular aspects show that on average 
78% of the students evaluate the course content, lecturers 
and their teaching methods as ‘above average’, following 
19% found it ‘average’ and 3% assessed it as ‘below 
average’ (Fig. 10). 79% of the respondents found the 
teaching time and 82% pace of teaching ideal. 13% of the 
students considered teaching time took too many hours (Fig. 
3) and 15% found pace of teaching too fast (Fig. 8). With 
this respect, slower pace of teaching can be recommended to 
particular lecturers as corrective actions. All other single 
aspects were evaluated as ‘above average’ by 80% of the 
responding students and in particular choice of learning 
content was positively assessed by 77% of the students, 
teaching performance by 80%, structure of the lecture by 
74%, contact with the student by 82%, self-confidence of the 
lecturer(s) by 92%, available learning materials by 76% (Fig. 
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2, Fig. 4, Fig. Fig. 5, Fig. 6, Fig. 7, Fig. 9, respectively) . 
Remaining 15% of the respondents evaluated all the specific 
components of the teaching activities as ‘average’ and 5% (3 
students out of the 67 responding) as ‘below average’. 
Structure of particular lecture(s) and availability of learning 
materials could be further improved to increase the overall 
satisfaction. Upon careful analysis of the particular outcomes 
for the individual teaching staff, the results are a base for 
personal face-to-face discussion with the lecturers as well as 
overall summary. Corrective actions and suggestions will be 
made to improve the delivery of each module and its 
components in the future for the following cohort of students. 
The results of the questionnaires will then be compared with 
the present findings to verify the efficiency of taken 
corrective actions. The questionnaires are part of the internal 
quality assurance system successfully applied by the 
programme and it is envisaged to continue with this system 
for the proposed FOOD4S programme. 
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Based on the needs analysis and current trends in food 
industry, the European Master of Science in Sustainable 
Food Systems Engineering has been developed by six 
consortium partners. The FOOD4S course is unique in its 
modular format and also in the range of topics and 
experiences which students will undergo in completing the 
individual modules. International mobility is a characteristic 
which is inherent to the course. This interdisciplinary 
programme in innovative fields assembled a broad coverage 
of areas and subjects and offers an education which is at the 
same time broad and in-depth aiming to foster and develop 
knowledge and awareness of scientific trends in food science, 
safety and quality, food product and process design, 
sustainable production, quantitative methods and risk 
analysis in food science in a global context. The course seeks 
to expand the scope of the theoretical, research, and policy 
debates over sustainable agriculture and food production. It 
will offer a better understanding of ecological and food 
systems dynamics and strategies in terms of regenerating 
natural systems, providing predictive tools for the food 
industry. Predictive modelling tools can be applied to 
evaluate the effects of climate change on food safety with 
regard to managing this new treat for all stakeholders, 
including industry, government and regulatory agencies. The 
objectives of the course are to be achieved by an education 
which is at the same time broad in its compulsory modules 
and in-depth in the optional modules (selected track of 
studies) and area for master thesis research. The professional 
competences module offers an integrative approach for 
linking academic competences to professional competences 
by inserting in the programme a practical placement in a 
production or research environment in industry or academia. 
Satisfaction analysis of the teaching staff performed among 
the three latest cohorts of students of the preceding Erasmus 
Mundus programme revealed that overall teaching 
performance is considered as ‘above average’ by 78% 
responding students, ‘average’ by following 19%, ‘below 
average’ by 3%. Corrective actions are applied on an annual 
basis serving for continues improvement of the ongoing 

programme, in addition these results will also provide a good 
basis when setting up teaching staff for the new project.  
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The BiFTec programme is co-funded by the Erasmus+ 
Programme of the European Union. 
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ABSTRACT 

A second nutrition transition seems to emerge 
towards more plant-based diets, curving meat 
consumption in developed countries in the 
beginning of the XXI century. This shift suggests 
that logical arguments tend to influence more and 
more individuals towards vegetarian diets. This 
paper proposes a methodology to model a network 
of arguments around vegetarian diets by an abstract 
argumentation approach. Each argument, 
formalized by a node is connected with other 
arguments by arrows formalizing relationships 
between arguments. Thanks to this methodology we 
were able to formalize an argument network about 
vegetarian diets and identify the foremost 
importance of health argument compared with 
ethical or other type of arguments. This 
methodology also identified key arguments due to 
their high centrality in being challenged or 
challenging other arguments. These first results 
from this argument network construction suggest 
that any controversy surrounding vegetarian diets 
may polarize around such high centrality arguments 
about health. Even though ethical arguments appear 
of low importance in our network, the key issue of 
the necessity of animal products for human health 
may be essential for ethical choices towards 
vegetarian diets. 

INTRODUCTION 

The first nutrition transition involved the rise of 
sugar, fat, meat and processed products in human 
diets (Popkin 1993) and is the dominant nutritional 
model today. Vranken (2014) identified a second 
nutrition transition happening in the most 
developed countries where meat consumption is 

currently curbing down. Transition towards 
reducing meat consumption covers a wide variety 
of practices ranging from occasional vegetarianism 
to veganism (also called “strict vegetarian”) 
(Bearsworth & Kiel 1991). Rationale for such 
transition mainly implies ethical and health 
concerns (Jabs et al. 1998) but environmental 
impact of meat consumption is also stressed on a 
lower degree (Ruby 2012). MacDonald (2000) 
conducted individual interviews with vegans and 
found that their nutritional transition depended on a 
catalytic experience orienting individual towards 
information acquisition and ultimately conducting 
to a decision for change. However, the information 
acquisition leading to decision is not precisely 
known among vegetarians. In this paper we present 
a methodology to explore main arguments and their 
relations between them that transitioning 
individuals may face during this process. 

METHOD 

General approach 

In order to model arguments involved with 
vegetarian transitions we used an abstract 
argumentation approach (Dung 1994, Rahwan & 
Simari 2009, Thomopoulos & Paturel 2017). We
extracted arguments in favor or not of reducing 
animal product consumption. Our sources of 
arguments are newspapers, grey literature and top 
ten google research (“vegetarian diet”; “vegan 
diet”; “vegetalism argument”). The latter inquiry 
added to the pool popular scientific papers, 
webmedia articles and blog posts.  We read 
thoroughly each source and extracted all arguments 
as expressed by their author. For each argument we 
attributed a criterion (“Nutritional”; “Economic”; 
”Environmental”; “Anthropological”; ”Ethical”; 
”Health” or ”Social”) and noted the source 
expressing this argument (“Journalist”; ”Scientist”, 
”Philosopher”; ”Blogger”, etc.). We consequently 
obtained 114 arguments. 
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The argumentation formalism 

Let us recall that an argumentation system is 
usually represented as an oriented graph where 
nodes are arguments and edges are attack relations 
between arguments (Figure 1). 

Figure 1: General graphical representation of an 
argumentation system 

Considering Dung’s seminal work on 
argumentation (1995), an argument and the attack 
relation are abstract and can be instantiated and 
defined in different ways in different contexts 
(Walton, 2009). Dung himself stated: “an argument 
is an abstract entity whose role is solely determined 
by its relations to other arguments. No special 
attention is paid to the internal structure of the 
arguments”. For example, an argument can be a set 
of statements composed of a conclusion and at least 
one premise, linked by an inference or a logical 
relation. Attacking an argument can be achieved in 
different ways: 1) by raising doubts about its 
acceptability through critical questions; 2) by 
questioning its premises; or 3) by putting forward 
that the premises are not relevant to the conclusion 
or 4) by presenting an argument with an opposing 
conclusion. In all these cases an attack relation is 
said to exist (e.g Figure 2). 

Figure 2: Examples of four types of attacks. 1: 
Raising doubts; 2: Questioning premises; 3: 

Irrelevant premises; 4: Opposing conclusions 

Even though Dung’s framework is theoretically 
sound it is not straightforward to apply in real life 
situations. Indeed, one of the initial difficulty is to 
how to define an argument in order to properly 
reflect stakeholders’ statements in a debate. 
Unfortunately, there is still no general model that 
can be used to formalize a natural argument (i.e. an 
argument stated by a stakeholder during a 
discussion in natural language) and input in an 
abstract argumentation framework in a real 
decision-making context. Quoting Baroni and 
Giacomin (2009): « While the word ‘argument' may 
recall several intuitive meanings, like the ones of 
‘line of reasoning leading from some premise to a 
conclusion’ or of ‘utterance in a dispute’, abstract 
argument systems are not (even implicitly or 
indirectly) bound to any of them: an abstract 
argument is not assumed to have any specific 
structure but, roughly speaking, an argument is 
anything that may attack or be attacked by another 
argument». Indeed, the structure of an abstract 
argument does not correspond to the intuitive 
understanding of what an argument is. Moreover, 
the notion of “attack between arguments” does not 
have a natural and direct correspondence to 
practical expressions used by stakeholders when 
debating. Moreover, representing arguments as an 
oriented graph can be a difficult task for 
stakeholders: when the number of arguments and/or 
attacks is large, the graph becomes illegible and 
difficult to interpret by stakeholders.  

In our project, we needed to find a practical way of 
defining arguments that are used in the process of 
decision making. In such a context arguments can 
be intuitively thought of as being statements to 
support, contradict, or explain opinions or decisions 
(Amgoud & Prade, 2009). More precisely, in 
decisional argumentation frameworks (Ouerdane et 
al., 2010), the argument definition is enriched with 
additional features, namely the decision (also 
referred to as ‘action’, ‘option’ or ‘alternative’) and 
the goal (also referred to as ‘target’). In other 
studies arguments are also associated with specific 
actors. An application of a decision-oriented 
argumentation framework to a real-life problem 
concerning food policy can be found in Bourguet et 
al. (2013), where a recommendation regarding the 
provision of whole-grain bread was analyzed a 
posteriori. In this case, each argument is associated 
with the action it supports. Based on the above 
rationale, we chose to specify an argument as a 
tuple composed of an identifier, a type, an 
explanation, a criterion, an option and a sub-option.  
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Formally: 
An argument is a tuple a = (I;T;S;R;C;A;Is;Ts)
where: 
– I is the identifier of the argument; 
– T is the type of the argument (with values in 
favour of, denoted by ‘+’, or against, denoted by ‘-
’, the vegetarian option); 
– S is the statement of the argument, i.e. its 
conclusion; 
– R is the rationale underlying the argument, i.e. its 
hypothesis; 
– C is the criterion which the argument relies on;

– A is the actor who proposes the argument; 
–Is is the information source containing the 
argument; 
– Ts is the type of source the argument comes from. 
For any argument a, we denote by I(a), T(a), S(a),
R(a), C(a), A(a), Is(a), Ts(a) respectively the 
identifier, the type, the statement, the rationale, the 
criterion, the actor, the information source and the 
information type of argument a. 
As an illustration, Table 1 displays a sample of the 
set of arguments considered in our case study. 

Table 1: Sample of Arguments Tuples about Reduced Meat Consumption (I: Identification; T: Type; Is : 
Information source; Ts: Type of source) 

I T Statement Rationale Criterion Actor Is Ts

1 - Vegan diet is deficient in 
B12 vitamin

Vegetal proteins do not 
contain B12 vitamin Nutritional Jounalist

Canard 
Enchainé - 144 
- Juillet 2017

Newspaper

15 - Plant proteins trigger 
allergies

Plant-based food are more 
regularly allergic Nutritional Innovation 

cluster Valorial Powerpoint

23 + Vegetarian diet is good 
for health

Diabetes, cancer and 
coronary risks are reduced Health Scientists Tilman & 

Clark 2014
Scientific 

paper

28 +
Properly planned vegan 

or vegetarian diets fits all 
stages of the life cycle

Nutrient needs are satisfied 
and growth is normal Health

American 
Dietetic 

Association

Craig et al. 
2009

Scientific 
paper

43 +
Vegan diet improves the 

rheumatoid arthritis 
activity

A diet-induced faecal flora 
change was observed Health Scientists Peltonen et al. 

1997
Scientific 

paper

55 + Eating meat is not in 
human's nature

It was sometimes necessary 
in the past to eat meat, not 

nowadays
Anthropological Blogger pro-

vegan
Blog - Eleusis 

et Megara Blog post

56 +
Stop eating animals does 

not mean animal 
extinction

Deforestation for the 
cultivation of animal feed 

provokes species 
extinctions;

Environmental Blogger pro-
vegan

Blog - Eleusis 
et Megara Blog post

59 + Animals suffer when 
eaten, not plants

A nervous system is needed 
to suffer, which plants do 

not have.
Ethical Blogger pro-

vegan
Blog - Eleusis 

et Megara Blog post

71 - No study is favorable to 
the vegan diet

One good quality study 
show that Atkins diet is 
better that Ornish diet

Health Journalist Signs Of The 
Times

Internet 
article

77 - No health reason justifies 
to avoid animal products

Human body is adapted to 
eat animal products for 

millions of years
Health Journalist Signs Of The 

Times
Internet 
article

Now, let us consider the attack relation. In 
structured argumentation (i.e. logic based 
argumentation frameworks where arguments are 
obtained as instantiations over an inconsistent 
knowledge base) three kinds of attacks have been 
defined: undercut, rebut and undermine (Besnard & 
Hunter, 2008). The intuition of these attack 

relations is either to counter the premise of the 
opposing argument (‘undercut’), the conclusion 
(‘rebut’) or to attack the logical steps that allowed 
the inference between the argument’s premise and 
conclusion (undermine). In abstract argumentation 
the set of attacks is simply considered as provided a
priori. Another possibility that can be considered is 
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to enhance the argumentation framework with a set 
of preferences, expressed for instance as weights 
representing uncertainty. In our project we needed 
to choose a practical way to define the attack 
relation. Considering the reality of stakeholders’ 
debates and our model to formalize arguments, we 
chose to model the attack relation in the following 
way. Attacking an argument a is achieved by: 1) 
explicitly raising doubts about its acceptability by 
expressing a counter-argument citing a or the 
information source containing a; 2) implicitly
raising doubts about its acceptability by expressing 
a counter-argument contradicting a through 
undercut, rebut or undermine. Formally, we 
consider the following attack relation:
Let a and b be two arguments. We say that a attacks 
b if and only if the following two conditions are 
satisfied: 
1) T(a) ≠ T(b); 
2) {R(a), S(a)} → not {R(b), S(b)}. 
The first condition expresses that arguments a and b
are one in favour and the other against the 
vegetarian option. The second condition expresses 
the inconsistence of a and b. 

Modelling arguments and attacks 

Each argument was first formalized by an 
identification number, whether is in favor or not of 
meat reduction diets (+/-), its main statement and 
rationale such as: “Vegan diet is related with B12 

vitamin deficiency” (Statement) as “plants do not 
contain B12 vitamin” (Rationale). Other 
information (Actor, Information source & Type of 
source) characterize the origin of the argument. 
Based on this first step we then formalized attacks 
between them. An attack occurs when an argument 
is contradicting another one. For example the 
argument “1” quoted above is contradicted by the 
following argument “28 - Properly planned 
vegetarian or vegan diets fits all stage of life” as 
“Nutrient needs are satisfied and growth is normal”. 
When these arguments are formalized graphically 
each one is represented as a node and an attack is a 
vertex connecting both arguments, the arrow 
pointing the direction of the attack. In our case 
study, we identified 155 attacks connecting 55 
arguments among our total of 114. 

Graphical representation of the argument 
network 

In order to make a graphical representation of the 
argument network we used the visualization 
program Yed Graph Editor (version 3.17.1). We 
choose to represent only arguments which are 
connected with at least one attack. Each argument 
node received a specific color according to the 
source expressing the arguments. For visualization 
purposes, we grouped together identical arguments 
when repeated and coming from the same source 
(Figure 3) 

 
Figure 3: Graphical Representation of Arguments and Attacks about Reduced Meat Consumption. 

(Each number corresponds to one argument express by one source. Each source is represented by one node color 
except for similar arguments which have been group together. Arguments have been grouped by category.) 
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MAIN LESSONS AND PERSPECTIVES 

Our argument network structure reveals in 
particular two main elements. First, one can notice 
that arguments about Health are by far the majority 
of arguments identified. They represent 47% of all 
114 arguments identified and 63% of arguments 
involved in at least one attack. As a matter of 
comparison ethical arguments represent only 3% of 
all arguments identified. Second, some key 
arguments are emerging due to their centrality. Two 
arguments are involved in more than 3 attacks. The 
first argument, grouped under identification 
numbers 28, 57, 108 and 111 (the black node in 
Figure 3), refers to a scientific paper from the 
American Dietetic Association stating that 
“Properly planned vegetarian or vegan diets fits all 
stage of life” (Craig & Mangels 2009). The second 
argument, identification number 71 and 72 grouped 
together, is a journalist statement that “No study is 
favorable to the vegan diet”. Both arguments would 
probably be key arguments in potential controversy 
about vegetarian diets due to their generality.  

The major importance of health issues surrounding 
vegetarian diets are in line with findings in Ruby’s
(2012) review of vegetarian studies. On the 
opposite, the importance of ethical arguments 
which was stressed by Ruby (2012) did not appear 
in such modelling. This could be explained by the 
more complex nature of ethical arguments as well 
as our choice of research keywords in Google 
which focused on diets. However, from an ethical 
perspective it seems that the health issue (whether 
or not vegetarian diets are healthy) is actually 
central as animal rights may be defended from the 
baseline of animal products not being necessary for 
human health (Francione  & Charlton 2013). 

In this research we built the network and proposed 
a structural analysis. Abstract argumentation opens 
further analysis and in particular the rejection of 
attacked arguments without any argument to defend 
them. Such analysis allow for new indicators such a 
polemical indicators based on rejected argument 
ratios (Thomopoulos & Paturel 2017) which can 
better identify potential controversies. Following 
the theoretical approach of Xie et al. (2011) such 
argument network could also be used together with 
agent-based modelling to explore emergent 
establishment of new social norms on the concrete 
case of vegetarianisms. Such model could help to 
understand the conditions under which such 
arguments could spread in a population and favor 
vegetarian diets normalization. 

CONCLUSION 

The method presented in this paper formalizes 
arguments and attacks around vegetarian diets using 
an abstract argumentation approach. The argument 
network revealed the foremost importance of health 
issues surrounding vegetarian diets. The centrality 
of some argument of the network allows for 
identification of potential key arguments and/or 
controversies. The importance of health arguments 
in relation with ethical argument should be further 
researched. 
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ABSTRACT 

This paper introduces a first agent-based modelling 
attempt to food system simulation. It aims to 
capture the balance of supply and demand for 
sustainable versus low-cost food products. It 
contributes in modelling consumer choice and more 
specifically understanding the tensions between 
price and sustainability. 

INTRODUCTION 

With global population reaching 9bn by 2050 and 
significant environmental challenges, there is an 
increasing need to increase sustainability of the 
food chain. Although consumers demand more 
sustainable products, price is often driving 
consumer choice (Hoek et al., 2016; Asioli et al., 
2017).  Sustainable products are typically at a 
higher cost leaving them to a competitive 
disadvantage. There has been a lot of effort in 
understanding and modelling consumer choice and 
more specifically understanding the tensions 
between price and sustainability. A range of 
theoretical frameworks have been proposed (Ho et 
al., 2006; Asioli et al., 2017). Higher prices of 
sustainable products do not only involve higher 
costs of raw materials but also costs of production 
as they tend to be specialized small scale 
production units. It would be of interest to explore a
scenario where by adoption of sustainable products 
from consumers costs are reduced. 
Agent-based models (ABMs) offer a way of taking 
into account actor heterogeneity, social interaction 

and interdependence, adaptation, and decision-
making at different levels. In land use-related 
environmental science, they have affirmed as a way 
to capture complex characteristics of socio-
ecological systems (Epstein and Axtell 1996, 
Berger 2001, Parker et al. 2003, Mathiews et al. 
2007, Rammel et al. 2007, An 2012, Filatova et al. 
2013). In this family of ABM works, ecology and 
geography predominate (Grimm 1999, Parker et al. 
2003, Verburg and Veldkamp 2005, Castella et al. 
2005, Railsback et al. 2006). However social 
sciences are also present in such ABM approaches 
to assess and explain the complexity of human 
decision-making processes and behaviors 
(Schelling 1971, Epstein and Axtell 1996, Simon 
1997, Janssen et al. 2000, Janssen and Ostrom 
2006, Robinson et al. 2007). 
In food science, historically based on process-
oriented studies, ABMs are absent from the range 
of models used to approach food quality and, as a 
more recent concern, food sustainability. Recent 
studies related to multi-agent systems applied to the 
agri-food sector are those based on the 
argumentation theory (Bourguet et al. 2013,
Thomopoulos et al. 2015, Thomopoulos and Paturel 
2017), some of them coupled with system dynamics 
simulation (Thomopoulos et al. 2017). Social issues 
are deeply involved in food system sustainability. 
Consumer demand, environmental awareness, 
willingness to pay, acceptability of products, 
spreading of new food habits, are key compounds 
to analyze the system. Therefore, there is a pressing 
need and a real challenge to take into account food-
related social behaviors and integrate them in 
decision making. 
In this paper, a first ABM attempt to food system 
simulation is proposed. It aims to model the balance 
of supply and demand for sustainable versus low-
cost food products. More specifically we aim to 
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understand the dynamics of adoption of a certain 
product (namely sustainable vs low-price) including 
the scenario of changing price with an increase of 
consumption. 

METHODS 

Agent-based modelling 

Agent-based models are computational models used 
to simulate the actions and interactions of 
autonomous agents, individual or collective, in 
order to assess their effects on the system as a 
whole. They attempt to reproduce and predict the 
emergence of complex phenomena induced from 
the micro-scale of systems to a macro-scale. Their 
principle is that simple local behavioral rules 
generate complex global behavior. An overview of 
their early history can be found in Samuelson 
(2000) and more recent developments in Samuelson 
and Macal (2006). 

The CORMAS platform 

The CORMAS platform (http://cormas.cirad.fr/)
used for the model construction was specially 
developed by CIRAD for simulating natural 
resource management and is oriented towards the 
representation of interactions between stakeholders 
about resource use. In CORMAS, entities are 
categorized into three types: spatial entities 
describing the space at different aggregation levels, 
passive entities, which are objects that can be 
manipulated by social agents, and social entities 
which can make decisions, move, and interact with 
other agents.

Our hypotheses 

� A cognitive theory of food perceptions and 
needs, explained in the following scenario 
description. 

� 3 triggers for sustainable/low-price product 
demand: (i) environmental crises; (ii) 
neighborhood effect; (iii) low-price 
attractiveness. 

Scenario description 

The system we intend to model is a country made 
of a population of N citizens. Two products are sold 
in this country: low-cost products, which have a 
constant and low price, and sustainable products, 
whose price is initially higher but may vary in time. 
Each citizen is characterized by: (i) a constant level 
of need for sustainability regarding food 

(environment preservation, ethics, health, etc.); (ii) 
a variable level of perception of sustainable 
products. Depending on these two levels, citizens 
have a behavior regarding their food product 
demand, either sustainable if their perception 
exceeds their needs, or low-cost if their needs 
exceed their perception. Moreover, each citizen has 
some resistance to change. 
Environmental crises break out with a given 
frequency. Then all citizens get the information, all 
the more since they are close to the crisis event.
Their perception of sustainable products may be 
impacted. Each citizen also communicates with 
his/her direct neighbors and may change his/her 
diet depending on theirs. Finally, citizens are 
influenced by low-price attractiveness. 

The objective of the simulation model is to provide 
a view of the evolution of both food behaviors and 
product prices in time. Initial parameters subject to 
stochasticity are the distribution of need and 
perception levels in the population, with respect to 
some initial proportions of sustainable and low-cost 
buyers. 

RESULTS 

Conceptual model

Figure 1 displays the UML class diagram 
associated with the simulation model. 

Figure 1: Class diagram 

Modelling choices for price-related variables 

In this scenario and for simplicity we selected a 
linear decrease of price with the volume of 
sales/consumers. 
� Price function for the sustainable product:

linear function of the number of buyers, from 
the initial price of the sustainable product when 
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the number of buyers is reduced (e.g. 5% as an 
initialization), to the low-cost product price if 
the whole population buys the sustainable 
product. 

� Feedback influence of price on consumer 
perception: linear function from ‘no effect’ 
when the price of sustainable products is high 
(initial situation) to ‘total effect’ when the price 
of sustainable products decreases to the level of 
low-cost products. 
When a consumer’s perception surpasses this 
consumer’s needs for sustainable products, this 
consumer becomes a sustainable buyer, which 
participates in reducing the price of sustainable 
products. 

Simulation results 

Figure 2 displays a running simulation. Each step 
has been calibrated to correspond to about one 
month, so that the whole simulation corresponds to 
15 to 20 years approximately. The associated 
evolutions of the volumes of sales and of product 
prices are given in the graphs of Figure 3. 

Figure 2: A running simulation. The left part shows 
consumer perceptions of sustainable products (the 

darker, the higher). The right side displays resulting 
consumer behaviors, green for sustainable buyers, 

purple for low-cost buyers. The yellow stars 
materialize the occurrence of an environmental 

crisis which tends to increase people’s perceptions 
of sustainable products, all the more since the crisis 

localization is close. 

Figure 3: In the top part, evolution of the number of 
low-cost buyers (in red) and of sustainable buyers 
(in pink). In the bottom, evolution of the prices of 
the sustainable product (in green) and of the low-

cost product (in blue). 

DISCUSSION

We can see in this simulation, after some initial 
period of oscillations, a decrease of the price of the 
sustainable product until it reaches the low product 
price, jointly with a decrease of low-price buyers 
and an increase of sustainable buyers. 

We showed that this result is depending on the ratio 
between environmental crisis frequency and low-
price attractiveness. The latter is represented in our 
model as the ratio between the initial sustainable 
price and the initial low-product price (which 
remains constant). This is illustrated in Figure 4. 
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Figure 4: Sensitivity analysis shows that a stability 
in the simulation results obtained is reached for a 

given ratio between environmental crisis frequency 
and low-price attractiveness. This ratio seems to be 
close to the ratio between the initial product prices 

(sustainable price/low-cost price). 

CONCLUSION 

The overall work demonstrates the potential to 
develop an ABM to predict the dynamics of change 
of a food chain. Environmental crisis has led to 
adoption of sustainable products from consumers. 
We also evaluated the effect of a reduction of 
product price with an increasing volume. After a 
certain period where oscillations in the number of 
adopters of sustainable products occurred and once 
a critical mass of consumers was adopted we 
observed that the number of adopters increased 
dramatically. The above results indicate that there is 
the potential of extending the reach of sustainable 
products by reaching a critical mass. An interesting 
issue to further investigate is how the public 
opinion is formed in case of environmental crisis,
including situations where the assumptions that the 
whole population is well informed and the news 
reliable do not hold. 
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The objective of this study was to highlight the importance of 
using multi-objective method in order to obtain the best 
additive content and combination to improve the quality of the 
barley bread. Also, this research extends our knowledge of 
impact OSA starch, wheat gluten and xylanase on the bread 
volume, crumb hardness and crumb chewiness.

������������

Recently, researches have focused on the improvement of the
barley bread quality. Production of the leavened bread with 
barley flour is very hard to obtain due to weak dough 
viscoelasticity and gas retention capability (Newman and 
Newman, 2008). Mixing barley flour even up to 30% with 
wheat flour significant improve the nutritional profile of the 
baked products at the expense of decrease of bread volume 
and increase of crumb firmness and cohesiveness (Newman 
and Newman, 2008). To solve this issue, considerable 
economic efforts due to the high cost of experiments with the 
valuable raw materials and endless combinations of process 
parameters are needed. Therefore, the development of the 
optimization models undoubtedly is required. In this study we 
used multi-objective optimization (MOO) model. MOO uses
evolutionary algorithms such as genetic algorithm (GA) to 
solve multiobjective problems (Rangaiah and Bonilla-
Petriciolet, 2013). The solutions are a set of several equally 
good (non-dominated) optimal solutions, called a pareto front.
The GA is based on a natural selection process that mimics 
biological evolution (Goldberg and Holland, 1988). It is
adaptive heuristic search algorithm used to generate accurate 
or approximate solutions to optimization problems. The 
algorithm recurrently modifies a population of individual 
solutions. At each step, the GA randomly selects individuals 
from the current population and uses them as parents to 
produce the children for the next generation. The population 
evolves over successive generations toward an optimal 
solution. So, the objective of this study was to use MOO in 
order to obtain the best additive content and combination to 
improve the quality of pure barley bread.

�	�
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Experimental design, bread making procedure and the 
determination of the response parameters are explained in our 
earlier paper (Pojić et al., 2017). In this study, we used those
data to feed the artificial neural network (ANN) that will 

predict the desired outputs. The inputs were OSA starch, 
wheat gluten (GL) and xylanase (Xyl), while the outputs were 
specific bread volume (SV), crumb hardness (Hard) and 
crumb chewiness (Chew). Successful creation of the ANNs 
and obtained weight matrices provide the determination of the 
relative importance (RI) of the input values and its effect on 
SV, Hard and Chew by using partitioning methodology. In 
this study, the following Yoon’s equation was used (Yoon et 
al., 1993):

where RIij is the relative importance of the ith input variable 
on the jth output, wik is the weight between the ith input and 
the kth hidden neuron, and wkj is the weight between the kth 
hidden neuron and the jth output. This analysis proved that the 
decision variables have the conflicting influence on the 
performance parameters, and it is not possible to maximize 
the SV, and minimize the Hard and Chew, simultaneously.
Thus, to achieve the optimal content and combination of 
additives to solve this problem, we used the multi-objective 
optimization with built in functions “gamultiobj” in Matlab
R2016b.

�
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The three feed-forward back propagation ANNs were used to 
predict the experimental values for SV, Hard and Chew,
respectively. The ranges of the ANNs inputs were: 
0<OSA<10%, 0<GL<2% and 0<Xyl<5 gr/100kg. The 
numbers of neurons were 8, 6 and 7 in the hidden and 1 in the 
output layer, respectively for ANN1, ANN2 and ANN3. To 
improve the quality of the ANN, both input and output data 
were normalized. The networks were trained with Bayesian 
regulation back propagations algorithm that achieved slightly 
better prediction than others training algorithms (Levenberg-
Marquardt, BFGS Quasi-Newton, Scaled Conjugate Gradient, 
etc.). Bayesian regularization algorithm updates the weights 
and bias values according to the Levenberg-Marquardt 
optimization by minimizing a combination of weights and 
squared errors in order to find best combinations, so the 
resulting network generalizes well. Moreover, Bayesian 
regularization uses all data and the validation data set does not 
need to be separate from the training data set, this makes it 
very applicable for small number of experimental data
(Foresee and Hagan, 1997). The transfer function was the 
linear transfer function (purelin) at output layer and the 
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tangent sigmoid transfer function (tansig) at hidden layer. All
data points were randomly used to train and develop the ANN; 
85% of data points for training and 15% of data for testing the 
process. ANN results, including the weight and bias values 
depend on the initial assumptions of parameters necessary for 
ANN construction and fitting. In the same way, the different 
number of hidden neurons can give different ANN outcomes. 
In this context, and to prevent overfitting a series of different 
topologies were used, in which the number of hidden neurons 
were varied from 1 to 10 and the training process of each 
network was run forty times with random initial values of 
weights and biases. Creation of 400 ANN in total was the 
result of this procedure. The quality of the fit with the respect 
of coefficient of determination (R2) and mean absolute error 
(MAE) is presented in the Table 1 for the best fitting ANNs.
Fig. 1 shows the parity plot of the experimental and predicted 
SV, Hard and Chew using ANN with best performance.

Figure 1: Parity Plot of Predicted Values of the SV, Hard and 
Chew using ANN

Table 1. Quality of the Fit

2�+�!#)�$%�#'��%!#� �8� �	
�
	��9� 0.9909 0.0049
	��8� 0.9905 148.1495

	��;� 0.9913 73.9448

���+#!����1.$*#+�&��$%�#'����.�#��+*+1�#�*"�$��#'��SV,
Hard +�/ Chew�

The obtained relative importance values and standard 
deviations are presented in the Figs. 2, 3 and 4. Low 
variability of RI % makes the explanation of the input 
influence acceptable.
From Fig. 2 it can be seen that the increasing content of the
OSA, GL and Xyl affected the increase in specific bread 
volume. Also, it was found that the OSA concentration 
affected specific bread volume more than other two 
parameters. The positive impact of OSA on the specific 
volume of barley bread is attributed to the morphology of OSA
starch granules which were disrupted by drum drying pre-
gelatinization and its greater capacity to develop bread 
structure and volume.

Figure 2: Relative Influence of Input Parameters on Specific 
Bread Volume

The OSA starch was the most influential parameter on the 
crumb hardness (Figure 3). With increasing the content of 
OSA, Gl and Xyl crumb hardness is decreased.

Figure 3: Relative Influence of Input Parameters on Crumb 
Hardness

From Fig. 4 it can be seen that the OSA starch has the greatest 
influence on the crumb chewiness. With increasing the OSA
the crumb chewiness of the bread decreased. The second most 
influential parameter was Xyl, it also has a negative effect on 
the Chew, while on the other hand the GL expressed the 
positive effect. The fact that gluten addition affected decrease 
in crumb hardness and increase in crumb chewiness can be 
associated with the influence of bread volume and density of 
bread loaves on large-scale deformation hardness 
measurements (Goesaert et al., 2008). Therefore, the decrease 
in crumb hardness with addition of gluten can be explained as 
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a influence of bread volume increase and cell density 
decrease.

Figure 4: Relative Influence of Input Parameters on Crumb 
Chewiness

���#!0��<�&#!����.#!1!=+#!$���)�����#!&�	�($*!#'1�

Trained and validated ANNs were also implemented in the 
MOO with GA as the evaluation function for the SV, Hard
and Chew. The GA finds the Pareto optimal set within the 
experimental parameters boundary. GA solves three-objective 
problem where SV has to be maximal and the Hard and Chew
minimal as a set of optimal solutions in which an 
improvement in one objective requires a degradation of 
another. The pareto plot of this multi-objective problem is 
shown in Fig. 5. Pareto points are replotted in Fig. 6 and 
represent the trade-off between the Hard and Chew with 
increasing SV. It is evident that the tradeoff between Hard and 
Chew for SV values from 1.76 to 1.79 ml/g are better than for 
the rest of pareto points. Within this region SV increased 
(desired), Hard decreased (desired), but Chew increased
(undesired) meaning two objectives were improved while one 
deteriorated. One of the best pareto points for this process of 
bread making appears to be the individual minima for Hard
(2878 g) and its correspond values for SV of 1.76 ml/g and
Chew of 2615 g. This pareto solution showed an increase in 
SV of 10% and decrease in Hard and Chew of about 60% and 
30% compared to breads containing medium amounts of 
improvers 1% GL, 5% OSA and 2.5 g/100 kg Xyl,
respectively. The set of decisions variables correspond to
objective function values were for OSA from 7.6 to 10%, GL
from 1 to 2 % and Xyl from 0 to 0.9 g/100 kg. It is expected 
that OSA starch has the maximal values because with 
increasing the OSA starch values for SV also increased while 
Hard and Chew decreased what is the desirable behavior.

Figure 5: 3D Pareto Front for SV, Hard and Chew

Figure 6: MOO Results of SV Maximization and Hard and 
Chew Minimization

����������

This study has identified optimal points from Figs. 5 and 6
obtained by the MOO, which decision maker can choose,
depending on the process situations. For example, values for 
SV of 1.76 ml/g, Chew of 2615 g and Hard of 2878 g give an
increase in SV of 10% and decrease in Hard and Chew of 
about 60% and 30% compared to breads containing medium 
amounts of improvers 1% GL, 5% OSA and 2.5 g/100 kg Xyl,
respectively. Moreover, Yoon’s model revealed that OSA
starch showed the most pronounced effect on SV, Hard and 
Chew.
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ABSTRACT 

The aim of this study is to analyze the effects of 
ventilation and cooling power distribution on air 
temperature and products temperature levels in a 
cold store by means of computational fluid 
dynamics. The refrigerated space under study has a 
set of six fans and six heat exchangers (HEs) with 
different mass flow rates and blowing velocities 
arranged back to back at the middle of the domain. 
For this purpose, three cases have been simulated 
with different operating conditions involving 
various combinations between HEs and fans, while 
maintaining the same cooling power in the 
warehouse. In the author’s knowledge, very few 
articles have been written on airflow in loaded 
enclosures ventilated by several heat exchangers. 

NOMENCLATURE 

P……...........................Power kW 

T……...........................Temperature °C 

…..Dimensionless wall unit

SUBSCRIPTS 

max   Maximum 

min    Minimum 

in       Inlet of the HE

out     Outlet of the HE 

ave     Average 

INTRODUCTION 

In refrigerated enclosures, the conservation of the 
organoleptic and sanitary quality of foodstuffs is 
directly governed by the temperature field which 
depends of the airflow patterns inside the cool 

store. Hence, the analysis of the airflow is very 
meaningful from the point of view of the sanitary 
quality. The main industrial issue is to increase the 
temperature homogeneity of products at appropriate 
levels inside the refrigerated warehouse. With the 
increasing availability and power of computers, 
Computational Fluid Dynamics (CFD) became a 
very convenient tool to investigate the air and 
thermal distribution in a cold store. 

Many studies have been performed to characterize 
numerically and/or experimentally the influence of 
enclosure’s geometry and stacking arrangement of 
HEs inlet temperature and of HEs location on 
airflow and temperature distribution in rather small 
cold stores (< 100 ) (M.T. Karimipana, 1999; 
Jing Xie and al., 2006; Mitoubkieta Tapsoba and al. 
2007; M.K. Chourasia T.K. Goswami, 2007; Hsin 
Yu, 2006; Brajesh Tripathi S.G. Moulic, 2007; Hsin 
Yu and al., 2007; B.  Bjerg and al., 2002; Son H. 
Ho and al., 2010). However, this paper focuses on 
the particular case of a large cold store (57 344 )
refrigerated by different types of HEs and ventilated 
by several fans. To the author’s knowledge, very 
few articles concerning 3D CFD simulations on a 
large warehouse refrigerated by several heat 
exchangers with different mass flow rates and inlet 
temperatures have been performed.  
 
Many articles deal with the influence of enclosure 
geometry on air flow patterns. M. Tapsoba and al. 
(2007) show that the presence of product in a 
typical refrigerated truck configuration modifies 
strongly the flow patterns even if the velocity levels 
are similar with the empty enclosure. It leads to a 
reduction of the jet penetration and a diminution of 
recirculation especially at the rear part of the 
enclosure. Jing Xie and al., (2006) demonstrate that 
design parameters as corner’s smoothness or 
presence of stacked foodstuff strongly affect the 
flow field and temperature field. Smoothness of the 
corners affect adverse pressure gradient favorable 
to the reverse flow in the enclosure. The more 
round these corners are the less adverse pressure 
gradient there is and the more homogeneous the 
temperature is distributed. Eventually, presence of a 
loading in the middle of the room increases greatly 
the number of eddy and breaks the flow field 
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homogeneity. This will be the case in this paper 
because we have only modelled a large loaded 
warehouse filled with 25 pallets rows. 
 
Another parameter affecting the air-jet trajectory is 
the inlet temperature of the HEs. In most CFD 
modelling, HEs are considered as non-isothermal 
jets. The influence of inlet temperature on the 
airflow can be characterized by the dimensionless 
Archimed number (Ar) comparing buoyancy forces 
with inertial forces. (Hsin Yu, 2006; Brajesh 
Tripathi S.G. Moulic, 2007; Hsin Yu and al., 2007)
have numerically and experimentally determined 
several critical values of Ar corresponding to 
different forms of airflow patterns for a jet in an 
enclosure. Typically, if Ar<0.005 the air flow 
pattern is fully rotary and if Ar>0.018 the jet falls 
immediately at the entry (Brajesh Tripathi S.G. 
Moulic, 2007; Hsin Yu, 2006). Hsin Yu managed to 
predict analytically the trajectory of a horizontally 
diffused wall jet, in the primary flow region, 
depending of the Archimed number. Yu emphasizes 
that at high Ar, air-jet trajectory becomes 
analytically unpredictable because of the 
predominance of buoyancy forces over inertial 
forces and because of the apparition of a secondary 
recirculation making the trajectory simulation more 
complex. In this paper it is difficult to calculate an 
overall Archimed number because of the different 
blowing temperature of the HEs. Moreover, the 
interactions between the fans and the HEs help the 
cold jets not to fall directly at the entry even if the 
local Archimed number is above 0.018. 

Unsteady simulations were performed in loaded 
small enclosures where stacked products are 
modelled as porous medium (M.K. Chourasia T.K. 
Goswami, 2006; M.K. Chourasia T.K. Goswami,
2007). These calculation allow the investigation of 
the rate of metabolic heat generation, porosity of 
the bulk medium, resistance of the product skin 
preventing moisture loss and cool down time. It has 
been demonstrated that the higher the porosity of 
the medium, the lower the cool down time is. But 
even for a porosity of 0.5, cool down time is about 
50h (M.K. Chourasia T.K. Goswami, 2006). Such 
calculation can be performed in a small 2D 
enclosure (grid size < 500 000 cells) but not in a 
large 3D refrigerated warehouse (grid size > 10 
000 000 cells) due to too important computational 
time and computational resources it would take. 
Thus, this CFD study will be made in stationary 
regime. 

In order to take into account turbulence effects 
impacting the airflow, one must properly choose the 
turbulence model. Many authors find very different 
results when comparing turbulence models on the 
non-isothermal jets in confined enclosure (E. Pula 
H.A. Ersan, 2015; F. Kuznik and al., 2007). H.A. 

Ersan compares three two-equations turbulence 
models on a 2D non-isothermal jet confined in an 
enclosure with inlet and outlet located face to face. 
If RNG k-y model fits well with the experimental 
data, predicting a clockwise recirculation, std k-ω 
and SST k-ω fail to predict the correct behavior. 
Instead, they predict the fall of the jet at directly at 
the entry and the formation of a counter clockwise 
recirculation in the enclosure. More discrepancy is 
found on the velocity profiles for the cold confined 
wall jet modelled with k-y model (F. Kuznik and 
al., 2007). Near the inlet the velocity and 
temperature profiles are in good agreement but the 
numerical model is less reliable as the profile is far 
from the air inlet overestimating the maximal 
velocity and miss-predicting the location of this 
maximum. The author note that these discrepancies 
only occur for the cold wall jet, otherwise the 
turbulence model correctly predicts velocity and 
temperature profiles for the hot and the isothermal 
jet. This last remark echo Hsin Yu (2006) on the 
difficulty to predict the air-jet trajectory for cold 
wall jets in confined enclosure far from the inlet 
region. 

Many studies use the first order closure standard k-
y model described by Launder and Spalding (1974), 
since it is easy to program and has a large field of 
application. However, particular effects appear in 
confined enclosure as high streamlines curvature 
effects and secondary recirculation. For these 
complex flows, different authors (M.L. Hoang and 
al., 2000; J. Moureh, D. Flick, 2003; M. Tapsoba 
and al., 2007) agree on the superiority of second 
order closure models as RSM to predict airflow 
patterns. 

In 2000, M.L. Hoang and al. used computational 
fluid dynamics (CFD) to investigate the airflow 
pattern in an operational cold store for the long-
term storage of fruits and vegetables. The cold store 
is rather small (2.5m x 2.7m x 4.5m) and ventilated 
by only one heat exchanger. 3D numerical 
simulations were performed for the empty cold 
store and the loaded cold store filled with 4 wooden 
pallet boxes. Validation was made by a comparison 
of the calculated time-averaged velocity magnitudes 
with the measured mean velocities. An important 
averaged difference of 40% between calculations 
and measured velocities has been found for k-y 
model in the empty cold store. Model predictions 
for the loaded cold store were better with an 
absolute difference between measurement and 
numerical results of 26% for k-y model. RNG 
model gave less precise prediction with an absolute 
difference of 28.5%. The authors hope that 
enhanced turbulence models such as Reynold Stress 
models (RSM) could contribute to improve the 
numerical predictions. 
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J.Moureh and D.Flick study the wall air-jet 
characteristics and the airflow patterns within a slot 
ventilated enclosure in 2003. Three turbulence 
models were compared: SKE, RNG and the second 
order closing model RSM. The latest is a second 
order closure model is generally more precise on 
the modelling of flows with strong anisotropic 
behavior, high streamline curvature and flow 
separation. Only the RSM allows predicting the 
complexity of airflow leading to the jet separation 
from the ceiling and the creating of two contra-
rotative recirculations in accordance to 
experimental data obtained on a scale model. On 
the contrary, the other models fail to predict the jet 
separation which, in turn, leads to one recirculation 
within the whole enclosure. This clearly underlines 
the superiority of RSM for internal flows including 
adverse pressure gradient, turbulence anisotropy 
and streamline curvature. 

In 2007, M. Tapsoba and al. performed experiment 
on a reduced scale model and CFD simulations to 
study an enclosure loaded with slotted box supplied 
by a ceiling-jet. They compared experimental 
measurements on velocities with predictions given 
by two turbulence models: RSM and k-y. The 
results on velocity field were very similar in high 
velocity zones. However, RSM gave better 
predictions on the adherence point of Couanda 
effect as well as on the penetration distance and the 
deflection of the jet. The authors think that this 
clearly indicates that k-y model lacks sensitivity 
with respect to the adverse pressure gradient located 
at the rear part of the enclosure. 

According to the previous articles, RSM seems to 
be the best model for the prediction of turbulent 
flow patterns inside enclosures. Thus, we choose 
RSM for the turbulence modelling in all our 
computations.  

WAREHOUSE GEOMETRY 

Warehouse’s geometry involves 6 heat exchangers, 
6 fans, 50 rows of stacked products and one door 
for a total volume of (64m x 56m x 
16m) and a maximal capacity of 3 900 pallets. Due 
to the presence of a symmetry plane in the 
warehouse, we only model half the cold store to 
save computational time. Thus, the new geometry is 
twice as small: (32m x 56m x 16m), 
involves 3 heat exchangers, 3 fans, 25 rows of 
stacked products and half a door. Fig.1 shows a top 
view sketch of the warehouse and a 3D modelling 
of the half the geometry that is used as 
computational domain. Moreover, two sectional 
views are presented Fig.2 to indicate the main 
geometrical characteristic of the cold store. Note 
that heat is extracted from the warehouse by two 
types of heat exchangers (type 1 and 2), their 

different characteristics are listed in the boundary 
condition part.

Fig.1. Geometry modelling of the cold store. Sketch 
of the whole geometry, top view (top). 3D 
modelling of half geometry, isometric view

(bottom).

Fig.2. Cross sections showing the main dimensions 
of the warehouse. ZY plane (top); XZ plane 

(bottom).
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The relevant lengths L1 through L16 are given in 
the following values: L1=0.98m, L2=12.5m, 
L3=2.5m, L4=L4’=2.0m, L5=0.6m, L6=0.1m, 
L7=1.4m, L8=4.6m, L9=14.0m, L10=4.0m, 
L11=3.5m, L12=5.0m, L13=6.0m, L14=1.0m, 
L15=7.0m, L16=30.0m. Eventually, velocity field 
will be displayed on the blowing plane of the jets 
presented Fig.3. 

  

Fig.3. Location of the blowing plane of the loaded 
cold store ( ) 

MESHING, NUMERICAL SIMULATIONS 
AND BOUNDARY CONDITIONS 

Meshing 

Meshing was realized on ICEM, a mesh generator 
specialized in hexahedral meshes. The same mesh, 
composed of 13 806 606 cells, has been used for 
every simulations. Wall’s refinement is used for the 
good implementation of wall functions in the flow 
computation. These wall functions generally model 
flow behavior at near wall region by use of a 
logarithmic law between the mean velocity and the 
dimensionless wall distance. That is the case of 
FLUENT Standard Wall Function which is the 
most widely used wall function for industrial flows. 
In this study, Standard Wall Function will be used 
in every simulation. For RSM, the log-law between 
the mean velocity and the dimensionless wall 
distance is valid in regions where 30<  <300,  
with  the dimensionless wall distance. For all 
configurations, <300 on the ceiling, except for 
some cells in the rear part of the ceiling where 

<30 due to small wall shear stress. In this case, 
FLUENT applies the laminar stress-strain 
relationship which is a proportionality equation 
between the wall distance and the mean velocity of 
the fluid. 

Refined zones correspond to first layer size of 1 cm. 
Non-refined zones have a first cell size of 13 cm 
which is the maximum length cell of all the 
configurations performed. Due to the small space 
between the bottom of the pallets and the floor (10 

cm), we slightly refined the mesh near the floor in 
order to have at least 3 layers between the floor and 
the pallet. We refined the ceiling, the top of the 
highest pallets and the vertical walls of the pallets
close to the air inlets. Fig.4 shows a transversal 
section of the mesh and the mesh refinement at the 
top of the pallets. 

Fig.4. Transversal section of the mesh. Overall 
lateral view (top), pallets close up (bottom). Pallets 

colored in yellow.

Numerical simulation 

Simulations were performed with the finite volume 
method CFD code ANSYS Fluent 17.2 on a 64 bits 
Windows7 computer with a 3.70 GHz Intel® 
Xeon® CPU E5-1630 v4 and 192 Go (RAM). 
Calculations were first launched in stationary mode 
with pressure-velocity coupling scheme 
“COUPLED”. First, we decreased the under-
relaxation factors for few hundred iterations. Then, 
default under-relaxation factors were applied for 
few hundred iterations more. Eventually, pseudo 
transient mode is activated for few hundred 
iterations to improve heat balance. A total of one 
thousand iterations is needed to satisfy convergence 
criteria. 

In order to analyze the effects of cold distribution 
and ventilation on air temperature and product 
temperature levels in a cold store, three cases have 
been simulated: 
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- The first one (reference case) one with six 
HEs and six fans working,  

- The second one with only four HEs and 
six fans working and  

- The last one with six HEs and no fans 
working. 

It is important to note that, in every case, the overall 
cooling power distributed in the warehouse is the 
same: P = 68 kW. In order to check the numerical 
solution, global energy balance was performed by 
applying the first law of thermodynamics. For the 
steady state problems under study, the rate of heat 
gained from the walls, the ceiling, the floor and the 
door should equal the rate of equivalent heat 
extracted from the HEs. This relationship can be 
expressed as: 

 

Global energy balance was satisfied with a 
reasonably low error: maximal error of 1.5% for 
case1. 

Boundary Conditions 

At the inlets of fans and heat exchangers, uniform 
distribution is assumed for velocity components. 
All HEs and fans are blowing in the positive y 
direction. Fans have the same properties than type 2 
HEs except they blow at warehouse’s ambient 
temperature (they generate no cold). HEs 
characteristics are listed tab.1 for all cases. External 
temperature is set to 25°C and heat transfer 
coefficient on the walls and the ceiling is 0.1 

. The floor is at constant temperature 
of -17°C. No slip condition is applied on every wall 
and on the surface of the pallets. A symmetry 
condition is put on the symmetry plane. Heat load 
of the products was ignored but heat coming from 
door opening has been taken into account: P = 9,7 
kW (according to A.M. Foster, 2003, [4]). The 
number of door openings was estimated at one 
opening every two minutes. Eventually, natural 
convection is taken into account (ideal gas law). 

HE Type 1 HE  Type 2
Blowing 

Section  ( )
0.13 3.38

Air flow rate 
( )

2 500 23 000

Inlet Velocity 
( )

5.2 1.9

Blowing 
Temperature 
case 1 (°C)

-23.2 -21.4

Blowing 
Temperature 
case 2 (°C)

-27.7 -21.4

Blowing 
Temperature 
case 3 (°C)

-22.7 -21.4

Tab.1 Physical characteristics of the different types 
of HEs for all configurations 

RESULTS AND DISCUSSION 

Fig.5 presents the streamlines generated by HEs for 
the three cases. Comparing cases 1 and 2, we notice 
a strong reduction of the penetration distance for jet 
flowing from type 1 HEs (blue streamlines) in case 
2. This could be explained by the greater 
temperature differences between the ambient air 
( ) and the air coming from the HEs 
(case 1: ; case 2: )
causing an increase of jet’s deflection by buoyancy 
effect.  

Comparing cases 1 and 3, we also see a lateral 
deviation of the jets towards the positive x direction 
in case 3. This deviation is due to dynamic 
interaction between the primary jet flow and a free 
thermal air convection generated upwards along the 
rear and lateral walls generating a deviation of the 
jets in the lateral direction. 

 To better illustrate dynamic interactions between 
jets, Fig.6 presents the top view of velocity 
contours over the blowing plane for all cases. We
see that the jets close to the lateral walls tends to be 
deviated towards the center of the enclosure. 
Moreover, we notice an increase of jets lateral 
deviation coming from type 1 HEs in case 3 
compared to case 1. This clearly indicates that 
ventilation generated by the additional fans tends to 
stabilize the longitudinal jet development and acts 
like a dynamic air barrier preventing lateral 
interactions with crossflow coming from lateral 
walls. As a consequence, the use of additional fans 
increases the stability and the penetration distance 
of primary jets while limiting their lateral 
interactions. 

Fig.7 presents temperature contours over the pallets 
in isometric view and product’s extremal 
temperatures. Even if the overall cooling power is 
the same in every simulation (P=68 kW), we 
observe an increase of vertical thermal stratification 
and temperature heterogeneity from case 1 to case 2 
as cold is distributed to fewer HEs: 
for case 1,  for case 2. Thus, cold 
distribution has a notable impact on products 
temperature homogeneity. On the other hand, there 
is no significant difference on products temperature 
between case 1 and 3 indicating that fan’s 
ventilation has no meaningful incidence on pallets 
temperature levels. For all cases, maximal 
temperature zone is located at the bottom of the 
pallets. Indeed, in the thin zone between the floor 
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and pallet’s bottom (10 cm), velocities are very low 
and air is rapidly warmed up by the floor (

), creating hot spots. Eventually, the average 
temperature on the pallets is the same for every case 
and is really close to the ambient temperature of the 
warehouse ( ).

To better illustrate local effects generated by the 
additional fans, Fig. 8 (a) compares air temperature 
contours over the blowing plane of the middle fan 
(x= -3m) for cases 1 and 3. We clearly see an 
increase of thermal heterogeneity and vertical 
thermal stratification near the ceiling in case 3. 
Obviously, the lack of ventilation gives rise to 
stagnant air zones in the upper parts of the 
warehouse and enhances the   thermal stratification 
by buoyancy effect. Fig.8 (b) compares velocity 
vector field colored by temperature for cases 1 and 
3. A zoom has been made near the front wall to 
better visualize air currents. In case 3, we see 
upwards currents rising all along the front wall due 
to free thermal air convection along the wall. 

In case 1, , whereas primary jet flow mainly 
governs the airflow in the upper regions inducing 
downward currents near the front wall and upwards 
currents only appear near the floor. Thus, 
ventilation reduces the impact of natural convection 
on airflow in the rear part of the cold store and 
extends the primary jet flow region. 

 
Case 1

Case 2 

Case 3
Fig.5 Streamlines coming from the HE. Mechanical 
HE (red), Blueeze (blue), secondary refrigerant HE 

(green). Isometric view

 
 
 

Case 1

Case 2

Case 3
Fig.6 Velocity contours in blowing plane. Half 

warehouse, top view.
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Case 1

Case 2

Case 3
Fig.7 Temperature contours on the pallets.

Isometric views
 

Case 1 Case 3
(a)

 
Case 1 Case 3

                            (b)

Fig.8 (a) Temperature contours in the blowing plane of 
the middle fan for cases 1 and 3, zoom near the ceiling. 
(b) Velocity vector field colored by temperature in the 

blowing plane of the middle fan for cases 1 and 3, 
zoom near the front wall. Pallets colored in brown.

 

CONCLUSION 

In this study, numerical simulations performed 
using the CFD code Fluent were carried out in 
order to analyze the effect of cold distribution and 
fans ventilation on temperature and flow patterns in 
a large cold store loaded with pallets. 

Results show that, for a fixed cooling power P= 
68kW, reducing the number of HEs (case 2) 
requires to decrease jet’s blowing temperature 
causing the jets to deflect by buoyancy effect, 
reducing their penetration distance in the 
warehouse. Moreover, in case 2, temperature 
heterogeneity and thermal stratification on the 
pallets increases compared to case 1, even if the 
global temperature levels are similar in all cases. 
Thus, cooling power need to be more 
homogenously distributed in the warehouse in order 
to lower temperature differences and natural 
convection effects such as jet’s deflection and 
thermal stratification. In case 3, the lack of 
ventilation generated by the fans increase lateral 
deviation, decrease the jet penetration and enhances 
thermal stratification in the upper part and natural 
convection in the rear part of the warehouse. 

CALCULATION NOTE 

We find in the literature (A.M Foster, M.J Swain, 
R. Barrett and S.J. James; (2003) [18]) an analytical 
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expression of the outgoing debit I during the 
opening of the doors:  

with , the indications i 
and o meaning respectively inside and outside. A
indicates the surface of the door, H its height and g 
the acceleration of gravity. We took 

, , and 
. We find .

The number of door openings was estimated, using 
a previous study, at one opening every two minutes. 
The door puts 5 seconds to open, remains open 
during 10 seconds and closes in 5 seconds and there 
is 1 opening every 2 minutes. We counted 12 hours 
of activity in a day. Moreover, according to Foster, 
during opening and closing time we have to reduce 
by a half the incoming debit. Eventually, we find 
that 61 344 of air is exchanged through the door 
every day. 

Multiplying this volume by the heat capacity of air, 
the air density and temperature difference between 
the inside and the outside of the warehouse, we find 
that  of heat is delivered by the door in the 
warehouse every day. Dividing this quantity by the 
number of seconds in a day and by the surface of 
the door we finally find the average heat power 
density on the door: . 
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Clean drinking water is an essential necessity for 
life, however, antibiotic-resistant bacteria (ARB) 
have been found in tap water globally. The 
presence of ARB in tap water could lead to serious 
infections that are difficulty to treat. A quantitative 
human exposure assessment model was created 
examining the human exposure to antibiotic 
resistant Escherichia coli (E. coli) through drinking 
water. Both scientific literature and site specific 
data were used to create the model. Data were 
collected on the concentration of ARB at a 
European surface water site located near a drinking 
water treatment plant (DWTP), the effect of 
environmental factors, the effect of drinking water 
treatments and the quantity of human tap water 
consumption. The results show the human exposure 
to AR E. coli ranged between 3.44 × 10–7 and 
2.95 × 10–1 CFU/day. To surpass the EU Drinking 
Water Directive (0 CFU/100ml of E. coli in tap 
water) a concentration of between 1 and 5 log 
CFU/ml is required in the source water. The results 
from this model could be used to recommend water 
treatments that provide the best reduction of human 
exposure to ARB.
�
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�
Serious life threating infections are being caused by 
ARB globally. Research shows the presence of 
ARB in drinking water around the world (Bai et al. 
2015; Khan et al. 2016; Xu et al. 2016). This could 
lead to direct human exposure through the 
consumption of tap water or indirect exposure 
through washing fruit and vegetables with tap 
water. DWTPs are a vital safety mechanism that 
can help to prevent human exposure to ARB. 
However, ARB are escaping some water treatment 

processes, therefore it is important to identify the 
most suitable and best combinations of water 
treatments that can eliminate ARB. A quantitative 
exposure assessment model was created to examine 
the human exposure to antibiotic resistant (AR) E. 
coli through tap water consumption. 
�
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Water samples were taken in summer and winter 
from a European source water site located near the 
abstraction point of a drinking water treatment 
plant. Samples were tested for E. coli resistant to 
amoxicillin (Amox), ciprofloxacin (Cipro) and 
cefotaxime (Cefo). Cefo resistant E. coli was not 
detected at the surface water site.�
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The structure and steps involved to create the 
human exposure assessment model are shown in 
Figure 1. The first step in the model was finding 
the concentration of AR E. coli at the surface water 
site. Best fit probability distributions were used to 
characterise the initial levels of AR E. coli found at 
the surface water site. Scientific literature and site 
specific data were used to model the effect of 
environmental factors on the bacteria. Mancini’s 
equation was used, where the equation estimates 
the decay rate of E. coli as an effect of water 
temperature, surface solar radiation, light extinction 
coefficient, salinity and depth of water (Mancini 
1978). Data from scientific literature were used to 
model the effect of coagulation, flocculation, 
sedimentation (Coag/Flocc/Sed), sand filtration, 
carbon filtration, chlorination, ozone and UV on 
AR E. coli (Langenbach et al. 2009; Pang et al. 
2016; Miranda et al. 2016; Lüddeke et al. 2015). 
Data on the quantity of human tap water 
consumption per day at the study region were
collected from scientific literature (de Francisco 

71



and Martínez Castelao 2010). The human exposure 
to AR E. coli through tap water were then 
estimated by multiplying the concentration of AR 
E. coli after treatment by the amount of tap water 
consumed. Probability distributions were used to 
account for uncertainty and variability in the input 
data.  
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Figure 1: Steps Involved in the Model 
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Scenario analysis was used to investigate the effect 
of different combinations of water treatments on 
the AR E. coli concentration. Table 1 shows five 
typical water treatment combinations used in 
Europe. The water treatment combination used at 
the study site is scenario 1. 

Table 1: Water Treatment Scenarios 

Scenario Water treatment scenarios

1 Coag/Flocc/Sed; Rapid Sand Filtration; 
Carbon Filtration and Chlorination

2
Coag/Flocc/Sed; Carbon Filtration; 
Rapid Sand Filtration; Ozone and 
Chlorination

3 Coag/Flocc/Sed; Slow Sand Filtration 
and UV

4
Chlorination; Coag/Flocc/Sed; Rapid 
Sand Filtration; Ozone; Carbon 
Filtration and Chlorination

5 Coag/Flocc/Sed; Rapid Sand Filtration 
and Chlorination

�
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Monte Carlo Simulation was performed for 10,000 
iterations on the model output data, this was done 
to characterise uncertainty and variability in the 
model input data. The Spearman’s rank order 

correlation was performed to examine how the 
model predictions are dependent on variability and 
uncertainty in the model input parameters. A back 
calculation was performed to investigate the 
concentration of AR E. coli required at the 
abstraction point of the DWTP in order for the EU 
Drinking Water Directive (Council Directive 
98/83/EC, 0 CFU/100ml of E. coli in tap water) to 
be exceeded in the tap water. �
�
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Overall the mean human exposure levels to E. coli
resistant to Cipro and Amox were between 
3.44 × 10–7 and 2.95 × 10–1 CFU/day. Scenario 1 
(Coag/Flocc/Sed, sand filtration, and UV) provided 
the lowest human exposure level to AR E. coli.
Unfortunately the infection dose of AR E. coli
hasn’t been identified and this type of data is
critically required to quantify the probability of 
illness from ARB (Xi et al. 2009; Manaia 2017). If 
contracted an AR infection is a much more serious 
infection to treat in comparison to an antibiotic 
sensitive infection.
�
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Figure 2 represents the results from the sensitivity 
analysis examining human exposure to Cipro 
resistant E. coli from the summer samples using 
scenario 2 water treatments. The results show the 
largest reduction of AR E. coli were from the water 
treatments, Coag/Flocc/Sed (-0.39); carbon 
filtration (-0.40), sand filtration (-0.29); ozone (-
0.40) and chlorination (-0.34). The positive 
correlation coefficient value (0.40) for the initial 
levels of Cipro resistant E. coli shows the important 
of protecting source water sites. The quantity of tap 
water consumed also had a positive correlation 
value (0.20). The environmental factors did not 
have a significant effect on the level of AR. E. coli
(results not shown, correlation coefficient values 
were between –0.1 to 0.1). 

Figure 2: Sensitivity Analysis Results 
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To surpass the EU Drinking Water Directive (0 
CFU/100ml of E. coli in tap water) a concentration 
of between 1 and 5 log CFU/ml is allowed in the 
source water depending on the water treatment 
used. Scenario 1 required the highest quantity of 
contamination and scenario 5 (Coag/Flocc/Sed; 
Rapid Sand Filtration and Chlorination) required 
the least amount of contamination for the EU 
directive to be exceeded.
�
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This model estimated the mean human exposure 
levels to AR E. coli were between 3.44 × 10–7 and 
2.95 × 10–1 CFU/day. This model also identified 
water treatment combinations that provided the 
largest reduction of AR E. coli. The model can help
to inform policy makers on the maximum levels of 
ARB acceptable at source water sites.
�
�����
��
�
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To examine the human exposure to AR E. coli
through recreational and irrigation water. 
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ABSTRACT

Emerging contaminants such as nano silver (nAg) are 
likely being released during their use and disposal and 
maybe accumulating in the environment. This increases 
the likelihood of nAg entering freshwater environments 
and contaminating drinking water sources. Water 
abstraction for drinking water from these sources will 
likely lead to unintentional abstraction of nAg prior to 
water purification. Therefore, there is a reliance on 
drinking water treatment systems to adequately remove 
nAg prior to human consumption. This model attempts to 
estimate efficiencies of standard and advanced progressive 
drinking water treatments by determine residual 
concentrations of nAg following these treatments. An 
initial input value to the model is based on a probability 
distribution with a mean value of 3.67E-2 μg/L estimated 
representing a worst-case scenario for Irish waters. Post 
conventional treatment indicated persisting concentrations 
of nAg ranging between 1.31E-2 to 4.85E-3 μg/L depending 
on the coagulant used. Total removal was not observed 
during conventional treatment but was significantly 
removed to below tolerable ingestion levels. Residual 
concentrations where then subjected to advance filtration 
methods through several progressive scenarios to estimate 
removal following each advanced treatment.   

INTRODUCTION 

Nanomaterials are entering the environment in ever 
increasing volumes and likely accumulating in water 
sources (Shevlin et al. 2018). Oxidizable nano silver 
(nAg), an engineered nanomaterial is utilized in numerous 
products and processes due in part to its antimicrobial 
properties and the functional performance of nano scale 
silver. Nanomaterials are classified as materials in the 
scale of 1 – 100 nm in at least one dimension (Shevlin et
al. 2018). Presence and accumulation of these materials in 
drinking water sources increases the potential for these 
reactive materials to be inadvertently recovered during 
drinking water abstraction. Abstracted water from lakes,
rivers and reservoirs is subjected to drinking water 
treatment prior to distribution in the water network. 
Conventional water treatment used to remove 
contaminants and biological entities may be ineffective or 
inefficient for removal of nAg (Chalew et al. 2013).
Therefore, advanced and costly treatments may need to be 
employed to remove the potentially increasing 
concentrations of nAg likely to be present in source water.
Adequate treatment must be ensured to reduce the risks to 
human health through inadvertent exposure to nAg present 
in treated drinking water. Nano Ag can penetrate cellular 

membranes and potentially interfere with cellular 
functions inducing a human toxicity concern. 

Treatment processes  

Conventional water treatment is divided into primary and 
secondary treatment followed by disinfection prior to 
distribution in the water network. 

Primary treatment 

Abstracted water is initially subjected to preliminary 
treatment for the removal of macro scale entities prior to 
the primary treatment. During primary treatment, 
chemicals are added to the system to aid the coagulation of 
colloid and particulate matter (U.S. Epa 2011).
Coagulation is followed by flocculation whereby 
coagulated material clusters together to form larger flocs. 
Increase in flocculants increases mass and density which 
will cause eventual sedimentation of the floc. Entrapment 
of nAg within flocs will aim in removal of nAg to 
sediment. 

Secondary treatment 

Filtration is the next step in water purification following 
primary treatment and is performed through slow or rapid 
sand filtration. This process removes biological and fine 
particulate matter and likely to capture nAg through 
absorption.  

Advanced treatments 

Microfiltration – low pressure technology using a pore 
size between 0.1 and 10 μm. 
Ultrafiltration – low pressure technology using a pore size 
between 0.01 and 0.4 μm. 
Nanofiltration and Reverse osmosis– High pressure 
technology used for the removal of dissolved 
contaminants. 

Ingestion of silver 

Currently no guideline limits are attributed to the 
nanoform of silver, so it was necessary to draw from data 
relating to the macroform as set by governing bodies. The 
World Health Organisation (WHO) and the US-EPA set 
guideline limits of 0.005 mg/kg/d-1 while the European 
Food Safety Authority (EFSA) set a guideline of 0.05 
mg/kg in food and water (Scenihr 2013). The WHO limit 
is based on a No Observable Adverse Effect Level 
(NOAEL) for humans. This limit value is based on a 
lifetime exposure (70 yrs. or 25550 days) giving a NOAEL 
of 0.39 mg / person / day or (bw = 70 kg) 0.005 mg/kg 
bw/d-1. 
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METHODOLOGY 

Surface water concentrations 

Measured data pertaining to surface water concentrations 
of nAg in Irish waters is not available. Therefore, an 
estimate of surface water concentrations is represented 
through a Triangular probability distribution using 
estimates from available literature sources representing a 
worst-case scenario for Irish waters. A mean value of 
3.67E-2 was used as the initial input value (Asurface conc) to 
the model. All model simulations were developed using 
the Microsoft Excel add on software @Risk7 (Palisade 
Software, Ithaca, NY, USA) and run for 10,000 iterations. 

Model framework 

A mass balance model (fig. 1) was developed using the 
Asurface conc value as the initial input value. Percentage 
reductions following each treatment scenario was then 
assessed to calculate the likely residual concentrations. 

Fig. 1 Schematic overview of model showing water 
abstraction from surface waters and subsequent drinking 
water treatment processes applied for removal of nAg. 

Estimating nAg removal during treatment 

When estimating the removal of nAg through each process 
it was nessessary to bridge data gaps due to insufficent 
studies primarily focusing on nAg. This was done with 
other nano scaled materials or bulk forms of metals. 
Probability distribution where developed for each process 
based on available data and are represented in Table 1. 

Table.1 Probability distributions for the estimation of 
removal potential through each treatment process in the 

presence of coagulant. 
Process Coagulant Distribution Mean

Primary Alum Normal (0.80,0.13) 0.80
FeCl3 Uniform (0,0.91) 0.91
FeSO4 Uniform (0,0.9) 0.92

Secondary n/a Uniform (0.35,0.4) 0.38

Estimated removal through advanced treatments 

Residues of nAg present in post-secondary treatment were 
then subjected to further reduction through advanced 
treatments. Estimates of removal are presented (Table 2) 

through probability distributions to account for the 
variability and uncertainty in the data. 

Table 2. Model inputs with probability distributions 
estimating the removal potential progression through each 

treatment. 
Description Symbol Unit Distribution/model
Initial 
concentration

Asurface conc μg/L (3.67E-2 mean)

Primary treatment Pt % Table 1
Secondary 
treatment

St μg/L Table 1

Post secondary 
treatment

PSt μg/L PSt = PPt × (1 - St)

Microfiltration Mf *Prob Normal (0.47,0.98)
Post 
microfiltration

PMf μg/L PMf = PSt × (1 – Mf)

Ultrafiltration Uf *Prob Normal (0.982,9.024)
Post ultrafiltration PUf μg/L PUf = PMf × (1 - Uf)
Nanofiltration Nf *Prob Uniform (0.47,0.98)
Post nanofiltration PNf μg/L PNf = PUf × (1 - Nf)
Reverse osmosis Ro *Prob Uniform (0,0.993)
Post reverse 
osmosis

PRo μg/L PRo = PNf × (1 - Ro)

*Probability distributions 

Advanced filtration scenarios 

Following conventional primary and secondary treatment, 
residual nAg concentrations where subjected to advanced 
filtration methods through several scenarios (Table 3). 

Table 3. Scenarios for modelled treatments 

Scenario Treatment Equation

1 Pt + St = PPt × PSt

2 St + Mf = PPt × PSt × (1 - Mf)
3 St + Mf  + Uf = PPt × PSt × PMf × (1 - Uf)
4 St + Mf  + Uf  + Nf = PPt × PSt × PMf × PUf ×

(1 - Nf)
5 St + Mf  + Uf  + Nf  + Ro = PPt × PSt × PMf × PUf ×

PNf × (1 - Ro)

Exposure assessment 

Exposure levels through human consumption of post 
treated water for each demographic group was calculated 
using formula (1) with daily ingestion volumes for 
drinking water for the Irish population. 

                             D = C × IR / BW                    (1)

Where:  D = Exposure dose (mg/kg/d-1) 
 C = Contaminant concentration (mg/ L) 

IR = Intake rate of contaminated water (L/d-1) 
 BW = Body weight (kg) 

Table.4 Daily drinking water patterns for Irish population 

Demographic group age 
(yrs.)

(IR)
Mean ± SD

(BW)
Mean ± SD

Adult male    (18-64) 0.58 ± 0.67 86.2 ± 15

Adult female (18-64) 0.55 ± 0.56 70 ± 13.7
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RESULTS AND DISCUSSION

Predicted nAg removal through the conventional treatment 
processes reduced the Asurface conc by 1-2 orders of 
magnitude which is significantly lower than the guideline 
limits set by the WHO, EFSA and US-EPA for silver in 
drinking water. The continued reduction of Asurface conc
residuals through each treatment stage are presented in 
Table 5.

Table 5. Residuals mean values after water treatments with 
5th and 95th percentiles. 

Treatment Mean 
(µg/L)

5th 95th

Scenario 1 Alum 2.35E-4 0 8.40E-4

Scenario 2 3.37E-5 0 1.51E-4

Scenario 3 6.34E-7 0 4.12E-6

Scenario 4 1.74E-7 0 1.15E-6

Scenario 5 3.08E-8 0 2.07E-7

Scenario 1 FeCl3 2.13E-3 0 7.83E-3

Scenario 2 3.08E-4 0 1.39E-3

Scenario 3 5.65E-6 0 3.69E-5

Scenario 4 1.58E-6 0 1.01E-5

Scenario 5 2.78E-7 0 1.83E-6

Scenario 1 FeSO4 1.90E-3 2.81E-4 4.46E-3

Scenario 2 2.76E-4 0 8.97E-4

Scenario 3 5.17E-6 0 2.71E-5

Scenario 4 1.42E-6 0 7.97E-6

Scenario 5 2.49E-7 0 1.41E-6

Human exposure through drinking water ingestion 

Preliminary exposure estimates through consumption of 
drinking water for the demographic groups incorporated in 
this assessment were calculated using (equation 1) for their 
daily drinking water consumption patterns (Table 4). The 
greatest exposure was observed for both demographic 
groups following consumption of water treated with 
conventional treatments. Exposure was significantly 
reduced with each additional advanced treatment. Adult 
male (18 – 64 years) exposure to residual nAg in post 
treated water for scenario 1 (Alum Coagulant) indicated a 
mean exposure of 1.62E-9 (90th percentile range 0 - 7.29E-

9) mg/L.  Exposure was significantly lowered in scenario 5 
(incorporating Reverse osmosis) with mean exposure of 
2.08E-13 (90th percentile range 0 - 1.21E-12) mg/L. Water 
treated with FeCl3 coagulant resulted in a mean exposure 
level of 1.46E-8 (0 - 6.48E-8) mg/L to 1.89E-12 (0 - 1.12E-

11) mg/L for scenarios 1 and scenario 5, respectively. 
Water treated with FeSO4 coagulant indicated a mean 
exposure of 1.32E-8 (4.63E-10 - 4.63E-8) mg/L to 1.71E-12

(0 - 9.29E-12) mg/L for scenario 1 and scenario 5, 
respectively. 

Adult female (18 – 64 years) exposure to residual nAg in 
post treated water for scenario 1 (Alum Coagulant) 
indicated a mean exposure of 1.92E-9 (90th percentile range 
0 – 8.31E-9) mg/L. Exposure was significantly lowered in 
scenario 5 (incorporating Reverse osmosis) with mean 
exposure of 2.55E-13 (90th percentile range 0 - 1.55E-12)
mg/L. Water treated with FeCl3 coagulant resulted in a 
mean exposure level of 1.76E-8 (0 – 7.93E-8) mg/L to 

2.27E-12 (0 - 1.44E-11) mg/L for scenario 1 and 5, 
respectively. Water treated with FeSO4 coagulant 
indicated a mean exposure of 1.57E-8 (9.21E-10 – 5.36E-8)
mg/L to 2.08E-12 (0 – 1.12E-11) mg/L in scenario 1 and 5, 
respectively. 

Exposure levels of residual nAg in post treated water 
predicted in this model are significantly below levels 
likely to result in an acute toxicity concern for human 
health through consumption of treated drinking water. The 
chronic exposure to residual nAg is still uncertain. 

CONCLUSION 

Conventional treatment indicated in this model that 
AgNPs are sufficiently removed to below levels likely to 
cause an acute toxicity concern to human health.
Advanced treatment is therefore unnecessary at this 
juncture for removal of nAg based on current estimated 
concentrations of nAg in water sources. Although, as 
environmental concentrations increase these may need to 
be reassessed. 
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ABSTRACT 
A feed to food chain risk assessment model was developed 
to assess the fate of the contaminats triclosan (TCC) and 
triclocarban (TCC) from spreading biosolids on land. The 
model considered parameters such as; concentration in soil, 
plant uptake, bio-transfer into milk and beef, and resulting 
human exposure. Transfer of TCS and TCC from biosolid 
application, biotransfer into milk and beef followed by 
human consumption was considered minimal. From the 
scenarios considered, the greatest exposure of TCC was 
through milk for infants and beef for teens (mean values 
1.14 × 10-7 mg kg-1 bw d-1, 7.41 × 10-8 mg kg-1 bw d-1, 
respectively). TCS and TCC levels were well below the 
estimated acceptable daily intake (ADI). Therefore, the 
concentrations of TCS and TCC in beef and milk represent 
a minor exposure pathway for humans.  
 
INTRODUCTION 
 
The use of biosolids on grasslands could be a pathway 
through which emerging contaminants may be taken up by 
plants and enter the foodchain via grazing animals. This 
may result in potential human exposure viz consumption of 
animal derived food products (e.g. milk, meat). Once an 
emerging contaminant is released into the soil it may be 
degraded by biological, physical or chemical processes, 
leach through to groundwater, transported to surface waters, 
stick to the soil particles or be uptaken by plants (Boxall 
2012). The transfer of emerging contaminants from soil to 
plant has been well documented (Boxall et al., 2006, 
Sabourin et al., 2012, Prosser and Sibley, 2015). However, 
there are significant knowledge gaps regarding the uptake of 
emerging contaminats from plant to animal and subsequent 
human exposure. The antimicrobials triclosan (TCS) and 
triclocarban (TCC) may have the potential to bioaccumulate 
in soil-dwelling organisms and thus exert toxic effects on 
higher organisms through trophic transfer (Clarke et al., 
2016). TCS and TCC are highly hydrophobic and 
bioaccumulate in organisms living in aquatic systems 
exposed to effluent from wastewater treatments (Halden et 
al., 2017). The aim of this study was to develop a feed to 

food chain risk assessment model to estimate the potential 
of antimicrobials (triclosan and triclocarban) to translocate 
from biosolids applied to agricultural land with transmission 
into plants (grass), animal forage and potential human 
exposure through consumption of products of animal origin 
(e.g. milk and meat). 
 
MATERIALS AND METHODS 
 
Predicted environmental concentration in soil  
 
Following an application of biosolids to agricultural land 
the level of contaminant in the soil (Csoil; mg kg-1) was 
calculated  according to Eq. 1 (EC 2003a). This 
incorporates many farm level management practices (e.g. 
application rate, mixing depth) and soil characteristics (e.g. 
bulk density).  
 
Csoil = (Csludge × APPL × (1- fint/100) / (D × BD)         (1) 

 

Where:  
Csludge is the concentration of TCS and TCC in biosolids (mg 
kg-1). APPL is the application rate of biosolids on 
agricultural land for one application (kg m-2). fint is the 
fraction intercepted by the crop expressed as a percentage 
(%) D is the depth (m). BD is the soil bulk density (kg m-3). 
 
The effective concentration of contaminants available for 
plant uptake was adapted from Chiţescu et al. (2014) to suit 
Irish conditions (i.e. organic matter content) and was 
calculated according to Eq. 2.  
 
PECporewater = PECsoil / (Foc × Koc)                     (2) 
 
Where PECporewater is the concentration of TCS and TCC in 
the pore water (mg kg-1). Foc is the fraction of organic matter 
content (Foc) in the soil; and Koc is the soil organic carbon-
water partioning coefficient of the contaminants. Koc is the 
organic carbon-soil sorption coefficient (L kg-1). 
 
The passive transport of organic contaminants from soils to 
plants is calculated using a partition-limited model (Chiou 
et al., 2001).  
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Cpt = αpt × PECporewater × [fpw + fch × Kch + flip ×
Klip]                                                                   (3)

Where Cpt is the concentration of the contaminant in the 
whole plant or in a specific part of that plant on a fresh 
weight base (mg kg-1); fpw, flip and fch are the weight fraction 
of the water, lipids and the sum of carbohydrates, cellulose, 
and proteins in the plant that are assumed to have 
approximately the same partition coefficients Kch; Klip is the 
partition coefficient for the lipids fraction of the plant 
assumed to be equal to the log Kow; αpt is the quasi-
equilibrium factor, the ratio of the respective concentrations 
in plant water and external water, with αpt = 1 denoting the 
state of equilibrium. The magnitude of αpt <1 is a measure of 
the distance to equilibrium (Chiou et al., 2001). It was 
assumed that organic compound partitions between plant 
and water and various organic components were also 
concentration- independent, as such the αpt values are 
approximately independent of contaminant concentrations 
in soil (Chiou and Kile, 1998). 

Transfer model 
Potential intake of TCS and TCC by bovines relates both to 
feed consumption and soil ingestion. According to Chiţescu 
et al., (2014) the daily intake of TCS or TCC by cow’s can 
be calculated by:  

DI = PECsoil × Fsoil   + Cpt × Fpt + Cplant   ×  Fpt   (4)

Where DI is the daily intake of TCS or TCC for grazing 
animals (Cows and sheep) (mg d-1); Fsoil  is the daily intake
of soil by grazing animals (cows and sheep). Fpt is the daily 
intake of feed by grazing animals (cows and sheep). Values 
of  0.1 kg d-1 (Chiţescu et al., 2014) and 0.9 kg d-1   (Duarte 
Davidson and Jones 1996) were used to account for the  
cow’s consumption of soil and a uniform distribution (min 
0.1, max 0.9) was assigned to account for the uncertainty. It 
has been reported that a cow can consume between 12 and 
18 kg d-1 dry matter (Mc Gilloway and Mayne 1996). To 
account for variability and uncertainty, a uniform 
distribution was also assigned. 

The bio-transfer factor 
The BTF represents the ratio of the concentration of a
contaminant found in animal tissues such as beef or milk to 
the animal’s daily intake of tha contaminantchemical  in 
mass of contaminant per day (USEPA 2005).
Equations 5 and 6 show the BTF’s for each chemical in beef 
(BTFb) and milk (BTFm) as follows: 

Log BTFb [mgkg-1/mg d-1] =- 7.735 + 1.033 × logkow (5)
  

Log BTFm [mgkg-1/mg d-1] = - 8.056 + 0.992 × logKow

(6)

Measured concentrations of TCS and TCC in beef or milk 
fat are converted to a fresh meat or whole milk basis. The 

residue concentrations of  TCS and TCC in beef and milk 
are calculated by:  

Cm/b = BTF (b, m) × DI × FC (milk, beef)                             (7)

Where Cm and Cb is the TCS and TCC residue 
concentrations in beef and milk (mg kg-1); The average fat 
content of milk and beef is denoted by FCmilk and FCbeef,
respectively. It was reported that the average fat content of 
milk (FCmilk) is 3.7% (ICOS) (2009) with a value of 4% 
reported by Chiţescu et al. (2014). Uncertainty in the data 
was accounted for by incorporating a uniform distribution. 
Hendriks et al., (2007) reported that the average fat content 
in beef tissue can range extensively from 7.5% to over 27%.
To account for uncertainty a uniform distribution (7.5, 27) 
was also used. 

Human Exposure 
The level of human exposure (HE) is calculated based on 
the quantity of milk and beef consumed using equation 8. 

HE = Cm/b × Mc/bw                             (8)

Where HE denotes human exposure (mg kg-1 BW d-1); Mc is 
the consumption of milk or beef a day, and BW represents 
the body weight of the individual. The Irish Universities 
Nutrition Alliance (IUNA) database on nutritional surveys 
was used to obtain data on milk and beef consumption 
values of the various age groups. A log normal distribution 
was used to model the uncertainty regarding the intake of 
milk and beef. 

Acceptable daily intake  
The ADI is defined as the approximate exposure incurred 
daily over an entire lifetime (expressed on a bodyweight 
basis) without appreciable risks to health multiplied by an 
appropriate safety factor (EC 2003). The European 
Commission Health and Consumer Protection Directorate-
General (2005) suggest a safety factor of 300 composing of
three factors; 10 is for each intra-species, 10 is for each 
inter-species and 3 is for a limited database of studies 
(Prosser et al., 2015). 

ADI (mg kg-1 BW d-1) = NOAEL / 10 × 10 × 3               (9)

Sensitivity analysis 
A Sensitivity analysis was used to identify the sources of 
uncertainty that exert the most influence on the risk 
assessment outputs. Microsoft Excel 2010 with the add-on 
package @Risk (version 6.0, Palisade Corporation, New 
York, USA) was used to perform the simulation using 
Monte Carlo sampling with 10,000 iterations. The model 
resulted in a number of output distributions which can be 
used to predict daily risk of exposure.  

RESULTS AND DISCUSSION 

Table 1 shows the concentration of TCS and TCC in soil 
(PECsoil) following one application of biosolids to 
agricultural land. TCC had a greater concentration in 
biosolids compared to TCS (mean values 3.89 × 10-2 mg kg-
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1,TCC and 2.42 × 10-2 mg kg-1 for TCS) (Table 1). Fu et al., 
(2016) reported that biosolid amendment changes soil 
physio-chemical properties, which in turn alters the 
persistence of TCS and TCC, hence the risk for secondary 
contaminantion such as plant uptake. 

Table 1. Concentrations (mean, 5th and 95th percentiles) of
TCS and TCC in soil, plant tissue and daily intake 

  

Mean concentration of TCS and TCC in plant tissue show 
that TCC had a greater concentration. Fu et al., (2016) 
reported an inhibitory effect of biosolids on plant uptake of 
TCS suggesting that TCS became less bioavailable in 
biosolid-amended soils. TCC had a greater daily intake rate, 
with a mean value of 1.98 × 10-2 mg d-1compared to TCS 
with 1.23 × 10-2 mg d-1 (Table 1).  

The results for mean residue concentrations show that TCC 
had the greatest concentration in beef and milk (mean 
values 1.36 × 10-4 mg kg-1,  and 7.77 × 10-6, respectively).
The results indicate the potential for bioaccumulation (log 
kow 4.9 and 4.6, respectively).  The results for predicted 
mean human exposure to TCS and TCC in beef and milk 
are shown in Table 2. Human exposure to TCC in beef was 
greater for the teen group (mean value 7.41 × 10-8 mg kg-1

bw d-1). Human exposure to TCC in  milk was greater for 
the infant group (mean value 1.14 × 10-7 mg kg-1bw d-1)
(Table 2). However, all human exposure values were below 
the ADI threshold values of 0.10 mg kg-1 bw d-1 for TCS 
and 0.13 mg kg-1 bw d-1 for TCC. 

Table 2. Mean exposure to TCS and TCC from beef and 
milk (mg kg-1 bw d-1)  

Sensitivity analysis was measured by Spearman’s rank order 
correlation. Analysis indicated that the Kow was the most 
important input (correlation coefficient value 0.90) that
affected the variance in model predictions. This indicates 
the importance of the persistence of TCS and TCC and the 
potential to accumulate in sludge and soil in affecting 
exposure extimates. The initial concentration of the 
contaminants in sludge (Csludge) (correlation coefficient 
value 0.20) was another input of importance. This Indicates
the importance of removal during wastewater treatment, 

thus, limiting the potential transmission of TCS and TCC 
from biosolid application through to the food chain. 

Conclusion 
In this study a quantitative feed to food chain risk 
assessment model was developed to assess the 
concentrations of TCS and TCC in biosolids, plant uptake, 
animal transfer and subsequent human exposure. Biosolid 
spreading is considered to be the main route of these 
compounds to the environment. Concentrations of TCC 
were greater in all environmental compartments and human 
exposure pathways. The study showed that infants and teens 
had the highest level of exposure from milk and beef, 
respectively. However, predicted human exposure values 
were well below the ADI. Sensitivity analysis indicated the 
importance of the Kow and the physio-chemical factors that 
influence the persistence of TCS and TCC in the sludge. 
Cross-resistance to antibiotics stimulated by TCS and TCC 
has also been investigated and discovered in many 
pathogenic bacteria. Therefore, more research is needed to 
understand the role of TCS and TCC have on human health.  
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The objective of the study is the assessment of the microbial 
ecology and safety of fisheries in Greece using next-
generation sequencing (NGS). 14 fish samples were obtained 
from local fish stores (Greece) within 1 day from capture. 
The initial microbiota in fish flesh was determined using 
next-generation sequencing (NGS). The main pathogenic 
bacterial species identified in the tested fish samples included 
Vibrio spp., Clostridium spp., Staphylococcus,
Flavobacterium and Janthinobacterium  representing both 
native freshwater habitats and contaminants arising from 
different sources, including sewage and direct contamination 
by wild animals, livestock, and feed. The initial spoilage 
microbiota of fish consisted of various psychrotrophic Gram-
negative bacteria, mainly Pseudomonas, Acinetobacter, 
Moraxella, Shewanella, Psychrobacter, Lactobacillus,
Brochothrix and Photobacterium. The results of the study 
indicate the applicability and usefulness of NGS for the 
determination of microbial flora associated with food-borne 
diseases and spoilage in fish products. 
 
������������
 
Food borne diseases represent a threat for both public health 
and the economy in Europe. Overall, there are more than 250 
different food borne diseases. Most of them are bacterial 
infections. A number of bacterial illnesses might be 
attributed to seafood consumption that has been 
contaminated either at source or either during processing 
and/or retail display. Such illness cases may be related to 
infection with bacteria or the ingestion of toxins having been 
produced in the food product prior to consumption. Along 
with human non-pathogenic bacteria and natural microflora 
relevant to the aquatic environment, pathogenic bacteria are 
often isolated from fish. According to the European Food 
Safety Authority and the literature, pathogens such as 
Campylobacter, Salmonella, Yersinia, E. coli, and Listeria 

monocytogenes are responsible for major foodborne 
outbreaks worldwide (Leisner & Gram, 1999; Novoslavskij 
et al., 2016). Fish is also the most commonly implicated food 
category in outbreaks. Each year in the United States, 

260,000 people get sick from contaminated fish (Barrett et 
al., 2015). According to FAO (2018), disease or illness 
outbreaks from fish and shellfish in the EU between 1983 
and 1992 ranged from 1.9 percent of total food-borne 
outbreaks in United Kingdom (Scotland) to 12.4 percent in 
Denmark. When the known food source was identified the 
range of fish and shellfish outbreaks was from 4.4 percent in 
the United Kingdom (England/Wales) to 16.1 percent in 
Finland. However, not all pathogens are associated with 
foodborne outbreaks through the consumption of 
contaminated fish and fish products.  
At the same time, there is an increasing consumer demand 
worldwide for high quality fish products. However, fresh fish 
is a significantly perishable food product due to its 
composition and its spoilage is attributed mainly to bacterial 
activity. Hygiene practices and temperature during handling, 
transportation and storage are the most important factors that 
determine fresh fish safety and quality up to the consumer 
level. Pseudomonas spp. is reported as the dominant spoilage 
microorganism in aerobic storage of fresh, chilled fish 
(Giuffrida et al., 2013). Pseudomonas spp. growth has also 
been reported as an adequate quality index for shelf life 
evaluation of aerobically stored Mediterranean fish, such as 
gilthead seabream (Sparus aurata) (Tsironi and Taoukis, 
2010; Tsironi and Taoukis, 2012 and 2014). However, 
changes in storage conditions, including temperature and 
packaging, results in significant modifications in the spoilage 
mechanisms and determine the specific spoilage bacteria of 
the fish product. For example, the microflora of modified 
atmosphere packaged fish is dominated mainly by various 
Gram-positive microorganisms, mainly lactic acid bacteria as 
they are more resistant to CO2 (Sivertsvik et al., 2002). A 
codominance of lactic acid bacteria and Brochothrix 
thermosphacta in gilthead seabream stored under 40% CO2 
has been reported by Drosinos et al. (1997), while Dalgaard 
et al (1997) reported considerable contribution of 
Photobacterium phosphoreum in the spoilage of chilled 
modified atmosphere packaged cod, trout and tuna.  
Because of recent crises in food quality and safety, food 
monitoring is regarded as one of the top priorities of the EU-
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Commission. The White Paper on Food Safety reinforces the 
need for controls “from the farm to the fork”, which includes: 
(i) official controls, (ii) raised food safety standards 
according to the microbiological criteria of the Codex 
Alimentarius, and (iii) improved detection methods and 
laboratory quality control. The introduction of next 
generation sequencing (NGS) represents one of the most 
significant and fundamental technological advances in the 
biological sciences since the development of the polymerase 
chain reaction (PCR) in the mid-1980s. It has provided 
powerful new tools for the determination and study of non-
culturable or poorly characterized organisms and emerging 
pathogens and it has enabled rapid and open-ended profiling 
of genotypic and diagnostic markers for virulence and 
antimicrobial resistance (Peters et al., 2004; Diaz-Sanchez et 
al., 2013).  
The objective of the study is the assessment of the microbial 
ecology and safety of fisheries in Greece by next-generation 
sequencing (NGS).  
�
�	�
��	���	���
�����
 
A representative number of fish samples (10 
samples/species) were obtained from local fish stores 
(Greece) and transported to the Department of Food 
Technology (TEI of Athens, Greece) within 1 day from 
capture. 14 different species were studied in total, i.e. (1) 
Atlantic salmon (Salmo salar), (2) Albacore tuna (Thunus 
alalunga), (3) European anchovy (Engraulis encrasicolus), 
(4) Chub mackerel (Scomber japonicus), (5) Atlantic 
mackerel  (Scomber scombrus), (6) European pilchard 
(Sardina pilchardus), (7) Grey mullet (Mugil cephalus), (8) 
European hake (Merluccius merluccius), (9) Gilthead 
seabream (Sparus aurata), (10) European sea bass 
(Dicentrarchus labrax), (11) Picarel (Spicara smaris), (12) 
Comber (Serranus cabrilla), (13) Dentex (Dentex 
macrophthalmus) and (14) Striped red mullet (Mullus 
surmuletus). 
Samples were transported directly to the laboratory in 
polystyrene boxes with appropriate quantity of flaked ice 
(0°C). Upon receipt, fish was aseptically homogenized in a 
laminar flow hood.  
DNA extraction was performed using the NucleoSpin Tissue 
kit (Macherey-Nagel, GmbH & Co. KG, Germany) 
according to the manufacturer’s instructions, with the 
addition of a Proteinase K overnight incubation step at 65o C. 
Extracted DNA was quantified using a spectrophotometer at 
260nm and 280nm. After DNA extraction, 16S rRNA genes 
were amplified using domain-level bacterial primers that 
contain sequencing adapters and unique, sample-specific 
sequences. 
 
�
������
�
In the present study the dominant initial microbiota of 14 fish 
species obtained from the Greek fish market within one day 
from capture were evaluated. 16S rRNA gene sequence 
analysis gave information at both species and strain levels 
(Tables 1-14).  

Table 1: Representative sequencing information of bacterial 
genera identified by NGS for fresh Atlantic salmon  

(Salmo salar) 
 

��[���&!�(�!�%$*1+#!$��
Total number of reads 2903 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Blastococcus 0.35 
Kosuria 0.24 
Propionibacterium 0.22 
Brochothrix 0.78 
Streptococcus 1.1 
Janthinobacterium 0.65 
Shewanella 8.26 
Acinetobacter 9.13 
Psychrobacter 0.26 
Pseudomonas 38.53 

 
Table 2: Representative sequencing information of bacterial 

genera identified by NGS for fresh albacore tuna  
(Thunus alalunga) 

 

��[���&!�(�!�%$*1+#!$��
Total number of reads 17215 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Chryseobacterium 5.65 
Flavobacterium 1.11 
Soonwooa 5.75 
Sphingobacterium 2.85 
Paracoccus 4.6 
Comamonas 2.36 
Acinetobacter 6.42 
Enhydrobacter 0.59 
Moraxella 0.56 
Psychrobacter 2.21 
Pseudomonas 2.98 
Stenotrophomonas 1.09 
Xanthomonas 2.45 

 
Table 3: Representative sequencing information of bacterial 

genera identified by NGS for fresh European anchovy 
(Engraulis encrasicolus) 

 

��[���&!�(�!�%$*1+#!$��
Total number of reads 15927 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Corynebacterium 1.75 
Microbacterium 2.01 
Propionibacterium 1.41 
Staphylococcus 2.87 
Lactobacillus 0.83 
Streptococcus 1.97 
Aeromonas 0.22 
Shewanella 2.1 
Acinetobacter 7.28 
Enhydrobacter 1.42 
Psychrobacter 2.4 
Pseudomonas 3.16 
Aliivibrio 2.0 
Photobacterium 0.56 
Vibrio 3.99 
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Table 4: Representative sequencing information of bacterial 
genera identified by NGS for fresh chub mackerel  

(Scomber japonicus) 
 

��[���&!�(�!�%$*1+#!$��
Total number of reads 7726 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Corynebacterium 1.25 
Propionibacterium 2.4 
Staphylococcus 1.94 
Aeromonas 0.15 
Acinetobacter 17.73 
Psychrobacter 19.55 
Pseudomonas 5.6 

 
Table 5: Representative sequencing information of bacterial 

genera identified by NGS for fresh Atlantic mackerel  
(Scomber scombrus) 

 

��[���&!�(�!�%$*1+#!$��
Total number of reads 11825 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Streptococcus 0.67 
Acinetobacter 10.79 
Psychrobacter 19.87 
Pseudomonas 0.8 
Photobacterium 1.52 

 
Table 6: Representative sequencing information of bacterial 

genera identified by NGS for fresh European pilchard 
(Sardina pilchardus) 

 

��[���&!�(�!�%$*1+#!$��
Total number of reads 18381 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Corynebacterium 1.28 
Propionibacterium 5.16 
Brochothrix 0.04 
Staphylococcus 3.34 
Lactobacillus 1.49 
Lactococcus 0.68 
Streptococcus 0.88 
Aeromonas 1.84 
Shewanella 0.05 
Acinetobacter 8.47 
Psychrobacter 14.83 
Pseudomonas 3.12 
Vibrio 0.05 

 
Table 7: Representative sequencing information of bacterial 

genera identified by NGS for fresh grey mullet  
(Mugil cephalus) 

 

��[���&!�(�!�%$*1+#!$��
Total number of reads 14208 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Propionibacterium 3.54 
Flavobacterium 0.6 
Brochothrix 2.16 
Staphylococcus 3.22 
Lactobacillus 6.72 
Streptococcus 7.62 

Sphingobium 1.55 
Janthinobacterium 0.3 
Acinetobacter 10.75 
Psychrobacter 3.97 
Pseudomonas 4.28 

 
Table 8: Representative sequencing information of bacterial 

genera identified by NGS for fresh European hake 
(Merluccius merluccius) 

 

��[���&!�(�!�%$*1+#!$��
Total number of reads 10488 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Flavobacterium 2.68 
Brochothrix 0.64 
Streptococcus 0.62 
Shewanella 0.09 
Acinetobacter 18.98 
Psychrobacter 12.02 
Pseudomonas 20.21 

 
Table 9: Representative sequencing information of bacterial 

genera identified by NGS for fresh gilthead seabream 
(Sparus aurata) 

 

��[���&!�(�!�%$*1+#!$��
Total number of reads 11777 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Flavobacterium 1.93 
Brochothrix 0.77 
Lactobacillus 20.29 
Streptococcus 0.15 
Janthinobacterium 0.72 
Shewanella 1.01 
Acinetobacter 19.62 
Psychrobacter 1.5 
Pseudomonas 18.53 

 
Table 10: Representative sequencing information of bacterial 

genera identified by NGS for fresh European sea bass 
(Dicentrarchus labrax) 

 

��[���&!�(�!�%$*1+#!$��
Total number of reads 15 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Shewanella 9.62 

 
Table 11: Representative sequencing information of bacterial 
genera identified by NGS for fresh picarel (Spicara smaris) 

 

��[���&!�(�!�%$*1+#!$��
Total number of reads 23066 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Chryseobacterium 1.01 
Acinetobacter 31.95 
Enhydrobacter 6.95 
Moraxella 2.08 
Pseudomonas 1.92 
Photobacterium 0.84 
Vibrio 0.19 
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Table 12: Representative sequencing information of bacterial 
genera identified by NGS for fresh comber  

(Serranus cabrilla) 
 

��[���&!�(�!�%$*1+#!$��
Total number of reads 15526 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Flavobacterium 5.69 
Janthinobacterium 0.2 
Shewanella 0.1 
Acinetobacter 16.81 
Enhydrobacter 0.85 
Psychrobacter 31.01 
Pseudomonas 1.78 
Photobacterium 1.04 

 
Table 13: Representative sequencing information of bacterial 

genera identified by NGS for fresh dentex  
(Dentex macrophthalmus) 

 

��[���&!�(�!�%$*1+#!$��
Total number of reads 9399 
�/��#!%!�/��+&#�*!+�X(���"Z� \��+�!/�*�+/"�
Propionibacterium 1.66 
Streptococcus 2.67 
Acinetobacter 1.05 
Pseudomonas 32.51 

 
 
Table 14: Representative sequencing information of bacterial 

genera identified by NGS for fresh striped red mullet  
(Mullus surmuletus) 

 

Sequencing information 
Total number of reads 12195 
 
Identified bacteria (genus) % valid reads 
Propionibacterium 2,28 
Flavobacterium 0,8 
Staphylococcus 0,95 
Streptococcus 4,73 
Janthinobacterium 0,24 
Shewanella 0,06 
Acinetobacter 1.59 
Psychrobacter 1.23 
Pseudomonas 44.27 

 
 
 
The main pathogenic bacterial species identified in the tested 
fish samples included Vibrio spp., Clostridium spp., 
Staphylococcus, Flavobacterium and Janthinobacterium  
representing both native freshwater habitats and 
contaminants arising from different sources, including 
sewage and direct contamination by wild animals, livestock, 
and feed. The initial spoilage microbiota of fish consisted of 
various psychrotrophic Gram-negative bacteria, mainly 
Pseudomonas, Acinetobacter, Moraxella, Shewanella,
Psychrobacter, Lactobacillus, Brochothrix and 
Photobacterium.  
 

Several researchers have studied the spoilage microbiota of 
iced fish caught from the Mediterranean area by using a 
classical approach and concluded that Pseudomonas and 
Shewanella are the most predominant spoilage 
microorganisms grown on plates. The results of the present 
study are in agreement with previous studies investigating the 
initial spoilage microbial flora of fish (Gram & Dalgaard, 
2002; Koutsoumanis et al., 2002; Tsironi & Taoukis, 2012). 
Psychrobacter spp., which was identified in most of the 
studied species, was first reported as part of the initial 
microbiota of fish from Greek waters by a recent study by 
Parlapani et al. (2015) in sea bream using 16S rRNA gene 
analysis. A high prevalence of Staphylococcus spp. was also 
observed, as also reported by Chaillou et al. (2014). 
Few applications on NGS have been reported recently for the 
determination of microbial flora in food products, i.e. dairy 
products (Ribani et al., 2018), fish (red drum) (Silbande et 
al., 2018) and shrimp (Yang et al., 2017).  
 
�
������������
�
It is necessary to study the prevalence of bacteria in fish to 
ensure a better understanding of ecology and distribution of 
pathogens and spoilage microorganisms in the food chain. 
The determination of fish microbiota is currently carried out 
mainly by phenotypic tests (morphological, biochemical) 
after the isolation of microorganisms using various non-
selective and/or selective growth media. In this study, the 
application of NGS for the microbial assessment of fisheries 
was introduced. The conventional methods for determination 
of microbial flora in food products have been proven to 
detect species when the potential microorganisms are already 
known or expected in advance as the discriminatory 
analytical methods for their identification have to be 
specifically tailored for their identification. On the other 
hand, NGS technologies have changed the way to analyse 
DNA by combining sequencing and quantification of DNA in 
a single step. By using universal primers to amplify several 
regions, it is possible to obtain an internal validation of the 
results derived by the concordance of the assigned reads to a 
species.  
 
Technological developments in the field of microbiology, 
such as NGS techniques and the omics approach in general, 
have significantly enhanced our understanding of the 
behaviour of microorganisms and particularly their 
physiological state. These innovative approaches could 
reveal patterns of responses that cannot be detected by 
classical methods and have the potential to ultimately 
uncover new and powerful methods to control hazards in 
food and feed. This may potentially bring more insight than 
just the usual ‘snapshot’ in the farm-to-fork contamination 
process analysis and therefore contribute to the next 
generation of risk assessment (den Besten et al., 2018). 
Under this context, the present study might be a baseline for 
further investigation of the pathogenic and spoilage potential 
of the identified microorganisms present in Greek (and 
consequently Mediterranean) fish products. 
�
�
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ABSTRACT

The software-based design of active packaging requires
mathematical models of oxygen scavenger reactions. In
this study we present a simple approach for describing
such reactions with a second-order kinetic model and
for determining the corresponding kinetic parameters.
For the example of a gallic acid-based oxygen scavenger
stored at 21◦C and 0% RH, 75% RH and 100% RH,
the model was fitted to oxygen absorption data using
a downhill simplex-based algorithm for numerical op-
timization. As expected, the optimization results de-
pended on the choice of the starting values. To identify
the global optimum of the given parameter space, the
results of multiple optimization runs with varying start-
ing values were analyzed quantitatively. For the scav-
enger reactions at 75% RH and 100% RH unambiguous
minima could be found. The reaction rate constants
are 1.347 · 10−7m3/(mol · s) and 1.496 · 10−6m3/(mol · s)
and the stoichiometric coefficients are 1.639 and 2.534
for 75% RH and 100% RH, respectively. However, at
0% RH, there was no detectable scavenger reaction and
fitting the noisy experimental data led to ambiguous so-
lutions without physical meaning. The analyzed method
for the estimation of kinetic parameters can be applied
for any scavenger reaction, thereby providing necessary
information for active packaging design.

INTRODUCTION

In food packaging technology, oxygen (O2) scavengers
are used to prevent sensitive foods or food components
from oxidation. O2 scavengers are based on substances
that easily react with O2, e.g. iron, sulfite, oxidizable
polymers or natural antioxidants (Vermeiren et al. 2003,
Rooney 2005). In packaging applications, O2 scavengers
can fulfill different tasks: They are used to remove O2

from the packaging headspace and/or for improving the
O2 barrier function of polymeric packaging films.

In the last few years there has been a strong trend to-
wards software-based packaging design. Gas transfer
models have been developed that are now used to opti-
mize packaging designs in terms of tailor-made barrier
properties, e.g. packaging for fresh produce or modified
atmosphere packaging (Cagnon et al. 2013, Van Bree
et al. 2010, Sousa-Gallagher and Mahajan 2013). For
modelling active packaging systems including O2 scav-
engers, a quantitative description of the reaction kinetics
of the scavenger related to typical storage parameters
(e.g. relative humidity and temperature) is necessary.
Thus, novel approaches for modelling scavenger kinetics
have to be developed.
In this study we have a closer look at kinetic models of
scavenger reactions and we focus on the determination
of kinetic parameters from experimental data obtained
for a gallic acid-based oxygen scavenger.

OXYGEN SCAVENGER KINETICS

The function of O2 scavengers relies on the chemical re-
action between the active substance (SC) of the scav-
enger and O2, leading to the formation of oxidation
products (SCox). The overall reaction of an O2 scav-
enger can be written as follows:

SC + nO2
−−→←−− SCox (1)

where n is a stoichiometric factor.
O2 scavengers are characterized by (a) their absorption
capacity, i.e. the amount of O2 that can be absorbed
by a given amount of the scavenger and (b) the
time-dependent absorption of O2, i.e. the rate of the
scavenger reaction. This information is obtained from
O2 absorption measurements. In such experiments, a
defined amount of the scavenger is stored in a closed
vessel under defined conditions, i.e. temperature,
relative humidity (RH) and initial O2 concentration.
The decrease in O2 concentration due to the scavenger
reaction is monitored during storage. Figure 1 shows
the results of an O2 absorption experiment with a gallic
acid-based scavenger.

Different approaches for modelling scavenger kinetics
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Figure 1: Oxygen Absorption of a Gallic Acid-based
Scavenger at various Relative Humidities (RH)

can be found in literature. In recent years, the most
common approach was to approximate scavenger
kinetics with the kinetic law of a first-order elementary
reaction. This approach often results in a good fit of
the experimental data and is easy to apply as there
are analytic solutions readily available (Charles et al.
2003, Galotto et al. 2009). However, it is based on the
assumption that the reaction rate solely depends on the
concentration of one reactant, i.e. O2 or SC. This is
a reasonable approximation when there is large excess
of either O2 or SC (pseudo first-order reaction). In
most packaging applications, however, this assumption
is not valid (i.e. there are low concentrations of O2 and
SC) so that first-order kinetic parameters cannot be
transferred to other packaging systems.

For the software-based design of active packaging includ-
ing O2 scavengers, kinetic parameters independent from
initial reactant concentrations are needed. Recently,
some research groups have successfully applied second-
order kinetic models to scavenger reactions: Dombre
et al. (2015) and Di Maio et al. (2017) described the O2

absorption of polymer-based scavengers with the kinetic
law of a second-order elementary reaction. However, in
these publications the method of fitting kinetic models is
not discussed in detail so that there is still little knowl-
edge about how to generate kinetic information from
scavenger experiments in a way that is advantageous
for packaging design and development. Whenever mod-
els with two or more free parameters have to be fitted
to experimental data, manual fitting methods may fail
to find optimum solutions. In this context, we closely
evaluate the fitting of a second-order kinetic model to
experimental data from O2 absorption measurements in
order to distinguish between different local and global
minima of the objective function of the fit.

MODEL DEVELOPMENT

The active substance of the O2 scavenger used in this
study is gallic acid (3,4,5-trihydroxybenzoic acid, GA),
a simple polyphenol that can be found in many plants.
For the application as a scavenger, it is combined with
the base sodium carbonate (Na2CO3) which serves as a
catalyst for the oxidation. The reaction is triggered by
humidity (Pant et al. 2017). Equation (1) was therefore
rewritten as follows:

GA + nO2 −−→ GAox (2)

GAox denotes all oxidation products that are formed
in this reaction, e.g. larger polyphenols. The reac-
tion mechanism is not yet fully understood and may
include a multi-step polycondensation (Tulyathan et al.
1989). The overall reaction is therefore assumed to be
irreversible.
In this study, we used the kinetic law of a second-order
elementary reaction as the minimal viable approxima-
tion to describe the reaction rate r:

r = k · [GA] · [O2] (3)

Here, r depends on the concentrations of both reactants,
[GA] and [O2], and k is the reaction rate coefficient.
Based on this kinetic law, the net rates of consumption
of GA and O2 were described with a system of ordinary
differential equations (ODE):

d[GA]

dt
= −k · [GA] · [O2] (4)

d[O2]

dt
= −n · k · [GA] · [O2] (5)

The net rate of production of GAox is the same as Equa-
tion (4) but with inverted sign (mass conservation).

EXPERIMENTAL DATA

Experimental data from O2 absorption measurements
with a gallic acid-based scavenger at 21◦C and various
relative humidities was used (Figure 1). In these experi-
ments, 0.06 g of the scavenger were stored in closed cells
with a free headspace volume of 88 cm3 or 108 cm3 and
the O2 absorption (i.e. the decrease of the O2 partial
pressure) was measured non-destructively during stor-
age. To allow for homogenous oxygen exposition, the
scavenger powder was spread in a thin layer on a glass
plate. A more detailed description of the method is
given by Pant et al. (2017). For all measurements, a
fourfold determination was made. The experimental
data (O2 partial pressure in hPa) was transferred to
O2 concentrations [O2] in mol/m3 using the ideal gas
law. The mean square deviation for each experimental
condition was then calculated as follows:

MSEexp =

√√√√ 1

N

m∑
i=1

q∑
l=1

([O2]exp − [O2]mean)
2 (6)
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where N is the total number of observations, m is the
number of parallel experiments, q the number of obser-
vations in one experiment, [O2]exp the observed oxygen
concentration and [O2]mean the arithmetic mean of all
m observations for each l.

PARAMETER ESTIMATION

The ODE system given in Equations (4) and (5) was
solved in MATLAB R2014a (The MathWorks, Inc., Nat-
ick, MA, USA) using the multistep solver ode15s with
the default tolerances AbsTol = 10−6 and RelTol =
10−3. The model was fitted to the available experimen-
tal data sets reflecting different relative humidities from
0% RH to 100% RH. The fit was optimized based on the
minimization of the sum of squared residuals (SSQ) to
be calculated according to the following equation:

SSQ =

m∑
i=1

q∑
l=1

([O2]sim − [O2]exp)
2 (7)

where m is the number of parallel experiments, q the
number of observations in one experiment, and [O2]sim
and [O2]exp the predicted and the observed O2 concen-
trations, respectively.
For the minimization of the SSQ objective function, the
MATLAB function fminsearch was used - a function
based on the Nelder-Mead downhill-simplex algorithm
for local optimization as described by Lagarias et al.
(1998). The termination tolerance of the function value
(Tolfun) was 10−4 and the lower bound on the size of
a step (TolX) was 10−4 (MATLAB default settings).
Fminsearch terminates when both stopping criteria are
fulfilled.
The stoichiometric coefficient n is a measure for the
O2 absorption capacity and gives the number of ab-
sorbed molecules O2 per molecule GA. Therefore, n
must not be negative. Tulyathan et al. (1989) found
an O2 absorption capacity of 4.9 O-atoms per molecule
GA. The reaction rate coefficient k, by definition, must
also not be negative, but there was no previous knowl-
edge about its order of magnitude. Thus, the parameter
space was investigated in the range of n = 0 .. 10 and
k = 10−10m3/(mol · s) .. 1010m3/(mol · s). To enable an
effective search for k in this broad range of 20 orders
of magnitude, a logarithmic scaling of k was chosen.
Thereby, equal importance was attached to all possible
solutions for k, regardless of their order of magnitude.
For the optimization procedure, k was therefore replaced
by k = 10k

′
in Equation (2).

Since the downhill-simplex optimization is known to be
sensitive to the chosen starting values, the initial k and
n values were varied systematically in equidistant steps
over the whole parameter space so that in total 231 dif-
ferent combinations of k and n were tested. For all op-
timization results, the root mean square error (RMSE)

was calculated as a measure of the goodness of fit:

RMSE =

√
SSQ

N − p
(8)

where N is the total number of experimental observa-
tions and p the number of fitted parameters.
The results (combinations of k and n) were then
sorted by their RMSE values, starting with the low-
est value RMSEmin. All solutions with RMSE below
a RMSE threshold = RMSEmin +MSEexp were consid-
ered optimum solutions, where MSEexp is the exper-
imental error of the respective experimental data set
(Equation 6). With this threshold, the experimental er-
ror was taken into account.
To validate the optimization results, the k-n-parameter
space was mapped out in terms of the SSQ objective
function in order to visually identify minimum and max-
imum regions.

RESULTS

In this study, the reaction of a GA-based O2 scavenger
was described with a second-order kinetic model. The
model was fitted to experimental data obtained at 21◦C
and various relative humidities to determine the model
parameters, i.e. the reaction rate coefficient k and the
stoichiometric factor n.
The simulated curves based on the best-fit sets of model
parameters are shown in Figure 1. All experiments could
be sufficiently described with the chosen model. The
goodness of fit was adequate in relation to the experi-
mental error; the results are given in Table 1. These re-
sults show that the GA-based scavenger is activated by
humidity. While there was no detectable O2 absorption
at 0% RH, the values of k and n were significantly higher
at 100% RH than at 75% RH. This may be explained by
the mechanism of the scavenger reaction which includes
the deprotonation of the GA and a subsequent multi-
step oxidation. The availability of water, in presence of
a base, is a prerequisite for the proton transfer as an
initiating step. Both, the velocity of the reaction and
its extent (i.e. the absorption capacity) appear to be
affected by the level of RH. To determine the optimum
reaction conditions of a GA-based scavenger, further re-
search should therefore focus on analyzing the combined
effect of humidity and the base on the reaction kinetics.

For a closer analysis of the fit, the complete k-n-
parameter space was mapped in terms of the SSQ ob-
jective function. In the simple case of a model with two
parameters, this results in a 3-D plot of the parameter
space. Figure 2 shows the contour plots of the different
parameter spaces for 0% RH, 75% RH and 100% RH,
respectively. The SSQ values describe a mathematical
surface that is defined by the model equation and the
experimental data set. Parameter estimation from ex-
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Table 1: Optimization Results for Experimental data at 21◦C and various Relative Humidities (RH)

MSEexp RMSEmin n k
mol/m3 m3/(mol · s)

median min max median min max

0% RH 0.116 0.038 0.06301 0.05165 3.64178 7.54668 ·10−7 1.75341·10−9 9.71062·109
75% RH 0.286 0.347 1.63914 1.63908 1.63924 1.347524 1.34741·10−7 1.3476·10−7

100% RH 0.117 0.256 2.53430 2.53423 2.53439 1.49632·10−6 1.49584·10−6 1.49651·10−6

perimental data, formulated as a nonlinear least-squares
problem, may bear the risk of multiple local optimum
solutions. The related plateau phenomenon has been
discussed in literature (e.g. Choi and Chiang (2009))
and was also observed in our study: The 100% RH
plot shows regions with very high SSQ at low values
of log k and n and a large SSQ plateau at high values
of log k and n. In between these, a minimum can be
presumed around log k = −6 and n = 2.5. Although
less pronounced, similar features can be observed for
75% RH. Here, a minimum can be presumed in the area
of log k = −7 and n = 1.5. At 0% RH, in contrast, there
is no clearly defined minimum region; all SSQ values for
log k < −7 and n < 1 appear to be equivalent minima
forming another plateau.
The described features of the k-n-parameter space are
also reflected in the optimization results shown in Fig-
ure 3. For all experimental conditions it was shown that
the optimization results depended on the chosen start-
ing values, leading to apparent groups of results with
different RMSE (Figure 3). This can be explained with
the characteristics of the parameter space: Whenever
the downhill simplex algorithm started at the plateau
regions, no downhill movement was observable within
the given tolerances so that the algorithm stopped, re-
sulting in k-n-combinations with high RMSE as best-fit
results (numerical local minimum). Additionally, the al-
gorithm got stuck in other local minima (Figure 2) in
the form of trenches at n = 2 and log k = −6. Without
any previous knowledge about k and n, the total mini-
mum of the defined parameter space could only be found
by multiple runs of the downhill simplex algorithm with
varying initial values.
All solutions below a RMSE threshold of 0.155 mol/m

3
,

0.633 mol/m
3
or 0.373 mol/m

3
for 0% RH, 75% RH and

100% RH respectively, were considered optimum solu-
tions. The thresholds are derived from the experimen-
tal error as described above. Table 1 gives an overview
of the found optimum values for k and n. To show the
distribution of the found optimum values, the median,
minimum (min) and maximum (max) values are pre-
sented.
At 100% RH, there was an unambiguous minimum at
n = 2.534 and k = 1.496 · 10−6m3/(mol · s), which
can be regarded as the global minimum given the con-
straints on n and k discussed above. The minimum

and maximum solutions only differed in the 3rd or 4th

decimal (Table 1). Accordingly, an unambiguous min-
imum for 75% RH could be found at n = 1.639 and
k = 1.347 · 10−6m3/(mol · s).
For 0% RH, already from the experimental data it could
be seen that k = 0m3/(mol · s) and n = 0 since there
was no detectable O2 absorption. A fit of these data,
however, resulted in n and k values differing by sev-
eral decimal powers although characterized by similar
RMSE. This example illustrates the sensitivity of the
model to noisy data. The experimental data lack mean-
ingful information, so that the issue of multiple local
solutions arises. In such cases, the downhill simplex-
based method fails to determine the values of the kinetic
parameters.

CONCLUSION

A second-order kinetic model was developed and fitted
to O2 absorption data of a gallic acid-based O2 scav-
enger. It could be shown that this model was suitable
for describing oxygen absorption and the kinetic param-
eters could be obtained. Both, the rate coefficient k and
the stoichiometric factor n were affected by the storage
relative humidity. Thus, gallic acid belongs to the group
of humidity-activated scavenger systems and should be
used for food products with high water activity. The
applied method for determining the kinetic parameters
includes (a) a multiple-run local optimization and (b) a
subsequent quantitative analysis of the results based on
an acceptance threshold derived from the experimental
error. Independent from the model to be fitted, this
method can be used for searching a predefined param-
eter space for a global optimum. In the context of an
increasing demand for active packaging solutions, the
applied method provides meaningful kinetic information
- a prerequisite for software-base packaging design.
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Figure 2: Contour Plots of the Parameter Spaces at
various Relative Humidities (RH)

Figure 3: RMSE Values of the Optimization Results for
various Relative Humidities (RH)
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��
�	 ��� ��� ��%����
��������
�	 �� F � 3�� ����� �$9���
'�� ���� ���������
$��� �	 ��� 	�����
�� '���� �� F � $�
	% F̃ � ��� 
�&
����	� �$9���
'�� �	 ���
� ��������
�	� ��� �
��� $�����

� ���
���
��� min[trace(F̃−1)]� �� ���������� 	
�
	��� �� 	
� ������� �� F̃ ��
��
 �� 	
� �������
�������� �	����� 	
�� ���	����� ��������� 	
�
��� �� ����	�� ��������

� ����������	� max[det(F̃ )]� �
� ������	��� ��
��	������	 �� F̃ �����	� �� 	
� �������	��� �� 	
�
����	 ��������� ������ �� 	
� ����	�� ��	��	���

� 
���������	� max[λminF̃ ]�  �������� 	
� �����	
��������� ����� 	
� �������	��� �� 	
� ������	
��� �� 	
� ����	 ��������� �������

� �
���������	� min[λminF̃ /λminF̃ ]� �
�  !�
���	����� �� ���� 	 	
� �������	��� �� 	
� �	���
"�	���� 	
� ������	 �� �
��	��	 ��� �� 	
� ����	
��������� �������

� ����������	� min[max(diag(JF−1J))]� #� 	
��
��		���� J �� 	
� $��"�� �	��� �� 	
� �����
������	���� �� diag() �� 	
� ��� ������ �� 	
�
�	���� �
� ����� ������	���� �� ������ ����
���� ����	
 �	�� μmax� �
��
 �� �����	�� �����
	
� �������� ����� ����	���� �� 	
�� ��� �	����
�� ����� 	
� %����	������ 	
� ������ ������ ��
	
� ����� ������	���� �� ���������� �
�� ���	�����
�� ���� �������� �����

� ������������	� min[max(
√

diag(JF−1J)/μmax)]�
#� 	
�� ���	������ 	
� �	���� ����	���� �� 	
�
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� ��������������	� min[mean(
√

diag(JF−1J)/μmax)]�
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����� ��
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��� ���"
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����� ����������
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����

�� ����	�"	�����	� �
��� �$ 
�� ����� �����	
����
Vy �� ��&������

Vy = JF−1J �-�

 �� ���
� �$ 
�� ����� �����	
��� ��	��
��
� U $��
./0 	��(���	� ��
����� �� 
��� 	�	��
�� ��

Uk = 2 · 1.96 ·
√
Vy(k, k) �/�
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u =
U
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�4�

 �� ���
 ������
 ������� 
�
 	� �� ������� $���

���� ����� �� 
�� ��� �� ������ ����� 1

������ �� �

��� 
�
 
���� �� ���� 
�� ��� �� ��"
���� ���� �$ 
�� ��
 �$ 	����
���� 
�
 �� 	���������
�� 
�� $��� $	
���� ������ �� 
����$��� � �������"

��� �$ 
�� 
��� ��� �� ������ $�� 
�� $��� ����
�$ ������
 	����
����� �� + ������ ���� ���� �� 
��� 	�"
	��
���� �
 �� ������ 
�
  ���� �������
��� ��

����  �� ��� $��� $	
���� ������ �� ���� � ����
$�� 
�� ����� �����	
���� 	��������� �� 
�� 5"� !���"
�� !����"	��
������


������	��� ��������	

!��	� ���������
 ����� �� ��
����	�� ���� �����
"
��� �����
��� �
� 
�� �����
� �� �� ��
 ��������

�� 
��� ����� ������  � ������
� 
�� ��6���	� �$ 
���
������  ���
� %��� ��
��� ��
� 788 �
��
���� ��
��������
�� $�� �	� 	�	��
��� �$ 
�� ����� �$ 
��
$��� $	
���� ������ ���	����� �� 
�� �������� ��	
����
 �� ��� ����� �$ 
�� ����� ���� 
�� ���
� %���
�����
� ���� 	�	��
��� *��� 
���� �����
�� 
�� ����"
�� ��� �� ������ ���� �� ��
��������  ��
���
� %��� �����
��� �����
� ���� ���� � ���� 
� �"
���� 
�� ��6���	� �$ 
�� ���������
� ��	��
��
� ��
�����

�	����� ���� �������� ��������	

 �� ��� �$ )9: ��&����� 
�
  ����� �
��	
��� ��
�
���
�� ��
��
�� �$ 
�� ����� ����
��� �� �������
'������� 
�� &���
� �$ 
��� ���
�� ����� �$ 
�� �����
����
��� 	� ��6���	� 
�� 	��������	� �
� �$ 
��
����� ����
�� ��
��
�� �� 
�� �
� ��
� ���	� 
��
����� �����	
��� ��	��
��
� ��	������  �� ��6���	�
�$ 
�� ���
�� ����� ����
��� �� 
�� ���� �� 
��
��
����� 
�� ���� ����
 ��
��� �;����� �� �������
7..4�� *�� 
��� �������� ���$��� ���
����
���� �$ 
��
����� ����
��� ���� $�� 
�� �����
��� �$ 
�� ��"
	����� �������� ���� �������� ������
�� ��  ��� ,��
 ���� ���
����
���� ���� ���� 
� ��
������ 
�� ���"

��� �$ 
�� ���� �  	����&���	� �$ 
�� ��3����
��#����	� ��
���� 
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�� �������� �$ 
�� ��	����������  �� ��� �$ 
��
����� ����
��� p̄ �� ����	�"	�����	� �
��� �$

�� ����� ����
��� V ���� 	�	��
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�� ���"
$��� ���
����
����� %����&���
��� 
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���� ����
� �� 	�	��
�� � $�������

u0(p̄) �+�

uk(p̄+
√

3Vk) ��
� k = 1, . . . , νp �<�

uk+νp(p̄−
√

3Vk) ��
� k = 1, . . . , νp �.�

��
� νp 
�� ������ �$ ����� ����
��� �� Vk 
�� 3
��

	����� �$ V �  �� ��� ���� �ū� �� 
��� 	�	��
��
��

ū =
1

3

(
(3− νp)u0 +

1

2

2νp∑
k=1

uk

)
�78�
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σ2
u =

3− νp
3

(u0 − u)2 +
1

6

( 2νp∑
k=1

(uk − u)2
)

����

������� ��	 	
�����
��

������	 
�� �� ��
 ��������� ��� ������ �� ����
����� ��� ��� ��������� �� ��� ���������� �� ��������
����	� ��� ��� ��������	 ������ �����  �� ������ ���
�������� ����� � ����� ���	��� �� 	��� �� � 	�� ���
�� ��!���� "#$%��

��
�� �� �����
�����

&����		�' ( �!��������	 ������ ���� ���������) ��� ��		
��������	' ���� �������� �����	 ���������' ����� 
���	���'
���� *�!�*��+�' ��� ������������� �����	 �������
���' ���� ���� ������ �����	 ��������� �� ����� ,���
������ ������ -������' �	� ��� .��� ����� ���� ����
������	� �� ���� � ��� ������ ���� ������  �� *�!�
*��+� �� ���� ������ �����	 ��������� ������
���� /��� 0 	���	� ��� ����� ������� -������' � ����
��� ����������� �� �- �������' ��� �����������	
����	 ��� 1 ������� �� ������� �������' �������
�� ��!���� ���� �� ������� ������ ������ 2�
����' �� �� ��������	� �� .� � ����� ��������� ��
����	 ��������� ��������� �� ��������	� �� �������
�������� ����	 ���������� ���� �� ���������  �� ����
���������� �����	 ��������� ����� �	���� ��������
������� ��� �!��������	 ����� & ���� �� ��� ��������
����	� ��� ��� ��������	 ������ ����' ���� ���	� ����	�
� �������� ����� ��� �����������	 ����	 ��������
��� �� ��	�� ������� ���� ��3� �		�� ������ �� ���
	��� �� �����������  �� ,��� ������ ����� ��� ����
����� �� � ���� �	�������� �� ��� ��		 ��������	 �����
�� #����� �� �	� �45�4�' ��� � ����.��� ����� ��
������� ��6�� 	���	� �� �������' ��� �� ��� 	�� �����
�� �!��������	 ��������� -������' ��� ������� ��
���� ����� �� � ����� ��	���� �� ���������� � ,���
������ �����' ��+�� �� ���� ��7��	� �� �������� ��
�� ��������	� ��	���	� ��� �� ��� ������� ������	� ����
������ 8�������	�' ����� ���� ������ ���� �� ��
�	���� � ��� ����������

 �� ��		 ��������	 ����� ��� ���������� ���� 1 	���	� ��
�����������' 1 	���	� �� �- �� 0 	���	� �� ����� ������
����  ��� ����	�� � � ����	 �� 19 �!��������	 ���������
 �� ����� �� 	���	� ��� ������� 	������ �� ��� ���
���� ���� ���	� �		�� �����.���	��� �� ��� ��������
����	 �� � ������ ����� �� 	���	� ���	� ����	� � �
�!������� ����� �� �!���������  ��� ����� ��� ���
������� ����� �� �!�������� �� ����	��� � ��� 	���
��� "#$% ����� ��� �� ��!���� ��	���� "#$%�
�� ��� 
�� ��������� ��� �������� � :��� ��  ��
��� "#$%� ��� �������� �� ��		 ���� ��� ��
 �����
����� �  ��	� 0 ���������� � ��� ��		���� ��� ����
������  �� ������� �� ��� �������� �����	 ���������

����� ���� ������� & ��� .���' � ���	� �!������� ���
�	���� � ���� �� ��� �!��������	 ��������� & ���
�����' ; ���	������ ���� ����� �� ��� �����	 ���� ��
��� �����' �� �����	� ��� � 	��������� �� �� ��
������� � ��� ������ �������� �� #2 ,2* ������
;�5 � �� #���<��+���  ���� ��������	 �����	 �����
��� ����� �� ��� �����.����� �� ��������� ����� �#��
��� �� �	�' 455;�� 2� ����' �����	 ��������� ������ ��
���� �= �� 41 �!�������� ���� ������� 8������� ���
����	�� �� ����� ��� �����	 ��������� ������ �:��� ��
����������� ���� ��� ������� �� ��� �����	 ����� ���
	���	� �������� ���� ������� �� ��� "#$%� 8�������
�� ��� ��		 ��������	 �����' ��� "#$% �� �	���	� ������
��� ��� �����	 ��������� ������� -������' ��� ����
������� �� ��� �����	 ��������� ����� �� ��������
��������� ���� ��� ����� �� �!��������	 ���� ���
������ �� ���� 	����� :��		�' ��� 
���	��� ����� ���
� ��	�����	� ���� ��� �� ��!���� "#$%� 8�����
���� ���� �� �������� /��� 4 �!�������� 	��� ��� ���
�����	 ��������� �����' �� �� �� ���� ���� ���� �����
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Food safety in the catering sector of hospitals and other 
health care units is a very sensitive issue and can be a 
challenge due to several factors. Patients are particularly 
susceptible to foodborne illnesses because of disease, 
medication, malnutrition, or because their immune system is 
compromised as a result of age, infection or pregnancy. At 
the same time in hospitals it is not always possible to invest 
the same amounts on kitchen/ laboratory equipment and 
quality control, as in food industry. The ESTIASIS project -a
European Union and Greece co-founded program- undertook 
initiatives and targeted actions in the direction of Food safety 
and Hygiene management in hospitals. An extended 
sampling plan for microbiological testing of surfaces and 
food was implemented in order to highlight the importance of 
control strategies. Final data consisted of nonparametric 
values so the analysis performed was for frequencies and for 
cross tabulation. Data mining was performed with the “a 
priori” algorithm in order to determine the most frequent 
cases and the association rules. The results demonstrate the 
significance of GHPs (Good Hygiene Practices) and offer 
valuable tools for HACCP (Hazard Analysis of Critical 
Control Points) simulators 

������������

Food safety management systems are very useful tools in
helping towards the elimination of foodborne outbreaks as 
they assist the professionals to control the conditions under 
which food is prepared and distributed. Developing and 

implementing such systems in hospital settings can be a 
challenge though. The application of appropriate control and 
assurance measures to guarantee food safety are directly 
affected by several factors. The number of special recipes 
and their methods of preparation are considerable while 
patients are differentiated from the general population in 
terms of their needs and their resistance to lower quality 
foods due to their low immune system. The meals vary 
according to feed needs, so the final products are not as 
standardized as in the food industry and the supplies required 
cover almost the full range of the food market. On the other 
hand, hospital catering services are harmonised with other 
hospital services since they are not an exclusive activity of 
the institution. The staff involved in this sector are of 
different specialties, making proper training difficult. 

Several cases of foodborne outbreaks in hospitals have been 
reported due to Salmonella enterica, Clostridium 
perfringens, Listeria monocytogenes, Escherichia coli O157, 
and norovirus (Lund and O’ Brien 2009, Tsakali et al. 2016). 
Cases of foodborne illnesses in hospitals, may lead to serious 
diseases, the treatment of which is costly and there is the 
possibility of spreading to other patients (Lund and O’ Brien 
2009, Palmer et al. 2000). Improper practices responsible for 
microbial foodborne illnesses have been well documented by 
Egan et al. (2007) and typically involve cross-contamination 
of raw and cooked food, inadequate cooking, and storage at 
inappropriate temperatures but also poor personal hygiene 
and food from unsafe sources (FDA 2010). Food safety 
programs of the past tend to correct the hazard conditions 
after they have been occurred (Yousif et al. 2013). The 
HACCP approach is to control problems before they happen 
during processing and/or serving (McSwane et al. 2003). 
Hazard analysis and critical control points are considered as 
an effective and rational means of assuring food safety, 
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which can be applied throughout the food chain from primary 
production to final consumption (Domenech et al. 2008). 
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The Estiasis project was a European Union and Greece co-
founded program which focused on the design and the 
development of intervention programs for food safety 
management in hospitals, nursing houses and infirmaries of 
chronic diseases. The program lasted three years and 
consisted of three stages. Initially, fifteen health units in the 
Greek mainland were selected and assessed for the 
implementation of food good hygiene practices (GHP). This 
stage included diagnostic studies and mapping of the existing 
practices with in-situ visits by food safety inspectors and with 
a self-assessing questionnaire. Conduction of successive tests 
on the prevailing conditions in production areas and 
equipment also took place as well as consecutive 
microbiological and chemical analyzes in food materials, 
prepared meals and surfaces. All these were used for the risk 
identification and definition of Critical Control Points 
(CCP’s) and finally the creation of corrective action reports 
for each health unit. The management and the employees 
involved from each health unit were informed about the 
results of the diagnostic studies and targeted actions were 
suggested in the form of a technical report. Based on the 
findings of the first stage a Template Manual of Food 
Hygiene and Safety was designed, in accordance with the 
requirements of ISO 22000:2005 standard. The prepared 
manual corresponded to actual realistic facts and it could be 
also used by other health units with suitable small 
adjustments, where appropriate (Tsaknis et al. 2014). At the 
same time, original informative material for the employees of 
the health units was prepared on the effective implementation 
of food hygiene and safety and the requirements of the 
legislation.  A -10 hours-seminar for the awareness of the 
employees was then followed. After the completion of the 
corrective actions and the training of the staff, the facilities 
which met the requirements of the ISO 22000:2005 standard 
were certified by an independent agency. For the 
dissemination of the importance of the Estiasis actions, a web 
site was created, three workshops took place and there were 
several publications in the local press. 

The aim of this paper is to present the results of the 
microbiological testing of food and surfaces which were used 
for the assessment of GHPs in the health setting prior and 
after the implementation of corrective actions, the training of 
the employees and the establishment of a realistic Food 
Safety Management System. 
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Samples were taken from the catering areas and the relating 
equipment of 15 health units in Greece at two stages. The 
first stage was during the first visit of a food safety inspector 
in order to evaluate the conditions and the second after the 
implementation of corrective actions and training of the staff. 

The period between the two stages was at least one month 
but no longer than four months. 

Surfaces  
For the microbiological sampling of the surfaces a swab 
technique that met the requirements of ISO18593:2004 
standard, was used. As hygiene indicators, the parameters 
selected and tested were Total Viable Count (TVC) by ISO 
4833:2003 and Coliforms by ISO 4832:2006. The surfaces 
included benches, disks, trays, cutlery, dishes, pots, 
refrigerators, handles and environmental air and were divided 
in three categories: surfaces of Direct Food Contact (DFC), 
surfaces of Indirect Food Contact (IFC) and surfaces of No 
Food Contact (NFC). 

Food 
Due to the high variation in the menus of the different health 
units the food samples were divided in two big categories: 
Raw Material for further processing (RM) and food Ready to
Eat (RTE). As hygiene indicators, all food samples were 
tested for Total Viable Count (TVC) by ISO 4833:2003, 
Coliforms by ISO 4832:2006 and Escherichia coli by ISO 
7251:2005. All food samples were also tested for the 
enumeration of coagulase-positive staphylococci by ISO 
6888-1:1999 and Salmonella spp. by ISO 6579:2002.  Meat 
and dairy samples were also tested for Listeria 
monocytogenes by ISO 11290:1996. 

The amount of the samples tested per category prior and after  
the Estiasis intervention actions, are presented in Table 1.

Table 1: Summary Table for all Multiple Response Items 

����	�
�� ���� �
N= 876 ���� ���� ��� ��
� ��� Total
Before 79 226 149 81 21 556
After 35 101 41 79 64 320
All 114 327 190 160 85 876

+#+�	�+�)"!"�

All the reports of microbiological analysis for food and 
surfaces were collected and classified. After thorough 
examination of all the reports the information was registered 
in data-sheets with the following variables: hospital code, 
sampling food or surface, date of sampling and the 
microbiological criteria. Furthermore the date was 
characterized as “before” or “after” according to the timing 
of the intervention. The food items were classified as raw 
materials (RM) and ready to eat (RTE) and the surfaces as 
direct food contact (DFC), indirect food contact (IFC), no 
food contact (NFC). The microbiological criteria were 
classified as pass or fail, according to the outcome of the 
analysis in reference with the EU regulations for 
microbiological criteria. Statistical analysis was performed 
with Statistica 8.0 (StatSoft Inc. 2007). Final data consisted 
of nonparametric values so the analysis performed was for 
frequencies and for cross tabulation. Data mining was 
performed with the “a priori” algorithm in order to determine 
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the most frequent cases and the association rules (minimum 
support 10% and minimum confidence 80%). 
 
�
������	������������
 
The results of the data analysis of the microbiological testing 
of both surfaces and food samples are presented in Table 2. 
It is profound that the number of RTE food and RM that 
could be considered acceptable is higher after the 
intervention actions than it was before. Concerning surfaces 
the total number of samples taken after was lower than the 
number of samples taken before, since most of the samples 
were acceptable. Again, in the categories of NFC and IFC it 
is observed that the number of samples that failed prior to 
interventions is lower than after the implementation of 
Estiasis. However, in the case of DFC surfaces the number of 
unacceptable samples was greater than the accepted samples 
both prior and after the intervention actions. The percentage 
of fail even increased from 60.4 to 75.6%.  
 
Table 2: Summary Table for all Multiple Response Items 
(food-surf.sta) Totals/percentages based on number of 

respondents (multiple identical responses were ignored) 
 

� � ��%$*�� 	%#�*�
N=873 category .+""� %+!�� .+""� %+!��

Surfaces NFC 20 59 23 12 
 IFC 81 145 54 47 
 DFC 59 90 10 31 

Food RTE 77 3 76 1 
 RM 19 2 58 6 

 
In Table 3 some association rules that come out of the results 
are presented. Rule 3 and rule 9 seem to be tautological, 
however the difference in confidence demonstrates that it is 
more likely that a food sample that passed before the 
interventions could be raw materials and not ready to eat. 
The difference between rule 4 and rule 1 is that there are 
more cases of raw materials than ready to eat that were not 
acceptable at sampling after. It would be expected that rule 2 
and 5 have difference with rule 5 and 6 since raw materials 
do not have any kind of processing so it is very possible to 
fail. However, rule 7 and 8 are unique and show that most of 
no food contact surfaces could fail before while most of the 
direct food contact surfaces could pass before. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3: Association rules originating from the results 
 

� IF THEN Support 
(%) 

Confidence 
 (%) 

1. after, RTE food-pass 8.7 96.2 
2. RTE food-pass 17.5 95.6 
3. before, RTE food-pass 8.8 95.1 
4. after, RM food-pass 6.6 90.6 
5. RM food-pass 8.8 90.6 
6. before, RM food-pass 2.2 90.5 

7. surface-pass, 
DFC before 6.7 85.5 

8. NFC, surface-
fail before 6.7 83.1 

9. before, food-
pass RTE 8.8 80.2 

 
The results indicate that the intervention actions of the 
Estiasis had an impact on the hygiene conditions on both 
surfaces and food except the case of DFC. The results could 
be easier interpreted when the different food categories are 
compared, for example to high risk food and to low risk 
food. In establishments where there is a lack of other means, 
the training of employees has more direct impact on the 
attention to high risk food. Tsakali et al. (2016) demonstrated 
that during the Estiasis project the reduction of 
microbiological index values was greater in processed meals 
where the impact of handlers’ good practices is crucial. The 
raw materials were better preserved and showed a reduction 
of the total plate count value by 75.0% while ready meals 
were better prepared and showed a reduction of 99.5% and 
99.9% for cooked meals and fresh green salads, respectively. 
In the case of DFC the results need further investigation 
since the samples after the interventions was significantly 
lower and any conclusions could not be considered safe.  
 
������������
�
The Estiasis project run for the first time an extended 
microbiological sampling plan for the evaluation of the 
conditions in the catering session of Greek health units and 
the impact of focused intervention programs towards food 
safety management. The results indicate the good initial 
condition of catering departments but also the importance of 
training and the implication of FSMS for the constant 
improvement of the settings. The data produced are a useful 
tool for further analysis by HACCP assistants and simulators. 
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ABSTRACT  

European regulation previously imposed to
slaughterhouses that pork carcasses must be chilled 
immediately to ensure a core meat temperature below 
7°C before future handling operation. Recently the 
regulation was amended and offers the opportunity to 
transport carcasses with a core temperature > 7°C from 
the slaughterhouse to the cutting plants but with 
continuous refrigeration during their transportation.  The 
purpose of this study was to evaluate the impact of the 
regulation modification on the microbial growth on the 
carcasses surface. First, the heat and mass transfer during 
refrigerated truck transportation were predicted using a 
3D pork leg model. Predicted temperature and water 
activity of the carcasses surface were then used to 
evaluate microbial growth on the surface. The obtained 
results showed that in the studied conditions, the leg 
reached the required temperature (< 7°C) at the core after 
10 hours of transportation. Small change in water 
content/activity was observed. Based on the proposed 
predictive microbiology model, the maximum microbial 
load increase was 2.5 log10 after 30 hours of 
transportation. 

NOMENCLATURE 
 water activity 

 minimum water activity for microbial growth 
  air specific heat capacity (1004 J.kg-1.K-1) 

Cp  ham specific heat capacity (3200 J.kg-1.K-1)
  water concentration in the leg (mol.m-3) 

Da mass diffusivity of air (m2.s-1) 
  water diffusivity inside the leg (m2.s-1) 

h  convective heat transfer coefficient (W.m-2.K-1) 
k  mass (water) transfer coefficient (kg.m-2.Pa-1.s-1) 
Le  Lewis number of air ( 0.777) 

  latent heat of water evaporation    (2450 kJ.kg-1)
 molar mass of water (18 g.mol-1) 

 microbial load at the surface (CFU.cm-2) 
  atmospheric pressure (101325 Pa) 

 saturated vapor pressure (Pa) 
q heat flux (W.m-2) 
RH air relative humidity (%) 
t  time of transportation (s) 

  leg temperature (K)
 minimum temperature for microbial growth (K) 

  surface temperature at the muscle or rind part 
(K) 

  air temperature around the muscle or rind part 
(K) 

Xw water content in the leg (kg water/kg total)
Y logarithmic microbial load at the surface             

log10 (N)
 thermal diffusivity of air (m2.s-1) 
 microbial growth rate (s-1) 
 microbial reference growth rate (s-1) 

  water evaporation flux from product surface 
(kg.m-2.s-1)

λ  ham thermal conductivity (0.45 W.m-1.K-1) 
  ham density (1072 kg.m-3) 

INTRODUCTION 

In order to prevent the contamination of meat with 
pathogenic during slaughter operations, legislation 
requires the application of refrigeration immediately after 
post mortem inspection of carcasses. However, it is 
important to control the kinetics of product temperature 
reduction to optimize the meat maturation (ensuring a 
good technological quality) and the sanitary quality 
(Savell et al., 2005).  

French and European regulations have been enforced for 
the temperature of meat carcasses before and during 
transportation (Anonymous, 2004). According to this 
regulation, the meat must be chilled to reach a core
temperature not exceeding 7°C as soon as possible. This 
refrigeration must be carried out in the cold rooms of the 
slaughterhouse before any carcass handling operation 
such as transport or cutting.  

However, this strict regulation does not make the 
difference between the types of pathogenic and spoilage 
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microorganisms knowing that in the case of pork 
carcasses, there are essentially aerobic bacteria on the 
surface. Thus, in 2014, EFSA adopted a new scientific 
opinion which concluded that the surface temperature is 
an appropriate indicator of bacterial growth. 
Consequently, derogations have been adopted in some 
countries to allow the transport of carcasses or half-
carcasses with a core temperature above 7°C, if the 
transport duration is less than 2 hours.  

These derogations eventually triggered in 2016 a new 
scientific opinion on the growth of bacteria during the 
storage and transport of meat carcasses (EFSA, 2016). As 
some bacteria, especially Pseudomonas spp., can reach 
critical levels much faster than pathogenic bacteria, their 
growth kinetics may be an indicator of the temperature 
abuse during storage and transport.  

Because of the air temperature and velocity heterogeneity 
in a refrigerated semitrailer, lower product temperature is 
often observed at the front and higher at the rear. The 
position of sanitary risk (zone of high temperature and 
low velocity) can be influenced by the semitrailer design 
and the carcass arrangement. Thus, an aerodynamic and 
thermal study in a refrigerated semitrailer loaded with 
meat carcasses is essential for the understanding of the 
airflow and the heat transfer coefficient variation at 
different position (Merai et al., 2018). This allows the 
identification of risk zones (areas where low air velocities 
and low convective transfer coefficients are observed). 

The purpose of this study was to evaluate the impact of 
the regulation modification on the microbial growth on 
the carcasses surface. First, the heat and mass transfer 
during refrigerated truck transportation were predicted 
using a 3D pork leg model. Predicted temperature and 
water activity of the carcasses surface were then used to 
evaluate microbial growth on the surface. The developed 

model can be used in the future to study the influence of 
transport conditions (e.g. loading temperature of 
carcasses and air relative humidity) on the growth of 
bacteria at different areas in refrigerated semitrailer. 

MATERIALS AND METHODS 

Our problem statement is the simultaneous heat transfer, 
mass (water) transfer and microbial growth in a complex 
geometry object such as a meat carcass exposed to 
different operating conditions encountered in a 
refrigerated semitrailer. In this case, several transport 
phenomena occur, heat transfer by conduction inside the 
product and convection between product surface and air. 
Water migrates from the product inside to the surface and 
evaporates into the surrounding air. The product 
temperature and the water activity at the surface are 
determining factors of microbial growth. 

3D geometry and meshing   

A 3D model developed in COMSOL ® Multiphysics by 
Harkouss et al., 2018 of a pork leg was used in order to 
predict the temperature, water activity and microbial 
growth evolution on the muscle surface part during 
transportation (collaboration with INRA-Theix, France).

Based on X-ray imaging of a real pork leg, a 3D 
geometry was produced respecting its different parts, i.e. 
rind, muscles and bone (Figure 1a). A volumetric mesh 
was then constructed on the 3D geometry (42 cm of 
length; 32 cm of width and 15.8 cm of depth) (Figure 1b) 
consisting in 202000 tetrahedral meshes and containing 
the different parts. 

Two zones were considered: rind part with low water 
evaporation and muscle part with water evaporation 
(Figure 1c). 

Figure 1: Views of (a) the 3D leg geometry and its dimensions, (b) the volumetric tetrahedral mesh with the different 
components of the leg imported into Comsol ® Multiphysics software and (c) two considered zones on the leg (Harkouss

et al., 2018).
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Numerical models 

Heat transfer modelling 

In order to numerically simulate heat transfer inside the 
leg and predict temperature evolution during 
transportation, Fourier law was used:  

 (1) 

This equation was applied and solved in all domains of 
the numerical leg, except the bone which was considered 
as thermally insulated.  

At the air-leg interface, both the thermal convection and 
the energy exchanged during water evaporation were 
taken into account. Thus, at this boundary the heat flow 
rate q was calculated as follow: 

 (2) 

Mass transfer modelling  

The water migration inside the carcasses during 
transportation can be modelled by the Fick equation that 
was solved in all domains except in the bone: 

 (3) 

The water diffusion coefficient can be estimated by the 
equation presented by Ruiz-Cabrera et al. (2004) which is 
a function of water content (Xw): 

  (4) 

For the boundary condition (product surface), water 
evaporation flux was calculated using the following 
equation: 

 (5) 

Water evaporation was assumed to occur only on the 
muscle part of the leg. k was calculated from the 
convective heat transfer coefficient using the Chilton 
Colburn analogy (Kondjoyan and Daudin, 1997): 

   (6) 

and  (7) 

Water activity was expressed as a function of water 
content (Rougier et al., 2007): 

  (8) 

Air temperature and relative humidity profiles were 
measured during real pork carcasses transportation. The 
convective heat transfer coefficient h was measured in a 
laboratory scale on the muscle part of the leg. 

For the simulation, air temperature and relative humidity 
around the leg were considered constant (RH = 97 %, Ta 

= 4.5°C). Initial water content in the pork leg of 0.75 kg 
water/kg total and initial temperature of 15°C were 
assumed. Heat convection coefficient was fixed at 20 
W.m-2.K-1.  

Microbial growth modelling 

In order to highlight the influence of surface temperature 
and water activity evolution on a possible microbial 
growth, a simple preliminary model without lag phase 
was used (eq.9). 

   (9) 

where  was obtained using a secondary model that takes 
into account temperature and water activity evolution: 

  (10) 

No growth is assumed for T < Tmin or aw < awmin. As a first 
approach, simulations were made for Tmin = 4.5°C, awmin = 
0.9 and  value is fixed at 0.003 s-1. These values 
depend on the microorganism and other food 
characteristics like salt concentration or pH. The Tmin and 

awmin values were chosen as representatives of values that 
characterized psychrotrophic bacterial species involved in 
meat spoilage (Gill & Jones, 1992). 

Supplementary studies are under way to estimate these 
values for specifics microorganisms often encountered on 
carcasses and meat cuts like Pseudomonas.  

RESULTS AND DISCUSSION 

Temperature evolution during transportation 

To visualize the temperature evolution inside the leg for 1 
h, 5 h, 10 h and 30 h transportation, 4 horizontal slices 
have been selected using the same temperature scale 
(Figure 2). 
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Figure 2: Temperature distribution in four horizontal slices of the carcasses’ leg during transportation (t = 1 h, 5 h, 10 h 
and 30 h) showing the minimum and maximum temperatures. 

Water activity evolution during transportation  

Water activity varies slightly (results not shown) and can 
be considered constant around the initial value (aw ≈ 
0.96). This small variation can be explained by the high 
relative humidity (97 %) of the air in the loaded 
refrigerated truck due to the air recycled during 
transportation.  

Microbial growth during transportation 

After 10 hours of transportation, order of magnitude of 
transportation time in France, the microbial load 
increases and reaches log10 = 1.4 (Figure 3).  This 

value is consistent with observed increase of total 
psychotropic microflora during carcass cooling (Gill and 
Jones, 1997; Afssa, 2009).

According to the European legislation (EFSA, 2016), for 
30 hours transportation of carcasses with initial core 
temperature of 15°C, the contamination should not 
exceed CFU.cm-2 (or 4 log10). Predicted results 
showed that the logarithmic load increases: maximum 
value of  is lower than 2.5 after 30 hours 

(with ). To respect the regulation, the initial 
contamination should not exceed  CFU.cm-2

in the studied conditions. This initial value of total 

microflora is consistent with existing literature (Gill and 
Jones, 1997).  

Further work is to be conducted to evaluate the initial 
level of contamination on carcasses to accurately evaluate 
the final contamination. 

Figure 3: Microbial growth evolution during transportation (at 1 h, 5 h, 10 h and 30 h) showing the minimum and 
maximum values 
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CONCLUSION AND PERSPECTIVES 

Models were developed to predict the microbial growth 
on the surface of the lean part of a pork leg during 
transportation. This choice was based on the fact that the 
leg is the most problematic in the whole pork carcass as it 
is the largest part and so it is difficult to cool.  

Temperature, water content and water activity evolution 
were simulated for 30 hours of transportation (Ta = 4.5 
°C, RH = 97%, , T0 = 15 °C). Small 
changes were observed for water activity while 
temperature decreased rapidly at the surface of the leg (< 
7 °C after 1 hour). After 10 hours of transportation the 
microbial load increased and reached log10 ( ) = 1.4.  

In a future work, different scenarios will be studied 
varying the relative humidity, air temperature and the 
heat convection coefficient as a function of the position 
in the semi-trailer loaded with pork carcasses. 

This parametric study will allow a precise prediction of 
the microbial growth in the most problematic zones of the 
semi-trailer already identified in our previous work 
dealing with air velocity distribution around and between 
the carcasses.  
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ABSTRACT 
 
In this work the efficacy of filters coated with ZnO 
is assessed under realistic pear warehouse storage 
conditions. These filters are evaluated in relation to 
their efficacy to curtail cross-contamination by 
trapping spore contaminants and reducing their 
activity in that trapped environment. The work is 
built based on previous research in which the 
agressiveness of different fungal contaminants was 
assessed and their antifungal properties were 
evaluated quantitatively on nutrient media and ZnO 
coated filters. The coated air filters, after a scaled-
up operation of a six-month period, effectively 
trapped and inactivated any microbial contaminants 
after a scaled-up operation of a six mothn period. 
 
INTRODUCTION 
 
Control of particulate matter in the air is of utmost 
importance in industrial environments in which 
hygiene standards are strict, e.g., healthcare, food 
environments, etc. As reviewed by Brincant et al., 
(2016), air filtration is applied, for instance, to 
clean rooms, milk packaging facilities, meat 
production and packaging lines and in the 
production of soft cheese, mainly to protect the 
products from fungal spores, dust or any other 
organics matter. Conseqeunetly, the aim of most of 
the filters is to provide a physical barrier which 
particles cannot pass through, or which particles 
stick to (EHEDG, 2006).   

Nevertheless, there are materials which are trapped 
by the filter forming the so-called cake. Increase of 
the cake’s thickness, will increase the path that 
particles in the air stream are forced to travel 
through. This will increase the pressure drop across 
it and at some point the filter will not be efficient 
enough. Additionally, filters could also act as a 
medium in which fungi and bacteria can grow. 
Since physical filters only trap spores, without 
deactivating or destroying them, the spores 
immobilized on the filter can utilize the trapped 
organic matter as a source of food.  
 
It is therefore imperative to identify alternative 
functional filtration systems  that may have some or 
most of the following functions: (i) remove 
contaminating micro-organisms from the air, (ii) 
reduce or prevent growth of micro-organisms, (iii) 
prevent their ingress, (iv) curtail cross-
contamination, (v) direct bioaerosols away from 
the food stuffs, (vi) not act as an additional source 
of contamination. 
 
The aim of this work was to design and develop a 
novel air filtration system coated with ZnO 
nanoparticles, able to trap and neutralize fungal 
spores of pear warehouses. The specific objectives 
were to integrate information of the growth 
dynamics of the most common pear postharvest 
fungal isolates, the efficacy of ZnO nanoparticles 
against them, the antifungal properties of ZnO 
nanoparticles coated on commercial filters in order 
to design and assess the efficiency of coated filters 
under realistic conditions. 
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MATERIALS AND METHODS 

Fungal growth assessment and ZnO inhibition  
 
This information was originally presented at 
Sardella et al. 2016. In summary Penicillium 
expansum, Botrytis cinerea, Rhizopus stolonifer 
and Alternaria alternata used in this study. The 
estimated μ and λ were further expressed as a 
function of temperature using the Cardinal Model 
with Inflection (CMI)  
 

 Eq. (1) 

    Eq. (2) 

where Topt, Tmin and Tmax (°C) are the theoretical 
optimum, minimum and maximum temperature for 
growth, respectively and μopt (mm/h) and λopt (h) 
are the growth rate and the lag time at the optimum 
temperature, respectively.  
 
Additionally, a turbidimetric assay was performed 
(originally presented at Sardella et al. 2017) to 
investigate the antifungal activity of ZnO 
nanoparticles. The fractional areas (coming from 
the analysis of O.D. versus time) were then 
correlated with the nanoparticles’ concentration as 
follows:  

   Eq. (3) 
where, p1 is the concentration at maximum slope 
and p2 is a slope parameter. The minimum 
inhibitory concentration (MIC), the non-inhibitory 
concentration (NIC) were estimated:  

 Eq. (4) 

 Eq. (5) 

Antifungal properties of coated filters  
 
HS-Alpha Pak (HS-Luftfilterbau GmbH, efficiency 
40–60%, P = 40–50 Pa) were immersed in either of 
two suspensions made up of ZnO nanoparticles 
(Sigma Aldrich, USA) suspended in propan-2-ol 
having a concentration of 12 mM or 120 mM for 
either 0.5, 5 or 50 minutes. A modification of the 
slide-culture method was used to test the 
nanoparticles coated filters for growth inhibition 

(as originally presented by Decelis et al. 2017). 
ZnO coated filters were soaked in nutrient agar 
while conidial suspensions were used to inoculate 
the media. Visual examination of the fungal growh 
in form of binary responses was reported after 
incubation at optimal conditions (25°C for 5 days).  
 
Prototype development, coating and validation 
in realistic conditions 

A filter prototype coated with 120 mM of ZnO 
nanoparticles (concentration was selected based on 
the previous efficacy studies) was tested under real 
conditions of an acclimatized pear warehoure. 
After 6 months of operation at -0.5oC, 1-3% O2, 0-
5% CO2, the filter was unpacked under a fume 
hood and different sections of its surface were 
excised with a scalpel. The above mentioned filter's 
properties were then investigated by performing 
the following experimental procedures: 
 
Method 1: Assessment of trapped microorganisms. 
 
An air sampling system has been setup into a sterile 
flow cabinet in order to assess whether the spores 
could be detached from the filter's surface. Three 
different sections with a size of approximately 4.8 x 
4.8 cm, each one coming from three different 
selected areas of the filter, were fitted into a plastic 
adapter connected to a manifold system. A 0.2 μm 
sterile membrane was inserted between the 
manifold and the adapter in order to trap the spores 
eventually present into the air flow. An amount of 
about 3000 L of sterile air (2880), coming from the 
flow cabinet, was sampled for each section. 
Hereafter, the membranes were aseptically 
transferred onto Czapek Yeast Agar (CYA) plates 
and incubated for 6 days at 25°C. 
 
Method 2: Assessment of trapped microorganisms.  
 
Three different areas of the filter were chosen and 
three sections, with a size of approximately 4.8 x 
4.8 cm, were obtained per each area. The surface 
of each section was flooded with 10 mL of a sterile 
0.05% Tween 80 suspension and scraped off with a 
sterile bent rod in order to detach spores eventually 
present onto the surface. Hereafter, 100 μL of the 
resulting suspension from each section, were 
spread uniformly onto the surface of CYA plates. 
Plates were finally incubated for 6 days at 25°C. 
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Method 3: Assessment of surface contaminants. 
 
Thirty-three sections from all the four selected 
areas of the filter were obtained (twenty-one 
sections from the first three areas, twelve from the 
fourth one) and aseptically transferred into cell-
culture flasks filled with 60 mL of CYA. Sections 
(three per flask) were placed onto the agar with a 
pair of tweezers. Sextions' size was approximately 
4.8 x 2.4 cm. Flasks were incubated for 6 days at 
25°C. For all these studies fungal structures were 
observed under high power microscopy (Olympus 
CX31). After observing such features, keys were 
found in a Mycology Atlas (Atlas of Clinical Fungi: 
de Hoog, 1995) and were used to aid in the fungal 
identification. 

RESULTS 
 
From the fungal growth assessment at different 
temepratures, it was found that R. stolonifer was 
the most aggressive one since it showed the highest 
μopt value. The aggressiveness of the four isolates 
can be sorted as follows: R. stolonifer > B. cinerea 
> A. alternata > P.expansum. The four isolates 
were also sorted according to their lag time 
duration as follows: R. stolonifer<A. alternata<P. 
expansum<B. cinerea. Hereafter, the MIC and NIC 
of selective fungi were identified. In the case of 
P.expansum this was found to be MIC = 9.8 mM, 
NIC = 1.6 mM.  
 
In the case of the antifungal properties of the 
coated filters, Penicillium expansum was the more 
sensitive organism, with no growth reported for the 
filters immersed in a 12 mM ZnO nanoparticles 
suspension for 0.5 min.  
 
Based on these results large scale filters were 
coated and tested under realistic condtions by using 
the 3 methods presented in the Materials and 
Methods.  
 
Figure 1 shows that in one section out of three, a 
fungal colony was present. The colony was isolated 
and the fungus identified was Cladosporium spp. 
This is an indication that any previously trapped 
microorganisms had been inactivated by the 
presence of the nanaoparticles.  
 

 
 

Figure 1. CYA plates with membranes for air 
sampling. 

 
 
 
 
 
 

 
Figure 2. CYA plates following the assessment of 

trapped microorganisms of method 2 (left). 
Assessment of surface contaminants on CYA agar 

of method 3 (right). 
 

With the only exception of one bacterial CFU in 
one plate, no growth was observed in any of the 
filter's sections, as shown in Figure 2. Similarly, to 
the previous procedure, this validated that any 
trapped microorganisms had been inactivated by 
the nanoparticles.  
 
In the case of the third method, all the flaks 
showed bacterial and fungal growth onto the 
medium's surface, even though not abundant 
(Figure 2). Eleven fungal colonies were selected 
for identification. Seven colonies were from 
Cladosporium spp., three from Alternaria spp. and 
one from Penicillium spp. These results indicate 
that the surface of the filters, that is exposed to the 
external air, had some environmental contaminants. 
Their levels are quite low indicating that, even on 
the surface, the antimicrobial efficacy of the 
nanoparticles is pronounced. 
 
CONCLUSIONS 
 
These results prove that the developed air filters 
after an operation of a six month period effectively 
trapped any microbial contaminants and also 
reduced their levels because of the antimicrobial 
properties of the nanoparticles. Surface 
contaminants were reported to be at low levels.  
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The effectiveness of predictive microbiology is limited by 
the lack of knowledge considering the influence of food 
microstructure on microbial dynamics. In this study, fish-
based model systems with various microstructures (i.e., 
liquid, xanthan - a more viscous liquid system, emulsion, 
aqueous gel, and gelled emulsion) were used to investigate 
the effect of certain isolated food microstructural aspects 
(i.e., growth morphology of the cells, nature of the food 
matrix, and the presence/absence of fat droplets) and initial 
cell conditions (i.e., grown inside the matrix from a low 
inoculation level or inoculated to a high inoculation level 
from a fresh preculture) on thermal inactivation dynamics 
of Listeria monocytogenes, as well as on the evolution of 
the percentage of sublethal injury of the cells over the 
course of the treatment. A peak in sublethal injury always 
occurred when the cells were in their log-linear inactivation 
phase, but the level of sublethal injury at the end of the 
treatment was rather limited. For experiments started from 
cells that were grown inside the matrix, a larger maximum 
specific inactivation rate (kmax) was observed than for 
experiments started from a fresh preculture, although only 
for the viscous systems (i.e., liquid, xanthan and emulsion). 
Due to the greater variation among biological replicates, the 
residual cell density (Nres) was also smaller for experiments 
started from cells that were first grown inside the matrix. 
For experiments started from a fresh preculture, kmax was 
considerably larger in the viscous systems than in the gelled 
systems, while Nres was larger in gelled systems than in 
viscous systems, regardless of the initial condition of the 
cells. The presence of a small amount of fat droplets had a 
considerable effect on kmax and Nres, albeit of a complex 
nature. 

������������
Predictive microbiology is a discipline of food 
microbiology in which microbial responses in food products 
are studied under controlled intrinsic (e.g., pH) and extrinsic 
(e.g., temperature) conditions in order to develop 
mathematical models (McMeekin et al., 2002; Van Impe et 
al., 2005). Well-developed models allow a realistic 
estimation of food safety risks, which contributes to the 
improvement of production processes for safe food products 
(Koutsoumanis et al., 2004). However, most predictive 
models are developed based on experiments in liquid model 
systems, which results in limited predictive value when the 
models are validated in real food products which are mostly 
not simple liquids (Pin et al., 1999). The completeness error 

caused by the food microstructural effect which is not taken 
into account is an important shortcoming of predictive 
microbiology (Ross et al., 2000; Velliou et al., 2013; Wilson 
et al., 2002). A possible method to remediate this issue is 
the use of model systems with various microstructures for 
the development of predictive models and, on a more 
fundamental level, to get more insight into the influence of 
food microstructure on microbial dynamics.  In this regard, 
Baka et al. (2016; 2017a, b) already used model systems 
with various microstructures (i.e., based on the 
classification of Wilson et al. (2002)) to study the influence 
of food microstructure on microbial growth dynamics. 
Some researchers have also used model systems with 
various microstructures in thermal inactivation studies 
(Murphy et al., 2000; Wang et al., 2017), although they 
mostly focussed on the comparison of two microstructures 
instead of the entire microstructural spectrum. Therefore,
Verheyen et al. (2017) developed fish-based model systems 
with various microstructures among which the 
microstructural effect was isolated among the different 
systems, allowing a more systematic investigation of the 
isolated food microstructural effect on microbial growth 
and thermal inactivation dynamics. 

In food industry, thermal processing remains one of the 
most important methods of reducing/avoiding the presence 
of foodborne pathogens in food products (Álvarez-Ordóñez 
et al., 2008; Rawson et al., 2011; Wang et al., 2017). A more 
detailed knowledge of the influence of a non-liquid food 
matrix on inactivation dynamics would therefore also be 
beneficial to refine conventional pasteurisation schemes 
used in industry (Velliou et al., 2013). Moreover, it is 
known that a considerable subpopulation of bacteria that is 
subjected to mild thermal treatments is not killed but is 
instead sublethally injured (Besse, 2002). Sublethal injury 
(SI) is defined as “a consequence of exposure to a chemical 
or physical process that damages but does not kill a 
microorganism” (Hurst, 1977). The injury can either be 
structural (i.e., altered membrane permeability) or 
metabolic (i.e., damage to functional cell components such 
as cellular proteins, enzymes, and nucleic acids), or a 
combination of both (Brashears et al., 2001; Wang et al., 
2017). Since injured cells are unable to form visible 
colonies on selective media which are used in food 
diagnostics, the presence of sublethally injured cells can 
lead to underestimation of microbial contamination, 
presenting a potential threat to food safety (Jasson et al., 
2007; Noriega et al., 2013). Moreover, sublethally injured 
cells may recover and regain their ability to multiply after 
thermal treatments, even leading to enhanced virulence and 
resistance to a wide variety of other stresses (Silva et al., 
2015; Skandamis et al., 2008; Wu, 2008). 
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With 2,536 reported cases and a fatality rate of 16.2% in 
2016, listeriosis is one of the most relevant foodborne 
diseases in Europe (EFSA and ECDC, 2017). The disease is 
caused by Listeria monocytogenes, a bacterium which is 
one of the most heat tolerant non-spore forming food 
pathogens (Farber and Peterkin, 1991). Therefore, ready-to-
eat food products with a short shelf-life which are subjected 
to a mild heat treatment are very susceptible to 
L. monocytogenes contaminations (Ates et al., 2014). In this 
regard, fish products are especially susceptible to L. 
monocytogenes contamination (Ben Embarek, 1994), as 
illustrated by the fact that the bacterium was detected in 
4.7% of sampled products of this category across all 
sampling stages (i.e., processing and retail) in Europe in 
2016 (EFSA and ECDC, 2017). Due to the high resistance 
to various stresses, L. monocytogenes is also very relevant 
for the validation of microbial inactivation treatments (Baka 
et al., 2015). 

In this study, the isolated influence of food microstructure 
on inactivation dynamics of L. monocytogenes at 70°C (i.e., 
a common pasteurisation temperature for fish products 
(Rosnes et al., 2011)) was investigated. In order to isolate 
the microstructural effect, model systems with minimum 
variation in compositional and physic-chemical properties 
were used, as developed in Verheyen et al. (2017). In 
contrast to previous studies, it was investigated whether 
there is a difference in microbial inactivation dynamics 
between (i) the realistic scenario of starting with a small 
number of microorganisms that has grown to a high level in 
the food product, and (ii) the experimental approach of 
inoculating food products with a high level of 
microorganisms. The influence of the heat treatments in the 
different microstructures on the sublethal injury of 
L. monocytogenes was also investigated. 
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Model systems with different microstructures (e.g., a liquid 
system, xanthan - a second more viscous liquid system 
containing xanthan gum, an emulsion, an aqueous gel, and 
a gelled emulsion) were prepared as described in Verheyen 
et al. (2017), using small vials (4mL, 45 x 14.7 mm, BGB 
Analytik Benelux B.V., Harderwijk, the Netherlands) 
containing 1 mL (height of approximately 10 mm) of 
viscous or structured medium. Among the different model 
systems, the microstructural effect was isolated by means of 
minimal variation in compositional and physic-chemical 
aspects. It is important to mention that, apart from the liquid 
model system which exhibits planktonic growth, all model 
systems exhibit submerged colony growth when 
homogeneously inoculated (Verheyen et al., 2017). 
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L. monocytogenes strains LMG 23773, LMG 23774, and 
LMG 26484, were acquired from the BCCM/LMG bacteria 
collection of Ghent University in Belgium. A stock culture 
was stored at -80°C in Brain Hart Infusion Broth (BHI,
VWR International, Leuven, Belgium) and 20% (v/v) 
glycerol (Acros Organics, Geel, Belgium). For each strain, 
a purity plate was prepared separately from the frozen stock 
culture by spreading a loopful onto a BHI Agar plate (1.4% 

(w/v), Agar Technical No3, Oxoid Ltd., Basingstoke, UK), 
which was afterwards incubated at 30°C for 24 h.  One 
colony of the purity plate was carefully transferred into 20 
mL of BHI. After incubating for 24 h at 30°C under static 
conditions, 20 μL of the stationary-phase culture was 
inoculated into 20 mL of fresh BHI and incubated for 24 h
under the same conditions. This resulted in early stationary 
phase L. monocytogenes cultures with an inoculum level of 
approximately 109 CFU/mL. 10 mL of the three cultures 
was poured together in a 100 mL Erlenmeyer in aseptic 
conditions and mixed, resulting in a L. monocytogenes
strain cocktail with a cell density of 109 CFU/mL. 

��$&��+#!$��&$�/!#!$�"�
Model systems were inoculated with the L. monocytogenes
strain cocktail to a cell density of approximately 109 and 102

CFU/mL for experiments started from a fresh preculture 
and experiments started from cells grown in the matrix, 
respectively. In both cases, early stationary phase cells were 
used, since they are more heat resistant than exponentially 
growing populations (Noriega et al., 2013). For experiments 
starting from a fresh preculture, 30 mL of the 
L. monocytogenes strain cocktail was transferred to a falcon 
tube and centrifuged at 12,000 rpm for 10 min at 4°C. 
Afterwards, the supernatant was carefully removed and the 
pellet was added to 100 mL of the respective model system. 
The model system was thoroughly mixed and distributed 
over the small vials. For experiments started from cells 
growing inside the matrix, model systems were inoculated 
to a cell density of 102 CFU/mL, using a NaCl solution of 
0.90% (w/v) as dilution medium, distributed over the small 
vials, and incubated at 10°C for 14 days prior to the 
inactivation experiment, resulting in early stationary phase 
cells with a cell density of approximately 109 CFU/mL
(unpublished results). For gelled systems, the inoculation 
took place prior to the initiation of the gelation reaction
(Verheyen et al., 2017).

�'�*1+��!�+&#!�+#!$���?.�*!1��#"�
The small vials containing the inoculated model systems 
were placed in the water bath at 70°C, relevant for the 
pasteurisation of processed fish products (Rosnes et al., 
2011). At different time points (i.e., 0 s, 30 s, 1 min, 80 s, 
100 s, 2 min, 150 s, 3 min, 4 min, 5 min, 10 min) one vial 
was transferred from the water bath to an ice water bath (i.e.,
temperature of approximately 0°C) in order to stop the 
inactivation. The samples were stored in the ice water bath 
for maximum 3 h before further processing steps. For 
viscous systems (i.e., liquid, xanthan, and emulsion), serial 
decimal dilutions were directly prepared from an aliquot of 
the samples, using the NaCl solution and afterwards plated 
on BHI and PALCAM agar (PALCAM Listeria Selective 
Agar according to Van Netten et al. (1989), Merck Milipore, 
Darmstadt, Germany), employing the drop technique 
(Herigstad et al., 2001). For gelled systems (i.e., aqueous 
gel and gelled emulsion), the protocol of Hamoud-Agha et 
al. (2013) was used. More specifically, gels were removed 
from the vials and transferred into a sterile stomacher bag
in aseptic conditions. Subsequently, the vials were rinsed 
and drained into the bag with 1.5 mL of Phosphate Buffered 
Saline (PBS, Sigma Aldrich, MO, USA). Afterwards, 1.5 
mL of McIkaine buffer (0.2 M Na2HPO4, Sigma Aldrich, 
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MO, USA; 0.1 M citric acid, Acros Organics, NJ, USA) was 
added to the bag. The mixture was homogenised for 10 min 
(basic masticator, Led techno, Heusden-Zolder, Belgium), 
after which serial decimal dilutions were prepared and 
plated similarly to the viscous systems. Finally, the plates 
were incubated at 30°C for approximately 30 h before 
enumeration. Every experiment was independently 
performed in triplicate. 
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The inactivation model of Geeraerd et al. (2000), able to 
describe shoulder and tailing behaviour, was fitted to the 
experimental data. Model parameters were estimated from 
the set of experimental data via the minimisation of the sum 
of squared errors, using the lsqnonlin routine of the 
Optimisation Toolbox of MatLab® version R2016b (The 
Mathworks Inc., Natinck, USA).  Standard errors of 
parameter estimates were calculated from the Jacobian 
matrix. A global estimation procedure was standardised for 
each model system. The model of Geeraerd et al. (2000) is 
represented by Equation 1, 2 and 3. 

(1)

(2)

(3)

With N [CFU/mL], the cell density at time t; Nres [CFU/mL], 
the residual cell density; kmax [1/min], the maximum specific 
inactivation rate; CC [-], the concentration of a critical 
component (intracellular or extracellular) for cell survival; 
CC(0) [-], the initial concentration of this critical 
component; and SL [min], the shoulder length representing 
the period the cells need to adapt to the stress. 

The theoretical data, obtained from the Geeraerd model,
was used to calculate the percentage of sublethal injury 
(%SI) using Equation 4 according to the formula of Bush 
and Donnelly (1992), using BHI agar and PALCAM agar 
as a nonselective and selective medium, respectively. 

(4) 
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For the statistical analysis, significant differences between 
logarithmically transformed viable counts were determined 
using analysis of variance (ANOVA, single variance) test at 
a 95.0% confidence level (α = 0.05). Fisher’s Least 
Significant Difference (LSD) test was used to distinguish 
which means were significantly different from others. The 
analyses were performed using the anova1 routine of the 
Statistical Toolbox of MatLab® version R2016b (The 
Mathworks, Inc., Natick, USA). Test statistics were 
regarded as significant when P ≤ 0.05.
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Figure 1 illustrates the inactivation dynamics and SI 
evolution of L. monocytogenes in the different model 
systems. It can be observed that inactivation is generally 
more effective (i.e., lower residual cell population) for 
experiments that were started from cells that were first 
grown inside the matrix. The aqueous gel, for which the 
differences between the two starting conditions are rather 
small, is the only exception to this observation. Even 
without taking the statistical analysis of the inactivation 
parameters into account, the differences observed among 
the inactivation curves for the different microstructures and 
inoculation conditions indicate that using simple liquid 
model systems inoculated with a high inoculum level of 
L. monocytogenes from a fresh preculture for inactivation 
experiments does not accurately simulate what takes place 
in real food products which can have a plethora of different 
microstructures and, in addition, might be contaminated 
with cells that have first grown inside the food matrix.  

�����#'+��!�<�*)�+""�""1��#�
Figure 1 illustrates that a peak in SI always occurred when 
the cells were in their log-linear inactivation phase. This is 
in accordance with the findings of Noriega et al. (2013) for 
the mild heating of Escherichia coli, Salmonella
Typhimurium, and Listeria innocua in liquid and gelled 
model systems. This behaviour during the log-linear 
inactivation phase is caused by a mechanism of injury 
accumulation that culminates in cell death (Perni et al., 
2007). When the stationary inactivation phase was reached, 
the percentage of SI remained constant at a low level. This 
observation is in accordance with the findings of 
Uyttendaele et al. (2008), who detected no significant 
presence of sublethallly injured L. monocytogenes cells 
after a milder heat treatment of 60°C. The inactivation of 
freshly inoculated L. monocytogenes cells in the emulsion 
model systems is an exception to this observation, probably 
due to the fact that the residual population was lower than 
the detection limit, giving no practical value to the obtained 
cell counts after approximately 4 min. For the liquid and the 
emulsion model systems, the peak in SI percentage was 
higher for cells that were grown inside the matrix before the 
inactivation experiment. This phenomenon can possibly be 
explained by the adaption of the cells to their stressing 
environment while growing inside the matrix (Tang et al., 
2015), leading to cross-protection against other stresses 
(Durack et al., 2013).  Consequently, the cells which have 
experienced greater stress responses might become only 
sublethally injured by treatments which would completely 
inactivate normal cells. For the other model systems (i.e., 
xanthan, aqueous gel, and gelled emulsion), the influence of 
the initial cell condition on the evolution of the percentage 
of SI is rather small, even though some small differences 
are observed between the two conditions. 
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The thermal inactivation dynamics of L. monocytogenes are 
reported to be influenced by the growth conditions prior to 
the treatment (Schultze et al., 2007). Therefore, it was 
assessed whether the classical and simplified 
microbiological method of inoculating food products with 
high concentrations of pathogenic microorganisms for 
challenge testing purposes has sufficient practical 
relevance. Figure 2 shows the statistical analysis of the 
parameters of the inactivation model of Geeraerd et al. 
(2000), i.e., the shoulder length SL (Figure 2.A), the 
maximum specific inactivation rate kmax (Figure 2.B), and 
the residual cell population Nres (Figure 2.C) for the 
experiments started from (i) cells that were grown inside the 
matrix and (ii) a fresh preculture. 
 

As observed in Figure 2.A, the initial condition of the cells 
had no influence on SL. The shoulder of a thermal 
inactivation curve can be caused by different mechanisms, 
i.e., cells being present in groups or clumps, cells being able 
to resynthesise a vital component, the presence of proteins 
and/or fats in the medium, and the presence of a large 
number of critical components that needs to be inactivated 
(Adams and Moss, 1995; Cerf, 1977; Geeraerd et al., 2000; 
Moats et al., 1971). Therefore, those causes that are related 
to the bacterial cells (i.e., resynthesises/presence of a vital 
component) are apparently not significantly influenced by 
the initial cell condition. 
 
Figure 2.B shows that cells that were grown inside the 
matrix exhibited a larger kmax than those from a fresh 
preculture, although only for the viscous systems. The 
possibility of the cells to order themselves into colonies 
while growing in the xanthan and emulsion model systems 
(Verheyen et al., 2017) and the sedimentation of planktonic 
cells to the bottom of the liquid system (Smet et al., 2015) 
are possible explanations for this phenomenon. It has been 
reported in literature that starting from a higher cell number 
results in a large number of small colonies in the food 
matrix, while starting from a lower cell number results in a 
smaller number of large colonies (Velliou et al., 2013). The 
larger colonies which are formed when the cells are first 
grown inside the matrix could exhibit an enhanced heat 
resistance due to the higher number of cells that protect each 
other inside the colony. A similar effect could be created 
when cells sediment to the bottom of the tube and are 
therefore more closely packed together. 
 
In Figure 2.C, it is illustrated that, apart from in the aqueous 
gel, Nres was larger for experiments started from a fresh 
preculture. Figure 1 shows that this phenomenon is caused 
by the large variation that is observed between the different 
biological replicates for the experiments that started from 
cells that were grown inside the matrix. A small difference 
in growth behaviour can apparently result in large variations 
in heat resistance of the cells, illustrated by the fact that 
some replicates exhibit similarly high or even higher cell 
levels as compared to when the experiments are started from 
a fresh preculture, while other replicates exhibit a 
considerably smaller number of survivors. In general, these 
observations show that it might be unsafe to employ the 
common experimental approach of using a high initial cell 
level for mild thermal inactivation studies with 
L. monocytogenes. Even though the residual cell population 
is on average larger than when the cells would be grown 
inside the matrix, there is a possibility that a higher number 
of survivors would be present in the latter more realistic 
scenario, resulting in a serious over-estimation of the 
efficacy of the inactivation procedure. 
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As described in Verheyen et al. (2017), the set of model 
system can be used to investigate the isolated influence on 
microbial inactivation of three different microstructural 
aspects: (i) the growth morphology of the microbial cells 
(i.e., planktonic cells or submerged colonies), (ii) the nature 
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of the food matrix (i.e., viscous or gelled), and (iii) the 
presence/absence of fat droplets.  

The effect of growth morphology is investigated by 
comparing dynamics between systems where the growth 
morphology is the sole significant difference (i.e., 
planktonic cells in liquid vs. submerged colonies in 
xanthan). As observed in Figure 2.A, the variation of SL
among the different model systems was rather small, with 
significant differences only being observed between the 
xanthan and gelled emulsion systems for experiments 
started from a fresh preculture. These finding suggest that 
the growth morphology, and the microstructural effect in 
general, has a negligible influence on the shoulder length. 
This could mean that the come-up time (i.e., the time the 
model systems need to reach the temperature of the water 
bath they are placed in) is the main reason for the presence 
of a shoulder phase, most likely caused by heat transfer
limitations throughout the heating medium (Kotrola and 
Conner, 1997). The come-up time could be more accurately 
determined by measuring the temperature in the center of 
the model systems over the course of the heat treatment 
(Uyttendaele et al., 2008). In addition, the come-up time 
would have a larger influence on the shoulder phase when 
larger model systems would be used. Figure 2.B and Figure 
2.C show that the growth morphology also has no 
significant influence on kmax and Nres. Consequently, the 
higher heat resistance which has often been observed for 
submerged colonies in a gelled environment as compared to 
planktonic cells in broth systems (Murphy et al., 2000; 
Velliou et al., 2013), is mostly caused by the protective 
effect of the gelled environment.

The effect of the food matrix on the growth dynamics of 
submerged colonies is studied by means of the effect of a 
gelled matrix (i.e., aqueous gel vs. xanthan and gelled 
emulsion vs. emulsion). In Figure 2.B, no statistical 
differences in kmax are observed among the different model 
systems for cells that were first grown inside the matrix, 
suggesting that the large colonies are equally heat-resistant, 
regardless of the nature of the food matrix in which they 
reside. For experiments started from a fresh preculture, on 
the other hand, kmax was considerably larger in the viscous 
systems than in the gelled systems, indicating submerged 
colonies in a gelled matrix are inactivated at a slower rate 
than planktonic cells and submerged colonies in the viscous 
systems. As observed in Figure 2.C, Nres was larger in gelled 
systems than in viscous systems, regardless of the initial 
condition of the cells. These findings confirm that a gelled 
matrix has a protective effect on L. monocytogenes during 
mild thermal inactivation. In future studies, the effect of the 
food matrix could be further characterised by conducting 
inactivation experiments in model systems with varying 
rheological properties, i.e., viscosity parameters of the 
Power law model (Reiner, 1926) for viscous systems, and 
the storage (G’) and loss (G’’) modulus for gelled systems 
(Verheyen et al., 2017). 

By comparing inactivation dynamics between systems 
where the presence of a small amount (i.e., 1% fat 
concentration) of fat droplets is the only distinguishing 
factor (i.e., xanthan vs. emulsion and aqueous gel vs. gelled 
emulsion), the influence of the presence of fat droplets on 

the thermal inactivation of L. monocytogenes is studied. 
This influence seems to be present exclusively on Nres,
although no clear correlation can be derived from the 
current results. For experiments started from cells grown 
inside the matrix, the presence of fat droplets results in a 
smaller Nres, but only in a gelled matrix. When experiments 
were started from a fresh preculture, the presence of fat 
droplets resulted in a larger Nres, but only in a viscous 
matrix. In order to get more insight into the exact 
influencing mechanics of the fat droplets, future studies 
should focus on inactivation experiments using model 
systems with different fat levels and/or fat droplet size 
distributions, while still aiming to minimise variations in 
physico-chemical and compositional factors. In this regard, 
the influence of different fat levels on thermal inactivation 
of Listeria and Salmonella has already been studied, 
consistently leading to the conclusion that there is an 
influence even though further work is still needed to clarify 
the situation (Juneja et al., 2001; Passos and Kuaye, 2002; 
Schultze et al., 2007; Szlachta et al., 2010).
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The results of this study illustrated that, even though a peak 
in sublethal injury always occurred during the log-linear 
inactivation part on the inactivation, the percentage of 
sublethally injured cells at the end of the heat treatment was 
rather low, indicating a limited risk for food diagnostics.
The cell conditions prior to the mild thermal inactivation 
treatment also had a significant influence on microbial 
inactivation dynamics, meaning that researchers should 
choose wisely how to inoculate their foods/model systems 
when conducting thermal inactivation trials. When the 
influence of different microstructural aspects on the 
parameters of the Geeraerd et al. inactivation model was 
investigated, the nature of the food matrix and the 
presence/absence of fat droplets were proven to have a 
significant, albeit complex, influence on the maximum 
specific inactivation rate kmax and the residual cell 
population Nres. 

In future studies, the influence of the investigated 
microstructural aspects should be studied in more detail in 
order to attain an increased insight into the exact influencing 
mechanics. This could be achieved by conducting thermal 
inactivation experiments in model systems with varying 
rheological properties, fat levels and/or fat droplet size 
distributions. In those studies, one factor should be isolated 
at a time, while still minimising physico-chemical and 
compositional properties. An upscaling of the model 
systems and usage in relevant industrial thermal 
inactivation installations would also be of considerable 
interest for food industry.  
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When bacteria are on surfaces they grow as biofilms. This 
means that bacteria start to produce several substances and 
they grow embedded in the composed Extracellular Polymeric 
Substances (EPSs) matrix. This work aims to develop a 
protocol to grow a reproducible biofilm. Reproducibility in 
this case refers to the same number of cells and same quantity 
of biofilm (biomass). Pseudomonas fluorescens biofilms are 
grown on a polystyrene (PS) surface as a drop spread on a well 
delimited area. The biofilm is characterised by using the 
crystal violet (CV) assay and the viable cell count method. 
The first experiments aim to determine the favourable ratio 
between the volume and the area on which the biofilm is 
spread. Moreover, the effect of the inoculum concentration 
and also the effect of different growth medium concentrations 
on biofilm growth are investigated. Cell growth dynamics is 
fitted with the Baranyi and Roberts (1994) primary model. 
The maximum cell density of a biofilm grown for 24 h at 
25°C, the specific growth rate and the lag phase duration are 
determined. Obtaining a reproducible biofilm allows to 
proceed with studying innovative biofilm inactivation 
technologies, e.g., light treatment. 
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Free-floating bacteria grow differently when they adhere to a 
surface and they initiate biofilm formation (Allison et al. 
1998). When bacteria attach to a surface, abiotic or biotic, they 
organise themselves in layers of cells and they start to produce 
a highly complex 3D structure determined by the production 
of an extracellular matrix (Baum et al. 2009; Hentzer et al. 
2001). This Extracellular Polymeric Substance (EPS) is 
composed of: (i) different biopolymers (Hung et al. 2005), (ii) 
extracellular DNA (Whitchurch et al.2002), (iii) proteins and 
lipids ( Jo at al. 2017; Raza et al. 2014). The EPS contributes 
to the biofilm structure and function. The function of the 
matrix is not only to provide a mechanical stability and protect 
microorganisms from desiccation, but it also acts as a barrier 
against chemical and biological influences (oxygen, 
antiseptic, antibiotics) (Hentzer at al. 2001). Moreover, this 

matrix (i) contributes to the sorption and storage of nutrients, 
(ii) is the place where many extracellular enzymatic reactions 
take place and (iii) keeps the microorganisms in tight contact 
with each other to facilitate quorum sensing (QS) (Parsek et 
al. 1999).   
Some biofilms can be beneficial, e.g., they can disintegrate 
soil and water contaminations, but in most cases they cause 
several problems. 
Because of their ubiquitous presence they can cause 
(i) clinical infections (e.g., in catheters, needles), 
(ii) corrosion or (iii) a loss of efficiency in different processes 
(e.g., water processes, tooth bleaching processes (Soukos et 
al. 2004)), (iv) safety issues within the food industry (e.g., 
slaughter line of meat products, (fresh) milk and cream 
products,  vegetables) (Lebert et al. 1997). 
Nowadays, many antimicrobial agents (e.g., ampicillin, 
ciprofloxacin) used to avoid contamination and to cure 
infections in nosocomial environment (Davies 2003) are no 
longer effective against bacteria grown as biofilms. This is the 
reason why the scientific community tries to provide 
alternative solutions to tackle this problem, not only by 
chemical but also by physical means (e.g., light treatment 
(Ganz et al. 2005; Kim et al. 2017; Maclean et al. 2008; 
Papageorgiu et al. 2000), plasma treatment, in synergy or not 
with different (traditional) processes (Arroyo at al. 2010; 
Enwemeka et al. 2009; Halpin 2014; Hamblin and Hasan 
2003; Rowan et al. 2015; Sun and Hong 2013;). 
To microbiologically assess the impact of technologies like 
light or plasma treatments on biofilms, reproducible model 
biofilms are necessary. The Gram-negative Pseudomonas 
fluorescens bacterium is used as a model organism, because 
(i) it is ubiquitous in biofilms formed on different surfaces 
(e.g., polymers, stainless steel),  (ii) it is capable of causing 
serious problems in the food industry (Lebert et al. 1997) and 
(iii) it can cause loss of efficiency in industrial processes (e.g., 
aqueous system). 
This work aims to grow a reproducible Pseudomonas 
fluorescens biofilm. The biofilm is grown on the liquid/solid 
interface of a drop spread on a petri dish. The biofilm (i) area 
and volume, (ii) growth medium concentration and (iii) 
inoculum cell density, are optimised. The Baranyi and Roberts 
(1994) model is used to describe the biofilm evolution as a 
function of time. 
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The Gram-negative bacterium Pseudomonas fluorescens 
(ATCC13525) is used as a model organism in this study. The 
bacterium is cultured in Erlenmeyers: one colony is inoculated 
in 20 mL Tryptic Soy Broth (TSB) (VWR Chemicals, 
Belgium) and incubated at 25°C for 24 h under stirring 
conditions (160 rpm). 
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The preculture (109 CFU/mL) is diluted in TSB to reach a 
standard inoculum concentration of 107 CFU/mL. Overall, a 
standard TSB concentration of 30 g/L is used, unless for the 
optimisation of the concentration of the growth media. Then, 
the TSB concentrations assessed are respectively: 30.0 g/L, 
15.0 g/L, 3.0 g/L and 1.5 g/L.  
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A drop of 400 μL is spread on a circular area of a different 
diameter, respectively: 2.5, 2.0 and 1.5 cm. The drop is spread 
on the polystyrene (PS) surface of a sterile petri dish (50 mm 
diameter, 8 mm height, Simport, Canada). Closed petri dishes 
are left for 24 h in an incubator at 25°C, facilitating biofilm 
growth. 
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The biomass of the biofilm, which includes live and dead cells 
and also extracellular polymeric substances, is quantified 
through the Crystal violet (CV) assay. When the biofilm is 
mature, after 24h, the liquid is removed gently using a 
micropipette. The biofilm attached to the PS surface is 
successively rinsed gently twice with 3 mL of Phosphate 
Buffer Saline (PBS) at pH 7.4 in order to remove planktonic 
cells. Afterwards, 1.5 mL of CV solution (0.046% (v/v) of CV 
stain (Sigma Aldrich HT90132) in H2O) is added. The dye is 
left to penetrate in the biofilm for 15 minutes, rinsed twice 
with 2 mL of PBS solution and left to dry for 30 minutes. 
Then, 1.2 mL of acetic acid solution (33% (v/v) in water) is 
added. After the dye is dissolved, 200 μL is transferred in a 
well of a 96-well microtiter plate. The quantification of the 
biomass is performed by reading the optical density at 590 nm 
using the VersaMax tunable microplate reader (Molecular 
devices, Berkshire, UK). 
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The viable cell count procedure consists of rinsing the mature 
biofilm thrice. Afterwards, 2 mL of PBS is added. The biofilm 
is detached from the surface using a cell scraper (Carl Roth, 
Germany) and by using a micropipette the solution is 
homogenised. The cell density of the biofilm is determined 
via viable plate counting on Tryptic Soy Agar (TSA) (VWR 
chemicals, Belgium). 
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The model of Baranyi and Roberts (1994) is fitted to the 
experimental data: 

 

 

 
 

 
 
 
Equation (1) describes the cell density N(t) (CFU/mL) as a 
function of time, which depends on Q(t) that measures the 
physiological state of the cells. μmax represents the maximum 
specific growth rate (1/h) and Nmax the maximum cells density 
(CFU/mL). Equation (2) describes the evolution of the state 
Q(t) with time.  
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In the present work the development of a mature reproducible 
biofilm is obtained following different steps: by optimisation 
of (i) the biofilm volume and the area, (ii) the TSB 
concentration, and (iii) inoculum cell density. Finally, the 
growth curve of the biofilm is fitted with the Baranyi and 
Roberts (1994) model. 
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First trials indicate that a volume of 400 μL is needed to allow 
sufficient biofilm growth. Biofilms are grown with the same 
inoculum volume of 400 μL on different areas (diameter 2.5, 
2.0 and 1.5 cm). The biofilms with diameter 2.5 cm are 
generally attached to the surface after the rinsing procedure 
and are quite uniform on the surface. The biofilms with 
diameter 2.0 cm lose some part of the biofilm in the central 
part during the rinsing step. The samples with diameter 1.5 cm 
form a ring shape, due to the strong detachment of the biofilm 
in the central part. The optical density (OD) is proportional to 
the diameter of the drop (Figure 1): the larger the diameter, 
the larger the surface of interaction where the bacteria develop 
as a biofilm.  
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Figure 1 Optical density measured at 590 nm of biofilms grown on 

surfaces of diameters: 2.5, 2.0 and 1.5 cm. 
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Based on these experiments (area and volume), it is possible 
to assert that a ratio area/volume smaller than 81 guarantees a 
strongly-attached biofilm, which is uniform and quite 
reproducible in terms of optical density (Figure 2). This can 
be expected since Pseudomonas fluorescens is aerobic, and 
thus the oxygen diffusion in biofilm formation can have a 
strong influence. In fact, supposing that when the thickness of 
the drop varies slightly from the centre to the border, the 
availability of the oxygen at the liquid-solid interface remains 
the same. On the contrary, when the thickness of the drop is 
high at the centre and small at the border, the oxygen that 
reaches the interface liquid-solid in the centre of the drop is 
limited and needs a stronger diffusion process during biofilm 
growth (Xu et al. 1998). From now on, the biofilm will be 
grown on a circular area of 2.5 cm of diameter and 400 μL of 
volume.  
 

 
Figure 2 Biofilm grown on a surface with diameters: 2.5, 2.0 and 

1.5 cm. 
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In literature, a few works confirm that a low nutrient 
concentration in the inoculum can favour a stronger, thicker 
and faster growing biofilm (Gerstel et Romling 2001; 
Speranza et al 2001; Stepanović et al. 2004;). In the present 
work, the concentration of TSB in the inoculum is varied: 
30.0, 15.0, 3.0 and 1.5 g/L. The variation of the TSB 
concentration indicates to determine also a variation in the 
superficial tension. This resulted in a “pulling back” 
phenomenon, which prohibited the spreading of the drop on 
the delimited area needed (Figure 3). For this reason the TSB 
concentration is fixed at 30.0 g/L.  
 
 

 
Figure 3 Drops with different TSB concentrations. 
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As illustrated in the histogram in Figure 4, the variation of the 
inoculum cell concentration does not impact the viable cell 
counts for the mature biofilm. This means that after 24 h the 
mature biofilms contain the same amount of cells, regardless 
the inoculum concentration. 
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Figure 4 Viable cell counts in mature biofilms obtained with 
different inoculum concentrations. 

 
Nevertheless, the biofilm seems different in terms of biomass. 
Quantification of the biomass by CV assay demonstrates that 
with a lower inoculum concentration a higher biomass is 
obtained (Figure 5). The biomass includes both live and dead 
cells and EPS substances, as typically present for bacterial 
biofilms. Consequently, we can claim that when the biofilm is 
grown starting with an inoculum concentration of 
104 CFU/mL, the biomass is higher than the one obtained with 
a 107 CFU/mL inoculum (Figure 5). This indicates that the 
amount of the EPS substances produced is higher. Future 
research, e.g., by means of Confocal Laser Scanning 
Microscopy (CLSM) measurements is required to quantify the 
EPS and the alive and dead cells.  
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Figure 5 OD measured at 590 nm for mature biofilms obtained with 

different inoculum concentrations. 
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Figure 6 presents the growth curve of the biofilm of 
Pseudomonas fluorescens at 25°C fitted with the model of 
Baranyi and Roberts (1994). Cell density is determined via 
viable plate counting and the inoculum concentration used is 
107 CFU/mL. 
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Figure 6 The growth curve of Pseudomonas fluorescens in biofilm 
at 25°C. Symbols correspond to the experimental data which are 

fitted with the  Baranyi and Roberts (1994) growth model. 
 

 
The Baranyi and Roberts (1994) fit allows to calculate the 
growth parameters. Resulting lag time, maximum specific 
growth rate and finally, the initial and the maximum cell 
density are listed in Table 1 including the respective standard 
deviations. 
 
Table 1: Parameters obtained from the Baranyi and Roberts (1994) 

model. 
 

Parameter Estimated value 

λ (h) 0.00 ± 0.00  

μmax (1/h) 0.42 ± 0.04 

No (CFU/cm2) 13.53 ± 0.11 

Nmax (CFU/cm2) 18.35 ± 0.07 
 
 
The lag time is really short, almost zero. This means that the 
population of cells in the biofilm starts to grow immediately.  
A fast cell division occurs, meaning that the bacteria do not 
need any time to recover the shock due to the transfer on the 
PS surface. This could be related to the kind of substrate that 
is used in this work, i.e., polystyrene. Polystyrene presents a 
hydrophobic surface. It is known that cells attach 
preferentially to hydrophobic, nonpolar surfaces (e.g., 
polybutylene), than to hydrophilic surfaces (e.g., stainless 
steel, Cu) (Assanta et al. 1998; Neu 1996). A short lag time 
could be a sign that bacteria condition the surface rapidly. This 
conditioning consists in producing a film of proteins, lipids 
and polysaccharide molecules which attach to the surface and 
facilitate biofilm formation. The “conditioning stage” 
represents the first stage of biofilm formation. In the specific 
case of study the organic molecules produced by 
Pseudomonas fluorescens (e.g., alginate) plus the molecules 
present in the growth medium (e.g., gluocose)  might cause 
faster surface conditioning. The organisms quickly form a 
layer, which neutralises excessive surface charge and surface 
free energy, facilitating the growth. Some studies have found 
that bacteria can also alter the production of some surface 
components (e.g., lipopolysaccharides, peptidolipids, 

glycolipid, lipoteichoic acid) making the surface-cell 
interaction easier. Specifically, this has been observed for 
Pseudomonas aeruginosa (Neu 1996). The Baranyi and 
Roberts (1994) model fit indicates that after 18.35 ± 0.17h, the 
biofilm is fully developed and mature (Table 1).  
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The development of the protocol for the growth of the 
Pseudomonas fluorescens biofilm is obtained. The biofilm is 
grown on a surface of 2.5 cm of diameter with 400 μL of 
inoculum (107 CFU/mL) for 24 h at 25°C. Future research can 
evaluate novel inactivation technologies for the treatment of 
Pseudomonas fluorescens biofilms, which are characterised in 
this paper. One of these innovative approaches includes the 
assessment of the impact of different light sources on 
biofilms. As light has a known antimicrobial effect, it has a 
high potential to deal with the biofilm challenges. 
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ABSTRACT

Food safety risks depend on bacterial numbers. At low
population numbers, the heterogeneity between individ-
uals and its influence on the division times become crit-
ical. It has been observed experimentally that a major
descriptor of bacterial growth and division is the cellular
size (volume). In this work, we present a general the-
ory to describe cellular size using stochastic differential
equations. We derive its equivalent modified Fokker-
Planck equation and use this partial differential equa-
tion to estimate critical parameters, like macroscopic
growth rates, based on experimental size distributions
measured by flow cytometry.

INTRODUCTION

Food safety risks can be evaluated using predictive mi-
crobiology theory. The aim is to develop mathemat-
ical models of growth or inactivation of pathogenic
and spoilage microorganisms (Huss 2007, Baranyi and
Roberts 1995). These models have been successfully
applied to predict food spoilage and microbial safety
(Koutsoumanis and Nychas 2000, Ross et al. 2000),
smart sensing of food quality (Garćıa et al. 2015; 2017,
Vilas et al. 2018), Quantitative Microbial Risk Assess-
ment (Cassin et al. 1998, Membré and Lambert 2008)
and design and control of food processes (Simpson et al.
1993, Alonso et al. 2013).

Predictive microbiology fails to predict bacterial growth
when the number of cells in the initial population is low
(Nicoläı and Van Impe 1996, Augustin et al. 2015). The
problem is that cell-to-cell differences become relevant in
predicting population growth. For low population num-
bers, food safety depends on single-cell growth, death
and division. Such stages can be described based on
stochastic physiological or biochemical states of the cell,
such as bacterial size. Stochastic differential equations,
however, require information at the single-cell level and
their resolution is computationally expensive.

The modified Fokker-Planck equation provides a
methodology to link population heterogeneity with
single-cell stochasticity. We develop a theory to predict

population numbers, and therefore food safety risks, us-
ing the modified Fokker-Plank equation. For the sake of
clarity, we focus the equation on cell size as it provides
one of the best descriptors of bacterial growth and di-
vision. Future perspectives are discussed regarding this
equation and its extension to model other key physio-
logical or biochemical states related to food safety risks.

MODELLING

For low population numbers, food safety depends on
single-cell growth, death and division. In this work
we will assume that microorganisms grow exponentially
and hence death is negligible. Any microbial growth in-
side the food matrix will always be equal or slower than
the assumed scenario (worse-case scenario).

Stochastic single-cell growth and division may be
described using cellular size

Growth

Exponential growth of cell volume is a standard princi-
ple in bacterial physiology (Fishov et al. 1995). Based
on this fact, Alonso et al. (2014) and Garćıa et al.
(2018) proposed a new stochastic formulation that ex-
plains the variability observed for low inoculum concen-
tration. The model assumes that cell growth is sub-
ject to a stochastic fluctuation δW characterized by a
Wiener process:

δXi = μδt+ ξδW with Xi = ln (V i), (1)

where Xi is the volume of cell i (V i) on a logarith-
mic scale and μ represents the growth rate within the
exponential phase. Finally, ξ in the above expression
represents the intensity of the stochastic fluctuation. It
should be noted that ξ = 0 for deterministic growth.

Division

The trigger of bacterial division is still a matter of con-
troversy. There are three major paradigms: the sizer,
timer, and adder principle. In these paradigms, division
is triggered by a certain volume, time, or after grow-
ing certain volume (Taheri-Araghi et al. 2015). As in
most predictive microbiology works (Métris et al. 2005,
Alonso et al. 2014, Garćıa et al. 2018), we concentrate
on fully adapted cells (medium growth is kept constant)
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where the sizer principle remains the reasonable assump-
tion. For these cases, the division was modelled by
adding a new cell to the population and resizing mother
and newborn cell to the daughter size. The division
event is triggered when the size of one or more cells is
greater than a continuous random variable Xm, with
statistics defined by the probability density function of
mother sizes (fXm

(x)):

If Xi ≥ Xm ∼ fXm
(x), Xn+1 → Xi − ln (2)(2)

Xi → Xi − ln (2)(3)

where n is the number of cells in the population, i runs
from 1 to n and the daughter volume is half the mother
volume (vd = vm/2). It should be stressed that for
coccoid cells, the generalization needs to be corrected.
Those cells divide quickly with more than one division
plane, i.e., one mother gives four daughters (two division
planes) or 8 daughters (three division planes) (Pinho
et al. 2013, Garćıa et al. 2018). Depending on the num-
ber of planes the final arrangements of these cells are in
tetrads or in clusters.

Our group used flow cytometry to determine the best
probability density function describing the mother sizes
fXm

(x) (Garćıa et al. 2018). The best agreement with
the data suggests that the volume of the mothers Vm is
a random variable following a log-normal distribution,
supporting the theory of Amir (2014):

fXm
(x) = N (xm, σ2) with xm = ln (vm) (4)

We should note that for simulating the deterministic
division, σ can be set to zero so that the normal dis-
tribution turns into Dirac delta function centred at the
logarithm of the mother size xm.

The modified Fokker-Plank equation of bacterial
size provides directly the population main statis-
tics

Growth

Let n(t, x) be the number of individuals of volume x at
time t, in the interval x ∈ (x, x). All individuals are in
the interval so that n(t, x) = n(t, x) = 0. Let ρ(t, x)
be the probability distribution function satisfying the
forward Kolmogorov equation:

∂ρ(t, x)

∂t
=

ξ2

2

∂2ρ(t, x)

∂x2
− μ

∂ρ(t, x)

∂x
(5)

ρ(t, x) = ρ(t, x) = 0 ∀t boundary cond (6)

ρ(0, x) = δ(x− xd) ∀x initial cond (7)

and define the expected number of individuals as:

M(t) =

∫ x

x

ρ(t, x)n(t, x)dx (8)

We differentiate the above expression in time so that:

dM(t)

dt
=

∫ x

x

ρ(t, x)
∂n(t, x)

∂t
dx+

∫ x

x

n(t, x)
∂ρ(t, x)

∂t
dx

(9)
This term becomes zero if there is not death or division
and for this case ∂ρ(t,x)

∂t = ∂n(t,x)
∂t , otherwise:

dM(t)

dt
=

∫ x

x

ρ(t, x)B(n, t, x)dx (10)

In order for (9) with the term (10) to hold for every
ρ(t, x) we must have:

∂n(t, x)

∂t
=

ξ2

2

∂2n(t, x)

∂x2
− μ

∂n(t, x)

∂x
+B(n, t, x) (11)

n(t, x) = ρ(t, x) = 0 ∀t boundary cond (12)

n(0, x) = δ(x− xd) ∀x initial cond (13)

This equation is the so-called modified Fokker-Planck
equation, where B(n, t, x) represents the term of divi-
sion (no death is assumed during exponential growth).
Sometimes, this equation can be expressed into a more
convenient flux form as:

∂n(t, x)

∂t
+

∂J(n, t, x)

∂x
= B(n, t, x) (14)

where the flux relates to the field derivatives as:

J(n, t, x) =
ξ

2

∂n(t, x)

∂x
− μn(t, x) (15)

Division

For the statistics of division defined in (2)

B(n, t, x) = (2fXd
(x)− fXm

(x))Z(n, t, x), with

(16)

Z(n, t, x) =

∫ x

x

Fm(x)
∂J(n, t, x)

∂x
dx (17)

where probability density functions fXd
and fXm

are
truncated and their support are included in (x, x).

The rate of growth of the population, N(t), is obtained
by integration of (14) over the domain, and using the
boundary conditions so that:

dN(t)

dt
=

∫ x

x

B(n, t, x)dx = Z(n, t, x) (18)

For example for fXd
= δ(x−Xd) and fXm

= δ(x−Xm),
the expression (18) reads:

dN(t)

dt
=

∂J(n, t, x)

∂x
|Xm (19)
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The modified Fokker-Planck in fractional form

Under birth-death dynamics, equation (14) can eventu-
ally reach a stationary solution. However, this is not
the case in those situations where death is practically
negligible. Under those circumstances, we will be par-
ticularly interested in studying not just the evolution of
the total number of individuals but the distribution of
their size (volume).
To that purpose, we re-write previous equation (14) in
fractional form, namely in terms of the fraction of in-
dividuals that have volume x at a given time, namely
p(t, x) : [0,∞) × (x, x) → (0, 1). Both functions n(x, t)
and p(t, x) are related as:

n(t, x) = p(t, x)N(t) where N(t) =

∫ x

x

n(t, x)dx

and therefore:

∂p(t, x)

∂t
=

1

N(t)

(
∂n(t, x)

∂t
− Z(n, t, x)p(t, x)

)

Finally the modified fokker-Planck in fractional form be-
comes:

∂p(t, x)

∂t
=

ξ2

2

∂2p(t, x)

∂x2
− μ

∂p(t, x)

∂x︸ ︷︷ ︸
cell growth=

∂J(p,t,x)
∂x

(20a)

+ (2fXd
(x)− fXm

(x))Z(p, t, x)︸ ︷︷ ︸
division

(20b)

− p(t, x)Z(p, t, x)︸ ︷︷ ︸
normalization

(20c)

Z(p, t, x) =

∫ x

x

Fm(x)
∂J(p, t, x)

∂x
dx (20d)

p(t, x) = p(t, x) = 0 ∀t boundary cond (20e)

p(0, x) = δ(x− xd) ∀x initial cond (20f)

NUMERICS

Individual-based modelling using the stochastic equa-
tion (1) with division event (2) is a bottom-up approach
providing valuable information at the single-cell level.
However, it requires parameters that cannot be easily
measured (Augustin et al. 2015, Ferrer et al. 2009). In
addition, individual-based modelling is characterised by
requiring long computational times which make its use
prohibitive in applications that demand many model
evaluations (An et al. 2017), such as parameter esti-
mation.
The modified Fokker-Planck equation here presented fo-
cuses on population statistics that can be directly mea-
sured by flow cytometry. The modified Fokker-Planck
equation provides directly the evolution of the volume
distribution without the need of predefining any prob-
ability density function. Flow cytometry provides fast

and cheap measurements of relevant population statis-
tics like cell size distributions. Comparisons between the
model and the data provide information about single-
cell parameters, like distributions of division sizes, that
can be used for individual-based modelling.
The precision of the modified Fokker-Planck equation
depends on the discretisation method to solve the par-
tial differential equation, but works for large and small
populations whenever the assumptions of a Wiener pro-
cess are satisfied (Gardiner 2004). Simulations of the
modified Fokker-Planck equation are performed using
the finite difference discretisation scheme presented in
(Vande Wouwer et al. 2014), with a sufficiently refined
mesh (consisting of 501 elements), which is enough to
approximate the equation with the required accuracy.
An upwind 5 points, and centred 5 points in the sten-
cil are employed to approximate first and second order
derivatives, respectively. The resulting set of ordinary
differential equations may be integrated in Matlab with
a standard ODE solver (ode15s).
Figure 1 compares the results and performance of the
individual-based modelling (stochastic differential equa-
tions) and the modified Fokker-Planck equation (one
partial derivative equation). Left panel shows that
both models provide the same stationary distribution.
Right panel depicts the computational times required
for simulating both models. Numerical comparisons re-
veal that computation time of the stochastic equations
grows exponentially with time, whereas the growth is
linear for its equivalent modified Fokker-Planck equa-
tion (20). Note that the stochastic individual-based
modelling approach requires one equation per cell and,
as cells grow exponentially, computation time scales lin-
early with the number of cells and exponentially with
time. The modified Fokker-Planck equation, however, is
one partial differential equation (PDE) where the com-
putation time depends on the degree of discretisation
and the simulation time. For the examples computed in
(Garćıa et al. 2018), we obtain similar order of compu-
tational times (2-10 seconds) until time 15, with a pop-
ulation of less than 3e4 cells, being the individual-based
modelling more efficient. However from this time the
modified Fokker-Plank equation becomes more efficient
in orders of magnitude and different simulations will
give very different computation times for the individual-
based modelling. In addition, this partial derivative
equation has a diffusive term allowing the use of re-
duced order techniques (Trefethen 2000, Garćıa et al.
2008, Vande Wouwer et al. 2014). These methods would
allow reducing its computational times even further.

CONCLUSIONS AND FUTURE PERSPEC-
TIVES

In this work a modified Fokker-Plank equation was de-
rided to describe the dynamics of cell growth and divi-
sion from an initial number of viable cells. The equation
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Figure 1: Comparisons between the individual-based model (IBM) and the modified Fokker-Planck equation (mFP)
for μ = 0.7, ξ = 0.3, vm = 4, σ = 0.05. Left panel shows the comparisons in terms of stationary distribution. It
corresponds with the distribution obtained by allowing one cell to growth and divide until time 20. Right panel depicts

the differences in terms of computational time with one and another model for 50 different runs.

has been validated both numerically and experimentally
with an individual based model approach that makes use
of a stochastic differential Equation (SDE) formalism.

As it has been discussed, the method adopted can bring
inside into the division and growth dynamical proper-
ties, giving account of possible structural changes un-
dergoing division (e.g number of division planes).

On the other hand, the combination of the modified
Fokker-Plank equation with flow cytometry data can be
used to estimate macroscopic growth rates in bacterial
cultures from mesoscopic bacterial size distributions. In
this way, the method can provide a quick in-line way of
obtaining relevant growth model parameters under dif-
ferent environmental conditions without the need of long
and tiresome kinetic studies. It is expected that biotech-
nology industries and quality control departments would
greatly benefit from this methodology.

The presented approach assumes that division behaves
as a sizer, and therefore cells are fully adapted (exponen-
tial growth). This is a safe, and conservative, assump-
tion since any microbial growth inside the food matrix
will always be equal or slower than the assumed sce-
nario. We are currently working in extending the the-
ory to assume that division behaves as an adder. This
will allow us to obtain better estimations of population
growth during the lag phase.
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Growth/No Growth models are statistical models used to 
quantify the combined effect of various growth inhibitors and 
determine the environmental conditions in which a pathogen 
is unable to grow. One factor affecting the development of 
G/NG models is the microbial intraspecies strain variability, 
as different strains often behave differently when one or 
more environmental conditions change. This obstacle is 
overcome by a pre-screening of the strains in order for the 
most resistant strain to be used. In this experiment, a pre-
screening of different Listeria monocytogenes strains 
revealed that there were different strains exhibiting resistance 
to different stressing environmental conditions, thus making 
it not feasible to classify only one as the most resistant. 
Instead, the produced G/NG model was based on growth data 
of all 10 tested strains, resulting in a composite model which 
successfully predicted full growth of L. monocytogenes.
Additionally, in comparison to individual strain generated 
models, the composite model safely predicted bacterial 
growth in environmental conditions where individual models 
failed to. 

������������

Predictive microbiology is a systematic effort to define the 
effect of the initial conditions (process, environmental 
conditions, food composition) on the final behavior (growth, 
death, toxin production) of a microorganism, through 
statistical and mathematical approaches. It is commonly used 
as a scientific tool in the food industry in order to achieve 
production of microbiologically safe foods. In 1993, Whiting 
and Buchanan categorized statistical models in three 
distinguished types (Whiting and Buchanan, 1993). The 
primary models, which give a mathematical description of 
the growth kinetic parameters (μmax, generation time, λ, ymax), 
the secondary models, which describe the effect of the 
various environmental factors, like pH and aw on the 
microbial growth and the tertiary models, which are a 
combination of primary and secondary models for the 
production of statistical software.  
A commonly used secondary model is the "Growth/No 
Growth" model. These models have the ability to quantify 

the combined effect of various growth inhibitors and 
determine the conditions in which the pathogen is unable to 
develop (Vermeulen et al., 2007). The use of "Growth/No 
Growth" models gives the ability to retrieve growth data of a 
microorganism on synthetic substrates with final aim to 
reduce significantly the number of challenge tests required to 
determine the growth limits in real food. 
This type of modeling and Predictive Microbiology in 
general, have been used to define how the growth of various 
microorganisms is affected by the use of several 
antimicrobial substances like nisine and essential oils 
(Boziaris and Nychas, 2006; Abdollahzadeh et al., 2017; 
Shakeri et al., 2017), the inoculum size (Vermeulen et al., 
2009; Shakeri et al., 2017), the use of novel food processes 
as High Hydrostatic Pressure and Pulse Light (Bover-Cid et 
al. 2010; Hierro et al., 2011) and the strain variability 
(Valero et al., 2010; Lianou and Koutsoumanis, 2013; 
Augustin et al., 2011; Aryani et al., 2015a, b; Den Besten et 
al., 2017). 
The latter issue has been a subject of many studies over the 
last years, for a variety of microorganisms, such as 
Salmonella enteritica (Sant’Ana et al., 2012; Lianou and 
Koutsoumanis, 2011), Listeria monocytogenes (Sant’Ana et 
al., 2012; Augustin et al., 2011; Aryani et al., 2015a, b) and 
Escherichia coli (Valero et al, 2010). The main conclusion of 
the above studies was that, regardless the microorganism, the 
variation in the growth behavior of the strains is an important 
factor that should be taken into account when developing a 
statistical model. 
One of the microorganisms most commonly used for the 
development of statistical models is Listeria monocytogenes.
This is due to the fact that despite not being the cause of the 
most food poisoning outbreaks, in comparison to other 
pathogens as Salmonella spp. (Greig and Ravel, 2009), it is a 
major concern for food safety because of the high mortality 
of the patients (Bennion et al., 2008). Therefore, there have 
been many studies about the minimum levels of several 
environmental factors, such as temperature (Walker et al., 
1990), pH (Farber et al., 1989; Buchanan et al., 1993) and 
water activity (Farber et al., 1992; Nolan et al., 1992) that 
allow growth of the bacterium, while most recently, many 
statistical models were developed with the aim to identify the 
effect of various environmental factors on the growth of L. 
monocytogenes (Tienungoon et al., 2000; Koutsoumanis and 
Sofos, 2005; Boziaris and Nychas, 2006; Boziaris et al., 
2006; Vermeulen et al., 2007, 2009). 
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Previous studies have demonstrated that bacterial strain 
variability affects the estimation of growth boundaries 
(George et al., 1988; Farber et al., 1989, 1992; Vermeulen et 
al., 2007) and therefore the development of predictive 
models (Tienungoon et al., 2000; Valero et al., 2010; Aryani 
et al., 2015a, b).  
On this basis, the purpose of this study was: (i) the 
identification and comparison of the growth limits of 10 
genetically different strains of L. monocytogenes, (ii) The 
development of a composite "Growth/No Growth" model, 
using growth data of all strains, skipping the screening 
process, (iii) The comparison of the composite Growth/No 
Growth model with models developed using data from 
individual strains. 
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The 10 different strains of L. monocytogenes have been 
previously genetically serotyped (Houhoula et al., 2012). 
Before use, each one was resuscitated, by transferring one 
beam of the original culture in 10 ml of Brain Heart Infusion 
broth and let for overnight incubation. The initial inoculum 
level was confirmed by plating 1 ml in Plate Count Agar 
(PCA), followed by the appropriate dilutions and plate 
reading enumeration. The above described procedure was 
performed in triplicates in order to ensure results’ reliability. 
The strains that were used as well as their source (food or 
clinical sample) are shown in Table 1. 
 
�+����9� The strains of Listeria monocytogenes used in the 

experiment 
Code Source 

S1 Reference Strain 
S2 Food 
S3 Clinical 
S4 Food 
S5 Clinical 
S6 Clinical 
S7 Food 
S8 Food 
S9 Clinical 

S10 Reference Strain 
 

?.�*!1��#+���*$&�/�*��
Growth media was adjusted to the desired pH and aw values, 
following suspension in microtiter plates (Greiner Bio-One, 
Germany). pH was adjusted using acetic acid at 8 different 
levels (4.0, 4.4, 4.8, 5.2, 5.6, 6.0, 6.4 and 6.8) before 
autoclaving and minor corrections were made afterwards 
under sterile conditions. The water activity was adjusted at 6 
different levels (0.89, 0.91, 0.93, 0.95, 0.97 και 0.99), with 
the appropriate quantities of NaCl being calculated by using 
calibration curves between water activity and NaCl 
concentrations (Dinane et al., 2002). Growth media was 
inoculated in 3 different levels (2, 3 and 4 log cfu/ml) and the 
microtiter plates were stored for 60 days at the selected 
experimental temperature (4 and 18oC). Growth data (visible 
inspection) were collected every 3 days and the experimental 
procedure was conducted in 4 replications in order to ensure 
the reliability of the results.  

����$.1��#�$%�#'��(*$6#'�1$/��"�
The type of model developed in this study was a logistic 
regression model. These models consist of an equation in 
which the right part is a polynomial expression of the 
examined factors influencing the growth of the 
microorganism, and the left part is the expression Logit(P) = 
Ln (P/(1-P)), where P is the probability of growth. The main 
advantage of logistic regression models is that they can easily 
fit binomial data because they are linear models, and they are 
able to incorporate any environmental factor and its 
interactions (Ross and Dalgaard, 2004, Halkos and Kitsos, 
2010). In this case, the model tested was the following 
(Equation 1): 
 
logit(P)=b0+b1∙pH+b2∙aw+b3∙iL+b4∙pH∙aw+b5∙iL∙pH+b6∙iL∙aw  
(Eq. 1) 
 
where: 
P, the probability of growth of the microorganism, (0 = no 
growth, 1 = growth), 
aw, the water activity and, 
iL (inoculum Level), expressed as the logarithmic trans-
formation of the number of cells (log cfu/ml), 
b0 … b6, coefficients for estimation. 
 
These parameters are expressed linearly in the model. Water 
activity was not transformed into bw = (1-aw)0.5 (Gibson et 
al., 1994; Koutsoumanis et al., 2004) because this method 
did not lead to a better fit of our data. The use of the main 
variables’ squares (pH2, aw

2 and iL2) was entirely rejected, as 
their estimated parameters where statistically insignificant. 
That is because, their calculated coefficients corresponded to 
high P-values, greater than 0.800. The only parameter not 
being rejected despite having P > 0.05 was the inoculum 
level (iL) as well as its interactions (iL x pH and iL x aw), as 
we considered that a higher P-value would indicate the extent 
of the effect of the inoculum level on bacterial growth. 
 
�
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The analysis of results reveals that there is variability among 
the 10 different L. monocytogenes strains tested, regarding 
their growth limits set. This inter-strain growth variability 
was not an unexpected phenomenon, as it has been 
demonstrated in various researches (Doyle et al., 2001; 
Lianou and Koutsoumanis, 2013; Aryani et al., 2015). 
After incubation for 60 days, the minimum pH values where 
bacterial growth was observed were 6.0 and 5.2 at 4oC and 
18oC respectively (Tables 2 and 3). Similarly, the minimum 
water activity values were 0.95 and 0.91 at 4oC and 18oC 
respectively, with the results being similar to those reported 
in the past (George et al., 1988; Farber et al., 1989, 1992; 
McClure et al., 1989; Cole et al., 1990; Parente et al., 1998; 
Tienungoon et al., 2000; Le Marc et al., 2002; Koutsoumanis 
et al., 2004, Boziaris and Nychas, 2006; Boziaris et al., 
2006; Vermeulen et al., 2007). The increase of the 
experimental temperature benefited the bacterial growth and 
broadened the observed growth limits, as expected. Similar 
growth promoting beneficial effects were observed when the 
initial bacterial inoculum size was increased from 2 cfu/ml to 
3 cfu/ml and subsequently to 4 cfu/ml. 
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�+����8� Minimum pH and aw where growth observed for 10 strains of L. monocytogenes, after 60 days incubation at 4 oC.

a$�� � � + # � * � + & # ! � ! # ) �
�#*+!�"� ^`ef� ^`f9� ^`f;� ^`fc� ^`f]� ^`ff� ^`ef� ^`f9� ^`f;� ^`fc� ^`f]� ^`ff� ^`ef� ^`f9� ^`f;� ^`fc� ^`f]� ^`ff�

S1

.�
�

- - - - 6.0 6.0 - - - - 6.0 6.0 - - - - 6.0 6.0
S2 - - - - 6.0 6.0 - - - - 6.0 6.0 - - - - 6.0 6.0
S3 - - - - 6.0 6.0 - - - - 6.0 6.0 - - - - 6.0 6.0
S4 - - - - 6.0 6.0 - - - - 6.0 6.0 - - - - 6.0 6.0
S5 - - - - 6.0 6.0 - - - - 6.0 6.0 - - - 6.8 6.0 6.0
S6 - - - - 6.0 6.0 - - - - 6.0 6.0 - - - 6.4 6.0 6.0
S7 - - - - 6.0 6.0 - - - - 6.0 6.0 - - - - 6.0 6.0
S8 - - - - 6.0 6.0 - - - - 6.0 6.0 - - - - 6.0 6.0
S9 - - - - 6.0 6.0 - - - - 6.0 6.0 - - - - 6.0 6.0

S10 - - - - 6.0 6.0 - - - - 6.0 6.0 - - - - 6.0 6.0
��$&���1�

����� 8��$(�&%�d1�� ;��$(�&%�d1�� a��$(�&%�d1��

�
�+����;� Minimum pH and aw where growth observed for 10 strains of L. monocytogenes, after 60 days incubation at 18oC.

a$�� � � + # � * � + & # ! � ! # ) �
�#*+!�"� ^`ef� ^`f9� ^`f;� ^`fc� ^`f]� ^`ff� ^`ef� ^`f9� ^`f;� ^`fc� ^`f]� ^`ff� ^`ef� ^`f9� ^`f;� ^`fc� ^`f]� ^`ff�

S1

.�
�

- 6.0 6.0 5.6 5.6 5.6 - 6.0 5.6 5.6 5.2 5.2 - 6.0 5.6 5.6 5.2 5.2
S2 - - 6.0 5.6 5.6 5.6 - - 6.0 5.6 5.6 5.6 - 6.4 6.0 5.6 5.6 5.6
S3 - 6.4 6.0 5.6 5.6 5.6 - 6.0 6.0 5.6 5.6 5.6 - 6.0 6.0 5.6 5.2 5.2
S4 - - 6.0 5.6 5.2 5.2 - - 6.0 5.6 5.2 5.2 - - 6.0 5.6 5.2 5.2
S5 - 6.8 6.0 5.6 5.2 5.2 - 6.8 6.0 5.6 5.2 5.2 - 6.4 6.0 5.6 5.2 5.2
S6 - 6.8 6.0 5.6 5.6 5.6 - 6.4 6.0 5.6 5.2 5.2 - 6.4 6.0 5.6 5.2 5.2
S7 - 6.0 6.0 5.6 5.2 5.2 - 6.0 6.0 5.6 5.2 5.2 - 6.0 6.0 5.6 5.2 5.2
S8 - 6.4 6.0 5.6 5.2 5.2 - 6.0 6.0 5.6 5.2 5.2 - 6.0 6.0 5.6 5.2 5.2
S9 - - 6.0 5.6 5.6 5.6 - 6.4 5.6 5.6 5.6 5.6 - 6.0 5.6 5.6 5.6 5.6

S10 - - 6.0 5.6 5.6 5.6 - - 6.0 5.6 5.6 5.6 - - 6.0 5.6 5.2 5.2
��$&���1�

����� 8��$(�&%�d1�� ;��$(�&%�d1�� a��$(�&%�d1��

This was attributed to the physiological heterogeneity of cells 
into a microbial population, as for their ability to survive in 
extreme conditions (Pascual et al., 2001) and to the fact that 
into a microbial population there is a distribution of injury 
over the  individual cells (Pin and Baranyi, 2006). This 
distribution has as result that the larger the bacterial 
population is the more chances are that there will be a cell 
which will survive and will be able to grow and multiply 
(McKellar 1997, 2001; Baranyi, 1998; Robinson et al., 2001; 
Zhao et al., 2000; Metris et al., 2003). 
The fact that some strains did not get affected at all comes in 
contrast with the findings of Koutsoumanis and Sofos (2005), 
who observed quite large differences between different 
inoculum sizes of Listeria monocytogenes. It is possible, 
however, that the difference between the two studies, is due 
to the use of different growth media and experimental 
conditions, while it may also be that at the above study, only 
one strain of the microorganism was tested. 
In some publications, in order to choose the strain that will 
be used for the development of a "Growth/No Growth" 
model, takes place a screening of the strains (Vermeulen et 
al., 2007). However, our results indicate the occurrence of an 
intrastrain growth variability, with different strains exhibiting 
the ability to grow in either low pH or water activity values 
or even a combination of those environmental factors. 
Therefore, distinguishing a certain strain as the most resistant 
is not possible, especially when taking in account that this 
variability is also affected by the experimental change of 
factors as temperature and initial inoculum level. 
Theoretically, the solution to this problem would be to 
develop a predictive growth model by using a mixed 

microbial culture, which would consist of the strains with the 
most extreme growth values. Vermeulen et al. (2007) 
however, observed that by using a mixed microbial culture, 
the growth boundary was the same, or sometimes even 
smaller, compared to the growth boundary which occurred by 
using an individual culture. This fact was attributed to the use 
of just the 1/5 of each individual culture, in order to create 
the mixed culture.  

����$.1��#�$%�#'��&$1.$"!#���*$6#'d�$��*$6#'��$/���
Taking in account that during the screening procedure, no 
strain could be classified as the most resistant one, in either 
of the environmental factors examined, it was decided to 
develop a growth/no growth model using growth data of all 
the examined bacterial strains. 
As shown in Figure 1, the growth profiles of the 10 strains 
were combined in a way that they get a unique “composite 
strain”. This was done in order to avoid a possible failure of 
the model to predict growth in certain severe environmental 
conditions of different strains. For example, if there was 
growth observed in an extreme pH and aw value for only one 
strain into one of its replications, then this would be one case 
over forty data sets (10 strains x 4 replications) providing a 
possibility of 2.5% to safely predict growth. Using a 
“composite” growth profile, this particular case would be one 
over four data sets (1 strain x 4 replications) providing a 
possibility of 25% to safely predict growth. 

�
�
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�!(�*��9� Conceptualization of the “composite”  
growth profile 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results of logistic regression and the estimated lower 
limits of pH and aw that allow growth, as they were 
determined by these composite "Growth/No Growth" model, 
are shown in Tables 4 and 5 respectively. The following 
estimated values of pH and aw are verified by both the 
observed experimental data and the literature. 
The developed "Growth/No Growth" interface is shown in 
Figure 2. As it can be numerically approved by the values in 
Table 5 and visually observed in Figure 2, the developed 
model can successfully predict the growth of all tested strains 
of Listeria monocytogenes. Although the predicted values 
seem to be more conservative compared to the observed 
ones, this provides a safety margin so that none of the 
model's prediction fails. These predictions are called “fail 
safe” and have been described by numerous researchers 
(Vermeulen et al., 2010; Perez-Rodriguez  and Valero, 2012; 
Polese et al., 2016; Khanipour et al., 2016). 
 
 

�+����a� The estimated parameters and statistical indicators 
of the composite G/NG models. Where HL, the Hosmer-

Lemeshow Test indicator 
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In order to better evaluate the potential of the composite 
model, we continued by developing individual predictive 
models for strains S5, S6 and S1, S7 for the temperature of 
4oC and 18oC respectively (Model results not shown). For 
comparison purposes, these models were projected against 
the composite model as shown in Figure 3.  
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�!(�*��8� Growth/No Growth interface of Listeria monocytogenes, after incubation for 60 days at 4 and 18oC, as predicted by the 
composite models. With ○ are represented the points where no growth occurred and with ● the points where growth occurred for all 
of the ten strains used. Size of initial inoculum: (a, d) 2 log cfu/ml (b, e) 3 log cfu/ml (c, f) 4 log cfu/ml. Each kind of line represents 

a different growth probability, as shown in the legend. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�+����c��The estimated lower limits that allow growth of Listeria 
monocytogenes, as they were determined by the composite G/NG models. 

�

�$1.$"!#���$/��"� �*�/!&#�/�.���+���"� � �*�/!&#�/�+6��+���"�
8��$(� ;��$( a��$( � 8��$(� ;��$( a��$( 

a�$� 5,59 5,59 5,58  0,953 0,948 0,944 
9e�$� 4,99 5,02 5,06  0,891 0,892 0,893 
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�!(�*��;� Comparison of the composite model with the individual models of the most resistant strains (S) at each temperature. With 
○ are represented the points where no growth occurred and with ● the points where growth occurred for all of the ten strains used. 

Size of initial inoculum: (a, d) 2 log cfu/ml (b, e) 3 log cfu/ml (c, f) 4 log cfu/ml. The probability value used was 0.1 (10%). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

The composite model predicts (Figure 3) successfully the 
growth of Listeria monocytogenes, in factor combinations 
where the individual models fail to do so. For example, in 
Figure 3c, the individual model of strain S5 fails to predict 
growth at pH 6.4 and aw 0.95, due to the fact that strain S5 
did not grow in this specific environmental factor 
combination, even though that through the screening 
procedure this would be the strain that would be used to 
develop the predictive model. Additionally, even though the  
composite model keeps a safety prediction margin, the 
individual models tend to be even more conservative. 

�$�&��"!$�"�

As the results indicate (Figure 3), the development of a 
"Growth/No Growth" model by using data of an individual 

strain, would have resulted in a model failing to predict the 
full range of growth of L. monocytogenes. This was 
attributed to the fact that each strain adapts differently to 
changes of specific environmental factors as pH, water 
activity and temperature, while its adaptability is also 
affected by the initial inoculum level used. As shown in this 
experiment, the development of a predictive model using 
data of more than one strain can help surpass this strain 
variability and safely predict the growth of L. 
monocytogenes, while the fail-safe margin of the developed 
model provides us with the ability to furtherly experiment 
with closer intervals regarding the environmental factors 
used.�
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Sugars are more and more replaced with low- or non- 
calorie sweeteners. This change in diet does not only affect 
our own caloric intake but also the nutrients provided to 
our gut microbiota. The relationship between humans and 
their gut microbiota is mutualistic and the microbiota has 
an influence on the development of a wide variety of 
diseases such as obesity, type II diabetes and cancer. As 
such, diet changes affect our health in several ways 
through the effect on the gut microbiota. Consequently, an 
interesting approach would be to focus on characterizing 
and modeling the effect of a diet change, from high to low 
caloric content, on the behavior of a complex population 
of gut microbiota. On the other hand, realistic experiments 
(i.e., experiments that could also be performed in vivo) can 
be designed to estimate parameters which cannot be easily 
fixed upfront.� In this article a review is presented on the 
current state of the art of model system development for 
microbial and physicochemical processes in the human 
small intestine. The emphasis is on how gut microbiota 
dynamics are influenced by a diet shift. The authors 
propose a novel process systems engineering approach for 
investigating the influence of a low calories diet change on 
gut microbiota dynamics. �

������������
The World Health Organization (WHO) acknowledges the 
importance of reducing sugar consumption to tackle 
problems as obesity. Therefore, sugars are more and more 
replaced with low- or non-calorie sweeteners. This change 
in diet does not only affect our own caloric intake but also 
the nutrients provided to our gut microbiota. The 
relationship between humans and their gut microbiota is 
mutualistic and the microbiota has an influence on the 
development of a wide variety of diseases such as obesity, 
type II diabetes and cancer. Gut microbiota influence host 
health by modulating host immunity and by having an 
impact on the host metabolic health (Singh 2017). The 
human gut microbiota community consists of at least 
1013 residents and it can be viewed as a metabolic ‘organ’
exquisitely tuned to human physiology, that performs 
functions that have not been evolved, so far (Bäckhed et 
al. 2004). For instance, some of the microorganisms 
residing in the gut encode proteins involved in functions 
important for the host’s health, such as enzymes required 

for the hydrolysis of otherwise indigestible dietary 
compounds, and the synthesis of vitamins (D’Argenio 
2015). For instance, it has been revealed that members of 
the human intestinal Bacteroides genus harbor very broad 
saccharolytic potential, with some strains able to target 
dozens of different complex glycans, that are not degraded 
or absorbed as they pass through the stomach and small 
intestine, reaching the colon intact (Salyers et al. 1977). 
The close relationship between diet, gut microbiome and 
health suggests that a change in diet can have several 
unknown effects on our health. As such, changes from a 
normal to a low- or non-caloric diet are expected to have a 
variety of unexpected health effects. 
Interesting results are found in literature indicating specific 
side effects of novel sweeteners through the gut 
microbiota. Several non- and low-caloric sweeteners are 
supplemented with dietary resistant maltodextrin (DRM) 
as a bulking agent. DRM is a novel water soluble, 
nonviscous and tasteless fiber, produced by the treatment 
of cornstarch with acid, enzymes, and heat (Fastinger et al. 
2008). Baer et al. (2013) found that the consumption of 
DRM caused a significant increase of gut microbiota such 
as Ruminococcus, Eubacterium, Lachnospiraceae, 
Bacteroides, Holdemania and Faecalibacterium. This 
implicates that the DRM gives these microorganisms a 
competitive advantage for growth in the gut. Suez et al. 
(2014) tested the effect of non-caloric artificial sweeteners 
on the glucose resistance and gut microbiota of mice. 
When transferring the gut microbiota from saccharin 
consuming mice to germ free mice, they found impaired 
glucose intolerance compared to mice receiving control 
(glucose) microbiota. This demonstrates the effect of the 
non-caloric artificial sweeteners on glucose tolerance 
through their effect on the gut microbiota. Bertelsen et al. 
(2001) studied the fermentability of D-tagatose by 174 
different species of human enteric bacteria and dairy lactic 
acid bacteria. The results demonstrated that D-tagatose is 
fermented by bacteria related to the genera Enterococcus
and Lactobacillus.
This review examines the development of model systems 
that account for the microbial and physicochemical 
processes in the human small intestine, in order to 
investigate the effect of a diet shift on the gut microbiota 
dynamics. In the next section the most important parts and 
processes in the human digestive system are presented. 
Subsequently, a brief review is given on model systems for 
human digestion. The fourth section describes a novel 
process systems engineering approach for modeling and 
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studying the human microbial gut. The last section 
summarizes the conclusions of this review. 

���	����
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In order to unravel the impact of the gut microbiome on 
the human health, it is important to understand their role in 
the human digestive system. The human digestive system 
consists of the gastrointestinal tract and other organs 
facilitating digestion (Figure 1). The full process of 
digestion exists of many stages. In summary, after 
breakdown of the meal and its transformation into bolus by 
means of the saliva, the processed meal enters the stomach 
(Jalabert-Malbos et al. 2007). In the stomach, apart from a 
further mechanical breakdown, digestive enzymes and 
gastric juices facilitate the further chemical breakdown of 
macronutrients into its building blocks. Few (aerobic and 
facultative anaerobic) microbial species are present in the 
stomach due to its high acidity. Most of the digestion of 
the food takes place in the small intestine (duodenum, the 
jejunum and the ileum), with its main function to absorb 
the products of digestion into the bloodstream. The 
duodenum receives the chyme expelled from the stomach, 
which is a multiphase slurry that constitutes of a mixture 
of gases, liquid and solid particles (Lew et al. 1971), 
together with pancreatic juices and bile from the gall 
bladder, breaking down protein and emulsifying fats. 
Moreover, a mucus-rich alkaline secretion is produced, 
neutralizing the pH.  In the jejunum, the midsection of the 
small intestine, products of the digestion (i.e., sugars, 
amino acids and fatty acids) are absorbed into the 
bloodstream. In the ileum, vitamin B12, bile acids and 
remaining nutrients are absorbed. The amount of gut 
microbiota increases in the small intestine (Drasar and Hill 
1974).  

Figure 1. The human digestive system (Cohen and Wood 2000) 

Finally, in the colon of the large intestine, water and some 
minerals are reabsorbed back into the blood. The waste 
products of digestion (feces) are defecated from the anus 
via the rectum. In the colon, the population of gut 
microbiota rapidly increases. The average cell counts in 
feces are around 1011-1012 CFU/g with an expected 

number of species of more than 400, mainly anaerobic 
(O’Hara and Shanahan 2006).

��
������
����������	����
������
Currently, changes in gut microbiota and/or diet are 
studied mainly in (bio)medical studies. Claessen et al. 
(2012) demonstrated that diet had an effect on gut 
microbiota composition. This was demonstrated by 
showing that elderly people in long-stay care had 
significantly less divers gut microbiota than community 
dwellers. Bäckhed et al. (2004) found that transplanting 
gut microbiota from normal mice into germ-free mice 
increased their fat level (without an increase in food 
consumption). As such, research indicated that the 
composition of the gut microbiota may affect our caloric 
intake. Ley et al. (2006) found that a low caloric diet can 
alter the gut microbiome composition of obese people. A 
decrease in the amount of Firmicutes and an increase in 
the amount of Bacteroidetes was detected as the diet 
continued. These and several other studies demonstrate the
links between diet, gut microbiota and health.  
In addition, several (bio)medical studies are available 
discussing the effect of a diet on the human gut microbiota 
composition. The review of Graf et al. (2017) discussed 
the effects of (i) vegetarian diets, (ii) western diets, (iii) 
whole grain products, (iv) fruits and nuts, (v) vegetables 
and legumes, (vi) dietary fibers, (vii) fats, (viii) proteins 
and (ix) phytochemicals. The review of Scott et al. (2013) 
elaborated on the influence of (i) dietary carbohydrates, 
(ii) resistant starch and starch polysaccharides, 
(iii) prebiotics, (iv) proteins and (v) fats on the gut 
microbiota. However, the effects of, e.g., caloric intake or 
sugars were not discussed. As such, this very common and 
highly relevant diet change is generally overlooked in the 
currently available literature.  
In addition, although (bio)medical studies generally allow 
the specific determination of the effect of diet changes on 
gut microbiota and health, they are limited with respect to 
the interpretation of the mechanisms behind these effects. 
This is a consequence of the fact that the studied system, 
i.e., the human gut system, is highly complex. Indeed, 
studying the multistage process of human digestion is a 
rather difficult procedure, costly and sometimes limited by 
ethical constrains. In vivo feeding methods, using animals 
or humans, usually provide the most accurate results, but 
they are time consuming and costly, which is why much 
effort has been devoted to the development of in vitro
procedures (Boisen & Eggum 1991). 
During the last decades, the development of model 
systems that describe and simulate the gastrointestinal tract 
has been an intriguing, yet challenging goal for several 
researchers. Some of their positive aspects are definitely 
their flexibility, their accuracy and their reproducibility 
(Guerra et al. 2012). In the human body, the largest 
microbial community is harbored in the gastrointestinal 
tract, where at least two orders of magnitude more genes 
than those found to our genome, derive from our gut 
microbiome (Egert et al. 2006; Qin et al. 2010). Models 
systems, such as the SHIME™ (Simulator of the Human 
Intestinal Microbial Ecosystem), originally developed at 
Ghent University (Molly et al. 1993) and brought on to the 
market by ProDigest (Gent, Belgium), the TIM  Gastro-
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Intestinal Model (Minekus et al. 1995) developed by TNO 
and the EnteroMix® colon simulator (Mäkivuokko et al. 
2006) are among the most used in vitro methods that have 
been developed to investigate the effect of different 
products on the composition and activity of gut 
microbiota.  

�
Figure 2. The SHIME™ model (Van de Wiele et al. 2015)

The SHIME™ is a multi-compartment dynamic simulator 
of the human gut that mimics the entire gastrointestinal 
tract by incorporating the stomach, the small intestine and 
the different colon regions (Figure 2). It consists of a 
succession of multi-compartment simulators or parts of the 
human gut, based on the awareness that fecal microbiota 
differ significantly from the in vivo colon microbiota in 
terms of community composition and metabolic activity 
(Van de Wiele et al. 2015). An improved version of the 
SHIME™ is the M-SHIME (mucosal-SHIME) (Van den 
Abbeele et al. 2011) which allows the study of the 
composition and functioning of the microbes that 
specifically reside on the mucosal surfaces of the 
gastrointestinal tract, by incorporating a mucosal 
environment containing mucin-covered microcosms. 
Furthermore, the presence and interaction with a mixed 
intestinal microbiota of the lumen is also allowed with the 
use of the M-SHIME (Van de Wiele et al. 2015). 

Figure 3. The TIM model (Guerra et al. 2012)

The TNO Gastro-Intestinal Model (TIM) is a multi-
compartmental dynamic model designed to realistically 
simulate conditions in the lumen of the gastro-intestinal 
tract (Figure 3). It was developed in the early 1990s in 
response to industrial demand to study food products 
under more physiologically relevant conditions as 
compared to contemporary digestion models. The gastro-
intestinal behavior of a wide variety of feed, food and 
pharmaceutical products is successfully studied with the 
use of TIM. Computer simulations of the conditions that 
take place in vivo during the transit and digestion of a meal 
in the lumen of the gut are the main tools on which the 
experiments in TIM are based on. These conditions 
include controlled parameters such as gastric and small 
intestinal transit, pH values, composition and flow rates of 
digestive fluids, and removal of water and metabolites. 
Specifically, TIM 1 mimics the upper digestive system by 
simulating the stomach and small intestine: duodenum, 
jejunum and ileum, while TIM 2 mimics the proximal 
colon of monogastric animals. Regarding TIM 1, fluid 
transportation from one vessel to another is executed by 
peristaltic valve pumps, while in a TIM 2 model system, a 
standardized microbial culture that derives from a fecal 
inoculum is initially inoculated to the model. The 
applications of the TIM 2 model correspond mostly to the 
investigation of the fermentation properties of dietary 
compounds such as fibers, pro- and prebiotics and 
antioxidants in the proximal part of the colon. During the 
past years, TIM has developed from an experimental lab 
setup, controlled by a PC of 8 MHz, into a platform of 
sequentially attached glass modules that are successfully 
used as model systems for an extensive range of studies, 
serving the feed, food and pharmaceutical industries. 
(Minekus 2015).  

Figure 4.�The EnteroMix® model 
(https://www.guwsmedical.info) 

Finally, the EnteroMix® colon simulator is a semi-
continuous device, with four parallel units, each comprised 
of four glass vessels connected consecutively and 
representing the ascending, transverse, descending and 
distal colon, respectively. An important advantage of this 
method is that it allows the implementation of four 
simultaneous simulations with the use of the same fecal 
inoculum, since the fluid consisting of media and the fecal 
slurry is mixed in the first vessel and 10 ml of the mixed 
culture is pumped into the next vessel in the chain. The 
vessels have small working volumes, enabling the 
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simulation of small concentrations of the tested substrate, 
and their pH levels are similar to the in vivo conditions. 
The EnteroMix® model has been used to study and 
evaluate the effects of fibers, probiotics and prebiotics and 
other bioactive compounds on immune health in the lower 
digestive tract (Mäkivuokko et al. 2005). 
Despite the recent advances in the development of 
gastrointestinal model systems, there are still some 
limitations in modeling human gastrointestinal digestion, 
and some of the most significant ones are: (i) the absence 
of host response factors (Payne et al. 2012), (ii) the 
difficulty in modeling  the complex mechanical forces and 
the complex gastric emptying pattern (Siegel et al. 1988; 
Kong and Singh 2008), (iii) the inadequacy in reproducing 
the conditions of healthy adults (Guerra et al. 2012), (iv) 
the weakness in simulating the overall digestive process 
(Anson et al. 2009; Fassler et al. 2006), and (v) the 
absence of microbial ecosystem (Booijink et al. 2012; Van 
den Bogert et al. 2011). The interest in assessing the 
interactions between the ingested compounds and the 
resident microbiota, though, is rapidly increasing and 
considering the great potential of the ‘-omics’
technologies, the need to include a gut microbiota model 
system in the gastrointestinal systems becomes a task of 
major importance (Guerra et al. 2012; Payne et al. 2012). 
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“Process systems engineering (PSE) is concerned with the 
understanding and development of systematic procedures 
for the design and operation of chemical process systems, 
ranging from microsystems to industrial-scale continuous 
and batch processes” (Grossman and Westerberg 2000). 
Therefore, a novel approach would be to apply a PSE 
approach by simplifying the gut microbiota and their 
environment into a system that can be studied 
experimentally. The main advantages of such an approach 
are: (i) that this is a fully reproducible system, that it can 
minimize the variability of the system (ii) that it is not as 
expensive and time consuming as (bio)medical studies and 
(iii) that it does not raise ethical issues.
In this framework, a physicochemical model system can be 
developed, accounting for the physical transport processes 
and the chemical composition of a chyme that is 
representative for a ‘standard healthy meal’ that is being 
further digested in the small intestine. All the variables 
that characterize this model system, such as the pH, the 
temperature, the redox potential etc., can be controlled and 
kept constant. The term ‘standard healthy meal’ 
corresponds to a liquid mixture of the three basic nutrient 
compounds, i.e., carbohydrates, proteins and fats, in a ratio 
that is based on the nutritional guidelines for a healthy 
diet. Furthermore, a microbial system needs to be 
constructed, which will be representative for the gut 
microbiome present in the small intestine, by selecting key 
microbiota and by taking into account the diversity in the 
microbial community in the small intestine. The 
incorporation of the abovementioned model systems in a 
bioreactor setup will enable the investigation of the effect 
of a diet change to low caloric content on gut microbiota 
dynamics through a process systems engineering approach 
(Figure 5). According to previous studies, microbial 
communities present in the human gastrointestinal tract 

have been analyzed and the results showed them to be 
extremely complex, with estimates of the number of 
different species present ranging from 500 to 1,000 
(O’Hara and Shanahan 2006). Moreover, 16S rRNA gene-
based analysis of the colonic microbiota has shown that as 
many as 80% of phylotypes defined by 16S rRNA gene 
sequences do not correspond to known cultured bacterial 
species, and more than half are entirely novel species 
(Wilson 2008). Consequently, the selection of the 
representative species for the development of the microbial 
model system can be a challenging task, since many 
parameters should be taken into account. The gut 
microbiota abundance, prevalence in the small intestinal 
segments and their role in human health and disease can 
constitute selection criteria for the representative microbial 
key groups. Nonetheless, the implementation of this 
simplified yet representative model system will enable 
mechanistic insight in the dynamics of gut microbiota and 
will allow the study of this system to an extent that has not 
been achieved up till now, since the development of a 
microbial model system that accounts for the small 
intestinal milieu is a completely novel aspect for the in
vitro simulation of digestion.  
Moreover, mathematical modeling techniques can be 
applied, leading to an improved understanding of the 
mechanisms behind the responses found in (bio)medical 
studies. As an initial modeling step, low complexity 
macroscopic models could be built to describe the growth 
and metabolism of the different gut microorganisms, 
covering only the main influencing substrates, biomass 
and metabolites mass balances. 
The combination of experimental and modeling techniques 
can serve as a platform for reducing the number of in vivo
and in vitro studies that is required to study related 
research questions. 

�
Figure 5` Schematic representation of the present approach 

������������
Nowadays, there is a tendency to a reduced sugar 
consumption by replacing sugars with low- or non-calorie 
sweeteners. As changes in diet also affect the nutrient 
intake of the human gut microbiota, the effect of a diet 
shift on human health and gut microbiome has gained 
interest. The current state-of-the-art in modeling the 
human digestive system lacks mechanistic knowledge on 
the gut microbiota, in order to achieve a good 
understanding and to describe/predict the effect of diet 
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shifts on the human gut microbiome. Moreover, a large 
number of test subjects are currently required to study the 
effects of a diet shift on gut microbiota. Such experiments 
are time consuming, expensive and also raise ethical 
questions. In this review the development of model 
systems accounting for the microbial and physicochemical 
processes in the human small intestine has been studied to 
overcome the current experimental limitations. 
Furthermore, a process systems engineering approach has 
been presented to investigate the effect of a diet shift on 
the human gut microbiota dynamics. With the presented
approach, simplified, but still representative model 
systems are developed and studied to obtain mechanistic 
insight in the dynamics of gut microbiota. It is this 
simplification that allows the study of this system to extent 
that has not been achieved up till now. Furthermore, the 
development of predictive mathematical models will allow 
the description of the effect of a diet change on gut 
microbiota.  
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ABSTRACT

This contribution presents a novel approach for data
scaling and training of Partial Least Squares (PLS)
models, for use in applications of multivariate statis-
tical process monitoring and control of batch processes.
PLS models are intended for training soft sensors and
for quality prediction. Additionally, aspects of model in-
version are investigated to explore the use of the trained
models for quality control. Batch processes are widely
used in food industry as the preferred platform for the
production of added value products due to the char-
acteristics of the raw materials, i.e., natural elements
with complex flow properties and compositions. This
is also due to the nature of the most common transfor-
mations which involve bio-processes (e.g., fermentation)
and the unit operations (e.g., drying) applied in the food
industry. However, due to the complexity of their pro-
cess’ dynamics, quality control in the batch platform
has traditionally been limited to the measurement of
the end-product properties and the process control to
the univariate monitoring in proven ranges. Data-driven
models used in applications of fault identification, soft
sensors, and quality prediction have been proven and
exploited in the industry as they provide a solution for
online monitoring and control. However, there are still
many limitations on the existing data-driven methods
that restrict their performance and application. In this
contribution, it is demonstrated how the novel approach
for simultaneous data scaling and model training results
in significant improvements in the performance of the
data-driven models. Advantages of the proposed al-
gorithm regarding rank identification, the accuracy of
the quality predictions and PLS model inversion are de-
scribed.

INTRODUCTION

Latent variable methods, also known as (multi-)linear
methods for decomposition and dimensionality reduc-

tion, are widely used to develop data-driven models
in several fields (Fanaee-T and Gama 2016). In sys-
tems engineering, these models based on historical data
have been used in applications of process monitoring,
fault detection, and quality prediction. Moreover, data-
driven approaches are an active research field in engi-
neering in which developing methods that allow online
data-driven process control is one of the current trends.
Principal Component Analysis (PCA) and Partial Least
Squares (PLS) are the most common latent variable
methods exploited both in applications and research.
PCA aims at projecting most of the variability present
in a data set into a lower dimensionality space defined
by the set of latent variables. This method is exploited
in applications of process monitoring and fault detec-
tion. PLS is a regression modeling approach that allows
to capture the maximum covariance between two data
sets in the latent space, such that predictors for the out-
put variables can be estimated (Luo et al. 2016). This
approach is exploited to train soft sensors and for the
prediction of end properties. One common limitation of
these methods is that their performance depends on the
scale of the data. As the data measured in production
processes is obtained in different units and magnitudes
(e.g., temperature, pressure) the variability present in
the data is expressed in different scales. Thus, when ap-
plying latent variable methods the data scale operates
as an inherent weighting factor that can result in models
that preferentially capture the variability expressed at
higher scales. Traditionally data pretreatment has been
applied to normalize the scale along the batch data.

Autoscaling is the most widespread approach, it pro-
duces a data set that is mean centered and scaled to
unit variance along all batches at each time point. How-
ever, it can be demonstrated how autoscaling reduces
the results’ accuracy and robustness. This because the
original variance structure in the data is lost, noise is
amplified under low signal-to-noise ratios and nonde-
terministic variability can be easily introduced due to
a poor identification of the best rank approximation.
Alternatives to this approach have been investigated,
with variable scaling being one of these. This alterna-
tive maintains the physical interpretability of the trends
and the original variance structure. However, this ap-
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proach has failed to perform significantly better than
autoscaling in applications of online monitoring (West-
erhuis et al. 1999). In this regard, the present contri-
bution develops a novel concept for data scaling that
aims to solve the limitations mentioned before. A novel
approach for simultaneous data scaling and model train-
ing is proposed. Through this approach, a more uniform
distribution of error along the variables in the dataset
is achieved. The main objective is to guarantee that
the data-driven model is trained taking as much infor-
mation as possible from the deterministic variability in
each variable. Additionally, the novel approach results
in a regularization of the rank approximation problem
without diminishing the accuracy of the approximation
as is the case when applying other regularization ap-
proaches.
In addition to studying the performance of the PLS
models trained following the novel error scaling ap-
proach in direct applications (i.e, soft sensors and qual-
ity prediction), the problem of model inversion is inves-
tigated. This operation serves to estimate process con-
ditions that lead to the desired output trend or quality
condition, and it is relevant for process optimization and
control applications. However, achieving this requires
solving the challenges own of the model inversion, as
being undermined for most of the cases (Ierapetritou
et al. 2016). In this direction this contribution points
out how the novel scaling approach helps on limiting
the size of the null space, i.e., reducing significantly the
number of possible solutions for a single problem and
having more accurate solutions to the inversion problem.
The first section of this contribution presents theoretical
background on the traditional approach for construct-
ing data-driven quality regression models based on PLS.
The proposed novel simultaneous scaling and training
approach is introduced in the second section. Then, an
additional theoretical background is discussed regarding
the model inversion problem. In the fourth section, the
case study implemented to prove the concepts presented
is described and the obtained results are discussed. Fi-
nally, the main conclusions of this work are presented
and some comments on the direction for future work
are presented.

TRAINING PLS MODELS

Traditionally, PLS models are applied to batch-wise un-
folded data (Camacho et al. 2008). Following this ap-
proach the quality/output variables (Y[I×L×K]) are re-
gressed to the process/input data (X[I×J×K]). This
means that the tridimensional data (i.e., I batches ×
J variables × K time points) generated from historical
measurements of multiple online sensors in batch pro-
cesses are unfolded into matrices that kept the direction
of the first dimension Y(1),[I×LK] and X(1),[I×JK] and
decomposed into factor matrices that correlate them.
For this, each matrix is expressed as the linear combi-

nation of two factor matrices. The loadings P[JK×R]

of the process data, and the loadings Q[LK×R] of the
quality variables, contain the R extracted features that
define the directions of maximal variance between the
two datasets. The scores T[I×R] and U[I×R] are matri-
ces of R column vectors that represent the projection of
the original data in the latent space (i.e., the latent vari-
ables or scores) for each batch. Therefore, this results
in a regression model in which X(1) and its scores are
good predictors of Y(1) (Wold et al. 2001). The trans-
formation applied in PLS is depicted in equation (1).
This equation shows the relation based on the weight
matrix W that allows T to be a good predictor of the
quality variables. The error matrices E(1), F(1), H(1)

contain the residual variability that is not captured by
the regression approximation.

X(1) = TPT + E(1)

Y(1) = UQT + H(1)

Y(1) = TQT + F(1)

T = X(1)W
∗

W ∗ = W (PTW )−1

(1)

Data pretreatment is applied to the raw data, tradition-
ally it consists of three operations, i.e., batch alignment,
mean centering and scaling. In this contribution batch
alignment is not investigated, and the indicator variable
is considered the standard tool. The reader is referred
to Wan et al. (2014) for details on this method and other
alternatives. The main purpose of mean centering the
data is to discard most of the non-linearities of the sys-
tem which are common for all batches in the training
dataset. Finally as mentioned before data rescaling is
highly relevant due to the scale dependency in data-
driven methods. Considering the general case as the
one where the knowledge of the existing data correla-
tions is limited, the standard idea for scaling is to try
to make the variability present in each variable equal so
that preferential learning is favored. For this purpose
autoscaling has been widely applied. Scaling the data
to unit variance, by dividing each time point for each
variable by the standard deviation along all batches,
transforms the data variability and gives it an equiva-
lent magnitude at all points. However this method pro-
duces two unwanted results: firstly, the original trends
of the variables and the original variance structure of
the data are lost; and secondly, it can result in ampli-
fying low amplitude variability, (generally being noise),
while high amplitude variability, normally related with
the systematic variability, is weakened. Alternatively,
the variable scaling procedure aims to keep the original
trends for each variable and therefore the original co-
variance. In this case, the scale given to each variable
depends on the maximum and minimum values present
in the data set for each variable.
Once the data has been pretreated it is used to train
the PLS model that will be used for quality prediction
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and/or the development of soft sensors. In this con-
tribution, the PLS models were trained using the NI-
PALS method (Vandeginste et al. 1988) to determine
iteratively the column vectors of the factor matrices.
’Leaving one out’ cross validation is used to determine
the approximation accuracy for the PLS models con-
structed. Wold’s criterion (Gins et al. 2014) is used
to establish the best rank approximation based on the
mean square error (MSE) along with all variables and
time points for the leave one out cross validation. In
equation (2) the formulations for the MSE and Wold’s
criteria are presented for a PLS model using (R) latent
variables for the rank approximation. Once the PLS
model has been trained new process data is used as in-
put to estimate either the end quality or the trend of
the quality/output variables for which soft sensors have
been trained. The Hotelling’s T 2 statistics is used to
define the region where the model is valid. T 2 is the
distance to the center of the latent space of a new obser-
vation when it is projected to this reduced space. Equa-
tion (3) corresponds to the T 2 upper control limit. The
upper control limit for T 2 follows the F−distribution
with degrees of freedom equal to the number of valida-
tion batches (Nval) minus the rank of the approximation
(R)(Gins et al. 2014). α and β in equations (2) and (3)
determine the severity of the criteria.

MSE =F1F
T
1 = (Y1 − TQT )(Y1 − TQT )T

MSE(R+ 1)

MSE(R)
> α

(2)

T 2 =TΣTT
T

uT 2 =
R(Nval2 − 1)

Nval(Nval −R)
F(R,Nval−R;β)

(3)

SIMULTANEOUS DATA SCALING AND PLS
MODEL TRAINING

The novel procedure proposed in this contribution for
training PLS models consists of the simultaneous data
scaling and training of the data-driven model resulting
in a regularization approach. The aim is to overcome
the limitations found when using a sequential approach
based on autoscaling or variable scaling. Based on the
concept of maximizing the availability of the information
contained in the data and guaranteeing the best possible
learning in all directions (i.e., from all variables of the
system), an error based scaling is proposed. The prin-
ciple of this approach is to find the appropriate scaling
factors for each variable in the data set to guarantee that
once the PLS model has been trained, the residual error
has a unit variance distribution in the variables direc-
tion. An algorithmic procedure is proposed to achieve
this objective. It is designed to iteratively converge to
the appropriate scaling factors and model parameters
simultaneously. At each iteration, the model is trained
using data that has been scaled based on the error dis-

tribution of the previous iteration. The proposed al-
gorithm is presented in Table 1. An initial model is
trained starting from autoscaled data. In the next step
the residual matrices for both the process data and qual-
ity variables are used to rescale the data. The variable-
wise unfolded matrixes X(2) and Y(2) are scaled by the
variance of each row in the residual tensors, unfolded in
the same direction. A new model is trained with the
scaled data and the loop is repeated until the system
converges. The end point is achieved with the model
that best approximates the scaled data and has a unit
variance normal distributed residual for each variable
in X and Y. Already at this point, the theoretical ad-
vantage of this approach with respect to the traditional
scaling can be pointed out. Since the data is rescaled
based on the variance of the residual for each variable,
it is guaranteed that the data is rescaled to ensure that
the model captures preferentially the deterministic vari-
ability present in each variable over taking stochastic
behavior and therefore this improves choosing the right
number of required latent variables to approximate the
data.

Table 1: Algorithm simultaneous error scaling and PLS
training.

1. Unfold X and Y into X(1) and Y(1)

2. Mean center and normalize each column of both data sets
3. Compute the factor matrices W,T, P,Q for the PLS model

of the autoscaled data. Equation (1)

4. While σ2
E(2)

=Variance (E(2)) 	= −→
1 and

σ2
F(2)

=Variance(F(2)) 	= −→
1

4.1 Establish new scaling parameters as M = 1/σ2
E(2)

and N = 1/σ2
F(2)

4.2 Scale data via XT
(2) 
M

and YT
(2) 
N

4.3 Compute the factor matrices W,T, P,Q for the PLS model
of the new scaled data.

End

PARTIAL LEAST SQ AU RES INVERSION

A PLS model, that has been trained based on historical
data, can be used to estimate the required trajectories of
the input variables to achieve certain desired conditions
for the quality/output variables. To achieve this, the
PLS model is inverted according to equation (4) where
ydes corresponds to the desired condition. The corre-
sponding scores on the latent variable space tdes are
obtained inverting the model loadings for the output
variables. The computed scores are then used to de-
termine the input variables that would result on these
projections (Bano et al. 2017). The major challenge
of this approach lies in the correct interpretation and
use of this solution as in most cases, especially in pro-
cess monitoring and control, the obtained solution is not
unique. In most of the cases the inversion of the PLS
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model is an underdetermined problem due to the rank
difference between the starting Y and resulting spaces
X (Ierapetritou et al. 2016). The rank of the variability
present in the output variables is in most of the cases
lower than the rank of the input variability and therefore
the estimated rank for the correlation between input and
output variables is equal or higher than the rank of the
input variables. Thus the solution obtained via direct
inversion of the PLS model is only one of the possible
infinite solutions contained in the null space. The null
space of the problem corresponds to a sub space of the
latent variable space along which the solution can move
with no effect on the output variables (Ierapetritou et al.
2016).

tdes = (QTQ)−1QTydes

x = tdesPT
(4)

Therefore, the solution of the inversion problem requires
a set of constraints that help to define a unique solu-
tion or at least limit the space where the possible solu-
tions are located to a finite subspace in the null space.
This implies formulating the inversion problem as an
optimization problem. Ierapetritou et al. (2016) have
presented a framework with 4 different scenarios to for-
mulate the optimization problem and achieve the model
inversion. In this contribution, an adapted formulation
is used, considering the specific conditions of the case
study and the aim of evaluating the performance of the
two scaling approaches. This formulation is presented in
equation (5) and considers that: (i) the desired output
condition ydes is completely defined, (ii) constraints are
imposed over the model statistics to guarantee a solution
located inside the region where the model is valid, and
(iii) constraints are imposed on certain process variables
(xr(t)) so a relevant unique solution is obtained. Bano
et al. (2017) discussed how the constraints on the pro-
cess conditions originate from process knowledge, phys-
ical feasibility or practical relevance. This optimization
formulation is preferred in this contribution over others
that use the process conditions directly as optimization
variables. This implies a significant reduction in the
number of decision variables for the optimization prob-
lem.

min
t

‖ydes − tQT ‖2

subject to:

x = tPT

T 2 < uT 2(β)

xr(t) ≤ cr

(5)

RESULTS

Pensim case study

The Pensim model, from Birol et al. (2002) is used
as a benchmark case study for the novel data-driven

monitoring framework. The Pensim model describes
the fed-batch fermentation for the production of peni-
cillin, which consists of a batch phase and a fed-batch
phase which is started once the substrate concentration
reaches a predefined lower bound. The 11 measured
variables for process conditions X, i.e., during the reac-
tor operation, are depicted in Table 2. The RAYMOND
software package from Gins et al. (2014) is used for the
implementation.
Two variables are considered as output/quality vari-
ables, i.e., the penicillin concentration and the biomass
concentration. Soft sensors were trained for these vari-
ables considering that in normal operation they are not
measured online and only the end condition is deter-
mined offline. A total of 50 batches were simulated for
a period equivalent to 400 time points. 30 batches were
used as training data set and 20 batches to test the
trained PLS models using the classic approach and the
novel simultaneous scaling/training approach. Three
main aspects were evaluated: (i) the rank estimation
and model training, (ii) offline quality prediction based
on process parameters, and (iii) model inversion to es-
timate required process conditions to achieve a given
desired output. Apart from the standard case (i.e. the
benchmark conditions used in the Pensim reactor) two
alternatives were evaluated. Firstly, a noise was intro-
duced on one of the output variables (i.e., the biomass
concentration), this to simulate lower accuracy for one
of the quality measurements. Three values for signal to
noise ratio were considered, 40dB, 20dB, and 10dB. Sec-
ondly, another data set was generated with extra vari-
ability. This was added to the feed rate by allowing
variations on the set point during the fed-batch opera-
tion of the reactor. Normal distributed values between
0.05 and 0.07 L/h are given for the simulation of the 50
batches.

Table 2: Measured variables and initial conditions for
Pensim case. study

Variable
Type of
variable

Initial
condition

Sensor noise (SN)
/ Disturbance (D)

Disolved O2

[mmol/L]
Dependent 1.16-1.18 σ = 0.002 (SN)

Volume [L] Dependent 90-115 -
pH Dependent 5 -
Temperature
[K]

Dependent 298 -

Feed rate [L/h] Independent 0 - 0.06 σ = 0.005 (D)
Aeration rate
[L/h]

Independent 8 σ = 0.3 (D)

Agitation
power [W]

Independent 30 σ = 1 (D)

Feed temp. [K] Independent 296
σ = 0.5 (D)

Cooling water
[L/h]

Dependent - -

Base flow [L/h] Dependent - -
Acid flow [L/h] Dependent - -
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Rank estimation and training

The regression and dimensionality reduction via PLS
requires estimating the rank to be used for the data
decomposition. The selected rank is equivalent to the
number of latent variables or in other words the dimen-
sionality of the latent variable space. Traditionally, the
relative increase of the prediction performance in terms
of error reduction with each extra latent variable has
been considered as a criterion. However, the challenge
is to identify a well-defined limit for the rank where the
approximation is good enough to reproduce the desired
systematic variability while avoiding to capture non-
systematic behavior that can lead to overfitting. Regu-
larization techniques have been used to reduce the risk of
overfitting. The extra regularization term is tradition-
ally formulated to reduce the complexity of the model,
e.g., by introducing non-structural sparsity to the fac-
tor matrices. In this way, an equilibrium between least
squares minimum error of the approximation and the
model complexity is obtained. As it was mentioned be-
fore the novel scaling approach can be seen as an al-
ternative regularization method. Thus the first aspect
investigated in the application of the Pensim case study
is on the rank estimation. In Figs. 1 and 2 the train-
ing curves for PLS using standard autoscaled data (or-
ange) and the proposed alternative using the simultane-
ous scaling-training approach (blue) are presented. In
Fig. 1 the prediction error over the output variables is
plotted together with the selected rank using Wold’s cri-
terion, marked with the dashed line. Figure 2 presents
the MSE for the approximation of the process variables
X for each number of latent variables.

Figure 1: Training curves for PLS. Rank approximation
vs. MSE on the output variables’ prediction Y.

As it can be seen in Fig. 1 the proposed novel approach
produces a steeper reduction on the error at low ranks
and reaches lower error at the point of no more signifi-
cant improvement. Thus while for the autoscaled data
Wold’s criterion results in requiring 6 latent variables,
the proposed scaling-training procedure only requires a
rank 3 approximation. At the point of 3 latent variables,
the error obtained via the proposed approach is almost
one order of magnitude lower than that achieved with

Figure 2: Training curves for PLS. Rank approximation
vs. MSE on the process variables’ approximation X.

the same rank using the traditional approach. Finally it
can be observed that both approaches offer similar per-
formance for the first two latent variables. This means
that those two latent variables capture the same vari-
ability independently of the method. In contrast the
third latent variable is highly dependent on the scale of
the data and in case of the novel scaling the model per-
formance is significantly favored by the variability that
is amplified in the data. Regarding the approximation
of the process data it is observed that contrary to the
results using autoscaled data, the training curve for the
PLS model using the novel approach shows a change on
the trend after 3 latent variables. This alerts on a pos-
sible overfitting if more latent variables are used. Fig. 3
shows the equivalent results when using the data set
with extra variability on the feed rate. In this case it is
not possible to determine the best rank approximation
of the correlation using autoscaled data and up to 7 la-
tent variables. In contrast for the model trained using
the novel simultaneous scaling and training approach
the identification is still as clear as it was for the stan-
dard case, only this time 4 latent variables are required.
It is clear that the increase on the number of latent
variables required, results from the extra deterministic
variability introduced in the system. These results serve
to validate the advantages of the proposed method on a
dataset with different variability patterns. Moreover in
this case the stronger presence of deterministic variabil-
ity in the data makes clearer the advantages of the rank
estimation via the novel scaling/training approach.

Quality prediction

The 20 batches simulated considering the same condi-
tions used for the training data are used in this section
to evaluate the performance of the trained PLS models.
Quality prediction is performed using the direct form
of the PLS model where the process data is fully de-
fined and the model output are the conditions for the
output/quality variables Y. The PLS models trained in
this contribution based on the in-silico Pensim case are
intended to predict the complete trend of the output
variables during the reactor operation, and in turn, the
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Figure 3: Training curves for PLS of the data with ex-
tra variability. Rank approximation vs. MSE on the

prediction.

end quality is also obtained. Fig. 4 presents a fraction
of the continuous trend predicted for the penicillin con-
centration and the approximate reactor volume during
operation for a single batch. Fig. 5 presents the end
point for the penicillin concentration, predicted for the
20 batches. These figures present the results for the
standard Pensim case using two models trained with
each scaling method. The numerical results obtained
when implementing the models on the datasets with ad-
ditional noise and extra variability of the feed rate are
summarized in Table 3.

Figure 4: Prediction penicillim concentration and aprox-
imation reactor volume.

Figure 5: End point prediction penicillim concentration.

From these results, it is clear that a better prediction is
obtained when using models trained with the proposed
error based scaling. When looking at the single batch

Table 3: Prediction error for the two alternative scaling
approaches on differnt data sets with R latent variables.

a. Autoscaling, b. Novel error scaling
MSE Y R2 end point MSE X

Stand. Pensim,
R=3

a 0.53 0.978 8.73
b 0.005 0.998 0.442

SNR 40, R=3
a 2.682 0.978 8.73
b 0.114 0.998 0.442

SNR 20, R=3
a 10.407 0.979 8.73
b 0.5149 0.998 0.442

SNR 10, R=3
a 11.632 0.981 8.73
b 0.578 0.998 0.442

Extra variability
Feed rate, R=4

a 1.059 0.962 7.766
b 0.007 0.995 0.389

in Fig. 4, the worst prediction of the penicillin concen-
tration is obtained when using the rank 3 PLS model
of autoscaled data. Only with 6 latent variables, the
traditional approach turns as accurate as the rank 3 ap-
proximation using the novel approach. Moreover, it is
possible to obtain the exact solution only by a rank 6
model, based on the novel proposed scaling approach. In
case of the approximated volume in the reactor, the rank
3 model is already sufficient to obtain the exact solution
if the novel scaling approach is applied. Models based on
autoscaled data present bias, it is even larger when the
rank is increased. The numerical results confirm that
these observations are applicable to the 20 batches. In
general, the models based on the novel scaling approach
perform more accurately in all cases. It is interesting to
see that while the noise inclusion affects the performance
of the two methods negatively, the addition of extra de-
terministic variability is accurately captured only by the
model trained using the proposed scaling approach.

Regression process conditions

To compute the required process conditions that guar-
antee certain desired trend and/or the end point for the
output variables, the PLS model has to be inverted.
Therefore, in this case the known desired output be-
comes the input data and the required process condi-
tions are the result obtained. As explained before the
main limitation of using latent variable based models to
compute regressors in many cases is the lack of unique-
ness of the solution. Thus the first aspect evaluated
in the present case study was the dimensionality of the
null space for the different trained models. To do this
the rank of the output data Y was estimated first. Af-
ter applying singular value decomposition to the output
data sets, it resulted that for all the cases, the standard
Pensim, the case with added noise, and with added vari-
ability, the rank of the output variables equals 3. The
same result was obtained for autoscaled data and data
scaled using the novel approach. Therefore the dimen-
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sionality of the null space corresponding to each case is
the number of latent variables above 3 that each PLS
model requires. Based on this, the features of different
PLS models are presented in Table 4. Next, the direct
inversion of the PLS models was applied to the given
20 batches that are not part of the training data but
which are within NOC. The results obtained regarding
the MSE of the estimated process condition (X) are as
well depicted in Table 4.

Table 4: Regression error for the two alternative scal-
ing approaches on differnt data sets a. Autoscaling, b.

Novel error scaling
Dimensions
latent space

Dimensions
null space

MSE X

Stand. Pensim
a 6 3 1.397
b 3 - 0.443

SNR 40
a 6 3 0.446
b 3 - 0.446

SNR 20
a 6 3 0.510
b 3 - 0.455

SNR 10
a 6 3 0.531
b 3 - 0.456

Extra variability
Feed rate

a 6 3 1.745
b 4 1 1.326

The direct inversion of the PLS models guarantees the
minimum residual in the approximation of the desired
output compare to the optimization approach, how-
ever the obtained solutions present limitations regarding
other aspects. First, a relatively high error on the esti-
mation of the required process conditions (MSE X), be-
ing lower for all cases where the novel scaling approach
is applied. Secondly, for some batches, the direct inver-
sion resulted in estimated scores that are located out
of the validity region in the latent space. This prob-
lem was more frequently encountered in the case of the
Pensim data with extra variability and when using the
PLS model trained from autoscaled data. This can be
related to the lower accuracy in the direct quality pre-
diction obtained when using autoscaled data, and also
due to the existence of a larger null space as result of
the model inversion. To deal with this problem the in-
version is tackled using the optimization form. First,
the optimization problem with no constraints in X was
applied. As it would be expected most of the solutions
were the same obtained by the direct inversion, except
for those that resulted in the violation of the validity
region of the PLS model. Since the optimization formu-
lation presented in equation (5) includes the constraint
on the value T 2, this method already overcomes that
problem compared with the direct inversion.

The final volume in the reactor was chosen as the con-
straint to force the solution to comply with an unique
solution within the null space. This approach allows to
compare the trained models and see if the exact solution
is feasible in the latent space, and if it implies accuracy

losses in the approximation of the other process condi-
tions and/or the desired output conditions. To compare
the solutions obtained following the three inversion ap-
proaches and evaluate the differences when using the
novel scaling approach, the results for the Pensim case
with extra variability in the feed rate are presented in
Fig. 6 and Table 5. This figure shows the exact solution
for the reactor volume and feed rate for one of the 20
batches evaluated in the inversion problem. In this fig-
ure, the solutions obtained through different approaches
are as well depicted. In Table 5 the numerical results
for the 20 batches are depicted, comparing the different
approaches. The parameters evaluated are the accu-
racy of the solution evaluated as MSE of the trends of
process conditions, and the MSE over the independent
variables of the process (i.e. initial conditions and feed
rate). Moreover, the number of violations of the validity
region of the model in the latent space and the optimal
value achieved for the loss function of the optimization
problem are presented as well.

Table 5: Results model inversion for the estimation of
required process conditions in the Pensim case with ex-
tra variability of the feed rate a. Autoscaling, b. Novel

error scaling

MSE X
MSE Ind.
variables

Number of
violations T 2 MSE Y

Direct inversion
a 1.744 0.696 10 0.0009
b 1.323 0.810 5 0.0014

Unconstrained
optimization

a 1.199 0.506 0 0.0015
b 0.957 0.509 0 0.0017

constrained
optimization

a 0.636 0.0018 0 0.0021
b 0.388 0.0014 0 0.0073

Figure 6: Estimation of the trend of the reactor volume
and the step for the feed rate.

In Fig. 6 the solution obtained for the volume and the
feed rate are presented. The results have shown how
in every case the exact solution is feasible and is only
obtained when the model inversion is applied through
constrained optimization. In this case, both methods
perform equally well. This proves that novel scaling ap-
proach does not affect the model inversion negatively
and it offers results as good as those obtained with au-
toscaled data when an appropriate constraint is imposed
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to obtain a unique solution. Different to this, when con-
sidering the direct model inversion or the unconstrained
optimization problem, the solutions obtained through
the novel approach seem to be more accurate than the
others. These observations are supported by the results
in Table 6. On the one hand, the MSE over process con-
ditions X, was in all cases lower when using the novel
scaling approach. On the other hand, the MSE over
independent variables was the same in every case be-
tween the two approaches, except in the case of the di-
rect model inversion. However, in that case, the inver-
sion of the model based on autoscaled data resulted in
a significantly larger amount of non-valid solutions due
to the violation of the upper limit for T 2.

CONCLUSIONS

A novel algorithm was presented to perform simultane-
ous data scaling and training of PLS regression models.
The objective of this novel approach is to guarantee a
better distribution of the approximation error along all
variables present on the training data set, considering
both process conditions and quality or output variables.
Through the implementation of an industrially relevant
case study and considering four different conditions, i.e.
the standard case, 3 different noise levels and a case with
extra variability, the proposed approach was validated
and compared with the traditional approach using au-
toscaled data. It was demonstrated that due to the more
appropriate scale given to the data when applying the
proposed approach, the PLS models are trained taking
the deterministic variability of the data preferentially.
In turn, the best rank approximation for the correlation
is identified clearer with significantly lower prediction
errors during the cross validation procedure and result-
ing in less latent variables required for the model. The
models trained using the novel error scaling approach
perform more accurately for applications of quality pre-
diction and soft sensors. In case of model inversion, it
was discussed how the lower rank of the models results
in the reduction of the dimensionality of the null space
and therefore those models trained under this approach
produce better estimations of the required process con-
ditions when specific constraints for their trajectories
cannot be imposed to guarantee a unique solution. In
the other cases, these models performed equivalently to
models trained based on autoscaled data. Future work
in this direction will be on extending the proposed ap-
proach to online applications for quality prediction and
process control of batch processes.
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ABSTRACT

Consumer’s demands are currently the main drivers
encouraging food industries to produce healthier food
products that being at the highest possible quality stan-
dards, understood either as real or perceived, would not
compromise safety standards. This necessarily leads to
minimizing over-processing, as it might result into un-
acceptable quality losses, that in turn call for methods
to ensure strict safety constraints satisfaction near its
very low limits. Companies have oriented production
strategies not only to meet the need for convenience
but to offer fresher and healthier foods, compliant with
consumer awareness of the links between nutrition and
health. Food quality/safety assessment is central to this
problematic.

In this note we will elaborate on current needs and
trends in food sensing oriented to the on-line/in-line as-
sessment of food quality and safety. We will identify the
main obstacles and propose potential solutions which
will happen to be found in the field of process system’s
theory.

INTRODUCTION

Nowadays, driven by consumers demands, food indus-
tries are encouraged to produce food products of the
highest possible quality without compromising safety
standars (Miri et al. 2008). In other words, consumers
create incentives for companies to invest in means to
preserve or to increase food quality. A quality label on
a product increases its added-value what translates in
larger sale turnovers and therefore benefits.

Real-time quality assessment and shelf-life forecast us-
ing non-invasive techniques is, therefore, an issue of
paramount importance which can be approached from
a system’s theory perspective as illustrated in Figure 1.
The main idea is to combine on-line measurements of
relevant variables with dynamic models describing bi-
ological and biochemical mechanisms to derive shelf-
life predictors capable of forecasting the evolution of

QUALITY/SAFETY
MECHANISMS

ON-LINE (PAT)
MONITORING

TECHNOLOGIES
MATHEMATICAL

MODELS

QUALITY ATTRIBUTES

SAFETY INDICATORS

QUALITY/SAFETY OBSERVERS
SHELF-LIFE PREDICTORS

Figure 1: Block diagram illustrating the paradigm for
real-time quality assessment

fish quality during processing, storage and distribu-
tion/transportation conditions.

A considerable research effort has been focused on both
the identification of quality attributes and their corre-
lation with available measurements (Harikedua et al.
2012). Quality is essentially a subjective concept which
identifies the wishes and preferences of consumer’s seg-
ments. However, typical quality attributes can be clas-
sified in nutritional (nutrient content) and organoleptic
(flavor, color, odor, etc) attributes.

Any quality attribute is inferred by sets of measure-
ments, which will be referred as quality indicators, di-
rectly or indirectly targeting particular factors. For ex-
ample, color can be a quality indicator which, for a given
food matrix, explains the result of a certain combination
of pigments that have been produced under the action
of some biochemical transformations.

Food quality attributes will be conditioned by the food
matrix microstructure as well as by the magnitude of
a number of stress variables that are influenced by
transportation, storage or process conditions (Martins
et al. 2008). For instance freshness deteriorates faster at
higher temperatures due to the higher rates of degrada-
tion of nutrients, protein denaturalization or microbial
enzymatic effects which also induce texture changes and
may promote the appearance of odors and bad tastes.
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Among the stress variables, of particular importance are
temperature, water activity, pH, oxidant/antioxidant
capacity ionic strength or light (frequency/intensity).
Quality attributes are employed to determine the shelf-
life dating of a given food product, either to specify the
last date when the product must be sold (“sell by date”);
the “high-quality” period; or the date when the product
must be removed from the store (Martins et al. 2008).
Mechanisms are the inter-relations between stress vari-
ables (temperature, pressure, water activity, pH, etc)
and biological, chemical and bio-chemical factors re-
lated to quality and safety indicators. In the last in-
stance mechanisms describe the underlying biochem-
istry and microbiology-physiology that determine the
causal chains of implications.
In this context, models are quantitative descriptions of
the mechanisms relating stress variables and quality fac-
tors. Such descriptions are expressed in terms of math-
ematical equations which can be derived from first prin-
ciples when the knowledge of the system is good enough
using correlation analysis when the mechanisms are not
perfectly understood or a combination of both.
Sensing technologies consist of given instrumen-
tal/analytical devices to target quality indicators or
stress variables related to such indicators plus corre-
lations (chemometric models) to relate to quality at-
tributes. In recent years a wide range of sensing
technologies to assess the quality (meaning quality at-
tributes), off-line and at real-time, have emerged (Mello
and Kubota 2002, Su et al. 2011, Sliwinska et al. 2014,
Oliveira and Pereira 2016).
From another point of view, models may also help man-
ufacturers to design alternative formulations in food
products in order to inhibit microbial growth, what
surely will contribute not just to food safety but food
quality as well. Safety and quality bounds may be used
as state constraints in the formulation of optimal con-
trol or optimal design problems. Such formulation will
provide the adequate systematic framework to achieve
the goals of the process.

MECHANISMS AND MODELS

General aspects of what we refer to as mechanisms in-
clude the inter-relation between biological, chemical and
bio-chemical factors (states) with the stress variables
(inputs). Both define the input-state space. In the last
instance mechanisms describe the underlying biochem-
istry and microbiology-physiology that determine causal
set of implications. Parameters are present in the form
of reaction constants, specific reaction rates or (mass
and energy) transport coefficients.
Variability and uncertainty must be interpreted as the
consequence of lack of knowledge on the food matrix, its
variability (and complex structure), but also due to the
multi-scale phenomena that takes place what demands
to resort to mesoscopic or macroscopic descriptions.

Quantitative descriptions of the mechanisms are what
we will refer to as mathematical models and will be crit-
ically reviewed here. Emphasis will be placed on the un-
derlying multi-scale nature of (mass and energy) trans-
port phenomena, chemical/biochemical kinetics, and
microbial dynamics.

Formal description of quality and safety dynam-
ics

Formally the system can be described by a set of differ-
ential operators describing the evolution of the states of
the system (x):

ẋ = F(x, u, θ, ξ, t). (1)

ξ and t represent the spatial coordinates and time, re-
spectively. u stands for the stress variables whereas θ is
the vector of parameters associated to the mathemati-
cal model which may include kinetic reaction constants,
thermodynamic parameters, etc. A major challenge in
food modeling is the estimation of parameters θ from
available measurements. In this context, we have been
working on a protocol for model calibration which in-
cludes identifiability analysis, parameter estimation and
optimal experimental design (Vilas et al. 2017b).
Quality and safety are characterized by the values taken
by the indicators (z) that are related to the system as:

z = Z(x, u, θ, ξ, t) (2)

Finally the system is accessed via a set of measurements
(y) also related to the states by functions of the form:

y = Y(x, u, θ, ξ, t) (3)

Some measurements may coincide with quality/safety
variables provided that a sensing technique (measure-
ment device) is available to quantify such variable. How-
ever, in general, one would have only indirect access to
the current quality/safety variable by means of measure-
ments y which are employed to reconstruct the state x
and from there the quality/safety indicators z. It is not
always clear in many methods proposed in the litera-
ture how such reconstruction is performed or whether
it is even possible to established such relation in a one-
to-one (univocal) way. Such possibility is related to the
concept of observability.

Evolution of physico-chemical variables

Concerning shelf-life assessment based on quality indica-
tors for fish, some measurable physico-chemical proper-
ties such as total volatile basic-nitrogen (TVB-N), elec-
trical conductivity (EC) or total aerobic count (TAC)
can be employed as freshness indicators. For instance,
EC values of intact muscles are very low, as the muscle
tissues get decomposed, fluids flow out increasing the
EC value (Yao et al. 2011).
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Some adenosine triphosphate (ATP) degradation com-
pounds enhance fish quality as they are related to
the meaty and sweet flavor -for instance, inosine 5’-
monophosphate (IMP)- whereas other such as hypox-
anthine (Hx) are responsible for unpleasant bitterness
(Surette et al. 1988, Li et al. 2015). In this regard, the
K-value, related to the degree of degradation of ATP,
became one of the most commonly employed indica-
tors for fish freshness (Saito et al. 1959, Hong et al.
2017). The work by Lakshmanam and Gopakumar
(1999) showed that the K-value correlates well with
freshness in a large number of fish and shellfish species.
Since the conversion of of ATP to IMP is very fast,
Karube et al. (1984) proposed another freshness indi-
cator, the KI -value, that only takes into account con-
centration of IMP, inosine and Hx. The work by How-
gate (2005; 2006) investigated the degradation of IMP
by assuming first order consecutive reactions. However,
the degradation scheme may change from one species
to another so the problem must be carefully addressed
(Howgate 2006, Vilas et al. 2017a).
Traditionally, the assessment of physico-chemical prop-
erties of fish related to its quality during storage was
based on statistical methods like the partial least-
squares regression (PLS-R) -see (Harikedua et al. 2012)-.
However during recent years, first principle based mod-
els for the description of the evolution of such physico-
chemical properties have been proposed. First order
models where the time constant is computed through
a modified logistic Arrhenius equation are the most em-
ployed (Koutsoumanis and Nychas 2000, Tsironi et al.
2009, Yao et al. 2011). Such models can be used to de-
scribe the different indicators (K-value,EC, TVB, etc)
by adjusting the parameters from experimental data.

Evolution of microbial populations

Microorganisms may be responsible for both quality and
safety issues. Most of the models available to describe
microorganism population growth are of deterministic
nature and consider the temporal evolution of bacte-
ria present in the foodstuff. Mechanistic models as the
ones proposed by Baranyi and co-workers (Baranyi and
Roberts 1994, Baranyi et al. 2009) over the last two
decades are among the most popular to describe bac-
teria evolution at food storage conditions (low temper-
atures) as opposed to kinetic models used to describe
thermal death during processing (in for example asep-
tic processing, pasteurization or sterilization). Based on
these works Garćıa et al. (2015; 2017) predicted the evo-
lution of quality for hake and cod, respectively. For a
discussion on the effect of temperature see Halder et al.
(2010). A critical analysis of the range of validity and
their limits was discussed in McMeekin et al. (2006).
The growth model suggested by Baranyi and Roberts
(1994) uses a simple first order kinetic relation to de-
scribe the evolution of the cell population size (number

of cells or number of cells per volume). The growth rate
in this work and others (Baranyi 1998, Kutalik et al.
2005, Baranyi et al. 2009) is multiplied by a logistic type
function the authors refer to as the adjustment function.
The role of such function is to describe the initial lag
phase undergone by a homogeneous bacteria population
inoculated into a growth-supporting environment. How-
ever lag parameters of bacterial population do not carry
much information about the lag time of the individual
cells what makes difficult to confront that hypothesis on
practical experimental conditions.
Secondary growth models are usually complemented
with a number of algebraic extra-relations (in many
cases empirical correlations) to describe the effect of op-
eration conditions, such as temperature, or the charac-
teristics of the food matrix (chemical composition, water
activity, pH, etc), on the growth (or death) rate con-
stants.
A plethora of possible input-output type descriptions
are available in the literature despite many criticisms,
partly justified but partly not -see McMeekin et al.
(2010)-. One such type of input-output description,
widely employed to set up pasteurization or steriliza-
tion conditions on temperature ranges near 100 0C
and even well above, is that relating temperature with
inactivation rate constant through simple exponential
(Arrhenius-type), decimal (TDT) relationships (Halder
et al. 2010) or the Weibull model (Geeraerd et al. 2005).
Of particular interest are the so-called growth/no
growth models which relate environmental conditions
(temperature, water activity, pH, etc) as inputs to a
growth probability function as the output, indicating
whether cells are likely to grow or not (Gysemans et al.
2007, Valero et al. 2007).

ON-LINE MONITORING TECHNOLOGIES

The aim of this section is to provide the reader with a
general idea of the different types of sensors available
for food quality assessment. Due to the huge amount of
available technologies, performing an exhaustive review
would require a complete paper so the reader is referred
to the literature provided in this section and references
therein for detailed descriptions.
On-line monitoring technologies can be roughly classi-
fied into (i) artificial senses; (ii) biosensors and chemical
methods; (iii) physical methods.
Artificial senses are electronic devices that intend to
mimic human senses (Sliwinska et al. 2014). They can
be, in turn, classified into: (i) electronic noses; (ii) elec-
tronic tongues and (iii) computer vision devices. Elec-
tronic noses (Ghasemi-Varnamkhasti et al. 2009, Wilson
2013) and tongues (Escuder-Gilabert and Peris 2010)
are basically a combination of a chemosensor, electronic
devices and computer software. The sample is placed in
a compartment, in which the amount of volatile com-
pounds may increase using a thermostat, and an inert
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gas is pumped into this compartment. The inert gas,
together with the volatile compounds, are transported
to the array of sensors changing their electric proper-
ties and generating a signal which is read using com-
puter software. Electronic noses and tongues have been
used for wide range of applications including, monitor-
ing the fermentation in milk, wine or cheese; food fresh-
ness/quality assessment during storage or product au-
thentication among other (Sliwinska et al. 2014). Sys-
tems of computer vision combine acquisition devices
with processing and image analysis software (Timmer-
mans 1998, Brosnan and Sun 2004). They are fast, non-
invasive, may detect imperfections and can be used dur-
ing food production, for instance for product discrimi-
nation or sorting.
Biosensor and chemosensor technologies (Mello and
Kubota 2002, Su et al. 2011) integrate a recogni-
tion compound of biological nature with a transducer-
receptor device. The interaction between the sam-
ple and the biological element changes its physico-
chemical properties and such changes are detected by
the transducer- receptor. They are sensitive, selective,
do not require a sample pre-treatment and are relatively
cheap and portable (Oliveira and Pereira 2016, Dragone
et al. 2017). They offer the possibility of measuring mi-
croorganisms in real-time and they have also been used
for chemical contaminants in food or the glucose concen-
tration in the blood. The main advantages of chemosen-
sors are their high sensitivity to specific chemical com-
pounds, quick reactions, high reproducibility, robustness
or easy calibration. Particular cases of chemosensors
include Time-Temperature integrators (TTIs) able to
recover the cumulative Time-Temperature history of a
given process (Arias-Méndez et al. 2014).
A wide range of different technologies can be included in
the physical methods. These range from texture analysis
using acoustical devices (Chen and Opara 2013) to elec-
trical techniques for detecting, for instance moisture or
electrical conductivity, or optical techniques such as X-
Ray or nuclear magnetic resonance (Xiaobo et al. 2016).
Most of these methods are non-invasive and may detect
food quality issues related to either external indicators,
such as color or surface defects, or internal indicators
such as firmness of internal defects (Chandrapala et al.
2012). An updated review of these methods, including
future perspectives is provided in Xiaobo et al. (2016).
As important as the sensors themselves are the tech-
niques for analyze their signals. Data analysis demands
multivariate pattern analysis with all the available sta-
tistical tools (PLS, ANOVA, MLR); Principal Compo-
nent Analysis; Hierarchical Cluster Analysis; Support
Vector Machines; Artificial Neural Networks, among
others. The work by Sliwinska et al. (2014) provide us
with a comprehensive review of the different methodolo-
gies used to analyze data from artificial senses devices
although many of them are also used with another type
of sensors.

ON-LINE ASSESSMENT AND PREDICTION
OF FRESHNESS IN FISH

In this section we present two models used to forecast
fish quality evolution. The first one, related to the KI -
value, is recommended for early storage whereas the sec-
ond one should be used when bacteria spoilage is becom-
ing to be noticed.

Freshness assessment at early storage stages

As mentioned above, KI -value is a quality indicator that
correlates well with freshness in a large number of fish
species. The KI -value is defined as:

KI(%) =
[Ino] + [Hx]

[IMP] + [Ino] + [Hx]
100

Values below 20 % indicate fish of prime quality whereas
values above 40 % mean that the fish is spoiled (Lak-
shmanam and Gopakumar 1999). In order to de-
rive a model to forecast fish freshness at early storage
stages, Vilas et al. (2017a) proposed a scheme, based on
the work of Howgate (2005), describing the enzymatic
degradation of IMP in sterile conditions. On the other
hand, Vilas et al. (2018) studied the catalytic effect of
bacteria on such degradation. The model, which con-
siders first order reactions, is of the form:

d[IMP]

dt
= −(r1 + r3 + r4 + r1,bac)−D[IMP] (4)

d[Ino]

dt
= r1 + r1,bac − (r2 + r2,bac) +D[Ino] (5)

d[Hx]

dt
= r4 + r2 + r2,bac −D[Hx] (6)

where r1 = k1[IMP], r2 = k2[Ino], r3 = k3[IMP] and
r4 = k4[IMP]. Coefficients k1, k2, k3 and k4 describe
the effect of temperature using the Arrhenius equation:

ki = Ai exp

(
−Ea,i

RT

)
; for i = 1, 2, 3, 4 (7)

Two types of bacteria were taken into account: Pseu-
domonas spp (Ps) and Shewanella (Sh). The effect of
bacteria on the reaction rates is described using first or-
der reactions of the form: r1,bac = k1,bac(Ps + Sh)[IMP]
and r2,bac = k2,bac(Ps + Sh)[Ino]. Bacterial growth is
modeled using the standard logistic model where tem-
perature dependence is described using the standard
square-root model (see Garćıa et al. (2015) for details):

dx

dt
= log (10)μxx

(
1− x

x∗
)
; x = {Ps, Sh} (8)

As shown in Figure 2 the model is able to predict the
experimental evolution of the KI -value.
Initial conditions for nucleotide and bacteria concentra-
tion are required to solve the model. Such conditions
should be retrieved from experimental measurements.
To that purpose sensors, as the ones mentioned in the
previous section, are required.
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Figure 2: Top figure: evolution of nucleotides. Bot-
tom figure: evolution of the Ki-value. Continuous lines
represent model predictions whereas marks refer to ex-

perimental measurements.

Quality assessment during mid-term storage pe-
riods

Bacterial concentration is another index that correlates
with fish quality. During the first days, at usual storage
and transportation conditions, bacteria concentration is
low. However, at mid-term storage stages bacteria is
responsible for fish spoilage. The model described in
Garćıa et al. (2015), see Eqn (8), was used for to model
bacteria growth and its relation to fish quality.

A validation experiment was used to evaluate the predic-
tive capabilities of the model (see Figure 3). The blue
bands in the figure represent model variability caused
from measurement uncertainty. After optimal experi-
mental design variability was reduced to admissible val-
ues.

Correlation between bacteria concentration and quality
indicators such as the Quality Sensory Method (QSM)
and the Quality Index Method (QIM) was explored
(Garćıa et al. 2015). The relation between the QIM,
ranging between 0-19 (Baixas-Nogueras et al. 2003), and
bacterial concentration is given, for hake, by:

QIM = nint(10lQ)− 1 where lQ = αPs+ βSh (9)

where “nint” is the function that computes the nearest
integer value. The QSM grades the quality of food (us-
ing different features of the skin, eyes, gills, peritoneum
and flesh) in four cathegories: E (Extra-quality); A-
quality; B-quality and NA (Not admitted). In Garćıa
et al. (2015), the authors performed several experiments
in which, a panel of experts evaluated the QIM and the
QSM. From these data, the equivalences presented in
Figure 4 were suggested. For example, as shown in the
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Figure 3: Comparison between model prediction for bac-
terial growth (continuous lines) and experimental data
(marks) in a validation experiment. Blue regions repre-

sent model uncertainty.

figure, the E cathegory corresponds to values of QIM
between 0 and 3. Figure 4 also represents the QIM evo-
lution predicted by the model. Model uncertainty in
QIM forecast is computed from the uncertainty in Ps
and Sh predictions (Figure 3).
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Figure 4: QIM evolution predicted by the model. Con-
tinuous lines represent the maximum and minimum
QIM taking into account model uncertainty. Marks rep-
resent the most probable value. The background colors

depict the QSM regions.

A panel of experts evaluated the QSM in a validation
experiment. The model predictions coincided with the
evaluation by experts (Garćıa et al. 2015).
Shelf-life, understood as the time required to reach a
not-admitted (NA) grade, can be obtained from the
quality prediction model. Model uncertainty can be
used to determine the moment when new measurements
from the sensors are required to increase the confidence
on model predictions.
This work was extended to develop a smart sensor with
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capabilities of predicting all quality indexes standard in
fish freshness (QIM, QSM and shelf-life) for cod (Garćıa
et al. 2017). The smart sensor only requires measure-
ments at the initial time of total volatile basic nitrogen
(TVB-N) content and initial Psychrotrophic counts.

CONCLUSIONS AND FUTURE PERSPEC-
TIVES

In this work we presented an approach to develop, from
a system’s theory perspective, a sensing technology for
the assessment of food quality. By a sensing technology
we mean a pack of reliable electronic devices together
with a set of software components. Sensors, being the
constituents of the hardware part, produce signals in
response to the presence of some critical markers that
suggest a given state of quality for the foodstuff. Soft-
ware sensors, namely mathematical models describing
mechanisms, are combined with the available measure-
ments to infer or predict the evolution of other variables
of interest. Inference implies the estimation of quality
variables that cannot be directly accessed by the hard-
ware sensors. Prediction of the temporal evolution of
critical quality attributes over a future time horizon will
determine features related to product shelf-life.
The state of the art of the different parts involved (sen-
sors and mathematical models) has been summarized in
the different sections of the manuscript. On the other
hand, the reliability of mathematical models to forecast
fish quality evolution was illustrated through two dif-
ferent examples: evolution of the KI -value and relation
between bacteria concentration and total volatile basic
nitrogen content with quality indicators.
Research efforts are needed to integrate state-of-the-art
sensors with mathematical and statistical models in or-
der to extend the potentialities to do inference (soft-
ware sensors) and dynamic predictions leading to the
assessment of product shelf-life. In addition, the multi-
ple sensor approach (that includes software sensors) will
make it possible to develop further functionalities such
as auto-checking, self-configuration, etc. In the last in-
stance, this will lead to food sensing equipment requiring
much less or none human intervention.
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ABSTRACT 

In recent years, methods for processing liquid foods have 
changed from conventional to innovative techniques. In 
industry, convection heating of liquid foods with heat 
exchangers is still the most used method. However, 
demand for innovative methods is increasing constantly 
due to the possible advantages. Microwave processing 
provides volumetric heating, and it is regarded to be a
green technology compared to conventional systems. 
Even if the microwave processing is considered to 
provide a volumetric heating, due to the non-uniform 
evolution of electromagnetic field, a certain non-
uniformity in temperature distribution inside a product is 
still observed. In low viscosity products, this is not 
significant due to the buoyancy effect while, in high 
viscosity liquids, the non-uniformity might lead to over- 
or under-processing. Therefore, the objective of this 
study was to develop and experimentally validate a 
mathematical model for batch processing and use this 
model for further design of an industrial system design.
For process designing, rotational effects (2.5 to 20 rpm) 
were also demonstrated. The increased rotation rate 
increased the temperature uniformity in high-viscous 
foods and used for alternative industrial process 
designing. 

INTRODUCTION 

Thermal processing of liquid foods generally depends on 
convection and conduction. Thus, non-uniform 
temperature distribution in product occurs and causes 
formation of over-processed and under-processed parts 
within the volume. Especially in viscous products, this 
temperature difference increases and might cause major 
problems in accordance to food safety and food quality. 
To overcome these problems, continuous-microwave 
systems are considered to be alternative to conventional 
systems especially due to their volumetric heating ability 
and reduced process times with energy savings and 
increased quality (Zhu et al. 2007; Wei et al., 2012;
Yousefi et al., 2013). Continuous systems work under the 
fluid dynamic principles where the liquid product is 

pumped through a microwave transparent tubing (e.g., 
Teflon) inside the microwave cavity, and the thermal 
processing is carried out. The objective is to get the 
thermally processed liquid food at the exit of the system. 
However, even in continuous microwave systems, non-
uniform temperature distribution is observed due to 
cavity geometry, product location in cavity, temperature 
dependency of the dielectric properties, product viscosity
and non-uniform electromagnetic field formation (Zhou 
et al., 1995, Basak and Meenakshi, 2006). Various 
studies were reported for low- and high-viscosity cases 
(Nikdel et al., 1993; Coronel et al., 2003; Kumar et al.,
2008; Salvi et al., 2011; Tuta and Palazoglu, 2017). To 
overcome the temperature uniformity issue in high-
viscosity liquids, rotational effects were hardly focused. 
Stratakos et al. (2016) used a continuous-flow microwave 
systems with a rotating tube to process tomato juice. The 
rotational effects are expected to increase the mixing in 
the liquid to enhance the temperature uniformity. 
Therefore, the objective of this study was first to develop 
and experimentally validate a mathematical model to 
determine the temperature change of a liquid during 
microwave heating with rotational effects and then to
apply the developed model for designing industrial 
continuous systems. Since modelling of a natural 
convection phenomenon with the rotational effects is 
expected to be more complex compared to the case of 
forced convection under flow conditions, it was assumed 
that the experimental validation of the developed model 
might be further used to evaluate the process conditions 
of a continuous system.

MATERIAL & METHODS 

Model development 

The microwave heating model to determine the 
temperature distribution inside the liquid with rotational 
effects was developed using Comsol Multiphysics 
program (ComsoL AB, V.5.2, Stockholm, Sweden). For 
this purpose, the microwave and fluid dynamic physics 
were used.  

The governing equations solved were 

- Maxwell equation (1) was used to evaluate electrical 
field changes at 915 (industrial system design) and 2450 
(batch microwave system) MHz. 
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  (1) 

where  is electric field intensity (V/m), dielectric 
constant of a material,  is relative dielectric loss of a 
material,  is angular wave frequency (2 f, rad/s),  is 
relative permeabilityof the material and c is speed of 
light in free space (3×108 m/s). 

- To calculate temperature distribution within the 
product, energy equation (2) was solved: 

    (2) 

where  is material density (kg/m³), cp is specific heat 
(J/kg-K), k is thermal conductivity (W/m-K), T is 
temperature (K), and Q is the volumetric heat generation 
due to the incident microwave energy (W/m³). 

- The absorption of electrical energy by product within 
the product was calculated by: 

   (3) 

where  is electrical conductivity of the material (S/m), 
 is free space permittivity (8.854*10-12 F/m). 

- Velocity profiles in the heated liquid were obtained by 
solving the Navier–Stokes equation: 

    (4) 

where is  the pressure force on element per unit 
volume (N/m2), g is the acceleration due to gravity 
(m/s2),  is viscosity (Pa.s) and  is the velocity vector 
(m/s). 

These equations were solved using the `electromagnetic 
waves, frequency domain`, `laminar flow` and `heat 
transfer in fluids` physics coupled in the Comsol 
Multiphysics program with ≈200,000 elements used in 
the computational geometry.  

Experimental studies 

A modified domestic microwave oven was used for batch 
case modeling and experimental validation. Fig. 1 shows 
the modified domestic microwave oven and its 
computational geometry. The modification was carried 
out to place a PTFE cylinder within the system with 
enabled rotation. 

The domestic microwave oven (with a system frequency 
of 2450 MHz) was 29.3×25.5×18 cm in size and it 
contains a cylindrical PTFE tube (17.5 cm in length and 
2.5 cm in radius) to process liquids. The rotation 
mechanism of the oven enabled a 2.5 rpm rotation rate.  
The system works at the 2450 MHz frequency. 

a 

b 
 

Figure 1: (a) Domestic Microwave Oven Modified for 
Experimental Studies; (b) Computational Geometry. 

 
Pre-experiments with water load showed that the applied 
power was 375.19 W when 500 W setting was used. The 
microwave system worked with cycled heating, and 
cycles were recorded and applied in the developed 
model. For experimental validation studies, water and 0.5 
% CMC (carboxymethyl cellulose) solution were used. 
Physical and thermal properties of the water were 
obtained from used Multiphysics program material 
library (Comsol AB, V.5.2, Stockholm, Sweden), and 
dielectric properties were experimentally measured at 
2450 MHz frequency by using Network Analyzer 
(Agilent Technologies, ES061B ENA Series Network 
Analyzer, USA) with an open ended coaxial probe 
(Agilent Technologies, 85070E, USA) connection.  

The required thermophysical and dielectric properties of 
0.5% CMC solution were obtained from Tuta and 
Palazoglu (2017) and Coronel et al., (2003). Dielectric 
properties of water and 0.5% CMC as a function of 
temperature are shown in Table 1. 

Table 1: Temperature dependent dielectric Constant ( `) 
and dielectric loss factor ( ``) values of 0.5% CMC 

solution at 2450 MHz. 
 Water 0.5% CMC 

T (°C) ` `` ` `` 
5 85.05 17.93 81.19 9.28 

20 79.31 10.84 77.80 8.91 
40 72.57 6.19 72.86 9.53 
60 66.39 3.78 67.47 11.43 
65 64.90 3.41 66.04 12.11 
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Temperature change of water and 0.5% CMC were 
obtained volumetrically at various intervals of the 
microwave working cycle, and results were compared 
with the model results. Temperature data were obtained 
using UMI-4 data acquisition system, FISO, Canada). As 
explained, the experimental studies were carried out in a 
2450 MHz system while the industrial setting will be 
planned for 915 MHz.  

These two frequencies are the generally applied settings 
of microwave systems domestic and industrial 
conditions. When moved from 2450 to 915 MHz, there 
are two significant changes. The first case is the 
reduction in the applied power (as also equation – 3 
defines) and changes in the dielectric properties and 
possible increase in the penetration depth. These are 
expected to enable a better control of the process for the 
temperature increase and the temperature uniformity 
within the heated sample. Due to the higher temperature 
increases in the 2450 MHz application and the effect of 
natural convection, these systems are more difficult to 
mathematically evaluate, and the validated models might 
be easily applied to the continuous systems as explained 
above. 

Industrial system design 

For continuous flow industrial system (with a centralized 
pipe with 2.54 cm in radius and 40cm length), first a 
cylindrical cavity operating at 915 MHz at 4000 W 
power were simulated (Fig. 2). Processed liquid was 
assumed to be whole liquid egg (WLE). As explained in 
the experimental studies, the model validations were 
carried out at 2450 MHz using water and 0.5% CMC 
solution. These two liquids were specifically chosen to 
represent a two distinct viscosity range. With the easily 
formed natural convection effects in water, the 
mathematical evaluation was rather difficult compared to 
the viscous case. The experimental validation for these 
two conditions, on the other hand, was expected to 
suggest that the model might be used for any other liquid 
food. With the industrial significance of the liquid eff 
process, this sample was chosen to demonstrate in the 
industrial system conditions.  

Thermophysical properties and dielectric properties were 
obtained from Coimbra et al. (2006) and Wang et al., 
(2009), respectively. Laminar flow rate was 0.05 m/s 
inlet velocity with an inlet temperature at 4°C. The walls 
were to have no slip condition and slip conditions with 
rotation rate up to 20 rpm. As explained in the previous 
section, the developed model was to be validated at 2.5 
rpm rotation rate. Upon this validation, the model was to 
be used for higher rotation rates to demonstrate the effect 
of rotation. 

 
 

Figure 2: Computational Geometry of the Continuous 
Flow Industrial System. 

 

RESULT & DISCUSSIONS 

Experimental validation  

As explained above, the mathematical model was 
developed using Comsol Multiphysics program. After 
preparing the computational geometry and solving the 
required governing equations with the given initial and 
boundary conditions, the volumetric temperature change 
of the liquid was compared with the model results. This 
comparison with the experimental data for water and 
0.5% CMC can be observed in Figs. 3a-b, respectively. 
The experimental data, obtained at 2.5 rpm and 375.19 W 
power, were the average of three parallels with the 
standard deviation. The electromagnetic field distribution 
inside the system was shown in Fig. 4. 

a 
 

b 
 

Figure 3. Comparison of Volume Averaged Experimental 
Temperature Data with Mathematical Model Results: (a) 

Water, (b) 0.5% CMC (°C). 
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Figure 4: Electromagnetic Field Distribution inside the 

Domestic Microwave System (V/m). 
 
Industrial system design 
 
Continuous-flow case 

The electromagnetic field configurations inside the 
industrial system and product were shown in Fig. 5. 
Surface average temperature at the theoretical exit of the 
system 0, 4, 8 and 20 rpm rotation were determined to be 
61.21, 53.31, 53.47 and 53.68 °C, respectively. 
Temperature differences between maximum and 
minimum temperatures at the exit were reported in Table 
2 to demonstrate the effect of rotation on enhancing 
temperature uniformity while temperature distribution 
velocity profile change at the exit were observed in Fig. 
6.  

 

 
a 
 

 
b 

Figure 5: Electromagnetic Field Distribution in (a) The 
System Cavity (b) within the Liquid Product (V/m). 

Table 2: Temperature Differences between Maximum 
and Minimum Outlet Temperatures at Different Rotation 

Rates. 
Rotation rate (rpm) Temperature Difference 

(°C) 
0 5.6 
4 3.1 
8 1.4 
20 0.2 

 

a 

b 
 
Figure 6: Velocity and Temperature Profiles of (a) 0 rpm 
and (b) 20 rpm Rotation Rate along the Theoretical Exit 

(°C). 
 
Alternative designs for increased production volume 

For an industrial system design to lead to increased 
production volume, multiple-pipe systems were 
considered, and effects of pipe quantity and location were 
evaluated. Two of the trials included 3- and 5- equally 
placed pipes located inside the cavity. While the latter 
case led to rather non-uniformity in temperature (Fig. 
7a), rather uniform temperature change was obtained in 
the former case (Fig. 7b). In the 3-pipe design, center-
focused electromagnetic field configuration is 
surrounded the pipes, and a uniform temperature among 
the pipes were obtained. The exit temperature was 
uniformly around to 35 °C. Therefore, it was concluded 
that either increased the system power or reduced inlet 
velocity should be used to achieve a required temperature 
of, for instance, 60 °C. The electromagnetic field 
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distributions for the 3-pipe configuration was shown in 
Fig. 8. 

CONCLUSION 

In this study, rotational effect on temperature distribution 
of liquids were determined using a mathematical model 
developed for a domestic microwave oven system and 
experimentally validated using water and 0.5% CMC.
The model was then used for designing an industrial 
scale continuous microwave system using the 
demonstrated rotational effects. Besides, alternative 
continuous were demonstrated to achieve higher 
production capacity, and the pipe location and quantity 
effects on temperature increase were evaluated with an 
optimal processing condition. 

a

b

Figure 7: Temperature Profiles of (a) 5- Pipe and (b) 3-
Pipe Configurations (°C). 

a

Figure 8: (a) Electromagnetic Field Distribution Obtained 
for the 3-Pipe Configuration (V/m). 
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ABSTRACT
This study deals with the modelling of thermal pasteurization 
of in-package solid food product immersed in hot water. The 
objective is to study the influence of dynamic heating 
temperatures on both thermal and inactivation kinetics. A 
severe dynamic heating rate (15 °C/min) is applied to a meat-
based product relevant to thermal pasteurization without 
holding phase. For predicting thermal kinetics, the agreement 
between experimental and numerical temperatures of water 
and sample is noticeable. The thermal delay due to 
convection and conduction within water and solid food is 
discussed, justifying the interest of such an approach when 
heating rates are applied. This work demonstrates the 
necessity of predicting local thermal heterogeneities when 
modelling pasteurization within food products without 
holding phase at set point temperature. The model could be 
used for process optimization with the aim to ensure food 
safety by limiting as far as possible overtreatment.

INTRODUCTION
Modelling of thermal pasteurization of in-package solid food 
product presents several benefits to ensure optimal 
processing conditions for industry (Bottani et al. 2013; Hong 
et al. 2014). Indeed the challenge is to ensure food safety by 
limiting as far as possible quality loss due to overtreatment
(Boillereaux et al. 2013).

Such an objective requires a multiphysics approach where 
CFD, heat transfer and microbial inactivation kinetics are 
coupled in a global model.

Traditional pasteurization processes combine successively 
heating, holding and cooling phases. In the literature, most 
microbial inactivation models are designed and validated 
during the holding phase at a reference temperature (Juneja 
et al. 1997; Valdramidis et al. 2005). In this work, attention 
is focused on the heating phase by considering a severe 
heating rate and its influence on inactivation kinetics.

MATERIAL AND METHODS
Samples of raw ground beef (3 g, 5% fat) inoculated with E.
Coli K12 (N0 = 4.45·106 CFU/g) are packed in plastic 

pouches immersed in a programmable Peltier-based effect 
water bath. (Hart Scientific AOIP, FC 9105, USA) and 
submitted to a 15 °C/min heating rate (initial temperature 
7 °C) (Figure 1).

Figure 1. (a) experimental apparatus (b) heating vessel and 
in-package sample (c) sample packed in pouch.

A type-K thermocouple is introduced in the sample to control 
the treatment end temperature. Eight final temperatures were 
considered (50-52-54-56-58-60-62 and 64 °C). Temperatures 
are recorded by a data logger (AOIP datalog, 91133 
RisOrangis, France) with output recordings every 1 second. 
Triplicates were carried out for each experiment.

Microbiology analysis are performed following the standard 
norm (ISO 16649-1:2001, 2001). The detection limit was 
fixed to 1 log CFU/g of the ground beef.

MODEL DESIGN

CFD and heat transfer model
A schematic description of the experimental apparatus is 
presented in Figure 2. To analyse the heat transport 
phenomena during pasteurization, the following assumptions 
were considered:

� Assumption 1: The product is homogeneous and 
isotropic with constant thermophysical properties.

� Assumption 2: The initial temperature of the food 
sample is homogeneous.
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� Assumption 3: The mass transfer and shrinkage are 
negligible.

� Assumption 4: The geometry of the packaged 
sample is assimilated to an ellipsoid-cylinder, with 
axial symmetry.

� Assumption 5: The package thickness was 
sufficiently thin to neglect its impact on the heat 
transfer (low thermal resistance).

Figure 2. 3D view of heating vessel (r=6 mm; L=60 mm), 
ellipsoid-cylinder in-package food sample (a=5.8 mm; 

b=2.8 mm; L=60 mm) and probe location 
(x, y, z)=(0, 0, 2.7) mm.

Heat transfer is based on the generalised heat equation which 
depends on thermophysical properties of the meat-based 
sample, as follows:

( )s s s
TCp div T
t

� ��
� �

�
(1)

For the heating fluid (water), natural convection is taken into 
account as follows:

( )w w w w w
TCp Cp u T div T
t

� � ��
� � � �

�
d (2)

Navier-Stokes equations (Newtonian fluid and 
incompressible flow) enables to model the fluid mechanics 
within water:

0

w w w

u v w
x y z

du g P u
dt

� � 	

� � �
 � � ��� � ��
�
� � � � ���

yyy

�

(3)

Where ρ is the density (kg/m3), Cp the specific heat (kJ kg-

1 K-1), T the temperature (°C), ū is the velocity field at any 
point of the 3D sample domain (u, v, w components), g is the
gravitational constant (m/s2), P the absolute pressure (Pa) 
and μ the dynamic viscosity (Pa.s). The subscripts s and w
refers respectively to sample and water.

The CFD heat transfer model is solved with 
COMSOL®Multiphysics 5.3a and consists of two main 

computational domains: i) liquid water filling the cylindrical 
vessel ii) ground beef sample located at the center of the 
vessel. The surfaces of the heating vessel are submitted to a 
temperature ramp at the wall (15 °C/min). Natural 
convection at the surface of the food sample is considered 
from an empirical correlation dedicated to vertical cylinder 
(Churchill and Chu 1975).

Thermophysical properties of water are considered as 
temperature dependent (Green and Perry 2007).
Thermophysical properties of ground beef are taken from 
literature (Pan and Singh 2001; Tsai et al. 1998): specific 
heat (3.69 kJ kg-1 K-1), thermal conductivity (0.35 Wm-1 °C-1)
and density (1006 kg/m3).

Initial and Boundary conditions
The initial and boundary conditions for the thermal and fluid 
mechanics model can be written as:

� �0 0, 0, , , , 7T T t x y z T C� � � � �

� �( ), , , , 0, 20air
z L

Tk h T T x y t T C
z � �

�

�
�  � � � � �

�

0

, , 0, [0; ]
,

0, 0, ,wall

for x y R t for z LdTT T t
for z t x ydt

� � � �

� � � � � � ��
0, 0, , [0; ]atm wu P P g z at t x y for z L�� � � � � � �

Microbial inactivation model
Dynamic non log-linear model (Geeraerd et al 2000) was 
used to simulate microbial inactivation:

max
1

1 c

dN k N
dt C

� �
�  � ��� �

(4)

max
c

c
dC k C
dt

�  (5)
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ln10 ln10exp ref

ref

k T T T
D Z

� �� � �
� �

(6)

The model parameters were taken from literature. So,
physiological state of cells Cc(0) is considered as 0.23 
(Hamoud-Agha et al. 2013), decimal reduction time (Dref )
equal to 73 s, at reference temperature of 58°C and thermal 
resistance (Z) as 3.79 °C, for ground beef 4.8% fat (Smith et 
al. 2001).

The microbial inactivation model is solved with 
MATLAB®7.10 from the 3D temperature-map predicted by 
COMSOL®Multiphysics 5.3a. This procedure enables to 
reduce considerably the computational time for predicting 
the microbial inactivation within the whole volume.

RESULTS
For model validation, experimental temperature of the 
ground beef sample is compared to the simulated one at the 
same location. Good agreement is found between 
experimental and predicted temperatures as can be observed 
on Figure 3. When ground beef is treated at a heating rate of 
15 °C/min, non-negligible thermal delays between water and 
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sample temperature (about 23 s) and setting temperature and 
sample (about 57 s) are remarked.

Figure 3. Thermal profiles: set temperature ramp of 
15 °C/min (black line), sample experimental temperatures 

(red circle), sample (red line) and water (blue line) simulated 
temperatures.

The 3D modelling enables to compare the simulated 
temperatures following different cut lines located along the 
vertical axis (Figure 4) and at the end of the heating 
treatment 

Figure 4. Cut lines in different positions on meat sample.

The Figure 5 depicts the evolution of predicted temperatures 
following the four different cut lines. It can be noticed that 
the temperature evolution is not homogeneous along the z-
axis, justifying the necessity of 3D modelling for heat 
transfer with CFD.

The temperature gradients along the z-axis are less important 
when reaching the wall of the cylindrical vessel but remain 
the highest in terms of magnitude (black line in Figure 5).

A clear non homogeneous temperature distribution at the 
centre of the sample can be remarked (18.2 °C between the 
coldest and hottest points along the axis). The temperature 
profiles in the sample can be explained by the uneven 
distribution of the fluid flow and temperature around the 
sample.

More, the sample is cooled by external natural convection 
with ambient air close to the surface of the sample (z-
axis = 60 mm).

Figure 5. Temperature distribution along z-axis following 
different locations. As illustrated in Figure 4, position a

(black line), b (red line), c (yellow line) and d (blue line).

The CFD modelling enables to predict the velocity fields due 
to natural convection around the sample. The Figure 6
depicts the norm of the velocity field following different 
processing times. Due to the temperature dependent 
thermophysical properties of water, fluid motion occurs, 
leading to natural convection phenomena around the sample. 
Recirculation of heating fluid (illustrated by black arrows in 
Figure 6) leads to more and more velocity field gradients 
appearing far from the wall of the cylindrical vessel. 

Figure 6. Velocity field of heating fluid (mm/s) following 
different simulation times.

The numerical simulation of CFD-heat transfer was used as a 
tool to complement the understanding of the results obtained 
experimentally and to illustrate 3D temperature distribution 
within both sample and heating fluid when a heating rate of 
the 15 °C/min is applied (Figure 7).
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Figure 7. 3D distribution of temperatures (°C) at different 
simulated times for 15 °C/min.

The 3D distribution of temperatures indicate a thermal 
heterogeneity inducing differents levels of local microbial 
inactivation within the processed sample. This observation
cannot be experimentally validated in this study, because the 
microbiological analyses are performed on the total volume 
of the sample. As illustrated in Figure 8, only the volume 
average of the simulated inactivation data (black line) are 
compared with experiments data (red circle). However, the 
inactivation gradient were simulated and it is represented by 
the blue curve (minimal value) and by the red curve 
(maximal value).

Triplicated experiments display an acceptable repeatability 
of the microbiological analyses (Figure 8).

The (Geeraerd et al. 2000) inactivation model implemented
with parameters issued from the literature (Smith et al. 2001)
presents satisfying agreement with the experimental data. 

Figure 8. Triplicate experimental data (red circle), sample 
average volume (black line) and cold (blue line) and hot (red 
line) zone of the sample simulated logarithmic reduction of 

E. coli.
The simulated maximal and minimal inactivation results
highlight a very important microbial inactivation 
heterogeneity in the volume. Indeed, even if an relevant 
inactivation (-6.6 log10) can be noticed after about 234 s, it is 
limited only to the peripheral area of the pouch (78 °C close 
to the vessel wall). In the remaining sample volume a partial 
inactivation of E. coli (less than -2.5 log10) was detected.

The heating rate of 15 °C/min induces a large thermal 
gradient occurring from the bottom to the top of the product 
is mainly responsible of this partial inactivation.

CONCLUSION
This contribution demonstrates that non-negligible microbial 
inactivation occurs during the heating phase when the lethal 
temperature is reached, underlining the importance of 
considering this stage in the modeling procedure. From a 
three-dimensional analysis of the problem, the large 
temperature gradients obtained at 15 °C/min without holding 
phase are able to explain the low level microbial inactivation.

The satisfying adequacy between model and experiments 
permits to foresee a model implementation in a process 
control procedure, allowing to supply the fair energy to reach 
the expected microbial inactivation while limiting 
heterogeneities. Such an objective could be reached for 
example by using combined energy sources (convection, 
microwaves, ohmic heating).
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ABSTRACT 
 
During refrigerated transport and storage, cheese generates 
heat via respiration of the living microorganisms. Therefore, 
free/mixed convection phenomena are expected to occur 
within the pallet and to interact with forced convection 
around it. The resulting airflow should promote appropriate 
internal ventilation within the pallet to ensure the 
temperature homogeneity. This work aimed to study the 
influence of various parameters on the air flow and heat 
transfer within a pallet of cheese during forced air cooling. 
A 3-D computational fluid dynamics (CFD) model was 
developed to predict the temperature of the products in 
different configurations. Both forced and natural convection 
due to the heat generation of the produce were considered in 
the model. The numerical model can be potentially used as a 
design tool to improve the design of vented packages in 
order to reduce temperature differences of products within 
the pallet during the whole cold chain (cooling, transport, 
storage). 
 
INTRODUCTION 
 
The most important factor that affects the quality of the 
product during storage is the temperature (Defraeye et al. 
2015, Ambaw et al. 2016). One of the reasons of 
heterogeneity is the over-ventilation in areas near the 
refrigerating unit with temperature close to the blowing 
temperature and the under-ventilation in the areas far from 
the refrigeration unit causing locally hot spots within the 
pallet (Moureh et al. 2009). Therefore, it is important to 
study the air pathways to better understand and to prevent 
the thermal heterogeneity. The experimental method is 
usually considered expensive, time-consuming and 
situation-specific(Zou et al. 2006). Moreover, when problem 
deals with biological materials, it is difficult to generalize 
the problem and control the experimental conditions(Delele 
et al. 2013). Numerical method is considered one of the 
most powerful alternative methods. Many authors chose 
CFD (Computational Fluid Dynamics) to study the airflow 
within a refrigerating enclosure: refrigerated truck (Moureh 

et al. 2002), cold room (Hoang et al. 2015),  refrigerated 
warehouse (Ho et al. 2010). In case of cheese product, the 
heat transfer becomes complex since it involves in 
aerodynamic and thermal interactions between the airflow 
around the pallet, and the natural convection inside the 
pallet generated by the internal production of heat by the 
microorganisms of the cheese.  
 
The above state studies concerned forced convection 
cooling. To the best of author’s knowledge, no numerical 
study has been carried out on a pallet of product generating 
heat. This study focused on studying the interaction between 
forced and free convection and their influence into the heat 
transfer  within one layer of product by CFD method. 
 
NUMERICAL MODELS 
 
Computational domain 
 
The modelling of the system was inspired by a standard 
industrial pallet of camembert (800mm x 1200mm x 
1479mm) containing 54 cardboards evenly distributed into 9 
layers, 6 cardboards per layer (figure 1.a). For each 
cardboard face, the total opening area (TOA) represents the 
ratio of the vented holes area to the considered face area. 
The TOA of both frontal face and side face (figure 1.b) are 
5.1 %. There are 30 products per cardboard (3 layers of 10 
products). Due to the complex geometry of the whole pallet, 
only one layer was modeled. The computational domain 
contained 1.15m x 1.75mx 2.14m air volume with one layer 
of products at the center. The detail dimensions were 
presented in figure 1. To simplify the problem and to reduce 
the number of mesh, several hypotheses were made: 

- The system is symmetric so that only half of the 
layer was modelled  

- There was no heat exchange between the different 
layers of the pallet in height direction 

- There was no air gap between the cardboards 
- In the real case, there are 3 layers of product per 

cardboards. In this model, these three layers was 
considered as a unique cylindrical  bloc (110mm of 
diameter and 90mm of heigh) 

- Three layers of product inside one cardboard is 
considered as one layer with the thickness 
equivalent of the thickness of three products 
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- The products distribute evenly in the carboard 
- The cardboard is considered adiabatic 
- Cheese packaging was not considered in the model 

 

 

 
Figure 1 (a) computational domain, (b) geometry of one 

cardboard, (c) view from the top of cheeses in one cardboard  
 
This layer of product is placed in a cold room where air is 
blown out from one lateral surface and evacuate by the 
opposite one. In the real warehouse, air is usually blown out 
by the evaporators so the blowing area is smaller than the 
warehouse walls. This modelling configuration corresponds 
with our test room in the laboratory.  
 
Meshing 

The difficulty related to our problem was that the space 
between two cheeses (1mm) was too small compared to the 
size of cheese (110mm of diameter). Therefore, the number 
of mesh becomes very large. In order to ensure the accuracy 
of the model, at least three meshes was modelled at the 
narrowest place  (figure 2). A larger number of mesh is not 
possible due to the capacity of our computer.  With this 
number of mesh, each simulation takes about two days in 
order to obtain the convergence.  

 
Figure 2: Mesh of half a layer of pallet 

Due to the complexity of the geometry of the domain, 
unstructured meshes were used. The total number of mesh 
was 7.4 million meshes.  
 
Boundary conditions 
 
The heat flux generated by the product was fixed at 0.14W 
per cheese of 250g, the temperature of air ambient was 1°C.  
The air inflow velocity was 0.2m/s. Two models have been 
created: one that took account the free convection and the 
other without free convection. For this study, free 
convection was solved by using the Boussinesq 
approximation in which the variable density was allowed 
only in the buoyancy term. The top and the bottom of the 
studied layer were adiabatic. The simulations were 
performed with the CFD code ANSYS Fluent 17.0 
 
RESULTS 
 
The uniformity of the temperature was studied as well as the 
impact of the influence of natural convection to the heat 
exchange. 
 
Mixed convection 
 
The results presented in this part concerning the case where 
natural convection was included in the model, i.e. the air 
density varied in function of the temperature. The figure 3 
represents the velocity vectors at the vented holes. The 
vectors were colored by the temperature scale. The blue 
color corresponded to the lowest temperature (1.0°C) and 

178



 

the red one corresponded to the highest temperature 
(4.5°C). 
 

 
  

Figure 3Velocity vectors at vented holes (with natural 
convection)  

 
In the direction of inflow air, cold air entered the pallet by 
the vented holes of the first line of cardboard. Then air 
warmed up as it passed through the pallet. Hot air exited by 
the vented holes towards the end with smaller velocity. On 
the side faces, cold air entered through the bottom holes and 
mixed with hot air inside the pallet then hot air evacuated 
by the top holes. This air movement enhances heat 
exchange since heat can be evacuated not only by the main 
airflow direction but also by the side holes. It can be 
assumed that this air movement was driven by natural 
convection.  
Figure 4 shows the temperature contour in the horizontal 
plane in the middle of the products. The temperature varied 
between 1.1°C (blue color) and 5.5°C (red color). 
 

 
Figure 4: Product temperature contour (with natural 

convection)  
 

The general trend showed that the temperature rises along 
the main flow direction (from the ventilated face to the 
opposite one), hence blue and green colors for the first 
cheeses. However, the further the products are from the 
main entrance, the hotter they were, hence the presence of 
red color. In the first cardboard, the temperature rises 

progressively. In the second cardboard, the maximal 
temperature is reached at the middle. After that the products 
temperature decreased. The reason of this decrease in 
temperature was that air accelerated towards outlet of the 
cardboard by passing vented holes which promoted the heat 
exchange. In the side direction, the further the products 
from the external wall of the pallet, the higher the product 
temperature is which is logical because heat exchange  his is 
due to the weak exchanges with the outside cold air. 
 
Forced convection (without free convection) 

In order to study the influence of the natural convection on 
the heat exchange and airflow within the pallet, a study of 
an imaginary case has been carried out in which the density 
is constant, i.e. density does not depend on the temperature. 
Other boundary conditions were the same as in the previous 
case. 
The figure 5 shows the velocity vectors at the side vented 
holes for both cases: with and without natural convection. 
The vectors are colored by the colors of the temperature: 
blue - the coldest (1.0°C) and red - the hottest (6.7 ° C). 

 

 
Figure 5 Velocity vectors at side vented holes (a) with 

natural convection (b) without natural convection  
 

In the case without natural convection:  air velocity was 
much lower compared to the case with natural convection. 
Air leaves the cardboard by the first two vented holes in 
blowing direction. From the third vented hole, cold air 
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entered by all the side holes with low velocity. Whereas in 
the case with natural convection, cold air entered only 
through the holes at the bottom and the hot air left through 
the holes at the top. This again confirmed that the upward 
and downward movements of the air were due to natural 
convection.  
Figure 6 shows the contours of the temperature in the 
middle of the products in both cases: with and without 
natural convection. The temperature varies between 1.0°C 
(blue color) and 8.0°C (red color). 
 

 
Figure 6: Product temperature contour: (a) with natural 

convection, (b) without natural convection  
 
The product temperature is much more homogeneous in the 
case with the natural convection, which is due to a better 
circulation of the air: indeed, the maximum temperature is 
of 5.5 ° C (figure 4) whereas that of the case without 
convection natural is 8°C (figure 6). Moreover, considering 
the temperature evolution in the side direction in the case 
without natural convection, a clear difference can be 
observed between the first and the second cardboard. 
Products in the left side of the carton have higher 
temperature than those located at the same location in the 
case with natural convection. This is due to the fact that air 
velocity on the side direction is very low therefore heat 
exchange between two adjacent cardboard is very weak. 
 
 
CONCLUSION 
 
The airflow and heat transfer within one layer of products 
generating heat was studied numerically. The model took 
into account the natural convection due to the respiration 
activities of the products.   
Two simulations were carried out: with and without natural 
convection. The results showed that the effect of natural 
convection was significant and cannot be neglected. Natural 
convection promotes the heat transfer by allowing cold air 
entering by bottom vented holes and hot air evacuating by 
top vented holes.  
 
 
 

FUTURE WORK 

For future work, a model of the whole pallet can be created 
based on this model. Instead of assuming that the upper and 
the lower part of the layer are adiabatic, there will be heat 
exchange between different layers. Due to the great number 
of mesh, it will not be possible to model the each product of 
the whole pallet. Therefore, milieu porous can be applied to 
the other layers. The model  will also be validated by  our 
experimental data. 
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In food industry, the treatments applied to edible oils are of 
primarily importance, as the structure of fatty acid groups and 
their degree of saturation has a proved impact onto human 
health. Relevant models for the analysis and the optimization
of native edible oil hydrogenation are needed, allowing the 
accurate account of the evolutive properties of oils during 
their processing.
A model based on group contribution is presented here to 
predict edible oil viscosity at given temperature and 
hydrogenated state. To use this model, the composition (in 
fatty acids) of the studied oil and its viscosity before 
hydrogenation have to be known at several temperatures.

�����������

Hydrogenation consist of converting carbon-carbon double 
bounds (insaturations) into single bounds by addition of 
hydrogen in the presence of solid catalysts. This process is 
widely used in food industry to minimize edible oil rancidity,
ease its packaging and improve the texture and consistency of 
processed foods. Traditional batch slurry reactors show 
selectivity issues, by producing high levels of fully satured 
and trans fats which are harmful to human health. Thus current 
research on vegetable oil hydrogenation is focused on
favoring partial conversion of the polyunsaturated fatty acids,
while keeping cis configuration for the remaining double 
bonds. Innovative catalytic reactors, such as monolith reactor, 
might help tackle those goals by reducing mass transfer
limitations and achieving controlled hydrodynamics (near 
plug flow behavior for the so-called “Taylor flow” regime).
Computational fluid dynamic simulations have to be carried
out in order to develop accurate enough sizing tools. These 
calculations are strongly linked to oil physical properties, 
especially to their viscosity, which strongly evolves during the 
reaction: a relevant model is needed to describe in detail its
dependence on temperature and insaturation degree.
Various existing models and empirical equations describe 
temperature-dependence of fatty compound viscosity 
(Eiteman and Goodrum 1994); (Valeri and Meirelles, 1997);
(Rabelo et al., 2000); (Fasina et al., 2006). Azian et al. (2001)
predicted the viscosity of pure triacylglycerols constituted of 
three different fatty acids, based on that of single fatty acid 
triacylglycerols.
Ceriani et al. (2007) made use of a large database (763 
experimental values) to optimize a group contribution model 

able to predict temperature-dependent viscosity of 
triacylglycerols (TAG), which are the major components
(>95%) of edible oils. While this model indeed gave
satisfying results for pure triacylglycerols with less than 5% 
of average deviation, its extension to edible oils (of known 
composition) was much more uncertain with average 
deviation ranging from 2.8% for corn oil to 28.6% for 
grapeseed oil. This double observation raises the need of a 
new model for edible oil undergoing hydrogenation. In this
work, we develop a model which uses the same 
decomposition groups and related parameters of the 
triacylglycerol molecule as used by the model derived by 
Ceriani et al. (2007), but refers to known viscosity values of 
the native (unhydrogenated) oil over a given temperature
range.

�	��
�	���	�����	������	��
2�	������

Triacylglycerols (TAG) are esters based on glycerol and fatty 
acid molecules. Figure 1 shows their general chemical 
formula.

CH2-COO-Rll��� CH2-COO-(CH2)l-(CH=CH)l�-CH3

|  | 
CH-COO-Rmm��→  CH-COO-(CH2)m-(CH=CH)m�-CH3

|  | 
CH2-COO-Rnn��� CH2-COO-(CH2)n-(CH=CH)n�-CH3

Figure 1: Triacylglycerol Chemical Formula (Ceriani et al. 
2007)

Table 1 shows the group decomposition of a TAG molecule 
as described by Ceriani et al. (2007).

Table 1: Group Decomposition of General TAG Molecule 
according to Ceriani et al. (2007)

Group Number
-CH2-CH-CH2- 1

-COO- 3
-CH2-
-CH=
-CH3 3

Therefore, only –CH2- and –CH= groups vary from one TAG 
to another depending on the three fatty acids composing them.
Knowing the fatty acid composition of a given vegetable oil,
an equivalent fatty acid, corresponding to the average
numbers of –CH2– groups (p) and insaturations (p’ equal to 
half the number of  –CH= groups), can be deduced, and thus 
an equivalent TAG composed of three equivalent fatty acids.
The equivalent TAG decomposition is displayed in Table 2.
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 Table 2: Group Decomposition of an Equivalent TAG 
Molecule according to Ceriani et al. (2007) 

Group Number 
-CH2-CH-CH2- 1 

-COO- 3 
-CH2-  
-CH=  
-CH3 3 

 
Equation (1) gives the temperature-dependent viscosity model 
proposed by Ceriani et al. (2007). 

 

 

 

(1) 

 
where Nk is the number of k groups and A1k to D2k correspond 
to optimized coefficients. M is the molecular weight of the 
considered molecule and Q a corrective term which depends 
on temperature and varies with the molecule. During 
hydrogenation, p’ groups convert into p groups while carbon 
number in TAG (NC,TAG) remains constant (see Equation (2)). 
 

 (2) 
 
Knowing the composition of the studied oil before reaction, 
and therefore NC,TAG, Equation (1) is only function of p’ and 
T. By introducing the hydrogenation degree X as defined in 
Equation (3) where p0’ is the value of p’ for the 
unhydrogenated oil, Equation (1) is now function of X and T 
(see Equation (4)). 

  (3) 

  (4) 
where 

  (5) 

In the present work, A0 to D0 parameters are identified from 
the known viscosity values of various raw (unhydrogenated) 
edible oils, taken at different temperatures, using Matlab 
R2016b. A1 to D1 and A2 to D2 are obtained from Equation (1) 
as a function of Ceriani et al.’s parameters and NC,TAG. In other 
words, the model being specifically calibrated with the oil of 
interest prior to hydrogenation so as to account for the effect 
of complex TAG mixture and impurities (up to 4%), it then 
should give a reliable estimate of viscosity evolution during 
the reaction through TAG optimized parameters. 
 
4��������� ��
������� ��� �����
�	�
�
�������
������
 
The model presented above is applied to a refined sunflower 
oil whose fatty acid composition is given in Table 3. This 
leads to values for p and p0’ of 12.95 and 1.477, respectively; 
hence NC,TAG is equal to 56.72. 
 

Table 3: Fatty Acid Composition of Unhydrogenated 
Sunflower Oil measured at Institut des Corps Gras, Pessac, 

France in 2017 
Fatty Acid Weight percentage (%) 

14:0 0.08 
16:0 6.59 
16:1 0.14 
18:0 3.24 
18:1 29.74 
18:2 58.75 
18:3 0.06 
20:0 0.24 
20:1 0.16 
22:0 0.70 
24:0 0.26 

 
Table 4 indicates the viscosity of this sunflower oil measured 
over the 20°C-80°C range by capillary viscometer. 
 

Table 4: Dynamic Viscosity of Unhydrogenated 
Sunflower Oil measured at LFCR, Pau, France in 2017 

T (°C) μ (mPa.s) 
20 64.00±0.08 
40 29.38±0.03 
60 16.06±0.02 
80 9.95±0.01 

 
Table 5 then gives the calculated parameters for K0 
expression. 
 

Table 5: Parameters of K0 Expression (Temperature-
Dependence of Viscosity for Unhydrogenated Oil) 

A0 -548.78 
B0 20,824 
C0 -90.555 
D0 0.11091 

 
Figures 2 and 3 show the results of Ceriani et al.’s model and 
of the present model, respectively, for different hydrogenation 
yields and temperatures. Note that highly hydrogenated 
sunflower oil might be solid at low temperature. Therefore 
model prediction in those conditions is not plotted on the 
figures. 

Figure 2: Viscosity Predictions for Partially Hydrogenated 
Oil according to Ceriani et al. (2007). 
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The model of Ceriani et al. (2007) understimates measured 
raw oil viscosities by 22% at 20°C and by 18% at 80°C.

Figure 3: Viscosity Predictions for Partially Hydrogenated 
Oil for the Present Model.

As it was set on measured viscosities for unhydrogenated oil, 
the present model corrects this gap. The increase with 
hydrogenation degree is then similar for both models as 
expected. For instance, viscosity at 80°C is found to increase 
by 34% (3,4 cP) at 50% conversion (as compared to raw oil) 
according to our model. In the range where hydrogenated oil 
remains liquid, temperature effect is only moderately 
amplified. To assess model accuracy, partial hydrogenation of 
refined sunflower oil was carried out in a batch stirred reactor 
using commercial Pd/Al2O3 beads (Alfa Aesar) as a catalyst.
Hydrogenation degree was determined from gas 
chromatography analysis of the processed oil. Its viscosity is
available in Table 6. Experimental data for raw and 
hydrogenated oils are also displayed in Figure 4 along with 
the predictions of the two models. The average relative 
deviation for the hydrogenated oil is reduced from 20% to 
3.7% with the proposed correction.

Table 6: Dynamic Viscosity of Partially Hydrogenated
Sunflower Oil measured at IMFT, Toulouse, France in 2017

T (°C) μ (mPa.s)
60 19.3
40 15.4
60 12.1
80 9.9

Figure 4: Comparaison of the Models - (Ceriani et al., 2007) 
and present one - with respect to Experimental Data for Raw 

and Partially Hydrogenated Oils.
�
�����������

This revisited model gives satisfying results for sunflower oil
and will be further evaluated by the authors for different types 
of edible oils after partial hydrogenation. Similar approach 
will be also applied for the prediction of surface tension, based 
for instance on the work of Diaz-Tovar et al. (2011). These 
models will be then implemented into a CFD code for the 
simulation of gas-liquid flows in hydrogenation reactors.
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Abstract

The objective of this study is to determine an optimal sub-

strate feed rate for optimizing the fructo-oligosaccharide pro-

duction by Aureobasidium pullulans in a fed batch reactor.

The feed profile is charecterized by the feed start time, rate

and end time. The optimization is carried out based on a sim-

ple dynamic model of the process and using Pontryagin max-

imum principle in the framework of singular control prob-

lems. The resulting control law is of the bang-bang type.

The bioreactor is first filled-up at maximum feed rate, fol-

lowed by a batch phase.

Introduction

Fructo-oligosaccharides (FOS) are dietary carbohydrates,

which can be used as an alternative to sugar, offering 30%

relative sweetness, and a selective increase of the probiotic

bacteria development, with a preventive effect on gastroin-

testinal diseases, colorectal cancer and diabetes (Tomomatsu

1994). Naturally, FOS can, for instance, be harvested in sig-

nificant quantities in honey, bananas and rye. However, their

industrial production is delicate since several processes are

required to reach acceptable degrees of purity (Nobre et al.

2015; 2016).

A convenient way to produce FOS in bioreactors arises

from transfructosylation of sucrose (GF), composed

of the monosaccharides glucose (G) and fructose (F),

through microbial enzymes (fructosyltransferase and β-

fructofuranosidase) present in microorganisms such as Aure-
obasidium pullulans (Dominguez et al. 2012) or Aspergillus
sp. (Rocha et al. 2009). These enzymatic activities produce

complex sugars, namely 1-Kestose (GF2), Nystose (GF3) and

1-Fructofuranosyl Nystose (GF4) which constitute the FOS

family.

Based on a simple dynamic model of the FOS production

in a fed-batch reactor, the objective of this study is to max-

imize the FOS concentration by manipulating the substrate

feed rate. The approach is based on Pontryagin maximum

principle, a method that has received considerable attention

in the context of bioprocess optimization and control (see e.g.

Van Impe and Bastin (1995), Smets et al. (2004)).

This paper is organized as follows. In Section 2, the dynamic

model of fed-batch FOS production is presented. Section

3 deals with the optimal control problem, conclusions are

drawn in Section 4.

Modeling FOS production
Based on a set of experimental data collected in batch and

fed batch experiments, it is possible to derive the minimum

number of reactions explaining the data using maximum like-

lihood principal component analysis (Mailier et al. 2013). A

step by step parameter identification procedure can then be

followed to estimate the reaction stoichiometry and kinetics.

More precisely, the final model involves 8 kinetic parame-

ters and 6 pseudo-stoichiometric coefficients and the mass

balance differential equation system is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙[GF] = −r1 + k14r4 +
1
V (GFin − [GF])Q

˙[GF2] = −r2 + k21r1 − [GF2]
V Q

˙[GF3] = −r3 + k32r2 − [GF3]
V Q

˙[GF4] = −r4 + k43r3 − [GF4]
V Q

˙[F] = k54r4 − [F]
V Q

˙[G] = k61r1 − [G]
V Q

V̇ = Q

(1)

where [α] denotes the concentration (in g.L−1) of the compo-

nent α. Q represents the substrate feed rate (in L.h−1), which

is the manipulated variable. GFin is the substrate concentra-

tion (in g.L−1) and V the broth volume (in L). The reaction

rates (in g.L−1.h−1) are defined by Monod laws:

ri = μmax
i

[GFi]

Kmi +[GFi]
, with i = 1,2,3,4, (2)

where μmax
i denotes the maximum rate (in g.L−1.h−1) of the

reaction i. Kmi (in g.L−1) represents the half-saturation con-

stant associated to component i. The corresponding reaction

scheme is given by:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

GF
r1−−−−→ k21GF2 + k61G

GF2

r2−−−−→ k32GF3

GF3

r3−−−−→ k43GF4

GF4

r4−−−−→ k14GF+ k54F

(3)
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Optimization of FOS production
The dynamic model is affine in the input Q and can be cast

in the general nonlinear form
dX
dt

= f (X )+g(X )Q with t0 ≤ t ≤ t f (4)

with the state vector X = [GF,GF2,GF3,GF4,F,G,V]. Func-

tion f represents the reaction kinetics while g characterizes

the hydrodynamics. At t = t0, the process is initiated with

initial concentrations and volume X (t0) = X0. The final con-

dition is related to the maximum volume Vmax (in L) which

should be reached at final time:

Ω= V(t f )−Vmax = 0. (5)

The performance index J represents the FOS amount at final

time:

J(t f ) = [GF2](t f )+ [GF3](t f )+ [GF4](t f )≡ h(X ), (6)

The substrate feed rate Q is limited by the feed pump ca-

pacity. Let Qmax and Qmin be the upper and lower bounds

respectively:

Qmin ≤ Q ≤ Qmax. (7)

The objective is to find an admissible control function, Q(t),
which yields a system (4) trajectory satisfying (5) and (7)

while maximizing the performance index J. Pontryagin max-

imum principle states that this problem is equivalent to the

maximization of the Hamiltonian H (Bryson and Ho 1969):

H = φ+ψ Q (8)

where functions φ = λ� f (X ) and ψ = λ�g(X ).
The costate vector λ is given by:

dλ�

dt
=−∂H

∂X
=−λ� ∂ f

∂X
−λ� ∂g

∂X
Q. (9)

with transversality conditions:

λ(t f ) =
∂h(X )

∂X
+ν

∂Ω(X )

∂X
(10)

providing λGF,G,F(t f ) = 0, λGF2,GF3,GF4
(t f ) = 1 and λV(t f )

= ν with ν ∈R where λα is the costate associated to the state

α.

The Hamiltonian (8) is affine in the control input, which is

subject to the linear inequality constraints 7, and a ”bang-

bang” solution exists, consisting in a control sequence made

of minimum and maximum input levels and singular arcs.

Based on the sign of the Hamiltonian partial derivative with

respect to the input Q, i.e. the value of ψ, the ”bang-bang”

control results from:⎧⎨
⎩

if ψ < 0, then Q = Qmin,
if ψ = 0, then Q = Qs,
if ψ > 0, then Q = Qmax.

(11)

The singular control law Qs is obtained by taking the second

time derivative of ψ (see e.g. Bryson and Ho (1969)):

Qs =−
λ�( ∂q

∂X
f − ∂ f

∂X
q)

λ�( ∂q
∂X

g− ∂g
∂X

q)
(12)

Table 1: Optimal control: hardware constraints and initial

conditions.

Hardware constraints Initial conditions

GFin 280 g.L−1 [GF](t0) 200 g.L−1

Vmax 3 L V(t0) 1 L

Qmax 0.5 L.h−1 [G](t0) and [F](t0) 0 g.L−1

Qmin 0 L.h−1 [GF2,3,4](t0) 0 g.L−1

under the condition that λ�( ∂q
∂X

g− ∂g
∂X

q) 	= 0, where q is

q =
∂g
∂X

f − ∂ f
∂X

g. (13)

This criteria is based on the necessary optimality conditions

including
∂H
∂Q

= λ�g = 0. (14)

Based on this development, the following 5-step algorithm is

proposed:
1. Guess t f , ν and a substrate feed rate Q respecting the

final condition (5), and integrate forward the model de-

fined in (4).

2. Determine λ by integrating backward Equation (9).

3. Integrate forward the model defined in (4) using singu-

lar control (11).

4. Repeat Steps 2 and 3, considering ν = ν+ δν, with δν
as small as required, until Ω= 0.

5. Repeat Steps 2 to 3 with a new guess of t f in order

to maximize the performance index J (6) and nullify

Hamiltonian (8).

Numerical results
The dynamic model (1), as well as another candidate model

proposed in (Jung et al. 1989) and identified so as to match

the available experimental data, are used in the optimization

procedure. Initial conditions and constraints are listed in Ta-

ble 1.

The two optimization problems (based on the two candidate

models) lead to similar input trajectories (i.e., the feed rate

represented in subplot A of Fig. 1): a fed-batch phase of ap-

proximately 4 hours at maximum flow rate Qmax = 0.5 L.h−1

until the bioreactor is completely filled, followed by a batch

phase (Qmin = 0 L.h−1). This profile maximizes the produc-

tivity of GF2, direct by-product of the inlet substrate GF.

Model (1) suggests a reaction rate r1 which always remains

below the maximum value μmax
1 , and a global reaction rate,

defined by fGF2
+ fGF3

+ fGF4
, increasing even after the fed-

batch phase and reaching a maximum within 10 hours (see

subplot C in Fig. 1). The model of (Jung et al. 1989) be-

haves slightly differently with r1 first at its maximum, thus

implying a maximal global reaction rate (subplot C in Fig.

1) during the fed-batch phase followed by a decrease when

the bioreactor is no longer fed. Consequently, the predicted

productivity and yield (given by Equations (15)) are 2.75
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Figure 1: Subplot A shows the optimal substrate feed rate. Subplot B shows the reaction rates (continuous lines) and the

associated maximum rates (dotted line). The global FOS production rate is displayed in subplot C. Subplot D shows the evolution

of the FOS concentrations. The blue and red colors correspond respectively to model (1) and the model from (Jung et al. 1989).

g.L−1.h−1 and 49.3% with model (1). These numbers have to

be compared to the prediction based on the model of (Jung

et al. 1989), which is a slightly higher productivity of 2.92

g.L−1.h−1 and lower yield of 46.5%. Indeed, in the first case,

125 g.L−1 of FOS are obtained after 45.4 hours while in the

second case, 118 g.L−1 are obtained after 40.3 hours.⎧⎪⎪⎨
⎪⎪⎩

P (t f ) =
[GF2](t f )+ [GF3](t f )+ [GF4](t f )

t f
,

Y (t f )=Vmax
[GF2](t f )+ [GF3](t f )+ [GF4](t f )

[GF](t0)V(t0)+GFin(Vmax−V(t0))
.

(15)

Conclusion
A bang-bang control strategy is proposed for the optimiza-

tion of the FOS production, which consists in a fed-batch

phase at maximum flow rate followed by a batch phase.
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ABSTRACT 

Modelling the time-temperature history of a continuous flow 
thermal process is useful to evaluate temperature induced 
changes such as inactivation of microorganisms/enzymes or 
degradation of quality/sensory attributes. In this work the 
microwave assisted pasteurization of a low viscosity liquid 
food is modelled considering tubular heat exchangers, single 
mode microwave applicator and holding tube. Temperature 
distribution was determined based on overall heat transfer 
coefficients and mean residence times. Model validation was 
carried on for the processing of cloudy apple juice at three 
temperatures (70 °C, 80 °C and 90 °C), two flow rate levels 
and two heating modes (conventional and microwave) using 
a pilot scale unit. Polyphenol oxidase (PPO) inactivation 
was determined using kinetic parameters. Measured 
temperatures after heating, holding and cooling steps agreed 
with model predictions, as well as the residual PPO activity 
after processing. Focused microwave heating provided high 
heating rates, providing enzymatic inactivation similar to 
that from an ideal process with no over-processing.  

INTRODUCTION 

Continuous flow focused microwave heating is an emerging 
technology in food processing and an attractive alternative 
to heat exchangers in food pasteurization due to fast 
volumetric heating and lower tube surface temperature (Zhu 
et al., 2007). Consequently, microwave-assisted 
pasteurization has a potential to reduce nutritional and 
sensorial losses that occurs in conventional thermal 
processing (Tang, 2015).  

Proper design of a pasteurization process requires the 
selection of optimal conditions to achieve the safety 
requirements and to minimize food quality degradation 
(Ling et al., 2015). Kinetic models help to understand the 
mechanisms of change during food processing and allow 
optimizing and predicting the final product characteristics. 
These mathematical models describe the inactivation of 
biochemical parameters, such as microorganisms, enzymes  
and chemical compounds, or physical changes (van Boekel, 
2008). The biochemical parameters most used to assess the 

quality of pasteurized apple juice are enzymes (Siguemoto et 
al., 2018a) and microorganisms (Tajchakavit et al., 1998; 
Cañumir et al., 2002; Gentry and Roberts, 2005).  

The polyphenoloxidase (PPO) activity in fruit juice is 
associated with the decrease of consumer acceptance due to 
changes of nutritional (oxidation of phenolic compounds, 
carotenoids and ascorbic acid) and organoleptic (oxidation 
of sugars and enzymatic browning) properties (Aka et al., 
2013). Apple enzymes showed to be more thermal resistant 
than microorganisms, then PPO activity was used as an 
indicator for pasteurization of apple juice (Siguemoto et al., 
2018a).   

Continuous flow thermal processing of liquid foods has 
three steps: heating, holding and cooling. For food safety 
purposes, the target microorganism inactivation is evaluated 
only in the holding tube at maximum velocity (tube centre) 
and lower temperature (tube outlet). However, the residence 
time in the heating step and compensation for temperature 
drop at holding tube also contribute with thermally induced 
changes (Aguiar and Gut, 2014).  

In order to properly evaluate the changes in thermal 
processing, the whole time-temperature history of the 
product must be known, as well as the kinetics equations 
and parameters. The objectives of this work were to: 1) 
model the time-temperature history and quality change of a 
low viscosity liquid food processed in a microwave-assisted 
pasteurizer; 2) validate the modelling for apple juice 
processing using polyphenol oxidase (PPO) as a time-
temperature integrator (Tucker, 1999); 3) compare results 
from conventional and microwave heating modes.  

MODELLING OF TIME-TEMPERATURE HISTORY 

Figure 1 presents a diagram of the microwave assisted 
pasteurization process, which is based on the pilot-scale unit 
Lab25-UHT/HTST EHVH (MicroThermics, Raleigh, USA). 
Processed product was cloudy apple juice (Malus domestica
Borkh, cv Fuji Suprema). Heater 1 and Cooler are counter-
current coil heat exchangers linked to an 18 kW hot water 
and a 3.5 kW cold water circuits, respectively. Heater 2 is a 
microwave heater with a single mode cavity connected to a 
6 kW magnetron (2450 MHz). With tuning, microwaves 
were focused on a central ceramic tube with minimal 
reflected power (< 20 W). The holding section was a 
thermally insulated holding tube with the residence time of 
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18 s (bulk velocity) at nominal flow rate of 0.5 L/min. There 
were nine temperature transmitters (TT in Fig. 1) and data 
were recorded every 10 s. Temperature at TT3 was 
automatically controlled by manipulating the power level of 
the hot water circuit whereas temperature TT4 was 
controlled by the manipulation of the magnetron power 
level.  

Figure 1: Diagram of pilot-scale microwave pasteurizer 

The time-temperature history was determined based on the
average velocity of the product along its path. Based on the 
internal volumes, the average residence times from points 1 
to 8 in Fig. 1 were determined from the ratio between 
volume and volumetric flow rate (Siguemoto et al., 2018b).  

For the prediction of the average temperature profile, steps 
1-2, 2-3, 3-4, 4-5 and 6-7 were assumed isothermal because 
of their short length or low heat loss. For the heat 
exchangers (steps 1-2 and 7-8), the overall heat transfer 
coefficient was defined in order to determine the internal 
temperature profile. Correlations adjusted by Siguemoto et 
al. (2018b) for water were used:  

lme TAUq ����                                                            (1a) 

c
e Re

ba
AU

��
�
1

                                             (1b) 

where q is the heat load, U the overall heat transfer 
coefficient, LdA oe ��� �  the reference heat transfer area, 
do the external diameter, L the tube length, ∆Tlm the 
logarithmic mean temperature difference, 	� /��� vdRe i

the Reynolds number, di the internal diameter, 
2/4 idQv ��� �  the average velocity, Q the volumetric flow 

rate, ρ the density and μ the viscosity. Parameters 
determined for Heater 1 were a = 1.65·10-3 K/W, b = 1.02 
K/W and c = 0.866 (4.2·103 ≤ Re ≤ 8.1·103, while 
parameters for Cooler were a = 3.53·10-3 K/W, b = 1.05 
K/W and c = 0.706 (3.5·103 ≤ Re ≤ 8.4·103). Thermo-
physical properties of apple juice were calculated for the 
average temperature using correlations from Constenla et al. 
(1989) and Gentry and Robert (2005).  

A linear temperature change was assumed in Heater 2, from 
point 3 to the TT4 set-point, because of the short residence 
time in the applicator (2 s at 0.5 L/min). In the holding 
tube, heat loss with U = 8 W/K.m2 (Siguemoto et al, 2018b) 
was considered, independent of the flow rate since forced 
internal convection is not the limiting thermal resistance.  

Temperature profiles of the hot and cold fluids in Heater 1 
and Cooler were determined from Eqs.(2a) and (2b):  

,

( ) ( )cold o
hot cold

cold p cold

dT x U d T T
dx m C

�� �
� � 

�cold p colm Ccold p

                              (2a)  

,

( ) ( )hot o
hot cold

hot p hot

dT x U d T T
dx m C

�� �
� � 

�hot p hotm Chot p

                           (2b)  

where Qm �� ��  is the mass flow rate and x the axial 
coordinate. Properties of water were evaluated at average 
temperature using correlations compiled by Gut and Pinto 
(2003). By discretizing the tube length in 100 slices with 
thickness ∆x = L⁄100, temperature profile was estimated 
using a finite difference method (Beers, 2006):  

x
dx

dTxTxxT cold
coldcold ������ )()(  (3a) 

x
dx

dTxTxxT hot
hothot ������ )()(  (3b) 

Similarly, temperature profile in the holding tube was 
obtained from Eqs. (2a) and (3a) considering the 
surrounding air as the cold fluid.  

To numerically solve these equations, boundary conditions 
were needed. At Heater 1, inlets were specified based on 
average measurements of TT0 and TT2 (Fig. 1). For the 
holding tube, the inlet T5 was the TT4 set-point. At Cooler, 
inlets came from calculated T6 and measurements of TT7. 
Since flow is counter-current in the exchangers, the outlets 
of the utility fluids were adjusted at x = 0 using Excel 2016 
Solver (Microsoft, Redmond, USA) to result in the desired 
inlet at x = L. 

MODELING OF ENZYMATIC INACTIVATION  

Siguemoto et al. (2018a) studied the thermal inactivation of 
polyphenol oxidase (PPO) in cloudy apple juice and adjusted 
a first order kinetic model with two isoenzymes 
(thermolabile and thermostable). This model has five 
parameters: Dl,ref and Ds,ref are the reference D-values of the 
thermolabile and thermostable isoenzymes; zl and zs are the 
z-values of the thermolabile and thermostable isoenzymes; 
and α is the initial activity fraction due to the thermolabile 
isoenzyme (Liing and Lund, 1978). For an isothermal 
process at temperature T for time t, Eqs.(4), (5a) and (5b) 
provide the residual enzymatic activity:  

��
�

�
��
�

�
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�
��
�

�
�
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                      (4)
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s

ref
refss z

TT
DD alog,  (5b) 

where A is the enzymatic activity in the time t, A0 the initial 
activity and alog() the antilogarithm function.  
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The reported kinetic parameters of PPO inactivation at Tref
= 80 °C by conventional heating were α = 0.148, Dl,ref =
27.7 s, Ds,ref = 42.3 s, zl = 3.52 °C and zs = 50.7 °C, while 
for PPO inactivation by microwave heating α = 0.147, Dl,ref
= 48.9 s, Ds,ref = 57.8 s, zl = 7.42 °C and zs = 94.6 °C 
(Siguemoto et al., 2018a).   

For a non-isothermal process with a time-temperature 
history T(t), the equivalent processing time at the reference 
temperature or integrated lethality (Fref) can be calculated 
from Eqs.(6a) and (6b) for each isoenzyme. Therefore, the 
predicted residual activity for a non-isothermal treatment 
can be determined from Eq. (7).   
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The time-temperature history obtained from the model 
described in the previous section was included in Eq.(7) and 
the integrals were numerically solved by the trapezium 
method.  

MODEL SIMULATION AND EXPERIMENTAL 
VALIDATION  

Twelve experiments of cloudy apple juice pasteurization 
were conducted:  three processing temperatures (70 °C, 80 
°C and 90 °C), two flow rates and two heating modes 
(conventional – C and microwave – M). These processing 
conditions were based on commercial pasteurization of 
apple juice (Tajchakavit et al., 1998; Sinha, 2012) and heat 
resistance of apple juice enzymes (Siguemoto et al., 2018a). 
Table 1 presents the conditions with corresponding flow 
rates and set-points for TT3 and TT4. These temperature 
set-points were chosen so that the desired processing 
temperature could be obtained at TT6, compensating heat 
losses along the product path.  

Table 1: Flow Rate and Temperature Set-Points for Cloudy 
Apple Juice Pasteurization by Conventional (C) and 

Microwave (M) Heating 

Id. Flow rate 
(L/min)

Temperatur
e

(°C)

Set-point 
TT3 (°C)

Set-point 
TT4 (°C)

C1 0.5 70 73.5 –
C2 0.9 70 72.3 –
C3 0.5 80 84.3 –
C4 0.9 80 82.6 –
C5 0.5 90 94.8 –
C6 0.9 90 93.0 –
M1 0.4 70 30.0 71.5

M2 0.8 70 30.0 71.2
M3 0.4 80 30.0 82.4
M4 0.8 80 30.0 81.5
M5 0.4 90 30.0 92.6
M6 0.8 90 30.0 91.6

For the microwave assisted pasteurization runs, Heater 1 
was used as a pre-heater to obtain a temperature of 30 °C at 
the inlet of Heater 2. Tested flow rates were 0.4 and 0.8 
L/min. For the conventional heating runs, the microwave 
heater was off. Since the internal volume of Heater 2 
contributes with holding, the flow rate in conventional runs 
was increased by 12% (0.45 L/min had to be rounded up to 
0.5 L/min because 0.1 L/min was the allowable flow rate 
step-change).  

Equipment start-up was made with water and the juice was 
introduced after steady-state. Only after the maximum 
residence time of the process at the given flow rate 
(Siguemoto et al., 2018b) was exceeded, 500 mL samples of 
processed juice were collected at the outlet. Treated apple 
juices were immediately stored in a plasma freezer 349FV 
(Fanem, São Paulo, Brazil) at - 30 °C, and later thawed for 
PPO activity assay. 

Polyphenol oxidase (PPO) activity was assessed 
spectrophotometrically in quadruplicates as described by 
Siguemoto and Gut (2017), measuring the absorbance at 
420 nm during the reaction of the juice sample with 
pyrocatechin (Sigma Aldrich, St Louis, USA). 

The simulation of the model provided values for product 
temperatures from points 1 to 8 in Fig. 1, which were 
combined with the mean residence times of each step to 
generate the time-temperature history of the product. The 
relative absolute error between model prediction and 
measurements for T3, T6 and T8 were calculated for each 
experimental run for comparison and validation. The 
measured residual activity at the end of the process was 
compared with the model prediction based on the time-
temperature history and kinetics.  

RESULTS AND DISCUSSION 

Figure 2 shows, as example, the measured temperatures 
along the product path and the predicted temperature 
profiles from the model simulation for pasteurized apple 
juice by conventional and microwave heating at processing 
conditions of C3 and M3, respectively. It can be seen that 
the processing temperature is achieved half-way through the 
heat exchanger in C3; consequently, the product is exposed 
to high temperature more than necessary. This happened 
because this heat exchanger was designed to reach higher 
temperatures (excess area). On the other hand, a fast 
increase in product temperature was observed in microwave 
pasteurization (M3) (52 °C raise in 2.4 s).  
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Figure 2: Temperature Profiles of Pasteurized Apple Juice at 
Experiments C3 and M3, Showing Measured Temperatures 

(▲), Model Prediction (—) and Ideal Case (– –).

Figure 2 also includes dashed lines showing a hypothetical 
ideal process with instantaneous heating and cooling steps 
and isothermal holding. In this unit the heating step is close 
to ideal when using Heater 2. This could reduce the over-
processing associated with long come-up times and increase 
product quality (Tang, 2015). The prediction of temperature 
profile at other processing conditions were similar to that 
presented in Fig. 2. 

For both heating modes, predicted temperatures at the outlet 
of Heater 1 (T3), Holding tube (T6) and Cooler (T8) are in 
good agreement with the experimental data. The average 
relative error on the pasteurization temperature prediction 
(T6) was only 0.2%, while the largest average relative error 
(19.0%) was on the prediction of the exit temperature (T8). 
The modelling slightly underestimated the exit temperature; 
however, the lethality contribution from the end of the 
cooling section is negligible, thus not compromising the 
evaluation of enzymatic inactivation.  

The experimental residual activities of PPO were measured 
at the end of the process (step 9 in Fig. 1) and compared to 
residual activities predicted by the model. Table 2 presents 
the results for each processing condition. Results of residual 
activity were lower than ideal due to over-processing (non-
isothermal tube and contribution from heating and cooling 
steps).  

Table 2: Experimental and Model Predicted Residual PPO 
Activity after Processing and Ideal Values 

Id. Experimental Model Ideal
C1 0.22 ± 0.01 0.18 0.66
C2 0.40 ± 0.01 0.30 0.79
C3 0.09 ± 0.01 0.01 0.40
C4 0.00 ± 0.01 0.06 0.61
C5 0.00 ± 0.01 0.00 0.24
C6 0.00 ± 0.01 0.02 0.42
M1 0.13 ± 0.01 0.18 0.63
M2 0.24 ± 0.01 0.33 0.79
M3 0.12 ± 0.01 0.05 0.47
M4 0.00 ± 0.01 0.20 0.69
M5 0.00 ± 0.01 0.02 0.34
M6 0.00 ± 0.01 0.12 0.54

Figure 3 shows the parity charts of predicted versus 
experimental values of A⁄A0. The calculated residual 
activities of PPO were close to the predictions obtained from 

model simulation for both conventional and microwave 
heating. 

Figure 3: Parity Charts for PPO Residual Activities under 
Conventional and Microwave Processing. Dashed Lines 

Indicate ± 10% 

CONCLUSIONS 

The proposed model provided the time-temperature history 
for the cloudy apple juice pasteurization and predicted 
residual activity of PPO at the outlet. Twelve conditions 
were experimentally tested and temperature and activity 
predictions are close to experimental values. Since 
microwave heating was faster, over-processing was smaller 
than when using the heat exchanger. Evaluation of 
nutritional or quality parameters, as bioactive compounds, 
vitamins, colour and volatile compounds, are needed to 
assess improvements from microwave-assisted processing.  
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ABSTRACT

Long-Short-Term Memory (LSTM) networks are a rel-
atively recent addition to the field of Artificial Neural
Networks (ANNs). LSTM networks are specifically tai-
lored for machine learning of time series, where the out-
puts of a system are not just a function of their inputs,
but also of a internal state. The state itself can be seen
as dependent on the historical series of all inputs seen by
the system up to that point in time. In this paper, we
present an application of LSTM networks to the model-
ing of biscuit baking. Starting from 16 real-world time
series of biscuit baking, gathered by the United Biscuits
company under different conditions, we show how the
proposed LSTM network can correctly predict unseen
values. Remarkably, the network is also able to repro-
duce a dynamic behavior up to variations that might be
overlooked as noise.

INTRODUCTION

The process of baking biscuits in industrial ovens in-
volves several biochemical and physical phenomena, in-
cluding gelatinization of starch, denaturation of pro-
teins, and Maillard reactions. Given this complexity,
creating a physically accurate mathematical model of
the biscuit baking process seems a daunting task. A
possible alternative is to use a data-driven approach,
for example a machine learning technique, to derive a
black-box model of the whole process from experimental
data, to then test its prediction capabilities on unseen
data. Such an approach would also ease the difficulty
in modeling outputs such as biscuit color, that are tra-
ditionally hard to describe mathematically. While most
machine learning approaches are unable to deal with
time-dependent system, a specific class of Artificial Neu-
ral Networks (ANNs), called Long-Short-Term memory
(LSTM) networks, currently represent the state of the
art for several applications related to time series.

This paper presents a LSTM-based approach to ma-
chine learning the biscuit baking process. Starting from
a training dataset of real-world time series of biscuit

baking, collected by the company United Biscuits, the
proposed approach learns the dynamics of two output
variables of interest, color and weight loss, and it is then
tested on an unseen test dataset.

BACKGROUND

In this section, minimal information about biscuit bak-
ing and LSTM Networks are given, in order to introduce
the scope of the present work.

Biscuit baking

Industrial biscuit baking aims to transform raw biologi-
cal materials into a final product which satisfies multiple
criteria. For example, thickness and weight of the bis-
cuits can create issues for packaging, if they are not con-
strained between specific thresholds; on the other hand,
the color of the product must be pleasant to the eye of
the customer. The transformation process from dough
to biscuit is performed in tunnel ovens, and it is the re-
sult of complex coupled biochemical and physical phe-
nomena still not completely understood and controlled
(Savoye et al. (1992)).

The principal biochemical reactions in the process are
gelatinization of starch, denaturation of proteins, and
Maillard reactions, that give browned food its distinc-
tive flavor; all these phenomena are linked to tem-
perature, humidity, and water activity inside the bis-
cuit (Wade (1988)). Moreover, conduction, radiation
and convection contribute to different degrees to bak-
ing, depending on the design of the industrial baking
oven. A precise mathematical description of such heat-
mass transfers is far from trivial, as the properties of the
product change constantly during the process, and little
information about the thermal properties of commer-
cial doughs is available. Finally, it would be extremely
useful to include the evolution of sensory characteristics
of biscuits, such as loss of moisture, formation of color,
and change in mass, in the mathematical description of
the process; but describing a relationship between such
characteristics and the control variables is not straight-
forward.

Given this complexity, it is not surprising that several
approaches have been proposed to model and control the
industrial baking process, ranging from fuzzy logic (Per-
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Figure 1: Basic unit of a LSTM network.

rot et al. (2000), Perrot et al. (2006)), to heat-transport
models (Sablani et al. (1998), Trystram et al. (1993)), to
models tackling air properties in tunnel ovens (Mirade
et al. (2004)).

LSTM networks

LSTM networks (Hochreiter and Schmidhuber (1997),
Gers et al. (1999)) are a category of ANNs, more specif-
ically belonging to the class of Recurrent Neural Net-
works (RNNs). Classical ANNs (Rosenblatt (1958)) are
machine learning approaches loosely inspired by neural
networks in the brain, that can work as general function
approximators. ANNs are composed by a series of units
called artificial neurons connected to each other, able to
receive and send signals. Usually, the signal at a connec-
tion between artificial neurons is a real number, and the
output of each artificial neuron is calculated by a non-
linear function of the weighted sum of its inputs. Like
other machine-learning approaches, ANNs can learn to
approximate an unknown function by tuning the weights
in the artificial neurons from a dataset featuring several
combinations of inputs and outputs for a target phe-
nomenon, termed training set. ANNs are then usually
tested on a dataset of unseen values, called test set, to
verify whether they were able to learn a configuration
of weights that generalizes well.

While ANNs are an effective approach, routinely used in
applications ranging from games (Silver et al. (2016)) to
image classification (Sermanet et al. (2013)), they can
only model processes for which the outputs depend ex-
clusively on the current inputs. In several real-world
process, however, the outputs are also a function of an
internal state, that is itself dependent on the history of
inputs until that point. RNNs (Hopfield (1987)) try to
address this issue, by adding connections between units
to form directed cycles. Thanks to this feedback mech-
anisms, RNNs can exhibit dynamic temporal behavior,
and are used in issues where the sequence of inputs is

relevant for the outputs, such as speech recognition or
natural language analysis. Among the different types
of RNNs, LSTM networks are one of the most recent
proposed paradigms. In a LSTM network, each unit is
considerably more complex than a simple artificial neu-
ron in an ANN (see Figure 1). A common LSTM unit
is composed of a cell, an input gate, an output gate and
a forget gate. The cell is responsible for storing values
over an arbitrary time interval, while each gate regulates
the flow of values that goes through the connections of
the LSTM: the input gate controls the extent to which
a new value flows into the cell, the forget gate controls
the extent to which a value remains in the cell and the
output gate controls the extent to which the value in
the cell is used to compute the output activation of the
LSTM unit. Thanks to the ability of storing information
over variable intervals of time, LSTM currently repre-
sent the state of the art in several domains, such as
speech recognition (Xiong et al. (2017)).

DATASET

Sixteen time series of biscuit cooking under different
conditions have been gathered by United Biscuits, Inc.1,
in the scope of the DREAM FP7 European Project Ax-
ellos (2009-2013). The oven used during the experiments
features four different zones, with different tempera-
tures. During the cooking process, biscuits are slowly
moved from one zone to the next on metal trays, while
the heat flux in the oven is manually regulated by an
employee. The considered input variables are: tf (heat
flux measured in the top part of the oven, W/m2), bf
(heat flux measured in the bottom part of the oven,
W/m2), zc (nominal heat flux in the current zone of the
oven, W/m2), and zp1...zp4 (nominal heat flux in the
previous zones of the oven that the biscuit tray has al-
ready passed, W/m2). The considered output variables
are: c (color of the biscuits, based on the reflected light
measured in lm), and wl (weight loss of the biscuits,
measured in g). Each variable is measured every 5 s,
with each baking process lasting 350 s, giving a total of
70 points per time series. Color is always measured on
the same individual reference biscuit during the whole
time series, weight loss is taken as an average on the
same 3 reference biscuits during the experiment. Addi-
tionally, the initial conditions of variables c, and wl are
used as inputs during the experiments.

Out of the 16 time series, several are repetitions of an
experiment under the same conditions (in groups of 3,
3, 2, 3, 2, 3 time series, respectively). Table 1 sum-
marizes the features of the dataset. Figure 2 shows an
example of time series, highlighting the non-negligible
differences even between repetitions under the same con-
ditions. Another notable feature is that output variable
wl presents a behavior that, at a first glance, seems ex-

1United Biscuits, http://www.unitedbiscuits.com/
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Table 1: Summary of the 16 time series on biscuit cooking gathered by United Biscuits. During the experiments, the
temperature in different zones of the oven is changed, in order to explore several possible behaviors.

ID Training?
Heat flux (W/m2)

ID Training?
Heat flux (W/m2)

z1 z2 z3 z4 z5 z1 z2 z3 z4 z5
std-1 yes 2500 3500 4000 4000 2000 T3-1 yes 2500 3500 6000 4000 2000
std-2 yes 2500 3500 4000 4000 2000 T3-2 yes 2500 3500 6000 4000 2000
stdval no 2500 3500 4000 4000 2000 T3val no 2500 3500 6000 4000 2000
T1-1 yes 4000 3500 4000 4000 2000 T4-1 yes 2500 3500 4000 6000 2000
T1-2 yes 4000 3500 4000 4000 2000 T4-2 yes 2500 3500 4000 6000 2000
T1val no 4000 3500 4000 4000 2000 T5-1 yes 2500 5000 1000 5000 2000
T2-1 yes 2500 3500 4000 4000 3000 T5-2 yes 2500 5000 1000 5000 2000
T2-2 yes 2500 3500 4000 4000 3000 T5val no 2500 5000 1000 5000 2000

Figure 2: Comparison of three time series run under the same conditions (labeled std-1, std-2, stdval). It is
immediately noticeable how the series differ from each other. Interestingly, the behavior of output variable wl seems

to indicate the presence of a considerable amount of noise.

tremely noisy.

EXPERIMENTAL RESULTS

The 16 time series are split into a training set (12 time
series) and a test set (4 time series), that will be unseen
by the LSTM network during the training phase. The
test set has been selected among the repetitions of ex-
periments in conditions already present in the training
set. All variables have been normalized by subtracting
the mean and scaling to unit variance, on the basis of
the values contained in the training set. After a few
tentative runs, the parameters of the network are con-
figured as follows: 8 inputs (all previously described in-
put variables plus the initial conditions for the 2 output
variables), 50 units in a single hidden layer, 2 outputs
(all output variables); tanh activation function, 3000
training epochs, RMSprop gradient descent optimizer
(Hinton et al. (2014)). All the code of the machine
learning algorithm is implemented in the Keras (Chol-

let et al. (2015)) and scikit-learn (Pedregosa et al.
(2011)) Python libraries.

The final model has excellent fitting on the test set, with
mean squared error MSE = 0.015 and R2 = 0.9863. An
interesting result is that, visually, the model is able to
reproduce trends in unseen data that at a first glance
might be mistaken for noise: for example, in Figure 3,
the model is able to closely predict the behavior of
wl, showing that the signal-to-noise ratio is better than
what a human expert could have considered from a su-
perficial analysis of the data.

CONCLUSIONS

In this paper, a new data-driven approach to modeling
biscuit cooking is presented. Exploiting a class of artifi-
cial neural networks known as long-short-term memory
networks, the approach is tested on a real-world dataset
collected by the company United Biscuits. The pro-
posed methodology is proved capable of accurately pre-
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Figure 3: Predictions of the trained model on the unseen test data of the time series labeled stdval. The scale is
different from the previous plots, as all variables have been normalized.
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dicting the dynamics of biscuit cooking, even for features
that are classically hard to predict, such as the color of
the biscuits. Future works will focus on testing the ap-
proach under different conditions, focusing first on the
variation of humidity.

REFERENCES

Axellos M., 2009-2013. DREAM - Design and develop-
ment of REAlistic food Models with well-characterised
micro- and macro-structure and composition.

Chollet F. et al., 2015. Keras. https://github.com/

fchollet/keras.

Gers F.A.; Schmidhuber J.; and Cummins F., 1999.
Learning to forget: Continual prediction with LSTM.

Hinton G. et al., 2014. Neural Networks for Machine
Learning. http://www.cs.toronto.edu/~tijmen/

csc321/slides/lecture_slides_lec6.pdf.

Hochreiter S. and Schmidhuber J., 1997. Long short-
term memory. Neural computation, 9, no. 8, 1735–
1780.

Hopfield J.J., 1987. Neural networks and physical sys-
tems with emergent collective computational abilities.
In Spin Glass Theory and Beyond: An Introduction to
the Replica Method and Its Applications, World Sci-
entific. 411–415.

Mirade P.; Daudin J.; Ducept F.; Trystram G.; and
Clement J., 2004. Characterization and CFD mod-
elling of air temperature and velocity profiles in an
industrial biscuit baking tunnel oven. Food research
international, 37, no. 10, 1031–1039.

Pedregosa F.; Varoquaux G.; Gramfort A.; Michel V.;
Thirion B.; Grisel O.; Blondel M.; Prettenhofer P.;
Weiss R.; Dubourg V.; Vanderplas J.; Passos A.;
Cournapeau D.; Brucher M.; Perrot M.; and Duch-
esnay E., 2011. Scikit-learn: Machine Learning in
Python. Journal of Machine Learning Research, 12,
2825–2830.

Perrot N.; Ioannou I.; Allais I.; Curt C.; Hossenlopp
J.; and Trystram G., 2006. Fuzzy concepts applied to
food product quality control: A review. Fuzzy sets and
systems, 157, no. 9, 1145–1154.

Perrot N.; Trystram G.; Guely F.; Chevrie F.; Schoeset-
ters N.; and Dugre E., 2000. Feed-back Quality Con-
trol in the Baking Industry Using Fuzzy Sets. Journal
of food process engineering, 23, no. 4, 249–279.

Rosenblatt F., 1958. The perceptron: A probabilistic
model for information storage and organization in the
brain. Psychological review, 65, no. 6, 386.

Sablani S.; Marcotte M.; Baik O.; and Castaigne F.,
1998. Modeling of simultaneous heat and water trans-
port in the baking process. LWT-Food Science and
Technology, 31, no. 3, 201–209.

Savoye I.; Trystram G.; Duquenoy A.; Brunet P.; and
Marchin F., 1992. Heat and mass transfer dynamic
modelling of an indirect biscuit baking tunnel-oven.
Part I: Modelling principles. Journal of food engi-
neering, 16, no. 3, 173–196.

Sermanet P.; Eigen D.; Zhang X.; Mathieu M.; Fergus
R.; and LeCun Y., 2013. Overfeat: Integrated recog-
nition, localization and detection using convolutional
networks. arXiv preprint arXiv:13126229.

Silver D.; Huang A.; Maddison C.J.; Guez A.; Sifre L.;
Van Den Driessche G.; Schrittwieser J.; Antonoglou
I.; Panneershelvam V.; Lanctot M.; et al., 2016. Mas-
tering the game of Go with deep neural networks and
tree search. nature, 529, no. 7587, 484–489.

Trystram G.; Fahloul D.; Duquenoy A.; and Al-
lache M., 1993. Dynamic modelling and simula-
tion of the biscuit baking oven process. Comput-
ers & Chemical Engineering, 17, S203–S208. doi:
10.1016/0098-1354(93)80230-k. URL https://doi.

org/10.1016/0098-1354(93)80230-k.

Wade P., 1988. Biscuit, cookies and crackers: The prin-
ciples of the craft. Vol. I.

Xiong W.; Wu L.; Alleva F.; Droppo J.; Huang X.; and
Stolcke A., 2017. The Microsoft 2017 Conversational
Speech Recognition System. Tech. rep.

198



 

�

 On the quantification of the impact of natural antimicrobials on the growth kinetics of 
Listeria in complex food models  

 
 

Katherine Costello 
Madeleine Bussemaker 

Eirini Velliou* 

Jorge Gutierrez-Merino Maria Baka 
Jan Van Impe 

Bioprocess and Biochemical 
Engineering group (BioProChem), 

Department of Nutritional 
Sciences, 

Chemical and Biochemical 
Process Control Laboratory 

(BioTeC+), KU Leuven, 
Department of Chemical and 

Process Engineering, 
University of Surrey,  

Guildford GU2 7XH, UK 
Sustainable Chemical Process 

Technology,  
University of Surrey,  

Guildford GU2 7XH, UK 
 Campuses Ghent & Aalst, 

Gebroeders de Smetstraat 1, 
9000 Ghent, Belgium 

 
   

* Corresponding author: Dr ir Eirini Velliou, e.velliou@surrey.ac.uk. Fax: 0044-(0)-1483683010 
 
 
KEYWORDS 
 
Antimicrobial resistance, predictive modelling, Listeria, food 
microstructure, Xanthan gum, nisin. 
 
ABSTRACT 
 
Recent studies report an increase in antimicrobial resistance 
(AMR) in Listeria species. Most available studies on the 
AMR of Listeria are conducted in liquid systems, however 
Listeria can be present in solid or structured food products, 
e.g. soft cheeses, salmon or meat products. Food structure 
can affect the bacterial dynamics and/or antimicrobial 
resistance. In this work, we systematically study the growth 
kinetics of Listeria, as influenced by the natural 
antimicrobial nisin on complex food models. L. innocua was 
grown in colonies on solid matrices comprising Tryptic Soy 
Broth with Xanthan gum, Whey protein isolate, or both 
(biphasic system), in the presence or absence of nisin at 
10oC, 30oC and 37oC. The growth kinetics of Listeria were 
affected by the structure of the matrices, and by the presence 
of nisin. The action of nisin on Listeria was different 
depending on the system composition and the temperature. 
Our findings give an insight into the growth of Listeria in the 
presence of nisin in model systems of varied structural 
complexity, and highlight the importance of accounting for 
stress adaptation in solid/structured systems when designing 
decontamination processes with natural antimicrobials.  
 
INTRODUCTION 
 
There is an increasing demand for foods that are minimally 
processed in order to retain their natural colouring, 
nutritional content, taste and texture (Ale et al., 2015; 
Valdramidis and Koutsoumanis, 2016). To achieve this, 
there is great interest in minimal food processing, such as the 
treatment of food products with natural antimicrobial 
compounds (Troy et al., 2016). Minimal processing is less 
harsh when compared to classical sterilisation, pasteurisation 
or antibiotics, and so there is the potential for such 
processing conditions to present a mild, sublethal stress, 

inducing an adaptive response in bacteria consequently 
allowing post-treatment survival (EFSA, 2015). 
Antimicrobial resistance in food-borne pathogenic bacteria is 
an emerging threat to public health worldwide, with an 
increase in resistant bacterial strains – particularly Listeria 
monocytogenes – reported in recent years (Escolar et al., 
2017). This is of concern as the effective treatment of 
listeriosis infections in humans may become compromised 
resulting in higher mortality rates (EFSA, 2015). Thus, it is 
important to understand how AMR is developed in bacteria 
in response to such treatments for the effective use of natural 
antimicrobials in food processing. 
Most studies on the AMR of Listeria are conducted in liquid 
systems, with the effect of the (food) system structure on the 
development of AMR in microorganisms still poorly 
understood. In real food products, Listeria can be found in 
solid or solid(like)/structured food systems, e.g., soft 
cheeses, ice cream, fish and meat products. Cells grown in a 
solid system grow in colonies and experience a completely 
different environment to planktonic growth in liquid 
systems. Cells grown as colonies experience diffusional 
limitations of oxygen and nutrients and accumulation of 
(acidic) metabolic products around the colony, causing a 
self-induced (acid) stress that may affect the microbial 
kinetics and the microbial environmental response (Wilson 
et al., 2002; Velliou et al., 2013, Skandamis & Jeanson, 
2015). Furthermore, microorganisms could display a 
different level of AMR development. Bacteria found in 
foods are also likely to grow in co-culture which can result 
in stress due to competition and/or extracellular metabolic 
products. For example, lactic acid bacteria (LAB) are natural 
producers of nisin, an antimicrobial, and LAB are found in 
similar foods to Listeria. Therefore, in order to achieve a 
fundamental understanding of the AMR development of 
Listeria in food systems in response to nisin it is important to 
conduct kinetic experiments in model systems that mimic as 
accurately as possible the microstructure of solid or 
solid(like) food systems. 
The present work is a systematic comparative study of the 
microbial dynamics of Listeria, as influenced by the 
presence of nisin, i.e. a natural antimicrobial produced by 
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lactic acid bacteria on solid(like)/structured systems of 
various structural complexities at a range of growth 
temperatures. 
 
MATERIALS AND METHODS 
 
Inoculum preparation 
 
L. innocua ATCC 33090 stock cultures were provided by the 
University of Surrey, and stored at -20oC in liquid medium 
containing Tryptic Soy Broth (TSB), supplemented with 
glycerol. Frozen cultures were thawed and a loopful was 
precultured in 15 ml of TSB (Oxoid Ltd., Basingstoke, UK) 
supplemented with 0.6% w/v yeast extract (Oxoid Ltd., 
Basingstoke, UK) (TSBYE) for 9.5 hours at 37oC. 20 µL 
was transferred to a fresh 15 ml of TSBYE and cultured for 
15 hours at 37oC until early stationary phase (109 CFU/ml). 
 
Preparation of structured food models 
 
Monophasic solid food model systems were prepared using 
Xanthan gum as per the method of Ale et al. (2015). For the 
conduction of microbial growth experiments the solid 
medium was removed from the falcon tube to a sterile petri 
plate, and cut into discs approximately 5 mm thickness.  
For biphasic food model systems, Whey protein isolate 
(WPI) (Prolacta® 95 Instant Native Whey Protein Isolate, 
Bacarel, UK) was added to TSBYE at a concentration of 
10% w/v and stirred for 1 hour until dissolved using a 
magnetic stirrer plate (HB502, Bibby Sterilin Ltd, UK). 5% 
w/v Xanthan gum in TSBYE was added in a 1:1 ratio, and 
the mixture mechanically stirred for 6 min, then prepared as 
for the monophasic gel systems. 
For experiments in the presence of nisin, a sublethal level of 
nisin (140 IU/ml) was added to the monophasic Xanthan 
gum  systems to represent an additional (mild) stress. Nisin 
was added after autoclaving as its’ stability is jeopardized at 
high temperatures. Experiments with nisin took place for 3% 
and 5% Xanthan gum but not for 7% Xanthan gum nor for 
the biphasic system, as a homogeneous distribution of nisin 
in those two later systems was not possible due to their 
structural complexity. 
 
Confocal Microscopy  
 
For Xanthan gum gels, 300 µL of the appropriate 
viscoelastic gel was transferred into a well chamber, 
inoculated with 103 CFU/ml cells and incubated at the 
appropriate temperature until early stationary phase. Surface 
colonies were visualised using DAPI (Sigma Aldrich, 
Germany): 20 µL of a 1 µg/ml solution was added to each 
well chamber for 20 min, before rinsing with phosphate 
buffered saline (PBS, Oxoid Ltd., UK). Samples were 
imaged using a commercial laser scanning confocal 
microscope (CLSM) (Ti-Eclipse Inverted Microscope 
System, Nikon Instruments Europe, 60x magnification, oil 
immersion).  
For the Xanthan gum/Whey protein system, phase separation 
was visualised by adding 20 µL of a 0.01% w/v Rhodamine 
B solution (Sigma Aldrich, Germany) to 40 ml of biphasic 
mixture during gel preparation before the autoclaving step. 
Rhodamine B binds to the protein phase only, allowing for 
definition between the two phases (Boons et al., 2013a, 

2014; Tromp et al., 2001). Samples were prepared and 
surface colonies were visualised in the same way as for 
monophasic systems. The colony size/distribution followed a 
similar pattern for all temperatures under study, therefore 
images are shown in this paper only for 37oC. 
 
Growth experiments 
 
Growth curves at 10oC, 30oC and 37oC were obtained for the 
growth of L. innocua on 3%, 5%, and 7% Xanthan gum 
(XG) gelified systems, and also on the 5% Xanthan gum / 
10% Whey protein (XG/WPI) mixture. The initial cell 
density was adjusted to 103 CFU in 50 µL of inoculum. 50 
µL of inoculum was dropped and distributed onto the surface 
of a disc. A sample was processed every hour (30oC, 37oC), 
or twice a day (10oC) by transferring the sample to a 
stomacher bag (BA6040, Seward, UK) and adding a suitable 
volume of PBS for an initial dilution of 1/10. The contents 
were stomached for 1 min (Colworth Stomacher 80, Seward, 
UK), and 100 µL taken from the bag using pipettes for 
viscous media (MICROMAN® E, Gilson Ltd, USA). 
Decimal dilutions were prepared in TSBYE (900 µL), and 
surface plated on TSAYE agar (Oxoid Ltd., UK) for 
enumeration of L. innocua. Plates were incubated for 24 
hours at 37oC before enumeration. 
 
 
Estimation of growth parameters and statistical analysis 
 
Growth data were natural log-transformed and plotted as a 
function of time. The Baranyi and Roberts growth model 
was fitted to the data: 
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With N(t) (CFU/ml) the cell density at time t; Nmax (CFU/ml) 
the maximum value for N(t) when the model is fitted 
independently to each species in co-culture; Q(t) the 
physiological state of the cells; µ max (1/h) the maximum 
specific growth rate (Baranyi & Roberts, 1994). Matlab 
version R2017a (The Mathworks Inc., Natick, USA) was 
used for these plots and for data analysis. Optimisation of the 
model fit was achieved by using the function lsqnonlin. The 
variance-covariance matrix was used to obtain standard 
deviations of the parameter estimates. 
 
RESULTS & DISCUSSION 
 
Microbial spatial organisation 
 
The distribution and size of stationary phase L. innocua 
colonies at 37oC on 3%, 5% and 7% monophasic XG 
systems as well as on the 5%XG/10%WPI biphasic system 
was investigated using CLSM. The most representative 
images are displayed in Figure 1.  
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Figure 1: CLSM images showing surface growth of L. 
innocua at 37oC for (a) 3%XG, (b) 5%XG, (c) 7%XG 
monophasic systems, and (d) 5%XG/10%WPI biphasic 
system. Colonies are dyed with DAPI (blue), the WPI phase 

with Rhodamine B (red), while XG is not dyed (black). 
 
For the biphasic 5%XG/10%WPI system L. innocua is 
observed to grow only on the protein phase (WPI) (Figure 
1d). More specifically, bacterial localisation on the protein 
phase is confirmed as it is clear that DAPI positive areas 
(blue), i.e., colonies, are always located only on the top of 
the Rhodamine-positive area (red) which surrounds them 
(Figure 1d).  
This finding, to the best of our knowledge, is the first 
observation of the selectivity of Listeria towards the protein 
phase on a biphasic XG/WPI system, and the first study for 
microbial surface growth on such a system. There are only 
two studies previously investigating microbial growth in 
biphasic protein/polysaccharide systems, but not for surface 
growth nor for Listeria. Boons et al. (2013a, 2014) 
investigated the immersed growth of E. coli at 23.5oC in a 
dextran/gelatin phase-separated system of varying 
composition, and observed selective growth in the dextran 
phase, reversely to our observations. Léonard et al. (2013) 
observe preferential immersed growth of L. lactis in the 
protein phase of a complex liquid caseinate/alginate biphasic 
system. There are several potential explanations for our 
observation of the preferential localisation of L. innocua on 
the WPI phase (Figure 1d). The adhesion of bacterial cells to 
surfaces is known to be related to surface properties such as 
hydrophobicity and electrostatic interactions (Léonard et al., 
2013). More specifically, when whey proteins are heated at 
temperatures higher than 70oC, the structure unfolds 
resulting in the surfacing of hydrophobic protein groups and 
the development of a generally hydrophobic molecule 
following gelation (Liu et al., 2005). Xanthan gum is known 
to be a hydrophilic polymer (Kar et al., 2010), and Listeria 
species are known to be hydrophobic (Takahashi et al., 
2010). Thus, hydrophobic/hydrophilic interactions make it 
more preferable for Listeria to attach to the hydrophobic 
protein phase of the current system (as observed on Figure 
1d). It is noted that all phases in the current study have a 
negative electrostatic charge (Briandet et al., 1999; Zhang et 
al., 2014), thus hydrophobicity is the more important 

interaction (rather than electrostatic interactions between the 
media and the cells).  
For microbial growth at 37oC on the XG monophasic 
systems, colony size is observed to increase as the Xanthan 
gum concentration increases (Figure 1a, 1b, 1c), suggesting 
that viscosity affects the colony size on the system. The 
increase in concentration of XG is linked to surface tension, 
changes of which could directly cause an increase in colony 
size. More specifically, it has been shown that the surface 
tension of a XG system decreases as the XG concentration 
increases (Muthamizhi et al., 2014). As the concentration of 
XG increases, the contact angle of the colony to the XG 
surface reduces, which could facilitate the outward growth of 
a bacterial colony to a larger diameter than the one that 
would be reached at a lower concentration/higher contact 
angle, as observed in the present study. Our findings are in 
agreement with Be’er et al. (2009) who showed that P. 
dendritiformis colonies on agar are larger on systems 
containing a higher concentration of surfactant, i.e. lower 
surface tension. Similarly, Rook and Bruckman (1953) 
showed that E. coli colonies growing on gelatin become 
larger as various surfactants, which act to decrease surface 
tension, are added. 
 
Microbial dynamics in the food models 
 
The growth kinetics of L. innocua were obtained for growth 
on the monophasic 3%, 5%, and 7% XG systems and on the 
biphasic 5%XG/10%WPI system at 10oC, 30oC, and 37oC. 
Figure 2 shows the fits of the Baranyi and Roberts microbial 
growth model on the mean experimental data. 
The influence of temperature on the growth parameters is 
evident for all systems in this study; generally, as expected, 
it is observed that L. innocua grows faster at higher 
temperatures (Figure 2). 
 No significant differences are observed for any of the 
growth parameters in the various XG gel systems for a 
specific temperature (Figure 2a, 2b, 2c) thus indicating that 
the system viscosity had little or no effect on the surface 
growth kinetics. The lack of differences on the microbial 
dynamics could be attributed to (i) the gelling agents used or 
(ii) the high concentration of XG used in these systems in 
comparison to other studies. More specifically, very few 
food models study the microbial growth kinetics using XG 
as a gelling agent (Ale et al., 2015; Boons et al., 2013b). 
Instead most studies use gelatin at a concentration range of 
1-35% w/v  (for example, Aspridou et al., 2014; Boons et al., 
2013b; Brocklehurst et al., 1997; Smet et al., 2015) or agar at 
a concentration range of 1-10% w/v (for example, Floury et 
al., 2013; Robinson et al., 1991; Skandamis et al., 2007; 
Stecchini et al., 2001). Xanthan gum, gelatin and agar have 
significantly different rheological properties which could 
affect the microbial growth dynamics. In the present study 
high concentrations of XG were used (3-7% w/v) in 
comparison to previous studies using the same gelling agent 
where a maximum of 2.5% w/v XG was used (Ale et al., 
2015; Boons et al., 2013b). This indicates that it is likely 
there is a “threshold” below which variations in the 
concentration of Xanthan gum affect the growth kinetics of 
L. innocua, and above which no differences are observed. 
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Microbial dynamics in the food models in the presence of 
nisin 
 
As previously mentioned, a sublethal level of nisin was 
added to the monophasic 3% and 5% XG systems to 
represent an additional (mild) stress. The microbial  growth 
kinetics were monitored at all three temperatures under 
study. The Baranyi & Roberts model fits on the mean 
experimental data are shown in Figure 2. 
For all conditions under study, as previously noted for nisin-
free systems, the maximum growth rate µmax decreases as the 
temperature decreases, with no significant differences 
observed for µmax with varied XG concentration at a specific 
temperature (as with nisin-free systems), as can be seen in 
Figures 2b and 2c. A more significant inhibitory effect of 
nisin on growth is observed at 10oC (Figure 2a), where a 
significant disturbance in growth is observed as the 
concentration of XG is increased, with effectively no growth 
occurring on the 5% XG nisin-rich system (Figure 2a). 
Additionally, while growth is observed for the 3% XG nisin-
rich system, it is greatly affected by the presence of nisin, 
with a significant reduction in Nmax of approximately 4 ln 
CFU/ml in comparison to the nisin-free system (Figure 2a). 
This observation suggests a significant influence of system 
structure/stiffness in combination with nisin at suboptimal 
temperatures. As discussed previously (microscopy section), 
larger surface colonies are observed as the concentration of 
XG increases, related to a reduction in surface tension which 
facilitates the outward growth of colonies to a larger 
diameter (Figure 1a, 1b, 1c). This suggests that, as the 
colony becomes larger at higher concentrations of XG 
(Figure 1c), more cells are in contact with the 5% XG 
surface containing nisin thus there is more interaction 
between the colony and nisin. This greater exposure level of 
cells to nisin at higher concentrations of XG is reflected in 
the kinetics (Figure 2a). It is therefore suggested that a 
synergistic effect exists between the viscoelastic surface, the 
presence of nisin, and suboptimal temperatures, thus 
negatively impacting surface growth, i.e. acting as a hurdle. 
More specifically, as also reported in literature for other 
stresses, when stress factors are combined (i.e. low 
temperatures, nisin, and a viscoelastic environment) a 
synergistic combined effect is observed with growth being 
more inhibited than if each stress factor was applied 
individually (see as examples Baka et al., 2015; Leistner, 
2000; Smet et al., 2015).  
 
CONCLUSIONS  
 
Here, we present for the first time that Listeria surface 
growth is selective on the protein phase of a biphasic 5% 
Xanthan gum/10% Whey protein system. Furthermore, 
significant  differences are observed in the colony size and 
distribution in the monophasic Xanthan gum-based systems 
depending on the gelling agent concentration. Generally, 
while only a few differences in the growth kinetics of 
Listeria were observed in all model systems under study, 
significant differences were observed regarding colony 
spatial organization and size, suggesting an effect of 
structural composition and complexity on a microscopic 
scale. 

 
 

Figure 2: Fits of the Baranyi and Roberts growth model on 
the experimental data obtained for L. innocua surface growth 
at (a) 10oC, (b) 30oC, (c) 37oC for monophasic 3%XG (o,-), 
nisin-rich 3%XG (o,--), 5%XG (o,-), nisin-rich 5%XG (o,--), 

7%XG (o,-) and biphasic 5%XG/10%WPI (o,-) systems. 
 
Furthermore, our findings show that the system viscosity in 
monophasic XG based systems had an inhibitory effect for 
surface growth at 10oC. Overall, our findings are of 
importance, especially when investigating the efficacy of 
novel treatment approaches, as the environmental stress 
within a colony is directly affected by the colony size and 
location which could result in different levels of cross-
protection in systems of varying structural complexity, 
leading to different survival rates of Listeria in these 
systems. 
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FUTURE WORK  
 
Future investigations using appropriate molecular stress 
biomarkers will allow a topological mapping of the stress 
response of Listeria to nisin at colony level, allowing a 
fundamental understanding of the interconnections between 
structure and single cell microbial stress response. 
Furthermore co-culture experiments with Lactic acid bacteria 
(which produce nisin) will allow a better understanding of 
cross-talk phenomena between pathogens and food 
microflora. 
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ABSTRACT 
 
The objective of this study was to evaluate the effect of 
xanthan gum (XG) on physicochemical, rheological and 
textural properties of gluten-free batter and bread. Batches 
of gluten-free bread used a base formulation of rice, corn 
and quinoa flour, and different levels of XG (1.5, 2.5 and 
3.5%) and water content (WC; 90, 100 and 110%) in a full 
factorial design. Although in interaction with water, higher 
XG doses tended to produce batters of lower stickiness, 
work of adhesion, strength-cohesiveness; which, when 
baked, produced loaves of lower specific volume and baking 
loss; and bread crumb of lower Aw, pH, hardness, 
springiness, firmness, mean cell area, void fraction, mean 
cell aspect ratio, and higher firmness, consistency, 
cohesiveness, adhesiveness, chewiness, resilience, cell 
density, cell size uniformity and mean cell compactness 
(p<.001). Gluten-free loaves of good appearance in terms of 
high specific volume, low crumb hardness, high crumb 
springiness, and open grain visual texture were obtained in 
formulations with 110% WC and XG doses between 1.5-
2.5%.

INTRODUCTION 
 
To target the 0.5–1.0% of the world’s population estimated 
to be affected by coeliac auto-immune disease (Gujral et al., 
2012), a number of food products that avoid the use of 
wheat (gliadin), rye (secalins), barley (hordein) and oats 
(avidins) have been lately developed. There has been 
particularly an upsurge in the development of gluten-free 
bread. 
 
Xanthan gum (XG), a high molecular weight 
polysaccharide produced by the bacterium Xanthomonas 

campestris, is largely used in gluten-free breadmaking, 
because it can hydrate in cold water and produce a viscous 
solution with strong shear thinning flow behaviour. The 
xanthan molecule has a cellulosic backbone with side chains 
that wraps around the backbone and make it rigid, enabling 
its emulsifying and foaming properties (Naji and Razavi, 
2014). In low amounts, XG has been found to increase loaf 
volume, and improve bread rheological and sensory 
properties (Hager and Arendt, 2013). Optimising textural 
and sensory attributes, researchers have recommended doses 
of XG in gluten-free bread, that, in general, range between 
0.5% up to 7.0% (flour weight), yet this is strongly linked to 
bread formulation and water content. The objectives of this 
study were: (i) to assess the effect of both xanthan and water 
on the rheological properties of batter, and the 
physicochemical and textural properties of bread formulated 
with a mixture of rice, corn and quinoa flours; and (ii) to get 
an insight into the relationships among all the quality 
attributes measured. 
 
MATERIALS AND METHODS 

Bread elaboration
The effects of GG (three doses tested) and water content 
(WC; three levels tested) were evaluated using a full 
factorial design. Thus, nine batches of gluten-free bread, 
with two replicates, were produced using a base formulation 
of rice flour (50%), corn flour (50%) and quinoa flour 
(20%), sunflower oil (6% flour weight), white sugar (3% 
flour weight), refined salt (1.5% flour weight), instant yeast 
(3% flour weight), GG (1.5, 2.5 or 3.5% flour weight) and 
water (90, 100 or 110% flour weight). To make the batters, 
XG was purchased from TecPan (Portugal), while the other 
ingredients were purchased from a local supermarket. 
Demineralised water (pH=6.8) kept at 5ºC overnight was 
used. All ingredients were mixed for 6 min in a professional 
food processor (SilverCrest SKMP-1200, Germany) 
equipped with a batter blade. Two hundred and eighty 
grams were then poured into in oiled and floured square 
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tins, and allowed to proof at 30ºC and 85% of relative 
humidity for 60 min in a climatic chamber (Climacell 222, 
Germany). Afterwards, all moulds from the same batch were 
placed in a pre-heated convection oven (Princess, 2000 W, 
The Netherlands) for 60 min at 190ºC. Bread loaves were 
un-moulded when reaching ambient temperature, and all 
analyses were performed after 24 h. The rheology of batter 
and bread were characterised using a texture analyser TA-
XT plus (Stable Micro Systems, UK) fitted with specific 
fixtures, namely, the SMS/Chen-Hoseney stickiness rig for 
dough stickiness analysis; the 35 mm-diameter perspex flat 
rig, and a standard size back extrusion cylindrical container 
(50 mm diameter, capacity of 115 g approx.) for the back-
extrusion analysis; and a 36 mm-diameter aluminium probe 
(model P/36R) for the texture profile analysis. 
 
Batter rheology 
Several batter rheological properties were studied, 
including: 1) stickiness analysis (Agrahar-Murugkar et al., 
2015), which produced measurements of: stickiness (STIba, 
g), work of adhesion (ADHba, g.s), and strength-
cohesiveness (SCOba, mm); and 2) back extrusion analysis 
(Juszczak et al., 2012), which rendered measurements of: 
firmness (FIRba, g), consistency (CONba, g.s), cohesiveness 
(COHba, g) and viscosity index (VISba, g.s). 
 
Bread crumb quality properties  
The bread loaf specific volume (SVObr, ml/g) was 
calculated as loaf volume divided by loaf weight 24 h after 
baking, while the baking loss (BLObr, %) was computed as 
[initial loaf weight before baking - the loaf weight after 24 h 
baking x 100] / initial loaf weight before baking. Such 
physical properties were measured in triplicate. Water 
activity (Aw) and pH of bread crumb were quantified in 
quintuplicate as in Machado-Alencar et al. (2015) and 
Hashemi et al. (2016), respectively. Texture profile analysis 
(TPA) (Martínez and Gomez, 2017) was employed to obtain 
the bread crumb rheological properties of hardness (HARbr, 
g), adhesiveness (ADHbr, g.s), springiness (SPRbr, mm), 
cohesiveness (COHbr, g), chewiness (CHEbr, g.mm), 
resilience (RESbr, dimensionless) and firmness (FIRbr, g).  
 
Bread crumb image analysis  
Slices of bread were scanned (Canon Pixma MG-2550, 
Vietnam) with -10% brightness and +15% contrast with a 
resolution of 350 dpi, and a 4.0 cm x 4.0 cm field-of-view 
from the centre of the image was cropped and saved in png 
format for posterior analysis. Several grain crumb features 
were computed using the automated thresholding technique 
proposed in Gonzales-Barron and Butler (2006) and 
Gonzales-Barron and Butler (2008), coded in Matlab 
software (ver. R2015a, The Mathworks, USA). These were: 
mean cell area (MCA, mm2); cell density (CD, number of 
cells/mm2); uniformity (UNI, dimensionless), calculated as 
the rate between the number of cells <=5 mm2 and number 
of cells > 5 mm2; void fraction (VFR, dimensionless), 
calculated as the proportion of the space occupied by the 
pores/cells; mean cell compactness (COM, dimensionless), 
with compactness defined as the ratio of the area of the cell 
to the area of a circle having the same perimeter; and mean 

cell aspect ratio (ARA, dimensionless), with aspect ratio 
defined as the ratio of the major axis to the minor axis of a 
cell.  
 
Statistical analysis
Data were analysed using the R software version 3.3.1 (R 
Core Team, 2017). Analyses of variance were applied to 
assess the effect of XG and WC on the response variables: 
pH, Aw, BLObr, batter stickiness and batter extrusion. On 
the other hand, for the response variables: specific volume, 
TPA, firmness and features of bread crumb acquired by 
image analysis, a linear mixed model was used assuming 
that the measurements taken from the same loaf were 
clustered. Statistical analyses were conducted using the 
packages “plyr”, “ggplot2”, “lme4” and “lmerTest” for the 
linear models; and the packages: “rmisc”, “rcmdmisc”, 
“plyr”, “ggplot2”, “car”, “multcompView” and “lsmeans” 
for the linear mixed models.  
 
RESULTS AND DISCUSSION 

Batter properties
Both XG and WC affected the rheology of gluten-free batter, 
as per the results of the batter stickiness analysis (Figure 1) 
and the back-extrusion analysis (Figure 2). The batter 
stickness properties of STIba, ADHba and SCOba, ranged 
from 28.81 to 55.90 g, from 3.19 to 4.57 g�s and from 2.42 
to 3.67 mm, respectively. At a constant XG level, higher 
WC consistently (p<.001) increased the STIba, ADHba and 
SCOba measures, while at a constant WC level, higher XG 
contents consistently (p<.001) decreased those stickiness 
measures (Figure 1). This occurs because xanthan gum has 
the capacity to bind large amounts of water into the dough 
matrix. 
 

 

 
 

Figure 1: Effect of Xanthan Gum and Water Content on the 
Gluten-Free Batter Stickiness Properties of STIba (top left), 

ADHba (top right) and SCOba (bottom) 
 
The back extrusion analysis values ranged for FIRba from 
359.08 to 1990.04 g, for CONba from 3494.17 to 17363.37 
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g�s, for COHba from -260.59 to -1098.89 g and for VISba 
from -1249.64 to -4691.52 g�s. Higher XG contents 
increased (p<.001) FIRba and CONba, and decreased 
(p<.001) COHba and VISba while higher WC levels had an 
opposite effect, reducing (p<.001) FIRba and CONba, and 
increasing (p<.001) COHba and VISba (Figure 2). Using 
the same level of water (110%), Sciarini et al. (2010) 
obtained lower batter firmness values, from 50.8 to 1252 g, 
for a mixture of corn/soy (90:10) and rice/soy (80:20), 
respectively. They concluded that rice/soy mixtures required 
higher force to extrude, because soy proteins have the ability 
to absorb cold water, resulting in a decrease of free water in 
the batter mixture. In our case, quinoa proteins may have 
lent a greater cold water absorption capability, hence 
producing batters of higher firmness than those with soy 
proteins. 

 

 
 

 
 
Figure 2: Effect of Xanthan Gum and Water Content on the 
Gluten-Free Batter Back-Extrusion Properties of FIRba (top 

left), CONba (top right), COHba (bottom left) and VISba 
(bottom right) 

 
Compared between 1.5 and 2.5% of xanthan in a GF fresh 
filled pasta batter, Sanguinetti et al. (2015) observed that a 
higher dose of XG resulted in a more cohesive, less adhesive 
and more elastic batter. Sabanis and Tzia (2010) and Turkut 
et al. (2016) reported that higher consistency values and 
viscosity index in their GB batters led to lower specific 
volume. This finding was corroborated in the present study, 
where 3.5% XG doses produced loaves of lower specific 
volume (1.69 ml/g) compared to those obtained from 
treatments with 1.5% xanthan (1.78 ml/g) (Figure 3).  
 
Bread crumb physicochemical properties 
Moisture loss during baking ranged from 11.9 to 14.5%, 
increasing (p<.001) with higher WC, and decreasing 
(p<.001) with higher XG content (Figure 4). However, 
although higher XG amounts reduce baking loss, it can 
negatively affect the volume of loaves (Figure 4). The 
specific volume of bread ranged from 1.58 to 1.91%, and 

decreased (p<.001) with higher XG content, and increased 
(p<.001) with higher WC.  
 

 

 

 
Figure 3: Photographs of Gluten-Free Bread Loaves 

Produced with Varying Xanthan Gum (XG) and Water 
Content (WC) Showing Height and Crust Appearance 

 

 

 
 

Figure 4: Effect of Xanthan Gum and Water Content on the 
Gluten-Free Bread Physicochemical Properties of SVObr 

(top left), BLObr (top right), pH (bottom left) and Aw 
(bottom right) 

 
The positive impact of high WC was readily evident in the 
specific volume of breads, as explained by de la Hera et al. 
(2014), due to the plasticizer effect of the water which 
contributes to the extensional properties of the batter during 
mixing allowing the hydration of the particles. Nonetheless, 
Han et al. (2012) reported that excessive water can cause 
overexpansion during baking resulting in large volume 
breads or collapsed loaves. Onyango et al. (2011) explained 
that, as gas leaks out of the bubbles, it forces its way 
through the weakly connected particles and channels formed 
by gas pressing the particles apart. Since, in our 
experiments, small-sized bread loaves were mostly 
associated to lower baking losses; we can conclude that, 
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regardless of the XG dose, batters with low WC tended to 
proof insufficiently, resulting in bread loaves of lower 
volume. In relation to the other physicochemical properties, 
bread acidity was also influenced by the addition of XG 
(p<.001) and WC (p<.001), with more acidic crumbs 
produced by higher doses of XG. As expected, the amount 
of free water in the crumb decreased with the addition of 
higher concentrations of XG (p<.001) and lower WC 
amounts (p<.001).  

Bread crumb textural properties 
Having produced firmer and less viscous batters, lower WC 
levels consequently yielded tougher breads (Figure 5). 
According to the TPA, loaves with the lowest WC content 
(90%) were significantly harder (5130 g), less cohesive 
(0.477) and less springy (0.833) than the treatments with 
100 and 110% WC. The addition of higher amounts of 
water can improve crumb texture, since the 110% WC 
treatments produced softer breads, with lower values of 
HARbr (1995 g) and CHEbr (911 g·mm), ADHbr (-12.80 
g·s – in absolute value), and higher values of SPRbr (0.884 
mm), COHbr (0.517) and RESbr (0.217), compared to those 
obtained from the lower WC treatments of 90 and 100%. 
Although, to a lower extent than WC, XG also had an 
impact on bread crumb texture.  
 

 
 

 Figure 5: Effect of Xanthan Gum and Water Content on the 
Gluten-Free Bread Instrumental Textural Properties of 

HARbr (top left), ADHbr (top right), SPRbr (middle left), 
COHbr (middle right), CHEbr (bottom left) and RESbr 

(bottom right) 

Loaves formulated with the lowest XG dose (1.5%) 
produced crumb with higher values of HARbr (3574 g) and 
SPRbr (0.864 mm), and lower values of ADHbr (-9.14 g�s 
– in absolute value), COHbr (0.453), CHEbr (1353 g�mm) 
and RESbr (i.e., 0.187), compared to those obtained from 
2.5 and 3.5% XG. Apart from hardness, resilience and 
springiness are important quality properties as they 
characterise crumb elasticity or the ability of the material to 
return to its shape after stress (Onyango et al., 2011), which 
is a desired atribute empirically assessed by the consumer. 
In our results, RESbr and SPRbr were found to be linked, 
having both a quadratic trend with XG dose, and optimum 
(higher) values were around 2.5% XG. In addition, bread of 
these desired properties were obtained at the highest WC of 
110%. Apart from the separate effects of XG and WC, 
statistical analysis evidenced interactions (p<.001) between 
XG and WC on all of TPA measurements, being the 
strongest for resilience. 
 
Image analysis features of crumb grain 
Digital images (Figure 6) of gluten-free bread crumb grains, 
showed visual differences among the nine formulations. 
While higher WC formulations produced more open grain 
textures, lower WC formulations produced the opposite, 
closer crumbs of smaller pores. Such differences were 
statistically corroborated in all of the image grain features 
analysed. Values were in the range of 0.73 − 1.89 mm2 for 
MCA; 0.200 − 0.319 cells/mm2 for CDE; 10.54 − 63.09 for 
UNI; 0.217 − 0.339 for VF; 0.755 − 0.776 for COM; and 
1.666 − 1.770 for ARA. 

 

 

Figure 6: Crumb Grain of Gluten-Free Bread Produced by 
Varying Xanthan Gum (XG) and Water Content 

(WC) 
 
According to Figure 7, when XG increased, MCA, VF and 
AR values decreased (p<.001) while CDE, UNI and COM 
increased (p<.001). This means that at a constant level of 
water in the formulation, increasing XG doses only 
produces smaller bread loaves. These smaller loaves tend to 
have a compact visual texture, formed of a greater number 
of cells, but of smaller sizer. Because of this, the cell size 
uniformity is greater but the void fraction is lower. Smaller 
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loaves of denser of more compact texture also have the 
characteristic of having more rounded cells (i.e., higher cell 
compactness) and less elongated cells (i.e., lower aspect 
ratio). Loaves of lower XG contents (1.5%) presented 
crumbs with larger pores, with higher values of MCA (1.35 
mm2), VF (0.29) and AR (1.75), and lower values of CD 
(0.25 cells/mm2), UNI (20.5) and COM (0.76) compared to 
those obtained with higher XG levels of 2.5 and 3.5%. 
 

 

 

 
 
Figure 7: Effect of Xanthan Gum and Water Content on the 
Gluten-Free Bread Crumb Grain Features of MCA (top left), 

CD (top right), UNI (middle left), VFR (middle right), 
COM (bottom left) and ARA (bottom right) 

 
On the other hand, when higher proportions of WC were 
added, the opposite was observed; this is, values of CD (0.25 
cells/mm2), UNI (17.5) and COM (0.758) were lower 
(p<.001), while values of MCA (1.38 mm2), VF (0.30) and 
AR (1.75) were higher when breads were formulated with 
110% WC, in comparison with those obtained with the 
lower WC treatments of 90 and 100%. This signifies that, 
when loaves undergo a better proofing, expanding more 
during fermentation and baking, facilitated by the greater 
amount of water, the final visual texture of the bread crumb 
has altogether a different crumb grain. As breads were 
formulated with a constant XG dose and increasing WC 
levels, crumb grains appeared more open; in other words, 
crumb made of cells of greater size and less compact and 
more elongated shape. This is turn leads to a less uniform 
grain (since the number of large cells is greater) and a 
higher void fraction.  

A denser bread crumb grain can also be effectively 
evaluated by the measurements of cell size uniformity and 
mean cell compactness or aspect ratio. Notice that higher 
values of UNI and COM were obtained with higher amounts 
of XG (3.5%) and lower values of WC (90%), 
corresponding in both cases to a denser structure (Figure 7). 
Thus, when during proofing and baking, batter expands 
more and steadily, a greater number of large cells is 
produced, therefore bringing down the ratio small-to-large 
cells (UNI), while due to coalescence, the large cells tend to 
be more elongated and less compact, thereby bringing down 
the values of COM. 
 
From the nine formulations, the more open crumb grain was 
attained by the formulation with 1.5% XG and 110% WC 
(2.25 mm2; Figure 7), whereas the formulation with 3.5% 
XG and 90% WC produced the smallest mean cell size 
(0.56 mm2), characterising the denser structure obtained, 
which was also reflected by the lowest specific volume of 
this formulation (1.59 ml/g; Figure 3). For de la Hera et al. 
(2014), if gluten-free breads are elaborated with excessive 
water, large holes can appear in the crumb, as was also 
attested in our experiments for the formulation 
XG1.5/WC110 (Figure 6). In this study, using XG as the 
only batter thickener, it was possible to obtain crumbs with 
open grain structures at a high level of water (110%) and a 
low level of XG (1.5%). The presence of larger cells can 
also be linked to a spongier crumb structure, which is a 
desirable quality property yet not typically found in gluten-
free breads. Similar to our findings were those reported by 
Schober et al. (2005) who encountered that sorghum bread 
with a fine crumb structure was tougher than bread with a 
coarse and open crumb structure. 
 
4. CONCLUSION 
 
Higher amounts of xanthan gum, in gluten-free bread 
formulated with a mixture of rice, maize and quinoa flours, 
have in principle the capacity to retain more water; 
however, at a constant water level, higher doses of xanthan 
gum produce less viscous and sticky batters but of increased 
firmness, that translates into baked loaves of smaller volume 
with a more cohesive and less springy crumb texture. The 
highest water content of 110% and XG between 1.5 and 
2.5% produced loaves of good quality in terms of high 
specific volume, low hardness, high springiness, low cell 
density, low cell size uniformity, high void fraction and 
high mean cell area. 
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ABSTRACT 

In a project aimed at demonstrating the feasibility of a novel 
method of cheese production, we created a spatiotemporal 
model that tracks changes in concentrations of 
microorganisms and their metabolites during cheese ripening. 
The model was built using a Multiphysics software that 
includes an interfaces for handling CFD (computational fluid 
dynamics) in porous media. The method used creating this 
model could be readily applied to other food products that are 
solid or heterogeneous, overcoming the restricted use of 
traditional, well-mixed approaches in predictive 
microbiology. We further demonstrate how experimental 
results can be obtained to refine and validate this model, and 
how the model can be used to optimise the injection strategy 
of a bacterial suspension. 

INTRODUCTION 

Recent decades have seen a substantial growth in the use of 
mathematical models in the food industry, as advances in 
processing power of modern computers have made previously 
infeasible calculations quick and inexpensive. This is in 
particular true for computational fluid dynamics (CFD), a 
numerical method that is increasingly used in food process 
simulation (Norton and Sun, 2006), in particular when 
modelling thermal processes (Bouvier et al., 2014; Norton et 
al., 2013; Plana-Fattori et al., 2016). 

Despite gaining prominence in the food industry in general, 
models involving CFD are still uncommon in food 
microbiology, with the exception of bacterial inactivation 
(Denys et al., 2005; Norton et al., 2013). Most of the models 
designed to predict bacterial growth, however, have been 
validated in homogeneous broth medium, even though the 
importance of spatially explicit models has been 
acknowledged (Dens and Van Impe, 2000, 2001). This limits 
predictions of bacterial growth to homogeneous 
environments, like broths and fluid foods. Predictions for 
solid foods or heterogeneous food products can therefore in 
most cases only be made experimentally, which might be both 
time-consuming (Skinner et al., 1994) and expensive, and 
prevents an understanding of the underlying processes 
regarding bacterial growth, metabolism and spatial colony 
dynamics (Bernaerts et al., 2004). 

In the context of a project involving a novel technology 
platform for cheese production, we demonstrate how a 

complex model of spatial and temporal changes in a solid 
cheese matrix during the ripening period can be created, and 
how it can be refined and validated with experimental data. 
As the novel technology platform requires the inoculation of 
a solid, extruded cheese with a starter culture of lactic acid 
bacteria in a number of different positions at the start of the 
ripening period, a number of centres of bacterial activity exist, 
making a spatially explicit model indispensable. 

Most of the parameters the model requires were initially taken 
from the literature; these parameters were updated with 
experimental values as soon as the latter became available, 
thus refining the predictive quality of the model. Finally, we 
show an approach to validate the model by comparing the 
spatial pattern of the pH at the end of the ripening period to 
the pH-distribution predicted by the model. Our final aim is to 
use the refined and validated model to identify the optimal 
injection strategy, which depends on the injection positions 
and the method of inoculation, as well as the amount and 
concentration of the bacterial suspension injected. 

METHODS 

Governing Equations

The model was created with COMSOL Multiphysics ®, a 
commercial Multiphysics software that includes physics 
interfaces for CFD (computational fluid dynamics) and 
diffusion processes in porous media. Regarding cheese as a 
porous medium (Kebary and Morris, 1990), we used the 
software to explicitly model the temporal and spatial 
dynamics of the substrate (lactose) and the main fermentation 
products lactic acid and lactate, as well as the local pH. 
Furthermore, the local concentrations of salt (NaCl) and of the 
components of a hypothetical acid/salt buffer that emulates 
the buffer systems present in milk were included in the model. 
The final component of the model was the concentration of 
the starter culture, which also depended both on the spatial 
location and time. We assumed a stable cheese structure and 
thus constant effective diffusion coefficients and cheese 
porosity. 

Bacterial growth, dispersal and spatiotemporal changes in the 
chemical species were modelled by a system of nonlinear 
PDEs of reaction-diffusion type. The spatiotemporal 
concentration changes for each species  (e.g. lactate) are 
governed by equation (1): 

(1)
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The species-specific reaction terms  characterise the 
biochemical reactions, such as the production of lactic acid 
from lactose by lactic acid bacteria or the dissociation of lactic 
acid into lactate and H+. In case of the lactic acid bacteria, the 
reaction terms specify local bacterial growth according to 
equation (2): 

Here, is the maximum bacterial growth rate, is the 
physiological state of the lactic acid bacteria (Baranyi and 
Roberts, 1994),  and  denote concentrations 
of bacteria and substrate (lactose), and 
as well as  are functions that 
specify the inhibiting effect of a low pH and low values of 
water activity (aW) on bacterial growth, respectively. The 
reaction term  is inspired by a general class of 
substrate- and product-limited microbial growth models (Van 
Impe et al., 2005; Poschet et al., 2005), as it explicitly takes 
nutrient exhaustion and metabolic waste product effects into 
account. 

Initial Conditions and Boundary Conditions

At the start of the ripening period, a solid, extruded cheese
matrix is inoculated with a starter culture of lactic acid 
bacteria in a number of different positions. Two different sets 
of initial conditions were examined. The first set assumed that 
the injection of the bacterial suspension resulted in a spherical 
distribution of the injected solution in the pores of the cheese, 
centred on the tip of the injection needle (figure 1, left). This 
was modelled as a decrease in all spatial directions according 
to a trivariate normal distribution, as the suspension would 
reach more distant pores less likely than pores close to the 
injection centre. The second set of initial conditions assumed 
that the bacterial suspension filled the canal of the injection 
needle quickly, and thus resulted in a cylindrical distribution 
of the injected solution from the tip of the injection needle 
along the entire injection canal. This, in turn, was modelled as 
a decrease in all directions orthogonal to the injection canal, 
and a half-spherical distribution below it (figure 1, right). The 
model further assumes a boundary condition of no flux on all 
boundaries of the cheese matrix. 

Figure 1: The initial concentrations of lactic acid bacteria 
(shades of red, yellow and light blue) in a cylindrical cheese 
matrix. The spherical distribution of the starter cultures (left) 

and the cylindrical distribution (right) were the two 
borderline cases investigated. 

For the model refinement and validation, we performed 
experiments that inoculated a cylindrical cheese shape with a 
suspension of lactic acid bacteria (~170M cfu/mL) in five 

different locations, arranged like the five dots on one side of 
a dice (figure 1, top view). The injection needle penetrated 
two thirds of the cheese matrix, which was acidulated with 
lactic acid to a pH of 5.7 before the ripening period. 

We examined the spatial distribution of the pH within the 
cheese matrix at the end of the ripening period as a 
representative of the achieved homogeneity, and thus the 
quality of the cheese. 

Experimental Determination of Effective Diffusion 
Coefficients and the Spatial pH-Distribution

The effective diffusion coefficients of lactose, lactic acid and 
NaCl were determined using the touching semi-infinite 
cylinder method (Wilde et al., 2001). A two-chamber 
diffusion tube is stored in an incubation box for several days 
at 10°C; at the end of the incubation period, the samples are 
cut into 2 mm thick slices, which are subsequently analysed. 
The resulting concentration profile allows for the calculation 
of the effective diffusion coefficients. This procedure was 
validated by determining Deff of NaCl in cheese, where precise 
literature estimates exist. 

The spatial pH-distribution at the end of the ripening period 
of 56 days was obtained by slicing the cylindrical cheese 
matrix horizontally into three slices of equal size, which were 
further sliced into 9 pieces each (see figure 3, top). Each of 
the 27 pieces was pureed, and its pH measured with a pH-
electrode, yielding the average pH for each piece. 

RESULTS AND DISCUSSION

Fine-tuning the Model Parameters using Experimental 
Results

Initially, all parameters used in the model were taken from the 
literature, as experimental measurements were not yet 
available. This applied in particular to the effective diffusion 
coefficients, which strongly influenced the spatiotemporal 
distribution of substrate, metabolites, pH and NaCl, and thus 
the quality of the ripened cheese. The literature estimates for 
lactose and lactic acid / lactate were Deff (lactose) = 1.3*10-10

and Deff (lactic acid, lactate) = 2.4*10-10 (Floury et al., 2010; 
Silva et al., 2013). 

Measurements of the effective diffusion coefficients of 
lactose and lactic acid were conducted as outlined above,
which resulted in the improved values of Deff (lactose) = 
1.65*10-9 and Deff (lactic acid, lactate) = 3*10-11. Using these 
values in an updated model resulted in a markedly different 
prediction of the spatial distribution of the main fermentation 
product, lactic acid / lactate, at the end of the ripening period 
(figure 2). 

(2)
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Figure 2: Spatial distribution of the sum of the 
concentrations of lactic acid and lactate at the end of the 
ripening period, in mol/L. The literature estimates for the 
effective diffusion coefficients of lactose and lactic acid / 
lactate would lead to a more even distribution of the main 

fermentation product (lactic acid and lactate; left) after 
ripening, while the final spatial product distribution using the 
experimentally determined diffusion coefficients was more 

uneven (right). 

The experimental determination of the effective diffusion 
coefficients of lactose and lactic acid / lactate was performed 
to improve the estimates of Deff of the most important 
chemical species used in the model. This was necessary as no 
precise estimates of diffusivity of these species in cheese were 
available. The literature estimates originated from a linear 
regression of Deff on the molecular weight, based on previous 
experimental work (Floury et al., 2010; Silva et al., 2013), and 
assuming that a linear dependency exists. 

The uneven distribution of the fermentation products in figure 
2 (right) compared to the much more even distribution in 
figure 2 (left) mainly originated from the reduced diffusivity 
of lactic acid / lactate (the experimentally determined value of 
Deff was nearly an order of magnitude smaller than the 
estimation based on the molecular weight, see above). This 
more than compensated for the increased diffusivity of 
lactose, which was more than an order of magnitude higher 
than its literature-based estimate. The latter, however, resulted 
in an increased conversion of lactose (and thus in a higher 
yield of lactic acid / lactate), as lactose diffused much quicker 
to the centres of metabolic activity. 

Validation of the Model

The first step to validate the model was the measurement of 
the average pH at the end of the ripening period (56 days) for 
27 pieces of the cheese matrix (figure 3). One of the important 
findings of this validation was the substantial influence of the 
initial spatial distribution of the lactic acid bacteria. The pH-
distribution at the end of the ripening period appears to be 
consistent with an injection assumption roughly intermediate 
between the two borderline cases shown in figure 1, but 
somewhat closer to the cylindrical injection assumption 
(figure 3, bottom right) than to the spherical (figure 3, bottom 
left). Direct spatial measurements of the concentration of the 
injected bacteria were impractical, as the concentration 
decreased quickly from the injection point. 

Figure 3: Measured (top) and modelled (bottom) pH-values 
in the cheese matrix after 56 days of ripening. The top figure 

shows three different layers (top, central, bottom) of the 
cheese matrix, each of which is further cut into 9 pieces, 

whose experimentally determined average pH is shown. The 
bottom left figure shows the assumption of a spherical initial 
injection of the bacterial suspension, while the bottom right 

figure shows the assumption of a cylindrical initial injection. 

While the experiment shows some deviations from the 
expected symmetry, the model predictions nevertheless are 
not contradicted by the experimentally determined spatial pH-
distribution. 

Optimisation of the Injection Pattern

A preferably uniform distribution of fermentation products in 
the cheese matrix at the end of the ripening period is an 
important indicator of cheese quality. As long as the 
distribution of fermentation products of a cheese is not even 
enough, the injection strategy has to be adapted. This can be 
achieved by varying the number of injections (which is 
generally chosen to be as low as possible), the injection 
pattern (i.e. the injection positions), or the bacterial 
suspension injected in terms of its volume or concentration. 
Choosing these factors carefully is therefore crucial, and 
grows in importance with increasing complexity of the cheese 
geometry. 

The necessity to perform a potentially large number of 
experiments to achieve a “good” injection pattern practically 
precludes a purely experimental approach. However, as the 
number of model runs necessary for this inverse optimisation 
problem might be large as well, an efficient model with 
manageable run-time is required. 

CONCLUSIONS AND FUTURE WORK 

Three-dimensional, spatially explicit models that take the 
dynamic changes in the concentrations of microorganisms and 
substrates, metabolites and other chemical species in time and 
space into account are to date rarely used in predictive 
microbiological models. This is regrettable, as the results 
obtained so far show that employing models based on CFD 
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can make a valuable contribution to predictive microbiology 
in many practical applications. 

The new technology platform for cheese production allowed 
for an investigation into the effects of localised centres of 
bacterial activity on the overall fermentation rate, as well as 
the spatial distribution of fermentation products over time. In 
the current context of the project, this is important in order to 
obtain a sufficient cheese quality, which requires either an 
optimisation of the injection strategy, or a good estimate for 
the required ripening period for a given injection pattern. In 
addition, new cheese shapes can be modelled based on the 
parameters obtained from a previously analysed cheese shape, 
thus shortening development time, which could enable even 
small enterprises with limited financial resources to create 
competitive niche products. 

However, applications are not limited to the new method for 
cheese production proposed. Whenever spatial locations of 
microorganisms are important, these models can considerably 
improve predictions made by traditional microbiological 
models. Applications might include ripening of cheese using 
traditional production methods if the spatial distribution and 
size of colonies is known (Jeanson et al., 2011) or uneven 
(Reinbold et al., 1958), and meat curing. As soon as well-
adjusted models exists, they can substantially save time 
compared to an experimental approach, in particular if, as was 
the case here, lengthy fermentation processes are modelled. 

The next step in this project will be the spatial measurements 
of the pH, substrate, fermentation products and bacterial 
concentrations at different points in time during the ripening 
period, analogous to figure 3 (top). This will allow for a better 
fine-tuned, more realistic spatiotemporal model of cheese 
ripening for the investigated new cheese-production method. 
As soon as the model is sufficiently close to the experimental 
results, optimisation of the injection strategy for arbitrary 
cheese shapes will be the final modelling exercise. 
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Cold atmospheric plasma, storage temperature, osmotic 
stress, suboptimal pH. 
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Microbial decontamination by means of cold atmospheric 
plasma (CAP) offers great potential for treatment of heat-
sensitive food products, extending their storage life. CAP is 
created by applying a high voltage to a gas stream, resulting 
in microbial inactivation according to different mechanisms. 
This paper assesses the influence of CAP on the storage life 
of food model systems inoculated with Salmonella 
Typhimurium. (Food) model systems, with varying intrinsic 
factors (pH, salt concentration, (micro)structure), are treated 
for 5 minutes using a dielectric barrier discharge reactor 
generating a helium-oxygen plasma. Following treatment, 
the impact of extrinsic factors is evaluated by storage at 8°C 
or 20°C. During storage, cell densities are determined. Data 
are fitted with predictive (growth or inactivation) models. 
CAP treatment can result in microbial reductions and 
prolongs storage, however its rate of success is dependent on 
both extrinsic and intrinsic factors. An important factor is the 
storage temperature, as recovery of CAP treated cells proves 
more difficult when stored at 8°C. At 20°C, cell growth is 
merely slowed down. Additionally, at pH 5.5, 6% (w/v) 
NaCl, osmotic stress is induced on the microorganisms, 
which results in low cell recovery or further inactivation. 
However, the food (micro)structure has a limited impact 
during storage. 
 
������������
 
The use of CAP represents a novel technology with high 
potential for decontamination of heat sensitive foods 
products, like fruits and vegetables. Nowadays, the 
microbiological safety of these products is often ensured by 
the use of a washing treatment in combination with chemical 
biocides (Aharoni et al. 1997; Goodburn and Wallace 2013). 
The high water consumption together with the possible 
formation of carcinogenic halogenated by-products, 
constitute a major disadvantage regarding the use of this 
technique. Therefore, the innovative CAP technology could 
result as effective  alternative, due to its short treatment at 
room temperature (Korachi et al. 2010; Moisan et al. 2001). 
 
CAP is produced by the excitation of a gas stream with a 
high voltage, at room temperature and under atmospheric 

pressure. This excitation results in a mixture of electrons, 
ions, atomic species, free radicals, and UV photons (Deng et 
al. 2006; Perni et al. 2007). Reactive species and charged 
particles accumulate at the surface of the cell membrane and 
bombard it, inducing lesions. The (toxic) reactive species 
diffuse through cell membranes, or penetrate through 
lesions, and interact with macromolecules, causing local 
damage. In addition, UV photons modify the DNA of the 
microorganisms by inducing the formation of thymine 
dimers (Fernandez and Thompson 2012; Gallagher et al. 
2007; Moisan et al. 2002). 
 
The CAP efficacy, together with its impact on the storage 
life, depends on several parameters. Next to the CAP set-up, 
plasma characteristics or operating parameters (like power, 
frequency, voltage, gas flow or composition) are of major 
importance (Ehlbeck et al., 2011; Deng et al., 2006; Han et 
al., 2014; Fernandez and Thompson, 2012). Additionally, the 
target microorganism, the microbial load and growth phase 
have an effect on the CAP treatment (Afshari and Hosseini, 
2012; Fernandez et al., 2012). Finally, it was recently proved 
that also the (food) sample properties determine the success 
of the treatment. Firstly, the topography of the sample 
influences CAP treatment (Fernandez et al., 2013). 
Secondly, factors intrinsic to the sample (e.g., food 
microstructure, saline concentration, pH) can exert stresses 
on the microorganisms and impact the efficacy of CAP 
treatment (Kayes et al., 2007; Rowan et al., 2007; Smet et 
al., 2016, 2017a). 
 
For microorganisms, stress includes all conditions deviating 
from their optimal growth conditions, and can lead to 
damaging the cell or even cell death. Stress resistance is 
related to the possibility of cells to handle these stress factors 
after exposure. Additionally, cross protection can arise, as 
cells exposed to a certain type of stress can gain resistance 
towards subsequent stresses (Archer, 1996). Microorganisms 
can suffer from stress during different stages in the food 
production chain: (i) when they survive in an environment 
where a limited number of nutrients are present, before they 
contaminate the food product (e.g., survival in water or in 
equipment), (ii) when surviving on a food product with 
intrinsic factors far from the optimal for growth (e.g., 
suboptimal pH, low aw), (iii) during treatment of the product 
(e.g. pasteurization, HHP, CAP), and (iv) during storage 
(e.g., low storage temperatures). 
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The objective of this work is to assess the influence of CAP 
on the storage life of a (food) model system with varying 
intrinsic properties, based on the microbial behavior of 
S. Typhimurium at different storage temperatures. Survival 
or growth of this important foodborne pathogen during the 
storage is characterized and compared with microbial 
dynamics of untreated cells. The impact of osmotic stress 
and suboptimal pH (pH 7.4, 0% (w/v) NaCl or pH 5.5, 6% 
(w/v) NaCl), and food (micro)structure (liquid or solid(like) 
system) are incorporated in the experimental plan.  
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Salmonella enterica serovar Typhimurium SL1344 was 
kindly provided by the Institute of Food Research (IFR, 
Norwich, UK). The culture was stored at -80°C in Tryptone 
Soya Broth (TSB (Oxoid LTd., Basingstoke, UK)) 
supplemented with 25% (v/v) glycerol (Acros Organics, NJ, 
USA). For every experiment, a fresh purity plate was 
prepared from the frozen stock culture by spreading a 
loopful onto a Tryptone Soya Agar plate (TSA (Oxoid Ltd., 
Basingstoke, UK)) incubated at 37°C for 24 h. One colony 
from this plate was transferred into 20 mL TSB and 
incubated under static conditions at 37°C for 8 h (Binder KB 
series incubator; Binder Inc., NY, USA). Next, 200 μL from 
this stationary phase culture was added to 20 mL of fresh 
TSB and incubated under the same conditions for 16 h. 
Following this protocol, cell cultivation yielded early-
stationary phase populations (9 log10(CFU/mL)), which were 
used for further inoculation. 
 
In a following step, S. Typhimurium was grown under 
different experimental conditions (see Introduction). In 
summary, cells were grown at 20°C in petri dishes under 
static conditions, planktonically in a liquid system (Tryptic 
Soy Broth (TSB)), or as surface colonies (TSB, 
supplemented with 5% (w/v) gelatin). All systems had a 
specific salt concentration and the pH was adapted. Once the 
cells reached the stationary growth phase, samples were 
diluted and re-inoculated before inactivation, in either the 
liquid model system (5.5 log(CFU/mL)) or on the solid(like) 
model system (5.5 log(CFU/cm2)) and were CAP treated.  
 
A Dielectric Barrier Discharge (DBD) reactor (Figure 1) was 
used to study microbial inactivation, similar as described in 
Smet et al. (2016). In summary, an enclosure (22.5 cm x 13.5 
cm x 10 cm) around the electrode increased the residence 
time of the plasma species around the sample and provided a 
more controlled environment. The residence time in the 
enclosure, not airtight, was approximately 45 s. The plasma 
was generated in a gas mixture of helium (purity 99.996%, at 
a flow rate of 4 L/min) and oxygen (purity ≥ 99.995%, at a 
flow rate of 40 mL/min). Thus, the total flow rate of this 
99% helium, 1% oxygen gas mixture is 4.04 L/min. Samples 
were placed between the 0.8 cm gap of the DBD electrodes, 
and after flushing the reactor with the helium-oxygen gas 
mixture for 4 min, the plasma was generated. Samples were 
treated for 5 minutes at a peak-to-peak voltage around 7 kV, 
frequency of 15 kHz and dissipated plasma power of 7.45 W. 
The temperature increase of the sample, measured directly 
after treatment using a thermometer, was about 2°C. 
 

After treatment, petri dishes were immediately sealed with 
parafilm, and stored in a temperature controlled incubator at 
either 8 or 20°C. In some cases, the liquid carrier 
significantly evaporated due to the CAP generated, thus (for 
all samples of this type) 100 μL of dilution medium at the 
same experimental conditions was added prior to storage. 
Control tests, executed without current, confirmed that this 
evaporation was because of the CAP generation and not due 
to the gas flow itself (Smet et al., 2017b). During the storage 
period (10 days if stored at 20°C, 30 days if stored at 8°C) 
sampling took place at regular time intervals (ranging from 
every couple of hours to a few samples a week, depending 
on the storage temperature). The cell density during storage 
was determined via viable plate counting on Tryptic Soy 
Agar plates, using the drop plating technique (Miles et al. 
1938). For cells inactivated in a liquid carrier, 900 μL of 
saline solution (0.85% (w/v) NaCl) was added to the sample. 
Afterwards, the diluted sample (1 mL) was collected from 
the petri dish and transferred to a sterile Eppendorf tube, in 
order to prepare serial decimal dilutions. For cells 
inactivated on the solid(like) surface, the content of the petri 
dish was transferred to a stomacher bag, liquefied in a 
thermostatic water bath at 37°C and homogenized in the 
stomacher for 30 seconds. 1 mL was taken from this bag, 
and serial decimal dilutions were prepared with saline 
solution. For each sample, 3-6 dilutions were plated in 
duplicate onto TSA plates, which placed at 37°C for 24 h 
before counting. 
 
The microbial dynamics observed during storage were fitted 
with the model of Baranyi et al. (1994) or Geeraerd et al. 
(2000). If growth was observed, experimental data were 
fitted with the primary growth model of Baranyi and Roberts 
(1994): 
  

                           (1)               

 
where N(t) [CFU/mL] is the cell density at time t [h], Nmax 
[CFU/mL]  is the maximum cell density at the stationary 
phase, μmax [h-1] is the maximum growth rate and Q(t) [-] is a 
measure of the physiological state of the cells.  
The model of Geeraerd et al. (2000), was used to fit 
experimental data in case inactivation was observed. This 
model describes a microbial inactivation curve consisting of 
a shoulder, a loglinear inactivation phase and a tail: 
 

         (2)

     
where N(t) [CFU/mL] is the cell density at time t [h], Nres 
[CFU/mL]  is the residual cell density at the tailing phase, 
kmax [h-1] is the maximum inactivation rate and Cc(t) [-] is a 
measure of the physiological state of the cells.                                     
Parameters of both models were estimated via the 
minimization of the sum of square errors (SSE), using the 
lsqnonlin routine of the Optimization Toolbox of Matlab 
version R2009b (The Mathworks Inc.). Simultaneous with 
parameter estimation, the parameter estimation errors were 
determined based on the Jacobian matrix. The Root Mean 
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Squared Error (RMSE) was added as an absolute measure of 
the goodness of the model fit to the actual observed data.  
 
�
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The growth and inactivation curves in Figure 2 illustrate the 
influence of CAP treatment (◊) as compared to untreated 
controls (x), for both liquid and solid(like) model systems, 
under different experimental (pH 7.4, 0% (w/v) NaCl (pink), 
pH 5.5, 6% (w/v) NaCl (blue)) and storage conditions (8 and 
20°C). The experimental data were fitted with either the 
Baranyi and Roberts (1994) (growth) or the Geeraerd et al. 
(2000) model (inactivation). The growth (N0, lag (length of 
lag time), μmax, Nmax) or inactivation parameters (N0, tl 
(length of shoulder), kmax, Nmax), are represented in Table 1. 

Figure 3 provides a visual interpretation of the different 
tendencies. 
 
Regardless of the experimental growth or storage conditions, 
CAP treatment extends the storage life of the treated (model) 
systems, indicating the CAP treatment itself does not induce 
cell resistance. In most cases, this extension is realized by 
slowing down microbial growth, as it is the case for all 
experiments at 20°C and for pH 7.4, 0% (w/v) NaCl at 8°C. 
In the other cases, the cell densities are even further reduced 
(8°C, pH 5.5, 6% (w/v) NaCl). Noteworthy, for pH 5.5, 6% 
(w/v) NaCl at 8°C (severe stress), also untreated control 
samples display an inactivation of the cell level. 
 
 
 

 
Figure 2: Growth/ inactivation curves of S. Typhimurium, both for CAP treated samples and untreated controls, stored 

for 10 d at 20 °C (left) or for 30 d at 8 °C (right). Cells were inactivated in a liquid (top) or on a solid(like) (bottom) 
model system. Prior to CAP treatment, cells were grown at pH 7.4, 0% (w/v) NaCl or pH 5.5, 6% (w/v) NaCl. 

Experimental data (symbols) and global fit (line) of the Baranyi and Roberts model (growth), or the Geeraerd et al. 
model (inactivation): CAP treated samples (◊, solid line) and controls (X, dashed line). 

 

 
Figure 1: a) the CAP set up: (1) plasma power source, (2) Dielectric Barrier Discharge reactor, (3) DC power supply, 

(4) oscilloscope and (5) function generator. b) DBD electrode inside reactor. 
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Table 1: Growth (log10N0 (log10(CFU/mL or log10(CFU/cm2), lag (h), μmax(1/h), log10Nres (log10(CFU/mL or 
log10(CFU/cm2)) and inactivation (log10N0 (log10(CFU/mL or log10(CFU/cm2), tl (h), kmax(1/h), log10Nres 

(log10(CFU/mL or log10(CFU/cm2)) parameters for S. Typhimurium stored at 20°C and 8°C. Cells were grown, 
inactivated and stored in a liquid carrier or on a solid(like) surface. Cells were grown at pH 5.5, 6% (w/v) NaCl or at 

pH 7.4, 0% (w/v) NaCl. Both CAP treated samples and untreated controls were stored. 

 
 
 
 

 
Figure 3: CAP treated samples (top, duplicates) and controls (bottom, duplicates) for S. Typhimurium cells 

inactivated on a solid(like) surface: 20°C) Cells grown at pH 7.4, 0% (w/v) NaCl, stored at 20°C for 10 days (images 
after 1 day (left) and 10 days (right) of storage). 8°C) Planktonic cells grown at pH 7.4, 0% (w/v) NaCl, stored at 8°C 

for 30 days (images after 8 (left) and 30 days (right) of storage. 

 
 

 

log10N0 tl kmax log10Nres

LIQUID CAP treated 5.1 ± 0.1 85.6 ± 27.2 0.029 ± 0.004 - 0.287

log10N0 lag μmax log10Nmax

LIQUID Control 5.8 ± 0.1 26.3 ± 0.8 0.478 ± 0.101 8.1 ± 0.0 0.1078

CAP treated 5.2 ± 0.1 24.4 ± 9.8 0.087 ± 0.019 7.6 ± 0.1 0.2482

Control 5.4 ± 0.1 21.2 ± 2.6 0.522 ± 0.346 8.0 ± 0.0 0.1704

CAP treated 4.9 ± 0.2 4.7 ± 2.1 0.545 ± 0.053 9.8 ± 0.1 0.2495

Control 5.4 ± 0.2 5.9 ± 2.7 0.582 ± 0.087 9.7 ± 0.1 0.2287

CAP treated 5.1 ± 0.1 3.0 ± 2.1 0.338 ± 0.026 9.0 ± 0.1 0.2244

Control 5.3 ± 0.1 5.8 ± 27.0 3.335 ± 129.141 8.8 ± 0.1 0.2522

log10N0 tl kmax log10Nres

CAP treated 5.1 ± 0.1 169.1 ± 95.7 0.006 ± 0.001 - 0.1887

Control 5.0 ± 0.1 - 0.004 ± 0.000 - 0.2389

CAP treated 5.5 ± 0.1 - 0.005 ± 0.002 - 0.3738

Control 5.6 ± 0.1 - 0.007 ± 0.001 - 0.3123

log10N0 lag μmax log10Nmax

CAP treated 4.0 ± 0.3 582.7 ± 92.9 0.033 ± 0.022 - 1.3576

Control 5.5 ± 0.1 0.0 ± 63.6 0.010 ± 0.001 8.7 ± 0.3 0.2216

CAP treated 4.0 ± 0.2 654.3 ± 148.2 0.017 ± 0.016 - 0.7153

Control 5.3 ± 0.3 0.0 ± 204.2 0.010 ± 0.006 7.3 ± 0.3 0.5073

RMSE

RMSE

pH 5.5, 6% (w/v) NaCl

pH 7.4, 0% (w/v) NaCl

Growth parameters

Inactivation parameters
Experimental condition (Micro)structure

SOLID

Treatment

SOLID

LIQUID

Temperature

20°C

Experimental condition (Micro)structure Treatment

8°C

Inactivation parameters
RMSE

pH 5.5, 6% (w/v) NaCl

LIQUID

SOLID

Growth parameters
RMSE

pH 7.4, 0% (w/v) NaCl

LIQUID

SOLID

20°C

8°C
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When assessing storage parameters  (Table 1) for 
experimental cases where growth was observed, large 
differences in lag phase duration were only observed at 8°C, 
where CAP treated samples have longer lag phases as 
compared to the controls. Differences in maximum specific 
growth rates between CAP treated samples and the untreated 
controls depend on the experimental condition. For the most 
optimal growth condition, pH 7.4, 0% (w/v) NaCl at 20°C, 
growth patterns for CAP treated samples and controls are 
much alike, therefore μmax values are not significantly 
different. μmax values are alike for this optimal experimental 
condition at 8°C, as the difference in growth behavior is 
mainly caused by the extension of the lag phase. If growth 
during storage resulted in a stationary phase, Nmax values are 
either similar for both CAP treated samples and controls, or 
lower for treated samples. When inactivation is observed 
during storage, a shoulder phase is rarely present (or short). 
Again, differences in inactivation rates (kmax) depend on the 
experimental condition. At 20˚C and for cells grown at pH 
5.5, 6% (w/v) NaCl (inactivation in a liquid carrier) only 
CAP treated cells resume to inactivate during storage. For all 
experiments at pH 5.5, 6% (w/v) NaCl and 8°C, both CAP 
treated samples and controls (further) inactivate during 
storage. However, differences in kmax are limited. For pH 5.5, 
6% (w/v) NaCl at 8°C, the residual cell densities in the tail 
are the lowest for CAP treated samples.  
 
The positive influence of CAP treatment on food (model) 
storage has also been reported in literature. Surowsky et al. 
(2014) illustrated that additional storage of CAP (plasma jet, 
Ar/O2 mixture) treated apple juice (2 mL samples) 
inoculated with Citrobacter freundii further reduces the 
microbial counts. Lacombe et al. (2015) studied the 
influence of CAP treated blueberries on native microbiota, 
after storage up to 7 days at 4˚C, using a jet system operating 
with ambient air. Cell reduction persists throughout the 
complete storage period. Similar results are reported by 
Klockow and Keener (2009), for storage of spinach leaves at 
5˚C for 24 hours, using a DBD set-up working with air and 
oxygen. This further decrease in cell level during storage is 
comparable to findings reported for experiments at pH 5.5, 
6% (w/v) NaCl stored at 8°C (or in some cases even when 
stored at 20°C). Tappi et al. (2016) studied the effect of CAP 
(DBD, working with air) on storage of melons (at 10˚C 
during 4 days) and observe a delayed growth of spoilage 
mesophilic and psychrotropic microflora if CAP treated. In 
this study, a delayed cell growth was observed for the 
optimal growth condition (pH 7.4, 0% (w/v) NaCl) if stored 
at 8°C, and for most experimental conditions stored at 20°C. 
 
The beneficial effect of CAP treatment on the elongation of 
the storage period is very distinct, and proved by both 
literature and the presented results. However, the results in 
Figure 2 also indicate that the impact of CAP on the 
microbial kinetics during storage is highly affected by the 
storage temperatures. Additionally, intrinsic factors of the 
food (model) system prove to have an effect. The impact of 
all of these factors on (food) preservation by CAP treatment 
are discussed in more detail in the following sections. 
�
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Temperature is an important extrinsic factor influencing 
microbial dynamics. During storage at 20˚C, 
S. Typhimurium cells are almost always able to grow, CAP 
treated or not. At 8˚C, the low temperature affects the cells 
ability to recover and grow, possibly even resulting in further  
inactivation (pH 5.5, 6% (w/v) NaCl). 
 
For experimental conditions where growth is observed for 
both storage temperatures, the impact of the temperature on 
the parameters is evident (Table 1). At 8˚C (suboptimal 
temperatures), microbial growth is slowed down as 
compared to the results at 20˚C, resulting in a reduction of 
growth rates and maximum cell densities together with an 
elongation of the lag phase. This is due to a decrease of 
enzymatic reactions within the microbial cell, in combination 
with changes in its membrane structure (Adams and Moss, 
2006; Swinnen et al., 2004).  When for both temperatures the 
cell level further reduces during storage (pH 5.5, 6% (w/v) 
NaCl for samples treated on a liquid carrier), the impact of 
the temperature on the parameters is not significant. 
 
When assessing the relation between CAP treated samples 
and controls at both temperatures, it can be concluded that 
storage at a lower temperature prolongs the positive effect of 
CAP treatment on the microbial kinetics. This effect is 
illustrated at pH 7.4, 0% (w/v) NaCl. After storage of 
30 days following CAP treatment, cells at 8˚C are not able to 
reach a stationary phase, while control samples do. At 20˚C, 
the stationary phase is reached within 48 hours, for both 
CAP treated samples and controls. The additional effect of 
temperature on the microbial behavior after CAP treatment is 
as well notable at pH 5.5, 6% (w/v) NaCl for cells 
inactivated on a solid(like) surface. At 20°C, CAP treatment 
reduces growth as compared to the controls, while at 8°C 
both CAP treated samples and controls are no longer able to 
survive. Regardless of the experimental conditions, the 
relation in microbial growth behavior between CAP treated 
samples and untreated controls completely adapts according 
to the temperature, indicating the additional benefit of a low 
storage temperature after CAP treatment. 
 
Similar findings regarding the effect of the storage 
temperature after CAP treatment, in comparison to the 
controls, have previously been reported by Song et al. 
(2015). In that study, using N2 as a working gas, 10 days of 
storage of CAP treated lettuce results in a further reduction 
of the E. coli cell level when stored at 4˚C, while growth is 
observed when stored at 10˚C. Inactivation on lettuce (pH 
6.0-6.5, aw up to 1.0) can be best compared to our system of 
surface colonies grown at pH 7.4, 0% (w/v) NaCl, for cells 
inactivated on a solid(like) surface. In this case, regardless of 
the storage at 8 or 20°C, a (reduced) growth is always 
observed (as both temperatures selected are not as severe as 
4°C). Furthermore, in Song et al. (2015) the controls follow 
the same trend as the treated samples at both temperatures 
tested. This is in contrast with results reported at 20˚C for pH 
5.5, 6% (w/v) NaCl (inactivation for CAP treated samples, 
growth for controls). Differences with findings from 
literature already indicate the additional influence of other 
(intrinsic) factors on the storage behavior after CAP 
treatment. 
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Next to the storage temperature, also the intrinsic factors 
(e.g., pH and salt level) of the food product or model system 
influence microbial dynamics during storage. Whereas for 
the optimal experimental condition (pH 7.4, 0% (w/v) NaCl) 
(slow) growth is always observed for CAP treated samples 
and untreated controls, increasing the acidic and osmotic 
stress level (pH 5.5, 6% (w/v) NaCl) slows down growth and 
can even result in a shift towards microbial inactivation.  
As at 8°C, both growth (pH 7.4, 0% (w/v) NaCl) and 
inactivation (pH 5.5, 6% (w/v) NaCl) occur, the effect of a 
stressing experimental condition becomes abundantly clear. 
Similar findings were reported at 20°C, when inactivated in a 
liquid carrier. For the conditions at 20˚C expressing growth, 
the optimal condition introduces shorter lag phases, higher 
μmax values and higher maximum cell densities during the 
storage period as compared to the condition at pH 5.5 and 
6% (w/v) NaCl.  
Similar results were reported for both planktonic cells and 
surface colonies in Boons et al. (2013) and Smet et al. 
(2015), where the influence of osmotic and acidic stress on 
the growth morphology of S. Typhimurium cells is studied. 
The addition of the salt in the medium reduces the water 
activity, exerting severe stresses on the microorganisms and 
possibly resulting in cell death (O’Byrne and Booth, 2002). 
As in Smet et al. (2015), the suboptimal pH values selected 
in this study are mild and far from growth limits, as S. 
Typhimurium has a pHmin of 3.8 and pHmax of 9.5 
(ICMSF, 1996). Therefore, the pH influence on the storage 
behavior is likely to be lower as compared to the impact due 
to osmotic stress. In summary, as for temperature, also 
(stressing) media conditions influence the microbial 
dynamics and are able to amplify the effect of CAP, further 
extending the storage period.  
 
A final intrinsic factor potentially affecting storage is the 
influence of the food (micro)structure (liquid model system 
vs. solid(like) model system). The influence of the 
(micro)structure is mainly important during treatment, as it 
affects the cells growth morphology and influences the 
delivery mode of CAP active species to the microbial 
contamination (Smet et al. 2017b). The results indicate only 
a small influence of the food (micro)structure during the 
subsequent storage after CAP treatment. However, the 
results in Figure 2 and Table 1 indicate that in rare cases the 
(micro)structure can also influence the microbial kinetics 
during subsequent storage, as recovery proved more difficult 
for the liquid samples (pH 5.5, 6% (w/v) NaCl), stored at 
20°C. This can be explained by the fact that more long lived 
reactive species (e.g., H2O2) are produced in this liquid 
model system. In addition, low pH values are known to 
enhance the antimicrobial effect of H2O2, explaining why the 
phenomenon was not observed at pH 7.4, 0% (w/v) NaCl 
(Raffellini et al. 2007). However, the two support systems 
are not directly comparable, as the liquid carrier exists of 
only 100 μL of media. Together with the difference in 
volume, the nutrient level available in the liquid carrier is 
different to the solid(like) surface, and might not be 
sufficient for microbial recovery and growth of CAP treated 
cells under certain experimental stressing conditions (pH 5.5, 
6% (w/v) NaCl). This fact could contribute to differences 

observed between the different support systems at 20°C and 
pH 5.5, 6% (w/v) NaCl. 
�
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CAP treatment prolongs the storage life of the model 
systems treated. Intrinsic factors have been previously 
reported to influence the CAP inactivation efficacy, as 
stressing intrinsic factors can create cells resistant to CAP. 
However, the stressing CAP treatment itself does not induce 
cells resistant to stressing storage conditions, as the 
beneficial effect of CAP during the storage life is obvious for 
all experimental conditions. Moreover, the results indicate 
that the microbial storage behavior is influenced by both 
intrinsic and extrinsic factors. As expected, a low storage 
temperature prolongs the positive effect of CAP treatment on 
the microbial kinetics, as cell recovery proves to be more 
difficult at low storage temperatures as compared to storage 
at room temperatures. Next to the storage conditions, the 
intrinsic factors of the sample itself again play an important 
role. Stressing media conditions, e.g., osmotic stress or a 
suboptimal pH value, can also amplify the positive CAP 
effect further extending the storage life. Finally, the food 
model system (micro)structure’s impact on the storage life is 
minimal. 
 
Even though the model systems do not fully mimic real food 
products (e.g., with respect to composition, volume, 
roughness, contamination level), and validation studies for 
real food products are required, this study already indicates 
that the novel CAP technology could also extend the storage 
life of food products. Furthermore, although the results 
obtained are valid for the specific DBD set-up used, this 
study can be regarded indicative for other systems (e.g., 
gliding arcs or corona discharges, other gas mixtures, or 
DBD systems with different electrode gaps). This research 
indicates CAP treatment is able to extend the storage time of 
a food product, depending on the storage conditions and 
intrinsic parameters of the product. Next to the ability of 
CAP to obtain high microbial reductions, the additional 
prolonged food storage enhances the suitability of CAP to be 
applied in the food industry. 
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The biofilm mode of growth of pathogenic bacteria such as 
Listeria monocytogenes and Salmonella Typhimurium 
protects them from currently applied disinfection methods 
for food contact surfaces. As a result, viable cells remain on 
the surface and become a contamination source. To avoid 
contamination of food products, new inactivation methods 
such as Cold Atmospheric Plasma (CAP) can be used. 
However, knowledge concerning the influence of different 
plasma characteristics, such as those investigated in this 
study, i.e., the applied plasma electrode and the oxygen 
level of the gas flow, on the efficacy of CAP for biofilm 
inactivation is still required. In this research, two electrodes 
(Surface Barrier Discharge (SBD) and Dielectric Barrier 
Discharge (DBD) electrode) and three oxygen levels (He + 
0.0/0.5/1.0 (v/v) % O2) were tested. Based on the obtained 
results, the DBD electrode has the highest biofilm 
inactivation efficacy and the oxygen level of 0.0 (v/v) % 
results in the highest log-reductions. At these specific 
conditions, approximately 3.5-log reductions have been 
obtained (on general medium), which is promising for the 
application of CAP for biofilm inactivation. 
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During the last decades, food safety became a major 
concern for producers, consumers, and government. Food 
products are considered safe if they do not contain any 
chemical, physical, and microbiological contaminants. With 
respect to microbiological safety, the occurrence of 
foodborne pathogens (including bacteria, viruses, molds, 
yeasts, prions, and protozoa) can be a real threat for human 
health (Martinović 2016). Within the European Union 
(EU), bacterial species account for the highest number of 
foodborne illnesses/zoonoses. According to the foodborne 
illnesses reported in 2015 within the EU, salmonellosis 
(caused by S. (Typhimurium)) has a high notification rate 
(21.2/100,000 capita) and a relatively high fatality rate
(0.24 %). On the contrary, listeriosis (caused by 
L. monocytogenes) has a relatively low notification rate

(0.46/100,000 capita), but a very high fatality rate (17.7 %)
(EFSA and ECDC 2017). Consequently, it is important to 
avoid and/or control contamination of food products with 
these pathogenic microorganisms.

In the food processing plant, food contact surfaces are a 
primary area of concern as contamination source (Marriott 
and Gravani 2006). This is mainly because (pathogenic) 
bacteria, such as Listeria monocytogenes, Salmonella
enterica and Escherichia coli, grow predominantly as 
biofilms on surfaces, rather than as planktonic cells or 
colonies (Giaouris et al. 2014). Biofilms are functional 
consortiums of microorganisms attached to a surface and 
the biofilm-associated cells are embedded in a matrix of 
self-produced extracellular polymeric substances (EPS) 
(Kumar and Anand 1998). The matrix has several 
functions, i.e., (i) it can retain water and nutrients, which 
prevents cells from dehydration and starvation, (ii) it keeps 
the cells attached to the surface, i.e., they can withstand 
shear forces, and (iii) it protects the cells from antimicrobial 
agents due to a limited diffusion of these components into 
the 3-dimensional biofilm structure (Conserton et al. 1987; 
Kumar and Anand 1998). Biofilm-associated cells can also 
undergo physiological changes, i.e., they become 
metabolically dormant cells with a reduced growth rate and 
a decreased consumption of nutrients and oxygen. Since 
antimicrobial agents (and antibiotics) are far more effective 
towards actively growing cells (such as planktonic cells), 
these dormant cells cannot get (completely) inactivated 
using antimicrobial agents (e.g., chlorine or hydrogen 
peroxide) (Kumar and Anand 1998; Gómez-López 2012).
As a result, currently applied decontamination methods are 
not efficient enough for inactivation of biofilms and new 
methods should be considered.

CAP is one of the promising (non-thermal) technologies 
(Giaouris et al. 2014). In general, plasma is often referred to 
as an ionized gas, consisting of ions, photons, free 
electrons, and activated neutral species (excited and radical) 
(Banu et al. 2012; Fernández and Thompson 2012). Plasma 
can be generated in different ways, e.g.,using an electric 
discharge in a gas at room temperature and at atmospheric 
pressure. This plasma type (i.e., CAP) has some important 
advantages, e.g., (i) it is fast, (ii) it can be created at a low 
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temperature, (iii) plasma components fade out immediately 
after treatment, and (iv) cells can be inactivated in multiple 
ways (Misra et al. 2011; Banu et al. 2012; Fernández and 
Thompson 2012). However, further research is required to 
fully assess the efficacy of this technology when applied for 
biofilm inactivation. In addition, the possible induction of 
sub-lethally injured cells following CAP treatment should 
be investigated as well since sub-lethal injury of bacterial 
cells has been reported already following treatment with 
currently applied (thermal) technologies. Under optimal 
conditions, these cells can recover and may cause public 
health concerns (Noriega et al. 2013). 

In literature, different plasma characteristics have been 
reported to have an influence on the inactivation efficacy of 
CAP, e.g., the set-up (electrode), the gas flow, the gas 
composition, and the plasma intensity (Lerouge et al. 2001; 
Deng et al. 2007; Ehlbeck et al. 2011; Fernández and 
Thompson 2012; Han et al. 2014; Smet et al. 2017). More 
knowledge concerning the (combined) influence of these 
parameters on the CAP inactivation efficacy will aid to 
improve the inactivation of bacterial species which have 
developed the ability to grow as biofilms. 

Therefore, the goal of this research was to obtain 
knowledge regarding the influence of (i) the applied 
electrode and (ii) the oxygen level of the gas flow on the 
efficacy of CAP for inactivation of model biofilms 
developed by L. monocytogenes and S. Typhimurium. The 
influence of these characteristics has been determined as 
function of time, i.e., for each combination of variables, 
different treatment times (0-30 min) were applied. 
Additionally, sub-lethal injury has been assessed for all 
experimental conditions and predictive models were 
implemented to analyse the data. 
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For both pathogenic bacteria, i.e., L. monocytogenes and 
S. Typhimurium, strongly adherent and mature model 
biofilms were developed. Subsequently, biofilms were 
treated with CAP while altering the applied electrode and 
the oxygen level of the gas flow.  Two different types of 
electrodes were tested, i.e., the Surface Barrier Discharge 
(SBD) and the Dielectric Barrier Discharge (DBD) 
electrode. For each of the experiments, a gas mixture 
consisting of Helium and Oxygen (He + O2) was used. 
However, three different oxygen levels were examined, i.e., 
0.0, 0.5 and 1.0 (v/v) %. For each combination of plasma 
characteristics, the influence on the inactivation efficacy 
was determined as function of time, i.e., model biofilms 
were treated for different treatment times (0, 1, 2, 5, 7.5, 10, 
15, 20, 25, and 30 min). Following CAP treatment, cell 
densities were determined via plate counts on both general 
and selective medium. 
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In this research, L. monocytogenes LMG 23775 and 
S. Typhimurium LMG 14933, both acquired from the 

BCCM/LMG bacteria collection of Ghent University in 
Belgium, were used. Stock-cultures were stored at -80°C 
(U101 Innova, New Brunswick Scientific Co., USA) in 
Tryptic Soy Broth (TSB, Becton Dickson, US) 
supplemented with 20% (v/v) glycerol (VWR International, 
Belgium).

For every experiment, a purity plate was prepared by 
spreading a loopful of stock-culture onto an agar plate 
(Lennox Luria Bertani Agar (Becton Dickson, USA) 
supplemented with 5 g/l NaCl (Sigma-Aldrich, US)). Agar 
plates were incubated (Binder BD115, VWR International, 
Belgium) for 24 h at 30°C (L. monocytogenes) or 37°C 
(S. Typhimurium), which are the optimal growth 
temperatures for these microorganisms (BCCM 2017).

Pre-cultures were prepared by transferring one colony from 
the incubated purity plate into an Erlenmeyer containing 
20 mL of fresh growth medium (Lennox Luria Bertani 
broth (Becton Dickson, US) supplemented with 5 g/l NaCl). 
Pre-cultures were again incubated for 24 h at 30 
(L. monocytogenes) or 37°C (S. Typhimurium). After 
incubation, stationary phase cultures were obtained with a 
cell density of approximately 109 CFU/mL. 

These pre-cultures were 100-fold diluted in fresh growth 
medium to obtain an inoculum with a cell density of 
approximately 107 CFU/mL. Brain Heart Infusion (BHI, 
VWR chemicals, Belgium) and 20-fold diluted TSB were 
used as dilution medium for L. monocytogenes and 
S. Typhimurium, respectively. These media were selected 
based on a preliminary optimization procedure. Small 
polystyrene Petri dishes (50 mm diameter, 9 mm height, 
Simport, Canada) were inoculated with 1.2 mL of 
inoculum, after which they were closed and gently shaken 
to make sure the inoculum covered the entire surface. 
Finally, Petri dishes were incubated for 24 h at 30 
(L. monocytogenes) or 25°C (S. Typhimurium). As for the 
dilution media, incubation temperatures were selected 
based on preliminary tests.
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A schematic overview of the two applied electrodes can be 
observed in Figure 1 (DBD and SBD electrode in Figure 
1A and 1B, respectively). 

Figure 1 Schematic representation of Dielectric Barrier Discharge 
(DBD, A) and Surface Barrier Discharge (SBD, B) electrode 
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For both electrodes, the discharge is generated between two 
electrodes (DBD electrode diameter = 5.5 cm; SBD 
electrode diameter = 5.0 cm), covered by a dielectric layer 
(diameter 7.5 cm). Around both electrodes, an enclosure 
has been provided to increase the residence time of the 
plasma species and to obtain a more controlled 
environment. Both enclosures (22.5 cm x 13.5 cm x 10 cm 
and 10 cm x 10 cm x 4 cm for the DBD and SBD electrode, 
respectively) were not airtight, which could result in the 
presence of traces of oxygen and nitrogen from the 
environment. In case of the DBD, the electrode gap was set 
at 0.8 cm and the sample was placed between the electrodes 
prior to treatment. In case of the SBD, there is no electrode 
gap, i.e., both electrodes are located on the top of the 
enclosure. Here, the sample was placed below the two 
electrodes while ensuring a similar distance between the 
sample and the electrodes as was the case for the DBD. 

For all experiments, the plasma was generated in a gas 
mixture of helium (purity 99.996%, at a flow rate of 
4 L/min) and oxygen (purity ≥ 99.995%). Three different 
oxygen levels were tested, i.e., 0.0, 0.5 and 1.0 (v/v) %, 
resulting in oxygen flow rates of 0, 20, and 40 mL/min, 
respectively. The helium and oxygen flow rates were mixed 
before entering the plasma enclosures. The plasma power 
supply transforms a low voltage DC input (0-60 V) into a 
high voltage AC signal (0-20 kV), at a frequency up to 30 
kHz. In this research, the input voltage and the frequency 
were set at 21.88 V and 15 kHz, respectively. The input 
voltage was selected based on preliminary tests since this 
input voltage resulted in the creation of a stable and 
reactive plasma. 

After placing the sample between or below the electrodes, 
the reactor chamber was flushed (4 and 2 min for DBD and 
SBD, respectively) to ensure a homogeneous gas 
composition in the enclosures. Finally, the high-voltage 
power source was energized, and the plasma was generated. 
Samples, which were rinsed 3 times with sterile Phosphate 
Buffered Saline (PBS) solution (to remove the remaining 
planktonic cells) and which were allowed to dry for 15 min 
prior to treatment, were treated up to 30 min. 
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Following CAP treatment of the model biofilms, the cell 
scraping method was used to remove the remaining 
biofilm-associated cells from the surface. Therefore, 2 mL 
of sterile PBS solution was added to the treated Petri dishes 
and a cell scraper (blade width 20 mm, Carl Roth 
GmbH+Co, Germany) was used to remove the biofilm. 
After this, serial decimal dilutions (in 0.85 (m/v) % NaCl 
solution) of the obtained cell suspensions were prepared 
and plated on agar plates. BHI Agar (BHIA, BHI 
supplemented with 14 g/l biological agar, VWR Chemicals, 
Belgium) and PALCAM agar (VWR Chemicals, Belgium) 
were used for L. monocytogenes, while Tryptic Soy Agar 
(TSA, TSB supplemented with 14 g/l biological agar) and 
Xylose Lysine Deoxycholate Agar (XLDA, Merck & Co, 
USA) were used for S. Typhimurium. Three drops (20 
μL/drop) of each serial dilution were plated on both media 
for each microorganism (Miles et al. 1938). Before 
counting the colonies, BHI and PALCAM agar plates were 

incubated for (at least) 24 h at 30°C and TSA and XLD 
agar plates were incubated for 24 h at 37°C.
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The model of Geeraerd et al. (2000) was used to fit the 
experimental data. This model describes a microbial 
inactivation curve consisting of a log-linear inactivation 
phase and a tail (Equation 1). 

(1) 

Where N(t) [CFU/cm²] is the cell density at time t [min], N0
[CFU/cm²] the initial cell density, Nres [CFU/cm²] is a more 
resistant subpopulation and kmax [1/min] the maximum 
specific inactivation rate. Based on the difference between 
log10 N0 and log10 Nres, the final log-reduction has been 
calculated for each combination of plasma characteristics. 

The parameters of the Geeraerd et al. (2000) model were 
estimated via the minimization of the sum of squared errors 
(SSE), using the lsqnonlin routine of the Opzimization 
Toolbox of Matlab version R2015b (The Mathworks, Inc.). 
At the same time, the parameter estimations were 
determined based on the Jacobian matrix. The Root Mean 
Squared Error (RMSE) served as an absolute measure of 
the goodness of the model to fit the actual obtained data. 

Finally, to calculate the percentage of sub-lethal injury 
(% SI), theoretical concentrations obtained from the model 
of Geeraerd et al. (2000) were used for both the general and 
selective counts. The equation of Busch and Donnelly 
(1992) (Equation 2) was used to determine the percentage 
of injured cells at each treatment time. As a result, the 
percentage of sub-lethal injury has been plotted as function 
of the treatment time. 

(2) 
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Analysis of variance (ANOVA) test was performed to 
determine whether there are any significant differences 
amongst means of the estimated model parameters, at a 
95.0% confidence level (α = 0.05). Fisher´s Least 
Significant Difference (LSD) test was used to distinguish 
which means were significantly different from others. The 
analyses were performed using the anova1 routine of the 
Statistical Toolbox of Matlab version R2015b (The 
Mathworks, Inc.). For each parameter of the Geeraerd et al. 
(2000) model, different ANOVA tests (for each 
microorganism separately) were performed. Initially, a 
comparison has been made between all values obtained for 
a certain parameter (i.e., 12 values in total). For this test, 
significant differences have been indicated with small 
letters (e.g., a). For the influence of the electrode, a separate 
test has been performed for each oxygen concentration and 
each medium. In this case, significant differences have been 
indicated with a capital letter (e.g., A). For the influence of 
the oxygen level, a separate test has been performed for 
each electrode and each medium. Here, significant 
differences have been indicated with a number (e.g., 1). 
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In Figure 2A (L. monocytogenes) and 2B 
(S. Typhimurium), the biofilm cell density on general and 
selective medium is expressed as function of the treatment 
time when applying the DBD and SBD electrode at 
different oxygen concentrations, i.e., 0.0, 0.5, and 
1.0 (v/v) %. In Figure 3A (L. monocytogenes) and 3B 
(S. Typhimurium), the percentage of sub-lethally injured 
cells is expressed as function of the treatment time when 
applying both electrodes at the same oxygen 
concentrations. In Table 1, all estimated parameters of the 
Geeraerd et al. (2000) model are represented for both 
electrodes and both species. 
 
In general, several observations can be made independently 
from the applied electrode and the examined oxygen level. 

First of all, it can be observed that the shape of the 
inactivation curves (Figure 2) is similar for both 
microorganisms, i.e., the curves contain a log-linear 
inactivation phase followed by a tail. Therefore, the same 
model can be used to fit the data. Secondly, the initial cell 
density (log10 N0) is different for both microbial species, 
i.e., a higher cell density (on both general and selective 
media) can be observed for the L. monocytogenes biofilm 
compared to the S. Typhimurium biofilm (Table 1). This 
can be explained due to a different stationary cell density of 
the mature biofilm for both bacterial species and should be 
considered when assessing (possible) differences between 
the CAP efficacy for inactivation of these microbial 
species. 
 

 
Figure 2 Cell density (log(CFU/cm²)) as function of the treatment time when applying two different electrodes (DBD/SBD) and three 
different oxygen levels (0.0/0.5/1.0 (v/v) %). Experimental data (symbols) and global fit (line) of the Geeraerd et al. (2000) model: total 
viable population on general medium (o, solid line) and uninjured viable population on selective medium (x, dashed line). A: results 

L. monocytogenes biofilms and B: results S. Typhimurium biofilms.  

A B 
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Figure 3 Percentage (%) of sub-lethally injured cells as function of the treatment time for both investigated electrodes (DBD/SBD) and all 
three examined oxygen concentrations (0.0/0.5/1.0 (v/v) %). A: results L. monocytogenes biofilms and B: results S. Typhimurium biofilms. 

Table 1 Estimated model parameters Geeraerd et al. (2000) model for all examined combinations of plasma characteristics 
(electrodes/oxygen levels) and both microorganisms (L. monocytogenes and S. Typhimurium). 

 
1 Influence electrode: for each microorganism, oxygen concentration and growth medium, model parameters bearing different superscripts (no uppercase 
capital letters in common) are significantly different (P ≤ 0.05) 
2 Influence oxygen concentration: for each microorganism, electrode and growth medium, model parameters bearing different superscripts (no lowercase 
numbers in common) are significantly different (P ≤ 0.05) 
3 Combined effect electrode and oxygen concentration: for each microorganism, model parameters bearing different superscripts (no uppercase small letters in 
common) are significantly different (P ≤ 0.05) 

DBD 0.0 (v/v)% oxygen SBD 0.0 (v/v) % oxygen DBD 0.5 (v/v) % oxygen SBD 0.5 (v/v) % oxygen DBD 1.0 (v/v) % oxygen SBD 1.0 (v/v) % oxygen
1

2 Log10 N 0  general medium 3 (log(CFU/cm²)) A
1 7.1±0.1 a A

1 7.2±0.1 a A
1 7.1±0.1 a A

1 7.2±0.1 a A
1 7.2±0.1 a A

1 7.2±0.1 a

1
2 Log10 N 0  selective medium 3 (log(CFU/cm²)) A

1 7.2±0.1 a A
1 7.2±0.1 a A

1 7.1±0.1 a A
1 7.2±0.1 a A

1 7.2±0.1 a A 1 7.2±0.1 a

1
2  k max  general medium 3 (1/min) A

1 1.265±0.142 a B
1 2.343±0.577 b,c,d A

1 0.985±0.106 a B
1 2.606±0.596 d A

2 2.141±0.403 b,c,d A
1 2.440±0.588 c,d

1
2  k max  selective medium 3 (1/min) A

2 1.735±0.172 a,b,c B
1 2.771±0.491 d A

1 1.007±0.090 a B
2 4.754±1.097 e B

3 2.809±0.434 d A
1 1.549±0.272 a,b

1
2 Log10 N res  general medium 3 (log(CFU/cm²)) A

1 3.5±0.1 b B
1 5.2±0.1 h,i A

2 3.9±0.1 c B
1,2 5.3±0.1 i,j A

3 4.4±0.1 e B
2 5.5±0.1 j

1
2 Log10 N res  selective medium 3 (log(CFU/cm²)) A

1 2.9±0.1 a B
1 4.8±0.1 f A

2 3.4±0.1 b B
2 5.1±0.1 g,h A

3 4.1±0.1 d B
1,2 4.9±0.1 f,g

1
2 Log-reduction general medium 3 (log(CFU/cm²)) B

3 3.6±0.2 g A
2 2.0±0.1 b B

2 3.2±0.1 f A
1,2 1.8±0.1 a,b  B

1 2.7±0.2 e A
1 1.7±0.1 a

1
2 Log-reduction selective medium 3 (log(CFU/cm²)) B

3 4.2±0.1 h A
2 2.4±0.1 d B

2 3.7±0.1 g A
1 2.0±0.1 b,c B

1 3.1±0.2 f A
1,2 2.2±0.1 c,d

RMSE general medium (/) 0.4354 0.4322 0.3899 0.3471 0.4770 0.3314
RMSE selective medium (/) 0.4329 0.3942 0.3989 0.3213 0.4855 0.3255

DBD 0.0 (v/v)% oxygen SBD 0.0 (v/v) % oxygen DBD 0.5 (v/v) % oxygen SBD 0.5 (v/v) % oxygen DBD 1.0 (v/v) % oxygen SBD 1.0 (v/v) % oxygen
1

2 Log10 N 0  general medium 3 (log(CFU/cm²)) A
1 6.4±0.1 b A

1 6.5±0.1 b A
1 6.4±0.1 b A

1 6.5±0.1 b A
1 6.5±0.1 b A

1 6.4±0.0 b

1
2 Log10 N 0  selective medium 3 (log(CFU/cm²)) A

1 6.1±0.1 a A
1 6.2±0.1 a A

1 6.1±0.1 a A
1 6.2±0.1 a A

1 6.2±0.1 a A
1 6.2±0.1 a

1
2  k max  general medium 3 (1/min) A

1 1.308±0.154 a,c A
2 1.747±0.351 b,c,d,e A

1 0.912±0.122 a,b B
2 2.553±0.619 d,e,f B

2 2.178±0.369 c,d,e,f A
1 0.516±0.075 a

1
2  k max  selective medium 3 (1/min) A

1 1.534±0.198 a,d B
2 2.876±0.584 f A

1 1.284±0.227 a,c B
2 2.768±0.661 e,f B

2 2.370±0.416 c,d,e,f A
1 0.573±0.110 a

1
2 Log10 N res  general medium 3 (log(CFU/cm²)) A

1 3.0±0.1 b B
1 4.3±0.1 f,g A

2 3.9±0.1 e B
2 4.8±0.1 h A

3 4.4±0.9 g A
2 4.6±0.1 h

1
2 Log10 N res  selective medium 3 (log(CFU/cm²)) A

1 2.1±0.2 a B
1 3.8±0.1 e A

2 3.3±0.1 c B
2 4.2±0.1 f,g A

3 3.6±0.1 d B
1,2 4.1±0.1 f

1
2 Log-reduction general medium 3 (log(CFU/cm²)) B

3 3.4±0.1 h A
2 2.2±0.1 d,e B

2 2.5±0.1 f A
1 1.7±0.1 a A

1 2.0±0.1 c,d A
1 1.8±0.1 a,b

1
2 Log-reduction selective medium 3 (log(CFU/cm²)) B

2 4.0±0.2 i A
2 2.3±0.1 e,f B

1 2.9±0.2 g A
1 1.9±0.1 b,c B

1 2.5±0.1 f A
1,2 2.0±0.2 b,c,d

RMSE general medium (/) 0.4198 0.3961 0.4614 0.3256 0.4374 0.2900
RMSE selective medium (/) 0.5468 0.4249 0.3464 0.3852 0.3279 0.4306

L. monocytogenes

S. Typhimurium

A B 
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When comparing the obtained log-reductions for both 
species, it could be concluded that almost no differences 
can be observed, except for the DBD at 0.5 and 1.0 (v/v) %. 
In this case, higher log-reductions have been observed for 
L. monocytogenes compared to S. Typhimurium (Table 1). 
This could be related to the higher initial cell density of the 
L. monocytogenes biofilm and/or due to the different 
composition of their cell wall (PennState 2018). Finally, 
when comparing the initial cell densities on general and 
selective medium, it can be observed that the initial cell 
density for L. monocytogenes using general medium is the 
same as using selective medium (Table 1). Consequently, 
(almost) no sub-lethal injury should be observed for these 
biofilm-associated cells prior to treatment, which is indeed 
the case (Figure 3A). In contrary, significantly higher initial 
cell densities for S. Typhimurium are obtained on general 
medium compared to the selective medium, which should 
result in a significant amount of sub-lethally injured cells 
prior to treatment. This can be observed in Figure 3B, since 
approximately 50% of the biofilm-associated cells are sub-
lethally injured following 0 min of CAP treatment.  

The difference in sub-lethal injury prior to treatment 
between both bacterial species could possibly be the result 
of the microenvironment present in the biofilm. Since 
L. monocytogenes is in general a more resistant 
microorganism (Marriott and Gravani 2006; Food and Drug 
Administration 2012), local changes in the pH of the 
biofilm could for example result in sub-lethal injury of the 
S. Typhimurium biofilm-associated cells, but not for those 
present in L. monocytogenes biofilms. Another possible 
explanation could be that the provided, and required, 
growth medium for S. Typhimurium results already in an 
induction of sub-lethally injured cells.
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For both microorganisms, the electrode has an influence on 
the kmax value, the residual population, and the obtained log-
reductions following treatment (Table 1 and Figure 2). 

The initial inactivation rates (kmax) are (significantly) higher 
when applying the SBD electrode for both media, except 
for the highest oxygen concentration of 1.0 (v/v) %. In this 
case, there are no significant differences (general medium 
L. monocytogenes) or the kmax value is higher while 
applying the DBD electrode (selective medium 
L. monocytogenes; general and selective medium 
S. Typhimurium). Consequently, the inactivation of 
biofilm-associated cells is initially faster, at almost all 
conditions, when applying the SBD electrode. Nevertheless, 
this log-linear inactivation phase has only a short duration 
period (Figure 2), i.e., following less than 5 min (except for 
S. Typhimurium at 1.0 (v/v) % oxygen), a residual constant 
population can be observed while applying the SBD 
electrode. Considering this short duration and the relatively 
high standard deviation of the kmax values obtained while 
applying the SBD electrode, significant differences between 
the kmax values obtained with both electrodes could be 
related to the model fit (and the low number of data points 
within this short log-linear inactivation phase).

Significant differences can also be observed concerning the 
obtained log-reductions (and residual cell densities) 

following CAP treatment with the two examined electrodes
(Table 1). Independently from the oxygen level and the 
treated microorganism, (significantly) higher log-reductions 
are obtained while applying the DBD electrode (Table 1 
and Figure 2). For L. monocytogenes, log-reductions 
between 2.7 and 4.2 log(CFU/cm²) are obtained with the 
DBD electrode, while log-reductions between 1.7 and 2.4 
log(CFU/cm²) are obtained with the SBD electrode. For 
S. Typhimurium, the obtained log-reductions range between 
2.0 and 4.0 log(CFU/cm²) and 1.66 and 2.34 log(CFU/cm²) 
for the DBD and SBD electrode, respectively. As a result, it 
could be concluded that the DBD electrode is more 
effective for inactivation of biofilms. 

However, the obtained log-reductions are in all cases higher 
when using selective medium compared to general medium. 
As a result, a residual percentage of sub-lethally injured 
cells can be observed following CAP treatment with both 
electrodes (Figure 3). In almost all cases, except for 
L. monocytogenes biofilms at 1.0 (v/v) % oxygen, using the 
DBD electrode results in a higher percentage of sub-lethally 
injured cells (up to 80%). This should be considered since 
this could result in an overestimation of inactivated cells 
when only selective medium is used. Nevertheless, the 
highest completely kill efficacy is still obtained using the 
DBD electrode, and this for all oxygen concentrations and 
both microorganisms, since the highest log-reductions on 
general medium (indicating both injured and un-injured 
viable cells) have been obtained with this electrode. 

Based on the higher log-reductions obtained with the DBD 
electrode, it can be concluded that this electrode is more 
effective for inactivation of biofilms. The lower efficacy 
applying the SBD electrode can be explained based on the 
research of Olszewski et al. (2014). In this research, it was 
mentioned that one of the drawbacks of the SBD 
configuration is the inefficient transport of reactive species 
towards the sample. Since applying the SBD electrode 
results in an indirect CAP treatment, the most reactive 
species, which have the shortest lifetime, recombine before 
they reach the sample. With the DBD electrode, a direct 
treatment is conducted, resulting in more reactive species 
reaching the sample and a higher inactivation efficacy 
(Olszewski et al. 2014). However, depending on the 
targeted application, it could still be advised to use the SBD 
electrode since its more practical scale-up aspect for 
industrial applications (Olszewski et al. 2014).
Nevertheless, a compromise should be considered between 
applicability and efficacy. 
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As for the influence of the applied electrode, significant 
differences are observed regarding the kmax values, the 
residual populations, and the obtained log-reductions 
following CAP treatment at different oxygen concentrations 
(Table 1). 

For the DBD electrode, the highest kmax values are obtained 
at an oxygen level of 1.0 (v/v) % oxygen, and this is 
observed for both microorganisms and both media. For the 
SBD electrode, the influence of the oxygen concentration is 
depending on the microorganism and the medium. For 
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L. monocytogenes, the lowest kmax value is obtained at 
1.0 (v/v) %, and this for both media. For S. Typhimurium, 
the oxygen level has no influence on the kmax value (general 
medium) or is the highest at 0.5 (v/v) % (selective 
medium). However, as for the influence of the electrode, 
the short duration period of the log-linear inactivation phase 
should be considered. Due to a low number of data points 
within this short period, significant differences could be the 
result of the model fit. 

For both microorganisms and for both electrodes, 
(significantly) higher log-reductions are obtained at 
0.0 (v/v) % of oxygen, and this for both media. This is in 
contradiction with previous research reported in literature. 
According to Laroussi (2005) and Fernández and 
Thompson (2012), the presence of oxygen enhances the 
killing efficacy of CAP. Oxygen-based reactive species 
have been reported to have a strong oxidative effect on the 
outer surfaces of the cells, i.e., unsaturated fatty acids 
present in the membrane of the cells can react with oxygen-
based reactive species such as hydroxyl radicals (OH.), 
resulting in a compromised function of the membrane 
lipids. Atomic oxygen on the other hand, can oxidize 
proteins, resulting in structural changes and malfunctioning 
of proteins/enzymes (Laroussi 2005). Nevertheless, 
previously mentioned studies were not performed using 
bacterial cells growing as biofilms. Consequently, 
investigating the biofilm inactivation mechanism of CAP 
could possibly improve understanding the influence of the 
oxygen concentration on the CAP inactivation efficacy for 
biofilms in particular.

Finally, when comparing the percentage of sub-lethally 
injured cells obtained for all three oxygen levels (Figure 3), 
differences can be observed between the two electrodes and 
between both microorganisms. For the DBD, the lowest 
amount of sub-lethal injury is observed at 1.0 and 
0.5 (v/v) % for L. monocytogenes and S. Typhimurium, 
respectively. For the SBD electrode, using 0.5 and 
0.0 (v/v) % of oxygen results in the lowest amounts of sub-
lethal injury for L. monocytogenes and S. Typhimurium, 
respectively. Nevertheless, for both microorganisms and 
both electrodes, the highest completely kill efficacy is still 
obtained while using the lowest oxygen concentration of 
0.0 (v/v) %. 
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When the model parameters of all possible combinations of 
plasma characteristics are compared, it can be concluded 
that for both microorganisms, the highest log-reductions are 
obtained following treatment with the DBD electrode at 
0.0 (v/v) % of oxygen. In this case, the log-reductions on 
general medium are 3.6 and 3.4 log(CFU/cm²) for 
L.  monocytogenes and S. Typhimurium, respectively.  

������������
The goal of this study was to investigate the influence of 
the applied electrode (DBD/SBD) and the oxygen level of 
the gas flow (He + 0.0 - 1.0 (v/v) % O2) on the CAP 
inactivation efficacy for biofilms. It could be concluded that 
the highest log-reductions have been obtained while using 
the DBD electrode. For the oxygen level, the highest 

efficacy has been obtained at an oxygen concentration of 
0.0 (v/v) %. The obtained log-reductions (approximately 
3.5 log(CFU/cm²)) at these conditions, i.e., DBD at 0.0 
(v/v) % oxygen, where promising with respect to CAP 
application for disinfection of abiotic surfaces. 

�����
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�
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In future research, the effect of another plasma 
characteristic will be investigated, i.e., the plasma intensity, 
since this has been reported in literature to have a 
significant influence on the inactivation efficacy of CAP 
(Deng et al. 2007; Han et al. 2014), which has been 
confirmed by preliminary tests.
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ABSTRACT 

This study employed response surface 
modelling to establish key process parameters 
for high voltage dielectric barrier discharge 
(HVDBD) atmospheric cold plasma (ACP) 
decontamination of cereal grains that were in 
alignment with maintenance of product critical 
quality parameters. Response surface 
modelling of experimental data probed the key 
factors in relation to microbial control and 
seed germination promotion. Depending on 
treatment parameters and target intrinsic 
characteristics, significant reduction of 
microbial contamination on wheat and barley 
grains was achieved. The efficacy of the 
plasma treatment (20 min) against 
microorganisms decreased in the following 
order: E. coli > P. verrucosum (spores) > B. 
atrophaeus (vegetative cells) > B. atrophaeus
(endospores).  Germination percentage of
samples treated for up to 5 min was not 
affected, but it was decreased after 20 min of 
treatment. Overall, ACP was effective for 
cereal grain decontamination, however the 
diverse native micro-flora may pose greater 
resistance to the closed surface 
decontamination approach than the individual 
fungal or bacterial challenges. 

INTRODUCTION  

Contamination of cereal grains with insects or 
microorganisms is a persistent concern for the 
grain industry due to irreversible damage to 
quality and safety characteristics and 
economic losses. Conventional techniques for 
controlling  spoilage of cereal grains include 
thermal and chemical sterilization methods, 
however, these methods can negatively affect 
the quality and functional properties of cereals 
and cereal products; moreover, complete 
elimination of mycotoxins from food product 
by processing can rarely be achieved  

(Karlovsky et al., 2016; Oghbaei, Prakash, & 
Yildiz, 2016). ACP presents an alternative to 
conventional grain decontamination methods 
owing to the high antimicrobial potential 
generated during the treatment with chemical 
and bioactive radicals, e.g. reactive oxygen 
species (ROS) and reactive nitrogen species 
(RNS), which cause damage to proteins and 
nucleic acids, as well as lesions in cellular 
membranes (Laroussi and Leipold 2004). The 
plasma treatment efficacy for microbial 
inactivation is under investigation in a number 
of food systems. As a non-thermal process, 
ACP causes minimal or no thermal damage to 
the food product treated (Niemira 2012). 

The aim of this work was to apply polynomial 
response surface models to cereal grains’
microbiological and quality criteria in 
response to HVDBD ACP contained treatment 
to improve safety whilst maintaining grain 
quality. For this, antimicrobial efficacy of 
ACP against background microflora of barley 
and against challenge pathogens, such as E. 
coli, B. atrophaeus (vegetative cells and 
endospores) and P. verrucosum (spores) 
inoculated on barley was investigated. To 
study the mechanisms responsible for the 
potential enhancement of early wheat growth, 
response surface models were applied to 
examine the influence of ACP treatment on 
wheat quality parameters, such as germination 
rate and mean germination time.  

METHODOLOGY 

Cereal Grains 

Organic wheat and barley grains were 
purchased from a local retailer.  Barley grains 
were sterilized by autoclaving at 121°C for 15 
min and used to study the effect of ACP on 
inactivation of challenge pathogens. In order 
to assess ACP treatment efficacy for the 
reduction of background microbiota, 
unsterilized barley grains were used. 
Germination studies were performed using 
unsterilized wheat grains. 
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Microbiological Criteria 

E. coli NCTC 12900, B. atrophaeus var. niger
ATCC 9372 and P. verrucosum DSM 12639 
were used in this work. Sterilized barley grains 
(10 g) were sprayed with a suspension of 
selected microorganism (0.5 ml) and air-dried 
for 1 h. To evaluate the effect of ACP 
treatment on grain background microbiota, 
unsterilized and un-inoculated wheat and 
barley grains were used.

Quality Parameters 

To investigate the impact of ACP on 
physiological properties of wheat grains 
germination percentage (G%) and mean 
germination time (MGT) were calculated: G% 
= (n x 100%) / Nt, and mean germination time: 
MGT = ∑ (n x d) / N, where n is number of 
grains germinated on each day, Nt – total 
number of grains, N is total number of grains 
germinated at the termination of the 
experiment and d is the number of days from 
the beginning of the test. All germination 
experiments were performed at least three 
times. 

Experimental Design 

The HVDBD ACP system (Fig. 1) used in this 
study was previously described by Ziuzina et 
al. (2015). Wheat or barley grains (2 g) were 
treated inside the sealed container, which was 
used to provide a contained environment 
during and post treatment. The samples were 
subjected to either direct or indirect ACP 
treatment for 5-20 min at 80 kV under 
atmospheric pressure and air and analysed for 
microbiological (plate count) and functional 
characteristics (G% and MGT) immediately or 
after storage for 0, 2 or 24 h post treatment to 
monitor effects of retention time on ACP 
treatment efficacy. All experiments were 
performed in duplicate and replicated at least 

three times.

Fig. 1.  Schematic of the experimental set-up 
for DBD plasma system 

Statistical Analysis 

Statistical analysis was performed using IBM 
SPSS statistics 21 Software (SPSS Inc., 
Chicago, USA). All data was subjected to 
analysis of variance (ANOVA). Means of 
ACP treated and untreated controls were 
compared according to the method of Fisher’s 
Least Significant Difference-LSD at the 0.05 
level.  

Response Surface Modelling  

The datasets of the microbial inactivation and 
germination studies were modelled using 
polynomial response surface models. These 
mathematical models were fitted to the 
datasets using the lsqnonlin routine of the 
Optimization Toolbox of Matlab version 7.14 
(The Mathworks Inc.). The mathematical 
model for the effect of treatment time (tt) and 
retention time (rt) on the inactivation of 
microorganisms on barley and wheat was 
formulized as:  δ(tt, rt) = a1 · tt + a2 · rt + a3 · tt
· rt , where δ is the decimal reduction of the 
microbial population as calculated by 
comparing the microbial quantities with the 
average of the controls. The parameters a1 to a3
are regression coefficients. The response 
surface model for the effect of treatment time, 
retention time and incubation time (it) on the 
germination rate γ was described as: γ (tt,rt,it)
= a1 + a2 · tt + a3 · rt + a4 · it + a5 · tt · rt + a6 · tt 
· it + a7 · rt · it. The 95% confidence bounds on 
the model parameter estimates were 
determined using the nlparci Matlab function. 
A more detailed description of the calculation 
of confidence bounds on the parameter 
estimates is available in Walter & Pronzato 
(1997). 

RESULTS  

Inactivation of Barley Background 
Microflora 

Significant reductions in barley background 
microflora were only achieved after longer 
treatment for 20 min in combination with 2 h 
retention time or after either 5 or 20 min of
treatment in combination with an extended 
retention time of 24 h (p<0.05), with no 
statistical difference between surviving 
populations of the treated groups recorded. In 
terms of the effects of mode of plasma 
exposure, direct treatment always resulted in 
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slightly higher reductions of both mesophilic 
bacteria and fungi on grains (Fig. 2).

Inactivation of Challenge Microorganisms  

The reduction of microorganisms inoculated 
on barley grains is presented in Fig. 3. ACP 
treatment efficacy was strongly affected by the 
type of microorganism studied. The efficacy of 
the plasma treatment of barley grains 
inoculated with microorganisms decreased in 
the following order: E. coli > P. verrucosum
(spores) > B. atrophaeus (vegetative cells) > 
B. atrophaeus (endospores). 

Fig. 2. Surviving barley microflora:
mesophilic bacteria – direct (a) and indirect (b) 
treatment, yeasts and moulds – direct (c) and 

indirect (d) treatment; - control,   - 5 
min treatment, - 20 min treatment.  

The highest resistance was observed for B. 
atrophaeus endospores. For other
microorganisms tested, 20 min of treatment 

with 24 h retention time was the most efficient 
combination.  

Modelling Analysis 

The modelling results with respect to the 
inactivation of naturally present fungi and 
mesophilic bacteria in barley are presented in 
Table 1, where the magnitude of each 
coefficient indicates the influence of the 
related term on the decimal reduction. 

Fig. 3. (a) E. coli, (b) B. atrophaeus vegetative 
cells, (c) B. atrophaeus spores and (d) P. 

verrucosum spores; post-treatment retention 
time: 2 h - - direct treatment and 

- indirect treatment, 24 h - - 
direct treatment and  - indirect 

treatment. Vertical bars represent standard 
deviation.

The 95% confidence bounds on the parameter 
estimates were omitted as all parameters had a 
high accuracy. The relatively low values of all 
coefficients confirm that naturally present 
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microorganisms have a high resistance against 
the applied ACP treatment. 

The modelling analysis confirm that the 
endospores of B. atrophaeus were 
considerably more resistant against ACP 
treatment than the vegetative cells. These 
results also demonstrate that the effect of 
treatment time itself is comparable between E. 
coli and P. verrucosum spores. The modelling 
analysis also indicates that the challenge 
microorganisms used were much more 
susceptible to the ACP treatments than the 
background microbiota. Even though the effect 
of treatment time itself was always lower for 
the indirect treatment, the combined effect of 
treatment time and retention time can still be 
similar, however, this was not the case for B. 
atrophaeus spores.  

Table 1. Response surface model coefficients 

  

Wheat Grain Germination 

In general, 5 min of treatment had minimal 
effect on the grain germination rate, regardless 
of mode of exposure or retention time used, 
whereas 20 min of direct treatment 
significantly decreased germination for most 
samples (p<0.05) (Fig. 4). By Day 7, no 
significant differences were observed between 
the samples subjected to 5 min of plasma 
treatment, with either 2 or 24 h retention time, 
and the control samples (p<0.05). The 
parameter estimates and 95% confidence 
bounds of the response surface model for the 
effect of treatment, retention and incubation 
time on the germination rate is presented in 
Table 2. The Root Mean Squared Error 
(RMSE) of each model is also presented. This 
error is an estimate of the standard deviation of 
the error between the model and the 
measurements. 

Response surface models were compared with 
average measured germination rates.  The 
effect of the treatment time itself is much 

higher with the direct treatment than with the 
indirect treatment (more than a factor of 2 
higher). 

Also the retention time has a larger effect on 
the germination rate for the direct treatment. In 
case of the indirect treatment, it is mostly the 
interaction between the treatment time and 
retention time that impacts the germination 
rate. The standard deviation of the difference 
between the response surface model and the 
measurements, as approximated by the RMSE, 
is relatively high for both models. In this case, 
the high RMSE points to high variability of the 
germination rate, given the same experimental 
conditions. 

Fig. 4. G% measured on day 7:  - untreated 
control, after   - 5 and  - 20 min of treatment. 

Table 2. Response surface model parameter  

DISCUSSION  

The polynomial response surface models were 
used to study the effect of HVDBD ACP 
critical control parameters on microbiological 
safety and quality attributes of grains. The 
modelling demonstrated that contained 
HVDBD ACP treatment combined with 24 h 
of retention time significantly reduced the 
number of microbial counts on grains. A
closed process combined with post treatment 
retention allowed the extended interaction of 
the plasma generated reactive species with the 
sample. This facilitated antimicrobial action of 
long lived reactive species and it explains why 

Mode of plasma exposure
Grain 
type Microorganism Direct Indirect

tt rt tt·rt tt rt tt·rt

Barley

B. atrophaeus spores 0.077 -0.004 1.39E-03 0.019 0.001 7.56E-04
B. atrophaeus cells 0.181 0.044 -1.29E-03 0.154 0.109 -5.44E-03

E. coli 0.176 0.083 -4.31E-04 0.124 0.145 -2.86E-03
P. verrucosum 0.193 0.023 -6.56E-04 0.114 0.070 -1.94E-03

Fungi 0.056 0.018 2.05E-03 0.043 0.081 -2.18E-03
Mesophilic bacteria 0.039 0.020 3.30E-03 0.045 0.085 -2.16E-03

Wheat
Fungi 0.114 0.031 3.82E-04 0.094 0.069 -2.90E-03

Mesophilic bacteria 0.088 0.032 -8.97E-04 0.007 0.056 -4.67E-04

Model term Direct Indirect
Constant 39.851 ± 41.716 47.864 ± 44.076

tt -2.304 ± 0.309 -0.808 ± 0.326
rt 0.302 ± 0.174 -0.158 ± 0.183
it 5.651 ± 1.945 3.837 ± 2.055

tt·rt -0.030 ± 0.001 -0.075 ± 0.001
tt·it 0.032 ± 0.013 0.116 ± 0.014
rt·it -0.089 ± 0.007 0.034 ± 0.008

RMSE 14.94 15.35
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in our study extending post-treatment retention 
time was generally more efficient for 
microbial inactivation, which is important for 
translation to process design. However, ACP 
microbial inactivation efficacy depended on 
many different factors, such as plasma mode,
process parameters, type of microorganism 
and its physiological state. By modelling 
microbial response, this work demonstrated 
that background microflora of grains and B.
atrophaeus endospores exhibited higher 
resistance to plasma than other challenge 
microorganisms tested. The complex spore 
coat structure of B. atrophaeus has been 
identified as a resistance mechanism against 
various chemicals, particularly oxidizing 
agents (Sella et al. 2014). In this study, fungal 
spores were more resistant to treatment than 
Gram-negative E. coli and less resistant than 
both vegetative cells and spores of Gram-
positive B. atrophaeus. Similarly, Eissa et al. 
(2014) demonstrated higher resistance of 
bacterial spores to peroxyacetic acid and 
hydrogen peroxide as compared to B. subtilis
spores.  

When comparing the effect of the mode of 
treatment on the microbial inactivation, the 
observed differences were limited. In case of 
applying the indirect treatment, all treatments 
that resulted in a significant reduction of the 
microbial load also showed antagonistic 
interactions between the effects of treatment 
and retention time. As such, combining both a 
long treatment time and retention time may not 
be efficient. Thus, it is advised to combine 
shorter treatment times with longer retention 
times to achieve the required inactivation 
efficacy. This work also demonstrated that the 
mode of exposure can be exploited to 
modulate the impact of reactive species on the 
functional properties of grains and seeds, with 
the potential to modulate quality while 
enhancing or maintaining microbiological 
safety. 

CONCLUSION  

This work established that response surface 
modelling of microbiological challenge data 
and quality indicators can be employed for 
optimisation of cold plasma based 
interventions applied to cereal grains.  The 
efficacy of ACP treatment was dependent on 
processing parameters and the type and 
physiological state of microorganisms. 

Through modelling, it has been demonstrated 
that combining shorter treatment times and 
longer retention times, sufficient microbial 
inactivation can be achieved, with minimal 
negative impacts on germination parameters of 
grains. The highest resistance to plasma was 
observed for native microflora present on 
grains followed by B. atrophaeus endospores,
which could be further employed as 
biomarkers to address microbiological 
parameters for process understanding and 
control. Therefore, contained HVDBD ACP 
technology in conjunction with modelling can 
be a promising tool for effective cereal grain 
decontamination and modulation of functional 
properties.

FUTURE RESEARCH 

Mathematical modelling of the biological and 
physicochemical responses to cold plasma 
application may be used as a process control 
mechanism.  
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ABSTRACT 
Food products can be classified into six categories of food 
architectures: liquids, aqueous gels, oil-in-water 
emulsions, water-in-oil emulsions, gelled emulsions, and 
surfaces. For studies of microwave (MW) heating, model 
foods with consistent and predictable dielectric properties 
(e.g. tylose) are frequently used. In this study, the 
dielectric properties of five fish based model food systems 
were characterised, and one of these, a liquid with added 
xanthan, was used for modelling of MW heating, and 
compared to tylose. The preliminary results indicate a
more homogeneous heating for tylose, than for the 
Xanthan. Besides, as such, the fish based model systems 
may show a closer resemblance to real food.

INTRODUCTION 
Microwave heating has been a promising technology for 
food industry due to its plethora of possible food 
processing applications, e.g., thawing of frozen meats, pre-
cooking for fast food chains, and pasteurization of pre-
packaged foods (Decareau, 1985). All these processes 
started taking off with microwave heating recent decades. 
When a food product is subjected to microwave heating, 
electromagnetic energy penetrates into the product and is 
converted to heat by interactions with charged particles 
and polar molecules (Buffler, 1992). The penetration depth 
is strongly influenced by applied frequency (915 or 2450 
MHz in most food processing cases) and dielectric 
properties, which are also function of frequency and 
temperature.   Compared to conventional thermal 
treatments used in food industry, microwave heating leads 
to significantly shorter processing times due to the direct 
interaction between food materials and electromagnetic 
waves, resulting in less damage to the physico-chemical 
and nutritional properties of thermally processed foods 
(Datta and Hu, 1992; Soto-Reyes et al., 2015). However, 
temperature uniformity still continues to be a concern, and 
forced rotation of the product within the cavity is one of 
the common ways to increase the temperature uniformity 
(Li and Sun, 2002).  

Heat transfer and resulting temperature distribution of 
foods is influenced by different factors related to the 
product, package, process and used equipment, e.g., shape, 
size, composition, multiple components, physical state, 

and dielectric properties (Datia and Davidson, 2000;
Salazar-González et al., 2012; Vadivambal and Jayas, 
2010). Among these factors, the dielectric properties of a 
food product (i.e., the dielectric constant ε’, expressing the 
ablility of a material to store electric energy, and the 
dielectric loss factor ε”, expressing the conversion of 
microwave energy into thermal energy) are of major 
importance in relation to microwave heating (Tang, 2015). 
As stated, they both are functions of applied frequency and 
evolved temperature. 

In addition, dielectric properties of foods are affected by 
food composition (e.g., moisture content, salt, fat content). 
Hence, dielectric properties must be determined for each 
specific food product or food product group as a function 
of temperature and frequency (Guan et al., 2004; Tang, 
2015). Due to the limitations related to the use of real food 
products (e.g., each batch of food can only be used once, 
difficult to use for periodical tests), model foods with 
consistent and predictable dielectric properties are used 
frequently in microwave studies (Llave et al. 2015, 2016). 
Materials used for the creation of model foods in previous 
studies include bentonite water pastes (Luan et al., 2015),
agar gel (Sakai et al., 2005), tylose (Llave et al. 2015, 
2016), and whey protein gel (Wang et al., 2009). However, 
similarities between these model systems and real foods 
are rather limited, often requiring validation in the target 
food product (Llave et al., 2016).   

In this study, microwave heating was modelled in fish 
based model food systems (Verheyen et al., 2017), i.e., 
more complex model food systems than used in previous 
studies. Due to their high heat sensitivity and resulting 
quality loss induced by traditional thermal inactivation 
techniques (Rosnes et al., 2011), fish products are of 
significant interest for microwave studies. Considering the 
increased use of MW heating for pasteurization and 
sterilization purposes, the use of fish based models is 
expected to give an idea on the use of microwave systems 
for innovative processing purposes. To develop the 
mathematical model, the model systems were 
characterized for their dielectric and thermal properties,
and resulting temperature difference was compared with a 
conventional model system of tylose gel (77% moisture 
content – wet basis).

MATERIALS AND METHODS 
Model systems
The fish-based model systems were prepared as described 
by Verheyen et al. (2017). These were two liquid systems 
(with and without xanthan gum), an emulsion (with 1% 
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fat), an aqueous gel and a gelled emulsion. They were 
compositionally designed in such a way that the micro-
structural effect could be isolated, and all model systems 
were suitable for common growth and mild thermal 
inactivation experiments.  

Density
Density of the samples was measured at room temperature 
recording the mass of a 100 mL volume. 

Specific heat capacity
The specific heat capacity was determined by Differential 
scanning Calorimetry (DSC), using the sapphire method 
(Anon., 1981, 2010). Since this parameter is expected to 
be temperature dependent (Darros-Barbosa et al., 2003), 
measurements were recorded in the range between 0-10 °C
and 60-70 °C, and four measurements, between 3-7 °C and 
63-67 °C, respectively, were used to determine the cp value 
at 5 and 65 °C.

Thermal conductivity
Thermal conductivity of the samples was measured by a 
line heating source probe and instrument KD2 (Decagon 
devices inc, Pullman, WA, USA) at 4, 60 and 70 °C. 

Dielectric properties 
The dielectric properties were measured by using a 
network analyzer (Agient Tecnologies ES061B ENA 
Series Network Analyzer, ABD) in the frequency range of 
915 to 2450 MHz. The network analyzer used an open 
ended coaxial-line probe (Agilent Technologies, 85070E, 
ABD), and dielectric constant ( ) and loss factor (
were measured within a temperature range of 2 to 80 .
Temperatures of the solutions were adjusted in a water 
bath (Memmert, Germany). All measurements were 
carried out in triplicate, and the open ended coaxial-line 
probe was calibrated by measuring the properties of air, 
the short-circuit block (metallic short block) and distilled 
water at corresponding measurement temperatures.

Modelling
The modelling study was carried out using the properties 
of xanthan and tylose (as a common example used in 
various model validation studies). Dielectric and thermal 
properties of tylose gel were obtained from Llave et al.
(2015, 2016). The mathematical model to determine the 
electromagnetic field distribution within a microwave 
cavity and temperature distribution within the sample was 
developed using Comsol Multiphysics program (V.5.1 -
Comsol AB, Stockholm, Sweden). Figure 1 illustrates the 
computational geometry of the microwave cavity. The 
cylindrical sample (tylose and xanthan) dimensions placed 
in the cavity were 6.6 cm; in diameter and 3.8 cm in 
height.

For model development, microwave heating physics 
(electromagnetic waves and heat transfer in solids) was 
used with following governing equations for 
electromagnetic and temperature distributions with the 
applied boundary conditions. 

Electromagnetic Waves: 

Boundary conditions: 
- Perfect Electromagnetic Conductor for cavity and 

waveguide walls, 
- 2450 MHz frequency and variable power due to 

the on-off cycles of the microwave system 
(Figure 2 shows the on-off cycles within the 
given process time) with TE10 mode rectangular 
type port, and  

- Dielectric properties of the samples were function 
of temperature through the frequency-transient 
solver.

Figure 1. The computational geometry of the microwave 
cavity in the applied modeling study. 

Figure 2. The on – off cycle of the microwave system used 
in the modeling study. 

Heat Transfer in Solid; 

Where absorbed power, Q was:

Boundary conditions: 
- Fixed and uniform initial temperature 

distribution,  
- Convective heat transfer for surface of sample 

with a heat transfer coefficient of 

RESULTS AND DISCUSSION
Thermophysical properties
Density and thermal conductivity values are reported in 
Tables 1 and 2, respectively. Density values ranged from 
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800 to 920 kg/m3 for different fish based model systems at 
20 °C while the emulsion and the xanthan had the lowest 
density and highest density, respecitvely. Specific capacity 
values at 5 °C ranged from 0.51 to 3.30 J/g-K, at 5 °C, and 

from 2.30 to 3.44 J/g-K at 65 °C. The liquid system 
showed the highest specific heat capacity at both 
temperatures. 

Table 1: Density and specific heat capacity of the model systems.

Density [kg/m3] Specific Heat Capacity, cp [J/g*K]
Sample\Temperature [°C] 20 5 65
Xanthan 920 1.90 ± 0.02 2.30 ± 0.01
Liquid 910 3.30 ± 0.00 3.44 ± 0.05
Aqueous gel 850 2.90 ± 0.00 3.17 ± 0.01
Emulsion 800 2.38 ± 0.01 2.95 ± 0.01
Gelled emulsion 880 0.51 ± 0.00 2.69 ± 0.09

Table 2: Thermal conductivity of the model systems. 

Thermal conductivity [W/m*K]
Sample\Temperature [°C] 4 60 70
Xanthan 0.19 ± 0.01 0.60 ± 0.00 0.67 ± 0.03
Liquid 0.34 ± 0.00 0.46 ± 0.03 0.73 ± 0.02
Aqueous gel 0.13 ± 0.00 0.45 ± 0.03 0.55 ± 0.01
Emulsion 0.06 ± 0.00 0.45 ± 0.02 0.60 ± 0.02
Gelled emulsion 0.33 ± 0.00 0.53 ± 0.01 0.56 ± 0.02

Table 3: Dielectric constant and dielectric loss factor of the model systems at 2450 MHz 
Temperature [°C] 2 25 42 61 81

Dielectric constant
Xanthan 81.5 ± 0.09 71.6 ± 0.39 67.1 ± 4.11 66.7 ± 0.61 50.4 ± 5.05
Liquid 75.8 ± 0.15 83.2 ± 0.81 65.1 ± 4.07 67.0 ± 1.46 59.7 ± 1.44
Aqueous gel 83.6 ± 0.55 71.7 ± 0.12 76.4 ± 1.96 61.7 ± 0.91 60.5 ± 7.00
Emulsion (1%fat) 76.4 ± 4.09 57.3 ± 0.17 59.6 ± 6.40 64.7 ± 0.22 57.5 ± 5.10
Gelled emulsion 79.3 ± 0.37 72.5 ± 11.54 64.1 ± 1.16 69.9 ± 0.02 60.3 ± 3.04

Dielectric loss factor
Xanthan 35.4 ± 0.05 31.6 ± 0.05 34.5 ± 4.30 43.5 ± 1.44 41.3 ± 4.01
Liquid 31.5 ± 2.78 34.5 ± 0.86 30.0 ± 3.39 41.4 ± 2.76 52.6 ± 1.06
Aqueous gel 30.9 ± 0.07 41.3 ± 0.02 40.5 ± 0.91 34.7 ± 1.22 43.0 ± 0.35
Emulsion (1%fat) 30.8 ± 1.78 27.4 ± 0.20 31.0 ± 1.45 40.1 ± 0.54 49.4 ± 2.79
Gelled emulsion 34.4 ± 0.03 31.1 ± 5.87 27.5 ± 0.66 43.2 ± 0.01 42.0 ± 3.12

Dielectric properties
The dielectric properties as a function of temperature at 
2450 MHz frequency are shown in Table 3. 

Modelling of microwave heating
The tylose and xanthan samples were assumed to be 
located in a microwave cavity (Fig. 1) and the results were 
compared under the same conditions. Figures 3 and 4 
show the surface temperature distribution of the samples 
after MW heating for 90 s for tylose and 20 s for xanthan. 
The local surface temperature increase for the xanthan 
samples was rather high with the localized hot spots 
compared to the tylose sample even at the earlier stage of 
heating. After 20 s of heating, xanthan surface temperature 
increased over 100 C, and it was required to include the 
latent heat of vaporization to have a reasonable data. Since 
the objective of the study was to demonstrate the effect of 
dielectric properties and penetration depth on the 
temperature increase, the temperature distributions at the 
given times were compared. The surface temperature 

distribution (Tsurface) and volume average temperature 
(Tavg) changes of the samples are shown in Figures 5 and 
6, respectively.  

Figure 3. Surface temperature distribution of the tylose 
sample after 90 s of the microwave heating  

(temperature scale is in `C`).
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Figure 4. Surface temperature distribution of the Xanthan 
sample after 20 s of the microwave heating  

(temperature scale is in `C`). 

Figure 5. Surface (Tsurface) and volume average temperature 
(Tavg) changes of tylose sample with its penetration depth 

(secondary y-axis) during 90 s of heating. 

Figure 6. Surface (Tsurface) and volume average temperature 
(Tavg) changes of xanthan sample with its penetration depth 

(secondary y-axis) during 90 s of heating. 

As observed in these figures, for the tylose sample, the 
difference between surface and volume average 
temperature was rather small (Figure 5) compared to the 
xanthan, where rather significant differences were 
observed (Figure 6). This was due to local (over) heating 
of the surface. As explained below, penetration depth is 
strongly influenced by applied frequency and dielectric 
properties. Hence, in the same figures, change of 
penetration depth (dp) is also demonstrated: 

The penetration depth is defined as the depth at which the 
intensity of the electromagnetic effect is reduced to its 1/e 
(37%). It increased up to 1.6 cm for the case of tylose 
while it decreased from 0.52 to 0.45 cm for Xanthan 
sample, indicating a shorter penetration depth. Since the 
electromagnetic effect was limited to demonstrate a 
volumetric heating for the case of Xanthan, local surface 
heating with hot spots was more common with the limited 
volume average temperature increase compared to the case 
of tylose. Figures 7 and 8 show the effect of penetration 
depth at 20 s of the process for the samples in the xz plane.

Figure 7. Effect of penetration depth at 20 s of  
the process for tylose sample in the xz plane  

(temperature scale is in `C`). 

Figure 8. Effect of penetration depth at 20 s of 
the process for xanthan sample in the xz plane 

(temperature scale is in `C`). 

As observed, the tylose samples demonstrate a better 
uniformity while a certain surface heating starts for the 
xanthan sample at a rather early stage of the process. In 
addition to the effect of dielectric properties and 
penetration depth on heating rate, specific heat value was 
another factor. Specific heat values of xanthan changed 
from 1.90 to 2.30 J/g-K from 5 to 65 °C while it was 3.65 
J/g-K for tylose. This shows that xanthan sample requires 
less heat energy to increase in its temperature. This also 
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demonstrates the significant effect of specific heat capacity 
during microwave heating. 

CONCLUSIONS AND FUTURE RESEARCH  
In this study, the dielectric properties of five fish based
model food systems were characterised, and one of these, a 
liquid with added xanthan, was used for modelling of MW 
heating, and compared to tylose. The preliminary results 
indicate a more homogeneous heating for tylose, than for 
the Xanthan. But as such, the fish based model systems 
may show a closer resemblance to real food. In addition, 
the model systems open for modifications and 
adjustments, both to study effects on the microwave 
heating, and also on the inactivation of microorganisms 
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ABSTRACT

The production system of freeze-dried lactic acid bacte-
ria involves several processes, but its impact on bacteria
resistance is still not well understood. This system can
be defined as a complex one since it depends on mul-
tiple scales: the Genomic, the Cellular and the Popu-
lation scale. The scarcity of data available for building
models leads us to propose an approach that makes use
of expert knowledge. In this paper we present a semi-
automatic modelling tool, LIDEOGRAM and discuss
how it contributes to insight formulation and rapid hy-
pothesis testing. New results show that LIDEOGRAM
is able to produce more robust modelling hypotheses
when experts can interact and revisit the genomic data
preprocessing.

INTRODUCTION

Complex systems are found in many features of nature
and science, ranging from the economic and social struc-
ture of a city to the global climate, or from the be-
haviour of a single cell to the behaviour of the intricate
interactions of the human brain. Complex systems in-
volve numerous components linked by non-trivial rela-
tionships, and are challenging to study. Modelling such
complex systems, by summarising available knowledge
into a mathematical or computational representation, is
not a trivial task.

Concentrates of Lactic Acid Bacteria (LAB) are widely
used in the food industry for manufacturing products
such as yoghurt, cheese, fermented meat, vegetables and
fruit beverages. The production of freeze-dried LAB is
a complex food system due to its multi-scale and multi-
step properties. One of the main challenges that need
to be tackled ahead is to understand the origin of the
LABs resistance and/or their sensitivity to the whole
production system. Models describing parts of the sys-
tem for a specific strain of bacteria are found in the

literature (Passot et al. (2011)). However, to the best of
our knowledge, no models have been proposed to repre-
sent the whole process.

Automatic modelling approaches have already been pro-
posed for complex systems such as metabolic networks
(Schmidt et al. (2011)), or for various multi-scale pro-
cesses (Hasenauer et al. (2015)). These approaches often
require a significant amount of data, however, gathering
data on the freeze-drying process of LAB is expensive
and time-consuming. Little amount of data is thus gen-
erally available, and this is a major issue for automatic
modelling. To compensate for the lack of data, expert
knowledge on the process can be exploited. We show in
this paper how such knowledge can be integrated within
a modelling process, based on a semi-automatic scheme.

The paper is organised as follows: First we present some
background on complex systems, on semi-automatic
modelling and on expert knowledge integration. The
target system and the dataset are then described. Next
we detail our semi-automatic modelling software and
show some experimental results. Finally, results are dis-
cussed and conclusions are drawn.

BACKGROUND

Complex Systems in Biology and Food Systems:
Expert Knowledge Integration Methods

A complex system is defined as a system made of mul-
tiple processes, entities, and nested subsystems. Global
properties emerge through a series of phenomena occur-
ring at different scales (Ladyman et al. (2013)). Ap-
propriate descriptions with high expressiveness and lit-
tle uncertainty of the underlying mechanisms is needed
to elucidate such systems. Building models of complex
systems is crucial, but highly difficult. It usually re-
quires a robust framework, with strong iterative inter-
action combining computational intensive methods, for-
mal reasoning and experts from different fields. In such
context, optimisation plays an important role (Lutton
et al. (2016)). Properties of food systems (such as uncer-
tainty and variability, heterogeneity of data, coexistence
of qualitative and quantitative information, conjunction
of different perspectives) raise the focus on another es-
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sential issue, that can be called the human factor. In
order to gain a better understanding of food systems,
human expertise and decision making are of major im-
portance, and should thus be integrated into automatic
modelling approaches (Lutton and Perrot (2015)). Nu-
merous papers propose to take advantage of a structured
prior knowledge of a system to improve machine learn-
ing methods. Among those, prior knowledge was used
to improve the predictions of neural networks model of
chemical systems (Thompson and Kramer (1994)), or
to build a genetic network using Bayesian methods (Le
et al. (2004)). Expert knowledge was also used by Bau-
drit et al. (2010) to improve the quality of a cheese ripen-
ing process model using Bayesian networks. In other
studies, structured knowledge about the topic of inter-
est is not well defined and exist more in the form of
insights. In such cases, approaches relying on visual ex-
ploration of the data, and interactions through software
have been proposed (Turkay et al. (2017), Cancino et al.
(2012) and Krause et al. (2014). In this way, it is possi-
ble to confirm and elucidate new hypotheses.
In this context, this work aims at presenting in the fol-
lowing sections a new approach for modelling multi-scale
systems, interactively and iteratively, through visual ex-
ploration, machine learning and knowledge integration.

PRODUCTION AND FREEZE-DRYING OF
LACTIC ACID BACTERIA

Concentrates of LAB, also called starters, are food in-
gredients widely used for producing fermented meat,
vegetables, fruit and dairy products. The commer-
cialisation of these starters requires the application of
successive operations: fermentation, concentration and
preservation by freezing or freeze-drying (or lyophili-
sation). The viability and acidification activity of the
cells are the two main quality attributes of the starters.
They depend on many control parameters of the multi-
steps process: Fermentation, Concentration, Formula-
tion, Freeze-Drying and Storage, See Carvalho et al.
(2004) for a detailed description.
The bacteria’s levels of resistance to the processes is also
dependent on the biochemical and biophysical proper-
ties and organisation of their membrane, which in turn
is determined by the expression of the bacterial genome.
This case study is based on the work of Velly et al. (2015)
about the resistance of Lactococcus lactis subsp. lactis
TOMSC161 to freeze-drying. This strain, very sensitive
to freeze-drying, is used for the manufacture of Tomme
de Savoie, a French cheese, for its texturing and acidifi-
cation characteristics. Several bacterial properties were
measured for two fermentation temperatures (22 C and
30 C), and two cell growth phases (at the beginning of
the stationary growth phase and 6 hours later). The
dataset features 12 data points, corresponding to previ-
ous detailed four fermentation conditions and three bi-
ological repetitions of each experimental condition. Dif-

ferent scales were considered:

• Genomic: Transcriptomic data obtained on 2744
genes by RNA-seq,

• Cellular: Relative composition of main fatty acids
present in the bacterial membrane determined by
Gas Chromatography-Mass Spectrometry after ex-
traction and the Anisotropy of the membrane
(rigidity) assessed by flow cytometry,

• Population: Viability by numbering on agar plates
and acidification activity in milk quantified using
the CINAC system at the end of the following steps:
Concentration, Freezing, Drying, and three months
of Storage.

LIDEOGRAM

Experts of the domain seek answers about how a given
bacterial strain becomes resistant to the process. Math-
ematical tools, including mathematical formulas are
generally used to help them address these questions.
But finding reliable formulas linking the different vari-
ables of such a system is indeed challenging. In biolog-
ical data, repetitions of a given experimental condition
are often highly variable. Moreover, experiments are
usually time-consuming and expensive, resulting in few
data being obtained, which makes the task of character-
ising the existing variability difficult.

LIDEOGRAM (Life-based Interactive DEvelopment
Of GRAphical Models) tries to address these challenges
with an original approach based on semi-automatic
modelling (See Chabin et al. (2017a;b) for details). The
goal of LIDEOGRAM is to provide experts with a de-
sign tool for modelling their complex process. Each non-
input variable is modelled by a mathematical formula
involving other variables of the system. It is then pos-
sible to create a multi-scale model where each scale of
the process is defined with variables of a lower scale and
with experimental conditions. A global model is there-
fore a concatenation of mathematical equations that fig-
ure relationships between different variables at different
scales. This is similar to other successful multi-scale
modelling approaches such as for grape berries ripen-
ing by Dai et al. (2007) or for cow’s milk production by
Cros et al. (2003): the global model is made of stacked
sub-models.

However, it is difficult to find the ”right” equation in a
context of high variability in the dataset. It is for in-
stance frequent to come up with over-fitted equations
that perfectly represent a dataset including its noise. In
order to rule out over-fitted equations, our strategy is
to involve experts in the course of the modelling pro-
cess rather than splitting the (small) available dataset
into training and test subsets. The expectation is that
experts are able, thanks to their knowledge of the pro-
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Figure 1: Screenshot of the interface where users choose the authorised links between the defined classes. A link
between two classes means that all variables associated to the parent class can be involved in the equations for all
variables of the child class. The displayed graph represents the selected constraints chosen for this experiment. The
selected class here is the Genomic class (circled in black). The variables assigned to this class can be seen on the right

side.

cess, to identify over-fitted, under-fitted or inappropri-
ate equations.

Therefore, as a first optimisation step, LIDEOGRAM
runs Orthogonal Matching Pursuit (OMP) on each vari-
able. This technique introduced by Pati et al. (1993) is
a linear regression that makes it possible to choose the
number of predictive variables used in an equation. Us-
ing this approach, a set of candidate equations with dif-
ferent levels of complexity and fitting error is associated
to each variable. Constraints can be defined beforehand
by the user, using the interface presented in Figure 1.
It makes it possible to attribute each variable to a given
class of variables, and to authorise of forbid links be-
tween them, in the sense that only the variables from a
parent class can be used for calculating the variables of
the child class.

A qualitative view of the proposed equations is then pre-
sented to the user as a graphical network (See Figure 2).

The purpose of this view is to help the user identify the
critical variables, where expert feedback is most needed.
Nodes of the graph represent variables. Colours of nodes
correspond to their attributed class. A link between two
variables means that the parent node is used at least
once in the set of equations of the child node. Colours
of links correspond to a numerical value computed using
all mathematical equations featuring the parent node in
the child node. A green link corresponds to a good mean
fitting of the data for the corresponding equations. Con-
versely, a red link represents a poor fitting. The network
may be difficult to read, since the displayed graphical
network can have a considerable amount of links. A
slider filters the links based on a level of importance.
This level of importance is defined for a link by the num-
ber of equations in the child node that use the parent

node, divided by the total number of equations of the
child node.

When a node is selected, the equations found by OMP
are displayed on the top-right side (See Figure 2). Sim-
ilarly, a click on an equation triggers the corresponding
plot of experimental versus predicted data. The user can
then interact with the system by deleting an equation,
deleting a link between a parent node and a child node
(i.e. all equations using the parent node in the child
node are deleted), or deleting a variable (in this case all
equations using the deleted variable are deleted). After
this, few or no equations may remain for some nodes,
the user can choose to restart the OMP on any node,
with new constraints. After this, an evolutionary opti-
misation builds a global model by selecting one equation
for each variable, thus taking into account the coherence
between the scales.

USING EXPERT KNOWLEDGE VIA A SEMI-
AUTOMATIC MODELLING SCHEME

The first step when starting LIDEOGRAM is to organ-
ise the set of variables into classes and to define define
the possible links between classes. Five classes of vari-
ables, linked to the different scales of the process, were
designed: Condition, Genomic, CellularFattyAcids, Cel-
lularAnisotropy and Population. The authorised links
between the classes are presented in Figure 1.

A preprocessing of the variables at the Genomic scale
was needed before running LIDEOGRAM on them.
With 2744 genes measured by transcriptomics and with
a high variance in the measurements, it is hard to ex-
plore and make sense of the function of each individ-
ual gene in a model. For this purpose, two solutions
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Figure 2: Screenshot of LIDEOGRAM. Left: graphical model representing the mean fitness for all local models.
Top-right: list of equations proposed for the selected node (Anisotropy); Bottom-right: plot of the measured versus

predicted data corresponding to the selected equation.

were explored using human expertise. The first pre-
processing (PP1) is a classification proposed by Bolotin
et al. (2001). The 82 functional classes of genes were
reviewed by the experts in order to keep the most rele-
vant ones. Twelve functional classes were selected at the
genomic level. For each functional class, the sum of the
genes expressions corresponding to this functional class
is computed. Following experts advices, a second pre-
processing (PP2) was performed to select only the genes
showing a strong differential expression with respect to
the conditions of fermentation. The selection criterion,
computed for each gene, is the variance calculated on
the mean expression for each condition, divided by the
maximum of the variances calculated for each fermen-
tation condition. Only the genes with a criterion larger
than 2 were kept, which yielded 26 genes.
LIDEOGRAM was used to rapidly access the best way
to pre-process the genomic data for the modelling step.
Results are reported in Table 1, where 0 represents the
best possible prediction and 1 the worst one.

Table 1: Experimental results on the local and global
models using PP1 and PP2.

PP1 PP2

Mean of the
Local models All variables All variables

at the Genomic > 0.7 < 0.5
Scale

Global Fitness 0.702 0.283
on 10 runs var. 1.4× 10−4 var. 5.0× 10−5

From these results, it seems that the variance criterion
approach (PP2) for the Genomic scale performs bet-
ter, both in terms of local and global model. These

two hypotheses were explored in less than an hour, giv-
ing users a convenient and versatile way to test various
modelling hypotheses. The equations proposed for the
Anisotropy were also explored, using PP1 (shown in top-
right side of Figure 2). Each equation was evaluated by
the experts, who stated that the first three equations
were compatible with their knowledge. Indeed, it was
shown by Velly et al. (2015) that the anisotropy asso-
ciated to membrane rigidity is anti-correlated with the
Unsatturated Fatty Acids (UFA), but correlated to the
ratio between Cyclic Fatty Acids and Saturated Fatty
Acids (CFASFA). In the third equation, it is proposed
that the anisotropy is also anti-correlated with the ex-
pression of genes that are associated to the membrane’s
lipoproteins and porins. According to our experts, this
could be explained by the localisation of such proteins
anchored (lipoproteins) to the membrane and crossing
it (porins), respectively. One can thus hypothesise that
their interactions with membrane components such as
fatty acids could possibly modify membrane physical
properties with a lowering effect on anisotropy (rigid-
ity). Finally, some of the proposed equations were hard
to validate. Our hypothesis is that these are over-fitted
equations which may not represent the underlying real-
ity. Such equations can then be discarded by the expert.

DISCUSSION AND CONCLUSION

We have presented above a semi-automatic approach for
multi-scale modelling, that relies on both expert knowl-
edge and automatic optimisation. LIDEOGRAM lets
domain experts easily test various modelling hypothe-
ses for multi-scale systems. Tests have been made on a
production system for freeze-dried Lactic Acid Bacteria.
LIDEOGRAM is also used for other applications, for ex-
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ample, for modelling a cheese ripening ecosystem, and
for modelling a grape berry maturity prediction system.
Future improvements will be focused on the graphical
interface and the various views: new interaction tech-
niques will be proposed for analysing and modifying the
proposed models. Indeed, it has been suggested that
providing a variety of views and interactions (including
change of focus of interest) is an excellent manner to
engage users, reduce their fatigue and boost their cre-
ativity (Lutton et al. (2003), Boukhelifa et al. (2016)).
Non-linear local models will be implemented in a fu-
ture version of the software. We actually expect a bet-
ter accuracy with the proposed models. Previous at-
tempts using non-linear models provided promising re-
sults, however technical difficulties make the full use of
a non-linear modelling approach more complex. Pareto
front exploration of the local models is another impor-
tant issue that will be developed in a further work.
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ABSTRACT

Current macroscopic population balance models are not
sufficient to obtain a profound understanding in the
complex behaviour of microbial responses in food. In-
cluding metabolic network information in mathematical
models leads to an improved mechanistic insight in mi-
crobial processes. The main difficulty in including such
information is the high number of fluxes and metabo-
lites and the number of ordinary differential equations
that has to be added to the model equations. To re-
duce the number of mass balance differential equations,
pseudo steady state is assumed and the intracellular
mass balances are replaced by an underdetermined sys-
tem of algebraic equations. Dynamic metabolic flux
analysis estimates intracellular time-dependent flux dis-
tributions from available measurements, by parameter-
izing the fluxes as a function of time. In this article, a
novel DMFA technique based on a non-uniform rational
B-splines (NURBS) parameterization of the free fluxes
(NDMFA) is presented. This NDMFA technique can be
seen as a generalization of previously introduced state
of the art DMFA techniques.

INTRODUCTION

A metabolic network is an elegant representation of the
interactions occurring between the different components
within a cell. Such a network consists of m nodes, cor-
responding with the m intra- and extracellular metabo-
lites (i.e., the chemical compounds consumed/produced
by a cell) and n edges denoting the n fluxes, which can
be biochemical reactions between the metabolites, ex-
change fluxes or reactions between cell and environment
or transport throughout the cell. The stoichiometric
matrix S ∈ R

(m+1)×n comprises the information of these
interactions by stacking the stoichiometric coefficient of
a metabolite i in reaction j in the element Sij (i.e., on
the i-th row and j-th column of the stoichiometric ma-
trix). In Figure 1 a toy example is presented to show
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Figure 1: Example of a metabolic network and matrices
characterizing such a network.

the different components of a metabolic network and
matrices used to describe such networks.

Dynamic metabolic flux analyis (DMFA) can be seen
as an example of a multi-scale model structure ex-
ploiting information at the macroscopic (extracellular)
level and microscopic (intracellular) level by means of
metabolic networks. This model structure allows (under
certain assumptions) to estimate time-dependent fluxes
in metabolic networks, based on available measurements
(e.g., exchange fluxes between cells and their environ-
ment, metabolite concentrations, etc.). Different tech-
niques for dynamic metabolic flux analysis have been
developed throughout the last decades and a thorough
review on metabolic flux analysis techniques has been
presented by Antoniewicz (2015). Dai and Locasale
(2016), presented an overview of the different software
tools that exist for metabolic flux analysis, together with
a methodology to resolve metabolic fluxes from stable
isotope labeling.

The current state of the art in dynamic metabolic flux
analysis is to parameterize the dynamic fluxes mathe-
matically as a function of time. The first generic dy-
namic metabolic flux analysis methodology has been
proposed by Leighty and Antoniewicz (2011), describing
the dynamic fluxes are described by a piecewise linear
parameterization. A fully nonlinear dynamic parameter
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estimation approach has been presented by Vercammen
et al. (2014), in which the dynamic fluxes are parameter-
ized by B-splines and a direct simultaneous discretiza-
tion approach based on orthogonal collocation has been
followed to construct a NLP. This algorithm has also
been applied to a temperature induced lag phase of an
E. coli strain Vercammen et al. (2017). A generaliza-
tion of the DMFA technique of Leighty and Antoniewicz
(2011) to B-splines, together with a new heuristic algo-
rithm for knot insertion has been presented by Mart́ınez
et al. (2015). Fernandes de Sousa et al. (2016) applied
convex analysis (positive algebra) together with cubic
flux smoothing to determine bounded intervals for each
dynamic intracellular flux (without introducing addi-
tional constraints or objective function). The remain-
der of this work is structured as follows. The next sec-
tion covers the formulation of DMFA as an optimization
problem. Subsequently, the generalized NURBS based
DMFA framework is introduced, clearly indicating that
current state of the art parameterizations are a subset
of this framework. In the Results and discussion section
the NURBS based DMFA framework is implemneted for
a benchmark DMFA case study from Vercammen et al.
(2014). Finally, the Conclusions section summarizes the
main contributions and results of this work, together
with prospectives for future research.

DMFA PROBLEM FORMULATION

Before introducing the DMFA optimization problem,
the following two assumptions need to be made. Firstly,
all cells are considered to be equal to one average cell.
This implies that all cells express the same flux pattern
v(t). Secondly, the medium is considered to be liquid
and perfectly mixed. This assumption results in equal
biomass and extracellular metabolite concentrations for
each cell.
The following model structure comprises the macro-
scopic extracellular, biomass and microscopic intracellu-
lar mass balances while assuming batch conditions (i.e.,
no liquid inflow or outflow). Note that these balances
are coupled via the flux vector v:

dcext
dt

= Sextvcbio (1)

dcbio
dt

= Sbiovcbio (2)

dcint
dt

= Sintv − μcint (3)

with cext ∈ R
mext (expressed in [mmol/L]) and cint ∈

R
mint (expressed in [mmol/gDW ]) the extracellular and

intracellular metabolite concentration vector, cbio (in
[gDW/L]) the biomass concentration , Sext ∈ R

mext×n,
Sbio ∈ R

1×n and Sint ∈ R
mint×n the extracellular,

biomass and intracellular partitions of the stoichiomet-
ric matrix S ∈ R

m×n, v ∈ R
n the flux vector (expressed

as specific fluxes in [mmol/gDW/h]) and μ ([1/h]) the

scalar specific growth rate of the microorganism or also
called the pseudo-reaction rate to biomass.

In DMFA, dynamic (i.e., time dependent) flux profiles
are estimated without the need for kinetic functions.
Two simplifications are made regarding the mass bal-
ance in Equation (3): (i) the second term in Equation
3, a dilution term caused by cell growth, is discarded as
it is typically smaller than the reaction term and (ii) in-
tracellular pseudo-steady state is assumed as it has been
empirically motivated in Stephanopoulos et al. (1998)
that intracellular dynamics are much faster than extra-
cellular dynamics. These two assumptions simplify the
intracellular mass balance to the following linear system
in the fluxes:

Sintv = 0 (4)

with the null vector 0 ∈ R
mint . The system in Equa-

tion (4) is underdetermined, such that the rank (Sint)
is not full, since the number of intracellular metabolites
is for the majority of metabolic networks smaller than
the number of fluxes (i.e., mint < n). From basic linear
algebra, the fluxes in the flux vector v can be written
as a linear combination of d = n − rank(Sint) linearly
independent degrees of freedom, called free fluxes and
comprised in the free flux vector u ∈ R

d. By neglecting
the dilution term related to cellular growth and follow-
ing the pseudo steady state assumption, the following
generic model structure is derived:

dcext
dt

= Sextvcbio (5)

dcbio
dt

= Sbiovcbio (6)

Sintv = 0 (7)

Consider K ∈ R
n×d a basis for the null space of

the intracellular stoichiometric matrix Sint (i.e., K =
null(Sint)), then the fluxes v can be formulated as a
function of the free fluxes u:

v = Ku (8)

In case that the network can be made fully determined
by available measurements, the system can be simulated
by dynamic metabolic flux analysis, i.e., estimating the
free flux parameters and initial extracellular concentra-
tions from these measurement data ym.

Consider the state vector x = [cext cbio]
�
, the aug-

mented extracellular stoichiometric matrix Saug,ext =

[Sext Sbio]
�
and the measurable output y ∈ R

ny which
is described as a function of the states, free fluxes, opti-
mization parameters and time by h(x,u,p, t), then the
DMFA optimization problem is formulated over the time
interval t ∈ [0, tf ] as follows:
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min
p,c0

ntm∑
j=1

(
nm,c∑
i=1

(
ci,j − ci,j,m

σi,j,m

)2

+

nm,r∑
i=1

(
ri,j − ri,j,m

σi,j,m

)2
)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

dx
dt = Saug,extKu(p)cbio
xi(0) = xi,0

Iirrv ≥ 0 with Iirr ∈ R
nirr×nv

v = Ku(p)
ci = c0,i + Sext,i ·K · u(t,p)
ri = Saug,ext,i ·K · u(t,p)

(9)

with the DMFA objective function being a weighted sum
of squared errors (with the inverse of the measurement
variances as weights), tm,i the i-th measurement time
point, ntm the number of measurement time points and
nirr the number of irreversible fluxes and Iirr ∈ R

nirr×d

the irreversibility matrix which selects the irreversible
fluxes from the flux vector v. Note that other con-
straints can be added on the fluxes and concentrations
as stated in e.g., Llaneras and Picó (2008).

A NURBS BASED DMFA FRAMEWORK

Non-uniform rational B-splines (NURBS)

Splines are smooth, piecewise polynomial functions of
the following form:

Γ(t) =

nΓ∑
i=0

φi(t)Pi (10)

with nΓ the number of basis functions, φi(t) the basis
functions and Pi the control points.
B-splines are smooth, piecewise polynomial functions
which are constructed using the B-splines basis func-
tions, Ni,q(t). The B-spline basis functions of q-th de-
gree, i.e., (q + 1)-th order, are defined by the Cox-de
Boor recursive relation given in Equations (11) and (12)
(de Boor (2001)).

Ni,0(t) =

{
1 if tk,i+1 ≤ t ≤ tk,i+1

0 otherwise
(11)

Ni,q(t) =
t− tk,i

tk,i+q − ti
Ni,q−1(t) +

tk,i+q+1 − t

tk,i+q+1 − ti+1
Ni+1,q−1(t)

(12)

with tk,i the knot locations. Non-uniform rational B-
splines (NURBS) are a generalization of B-splines and
are very popular in computer aided design and manu-
facturing applications (CAD/CAM). NURBS are con-
structed by using rational basis functions, Ri,q. These
rational basis functions are formulated using the B-
spline basis functions and a weight vector (Equation
(13)).

Ri,q(t) =
Ni,q(t) · wi∑nΓ

j=0 Nj,q(t) · wj
(13)

The NURBS curve is constructed as a sum of these dif-
ferent rational basis functions. The NURBS curves are
thus defined by Pi, tk,i and the additional wi.

NURBS based DMFA problem formulation

Currently, two state-of-the-art parameterization tech-
niques exist for dynamic metabolic flux analysis: lin-
ear dynamic metabolic flux analysis (Leighty and An-
toniewicz (2011)) and B-spline dynamic metabolic flux
analysis (Mart́ınez et al. (2015)). A more general param-
eterization would be with NURBS as these are mathe-
matically more complex than B-splines and enable even
more complex shapes. As B-splines are a special case
of NURBS and piecewise linear functions (as used in
linear dynamic metabolic flux analysis) are a special
case of B-splines, it is clear that that a NURBS based
dynamic metabolic flux analysis framework generalizes
these two methods. More specifically, NURBS are re-
duced to B-splines if the weight vector is completely
equal to 1 (BDMFA). If the order q is set to 1, then the
method reduces further to LDMFA. .

In the NURBS based DMFA framework (NDMFA), the
free fluxes ui(t) are described as:

ui(t) =

nΓ∑
i=0

Pi ·Ri,q(t) (14)

Using the new definition for the free fluxes, the concen-
trations can be expressed explicitly as follows:

ci = ci,0 + Sext,i ·K ·P · IR(tk, t) (15)

with tk the knot vector and

P =
[
P0 · · · Pntk−q−2

]
(16)

R(t) =

⎡
⎣ R0,q+1(t)

· · ·
Rntk−q−2,q+1(t)

⎤
⎦ (17)

∫
R(t)dt = IR(t) (18)

Unlike in BDMFA it is not possible to obtain an ana-
lytical expression for the time integral for R(t), there-
fore the integral is called IR and calculated numerically.
S and K are the same as for BDMFA. The optimiza-
tion parameters of this problem are the initial concen-
trations, c0; the control points of each metabolite for
each basis function; P, the knot locations, tk; and the
weight vector, w. Therefore the optimization problem
is non-linear with respect to the optimization parame-
ters. If the knots and the weights are fixed and known
the problem is linear with respect to the optimization
parameters and the problem can be solved analytically
in one step.
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Algorithm for solving the NDMFA problem

A way to solve this optimization problem is to use a
method where the Matlab function Fmincon is used to
solve the non-linear problem for each number of knots.
To reduce the calculation time of Fmincon, gradients of
the constraints and the objective function need to be
added. The gradients of R(t) can be found analytically
but the gradients of IR(t) have to be calculated numer-
ically. Combined with the large number of parameters,
this means that the calculation time is very large.

Another way to solve this optimization problem is to use
the same heuristic approach as in BDMFA (Mart́ınez
et al. (2015)). An additional heuristic aspect has to be
treated as there is also a trial-and-error search for the
weights. The algorithm is then completely the same
as for BDMFA except that for a fixed set of knots the
optimal solution is found via n heuristic algorithm that
finds the optimal weight set. For a fixed knot set and
a fixed weight set the Matlab function Lsqlin is used to
find the optimal solution. The effect of the weights is the
highest around 1. There is less distinction between the
NURBS-curves if the weights become very small or very
large. Therefore a relative search based on the weight
values is proposed, i.e. the weights are varied with a
a fraction a, around the current weight value. In this
article the a-value is set to 10%.

Algorithm 1 Heuristic algorithm for NURBS weight
allocation
Input: Specify a.
Output: Optimal weight vector w∗

i .
Step 1: Set all weights equal to 1: wi = 1, ∀i.
Step 2: Solve the NDMFA problem with this weight
set, resulting in x∗ and SSE∗, set i = 1.
Step 3: while i < nw (with nw the number of
weights) do:

wLi = (1− a)wi → xL, SSEL

wUi = (1 + a)wi → xU , SSEU

if min(SSEL, SSE
∗, SSEU ) == SSEL do:

SSE∗ = SSEL, w
∗
i = wLi

else if min(SSEL, SSE
∗, SSEU ) == SSEU do:

SSE∗ = SSEU , w
∗
i = wUi

while w∗
i == wLi or w∗

i = wUi

and toll ≤ w∗
i ≤ tolu do:

if w∗
i has been updated do:

recalculate weights of k control points back:
i = max(1, i− k),
if i==1, do:
i=i+1 and go to Step 3 for wi.

else:
i=i+1

RESULTS AND DISCUSSION

The NURBS based DMFA framework is applied to the
benchmark small scale DMFA problem from Vercam-
men et al. (2014). The biological network consists of
three extracellular metabolites, Aext, Eext and Fext, the
biomass, X, and four intracellular metabolites, A, B, C
and D. These metabolites are linked by seven fluxes.
The seven fluxes described in this problem are specific
to the amount of biomass. This network is the same as
depicted in Figure 1.
The concentration measurements for the extracellular
metabolites and the biomass are simulated per time
steps of 1 hour during a period of 20 hours by solving
the mass balance differential equations. The reference
fluxes used in this simulation are v1, v4 and v5 and are
formulated as in Equations (19), (20) and (21). Noise
is added to these concentrations at each time point to
obtain a realistic setting.

v1,ref =
cAext

1.5 + cAext

(19)

v4,ref = 0.2 · cEext

3 + cEext

(20)

v5,ref =
1

1 + cFext

(21)

NDMFA is applied to the benchmark DMFA case study
and simulated data sets have been used to which noise
has been added as described in Vercammen et al. (2014).
The 95% confidence intervals for the concentration pro-
files and the flux profiles are depicted in Figure 2 and 3
respectively.

Figure 2: 95% confidence intervals of the fitted concen-
tration profiles using NDMFA on the medium-scale case

study.

These Figures indicate that the concentration measure-
ments are accurately and precisely fitted. The con-
straints on the concentrations and the irreversible fluxes
are also satisfied. Due to the high number of degrees of
freedom NURBS have, smooth flux profiles can be re-
constructed. However, the cost for such flux estimates
is very high. A comparison has been made with a lin-
ear and B-spline free flux parameterization, using the
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Figure 3: 95% confidence intervals of the fitted flux pro-
files using NDMFA on the medium-scale case study.

same framework in which constraints are imposed on
the concentrations and fluxes. The mean value and the
standard deviation for the SSE, calculation time and the
number of parameters (np) for the solutions for the sim-
ulated data sets are shown in Table 1. From Table 1, it
is clear that for this case study a linear or B-spline flux
parameterization are sufficient and requires less compu-
tation time. Note that a lower number of optimization
variables is needed in the NURBS based algorithm but
that the heuristic weight determination algorithm sig-
nificantly increases the computation time.

Table 1: SSE, number of optimization variables and
CPU time for different flux parameterizations.

Linear B-spline NURBS
SSE 24.65 56.08 70.52
np 69 37 34
CPU time (s) 31.66 25.03 75682

CONCLUSIONS AND FUTURE WORK

Estimating dynamic fluxes in metabolic networks is use-
ful for obtaining a better process understanding and en-
ables an improved process control. The goal of this
article was to introduce a generalized NURBS based
framework in which the current state-of-the art methods
can be formulated and extended with improvements re-
garding the implementation of constraints on fluxes and
concentrations. The presented NURBS based DMFA
framework enables the estimation of physically possi-
ble time dependent metabolic fluxes by imposing con-
straints, which the current state of the art techniques
do not guarantee.
Currently, a user-friendly tool for dynamic flux estima-
tions in metabolic networks is not available. NDMFA
can serve as a generalized framework for DMFA, with
high flexibility regarding the shape of dynamic flux pro-
files. In addition, an algorithm that recognizes the re-
quired complexity for describing a studied system would
be a useful feature. Such algorithm could be used to

make the heuristic weight determination algorithm ob-
solete or to automatically choose the required spline or-
der.
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Llaneras F. and Picó J., 2008. Stoichiometric modelling
of cell metabolism. Journal of Bioscience and Bio-
engineering, 105, no. 1.

Mart́ınez V.S.; M B.; Gray P.; Nielsen L.K.; and Quek
L.E., 2015. Dynamic metabolic flux analysis using
B-splines to study the effects of temperature shift on
CHO cell metabolism. Metabolic Engineering Com-
munications, 2, 46–57.

Piegl L. and Tiller W., 1996. The NURBS Book. Mono-
graphs in Visual Communication. Springer Berlin Hei-
delberg.

Vercammen D.; Logist F.; and Van Impe J., 2014. Dy-
namic estimation of specific fluxes in metabolic net-
works using non-linear dynamic optimization. BMC
Systems Biology, 8, no. 132.

Vercammen D.; Telen D.; Nimmegeers P.; Janssens
A.; Akkermans S.; Noriega Fernandez E.; Logist F.;
and Van Impe J., 2017. Application of a dynamic
metabolic flux algorithm during a temperature-induced
lag phase. Food and Bioproducts Processing, 102, no.
1-19.

252



Ghost Competition: On the Reliability of Quorum Sensing as an
Information Source for Bacterial Species

Ihab Hashem, Philippe Nimmegeers, Satyajeet Bhonsale, Carlos André Muñoz López, Jan Van Impe
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ABSTRACT

Given the immense evolutionary pressure in bacterial
communities, microbial species have developed simple,
yet efficient, information gathering systems to coordi-
nate the regulation of their genes. By producing small
diffusible chemical molecules, known as quorum signals,
a microbial species could assess the density of its popu-
lation in order to timely express its costly traits. How-
ever, this poses the question of whether such information
processing systems could be vulnerable to manipulation
by competing strains such that the quorum-regulated
species can not infer the true state of their environ-
ment. This ”ghost competition” could eventually lead
to wasteful production of costly compounds as targeted
bacteria can no longer tune their gene regulation to best
suit their own interests. Using an ecological competi-
tion model between a toxin producer and toxin sensi-
tive strain, we find that bacteria could indeed gain from
producing quorum signals to disrupt the gene regula-
tion systems of their ecological competitors. It has been
also found that there will be an optimal cost for sig-
nal production that offers a balance between a minimal
impact on growth and maximal protection against false
signaling.

INTRODUCTION

Quorum sensing is the simplest biological communica-
tion system on earth, yet it gives rise to probably some
of its most complex phenomena. To assess their popu-
lation density, bacteria produce chemical compounds to
accumulate in their environment. Eventually, when the
signals’ concentration reaches a certain threshold, quo-
rum, bacterial cells respond by altering the regulation of
their genes, usually to express a costly trait which is only
beneficial at high densities. Quorum sensing has been
found to increase the evolutionary stability of coopera-
tive microbial phenotypes by controlling the production
of extracellular enzymes (Schluter et al. (2016)). It is

also instrumental for pathogenic bacteria as they need to
coordinate the expression of virulence factors to inflict
maximum damage on other cells or their host (Bucci
et al. (2011)). Given such importance, a considerable
attention has been given to investigate the properties of
quorum sensing systems, including the metabolic cost
of the molecules and the influence of targeting those
systems on the biomass growth (Diggle et al. (2007),
Janssens et al. (2007)). Signaling molecules are known
to be metabolically cheap molecules compared to other
toxins and enzymes (Harrington and Sanchez (2014)).
However, some recent experimental evidence indicates
that a significant metabolic cost could be involved in
synthesizing such molecules (Ruparell et al. (2016)).
The decisive role played by quorum sensing in the com-
petition between microbes poses a natural question:
could this information source be manipulated to reduce
the fitness of quorum-regulated species? This could hap-
pen via a competing strain which produces the same
type of signals as the quorum regulated one, in order
to deteriorate the reliability of their major information
gathering mechanism, as in Figure 1. We define such
situations in which a focal species can not reliably infer
the state of its environment due to interference from a
competing species as ghost competition.
In this paper, we aim to explore using a simple popu-
lation model the potential and the extent of occurrence
of such tactics in the microbial world.

MODEL

We extend the model from Bucci et al. (2011) in which
a toxin producing strain is competing with a sensitive,
non-producer, strain in a simple batch culture. Here,
the producer strain also uses quorum signaling to regu-
late the bacteriocin production. Delaying their attack
could give the producer cells a competitive edge over
their rivals as the toxin becomes most effective at high
cell densities. However, this communication mechanism
could be prone to exploitation from the sensitive strain
if it produces the same type of quorum signals. The
model dynamics can be described by the following set
of equations (Bucci et al. (2011), Cornforth and Foster
(2013)):
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Figure 1: Radio jamming in bacteria: the self-density
perceived by a quorum-regulated species could be higher
than reality due to dishonest signals by competing

species

dP

dt
= (1− fH(Q−Qth))(μ− qpC)H(μ− qpC)P (1)

dS

dt
= ((μ− qsC)H(μ− qsC)−KTT )S (2)

dT

dt
= H(Q−Qth)αf(μ− qpC)H(μ− qpC)P − βTT

(3)

dN

dt
=

−1

Y
μ(P + S) (4)

dQ

dt
= qpPH(μ− qpC) + qsSH(μ− qsC) (5)

μ = μmax
N

N +KN
(6)

With P the concentration of the toxin producer strain,
S the concentration of the sensitive strain, T , N and Q
are the concentrations of the toxin, nutrient and quorum
signals respectively. μ is the growth rate of bacteria in
absence of toxin or quorum production, with μmax as
the maximum specific growth rate and KN the half sat-
uration constant. f is the relative metabolic investment
in toxin production by the producer strain, Qth is the
quorum threshold concentration, above which toxin pro-
duction is activated. C is the cost of production of quo-
rum signals. qp and qs are the stoichiometric coefficients
of the production of quorum molecules for the producer
and sensitive strains respectively. KT is the killing rate
of the toxin, while βT is the rate of toxin decay in the
environment. α is the stoichiometric coefficient for the
toxin production and Y is the biomass yield.

In this model, the toxin production is regulated using a
heaviside step function H, equal to 1 when its argument
is positive and zero otherwise, such that the reselase of
bacteriocin starts only after the concentration of quo-
rum signals in the system reaches a certain threshold.
Both the producer and the sensitive strain have the po-
tential to produce quorum signals. However, while the
producer strain actually uses the quorum mechanism
to regulate its gene expression, the sensitive strain pro-
duces quorum signals only to disrupt the decision mak-
ing machinery of its counterpart. Production of quorum
signals inflicts a fixed cost on the growth of the bacterial
species and it stops when the growth rate is very low.
In all simulations, the batch culture is inoculated by 1
mg/l of each strain. The initial nutrient concentration is
2000 mg/l and the model is run for 500 hours. The val-
ues of the rest of the parameters can be found in Table
1 (Bucci et al. (2011), Cornforth and Foster (2013)).

Table 1: Parameters used
Parameter Value

f 0.1
KN 5 ∗ 10−4 (mg/l)
KT 1.5 ∗ 10−4 (l/mg toxin/hr)
βT 10−1 (/hr)

μmax 1 (/hr)
Y 0.7 (mg bacteria/ mg nutrients)
α 4 (mg bacteria/ mg nutrients)

RESULTS AND DISCUSSION

To illustrate why bacteria have evolved quorum sensing
as a means to regulate their behavior, we first show the
case when a constitutive toxin producer grows against a
sensitive strain, thus, no quorum production takes place
and both qs and qp are equal to zero. Figure 2 shows
how the sensitive strain outgrows its competitor in this
case as the producer strain invests its resources in toxin
production too early, while the concentration of bacteria
is too low. In a sparse system, the toxin can not be
effective. Hence, the strain that does not produce toxin
has the chance to increase its biomass, consume more
nutrients and dominate the batch culture by the end.
The dynamics of the system change drastically when
the toxin producer uses quorum sensing to regulate its
activity as in Figure 3. Here, the stoichiometric coeffi-
cient for quorum signals released by the toxin producer
qp = 1 ∗ 10−3 mg quorum/mg bacteria/hr, with cost
C = 0.01 mg growth/mg quorum. The quorum thresh-
old Qth is set to 5 mg quorum/l and no interference
from the sensitive strain is involved. Toxin production
hereby starts as a sharp signal once the quorum thresh-
old is reached in the system. This assures high toxin
lethality and the producer strain gains advantage from
investing in toxin production, outgrowing its rival.
We highlight how the tuning of the quorum system
affects the fitness of the toxin producer strain in Figure
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(a) Bacterial concentrations

(b) Toxin concentration

Figure 2: Competition between constitutive toxin pro-
ducer and a sensitive strain

4. A very low rate of production of quorum signals
could render toxin obsolete as its activation would
happen at very low growth rates, as nutrients become
scarce, rendering insignificant amounts of toxin to be
produced. On the other hand, reaching the quorum
threshold too early would result in investing in toxin
while bacterial densities are too low in the system. The
toxin decays and the competition balance is tipped
in favor of non producers. Therefore, for a quorum-
regulated bacteria to be successful, it has to produce
quorum signals in a close to optimal rate to maximize

(a) Bacterial concentrations

(b) Toxin concentration

Figure 3: Competition between quorum-regulated toxin
producer and a sensitive strain

the gain from investing in costly traits. This kind of
dynamics, along with the crucial benefits of quorum
regulation, suggests that a cunning tactic that could be
used in the ”microbe-kill-microbe” world is clouding the
information received by the quorum-regulated species
through the production of false signals, which only
aim to hasten the activation of costly traits, rendering
the quorum sensing concept useless. In the next sim-
ulation, we investigate an example of ghost competition.

In Figure 5, the sensitive strain is as well producing
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Figure 4: Relationship between the signal rate of a
quorum-regulated toxin producer and its success in com-

petition with a sensitive strain

quorum signals, with qs = 20 ∗ 10−3 mg quorum/mg
bacteria/hr. The sole fitness advantage that it gains
from such trait is to interfere with gene regulation of
potential ecological competitors using the same signal.
The result is an early expression of the bacteriocin re-
lease genes of the producer strain, and the strain that
does not produce costly toxin and instead produces the
relatively cheaper chemical signals can again achieve a
fitness improvement in the system.

Next, we investigate the influence of varying the cost of
the production of the quorum signals on the potential
for production of false signals. Signaling theory predicts
that the more costly the signal, the less it is vulnerable
to exploitation. In Figure 6, it is found that indeed
when increasing the quorum signals’ cost, C, the ghost-
ing gain, improvement in the final proportion of sensitive
strain relative to the case with no false signals, decreases
as false signals production increases. This means that
the sensitive strain loses in fitness if it evolved/activated
a quorum signal production system, as the cost of sig-
nals required to effectively toggle the gene regulation
of the producer strain is too high that it outweighs the
benefits of such strategy.

However, one must be careful before concluding that
bacteria should evolve costly signals to ensure a reli-
able information gathering system. Metabolically ex-
pensive quorum signals would indeed protect the pro-
ducer strain from exploitation, yet this will hamper its
growth rate. Figure 7 shows that in case of costly sig-
nals, the producer strain loses in fitness compared to a
sensitive strain in case of low false signals production
rates by the sensitive, dishonest, strain. Therefore, sig-

(a) Bacterial concnetrations

(b) Toxin concentration

Figure 5: Competition between quorum-regulated toxin
producer and a sensitive strain that produces quorum

signals only to ”confuse” its competitors

nals that are most immune to ghost competition will
make their producers lose the simple competition.
It is observed that an intermediate value of C would give
the best balance between protection from false signals
and competitive growth rate, occurs here at C = 0.05.
In this value, false signaling could still exist as the sen-
sitive strain gains from producing quorum signals in an
average rate. However, the quorum regulation system
becomes resilient against further exploitation. It is still
to be investigated if this behavior would be maintained
in different parametric regions.
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Figure 6: Relationship between the rate of dishonest
signals produced by the sensitive strain and its gain in
competition for different values of the signal’s cost C

CONCLUSION

In this paper, we investigated the potential of deploying
dishonest signaling in microbial communities. Bacte-
ria use quorum signaling to regulate a wide range of
activities which are vital to their survival, from sharing
growth enzymes among population of the same genotype
till the coordination of bacteriocin production against
other species. This immense impact of such information
gathering system on the growth dynamics in microbial
communities suggests that there is a strong evolutionary
interest for microbes to develop quorum production sys-
tems, not for their self-signaling, but to interfere with
signaling systems for other species. Here, we opted to
investigate possibly the simplest system under which
ghost competition could occur: two strain system in a
batch culture, with one strain using quorum signals to
regulate its toxin production.
It has been found that producing false signals could in-
deed be beneficial for the sensitive strain by reducing
the impact of toxin produced due to in-timely regula-
tion. Switching to the production of more costly signals
will protect the information system from exploitation,
however, it reduces the fitness of the quorum producer.
Many questions are still to be investigated in further
research. It is expected that the cost of signals would
probably correlate with the growth advantage given by
the regulated behavior. More potent toxins or more
beneficial growth enzymes should be regulated using
more expensive, less potential to be exploited, signals.

Figure 7: Relationship between the rate of dishonest
signals produced by the sensitive strain and the final
proportion of producers for different values of the sig-

nal’s cost C

The initial nutrient concentration as well as the quorum
threshold are expected to influence the results. More-
over, the effects of the spatial distribution of species
have the potential to drastically change the results. In
future work, we aim to investigate ghost competition in
the context of multi-species biofilm growth. Being one
of the most diverse ecological system on earth, bacteria
in biofilms are known to use quorum sensing to navigate
their ultra-competitive environment. Clustering and dif-
fusion constraints usually play a part in the evolution of
cooperative and competitive strategies in biofilms. Due
to the complexity of these biological systems, we will
use an Individual based Modeling approach to investi-
gate how the results from our simple model here could
be altered in a spatially structured community.
We would expect that some of the key conclusions of
this paper to be generalizable. Given the importance
of quorum sensing, we predict that some strains will
evolve the capacity to produce quorum signals, not to
respond to them, but in an effort to reduce the efficiency
of the regulation systems of their opponents. A signifi-
cant metabolic cost should be invested in signals which
regulate key population activities of a microbial strain.
And finally, a quorum-regulated strain will always use
the metabolically cheapest signals possible in order to
remain competitive despite ghost competition, but not
any cheaper.
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ABSTRACT

This work addresses the multi-scale modelling of wine
fermentation driven by a particular wining yeast, S.
cereviesiae T73. Basically, we define an extracellular
kinetic model which describes the dynamics of relevant
metabolites and use the model to constrain a genome-
scale metabolic model. The model is solved using dy-
namic flux balance analysis approach. The flux distri-
bution is computed at each instant by solving a linear
programming problem which considers the extracellular
model as constraints and biomass maximization as the
cellular objective.

The model successfully explains growth and cell death
measured in terms of OD600, biomass dry-weight and
number of colony forming units as well as the rel-
evant extracellular metabolites, measured by high-
performance liquid chromatography. Also, the model
provides the metabolic flux dynamics compatible with
experimental data.

INTRODUCTION

The winemaking industry is facing various challenges
due to new trends in consumer preferences, increased
concerns on the effects of alcohol consumption on health
and road safety and the impact of global climate change
on grape ripening and wine composition.

Yeasts have an essential role in reducing wine alcohol
levels and/or astringency and improving the aroma pro-
file. In this context, the modern wine industry uses
specific yeasts to inoculate grape must. This approach
allows not only controlling the fermentation but reduc-
ing the risk of contamination and increasing the repro-
ducibility of particular characteristics.

Typically, industrial fermentations are performed as
batch or fed-batch processes. In such fermentations, a
dynamic interaction occurs between yeasts metabolism
and the environment. As the processes evolve com-

plex combinations of stresses affect the dynamics of the
biomass itself as well as the yields of the different prod-
ucts (ethanol, glycerol, acetate, aromas, etc.).

The modeling of wine fermentation has received sub-
stantial attention. Cramer et al. (2002), Malherbe et al.
(2004) or Coleman et al. (2007) adopted a macroscopic
scale modeling approach to address the role of assim-
ilable nitrogen in ethanol and CO2 production. More
recently Henriques et al. (2018) proposed an essentially
macroscopic model to predict the performance of cold
fermentations.

A multi-scale mathematical modeling of the process
brings the possibility of understanding the evolution of
yeast metabolism in a time-varying environment, com-
paring the fermentation performance of several species
under different environmental conditions (must compo-
sition, temperature) and, eventually, designing optimal
processes.

Sainz et al. (2003) proposed the idea of combining ki-
netic models with stoichiometric modeling to explain
wine fermentation by Saccharomyces cerevisiae under
nitrogen starvation. The model, which included around
40 reactions, was able to describe fermentation profiles
qualitatively. To improve the quality of predictions,
Vargas et al. (2011) expanded the metabolic model to
genome-scale, in what the authors called the idFV715
model, which includes 1181 metabolic reactions com-
prising 590 components.

In this work, we propose using a similar approach to
describe wine fermentation by a commercial yeast wine
strain. We combine a kinetic model with a genome-scale
metabolic model embedded into a dynamic flux balance
analysis approach (Sánchez et al. 2014, Hjersted et al.
2007). In addition, since we have counts for colony form-
ing units (CFUs) and biomass measurements we are able
to distinguish between viable cells which can ferment
and those which can reproduce and this distinction is
explicitly incorporated in the model.
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EXPERIMENTAL METHODS

Yeast and medium selection

We selected a commercial strain, T73 (Lalvin T73 from
Lallemand Montreal, Canada), as our wine S. cerevisiae
representative. All fermentations were performed in 3x
replicates in 250 mL flasks that contained 200 mL of
grape must.

High Performance Liquid Chromatography

Residual sugars (glucose and fructose) and relevant
products were determined by HPLC (Thermo Fisher
Scientific, Waltham, MA. USA) using a refraction in-
dex detector and a HyperREZTM XP Carbohydrate H+
8μm column (Thermo Fisher Scientific) equipped with
a HyperREZTM XP Carbohydrate Guard (Thermo
Fisher Scientific). Samples were diluted to maintain our
target compounds within the allowed range of detection,
filtered through a 0.22 μM nylon filter (Symta, Madrid,
Spain) and injected in duplicate. The analysis condi-
tions were: eluent, 1.5 μM of H2SO4; 0.6 mL/min flux
and a 50oC oven temperature.

Biomass measurements

A volume of sample in a pre-weighted 2 ml Eppendorf
tube was centrifuged at maximum speed (13.200 rpm)
in a MiniSpin centrifuge (Eppendorf, Spain) for 10 min-
utes. The supernatant was carefully removed, the pel-
let washed twice with Milli-Q water and centrifuged in
the same conditions. After washing, the aqueous super-
natant was removed carefully and the tube placed in a
65oC oven for 72h. Finally, the DW was obtained by
measuring mass weight difference of tubes with a Sarto-
rius BP121S analytical balance.
OD600 measurement at each sampling point was car-
ried out using a diluted volume of sample and an Ep-
pendorf Biophotometer spectrophotometer (Eppendorf,
Germany).
200μL of a diluted volume of the samples were plated in
triplicates in YPD solid medium (2% glucose, 2% Agar,
0.5% peptone, 0.5%yeast extract) and incubated two
days at 25oC. After what, the resulting colonies were
counted with a Comecta S.A Colony Counter. Only
plates with CFUs between 30 and 300 were used to cal-
culate the CFUs of the original sample.

THEORETHICAL METHODS: THE MODEL-
ING PIPELINE

Dynamic flux balance analysis

Flux balance analysis (FBA) Varma and Palsson (1994),
Orth et al. (2010) is a modelling framework based on
knowledge of reaction stoichiometry and mass balances.

The framework is based on the so-called pseudo steady-
state assumption, i.e. there is no metabolite accumula-
tion. This is captured by the well known expression:

S·v = 0 (1)

where S is stoichiometric matrix of (n metabolites by
m reactions) and v is a vector of metabolic fluxes. The
number of unknown fluxes is higher than the number of
equations and thus the system is undetermined. Still it
is possible to find a unique solution under the assump-
tion that cells metabolism evolves to pursue a predeter-
mined goal such as biomass formation, i.e., to maximize
growth rate:

max μ (2)

s.t. : (3)

S·v = 0 (4)

LB < v < UB (5)

In its dynamic version, the FBA approach is solved iter-
atively through time and constraints are updated to take
into account the dynamics of the cellular environment,
for example, extracellular metabolites consumption or
formation rates (Mahadevan and Doyle III 2002).
Several yeast genome-scale metabolic models (GEMs)
have been published and are currently used for
metabolic engineering and elucidating biological inter-
actions (Sanchez and Nielsen 2015). Here we use the
YEAST 5 GEM first refined version of YEAST 4 (the
first consensus GEM) which includes improved sph-
ingolipid metabolism. YEAST 5 accounts for more
than 1500 metabolites and more than 2000 reactions
(Heavner et al. 2012). The corresponding FBA prob-
lem is solved using the COBRA toolbox for MATLAB
Heirendt et al. (2017).

Parameter estimation

Parameters for the kinetic model describing external
metabolites are estimated by solving a nonlinear opti-
mization problem. The aim is to find the unknown ki-
netic parameter values that minimize the least squares
function - which accounts for the distance between
model predictions and experimental data- subject to the
system dynamics - the model- and parameter bounds
(Vilas et al. 2018).
To automatize the modeling pipeline we used the
AMIGO2 toolbox (Balsa-Canto et al. 2016).

RESULTS

Modeling hexoses transport

We modeled the transport of hexoses using a Michaelis-
Menten (MM) type kinetics with competitive ethanol
inhibition as follows(Hjersted et al. 2007):
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vtr,H = −Xf · kH ·H· 1

1 + E/KEi
(6)

where kH regards the Michaelis constant, H refers to
the relevant hexoses (glucose and fructose), Xf is the
number of cells with fermentation capacity. KEi defines
the strength of the ethanol inhibitory effect and E is the
ethanol concentration.

Modeling production of extracellular metabolites

The production of extracellular metabolites is assumed
to be proportional to the amount of transported hexoses
(Sánchez et al. 2014):

vEx = −Xf · kEx·
(
vG + vF

)
· MWH

MWEx
(7)

where Ex refers to the extracellular metabolite, kEx

controls the magnitude of metabolite production and
MWH

MWEx is the ratio of hexoses and extracellular metabo-
lite molecular weights.

Ordinary differential equations

The dynamic model distinguishes viable non-fermenting
from fermenting cells. We assume that a viable cell can
ferment even if it not able to divide. The experimental
data show a large difference in the dynamics of the num-
ber of colonies forming units and the other biomass mea-
surements, dry weight and OD600 (see Figure 1). We,
therefore, represent cell viability decay due to ethanol
accumulation with a Hill-type kinetics:

Ẋv = μ·Xv −Xv· kEdeath· En

En + kn
(8)

where Xv represents the number of viable cells, μ is
the specific growth rate obtained with the constraint
based model and kEdeath, n and k are the parameters
controlling susceptibility to ethanol. On the other hand
the decay of cells with fermentative capacity is affected
by a linear expression and is not dependent on ethanol:

Ẋf = μ·Xv −Xf · kdeath; (9)

where Xf represents the number fermenting cells and
kdeath is the parameter controlling the decay in ferment-
ing cells.
Finally, the dynamics of hexoses (Ḣ = vtr,H) and other

extracellular metabolites (Ėx) are represented by the
fluxes vtr,H and vEx.

Dynamic constraints

Constraints in form of fluxes were added to the genome-
scale model. The fluxes (given in mmol· gDW−1h−1)
are computed as for hexoses transport:

vtr,H∗ =
vtr,H

MWH ·Xf ·DWperCell
(10)

where MWH is the hexose molecular weight and
DWperCell is estimated dry weight per cell. Similarly,
constraints for extracellular metabolites were added

vEx∗ =
vEx

MWExXf ·DWperCell
(11)

where MWEx is the molecular weight of the correspond-
ing extracellular metabolite.

Colony forming units, OD600 and dry weight

To reconcile the different biomass measurements with
the model, we have estimated the dry-weight per fer-
menting cell (gramsPerCell) and the number of fer-
menting cells per OD unit (cellsPerOD). The biomass
and OD600 are assumed to be proportional to these pa-
rameters. The number of viable cells was considered to
be the same as the number of CFUs.

Best model trajectories

Figure 1 presents model predictions of extracellular
metabolites. The model can satisfactorily explain
biomass trajectories biomass in terms of dry weight,
number and OD600 as well as the relevant external
metabolites.
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Figure 1: Model predictions and experimental data cor-
responding to external metabolites. The dashed line in
the top-left subplot represents the estimated number of

cells with fermentative capacity.

Figure 2 shows the dynamics of the 20 fluxes with high-
est mean value.
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Figure 2: Dynamic flux profile for selected reactions:
top 20 average flux. As time progresses (from sampling
time 1 to 9), the estimated intracellular fluxes tend to

decrease as so does the rate of hexoses transport.

CONCLUSIONS

This work presents the combination of a kinetic model
and the YEAST 5 genome-scale metabolic model within
a parameter identification and a dynamic flux balance

analysis framework to explain wine fermentation by S.
cerevisiae T73 wine yeast.
The proposed model effectively describes yeast popula-
tion growth and decay and a number of extracellular
metabolites, such as glucose, fructose, ethanol, glycerol,
succinate, lactate and acetate at 25 ◦C.
The combination of micro-vinification experiments with
high-performance liquid chromatography and multi-
scale modelling has the potential to serve as a power-
ful tool in understanding the metabolic idiosyncrasies
of particular wine strains and species currently used
in the wine industry. We aim to apply this strategy
to other non-conventional yeast species to explore their
metabolic differences in wine fermentation.
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A two-equation multiscale model was developed for diffusive 
oxygen transport in apple cortex tissue. Effective diffusivity 
of oxygen in both the pore and the cell phase was computed 
for the 3D microstructure of Jonagold cortex. Microstructure 
images were obtained with high resolution X-ray CT, and 
used in microscale simulations of gas diffusion with a voxel 
based finite volume method. The effective diffusivity of the
liquid phase was as expected normally distributed, while the 
effective diffusivity of the gas phase showed a bimodal 
distribution. This was caused by the low pore connectivity of 
some of the 3D microstructures as 10 out of the 16 used 
samples did not show any open porosity. The 3D 
microstructure of the apple tissue imposed a significant 
reduction in the gaseous diffusivity. A comparison was made 
with the effective tissue diffusivity of a one-equation model 
for oxygen diffusion, assuming phase equilibrium. Good
correspondence was found between the two models for the 
microscale properties of the tissues used. The large variation 
in the equilibrium effective tissue diffusivity that was 
obtained earlier could thus be explained by the variability in 
open porosity of apple cortex tissue.

�����������

Gas exchange between a fruit and its environment is of crucial 
importance for metabolic processes such as respiration. 
During respiration, sugars and other reducing metabolites are
oxidized by molecular oxygen to water and carbon dioxide.
Apple fruit may deteriorate quickly after harvest due to 
respiration-driven ripening and scenescense. To prolong 
storage life, respiration is minimized by low temperature, 
decreased oxygen partial pressure and slightly increased 
carbon dioxide partial pressure in so called controlled 
atmosphere (CA) storage. Conservation under CA conditions 
intends to avoid severe quality losses such as reduction of 
firmness and loss of green color, flavor and aroma. Moreover, 
it also reduces the risk of storage disorders such as superficial 
scald. As a result, a year round supply of high quality fruit is
possible (Kays 1991; Lurie and Watkins 2012). However,
caution is advised as suboptimal storage conditions can lead 
to physiological disorders such as internal browning in the 
fruit (Franck et al. 2007; Herremans et al. 2014; Ho et al.
2014).

Due to the consumption of oxygen and the production of 
carbon dioxide during respiration, concentration gradients 
develop in bulky organs such as apples, in which diffusion is 
limited (Cameron and Yang 1982). Gas diffusion is related to 
the porosity and the microstructure of the fruit tissue, and 
more specifically to the network of intercellular pores and 
cells (Ho et al. 2011; Verboven et al. 2008). A restricted 
oxygen supply through the skin and hypanthium in
combination with low external oxygen conditions during CA
storage can lead to local hypoxic (very low oxygen) and even 
anoxic (no oxygen) conditions inside the fruit (Ho et al. 2011).
These conditions may eventually result in development of off-
flavors and storage defects as a consequence of a dominating 
fermentative metabolism (Franck et al. 2007).

As experimental analysis of internal gas profiles in fruit is 
tediuous, a multiscale gas transport model of fruit has been
suggested. With this approach, the fruit is regarded as a 
continuum (macroscale model) in which the gas transport is 
described by effective (or apparent) gas transport parameters
of the tissues. These parameters are calculated from
simulations on the microscale, modeling gas transport through 
pores and cells of tissue samples. Ho et al. (2011) proposed a
one-equation macroscale model for the description of gas
transport in fruit, written here for diffusion and reaction:

,
, ,

i g eff
i i tissue i g i

c
D c R

t
�
�

�� � �
�

(1)

with

	 
1i t t iRTH� � �� � � (2)

�i is the tissue gas capacity for the respiratory gas i, the total 
porosity of the tissue, (mol m-3 s-1) the tissue respiration 
rate, (mol m-3) the gas concentration expressed in gas 
partial pressures, (Pa m³ mol-1 K-1) the universal gas 
constant, (K) the temperature, (mol m-3 Pa-1) Henry’s 
constant for the gas and (m² s-1) the effective tissue 
diffusivity. The latter is an effective lumped diffusivity of the 
apple tissue, encompassing the effect of porosity and 
tortuosity, and was estimated with a finite volume microscale 
model solved on 3D X-ray images of the porous 
microstructures.

In apple tissue, two large-scale phases can be identified: the 
pore phase and the cell phase. Both phases have a significantly 
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different capacity in transporting oxygen, as the pore phase is 
filled with air and the cell phase can be considered as water.
This is expressed in the diffusivity values of oxygen in both 
phases (Table 1). This might imply a significant difference in 
concentration between the two phases, called a large-scale 
mass non-equilibrium, for which Cherblanc et al. (2007)
suggested a two-equation model to be more appropirate. This 
model simulates gas transport seperately for each phase,
coupled by an interphase mass transfer coefficient. Moreover, 
when the less diffusive phase (i.e. the cell phase) is considered 
as stagnant, a mobile-immobile two-equation model is 
recommended (Cherblanc et al. 2003; Orgogozo et al. 2010).
The mass transfer between the two phases is controlled by a 
diffusive process and is often macroscopically described by a 
first-order kinetics (Orgogozo et al. 2010).

In this paper a two-equation multiscale model is developed for 
describing diffusive oxygen transport in apple tissue. The 
effective diffusion parameters of this model are estimated and 
evaluated in comparison to the one-equation diffusivity.
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In apple, oxygen may diffuse through pores and cells, both 
phases provide tortuous pathways for gas diffusion. 
Interphase transfer occurs through the cell wall and cell 
membranes. A two-equation macroscale model for oxygen
exchange in apple is proposed for the pore and cell phase,
respectively:
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Parameters and (m² s-1) are the effective 
diffusivities of oxygen in the gas and liquid phase 
respectively, (mol m-3) is the oxygen concentration in the 
liquid phase, (mol m-3 s-1) the tissue respiration rate of 
oxygen and (mol m-3 s-1) the macroscale mass transfer 
coefficient between the two large-scale phases.

Equation (5) gives a proposed flux formulation for ,
incorporating cell wall and cell membrane permability (Davit 
et al. 2012; Chastanet and Wood 2008) into the overall 
resistance of the interphase. The mass transfer was assumed 
driven by a diffusive process and is described by a first-order 
kinetics.
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Parameter (m-1) is the specific interfacial area of pore and 
cell phase (per unit of volume), and (m) represent

the thickness of cell wall and membrane, respectively, and
and (m² s-1) the liquid based diffusivity of those 

structures. Table 1 gives the values of the known parameters
of the proposed two-equation macroscale model. The 
following unknowns were determined from a microscale 
analysis:
- the microstructural parameters and , and 
- the effective diffusivity of the gas phase and of the cell 
phase .

Table 1: Physical Properties of the Two-Equation Model (at 
293 K)

Model constants
(m) (*)

(m) (*)
(m² s-1) (*)

(m² s-1) (*)
(Pa m³ mol-1 K-1)

(mol m-3 Pa-1)
(m² s-1)

(m² s-1)
(*) From Ho et al. (2014)
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The effective diffusivities of the tissue and were
estimated by solving Fick’s law of diffusion in both phases 
over voxelized 3D microstructure geometries of pores and 
cells of tissue samples obtained from X-ray micro-CT, which 
is described in Ho et al. (2011) and further detailed below. The 
model assumed steady state conditions and ignored
respiration. Fickian diffusion of oxygen in pore (air) and cell
(water) phase was then separately solved by Equation (6) and 
(7), respectively.

2 2, ,0 O air O gD c�� � (6)

2 2, ,0 O water O lD c� � � (7)

and (m² s-1) are the diffusivity of oxygen in 
air and water, respectively (Table 1).

Equations (6) and (7) were discretized based on the voxel 
volumes (voxel based finite volume method) resulting in a 
linear set of equations on the unknown oxygen concentration
at the voxels (Ho et al. 2011). A concentration gradient of 30% 
to 5% oxygen partial pressure was applied in the z-direction 
of the 3D microstructures. The set of equations was solved for 

and using the generalized minimum residual 
method available in Matlab (The Mathworks, Natick, MA, 
USA).

Given the distribution of oxygen throughout the samples, the 
mass flow of oxygen in both phases was calculated in the 
direction of the applied concentration gradient. The effective 
diffusivity of the pore and cell phase was determined by 
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Fick’s law of diffusion in the z-direction of the 3D 
microstructures (Equation (8) and (9)).
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where and (mol m-3) were the applied 
equilibrium concentration gradients in the z-direction, (m) 
the thickness of the tissue sample in that direction, (m²) the 
area of the samples perpendicular to and and
(mol s-1) the mass flow rates of oxygen in the z-direction in 
the gas and liquid phase, respectively.
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3D microstructures of 16 Jonagold (Malus x domestica
‘Jonagold’) apple cortex samples were used for microscale 
model simulations to determine the parameters of the two-
equation model. These samples were taken from previous 
research concerning the one-equation model and were 
obtained with high resolution X-ray CT (Ho et al. 2011). The 
3D sample dimensions are (1.28 mm)³ with a voxel size of (5
μm)³. Structural parameters and were calculated with the 
image analysis software Avizo (Thermo Fisher Scientific,
Bordeaux, France). Additionally, the open porosity ( ) is 
calculated as well i.e. the pores that connect both sides of the 
3D samples where the concentration gradient is applied. It is 
calculated with a dedicated program written in Matlab.
�
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The left image of Figure 1 shows a slice of one of the Jonagold 
scans where the black spots identify pores while the greyish 
area identifies the cell tissue. With image editing software, a 
3D representation of the microstructures was obtained which 
was used in the microscale model (Figure 1, right).

Figure 1: Slice of a Jonagold Scan (left) and a 3D 
Representation of one of the Samples (right)

Based on these images, the microstructural properties ,
and were calculated (Table 2). The total porosity was 
calculated as the ratio of the pore volume to the total volume 
of the sample. The specific interfacial area was calculated as 
the ratio of contact surface between the two phases over the 
total sample volume. Both and were relatively large

which indicated that the porosity in the sample is well 
distributed, resulting in a large contact area with the cell 
volume. The open porosity was only calculated in the 
direction of the applied oxygen gradient over the Jonagold 
cortex samples. It should be noted that 10 out of the 16 
samples did not have any open porosity ( =0).

Comparing the porosity of the 6 samples that showed an open 
porosity, the total porosity was still 10 times the open 
porosity. For all samples the difference was 20-fold. 
Therefore, it can be concluded that overall, the 3D pore 
microstructures have a very low pore connectivity. This may
raise questions whether the used sample size is representative 
for the tissues. Connectivity may be enhanced over larger 
samples, be it across more tortuous paths. To explore such 
features, micro-CT of the large samples will be required and 
representative elementary volume analysis revisited.
�
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A concentration gradient was applied on the Jonagold samples
and the distribution of oxygen was calculated in both phases. 
Figure 2 shows the results for the porous oxygen 
concentration in a sample without (top) and with (bottom) an 
open porosity in the direction of the applied gradient. The 
latter shows a distinct porous channel in which oxygen is 
easily transported. An effective oxygen diffusivity of 

m² s-1 was estimated for this sample, while this 
was only m² s-1 for the former sample due to 
lack of pore connectivity.

Figure 2: Oxygen Distribution in the Pore Space of a Sample 
without (top) and with (bottom) an Open Porosity in the 

Direction of the Applied Oxygen Gradient
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Table 2 shows the estimated parameters for the two-equation 
model. was estimated two orders of magnitude lower 
than , meaning that, compared to oxygen diffusion in 
open air, the tissue microstructure imposed a significant 
reduction in the ease of gaseous oxygen diffusion. An 
opposite trend was found for , which was estimated 
slightly higher than . This trend implied that the 
tissue microstructure facilitated liquid oxygen diffusion. In 
the microscale model, oxygen transfer between the two phases 
was possible. Therefore, dissolved oxygen was able to be 
partly transported through the pores of the samples, bypassing 
the liquid phase where the diffusion is slower. This 
phenomenon resulted in an overall higher diffusivity in the 
liquid phase compared to oxygen diffusion in pure water.

Distributions of the common logarithms of and are 
shown in Figure 3. While a relatively narrow and normal 
distribution was found for , this was not the case 
for , which was characterized by a bimodal 
distribution over a large range of values. This bimodality 
resulted from the effect of open porosity of the samples on the 
estimation of . An open porosity equal to zero, i.e. no 
direct porous path between the two ends of the sample, 
resulted in very low values of , more or less 2 orders of 
magnitude lower compared to the samples with open porosity.
�

Table 2: Estimated Parameters for the One- and Two-
Equation Model

�
Parameter Mean St.dev

(%)
(%)
(m-1)

(m² s-1)
(m² s-1)

(m² s-1) (*)
XiZ�Estimated by Ho et al. (2011)
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of the one-equation model is given in Table 2 (Ho 
et al. 2011). The value was obtained from a direct simulation 
of the two-phase transport in the microscale geometry, 
including the interphase transport. The one-equation model 
diffusivity also has a large variation, indicating the effect of 
non-connectivity of the pore network in some of the samples. 
The sum of Equations (3) and (4) will lead to Equation (1) if 
we assume gas-liquid equilibrium and 

	 

2, 2 2, 2,

1
g l tissue

eff eff eff
t O t O O OD RTH D D� �� � � � � (10)�

Using the average values in Table 2, the term on the left hand 
side will equal to 4.53 × 10-8 m² s-1. This value corresponds 
closely to the effective tissue diffusivity value given in Table 

2. A one-on-one comparison of the left and right hand term of 
Equation (10) is given for the whole dataset (Figure 4). The 
axes are expressed in the common logarithm and the red line 
represents identical values. There was a good correspondence 
between the two terms. This implied that the equilibrium 
condition appeared valid and that the large variations seen in 

and originated from the same source, namely 
the differences in pore connectivity of the Jonagold 
microstructures.

�
�
Figure 3: Distribution of the Common Logarithms of 

(top) and (bottom)

�����������
�
This research showed that the pore connectivity in the 
Jonagold samples had an enormous influence on the 
estimation of the effective diffusivity of oxygen in the pore 
space. The presence of an open porosity divided the samples 
in two groups, resulting in a bimodal distribution for the 
diffusivity in the gas phase. The microstructure of the apple 
cortex was found to significantly limit the diffusivity in the 
gas phase, while slightly enhancing the diffusivity in the 
liquid phase. The latter effect was explained by oxygen 
dissolved in the liquid phase taking a shortcut through the 
pores of the sample, where transport is faster.
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Figure 4: One-on-One Comparison of the Left and Right 
Hand Term of Equation (10) for all the Jonagold Samples 

(Axes are expressed in the Common Logarithm and the Red 
Line represents Identical Values)

�
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Studying the microstructural parameters of the apple samples, 
and their effect on the estimated parameters of the two-
equation model, brought to light that the used sample size 
might not be representative for the apple tissue. A sensitivity 
analysis is in order to determine how sample size will 
influence the pore connectivity, which is found a determining 
parameter in the estimation of effective diffusivities.

The two-equation model will next be used in multiscale 
simulations predicting oxygen concentrations in entire fruits. 
Here, respiration is taken into account as seen in equations (3) 
and (4). Further steps include the modeling of carbon dioxide 
diffusion and the addition of permeation effects on gas 
transport inside the fruit. The two-equation multiscale model 
will be compared to the one-equation model (Ho et al. 2011).
Stochastic simualtions of the spatial variability of diffusivity 
and transient simulations will be targeted.

	������
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ABSTRACT

A numerical simulation approach was proposed to es-

timate the intrinsic viscosity of particles with complex geom-

etry. The approach is based upon the solution of the mass and

the momentum conservation equations for an incompressible

Newtonian fluid under steady-state creeping flow around the

particle. The reliability of the approach is demonstrated af-

ter solving the problem for fluid flow around a small sphere,

whose effect is known after theoretical work. The approach

is then applied in solving the same problem for different ap-

ple cells. The intrinsic viscosity varies with the particle shape

and its orientation, between 2.6 and 4.6.

INTRODUCTION

Understanding the rheology of food materials is es-

sential for the standardized characterization of raw materi-

als and innovative products, as well as for optimized indus-

trial processing (Fischer and Windhab 2011). In the case of

apple purees, bulk measurements have allowed to evaluate

the influence of particles size and insoluble solids content

on the suspension rheological properties (Espinosa-Muñoz

et al. 2013); further, direct observation has demonstrated the

ability of apple cells to compress and decrease their volume

when the concentration of the suspension increases (Lever-

rier et al. 2017). As a complement to experimental work,

numerical simulation can provide useful information link-

ing these two scales (bulk and cell). Indeed, the rheology of

particle-fluid suspensions through numerical simulation has

been studied since the 1990’s, for instance by solving the dy-

namics of the solid particles combined with a Lattice Boltz-

mann approach for the fluid phase in the case of spheres,

cylinders, or disks (Ladd and Verberg 2001).

It is clear that many of the complex phenomena as-

sociated with a flowing suspension cannot be explained by

using a classical Newtonian description of a fluid with an ef-

fective viscosity. The volume fraction of the particles in a

suspension (volume occupied by particles per unit volume of

suspension) has often been assumed to be the only variable

that influences the observed rheological properties of the sus-

pension. Experimental evidence has shown that this is incor-

rect and that other factors, such as the shape and size distri-

bution of the particles, the presence of electrical charges, and

the type of flow being experienced must be considered (Jef-

frey and Acrivos 1976). The study of the hydro-dynamical

contributions of non-Brownian particles to the rheology of

suspensions usually starts with diluted systems, i.e., those in

which there are so few particles that occasional collisions be-

tween particles can be ignored. In such case everything one

needs to know can be obtained from studying the flow around

a single particle (Mewis and Wagner 2012, p.41).

Einstein (1906) has shown that the viscosity η of a

diluted suspension of rigid spheres, treated as an incompress-

ible homogeneous liquid, divided by the viscosity η� of the

pure liquid, can be expressed as a linear function of the vol-

ume fraction of particles, φ :

η /η� = 1 + α φ . (1)

The parameter α is called intrinsic viscosity, being equal to

2.5 for very diluted spherical particles. Since then, much

work has been devoted in describing the relative viscosity

of disperse systems as a function of the concentration of the

dispersed phase: equations have been developed on a theo-

retical foundation; theoretical equations have been adapted

to empirical results; and empirical expressions have been re-

formulated in such a way that the Einstein equation (1) is

obtained at very low concentration. Fifty years ago, dozens

of formulas were already available (Rutgers 1962).

Theoretical computation of the relative viscosity due

to very diluted ellipsoidal particles has demonstrated that the

parameter α in the Einstein equation (1) can assume val-

ues from 2 up to 10 depending on the particle shape and

orientation (Jeffery 1922). These findings have provided a

physical, micro-structural explanation of observations, in-

cluding changes of rheological regime as the volume fraction

increases (Mueller et al. 2010).
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Looking for a method to investigate the role played

by the particle shape on the intrinsic viscosity, we propose

a numerical simulation approach for studying the effect on

the flow of a liquid around a particle suspended in it. In this

contribution two kinds of particles are considered: spheres,

as a way to assess the reliability of the approach; and some

apple cells, in order to explore the potential of our approach

in the case of irregularly-shaped particles.

METHODS

Particles in the liquid constitute obstacles to fluid flow;

hence their presence distorts the flow field. Further, there is

friction at the surface of particles. Both effects are expected

to increase the energy dissipation during flow, and hence the

apparent viscosity, above that of the pure suspending medium

(Mewis and Wagner 2012, p.46).

Our rationale is based on the thought experiment of

Einstein (1906) in his theoretical analysis dealing with the

viscosity of diluted suspensions. In a first step, we solve an

extensional stationary fluid flow problem associated with the

presence of a very small particle placed in the center of a vol-

ume of incompressible Newtonian liquid. The viscous dissi-

pation W is calculated by integrating η� (γ̇)2 over the liquid

volume under consideration, where η� is the viscosity of the

liquid phase, and γ̇ is the shear rate field. The second step

involves the solution of the problem but without the particle

in the liquid volume. This second problem is associated with

a smaller viscous dissipation W�, due to a shear rate field γ̇�
which does not exhibit the features characterizing the flow

disturbances occurring in the first problem. The relative vis-

cosity η/η� due to the presence of the particle in the liquid

volume is finally obtained by computing the ratio W/W�.

The mass and momentum conservation equations for

an incompressible Newtonian fluid under stationary condi-

tions can be written as:

∇ ·u = 0 (2)

ρ (u ·∇)u = ∇ · (− pI + η� (∇u + (∇u)T )) , (3)

where u is the velocity (magnitude in m.s−1) and p the pres-

sure (Pa); ρ is the liquid density (kg.m−3) and η� its viscosity

(Pa.s).

Following Einstein, here we consider extensional flow

around the particle. The computational domain is a cube; two

opposite faces are associated with outflow, while the four re-

maining ones correspond to inflow. At the particle surface,

the velocity field is assumed to vanish. At the two outlet

boundaries, the pressure p is assumed to vanish under no vis-

cous stress. At the four inlet boundaries, the velocity compo-

nents u, v, w are prescribed as:

u = A (x− x0) , v = B (y− y0) , w =C (z− z0) , (4)

where the coordinates (x0,y0,z0) indicates the barycenter of

the particle. On account of the incompressibility of the liq-

uid, the constants A, B, and C must fulfill the condition A+
B+C = 0. Three scenarios are here considered:

• A = 1, B =C =−1/2; outflow through the cube faces

which are parallel to the plane YZ;

• B = 1, A =C =−1/2; outflow through the cube faces

which are parallel to the plane XZ; and

• C = 1, A = B =−1/2; outflow through the cube faces

which are parallel to the plane XY.

Only one scenario is required in assessing the relative viscos-

ity due to spheres. In the case of apple cells, the application

of these scenarios is equivalent to consider three arbitrary

orientations for the particle in respect to the fluid flow. The

liquid is characterized by the density ρ = 1000 kg.m−3 and

the dynamic viscosity η� = 0.001 Pa.s (similar to pure wa-

ter at 20 ◦C). This problem is solved under creeping regime:

Reynolds number is smaller than 1.5 for all the cases.

Equations (2) and (3) need to be solved firstly with the

particle at the center of the computational domain, and later

in its absence. These equations are solved through the finite-

element method as implemented in the simulation package

COMSOL Multiphysics software (version 5.2.0.220; COM-

SOL, Inc., Burlington, Massachusetts) (Zimmerman 2006).

Three-dimensional domains are commonly approximated by

a mesh of polyhedrons in the process of setting up the equa-

tions for finite-element analysis. In this study the domains

are subdivided into large numbers of small, non-overlapping

tetrahedrons, which allow suitable geometrical approxima-

tions of virtually any three-dimensional shape. Discretiza-

tion of equations (2) and (3) considers first-order Lagrange

finite elements for the velocity components and the pressure.

The solution of the linear system obtained after discretization

of governing equations is reached through the direct solver

PARDISO (Schenk and Gartner 2004). Satisfactory conver-

gence of the numerical model is reached in looking for a rel-

ative tolerance smaller than 10−6.

SPHERES

Figure 1A illustrates the computational domain, built

around a sphere corresponding to the volume fraction of 0.4

%. Figure 1B displays model predictions of the velocity field,

after solving the fluid flow problem in the presence of that

sphere. Velocities vanish in the vicinity of the sphere, as

a consequence of friction (no slip condition at the particle

surface). This leads to distortion of the flow field, which is

put in evidence in Figures 1C and 1D.

Model predictions of the relative viscosity were ob-

tained at different mesh resolutions. Solving the problem

with the coarser mesh required less than 2 Gb-RAM and few

seconds; the application of the finer mesh required above 190

Gb-RAM, and results were available after some days of work

on a Windows-7 64-bit SP1, Intel Xeon CPU ES-2630 v3 @

2.40 GHz, 192 Gb-RAM computer.
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Figure 1: Display A shows the computational domain for a sphere corresponding to the volume fraction of 0.4 %, where the blue

faces indicate domain outlets when outflow boundary conditions correspond to A = 1. Display B presents model predictions of

the velocity field around such a sphere, in 3D representation; the same model predictions are presented in display C with the help

of streamlines and velocity vectors in the plane Y = 0. Display D presents model predictions of the velocity field in the absence

of the sphere. Dimensions are expressed in meters.
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Figure 2 summarizes results obtained for spheres cor-

responding to the volume fractions of 0.1 % and 0.4 %. Model

results converged with the mesh resolution, and the values

predicted for the relative viscosity due to such spheres be-

came quite stable above 5×105 mesh elements. Even apply-

ing the highest mesh resolution, there is a difference between

values predicted for the relative viscosity from the model and

those from the Einstein equation (1); further, such a differ-

ence increases with the volume fraction. In fact, the intrinsic

viscosity is defined for infinitely small volume fraction as

α = limφ→0 (η −η�)/(η� φ). Assuming a volume fraction

of 0.4 % in numerical simulation leads to slightly overesti-

mate the intrinsic viscosity, α0.4% ∼ 2.54, whereas using 0.1

% gives α0.1% ∼ 2.50.

Figure 2: Model predictions of the relative viscosity due to

spheres, after assuming a volume fraction of 0.1 % (A) and

0.4 % (B), as function of the number of mesh elements. Blue

lines indicate the value as estimated from the Einstein equa-

tion (1) for α = 2.5.
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APPLE CELLS

The application of numerical modeling to problems

involving real food particles constitutes a challenging task.

On one hand, the irregularly-shaped particles that we found

in real-world problems can exhibit very complex geometrical

features. Under such conditions, the construction of the com-

putational domain needs to include a realistic representation

of the particles of interest as provided by image acquisition

and post-processing. On the other hand, meshing algorithms

can forbid the construction of relatively coarse meshes for

detailed geometries. As noted above, higher is the resolution

in meshing the computational domain, larger is the computer

memory required and longer is the simulation time needed

for reaching a satisfactory solution.

Our numerical modeling approach was applied to three

apple cells (Leverrier et al., 2017). The volume occupied by

each apple cell was about 1.36, 3.40 and 1.27× 106 μm3,

respectively; the geometry of each cell was obtained using

confocal microscopy and three-dimensional reconstruction.

These apple cells were sampled from a moderately diluted

apple puree (0.47 g of insoluble solids per 100 ml of suspen-

sion; volume fraction of 0.43); the cells are expected do not

change their shape under fluid flow.

Three steps were conducted in order to consider those

apple cells in our numerical approach.

• Firstly, the volume associated with each cell was sub-

divided into a large number of tetrahedrons. This was

performed through the Simpleware software environ-

ment and its +FE Mesh Generation Module (version

2016.09-SP1; Synopsis, Inc., Mountain View, Califor-

nia). Looking for a detailed representation of the cells,

a relatively high meshing resolution was considered;

the resulting volume meshes are constituted by about

1.8, 3.7, and 2.3×106 tetrahedrons.

• Secondly, the file containing the volume mesh gener-

ated by Simpleware was imported into the COMSOL

environment, in which we created a 3D representation

of the apple cell considered. The results obtained can

be appreciated in Figure 3.

• Lastly, a cubic computational domain was built, whose

center coincides with the cell barycenter. The volume

fraction corresponding to the cell is assigned, hence

the cube volume becomes a multiple value of the cell

volume (say, 250 times higher for a volume fraction of

0.4 %).

The standard options of the COMSOL Multiphysics mesh

generator gave origin to great heterogeneity in the size of el-

ements. Hence, the subdivision of the computational domain

was customized in order to generate a large number of tetra-

hedrons with similar size. The shortest edge of mesh ele-

ments was set to be a sub-multiple of the side L of the liquid

cube representing the computational domain; and the ratio of

their longest edge to the shortest edge was set to be 4.

Figure 4 shows results reached for the apple cells after

assuming the volume fraction φ = 0.1 % and 0.4 %, taking

into account the three sets of flow boundary conditions. Sen-

sitivity tests were performed on the mesh resolution in solv-

ing the flow problem for the three apple cells in the case of

boundary conditions associated with A = 1. Quite stable re-

sults were obtained above 106 mesh elements; hereafter only

the results obtained with the finest mesh are discussed.

Table 1 translates model predictions of relative vis-

cosity into estimates of intrinsic viscosity. All the values are

higher than 2.5, associated with the Einstein equation (1).

This was expected as a consequence of the irregular, non-

spherical shape of particles under consideration. Essentially

the same estimates of intrinsic viscosity are obtained from

model simulations performed for φ = 0.1 % and 0.4 %. Ta-

ble 1 indicates that, for a given particle, the intrinsic viscosity

depends on the particle orientation with respect to the flow

boundary conditions. The relative standard deviation (or co-

efficient of variation) of α is smaller for one cell (#1) than

for the other two, without any apparent reason from the vi-

sual inspection of their 3D appearance. As shown in Figure

3, each apple cell exhibits a variety of geometrical features,

including convex and concave regions, as well as rugged and

smooth areas. It seems difficult to anticipate the influence

of the geometrical features exhibited by an apple cell on its

intrinsic viscosity.

SUMMARY AND FUTURE WORK

• Results obtained for spheres demonstrated the reliabil-

ity of our approach for volume fractions below 0.4%.

Differences between model results and estimates from

the Einstein equation (1) remained below 2 % of the in-

trinsic viscosity value (2.54 instead 2.5 for φ = 0.4%).

• Model predictions of the intrinsic viscosity due to an

isolated apple cell are higher than for a sphere. Such

an increase depends on the cell shape as well as on its

orientation with respect to the extensional flow.

Results presented above were obtained after placing the

cube center at the particle barycenter. In fact, we should con-

sider the position at which the forces exerted by the fluid on

the particle exhibit null resultant. Such a steady-state posi-

tion of the particle could differ slightly from its barycenter.

Further, only three different orientations were considered in

obtaining the results shown above. Two conditions deserve

attention regarding the estimation of the intrinsic viscosity.

At low shear (Peclet number < 1), thermal agitation domi-

nates, and the particle orientation is random. Therefore the

intrinsic viscosity at low shear should be based on the aver-

aged value obtained from numerous orientations. Inversely,

at high shear (Peclet number > 100), thermal agitation be-

comes negligible; the particle orientation is expected to be in
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the direction corresponding to the lowest viscous dissipation,

say to the lowest intrinsic viscosity. The latter could also be

obtained by turning the particle until the torque vanishes. Fi-

nally, a larger set of apple cells should be considered in order

to obtain statistically significant values.

The determination of the intrinsic viscosity of apple

cells can be useful to estimate the volume fraction which is

occupied by solid particles in apple juices or apple purees.

Indeed, one could progressively dilute the apple-based food

product, searching conditions where the suspension viscosity

becomes a linear function of the concentration; then, know-

ing the viscosity of the continuous phase (e.g. the super-

natant after centrifugation), the volume fraction could be es-

timated from the measurement of the suspension viscosity.
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Figure 3: The apple cells here considered, after 3D reconstruction by the COMSOL Multiphysics geometry builder. The second,

third, and fourth rows from the top exhibit the apple cells facing one of the cube outlets, when applying the flow boundary

conditions associated with A = 1, B = 1, and C = 1, respectively (see METHODS). Dimensions are expressed in meters.
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φ = 0.1 %

cell A = 1 B = 1 C = 1 average RSD

#1 4.47 4.25 4.53 4.42 0.03

#2 2.67 3.42 2.92 3.00 0.13

#3 3.75 3.24 2.92 3.31 0.13

φ = 0.4 %

cell A = 1 B = 1 C = 1 average RSD

#1 4.55 4.33 4.62 4.50 0.03

#2 2.70 3.46 2.95 3.04 0.13

#3 3.81 3.30 2.97 3.36 0.13

Table 1: Estimates of the intrinsic viscosity α , from the re-

sults displayed in Figure 4. RSD stands for relative standard

deviation (i.e. coefficient of variation).

Figure 4: Model predictions of the relative viscosity due to

the three apple cells as a function of the number of mesh el-

ements, by assuming a volume fraction of 0.1 % (A) and 0.4

% (B). Blue lines indicate values associated with the Einstein

equation (1) for α = 2.5. Black, gray, and open symbols in-

dicate results obtained after assuming the flow boundary con-

ditions associated with A = 1, B = 1, and C = 1, respectively.
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ABSTRACT 

In conventional thermal processing, heat transfer is 
generally carried out by conduction and convection, and 
significant temperature non-uniformity within the sample 
is observed. Longer processing times are also required 
with extensive use of energy. Microwave (MW) heating 
is an innovative thermal process and accepted to provide 
volumetric heating compared to the conventional 
processes by reducing the required process time and 
energy. However, non-uniform electromagnetic field 
within the MW cavity leads to a non-uniform 
temperature distribution within the product. In this study, 
sample temperature distribution during MW heating was 
examined as a function of sample location within the 
MW cavity and rotation rates applied to the sample 
during the process. In addition, compared to the generaly 
approaches in the literature, a cylindrical cavity was 
considered. The developed mathematical model was 
experimentally validated with a comparatively uniform 
electric field distribution within the cylindrical 
microwave cavity, and experimental results demonstrated 
that the location of the sample and the rotational effects 
significantly influenced the sample temperature 
distribution. The results of this study is expected to be 
further used for industrial system design and 
optimization purposes. 

INTRODUCTION 

In conventional thermal processing, heat transfer is 
generally carried out by conduction and convection, and 
a significant temperature non-uniformity within the 
sample is observed. Microwave (MW) heating is an 
innovative thermal process to apply in various food 
processes from thawing to heating, from pasteurization to 
sterilization. Microwave frequency range within the 
electromagnetic spectrum is from 300 MHz to 300 GHz. 
Federal Communication Commission (FCC) allows 915

MHz (with a wavelength λ=32.79 cm) and 2450 
(λ=12.24 cm) MHz frequencies for industrial and 
domestic microwave systems, respectively.

Heating in a microwave cavity occurs when 
electromagnetic field penetrates the sample. This process 
is highly affected by dielectric properties of the sample: 
the dielectric constant ( ) representing absorbed 
electromagnetic energy by the sample and the loss factor 
( ) representing the converted electromagnetic energy 
into heat. Temperature increase, due to the absorption of 
electromagnetic energy, occurs volumetrically with 
dipolar rotation and ionic conduction. 
MW heating is accepted to provide a volumetric heating 
compared to the conventional processes and reduce 
process time. However, non-uniform electromagnetic 
field in a MW cavity leads to a non-uniform temperature 
distribution within the product. 

In the literature (Zhang and Datta 2005; Raj et al. 2011; 
Chen et al. 2016), effects of some parameters like applied 
cyclic or invert power, sample geometry and rotation in a 
cavity have been focused to determine optimum 
conditions to obtain a uniform temperature distribution 
within the sample. In various studies, MW cavity was 
generally considered to have a rectangular shape with the 
wave guide opens into the cavity through the sides. Some 
exceptions for the side – located wave guides were about 
the use of flatbed microwave systems (Liu et al., 2014). 
While effects of these parameters on temperature 
distribution of the samples were generally determined 
experimentally, interest in mathematical modelling has 
increased in recent decades to better understand the 
electromagnetic distribution in the cavity and its 
interaction with the sample for power absorption and heat 
generation with the evolved temperature increase. The 
rotation effect was one parameter often focused in the 
literature to increase the temperature uniformity of the 
sample. A number of studies are available that determine 
the rotational effects on temperature distribution during 
MW heating (Geedipalli et al., 2007; Raj et al. 2011; Liu 
et al. 2013; Chen et al. 2016). The rotation in these 
mathematical models has not been solved continuously,
and it was generally assumed to make several angular 
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movement rather than including a continuous rotation 
coupled with the electromagnetic and heat transfer 
physics.  

Developing an experimentally validated mathematical 
model is assumed to be an appropriate approach for 
process design and optimization purposes (Knoerzer et 
al. 2008; Erdoğdu et al. 2017), and a fully coupled model 
with rotation might be useful to better determine the 
effects of sample location within the cavity interacted 
with the electromagnetic field distribution. Besides the 
effect of rotation within the cavity, nearly all MW 
systems consist of a rectangular cavity. Since the 
electromagnetic field distribution is formed by reflection 
of electromagnetic waves from the walls of the cavity,
the cavity shape might also be considered to have a 
certain effect.

Therefore, in this study, different sample position (center 
and off-center) in a cylindrical MW cavity (with a 
circular cross-section) and continuous rotational effects 
during process are focused to develop a mathematical 
model and validate with experimental data within a 
cylindrical microwave cavity.  

MATERIAL AND METHOD 

The MW system used in the experiments was built by 
Gigatherm (Flawil, Switzerland) at 2450 MHz and 1 kW 
power with an inverter magnetron. Figure 1 shows this 
system with its computational geometry. Tylose gel (77% 
moisture content - wb), located in a cylindrical baker 
(diameter =6.6 cm; height =3.8 cm), was the 
experimental sample used in the heating experiments. 
Tylose is widely used in MW and RF experiments as 
experimental material. Tylose can easily be shape to 
container shape, also it has dielectric properties similar to 
meat (Llave et al., 2016). 

A mathematical model to determine the electromagnetic 
field distribution within the system and temperature 
distribution within the sample was developed using 
Comsol Multiphysics program (V.5.1 - Comsol AB, 
Stockholm, Sweden). Dielectric and thermal properties of 
tylose gel were obtained from Llave et al. (2015, 2016).
Sample top surface temperature distribution was obtained 
using a MobIR® M8 Thermal Camera (Wuhan Guide 
Infrared Co., Ltd., China) and local temperature 
measurements were obtained using fiber optic probes in a 
OPTOCOM AG Fiber Optic Temperature Sensor TS3 
(Dresden, Germany) data acquisition system. For model 
development, microwave heating physics 
(electromagnetic waves and heat transfer in solids) were 
coupled with the moving mesh physics. The governing 
equations solved are listed below with the applied 
boundary conditions. 

Figure 1. Computational geometry of the microwave 
system used in the experiments. 

Electromagnetic Waves: 
- Maxwell equation (1) was used to evaluated 

electric field distribution in MW cavity: 
  (1)

where  is electric field intensity (V/m), 
dielectric constant of a material,  is relative 

dielectric loss of a material, is angular wave 
frequency (2 f, rad/s),  is relative permeability 
of the material and is speed of light in free 
space (3×108 m/s).
Boundary conditions: 

- Perfect Electromagnetic Conductor for cavity 
and waveguide walls, 

- 2450 MHz frequency, 1 kW power, TE10 mode, 
rectangular type port, 

- Scattering boundary condition for turntable 
(Teflon material), and  

- Dielectric properties of the sample were a
function of temperature through the frequency-
transient solver.

Heat Transfer in Solid; 
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- To calculate temperature distribution within 
product, heat transfer energy equation (2) was 
solved: 

     (2) 

Where absorbed power (3), Q was:
    (3) 

and  was material density (kg/m³), was
specific heat (J/kg-K), was thermal 
conductivity (W/m-K), was temperature (K), 
and was the volumetric heat generation due to 
the incident microwave energy (W/m³). 
Equation (3); was electrical conductivity of 
the material (S/m), was free space 
permittivity (8.854*10-12 F/m).

Boundary conditions: 
- Fixed and uniform initial temperature 

distribution, and  
- Convective heat transfer for surface of sample 

with a heat transfer coefficient of 

 

 
(a) 

 

 
(b) 

Figure 2. Tylose sample position in the cavity located on 
the turn-table (a) on-center, (b) off-center. 

Moving Mesh; 
- Cylindrical coordinate system was used to carry 

out the continuous rotation process 
- The rotation rate was 

(where rpm=3.67 rpm (revolutions per minute), 
measured experimentally and sys2.r was the 
rotation radius) 

- The rotation within the system does not continue 
in the same direction during the whole process. 
The rotation movement is performed at
clockwise direction for 330°, and then the 
sample returns to its starting position at a given 
rotation rate. 

The computational geometry (Figure 1) was prepared 
applying Nyquist criteria (4): 

   (4)

where  is wavelength (m),  is frequency (Hz),  is 
relative permeability.
This study consisted of 2 steps: for the effect of sample 
position on the turn-table (on- and off-center; Figure 2) 
and rotation rate.

RESULTS AND DISCUSSION 

Model validation results are shown in Figures 3 to 5. In 
the first part of the validation experiments, time-
temperature data obtained at local measurements were 
compared with the model results (Figure 3) while, in the 
second part, thermal camera images of the surface 
temperature of the sample were compared for on-center 
with no-rotation (Figure 4) and off-center with rotation 
(Figure 5). 

As can be observed in these figures, the model data 
correlated well with the experimental results. A better 
correlation was obtained based on the local temperature 
measurements while reasonable results were obtained 
based on the thermal camera measurements. The 
observed hot spots on top surface of the sample 
corresponded with the electromagnetic field formed 
within the cavity (Figure 6). Due to limitations in 
available computational power, the electromagnetic field 
was assumed to be in steady state. With the applied 
moving mesh physics, only the sample within the cavity 
was forced to rotate at the pre-determined rotation rate. 
In addition, metal sheets placed on turntable affecting the 
electromagnetic field distribution was not fully included 
in the rotating model. Therefore, certain deviance might 
be observed with the model data and thermal images. For 
the off-center with rotation, tylose sample faced to a 
more variable electromagnetic field compared to the 
center – no-rotation case. Therefore, a more 
homogeneous temperature distribution was obtained 

Center Position

Off-Center
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(Figure 5 vs 4). A continuous rotation was carried out in 
this study. Chen et al. (2016) used the Matlab program 
for rotating mash potato, and rotation was carried out 
step by step rather than as a continuous process. 

Figure 3. Local comparison of experimentally obtained 
time temperature data with the model results. 

30 s

45 s

Figure 4. Comparison of surface temperature thermal 
camera images (left) with model results (right) for on-

center with no-rotation at 30 and 45 s of heating. 

 

 
30 s

 

 

 

 

 
45 s

 

Figure 5. Comparison of surface temperature thermal 
camera images (left) with model results (right) for off-

center with rotation at 30 and 45 s of heating. 

 

 
 

Figure 6. Electromagnetic field formed within the 
microwave system cavity (xz-view). 

The absorbed power by mash potato was reported to 
oscillate due to rotation, and a similar effect was 
observed in the current study. Figure 7 shows absorbed 
power during the process for center no-rotation and off-
center with rotation cases. As observed, after the initial 
heating period, the center sample`s power absorption 
with no-rotation was rather stable while certain 
oscillations were observed due to the effect of rotation 
and sample`s facing with the variable electromagnetic 
field distribution during the continuous rotation.

Comparisons for center and off-center cases for rotation 
and no-rotation processes were also done with respect to 
center-rotation process (as a more chosen case). Figure 8 
shows this comparison. A higher temperature distribution 
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was obtained for center no-rotation case due to the 
limited facing of the electromagnetic field compared to 
the both rotation cases. 

Figure 7. Absorbed power during the process for center 
no-rotation and off-center with rotation cases.

Figure 8. Comparisons for center and off-center cases for 
rotation and no-rotation processes were also done with 

respect to center-rotation process 

CONCLUSIONS 

A mathematical model was developed for MW heating 
process in a specially designed microwave system. The 
model was validated with experimental data, and effects 
of rotation and sample location within the cavity were 
investigated using the experimental data and validated 
model results.  

Based on these: 
- Sample position in the cavity combined with rotation 

affected the temperature distribution significantly.  

- The rotation process enabled a longer facing with the 
variable electromagnetic field leading to a more 
uniform temperature distribution over the sample 
surface. Non-homogenous electric field in the cavity 
led to hot and cold spots within the sample and 
especially of the sample surface.  

- Due to the facing with the variable field, energy 
absorbed by the surface of sample oscillated during 
the process compared to the no-rotation case.  

The developed and experimentally validated 
mathematical model is planned to be used for industrial 
scale system design and process optimization purposes.  
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Chocolate tempering, cocoa butter crystallization, temper 
index  
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The optimal tempering condition to obtain a superior 
quality chocolate with good contraction, gloss and texture 
without forming any fat bloom during storage can vary for 
each product depending on its composition. For a 
standard chocolate having an average fat dosage, the 
temper index (TI) for a well-tempered condition is 
between 4 and 6. This may differ for more extreme 
recipes such as a high-fat and low-fat chocolate. In such a 
case, the lesser undercooling required for a high-fat 
chocolate may become an advantage for minimizing 
energy consumption within the production line. This study 
evaluates the effect of tempering conditions on chocolates 
with different fat compositions by using a standard cocoa 
butter seed addition (CBSA) technique used by Cargill® 
and conventional tempering by Aasted temper unit. The 
results indicated that the high-fat chocolate tempered to 
TI 2.0 showed an equivalent quality to TI 5.0 in terms of 
hardness and fat bloom stability whereas, a TI of 7.0 was 
necessary for the low-fat chocolate to attain a better 
bloom stability than TI 5.0. Therefore, this study 
demonstrates that the faster crystallization power of high-
fat chocolates and the slower crystallization power of 
low-fat chocolates necessitates the adaptation of the 
temper indexes. 
 
������������

Chocolate is produced from Theobroma cacao beans and 
often the manufacturing is considered as a complex 
process. Chocolate is a complex matrix consisting of fine 
solids such as sugar and cocoa particles which are 
dispersed in a fat based continuous medium (Afoakwa, 
Paterson, Fowler, & Vieira, 2008a) with additional 
ingredients such as emulsifiers and flavourings. This 
continuous fat based medium is mostly cocoa butter and 
its functionality is responsible for the overall quality of a 
chocolate. High quality chocolates are in extensive 
demand within the consumers and are marked by 
properties such as hardness, glossiness and snap. Cocoa 
butter has at least six crystalline polymorphs (I-VI) 
characterised by its structure and melting point. 
Tempering chocolate is required to obtain only form V, 
the most desirable in terms of it exhibiting the best 
appearance and taste. This form has a shiny appearance, 
produces an audible snap when broken, melts in the 
mouth, and has a smooth texture. Unfortunately, it is not 

the most stable of the six morphs and requires tempering 
in order to maintain the required structure. The sensorial 
property of this complex product is dependent on the 
polymorphic behaviour of the fat present within it and 
β(V) is proven to be the right crystal form to provide the 
best product characteristics (Ollivon, 2004; Timms, 
2002). The formation of the various crystalline structures 
is based on the different triglycerides present within the 
fat. Cocoa butter, which is a mixture of different 
triglycerides has the ability to solidify at temperatures 
below 25°C but can melt easily at body temperature 
(Whitefield, 2005; Beckett, 2008). The cryst                     
allization behaviour of chocolate is greatly influenced by 
the minor changes in the Triacylglycerol (TAG) profile 
and the solid fat content within the product. Most of the 
TAG’s are mono-unsaturated which is responsible for the 
polymorphic behaviour along with small amounts of di-
unsaturated, tri-saturated and tri-unsaturated TAG’s 
(Foubert, 2003). A cocoa butter containing more saturated 
fats solidifies faster (Lechter, 2009). Therefore, the 
compositional differences within the chocolate are 
expected to have a severe impact on its structure and 
bloom stability. This can be the baseline in determining 
optimal tempering conditions for different chocolate 
compositions, especially regarding their fat content. Such 
a plausible condition which is repeatable in the 
production line may help in reducing the consumption of 
energy and time 

The fat percentage of chocolates generally constitutes 
between 25% and 35%, and a chocolate having a fat 
content below 23% is considered as a paste (Beckett, 
2000). The recipe of a chocolate has a major influence on 
the rate of crystal formation during the tempering process 
(Beckett, 2017; Brown, 2015) and the amount of fat 
present in the chocolate during manufacture influences the 
degree of crystallinity and the crystal size distribution 
(CSD) (Afoakwa, 2010). These crystals can be generated 
within the chocolate by using a conventional tempering 
unit and crystal seed addition method. The transition of 
the crystal forms occurs irreversibly from the least stable 
α to the most stable triclinic parallel packed β (VI) form 
with density differences and increasing melt temperatures 
(Martini, Awad, & Marangoni 2006). In a conventional 
tempering process, ample quantities of chocolate are 
pumped through a tempering unit which consist of 
different zones. The temperatures in these zones are 
controlled for cooling to induce nucleation and crystal 
growth followed by reheating to eliminate the less stable 
crystals. The seed tempering process is equipped with a 
simpler heat exchanger compared to the conventional 
method.  In this method, a precise amount of pre-made 
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crystal seeds are added into the chocolate maintained 
below 34°C to ensure β(V) crystals. The seed tempering 
technique is expected to generate a well-tempered 
chocolate by the addition of 0.2-1% of crystal seeds. 
Kinta and Hartel (2009) studied the influence of the 
quantity of seeds added on the tempering quality. The 
study showed that the higher the amount of crystals added 
into the chocolate, faster is the crystallization. Such a 
condition resulted in a faster formation of smaller β 
crystals. The addition of pre-made seeds in the molten 
chocolate provides multiple nucleation sites (Svanberg, 
Ahrné, Lorén, and Windhab, 2011). The bloom formation 
seen on the under tempered chocolates having fewer 
amount of seeds are caused by the phase separation of 
both particles and fat occurring during the crystal growth.  

A substantial amount of research is carried out in the field 
of chocolate tempering and the crystallization in 
chocolates. However, there is limited study performed on 
the utilization of a multi- stage tempering unit for 
attaining good tempering conditions for varied dark 
chocolate compositions and its impact on the physical 
properties. This may be because a tempering unit 
principally functions as a heat exchanger to build crystals 
within a product and the processing conditions required 
for each machine can be unique. It will depend on various 
process parameters for which no standard condition is 
used hitherto.  

 
��
��������������	���5	��������
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The crystallization kinetics of fats (particularly the rate of 
crystallization and the rate of change from one polymorph 
to another) are as important as the equilibrium behaviour 
of fats and their mixtures since they are relevant to real 
systems of chocolate production. While the fundamentals 
of nucleation, fat crystallization and polymorphism are 
widely covered in the literature, modelling of the 
crystallization kinetics of fats could be more emphasized 
and explored. A number of different models exist to 
describe the kinetics however, they allow only to certain 
extent for controlled operations concerning crystallization 
of fat components under certain conditions.  These 
equations find their basis in thermodynamics and because 
thermodynamic properties are not often known, they are 
thereby not always easy to use in practice. Several models 
have been proposed by different authors over the years: 
the Avrami model and to a lesser extent the Gompertz 
model, are most popular however, neither of the models 
are being perfect. The Avrami model (Kawamura, 1979, 
Dibildox-Alvarado & Toro-Vazquez, 1997, Kerti, 1998, 
Metin & Hartel, 1998, Toro-Vazquez et al., 2000) was the 
first one to be used on isothermal cocoa butter 
crystallization by Ziegleder (1990). However, this model 
is limited to a single component system. The right type, 
size and the amount of crystals determine the correct 
solidification and melting properties of a chocolate. The 
Avrami model (and its modifications) is the most widely 
used approach for the description of isothermal phase 
transition kinetics and provides a theoretical basis with 
underlying assumptions, which are not often met in the 

case of fat crystallization. Therefore, it is important to 
understand the influence of the various ingredients and 
processes on the physical and sensorial properties of the 
chocolate to ensure superior quality. Some authors use a 
modified Avrami equation, also called the Avrami-
Erofeev equation (Herrera et al., 1999a, Herrera et al., 
1999b, Ng & Oh., 1994 and Toro-Vazquez & Dibildox-
Alvarado, 1997). On the other hand, the Gompertz model 
provides a better fit by a straightforward physical 
interpretation of the parameters, however has a weak 
theoretical basis. Kloek et al. (2000) and Vanhoutte 
(2002) used a reparameterized Gompertz equation to 
describe their crystallization curves. Berg and Brimberg 
(1983) proved that empirical equations used for 
aggregation and flocculation can also be used to describe 
fat crystallization. There is certainly a need to develop a 
new model to describe the crystallization kinetics of fats. 
Foubert et al. (2002) described a new model in the form 
of differential equation allowing use under dynamic 
temperature variations. It describes the crystallization 
process as if it is a reversible reaction with a first order 
forward reaction and a reverse reaction of order n. The 
model provides an analytical solution under isothermal 
conditions that simplifies parameter estimation. Following 
this an extension of the Foubert model has been 
developed to facilitate the description of two-step 
processes (Foubert et al., 2006). The model is built based 
on the assumptions of the presence of an isosbestic point 
indicating that the first step involves crystallization of part 
of the melt in the α polymorph and the second step 
involves a polymorphic transformation from α to β' with 
no β' crystals formed directly from the melt. Performed 
simulation experiments demonstrated the role of different 
model parameters and proved that parameter estimation 
on the different data sets resulted in a good fit.   

	���

This study describes the pre- and post-crystallization of 
dark chocolates with high and low-fat compositions and 
its influence on the final product quality. Modelling is 
proposed as a future perspective requiring further studies 
and research.  

�	�
��	���	���
����� 

All the chocolate samples used in this study were 
manufactured by Cargill cocoa and chocolate, 
Moeskroen, Belgium. This study focused on dark 
chocolates containing high and low fat to determine the 
influence of the amount of fat content on tempering 
conditions and the product quality. Standard chunks of 
dark chocolate were kept in an oven overnight at 45-50°C 
to ensure the complete melting of crystals present in the 
chocolate, which could otherwise influence the tempering 
process.��������
�
The study involved two different tempering methods: (i) 
CBSA (Cargill protocol) and (ii) Conventional tempering 
(AMC50-CTS, DK-3520, Aasted-Mikroverk ApS, Farum, 
Denmark). Both the methods were applied on each 
chocolate recipe to attain a TI of 2.0 and 5.0 for high-fat, 
and a TI of 5.0 and 7.0 for a low-fat sample.  The temper 
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quality was determined by using a temper meter 
(MultiTherm TC, Buhler, Switzerland). The quality of the 
final product was confirmed by conducting a texture 
analysis (TA-XT plus Stable Micro Systems, Surrey, 
England) and fat bloom evaluation both visually and 
using a scanning electron microscope (Hitachi Tabletop 
Microscope TM-1000, Tokyo, Japan). The solidification 
kinetics of the chocolate was measured using MCR 302 
(Anton Paar GmbH, Ostifildem, Germany). The trend for 
demouldability observed in the rheological method was 
compared with a lab-scale cooling process utilizing pre-
conditioned polycarbonate moulds of dimension 
100×50×5 mm (type CW 2017, Chocolate World, 
Antwerp, Belgium) in a climate chamber (CTS GmbH, 
Hechingen, Germany). 
 
�
������	������������
��1.�*!�(��)����	���#'$/�
The standard method currently used by Cargill involves 
the addition of approximately 1% of crystal seeds.  
However, during the study it was noticed that a TI of 5.0 
was obtained for the high-fat chocolate with 0.75% crystal 
seeds while compared to a low-fat chocolate which 
required 1%. 
 
��1.�*!�(��)�	+"#�/���1.�*���!#�
The Aasted temper unit consists of three zones with heat 
exchange plates which are equipped with scrapers to 
ensure a controlled heat exchange within the chocolate. A 
TI of 5.0 ± 0.1 was achieved for the high-fat chocolate by 
adjusting the zone 1, 2 and 3 temperatures to 33.5°C, 
23.8°C and 29.5°C respectively with a scraper speed of 
100%. To attain a TI of 2.0 ± 0.1, the zone 2 and 3 
temperatures were increased. Similarly, for a low-fat 
chocolate a TI of 5.0 ± 0.4 and 7.0 ± 0.3 was achieved by 
adjusting the zone 2 and 3 temperatures.  
 

�+��+#!$��$%��$�!/!%!&+#!$���!��#!&"��"!�(��'�$1�#�*�
A rheological analysis was performed for high-fat and 
low-fat chocolates to analyse the solidification kinetics 
and the demouldability of tempered chocolate. The 
crystallization speed attained from the rheological study 
showed that the onset of contraction and the total time for 
demouldability changes within the same recipe when 
subjected to different temper indexes. The total time for 
solidification and demoulding is longer for the chocolate 
with TI 2.0. In the case of the low-fat chocolates, the TI 
7.0 shows faster induction than TI 5.0. Therefore, a faster 
solidification and demoulding is noticed for the chocolate 
with TI 7.0. 
�
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The tempered chocolates from CBSA method and Aasted 
were cooled under two different temperatures and relative 
humidity (RH) to determine the demouldability time. 
These included cooling at 10±1°C/55% and 20±1°C/35% 
in climate chambers. The aim of this method was to select 
the best parameter attained from the detachment of 
chocolate during realistic cooling that can be correlated to 
the results attained from the rheological method. The two 
parameters determined during the realistic cooling were 

the onset time of detachment and the time for complete 
detachment of chocolate from the mould. The high-fat 
dark chocolates tempered to TI 2.0 and 5.0 by CBSA 
were cooled at 20°C and 10°C. It was seen from the 
results that the chocolate tempered to TI 2.0 exhibited a 
slower onset of detachment compared to TI 5.0 when 
cooled at 20°C. A similar trend was noticed for the onset 
and the complete detachment of the chocolates at TI 2.0 
when cooled at 10°C as shown in Figure 1.  
 

 
Figure 1: Onset of detachment, complete detachment and 
theoretical point of demouldability for high-fat chocolates 

tempered to TI 5.0 and TI 2.0 by CBSA method and cooled at 
10°C 

The low-fat dark chocolate when tempered to TI 5.0 and 
7.0 were cooled at 20°C and 10°C. The chocolate with TI 
7.0 when cooled at 20°C exhibited a slower onset of 
detachment than the TI 5.0. However, as seen in Figure 2, 
the TI 7.0 showed a faster onset and complete detachment 
from the mould than TI 5.0 when the chocolate was 
cooled at 10°C. Hence, the best parameters that can be 
correlated well with the theoretical point of demoudability 
attained from the rheometer measurements are the onset 
time of detachment and time for complete detachment 
from realistic cooling as shown in Figures 1 and 2. 
 

Figure 2: Onset of detachment, complete detachment and 
theoretical point of demouldability for TI 5.0 and TI 7.0 of low-

fat chocolates tempered by CBSA and cooled at 10°C 

�+*/��""�$%��'$&$�+#��
The hardness of the high-fat (TI 2.0 and TI 5.0) and low-
fat (TI 5.0 and TI 7.0) chocolates tempered by CBSA and 
Aasted method were determined by conducting a texture 
analysis. A notable difference was not observed in terms 
of hardness within similar recipes having different temper 
indexes using both methods as indicated in the Figures 3 
and 4.  
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Figure 3: Comparison of hardness measurements of CBSA and 

Aasted tempered samples of high-fat chocolate using texture 
analyser 

 
Figure 4: Comparison of hardness measurement of CBSA and 
Aasted tempered samples of low-fat chocolate using texture 

analyser 

�+#���$$1�	�+�)"!"�
Two sets of samples were prepared for each chocolate 
type by the CBSA and Aasted method which were cooled 
in a climate chamber at 20°C±1°C with 35% RH. The 
tempered high-fat (TI 2.0 and 5.0) and low-fat (TI 5.0 and 
TI 7.0) dark chocolates showed good gloss and 
demouldability directly after cooling. A chocolate bar 
from each set was stored in climate chambers controlled 
at 25°C/ 40% and 20°C/ 35% (the reference) respectively 
after demoulding. The samples stored at 25°C were 
compared with the samples at 20°C from day 1 up to 3 
months to record the changes in their appearance. A scale 
from 0 to 4 was used for the visual evaluation of fat 
bloom in the tempered dark chocolates which is in 
accordance with a protocol followed by Cargill. The 
bloomed samples were evaluated using the electron 
scanning microscope to compare with the standard. The 
consolidated results from the visual evaluation of high-fat 
and low-fat samples as shown in Table 1 indicated similar 
blooming stability for high-fat chocolate tempered to TI 
2.0 and TI 5.0. However, it was noticed that the low-fat 
chocolate with TI 7.0 exhibited a better bloom stability in 
comparison with TI 5.0.   
 
Table 1: Consolidated results from the visual evaluation of 

CBSA and Aasted tempered samples cooled at 20°C 
�

�	���
�
�

���
�

��	�������
�

����0�	�
2.0 Similar 
5.0 Similar 

���0�	��
5.0 Low 
7.0 High 

 
The SEM analysis showcased similar results as the visual 
evaluation. It was seen from the SEM images as shown in 

Figures 5 and 6 that the bloom formation in high-fat 
chocolate with TI 2.0 and 5.0 were similar whereas, in the 
case of low-fat chocolate a TI of 7.0 showed less bloom 
compared to TI 5.0.   
  

 
Figure 5: SEM images of CBSA and Aasted tempered samples 

of high-fat chocolate cooled at 20°C   

 

Figure 6: SEM images of CBSA and Aasted tempered samples 
of low-fat chocolate cooled at 20°C 
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Several discrepancies were noticed for the Aasted 
tempered high and low-fat chocolates. However, a more 
homogeneous tempering achieved by the seed addition 
method showed almost equivalent characteristics for both 
chocolates when tempered to varied temper indexes. The 
onset time of detachment and time for complete 
detachment was determined during cooling and was 
chosen as the best parameters which can be compared to 
the theoretical point of demouldability attained from the 
rheometer analysis. The high-fat chocolate tempered to TI 
2.0 by CBSA exhibited an equivalent bloom stability 
compared to TI 5.0. However, a variation was observed 
for these chocolates when tempered using the Aasted 
machine followed by a slow cooling. It was noticed that 
TI 2.0 bloomed faster than TI 5.0 in this case. It may 
imply that the chocolate was tempered too low within the 
Aasted and a higher TI of 3.0 might be required to 
produce a well-tempered chocolate. But, considering a 
homogeneous tempering such as the CBSA method, the 
results confirm that the high-fat chocolate when tempered 
to TI 2.0 can exhibit the properties of a well- tempered 
chocolate such that a TI of 5.0 is not required. In the case 
of the low-fat chocolate the results indicated that a TI of 
7.0 requires a lower induction time compared to TI 5.0. 
The fat bloom study which is an appropriate method to 
analyse the quality of a tempered chocolate clearly reveals 
that the low-fat chocolate tempered to TI 7.0 exhibit a 
higher stability than TI 5.0. The optimization of cooling 
at 10°C by the installation of a camera inside the climate 
chamber favoured a controlled cooling of the chocolate 
without the need for opening the door of the cooling unit. 
However, various parameters mainly, the cooling rate 
influences the time required for the chocolate to detach 
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from the mould and this may differ in an industrial 
cooling tunnel. Therefore, it would be ideal to perform an 
industrial cooling study to achieve a corroboration for the 
lab-scale findings.  

In conclusion, the present study showed that a lower TI of 
2.0 for the high-fat and a higher TI of 7.0 for the low-fat 
chocolates, still delivered a good temper quality similar to 
a well-tempered standard recipe with TI 5.0. Therefore, 
by knowing the differences in crystallization power of a 
chocolate recipe, the temper index needs to be adjusted to 
achieve an optimally tempered chocolate. It was possible 
to elucidate in this study that a high-fat chocolate with 
higher crystallization power can be tempered to a TI of 
2.0 instead of TI 5.0 and a low-fat chocolate with a lower 
crystallization power is required to be tempered to a TI 
7.0 instead of TI 5.0 to achieve a well-tempered 
chocolate. 

Modelling approach of crystallization kinetics of fats 
should further be studied to improve and modify the 
existing models. While the fundamentals of nucleation, fat 
crystallization and polymorphism are widely covered in 
the literature, modelling of the crystallization kinetics of 
fats could be more emphasized and explored. The existing 
models and their modifications allow to certain extent for 
controlled operations concerning crystallization of fat 
components under certain conditions, neither of the 
models is however being perfect.  
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ABSTRACT 
 
Cassava is one of the most important food crops in wet 
tropical places containing one of the most pure forms of 
starch (called tapioca). Cyclodextrins are products resulting 
from a simple enzymatic conversion of starch (a renewable 
natural material) and used in a variety of applications in the 
food and pharmaceutical industry. The objective of this 
paper is to present a techno-economic feasibility study for 
the production of β-cyclodextrin from tapioca starch obtained 
from cassava tubers. The proposed process with a capacity of 
20 metric tons/h of cassava was modeled in SuperPro 
Designer v10 (a process design software tool). The results 
obtained by solving the mass and energy balance equations 
(to calculate the material and energy requirements and 
estimate the process yield) and performing economic 
calculations are presented and discussed. The analysis 
indicates that the proposed plant requiring capital investment 
of approximately 65 million € presents an economically 
viable process with revenues around 113 million €/yr and 
operating expenses around 75 million €/yr. 
 
INTRODUCTION 
 
Cassava (Manihot esculenta), also called manioc or yuca, is 
one of the most important food crops in wet tropical places, 
particularly suited to low availability of nutrients in the soil 
and able to survive drought. It is one of the oldest crops of 
products from South America, but nowadays it spreads to all 
the tropical and subtropical regions of the planet. Although 
the leaves of the cassava are sometimes consumed, the main 
edible part is the tuber, which is essentially the root of the 
plant (Tonukari, 2004). A significant limitation of cassava 
production is the rapid alteration of the tuber after harvesting 
which limits tuber storage only to a few days (Tonukari, 
2004). 
 
Although cassava is an important food, it contains toxic and 
antiseptic substances that interfere with the digestion and 
intake of nutrients. Cyanogens are found in 3 forms in the 
cassava, in cyanogenic glycoside (95% linamarin and 5% in 
lotaustratin), cyanohydrins and free cyanide (Montagnac et 
al., 2009). 
 

Over two-thirds of total cassava production is used as food 
for humans, while the rest is used for industrial purposes 
(Tonukari, 2004). Cassava is also used for the production of 
a starch called tapioca which is a basic food in many parts of 
the world. The starch content of a new cassava root ranges 
from 25-30%. Tapioca is one of the most pure forms of 
starch and production varies from region to region. 
Commercially, starch is converted into various forms: hot 
soluble powder, pre-cooked thin or thick flakes, rectangular 
sticks and spherical "pearls" (Gustafson, 2015). Tapioca 
starch can be converted to maltotriose, maltose and glucose 
as well as other modified sugars and organic acids. It can be 
used to prepare fructose syrups and to form gelatin capsules. 
The use of tapioca as a raw material for the production of 
ethanol for fuel is already being investigated and is very 
promising (Gustafson, 2015). 
 
Cyclodextrins are a group of cyclic oligosaccharides. The 
most well-known natural cyclodextrins are α-, β- and γ-
cyclodextrins: α-cyclodextrin consists of 6 molecules of 
glucopyranose, β-cyclodextrin of 7 and γ-cyclodextrin of 8. 
They are produced from starch (a renewable natural material) 
through a multi-step enzymatic process involving different 
enzymes with cyclodextrin glycosotransferase (CGTase) 
produced by microorganisms such as Bacillus macerans and 
Bacillus circulans being the most commonly used enzyme. 
Today, with the help of genetic engineering, a series of 
enzymes specialized for the industrial production of 
cyclodextrins have been developed. 
 
The food and drug industries are the main users of 
cyclodextrins because of their favorable properties which 
include: stability at high processing temperatures, resistance 
to oxidation and thermal denaturation, color stability and 
ease of handling. The food industry in particular consumes 
80-90% of world production of cyclodextrins in foods for a 
variety of purposes: (i) to protect lipophilic food ingredients 
that are sensitive to oxygen and light and heat; (ii) to 
stabilize fragrances, flavors, vitamins and essential oils from 
degradation, (iii) to suppress unpleasant flavors and odors; 
(iv) to convert the liquid food ingredient into a solid powder; 
(v) to dissolve vitamins and food color; (vi) to control the 
release of certain food ingredients and remove contaminants 
(vii) to preserve the quality of the food during storage with 
improved packaging technology. There are several regulatory 
principles that control the use of various cyclodextrins 
regarding safety (GRAS, Generally Recognized as Safe), 
addition limit, acceptable daily intake, etc. The molecular 
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encapsulation of flavor components in the cyclodextrin 
cavity has proven to be the most effective method of 
stabilizing the taste in food and thus providing protection 
from heat and evaporation (Li et al., 2014; Das, 2013; 
Saenger, 1980). 
 
Cyclodextrins are not metabolised as fast as starch. This is 
because they break down more slowly into linear C-1,4 
glucanohydrate dextrins and are not hydrolyzed by enzymes 
that affect the end groups. All toxicity tests have shown that 
the oral consumption of α- and γ-cyclodextrin is harmless. 
According to the FAO reports, enzymatically modified starch 
derived from cyclodextrins is also toxicologically harmless. 
(http://www.fao.org) 
 
Council Regulation (EU) 231/2012 states that β-cyclodextrin 
(E 459) is produced by the action of CGTase obtained from 
B. circulans, P. macerans or the B. licheniformis SJ1608 
recombinant strain for partially hydrolyzed starch. Only the 
bacterial species listed in Regulation (EU) No 231/2012 can 
be used. 
 
Βeta-cyclodextrin (E 459) is a food additive approved in 
accordance with Annex II and Annex III to Regulation (EC) 
No 1333/2008. Council Regulation (EC) (EC) No 1333/2008 
and the specific purity criteria are laid down in Commission 
Regulation (EU) 231/2012. In 1996, the Scientific 
Committee on Food (SCF) evaluated the safety of β-
cyclodextrin as a carrier and stabilizer, produced by the 
activity of glucose-transferase (CGTase) obtained from 
Bacillus circulans in partially hydrolysed starch. The 
recommended maximum level of β-cyclodextrin intake from 
food is 5 mg per kg of body weight per day. For α- and γ- 
cyclodextrins no acceptable daily intake (ADI) was reported 
due to their non-toxicological profiles (www.efsa.europa.eu). 
 

For the industrial production of cyclodextrins, starches with 
high amylopectin content are preferred. Corn and wheat 
starches contain higher percentage of amylose and impurities 
and are therefore not suitable. Tapioca starch and waxy corn 
starch consist of almost 80% amylopectin and would be ideal 
substrates. 
 
Two different types of cyclodextrin production processes can 
be identified: solvent and non-solvent processes. In solvent  
processes, an organic complexing agent precipitates 
selectively one type of cyclodextrin and drives the enzymatic 
reaction to produce mainly this type of cyclodextrin. In non-
solvent processes, no complexing agent is added and, 
therefore, a mixture of different cyclodextrins is produced 
with their relative ratio being dependent on the CGTase used 
and on the reaction conditions. Because of the lower 
enzymatic reaction yield and the production of a mixture of 
cyclodextrins, non-solvent processes compared with solvent 
processes require a more complex downstream purification 
process (including a crystallization step), have higher energy 
demands and produce a large number of by-products. 
However, non-solvent processes avoid all the drawbacks 
resulting from the use of a potentially flammable, toxic or 
expensive solvent whose presence in the final product may 
limit its usability in food applications. In addition, the cost of 
cyclodextrin production is high if the solvent isn’t nearly 
completely recovered and reused making solvent processes 
quite expensive especially if solvents with high boiling point 
are used (Biewer et al., 2002). 
 
The objective of this paper is to present a complete techno-
economic feasibility study for the production of β-
cyclodextrin from tapioca starch obtained from cassava 
tubers and evaluate its potential for commercial production. 
The proposed technology is a non-solvent process which 
yields a product free of toxic solvent residues while 

Figure 1. Process Flowsheet for a Plant Producing β-Cyclodextrin from Cassava Tubers 
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exploiting most by-products in an attempt to annihilate the 
economic drawbacks of non-solvent processes.  
 
The proposed process flow sheet was developed and solved 
on SuperPro Designer v10, a commercial process simulation 
software tool by Intelligen, Inc. (www.intelligen.com). The 
use of SuperPro Designer as a simulation tool for designing 
pharmaceutical, biotech, food and other types of processes 
has been reported in numerous publications in the scientific 
and technical literature. However, there exist only few 
reported SuperPro Designer models using cassava as raw 
material (Knight, 2011; Quintero et al., 2015) and, to the best 
of our knowledge, none for the production of cyclodextrins.  
 
A thorough description of the proposed process is presented 
next followed by an analysis of the results obtained by 
solving the mass and energy balances and performing 
economic analysis.  
 
PROCESS DESCRIPTION 
 
Figure 1 presents a complete flow diagram of a continuous 
process for the production of β-cyclodextrin from cassava. 
Cassava tubers are fed through an inclined conveyor belt to a 
three-stage blade washing machine (P-1). The blade washing 
mechanism adopts the principle of sweep cleaning. The 
heavier sand and dirt sink to the bottom of the basin, as 
opposed to the lower density tubers that float and move to 
the next stage of mechanical peeling (P-2). A Brush Roller 
Cassava Peeler (www.dornow.de) is used to remove the 
brown peel of the tuber by scraping. Then the peeled tubers 
are washed (P-3) and inserted into a cassava root chopping 
machine (P-4) where they are chopped to ensure efficient wet 
milling (P-5). This is the first step of extracting the starch 
where the goal is to open all the tuber cells so that all the 
starch granules are released. In this process, treatment water 
has to be added to dilute the slurry and extract the cyanogen 
glucosides by releasing them into the water. This whole 
process is carried out on a Rasper machine. In the next step, 
a two-phase Decanter type separation (P-6) is carried out, 
where the aqueous phase containing the cyanogenic 
glucosides is separated at the outlet of the liquid, and the 
starch paste which contains proteins and fibers is removed 
from the solids outlet. The slurry is then mixed with excess 
water in a blender (P-7) at a concentration of about 20% 
w/w. 
 
It is believed that the amount of fibers remaining in the slurry 
is negligible (less than 2%) so the slurry is directly passed to 
the hydrocyclone purification step (P-8). At this stage the 
slurry is fed to an array of ten hydrocyclones arranged in 
series. This centrifugal separation leads to the separation of 
the heavier starch removed from the bottom outlet and the 
hydrated (by about eight times) proteins are removed from 
the upper outlet. At the end of this process a dense slurry of 
starch (40% w/w moisture) is received. The mixture of 
proteins is fed into a centrifugal screening device (P-20) 
where the total solids are separated from the water. The 
solids are fed to an atmospheric drum dryer (P-21) where 
they are dehydrated while the water resulting from the 
centrifugal separation is recycled back. The resulting 

dehydrated solids can be used either for cattle feed or for 
biotechnological antibiotic production processes. 
 
After the tapioca starch purification step, the suspension 
produced is introduced into a stirred tank (P-9) where the 
starch concentration is standardized by adding water so that 
after the jet cooking stage the final suspension concentration 
is 30% w/w. CaCl2 (to a final concentration of 30 ppm) and 
the B. licheniformis α-amylase enzyme (1.8 kg of enzyme 
solution -1,4-α-D-Glucan- glucanohydrolase Termamyl® 
300L- per 1000 kg of starch) are also added. While stirred, 
the tank contents are also pre-heated to 70°C (Slominska et 
al., 2013). Live steam is then injected into the starch 
suspension (P-10) and the heated mixture is fed into a jet 
cooker (P-11). Steam injection is carried out by means of a 
pneumatic system which allows precise measurement and 
addition of the required quantity of steam to achieve the 
desired temperature of 105 °C. The residence time of the 
suspension in the jet cooker is 5 minutes. The addition of α-
amylase prior to the gelatinization and liquefaction step aims 
at the faster reduction of the viscosity of the suspension 
during the starch hydrolysis step (P-12) at 95°C. At the end 
of hydrolysis, the starch has been converted into low 
molecular weight dextrins with dextrose equivalent (DE) of 
about 20. Subsequently, the α-amylase enzyme is inactivated 
by adjusting the pH to 3 (by adding an HCl solution) for 3 
minutes. The pH adjustment in the hydrolysed product is 
carried out by cooling to 50°C and neutralization by addition 
of sodium carbonate with a final pH of 5. This inactivation 
leads to the denaturation of the α-amylase enzymes and the 
formation of the precipitate in the hydrolysis product 
(www.biokemi.org).  
 
Enzyme CGTase-glucosetransferase from B. 
Thermoanaerobacter sp. (TORUZYME®) is then added to 
the bioreactor  at a ratio of 50mg /100kg of starch. This is a 
solvent-free method of cyclization avoiding the problems of 
toxicity or specificity to other forms of cyclodextrin that 
some solvents (such as toluene or ethanol) exhibit (Biwer et 
al., 2002). The CGTase enzyme cyclizes however only 30% 
of the starch in α-, β-, and γ-cyclodextrins in a ratio of 3: 5: 2 
at 90°C, pH 5 and for 4 h (Norman and Jorgensen, 1992; 
Biwer et al., 2002). Glucoamylase and poulloulanase 
enzymes are then added to hydrolyze remaining dextrins to 
glucose at 60°C for 1 h (Hii et al., 2012). Glucoamylase 
cleaves dextrins into glucose to facilitate subsequent 
purification of β-cyclodextrin. All enzymes are then 
inactivated by adding HCl to pH 3 and by heating to 80°C 
for 3 minutes. The pH adjustment in the product produced is 
carried out by cooling to 50°C and neutralization by adding 
calcium carbonate with a final pH of 7. This inactivation 
leads to the formation of a sediment composed of altered 
enzymes. Removal of the precipitate is accomplished by 
decanter-type centrifugation (P-13) (Norman and Jorgensen, 
1992). 
 
The next step is to treat the mixture by filtration on activated 
charcoal filters (P-14). This filtration is intended to discolour 
the mixture and remove the caramelization products 
generated at the high dextrinization and fermentation 
temperatures of cyclodextrins (Biwer et al., 2002). An ion 
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exchange step (P-15) follows for the removal of ions which 
were added into the bioreactor. The purified solution 
containing the cyclodextrins and sugars is then led to a 
continuous crystallizer (P-16) where solids are first 
concentrated to 60% and then cooled to 25°C to crystallize 
β-cyclodextrin (Biwer et al., 2002). Separation of the crystals  
from the mother liquor is then carried out by centrifugal 
Basket type filtration (P-17). Separated crystals are washed 
in the cake to remove all impurities. The mother liquor is 
then led to a stirred batch fermentor (P-22) where water (to a 
final concentration of 17.5% in sugars), citric acid (to a final 
pH of 4.5), and yeast of S. cerevisiae in the form of a dry 
baker's yeast (at a concentration of 2% w/v) are added. 
Fermentation is carried for 32 h at 30°C to produce ethanol. 
The fermented broth is sent to a three-phase decanter 
centrifuge (P-23) where an ethanol-rich solution is taken 
from the light phase outlet while a large fraction of yeast is 
separated from the solids phase and recycled back to the 
fermentor (Lima et al., 1998; Mojovic et al., 2005). The light 
phase is led to a fractional distillation column (P-24) where a 
commercial product containing 96% v/v ethanol is obtained 
as distillate. Bioethanol can be sold as a fuel or as an additive 
for the preparation of alcoholic beverages and perfumes. 
 
The produced vinacas containing both α- and γ-cyclodextrins 
are led from the column bottom to the waste treatment plant. 
Isolation of α- and γ-cyclodextrins from the waste stream 
could be achieved only via a complex and expensive 
chromatographic step with low yields and a range of by-
products (Biwer et al., 2002) so it was deemed uneconomical 
and was not pursued. 
 
The high-purity crystals of β-cyclodextrin obtained from the 
basket centrifuge are fed into a rotary dryer (P-18) suitable 
for drying of crystalline products. Drying is carried out using 
hot air at 120°C. The moisture content of the final product 
should be less than 14% (wet basis). The dried powdered 
crystals are then packaged in polypropylene bags of a net 
weight of 20 kg in a vertical packaging machine (P-19).  
 
TECHNO-ECONOMIC ANALYSIS 
 
Table 1 shows the material requirements for a plant 
processing 20 metric tons of cassava per hour. The plant 
produces 600kg/h of high-purity β-cyclodextrin packaged in 
20-kg polypropylene bags. The plant is assumed to operate 
330 days per year.  
 

Table 1: Material Requirements Per 20kg Product Bag 
 

Material kg 
alpha-amylase 0.56 
CaCl2 0.01 
Cassava 687.27 
Citric acid 0.31 
Glyco-amylase 1.30 
Na2CO3 0.03 
Poulloulanase 0.07 
Saccharomyces s 0.55 
HCl 20% 0.10 
Water 1,128.96 

Table 2: Utility Requirements Per 20kg Product Bag 
 

Utility kg 
Steam 1030 
Chilled Water 98940 

 
The annual product throughput is around 230,500 bags of β-
cyclodextrin per year. In addition, the plant produces around 
15,000,000 L(STP) of bio-ethanol and 5,000,000 kg of 
animal feed (the protein/fiber-rich stream separated from 
cassava) per year.  
 
The process has significant cooling and heating utility 
requirements as shown in Table 2.  
 
With respect to economics, the total equipment cost for a 
plant of the above capacity is estimated to be around 7.7 
million €, with the bioreactors being the most expensive 
equipment. The total plant cost is around 22 million € with a 
physical cost breakdown shown in Figure 2.  The total capital 
investment (including direct and indirect costs, working 
capital etc.) is estimated to be around 65 million €.  
 
 

 
Figure 2. Direct (Physical) Cost Breakdown. 

 
 
The operating cost is around 75 million €/yr (including 
depreciation) with the material cost being its most significant 
component (about 50% of the total cost) as shown in the pie-
chart cost breakdown in Figure 3. The purchasing price at the 
time of analysis (end of 2017) for cassava was 0.22€/kg. 
 
 

 
Figure 3. Annual Operating Cost Breakdown. 
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Table 3: Selling prices of main product and by-products 
 

Product € 
β-cyclodextrin 22.25 /kg 
Bioethanol 0.7 /L(STP) 
Animal Feed 0.076 /kg 

 
 
Table 3 shows the assumed selling prices of all products. 
These values were obtained through a web-search at the time 
of the analysis on products of similar composition. Expected 
revenues from β-cyclodextrin are in the order of 102.5 
million €/yr assuming a selling price of 22.25€/kg. 
Additional revenues of 10.8 million €/yr can result from 
selling the process by-products (bioethanol and animal feed).  
The resulting gross profit margin is 34%.  
 
Based on all above economic results, the process seems to be 
economically viable with a Return on Investment (ROI) 
index at 44.2%, payback time of 2.26 years and Net Present 
Value of 201 Million € at 7% interest rate.   
 
CONCLUSIONS 
 
A commercial feasibility study was conduced using SuperPro 
Designer on a plant that uses casava tubers to produce β-
cyclotextrin. The proposed technology is a non-solvent 
process;  it yields a product free of toxic solvent residues 
and, at the same time, it exploits most by-products in order to 
take advantage of the full economic potential of the process. 
The model mass and energy balance equations were solved 
to calculate the material and energy requirements and a 
detailed economic analysis on the process was performed. 
Results from this preliminary techno-economic analysis 
indicate that the process is technically feasible and 
economicaly viable. 
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ABSTRACT 
 
A brewery simulation model is presented in this paper for an 
industrial-scale beer production and filling facility. The 
model was developed on SuperPro Designer, a process 
design software tool, and used for capacity estimation, 
process scheduling and economic analysis. The fermentation 
process was identified as the plant bottleneck; with the 
introduction of extra equipment units, the process cycle time 
was improved and the throughput increased. As 
demonstrated by the economic analysis, the improved plant 
capacity yields an economically viable process. 
 
INTRODUCTION 
 
Computer-aided process design (CAPD) and simulation tools 
could have a tremendous impact in process development for 
batch food industries, as they have had since the early sixties 
in the bulk chemicals and oil sectors. Their most important 
advantage is that they allow fast, inexpensive and easily 
documentable experimentation with numerous alternative 
scenarios that would be impossible to evaluate by hand 
calculations or experimentally (Koulouris and Petrides, 
2002). Computer-generated models can be used to calculate 
material and energy requirements and the expected process 
yield, estimate plant capacity, cycle times and production 
cost, pinpoint the economic “hot-spots”, i.e. the steps of high 
capital and operating cost or low yield throughput, or to 
identify the environmental hot-spots such as materials that 
are costly to dispose. The findings from such analyses can be 
used in process design, process and product development, 
technology transfer and process fitting, production 
scheduling and resource utilization  and, in general, 
streamlining of manufacturing operations. At the end, all 
these can have a profound impact on the business bottom-
line. 
 
This paper presents a simulation model of an industrial-scale 
beer production and filling facility. The model was 
developed on SuperPro Designer v10, a  commercial process 
design software tool by Intelligen, Inc. 
(www.intelligen.com). The objective of the model is to 
optimize the plant's throughput and perform a thorough 
economic analysis. For the development of the model, 
process data for the brewing process were taken from 
Bamforth (2003) and Goldammer (2008).   
 

PROCESS DESCRIPTION 
 
The brewery process is separated into three sections, namely:  
brewhouse, fermentation/aging, and filling/packaging. Figure 
1 shows the flowsheet of the entire process excluding the 
filling/packaging section. For the selected beer recipe, two 
different carbohydrate sources are employed, specifically 
malted barley and corn grits. In the model, they are 
represented as mixtures whose assumed composition (Goode 
and Arendt, 2006)  is shown in Table 1. 
 

Table 1: Feed Composition 
 

Component Barley Malt 
(%w/w) 

Corn Grits 
(%w/w) 

Starch 70 73 
Proteins 11 8 
Fibers 8 10 
Fat 2 3 
Minerals 1 1 
Water 8 5 

 
The processing capacity of the modeled process is 12 metric 
tons (MT) of malted barley and 6 MT of corn grits per batch. 
Using the procedure/equipment names shown in Figure 1, the 
process is as follows. Malted barley is grinded in Mill-1 and 
collected in the SB-101 solids bin. Likewise, corn grits are 
grinded in Mill-1 and collected in solids bin SB-102. The 
next step is the mashing stage. Mashing is the process of 
mixing the milled barley malt and cereal adjuncts (corn grits) 
with hot water and letting the mixture stand at an appropriate 
temperature, while the enzymes degrade the proteins and 
starch to yield the malt extract (i.e., the wort) that is used as 
the substrate for fermentation. The corn grits are mashed-in 
first because of the higher temperature that is required for the 
gelatinization of corn starch. The contents of SB-102 are 
transferred into the mash vessel (MK-1) where they are 
mixed with hot water. A small quantity of barley malt 
(around 20% by weight of corn grits) is also added at this 
stage. After the completion of the adjunct mashing stage, 
sparge water of ambient temperature is added to the vessel to 
cool down the contents. The malted barley is then transferred 
into the mashing vessel and is mashed according to the 
following schedule: 

- Heat to 45°C and hold for 15 min. This stage 
represents the proteolysis reaction where the protein 
content is extracted from the malt and transferred 
into the wort. 

- Heat to 65°C and hold for 180 min. This stage 
represents the saccharification reaction where the 
starch is broken down to sugars which are dissolved 
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in the wort. The conversion of starch into sugars is 
represented by the following mass stoichiometry: 
 
 9 Starch + 1 H2O → 10 Glucose 
 
The component Glucose in the reaction products  
represents a variety of fermentable and non 
fermentable sugars that are extracted from the malt 
into the wort (e.g., maltose, dextrins, maltotriose, 
glucose, fructose and sucrose). The extent of the 
reaction is set to 90% with respect to starch to 
indicate that, on average, 90% of the starch 
contained in the barley malt and corn grits is 
extractable. 

- Heat to 75°C and hold for 10 min in order to 
terminate enzyme activity, reduce the viscosity and 
promote the coagulation of particles, thereby 
improving the fluidity of the mash. 

 
Next, the mash is transferred to the lauter tun (LT-1) where 
the separation of the wort from the solids is performed. The 
solid-liquid separation is represented by a filtration operation 
accompanied by a recycling of the wort until a desired clarity 
is achieved. In the end, the solids bed that remains in the 
lauter tun is washed with sparge water in order to increase 
the yield of the process.  
 
The clarified wort is then transferred back to the mash vessel 
(MK-1) where hops are added and the resulting mixture is 
boiled. The boiling of the wort serves a number of purposes 
including sterilization, extraction of the bittering and 
aromatic compounds (iso-α-acids) from the hops, as well as 
coagulation of excess proteins and other undesirable 
flavoring substances. The Mashing (P-5) and Wort Boiling 
(P-8) procedures utilize the same vessel (MK-1). Before the 

fermentation stage, the hops and hot trub that are formed 
during wort boiling are removed by sedimentation in a 
Whirlpool (WhP-1).  
 
The clarified wort from the whirlpool is cooled down by 
heating the water utilized in the brewhouse section (P-10 / 
HX-1). Heat integration improves the economics of the 
process and its environmental foot print. The cooling of the 
wort is completed using Chiller-1 where it is cooled down to 
18°C in and then oxygenated in MX-101 to a dissolved 
oxygen concentration of 0.02 g/L. The oxygenated wort is 
transferred to a fermentor (FR-101) where brewing yeast is 
pitched to a concentration of 1 g/L (corresponding to 
approximately 6x10^9 cells/L). The fermentation of sugars to 
ethanol is represented by the following mass stoichiometry 
(Bamforth, 2003): 
 
105.5 Glucose→5.2 H2O + 49 Ethanol + 46.3 CO2 + 5 Yeast 
 
The extent of the fermentation reaction is set to 88% to 
indicate that only a portion of the sugars contained in the 
wort are actually fermentable. Fermentation lasts for 5 days 
and the temperature is maintained at 22°C by flowing chilled 
water in the jacket of the fermentor. After the completion of 
fermentation, the immature (green) beer is cooled to 4°C in 
Chiller-2 during its transfer to the conditioning tank CT-101. 
The fermentor is cleaned using both caustic (NaOH) and acid 
(H3PO4) solutions. The conditioning and aging of the beer in 
CT-101 takes about a week. Next, the beer is diluted in mixer 
MX-102 with water to 5% alcohol by volume (4% w/w) prior 
to filtration in PFF-101. The plate and frame filter (PFF-101) 
removes all suspended solids. 
 
It is assumed that 20% of the produced beer is packaged in 
50L kegs while the remaining 80% is bottled in 0.5L glass 

Figure 1. The Process Flowsheet of the Brewery Model. 
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bottles. The beer of the keg-line is pasteurized in bulk form 
while the pasteurization of the bottled beer is performed 
inside the bottles. The filled and pasteurized bottles are 
labeled and then packed in dozen-bottle cartons.   
 
THROUGHPUT ANALYSIS 
 
The modeled process as described above produces 
approximately 126,000 L of beer per batch. The process 
cycle time (i.e. the time lag between the start of two 
consecutive batches) is 8.57 days, which allows for a 
maximum of 37 batches per year (assuming a 330-day annual 
operation) and an annual throughput of 4,670,000 L of 
filtered beer. From a simple comparison of the process times 
of all equipment, it can be easily verified that the 
fermentation step is the process bottleneck while the 
brewhouse equipment and the filling lines are underutilized. 
It is possible to reduce the cycle time of the process and 
increase its throughput by installing additional fermentors 
and conditioning tanks operating in staggered mode (out of 
phase). Figure 2 shows the equipment occupancy Gantt chart 
of the main equipment for 16 consecutive batches for a plant 
with 6 fermentors (FR-1 to FR-6), 10 conditioning tanks 
(CT-101 to CT-110) and 2 filtered beer tanks (FBT-1 and 
FBT-2) operating in stagger mode. In this case, the minimum 
cycle time of the process has been reduced to 20.93 hours. 
Rounding the cycle time to 24 h (i.e. start a new batch every 
day), results in 315 batches per year and an annual 
throughput of 39,758,000 L of filtered beer. This represents a 
throughput increase of 750% compared to the base case. 
 

 
Figure 2. The Equipment Occupancy Gantt Chart. 

 
COST ANALYSIS 
 
Table 2 displays the material requirements in kg/batch. 
Based on the material demands per batch and the number of 
batches that can be executed per year, the annual material 
cost can be estimated to be around $5 million. The assumed 
purchasing price for barley malt was 0.2$/kg, for corn grits 
0.15$/kg and for hops 1.5$/kg. 

Table 2: Material Requirements Per Batch 
 

Material kg/batch
Water 211,828 
Barley Malt 12,000 
Hops 150 
Corn Grits 6000 
Brewing Yeast 106 
NaOH (2.5% w/w) 20,084 
H3PO4 (0.2M) 19,971 

 
 
The estimated annual operating cost (including materials, 
utilities, labor and facility-dependent costs such as 
depreciation and maintenance),  is $24.2 million, which 
translates to a unit cost of $0.61 per kg of filtered beer. With  
an assumed selling price of $6 per twelve half-liter-beer-
bottle cartons and of $20 per 50 L beer kegs, the total annual 
revenues are estimated to be around $34.8 million resulting 
in a gross margin of 30.8%. 
 
Using vendor quotations and empirical cost models, the total 
equipment cost for a plant of this capacity (39,758,000 L of 
filtered beer per year) was estimated at around $8.8 million 
resulting in a total capital investment of around $60.9 
million.  
 
Based on all above economic results, the process seems to be 
economically viable with a Return on Investment (ROI) 
index at 20%, payback time of 5 years and Net Present Value 
of $21.9 million at 7% interest rate.   
 
CONCLUSIONS 

A process model of an industrial-scale batch brewery process 
was presented. The model mass and energy balances were 
solved to calculate the material and energy requirements, the 
cycle time was estimated and improved to increase process 
throughput and an economic analysis on the process was 
performed. The improved process is economically viable. 
Such a model can be used for further process and product 
development at the design phase or streamline  
manufacturing operations on an existing brewery facility. 
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ABSTRACT 
 
Several solar drying technologies exist in 
Uganda, but marred with multiple challenges 
such as inefficient conversion of trapped solar 
radiations into thermal energy, low 
throughput, poor quality construction 
materials, poor heat and mass transfer, air 
flow, heat penetration and heat distribution, 
prolonged drying times to mention but a few.
In this study, a state of the art solar dryer that 
overcomes such difficulties and can be 
constructed from materials that are locally 
available was designed. The dryer consists of a 
concrete base of 7m × 5m ×10cm, with a 
parabolic frame made of painted mild steel and 
covered with a 198 μm transparent UV-
stabilized visqueen. Simulations built on 
Computational Fluid Dynamics (CFD) were 
made to predict air flow and temperature 
distribution inside the drying chamber using 
ANSYS FLUENT V14.0. Simulation results 
were validated by experimental investigation 
of temperature and air flow distribution inside 
the dryer, followed by statistical comparison 
of simulation and the observed results. Further 
the dryer was tested with three full batches 
(120±7 kg) of fresh pineapple slices of 2-3
mm thickness and diameter 10±1.5 cm for the 
sunshine period of 8:00 am to 6:00 pm, 
continued to the following day until the 
desired moisture content of 15% wb was 
reached. CFD simulations predicted air flow 
and temperature to be 0.68±0.07 ms-1 and 
51±3�C, respectively. These results were 
validated experimentally and were found to be 
0.47±0.02 ms-1 and 57.8±10�C for inside air 
flow and temperature, respectively.  

INTRODUCTION 
 
Fruit drying is further faced with 
increasing necessity to meet; stricter 
quality specifications, higher production 
rates, and stern environmental regulations. 
To resolve the challenges faced in fruit 
drying, it is important to consider the 
fundamentals of heat, mass and 
momentum transfer coupled with 
knowledge of fruit drying properties when 
designing a dryer or drying systems. 
Studies such as Misha et al., 2013) show 
that use of Computational Fluid Dynamics 
(CFD) analysis techniques can replace 
costly and time consuming experiments to; 
optimize, retrofit, improve equipment and 
processing approaches. CFD techniques 
precisely predict air flow distribution, 
temperature profiles, and momentum flow 
in the design of dryers and/ or drying 
systems. CFD thus provides means for 
creative innovation and ingenuity in the 
food drying industry. The main objective 
of this study was to design and simulate 
heat and mass transfer profiles in solar 
fruit dryer with aid of CFD software.

MATERIALS AND METHODS 

Building a CFD based prototype  
Building a CFD based prototype followed 
four steps: a) Selection of dryer type; b) 
Sizing of the dryer; Generation of 3D 
model using Computer Aided Design 
(CAD) software; and Analysis of 3D 
model for air flow fields and temperature 
distribution. A greenhouse type of dryer 
with a parabolic shape was selected 
(Figure 1). The model was selected 
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because it can easily be constructed out of 
locally available materials and scaled up to 
accommodate big drying loads. Further, 
the parabolic shape was chosen to adapt 
the dryer to strong wind loads, increase 
area for light transmission and to enhance 
the esthetics of the design. The wet 
produce is placed under the transparent 
enclosure where solar radiations are 
entrapped. The solar radiation is directly 
absorbed by the drying produce and some 
is absorbed and irradiated by a black 
painted concrete floor. Heat gradually 
gained by drying produce affects moisture 
removal to the surfaces. The stream of air 
from the inlet vents carries the vapor away 
through the outlet vents to the surrounding 
environment. 

Figure 1: A greenhouse type solar dryer 
model  

Sizing of the dryer 
The drying area is determined considering 
energy required to dry anticipated mass of 
wet produce and estimating the solar 
radiation collection area that meets the 
energy requirement. This is because the 
collector absorbs the solar radiation and 
converts them into hotter long wave 
radiations by principle of black body 
radiation, to provide the enthalpy 
requirement for drying the food produce.  

Experimental procedure  
The dryer was tested using fresh pineapple 
slices of 2-3 mm thickness and diameter 
10±1.5 cm. Three full batches of 120±7 kg 
of fresh sliced pineapple pulp were dried. 
For each batch, drying was started at 8:00 

am and continued to 6:00 pm. Drying was 
continued to the following day until the 
desired moisture content of 15% wb was 
reached. At the end of every batch, the dry 
sold weight of samples was determined by 
oven method at 103oC for 24 h. 
Temperature and relative humidity were 
measured using a Hygrothermograph, 
HTC-1 (accuracy ± 1oC and ± 5% for 
temperature and relative humidity 
respectively). The air velocity was 
measured using an air flow meter (Air 
flow, model 323, accuracy ± (3% +3 ms-

1)). Product mass loss was monitored using 
an analytical balance (Rawang, 
AS60/220.R2, accuracy ±0.1g). 

RESULTS AND DISCUSSIONS 

The CFD model output results 
A summary of the CFD simulations results 
is shown in Figure 2. Temperature is 
uniform inside the dryer. The collector 
concrete heated to a maximum of 327K, 
while the entrapped air in the drying 
chamber reached an average of 324K 
compared to the 315K obtained by 
Adeniyi et al. (2012) in a simple passive 
indirect solar dryer. These results closely 
agree with the 318 K obtained by Yunus 
and Al-Kayiem (2013) as mean 
temperature of the air inside the drying 
chamber.

Figure 2: Contours of static temperature 
(K) 

Velocity magnitude contours show 
uniform distribution air flow (Figure 3), 
although regions of higher velocity 
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streams exist at the entry point and exit 
point of the drying chamber. It can also be 
noticed that the velocity is homogeneous 
in a vertical plane in the solar collector and 
drying chamber. Air in the drying chamber 
has an average velocity of 0.68 ms-1
compared to 2.00 ms-1 of inlet air and the 
13.6 ms-1 as it enters the discharge pipe. 
This behavior of temperature and velocity 
is necessary for drying purposes, since it 
ensures a high-quality and homogeneous 
drying process. 

Figure 3: Contours of Velocity magnitude 
(ms-1). 

Results from testing of the dryer 
The drying rate of the pineapple samples 
were initially high because the moisture 
content was high, but decreased rapidly to 
almost the same rate in the course of 
drying (Figure 2). This was due to the free 
moisture near the surface of the slices and 
subsequently slows down because the 
evaporating surface will have moved to 
below the slice surface and due to increase 
in internal forces. 

Figure 4: The drying curve for pineapple 
slices 

CONCLUSIONS  
 
Based on field finding a more appropriate 
solar dryer model was designed, built and 
tested. A CFD based model of the new 
design was developed and validated by 
comparing no load results with CFD 
output results. The model results closely 
agreed (R2=0.9995)  with the experimental 
testing results for inside temperature and 
from the prototype tested, results were 
indicative of uniform air flow and 
temperature distribution which are vital for 
uniform product drying.  
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