
SCIENTIFIC
PROGRAMME

KEYNOTE
SPEAKERS

WORKING AT THINKING ABOUT PLAYING
OR

A YEAR IN THE LIFE OF A GAMES AI PROGRAMMER

Simon L. Tomlinson,
Andrew Davies,

Stephane Assadourian,
Warthog plc.,

10 Eden Place, Cheadle, Cheshire,
SK8 1AT

United Kingdom.
e-mail: Simon.Tomlinson@Warthog.co.uk

ABSTRACT

 As an AI programmer working in the games industry I
(SLT) was recently asked to advise on a computer games
course at a local University. It was then that I found that
the non industry AI practitioner may have a different
perspective on game AI. This view was enhanced by my
recent experience of middleware products for game AI.
This paper seeks to reduce this gap by looking at some of
the tasks an industry AI programmer may become involved
with. This paper will not discuss individual technologies in
detail, although some sources are noted for further reading.
Instead it focuses on what kind of technology is used in the
games industry, what is not used, and why. The paper also
illustrates that the issues which face the programmer are
often at a more subtle design level, rather than in
technology implementation. The paper is primarily directed
at a student audience who might be considering the games
industry as a career, although more senior researchers may
also find it interesting and suggestive of certain directions
of research.

INTRODUCTION – A CURRICULUM VITAE

 As the title suggests this paper is something of a personal
review of my experiences of working in the UK computer
games industry, although I (SLT) hope it is in some way
representative of the type and breadth of work an AI
programmer may be required to undertake in producing
commercially successful games.

 The first thing to understand is that an AI programmer in
a typical UK games company spends only a minority of
his/her time actually doing AI. An AI programmer will
often also be involved with core maths, level geometry,
collision physics, tools programming, vehicle dynamics and
animation systems, as well as simply getting the AI objects
to think. It therefore pays to have a range of skills, and my
particular case is a good example. My first degree was in

Physics and I also have a PhD in Electrical Engineering.
However most of my seven year academic career was spent
writing computer simulations in the theory of condensed
matter. My first job in the games industry brought me into
AI with no formal training in the subject, a situation which
has been quite common until recently. This was to work on
the AI for a Pool game, and later also for Snooker. Since
then I have moved companies a couple of times and worked
on games including flight simulations, Formula 1 racing,
first person shooters and space combat.

 The situation is changing though. As the game buyer
becomes more technologically aware and demands more
immersive experiences (and therefore more complex
games) development teams are getting larger, and
individuals more specialised. When I began I worked with a
team of around 10 – over half of which were programmers
and the remainder were artists. In my most recent project
there were well in excess of 40 staff, with roughly one third
each programmers, artists and designers/level architects.
This expansion of game scope and team size is altering the
way AI is dealt with. On my first project I coded, designed
and balanced most aspects of the AI characters, training
exercises and commentary triggers. But now many projects
have a significant number of ‘designers’ who are
responsible for building and balancing the game levels.
Thus the AI programmer must provide an increasing level
of access to his system. The boundary between what is in-
game AI and what is scripted can vary enormously across
the industry and between game genres. A first person
shooter such as Mace Griffin: Bounty Hunter (MGBH) may
be heavily story-lined and require a large amount of
scripting to direct the game flow. In a Formula 1 racing
game the AI may be more autonomous, but the sheer
volume of data may still require design assistance for data
entry and balancing.

 Before moving on with some points and examples, I’d
like to emphasise that the objective of this paper is not to
denigrate academic AI research, quite the contrary. I, and

my company, believe that the academic community must
play an important role in both training our future staff to
produce ground breaking and entertaining games, and by
working on AI problems that we in the industry cannot due
to constraint of time and the cost-centred (project-centred)
nature of the way we work.

 This paper will proceed by looking at some general issues
facing the AI games programmer using working examples,
and will then examine some case studies of my experiences
in the games industry to illustrate how technology is used.

SIMPLICITY RULES

 The principle of keeping code simple should go without
saying in any project, but it’s surprising how easily a
games’ complexity can get out of hand. We like to use the
KISS principle (Keep it simple, stupid!). It’s important here
not to confuse scope (the volume or number of features in
the game) with the complexity of the individual
components. If the game scope does not increase with the
computing power then the game buying public is not
getting full value for money. The issue is that the AI does
not become more complex than necessary to do the job
required by the game design. When a new component is
suggested, I ask the question ‘What value does this give to
the game player ?’. If the feature is unlikely to be seen by
the player, and has little other direct impact on the game,
then it is clearly not worth doing. As a rule the code
complexity required for a feature should be commensurate
with the impact that it will have on the player. Valve, the
producers of Half-Life express a similar rule (and indeed an
entire design philosophy): ‘Avoid all one-shot technical
elements. Anything that requires engineering work must be
used in more than one spot in the game. Engineers are
really slow. It takes them months to get anything done. If
what they do is only used once, it’s a waste of a limited
resource. Their main goal should always be to create tools
and features that can be used everywhere. If they can spend
a month and make everyone more productive, then it’s a
win. If they spend a week for ten seconds of game play, it’s
a waste.’ (Birdwell 1999).

 The converse, that simple features can’t have a large
impact on the game, is not true. An example of this on
MGBH is the camera-shake due to the stomp of the
‘Mechs’, which can give prior notice of their presence even
when they are not visible. An example from Halo is the
way the enemy AI recognises a grenade and shouts a
warning, thus increasing the ‘suspension of disbelief’
experienced by the player. A degree of design flair is an
important skill for a games programmer.

 In order to demonstrate the kind of design decisions a
working AI programmer will need to make, let’s consider
the use of navigation grids which are common to many first
and third person games. Many games define a set of nodes

connected with arcs to form a Delauney mesh or some other
triangulation (Weisstein 2003). This is usually two
dimensional and arranged in connected sub-sections called
manifolds. Such a grid is very flexible as it can represent
most shapes to any level of resolution. This type of
approach was used on MGBH, using an off-line tool to
analyse the level geometry and generate the grid. An
alternative is the simple square grid which has the
advantage that the connectivity is implicit, and hence for
the same number of nodes less memory is required. It can
still be used with manifolds, each of which may have a
different node separation for geometry with varying degrees
of scale and detail. Representing fine detail is more difficult
for a square grid, but this does not matter if the difference
(spatial error) is not observable by the player. But there is
still a question as to which grid has the better storage
characteristics overall, since the Delauney grid has the
flexibility to concentrate nodes in areas requiring a high
resolution, and minimise node density elsewhere. However
the largest permissible distance between nodes is not just a
function of the level geometry: the navigation grid must
also hold implicit and explicit AI information. A detailed
look at the issues is beyond the scope of this paper, but it’s
sufficient to say that it is often necessary in practice to add
nodes to provide a variety of routes and/or to affect AI
movement behaviours. So we are left with a question, ‘Is
the ability of a Delauney mesh to reduce the number of
nodes, using variable grid density, mitigated in practice to
such an extent that a simple square mesh is preferred?’. I
don’t know the answer, but it is an interesting question.

 The second point about the choice of the navigation grid
is how to produce it. As I have said, one approach is a
geometry analysis tool to produce a triangulation grid.
However the problem is that the resulting grid contains
many small (even degenerate) or high aspect ratio polygons
due to the arbitrary nature of the geometry. The complex
solution to this problem is to constantly improve the
analysis tool in an attempt to favour geometry of a certain
shape and produce an optimum grid. This is fine as an
interesting problem for the AI programmer, but has
consequences elsewhere. As the algorithm complexity
increases, so does the pre-processing time, with the
production nightmare that a last minute art change in the
geometry might require wholesale reprocessing of the
navigation data taking many hours. The ‘simple’ strategy is
to give the generation of the navigation mesh over to the
designers, as part of their level building tool. Although a
‘first guess’ might be generated automatically, it will be
generally up to the designer to place navigation nodes, and
assign any AI significance to them. Small last minutes
changes to art require only simple changes to the grid. The
job of the AI programmer then becomes a simpler one of
validation, and education (of the designer as to his design
options). There is another somewhat unfortunate lesson
here: solutions which might be interesting to the AI
programmer may not be the best approach commercially.

 It has been demonstrated that the production of a simple
AI system is often not a simple task, requiring much
thought and a thorough knowledge of game requirements
and the make-up of the production team.

CODING FOR CONSOLES

 The majority of games sales are for dedicated games
consoles. This presents a number of problems for the AI
programmer (and the entire team). Certainly for the
Playstation2 and Game Cube (and to a lesser extent the
Xbox) the optimised hardware of the console must be
properly accounted for to get the most from the gaming
experience. There is insufficient space here to look at the
issues in detail, but they can be summarised as limited
memory, cache compliance and dedicated processors. The
main point about caching is to avoid code which regularly
spans large segments of memory or code. The Playstation2
architecture has a GPU, CPU and two vector units. One
vector unit is tightly coupled to the GPU, but the second
acts as a co-processor for the CPU, and if code is written
well (tight loops and small memory blocks), VU2 can be
used to significantly improve computational performance.
Applications which might reap such benefits could include
integrators and neural networks. In fact console
programming requires a significant amount of discipline
with pointer use and other code indirection: simple code
usually works best. An interesting tutorial on cache
performance optimisation can be found in (Ericson 2003).

 Even experienced games programmers can fall into traps
when using consoles. Developers for PCs tend to have a
fairly loose target hardware specification, on the basis that
the technology is constantly improving and the software
can effectively be held back until the hardware catches up.
Thus PC games can be developed optimistically from above
the ‘performance curve’. This is not true for consoles which
are a fixed resource, and while console developers often do
over-specify in the early stages, much cutting back is often
required in the latter stages of development as a result. This
can sometimes result in a dilution of the game-play, so it’s
usually important to consider the finite nature of the
hardware right from the early design stages of a game, and
concentrate on the high value low cost features.

SMOKE AND MIRRORS

 In my first job in the games industry I was told that much
of the game AI is ‘smoke and mirrors’, that is we use a
simple piece of code to make something appear more
complex than it is, in effect cheating the player.

 As an example I would like to consider a specific case of
misdirection. An AI character, let’s call him Eddy, is
walking towards a door at the edge of a room following a
path to some distant point, you (the player avatar) are
following so Eddy’s actions are open to the player’s full

scrutiny. The door suddenly closes, with Eddy only inches
away. Let’s assume he stops successfully, by no means a
simple feat (see below). But in order to find an alternate
route the path finder must time slice over the next 20
frames for the long range path, so there is a delay. Eddy just
stands there, nose to the door, dumb for all to see. It doesn’t
look good. The trick here is to make sure Eddy reacts to the
situation. It doesn’t matter how, as long as he does. He can
turn round and look at you, thump the door or kneel and put
his ear next to the keyhole. He can just step to one side and
turn 90 degrees with the implicit invitation for you to do
something. The point here is that the action does not have
to be the ‘right’ action, as long as there is some sort of
action it will be interpreted as intelligent by the player.
Similarly guards should not stand stock still, but should
fidget, look around, change gun positions and so on. If a
guard becomes alert – has he seen you, or was it just a
mouse. You don’t need to code a complex sensory system -
just use proximity and a random roll of the dice to try to
provoke the player. In MGBH the AI had an almost perfect
knowledge of the player, with a few simple time-outs when
out of sight to simulate loss of sensory contact. On the other
hand if such sensory systems are fundamental to the game
(such as the Thief series for example), then include them,
but make sure the player has visual or auditory clues that
such senses are operating e.g. a guard shouts “I can hear
someone over there.”

 Path finding can often be over-used or misused, and is
therefore another area where there are opportunities to cut
corners in the implementation. Long range path finding is
of dubious use where the time taken to traverse the path is
so long that the strategic situation will change in the mean
time and the solution will not be fully used. A hierarchical
system where the low level detail of the path is only
resolved on a just in time basis can help with this. However
the smoke and mirrors solution is to simply record a set of
fixed patrol routes. These might be temporarily blocked (as
in Eddy’s case) but as long as this is dealt with using
apparent intelligence then it is not a problem.

 As long as this card is not over-played a few simple
behaviours can produce a significant improvement in the
perceived intelligence of the AI character. An
understanding of the player’s psychology and perspective is
essential to do this. Similarly engineering the environment
to affect the behaviour of the AI can be a very effective
approach. Game AI is not about finding the perfect
solution, just any believable one.

EMERGENT BEHAVIOUR

 It’s possible to take the theme of getting something for
nothing a little further, by using techniques which promote
emergent behaviour. An issue with short range path finding
is consistency; A* will usually find the best path between
two points, which will not vary significantly if the heuristic

and nodal costs are fixed. This is not always what is
required. Where we have a group of soldiers for example,
the player would not expect them all to follow the same
route. Randomisation can help with this, but there are other
methods. One idea is that when a path solution is found, the
nodes on that path are reserved for a time, so that
subsequent queries must take a different route. More nodes
are needed, but thoughtful placement can allow squad-like
behaviour emerge. As long as the AI character is observed
to act sensibly when it’s route is unavailable, for example
by taking a fire position and looking for a target, such a
strategy can actually add to the appearance of intelligence,
not reduce it.

 The technique known as flocking (Reynolds 1995) is a
another primary example of emergent behaviour – a set of
simple rules which when applied repeatedly to a multitude
of objects produces the apparently highly complicated
behaviour of a group of living creatures. Flocking was
successfully used for both fish and birds in MGBH.

PHYSICS AND AI: CASE STUDIES

 The implementation of an AI system is often closely
entangled with game physics. This section looks at four
cases were a knowledge of physics and how to co-operate
with it, was essential to the AI solution.

Space Combat

 Short range obstacle avoidance for AI characters can be
implemented using non-planning solutions such as flocking
or direct geometry tests (more of a robotics sensory
approach). Such techniques are particularly useful were the
target is constantly changing, such as a space craft chasing
another craft. In it’s basic form flocking sums a set of
forces which then accelerates an object. But in most games
the object will have it’s own dynamics model with
associated constraints. Thus the result of the flocking is
only a target objective (position rather than force) for the
space craft to achieve. But this approach has problems. If
the dynamic object does not obey the orders of the flocking
algorithm immediately (which it won’t) the system can
contain undesirable feedback loops which result in
oscillations of the object. The solution is to alter the form of
the flocking forces to be more attuned to the constraints of
the dynamic system, without having to tune so closely that
the inter-dependency becomes unmanageable. The MGBH
specification required the ships to move in formation, and
so the primary component of the flocking force was a
position defined by a separate formation object which
determined the overall activity of the group of ships. Other
forces included close range separation (between formation
buddies), short range collision avoidance (effectively
defined from the forward arc of movement) and large object
collision avoidance (the most difficult term to calculate). In
practice the AI and the dynamics were implemented in

tandem. This is very sensible, since it provided both the
ability to understand the space craft physics, and also to
adapt the physics to compliment the AI rather than fighting
against it. To complete the space AI for MGBH, a
knowledge of basic mechanics was useful in dealing with
collision reaction. I won’t discuss collision detection here,
suffice to say that it’s probably one of the most difficult
issues in many games, as it eats up a large proportion of the
non-rendering processor time (around 50% on MGBH).

Formula 1 Racing

 Many early racing games planted the vehicles on a fixed
slot around the track, with only one or two slots and a few
change points for overtaking (another classic smoke and
mirrors solution). This worked fine, until players
expectations increased. Players now expect the AI to drive
as they do, making mistakes, and reacting with character.
The implication is that the AI must learn to drive cars with
real physics. This is the approach used in a Formula 1 game
for Videosystem (now defunct). In order to deal with the AI
it was necessary to fully understand the physics of the car
and the implications for the driver. Indeed some companies
(Codemasters for TOCA) actually send the development
team out on race driving. The solution was to use a process
control system (an Electrical Engineering approach) to
measure the metrics of the car (speed, direction, tyre grip)
and not only match these to target values, but also to react
to things like the imminent loss of grip and potential
catastrophic failure. But this is not a simple approach – so
why do it ? The reason is that this solution allows ‘artificial
stupidity’ to be introduced. If the data is interpreted slightly
incautiously, or error is percolated within the process
control system, the AI driver will make mistakes, and
because he is driving a full physics car, the observation by
the player will be realistic twitches or even spins and
crashes. The target data was difficult to generate, and I
found the best method was to use a simple rule system as an
initial guess for a given track, and then an off-line genetic
algorithm to improve the large volume of data to a point
where the AI driver was pushing his car to the limit. Using
the GA off-line in this case is an acceptable risk, because it
is very unlikely that the input data (real life tracks and cars)
will alter substantially during the production cycle. If
necessary level of detail (LOD) could have been used to
revert the cars to ‘slot mode’ when out of sight of the player
to save processing, but in practice this system was very
efficient in-game as most of the hard work was done off-
line. Incidentally a flocking based system was also used in
the F1 game for collision avoidance and over-taking.

Walkers

 Previously I mentioned that bringing Eddy to a stop was
not easy. The reason for this is dynamics rules. If Eddy
goes from a brisk walk to a dead stop in one frame, that will
look bad. The dynamics of the actor (or animation system)

needs a little time to sort out the required deceleration. One
way of dealing with this is to employ ‘walkers’. Walkers
are agents which follow the path in front of the AI
character, which follows at a distance such that if the
walker stops dead, the character can decelerate neatly to a
stop. Walkers also smooth the movement of the character to
some extent, but there is a cost. On a curve the character
will tend to take a short cut across the inside of the curve,
and may intersect geometry as a result. However the larger
the speed, the larger the stopping distance required, and the
more difficult it becomes to accurately predict the resulting
path of the character. Further in our example above we
could still shut the door when the walker has passed over
the threshold and Eddy will be in trouble again. In practice
we need a rule to say that the door should never shut when
it might cause such an embarrassing case, which we can
apply with the walker, or without. So the door shutting
example alone would not be sufficient to consider including
walkers in the code. Other aspects, such as hot swapping
walkers for behaviour changes, or where the dynamics of
stopping is much more visible or complex, could make
walkers a valuable addition to the game code.

 This is a very focussed example of the way that an AI
programmer must deal with the requirements of an
animation system for ‘walking’ characters. In practice
controlling smooth changes in the animations is a
significant problem, which has been studied at Warthog by
one the authors (SA). There are principally two solutions,
the first is to blend from one animation to another, the
second is to schedule animation sequences and insert
suitable transition animations to piece the main elements
together. In MGBH a little of both methods were used.
Sequencing generally produces more satisfactory results in
normal circumstances where the AI characters actions are
planned for a reasonable period of time in advance of the
action, but where an immediate reaction is required (such as
being thrown by an explosion or bullet impact) a blended or
‘rag doll physics’ approach is necessary.

Billiards Games

 For the final case I will look at how Snooker and Pool
games (Pool Shark and World Championship Snooker)
have been developed. Such ball games are a fascinating AI
problem because of the sheer number of shot permutations
available. When I began I was developing for the original
Playstation console with severely limited memory and
processor power. Although the physics system was fully
optimised, the required accuracy of integration meant that it
was impractical to test candidate shots using the full
physics. As a result a cut down analytic physics system was
integrated into the AI. The shot selection system was based
on breaking shots into components, sorting them using
simple analysis and strategy metrics, and re-combining to
find a set of shots to be evaluated in the order most likely to
succeed. Within this system the AI had to display distinct

playing styles. Thus there were around 650 attributes
throughout the system to control strategy. In a way this was
bad coding, as it breaks the simplicity rule. However a lot
of the AI pseudo-physics relied on parametric models
which could be quickly evaluated, and so this volume of
data was almost unavoidable. In practice I used a
spreadsheet system to manage this complexity, which
reduced the number of distinct player characteristics to
around 30.

 More recent generations of the code use a neural network
approach (Gartland, Blade Interactive, 2003, personal
communication) . A small network of a few tens of nodes
acts as an intermediate stage between strategic shot
selection and the final physics checking in order to validate
candidate shots. The network is presented with the current
position and desired post-shot position and returns the
details of the shot input. Neural networks require a certain
amount of caution: the problem with a neural net is that the
knowledge is somewhat hidden from the developer, making
the game potentially difficult to tune, balance and debug.
However this can be mitigated by careful choice of the
training data. The main point to remember is that a neural
network only works properly when interpolating, rather
than extrapolating into regions of the search space where
the network is not only untrained, but where the result can
be highly non-linear. Gartland’s strategy is to use a training
set which is statistically analysed to ensure the data fully
represents the search space. The trained network is then
verified using a second data set in comparison with the
network output. In general small neural networks, treated
with care, can be used in games, although it is clearly not
sensibly to risk using a neural network where another more
transparent method can produce equally good results.

 One further comment to illustrate the diversity of the AI
developer’s work. World Championship Snooker included
an extensive in-game commentary system. The context
triggers for the commentary system were extracted during
the execution of the AI. This is just another side-line that a
working AI programmer may be asked to deal with.

TO SCRIPT OR NOT TO SCRIPT

 One of the most significant issues of modern development
is scripting. As I have said many games use a high level of
scripting in lieu of AI. This is not only done to maintain
story flow, but for a number of other reasons, such as
predictability. An AI system in which the experience is
different every time is a great goal, but when debugging the
inability to reproduce a situation can be crippling, although
this also an issue of controlling randomisation in the game.
But the principal reason for scripting is probably a
production one. While it is feasible for a team of well
trained AI programmers to produce a game were the
majority of the activity is emergent from the code, this is a
distant goal for many companies. It is often significantly
easier to allow level architects to make decisions which

simulate high level strategy, using placement, areas of
influence, triggers and so on. A good example is a sniper
high on a cliff, when should he give away his position and
risk a shot? We could write a set of complex AI rules to
deal with this – but an intelligent designer is far better able
to analyse the situation and condense this to a set of
scripted trigger-action relationships.

 However the extended use of scripting raises another
production issue, what level of technology can we expect
the designer to cope with ? In MGBH the script was a C-
like language which was parsed off-line. In other
companies scripting languages such as Lua and Python
have been tried, but the in-game overhead is sometimes
undesirable. At Warthog only about 50% of designers have
any coding background, the remainder have a more artistic
skill set. So if the scripting becomes too technical and the
designer’s learning curve becomes significant, they will not
be able to fully utilise the full functionality of the scripted
AI. This has led us to consider what type of scripting
language should be used in future games. One possible
solution is that use on Warthog’s Star Lancer and Battlestar
games. The scripting language is embedded in the editor
using pull down menus, so the designer does not have to
worry about issues of syntax. However the designer still has
a learning curve to access the script functionality. In
practice there is no clear solution; a compromise between
different strategies is usually required based on the range of
skills of both the design team and the programming team

MIDDLEWARE – THE FINITE STATE OF THE ART

 In the past few years various Middleware solutions have
become available for various elements of the computer
game. Havok (Havok 2003) for example has made a huge
impact on in-game physics. The situation is slightly less
clear for AI however. A detailed review of current AI
Middleware was recently conducted by Eric Dybsand
(Dybsand 2003a). Although many elements of Middleware
are undoubtedly well written and theoretically robust, it’s
not quite in a form we would want to use in a game. This is
because the need to make the Middleware generic, with a
well defined API, means that the code may not be optimum
efficiency. For example if the Middleware representation of
the environment does not match that of the developers
game engine, an overhead of conversion will be incurred, as
will duplication of data structures. Further the Middleware
developer is unlikely to be able to take advantage of the
details of the game implementation which could lead to
optimisation. The FSM is probably one of the most
common techniques used in game AI coding. Programmers
new to the industry will often begin by writing a generic
FSM system and indeed we did have such a state object in
MGBH. However in many applications states will be
implicit, coded as simple enumerators, jumps and switch
statements with no dedicated state objects. Such code is
often simpler and more compact when compiled. It does not

require data memory access to operate the FSM, and so
minimises potential data ‘cache thrashing’ that might be
present with dynamically registered state objects. This
mismatch typifies the reasons behind the industry
reluctance to use AI Middleware.

 Of those reviewed by Dybsand, Symbionic is probably the
most useful, being a finite state machine (FSM) supported
by a graphical development tool, which could be of use
where very complex state diagrams are to be implemented.
The others tend to fill niches, but don’t really provide a
broad solution, and can be categorised intended for use by
either designers or programmers.

 As a working AI programmer I would welcome being
able to take elements of the game AI from 3rd party sources.
However I recognise that every game is different in it’s AI
requirements, physics and the skill set of the development
team. Therefore Middleware needs to be more focussed on
specific problems and thus more optimised to the solution
of that problem. Of course the difficulty with this is that
such a product, probably taking more the form of a
consultancy than a software library, may not be
commercially viable. Ultimately the decision as to whether
to use AI Middleware may be due to production issues:
code efficiency (and hence overall game content) may be
traded against reduced development times; skills available
may dictate which Middleware solution the best for the job.
From the perspective of an AI programmer, if Middleware
only offers a product based and readily understood
techniques, it must excel in terms of reduced production
time with minimal cost to game-play. Physics Middleware
(Havok) is in a slightly different position: dynamics and
mechanics are a ring-fenced subject area (in that the physics
is well defined and common to all moving objects) and
therefore one product can be used in a wide variety of
games.

THE ROLE OF PIZZA

 In the early stages of most modern games a small core of
designers will begin by laying down the general concepts of
the game. However these can be vague, blue sky,
impractical to implement or in some cases just plain wrong.
This is not really because they are not doing their job, quite
the contrary – they are the ideas people on the team. The
role of the lead designer during production is to iterate the
concept, removing poor ideas and perhaps adding new ones
as opportunities for game play; but this has consequences
for the AI programmer. The second source of potential
production conflict is the publisher (effectively the client).
Publishers view games in a very different way to the
developer, and will often make demands of the team based
purely on marketing or economic reasoning. Because the
publisher is not as close to the game technology as the
development team, they will often require changes which
appear small to them, but cut to the core of the way the AI
is implemented, and replying that the ‘small’ change is in

fact going to require substantial re-coding will often be
viewed as uncooperative or evasive.

 Thus the working AI programmer should expect many
long nights, and a substantial reliance on the local pizza
delivery services. But there are actions that can be taken to
ameliorate the effects of late changes to the game. Try not
to permanently remove cancelled features, there is a good
chance that they will return. Also when designing code
always try to avoid committing to implementations which
will be difficult to adapt later, another example of the KISS
principle. Having said that a balance is always required.
Don’t spend too much time trying to anticipate features that
might be required in the future: one of the best ways of
dealing with the design-programmer relationship during
production is to get demonstrable AI as early as possible.
Code for everything you know about and nothing that you
don’t.

CONCLUSION

 In commercial computer game development, it’s not
enough to have a range of complex AI algorithms in your
skill set. In a typical computer game written for a console
the AI may get less than 10% of the (limited) processing
power and memory (MGBH specified 20%, but half of this
was collision management and physics), so it is vital that
the programmer maximises the value of the AI code in
terms of observable game play. The simpler and more
efficient each component of the AI is, the more AI features
that can be added to produce a greater degree of
characterisation and engagement of the player. Each game
is different: while a strategy game such as Command and
Conquer will need strong path finding and strategic and
tactical intelligence, platform games and shooters rely more
on simple set pieces, scripts and ‘smoke and mirror’
emergent behaviour. It is not true to say academic AI
research is not useful to industry, but that perhaps we are
more interested in an engineering perspective than a pure
mathematical one.

 This paper has looked at current (see also Dybsand et al
2003b) and past practices, the future is another matter. As
computers become more powerful, game AI can and will
evolve, but we will still need to ask the question as to
whether the AI produces observable value. The problems
for the programmer will change from one of extracting the
maximum value from a limited resource, to one of dealing
with a large volume of varied AI behaviours. While AI
Middleware perhaps needs to develop a little further, it is
certainly likely that in the future a project based AI
developer may become less of a coder and more of a
designer, using tools to build bespoke AI behaviours.
Indeed the IGDA (International Game Developers
Association) have already formed a committee to look at
standardisation in computer game AI (Nareyek et al 2003).
Other AI developers will move into less project oriented,
more centralised R&D roles; as game AI becomes more

complex it will be necessary to look further into the future
to progress game AI and this probably cannot be achieved
with a narrow project focussed remit. This has already
taken place at companies like Warthog in graphics and
other core technologies and AI and physics should soon
follow. Challenges are likely to include massively parallel
games and Sony’s Cell technology (Miller 2003; SCEI
2003).

 In the short to medium term though an AI developer
working in a computer games company like Warthog will
need to continue to have a broad range of skills. He must be
a programmer with a grasp of how code structure can be
optimised for specific hardware platforms, while at the
same time managing multi-platform development. He must
use psychology to try to find ways of fooling the player into
believing the AI character is more intelligent than perhaps it
is. He must understand physics, not only to allow him to
control dynamic objects properly, but also where necessary
to tailor the physics to favour the operation of the AI. The
AI programmer must work as part of a large team,
contributing to systems outside AI such as maths,
networking and collision detection. He must also facilitate
the game production process by providing a suitable
interface to the AI for non-technical designers and level
architects. Finally he must be able to evaluate AI
algorithms and methodologies and adapt them for use in
computer game code. Computer game AI will continue to
grow, and offer interesting intellectual and practical
challenges to the enthusiastic developer.

REFERENCES

Birdwell K. 1999, “The Cabal: Valve’s Design Process for

Creating Half-Life”, Game Developer Magazine, (Dec), 40-50.

Ericson C. 2003, “Memory Optimisation”, Game Developers

Conference 2003, http://www.gdconf.com/archives/2003/.
Dybsand E. 2003a, “AI Middleware”, published on Gamasutra,

http://www.gamasutra.com/features/20030721/dybsand_01.shtml.
Dybsand E., Kirby N., and Woodcock S. 2003b, “AI in Computer

Games Roundtable”, ”, Game Developers Conference 2003,
http://www.gdconf.com/archives/2003/.

Havok 2003, “Havok Physics Middleware Engine”,
http://www.havok.com/.

Miller C. 2003, “Playstation 3: Supercomputer on a Chip”,
published on GameSpy,
http://www.gamespy.com/hardware/january03/playstation3/.

Nareyek A., Knafla B., Fu D., Long D., Reed C., El Rhalibi A.
and Stephens N.S. 2003, “The 2003 Report of the IGDA's
Artificial Intelligence Interface Standards Committee”, on
IGDA, http://www.igda.org/ai/report-2003/report-2003.html.

Reynolds C. 1995, “Boids”, http://www.red3d.com/cwr/boids/.
SCEI 2003, “Sony Computer Entertainment and Sony Invest 200

Billion Yen Over Three Years in Semiconductor Fabrication”,
Sony Press release,
http://www.sony.net/SonyInfo/News/Press/200304/03-0421E/.

Weisstein E. 2003, “Eric Weissteins World of Mathematics”,
http://mathworld.wolfram.com/.

http://www.gdconf.com/archives/2003/
http://www.gamasutra.com/features/20030721/dybsand_01.shtml
http://www.gdconf.com/archives/2003/
http://www.havok.com/
http://www.gamespy.com/hardware/january03/playstation3/
http://www.igda.org/ai/report-2003/report-2003.html
http://www.red3d.com/cwr/boids/
http://www.sony.net/SonyInfo/News/Press/200304/03-0421E/
http://mathworld.wolfram.com/

AUTHOR BIOGRAPHY

SIMON TOMLINSON was born in Southport, England in
1965. He gained a BSc in Physics and PhD in Electrical
Engineering from Manchester University. After continuing
an academic career with research into solid state magnetic
materials, he fulfilled a lifelong interest in games by
moving to Mirage in 1997. He has since worked on the AI
and dynamics of a variety of successful products including
Pool Shark, World Championship Snooker, Mace Griffin
Bounty Hunter and Battlestar Galactica at various
companies. Simon currently resides at Warthog where he
both develops AI, advises local Universities on Games
education and enjoys an occasional Pizza.

COMPUTER GAMES: A PARADIGM FOR NEW MEDIA AND ARTS IN
THE XXI CENTURY

Stéphane Natkin
CEDRIC/CNAM

292 rue Saint Martin 75141- Paris Cedex 03 France
E-mail : natkin@cnam.fr

KEYWORDS
Game, media, on line games, pervasive games, art,
training

ABSTRACT

To try to foresee the XXI century media evolution,
we consider one of the most mature fields, of the
interactive media domain: the computer game
industry. We first make a short presentation of the
current practices in game design mainly focussed
on one player games. From our point of view, the
game community has defined a new genre of audio
visual contents. In the second section we analyze
Massively Multiplayer On Line Games and the
evolution to persuasive (pro active) games. This
will open numerous windows on the media
evolution leading both to naïve dreams or psychotic
nightmares. In the third section we present a post
graduate training on computer games which relies
on the principles of cinema high schools. Another
question is opened by the conclusion: Is there any
chance that computer games and more generally
interactive media will lead to a new form of artistic
creation?

ONE PLAYER GAMES DESIGN

Introduction

From a cultural point of view, one of the main
aspects of the last century is the development of
communication networks: telephone, radio,
television. The consequences of this development
are tremendous. From an individual point of view,
our uses of communications have completely
changed. From a worldwide point of view, the
omnipresence of broadcast media and more
generally of mass media, is the crossed influences
between culture and the predominance of the US
way of life. At the end of the century, the growth of
the Internet Network suggests a new
communication revolution relying on interactive
media. But, which type of sociological relations and
which type of new contents will be induced by
interactive networks? Those are still widely opened
questions. The crash of the new economy shows
that, between the design of a new technology and
the creation of new practices and cultural contents,
there is a big gap: the sociological maturation time.

To try to foresee this media evolution, we consider
one of the most mature fields, in terms of market,
design practice, production process, of the
interactive media domain: the computer game
industry. The computer game industry is the third
field of the media industry (after TV and
CD+DVD). Due to the market size, the game
industry generates efficient and low cost tools
which are used in other fields: images and sounds
synthesis, network technology for collaborative
work, interactive writing, e-learning, artificial
intelligence...

The goal of this section is not to provide a detailed
analysis of the game industry, the game
development process or of the game design
principles (see (Rollins, 2000),(Gal, 2002)). Its aim
is to show that, in contrast to the Web design
principles, the game industry and the game
designers have some rather clear ideas on: what is a
computer game, which public is aimed, how to
design a game and how to produce it. From our
point of view, the game community has defined a
new genre of audio visual production even if one
may consider that, up to know, there are a few
computer game masterpieces.

Writing for games

Writing for games is a rather difficult task. Of
course it is an interactive composition and, as in
other fields of open work, the author must leave a
controlled freedom to the player. But, in the
opposite of the art installation field or interactive
music composition, marketing goals drives the
game industry. Game is mainly entertainment;
hence, the player must solve non-trivial but not too
complex problems, leading to a succession of goals
in a reasonable amount of time. The player must
feel in an open interactive work, but should be
driven to the game solution. To solve this paradox
the game industry has invented several techniques
derived from game theory and object oriented
specification. It is, up to now, mainly a practice.
One may argue the low aesthetic qualities of many
commercial games. But, we think that these
techniques are the source of a new fundamental
approach of interactive narration. A new theory,
based on the understanding of the game practices,

must be developed. In the sequel, we point out four
main aspects of the game definition: immersion
techniques, Game Design principles, Scenario and
level design, Gameplay.

The feeling of immersion is explicitly the main
narrative goal of games. To increase the feeling of
immersion, the game design is a subtle mix of three
domains. The two first ones are directly related to
linear storytelling and cinema: dramatic principles
of scenario design (tension and climax), qualities of
the visual and sound universe. The last one inherits
from classical games: challenges of the gameplay.
In multi-player games, a source of immersion is the
challenge between players, the design of which is
more or less related to sport rules definition.

A game is first and foremost an imaginary universe.
In the opposite of classical narration, the universe
can neither be revealed nor created through the
linear statements of the story. Then the first step of
the game specification (Game Design) is to define
the main aspects of this universe: The context of the
game, all the objects of the game from the topology
of the world to the virtual camera, including
characters, materials, weather … The concept of
object in the game design must be understood as in
object oriented specifications: it includes narrative
aspects (the past of the hero), perceptual features
(graphics and sounds) and action that can be
produced by the object or which can modify the
object. It will be directly translated in the game
programming. This method of construction, is, from
a narrative point of view a revolution. For example,
in a film the music is associated with the image
through the synchronous exposition of the story.
This relationship is materialized in the editing
phase. There are no fundamental or technical
reasons to associate the same music to the same
object. In the opposite the music in a game is
mainly associated with an object: a place, a
character…Each time the player enter the dark
room of the castle, he gets the ghost’s music. Most
of the design tools for games use this object
association principle.

There is an open discussion in the world of game
design about scenario. The notion of scenario
comes from the movie world and is related in one
hand to the idea of story telling and in the other to a
sequence (and time driven) of scenes. A game can
not be only a scenario, as the player must always be
the main actor of the scene. The level design is the
main step where the scenario takes place. It induces
a partially ordered set of actions that the player
must perform to end the level, defines the goals
assigned to the player and limits the number of
possible effective actions of the player. Level
design is the only constructive way to simulate, in a
game, a classical narrative construction scheme.

But it cannot be based on the time driven
presentation of media, playing with the memory
and the emotion of the spectator through passive
perceptions. It must use the mix of immersion
factors and rely not on time but on space and logic
constructions. A level of the game is a mix of a
virtual space, a set of puzzle to be solved in this
space, the main actions to be done by the player to
reach a given goal. Generally the level is first
defined by the geometry of the space: a given maze,
a race circuit. Then the level designer chooses the
positions and actions associated with the objects in
this level. To keep the sensation of freedom, several
solutions are used: first, a set of independent
actions can be performed in any order, in more
complex games the player can pursue, in the same
space, several goals in parallel. There is an open
research questions about scenario design: how to
keep and manage tension and climax mechanisms
(Szinlas, 2001).

Gameplay is of course the immersive factor which
makes game different than other media. But the
gameplay of computer games is generally very
simple compared to the one of classical games (go,
chess, cards, Monopoly and even deck role playing
games). Chess and Go rules have taken several
hundred of years of experiments to become stable.
The life time of a computer game is generally less
than two years. Games designers do not have
enough tuning time to design complex rules. A
game is perceived as complex or difficult because
the player does not know the rules and the
computer can change these rules at any time. There
are more and more exceptions to the previous
principle. First some strategic games have been
experimented through several versions during more
than ten years (Sim City, Warcraft…). The
simulation which defines the game play rules is
becoming really complex. Multi-players games
(Doom like or strategic games played in LAN
arena) are played as sports in numerous and
worldwide championships. This allows a tuning and
improvements of rules and team strategy. Persistent
on line games will change the nature of this
problem (see next section).

MASSIVELY MULTI PLAYERS ON LINE
GAMES

Even if the history of the Internet networks contents
from its beginning some aspects of on line games
(MOD’s, textual version of Dungeons and Dragons
was already available on the net in the early
eighties), the first real persistent on line universe
are Meridian, EverQuest, Ultima OnLine and
Asheron’s Call. The first versions of these games
were released in the late nineties. Most of the
games available on a commercial basis still rely on
the same principles, even if performances and

interfaces have considerably evolved from the first
versions of these games.

The main characteristics of these games are the
following:

• A MMOG is a persistent world. Thousands
of players share a huge virtual landscape
including villages, cities, with numerous
non playing characters… So it is based on
a Game Design, according to the previous
section definition: It is a virtual universe
defined by the properties of its objects.

• A MMOG is a shared virtual society which
rules are initially defined by the game
designers but which evolves with the
demand of player’s community. The rules
allow to create and to manage permanent
or temporary grouping and include a trade
system.

• The ability to create and to improve each
player avatar, to develop social skills and
to get a recognized position in the game
community is an essential feature of the
gameplay.

• More generally, a MMOG is in constant
evolution. It is necessary to revive interest
of the players, to cope with undesirable
social behaviours, to correct bugs. The
game provider modifies periodically the
game either in the universe (new version
or patches to the game code) or in the user
(social) rules.

• Scenario, Goals, quest and levels, in the
meaning of one player adventure or role
playing games, are anecdotal aspects of the
game. The feeling of freedom in social
relationships is the main interest of the
players.

• Player unpredictable uses of the game
objects have to be forecasted and even
encouraged, as long as it does not put into
danger the “correct” social structure of the
community.

• Undesirable player behaviours must be
constantly detected and corrected. The
game provider supply social rules and a
police services (such as in Internet chats)
bases on programmed intelligent agents
but also on human intervention.

• Negative social impacts of MMOG have
been observed. When each night your
avatar is a king of a virtual universe and
each day you are a second-rate employee
in a big company, which part of your life
will become the main one?

• From an economical point of view, on line
games can be seen more as a service or a
periodical publishing (newspaper, radio,
Web site) than a product or a one shot

publishing (books, CD or DVD, classical
games).

If the design and development of new generation
MMOG and proactive games lay down several
unsolved design, scientific and technical problems
(Natkin, 2003), it can be forecasted that these
problems will be solved in the next twenty years

Design methods for one player games are still in an
emerging stage compared to the cultural heritage of
literature, drama and cinema. Hence, how to design
MMOG is complex open problem. The current
practice relies on experimentations and the
inventiveness of game design teams. The
development of a corpus in this field will need to
cross our knowledge on storytelling, game theory,
one player game design but also sociology,
economy and political sciences.

Create and keep alive an always renewed huge
virtual universe is a difficult task. A solution is to
define this universe not as an assembly of static data
but as a probabilistic algorithm which can generate
an almost infinite number of outputs in real time. It
is called the generative approach (www.generative
.net). Graphics (landscape, characters), but also
scripted scenario, dialog, behaviour of Non Player
Characters (NPC), artificial life, sound and music
can be created by generative algorithms (Lecky,
2002). Numerous experiments in the artistic and
simulation domain have been experimented in the
last twenty years. The game goal is to blend all these
ideas in a program which generates an “interesting
and meaningful” virtual world. But MMOG allows
taking risky gamble in terms of design and
technology. If something does not work, the
provider can roll back to a previous version of the
game. Hence complex gameplay and Artificial
Intelligence technology, not in use for one player
games, will probably be experimented on MMOG.

The design of a computer architecture able to cope
with all the constraint of real time MMOG leads to
solve some of the most difficult problems of
distributed computing (Natkin, 2003), (Smed,
2002). Players, accessing to the game all over the
Internet, must see coherent states of the game under
strong real time constraints. This leads to
investigate how to distribute the game state over the
network (semantic filtering, synchronous
coherence) or to anticipate locally the evolution of
the game (dead reckoning). Intellectual properties
protection and right management in the virtual
world leads also to difficult security challenges.

The viability of on line games economy is, as for all
aspects of Internet services, far to be determined.
Eladhari (Eladhari, 2003) listed 51 operational and
140 MMOG in development. But they are

http://www.generative/

numerous indications which may think that the
market is saturated (Carooe, 2002), (Woodcock,
2003) and that many MMOG will disappear and
many projects will be cancelled. Most of the
MMOG are designed for the same class of
customers and share the same kind of fantastic or
science fiction universe. Most of these universes
rely on a huge 3D landscape and complex features,
which induces high development costs. Much
simpler On Line Games which offer the same level
complexity of social gameplay, with a simpler
interface can be found for free or at lower price on
the net. Managing the computer infrastructure to
allow several hundred of players to be
simultaneously connected is also very expensive.
Some study shows that generally the game universe
and the group of peoples which meets together are
split in smaller parts (INT, 2002).

What are the main economic actors of this field is
still an open question. Telecommunication
operators will probably take a part of the market,
with low service prices as they sell the
communication bandwidth. This is true in particular
for games that can be played on cellular phones
(see next sections). Cinema and TV producer are
trying to use worldwide movie licenses to be the
leader of the MMOG market (Star War for
example). Game Publishers and even studio
(Lejade, 2002) hope that MMOG is a chance to get
out of the current structure of the game market
(leadership of retailers and console manufacturers
against all the others, leadership of publisher
against independent studios), but it is not sure that
they will have the business capacities to take this
chance.

Those pessimistic features take into account the
current production. When the current technical,
design and social gaps will be filled, the next
generation of on line games will offer virtual
environments for almost everybody. MMOG are
the premises of pro active games and of the new
generation of interactive media. More generally one
who can built a game for one million gamers is able
to built a virtual school for one million students, an
efficient cooperative work environment
(Constantini, 2001) and a distributed concert with
one million players and auditors (Bouillot, 2002)…

NEXT GENERATION GAMES

The unified cross media platform

The next generation game relies on the cross media
uniform platform. The principle is rather simple:
the user may interact with the same interactive
media environment using all possible devices:
home cinema, computers, interactive TV sets, PDA,
mobile phone… The media interface will be
automatically adapted to the device. A rather simple
(and poor) vision of this platform is the automatic
transformation of a web page from a computer
interface to a mobile phone one. A much more
advanced understanding of the unified platform can
be forecast in terms of possible contents and in
particular the next generation of games. Figure 2
presents a possible architecture for this new
generation of games (Natkin, 2003). The most
advance feature of the uniform platform is the
ability to mix broadcast passive media and active
media in a unified one.

Game

Network

Network
protocols

Game Consistency and
synchronization protocol
Semantic filtering
Game Scene
(Virtual representation)

Data Synchronization
execution

Pro active games

To understand the potential of proactive games we
will describe some possible applications. A
proactive game must first be thought as a
relationship between two universes: the “real
universe” and a “virtual universe”. The quality of
the game is mainly defined by the intermingling of
these universes. Assume, for example, that, as in
Half Life or in every day news, a group of terrorists
is trying to cause a great disaster. At a given time of
the reality or the game, the player may be unable
(or does not want) to know if the terrorists are real
or virtual, if he is a passive spectator or a possible
hero…

Our practice of information shows that we are
already playing such games. Generally, we get
information from mass media more as a show than
as an objective analysis of facts. The difference
between a movie/TV and games is the position of
the spectator/player. If you can switch from CNN to
VCNN (Virtual CNN), if a call on your mobile or a
mail on your computer can be issued either by a
friend, which knows you as Stephane Natkin
professor, or a NPC which knows you as 007, you
are in a proactive game. In the virtual universe 007
can save the planet with the help of the player’s
community. In the real world Stephane Natkin can
write papers on computer sciences and the
evolution of interactive media.

There are unlimited possibilities for pro active
games. On line tamagoshi (virtual pets or babies)
are already in services. One can offer you a virtual
family which will be much more attentive than the
real one. They will never forget your anniversary,
and will automatically answer to your loving mails.
At a given time you may be unable to know if your
virtual children are NPC generated by an AI
program or the avatar of other players.

From a more formal point of view, we can define
pro active game by the following properties:

• A pro active game has almost all the
properties of MMOG, with the exception
of the community size (which may be
smaller) and the interface (which is
generally not a 3D heroic fantasy world).

• The interaction between the virtual
universe and the player are can not be
formally distinguished from the
interactions between the real world and the
player through broadcast (radio, TV, Web
even newspapers) and active media
(phone, mail, videoconferences…)

• Many pro active games will not be
anymore games, as the feeling of winning

or loosing the game will be as uncertain
than in the real world (It is already the case
for many MMOG)

The examples given previously lead to a
nightmarish vision of the future. One may think to
much more positive applications. A pro active game
can be seen as an extension of augmented reality
systems: the virtual world can provide practical or
emotional help to people. It can be the basis of new
social relationship (INT,2002), (Mayra, 2001) and
the kernel of worldwide social exchanges. It is also,
potentially, the ability to develop new art forms.

TRAINING IN COMPUTER GAMES

As a consequence of the previous sections, we think
that computer game is one of the main key domains
of the XXIth society, both from social, economical
and creative point of view. So it is essential to
develop high level training on all the aspects of
game design and development.

The DESS (Diplôme d’Etude Supérieur de
Spécialité) JVMI “Video Games and Interactive
Media” is a unique European high level (post
graduate) formation to the video game professions
(deptinfo.cnam.fr/Enseignement/DESSJEUX/). It is
the result of the collaboration between six
institutions: La Rochelle and Poitiers universities,
CNAM, IRCAM, CNBDI and CNAM Poitou
Charentes. The DESS JVMI is a one year formation
opened to students with a master degree or a
bachelor degree and five years of professional
experience in one of the field of Audiovisual, Visual
Arts, Sound and Music Design, Computer Science,
Psycho-perception and Cognition. They are selected
for their background, their creativity and their
passion for video games. The structure of the
education is highly inspired from Cinema high
school in cinema creation (FEMIS,INSAS, NYFA,
Lodz Film School …). The two main goals of this
training are:

• To train people to a multidisciplinary work
in team of production according to the
processes and the technologies of the game
industry

• To complete each student’s technical
knowledge in his/her/its original discipline
(story telling, audiovisuals, computer
graphics, sound and music design,
computer engineering) by the concept,
methods and tools used the design and
realization of the computer games.

Students are accepted in one of five specialties:
Game Design and Project Management, Computer
Graphics, Sound Design, Programming,
Ergonomics) according to the following table.

Students initial domain of
formation or experience

Profession in the video Game
industry aimed

JVMI Specialty

Scenario and scripting
(audiovisual), literature,
information and communication…

Game Design, Level Design Game Design and Process
management

Computer Science Programmers (basic engine, AI,
graphic, sound, physics, network…)

Programming

Music, Sound Engineering, Sound
in audiovisuals…
With some knowledge on audio
numeric

Sound Designer, Composer Sound Design

Arts, Graphics, Animation,
Cinema, photography…
with some knowledge on computer
graphics

Artist, animators, Computer Graphics

Ergonomic, Psychology, Cognition Interface Design, Game Evaluation and
Testing,

Ergonomic and Man Machine
Interface

All previous backgrounds and a
good knowledge on economy,
accounting and marketing

Project Manager, Editor Game Design and Process
management

This formation relies on courses, conferences,
projects that allow students to:

• Discover the world of the video games:
history, vocabulary, economy, methods
and production processes

• Know the bases of the profession of the
other intervening parties in the conception
of a game to be able to work together: for
example to teach the bases of the
programming or the synthesis of picture to
a sound engineer

• Learn, by domain of specialty, the
methods and the technologies used today
and those of tomorrow in the realization of
the video games

• Achieve and to document in team of
production (5 to 8 students of all
specialties) a game pre production. The
documentation includes the game design,
the graphic and sound design, the
interface, the software architecture, the
validation plan, the planning, and the costs
of production evaluation. A prototype of
the game is realized industrial design tools
for games (Renderware/Virtools, 3DS
Max, Direct Music Producer, Protools,
Direct X...).

• To practice his future profession in the
setting of an enterprise of the domain
(Practicum of 4 to 6 months)

Course are given both by academics and
professionals (60% of interventions).

At the end of the year the students gets a national
level degree.

The DESS will be included in the European School
of Games and Interactive Media announced by the
French Prime Minister in May 2003. This school
will open in June 2004. The program of the DESS
will be spread over two year, allowing the students
to spend eight months on their projects which will
become a real game pre production. The school will
include fundamental research training for students
who want to make a thesis. This evolution is needed
to have the same level and means than the one
available in high level film schools. In particular
the school will be able to invite international games
professionals and researchers as lecturers.

CONCLUSION

Computer games seem to be the more advanced
field of interactive media. In the opposite of Web
sites, a game is a well define work for a given
public. This allows the game community to define
rather precise methods of design and production, to
create a cultural background and a memory of its
main pieces. Even if game culture is still far from
older media, the ability to create game played all
over the world is the proof of a young maturity. The
future of games, through MMOG and proactive
games, is a paradigm for the development on the
On Line Interactive Media.

Will some game be considered as art pieces and
will a game art appear? There are numerous
opposite answers to this question. They are already
several artists who have design works based on
game technology (Genvo, 2003), but these works
are generally “art about games” than game art, in
the same meaning than many pieces of Nam June

Paik are more art works which subjects are the
television and video media. One may argue that
broadcast media (telephone, TV, radio) produced a
few art pieces…If we consider On Line Games are
the future of broadcast media, the chance to see the
birth of a game art seems to be small. But if we
think about game as an evolution of cinema, the
ability to create art games and to revive the contents
of games depends on the emergence of authors
games. Authors movies are a small market, but it is
the main genre in which the cinema renew its
inspiration. The birth of author games relies on the
birth of alternate production systems, government
helps and the appearance of a new generation of
game designers with provocative ideas.

REFERENCES

N. Bouillot, 2002, “Métaphore de l'Orchestre
Virtuel, Etude des contraintes Système et Réseaux
puis prototypage”, Rapport de Stage DEA SIR,
CNAM, Paris.

B. Caroee, 2002, “The Watherhaed.org MMOG
Bible: Casualties”, http://www. Watherhead.org/
news

F. Constantini; C. Toinard; N. Chevassus and F.
Gaillard, 2001, “Collaborative design using
distributed virtual reality over the Internet”, In
Proceedings SPIE Internet Imaging.

A. Cronin; B. Filstrup and A. Kurc, 2001, “A
Distributed Multiplayer Game Server System”, Ann
Arbor University

M. Eladhri, 2003,”Trends in MMOG
developments”, http://game-research.com/
art_trends_in_mmog.asp

Viviane Gal ; Cécile. Le Prado ; Stéphane. Natkin;
Liliana. Vega, 2002,"Writing for video games",
VRIC 02, Laval

S. Genvo, 2003, Introduction aux enjeux artistiques
et culturels des jeux video, L’Harmattan Ed, Paris

E. Guardiola, 2000, Ecrire pour le jeu, Ed Dixit,
Paris, 2000

 INT, 2002, Journées d’études Internet jeu et
socialisation, Groupes des écoles de
télécommunication, Paris December, 2002

G. W. Lecky-Thompson,2002, “Infinite Universe :
Level Design, Terrain and Sound”, Advance in
Computer Graphics and Game Development,
Charles River Media Ed.

O. Lejade, 2002,”Le business model des jeux
massivement multi joueurs et l'avenir des
communautés on line,”, Communication aux
emagiciens, Valenciennes.

(F. Mayra; A. Jarvine and S. Hellio,
2002,”Communication and community in Digital
Entertainment Services”, Research report,
University of Tempere, Hypermedia laboratory,
Finland, August 2002.

S. Natkin, 2003,”Une architecture pour jouer à un
million de joueurs”, Les Cahiers du Numérique,
Paris 2003

 N. Richard ; P. Codogne and A. Grumbach ,2003,
"Créatures virtuelles" , Revue Technique et Science
Informatiques (TSI), numéro spécial "Vie
artificielle". Hermès,

A. Rollins and D. Morris, 2000, “Game
Architecture and Design”, Coriolis Ed. Scottsdale

J. Smed; T Kaukoranta and H. Hakonen, 2002,
“Aspects of Networking and Multiplayers
Computer Games”, Turku University, Finland,2002

N. Szilas, 2001, A” new approach for interactive
drama: : From intelligent Chracters to an intelligent
virtual Narrator”, Proc of the spring symposiume on
artificial intelligence and Interactive
Entertainment, Stanford CA, AAAI Press

B.S. Woodcock, 2003, An analysis of MMOG
Subscription Growth,
http://pw1.netcom.com/~sibruce/Subscription.html

AUTHOR BIOGRAPHY

STÉPHANE NATKIN received the Engineer and
Doctor Engineer degree from the Conservatoire
National des Arts et Métiers (CNAM), Paris, in
1978 and 1980 respectively, and the Doctor es
sciences degree from the university of Paris VI in
1985. He is professor in the department of
Computer Science, the Director of Computer
Research Laboratory CEDRIC and a member of the
administration board at the CNAM. He teaches
computer networks, distributed and multimedia
systems, computer safety and security. He is in
charge of a postgraduate degree on video games
and he works as one of the founder of the French
National School on Games and Interactive Media,
which will open in September 2004. He has worked
during the last twenty years in the field of critical
computer system both from the research and the
industrial point of view. He is the founder of a
security software editor CESIR and he was also the
manager of an art gallery situated in the center of
Paris which presented modern paintings, sculpture
and electronic art. He is the author of the book
"Internet Security Protocols", DUNOD 2001 and
the producer and one of the designers of the book
"Sol Lewitt Black Gouaches". (natkin@cnam.fr)

http://game-research.com/
http://pw1.netcom.com/~sibruce/Subscription.html

DEVELOPMENTS
IN

GAMES

A DSP-BASED 3-D SOUND SYNTHESIS SYSTEM FOR MOVING
SOUND IMAGES

Kosuke Tsujino Atsuhito Shigiya Wataru Kobayashi
Tomonori Izumi Takao Onoye Arnis Sound Technologies, Co., Ltd.

Yukihiro Nakamura 2-7-9 Kita-Senzoku Ota-Ku
Kyoto University Tokyo, Japan

Sakyo-Ku Yoshida-Honmachi
Kyoto, Japan

E-mail:{tsujino,ashigiya}@easter.kuee.kyoto-u.ac.jp

ABSTRACT

A novel 3-D sound synthesis system is developed for real-
time synthesis of moving sound. This system is equipped
with GUI-based control input for handling sound image
movement in realtime. With the use of a high perfor-
mance floating point DSP, our system can process mul-
tiple sound sources simultaneously. While this DSP per-
forms dedicatedly main process of sound synthesis, PC
software covers user interface and control of the DSP.
Since sound processing and control are separated, our
system is valuable as a reference platform for various
implementation of 3-D sound synthesis systems includ-
ing video game platforms and mobile equipments. Our
system itself is also useful for sound content production
and various experiments on spatial audio.

INTRODUCTION

3-D sound effects are widely used in the fields of com-
puter game, entertainment, broadcasting, and mobile
computing. Especially, virtual 3-D sound with 2-
channel stereo is becoming popular. In the synthe-
sis of such 3-D sound, head related transfer functions
(HRTFs) are often utilized (Brown and Duda 1998; Min-
naar, Olesen, Christensen and Moller 2001).

An HRTF is a transfer function of sound from a
specific position to left or right external ear. Repro-
ducing the characteristics of HRTFs by means of digi-
tal signal processing creates 3-D sound effect. In order
to realize this reproduction in realtime, a 3-D sound
synthesis algorithm has been proposed, which reduces
the computational cost based on the analysis of hu-
man spatial hearing (Kobayashi, Sakamoto, Onoye and
Shirakawa 2001). A realtime implementation of this al-
gorithm with single fixed point DSP is also reported
for embedded application (Sakamoto, Kobayashi, Onoye
and Shirakawa 2001).

Based on this algorithm, we have developed a new
realtime 3-D sound synthesis system, which consists
of an Intel architecture PC and Texas Instruments’
high performance floating point DSP (Tsujino, Shigiya,
Kobayashi, Izumi, Onoye and Nakamura 2003). Since
the DSP is dedicatedly used for filter operation, low-
latency realtime processing of multiple sound sources is
facilitated. Authoring software on PC in our system has
a graphical user interface so that a user can give realtime
control on the sound movement through a joystick.

3-D SOUND SYNTHESIS

Head Related Transfer Function (HRTF)

Characteristics of an HRTF are closely related to diffrac-
tion and reflection by pinna, head, and shoulder, which
include important information about human spatial
hearing. The difference of HRTFs between left and right
ears also includes important information. Since convo-
lution with HRTFs gives this information to sound, we
can produce stereo sound with 3-D sound effect using a
pair of HRTFs each corresponding to a left/right ear.

However, HRTFs indicate complicated frequency
characteristics, therefore accurate reproduction of the
characteristics of an HRTF requires high computational
cost and considerable memory space. To cope with this
difficulty, we use a low cost algorithm, details of which
are described in the following section.

3-D Sound Synthesis Algorithm

Degree of diffraction by human pinna, head, and shoul-
der largely depends on wavelength of the sound, as its
HRTF shows different characteristics among frequency
bands. For example, the graph of HRTF is relatively
flat in low frequency band since the diffraction in this
band is weak. In contrast, the diffraction at pinna cre-
ates a number of peaks and dips of the graph in high
frequency band.

Based on these analysis, signal processing filter or-
ganization for 3-D sound synthesis is designated as il-
lustrated in Fig. 1 (Kobayashi et al. 2001).

First, input sound is divided into three frequency
bands. Then each subband is processed with dedicated
filter structure according to the degree of diffraction
and reflection in the band. Finally, three subbands are
mixed with appropriate gain and delay adjustment so as
to produce the sound with 3-D effect.

Figure 1: Block Diagram of Filter

Moving Sound Synthesis

In our 3-D sound synthesis algorithm, filter parame-
ters must be prepared for each localized point. Due to
the limitation of memory capacity, actual systems can
hold the parameters only for representative points in 3-
D space. Hence, for smooth moving sound synthesis,
the filter parameters for adjoining representative points
have to be interpolated in realtime.

We placed such representative points based on the
spherical coordinate system whose origin is the center
of the head, as illustrated in Fig. 2. Several values of
distance r are chosen, and then the representative points
are placed at regular intervals of azimuth θ and elevation
φ for each r.

Figure 2: Spherical Coordinate System

At run time, we interpolate filter parameters be-
tween different values of θ and φ, and interpolate only
gain and delay of each subband for r. Continuous
change of interpolation ratios realizes smooth movement
of sound. Since frequency characteristics of HRTFs
mainly depend on the directions of sound sources, this
method gives relatively good approximation.

SYSTEM IMPLEMENTATION

System Structure

Fig. 3 ilustrates the overall structure of our 3-D sound
synthesis system. Our system consists of an authoring
part and a processing part, which cover user interface
and sound processing, respectively.

Figure 3: Block Diagram of System

For implementing this system de facto components
are used, i.e. Intel architecture PC with Microsoft Win-
dows operating system and Texas Instruments’ DSP,

TMS320C6713. The use of this high performance
DSP gives our system high processing power and high
programmability at the same time, which cannot be
achieved using conventional sound devices.

Authoring Software

We implemented the authoring part as an application
on Microsoft Windows. This authoring software com-
municates with the DSP and controls sound movement
according to realtime instruction given by a user. As il-
lustrated in Fig. 4, the authoring software has a graph-
ical user interface and joystick input with two analog
sticks. One of the sticks controls sound movement in
the horizontal plane, while the other corresponds to the
movement in vertical height. A user can control 3-D
sound movement using both of them at the same time.
The authoring software also has a graphical user inter-
face using 3-D CG, which supports monitoring of sound
position.

Z
X

Y

X

Y
Z

Figure 4: Authoring Software

Record, edit, and playback of sound movement infor-
mation are also possible in the authoring software. The
movement information is recorded as a sequence of fine
movement in a 3-D coodinate system. Since this format
is independent of the implementation of the processing
part, it is easy to exploit this movement information
in different processing systems by using files or through
networks.

DSP Board and Program

For our system, we newly designed a DSP board with a
PCI interface as illustrated in Fig. 5. The designed DSP
board receives up to four digital audio streams through
four Cirrus Logic’s digital audio receiver chips, CS8415.
Then the received streams are processed by the Texas
Instruments’ DSP, TMS320C6713, which performs sin-
gle and double precision floating point operations. Af-
ter finishing 3-D processing, the DSP outputs streams
through four digital audio transmission channels.

The DSP processes four audio streams one by one
according to the movement information sent from the
authoring software. The movement information is sent
from the authoring software every 33.3ms for each audio
stream. In the DSP, filter parameters are recalculated
and updated for every 32 samples (0.73ms at 44.1kHz)

of input in order to realize smooth moving sound syn-
thesis.

Figure 5: DSP Board

EVALUATION

Computational Load

In this section, we evaluate the computational load
of the DSP. Our 3-D sound synthesis algorithm re-
quires 312 multiplications to process one sample of in-
put sound. On the other hand, the DSP we adopted
achieves 300MFLOPS in the case of single precision
floating point multiplication. When sampling frequency
is 44.1kHz, the DSP can ideally deal with more than
10 streams. Thus, the DSP board can easily process
all of the four input streams since the overhead of
data transfer and other miscellaneous functions is about
10% in this case (Reference Frameworks for eXpress-
DSP Software: RF3, A Flexible, Multi-Channel, Multi-
Algorithm, Static System 2003).

Latency

When our system is used for sound content production,
sufficiently low latency is demanded between input and
output of the DSP board. The buffer size of input and
output sound stream is 32 samples and the latency of
filter operation is less than 150 samples. Hence, the la-
tency between sound input and sound output is about
0.5ms at a sampling frequency of 44.1kHz. This is much
lower than PC-software based systems, and is hardly
perceived through human auditory sense.

Along with sound latency, response of control input
from the joystick is also important in sound content pro-
duction. When one command of movement information
is queued in the DSP, the latency becomes about 33.3ms
at the worst case. However, this is still comparable to
the perceptual threshold and is sufficiently small.

Comparison with Conventional Systems

Some of recent commercial sound cards have the func-
tionality of 3-D sound synthesis. However, they are usu-
ally implemented in hardware, in which cases their ef-
fect cannot be modified by a user. In contrast, since our
system is DSP-based, we can implement our 3-D sound
synthesis algorithm as a DSP program. With the use of
our own algorithm, our system realizes high quality 3-
D effect at lower computational cost than conventional
methods. This facilitates realtime processing of multi-
ple sound streams with single DSP. In addition, update
of processing algorithm is easy on our system with high
programmability of a general-purpose DSP, which is to-
tally impossible in commercial systems.

CONCLUSION

In this paper, the design of a realtime 3-D sound synthe-
sis system with an Intel architecture PC and a floating
point DSP is presented. Our system enables realtime
control on sound movement through a graphical user
interface and joystick input, and can also process mul-
tiple sound streams in realtime. Our system is useful
for sound content production for computer game and
entertainment.

Moreover, various implemetation of 3-D sound syn-
thesis system is possible based on our concept. By port-
ing our system to an embedded DSP or an ASIC, mov-
ing sound synthesis can be performed in portable audio
players, portable game machines, or mobile phones in
realtime. This dramatically expands the application of
3-D sound and achives rich multimedia environment in
various consumer electronic devices in the future.

REFERENCES

Brown, C.P. and R.O. Duda. 1998. “A structural model for
binaural sound synthesis.” IEEE Trans. on Speech and
Audio Processing, Vol. 6, No. 5 .

Kobayashi, W., N. Sakamoto, T. Onoye and I. Shirakawa.
2001. “3D Acoustic Image Localization Algorithm by
Embedded DSP.” IEICE Trans. Fundamentals, Vol.
E84-A, No.6 pp. 1423–1430.

Minnaar, P., S.K. Olesen, F. Christensen and H. Moller.
2001. “Localization with Binaural Recordings from Ar-
tificial and Human Heads.” J. Audio Eng. Soc., Vol.
49, No.5 .

Reference Frameworks for eXpressDSP Software: RF3, A
Flexible, Multi-Channel, Multi-Algorithm, Static Sys-
tem. 2003. Texas Instruments Inc.

Sakamoto, N., W. Kobayashi, T. Onoye and I. Shirakawa.
2001. DSP Implementaion of 3D Sound Localization
Algorithm for Monaural Sound Source. In Proc. The 8th
IEEE International Conference on Electronics, Circuits
and Systems(ICECS 2001). pp. 1061–1064.

Tsujino, Kosuke, Atsuhito Shigiya, Wataru Kobayashi,
Tomonori Izumi, Takao Onoye and Yukihiro Nakamura.
2003. An implementation of moving 3-D sound synthe-
sis system based on floating point DSP. In Proc. IEEE
International Symposium on Signal Processing and In-
formation Technology (ISSPIT2003).

A REVIEW OF EYE-TRACKING AND USABILITY IN COMPUTER GAMES
Mike Allen, Norman Gough, Quasim Mehdi and Brian Wink

Game Simulation and Artificial Intelligence Group, University of Wolverhampton,
35–49 Lichfield Street Wolverhampton, WV1 1EQ, United Kingdom

email: mike.allen@wlv.ac.uk

ABSTRACT
This paper reviews current research and practices in the
fields of usability, eye-tracking and Computer/Video Game
(CVG) evaluation, and examines whether eye-movement
metrics can be used to effectively evaluate CVGs.
Productivity software has to be usable, i.e. efficient,
effective and satisfying, when enabling a user to achieve a
particular goal or outcome. However, games are bought to
be fun and provide a challenge. This study examines how
traditional usability criteria can be applied when evaluating
CVGs and discusses whether eye-movement metrics can
provide practical information regarding the game-interface,
game-mechanics and game-play.
INTRODUCTION
By their very nature, Computer/Video Games (CVGs)
require a high degree of Human-Computer Interaction
(HCI). Carroll (2002) defines HCI as the study and practice
of usability and ISO 9241 – Ergonomic requirements for
office work and visual display terminals - defines usability
in terms of the effectiveness, efficiency and satisfaction with
which specified users can achieve specified goals in
particular environments. However, unlike productivity
software, CVGs are bought voluntarily by consumers for
the sole purpose of having fun. Federoff (2002) asserts that,
in the case of video games usability, effectiveness and
efficiency are secondary considerations in relation to
satisfaction, but argues that the implementation of formal
usability techniques during the game design process could
better guarantee the satisfaction of game players. However,
Blythe and Wright (2003) contend that, in practice, the
satisfaction element of usability testing often amounts to
investigating whether the product frustrates or not. They
argue that, when examining interactive software products
generally, traditional usability approaches are too limited
and must be extended to encompass enjoyment. This view
has been echoed by authors within the game industry who
question the applicability of usability evaluation techniques
for assessing the user–experience in CVGs.
Eye-tracking is an evolving discipline within the field of
HCI and a number of studies have examined its potential
for measuring the usability of human-computer interfaces.
Goldberg and Kovtal (1999) evaluate a collection of
metrics, based on eye movement locations and scanpaths, to
assess their validity for measuring the quality of user
interfaces. Goldberg (2000) identifies common evaluation
criteria and suggests how eye-tracking data can be related
to each of these criteria.
This study builds on an earlier study (Allen et al, 2001) and
reviews current work that investigates the concept of fun
and issues of usability in CVGs and the use of eye-
movement metrics for usability evaluation of interface
designs. The paper concludes with a discussion which
proposes how eye-tracking could be applied in the
evaluation of CVGs.

USABILITY AND COMPUTER/VIDEO GAMES
The ultimate test of a product’s usability is based on
measurements of users’ experience with that product.
Consequently, when adopting a user-centred design
approach the evaluation of a user’s experience when using
an interactive product is required as part of the software-
development-cycle. Although the users direct experience of
a product is with the user interface, the interactive process
involves more than just the surface features and, therefore,
the whole functional architecture of a system and the
cognitive resources of the user should be observed to arrive
at meaningful metrics (Dix et al, 1997).
If a CVG frustrates or confuses the target players then it
will detract from the game-experience, e.g. problems should
be part of the game-play and not in the game-mechanics or
the interface (Clanton, 1998). Consequently, CVGs have
generally been at the leading edge of usability, so much so,
that ideas that have succeeded in CVGs have been
incorporated into productivity software packages (Seebach,
2002). However, as discussed above, the game-experience
has to be enjoyed and therefore issues of evaluation
surrounding CVGs are more complex than those associated
with the usability testing of their productivity counterparts.
CVGs endeavour to create an immersive and challenging
environment where interaction is fun. Unlike productivity
packages, CVGs do not have to be efficient and effective in
enabling the user (gamer) to a achieve a particular goal (a
goal often personal to the gamer). Conversely, a well
judged level of difficulty is introduced to provide the
challenge. Slater (2002) identifies fun as a key element of
the immersive experience along with the story, sound,
graphics, artificial intelligence, the interface and level
design. However, the survey by Federoff (2002) “What is
fun?”, implies that immersion relates to the interactive
medium (i.e. the user interface) whereas fun relates directly
to game-play. A similar division can be found in Kim et al
(1999) where the fun-game is broken down into different
factors of design and represented using a hierarchical
structure. At the highest levels of the hierarchy, the fun-
game is subdivided into perceptive fun (game-interface)
and cognitive fun (game-mechanics/game-play). At the
lowest level of the hierarchy the specific features of
perceptive and cognitive fun are presented:
• Perceptive fun - sound, animation, range of view,

character appearance, setting up a time metaphor,
setting up orientation and 3D representation.

• Cognitive fun – progression of turns, hints, upgrade
characters ability, degree of freedom, diplomacy,
determining initial state, relationship between gamers,
selection of goal and relationship between opponents.

Garneau (2001) asks “What kind of things are fun?” and
“What type of activities are fun?” and identifies fourteen
forms of fun:- beauty, immersion, intellectual problem
solving, competition, social interaction, comedy, thrill of
danger, physical activity, love, creation, power, discovery,
advancement and completion, and the application of ability.

The author assesses how these forms of fun can be
combined effectively to make CVGs more interesting and
concludes by proposing that a game would be a “confusing
mix” if it tried to combine all the forms of fun and
speculated that a more interesting game would concentrate
on a few of the forms. It is proposed here that the forms of
fun targeted in a particular CVG will be influenced by the
target group (age, gender), game genre (strategy, action or
adventure) and the type of engagement (platform and time
commitment). However, issues such as immersion,
intellectual problem solving, competition, advancement and
completion, and the application of ability, appear to be
applicable to CVGs generally. Of these general factors only
immersion relates to perceptive fun (the game interface)
whereas the others relate to cognitive fun (game-mechanics
and game-play).
ISO 9241 was not compiled to address the issues relating
directly to CVGs and, as a result, the definition of usability
provided in the standard is incomplete for evaluating fun in
CVGs. Consequently, when discussing user-testing groups,
Fulton (2002), proposes the adoption of separate tests for
usability (to discover problems that the development team
are not aware of, to understand the thoughts and beliefs of
the participants and to assess how the users interact with the
game) and playtesting (to gauge participants’ attitudes,
preferences and discern kinds of behaviour). As Fulton and
Steury (2002) advocate, usability methods are useful but
insufficient for evaluating CVGs and propose that:
• a fresh perspective is required on how to think about

user-experiences,
• standard HCI methods should be adapted for assessing

entertainment software, and
• new methods to address the design goals of

entertainment should be devised.
This view is echoed in Federoff (2002) which examines
how usability heuristics can be applied when evaluating

CVGs. 30 heuristics of game design are identified from
previous work and categorised, i.e. 10 concern the game-
interface, 1 relates exclusively to the game-mechanics, 1
concerns game-mechanics and game-play and 18 relate
exclusively to game-play. After an evaluation of the ten
usability heuristics put forward by Neilson, 8 are a
considered to related to the game design heuristics – see
Table 1. As the study points out, the usability heuristics
were not developed with CVGs in mind and, consequently,
only 14 of the 30 design heuristics can be classified in this
way. Although 19 of the 30 design heuristics related to
game-play only 3 of the 14 game-play related heuristics
could be associated with the usability heuristics. Needless
to say, in its conclusions, the study highlights that, if game
usability is to be assessed, then it must also address game-
mechanics and game-play. However, the study does
emphasise the usefulness of the usability evaluations for
assessing the game-interface - the usability heuristics could
be associated with all of the game design principles related
to the game-interface. Goldberg (2000) identifies eight
universal evaluation criteria for interface usability:
1. Consistency - Similar tasks should be performed in

similar ways.
2. Compatibility - Interface operation must match user

expectations.
3. Locus of Control - Users must feel they are in control.
4. Feedback - Every interface must provide feedback for

the user.
5. Minimum Resources - User resource demands must be

controlled.
6. Error Handling - Errors must be minimised and easily

handled.
7. Visual Clarity - Visual characters must be easily and

rapidly identified.
8. Flexibility - Interaction must accommodate a broad

range of users.
Usability Heuristics Number of related Game heuristics
Visibility of System Status A player should always be able to identify their score/status in the game (Game-Interface).

Use of sound to provide meaningful feedback (Game-Interface).
Feedback should be given immediately to display user control (Game-Mechanics).

Match between the system
and the real world

The interface should be as non-intrusive as possible (Game-Interface).
Get player involved quickly and easily (Game-Mechanics and Play).

User Control and Freedom Controls should be customisable and default to industry standards (Game-Interface).
Feedback should be given immediately to display user control (Game-Mechanics).

Consistency and Standards Follow the trends set by the game community to shorten learning curve (Game-Interface).
Interfaces should be consistent in control, colour, typography and dialog design (Game-
Interface).

Error Prevention None
Recognition rather than
recall

Do not expect a user to read a manual (Game-Interface).
Get player involved quickly and easily (Game-Mechanics and Play).

Flexibility and efficiency
of use

There should be variable difficulty level (Game-Play).

Aesthetic and minimalist
design

The interface should be as non-intrusive as possible (Game-Interface).
For PC games, consider hiding the main computer interface during game play (Game-
Interface).
Minimise the menu layers of the interface (Game-Interface).
Minimise control options (Game-Interface).

Help users recognize,
diagnose and recover from
errors

None

Help and Documentation Provide a testing and absorbing tutorial (Game-Play).
Table 1: How Usability Heuristics relate to Game Design Heuristics (Federoff, 2002)

Predictably, relationships can be drawn between these
usability evaluation criteria and usability heuristics
proposed by Neilson (Table 1), i.e.:
• Consistency → Consistency and Standards.
• Cognitive Resources → Recognition and recall.
• Visual Clarity → Visibility of System status and

Aesthetic and minimalist design.
• Flexibility → Flexibility and efficiency of use.
As a result, they can be correlated with the design heuristics
compiled by Federoff (2002). Five of these universal
criteria are also applicable to the “Hook ’em Fast and
Hard” and “Keep ‘em Hooked” game design principles put
forward by Clanton (1998), e.g.:
• minimum resources - (problem solving, overcoming

obstacles, avoiding confusion, antonym: frustration can
be fun),

• locus of control - (giving hints),
• visual clarity - (keeping problems within game-play

and not in the interface or the mechanics),
• feedback - (reward game-play with media)
• consistency - (antonym: game levels, fresh

environments with new and harder challenges).
This section highlights the importance of usability to games
but concedes that, at present, usability evaluation
techniques are insufficient to assess the whole game
experience – particularly game-play. However, the
usefulness of the current usability evaluation techniques for
assessing game-interface design was considered but it is
difficult to assess from this review whether current usability
techniques are able to measure immersion.
INTERFACE EVALUATION USING EYE TRACKNG
When viewing a scene (or computer display), the human
eye constantly enacts a series of fixations (periods when the
point-of-regard is relatively still) and saccades (periods
when the eye moves the point-of-regard from one spatial
position to another) to focus areas of interest onto the fovea
which is the only area of the retina that is capable of
resolving fine detail. In their review, Hendersen and
Hollingworth (1998) cite a number of studies that indicate
that scene viewing is non-random and fixations cluster on

informative scene regions, i.e. areas that are visually
informative (discontinuities in texture, colour or
luminance) and semantically informative (the meaning of a
region). The review also identifies other factors that may
influence eye movement patterns, e.g. image size, viewing
task, viewing time, and image content and type.
Consequently, research suggests that visual attention is
drawn towards areas of a scene that have visual or semantic
importance. Stark et al (2001) and McPeek et al (1999)
observe that eye movements and attention shifts are very
closely linked. Therefore, although covert shifts of attention
can also be made by the viewer without instigating a
saccade (i.e. the spotlight of attention is focussed on a
peripheral part of the retina), a fixation does indicate that a
particular area has visual or semantic importance because a
shift in attention has directed the eye towards it. Narayanan
and Schrimpsher (2000) contend that traditional qualitative
and quantitative data gathered for interface evaluation do
not provide any indications of how the user attends to the
different visual elements contained within the interface(s).
The authors argue that combining the fine-grained view
provided by eye-movement data with the more traditional
approaches creates a richer and more complete source of
data on the interactive process. A number of studies have
examined how raw eye-movement data can be applied to
interface usability evaluation (Cowen et al, 2002; Goldberg,
2000; Goldberg and Kovtal, 1999; Goldberg et al, 2002;
Narayanan and Schrimpsher, 2000; Narayanan and Crowe,
2002). Based on an examination of this previous work, five
distinct stages in the procedure can be established:-
1. Data capture - to monitor and record the raw eye-

movement data captured by the eye-tracker, i.e. the
points-of regard of the eye.

2. Data processing (Data Reduction) - to reduce the vast
amount of raw data generated by the eye-tracker by
identifying and logging specific events, e.g. fixations
and smooth pursuits.

3. Data mapping - relating eye-movement data with
objects or areas-of-interest on the screen, i.e. the
elements of the user interface.

4. Data analysis - measuring aspects of the eye-
Metrics Description Interpretation

Scanpath Length Sum of the saccadic amplitudes that make up
the scanpath (pixels or millimetres). Long scanpaths indicate inefficient search behaviour.

Convex Hull area Enclosed area of screen defined by scanpath. Combined with scanpath length to identify if lengthy
search patterns cover localized areas or large areas.

Spatial Density The density of fixations. Even density across screen as opposed to small dense
areas reflect inefficient search.

Transition Matrix Transitions of attention from one area of
interest to another.

Frequent changes from one area to another indicates
extensive search and inefficient scanning.

Number of
Saccades Number of saccades in scanpath. A large number of saccades implies a greater amount

of search activity.
Saccadic
Amplitudes Mean of saccadic amplitudes. Longer saccades could indicate more efficient

scanning.

Scanpath Duration Duration of the scanpath including fixations
and saccades (seconds). A measure of processing complexity.

Number of
Fixations The number of fixations in a scanpath. Many fixations when searching for a specific target

indicates difficulty in target identification.

Fixation Duration Mean fixation duration. Long fixations imply that user is spending longer
interpreting screen components

Fixation/Saccade
Ratio

Ratio of time spent processing to time spent
searching.

High ratios indicate that there is a relatively high
degree of either search or processing.

Table 2: Metrics of Eye-movement Data (Goldberg and Kovtal, 1999)

movement behaviour using predetermined metrics.
5. Data interpretation - relating the eye-movement

metrics to usability criteria to generate practical
usability information.

In the previous section it was proposed that usability
evaluation techniques were useful for assessing the game-
interface. The studies listed above used a number of
approaches to examine eye-movement behaviour during the
HCI process, however, none used a game scenario.
Narayanan and Schrimpsher (2000) developed a software
routine for processing and evaluating eye-movements
gathered from participants interacting with an educational
software package - Narayanan and Crowe (2002) built on
this work to incorporate haptic movements into the
evaluation. Goldberg and Kotval (1999) evaluate a
collection of eye-movement metrics based on eye-
movement locations and scanpaths. The measures included
in this research are measures of visual search and
processing (Table 2) collected from twelve participants
when examining two simple interfaces that exhibit good
and poor examples of component grouping. Goldberg
(2000) speculates how eye-movement metrics can be
associated with established usability criteria. In this work,
eye metrics are categorised into three classes:- scanpaths,
cumulative time in areas of interest and transitions among
areas of interest. The assessment highlights the following
as usability criteria that have potentially strong
relationships with eye-tracking data:
• Consistency – consistent interfaces should result in

similar cumulative area of interest times.
• Cognitive Resources - Longer fixation durations will

indicate more complex decisions and more focussed
attention.

• Visual Clarity – High visual clarity should result in
directed scanpaths, sparse area of interest matrices and
little unnecessary coverage of a display.

• Flexibility – Given that poor visual clarity has been ruled
out, a flexible interface should result in a large variance
of scanpaths and display coverage between users.

Two studies, Goldberg et al (2002) and Cowen et al (2002)
utilised a selection of eye-movement metrics to evaluate
more complex interface designs with eye-movement data
captured from users as they performed a set of specific
tasks. Goldberg et al (2002) employed eye-movement
metrics to evaluate a prototype web portal application at
three levels:- task (data gathered during each of six tasks),
screen (data gathered from the screen during each task) and
object (individual areas of interest within each interface).
The report asserts the utility of eye tracking as an additional
source of usability information but noted that evaluating
presentations with multiple screens presents great
challenges. Cowen et al (2002) applied four eye movement
metrics to evaluate four different commercial sites when
performing two different tasks. Each task was performed on
a single screen.
Eye-tracking is now starting to establish itself as a
technique for evaluating the usability of user interfaces but
a number of challenges still lie ahead. Eye-movement
metrics have been proposed and work has begun to interpret
these measures as pointers to usability. Studies are looking
beyond the evaluation of single experimental screen designs

to commercial sites with multiple screens and the influence
of the participant task is also being explored.
DISCUSSION
Although this study is not an exhaustive review, it has
sought to identify the attraction of CVGs, the importance of
usability within games, the applicability of usability
evaluations and, consequently, the applicability of eye-
tracking research. It becomes apparent very quickly that the
definition of usability, in terms of efficiency, effectiveness
and satisfaction, provided in ISO 9241 falls far short for
assessing the entire game experience. However, if the goal
of a CVG is to provide enjoyment then it must be efficient
and effective in fulfilling this mandate. Consequently, good
usability is an essential part of the CVG, e.g. gamers do not
want to spend hours reading instruction manuals or
wrestling with complex interfaces. However, to assess the
whole game experience, i.e. immersion and fun, new
metrics have to be developed.
The study by Federoff (2002) related usability heuristics to
game design heuristics. Goldberg (2000) speculated how
different features of eye-movement behaviour could be
related to universal usability evaluation criteria.
Consequently, by establishing associations between the
universal evaluation criteria identified by Goldberg (2000)
and the usability heuristics proposed by Neilson, a
speculative link can be made between eye-movements and
game design heuristics compiled by Federoff (2002). For
example, could the spatial density of fixations (see Table
2), as a measure of consistency (Goldberg, 2000), be used
to evaluate if a CVG interface follows the trends set by the
game community to shorten the learning curve or is
consistent in control, colour, typography and dialog design
(see Table 1)? Evaluations of this kind would require
further research to confirm the speculation put forward by
Goldberg (2000) regarding the links between eye-
movement behaviour and established evaluation criteria, to
establish that these criteria were applicable to games (i.e.
with the presence of dynamic as opposed to static screen)
objects and the development of routines to map eye-
positions to dynamic on-screen objects. Establishing the
link between eye-movement metrics and traditional
usability evaluation criteria is clearly a worthwhile line of
research but the value of relating them to CVGs maybe
questionable. For evaluating CVGs, it appears that it would
be more productive to link eye-movement metrics to
bespoke criteria developed specifically for CVG
assessment. The metrics and interpreted behaviour
proposed in Table 2 may already provide useful information
to a game design team. For example, does the player exhibit
frequent eye-movements from one area of the screen to
another indicating extensive search and inefficient
scanning. This would be undesirable in productivity
software but may be highly desirable in certain CVG
scenarios. If eye-movements are reacting in a predictable
manner (i.e. high level of search activity), as opposed to
staring at a single point or even away from the screen for
long periods, could this be used to measure levels of
immersion?
Previous research indicates that the eye is drawn towards
regions that are visually or semantically informative and
factors such as image size, viewing task, viewing time, and
image content and type, may influence eye movement

patterns (Hendersen and Hollingworth, 1998). These factors
all appear to have implications for the evaluation of CVGs.
The ability of a game player to predict areas of semantic
importance on a screen during interaction could have
implications for interface design and game-play, e.g. if a
hostile non-player character always appears in the same
place at the same time the player may concentrate on that
part of the screen in anticipation. Will larger screen sizes or
wrap-around screens have an affect on the players ability to
read the game environment? The viewing task and the
viewing time in CVGs will not only differ from
productivity software but also from game to game
depending on genre. Research to establish how viewing
patterns change under stress (due to the nature of task
and/or time constraints) could provide useful data on how
interfaces should be designed to accommodate this change
in behaviour, e.g. what information regarding status is
flashed onto the screen and when.
Eye-tracking is not proposed here as a panacea for solving
the issues surrounding the evaluation of the game
experience. However, it could potentially provide detailed
data for the evaluation of game interfaces. Fulton and
Steury (2002) call for new methods to address design goals
of entertainment. Whether eye-tracking can aid with
assessing game-play – Clanton (1998) states that game
designers and publishers believe that game-play is the
deciding ingredient of a good game - is unclear. However,
Karn et al (2000) reports on outcomes of a Workshop at the
ACM SIGCHI (Special Interest Group for Computer
Human Interaction) Conference on Human Factors in
Computing Systems that discussed how to extract
information about product usability from eye-movement
data. In the discussion related to the desired attributes and
specifications for future eye-trackers, some of the issues
were particularly applicable to this area, e.g. the
correspondence between the position of the eye and the
deployment of attention and fusion of eye, mouse, facial
expressions and voice input.
CONCLUSIONS
The CVG industry appears to offer an exciting field of
research for those involved with eye-movement technology.
Whether the reverse is true is still not clear. There is
evidence that eye-tracking may provide detailed data for
evaluating the interface in the future. However, a means of
mapping eye-fixations to dynamic on-screen objects needs
to be developed and the applicability of existing studies into
usability evaluations conducted with eye-movements to
CVGs needs to be examined. With the fine grain of detail
that eye-tracking can potentially provide regarding the
interactive process, it maybe that eye-tracking could
provide an answer to the issue of evaluating factors such as
fun, immersion and enjoyment. However, this may require
a greater understanding of how eye-movement and visual
attention are related.
REFERENCES
Allen M. J., H. Suliman, Z. Wen, N. Gough and Q. Mehdi,

(2001) Directions for Future Games Development, Proc. 2nd
SCS Int. Conf. Game On, pp 22-34.

Blythe M. and Wright P. 2003. “From Usability to Enjoyment:
Introduction”, Funology: From Usability to Enjoyment, Kluwer
Academic Publishers.

Carroll J. M. 2002. Human-Computer Interaction in the New
Millennium, ACM Press.

Clanton, C. 1998. “An Interpreted Demonstration of Computer
Game Design” CHI 98 conference summary on Human factors
in computing systems, pp1-2.

Cowen L., L. J. Ball, J. Delin 2002. “An Eye-Movement Analysis
of Web-Page Usability” People and Computers XVI –
Memorable Yet Invisible- Proc. the 16th British HCI Group
Annual Conference, Springer-Verlag, pp 317 – 336.

Dix A. J., Finlay J. E., Abowd G. D., Beale R. 1997. Human-
Computer Interaction, Prentice Hall.

Federoff M. A. 2002. “Heuristics and Usability Guidelines for the
Creation and Evaluation of Fun in Computer Games” MSc
Project, Dept. Telecommunications of Indiana University.

Fulton B. and K. Steury 2002. “The (Usable) World is Not
Enough: Making Games More Fun” http://www
.microsoft.com/playtest/ publications.htm (Accessed 3 June
2003).

Fulton, B. 2002. “Beyond Psychological Theory: Getting Data that
Improves Games” http://www.gamasutra.com/gdc2002/features
/fulton/fulton_01.htm, (Accessed 3rd June 2003).

Garneau, P. A. 2001. Fourteen Forms of Fun,
http://www.gamasutra.com/features/20011012/garneau_pfv.htm
(Accessed 7th August 2003).

Goldberg J. 2000. “Eye Movement-Based Interface Evaluation:
What can and cannot be assessed?” Proc. Of the Int.
Ergonomics Association/Human Factors and Ergonomics
Society Congress, vol. 6. pp 625 – 628.

Goldberg J. H. , Kotval X. P. 1999. “Computer interface
evaluation using eye-movements: methods and constructs” Int.
Jour. Of Industrial Ergonomics, (24) pp 631-645.

Goldberg. J.H., M. J. Stimson, M. Lewenstein, N. Scott, A. M.
Wichansky 2002. “Eye Tracking in Web Search Tasks: Design
Implications, Proc. Sym. On Eye Tracking Research and
Applications”, pp 51–58, (Downloaded from ACM digital
Library 9 September 2002).

Hendersen J. M., A. Hollingworth 1998. “Eye Movements During
Scene Viewing: An Overview” Eye Guidance in Reading and
Scene Perception, Elsevier Science Ltd, pp 269-294.

Karn K. S., Ellis S. and Cornell J. 2000. “The Hunt for Usability:
Tracking Eye Movements”. http://www.acm.org/sigchi/bulletin/
2000.5/eye.html (Accessed 23 July 2002).

Kim, J., Choe, D, and Kim, H. 1999. “Toward the Construction of
Fun Computer Games: Differences in the views of Developers
and Players” Personal Technologies, 3, 1-13.

McPeek R. M., V. Maljkovic, K. Nakayama 1999. “Saccades
require focal attention and are facilitated by a short-term
memory system” Vision Research, 39, pp 1555 – 1566.

Narayanan N. H., D. Schrimpsher 2000. “Extending eye tracking
to analyze interactions with multimedia information
presentations” People & Computers XIV: Proceedings of the
Fourteenth Annual Human Computer Interaction Conference
(HCI 2000), Springer-Verlag, pp 271-286.

Narayanan N. H., E. C. Crowe 2002. “Integrating Eye Movements
and Haptic Interaction Data for Comparing Multimedia
Interfaces”, In press Jour. of Applied Systems Studies, 3(1),
http://www.eng.auburn.edu/ ~narayan/jass.pdf (accessed 22
July 2002)

Seebach P. 2002. Everything I need to know about usability, I
learned at the arcade, IBM DeveloperWorks – Web
Architecture, http://www.-106.ibm/developerworks/library/us-
cranky17.html (Accessed 16 July 2003)

Slater, S. 2002. Enhancing the Immersive Experience, Proc.
Game-On 2002: 3rd Int. Conf. on Intelligent Games and
Simulation, pp 5 – 9.

Stark L. W., C. M. Privitera, H. Yang, M. Azzariti, Y. F. Ho, T.
Blackmon, C. Dimitri 2001. “Representation of human vision in
the brain: How does human perception recognize images” Jour.
Of Electronic Imaging, 10(1) 123 – 15

AN ACTOR ARCHITECTURE TO DEVELOP GAMES FOR
BLIND CHILDREN

Cyrille Bertelle, Antoine Dutot, Sylvain Lerebourg,

Damien Olivier and Guillaume Prévost

LIH - Université du Havre

25 rue Philippe Lebon - BP 540

76058 Le Havre Cedex - France

E-mail:
�
Cyrille.Bertelle, Antoine.Dutot, Sylvain.Lerebourg,

Damien.Olivier, Guillaume.Prevost � @univ-lehavre.fr

KEYWORDS

Actors, Multimodality, Visual Disability, Specific Peripher-
als.

ABSTRACT

In this article, we are interested in providing a framework
to develop games for visually impaired or blind children.
In this context, we propose a tool set to ease the creation of
such games based on an actor metaphor. As the possible out-
puts are multimodals (mostly not graphical) we provide an
abstract library. The architecture is composed of an engine
and a I/O layer. These concepts have led to the achievement
of several games. This work is part of the european project
TiM (Tactile Interactive Multimedia).

GOALS

Computers are tools successfully used even by young peo-
ple with blindness or a severe degree of visual impairment.
Games are a powerful way to learn for children (Svensson
and al., 2002). Furthermore, a growing number of homes
are computer-equipped. Despite this fact, very few games
designed for visually impaired and blind children do exist.
In addition, already existing games are dedicated to specific
peripherals and most of them are quite expensive. Then
users have to buy both the game and the device.

The aim of TiM project is to provide multimodal games
(Archambault and Burger, 2000) which are adapted to
the available hardware. TiM also furnishes a generic
development library and a methodology suitable for game
creators (whatever be their computer skills).

In this article we propose a framework that fulfill these goals
and requirements. The architecture is made of an I/O layer
whose role is to render games to the player, an engine aiming
at running the games and a language that allows to specify
games to the engine. Games are designed in a abstract way
using the TiM Language (TL) (Archambault et al., 2002),
and run by the engine using actors (Terna, 1998). Then

the I/O layer renders the running game in a way suiting the
needs, disabilities and computer environment of the player.

ARCHITECTURE

We use the language described in (Bertelle et al., 2002). As
shown in the figure 1, Game links several scenes, several
actors or classes.

Figure 1: Architecture

There are two main types of objects in the engine: actors
and passive objects. The actors have a behavior (Mataric,
1992) and a life cycle (Perception-Reaction), meaning it is
perceiving its local environment and then reacting according
to its goals. The passive objects only respond to external
stimuli in a fixed way. As an example, actors can be non
player characters, players or an active environment. Passive
objects can be a door, a wall...

Every object has a model and a representation. The model
contains the characteristics of the objects in the engine (for
example: coordinates, size...). The behavior defines the
way it is reacting to stimuli. For active objects, the stimuli
comes from the environment or from its perception. For
passive objects, stimuli are only external.

The environment is a special actor containing all other
objects as well as the global model representing the layout
of a scene. It also has to define the rules of the game by
restraining objects acts (for example, actor movement in
a scene). A scene contains an environment as well as a
transition rules to other scenes. The set of scenes describe
the scenario.

Every interaction between objects is based on communi-
cations and they can be synchronized or not. Observers
convert the model of every object into a representable form
for the I/O layer.

The architecture allows two types of communications: a
synchronous and an asynchronous one. The asynchronous
one lays on a letterbox defined in the naming service. The
synchronous one relies on a direct communication between
objects.

GAMES

The main objectives of the TiM project are both to design
new games and to adapt existing games. The second part
is more difficult since it forces us to convert visually based
games into games suited for blind children.

Tim Journey

Many games have already been designed for distinct age
categories. TiM Journey concerns 7 years old children. In
this game, the player is lost in a mysterious island (figure
2) and have to find and collect sounds spread out in the
landscape and gather them in a secret place. The island is
divided in many parts, each one having a specific audio
environment.

During its quest the player encounters several objects and
actors. For example the player finds one of a Rune stones
which tells him a part of the history of the seven sounds
and gives a clue to solve the final puzzle. We create an
audio layout using spatially localized sounds that allows the
player to know where he is. The footsteps sounds allow the
player to recognize the surface he is crossing (sand, forest,
etc.).

As an additional help, the player must find a sonar that
will allow him to highlight the very important sounds. An
external narrator gives hints to the player when this one
doesn’t know what to do.

In the Tim Journey game, the player controls an avatar
(representation of the player in the game) implemented as

an actor (representation of the player in the engine). Runes
Stones, doors ... are passive objects playing sounds when
they are in your area of perception. They have no behavior,
they just react to the player’s needs.

Figure 2: Map of the Tim Journey island

The model is a 2D grid. A cell can contain a passive object
or/and an avatar. A scene maps to an area of the island
(and thus to an specific environment). A scene can also
correspond to a main menu, an option menu or a cinematic
scene (opening, transition, ending).

A menu contains many items with text. The blind children
can use a braille terminal 1 (figure 3) in order to know what
is written on the menu items. The words are displayed on
the braille keys.

Figure 3: Map of a braille terminal

1Tool build by Philippe Balin in 1978

Reader Rabbit

The Reader Rabbit game is an adaptation of a french multi-
media game (“Lapin Malin” 2) for children from 2 to 4 years
old. The child discovers four educational games helped by
animals and by music. This game is designed for using an-
other specific and common peripheral: the tactile board (fig-
ure 4).

Figure 4: Map of the tactile sheet

One of the four educational games is the Bingo Basket Ba-
bies (figure 5). The child must associate a baby animal with
its parent. In the original version, the child uses the mouse
to select one of the parents on the screen. In the adapted
version, the child uses the tabulation key at the bottom-left
of the tactile board.
For the tactile board, he can also use a specific touch (one
of the four up keys of the tactile board) to hear the sound
corresponding to the selected item. Here the texture tries to
translate the mental representation of the animal. Then, he
validates using the enter key at the bottom-right of the tactile
board.

Figure 5: Screenshot of the Bingo Basket Babies game

Other games

Some other games have been designed for the TiM project:

� Hide and Seek is a version of TiM Journey for 3/4 year
old players.

2Lapin Malin: Maternelle 1 - (TM) TLC Edusoft

� MudSplat is game where you have to kill evil aliens
(much like space invader).

� X-Tune is a game in order to create its own sounds.

� Magic Dictation contains many activities like find a let-
ter, spell a word, etc...

CONCLUSION

Many games have been developed using the framework de-
scribed above. It has been showed that already developed
games suit well to the visually impaired children needs.
Moreover, the architecture happens to be very efficient for
designing games. We provided games that use common pe-
ripherals in addition of dedicated devices. However, there
is a blatant need to research a new way to adapt peripherals
for the blind children. We still need to provide an authoring
tool that would allow people without programming skills to
create games easily.

ACKNOWLEDGEMENTS

The TiM project is funded by the European Commission, on
the program IST 2000 (FP5/ IST/ Systems and Services for
the Citizen/Persons with special needs) under the reference
IST-2000-25298. More information about the TiM project
can be found at:
http://www.snv.jussieu.fr/inova/tim.

References

Archambault, D. and Burger, D. (2000). Tim (tactile in-
teractive multimedia): Development and adaptation of
computer games for young blind children. ERCIM WG
UI4ALL & i3 Sping Days 2000 Joint workshop, In-
teractive Learning Environments for Children (Athens,
Greece).

Archambault, D., Dutot, A., and Olivier, D. (2002). Tl a lan-
guage to develop games for visually impaired children.
Computer Helping People With Special Needs, ICCHP
Linz (Austria), pages 193–195.

Bertelle, C., Dutot, A., Olivier, D., and Prvost, G. (2002).
Active objects to develop computer games for blind
children. GAME-ON, London, United Kingdom.

Mataric, M. J. (1992). Behavior-based systems: Main prop-
erties and implications. IEEE International Confer-
ence on Robotics and Automation, Workshop on Archi-
tectures for Intelligent Control Systems, Nice, France,
pages 46–54.

Svensson, H. and al. (2002). Tim: Tactile interactive multi-
media computer games for visually impaired children.
Delivrable N D05 - Users Needs - Final Report, IST
Information Society Technology.

Terna, P. (1998). Building agent based models with swarm.
Journal of Artificial Societies and Social Simulations.

KEYWORDS

Emergence, emergent modelling, physics simulation,
complexity, games development.

ABSTRACT

The feeling of realism in computer games not only
depends on the game play, but also on the properties of its
background environment and the level of interaction with it.
This aspect of games is too often developed
deterministically, and has very little to offer in terms of
increasing the feeling of realism in the game.

This paper reports on emergent modelling of physical
objects, such as civil engineering and other structures,
which can be used either as objects of the game or as means
of providing interactive and realistic environment in which
the game takes place.

If these models are developed in a conventional way,
they would require the developer to have a degree in civil
engineering or mechanical, as well as to be a proficient
games programmer. This would be very resource intensive
and unattractive for games development companies.

However, using emergent methods, background
models can be developed in a much easier way, with
behaviour that obeys (or defies) laws of physics, and can
provide realistic and interactive environment in which the
computer game takes place.

INTRODUCTION

Computer games are often set in a highly scripted
deterministic environment that does not give the sense of
realism to the game. Deterministic scripting needs to take
into account all possibilities in which the environment can
be and the number of these possibilities can be very large.

For instance, if there are 20 different environment
objects with which the game can interact simultaneously,
and if these objects can take 10 discrete positions, this
creates 1020 possible states in the model. To understand the
size of this state space, it is worth mentioning that the
number of seconds since the beginning of time is estimated
at 4.7*1017. It is therefore clear that our example has a
hyper-astronomic space of possibilities and this does not
give the games developer a chance to script even a small
proportion of the total number of them.

However, if instead of using deterministic scripting, the
game environment is programmed using engineering
methods, the resource intensity of this approach quickly

becomes comparable with the resource intensity of the
deterministic scripting.

Conventional modelling of structures is based on
describing the structure as a system of algebraic equations,
and solving it simultaneously by iteration. Although the
definition of the equations is based on Newton's laws of
motion, the solution method usually requires a
simplification of the system of equations in order to be able
to compute the solution. Furthermore, the solution process
is typically based on matrix manipulation and inversion.

In a typical case, each structural component is defined
with a stiffness matrix that is obtained by a Finite Element
Method to calculate the solution (Fig. 1a). The complexity
of the matrix increases considerably with the number of
components (Fig. 1b, Fig1c). It can be argued that the
matrix calculus is an artificial process that is somewhat
removed from the underlying physical system that it
describes.

a) structural component

b) simple structure

c) complex structure

d)
Figure 1: Illustration of the Conventional Modelling

Method in Engineering

Since the number of operations required to compute the

solution in Fig. 1 increases with the square of the number of
components, the computational intensity if the solution
method is O (n2).

Although commercially available systems for creating
physics simulations, such as MathEngine engine, are

EMERGENT MODELLING OF PHYSICS FOR GAMES DEVELOPMENT

Dr L. Jankovic
InteSys Ltd

University of Birmingham Research Park
Vincent Drive, Edgbaston

Birmingham B15 2SQ, United Kingdom
E-mail: L.Jankovic@e-intesys.com

finding their way into the field of games development, these
systems are computationally intensive and tie up a lot of
CPU time (Bongard & Paul 2000). This computational
intensity is the consequence of the conventional approach to
modelling, which makes physics simulation prohibitive in
games development. There are other application
programming interfaces for physics modelling that suffer
from similar problems of computational intensity, or from
inaccuracy of the simulation due to oversimplification of
the underlying conventional method.

In addition to modelling engineering structures, similar
difficulties apply to modelling interactive terrain, trees, and
other environmental objects. It is therefore not surprising
that the background environment of computer games is
often considered to be of secondary importance.

EMERGENT MODELLING

We refer again to our example from the previous
section, involving 20 objects which can interact
simultaneously, taking 10 discrete positions, and having the
size of the state space comparable to the number of seconds
since the Big Bang.

Traditional mathematics is often used to represent such
systems with equations. However, this approach has, in the
past few hundred years, only reproduced the simplest of
behaviours, covering only a negligible percentage of the
state space of these systems, and with a vast majority of
everyday systems left unexplained.

This is hardly surprising, considering that complex
systems are not reducible to mathematical equations, and
the only way to understand them is to build their equivalent
computer models. If the next state of a multi-component
system can be predicted with a simple mathematical
equation using its current state, such system is most
certainly not complex, but either uniform or repetitive.
According to Wolfram (2002), a complex system can only
be modelled with a system of equivalent complexity.

Models built on the principles of emergence will depict
the complexity of the system they represent by having the
same number of components, and the same methods for
interaction of these components. In this way, the system
behaviour that emerges will have the same hyper-
astronomic number of possible states as the real system,
and will be able to tell the user something about the system
behaviour that has not been explicitly programmed.

We have already reported on the role of emergent
modelling in games development, as well as general
principles to stimulate a group of agents to exhibit emergent
behaviour (Jankovic 2002; Jankovic 2000; Jankovic
2000a). In this paper we focus on emergent modelling of
dynamics of physical objects for games development,
inspired by our work on creating new solution methods for
professionals (Jankovic 2003).

EMERGENT MODELLING OF DYNAMICS OF
SOLID OBJECTS

Emergent behaviour occurs as result of interaction of
system components. These components are driven by

component-specific rules alone. Individual components are
not aware of the behaviour of the system as a whole. In
other words, the components know only about what their
neighbours are doing, but do not have a “big picture” of
what the entire system is doing.

In the case of modelling of interaction of a group of
agents, the component rules level may involve avoidance of
obstacles, and speed and distance matching, and consequent
adjustment of the component’s position (Reynolds 1987).
However, for simulation of dynamic behaviour of solid
objects the simple rules on the component level are based
on Newton’s laws of motion. Position of each component is
therefore calculated as follows:

 pt+1 = pt + v x ? t (1)

where
p – position
t – current time
t+1 – future time one step after the current time
v = a x ? t - velocity
a = F/m - acceleration
? t = t+1–t
F – force acting on the component
m – mass of the component

In order to achieve emergent behaviour, components

must exchange inputs and outputs with other components
they are connected to.

In the case of simulation of the dynamic behaviour, the
force acting on the component is an input, and the
consequent change of the position is the component’s
output. Additionally, the component transfers the force that
acts upon it to other components, and receives positions of
other components. Therefore, forces and positions are both
inputs and outputs on a component level.

Equation (1) describes rules for linear movement of
objects. Similar principles apply to angular movement, if
position is substituted by angle, velocity by angular
velocity, acceleration by angular acceleration, and force by
momentum. Both linear and angular movement rules act on
individual components, and the interaction of these
components gives rise to emergent behaviour that depicts
the complexity of the corresponding physical system.

Considering that the above rules on the component level
are quite simple, the key to successful emergent modelling
is the connection topology, which the components use to
send inputs and outputs to other components and thus
through interaction build an emergent model. Basic
connection topologies for emergent models were described
by Jankovic (2002). A more elaborate analysis of
component connectivity was reported by Watts (1999).

An example of an emergent model with parallel
independent processes is given in Fig. 2. The model
consists of a component class and environment class. The
component class runs an independent process (thread), and
has transition function rules for defining its state and the
interaction with other components in the system. The
environment class is used to instantiate a number of
working copies of the component class, which comprise the
system model. After the instantiation, individual processes

in the components are sufficient to drive a continuous
execution of the system model.

//component class models component functionality
public class myComponent implements Runnable
 {
 //define class variables
 …
 //define constructor
 …
 public myComponent()
 {
 //some code here to transfer values of
 //external variables into local variables
 //for this class

 //instantiate the local thread
 myThread=new Thread(this);
 running = true;
 }
 //run method gives each instance an active
 //independent process
 public void run ()
 {
 …
 while(!quit)
 {
 if(running)
 {
 //insert here component level
 //processes to check for proximity
 //of and interaction with the
 //neighbours through the
 //Environment class
 }

 //check for Java exceptions here
 }
 }
 }//end of component class

//environment class instantiates a number of
//component classes and provides start up
//parameters for them
public class Environment extends JFrame implements
Runnable
 {
 //create array of component instances
 myComponent[] cell;
 //define environment variables here
 //define constructor for Environment class

 int noOfCells = <some number here>;
 public Environment()//constructor
 {
 //instantiate myComponent class into
 //an array using component constructor
 cell = new myComponent[noOfCells];
 for (int i=0; i<noOfCells;i++)
 cell[i] = new myComponent();

 for (int i=0; i<noOfCells;i++)
 {
 //start local component process using
 //start() which calls run() method
 cell[i].myThread.start();
 }
 }
 //main method to invoke the program and
 //the rest is up to the individual components
 public static void main(String[] args)
 {
 Environment app=new Environment ();
 }
 }
Figure 2: An emergent model example in Java

An important comparison between conventional and
emergent systems is the difference in their computational
intensity. Since the emergent systems are typically
connected locally neighbour to neighbour, the exchange of
inputs and outputs between components will be linearly
proportional to the number of components. Therefore, the
computational intensity of emergent systems will be O (n),
in comparison with the O (n2) computational intensity of
conventional systems, and has respective implications on
computational resources needed to run these systems.

Using inputs and outputs on the component level and
principles outlined in the example in Fig. 2, we have
produced a modelling system called VR Objects, and have
applied it to development of other application specific and
discipline specific modelling systems. This is described in
the next section.

RESULTS AND APPLICATIONS

We describe here the results of using the emergent
modelling method and speculate on their possible
application in games development.

Structures

Figure 3 shows an interactive suspension bridge, before

and after application of load. The user can interact with the
bridge in the real time, and subject it to various
deformations. The dynamic behaviour of the bridge depicts

a) before application of load

b) after application of load

Figure 3: Interactive Suspension Bridge

the behaviour of a real bridge, except that this model can
easily be subjected to an artificial earthquake, or some other
disaster scenario.

In the context of games development, this kind of object
can form a part of an interactive environment, or even one
of the elements of the game itself. Crossing a moving
bridge, or a bridge subjected to an earthquake, may be an
obstacle that the user needs to go through in order to reach
the next phase of the game.

Figure 4 shows an interactive dome, in various phases,
from an equilibrium state to states of smaller or larger
deformations interactively introduced by the user.

The dome will return to the equilibrium state if the
displacement applied by the user is not greater than a
certain threshold. Otherwise, the dome will stay deformed
permanently.

In the context of games development, this can form a
part of an interactive environment which must not be
deformed beyond a certain threshold or otherwise the user
will lose points. The bottom image in the sequence in Fig. 4
shows an object which can also be used as an interactive
fishing net.

Jelly-like Materials

 Another application of emergent modelling that we

developed is a jelly-like material. The block of material in
Fig. 5 is not only interactive, but also due to low stiffness it
fluctuates for a period of time after the user has stopped
interacting with it. In the context of games development,
this can be applied as part of some unusual environment, or

Figure 4: Dynamic Behaviour of an Interactive Dome

Figure 5: A Jelly-like Material Before and After User

Interaction

as means of providing obstacles made of wobbly objects
that can increase the level of difficulty of the game.

 Surfaces and Cloths

Surfaces and cloths are another type of application that
was developed with this method. Surfaces can be elastic, or
plastically deformable if their elasticity is set to zero. In the

former case, they can be used in games development to
represent the surface of water, or a “magic carpet” which
floats in the air. In the latter case, the surface can be
programmed to behave like a cloth, and to detect collision
with solid objects. Figure 6 shows a surface falling on a
solid object, and adjusting its shape accordingly. This type
of model can give more realism to a game, both as an object
of the game, or as part of the background environment.

CONCLUSIONS

The paper reported on emergent modelling to achieve
physics simulation for games development. It referred to
the lack of realism in the background environment of games
and explained the difficulty of creating convincing physics
simulation using conventional deterministic scripting.

It subsequently reported on our work on development of
dynamic emergent models. Using this approach, we
modelled civil engineering structures, cloths, jellies,
flexible surfaces and others. Application of these models to
games development was discussed, either as part of an
interactive background environment or object of the game.

One significant difference between our emergent models
and conventional models based on traditional mathematics
is the reduced computational intensity, which increases as
linear, rather than quadratic function, of the number of
components.

Another significant difference between this and other
approaches is the ability to search a very large state space
of the system efficiently, without explicit programming.

From what has been presented in the paper, it is possible
to conclude that this approach can increase the realism of
computer games, and can overcome the need for intensive
scripting that uses run time resources inefficiently.
Consequently, this reduces the requirement for extended
professional training of games developers.

We believe that in the future, our applications for
different disciplines can be consolidated into an application
programming interface suitable for games development.

REFERENCES

Bongard, J. C., Paul, C. 2000. Investigating Morphological

Symmetry and Locomotive Efficiency Using Virtual
Embodied Evolution. Proceedings of the Sixth International
Conference on Simulation of Adaptive Behaviour.

Jankovic, L. S. Jankovic, A.H.C. Chan, G. H. Little. 2003 Can
bottom-up modelling in virtual reality replace
conventional structural analysis methods? Automation in
Construction, Volume 12, Issue 2, Pages 133-138.

Jankovic, L. 2002 Emergent Modelling in Games Development. In
Proceedings of GAME-ON 2002. SCS Europe Bvba.

Jankovic, L. 2000. “Games development in VRML.” Virtual
Reality, Vol. 4, No. 5, 195-203.

Jankovic, L. and J. Dumpleton. 2000a. Emergent modelling of
complex systems in VRML. In Proceedings of Eurographics
UK 2000, Swansea 4-6 April, 17-24.

Reynolds, C. W. 1987. Flocks, Herds, and Schools: A Distributed
Behavioral Model. Computer Graphics. Vol. 21, No. 4, 25-34.

Watts, D. J. 1999. Small Worlds - The Dynamics of Networks
between Order and Randomness. Princeton University Press.

Wolfram, S. 2002. A New Kind of Science. Wolfram Media, Inc.

BIOGRAPHY

The author obtained his PhD (Mech. Eng.) from the
University of Birmingham in 1988. He is Senior Lecturer at
the UCE, Honorary Lecturer at the University of
Birmingham, and the founding Director of InteSys Ltd. His
research is in modelling, simulation and analysis of
behaviour of complex systems.

Figure 6: Emergent Model of a Cloth Falling on a Solid

Object

STORYTELLING
AND

NATURAL
LANGUAGE

PROCESSING

A MULTIPLAYER CASE BASED STORY ENGINE

Chris R. Fairclough and Pádraig Cunningham,
ML Group, Computer Science Dept.,

Trinity College Dublin,
Dublin 2, Ireland.

chris.fairclough@cs.tcd.ie, padraig.cunningham@cs.tcd.ie

KEYWORDS
Interactive story, multiplayer, case based planning,
believable agents.

ABSTRACT

This paper describes the development of an expert case-
based character director system which dynamically
generates and controls a story, which is played out in a
multiplayer networked game world. The system handles
multiple users in a game world and directs the non player
characters therein to perform for the users parallel
storylines, interweaving character roles in each story. The
story is told through a ‘narrative of actions’ and
automatically generated dialogue. Much of the storytelling
approach is based on the seminal work of Vladimir Propp,
to which is applied the AI case based planning paradigm.
Initial analysis of the system is based on a review of the
system and its output, but future work will involve
developing a more objective format for analysis.

INTRODUCTION

The system described here is based on previous work
described in (Fairclough and Cunningham 2002). The
original implementation was limited to one player taking
control of a hero in a simple scripted hero/villain story
structure, with no AI storygeneration capability. The
current system includes a story director (SD) system which
utilises the case based planning (CBP) paradigm. The
system also facilitates multiplayer stories, and a range of
different possible story structures are allowed for by the
approach described in this paper.

 The planning and scheduling of stories, modelled as cases
in a case based planner, is the primary activity of the
system. The game world is run and updated on a C++
server, and a C++ client connects to the server to control a
character in the game world. The game type is a 3D
adventure game, where the player can use objects and
interact with characters. The introduction of a multiplayer
element significantly increases the workload of the story
director agent. It must handle the current situations of all
the players, dynamically identifying possible story cases
and assigning story goals that are relevant to each player.

 The structure of the rest of the paper is as follows. The
second section, entitled ‘Background’, is an overview of
the area of computer mediated storytelling, referencing
previous work, and describing the genre of computer game
that this project is aiming to facilitate. The third section,

‘Design’, details the overall system design and shows how
the game mechanics and story mechanics work. The fourth
section, ‘AI elements’, concerns the advanced AI
techniques utilised in the dynamic story generation
subsystem. In the fifth section, an analysis of the system
and its operation is made, and the paper ends with a
description of future work and presentation of
conclusions.

BACKGROUND

The structural analysis of stories has its earliest example in
Aristotle’s ‘Poetics’ (Aristotle), and his basic structural
elements can still be recognised in popular stories today.

Previous Work

Propp (Propp 1968) is the progenitor of modern analysis,
and his structuralist approach is appropriate for computer
mediated plot-based storytelling, as it characterises the
story as a closed causal system, with the temporally ordered
character function as the primary building block of the plot.
This is the approach used in this project.

 There are many modern approaches to story systemation,
notably the OZ project in CMU, exemplified in Joseph
Bates’ work (Smith and Bates 1989) and other work such as
Brenda Laurel’s drama management system (Laurel 1991),
and the work of John Laird’s group (Laird and van Lent
2000). The division of the problem into believable agent
research and plot management research has been taken
from the Oz project and incorporated into this work. This
approach has correlations to Propp’s work, as he asserts
that a character function is independent of the character that
performs it.

Story Structure

Although it is technically limited in scope to folktales, a
number of authors have noted Propp’s structural analysis’s
remarkable flexibility in its applicability to popular stories.
In cinema, TV, and most computer games, a large number
of stories have a recognizable structure, hence the
predictable nature of a lot of that material. The hero/villain
interplay is enriched with the other five character roles in
Propp’s analysis, yet it remains a simple form. This
framework seems suitable for quest-type stories in
computer games.

 Propp’s work has been developed and augmented, chiefly
by Bremond (Bremond 1974), yet it is apparent that though

his morphology has been dissected by such authors as
Claude Levi Strauss (Levi-Strauss 1958), it remains an
outstanding work in the field and still has not been fully
explored for its use in computer mediated stories. This
could be due to the structural complexity that emerges in
the later chapters of the book, in contrast with its initial
apparent simplicity in the introduction, when the four
principles are introduced. Grasbon’s work (Grasbon and
Braun 2001) and Ana Paiva’s group (Machado et al 2001)
demonstrate that varied approaches can be taken to
applying Proppian storytelling, each with a successful, yet
very different, product.

AI in Story Generation

The use of AI techniques in story generation has been
around since the seventies, and emphasis has recently been
placed on goal and planning based agent technologies in
NPCs (non player characters) (Cavazza et al 2002), (Rizzo
et al 1999). The earliest example of this general approach is
found in Meehan’s classic (yet non-interactive) ‘Talespin’
(Meehan 1977), which worked by giving characters goals to
accomplish, and allowing them work past obstacles placed
in their path, helped or hindered by other characters. The
use of AI in an ‘omniscient’ agent which does not inhabit
the game world, which monitors and controls the NPCs,
and whose activity is directing a story, was seen in
(Sgourous et al 1996), and is found in an increasing number
of research projects (Mateas and Stern 2000), (Magerko
2002), (Grasbon and Braun 2001), but not, to the authors’
knowledge, in currently available commercial games.

MMORPGS

The massively multiplayer online role playing game
(MMORPG) is a very new form of game, and the goal is
not simply shooting other players, but interacting in a
complex, changing environment with teams of other human
players. This is an environment which necessitates an
author constantly keeping track of the state of the game,
and continuously writing a story that takes into account the
wishes of the player community, and the dictates of the
game world. This requires complex tools that are related to
the structure of stories, and it is this need that is targeted by
the system in this paper. Although the SD system is built
specifically for our game engine, continuation of this work
will be centred on the creation of tools for game
author/designers.

DESIGN

System Architecture

The system is designed to allow multiple users to log onto a
server and control a character avatar that inhabits the game
world. The single player game was extended using Winsock
and a client-server architecture. The Server updates the
client’s view of the game world, taking into account the
current location, within the world, of the client’s player
character. Character states and story progress is updated on
the server, and the player interface receives commands,
which update the client character, and update messages for
this character are generated which are sent to the server.

 Figure 1: Overall System Architecture

Game Mechanics

The game is based on interactions between characters
(NPCs and player characters (PCs)), objects, and locations.
The PC has complete freedom of movement within the
world, except it may require certain story events to enable
transport between locales. A locale is defined as a group of
connected locations, similar in concept to the ‘freeplay
nodes’ in the ‘StoryNet’ of (Swartout et al 2001). The
NPCs are modelled in a layered structure, from low level
behaviours to higher level targeted goals.

Character Modelling

 - Low level - for example, collision detection which steers
away from nearby objects and characters as they get too
close.

 - Social simulation - the NPCs use a basic gossip algorithm
and inform other characters of events that have happened to
them. They store the order they have met the other
characters, and this ranking initially dictates who will be
the target of their gossiping.

 - Idle behaviours - When an NPC does not have a goal to
achieve, they can execute a behaviour such as patrolling
around a house or following another NPC. These
behaviours are assigned by the story author.

 - Targeted behaviour - The SD agent assigns story goals to
characters, and the characters search for the object of the
goal and execute it. When targeted, a character will not
execute idle behaviours.

 - Attitudes - characters develop ratings for characters that
interact with them, and characters that they hear about via
the gossip algorithm. They remember the events that caused
these rating changes, so they can gossip about them.

 Objects in the game world come in two different types,
background objects, and 'action objects' that can be picked
up by characters and enable specific actions. For example, a
sword enables character A to injure character B which
causes a negative change in B’s rating for A. Movement
around the world can also be achieved with the use of
certain 'action objects', for example, a magic carpet. The
game mechanics is primarily defined by the use of action
objects, and a varied array of different objects has been

Network using Sockets and messagingServer Client

Story scripts Story directorCase based plannerGoal stackCasting director Characters
Game worldobjects locationsConnection manager Connection managerWorld Simulacrum Player character

Player
Character interfaceWindowingNon player

defined and each has a number of different uses and effects.
A design goal of this project is to allow the progression of
the story to be part of the gameplay, while allowing for a
variation of gameplay types.

Story Mechanics

The progression of the story must be influenced by the
player’s movements and actions in the world. To this end,
the story director notes character attitudes to the player,
which are changed every time a character interacts with the
PC, or hears about an interaction with the PC. Characters
are each capable of fulfilling a range of story functions.

 The story is conveyed through characters performing
actions by using action objects and delivering lines to the
player. The dialogue is dynamically generated by stringing
character names, verbs, and object names together.
Witnessed actions are noted and if the player needs to be
informed of a certain event, a witness to that event will be
assigned the goal of informing them. The player is given
choices on how to react to the NPCs. Using polymorphic
functions (Grasbon and Braun 2001) is similar to this, and
relates to some of Propp’s functions (e.g. counteraction - C,
reaction - E) where the outcome of the function can be
positive or negative, depending on the hero’s actions. In
example No. 113 in Propp’s appendix, there is a repetition
of the Donor function, with the first hero reaction function
being E-, and the second being E+, after which the hero is
provided with the magical object in F+. In this way, Propp
unintentionally provided a means for integrating player
agency into his model for use in an interactive system.

AI ELEMENTS

The term ‘AI’ in games usually refers to the character
behaviour algorithms, but in this system, the AI elements
reside for the most part in the story director agent, and the
characters use standard techniques found in many games
available today, thus are not addressed in this section. The
decision to limit the character AI while localising the AI in
the SD is intended to focus the story-centred nature of this
work while allowing for its applicability to different
character architectures, such as the Proactive Persistent
Agent Architecture (MacNamee and Cunningham 2001).
This approach is also in line with a new direction in
interactive story, outlined in (Szilas 2001), where the
importance of making sure the characters behave according
to the dictates of the plot, rather than purely according to
models of their own motivations, is emphasised.

Expert Knowledge

The expert knowledge represented is that from Propp’s
work, and consists of a rule based system which works in
tandem with the case based system. For each of the 31
character functions that Propp defined, rules are in place
that put limits on how that function will be assigned and
played out. The character functions enumerated include
Villainy, Guidance, Testing of the hero, and Receipt of a
magical (useful) object. The Interdiction function, for
example, is when the hero receives (I) an order to do
something, or (II) a warning not to do something (see

Figure 2). This function, like a number of others, is paired
with another function, in this case Violation.

Figure 2: An Interdiction Function in the Star Wars Demo

Game

 The rules consider whether to accept decisions made by
role casting, or re-cast a certain story goal. They assign the
current goal based on the casting director’s roles (see
below). They also take into account the user’s choices made
in feedback(hero reaction) functions. The rule based system
effectively draws the decisions made by the other
components together, before the characters can act them
out. An example using pseudo- code:

If (currentGoal.functiontype = Villainny)
And (currentmove.currentVillain.suitability > threshold)
Assign (currentGoal TO currentmove.currentVillain)

Case-based Planning of Stories

Case based reasoning is a popular AI field which aims to
solve problems by extrapolating from past, solved, problem
situations to find solutions for new problems, adapting
them, as needed, to the dictates of the current situation. The
k-nearest neighbour algorithm is used to find cases that are
similar to the input case. This approach has been identified
as suitable for constructing story scripts from a base of
authored scripts.

 Each case in the case base represents one move of a story
(as defined by Propp), and consists of a script that is
interpreted and assigned by the SD. A script line can
contain very abstract instructions, such as a one word
‘Villainy’ instruction. This will trigger the SD to finding
the character with the villain role, (or a character socially
close to the villain) and instruct it to perform an act of
villainy on the hero or a character close to the hero, such as
a murder. More specific instructions, such as assigning the
mediator character the goal of notifying the hero of a
villainy event can also be scripted. The cases are converted
to a goal stack by the SD to be assigned to the NPCs.
Below is an example, from Propp, of a two move story,
converted to script form. Each move is represented as a
case in the case based planner.

No. 95 in Appendix 3 of (Propp68):

 Move I
villainy (expel) ;
mediation (transport) ;
donor (test) ;
reaction ;
provision (wanted) ;
return ;
 Move II
lack ;
mediation (transport) ;
counteraction ;
departure ;
donor (test) ;
reaction ;
provision ;
return ;

 Move I above requires the following resources, and thus
when they are available it would have a good likelihood of
being selected: a villain, a mediator, a donor (or multiple
candidates), objects that can perform the actions ‘expel’,
‘transport’, and ‘test’, and an object that is ‘wanted’, e.g.
treasure. While carrying out the direction of this script, the
SD will assign the goals to specific characters and objects.

 There are 80 cases in the case base, from the 44 multi-
move story scripts given by Propp in his appendix 3. In the
k-nearest neighbour part of the algorithm, the cases are
compared to the current state of the story world to find the
best fit for a case from which to select the next story goal.
The comparison is based on an analysis of the character and
object resources needed to execute a story script, and also
on past story functions, and how they were performed.
Taking the sphere of action of the villain as an example, its
contribution to the suitability rating of an individual story
case will be proportional to (i) the number of functions
involving the villain that exist in the case, (ii) the number of
characters that could perform as a villain in the current
locale of the PC, and (iii) their suitability level.

 In the story that the example above is abstracted from,
move II directly follows move I, and the link between cases
that follow each other is preserved in the CBP system.
Thus, move II would be more likely to be executed after
move I has completed than other candidate cases. Cases
similar to move II would also be considered. The cases in
this system are best described as story templates, whose
details are filled in by the SD. This ‘filling in’ is done by
the casting component, as described below.

Casting

 A character that is assigned a story goal takes one of nine
roles. Propp defined the hero, the villain, the mediator, the
donor, the helper, the false hero, and the princess as the
seven ‘spheres of action’, and these are augmented with the
roles of the family and the king. The characters in these
roles can be initially defined by the story author, yet are
dynamically reassigned by the story director agent during
the game, according to the relationships of the characters.
Casting roles to characters, and finding objects that can

help fulfil goals is a task that is modelled by rules that
encode the appropriate constraints. The trend of modern
successful games is towards large, complex, simulated
game worlds containing many objects and characters. In
this environment, for a dynamically generated storyline to
be consistent, a mechanism must be provided for
identifying the appropriate object or character for a given
story goal. To find the right tool to achieve a certain goal,
the properties of each must be searched to fit the constraints
dictated by the current goal. In this game engine, characters
and objects have properties which are matched to the
dictates of the story function being carried out.

 Each story function (of the 31) has a set of constraints for
a character to satisfy, and characters have social ratings,
possessed objects, loyalties and a current location that are
matched as well as possible to the constraints. The
character that matches the constraints the best will be
assigned the goal. Objects also have different types, and a
character can be assigned an intermediate goal to find the
right one, in order to perform a certain goal. For example, a
sword would be used to injure a character instead of a
magic carpet, and if a character needs to acquire the object,
a goal to pick it up or be given it is added to the goal stack
for that move.

 The example script from the previous section would be
played out after it has been selected. The character direction
would adapt to any changes in the state of the game world.
For example, in the Donor test function in move II, the
connected provision function serves as a liquidation of the
initial lack, as there is no explicit liquidation function. That
particular lacked object would change hands during the
course of the story until it coincides with a donor character.

Multiple Parallel Storylines

For a multiplayer environment, the SD handles the story
from multiple viewpoints. The main SD instantiates a new
story director for each player, each looking after most of the
planning and casting relevant to each. Two players could
both act as hero characters for two separate hero stories
using intersecting sets of NPCs. In this case, there are two
SDs maintaining a set of roles and list of story functions for
each player’s hero story. Alternatively, one player could be
the villain or the false hero in the same story as the first
player’s hero. Ideally the SD could dynamically recognise
the roles that each player wishes to adopt, based on their
playing, but a set of options could also be presented to the
player as they join the game world, to find out what sort of
character they want to portray. The latter approach is being
developed for use in an evaluation version of the
multiplayer game.

 Even in the single player game, it has been found that
multiple parallel storylines need to be executed, due to the
nature of a non-linear, free-roaming type of game such as
ours. A player may leave the locale of a story case being
executed, to enter a locale or situation where a different
case would be more suitable. To account for this, the SD
can plan and assign a number of different story cases at
once per player.

ANALYSIS

The primary task in analysing the usefulness of this work
consists of evaluating how the quality of the stories
generated by it is maintained, while allowing interactivity.
The structures described by Propp are derived from his
study of folktales, and the stories generated by this system
are generated from those structures. The validity of the
whole approach relies on Propp’s assertion that these
structural features are the primary classifying features of
the stories he analysed. This being true, the structures
should form a good basis for the generation of new stories.
Propp was careful in his work not to claim generality of his
morphology, yet even so, an engine that produces a specific
genre of story in adaptive variations is still desirable. To
enable more generality, a more complete narratology could
be implemented, including the work of Bremond, Greimas,
and Barthes, among others.

 An emphasis in both Propp and Aristotle’s work is that of
the conception of the story as whole as a causal system.
Ideally, every event that happens in the story world has
either an effect on some other story event, or is an effect of
one. The system described here allows for this by
abstracting the social, and action-object based game events
from their context, effecting attitudes each character has for
the others. These ratings, along with the choices made
concerning preceding story events, are fed back into the SD
agent’s deliberations on generating the next story goal.

Completed Demo Games

Three demo games have been developed to date, the first a
simple original environment entitled ‘Bonji and the magic
peanut’. The other is based on the first half (move?) of ‘Star
Wars – A new hope’, TM Lucasfilm, and features the
familiar characters in a more variable form of the traditional
‘rescue the princess’ plot. The characters are allowed some
autonomy and Luke is channelled through the story not by
limiting his location, but by giving story goals to nearby
characters.

Figure 3: ‘Bonji’s adventures in Calabria’ with Story
Progress Window and Character Status & Control Window

 The third demo game incorporates the multiplayer option,
as well as a wider range of abilities in the player interface,

facilitated by a more interesting set of action objects. The
case based SD system is fully integrated with this game,
‘Bonji’s Adventures in Calabria’ (Figure 3).

Advantages

There are three main advantages of using a system such as
this in a game engine. Firstly, the ability to choose different
paths through the same story is a powerful means to
increase replay value of a game. This is enabled by
allowing different characters to achieve the same story goal
in their own ways.

 Secondly, allowing the player to influence the progress of
the story is enabled by the use of a SD agent. Different
story structures are brought into the game according to
player choices and the world state using case based story
planning. The range of cases available can be authored for
each game world, allowing the story author a higher level
control of story events. Another advantage in using a SD
agent in a commercial game is that a lot of AI processing
would be localised.

 Thirdly, with a multiplayer option, and because the story
generation is real-time, players can interact in more
complex ways, playing with NPCs’ loyalties to gain the
upper hand over each other. This will allow for adventure-
game type stories that remain consistent as players meet
other players. A common element in RPGs is a team of
characters under player control, and in multiplayer versions,
players can meet up with others to form a team. Many
online MMORPG developers have had problems in
implementing a satisfying storyline in this type of
environment, as each player may take different paths
through the game, teaming up when they see fit.

FUTURE WORK

Two future additions to the story engine are:
 Learning – In case based systems, the ‘retain’ step
consists of storing the new solution that has been adapted
from the old case, or the combination of multiple old cases.
This facilitates learning from experience, and for it to work
in the story engine, an algorithm for properly (according to
certain rules) combining two or more cases is needed. The
SD would then be able to generate and learn new cases and
find good fits for new situations more easily.

 Deception – When a NPC uses deception, they inform the
player of events that did not happen in the game world. The
fabricated events should be calculated to induce a certain
reaction in the player. For instance, to make the player
think NPC1 is on the side of the villain, NPC2 could tell the
player that NPC1 did an act of villainy on a character that is
close to the player. Propp’s role of ‘false hero’ has close
links with deception and relates to the hero uncovering the
deception of one who takes responsibility for the acts of the
hero. However, deception could also be used in other parts
of the tale. Deception was used as a dramatic focus in the
‘Brutus’ system (Bringsjord and Ferucci 1999).

 The game engine, as is, is not scaleable for use in a large
scale modern game world, but an important aim of the

project was to make the architecture scaleable. To facilitate
the creation of tools for the incorporation of the story
director system into other games, it has thus been designed
with the complexity of a large-scale simulated world in
mind.

CONCLUSIONS

Currently, analysis of the system is based on a review of the
system and its output. In the interest of a more objective
analysis, the networked system will be combined with a
separate user interface for getting feedback on the users’
experiences with the game, based on story criticism criteria.
The result of this will include an analysis of believability,
consistency, drama, and the level of user interactivity.

 As Young notes in (Young 2000), character and plot have
a symbiotic relationship, and while this system relies
heavily on a plot based model of story, characterisation is
seen as an aspect of interactive storytelling that relies
heavily on the designer/author of the story world. The
characters in the story, although they can all be assigned
different roles by the SD, have behaviours that are not so
assigned, and it is in these that an author can bring out
individual characteristics. The important thing is to make
sure that how a character performs a story function is
consistent with its characteristics.

 The system described here is unique in its combination of
AI techniques, software architecture, and game style.
However, there are other systems which take into account
emotional modelling, cinematography, and others of the
multitude of elements which make up compelling
storytelling. Magerko’s work (Magerko 2002), and
Grasbon’s work (Grasbon and Braun 2001), among others,
are similar in approach to ours, and this is encouraging as it
seems to be a useful approach to the problem. There are
other, increasingly varied approaches to computer mediated
storytelling and storygeneration, and this is an indication of
the richness of the subject matter. Stories can be told in
many ways and human imagination will always be the best
way to create them, but systems such as these can provide
advanced tools for the creation of the next generation of
story vehicles.

REFERENCES

Aristotle. Poetics.

Bremond, C. 1974 Logique du Recit. Seuil.

Bringsjord, S. and Ferucci, D. 1999. Artificial Intelligence and
Literary Creativity: Inside the Mind of Brutus, A Storytelling
Machine. Laurence Erlbaum, Mahwah, NJ.

Cavazza, M., Charles, F., and Mead, S J. 2002. “Character-Based
Interactive Storytelling” IEEE Intelligent Systems Vol 17-4 pp 17-
24

Fairclough, C. and Cunningham, P. 2002. “An Interactive Story
Engine”, AICS 2002, LNAI 2464. Springer-Verlang. pp 171-176.

Grasbon, D. and Braun, N. 2001. “A Morphological Approach to
Interactive Storytelling” Proceedings of on Artificial Intelligence
and Interactive Entertainment. Cast ’01, Sankt Augustin Germany

Laird, J. and van Lent, M. 2000. “Human level AI’s killer
application - computer games” AAAI National Conference on
Artificial Intelligence.
Laurel, B. 1991. Computers as Theatre. Addison-Wesley.

Machado, I., Paiva, A., Brna, P., 2001. “Real Characters in Virtual
Stories – Promoting Interactive Story Creation Activities” LNCS
2197 pp. 127 – 134.

MacNamee, B. and Cunningham, P. 2001. “A Proposal for an
Agent Architecture for Proactive Persistent Non Player
Characters”, Proceedings of the Twelfth Irish Conference on
Artificial Intelligence and Cognitive Science, pp. 221 - 232, 2001.

Magerko, B. 2002. “A Proposal for an Interactive Drama
Architecture”, AAAI Spring Symposium on interactive
entertainment.

Mateas, M. and Stern, A. 2000. “Towards Integrating Plot and
Character for Interactive Drama.” Working notes of the Social
Intelligent Agents: The Human in the Loop Symposium. AAAI
Fall Symposium Series.

Meehan, J. 1977. The Metanovel: writing stories on computer.
University microfilms international.

Propp, V. 1968. Morphology of the Folktale. University of Texas
Press.

Reilly, W. S. and Bates, J. 1992. “Building Emotional Agents”
Technical Report CMU-CS-92-143.

Rizzo, P., Veloso, M.V., Miceli, M. and Cesta, A. 1999 “Goal-
based Personalities and Social Behaviours in Believable Agents.”
Applied Artificial Intelligence, 13:239–272.

Sgouros, N.M., Papakonstantinou, G. and Tsanakas, P., 1996. “A
Framework for Plot Control in Interactive Story Systems”,
Proceedings AAAI'96, Portland, AAAI Press.

Smith, S. and Bates, J. 1989. “Towards a Theory of Narrative for
Interactive Fiction”, Technical Report CMU-CS-89-121

Levi-Strauss, C. 1958 Anthropologie Structurale. Plon.

Swartout, W., Hill, R., Gratch, J., Johnson, W.L., Kyriakakis, C.,
LaBore, C., Lindheim, R., Marsella, S., Miraglia, D., Moore, B.,
Morie, J., Rickel, J., Thiebaux, M., Tuch, L., Whitney, R. and
Douglas, J., 2001. “Toward the Holodeck: Integrating Graphics,
Sound, Character and Story”. Proceedings of the Autonomous
Agents 2001 Conference, Montreal, Canada.

Szilas, N. 2001. “A New Approach to Interactive Drama: From
Intelligent Characters to an Intelligent Virtual Narrator”.
Proceedings of Spring Symposium on Narrative Intelligence,
AAAI press. Pp 72-76.

Young, R.M., 2000. “Creating Interactive Narrative Structures:
The Potential for AI Approacches”. AAAI Spring Symposium in
Artificial Intelligence and Entertainment, AAAI Press.

MIMICRY: ANOTHER APPROACH FOR INTERACTIVE COMEDY

Ruck Thawonmas, Hiroki Hassaku, and Keisuke Tanaka
Intelligent Computer Entertainment Laboratory

Department of Computer Science, Ritsumeikan University
Kusatsu, Shiga 525-8577, Japan
E-mail: ruck@cs.ritsumei.ac.jp

KEYWORDS

Interactive Comedy, Agent, Planning, Humor

ABSTRACT

In this paper, we discuss another approach based on
mimicry for interactive comedy, a relatively new genre
in interactive drama. An interactive comedy system is
proposed in which the main character agent tends to
mimic an agent controlled directly by the viewer. At
the same time, the main character agent plays its origi-
nal role through achieving its pre-assigned goal. Heuris-
tic Search Planner is used for dynamically planning of
the main character agent. We test the proposed system
with a visual comedy story similar to a sub-story of the
popular Mr. BeanTM series.

INTRODUCTION

Traditional movies or theaters provide each of their con-
tents uniformly to all viewers. Doing so might not sat-
isfy requirements of all viewers. In order to satisfy such
requirements, interactive drama technologies are having
important roles because they enable personalized con-
tents through interactions with the viewers.

In our study, among a variety of genres, we focus es-
pecially on comedy and thus pursue research on interac-
tive comedy. There are already a number of existing re-
searches on interactive drama [1-8]. However, compared
to other genres, the research activity on interactive com-
edy is still low. Recently, there has been increasing in-
terests on a positive link between laughter and immu-
nity [9] as well as on collaboration between health care
agencies and the entertainment industry [10]. Hence,
research on interactive comedy can be expected to play
an important role in health and entertainment business
area in very near future.

An example of the existing interactive comedy sys-
tems is the one developed by Cavazza et al [4]. In their
system, Heuristic Search Planner (HSP) [11] is used to

control the character agent in drama space and to unfold
the story. However, in their system, as well as most ex-
isting interactive drama systems, interactions with the
viewer are limited. This problem is resolved by the ap-
proach proposed in this paper, where the viewer can
have significantly higher interactions with the system.

In particular, as far as comedy is concerned, to have
free interactions with the system is crucial. It has
been reported in [12] that there is a correlation between
laughter generation and the level of viewer interest in the
story. Therefore, limiting viewer interactions decreases
the viewer-interest level. On the contrary, providing to
the viewer the function to interact freely with the system
will enhance the viewer’s interest and thus can extract
more laughter from him or her.

In the rest of the paper, we describe in more detail
our interactive comedy system that is based on mimicry.

EXISTING SYSTEMS AND THEIR PROB-
LEMS

Many of traditional interactive drama systems [1, 7, 8]
adopt plot-based storytelling where the story is gener-
ated from a set of smaller sub-stories or plots prepared in
advance. In plot-based storytelling, the story is unfolded
according to the viewer interactions at given story-
branching points. As a result, it is easy to maintain the
story while considering the viewer’s will. Since most
interactions are allowed at the given story-branching
points, they do not drastically change the story.

Another approach for developing interactive drama
systems is character-based storytelling [2-6]. In this ap-
proach, the story is unfolded according to actions of
multiple character agents who behave autonomously to
achieve their pre-assigned goal. Due to autonomous
behaviors of the agents, nontrivial relations between
the viewer and an agent or among agents themselves
are developed, leading to variations in the story. In
addition, the viewer can influence the story to a cer-
tain extent through interactions with a character agent,
which might change its actions. However, such interac-

Virtual Environment Character Agent

Viewer Character

Viewer

HSP

environment state

action

action

control

Interaction Goal

plan

environment state
character state

Story Manager

environment state

Story Goal

Figure 1: System architecture of the proposed interactive comedy system.

tions can not alter the pre-assigned goal of each agent.
In character-based storytelling, though relatively higher
story variations can be obtained, compared to the pre-
vious approach, the story is not drastically changed and
always unfolded to a pre-determined ending.

OUR APPROACH

To enable drastic changes in the story, we argue that
dynamically modifying the goal of a character agent is
necessary. For comedy, an effective way to do so is to
introduce a viewer character that the viewer directly
controls, and to include the present state of this charac-
ter into the goal state of a character agent of interest.
The viewer character is a semi-autonomous agent. The
viewer interacts with the character agent through his or
her viewer character.

Based on the above argument, we develop an interac-
tive comedy system in which the main character agent
attempts to mimic the viewer character and, at the
same time, to achieve its pre-assigned goal. The original
role of the main character agent is defined by the pre-
assigned goal, which ensures a continuation of the story
when there is no interaction from the viewer. We test
the system with a story similar to the sub-story ”Park
Bench” available in the second volume, The Exciting
Escapades of Mr. Bean, of the popular Mr. BeanTM

series. Our story starts by having the main character
agent (henceforth called Mr. B) and an unlucky gen-
tleman, the viewer character, sit at the same bench in
a park. Laughter is extracted from the viewer through
scenes where Mr. B mimics viewer character’ actions in
a humorous fashion.

Operator:: make(X)

Preconditions::

Effects:: edible(X)

Operator:: read(X)

Preconditions::

Effects:: enjoyed(X), sleepy

Operator:: talk(X)

Preconditions::

Effects:: talked(X)

Operator:: sleep()

Preconditions:: sleepy, relaxed

Effects:: refreshed

Operator:: eat(X)

Preconditions:: edible(X)

Effects:: eaten(X), sleepy

Operator:: relax()

Preconditions:: sitting_at(X)

Effects:: relaxed

Operator:: sit_at(X)

Preconditions::

Effects:: sitting_at(X)

Figure 2: Example of operators used in the tested story.

The Interactive Comedy System

In the proposed system, HSP [11] is adopted for plan-
ning Mr. B agent. HSP fits our system because it allows
flexible and fast planning in dynamic environment.

Fig. 1 shows the system architecture. The goal state
of Mr. B agent consists of Story Goal assigned from
Story Manager and Interaction Goal from the viewer
character. The former controls the main story. The lat-
ter is generated due to interactions of the viewer. HSP
searches for a plan that satisfies both types of goals.

S
0

S
1

S
2

sit_at(bench)

read(book)

relax() talk(over_phone)

…..

..…

…..

…..

…..

relax()

sleep()

…..

Current State::

Goal State:: refreshed

…..

Figure 3: Example of a plan generated by HSP to achieve the goal state ”refreshed” pre-assigned by Story Manager.

Planning Mechanism

HSP is based on a STRIPS-like representation for prob-
lem description. The viewer character and Mr. B agent
hold their own state. For each agent, once an operator
is executed, its state changes. Each operator is attached
with preconditions that must hold before execution of
the operator. An example of operators used in the tested
story is shown in Fig. 2.

Following a similar recipe in [5, 6], we adopt RTA∗

[13] as a planning mechanism. It allows for interleaving
of searching and executing of a plan, and is thus suit-
able for a dynamic environment. In RTA∗, the A∗ algo-
rithm is enhanced with MinMin Search so as to increase
the search speed by alpha-pruning. An algorithm called
PINCH [14] is selected for calculation of heuristics. It
is a higher-speed variant of HSP that adopts two cal-
culating approaches, ordered updates and incremental
computation. A typical planning result to achieve the
goal state ”refreshed”, pre-assigned by Story Manager,
is depicted in Fig. 3.

RESULTS

Below we show early results from our interactive comedy
system, the development of which is in progress.

Fig. 4 shows an example of a plan where a new propo-
sition ”eaten(sandwich)” has been newly added to the
goal state of Mr. B agent due to a viewer interaction

while state S2 of the plan in Fig. 3 is being executed.
Fig. 5 shows an example of a plan where new propo-

sitions ”enjoyed(book)” and ”talked(over phone)” have
been newly added to the goal state due to viewer in-
teractions while state S4 of the plan in Fig. 4 is being
executed.

Fig. 6 shows the scenes, in which Mr. B is the left
person wearing the lighter-color suit, corresponding to
the plans in Figs. 3, 4, and 5. The description of each
scene is as follows:

(S2) Mr. B is relaxing at a bench.

(S3) Noticing that the viewer character is eating a
sandwich, Mr. B starts preparing his own sand-
wich.

(S4) Mr. B is eating his sandwich.

(S5) Noticing that the viewer character is reading a
book, Mr. B starts reading a picture book.

(S6) Mr. B is sleeping.

(S7) Noticing that the viewer character is using a mo-
bile phone, Mr. B also starts talking to his teddy
bear over a string phone.

CONCLUSIONS

There is a strong potential for the new type of media
called interactive drama where stories are generated dy-

S
2

S
3

S
4

make(sandwich)

eat(sandwich)

sleep()

talk(over_phone)
….. ..…

..… ….. …..

Current State:: sitting_at(bench), relaxed

Goal State:: eaten(sandwich), refreshed

sit_at(bench)

…..

Figure 4: Example of a plan regenerated by HSP to achieve the modified goal state ”eaten(sandwich)” and ”refreshed”.

namically in react to viewer interactions. In this paper,
we have described an approach that allows for mimicry
in interactive comedy, a relatively new genre of interac-
tive drama. Humorous situations are caused by interac-
tions between the viewer character, a semi-autonomous
agent controlled by the viewer, and a character agent of
interest. The character agent plays its original role while
at the same time tending to mimic the viewer character.
In future, so as to more effectively extract laugher from
the viewer, we will study how to incorporate the quan-
titative measure for the degree of humor, based on for
example incongruity [15], into our heuristic function.

ACKNOWLEDGEMENTS

This work has been supported in part by the Rit-
sumeikan University’s Kyoto Art and Entertain-
ment Innovation Research, a project of the 21st Cen-
tury Center of Excellence Program funded by the Japan
Society for Promotion of Science.

References

[1] Nakatsu, R., Tosa, N., Ochi, T., and Suzuki, H.
Concept and construction of an interactive movie
system. Systems and Computers in Japan, vol. 31,
no. 3, pp. 94-103, 2000.

[2] Mateas, M. and Stern, A. A Behavior Language
for Story-Based Believable Agents. IEEE Intelli-
gent Systems, pp. 39-47, July-August, 2002.

[3] Shim, Y. and Kim, M. Automatic Short
Story Generator Based on Autonomous Agents.
PRIMA 2002, LNAI 2413, pp. 151-162, 2002.

[4] Cavazza, M., Charles, F., and Mead, S.J.
Generation of Humorous Situations in Car-
toons through Plan-based Formalisations. CHI-
2003 Workshop: Humor Modeling in the Interface,
April, 2003.

[5] Lozano, M., Mead, S.J., Cavazza, M., and Charles,
F. Search-based Planning: A Method for Character
Behaviour. GameOn 2002, London, UK.

[6] Charles, F., Lozano, M., Mead, S.J., Bisquerra,
A.F., and Cavazza, M. Planning Formalisms and
Authoring in Interactive Storytelling. 1st Inter-
national Conference on Technologies for Interac-
tive Digital Storytelling and Entertainment, Darm-
stadt, Germany, 2003.

[7] Sgouros, N.M., Tsanakas, P., and Papakonstanti-
nou, G. A Framework for Plot Control in Interac-
tive Story Systems. Proc. the 13th National Confer-
ence on Artificial Intelligence (AAAI-96), Portland
OR, USA, AAAI/MIT Press, pp. 162-167.

[8] Braun, N. and Grasbon, D. A morphological ap-
proach to interactive storytelling. Proc. of the
Conference on artistic, cultural and scientific as-
pects of experimental media spaces, Bonn, Ger-
many, September 2001. CAST.

[9] Bennett, M.P., Zeller, J.M., Rosenberg, L., and
McCann, J. The effect of mirthful laughter on
stress and natural killer cell activity. Alternative

S
4

S
5

S
6

read(book)

sleep()

talk(over_phone)

talk(over_phone)
….. ..…

..… ….. …..

Current State:: sitting_at(bench), relaxed,

eaten(sandwich), sleepy

Goal State:: eaten(sandwich), enjoyed(book),

talked(over_phone), refreshed

sit_at(bench)

…..

S
7

Figure 5: Example of a plan regenerated by HSP to achieve the modified goal state ”eaten(sandwich)”, ”en-
joyed(book)”, ”talked(over phone)”, and ”refreshed”.

Therapies in Health and Medicine, vol. 9, no. 2,
March/April 2003.

[10] Phillips, P. The rising cost of health care: can de-
mand be reduced through more effective health pro-
motion? Journal of Evaluation in Clinical Practice,
vol. 8, no. 4, pp. 415-419, November 2002.

[11] Bonet, B. and Geffner, H. Planning as Heuris-
tic Search. Artificial Intelligence: Special Issue on
Heuristic Search, vol. 129, no. 1, pp. 5-33, 2001.

[12] Kitagaki, I. A Fuzzy Determination Method of
Generating a Laugh and Popularity/Inferiority:
Students’ Holiday and ”the Lowest in Running”.
Journal of Japan Society for Fuzzy Theory and Sys-
tems, vol. 2, no. 1, pp. 100-104, 1990. (in Japanese)

[13] Korf, R. E. Real-time heuristic search. Artificial In-
telligence, vol. 42, no. 3, pp. 189-212, 1990.

[14] Liu, Y., Koenig, S., and Furcy, D. Speeding Up
the Calculation of Heuristics for Heuristic Search-
Based Planning. Proc. the National Conference on
Artificial Intelligence, pp. 484-491, 2002.

[15] Katz, B.F. A Neural Resolution of the Incongruity-
Resolution and Incongruity Theories of Humor.
Connection Science: Journal of Neural Comput-
ing, Artificial Intelligence, and Cognitive Research,
vol. 5, no. 1, pp. 59-75, 1993.

S2 S3

S4 S5

S7S6

Figure 6: Scenes corresponding the plans in Fig. 3, 4, and 5.

AN INFERENCE METHODOLOGY FOR REASONING ABOUT VISUAL
INFORMATION FOR A VIRTUAL ENVIRONMENT

X, Zeng, Q. H. Mehdi and N. E. Gough
Multimedia & Intelligent Systems Research Group
School of Computing and Information Technology

University of Wolverhampton, Wolverhampton, WV1 1EQ, UK
E-Mail: x.zeng@wlv.ac.uk

KEYWORDS

Story visualization, language inference technology, and
graphic representation.

ABSTRACT

This paper investigates the implementation of language
inference technology to reason the visual information
of the virtual environment that are generated by natural
language descriptions. The proposed methods are
discussed in the light of how people infer visual
information through natural language expression. It
focuses on using the real world knowledge rule based
inference system to deduce temporal and spatial
relations of the virtual environment from the semantic
representation.

1. INTRODUCTION

People can easily generate and infer a visual scene by
interpreting the meaning of the sentences through
verbal expressions. In order to enable the computer
system to represent a virtual environment through
natural language descriptions, the system must
integrate and reflect our own internal representations of
knowledge for natural language understanding
(Heidorn 1997; Coyne et al 2000). In particularly, the
system must be able to know what kind of visual
information could be represented in the virtual
environment that reflect or correspond to the real world;
what visual information are hidden or not mentioned
but could be inferred by the context of the descriptions.

Although image understanding and natural language
understanding constitute two major areas of AI, and
have been studied independently of each other (Andre
et al 1988). Over the past decades, the integration of
natural language descriptions and visual images has
become a new research area. The work in this area has
shown how physically based semantics of concrete
nouns, depictive adjectives, motion verbs and locative
prepositions can be seen as conveying objects,
attributes or spatial, kinematic and temporal constraints.
This gives the system the ability to create graphical
simulation of scenes or events described by natural
language descriptions. There is a number of systems

which focus on automatically construct the spatial
relation of the environment based on natural language
input. Yamada et al (1992) regard the fragments of the
information from spatial descriptions as the geometric
constraints among the spatial entities in the described
world. They use potential model to integrate the
fragmentary information and to settle the problem of
vagueness. They focus on the expressions with the
sentence pattern like (A is in/on/at B), analysis of basic
sentence pattern such as [located entity is in/on/at
reference entity]. System called Put uses the
combination of linguistic commands to directly
manipulate the objects of the virtual scene (Clay and
Wilhelms 1996). They argue that just few simple
spatial relationships; such as in, on, and at,
parameterised by limited number of environmental
variables can provide suitable object manipulation. The
system is limited to spatial arrangements of existing
objects, also input was restricted to an artificial subset
of English consisting of expressions of the form Put
(object X + Preposition+ Object Y). Heidorn (1997)
designed a system called VerbalImage, which
integrates human perception theory and linguistic
theories of spatial abstraction and idealization. It
focuses on forming individual object in an image from
verbal description and it did not involve in the
encoding of the spatial relations between objects. In a
text-to-scene conversion system called WordsEye,
Sproat (2001) proposed a method that uses the
likelihood ratios to extract from text corpora strong
associations between particular actions and locations or
times when those actions occur.

We have introduced a new approach that allows the use
of story-based natural language as premier input source
to generate 3D virtual environment. Natural language
processing (NLP) and 3D graphic presentation is used
to manipulate VRML based 3D scenes in real time
(Zeng et al 2002, Mehdi et al 2003). While story-based
language input dose help us to simplify our tasks in
NLP. However, the computer graphic representation of
the meaning of the natural language input, and to make
our system more efficient, we should consider more
complex tasks such as using language inference
technology to generate the visual scenes based on
relatively limited information but with facts about the
world as they are represented in our mind.

mailto:x.zeng@wlv.ac.uk

2. LANGUAGE INFERENCE TECHNOLOGY

Natural language syntax defines the structure of the
sentence, semantic determines what the meaning of
words of the language are and how to semantically
combine elements of a language to build up complex
meaning (Monz et al 1999). These meanings are most
often represented as formulas in a logical language and
represent the way we conceptually describe the world
that we perceive. Logic is the most prevalent way of
representing the semantics of natural language. In
dictionary, the word “inference” has two meanings,
such as the act or process of deriving logical
conclusions from premises known or assumed to be
true; the act of reasoning from factual knowledge or
evidence. However, our concern is how we can
generate such a system that enables us to deduce a
visual scene by using language inference technology.
Now consider the following sentences, Sue is making
snowman in garden; There is a book on the desk. A pen
is beside the book. In first sentence, we could probably
assume the time of the action happens in the winter
according our common sense knowledge. From the
second and third sentence we can easily to reason that
the pen also on the desk by the premises and the
context of the sentences even the information is not
described in detail. The computer has no idea at all
about the sentences or the world as we are. From
computational NLP point of view, inference means
symbolic computation with logical formulas and use
the term in inference to refer and draw valid
conclusions based on the meaning representation of
input sentences and its store of background knowledge
(Jurafsky et al 2000). More importantly, it must be
possible for allowing the system to draw conclusions
about the truth of propositions that are not explicitly
represented in the knowledge base, but are nevertheless
logically derivable from the propositions that are
present (Russell et al 1995). All it can do is to see if its
knowledge base has embedded such logical inference
statement are true or not. The inference procedure has
to show that the sentence is a valid sentence. If it is
valid, the conclusion is guaranteed to be correct under
all interpretations in worlds in which the original
conditions in knowledge base are true, then the
conclusions can be used in our final purposes.

3. VISUAL INFORMATION REPRESENTATION
IN VIRTUAL ENVIRONMENT

People can accurately describe images and perform
identification tasks based on visual appearance. In
general sense, objects spatial relations are subject to the
description along with another visual information that
human can perceive in the real world. In this section we
discuss on how to use low-level scene graph VRML to
represent temporal and spatial relations in virtual
environment.

Temporal Presentation

Time can be classified into two types descriptive
categories: Absolute temporal description, e.g., “11
am” and “during the morning”, which refer to a time
point and a time interval; Relative action temporal
description, e.g., “Ann is making a snowman” and
“Andy was eating his lunch. People can make strong
inferences by the particular actions to reason when the
events occurred in similar descriptions. In our system,
the temporal information could help us create the
lighting condition of the virtual environment. VRML
world supports three types of lights, i.e. PointLight,
DirectionalLight and SpotLight to mimic the lights in
the real world. We use DirectionalLight to simulate the
lighting condition in the virtual environment because
its light rays are parallel and point in the same direction
as sunlight.

Spatial Relation Representation

The domain of natural language about spatial reasoning
has received a great deal of research attention. Landau
et al (1993) stated that the differences in language
systems between object identification (nouns) and
object localization (spatial prepositions) is attributable
to the underlying organization of the “what”
(identification) and “where” (localization) channels.
Herskovits (1986) believed spatial prepositions have
ideal meanings associated with them in their lexical
entries. The ideal meaning itself is defined as a relation
between “ideal geometric objects” such as point, line,
surface, etc. together with this meaning is a set of
constraints. For spatial properties of a single object, the
external boundary determined by its shape. In our
system, the object are defined when all of these
attributes are specified and marked with tags—“#Top,
#Front, etc” in the VRML object database. We
idealized and simplified the objects; such as define
their default size and coordinates, the constraints for its
location, orientation, and dimension. Meanwhile, the
volume and shape’s spatial attributes (i.e. length, width,
height) of the object are defined in Descriptionary. The
Descriptionary uses XML based word frames to
parameterize a few “visual or describable words” into
low-level data to communicate with both language
engine and graphic engine Mehdi, et al 2003.

Objects that are not located in terms of absolute space,
but always in terms of figures placed against a
background (Jackendoff 1993). This background is a
region of space whose organization is determined by
reference objects. Spatial properties of one object to
another depend on geometric relations (i.e. near, in, on).
It is the most common way to express the objects
spatial relations. The prepositions can be divided into
several groups: proximity prepositions (near, far (from),
by, next to), directional prepositions (in front, behind,
left of, below), boundary prepositions (in, on, between,
across, crossing). Take a simple sentence like “A book

is on the desk.” There are two objects being
described—book and desk. From syntactic structure,
the desk is inside the preposition phrase and acts as a
reference object to the book. The reference object helps
to define a region of space (i.e. surface) and to support
the book.

4. METHOD

The integration of the inference engine into our
knowledge base module is presented in Figure 1. The
sentence is tagged, and the output is interpreted into a
semantic representation, then the inference engine
implements the implicit constrains and update the
semantic representation. Finally, the semantic
representation is converted into a set of parameterized
data by a Descriptionary and can be used by the graphic
engine and ultimately to construct a virtual
environment. However, up to now, most work within
computational semantics has focused on
representational aspects, and deductive inferencing
(reasoning) is still in its infancy (Deemter et al 1996).
Currently, we focus on using inference technology to
reason the lighting condition and the rigid object’s
spatial relations in the virtual environment. For this
stage, we use modus ponens, the most important
inference method provided by First Order Logic, a
flexible and computationally tractable approach to the
representation of knowledge for a meaning
representation language. Modus ponens is a familiar
type of deduction of the inference that corresponds to
what is informally known as rule or if-then statement.
The formula as shows below:

In this formula, the letters α, β, etc, are intended to
match any sentence, not just individual proposition
symbols. Once the rules are established, it presents that
β can be derived from α by inference. In general,
schemas like this indicate that the formula below the
line can be inferred from the formulas above the line by
some form of inference. In other words, modus ponens
simply states that if the left-hand side of an implication
rule is present in the knowledge base, then the right-

hand side of the rule can be inferred.

Temporal Inference

Iwanska (1996) claims natural language inherent
reasoning about time understanding and reason with
natural language references to time is exactly
analogous to the human understanding of natural
language expressions describing properties of and
referring to various objects. When reasoning about time,
people use “temporal domain” knowledge; this
specialized temporal knowledge interacts with the
semantics and pragmatics of natural language. We
concentrate on handling absolute temporal reasoning
and some relative temporal reasoning without involving
portrays complexities actions or events. The modus
ponens can be used to reason the lighting condition of

the environment, for example, the sentence “It is 10
p.m. in the winter” would be inferred as follows:

All night are dark.
10 p.m. is night.
10 p.m. is dark.

The example shows if the premises are true, then the
conclusion must be true. Then the conclusion can be
used by Descriptionary to define the light condition and
finally transfer to graphic engine to generate an
atmosphere of the virtual environment. While time is a
limited domain, it can be relatively easy to complete in
deciding on a vocabulary and encoding general rules.
Temporal containment and precedence relation of
different temporal units and general constraint rules
have been encoded in inference engine. The temporal
information obtains from the descriptions should have
several arguments (hours, day, month, season) that are
most relevant to association with the lighting condition
of the environment. The ontology of time always
comes in a fixed order and can be encoded as follows:

α ⇒ β, α
 β

∀ h h∈ Hours⇒ (00.00 a.m.—12.00 a.m.)∧(12.00
a.m.—12.00 p.m.)∧(00.00—24.00)
∀ d d∈ Days⇒ Duration(d) = Hours(24)= (predawn,
morning, midday, afternoon, evening, night)
∀ m m∈ Months⇒ Duration(m) = (January, February,
March, April, …)
∀ s s∈ Seasons⇒ Duration(s) = (Winter, Spring,
Summon, Autumn)

There is a number of prepositions that can be used to
express related temporal intervals, such as before, after,
and during, between, etc., for example, “It is early in
the morning” refer to the initial part of the interval
referred to by the word “morning”. This temporal
expression can be defined as follows:

∀x y Early(x, morning) ⇒ Time(End (x)) < Time(Start
(morning))
 Figure 1. Construction of language engine

Knowledge Base

Semantic
Presentation

Language
Tagging Lexicon

Grammar
Rules

Semantic
Parameter Descriptionary

Inference
Engine

Other similar descriptions such as “the beginning of the
summer”, “after midnight” is exactly analogous.
Additionally, some nouns contain the temporal
information and can be defined to infer the particular
time when the events happen, e.g. breakfast⇒ morning,
lunch⇒ noon, dinner⇒ evening, etc. The real world
knowledge encoded via these temporal containment
and precedence constraints allows the system to
process time-related logical inferences. For examples,
if input that “It happened in the morning”, the system
automatically infers that “It did not happen in the
afternoon or evening” and then generate corresponding
lighting condition of the environment to present
morning.

Spatial Relation Reasoning

Mcdermott (1987) points out that a 3D spatial relation
is traditionally represented as volumetric representation,
boundary representation, representation by symbolic
vocabulary. The way we infer spatial relationships by
natural language are spatial prepositions. These
prepositions specify the spatial relationships between
objects and parts of objects. Gips, et al (2002)
suggested that representing spatial situations requires
constraints. In contrast to other approaches, we propose
a real world knowledge rules (i.e. implicit constraints)
based approach to deduce spatial relation of the objects
from the semantic representation. We use decision
structure with implicit geometries and words
constraints to handle the inference of the spatial
representation. In particular this involves concepts by
Talmy (1983) and Herskovits (1986) and methodology
requires an extension of Iwanska (1993) and Coyne et
al (2001). To illustrate the techniques, consider the
following sentences:

• A box is in the room.
• A house is in the box.

For the first sentence, the box is the entity to be placed
in the scene. First, the 3D room is generated and the
floor becomes the 2D upper surface of the room. This
surface region has been marked with spatial tag
previously defined as part of the room. Then a box is
picked from the VRML object library and put on floor
of the room. However, for the second sentence sounds
odd, it is because that we normally use relatively large
immovable objects as landmarks for locating small
movable objects. But notice that if the house we are
looking for happens to be a toy house, it is relatively
small and movable, the sentence suddenly sounds fine
after all. In such circumstances we invoke the inference
rules to regard the house as relative small object e.g.
toy house and resize it then put it in the box. The
inference procedure of the geometrical constrains and
the definition of word in within these two sentences is
shown in Figure 2. The detail of the preposition

definition in can be found below and is based on
geometry descriptions (Herskovits 1986):

In (X, Y) ⇔ Located (X, Inner (Y))
On 1 (X, Y) ⇔ Supports (Y, X) ∧ Contiguous (Base
(X), Surface (Y))
Contain 2 (X, Y) ⇔ Un-Contiguous (Float(X), Region
(Y))

The first definition indicates the most common sense
about the preposition word in which contains two
common situations, second line is complement of line
one and means the base of the X is on the surface of the
Y. The third line indicates another circumstance, such
as a plane in the sky, where X is an object with
floatable attributes and it is within the region of object
Y.

X in Y

Object Constraints Descriptionary

True False
X < Y

Prep Definition Object Manipulation

Figure 2. The procedure of inference

Another important spatial relation descriptions are
proximity prepositions and directional prepositions.
They are relatively easy to reconstruct the scene
because they are more directly depicting spatial
relations information by comparing with boundary
description. In general, inferring the spatial relation
between two objects are more depending on the shape
of the objects i.e. the spatial tags that are predefined in
object library. For most 3D objects, there are two major
pairs of biased part: front/back (except round shape
object) and top/bottom. For example, The car is in front
of the house. The system finds the front-tagged region
of the house and then put the car in the area, the
direction of the car is use one out four random positions.
However, things are becoming complex once spatial
descriptions involving three objects. Consider the
sentences, A book and an hourglass are on the piano; A
book is on the piano. And an hourglass is beside the
book (See Figure 3). The inference rules can be used
to reason that the hourglass is also on the piano as
follows:

On ((X, Y), Z ⇔ Located ((X, Y), Surface(Z)) ⇔
Supports (Z, X)) ∧ Supports (Z,Y)) ⇔ Support(Z, (X ∧
Beside(Y, X)))

It can be said “If X and Y are on Z is true, then it infers
that the surface of Z support both X and Y; If Y is next
to the X is true, and X is on the Z also is true then it
infers that Y is on the Z as well.” Even we just
specified several rules and limited objects and two
spatial relations, a more general formulation is also
possible to create by expanding the argument X and Y.

5. CONCLUSION AND FUTURE WORKS

We have proposed an inference engine for temporal
and spatial reasoning based on implicit constraints from
semantic representation. It focuses on how to convey
the temporal and spatial descriptions into virtual scenes
by using language inference technology. The natural
language is often represented as formulas in a logical
relation to represent the semantics of language. This led
us to believe that some types of inferences about the
visual information can be easily accounted for by using
the real world knowledge. The integration of language
inference technology does enhance our system and
particularly enables us to generate the visual scenes
based on relatively limited descriptions, although the
work currently concentrates on relative time reasoning
and is limited to spatial relations reasoning. Future
work will concern improving the inference engine to
make it more efficient by including more actions and
events related to temporal and spatial reasoning to deal
with more complex scenarios.

REFERENCES:

Andre, E., Jercog, G and Rist, T. (1988) On the
Simultaneous Interpretation of Real World Image
Sequences and their Natural Language Description:
The System SOCCER. In Proc. of the 8th ECAI,
Munich.
Clay, R. and Wilhelms, J. (1996) Put: language-based
interactive manipulation of objects. IEEE
ComputerGraphics and Applications, pp. 31–39, March.

Coyne, B. and Sproat, R. (2001) WordsEye: An
automatic text-to-scene conversion system. Proc 28th
SIGGRAPH Annual Conf. Computer Graphics and
Interactive Techniques.
Deemter, K. and Peters, S. (1996) editors. Semantic
Ambiguity and Underspecification. CSLI Publications.
Gips, C., Hofstedt, P. and Wysotzki, F.(2002) Spatial
Inference - Learning vs. Constraint Solving.
Proceedings of KI2002, Aachen Germany, Springer.
Heidorn, P, B. (1997) Natural Language Processing of
Visual Language for Image Storage and Retrieval. PhD
Thesis. University of Pittsburgh.
Herskovits, A. (1986) Language and Spatial Cognition.
An interdisciplinary Study of the prepositions in
English. Cambridge University Press, Cambridge, MA.
Iwanska, L (1996) Natural Language Temporal Logic:
Reasoning about Absolute and Relative Time.
International Journal of Expert Systems, Vol. 9(1).
Iwanska, L. (1993) Logical reasoning in natural
language: It is all about knowledge. International
Journal of Minds and Machines, Special Issue on
Knowledge Representation for Natural Language,
3:475-510.
Jackendoff, R (1993) Pattern in the Mind: Language
and Human Nature. Harvester Wheatsheaf Press.

Figure 3. Infer the location of the objects Jurafsky, D and Martin, J. (2000) Speech and
Language Processing. Prentice Hall, New Jersey.
Landau, B and Jackendoff, R (1993) “What” and
“Where” in Spatial Language and Spatial Cognition.
Behavioural and Brain Sciences, _16, 217-265.
Mcdermott, V. (1987) Spatial reasoning. In
Encyclopedia of Artificial Intelligence, volume 2. John
Wiley & Sons.
Mehdi, Q., Zeng, X., and Gough, N.E. Story
Visualization for Interactive Virtual Environment.
ISCA 12th International Conference on Intelligent and
Adaptive Systems and Software Engineering, 2003.
Monz, C., Rijke, M. (1999) Inference in Computational
Semantics. The first workshop on Inference in
Computational Semantics. Amsterdam.
Russell, S, J and Norvig, P.(1995) Artificial
Intelligence, A Modern Approach. Prentice-Hall
International, Inc. London.
Sproat, R (2001) Inferring the Environment in a Text-
to-Scene Conversion System. In Proc of The
International Conference on Knowledge Capture.
Talmy, L. (1983) How language structures space.
Spatial Orientation: Theory, Research, and Application,
ed. by Herbert Pick and Linda Acredolo, Plenum Press.
Yamada, A., Yamamoto, T and Ikeda, H. (1992)
Reconstructing Spatial Image from Natural Language
Texts. COLING 92, Nantes.
Zeng, X., Mehdi, Q and Gough, N.E. (2002)
Generation of A 3D Virtual Story Environment Based
on Story Description. Proc. of 3rd SCS Int. Conf.
GAME-ON 2002, London, 2002.

GAMES ENGINES
MODELLING

AND
ANIMATION

ANIMATING 9-LINK BRACHIATION WITH HEURISTIC CONTROL

Zheng Zhang Tony Kai Yun Chan
HuaZhong University of Center Advanced Media Technology
Science and Technology School of Computer Engineering

Wuhan, Hubei, China Nanyang Technological University
Email: zhangzheng98@hotmail.com Email:askychan@ntu.edu.sg

KEYWORDS
AI, Physics and Simulation, Skeletal Animation.

ABSTRACT

Brachiation is an extremely unstable and under-actuated
system. This paper explores a physically-based animation
system, a heuristic control, on a complex nine-link model to
animate brachiation. The heuristic control contains three
schemes, namely phase heuristic control, final-target
heuristic control and phase-final-target heuristic control. The
effectiveness of the three heuristic control paradigms have
been exemplified. Experimental results have demonstrated
that the phase-final-target heuristic control would be a more
sophisticated decision for generating convincing brachiation
animation.

INTRODUCTIUON

Brachiation is a sequence of fascinating arboreal movements
employed by primates, in which they progress below tree
branches by using the forelimbs. Among primates, the most
famous brachiators are the lesser apes or hylobates, of which
many species and varieties originally inhabit Southern Asia.
They are tailless and without cheek pouches, and have very
long arms, adapted for arboreal life.

Natural looking and realistic brachiation animation is
certainly extremely difficult to model with either kinematics-
based systems or physically-based animation control.
Because brachiation is an under-actuated system where the
number of actuated Degree-Of-Freedoms (DOFs) is less than
the number of all the DOFs. Furthermore, the unique DOF
between the interacting holding palm of the brachiator and
the branch exterior is under-actuated. So the system is
extremely unstable and directly-uncontrollable when the
related resistance force of this DOF is ignored in the ideal
condition. On the other hand, once a versatile control for the
brachiation of hylobates is developed, any desired temporal
sequences of brachiation motions of the graphical hylobates
can be generated according to the requirements, for example,
of production movies and computer game.

The requirements of games are different from those of
production movies. The former focuses on the real-time
features while the latter emphasises realistic natural-looking
effects. Our early work on a 3-Link model brachiation
satisfies the requirements for real-time animation. However,
a sophisticated brachiation control based on a more complex
model is desired to improve realism.

In this paper, a heuristic control (HC) for a 9-Link model
brachiation is presented which is able to automatically and
heuristically generate the proper torque needed to optimize
the brachiation according to the objective function. The
heuristic control contains three different methods, phase HC
(PHC), final-target HC (FHC) and phase-final-target HC
(PFHC). The first method, PHC, is similar to standard 3-
Link heuristic control. It is based on measuring the control
effect of each phase. The second, FHC, differs from PHC,
and focuses on the target of brachiation, ie. whether the
brachiator can catch the target or not. The last control,
PFHC, synthesizes the advantages of the previous two
controls and considers the intermediate pose as well as the
final target.

The remainder of this paper is organized as follows. Section
2 surveys previous related work. Section 3 introduces
brachiation locomotion requirements that we propose to
achieve. The related model applied in this paper is
introduced later. Sections 4,5,6 illustrate the three heuristic
controls, PHC, FHC and PFHC respectively. Section 7
presents the relevant experimental results. Finally,
conclusions and suggestions for future work are given in the
last section.

PREVIOUS WORKS

Many researchers studied the hylobate's brachiation from
various aspects, such as biology and biomechanics, robotics
control and computer animation. In this section, we will
introduce previous work on brachiation from these aspects.

Preuschoft and Demes (Preuschoft and Demes 1984),
Fleagle (Fleagle 1974, Fleagle 1976) and many other
researchers conducted rigorous study on the biology and
biomechanics of brachiation of hylobates. Their research
results can be employed to propose a generic primate model
and devise an effective mathematical and computational
framework to simulate realistic brachiating motions.

Several researchers solved the problem of generating swing-
up trajectories with artificial intelligence techniques. DeJong
and Spong (DeJong 1994, DeJong and Spong 1990) adopted
explanation-based learning to generate acrobatic swing-up
trajectories. In order to find these trajectories, Boone (Boone
1997b) presented a direct search algorithm, which applies a
lookahead search that maximizes the acrobat's total energy in
an N-step window. Boone (Boone 1997a) considered the use
of domain knowledge, simple heuristics and modelling to
considerably improve the efficiency in learning to control
the acrobat. Fukuda et al. (Fukuda and Saito 1996, Saito et al.

1992, 1994), proposed a learning algorithm to generate a
feasible sequence of driving input signals for the motor
driver of the joint of a two-link robot.

These works represent comprehensive research on the
efficiency of swinging up control. Two aspects should be
reinforced from the viewpoint of computer animation which
have been neglected by previous works. The first is to
consider the naturalness and realism of the motion. Second
the ability for controlling complex model needs to be
improved.

To synthesize the automatic control in computer animation,
our previous work (Zhang and Wong 1999a, 1999b)
presented a sophisticated control for animating brachiation.
The realism and naturalness of brachiation was considered
based on a 3-link model. It is effective and useful for real
time applications such as in game development. However for
movie production, it needs to be further developed,
especially for close-up views of the brachiator and the
scenery. A more complex model and related controls need to
be developed to demonstrate more convincing brachiation
motion.

BRACHIATION, MODEL AND EQUATIONS

The process of designing a physically-based animation
control system consists of four steps, analyzing target
motion, determining the character model, deriving dynamics
equations and designing the motion controller.

Analysis of target motion should describe the motion
sequences and features clearly according to the requirements
of the animator. In the second step of determining the
character model, more complex models with more realistic
motion is implemented. However in physically-based
animation control, increasing model complexity also
increases the complexity of the controller, resulting in
heavier computing cost. Hence an optimum complexity
model should be determined. In the third step, to derive the
dynamics equations, Newton's equation along with rotational
analogy and Euler's equation are applied to describe the
relationship of the forces, inertias, and acceleration. In the
final step, physically-based animation control to provide
proper force or torque to generate the anticipated motion is
developed for the motion controller.

The first three steps are introduced in this section, and the
fourth step in the next.

Brachiation Analysis

Brachiation is a very special motion style that possesses
three major features. Firstly, it is an under-actuated system.
That means the number of actuated joints is less than the
total number of joints. Secondly, the passive joint is located
in the holding point, that is, the unique joint connected to the
outside environment. Thirdly, the most important task in
animation is to produce target motion with required gestures.
However, in brachiation motion, this is very difficult to
achieve simultaneously. Because the major task of

brachiation is to swing up and grasp the target during the
swing, it is very difficult to control the gesture of the
brachiator directly. Even a relatively small action, for
instance, cringing the swing arm, may disturb the swinging
and grasping motion and cause failure. These features
require us to analyze the brachiation motion carefully.

In nature, there are many kinds of species of hylobates
performing a variety of brachiations. That means different
species could brachiate in different ways; in the same
species, different genders brachiate differently; of the same
gender, an older brachiator would move in a different way
from younger ones. Even for the same brachiator, in the
different situations, the motion results are different. For
instance, the motion depends on the emotional state of the
animal, whether it is happy, sad or fearful. The motion
generated when the brachiator is proposing to pick a fresh
fruit is patently different from those when it is trying to flee
from a dangerous predator.

Facing such a variety of brachiation motions, we need to
determine a standard set of motions to evaluate our
brachiation control system. Below, the standard brachiation
sequences are detailed as our target.

Brachiation Phase
The goal of brachiation motion contains the following
phases. Initially, as shown in Figure 1, the brachiator holds
the starting bars with both hands. This is the Holding (HLD)
phase. Then it releases the left hand and swings forward and
down, the Swing-Forward-Down (SFD) phase. On passing
the lowest point of the swing, the brachiator starts moving
up. This is the Swing-Forward-Up (SFU) phase. At the end
of the SFU, if the reach is insufficient for the brachiator to
grasp the target, it would swing backward down, the Swing-
Backward-Down (SBD) phase, followed by the Swing-
Backward-Up (SBU) phase. Otherwise, the brachiator starts
to grasp the target, the Grasp (GRP) phase. When the
distance between the target and the grasping hand is less
than a certain small value, we consider that the brachiator
will successfully grasp the target. Thus the entire set of
brachiation motion consists of six phases, HLD, SFD, SFU,
SBD, SBU, and GRP.

Usually hylobates are able to just swing forward once and
grasp the target. This process is HLD, SFD, SFU, and GRP,
and we call this the Swing-Forward-Once-Grasp(SFOG)
sequence. Compared to the general motion process SFOG
brachiation is a more challenging task in our animation
control system.

Figure 1: Swing phase of Brachiation. SFOG contains of the

first line phases: HLD, SFD, SFU and GRP.

Features of Each Phase
The motion features of each phase are briefly described
below with the related figures in Figure 2.

 (a) (b) (c) (d)

Figure 2: Key Postures of SFOG Phases.

HLD The brachiator suspends naturally while holding on to
the two bars with the left and right arms. See Figure 2 (a).

SFD Starting from HLD phase it releases the left palm. At
the end of SFD, a straight body suspending downwards is
desired, as shown in Figure 2 (b).

SFU During the upward swing phase, the brachiator assumes
the following posture: the trunk is vertical with the ground;
the left arm tries to approach the target bar; the angles
between trunk and upper legs are at 45o while the angles
between upper legs and lower legs are at -45o. The relevant
figure is shown in Figure 2 (c).

GRP As the brachiator swings up, it will try to grasp the
target bar with the following gesture: the trunk is vertical
with the ground; the left hand tries to catch the target bar;
the
angles between trunk and upper legs are at 90o, and the
angles between upper legs and lower legs are -90o. This is
shown in Figure 2 (d).

Model Designing

With more complex structural models we achieve more
realistic motions. But the related computing cost is heavy
and the controller is difficult to design. To improve the
sophistication of brachiation animation sequences, a Nine-
Link Model(9-Link) comprising of link, joint and sensor
components is designed. The details of these components are
presented below.

Links
We model a brachiator with nine links, as shown in Figure 3,
namely Right Lower Arm (RLA), Right Upper Arm (RUA),
Trunk (TRK), Left Upper Arm (LUA), Left Lower Arm
(LLA), Right Upper Leg (RUL), Right Lower Leg (RLL),
Left Upper Leg (LUL) and Left Lower Leg (LLL). They are
also listed in the Table 1. As the motion of the brachiator's
head and the foot are not evident compared with other links,
so they are ignored in the model, as well as the palms and
fingers.

Joints
The joints that connect these nine links are designed as non-
resistive rotary joints. With the exception of the joint
connecting the holding bar and Right Lower Arm, which is

a passive joint, the others, JRUA, JTRK, JLUA, JLLA, JRUL,
JRLL,

Figure 3: Links, Joints and Sensors of 9-Link Model.

Table 1: 9-Link Model:Links

Link Name Implication
L0 RLA Right Lower Arm
L1 RUA Right Upper Arm
L2 TRK Trunk
L3 LUA Left Upper Arm
L4 LLA Left Lower Arm
L5 RUL Right Upper Leg
L6 RLL Right Lower Leg
L7 LUL Left Upper Leg
L8 LLL Left Lower Leg

JLUL, and JLLL are 2D actuator joints as shown in Figure 3.
As listed in Table 2, the total number of joints is nine while
the number of actuator joints is eight, resulting in what is
called an under-actuated system.

Table 2: 9-Link Model: Joints

Joint Name Joint Feature Connection
J0 JRLA Passive RLA and Holding Bar
J1 JRUA Actuator RUA and RLA
J2 JTRK Actuator TRK and RUA
J3 JLUA Actuator LUA and TRK
J4 JLLA Actuator LLA and LUA
J5 JRUL Actuator RUL and TRK
J6 JRLL Actuator RLL and RUL
J7 JLUL Actuator LUL and TRK
J8 JLLL Actuator LLL and LUL

Sensors
Sensors are used measure the status of the motion. Three
kinds of sensors are used in this paper, namely angular
sensors, collision sensors and orientation sensors.

The angular sensor measures the angle between one link
with respect to another or to a specified line, the collision
sensor determines the distance between two specific points,
and the orientation sensor guages the orientation of a link or
the body, as shown in Figure 3. The implications of the

angular sensors are described in Table 3. The only collision
sensor Clla, is used to measure the distance between the left
palm and the target bar to indicate how near the brachiator is
to the target. The orientation sensor, Otrk, measures the
orientation of the trunk relative to the vertical, representing
the body posture of the brachiator. All the sensors are listed
in Table 3.

Table 3: 9-Link Model: Sensors

Item Implication
Angular Sensor Angle between
θ rla
θ rua
θ trk
θ lua
θ lla
θ rul
θ rll
θ lul
θ lll

RLA and vertical axis.
RUA and RLA.
TRK and RUA.
LUA and TRK.
LLA and LUA.
RUL and TRK.
RLL and RUL.
LUL and TRK.
LLL and LUL.

Collision Sensor Collision dectection of
Clla the grasping palm.
Orientation Sensor Orientation of
Otrk trunk.

Dynamics Equation

The innovation of animating characters with physically-
based method was first presented by Armstrong, Wilhelms et
al (Armstrong 1985, Wilhelms 1985). Generally, as Craig
(Craig 1986) describes, the forward dynamics system

determines how the links will move, The output
under the application of a set of joint torques, given as τ is
useful for animation and simulation.

...
θ,θ θ,

)]θ()θθ,(τ)[θ(θ
.

1
..

GVM −−= − (1)

where, 1−M is the inverting mass matrix, V is n*1
vector of centrifugal and Coriolis terms, and G is an n*1
vector of gravity terms. Given initial conditions on the
motion of the system, we can numerically integrate Equation
(1) forward in time by steps.

)θθ,(
.

)θ(

In our brachiation system, we generate the equations of
motion using a commercially available package called SD-
FAST. SD-FAST generates C or Fortran subroutines for the
equations of motion by applying a variant of Kane's method
and a symbolic simplification phase. The C subroutines are
selected to determine the accelerations, velocities, and
positions of each link at each time step given the applied
forces and torques. Using fixed step size, a fourth-order
Runga-Kutta integrator is applied to advance the simulation
forward in time to generate related motion sequences.

OVERVIEW OF HEURISTIC CONTROL

The core of a physically-based animation system is to design
the controller, from where the proper torque or force
generates. In this paper, improved heuristic control based on
our previous work is incorporated to generate the torque.

These torques solves not just the problem of swinging up
effectively, but also the realism problem.
The torques or forces generated by HC are passed to the
dynamics platform to calculate the kinematic data for the
brachiator, including angles, velocities and accelerations, as
shown in Figure 4. The motion producer module accesses
these kinematic data and draws on the screen frame by frame
the expected animation sequences.

Figure 4: Heuristic Control Overview.

Within the heuristic controller, three modules are included,
the control-point-adjustor, torque-curve-generator and
objective-function-measurer. They are briefly introduced
below.

Control-Point-Adjustor The period of applied heuristic
control is generally divided into several equal parts, say n-1
parts with n control points. The control-point-adjustor is
designed to adjust the values of these control points,
increasing or decreasing according to the control strategy.

Torque-Curve-Generator When any control point is
adjusted, the torque-curve-generator will be called to
reconstruct the torque curve based on the new set of control
points. The torque curve reconstructing method adopted in
this paper is the B-Spline method.

Objective-Function-Measurer After adjustment, the
control points and the related torque curve are passed to the
dynamics platform. The Objective-Function-Measurer
determines whether the adjusted result is better or worse.

Adjusting a control point, regenerating the torque curve and
measuring the result are accomplished in a single loop. An
optimum result is obtained by performing iterations of this
loop, making adjustments to the control point and using the
Objective-Function Measurer as the criterion.

Three measurement terms are used, the energy term E(t),
gesture term G(t) and collision term D(t). The E(t) measures
the conversion between potential energy and kinetic energy.
G(t) measures the difference between the desired gesture and
the current gesture, as described in Equation (2).

∑ −Θ=
N

iDi ttG
1

)(θ)((2)

where, DiΘ is the desired angle of the ith DOF; N is the

entire number of DOF, here N=9; , is angular sensor of ith
DOF.

iθ

The collision term, D(t) = Clla(t) (collision sensor), measures
the grasping result through monitoring the distance between
the target bar and the palm of the grasping hand.

The structure of the 9-Link model system is much more
complex than the 3-Link model. As the number of links
increases, the interaction between the links becomes more
significant. Adjusting a control point of 9-Link model would
not only affect the motion of the link, but also the whole
body's motion. Taking into consideration the specification of
the 9-Link model and the results of previous research in 3-
Link heuristic control\cite{Zhang-99-1,Zhang-99-2}, three
versions of 9-Link heuristic controls, namely Phase
HC(PHC), final-target HC(FHC) and phase-final-target
HC(PFHC) are developed. These are described in the
following sections.

PHASE HEURISTIC CONTROL

Phase heuristic control, PHC, is similar to 3-Link heuristic
control. It heuristically adjusts the control points of each
phase based on the result at the end of the phase. After
completing each phase, PHC starts on the next phase until
the phase GRP is reached.

As shown in Figure 5, to control phase K, we assume the
starting and ending control points are ith and jth
respectively. We should first finish all the previous phase
control, and load those control points, 0th to i-1th, into
system, then start phase K control. The result at the end of
phase K is measured and used as the test criterion.

Figure 5: 9-Link PHC

Since the purposes of the various phases are quite different,
so the objective functions of each phase are different. The
objective functions are presented below according to the
different phase, ie. SFD, SFU and GRP.

SFD Phase In this phase, from the viewpoint of energy
conversion, the brachiator should convert the potential
energy to kinetic energy. The more kinetic energy that it
obtains at the end of SFD, the higher the position it could
achieve in the phase SFU. The energy term, E(t) is measured
as E(t) = K(t), where K(t) is the system kinetic energy
function.

From the viewpoint of motion gesture, the desired angles

of gesture function G(t), see Equation (3),
are designed to achieve the requirement.

])9,1[(∈Θ iDi

The objective function of SFD, M(t), is shown in Equation
(3).

M(t) = E(t)KeSFD - G(t) KgSFD (3)

where, KeSFD and KgSFD are the parameters of energy
measurement and gesture measurement respectively, they are
positive constants.
SFU Phase In this phase, the brachiator tries to swing
forward-up toward the target bar. From the viewpoint of
energy conversion, it should convert the kinetic energy
obtained from SFD to potential energy, P(t). In other words,
it tries to swing higher. The energy term of objective
function, E(t) is measured as E(t) = P(t).

From the viewpoint of motion posture, the desired angles

])9,1[(∈Θ iDi of gesture function G(t) are designed to
achieve the requirement as described in Section 3.1.2. For
instance, link TRK should be vertical with the ground, the
desired angle of TRK, DtrkΘ , is calculated according to
geometry.

Similar in these aspects, the 9-Link SFU objective function,
M(t), contains two aspects, energy, E(t) and gesture G(t) as is
shown in Equation (4).

M(t) = E(t) KeSFU + G(t) KgSFU (4)

where, KeSFU, KgSFU are the parameters of Energy
Measurement and Gesture Measurement of SFU
respectively.

GRP Phase The goal of the GRP phase is to catch the target
bar with a proper posture. The objective function of this
phase contains the collision term, D(t), and the gesture
function, G(t). The desired angles within G(t) are designed
according to the GRP features.

The 9-Link swing forward-up objective function, M(t), is
shown in Equation (5).

M(t) = D(t) KdGRP + G(t) KgGRP (5)

where, KdGRP, KgGRP are the parameters of collision sensor
and gesture measurement respectively, they are positive
constants.

FINAL-TARGET HEURISTIC CONTROL

PHC heuristically adjusts the control points based on phase
to phase motion. Differing from PHC, Final-target HC
(FHC), adjusts control points from the beginning to the end
when the brachiator successfully catches the target, as shown
in Figure 6.

Figure 6: 9-Link FHC

Hence only one objective function is needed for FHC. It tries
to reduce the output of the collision sensor to zero with an
anticipated posture. Thus there are two terms in the FHC
objective function, the collision term, D(t), and the gesture

term, G(t), where the desired angles of grasping posture are
determined as in the GRP phase of FHC.

The objective function of FHC, M(t) is described in the
Equation (6):

M(t) = D(t) KdFHC + G(t) KgFHC (6)

where, KdFHC, KgFHC are the parameters of collision
measurement and gesture measurement of FHC respectively.

PHASE-FINAL-TARGET HEUSRIC CONTROL

PFHC which synthesizes PHC and FHC and adjusts the
control points from one phase to another phase, similar to
PHC, rather than the total motion interval, as in FHC.
However, PFHC adjusts the control points of each phase,
say phase K, as shown in Figure 7, not only by measuring
this phase's objective, but also the final target objective.
From this point of view, PFHC is similar as FHC. The
objective functions for each phase are described below
according to the different phases.

Figure 7: 9-Link PFHC

Swing Forward-Down In this phase, there are two terms in
objective function, the local term gesture, G(t), and the final
term collision sensor, D(t).

Instead of the energy concept of PHC's SFD control, we
adopt a final collision term that indicates the grasping effect,
D(t). Because the eventual aim of converting more potential
energy to kinetic energy is to swing higher at the phase SFU
and GRP, the D(t) is a more direct indicator of the effect of
SFD. The gesture term is similar to PHC's SFD gesture term.

The SFD objective function of PFHC is as Equation (7).

M(t) = D(t) KdPFHC + G(t) KgPFHC (7)

where, KdPFHC, KgPFHC are the parameters of Collision Term
and Gesture Term of SFD objective function of PFHC
respectively.

Swing Forward-Up There are two terms in the objective
function, the local gesture term, G(t), and the final collision
term, D(t). The gesture term is similar to PHC's SFU gesture
term. Meanwhile, D(t) is as same as the D(t) term of SFD in
PFHC.

The SFU objective function of PFHC is presented in
Equation (8).

M(t) = D(t) KdPFHC + G(t) KgPFHC (8)

where, KdPFHC, KgPFHC are the parameters of Collision Term
and Gesture Term of SFU objective function of PFHC
respectively.

Grasp The two terms in the GRP objective function, the
gesture term G(t) and the collision term D(t) are the same as
G(t) and D(t) in the phase GRP of PHC. The GRP objective
function of PFHC is given in Equation (9).

M(t) = D(t) KdPFHC + G(t) KgPFHC (9)

where, KdPFHC, KgPFHC are the parameters of Collision Term
and Gesture Term of GRP objective function of PFHC
respectively.

RESULTS

We now report a representative experiment to show the
effectiveness and problems of the proposed physically-based
brachiation heuristic control. We will analyze the experiment
qualitatively by the realism of the brachiation sequence and
quantitatively with three metrics, kinetic energy (Ek),
potential energy(Ep) and the collision distance (Dt). The
experiments are evaluated with a free swing (FS) and the
results applied with PHC, FHC and PFHC, as shown in.
Table 4.

Table 4: Quantitative and Qualitative Evaluation

Item Ek Ep Qualitative Evaluation
FS
PHC
FHC
PFHC

19.6
70
24
25

-0.63
-0.62
-0.54
-0.58

Weak, fail to grasp.
Violence, fail to grasp.
Posture improved, grasped.
Good, grasped.

Results of FS

As shown in Figure 8, in the experiment of the free swing,
except for gravity, no torque or force is applied on any DOF
of the brachiator. Hence, the motion lacks strength. We can
observe that the motion is weak and decreases until the
brachiation finally fails.

Figure 8: Kinetic Energy, Potential Energy and Collision
Sensor of FS motion.

Results of PHC

Although we have tried various parameters of collision and
posture term, the grasping motion fails finally. The best
result for the brachiator reaching the target nearest is shown
in Figure 12(b). The the nearest distance between the
grasping hand and the target bar is greater than 0.2M, as
shown in Figure 9. Also, the grasping posture is also not
satisfactory.

Figure 9: Kinetic Energy, Potential Energy and Collision
Sensor of PHC.

As shown in Figure 9, the highest kinetic energy obtained at
the end of SFD is 20.0, while, the potential energy reached -
0.77. This indicates that the energy pumped into system is
very low, so that during the phase SFU and GRP, the
potential energy that brachiator obtained is -0.62 which is
just higher than FS 0.01. The brachiator has to increase the
related joint's torque to perform the grasping motion at the
phase GRP. This exertion causes the violation motion where
the strange motion of the grasping arm in the phases SFU
and GRP can be observed in Figure 12(b). It is also reflected
in Figure 9, where at time 0.95S, the kinetic energy suddenly
increases from 20 to 70.

The reason is that the objective function of SFD is not
suitable for multi-link systems, even though the same idea is
successful for the 3-Link model. These two terms in the
objective function for gesture and kinetic energy are not able
to actually reflect the swing effect. The strategy of the
objective function is that the less error between the desired
pose and the current pose is better and the more kinetic
energy is better. But more kinetic energy does not always
help the motion of swinging up in a multi-link system.

Results of FHC

As shown in Figure 12(c), the brachiator could successfully
catch the target bar. At the end of SFD, the highest kinetic
energy reaches 24, and the max-potential energy reaches
−0.54, as shown in Table 4. The posture of GRP is also
better than the PHC.

FHC, which overcomes the disadvantage of PHC, directly
evaluates the adjustment of each control point by measuring
the eventual result, i.e. whether it is reaching target or not,
rather than according to each phase's objective function in
PHC. It effectively overcomes the difficulties of evaluating
the swinging efficiency of the SFD and SFU phase.

There is an interesting phenomenon in FHC. Let us take a
look at Figure 10, The potential energy is increased at 0.12
second indicating that the Center of Mass (COM) of the
brachiator is pulled up by heuristic control. Although we did
not set an objective function to guide the brachiator to
increase the potential energy higher to improve the swinging
motion. The brachiator seemed to have automatically learned
and done it in this way.

There still exists a disadvantage in that we cannot control
intermediate postures, for instance the posture in the SFD
and SFU phases.

Figure 10: Kinetic Energy, Potential Energy and Collision
Sensor of FHC.

Results of PFHC

PFHC is different from PHC and FHC. On one hand, it has
the advantages of PHC by considering the posture of every
phase. On the other hand, it utilizes the advantages of FHC
by evaluating the final grasping effect of brachiation.

As shown in Figure 13 (a), after applying the PFHC on the
SFD phase, the motion posture of the SFD phase is
improved compared with the SFD motion of FHC. The trunk
and the low limbs of the brachiator are almost perpendicular
to the ground as we anticipated. However, the postures in
SFU and GRP phase are still not satisfactory as the lower
limbs are not swinging forward as expected. This is not a
serious problem for phase SFD in PFHC. There is
opportunity to apply PFHC to the SFU and GRP phases.

As shown in Figure 11, at the end of the phase SFD, the
peak kinetic energy reaches, 24, and the potential energy
reaches −0.83. The interesting situation which occurred in
FHC where the potential energy is increased at the beginning
of the brachiation could be observed from the Figure 11.
Note that the highest potential energy attained at the
beginning, at −0.47, is slightly lower than that of −0.46
attained by FHC because PFHC needs to consider the
posture. However, it still indicates that the sophisticated
advantage of FHC to control the system to pull up the COM
before swinging down has been inherited by PFHC.

Figure 11: Kinetic Energy, Potential Energy and Collision
Sensor of PFHC.

After applying PFHC on SFU phase, the objective function
calculates the posture term of SFU and the grasping
effectiveness term of GRP. The final results are shown in
Figure 13 (b), and compared with the results of PFHC on
SFD, the posture of SFU is improved. For instance, in the
result of SFD, the low limbs do not swing enough, however
in SFU, the angles of upper legs are almost 45° and the
angles of lower legs are almost -45°, just as expected. As
PFHC has not been applied to the GRP phase, it is
noticeable that the final posture of GRP is not satisfied.

The control points generated from the prior sequence of SFD
and SFU are transferred to start GRP PFHC. The results are

shown in Figure 13(c), the brachiator has successfully
caught the target. The grasping gesture has been further
improved comparing with the results of SFU.

CONCLUSIONS

Based on the research on 3-Link heuristic control, we have
developed a sophisticated 9-Link heuristic control system. It
contains phase HC, final-target HC and phase-final-target
HC.

Among the three methods of heuristic control, PHC is
acceptable for simple models like the 3-link model because
the interacting interruptions between the links are not so
serious as in the complex model. But with a complex
multiple-link system, simple application of PHC is not
suitable, and it is difficult to assess the SFD motion that
would lead to the final grasping motion.

This problem has been solved with FHC which considers the
resulting effect of SFD and SFU with the final result of
GRP. The multi-link system is able to adopt FHC to achieve
brachiation, but this introduces a new problem in that we
cannot control the intermediate postures, such as the
postures of SFD and SFU.

To solve this problem, we designed the PFHC which
synthesizes the advantages of PHC and FHC, and forsakes
the their disadvantages. The PFHC is a sophisticated method
for brachiation that applies to multi-link systems, and can
control the intermediate postures.

In the future, it would be challenging to apply heuristic
control on more complex models such as 3D models and
other kind of motion style to further demonstrate the
effectiveness and robustness of heuristic control.

REFERENCES

Armstrong W.W. and Green M. 1985. “The Dynamics of Articulated Rigid

Bodies for Purposes of Animation.” Proceedings of Graphics Interface
'85, volume 4,407-415.

Boone G. N. 1997a. “Efficient Reinforcement Learning: Modelbased
Acrobot Control.” 1997 IEEE International Conference on Robotics and
Automation. Albuquerque, 229-234.

Boone G. N. 1997b. “Minimum-time control of the Acrobot.”1997 IEEE
International Conference on Robotics and Automation. Albuquerque,
3281-3287.

Craig J. J. 1986. “Introduction to Robotics Mechanics and Control.”
Addison-Wesley Publishing Company.

DeJong G. F. 1990. “A Machine Learning Approach to Intelligent Adaptive
Control.” 29th IEEE Conference on Decision and Control. 1513-1518.

DeJong G. and Spong M. W. 1994. “Swinging Up the Acrobot: An Example
of Intelligent Control.” Proc. American Control Conference. 2158-2162.

Fleagle J. G. 1974. “The Dynamics of a Brachiating Siamang.” Nature.
volume 248,259-260.

Fleagle J. G. 1976. “Locomotion and Posture of Malayan Siamang and
Implications for Hominoid Evolution.” Folia Primatologica. volume 26,
245-269.

Fukuda T. and Saito F. 1996. “Motion Control of a Brachiation Robot.”
Robotics and Autonomous System. Volume 18, 83-93.

Preuschoft H. and Demes B. 1984. “Biomechanics of Brachiation.” In The
Lesser Apes. Edinburgh University Press, 96-118.

Saito F. and Fukuda T. 1995. “Two-Link-Robot Brachiation with
Connectionist Q-Learning.” From Animals to Animats. 309-314.

Saito F. Fukuda T. and Arai F. 1992. “Movement Control of Brachiation
Robot Using CMAC Between Different Distance and Height.” Proc.
IMACS/SICE Int. Symp. Robotics, Mechatronics and Manufacturing
Systems. 35--40.

Saito F. Fukuda T. and Arai F. 1994. “Swing and Locomotion Control for a
Two-link Brachiation Robot.” 1994 IEEE Control System. ACM Press /
ACM SIGGRAPH. Volume 14, 5-12.

Wilhelms J. and Barsky B. A. 1985. “Using Dynamics Analysis to Animate
Articulated Bodies such as Human and Robots.” Graphics Interface '85.
97-104.

 Zhang Z. and Wong K.C. 1999a. “Animating Brachiation.” Eurographics
'99.

Zhang Z. and Wong K.C. 1999b. “Details and Implementation Issues of
Animating Brachiation.” Computer Animation and Simulation,
Proceedings of the Eurographics Workshop '99. 123-129.

(a) (b) (c)

Figure 12: Animated Sequences of FS, PHC and FHC.

(a) (b) (c)

Figure 13: Animated Sequences of PFHC.

KEY WORDS
Character animation, Motion generation, Marionette metaphor,
Interface, Joysticks

ABSTRACT

This paper proposes new motion generation method based on
marionette metaphor that allows the user to generate the motions of
CG characters by his/her interactive manipulations using two analog
joysticks. The authors have already proposed motion generation
method based on puppet/marionette metaphor using a data-glove
and a magnetic motion sensor [1, 2]. A data-glove and a magnetic
motion sensor are very common in virtual reality applications.
However, they are rarely used as input devices of a standard PC
because they are very expensive. So we extended the motion
generation method to support analog joysticks besides the set of a
data-glove and a magnetic motion sensor. This motion generation
method uses gravity and ground contact constraints for the
compensation of insufficient output data of joysticks. This method
makes possible to generate motions like those of a marionette
performed in the real world. Therefore, this method is applicable
to entertainment fields. This paper explains how to generate
motions using two analog joysticks, and introduces a couple of
application examples to clarify the usefulness of the system for
entertainment fields.

1. INTRODUCTION

For computer animation creation, character-motion design is very
laborious work. So we have already proposed motion generation
method using puppet/marionette metaphor [1, 2]. This method
uses the set of a data-glove and a magnetic motion sensor as a
real-time input device. However, the number of a hand’s joints is
not enough to fully control an articulated figure. Any metaphor or
constraints are necessary to effectively generate the motion of an
articulated figure. We employed puppet/marionette metaphors,
that is, the physical constraint of the gravity and the ground contact.
This method generates motions like those of a marionette performed
in the real world. This motion generation method is very useful for
entertainment applications. However, in fact, a data-glove and a

magnetic motion sensor are very expensive and the standard user
does not have such equipments. For this reason, we extended the
motion generation method to support analog joysticks.
Furthermore, to clarify the usefulness of the motion generation
method, we developed a couple of application examples using
IntelligentBox [3], which is a 3D graphics software development
system. One of them is Marionette Theatre. Our motion
generation system has network communication functionality.
Therefore, when multiple systems are connected to the
IntelligentBox system through the network, each user of them can
control his/her own marionette exists in a virtual 3D space, provided
by the IntelligentBox, by applying the generated motion data to the
marionette. This means Marionette Theatre. As well, since the
system can generate walking motion so the system can be used as
Interface for walk-through in a virtual 3D space. Furthermore,
although our system generates motions like the marionette, not like
the human, it is possible to create accurate motions by re-editing
already generated motions. We have already provided such
motion editing environment using IntelligentBox [4].
This paper explains how to generate motions using two analog
joysticks and introduces the above application examples to clarify
the usefulness of the system for entertainment fields.
The remainder of this paper is organized as follows. Section 2
describes related work. Section 3 illustrates the system overview.
Section 4 explains essential mechanisms of marionette motion
generation. Section 5 introduces application examples. Finally,
section 6 concludes the paper. We discuss the usefulness and the
performance of the system.

2. RELATED WORK

There are many research projects on the use of motion capture
systems as a real-time input interface to control a CG character
interactively [5]. Full-body motion capture systems have become
common. However they are still very expensive and they cannot
be used on the desktop. Laszlo, et al [6] proposed interactive
control technique for physically-based animation using standard
input devices, i.e., a mouse device and a keyboard. This technique
requests the user to prepare many motion primitives. Oore, et al
proposed a desktop input device and interface for interactive 3D
character animation [7, 8]. Our system is very similar to their
system. They use two magnetic-based motion sensors while we

REAL-TIME MOTION GENERATION BASED ON MARIONETTE METAPHOR
USING TWO ANALOG JOYSTICKS

Koji Chadou1, Yoshihiro Okada1,2 and Koichi Niijima1

1Graduate School of Information Science and Electrical Engineering,

Kyushu University
6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan
E-mail: {k-chadou, okada, niijima}@i.kyushu-u.ac.jp
2Intelligent Cooperation and Control, PRESTO, JST

use inexpensive analog joysticks. Although the quality of motions
generated by Oore’s system seems better than that of our system, the
abstract motions generated by our system are able to be used for
various applications, e.g., as initial motions for key-frame animation
[4], as query motions to search required motions from motion
databases and so on.

3. SYSTEM OVERVIEW

Figure 1 shows a marionette model and its control interface. Our
model consists of 17 joints. Each joint has three DOF (Degrees Of
Freedom) and then it rotates along x, y, z axes. Our system uses
two joysticks to control the model, e.g., Microsoft Side-winderTM.
Each joystick generates four analog values. The each value is
applied to specific joint of the model.
The marionette model, a human-like model, has 17 joints.
However, the two joysticks output only eight analog values. To
generate marionette motions only through two joysticks control, it
needs a certain mapping scheme between 17 joints of the marionette
and the eight analog values of the two joysticks shown in Figure 1.

4. REAL-TIME MARIONETTE CONTROL

Figure 2 shows ten typical marionette poses possible by two
joysticks control. In the following subsections, using Figure 2, we
explain mapping scheme for the marionette motion control, the
motion effect of gravity field and the ground contact constraint, and
how to generate walking motions.

4.1 Mapping scheme for marionette motion control

Similarly to the real marionette, the body of our marionette
consisting of a waist, left and right hips, a chest, and left and right
collars is treated as one rigid part. As we will explain later, our
system generates walking motions so that the position of the body
center is automatically calculated. However, to make the motions
of jump, squat, and fall down possible, we need to control the
position of the body center. As well, the orientation of the body
center should be fully controlled. Consequently, six DOF exist for
the control of the body center.
The arms of a real marionette are controlled by the strings connected
to each of their hands, and the legs of the marionette are controlled
by the strings connected to each of their knees. Pose 6 to pose 10
demonstrate this effect. For the control of the arms and legs,
another four DOF exist. Totally, we employ ten DOF for
controlling our marionette model. We have to specify a mapping
scheme between ten DOF of the marionette model and the eight
angle values of two joysticks. You can define a mapping function
as a programming code as follows.

)(HfP = (1)

where, P is a vector Tpppp]9,2,1,0[L , whose elements
correspond to ten DOF of the marionette model. H is a vector

Thhh]7,,1,0[L . h0 to h7 means the analog values of two
joysticks.
If each element of P is restricted to be a linear combination of H , a
mapping scheme is specified by next equation.

HP ×∏= (2)

In this case, ∏ is a matrix that means a mapping table, whose
elements correspond to coefficients for H.

=∏

7,91,90,9

7,11,10,1

7,01,00,0

aaa

aaa
aaa

L

MOMM

L

L

 (3)

Indeed one mapping table allows us to make very few kinds of

Figure 1. Marionette model and its control interface

Figure 2. Ten typical marionette poses

motions and it is insufficient in the practical use. So the system
requests the user to prepare multiple mapping tables and to choose
one of them by pushing the specific button of joysticks properly.

4.2 Motion effect of gravity field

Pose 1 is an initial pose of the marionette model. Pose 2 to Pose 5
mean various orientations of the body center. The marionette
exists in the gravity field so its two arms and two legs always hang
down. In these cases, the positions of the hand is enough high so
the ground contact constraint does not exist. Only the gravity effect
exists.
Pose 6 means that the marionette right hand is pulled up by a virtual,
invisible string. This virtual string is controlled according to the
one angle value of two joysticks. Actually the hands of the
marionette move along the trajectory such as shown in the left figure
of Figure 3. Pose 7 is almost the same. In the case of Pose 8, the
marionette both left and right hands are pulled up. As for these
poses, the inverse kinematics is partially used to determine the
position of the intermediate joint, i.e., the elbows of arms since the
user joystick operation only control the position of each of the
marionette’s two hands for simplicity. To carry out this, we
introduced 2-links Inverse Kinematics as shown in the right figure of
Figure 3. 0p is a fix point, the shoulder of the marionette in the
case of Pose 6. 1r and 2r are the lengths of the upper and lower

arm. 1p is a floating point and 2p is a control point. 1p and
2p are corresponding to the elbow and the hand respectively. 1p′

is the position of the elbow after the hand moves from the position
2p to 2p′ . This position is automatically calculated using

2-links Inverse Kinematics. Our Inverse Kinematics was
implemented based on minimizing the distance between 1p′ and

1p . See the paper [2] for its detail. Our 2-links Inverse
Kinematics is very simple and its calculation cost is also very low so
this is suitable for interactive applications.
Finally, Pose 9 and Pose 10 in Figure 2 mean that the marionette
right or left knee is pulled up by a virtual, invisible string. In the
both cases, the lower legs fall down due to the gravity effect.

4.3 Motion effect of ground contact constraint

As for a real marionette, the ground contact constraint plays a
significant role to effectively generate various motions. Figure 4
shows another set of example poses concerning the ground contact
constraint. Left figure (Pose 1) is an initial pose. In this case,
neither two feet nor two hands touch the ground. Middle figure
(Pose 2) means that two feet touch the ground due to the lower
position of the body center. In this case, the positions of both left
and right knee are automatically calculated using the 2-links Inverse
Kinematics as shown in Figure 5. Furthermore, right figure (Pose
3) of Figure 4 shows a pose with the both feet and the hip contacting
the ground.

4.4 Walking motion generation

Our system also generates walking motions of an articulated figure
as shown in Figure 6. In this case, the center position of a model is
calculated by following equations:

.

,

,sin
2

,

,cos
2

1

1

1

1

1

1

X
JS

X
i

Y
JS

Y
i

Y
i

Z
JS

Z
i

Y
i

JS
LF
i

RF
iC

i

JSC
i

Y
i

JS
LF
i

RF
iC

i

ZXXX

YY

ZZZZ

θθ

θθθ

θθ

θ

θ

=

+=

=

×+
+

=

=

×+
+

=

+

+

+

+

+

+

 (4)

Here, C
i

C
i

C
i ZYX 111 ,, +++ are the x, y, z component of the center

position at i+1-th frame. RF
i

RF
i ZX , are the x, z component of the

Figure 4. Three marionette poses with ground contact
constraints

Figure 3. Motion trajectory of the marionette’s hands (left)
and 2-links Inverse Kinematics (right)

Figure 5. Ground contact constraints using 2-links Inverse
Kinematics

Figure 6. Walking motion example

right foot position at i-th frame, as well, LF
i

LF
i ZX , are the x, z

component of the left foot position. JSY and JSZ are the y and z
component of the position data sent by a joystick. Its x component
is not used. X

i 1+θ Y
i 1+θ and Z

i 1+θ are the rotation angles of the
center along x-axis, y-axis, and z-axis respectively at i+1-th frame.

Y
iθ is the rotation angle along y-axis at i-th frame. X

JSθ , Y
JSθ and

Z
JSθ are the rotation angles data along x-axis, y-axis, and z-axis

respectively, sent from a joystick. As you see Figure 6, it is
possible to make a turn by changing Y

JSθ and also control its speed
by the change of JSZ .

5. APPLICATION EXAMPLES

This section introduces several application examples uses our
real-time motion generation system.

5.1 Marionette Theatre

Figure 7 shows the image of a marionette theatre. That uses
IntelligentBox. IntelligentBox has already provided a particular box
called MSBox that receives motion data output from a full-body
motion capture system. Here, boxes mean 3D visual components
provided by IntelligentBox, and the user construct 3D graphics
applications by combining already existing boxes through direct
manipulations on a computer screen. By applying the motion data
given from a motion capture system through MSBox to a CG
character, the CG character takes the same motion as a performer.
We extended the functionality of MSBox in order to receive motion
data output from our joystick based motion generation system.
MSBox receives motion data from the system through the network.
If our joystick based motion generation systems run on a different
computer and each connect to each of several sets of a CG character
and a MSBox running on one computer, each user can control
his/her own CG character using two joysticks attached to his/her
computer. In addition, to prepare a 3D scene besides CG
characters makes the marionette theatre possible. Actually, the

screen image of IntellignetBox shown in the left bottom of Figure7 is
the case that only two users control their own CG character, A and B,
separately through their own two joysticks on a different computer.
On computer A, one motion generation system exists and generates
motion data according to the joystick control of user A. This
motion data is applied to the CG character A, which exists on the
same computer A, through the MSBox of an IntelligentBox, which is
also running on the same computer A. On computer B, another
motion generation system exists and generates motion data
according to the joystick control of user B. This motion data is
applied to the CG character B, which exists on computer A, through
another MSBox of the IntelligentBox running on computer A.
User A can see his/her own CG character on the screen of computer
A. However, user B cannot see his/her own CG character if
computer A and computer B are located far from each other. In the
practical use, the screen image of computer A has to be seen by both
user A and B.

5.2 Walk-through Interface

The above mechanism can be used as the interface to walk-through
in a 3D virtual space. Multiple users can attend. Figure 8 shows
the screen image of such application example. IntelligentBox
provides another box called CameraBox that was developed for
controlling the user’s view. CameraBox generates view images
seen from its position and in its direction. To attach a CameraBox
to the forehead of a CG character, the user can see the same view
images as that the CG character sees. Consequently, the user can
do walk-through in a virtual 3D space as if he/she existed in the
space.

5.3 Accurate Motion Generation by Re-editing

As mentioned in Sec. 2, the quality of motions generated by Oore’s
system seems better than that of our system because our system uses
very simple algorithms (marionette metaphor) to generate motions

Figure 7. Marionette theatre example using IntelligentBox

in real time. Of course, it is possible to obtain more accurate
motions by re-editing the motions once generated using our joystick
based motion generation system and stored. For this,
IntelligentBox also provides “Component Based Motion Editing
Environment [4]”. Figure 9 shows this process. Furthermore,
recently we have been studying on motion database systems. Our
joystick based motion generation system creates the poses of a CG
character so it will be used as query motions to search required
motions from motion databases.

6. CONCLUDING REMARKS

We proposed new motion design method based on a marionette
metaphor using two joysticks. In this paper, we described how to
generate motions by showing actual motion examples.
Furthermore, we introduced application examples for entertainment
fields. Even if using conventional computer animation software,
creation of the motions shown in Figure 2 and 4 is not easy. Using
our system, the user can create those motions by his/her joystick
operations interactively in real time. The main mathematical factor
of our system is only 2-links Inverse Kinematics. This is very
simple so its calculation cost is very low. Therefore, our system
generates the motions demonstrated in this paper in real time. As
for the performance of the system, frame rate is around 18 fps using
a standard PC, 850MHz PentiumIII CPU, 640MB memory, and
GeForce3 graphics. This value is satisfactory for interactive

applications.
As future works, we will have to develop application examples in
order to evaluate and improve our motion generation method.
Furthermore we are trying to introduce spacetime constraints [9]
partially in order to generate more natural marionette motions.

References

[1] Okada, Y., Real-time character animation using puppet metaphor,

Workshop Note of the First International Workshop on Entertainment
Computing (IWEC2002), pp. 86-93, 2002.

[2] Okada, Y. : Real-time Motion Generation of Articulated Figures Using
Puppet/Marionette Metaphor for Interactive Animation Systems, Proc.
of the 3rd IASTED International Conference on Visualization,
Imaging, and Image Processing (VIIP03), ACTA Press, pp. 13-18,
2003.

[3] Okada, Y. and Tanaka, Y., IntelligentBox: A Constructive Visual
Software Development System for Interactive 3D Graphic
Applications, Proc. of Computer Animation ’'95, IEEE Computer
Society Press, pp. 114-125, 1995.

[4] Okada, Y., Component Based Motion Editing Environment for Game
Character Design, Proc. of Second International Conference on
Intelligent Games and Simulation, SCS Publication, pp. 22-26, 2001.

[5] David J. Sturman, Computer puppetry., IEEE Computer Graphics and
Applications, 18(1):38-45, January/February 1998.

[6] Laszlo, J., Panne, M.van de, and Fiume, E., Interactive Control For
Physically-Based Animation, SIGGRAPH2000, pp.201-208, 2000.

[7] Oore, S. Terzopoulos, D. and Hinton, G. ,A Desktop Input Device and
Interface for Interactive 3D Character Animation, Proc. of Graphics
Interface 2002, pp. 133-140, 2002.

[8] Oore, S. Terzopoulos, D. and Hinton, G. ,Local Physical Models for
Interactive Character Animation, Computer Graphics Forum, Volume
21, Number 3, Proceedings of Eurographics 2002.

[9] Witkin, A. and Kass, K., 1988 : Spacetime constraints, Proc. of
SIGGRAPH'88, pp. 159-168, 1988.

Figure 8. Walk-through example

Figure 9. Accurate motion generation by re-editing once stored motions generated by the motion generateion system

PROTOTYPING A SIMPLE LAYERED
ARTIFICIAL INTELLIGENCE ENGINE FOR COMPUTER GAMES

Börje Karlsson

Informatics Center (CIn)
Pernambuco Federal University (UFPE)

Av. Prof. Luiz Freire, s/n, CIn/CCEN/UFPE, Cidade Universitária,
Recife, Pernambuco, Brazil

50740-540
E-mail: bffk@cin.ufpe.br

KEYWORDS
AI, AI engine, computer games, software architecture.

ABSTRACT

This work presents the chosen approach for the
prototyping of an Artificial Intelligence Engine designed
to provide support for the implementation of AI
functionalities in computer games, streamlining this
implementation and allowing the developers to focus their
attention on the creative side of the game.

INTRODUCTION

As the market of digital entertainment products (especially
digital games) grows, these products get more and more
complex and their users present higher and higher
expectations, requiring quality and believability in the
character behaviours. Because of these facts, artificial
intelligence (AI) functionalities are no longer held in a
secondary level during development. Despite of this, AI
applied to computer games development, remains a
complex domain and relatively unexplored. A great source
of solutions and techniques for the creation of such
realistic and interesting environments and characters is the
academic community (Laird and Lent 2000).

With the ever growing necessity of AI functionalities
and the fact that some techniques are already in use in
game development, supporting tools were created in order
to help with these tasks but these tools presented little
flexibility. Without a certain level of support, a developer
will spend a great part of his time struggling with low-
level details or re-implementation of common
functionalities. It is believed that the next big step in the
quality of AI game techniques depends on the creation of
AI middleware, to alleviate developers and allow them to
concentrate on creative tasks related to AI.

In the following sections this work presents some
commercial and academic approaches to the creation of AI
engines and game AI related functionalities that were
studied in order to try to identify issues, good ideas and
solutions. Then, it presents the ongoing prototype
implementation and some conclusions from the effort.

AI ENGINES

In other computer games development areas, such as
computer graphics, networking and physics modeling, it is
already a common practice to use pieces of software that
help the developers with tasks related to these areas,
allowing them to focus on the creative side of the game.
This is only recently started to be seen in the AI segment
of game development.

An AI engine is basically a set of software
components that provides services for the game engines
for performing the AI functions in a computer game.
Usually also called Artificial Intelligence Middleware, AI
engines handle the process of producing the desired
behaviours of the agents present in the game world.

Traditionally, computer games developers use a small
set of techniques over and over again in the
implementation of artificial intelligence functionalities in
games, specially Finite State Machines (FSMs) that are
basically a set of states and transitions between these states,
used to represent some kinds of behaviours, and the A*
algorithm used for calculating paths. But even with the
small set of techniques used, current games achieve pretty
good results.

The processor time available for calculations related
to the AI module is usually very short, and so, its tasks can
not be very CPU intense. That’s why lots of computer
game software utilize simple approaches as FSMs (where
the transitions between states usually reflect some game
world events); decision trees, as is the case of the
AI.implant (BGT 2003) engine; or rule-based systems
(RBSs), which are more flexible than a purely stimuli-
response approach, the standard procedure for
implementing behaviour until very recently (Nareyek
2000a), for they allow objects to incorporate a internal
state, making it possible to achieve longer term goals and
FSMs and simple RBSs are as fast as implementing the
stimuli-response approaches.

However, the limitations of the FSM approach in the
design of intelligent agents are well known, they are
limited specially by combinatorial explosions (as the
environment complexity grows, so grows the states and
transitions sets in order to allow responses to every
possible case and situation on the environment) and by the
potential repetitive behaviours, because the FSMs have a
fixed set of states and transitions, if the same situation

happens twice, the behaviour will be the same both times.
These limitations were “attacked” with the creation of
hierarchic FSMs (HFSMs), a extension to traditional
FSMs that allows the creation of composite states which
contain, inside themselves, other states and transitions; and
the creation of Fuzzy FSMs (FuFSM) that add
characteristics of fuzzy logic to FSMs in order to lower the
previsibility of actions. All of this being supported by the
creation of visual editors that help the creation and
maintenance of theirs state diagrams.

Regarding RBSs, they present some advantages; they
correspond to the way people usually think about
knowledge, are very expressive and allow the modeling of
complex behaviors, model the knowledge in a modular
way, are easy to write and are much more concise than
FSMs. However, RBSs may have a large memory
footprint, require a lot of processing power and even in
some situations become extremely difficult to debug.
SimBionic (Fu and Houlette 2002) presents an approach
that fits somewhere in between FSMs and RBSs, by
providing a framework for defining objects that display
behavior within the game world. This framework is very
state-oriented, supporting the creation of complex
hierarchical state systems.

These techniques are somehow powerful but also
have limitations. Alternatives motivated by academic
research produced a rich variety of approaches for the
creation of interesting and plausible intelligent agents. But
unfortunately, this approaches tend to be very
“heavyweight”, as deliberative systems, that have goals, a
world model e can plan several steps necessary to achieve
the goals, but are heavy and slow; or hybrid systems that
calculate the planning beforehand and make use of rules in
the lower levels (during runtime), but because of this pre-
calculation of the plan, do not present good responses in
highly dynamic worlds (as is the case with most computer
game worlds).

Games developers need a solution in between simple
FSMs and complex cognitive models. First of all, it is
necessary to avoid too frequent updates, and to rely in an
event based model. In second place, the new solution
needs to present a variety of reactions but still being
verisimilar. Third, the solution must provide a simple
framework on which it may be possible to create highly
customized new solutions; this framework shall also allow
for scalable development. A possible approach would be
to make use of “anytime planners” (Nareyek 2000b),
planners that can improve the plan after each iteration, if
there is little CPU time available, the system still manages
to be reactive, and the plan gets to be refined if there is a
bigger slice of available processor time, and also where
the plan can be updated in case changes occur in the game
world. Or, representational planning techniques (Martin
2003) to be used as a layer above the artificial intelligence
mechanisms already in place, that explicitly handle the
world representations in order to be able to choose the best
behaviours for a given situation. But unfortunately,
approaches to planning are seldom known/used in
computer games development.

Some approaches use inference engines to “conclude”
what is the best course of action, one such example of
inference engine, initially used in military simulations, is
the Soar (Laird et al. 1987) architecture which combines
the reactivity of stimuli-response systems with the context
sensitive behaviours found in systems that use FSMs or
scripting. In Soar, the knowledge is represented as a
hierarchy of operators. Each level in this hierarchy
represents a more specific decision level in the intelligent
agent behaviour. The top level operators represent the
agent goals and behaviour modes, the second level
operators represent high level tactics used to achieve the
goals specified in the higher level. And the lower level
operators represent the steps (or sub-steps) necessary for
the agent to implement and execute the tactics.

Another approach is the biologic/ evolutionary one
(Donnart et al. 1999) that originated DirectIA (Masa 2002),
a package that provides support for the creation of agents,
with behaviours ranging from basic reactions to deep
world state analysis. DirectIA is an agent-centric tool,
which “mimics” how and why a character makes a
decision. Using a motivational model, its mechanism
handles stimuli, emotion, states, motivations, behaviours
and actions. In this system, motivations that compete until
it is decide which one must be applied to the situation,
given the internal and external states, resulting in an
emergent behaviour. The intelligent agents can weight
tradeoffs and present behaviours not specifically
programmed by the game developers.

Some other issues must be taken into account when
analyzing AI engines. (Laird and Lent 1999) states clearly
that a knowledge base containing goals, tactics and
behaviours independent of a specific game is its most
important feature. And (Leonard 2003) states the extreme
value of a good set of sensors in order to improve the
player experience. Also, one can not forget the use of
machine learning techniques integrated into the AI engine
in order to obtain new behaviours (Ding 1999).

THE PROTOTYPE

The chosen AI engine prototype development approach
was a bottom-up approach where by implementing lower
level functions and combining them, the final solution
could emerge and also a prototype would be ready sooner.

Some of the decisions made were inspired by
Renderware AI (Pontevia and Williams 2002), an AI
middleware that presents a layered design (architectural,
services, agents and decision layers). The agents layer
being a set of behaviours that can be instantiated by a
game character; Renderware AI offers a set of C++ classes
and FSMs that the developers can extend and tweak to
create their own agents. Another influence was Pensor
(Pensor 2002a, Pensor 2002b), which is composed of a set
of re-combinable algorithms and techniques; planners,
path-finders, a decision module using FSMs and rules, a
perception module and an infra-structure module that
provides support for resource managing.

The implemented AI engine prototype was organized
in three macro layers, Service, Behaviour and Cognitive.

The Service layer, handles low-level implementation
details (Rabin 2001, Rabin 2000) to guarantee a good
system performance as well as freeing the game developer
from this burden (as for example: using event handling
instead of polling; execute the AI procedures with the
lowest possible frequency to lower CPU load; make use of
as much pre-processing as possible, allowing for the
separation of decision support data from the level design
itself, and improving efficiency in decision making).

The Behaviour Layer is a “evolving” layer, currently
using FSMs for they present good results in modeling
simple behaviours and are a tool familiar to game
developers and a simple set of “motivational rules” that
allow the selection of the behaviour to be executed next.
And the Cognitive layer is still not implemented but is
currently under research.

Most of the current implementation decisions relate to
low-level details and the engine’s API is still going
through a lot of changes. The prototype is currently being
developed and tested against a set of simple games and a
famous first person shooter (FPS), where a developer
needs only write some glue-code to begin using it.

CONCLUSION

In its current stage, the AI engine already provided many
insights into the creation of such a tool. As the higher
layer are improved/implemented many more issues will be
studied, especially higher level AI issues, probably
requiring a huge re-modeling of the engine. Also, it
already can be used as an educational tool to help
implement IA functionalities in computer games.

Much more thought will have to be dedicated (and
currently is being dedicated) to the question of
standardizing AI interfaces in computer games. Shall they
be in source code form? In form of an ontology?
Following the AUML (Bauer 2001)? Because of these
issues, the International Game Developers Association has
set up the AI Interface Standards Committee to develop
such interface standards, the initiative being a joint effort
of game developers, middleware representatives and
academics (Nareyek et al. 2003).

Even with these issues still open and other problems
found, AI in games will have a growing priority in the
development process. Even a little explored field in game
development and with just a few techniques in use, AI
already showed that can bring great advances in gameplay.

REFERENCES

Bauer, B. 2001, “UML Class Diagrams: Revisited in the
Context of Agent-Based Systems”, pp.1-8. Proceedings of
Agent-Oriented Software Engineering (AOSE) 2001, Agents
2001, Montreal, Canada.
BGT. 2003, “AI.implant for Games”, Whitepaper,
BGT BioGraphic Technologies, Montreal Canada.
Ding, Z. 1999, “Designing AI Engines with Built-in Machine
Learning Capabilities”. In Proceedings of the Game
Developers Conference, San Jose, USA.
Donnart, J., Jakobi, N., Kodjabachian, J., Meyer, C., Meyer,
A., Trullier, O. 1999, “Industrial Applications of Biomimetic

Adaptative Systems”. Proceedings of HCP'99 - Human
Centered Processes. ENST Bretagne Pub, Brest, France.
Fu, D. and Houlette, R. 2002, “Putting AI in Entertainment:
An AI Authoring Tool for Simulation and Games”, IEEE
Intelligent Systems, Vol. 17, No. 4, pp. 81-84.
Laird, J. E., van Lent, M. 2000, “Human-level AI’s Killer
Application: Interactive Computer Games”, Proceedings of
AAAI 2000, pp. 1171-1178, Austin, USA.
Laird, J., van Lent, M. 1999, “Developing an Artificial
Intelligence Engine”. In Proceedings of the Game
Developers Conference, San Jose, USA.
Laird, J. E., Newell, A., and Rosenbloom, P. S. 1987, “Soar:
An architecture for general intelligence”. Artificial
Intelligence, 33(1): 1-64.
Leonard, T. 2003, “Building AI Sensory Systems”. In
Proceedings of the Game Developers Conference, San Jose,
USA.
Martin, C. 2003, “Representational AI Planning Techniques”,
In Proceedings of the Game Developers Conference, San
Jose, USA.
Masa. 2002, “Direct IA Datasheet”, Whitepaper, The Masa
Group, Paris, France.
Nareyek, A. 2000, “Intelligent Agents for Computer Games”,
In Proceedings of the 2nd International Conference on
Computers and Games, pp 414-422, Japan.
Nareyek, A. 2000. “Open World Planning as SCSP”.
In Papers from the AAAI-2000 Workshop on Constraints and
AI Planning, Technical Report, WS-00-02, 35-46. AAAI
Press, Menlo Park, California, USA.
Nareyek, A., Knafla, B., Fu, D., Long, D., Reed, C., El
Rhalibi, A. and Stephens, N. (eds). 2003, “The 2003 Report
of the IGDA's Artificial Intelligence Interface Standards
Committee”. International Game Developers Association.
Pensor. 2002, “Path planning to massive worlds”, Pensor
whitepaper series, wp-2002-5-1, Mindlathe Ltd., Coventry,
United Kingdom.
Pensor. 2002, “Decision inertia an AI stability”, Pensor
whitepaper series, wp-2002-4-2, Mindlathe Ltd., Coventry,
United Kingdom.
Pontevia, P. and Williams, G. 2002, “AI Middleware, A
Powerful New Multi-Platform Approach For Game
Development: Introducing RenderWare AI, powered by
Kynogon”, Whitepaper, Criterion Software Inc., Austin,
USA.
Rabin, S. 2000, “Designing a General Robust AI Engine”. In
Game Programming Gems, Charles River Media.
Rabin, S. 2001, “Strategies for Optimizing AI”. In Game
Programming Gems 2, Charles River Media.

AUTHOR BIOGRAPHY

BÖRJE KARLSSON is a Student Researcher at Centro
de Informática (CIn), Universidade Federal de
Pernambuco (UFPE) in the field of Artificial Intelligence
and is currently working in projects at CIn/UFPE and
C.E.S.A.R with Motorola, related to development and
testing for mobile devices. Börje has about 8 years of
experience in development for several platforms (from PC
and cell phone games to network software and high
availability systems) and works published about game
development, AI in games, development for mobile
devices and network data analysis. Börje has a BSc in CS
and is finishing a specialization in Software Engineering
both at CIn/UFPE. He is also member of the IGDA AI
Interface Standards Committee.

OPTIMISING RETE FOR LOW-MEMORY, MULTI-AGENT SYSTEMS

Neil Madden
School of Computer Science and IT,

University of Nottingham,
Nottingham, NG8 1BB. UK.

E-mail: nem@cs.nott.ac.uk

KEYWORDS
Game AI, Rule-Based Languages, Rete, Optimisation, Agents.

ABSTRACT
Optimisations to the standard Rete algorithm are presented as
a means of bringing advanced, rule-based artificial intelligence
techniques to low-memory systems — in particular, current and
future generations of games consoles. A brief introduction to
Rete and the issues involved in its implemention on low memory
hardware is followed by a discussion of the solutions developed.
By sharing resources it is possible to enable the algorithm to run
efficiently on low memory machines. A brief overview of the
implementation of a rule interpreter which makes use of these
optimisations is included.

INTRODUCTION
There are several reasons why a rule based system can be ben-
eficial to the design of complex agent behaviour, including a
declarative programming style allowing for easy maintenance
and growth of the rule base, and facilities for rapid applica-
tion development (RAD) offered by many rule programming
environments[Jackson, 1999]. The flexibility of a rule based
approach allows for complex characters to be created in com-
puter games. However, rule based systems are sometimes in-
efficient and offer poor performance. The Rete[Forgy, 1982]
algorithm forms the basis of a number of efficient rule
based programming languages, such as OPS5[Forgy, 1981] and
CLIPS[Giarratano, 2002]. The algorithm improves the perfor-
mance of such systems, but at a price in terms of memory effi-
ciency.

We have developed a rule interpreter based on the Rete al-
gorithm, but with a number of implementation enhancements
which aim to reduce the memory usage of the algorithm. The
changes are based upon multiple agents sharing the resources of
a single Rete and sharing representations of information about
the environment. Traditionally, when several agents are devel-
oped using a rule based programming language, each is given
its own Rete, and maintains a separate working memory. How-
ever, in many applications, agents share elements of behaviour
to some degree (there may be a subset of rules which is common
to a group of agents). By allowing these agents to share the part

of the Rete which corresponds to this common behaviour, some
memory savings should be possible. In a similar way, agents
may observe the same facts about the world, so it makes sense to
try and share working memory elements representing these facts.
The main theme of this paper is to investigate the extent to which
sharing may be realised in an implementation of the Rete algo-
rithm, and to evaluate the associated trade-offs and drawbacks.

In the next section, we present a brief background to the ad-
vantages and disadvantages of rule based programming for game
artificial intelligence (AI), along with the discussion of the prob-
lems that Rete was designed to overcome, and some of the draw-
backs that Rete suffers from. We then present the optimisations
that we have developed, some ideas for building on these opti-
misations, and an overview of the system we have developed.

BACKGROUND
In a rule based system, patterns in a rule are matched against
facts representing the current state, in order to determine actions
to be taken. A typical use of such systems is in implement-
ing agents which inhabit an environment. When a rule matches
against the currently known facts, a series of actions associated
with that rule is executed. Usually there are mechanisms to deal
with more than one rule matching the environment (conflict res-
olution), and, often, some way to prioritise rules. Actions can
also cause changes to be made to the database of known facts,
which in turn will cause different rules to be executed. An ex-
ample of a rule and some facts which would cause the rule to fire
are given below (in a simplified CLIPS syntax):

(defrule killed-enemy
(enemy (name ?X) (health 0))
(target (name ?X) (is-dead no))

=>
(assert (target (is-dead? yes)

(name ?X)))
)

(assert (target (name "Jon")
(is-dead? no))

(assert (enemy (name "Jon)
(health 0)))

The patterns come before the => symbol while the actions come
after it. When the enemy is killed (health reaches zero), a fact
indicating this is added to the working memory of the agent. The

contents of working memory are then matched against the pat-
terns in the rules to decide which action to perform next. The
patterns show the layout of the facts which they match, using
variables (denoted by a ? prefix) to extract information from the
fields of the facts.

The heart of a rule based system is the matching engine which
compares the currently known facts against the patterns con-
tained in the rules. As there may be a very great number of rule
patterns, and an even larger number of rapidly changing facts, it
is crucial that this matching engine works as efficiently as possi-
ble, so that the agent may respond quickly to changing situations.

THE RETE ALGORITHM
The Rete algorithm was developed to solve the problem of
quickly matching facts against rule patterns. It works by main-
taining a cache of intermediate results generated during the
matching process. For instance, in our example, a fact may be
asserted which states that a certain enemy has become the cur-
rent target. However, at this time, the enemy is not dead and
so our rule will not be activated. In a naive implementation of
a rule system, we would keep comparing this fact against the
rule pattern until both facts were asserted. In the Rete algorithm,
however, the fact is matched once, and the value for the variable
X is stored away. Later, if the other fact is asserted, then we sim-
ply compare the values for X from each match and if equal, then
the rule is activated.

The Rete algorithm dramatically reduces the number of
matches which have to be performed on each cycle by main-
taining a directed graph data structure containing the cached in-
formation. The first level nodes in the graph are called alpha-
nodes. Each alpha node represents a single pattern. Where there
is more than one pattern in a rule, the alpha nodes are joined by
beta-nodes which carry out unification between two nodes. Beta
nodes are then joined by further beta nodes until a single node is
reached. This final (terminal) node represents the complete rule.

When a fact is asserted, a token is created and passed into the
alpha nodes of the Rete which deal with this type of fact. The
token is a wrapper around the fact and contains extra informa-
tion such as whether the fact is being asserted or retracted. If
the token matches the pattern in an alpha node, then it is passed
on to the next node, while the value of any variables in the pat-
tern are stored in a table, called a node-memory. The beta-nodes
take rows from the tables of the alpha nodes and try to join them
together, making sure that variables with the same name are as-
signed the same value. For instance, if a row in one table con-
tains the values A=1,B=2, and a row in another table contains
the values A=1,C=3, then a new row will be created in the table
of the beta-node containing the values A=1,B=2,C=3, and the
token is passed on. If the values for A had been different then this
row would not have been created, and the token would not have
been passed on. When a token has passed all the way through
the Rete it emerges at a terminal node which represents a partic-
ular rule. For a token to reach a terminal node, all the patterns
in that rule must have matched, and so the rule can be activated.
See figure 1 for an example. The key advantage of Rete is that
rule conditions are only re-evaluated when a fact is asserted or
deleted. In this way, asserting a new fact is simply a case of

beta2

JOIN(XY,Z)

alpha1 alpha2 alpha3

root

beta1

JOIN(X,Y)

SELECT(X) SELECT(Y) SELECT(Z)

Rule Activation

Figure 1: Example of a Rete network, showing a single rule.

passing a token through the network, and a smaller number of
matching operations are performed. In a naive implementation,
each new fact would be compared against every single pattern of
every rule, which means a greater time complexity. Retracting
a fact is identical to assertion, but items are removed from node
memories.

However, the Rete algorithm has been criticised, as it uses
a large amount of memory in order to maintain this cache of
intermediate results. The algorithm doesn’t scale-up well to
large rule databases, as the memory usage increases dramati-
cally. The space complexity of Rete is of the order of O(RFP),
where R is the number of rules, F is the number of asserted
facts, and P is the average number of patterns per rule, com-
pared to just O(F) for a naive implementation of a rule-based
system without Rete. This also inhibits its use in low-memory
systems, such as computer games consoles. In addition, the
Rete algorithm is designed primarily for single agent systems
— traditionally, each agent would have a separate Rete and
maintain a separate working memory, and yet many agents
may share similar rules. In order to improve the memory ef-
ficiency of Rete, a few other algorithms have been developed.
These include TREAT[Miranker, 1987], which removes beta-
nodes and recalculates caches as needed, and the more recent
Rete*[Wright and Marshall, 2003] which has TREAT as a spe-
cial case, and allows for a degree of control over the trade-off
between memory consumption and matching speed. These algo-
rithms have had varying degrees of success — for a comparison
of Rete and TREAT and a discussion of the issues involved see
[Nayak et al., 1988]. However, there are a number of implemen-
tation optimisations which can be used to reduce the memory
overhead of the original Rete algorithm. This paper briefly doc-
uments a few such optimisations developed as part of a project
to develop a low-memory, multi-agent rule interpreter for use in
console games.

OPTIMISING RETE
The techniques discussed are based on the following observa-
tions:

• Rete networks are expensive in terms of memory usage.

• Agents often have identical rules.

• Different facts may contain the same data.

• Several agents may observe the same fact.

• A fact which was true once may well become true again in
the future.

A number of different implementation optimisations can be de-
veloped based on these observations. The key principle in all of
the techniques is to try and maximise sharing of resources in the
Rete, without too much of a speed penalty being introduced. We
have developed solutions based on three main areas:

• Sharing the Rete between several agents — i.e. sharing the
rule structures.

• Sharing working memory items (facts) between agents.

• Sharing values of fields between facts, and between ele-
ments of node memories in the Rete.

Bit-strings are used within our implementation of Rete to flag
the validity of facts or rules for particular agents — a setting of
1 in a particular bit position shows the validity of this item for
the agent which owns this bit position.

Sharing Rules
By using bit-strings we can use a single Rete to represent the
rules of multiple types of agent. This works by assigning a
unique bit-mask to each agent, which has a single bit set in it,
and assigning bit values to nodes in the Rete as rules are com-
piled. With this method we can restrict the path that a token
can take through the network, depending on which agent has
asserted the fact. When the token is passed through the net-
work, an additional check is performed at each node to see if
the agent which is asserting the fact has this rule as part of its
behaviour. The check is a simple bit-wise AND operation of
the bit-string of the node and the bit-string of the agent. If
the result is non-zero then the node is valid for this agent. If
a node (or even a whole rule) is shared between two or more
agents, then we simply perform a bit-wise OR operation of the
strings of each agent, and the resulting bit-string is stored in the
node. See Figure 2 for an example. The main benefit of hav-
ing one Rete network (with n agent masks controlling access to
parts of the structure) rather than having n separate Rete net-
works (and so, no masks needed) is that in this way many in-
dividual rules can be shared among agents. Typically, the size
of the structures which represent a rule in the Rete (p alpha
nodes, and p-1 beta nodes, where p is the number of patterns
in the left-hand side of the rule) would be much greater than
the combined size of the bit-strings needed (one for each node,
so 2p-1 bit-strings, typically 4 bytes each) (a full cost analy-
sis of Rete is given in [Wright and Marshall, 2003]). It thus

�
�
�

�
�
�

alpha1 alpha2 alpha3

beta1

AND 0101 AND 0010

RootToken:
0100

AND 0101

AND 0101

Token Passes

Token
Blocked

Figure 2: Rete with bit-strings for rule sharing.

makes sense to use the bit-strings, rather than duplicate an en-
tire rule. It is possible to reduce the overhead of bit-strings fur-
ther by only marking alpha-nodes in this way, and assuming that
once a token has passed an alpha node it is contained within
the structure of a particular rule, and so cannot be passed to an
invalid node. This assumption only holds, however, if no shar-
ing of nodes between rules is performed. However, some sys-
tems, such as Jess[Friedman-Hill, 2000] do share nodes between
rules (see http://herzberg.ca.sandia.gov/jess
/docs/52/rete.html for details), and so it would be nec-
essary to mark all beta nodes as well.

The above analysis demonstrates why it is useful to share
rules. However, not all rules will be shared (it is quite likely that
some agents will have unique behaviour). As there is no way to
descriminate between shared and unshared rules, all must have
bit-strings applied to the associated nodes in the Rete. It is clear
that if very little or no sharing is actually occurring, then the bit-
strings are redundant and their cost becomes an issue (the goal
is to reduce memory consumption, not add to it). The point at
which sharing rules becomes a problem is the point at which the
memory cost of the bit-strings (in the entire Rete) is greater than
the memory saved by sharing rules, i.e. when:

rs(2p − 1) ≥ n(ap + b(p − 1))

where,

r = number of rules compiled into Rete,
s = size of a single bit-string,
p = average number of patterns in a rule,
n = number of shared rules (see below),
a = typical size of an alpha node,
b = typical size of a beta node.

A shared rule, as used above, is one which has no individual
representation in the Rete, but uses an existing representation
of an indentical rule (from a different agent). In this way, we
measure only the memory saved — each shared rule must rely on
one compiled rule, which does take up memory. In other words,
if we add three identical rules to the Rete (and no identical rule
already exists), then we have increased the value of r by 1 and
the value of n by 2.

By changing the relation to equality, we can calculate the ra-
tio of shared rules to compiled rules (n/r) that marks the lower
bound for rule sharing to be cost effective:

n

r
=

s(2p− 1)

ap + b(p − 1)

As an example, if we assume an average of 5 patterns per rule,
take the size of a bit-string to be 4 bytes (an unsigned int),
and the size of alpha and beta nodes to be 100 bytes each (a
conservative estimate), then the ratio needed is:

n

r
=

4× (2 × 5 − 1)

100× 5 + 100× (5 − 1)
=

36

900
=

1

25

So, in order for sharing to be effective in this example, there
would have to be at least one shared rule for every 25 compiled
into the rete. It seems quite likely that this could be achieved in
a real application, for example, opponents in first-person shooter
(FPS) games such as Unreal Tournament often exhibit identical,
or very similar, behaviour in a given situation.

It is easy to adapt the relation to show the total amount of
memory that would be saved by sharing in a particular situation.
That is given by the amount of memory saved, minus the over-
head of using bitstrings:

Msaved = n(ap + b(p − 1)) − rs(2p − 1)

So, using the values above, with 50 compiled rules, and 5 un-
compiled (shared) rules, the amount of memory shared would
be:

5 × (100 × 5 + 100× 4) − 50× 4 × (2 × 4) = 2900bytes

while the cost of the Rete in this example would be around 45000
bytes (50 × (100 × 5 + 100 × 4)), giving approximately a 6%
saving, from a system with approximately 9% sharing (5/50).

In evaluating the utility of sharing rules, we must also consider
the added time required to check the bit-strings when processing
a token in the Rete. The checks involve a single simple bitwise
operation for each node visited. Compared to the pattern match-
ing and join operations which take place in each node, this ex-
tra (very fast) operation should be insignificant. The combined
Rete which represents the rules of every agent is likely to be sig-
nificantly more complex than a Rete which represents just one
agent (as there are more rules compiled into it). However, the
bit-strings effectively limit the nodes that a token can visit, and
so the traversal is not significantly more complex.

Sharing Facts
In a similar way, it is possible to share working memory items
amongst several agents. When an agent asserts a new fact, its
bit-string is stored with the fact. If another agent asserts the
same fact, then its bit-string is combined with the current fact
bit-string, using an OR operation, and the resulting string be-
comes the new fact bit-string. When unification takes place in
beta-nodes, the bit-strings associated with each constituent token
are combined using an AND operation, and this result is stored
with the node memory. In this way, the new bit-string represents
only those agents which knew every fact that was involved in

the unification. If this process results in a zero-valued bit-string,
then the unification is not valid for any agent, and so can be dis-
carded. (Alternatively, the result can be kept in the anticipation
that the conditions may become true for some agent in the near
future. A separate garbage-collection sweep can be scheduled to
collect zero-valued memory elements when memory is tight.)

We can calculate the expected space savings of using bit-
strings with facts in the same way as we did before for rules.
In this case, the total amount of memory that facts added to the
Rete take up is given by:

rf(αp + β(p − 1))

where,

r = number of rules compiled into Rete,
f = number of asserted facts,
p = average number of patterns in a rule,
α = typical size of an alpha memory element,
β = typical size of a beta memory element.

This assumes the worst case situation, where each fact causes
an item to be added to every node memory (which is unlikely).
The space taken up by adding bit-strings to facts is given simply
by the space of assigning a bit-string to each fact, and the space
required for storing bit-strings in alpha and beta nodes.

sf + rsf(2p − 1)

where s is the size of the bit-string, as before. So, the point at
which sharing facts becomes cost effective, memory-wise, is the
point at which:

rg(αp + β(p − 1)) ≥ sf + rsf(2p − 1)

where g is the number of shared facts. The memory saved in a
particular situation is then given by:

Msaved = rg(αp + β(p − 1)) − (sf + rsf(2p − 1))

As a worked example, assume p = 5 and s = 4 bytes as before,
a Rete with 50 rules, 20 facts, and 5 shared facts, and take α and
β to be 4 bytes. Then the memory saved would be:

50×5×(4×5+4×4)−(4×20×20+50×4×9) = 5600bytes

However, there are some drawbacks to this approach. The first
(and most obvious) is how to tell whether two facts are identical
and so can be shared. With complex facts it is costly to per-
form comparisons between facts to check for equality, and using
sophisticated matching techniques such as hashing or tree struc-
tures would probably use up more memory than is saved. One
solution to this problem would be to only share facts where you
can ensure equality of reference. For instance, if the same fact
is to be asserted for a group of agents, then the fact structure
could be created and stored and the same structure passed in for
each agent. Another situation might be where agents can share
knowledge with each other (through primitive communication).
In this situation the agent which has the knowledge could just
update the bit-string on the fact to represent the agents it has just
“told” this information to.

On first glance, it may seem that some speed increases could
also be achieved through the use of this technique. If an agent
asserts a fact which is already known for some other agent, then
we could simply synchronise the state of the Rete node memo-
ries for both agents. The problem with this approach is that it is
the combination of facts which determines the conflict set (set of
rules which could fire for an agent), rather than a single fact, so
we still need to perform a full Rete traversal for each agent that
asserts a fact to perform unification with other facts that the agent
knows. We are currently working on ways to avoid this traver-
sal, based on using a shared conflict set for all agents, and storing
back-pointers to fact bit-strings in node memories instead of the
bit-strings themselves. In this way, we can scan the conflict set
for a particular agent and recompute the unified bit-strings for a
particular rule activation to determine if the rule is valid for this
agent.

Sharing Values

A technique used in some modern scripting language interpreter
designs is to share values in the system by means of a reference-
counting system. For instance, Tcl[Ousterhout, 1990] uses such
a system, described in [Lewis, 1996]. A value stored in the field
of one fact (such as a name field) may also be stored in another
field in another fact (such as a target field which identifies the
name of an agent’s current target in a shoot-’em-up style game).
Rather than duplicating all of this data, it is possible to share it
by having it stored in one central location, and have facts store
a reference to it. A simple reference counting garbage collec-
tion scheme can be used to ensure that resources are freed at the
correct time. This technique is only useful when data types are
complex (e.g. strings, objects). With simple data types (inte-
gers, symbols) the amount of memory required to store them (an
integer is 4 bytes) would be equal to, or even smaller, than the
memory taken up by pointers in the reference counting scheme
(a pointer is typically also 4 bytes). So, value sharing is only
useful where a majority of data types are complex.

IMPLEMENTATION

We have implemented a prototype rule interpreter based around
the optimisations presented. The system (known as GORE —
the Game Oriented Rule Engine), is a language neutral library
which can be linked into an existing language interpreter (such
as a scripting language) to provide pattern matching facilities
suitable for the creation of rule based artificial intelligence pro-
grams. The library provides an API which can be used to create
rules, assert and retract facts and to run a pattern matching cycle
to select a rule to run. Callbacks are provided to allow a script
associated with a rule to be run when the rule fires. This API ap-
proach is very flexible, as it allows the developer to choose the
language in which the actions of the rules can be implemented,
and allows any action in that language to be performed. We have
implemented a prototype of the library, along with a binding to
the Tcl scripting language, as a proof of concept which can run
toy examples with all the optimisations enabled.

CONCLUSION
We have presented a number of optimisations which can be used
to enable rule based interpreters built upon the Rete algorithm
to be brought to low-memory systems, in particular to computer
games consoles. The techniques are designed to minimise the
memory usage of the algorithm by ensuring a high degree of
sharing of resources, while limiting the performance penalty of
the changes. Each technique can be implemented separately and
is useful independently of the others.

The techniques we described were developed for the Rete al-
gorithm. However, other algorithms (such as TREAT and Rete*)
which have much in common with Rete from an implementation
point of view, may be able to have the same techniques applied.
We are investigating the possibility of applying these methods to
TREAT and particularly Rete*.

We are currently improving the performance of the prototype
system, and making comparisons to existing Rete implementa-
tions in order to test the effectiveness of the optimisations.

References
[Forgy, 1982] Forgy, C. (1982). RETE: A fast algorithm for the

many pattern/many object pattern match problem. Artificial
Intelligence, 19:17–37.

[Forgy, 1981] Forgy, C. L. (1981). OPS5 user’s manual. De-
partment of Computer Science Technical Report, Carnegie-
Mellon University.

[Friedman-Hill, 2000] Friedman-Hill, E. J. (2000).
Jess, the Java expert system shell. Available from
http://herzberg.ca.sandia.gov/jess/.

[Giarratano, 2002] Giarratano, J. C. (2002). CLIPS
User’s Guide, v6.20. Technical Report, available from
http://www.ghg.net/clips/download/documentation/usrguide.pdf.

[Jackson, 1999] Jackson, P. (1999). Introduction to Expert Sys-
tems. Addison-Wesley.

[Lewis, 1996] Lewis, B. T. (1996). An on-the-fly bytecode com-
piler for Tcl. In Proceedings of 4th annual Tcl/Tk Workshop,
pages 103–114.

[Miranker, 1987] Miranker, D. P. (1987). TREAT: A better
match algorithm for AI production systems. In AAAI-87 Pro-
ceedings.

[Nayak et al., 1988] Nayak, P., Gupta, A., and Rosenbloom, P.
(1988). Comparison of the RETE and TREAT production
matchers for SOAR. In Proceedings of AAAI-88.

[Ousterhout, 1990] Ousterhout, J. K. (1990). Tcl: An embed-
dable command language. http://www.tcl.tk.

[Wright and Marshall, 2003] Wright, I. and Marshall, J. (2003).
The execution kernel of RC++: RETE*: a faster RETE with
TREAT as a special case. International Journal of Intelligent
Games and Simulation, 2(1):36–48.

A PETRI NET MODEL FOR THE ANALYSIS OF THE ORDERING OF
ACTIONS IN COMPUTER GAMES

Stéphane Natkin

Liliana Vega
Centre De Recherche en Informatique du CNAM

Conservatoire National des Arts et Métiers
292, rue St Martin

75003 Paris, France
E-mail: lvega@cnam.fr

KEYWORDS

Video games, Analysis, Environment Specification,
Semiformal Method, Petri Nets.

ABSTRACT

The origin of this paper comes from the absence of
methodologies for game analysis. We take film analysis as
a basis and consider only story telling based games. Even in
this case, some fundamental features cannot be described
using classical audiovisual methods. In this paper, we
consider the ability to describe non deterministic structure
of the game narration. We describe a semi formal approach
based on a Petri Net specification. This method is
illustrated on the well known game Myst. Our approach can
also be considered as a starting point for a Game Design
method and an authorware tool.

INTRODUCTION

Computer games seem to be the more advanced field of
interactive media. Unlike Web sites, a game is a well
defined work for a given public. This allows the game
community to define rather precise methods of design and
production, to create a cultural background and a memory
of its main elements. Even if game culture is rather young,
the ability to create a game played all over the world is the
proof of a young maturity. The future of games, through
MMOG (Massively Multi-player Online Game) and
proactive games, is a paradigm for the development of the
on line interactive media (Natkin 2003). Will some games
be considered as works of art and will a game art appear?
There are numerous contradictory answers to this question.
If we look at games as an evolution of cinema, the ability to
create art games and to revive the contents of games
depends on the emergence of authors games. From this
point of view, the game industry, compared to the movie
industry for example, suffers from the absence of cultural
background i.e. education to critic. The ability to build a
critical analysis of games, to understand and compare the
structure of different games, the Mise-en-Scene, the
relationship between sound and image… are essential
features for this new media form.

FROM FILM TO GAME ANALYSIS

If we consider a classical film analysis approach (Vanoye
and Goliot-Lété 2001), the main points in a film description
are:
1) The film abstract,
2) The segmentation of the film in main parts (acts),

according to several criteria: space, time, punctuation
marks (fades), and narrative structure.

3) The division of each act of the film into sequences and
shots.

4) The sequence analysis:
- Narrative structure of the sequence
- The shot by shot analysis: duration, main visual

features, camera characteristics, camera travelling
and zooms, transitions between consecutive shots,
sound design, sound/image relationship.

From this semi-formal description numerous analysis
methods have been developed according to various goals
and aesthetical or historical points of view.

If we consider a possible transposition of this method many
fundamental aspects have to be adapted:

First the film analysis is not able to describe any aspects of
the gameplay. Hence an other methodology has to be
adopted to describe the game rules. It may rely on game
theory for example (Rollins and Morris 2000, Natkin 2002).
So for “non story telling” games (action games, strategic
games…), only the first two aspects of the film analysis can
be taken into account.

The game abstract cannot be only considered as a narrative
description. A game is first and essentially an imaginary
universe. Hence, the first step of the game specification is
to define the main aspects of this universe: The context of
the game, the global scenario (topology, global navigation
graph, main characters, nature and hierarchy of the levels),
the main features of the game, the principles of the
gameplay: modalities, goals, rules, main strategic choices,
the image and sounds charts, the ergonomic principles:
Interface, game learning, saving and loading options…
Since this is the first step of a game specification, it should
be the first step of a game description.

The segmentation of the game cannot be considered
according only to the narrative structure; it should rely on
the game levels which are generally based on a topology
analysis.

The notion of sequence and shots must also be modified: A
modified sequence can be a quest (Guardiola 2000): a goal,
obstacles and the resolution.

Shots cannot be defined only from the continuity of the
view point: in many games the player can change from a
virtual camera to an other. Only compulsory camera change
must be taken into account.

As the player is directing the cameras it is not possible to
define view points aspects as in film. This must be
translated into a formal description of the scene (as in
VRML) and the possible positions, travelling, and framing
of cameras. This could lead to a Mise-en-Scene theory for
games.

The same problems arise for sound design and sound/image
relationships. For example, the classification of sound as in,
out, and offscreen cannot be used without an adaptation.

In the sequel of this paper we consider only the description
of game sequencing and ordering for narrative games (i.e.
Adventure games, RPG, …).

SEGMENTATION OF A GAME

Levels

From a macroscopic point of view, the main structuring
aspects of a game are:

- The Map of the universe.
- The Game Levels.

A level can be defined as the main linear part of the game
structure. Each level is associated with a main sub goal of
the game goal. The possible ordering of levels are limited
by the logical structure of the game puzzle. Each level has a
narrative or perceptual necessity (Bates 2000). Levels are
also generally associated with a piece of the map.

The player may be allowed to “visit” the level n before he
has finished previous levels. But he will quickly discover
that he is not able to progress in this level. Either the goals
of the level are not explicited or his avatar must gain new
attributes and find objects only available in previous levels
in order to be able to cross obstacles.

To illustrate this, lets take Myst game as an example. In this
game the player has to visit several islands to find some
book sheets and complete the volume. If the player does
not bring the sheets from the corresponding island then that
level is not finish. All islands, except for the first one,
called Myst, can be visited in no particular order. Myst
Island serves as a gate to visit the other islands.

Quests

A level can be divided into quests. According to Guardiola
terminology, a quest is defined by three main
characteristics:

- A goal, for example, find a secrete code.
- Obstacles, which are opposed to the achievement

of the goal, such as the existence of a secret
passage to access codes.

- A resolution method, which makes it possible to
overcome the obstacles, for example the activation
of a mechanism that opens a secret passage.

A quest is not an atomic unit. The player may be involved
simultaneously in several quests. So, to describe the
possible sequencing of a game, we need a finer grain of
description.

For example, the game Black & White starts by a training
phase. The player must perform numerous quests, which
are used to test the player skills. For example, he must find
a flock of sheep lost in the mountains or he must help
sailors to build a boat. The player can find a first sheep,
then bring some wood for the boat, then find a second
sheep…

Transactions

We define a transaction as the atomic action of a player. A
transaction should be defined according to the memory of
the game. Looking at this memory the game execution can
decide either that a transaction is not started or that it is
finished.

A transaction can be: find a sheep and take it back to the
sheep barn. Of course the player may find a sheep and then,
because he decided to do something else, abandon it before
taking it back. From the game memory point of view this
action was not started.

A PETRI NET MODEL OF A GAME

In this section, basic Petri Nets modeling operations,
graphic representation, and aspects considered adaptable to
video games formalisation are introduced. The proposed
model is described below, and at last, a practical case is
used to illustrate the suggested method.

Introduction to Petri Nets

Petri Nets (PN) is a particular case of transition system
formalisation. Briefly, a Petri net is “a graphical and
mathematical modelling tool. It consists of places,
transitions, and arcs that connect them. Input arcs connect
places with transitions, while output arcs start at a
transition and end at a place.” […] “Places can contain
tokens; the current state of the modelled system (the
marking) is given by the number (and type, if the tokens are
distinguishable) of tokens in each place. Transitions are
active components. They model activities which can occur

(the transition is fired), thus changing the state of the
system (the marking of the Petri net). Transitions are only
allowed to be fired if they are enabled, which means that all
the preconditions for the activity must be fulfilled (i.e. are
enough tokens available in the input places). When the
transition is fired, it removes tokens from its input places
and adds some at all of its output places.” The number of
tokens removed and added depends on the value attached to
each arc.
“The interactive firing of transitions in subsequent
markings is called token game.”
(http://pdv.cs.tu-berlin.de/~azi/petri.html)

Figure 1: A Basic Example of a Petri Net

Places are modelled by circles, transition by bars. In Figure
1, all elements of a PN are shown. Transition T has two
input places P1 and P2. The values on the arcs between the
input places and the transition define the precondition,
which must be fulfilled to fire the transition. As the arcs
(P1,T) and (P2,T) are respectively valued by 1 and 2, the
transition T is enabled if place P1 contains at least one
token and if place P2 contains at least two tokens. When T
is fired one token is removed from P1 and two tokens are
removed from P2. The value on each arc between T and the
output places: (T,P3), (T,P4), (T,P5) defines the number of
tokens which are added to each output place when T is
fired. This set of values is called the postcondition. The
marking can be represented by a vector in which the ith
component is the current number of tokens (marks)
contained in place Pi.
If the marking is (1,3,0,0,1), T is enabled. The firing of T
leads to the marking (0,1,1,1,2).

PN Model of Quests

Petri Nets can be used at different modelling levels of
games. In this section we define principles to describe the
ordering relationships between quests.

Interpretations adopted for game modelling are as follow:

Places
We use two types of places:

Most of the places define the status of a transaction: The
mark of such places expresses either the number of time a
transaction can be executed, the number of time it has
already been executed or the fact that the execution is in
progress.

One place is used as a model of the player: It is marked
when the player is not involved in a transaction. In this
case, all enabled transitions define all the possible
transactions he can execute.

Figure 2 represents the basic model of a transaction A.
When the place PreA mark is equal to k, this means that the
transaction can still be executed k times. A new execution
starts with the firing of Begin A. When the transaction is in
progress, A is marked and the player place is empty. The
transaction execution ends with the firing of EndA. Hence
the mark of PostA, initially null, is equal to the number of
time A was finished; a token is put on the player place.

Figure 2: A Basic Model of a Transaction

We could have chosen to model a transaction by a single
transition, merging Begin and End. This is possible for
most PN semantic does not allow simultaneous transition
firing (transitions atomicity). However, our model has a
finer grain of description. It leads to a clear semantic of
time: Transitions are fired instantaneously; the duration of
the transaction is associated with sojourn time in placeA
(Vidal-Naquet and Choquet-Geniet 1992). Moreover, the
model indicates explicitly that a transaction is in progress.

The ability to cancel a transaction can be simply added to
this model. A transition AbortA is added to the basic
model, with A as input place and PreA and Player as
ouptput places. This extension does not modify the
properties of the game model and is omitted in the rest of
the paper.

Figure 3 shows the transaction PN model when the
transaction A can be executed 4 times (a) and an infinite
number of times (b).

Figure 3: Transaction PN Model for Different Number

of Executions Allowed

Ordering Between Transactions

Three basic relationships of ordering and causality between
two transactions have been identified as building operators
in order to construct the PN model:
- B before A, transaction B must be finished before

transaction A starts (See Figure 4).
- If B not A, if transaction B is not yet finished,

transaction A cannot be executed. Transaction B can be
executed regardless of transaction A execution (See
Figure 5).

- A Iff tk, this means that transaction A can be
executed only if transaction B has been executed at
least t times and no more than k times (See Figure 6).

Figure 4: B before A

In Figure 4, transaction B has to be fisnished before
transaction A starts. This condition is represented by the
arcs connecting elements PostB to BeginA.

Figure 5: If B not A

In Figure 5, transaction A may start only if transaction B
has not been executed. The arcs connecting place PreB to
transition BeginA represent this condition. Transactions A
and B can be both executed at this point. If transaction A is
executed first, transaction B can be executed after. On the
opposite, if transaction B is executed first, PreB will not be
marked any more, BeginA will never be executed.

Figure 6: A Iff tk

Figure 6 is a generalisation of the two previous ones. The
ability to execute transaction A depends on the number of
times that transaction B has been executed: at least t times
and no more than k times. We assume that the number of
executions of B is bounded by N, which is the initial mark
of PreB. If this boundary condition is not fulfilled, the
modelling of this general ordering relationship needs the
use of inhibitor arcs (Vidal-Naquet and Choquet-Geniet
1992; Diaz et al. 2001).

The three previous operators relate the execution of A to
the execution of B. If the execution of A depends on several
transactions, we need to combine these ordering operators
using logical operators.

Assume that the execution of A depends on B by a relation
F(B) and on C by G(C) ,where F(X) and G(X) are taken in
the set {(X before A),(If X not A), (A Iff t<X>k)}. These
relations are modelled as precondition of BeginA (see
Figure 7). So in order to express F(B) AND G(C) we must
merge the BeginA transitions of the two models of F(B)
and G(C). To express F(B) OR G(C) we must keep two
distinct BeginA transitions of the two models of F(B) and
G(C), with a common PreA place.

Figure 7: Logic Relationship Representation in PN

For example, assume that the goal of a given quest is to go
from a room to another. The door is closed. To open the
door the player can either open it with a key or break it with
a sword. We define four transactions:

A: find a key
B: find a sword
C: open the door
D: break the door

If we assume that a broken door cannot be opened with a
key, the quest model is (see Figure 8):

(A before C) AND (If D not C), (B before D)

Figure 8: Example Door with Four Transactions

If we don’t take care of the way that the player uses to open
the door, we define three transactions (see Figure 9):

A: find a key
B: find a sword
C: open or break the door

And the model becomes:
(A before C) OR (B Before C)

Figure 9: Example Door with Three Transactions

Quests Categories and Model

In our model a quest is a set of transactions related by
operators defined in the previous section. A quest has a
starting transaction B and an ending one E. We assume
without loss of generality that these two transactions are
mandatory (i.e. obligatory) and can be executed only once.
If this is not the case, it is always possible to add such
fictive transactions to the model.

Hence the PN model of a quest has a beginning place and
transition (PreB and BeginB) and an ending place and
transition (PostE and EndE).

A correct game must be such that,

- E cannot be executed if B is not executed.
- If B is executed eventually E will be executed.

The two preceding properties can be expressed as follow:

- For all reachable marking, if PreB is marked then
PreE is marked.

- There is a reachable marking such that PreB is not
marked and PostE is marked.

Game structure consists of quests description and their
relations (Guardiola 2000). Game goals hierarchy (game
plot) determines quests relationships. This hierarchy is not
always revealed to the player straight away. For example
the player may start by solving a low-level sub goal. Then
he discovers that the real goal of the level is elsewhere.
Player discovers goals and sub goals to be achieved as he
explores and progresses in the game.

Guardiola has classified this kind of relationship according
to three factors:
1) Mandatory or optional
2) Linear or non-linear
3) Successive or parallel

The first factor makes necessary a decomposition related to
levels. A level is composed by a set of quests. A level has a
starting quest and a finishing one. A quest is mandatory if it
is necessary to finish it in order to finish the level and
optional elsewhere.

Our model does not distinguish factors two and three. Their
differences concern game play mechanisms that are not
represented in the model.

We assume that a quest cannot be executed several times in
a given level.

Considering the last two criteria, in our model a quest may
have no relationships (none of the transactions of these
quests are related by ordering operators); may have
ordering relationships (at least one transaction of one quest
is related to one transaction of the other quest); or may have
common transactions. The ordering between quests in the
level results from the properties of the net.

This leads to a more refined classification. Consider two
quests, Q1 and Q2, which beginning transactions are
denoted BQ1 and BQ2 respectively and ending transactions
EQ1 and EQ2 respectively.

a) Q1 is before Q2 if for all reachable marking PreBQ2
is not marked implies PostEQ1 is marked.

b) Q2 is before Q1 if for all reachable marking PreBQ1
is not marked implies PostEQ2 is marked.

c) Q1 and Q2 are parallel if there are some reachable
marking such that:

PreBQ1 is not marked and PreBQ2 is not
marked and PostBQ1 is not marked and
PostBQ2 is not marked.

Q1 is before Q2 defines a partial order R between quests in
a level. Consider a level as a set of quests which are ordered
by R. R can be represented by a graph in which vertices are
quests. Q1 is related to Q2 if Q1 is before Q2.

Level entrance quests are those that do not have
predecessors whereas level exit quests do not have
successors. A possible level solution is a path between an
entrance quest and an exit one.

In Figure 10, level entrance quests are Q1 and Q2. Exit
level quest is Q5. There are three possible minimal length
paths which are a level solution: paths (Q1-Q3-Q5), (Q1-
Q3-Q4-Q5) and (Q2-Q4-Q5). Q5 is the only mandatory
quest of the level. But a path such as Q1-Q2-Q3-Q5 is also
a solution of the level.

Q1 Q2

Q3 Q4

Q5

Red,
Mechanical

Red,
Begin

Red,
Channel
Wood

Red, End

Blue,
Selenitic

Blue,
Stone Ship

Blue,
Channel
Wood

Blue,
Mechanical

Blue, End

Red,
Selenitic

Red,
Stone Ship

Blue,
Begin

Figure10: Level Solutions

Next section presents the application of the model through a
complete example. Myst game has been chosen because of
its adventure game plot.

MYST EXAMPLE

Synopsis

Myst game concerns magic books. The person who is able
to write such a book creates, in a parallel universe, the
fantastic worlds described in it. The one who touches such a
book is sent into the corresponding world. At the beginning
of this adventure the player finds one of this books and is
transported in Myst Island. Myst is the home of Atrus, who
is the only person who still knows how to make these
books. The player begins by exploring the island. During
this exploration he finds some intriguing messages, which

seems to be calls for help. The goal of the game is gradually
discovered, when the player finds the pieces of a puzzle
(dispersed messages: letters, journals and videos). The
player must free at least one of the two sons of Artrus, who
are prisoners of two parallel universes. To reach these
goals, the player must find all the sheets of the
corresponding magic book.

Myst perception is a mix of recent and XIX century Science
Fiction: Jule Verne or Conan Doyle seen through clean 3D
image synthesis.

Myst is an empty universe; the player is the only character
with the exception of Artrus and his two sons, who are seen
through descriptive cinematics.

Myst universe is composed by five lands: Myst and four
other islands (Selenitic, Stone Ship, Channel Wood,
Mechanical), related according to a star topology (i.e. Myst
is connected to each other Island. Any path from an island
to another goes across Myst).

In each Island two sheets are hidden: a Red and a Blue one.
Each quest consists in finding a sheet in one Island and
bringing it back to Myst. The game is completed as soon as
four sheets of the same colour have been found and brought
back to Myst Island. The player is allowed to continue his
game untill he has found all the sheets.

According to our classification Myst has only one level and
twelve main quests. If we denote for example (Red,
Selenistic) the research of the red sheet in this Island, the
graph of the game is given by the Figure11.

Figure 11: Myst Quests

Petri Net model for the beginning of the first quest

When the player starts the game he can travel over Myst
Island. He can find a letter (FL), which helps him to
understand the goal. He can find (FLV1) and activates
(ALV1) a lever, which opens a secret passage (ASP1). He
can find the secret passage (FSP1). If he knows the secret
passage and if it is open he can find a code (FC1). At this
point, the player finds a device (FD1). He can activate this
device using the code and information given in the letter
(AD1). This induces the presentation of a cinematic which
helps him to understand the goal of the game. The player
can also find (FLVi, i=1..n) and activates (ALVi, i=1..n) n-
1 other levers (n=7 in Myst). He can discover a library
(FLIB) and another secret passage (FSP2) to a tower in the
library. In the library there is a map of the island. When a
lever has been activated, the corresponding point in the map

becomes lighted. The player can then, through an action on
the map, activate a mechanism (AMi, i=1..n) corresponding
to the lever LVi. He goes through the secret passage to the
tower and then is able to discover a code (FCO). Only k
levers (4 in Myst) amongst the n lever lead to find a code.
The other levers have no practical effect on the quest. When
the player has found all the codes, he can proceed to
numerous other actions to finish the quest.

The following Petri net is the model of this part of the
initial quest (see Figure 12). Notice that only three levers
and two codes are modelled for clarity. In this example the
lever LV2 does not lead to find a code.

Figure 12: Petri Net of Part of the Initials
Quests in Myst

CONCLUSIONS

Game industry has already explored several ways to
formalise the game creation process (Kreimeier 2003a;
Kreimeier 2003b). However no formal method for game
analysis has been established.

In this paper we propose the use of Petri Nets for game
analysis. Petri nets provide expressive graphic descriptions
easy to understand and allow textual representations (Diaz
et al. 2001). Our approach leads to define and determine the
dynamic structure of a game from a bottom up method:
from transactions to levels.

Our model does not take into account some important
aspects of the game modelling analysis:

• The ability to represent time dependant preconditions.

This problem could be solved with the use of temporal
Petri nets or stochastic Petri nets.

• Model representation of player’s level of expertise,
management of success, game over and statistics
notions.

• The modelling of the relations between ordering in the
game and the game universe topology.

An other improvement could be to use more condensed
models, based on the models proposed here. A grammar
could be constructed to define higher-level global
operators. This work will have to be defined from
modelling experiences. In collaboration with Professor
Jean-François Peyre (CEDRIC/CNAM), some work in this
area has already begun.

We have taken an analytical point of view. The same
modelling principles could be used from a constructive
approach. In this case, the specification of the net should
start from levels and end at transactions. It leads to use the
mathematical properties of Petri Nets in order to validate a
game design.

ACKNOWLEDGMENTS

All graphics in this paper were modelled in HP Sims,
special thanks to Mr. Henryk Anschuetz for granting us
with an unlimited version of his Petri net tool.

REFERENCES

Bates, B. 2000. Game Design : the Art & Business of Creating

Games, Prima Tech Ed.

Diaz, M. et al. 2001. Les réseaux de Petri – Modèles

fondamentaux. Hermes Science Publications Ed. Paris.

Guardiola, E. 2000. Ecrire pour le jeu, Dixit Ed. Paris.

Genvo, S. 2003. Introduction aux enjeux artistiques et culturels
des jeux video, L’Harmattan Ed. Paris.

Kreimeier, B. 2003. Game desing methods. IGDA Roundtable.
GDC, San José, CA.

Kreimeier, B. 2003. Game design methods: A 2003 survey.
Gamasutra, March 3.

Natkin, S. 2003. Une architecture pour jouer à un million de

joueurs, Les Cahiers du Numérique, Paris.

Natkin, S. 2002. L’utilisation de la thèorie des jeux pour les jeux

vidéo. Master class supports DESS JVMI at CNAM, Paris.

Rollins, A. and D. Morris. 2000. Game Architecture and Design,
Coriolis Ed. Scottsdale.

Vanoye, F. and A. Goliot-Lété. 2001. Précis d’analyse filmique,
Nathan Université Ed. France.

Vidal-Naquet, G. and A. Choquet-Geniet. 1992. Réseaux de Petri

et systèmes parallèles. Armand Colin Ed. Paris.

Games:

Black & White. Electronics Arts, Black & White Studios and
Lionhead Studios 2000-2003. Strategy game (PC).

Myst. 1994. Ubisoft, Cyan. Adventure game (PC).

AUTHOR BIOGRAPHY

LILIANA VEGA obtained a bachelor degree in Computer
Administration Systems in 1993 (Tecnologico de
Monterrey, Mexico). For four years she worked at the same
institute as lecturer for Multimedia Applications and
Algorithms modules, while studying an MBA. In 1999, she
obtained the French postgraduate degree “DEA”, in the
field of Information and Communication Science with
specialization in Human-Machine Interfaces (Sthendal
University, Grenoble, France).

She joined CNAM’s CEDRIC laboratory (Paris, France) in
the spring of 2001 as a Ph.D. student. Her research subject
concerns the methods and formalisms for video games
analysis and specification. Her areas of interest include
multimedia and interactive design for video games.

LEARNING
TECHNOLOGIES

ONLINE ADAPTATION OF GAME OPPONENT AI
IN SIMULATION AND IN PRACTICE

Pieter Spronck, Ida Sprinkhuizen-Kuyper and Eric Postma

Universiteit Maastricht / IKAT
P.O. Box 616, NL-6200 MD Maastricht, The Netherlands

E-mail: p.spronck@cs.unimaas.nl

KEYWORDS
Gaming, artificial intelligence, machine learning,
unsupervised online learning, opponent AI.

ABSTRACT

Unsupervised online learning in commercial computer
games allows computer-controlled opponents to adapt to the
way the game is being played, thereby providing a
mechanism to deal with weaknesses in the game AI and to
respond to changes in human player tactics. For online
learning to work in practice, it must be fast, effective, robust,
and efficient. This paper proposes a novel technique called
“dynamic scripting” that meets these requirements. In
dynamic scripting an adaptive rulebase is used for the
generation of intelligent opponents on the fly. The
performance of dynamic scripting is evaluated in an
experiment in which the adaptive players are pitted against a
collective of manually designed tactics in a simulated
computer roleplaying game and in a module for the state-of-
the-art commercial game NEVERWINTER NIGHTS. The results
indicate that dynamic scripting succeeds in endowing
computer-controlled opponents with successful adaptive
performance. We therefore conclude that dynamic scripting
can be successfully applied to the online adaptation of
computer game opponent AI.

1 INTRODUCTION

The quality of commercial computer games is directly
related to their entertainment value (Tozour 2002a). The
general dissatisfaction of game players with the current level
of artificial intelligence for controlling opponents (so-called
“opponent AI”) makes them prefer human-controlled
opponents (Schaeffer 2001). Improving the quality of
opponent AI (while preserving the characteristics associated
with high entertainment value (Scott 2002)) is desired in
case human-controlled opponents are not available.
 In recent years some research has been performed to
endow relatively simple games, such as the action game
QUAKE, with advanced opponent AI (Laird 2001). However,
for more complex games, such as Computer RolePlaying
Games (CRPGs), where the number of choices at each turn
ranges from hundreds to even thousands, the incorporation
of advanced AI is much more difficult. For these complex
games most AI researchers resort to scripts, i.e. lists of rules
that are executed sequentially (Tozour 2002b). These scripts
are generally static and tend to be quite long and complex
(Brockington and Darrah 2002). This leads to two major
problems, namely the problem of complexity and the
problem of adaptability.
 The problem of complexity entails that because of their
complexity, AI scripts are likely to contain weaknesses,

which can be exploited by human players to easily defeat
supposedly tough opponents. The problem of adaptability
entails that because they are static, scripts cannot deal with
unforeseen tactics employed by the human player and cannot
scale the difficulty level exhibited by the game AI to cater to
both novice and experienced human players. These two
problems, which are common for the opponent AI of modern
CRPGs (Spronck et al. 2003), hamper the entertainment
value of commercial computer games.
 There are two ways to apply machine learning techniques
to improve the quality of scripted opponent AI. The first way
is to employ offline learning prior to the release of a game to
deal with the problem of complexity (Spronck et al. 2003).
The second way is to apply online learning after the game
has been released to deal with both the problem of
complexity and the problem of adaptability. Online learning
allows the opponents to automatically repair weaknesses in
their scripts that are exploited by the human player, and to
adapt to changes in human player tactics and playing style.
While supervised online learning has been sporadically used
in commercial games (Evans 2002), unsupervised online
learning is widely disregarded by commercial game
developers (Woodcock 2000), even though it has been
shown to be feasible for simple games (Demasi and Cruz
2002). The present study shows that unsupervised online
learning is of great potential for improving the entertainment
value of commercial computer games.
 Our research question reads: How can unsupervised online
learning be incorporated in commercial computer games to
improve the quality of the opponent AI? We propose a novel
technique called dynamic scripting that realises online
adaptation of scripted opponent AI and report on
experiments performed in both a simulated and an actual
CRPG to assess the adaptive performance obtained with the
technique.
 The outline of the remainder of the paper is as follows.
Section 2 discusses opponent AI in CRPGs. Section 3
describes online learning of computer game AI and the
dynamic scripting technique. The experiments performed for
evaluating the adaptive performance of dynamic scripting
are described in section 4 and 5. In section 4 dynamic
scripting is used in a simulated CRPG. In section 5 it is
applied in a module for the state-of-the-art CRPG
NEVERWINTER NIGHTS. Section 6 discusses the results
achieved with dynamic scripting. Section 7 concludes and
points at future work.

2 OPPONENT INTELLIGENCE IN CRPGS

In Computer RolePlaying Games (CRPGs) the human player
is situated in a virtual world represented by a single
character or a party of characters. Each character is of a
specific type (e.g., a fighter or a wizard) and has certain

3 ONLINE LEARNING OF GAME AI characteristics (e.g., weak but smart). In most CRPGs, the
human player goes on a quest, which involves conversing
with the world’s inhabitants, solving puzzles, discovering
secrets, and defeating opponents in combat. During the quest
the human-controlled characters gather experience, thereby
gaining more and better abilities, such as advanced spell-
casting powers. Some examples of modern CRPGs are
BALDUR’S GATE, NEVERWINTER NIGHTS and MORROWIND.

Unsupervised online learning of computer game AI entails
that automatic learning techniques are applied that adapt the
AI while the game is being played. In order for unsupervised
online learning to be applicable in practice, it must meet four
requirements, which are discussed in subsection 3.1. In
subsection 3.2 we present dynamic scripting as an
unsupervised online learning technique that meets these
requirements. While combat in action games generally relies mainly on

fast reflexes of the human player, combat in a CRPG usually
relies on complex, strategic reasoning. The complexity arises
from the fact that in each combat round both the human
player and the computer-controlled opponents have a
plethora of choices at their disposal. For instance, characters
can execute short or long range attacks with different kinds
of weapons, they can drink various potions, and they can
cast a wide range of magic spells. The probabilistic nature of
the results of these actions adds to the complexity of the
combat process.

3.1 Requirements for Online Learning

For unsupervised online learning of computer game AI to be
applicable in practice, it must be fast, effective, robust, and
efficient. Below we discuss each of these four requirements
in detail.
1. Fast. Since online learning takes place during

gameplay, the learning algorithm should be
computationally fast. This requirement excludes
computationally intensive learning methods such as
model-based learning.

 Opponent AI in CRPGs is almost exclusively based on
scripts. Scripts are the technique of choice in the game
industry to implement opponent AI in CRPGs, because they
are understandable, easy to implement, easily extendable,
and useable by non-programmers (Tozour 2002b). Usually
scripts are written and represented in a formal language that
has special functions to test environmental conditions, to
check a character’s status, and to express commands. During
the game-development phase scripts are manually adapted to
ensure that they exhibit the desired behaviour. After a
game’s release the scripts and associated behaviours remain
unchanged (unless they are updated in a game patch).

2. Effective. In providing entertainment for the player, the
adapted scripts should be at least as challenging as
manually designed ones (the occasional occurrence of a
non-challenging opponent being permissible). This
requirement excludes random learning methods, such as
evolutionary algorithms.

3. Robust. The learning mechanism must be able to cope
with a significant amount of randomness inherent in
most commercial gaming mechanisms. This requirement
excludes deterministic learning methods that depend on
a gradient search, such as straightforward hill-climbing. To deal with all possible choices and all possible

consequences of actions the scripts controlling the opponents
are of relatively high complexity. In contrast to classic
CRPGs, such as the ULTIMA series, in modern CRPGs the
human and opponent parties are often of similar composition
(see figure 1 for an example), which entails that the
opponent AI should be able to deal with the same kind of
complexities as the human player faces. The challenge such
an encounter offers can be highly enjoyable for human
players. However, as already mentioned in the introduction,
there are two major problems with application of complex,
static scripts to implement opponent AI, namely the problem
of complexity and the problem of adaptability. Unsupervised
online learning has the potential to solve these problems.
This is discussed in the following sections.

4. Efficient. In a single game, a player experiences a
limited number of encounters with similar groups of
opponents. Therefore, the learning process should rely
on just a small number of trials. This requirement
excludes slow-learning techniques, such as neural
networks, evolutionary algorithms and reinforcement
learning.

 To meet these four requirements, we need a learning
algorithm of high performance. The two main factors of
importance when attempting to achieve high performance
for a learning mechanism are the exclusion of randomness
and the addition of domain-specific knowledge
(Michalewicz and Fogel 2000). Since randomness is
inherent in commercial computer games it cannot be
excluded, so in this case it is imperative that the learning
process is based on domain-specific knowledge.

Figure 1: An encounter between two parties in BALDUR’S GATE.

3.2 Dynamic Scripting

Dynamic scripting is an unsupervised online learning
technique for commercial computer games. It maintains
several rulebases, one for each opponent type in the game.
These rulebases are used to create new scripts that control
opponent behaviour every time a new opponent is generated.
The rules that comprise a script that controls a particular
opponent are extracted from the rulebase corresponding to
the opponent type. The probability that a rule is selected for
a script is influenced by a weight value that is associated
with each rule. The rulebase adapts by changing the weight
values to reflect the success or failure rate of the

 player
party

Rulebase for
computer-
controlled

opponent A

generate
script Generated

script for
computer-
controlled

opponent A

scripted
control

A

Combat
between player

party and
opponent party

update weights by encounter results

Rulebase for
computer-
controlled

opponent B

generate
script

Generated
script for
computer-
controlled

opponent B

scripted
control

B

opponent
party

human
control

human
control

human
player

Figure 2: The dynamic scripting process. For each computer-controlled opponent a rulebase generates a new script at the
start of an encounter. After an encounter is over, the weights in the rulebase are adapted to reflect the results of the fight.

corresponding rules in scripts. The size of the weight
changes is determined by a weight-update function.
 The dynamic scripting process is illustrated in figure 2 in
the context of a commercial game. The rulebase associated
with each opponent contains manually designed rules that
use domain-specific knowledge. At the start of an encounter,
a new script is generated for each opponent by randomly
selecting a specific number of rules from its associated
rulebase. There is a linear relationship between the
probability a rule is selected and its associated weight. The
order in which the rules are placed in the script depends on
the application domain. A priority mechanism can be used to
let certain rules take precedence over other rules.
 The learning mechanism in our dynamic scripting
technique is inspired by reinforcement learning techniques
(Russell and Norvig 2002). It has been adapted for use in
games because regular reinforcement learning techniques do
not meet the requirement of efficiency (Manslow 2002). In
the dynamic scripting approach, learning proceeds as
follows. Upon completion of an encounter, the weights of
the rules employed during the encounter are adapted
depending on their contribution to the outcome. Rules that
lead to success are rewarded with a weight increase, whereas
rules that lead to failure are punished with a weight decrease.
The remaining rules get updated so that the total of all
weights in the rulebase remains unchanged.
 The dynamic scripting technique meets at least three of the
four requirements listed in 3.1. First, it is computationally
fast, because it only requires the extraction of rules from a
rulebase and the updating of weights once per encounter.
Second, it is effective, because all rules in the rulebase are
based on domain knowledge (although they may be
inappropriate for certain situations). Third, it is robust
because rules are not removed immediately when punished.
 The dynamic scripting technique is believed to meet the
fourth requirement of efficiency because with appropriate
weight-updating parameters it can adapt after a few
encounters only. To determine whether the belief is
warranted, we performed two experiments with dynamic
scripting. The first of these experiments, described in section
4, tested the efficiency of dynamic scripting in a simulated
CRPG situation. The second experiment, described in
section 5, tested dynamic scripting in an actual state-of-the-

art CRPG to confirm that the achieved results can be
repeated in practice.

4 SIMULATION EXPERIMENTS

This section describes the experiments used to test the
efficiency of dynamic scripting in CRPGs. It describes the
problem situation to which dynamic scripting is applied
(4.1), the scripts and rulebases (4.2), the weight-update
function (4.3), the actual experiments (4.4) and the achieved
results (4.5).

4.1 The CRPG Simulation

The gameplay mechanism in our CRPG simulation,
illustrated in figure 3, was designed to resemble the popular
BALDUR’S GATE games (see figure 1). These games (along
with a few others) contain the most complex and extensive
gameplay system found in modern CRPGs, closely
resembling classic non-computer roleplaying games (Cook
et al. 2000). Our simulation entails an encounter between
player and opponent parties of similar composition. Each
party consists of two fighters and two wizards of equal
experience level. The armament and weaponry of the party is

Figure 3: A screenshot of the testing environment. To the left is the
combat area, the upper right shows the status of all characters in the
encounter, and to the lower right a report is shown of the current effects.

static; each character is allowed to select two (out of three
possible) magic potions; and the wizards are allowed to
memorise seven (out of 21 possible) spells. The spells
incorporated in the simulation are of varying types, amongst
which damaging spells, blessings, curses, charms, area-effect
spells and summoning spells.
 Instead of having the choices of spells and potions for
opponents adapt in a separate process, we made them
depend on the (generated) scripts as follows. Before the
encounter starts the script is scanned to find rules containing
actions that refer to drinking potions or casting spells. When
such a rule is found, a potion or spell that can be used in that
action is selected. If the character controlled by the script is
allowed to possess the potion or spell, it is added to the
character’s inventory.

4.2 Scripts and Rulebases

The scripting language is designed to enable the expression
of rules composed of an optional conditional statement and a
single action. The conditional statement consists of one or
more conditions combined with logical ANDs and ORs.
Conditions can refer to a variety of environmental variables,
such as the distances separating characters, the characters’
health, and the spells that are suffered or benefited from.
There are five basic actions: (1) attacking an enemy, (2)
drinking a potion, (3) casting a spell, (4) moving, and (5)
passing. In the scripting language, spells, potions, locations
and characters can be referenced specifically (e.g., “cast
spell ‘magic missile’ at closest enemy wizard”), generally
(e.g., “cast any offensive spell at a random enemy”) or
somewhere in-between (e.g., “cast the strongest damaging
spell available at the weakest enemy”). Rules in the scripts
are executed in sequential order. For each rule the condition
(if present) is checked. If the condition is fulfilled (or
absent), the action is executed if it is both possible and
useful in the situation at hand. If no action is selected when
the final rule is checked, the default action ‘pass’ is used.
 In dynamic scripting rules for a script are selected with a
probability determined by the rule weights. To determine the
rule order in the CRPG simulation we have assigned each
rule a priority value, whereby rules with a higher priority
take precedence over rules with a lower priority. For rules
with equal priority we let the rules with higher weights take
precedence. If two rules have both equal priorities and equal
weights, their order is determined randomly.
 The size of the script for a fighter was set to five rules,
which were selected out of a rulebase containing 20 rules.
For a wizard, the script size was set to ten rules, which were
selected out of a rulebase containing 50 rules. To the end of
each script one or two default rules were added to ensure the
execution of an action in case none of the rules from the
rulebase could be activated.

4.3 The Weight-update Function

The weight-update function is based on two so-called
“fitness functions”: a fitness function for the party as a
whole, and a fitness function for each individual character.
 The fitness of a party is a value in the range [0,1], which is
zero if the party has lost the fight, and 0.5 plus half the
average remaining health of all party members if the party
has won the fight. The fitness F for the party p (consisting of

four party members) is formally defined as:

()
(){ }

()
() (){ }

>∈∃+

≤∈∀
= ∑

∈

0|125.5.

0|0

nhpn
nmh

nh
nhpn

pF
pn

where mh(n) is a function that returns the health of character
n at the start of the encounter (as a natural number that is
greater than zero) and h(n) is a function that returns the
health of character n at the end of the encounter (as a natural
number between zero and mh(n)).
 The fitness of a character c is a value in the range [0,1],
that is based on four factors, namely (1) the average
remaining health of all party members (including character
c), (2) the average damage done to the opposing party, (3)
the remaining health of character c (or, if c died, the time of
death) and (4) the party fitness. The fitness F for character c
(who is a member of party p) is formally defined as:

()

(){ }
()
() (){ }

(){ }
()
() (){ }

()() (){ }
()
() (){ }

()pF
ch

cmh
ch

chcdc

nhpn
nmh

nh
nhpn

nhpn
nmh

nh
nhpn

cpF
n

3.0
01.02.0

0
1000

100,min

05.05.0

01

05.05.0

00

05.0, +

>+

≤
+

>∧∉−

≤∧∉

>∧∈+

≤∧∈

= ∑

where n is any of the characters in the encounter (for a total
of eight characters), dc(c) is the timer count at the time of
death of character c and the other functions are as in the
party fitness calculation. The fitness function for individual
characters assigns a large reward to a victory of its party
(even if the individual itself did not survive), a smaller
reward to the individual’s own survival, and an even smaller
reward to the survival of its comrade party members and the
damage they inflicted to the opposing party. As such the
character fitness function is a good measure of the success
rate of the script that controls the character.
 The weight-update function translates the character fitness
into weight adaptations for the rules in the script. Only the
rules in the script that are actually executed during an
encounter were rewarded or penalised. The weight-update
function is formally defined as follows:

() (){ }
() (){ }

≥

−
−

⋅+

<

 −

⋅−
=

bcpFMW
b

bcpFMRW

bcpF
b

cpFbMPW
W

org

org

,,
1

,min

,,,0max

where W is the new weight value, Worg is the original weight
value, MP is the maximum penalty, MR is the maximum
reward, MW is the maximum weight value, and b is the
break-even point. In our simulation we set MP to 30, MR to
100, MW to 2000 and b to 0.3. At the break-even point,
weights remain unchanged. To keep the sum of all weight
values in a rulebase constant, weight changes are executed
through a redistribution of all weights in the rulebase. The
weights in the rulebase were initialised with a value of 100.

4.4 The Experiments

The experiments aim at assessing the adaptive performance
of an opponent party controlled by the dynamic scripting
technique, against a player party controlled by static scripts.
We defined four different basic tactics and three composite
tactics for the player party. The four basic tactics,
implemented as a static script for each party member, are as
follows.

1. Offensive: The fighters always attack the nearest enemy
with a melee weapon, while the wizards use the nastiest
damaging spells at the most susceptible enemies.

 Average Turning Point Absolute Turning Point
Tactic Low High Avg. Med. Low High Avg. Med.
Offensive 27 164 57 54 27 159 53 45
Disabling 11 14 11 11 1 10 3 1
Cursing 13 1784 150 31 4 1778 144 31
Defensive 11 93 31 23 1 87 27 18
Random Party 13 256 56 29 5 251 50 26
Random Char. 11 263 53 30 1 249 47 33
Consecutive 11 160 61 50 3 152 55 48

Table 1: Results of the experiments described in section 4. For each tactic
the lowest, highest, average and median average and absolute turning
points are shown.

2. Disabling: The fighters start by drinking a potion that

frees them of any disabling effect, then attack the
nearest enemy with a melee weapon. The wizards use all
kinds of spells that disable enemies for a few rounds.

3. Cursing: The fighters always attack the nearest enemy
with a melee weapon, while the wizards use all kinds of
spells that harm enemies in some way. They try to
charm enemies, physically weaken enemy fighters,
deafen enemy wizards, summon minions in the middle
of the enemy party, etc.

4. Defensive: The fighters start by drinking a potion that
reduces fire damage, after which they attack the closest
enemy with a melee weapon. The wizards use all kinds
of defensive spells, to deflect harm from themselves and
from their comrades, including the summoning of
minions.

To assess the ability of the dynamic scripting technique to
cope with sudden changes in tactics, we defined the
following three composite tactics.
5. Random party tactic: At each encounter one of the

four basic tactics is selected randomly.
6. Random character tactic: Each encounter each

opponent randomly selects one of the four basic tactics,
independent from the choices of his comrades.

7. Consecutive party tactic: The party starts by using one
of the four basic tactics. Each encounter the party will
continue to use the tactic used during the previous
encounter if that encounter was won, but will switch to
the next tactic if that encounter was lost. This strategy is
closest to what human players do: they stick with a
tactic as long as it works, and switch when it fails.

 To quantify the relative performance of the opponent party
against the player party, after each encounter we calculate
the average fitness for each of the parties over the last ten
encounters. The opponent party is said to outperform the
player party at an encounter if the average fitness over the
last ten encounters is higher for the opponent party than for
the player party.
 In order to identify reliable changes in strength between
parties, we define two notions of the average turning point
and the absolute turning point (illustrated in figure 4). The
average turning point is the number of the first encounter
after which the opponent party outperforms the player party
for at least ten consecutive encounters. The absolute turning
point is defined as the first encounter after which a

consecutive run of encounters in which the opponent party
wins is never followed by a longer consecutive run in which
the opponent party loses. Low values for the average and
absolute turning points indicate good efficiency of dynamic
scripting, since they indicate that the opponent party (using
dynamic scripting) consistently outperforms the player party
within a few encounters only.
 For each of the basic tactics we ran 21 tests, and for each
of the composite tactics we ran 11 tests. The results of these
experiments are presented in the next subsection.

4.5 Results

Table 1 presents the results of the experiments in the
simulated CRPG environment. The table lists, for each of the
tactics employed by the player party, the achievements by
the opponent party, which uses dynamic scripting, with
respect to the average and absolute turning points. We make
the following three observations.
 First, the disabling tactic is easily defeated. Apparently the
disabling tactic is not a good tactic, because dealing with it
does not require adaptation of the rulebase.
 Second, it is striking that for both turning points in most
cases the average is significantly higher than the median.
The explanation is the rare occurrence of extremely high
turning points. During early encounters chance can cause
potentially successful rules to get a low rating or
unsuccessful rules to get a high rating. As a result, the
rulebase diverges from a good weight distribution from
which it has trouble recovering. Our experiments contained
no mechanism to reduce the effect of early divergence, but it
is clear such a mechanism is needed to make dynamic
scripting a practically useful technique.
 Third, the consecutive tactic, which in subsection 4.4 we
argued is closest to human player behaviour, is overall the
most difficult to defeat with dynamic scripting.
Nevertheless, our dynamic scripting technique is capable of
defeating this tactic rather quickly.
 The results of our first series of experiments indicated that
dynamic scripting can successfully be applied as an
unsupervised online learning technique for commercial
computer games. To confirm that the results achieved in the
simulation are applicable to actual state-of-the-art CRPGs, in
a second experiment we implemented dynamic scripting in a
module for the CRPG NEVERWINTER NIGHTS. This
experiment is described in the next section.

Figure 4: Two charts comparing the fitness values of two parties during a
sequence of encounters. In each chart the top graph represents the
opponent party, which uses the dynamic scripting technique, and the
bottom graph the player party. The upper chart shows the average fitness
over the last 10 encounters for both parties. In this example, from
encounter 29 on, the opponent party outperforms the player party, so the
average turning point is 29. The lower chart shows the absolute fitness
for the two parties. This chart shows an absolute turning point of 25.

29

25

5 EXPERIMENTS IN A COMMERCIAL GAME

This section describes the experiments used to test the
effectiveness of dynamic scripting in an actual commercial
CRPG. It describes the game selected for these experiments

and the problem situation to which dynamic scripting is
applied (5.1), the scripts and rulebases (5.2), the weight-
update function (5.3), the actual experiments (5.4) and the
achieved results (5.5).

5.1 Commercial Game Situation

To test out dynamic scripting in practice we chose the game
NEVERWINTER NIGHTS (NWN; 2002), developed by
BioWare Corp. NWN is a popular, state-of-the-art CRPG.
One of the reasons for its popularity, and a major reason for
selecting this game for evaluating the dynamic scripting
technique, is that the game is easy to modify and extend. The
game allows the user to develop completely new game
modules and provides access to the scripting language and
all the scripted game resources, including the opponent AI.
While the scripting language is not as powerful as modern
programming languages, we found it to be sufficiently
powerful to implement dynamic scripting.
 We implemented a small module in NWN similar to the
simulated CRPG detailed in section 4. The module contains
an encounter between a player party and an opponent party
of similar composition. This is illustrated in figure 5. Each
party consists of a fighter, a rogue, a priest and a wizard of
equal experience level. In contrast to the opponents in the
simulated CRPG the inventory and spell selections in the
NWN module can not be changed. Hence, the opponent
party in the NWN module is more constrained than the
opponent party in the simulation.

5.2 Scripts and Rulebases

The basic opponent AI in NWN is very general in order to
facilitate the development of new game modules. It
distinguishes between about a dozen opponent types and for
each opponent type it sequentially checks a number of
environmental variables and attempts to generate an
appropriate response. The behaviour generated by NWN’s
AI is not completely predictable because the checking
sequence and the selection of the responses is partly
probabilistic.
 For the implementation of the dynamic scripting process,
we first extracted the rules employed by the basic opponent
AI and entered them in every appropriate rulebase. To these
standard NWN rules we added three types of new rules.
First, we added rules that are similar to the standard rules,
but slightly more specific. For instance, when a rule’s action
would be “attack closest enemy” we might change that to
“attack closest enemy wizard”. Second, we added a small
number of rules that fire only in very specific circumstances,

e.g., when the enemy is first spotted. Third, we added a few
empty rules. Selection of the empty rules allows the
opponent AI to decrease the number of effective rules.
 In the generation of scripts a priority mechanism was used
to order the rules. Priorities were set according to their
specificity. The most specific rules had the highest priority,
and the most general rules the lowest priority. Within a
priority group, the rules with the largest weights were
assigned the highest priority.
 The size of the scripts for both a fighter and a rogue were
set to five rules, which were selected out of rulebases
containing 21 rules. The size of the scripts for both a priest
and a wizard were set to ten rules, the rulebase for the priest
containing 53 rules and the rulebase for the wizard
containing 49 rules. To the end of each script a call to the
basic NWN opponent AI was added, that is, if no rule could
be executed the basic opponent AI would determine the
actions.

5.3 The Weight-update Function

The weight adaptation mechanism we used in the NWN
module made use of a party fitness function and a separate
fitness function for each character, just as in the simulated
CRPG (see subsection 4.3). Since the precise
implementation of these functions is not critical for the
dynamic scripting technique, we decided to differ slightly
from the implementation of these functions in the simulation,
mainly to avoid problems with the NWN scripting language
and to allow varying party sizes.
 The fitness of the party is a value in the range [0,1], which
is based on three factors, namely (1) whether the party has
won the fight, (2) the number of party members surviving,
and (3) the remaining health of the surviving party members.
The fitness F for the party p is formally defined as:

()
(){ }

() ()
()

() (){ }

>∈∃
∈

+>∈
+

≤∈∀

= ∑
∈ 0|

0)(|
4.02.0

0|0

nhpn
pncount

nmh
nhnhpncount

nhpn

pF
pn

where count is a function that counts the number of
instances of its parameter, mh(n) is a function that returns
the health of character n at the start of the encounter (as a
natural number that is greater than zero) and h(n) is a
function that returns the health of character n at the end of
the encounter (as a natural number between zero and mh(n)).
 The fitness of a character is a value in the range [0,1], that
is based on three factors, namely (1) whether the character
survived or not, (2) the remaining health of the character (or,
if the character died, the time of death), (3) the party fitness.
The fitness F for character c (who is a member of party p) is
formally defined as:

Figure 5: A battle between two parties in NEVERWINTER NIGHTS.

()
()() (){ }

()
() (){ }

()pF
ch

cmh
ch

chcdc

cpF 5.0
02.03.0

0
100

30,min

, +

>+

≤
=

where dc(c) is the timer count at the time of death of
character c and the other functions are as in the party fitness
calculation. The fitness function for individual characters
assigns a large reward to a victory of their party (even if the
individual itself did not survive), a smaller reward to the

individual’s own survival and an even smaller reward to the
size of the remaining health.
 The weight-update function in the NWN module was equal
to the weight-update function of the simulation, as defined in
subsection 4.3, except that the maximum penalty MP was set
to 50. Furthermore, rules in the script that were not executed
during the encounter, instead of being treated as not being in
the script at all, we assigned half the reward or penalty
received by the rules that were executed. The main reason
for this is that if there were no rewards and penalties for the
non-executed rules, the empty rules would never get rewards
or penalties.

5.4 The Experiments

Since the simulation experiments already showed that
dynamic scripting is an efficient technique, the NWN
experiments were mainly aimed at evaluating whether
dynamic scripting works as well in a practical situation as in
the simulation. We used the same notions of average turning
point and absolute turning point (see subsection 4.4) to
evaluate the performance of the dynamic scripting technique
in these experiments.
 While in the simulation experiments the learning opponent
party was pitted against several manually programmed
strategies employed by the player party, in the NWN
experiments we pitted the learning party against the basic
NWN opponent AI. The behaviour of the basic opponent AI
is somewhat unpredictable and tries to adapt to the
circumstances of an encounter. We observed that a party
using the basic AI outperforms an unadapted opponent (i.e.
an adaptive opponent that has all weights in the rulebase set
to the same value).
 We ran eleven tests, starting with newly initialised
rulebases for each of the characters. Each test continued
until the average turning point was reached. The results of
the tests are presented in the next subsection.

5.5 Results

The results of the NWN experiments are presented in table
2. The table shows that the results achieved in these
experiments are similar to the results achieved in the
simulation experiments. Apparently, dynamic scripting can
be successfully applied in a state-of-the-art CRPG.

 Average Turning Point Absolute Turning Point
Tactic Low High Avg. Med. Low High Avg. Med.
Basic AI 10 101 34 27 6 96 33 29

Table 2: Results of the experiments described in section 5. There is
only one opponent tactic, namely the basic AI as implemented by the
NWN developers. The lowest, highest, average and median average
and absolute turning points are shown.

6 DISCUSSION

Our experimental results show that dynamic scripting is
capable of adapting rapidly to static or changing tactics.
Hence, dynamic scripting is efficient and meets the four
requirements stated in section 3 (fast, effective, robust and
efficient). The results achieved with the NWN experiments
detailed in section 5 clearly show that the implementation is
commercially feasible, although some improvements are

needed. In this section we discuss the following issues:
improving dynamic scripting (6.1), offline dynamic scripting
(6.2), generalisation to other games (6.3) and the point-of-
view of game developers (6.4).

6.1 Improving Dynamic Scripting

The results of the experiments, presented in subsections 4.5
and 5.5, show that in some exceptional cases the adaptation
process of the rulebases can become excessively long. We
examined some of the rulebases that were generated in these
cases, and found them to contain high weight values for
rules that represent undesirable behaviour. Such behaviour,
once learned (supposedly through chance), evidently can be
difficult to unlearn. A straightforward solution is to store
successful copies of the rulebase and to revert to an earlier
rulebase when the performance seems to deteriorate.
 We noted that if we let our experiments continue even
after an average turning point was discovered, it sometimes
happened after a while that the rulebase started to generate
inferior scripts. This is because the rulebase continues to
learn new behaviour, even when it is already successful.
Simply stopping the learning process when it has reached an
optimum is not a good solution, because our goal is to let the
rulebase adapt to changing player tactics. A better solution is
to develop a mechanism that protects the rulebase from
degrading, such as the previously suggested storing of
copies of successful rulebases.

6.2 Offline Dynamic Scripting

In our online learning experiments we only adapt weight
values, rather than changing existing rules or adding
completely new rules. In our view, such techniques would
severely reduce the efficiency of the process and might
interfere with the effectiveness of the generated scripts.
However, during an offline training phase, which optimises
the rulebase before a game is released, such techniques are
certainly possible and can even be successful (Spronck et al.
2003).

6.3 Generalisation to Other Games

Although dynamic scripting turns out to be surprisingly
efficient and effective for implementing online learning in
commercial games, the question remains whether it is can be
made sufficiently efficient for application in every type of
commercial game. For action CRPGs, such as DIABLO, the
answer would be an unequivocal yes, because action CRPGs
typically pit the player against hundreds of similar
opponents. For more strategic CRPGs, such as BALDUR’S
GATE and NEVERWINTER NIGHTS, it depends on the
definition of similar opponents. While each opponent wizard
in the game might be different, overall successful tactics for
one wizard will also work for most other wizards.
Furthermore, in our experiments we started our rulebases
from scratch with identical weights for all rules. In a
commercial release the rulebases would have been trained
offline against pre-programmed scripts (cf. our experiments
with the consecutive party tactic). Confronted with standard
tactics such a rulebase would adapt very quickly, while it
still would have the ability to learn to generate good scripts
to deal with novel tactics.

6.4 The Point-of-view of Game Developers

To the four requirements we defined for online learning
(fast, effective, robust and efficient) commercial game
developers would add two extra ones, namely that (5) the
resulting AI should be understandable (which will make it
easier for them to place their trust in it), and (6) the resulting
AI should be non-repetitive (so it won’t be too predictable,
which detracts from the entertainment value). Since dynamic
scripting generates scripts, the results are understandable by
definition. Also, since scripts are always generated at
random for each new encounter the behaviour will change
from encounter to encounter and thus is non-repetitive.
These changes will be larger if the maximum weight values
are set low enough so that a considerable number of rules
will end up with large enough weights to be selected often.
We can therefore conclude that these two extra requirements
are also met by the dynamic scripting technique.
 However, commercial game developers would not agree to
have opponents attempt to learn to defeat the human player
at all costs, which is what our fitness criterion, that relies
heavily on winning and losing encounters, actually
promotes. In commercial games, the human player should
(because of entertainment purposes) and will (because of
saving and reloading functionalities) always win an
encounter. Therefore, in an actual commercial game fitness
should rely more on the amount of damage done and the
length of the fights. It might even be useful to punish a
rulebase for winning a fight or damaging the player party too
much, so that the entertainment value of the game for
weaker players is protected.

7 CONCLUSIONS AND FUTURE WORK

In this paper we proposed dynamic scripting as a technique
to deal with unsupervised online adaptation of opponent AI,
suitable for implementation in complex commercial
computer games such as CRPGs. Dynamic scripting is based
on the automatic online generation of AI scripts for
computer game opponents by means of an adaptive rulebase.
From our experimental results, we conclude that dynamic
scripting is fast, effective, robust, and efficient and therefore
has the potential to be successfully incorporated in
commercial games. We tested the technique in a module for
a state-of-the-art commercial CRPG, BioWare’s
NEVERWINTER NIGHTS, which showed that the technique
works as well in practice as it does in the simulation.
However, some changes are needed before the technique is
ready to be implemented in actual commercial games.
Specifically, the algorithm should be augmented with a
technique that protects the adaptation mechanism against
learning ineffective behaviour by chance and then having
difficulty to unlearn this inferior behaviour.
 Our future work aims at optimising the dynamic scripting
technique to make commercial implementation viable. In
particular, we focus on tweaking the learning parameters,
seeking ways to store successful rulebases to recover from
inferior performance, studying methods to optimise the

ranking of rules in the scripts, and experimenting with
offline learning to optimise a rulebase before online learning
takes place. Furthermore, since our main aim is to use online
learning against human players, it is essential that we extend
our experiments to encompass just that. Specifically, it must
be assessed if online learning actually increases the
entertainment value of a game for human players, which for
commercial game developers is a primary concern when
deciding whether or not to incorporate online learning in
their games.

REFERENCES

Brockington, M and M. Darrah. 2002. “How Not to Implement a
Basic Scripting Language.” AI Game Programming Wisdom
(ed. S. Rabin), Charles River Media, pp. 548-554.

Cook, M., J. Tweet and S. Williams. 2000. Dungeons & Dragons
Player’s Handbook. Wizards of the Coast.

Demasi, P. and A.J. de O. Cruz. 2002. “Online Coevolution for
Action Games.” GAME-ON 2002 3rd International Conference
on Intelligent Games and Simulation (eds. Q. Medhi, N. Gough
and M. Cavazza), pp. 113-120, SCS Europe Bvba.

Evans, R. 2002. “Varieties of Learning.” AI Game Programming
Wisdom (ed. S. Rabin), Charles River Media, pp. 567-578.

Laird, J.E. 2001. “It Knows What You’re Going To Do: Adding
Anticipation to a Quakebot.” Proceedings of the Fifth
International Conference on Autonomous Agents, pp. 385-392.

Manslow, J. 2002. “Learning and Adaptation.” AI Game
Programming Wisdom (ed. S. Rabin), Charles River Media, pp.
557-566.

Michalewicz, Z. and D.B. Fogel. 2000. How To Solve It: Modern
Heuristics. Springer Verlag, 2000.

Russell, S. and P. Norvig. 2002. Artificial Intelligence: A Modern
Approach. Second Edition, Prentice Hall, Englewood Cliffs,
New Jersey.

Schaeffer, J. 2001. “A Gamut of Games.” AI Magazine, vol. 22 nr.
3, pp. 29-46.

Scott, B. 2002. “The Illusion of Intelligence.” AI Game
Programming Wisdom (ed. S. Rabin), Charles River Media, pp.
16-20.

Spronck, P., I. Sprinkhuizen-Kuyper and E. Postma. 2002.
“Improving Opponent Intelligence Through Offline
Evolutionary Learning.” International Journal of Intelligent
Games and Simulation (eds. N.E. Gough and Q.H. Mehdi),
Vol. 2, pp. 20-27.

Tozour, P. 2002a. “The Evolution of Game AI.” AI Game
Programming Wisdom (ed. S. Rabin), Charles River Media, pp.
3-15.

Tozour, P. 2002b. “The Perils of AI Scripting.” AI Game
Programming Wisdom (ed. S. Rabin), Charles River Media, pp.
541-547.

Woodcock, S. 2000. “Game AI: The State of the Industry.” Game
Developer Magazine, August 2000.

ACKNOWLEDGEMENTS

The authors wish to extend their gratitude to the University
of Alberta GAMES Group and the Netherlands Organization
for Scientific Research (NWO) for their support of this
research, and to BioWare Corp. for their enlightening
commentary.

ANTICIPATING OPPONENT BEHAVIOUR USING SEQUENTIAL
PREDICTION AND REAL-TIME FUZZY RULE LEARNING

Pedro Demasi and Adriano J. de O. Cruz

Instituto de Matemática – Núcleo de Computação Eletrônica
Universidade Federal do Rio de Janeiro

Av Brigadeiro Trompowski, s/n, Rio de Janeiro, Brasil
E-mail: demasi@ufrj.br, adriano@nce.ufrj.br

KEYWORDS
Fuzzy Logic, Fuzzy Rule Learning, Sequential Prediction,
AI in Games.

ABSTRACT

In most games it is very important for an agent to be able to
predict the behaviour of its opponents. By doing so, it can
be possible, for instance, to avoid being hit by an expected
blow, to create some strategy in real-time adapting to what
the enemy will do, to attack some possible weakness etc.
Summing it all up, by knowing what the opponent will do,
the agent can design a proper response. In this work, we
present and analyze two different methods for predicting
the moves of the opponents one is a polynomial-time
algorithm for sequence prediction and, the other, a real-
time fuzzy rule learning. Both methods were implemented
and tested in an actual game, and their performances
compared with the results of random prediction.

INTRODUCTION

Series prediction is a well-known, very important and
studied problem in computer science and other areas
(Deutsch, 1965). There are a lot different methods and
algorithms for dealing with many aspects of prediction
(Masters, 1995), each one being well suited for its own
class of problems.

As in many other branches where it is applied,
series prediction is also an important issue for computer
games. Being able to infer what kind of strategy the enemy
is going to use or to predict what he will do in the next few
moments is certainly a great advantage that any player
would like to have.

In many games, frequently there are some
sequences of movements that yield certain reactions (like in
fighting games, for instance, when there are sequences of
punches and kicks) or some sequence of movements that
must be done in order to reach some kind of goal. Other
example is the situation where players have favourite
moves that they use frequently in the course of a game, so
we can predict what they will do after the sequence of
initial movements. Another use of the prediction is to
identify when sequences of opponent reactions that
constantly yields damage to the agent are beginning to be
used again, so they can be avoided before they are
completed.

So, in a few words, the problem we face is: given
the movements of the opponent that were logged in during
the game (including the last few) and based upon that, to
predict what the next movement he will execute or what
kind of strategy he is following.

Many of the methods and algorithms that already
exist to deal with sequence prediction do not apply to our
specific application. We need methods that run very fast
(as computer games are real-time applications) and at the
same time base its decision on relatively few data (the
movements logged during the game). Most methods, such
as neural networks, need some kind of time-consuming
training, a considerable amount of data and, usually, are
not very simple to implement (Masters, 1995). That is just
not acceptable in real-time games..

By having few data it is more likely to that the
prediction will fail, but this restriction is part of our
problem’s nature, so there is not much we can do about it.
Even if we are able to log the actions of the opponent
during a long time (say, a couple of long gaming sections),
there are some other problems that may arise as different
playing patterns (i.e. the opponent plays differently from
the way he did before, confusing the prediction) and
irrelevant data (we logged on too much information and
some part of it may be useless, just wasting memory and
slowing down the prediction).

Series prediction is a very difficult problem per
se, and its application in computer games, with its
restrictions, turns out to be even harder. We cannot expect
to be able to always predict human behaviour with a very
high percentage, neither rely all the game AI on the
predictions we will be doing. Instead, our predictions
should be used together with other methods to decide the
actions of the agent as a tool to enhance the game AI and
the overall performance of the agent.

The main goals of this work are to test and present
simple and efficient methods (but nevertheless powerful
ones), which have a good percentage of correct predictions.

In this work, we analyze two methods for
predicting opponent behaviour. The first is sequential
prediction, as presented in (Mommersteeg, 2002) which is
based upon the repetition of sequences of actions. It is used
a linear time dynamic programming algorithm, slightly
different than the one originally presented. The other
method is the generation of fuzzy rules by learning from
examples as proposed in (Wang, Mendel, 1992) with some
modifications for real-time learning. Both methods were

tested in the same game, as it was a random prediction for
comparison, and the results are then analyzed.

There are sections discussing each method and
explaining how they work. Then, there is a discussion that
of the game used. Following that, there is a section that
presents the results and the analysis and then, finally, the
conclusions and future work.

SEQUENTIAL PREDICTION

This method is a modification of the one by
(Mommersteeg, 2002) with some changes in the final
algorithm and its implementation. The main goal of this
method is to keep the prediction fast and simple. If we are
willing to use a sequence prediction algorithm for every
movement made by an enemy, we must call this prediction
method for every game frame, so we need an efficient and
fast algorithm. And, of course, it must have some degree of
precision too!
 Given a sequence of symbols s over an alphabet Σ,
we want the biggest length suffix suf of s such that there is
some subsequence si,j (i.e. a subsequence of s that begins at
the position i and ends at the position j, where the initial
position is numbered 1) that is equal to suf and it is not suf
itself. In other words, we look for the largest subsequence
of s (not ending at the last symbol of s) that is equal to
some other subsequence of s that ends at the last symbol of
s.
 For instance, let Σ = {a, b, c} and s = abbacbba.
There are eight possible suffixes for s (a, ba, bba, cbba,
acbba, bacbba, bbacbba and abbacbba). For suf = a there
are two subsequences of s equal to suf that are not suf itself
(namely s1,1 and s4,4). For suf = ba we have s3,4, for suf =
bba we have s2,4 and for the other suffixes there is no such
subsequence. So, the suffix with biggest length such that
there is a subsequence of s equal to it and that is not suf
itself is suf = bba and the subsequence is s2,4.
 When we have found the biggest subsequence (if
such subsequence exists) we return the next symbol of s as
our prediction, i.e. sj+1. So, in our example above, we
would return s5 as our prediction, which is the symbol c.
 It is possible that there may be more than one
subsequence of maximum length or even none.

For instance, let Σ = {a, b} and s = abbabaab.
The suffix suf with maximum length such that there exists a
subsequence of s equal to suf is ab. But there are two such
subsequences, namely s1,2 and s4,5. In this case we have two
possible predictions, s3 and s6 (b and a). For such cases, we
must have some kind of tiebreaker. One possible (and
simple) solution would be to use the subsequence with
higher starting position (for the former example, it would
be s4,5 and, thus, the prediction would be a).

The case for which there is no subsequence that
matches some suffix happens when the last symbol of s
appears for the first time in the entire sequence. For
instance, let Σ = {a, b, c} and s = cbbbcbcbcbbcba. In this
case, the symbol a appears for the first time at the end of s,
so, there will be no subsequence matching any suffix, as all
suffixes will end with a. For such cases, some simple
solutions can also be used, such as to predict the new
symbol itself (a for the former example) or to predict the

symbol most frequent throughout the string (b for the
former example).

Let n = ||s|| (i.e. the length of s). Let t be a vector
such that ti holds the length of the largest subsequence
ending in si that is equal to some suffix suf of s. A simple
way to find the largest length subsequence would be for
each index i of s to verify backwards how many symbols
are equal to the suffix. So, a simple algorithm equivalent to
this idea could be:

for i from n-1 to 1 do
 j ← 0
 while si-j = sn-j do
 j ← j + 1
 end while
 ti ← j
end for

 Then we could search the vector t and find the
largest ti (using some tiebreaker rule), and then the
prediction will be si+1. If we examine carefully our
algorithm, we can se that the for loop clearly executes in
O(n) time. The while loop executes at most i times, for i
from n-1 to 1. So, the inner loop, in the worst case,
executes n-1 times for i = 1, n-2 times for i = 2 and so
forth. So, our algorithm total time complexity will be 1 + 2
+ … + n-1 = O(n2).
 Even though our first algorithm is polynomial
time bounded, it is not too efficient. We must recalculate
the values of t for each new symbol added to our string. In
other words, every time we add a symbol to s, we must
spend O(n2) time to make a prediction. So, the value of n
grows very quickly, and it would be very important if the
time complexity of the algorithm could be no greater than
linear.
 Using a dynamic programming approach we can
indeed get better time complexity. The algorithm we are
about to describe and that was implemented in this work is
slightly different than the one that was presented in
(Mommersteeg, 2002).

The algorithm is based on the following
observation: we do not need to recalculate everything from
scratch every time a symbol is added to s, as we can take
advantage of what we have already done and use such data
again. So, let the subsequence ending in si be some
subsequence matching some suffix after we added a new
symbol sn to the end of s. So, there is a subsequence si-1
matching the same suffix of s without the recent added
symbol. As we have calculated before the length of the
subsequence ending in si-1 (ti-1), then the value of ti with the
new symbol in s is ti-1 + 1.

Generally speaking, if we calculate the values of t
at some point for s, when we append a new symbol to the
end of s, we can recalculate t using two rules: if si is equal
to the new added symbol, then ti = ti-1 + 1, else ti = 0. In
other words, if the recent appended symbol is equal to
some si, then the value of ti will be ti-1 (which is equal to
the same subsequence without the new symbol) plus one
(the new symbol). But if si is not equal to the last symbol of
s, then ti must be zero, as all suffixes of s end with this last
symbol. The algorithm equivalent to this idea could be:

for i from n-1 to 1 do
 if si = sn then
 ti ← ti-1 + 1
 else
 ti ← 0

end if
end for

 As there is only one loop in this algorithm, it is
clear that its time complexity is O(n), which is just what we
have been looking for. This is a very simple method and, as
it can be seen, extremely easy to be implemented.

LEARNING FUZZY RULES

The method briefly described in this section is presented in
(Wang, Mendel, 1992). In the next subsection it will be
described the changes we bmade in order to apply it in real-
time.
 The main idea of the method is to take advantage
of some previous measurements in order to build the rule
set equivalent to the acquired data. In other words, it is as if
we were trying to infer the rule set used by the opponent to
act, using its previous actions.
 Given the input and output variables and their
measured values, we infer the rule that originated them by
converting the values of the variables to their respective
fuzzy sets. As there can be more than one set for the same
value, it is used the one that has the higher membership
degree.
 For instance, let x1 and x2 be the input values and y
the output. Suppose they are converted for their respective
membership degrees and that A1, A2 and A3 are the
possible sets for x1, B1, B2 and B3 for x2 and C1, C2 and C3
for y. So, if we get (A1, 0.25), (A2, 0.75) and (A3, 0.0) for
x1, (B1, 0.0), (B2, 0.33) and (B3, 0.67) for x2 and (C1, 0.8),
(C2, 0.2) and (C3, 0.0) for y, then we would infer the rule if
x1 is A2 and x2 is B3 then y is C1. Thus, for each
measurement we made we can infer a rule.
 A problem arises when there are conflicting rules,
i.e. when some newfound rule has the same antecedents
that a previous rule, but different consequences. For
instance, if we infer a new rule if x1 is A2 and x2 is B3 then
y is C3 it would be conflicting with the former example, so
we would have to decide which one to keep.
 To solve this kind of problem, the original method
defines a strength degree for each inferred rule. Let µA(a)
indicate the membership degree of variable a in set A, then
the strength degree D of some rule r is given by:

D(r)= µY(y) µX1(x1)µX2(x2)…µXn(xn) = µY(y) ΠµXi(xi) (1)

 Thus, D(r) is the product of all membership
degrees, for both input and output variables. The higher
they are, the strongest the rule will be. When there is some
conflict between rules, we keep the one with highest D. It
is also possible to define an α-cut such that every time D(r)
< α, the rule r is discarded. Using this cut, all rules that are
not strong enough will be ignored.

 This method can be used both with an initial
empty set of rules as with a previous defined set. In the
former case, the initial rules must have their D defined.
Should D(r) = 1.0 for every previously set rule, then the
initial set will always remain unchanged.
 The great advantage of this method is its
simplicity and efficiency as it is not very hard to implement
it and it is not heavy time consuming. Actually, its
efficiency will rely on the amount of fuzzy variables and
sets, but its complexity remains linear in respect to the
number of variables, as the rule inferring needs only to
evaluate the membership degrees.

Real-Time Fuzzy Learning

In this section some additions that are made to the method
that presented are described in order to use it in real-time
applications (as it is an action game, for instance).
 Initially, there is nothing that prevents the method
just described to be used in real-time applications. The
success of its use, however, relies on the amount and the
quality of the information available to construct the rule set
(Wang, Mendel, 1992). In other words, there must be
enough measured data so that the method can be used to
infer the rule set.
 However, the main problem we face, when trying
to infer the rules in a game, is the inconsistency of the data
that will be used. For instance, it is common for a player to
change his strategy during the game, so there are rules that
are used during some time span and may be not used again.
Thus, in addition to the concern about the amount of data
(that may be not enough to provide a good rule inferring)
there is the concern about what these data represent.
 In order to deal with this last problem, we define
two new rule characteristics: disuse factor and the rule
credibility.
 The disuse factor decreases the rule strength as
time passes. So, the “older” the rule is, the weakest it
becomes. Let dr(t) be the disuse factor of rule r for time t,
where t is the time elapsed since the rule has been inferred.
Then, the rule strength is defined as:

D(r) = dr(t) µY(y) ΠµXi(xi) (2)

 Which is the product of (1) by the disuse factor.
The d(t) function can be defined in several ways. A simple
one would be:

d(t) = e-Kt (3)

 Where K is some constant. The time t can also be
expressed in several ways (seconds, minutes, game frames
etc). Which one will be used in the function definition, will
heavily depend on how quickly it is desired for the rules to
become weak.
 Every time a rule that is already inferred is again
produced, its time t is set to zero (as it is when the rule is
inferred for the first time). This way, when some rule is not
produced again during some time spam, it tends to become
weaker and, thus, obsolete.
 The other new characteristic is the rule credibility.
The idea is to weaken some rule when there has been some

conflict. So, the more conflicting the rules become, the
weaker they are, because the conflicts showed, somehow,
that they cannot be fully trusted. So, let c(r) be the
credibility of rule r, then (2) can be redefined as:

D(r) = c(r)dr(t) µY(y) ΠµXi(xi) (4)

 We can see that (4) is the product of (3) by the
rule credibility. Initially, we set every c(r) to one (a rule
can be totally trusted). Every time that occurs a conflict, the
winning rule (i.e. with the biggest strength D) value of c(r)
is decreased. This can be done with a constant decrement
or even with a decrement proportional to D(r2) / D(r1),
where r1 is the winning rule (thus, the closer the strengths,
the higher is the credibility lost).
 It is clear that with both additions that were made,
the original method becomes a subset of the modified one.
Thus, if we set c(r) = 1.0 and dr(t) = 1.0 for every rule (and
for all t), then we get the original method.

THE GAME

In order to test the proposed prediction methods, it was
created a simple spaceship game. Basically, there are two
spaceships, one facing another, and each one must destroy
its opponent. They can both move in just one direction (left
or right) and they can attack (firing missiles) or defend
(activating a shield). When moving, a spaceship spends
fuel. Once it is empty, the spaceship cannot move anymore.
Likewise, each spaceship has an initial amount of missiles
and shield to spend.
 There are firewalls in each side of the screen such
that if a spaceship touches it, it is destroyed. Bellow it can
be seen a screenshot of the game in progress.

Figure 1: A game screenshot

 A spaceship is destroyed when it touches a
firewall or when an opponent missile hits it. Missiles can
be defended activating the shield, but the shield cannot
protect against the firewalls.
 The agent intelligence created for this game was
based on eight input and two output fuzzy variables
(Demasi, 2002). The input variables are dx (distance to the
opponent’s spaceship), dv (the opponent’s spaceship
velocity relative to the agent’s spaceship velocity), wall

(how close to a fire wall the spaceship is), defense (how
close to an opponent’s missile the spaceship is), dodge
(how safe is it to move in some direction), missile (how
low is the missile supply), shield (how low is the shield
supply) and fuel (how low is the fuel supply). The output
variables are direction (each way to move, accelerate or
break) and action (to attack, to defend or to wait).
 The game was implemented in C using the
MinGW1 gcc compiler and the Allegro2 game-
programming library.

RESULTS

The game was played against five different human players
for each prediction method for about ten minutes each.
Each human player played against the same agent (modeled
with about forty fuzzy rules). We tested, simultaneously the
sequential prediction, the fuzzy learning and random
prediction. The predictions were made for the human
players (not the agent) and using their previous actions
during each game. Bellow there is a table with the average
percentage of right predictions for each one.

Method Average %
Sequential Prediction 83,56%
Fuzzy Learning 53,77%
Random Prediction 34,02%

Table 1: Methods results

 For each game frame two independent predictions
were made: (a) if the opponent would move right, left or
not move and (b) if the opponent would attack, defend or
neither. So, for each prediction there is a 1/3 chance to
make it right by guessing, which matches the random
prediction result (used as a comparison for the other two
methods).

DISCUSSION

It can be initially stated that both methods performed better
than the random prediction, which is a good result to begin
with. The excellent results of the sequential prediction
method may seen surprising at first, but if we look
carefully at the nature of the game, we can see that it is
well suited for sequence predictions. There are many cases
when a player does a lot of sequential moves. For instance,
when moving left, he goes on moving until he reaches
some point, but by doing so, he repeats the same movement
several times.
 Thus, the sequential prediction method, used to
predict the moves (and not the strategy), will probably have
a very high percentage of right predictions for this kind of
games. Of course, not necessarily it would have the same
performance for more abstract predictions, like opponent
strategies and so on.
 The fuzzy learning had a great overall result. It
was lower than the sequential prediction, it is true, but the

1 http://www.mingw.org
2 http://www.talula.demon.co.uk/allegro

nature of the game, in opposition to the first method, is a
great disadvantage to the fuzzy learning. What we tried to
do was to predict a crisp decision by the opponent (move
left, move right, fire, defend etc.) using fuzzy rules and we
obtained about one and a half time more correct predictions
than we obtained with random guessing.
 Another problem faced was the initial set design
and the very high number of input variables. With eight
input variables having, each one, three or five fuzzy sets,
there are a huge number of rules to be inferred. This also
contributes to make things harder for the fuzzy learning
method, as there are a lot of different rules to predict and
many of them can even be conflicting. Actually, the
maximum number of possible rules was about 455.000!
 The number of fuzzy rules inferred was traced
during the games. The number grows very fast at the
beginning, going to about 300 rules with 1 minute of game
playing, 700 with 5 minutes a little more than 800 with 10
minutes. The growth of the rules inferred tends to stop after
these few initial moments (from 0 to 5 minutes, there were
700 hundred rules, whereas from 5 to 10 this number grew
to “just” 800). If a higher decay for the disuse factor were
used, this number of rules was significantly lower, but the
prediction percentage also suffered, so it is not just a matter
to eliminate rules more quickly.
 Tested against our 40-rules agent, the fuzzy
learning method yielded very close results, by inferring
about 700 to 800 rules after 10 minutes of game playing. It
is equivalent to thin that for each original rule of the agent,
the method inferred about 20 rules. Even though it was
expected a higher number of inferred rules than the
original, this number is still high. As it was written before,
there were too many input and output variables, as well as
fuzzy sets. But if we look at the maximum possible rules
(about 455.000), the rules inferred by the method are a
mere 0,2% of the total!
 Even with all those problems, and the complexity
(and quantity) of the fuzzy sets used, the method still
managed to get more than 50% right predictions using the
fuzzy rules inferred, which is, by far, the most significant
result of this work. This result suggests that the method can
“imitate” the opponent behavior for about half the time.
Another interpretation would be to consider that we can
infer about half the rules that govern our opponents actions
and decisions. This can be very useful in a game, for we
can use our prediction as one of the possible data to decide
which movement or decision to make.
 Besides all that, the fuzzy learning method is also
well suited for use with high level prediction, like game
strategies, for this kind of behavior can also be modeled
using fuzzy sets very nicely.

CONCLUSIONS AND FUTURE WORK

 The results obtained for both methods were
significantly high and very positive.
 For the sequential prediction method, we have a
very simple, fast e efficient algorithm that can be used in
situations where the repetition of patterns of movements if
very likely to happen or very important for the success of
the agent (and its opponent) inside the game world.

 The online fuzzy rule learning showed a very
good result even when used with so many adversities and
predicted a little more than half the movements of the
opponent. The problems that the method faced where, very
heavily, caused by the initial model of the game, which
used too many fuzzy variables and sets. There is, still, the
necessity to apply this method to a better-designed fuzzy-
based game in order to get more results and to evaluate its
usefulness inside such complex and dynamical worlds like
the ones that video games provide.

The biggest concern, for our future works, will be
to avoid the explosion of inferred rules that happened in
this work. We can do by designing a more compact and
simpler fuzzy model for the problem and, also, by creating
new definitions (like the disuse factor) or even by refining
the existing ones in order to prevent this rule explosion.

Even with all those difficulties and having to
refine and to improve the method, the results were very
positive and indicate that this method can be successfully
used in other applications. Besides being used for
predictions (as it was mainly discussed in this work), this
method can also be used for agent training (i.e. the fuzzy
rules of the agent are inferred when playing against a
human “tutor”, so it can learn how to play the game),
which is another very promising further work to be made
after this one.

Thus, we defined and tested simple (and yet
powerful) prediction methods, which yielded promising
results. There is yet many aspects to be researched and
refined, specially about the fuzzy rule learning, but the
results presented were enough to provide an indication that
they can be very useful in future applications.

ACKNOWLEDGEMENTS

This work was partially supported by CAPES and by
NCE/UFRJ.

REFERENCES

Demasi, Pedro. “Estratégias Adaptativas e Evolutivas em
Tempo Real para Jogos Eletrônicos”. Rio de Janeiro:
Federal University of Rio de Janeiro, 2003. (Master
Thesis).

Demasi, Pedro, Cruz, Adriano. “Modelagem Fuzzy para
um Jogo de Naves Espaciais”. 1st Brazilian Workshop on
Games and Digital Entertainment, Fortaleza, 2002.

Deutsch, Ralph. “Estimation Theory”. New Jersey:
Prentice-Hall, 1965.

Masters, Timothy. “Neural, Novel & Hybrid Algorithms
for Time Series Prediction”. New York: John Wiley &
Sons, 1995.

Mommersteeg, Fri. “Pattern Recognition with Sequential
Prediction”. In: Rabin, Steve. AI Game Programming
Wisdom. Hingham: Charles River Media, 2002. p.586-595.

Wang, Li-Xin, Mendel, Jerry M. “Generating Fuzzy Rules
by Learning From Examples”. IEEE Transactions on
Systems, Man and Cybernetics. v.22, n.6, November /
December, 1992. p.1414-1427.

LEARNING OF AI PLAYERS FROM GAME OBSERVATION DATA

Stephen J. McGlinchey
Applied Computational Intelligence Research Unit

School of Information & Communication Technologies
University of Paisley, Scotland

Email: stephen.mcglinchey@paisley.ac.uk

KEYWORDS

Game observation capture, neural networks, self-
organising maps, machine learning, artificial intelligence.

ABSTRACT

To develop AI players for real-time games can be a
difficult problem. Solutions using scripted rules often
result in computer players whose style of play is unlike a
human player. The level of performance may also be far
better or worse than the performance of a human player.
This work aims to train an AI player from game
observation data recorded from games played by humans.
The data is used to train a Self Organising Map (SOM)
which is a widely used and understood neural network
method. The method is applied to the game of “pong” with
the objective of producing a computer pong player that
plays in the style of the person that the training data was
recorded from.

INTRODUCTION

AI players can be written with different objectives in mind.
Some developers aim to produce AI players that are most
likely to succeed in a game, and this is interesting as an AI
problem. Others aim at producing AI players that will
make the gaming experience more enjoyable to the human
player, and this normally means that the AI behaviour and
performance should be similar to that of a human player,
providing game players with believable interaction with
artificial opponents or team-mates etc., e.g. (van Waveren
& Rothkrantz, 2002, Zubek & Khoo, 2002).

 Two aspects of game AI that affect the experience of
playing the game are:

• the level of performance
• the style of play

 For many games, it is important that the AI system can
play the game at a level appropriate to that of human
ability. This is true especially if the computer player is an
opponent; there is little enjoyment in playing against an
opponent that is too easy or too difficult to beat.

 The style of play of an AI player should (in many
applications) be similar to that of a human. Even if an AI

player can match the performance level of a human
player, if it behaves in an inhuman fashion, then the
gaming experience is less convincing, less immersive
and ultimately less enjoyable. Motion of AI players
should avoid being unrealistically jerky or smooth,
and avoid super-human reactions to events in the
game. This agrees with guidelines proposed by
(Spronck et al, 2002) which stated that computer
controlled opponents should not cheat and should
avoid ineffective behaviour.

In this paper, we present a machine learning system
that can be used to produce computer-controlled
opponents that behave in a similar fashion to human
players. The AI system is trained on raw data gathered
from humans playing the game. After training, the AI
plays the game in a style similar to that used in the
training data, which may include human-like quirks in
play. Unsupervised learning is used to train a neural
network, which self-organises based on the statistics
of the recorded data.

The AI system is applied to the game of “pong” with
the goal of producing an AI opponent that plays to a
reasonable level, and exhibiting traits of play that are
human-like.

THE GAME

In order to test the effectiveness of our game
observation AI system, we have selected the game
“pong” (Figure 1) which is a very simple two-player
game that is well-known, having been made popular
by early games consoles. The game has several
features that make it a suitable application for our
experiments. Firstly, it is a real-time game involving
human reactions. Human-like reactions are something
that we aim to reproduce in our AI player. The game
also allows the player to employ simple strategies and
playing styles. For example, a player may try to direct
the ball to move in a direction that forms an acute
angle with the movement of the opponent’s bat,
making it more difficult for the opponent to hit the
ball. Alternatively, a player may prefer the strategy of
playing the ball in a more straightforward fashion to
avoid getting a difficult return ball. When the AI
system is trained on data captured from a human

playing the game, the AI should exhibit similar playing
strategies to that of the human.

Figure 1: The Game of Pong

There are various features of the game of pong that differ
between implementations. Our experiments have been
conducted according to the following implementation
details:

The ball has a direction vector, v which is normalised to
unit magnitude, and a speed, w . When the ball collides
with the top or the bottom of the playing area, the vertical
component of the ball’s direction is negated, giving a
completely elastic rebound. When the ball collides with a
bat, its horizontal component of direction is negated, and
the resulting direction vector is rotated as in equation (1):

)()1(tt Rvv =+ , where (1)

 −
=

θθ
θθ

cossin
sincos

R

The value of θ is given by a function of the position of the
collision of the ball with the bat relative to the bat’s
position. A collision with the top of the bat gives θ a value
of 10π− , and this increases linearly for other positions till
a collision at the bottom of the bat gives 10π , with the
exact centre of the bat giving a value of zero. This allows
the player to direct the ball’s trajectory as it rebounds from
the bat. The speed of the ball is also increased by a small
amount each time the ball collides with a bat.

Each bat is controlled using a mouse, paddle, trackball or
similar device, so that their positions may be changed at
varying speeds.

Creating a realistic AI opponent for pong is not a trivial
problem. It is, of course, possible to create an unbeatable
AI player that would work simply by moving the bat to a
projected point where the ball is expected to intercept the
bat’s axis. Another even simpler solution is to constantly
move the bat such that its centre is equal to the vertical
position of the ball. Both of these solutions would produce
computer opponents that the human player can never score
a point against, which is no fun for the player. This could
be improved upon by adding “artificial stupidity” to make

the AI player miss occasionally. Unfortunately, this
would still leave the problem that the playing style of
the AI player would be unlike a human player and
annoying to play against. The objective of this
research is to produce an AI player that learns from
human players and will play the game like a human,
including the imperfections of human play.

GAME OBSERVATION CAPTURE (GoCap)

Game Observation Capture is the process of recording
data from a live user during the execution of a game,
with a view to using machine learning to train an AI
player. The term “GoCap” was introduced by
(Alexander, 2002), and stems from the recognition that
many game AI systems are written with large amounts
of ad hoc scripted code, yet they achieve a level of
realism that is unconvincing and they adapt poorly to
unfamiliar environments. In simple terms, Alexander
describes GoCap as “motion capture for AI.”

Using the game of pong, the following data was
collected: the ball’s direction vector, v , and speed,
w , and the vertical position, b , of one of the players’
bats. The speed of the ball was represented separately
from the direction so that the AI system would learn to
behave differently when the ball moving at different
speeds, as is the case with human performance.

THE SELF ORGANISING MAP (SOM)

Teuvo Kohonen developed the Self-Organising Map
(SOM) (Kohonen, 1997) as a visualisation tool for
high dimensional data on a low dimensional display. A
SOM is composed of a discrete array of L nodes
arranged on a N-dimensional lattice and it maps these
nodes into D-dimensional data space whilst
maintaining their ordering. The dimensionality, N, of
the lattice is normally less than that of the data and is
typically 1 or 2. Higher values of N generally lead to
computational intractability. The SOM can be viewed
as a non-linear dimensionality-reducing method,
where the map manifold is a globally non-linear
representation of the training data (Ritter et al., 1992).

Typically, the array of nodes is one or two-
dimensional, with each node connected to the N inputs
by an N-dimensional weight vector. The process of
self-organisation (training) is as follows:

 An input vector x is presented to the network and a
winning node c is chosen whose weight vector cw has
the smallest Euclidean distance from the input vector
(equation 2).

()ii
c wx −= minarg (2)

The weights of the winning node and the nodes close to it
are then updated to move closer to the input vector. The
neighbourhood of node i is the set of nodes denoted by

)(iN that are close enough to node i to be influenced by
the node i whenever it is the winner. Therefore, if the
winner is c , then the weights of the nodes)(cNi∈ will be
updated during training. It may be that every node of the
map is included in this set, but there can be significant
savings in computational cost if a localised neighbourhood
is used, especially in maps with large numbers of nodes.
The amount by which the neighbours are updated is
determined by the neighbourhood function, cih , which is a
function of the Euclidean distance between the winner (c)
and the other nodes in its neighbourhood ()(cNi∈). This
function is normally a Gaussian or difference of Gaussians
(“Mexican hat”), which is narrowed during the training
process. There is also a learning rate parameter,η , that is
usually decreased as the training process progresses. The
weight update rule is:

[])(,)()(c
icii Nitht ∈∀−=∆ wxw η (3)

When this algorithm is iterated sufficiently, the map self-
organises to produce a topology-preserving mapping of the
lattice of weight vectors to the input space based on the
statistics of the training data. This means that the ordering
of nodes on the lattice will be preserved when each node is
mapped to a point in data space.

The SOM can be applied to data processing in several
different ways including clustering and visualisation. For
this project, the SOM is being used for pattern recognition
with incomplete data. There are several features that make
the SOM a suitable choice for this application. Since the
SOM is a topology-preserving method, its reference
vectors are ordered, and therefore when the winning node
is being searched out, the search space can be narrowed
down to nodes that are close to the previous winner, saving
a significant amount of processing time. This is based on
the assumption that successive input vectors are similar to
each other, which is a suitable assumption for this
application. This optimisation makes the SOM a more
suitable alternative to some other clustering methods such
as k-means clustering (MacQueen, 1967).

METHOD

The first stage in the experiment was to capture the data
from a two-player game. A data vector consisting of the
ball’s position, speed and direction and the vertical
position of one player’s bat was recorded once every
frame, with the game running at 60 frames per second.

Every time a bat hit the ball, the ball speed was
slightly increased, and this was not reset when the ball
went out of play. Therefore, as the game progressed,
the ball speed continued to increase until the speed of
the game became too fast for the players.

A two-dimensional SOM consisting of 20x20 nodes
was then trained on all of the data. The learning
rate,η , was set to 0.01 and this was annealed by
multiplying it by 0.995 after every set of fifty
iterations. The neighbourhood function (equation 4)
was also annealed by multiplying the radius, r , by
0.95 after every fifty iterations, starting with an initial
value of 7.

()26.0

2

2
2

2.0 r

n

r
n

ci eeh −= − (4)
(n is the distance between node c and node i).

Once a map has been sufficiently trained, the AI
player works by constructing an input vector based on
the ball’s speed, position and direction, feeding this
into the network and then looking up the
corresponding bat position from the correct component
of winning node’s weight vector, cbw . The winner
search is done by finding the node whose weight
vector has the smallest Euclidean distance from the
input vector; however, the component corresponding
to the bat position is ignored during this search.

Selecting a single winner yields reasonably good
results in terms of the standard of play. However, one
of the disadvantages of the SOM for this particular
application is that it quantises vectors based on a finite
set of reference vectors. The result of this is that the
movement of the bat appears erratic and “jerky.” The
problem is solved by finding the node, d , that is the
second placed winner (equation 5) and then
interpolating between the two winners. The bat
position, p is an interpolated point between the bat
position given by the winner, cbw and the second
placed winner, dbw with the point of interpolation
between the two values calculated according to their
Euclidean distances from the input vector (equation 6).

() cdd ii
≠−= ,minarg wx (5)

()cbdb
dc

d
cb wwwp −

−+−
−

−+=
wxwx

wx
1 (6)

The idea of using multiple winners in a SOM stems
from the work of (Luttrell, 1997).

An alternative to the idea of using multiple winning
nodes in a SOM is to replace the SOM with a

continuous mapping model such as the Generative
Topographic Mapping (GTM) (Bishop & Svensen, 1996)
or some other continuous function, e.g. (Ritter et al, 1992) .
In any case, it was found to be beneficial to smooth the
movements of the AI player’s bat using momentum. This
prevents the bat from moving unrealistically fast.

RESULTS

In the introduction we identified the level of performance
and the style of play as important factors in producing
convincing game AI. Firstly, let us consider the style of
play of the AI player. The training data for our AI player
was recorded from a human player, and it is possible to
identify some playing quirks employed by that player, that
we would expect to be apparent with the AI player. A quirk
that was observed in the human player was a tendency to
move the bat quickly upwards as the ball collided with the
bat. Figure 2 clearly shows this quirk, which can also be
seen in many other areas of the data. Immediately after the
ball is hit (this occurs at the middle of the graph), the bat
position moves up quickly. Figure 3 shows a similar quirk
produced by the AI player, albeit not quite as pronounced.
At the point of impact, near the middle of the graph, the bat
moves quickly up. The data shown in Figure 3 is
representative of typical movements made by the AI
player. Note that these two graphs are taken from different
games, and the other parts of the bats’ motion curves
should not be compared since they were captured under
different conditions.

It is difficult to quantify the extent to which the AI player
plays like a human. Based on the opinions of the author
and three other regular games players, the AI is fun to play
against, and appears human-like to a large extent. To
properly investigate whether this is the case, it will be
necessary to conduct a survey amongst game players to get
a broader view of the extent to which this work has
achieved the two objectives identified in the introduction
of this paper. The results of such a survey will be published
at a later date.

In terms of performance, the AI player plays reasonably
well. However, it does not present a serious challenge to an
experienced game player. As more work is done in this
area, the level of performance should improve.

CONCLUSION

Our conclusion from this work is that the use of the SOM
to produce an AI player from game observation data has
been successful. The AI plays the game of pong in a style
that is consistent with a human style of play, and quirks
observed in human play are also seen in the AI player.
Experienced players are able to beat the AI player without
difficulty, and this is an area that needs improvement.

0

100

200

300

400

500

600

Horizontal ball position
Vertical bat position

Figure 2: The motion of the human player’s bat as it
hits the ball. The horizontal axis represents time. The
origin is at the top-left and the vertical axis is positive
downwards.

0

50

100

150

200

250

300

350

400

450

500

Horizontal ball position
Vertical bat position

Figure 3: The Motion of the AI Player’s Bat as it Hits
the Ball

If identical situations are presented to a human player
at different times in a game, they may respond a
different way each time. This can be due to a lack of
precision in dexterity, or it may be that the player
selects one of a number of optional strategies,
selecting different ones at different times. This is one
area where the method presented in this paper
produces behaviour that is unlike human performance,
since the outcome is always completely deterministic,
based on the ball’s speed, position and direction.
Having said this, it would be very difficult to notice
because the game is rarely (if ever) in any particular
state more than once.
An interesting area to explore is to train the network
during game play, so that the computer player can
learn from its opponents. A major advantage of the
SOM is that it requires a small computational cost

during training, and various optimisations have been used
(Kohonen, 1996) to reduce this further in real-time
applications. The solution proposed in this paper is not
particularly suited to on-line learning because if an
opponent plays the game badly, then AI will mimic the
poor standard of play. Reinforcement learning is therefore
an interesting area to explore.

Future research will aim to apply this method to different
games and more difficult problems, including modern
games such as real-time strategy (RTS) and 3D shooters.

ACKNOWLEGEMENTS
The author would like to thank Professor Mark Girolami
for his expert help and advice, and Dr Jos Koetsier and Dr
Donald MacDonald whose assistance during data capture
was invaluable.

REFERENCES

Alexander, T. (2002) “GoCap: Game Observation
Capture”, Game AI Programming Wisdom, pp579-585
Rabin, S. (Ed) Charles River Media ISBN: 1-58460-077-8

Bishop, C, Svensen, M, Williams, C. (1997) “GTM: The
Generative Topographic Mapping”, Neural Computation
10(1), pp 215-234.

Kohonen T. (1997) "Self-organizing maps" 2nd Edition
Springer

Kohonen, T. (1996) “The speedy SOM”
Technical Report A33, ISSN 0783-7445, Helsinki
University of Technology, Laboratory of Computer and
Information Science, Espoo, Finland.

Luttrell, S.P. (1997)“Self-organisation of multiple winner-
take-all neural networks” Connection Science (special
issue on combining neural networks), 9 (1), pp 11-30

MacQueen, J. (1967) “Some methods for classification
and analysis of multivariate observations” In
Proceedings of the Fifth Berkeley Symposium on
Mathematics, Statistics and Probability Vol 1, pp 281-
297 Berkeley, University of California Press

Ritter, H., Martinez, T., Schulten, K (1992) “Neural
computation and self-organizing maps” Addison-
Wesley, Reading, MA.

Spronck, P., Sprinkhuizen, I. & Postma, E. (2002)
“Improved opponent intelligence through offline
learning” International Journal of Intelligent Games
& Simulation 2(1) pp 20-27.

van Waveren, J.M.P., Rothkrantz, L.J.M. (2002)
“Artificial Player for Quake III Arena” International
Journal of Intelligent Games & Simulation 1(1) pp 25-
32.

Zubek, R. & Khoo, A.(2002) “Making the Human
Care: On Building Engaging Bots” In Proceedings of
the 2002 AAAI Spring Symposium on Artificial
Intelligence and Interactive Entertainment.

STEPHEN MCGLINCHEY is a lecturer in the
school of Information & Communication Technology
at the University of Paisley. He received the BSc
(Hons) degree in Computing Science in 1996 and the
PhD degree in 2000, both from the University of
Paisley. His current research interests include
computational intelligence in games and artificial
neural networks.

A WEB-BASED GAME FOR SUPPORTING GAME-BASED LEARNING*

Olga Dziabenko Maja Pivec
FH JOANNEUM,

Centre for Multimedia and Learning
FH JOANNEUM,

Information Design
Alte Poststraße 149,

A-8020 Graz, Austria
Alte Poststraße 149,

A-8020 Graz, Austria
E-mail: olga.dziabenko@fh-joanneum.at E-mail: maja.pivec@fh-joanneum.at

Christos Bouras
Vaggelis Igglesis

Vaggelis Kapoulas
Ioannis Misedakis

Department of Computer Engineering and Informatics, University of Patras
and Research Academic Computer Technology Institute

Riga Feraiou 61, GR-26221 Patras, Greece
E-mail: {bouras, igglesis, kapoulas, misedaki}@cti.gr

* This work is partially funded by ‘UniGame: Game-based Learning in Universities and Lifelong Learning’, Minerva Project: 101288-CP-1-
2002-1-AT-MINERVA-M

KEYWORDS
Game-based lifelong learning, web application, three-tier
architecture.

ABSTRACT

Game-based learning has been recognized as an important
alternative or supplement to traditional in-class, face-to-face
teaching. It can help both adults and children in learning new
concepts, acquiring expertise and practicing knowledge.
Although game-based learning has been applied mainly for
teaching children, it can be quite helpful for adult vocational
or university learning. In this paper, a web-based game is
presented, which has been developed for enhancing the
learning experience of university students. Its goal is to
serve as a complement to classes, although it can be used
independently. It provides the students with many ways for
communicating (synchronously or asynchronously) and
acquiring information. Through the use of the game, the
students gain easily new knowledge, since they have to
search for it, understand it and use it in discussions with
other students, who are members of other teams. The game
is played by many users simultaneously. Microsoft’s
ASP.NET scripting environment was used for creating the
game’s website. The website utilizes also Macromedia’s
communication technology (Flash Communication Server
MX) for enabling real-time communication by several means
(voice, text, etc). Flash was used in the website for building
the real-time communication modules as well as for creating
a more elegant user interface. The game platform can be
used by many teachers simultaneously for running different
game themes. It also gives the opportunity to visitors to
watch games as spectators.

INTRODUCTION

Game-based learning has been widely adopted for children’s
learning. Pedagogically highly valued products are on the
market and have a proven success in the improvement of
learning as well as in children’s acceptance. Recently, game-
based learning has also been proposed for adult education.
Gaming is becoming a new form of interactive content,
worthy of exploration for learning purposes. Universities are
also looking for a new positioning in the changing setting of
lifelong learning. Universities need to develop innovative
forms of learning in order to provide concepts for lifelong
learning to their prime customers, students. Modern
technology requires its employees to be proficient in
effective communication, teamwork, project management
and other soft skills such as responsibility, creativity, micro-
entrepreneurship, corporate culture, etc. Game-based
learning is an approach to tackle the above issues.
Analysis of the current situation in the field of the game
industry shows that at the same time, new multiplayer
environments give opportunities for the interaction of
thousands simultaneous players. The multi-user
environments enable users to participate in real-time events,
experiencing new ways of communicating and interacting. In
January 2003 a record number of 120,000 users
simultaneously played EverQuest, an online role-playing
game (Rowan 2003).
There are many examples of systems that adopt the game-
based learning concept. In this paragraph the most important
of these applications are presented. A more detailed
description of the related work can be found in (Pivec et al.
2003). TopSim (TopSIM 2002) by TERTIA Edusoft
provides different business games, which have been used in
business education and advanced training. Another web-
based game is Myzel (Myzel 2002), an on-line community

game. The rules of this game are created by the players
themselves, during its conduct. The Monkey Wrench
Conspiracy (Monkey Wrench Conspiracy 1999) videogame
tutorial puts players into the role of an intergalactic secret
agent dispatched to deep space to rescue the Copernicus
station from alien hijackers. It is a complete tutorial for a
complex technical product, designed to teach industrial
engineers how to use new 3-D design. The Environmental
Detectives (MIT and Microsoft 2002) was developed by
MIT (Massachusetts Institute of Technology) and Microsoft
within the Games-to-Teach project, where conceptual
prototypes for the next generation of interactive educational
entertainment are developed.
Various examples on game-based learning, supported by the
new digital technology are provided by Prensky (Prensky
2001). More detailed information on various games suitable
for educational purposes can also be found in a Survey on
online game-based learning (Dondi and Moretti 2003) that
contributed to the UniGame project.
Based on the fact that games fascinate people and by
applying elements of collaborative learning, researchers of
the FH JOANNEUM Graz in the framework of the EU
project UniGame created a new game concept. Searching for
information, selecting the appropriate and necessary
information, development of discussion strategies, “conflict”
of the arguments, decision-making process and negotiation
are the important central aspects of the game. But the target
and the culmination of the game are reaching a consensus in
a problem solution. Players learn to understand and to
combine different points of view, such as:
individual/corporate interests versus team/societies interests;
their own standpoint versus understanding the standpoints
and opinions of others; from single aspects versus
integrating of multiple aspects, from confrontation to
cooperation. By playing different roles students learn and
obtain both basic knowledge and practical experience and
soft skills that are needed for the organizations of the
modern industrial manufactures. The developed game
concept can be seen as a template where different instructors
can introduce different knowledge and contexts to apply
game-based learning for their particular topics and specific
learning goals.
This paper continues with the description of the game in the
second section. The game idea, the game scenario, the main
interface areas of the game and some possible use cases are
the issues highlighted there. In the next section, the
architecture of the game platform is presented by describing
the functionality of the different layers of the architectural
structure. Then, the fourth section analyzes some
implementation issues regarding the technological choices
that were made for building the game platform and the
selection of the most efficient methods in order to implement
the desirable functionality. In the fifth section some future
work plans are presented and finally the paper ends with the
conclusions, which came up during the design process of the
game.

UNIGAME: SOCIAL SKILLS AND KNOWLEDGE
TRAINING

Game Idea

“UniGame: Social Skills and Knowledge Training”
(UniGame 2003) is a framework that provides the possibility
for every interested teacher to apply game-based learning to
his/her classes. “UniGame: Social Skills and Knowledge
Training” is a game where teachers are able to define various
topics. By using this method, the game provides the teachers
with the ability to modify most of the game’s parameters in
order to meet certain educational purposes.
It can be classified as a role-play game, that fosters
participation in problem-solving, effective communication,
teamwork, project management, as well as other soft skills
such as responsibility, creativity, micro-entrepreneurship,
corporate culture, etc. The game is based on constructivist
learning approach and collaborative learning. Its
fundamental aim is to be used additionally to regular face-to-
face or online classes, while its separate use from any class
source is feasible.
The game is web-based, thus it is accessible through a
website, providing the users with the opportunity to join and
participate in the game from different places. Also, it is a
multi-user game; therefore many players are able to be
involved in the game simultaneously. The players form four
teams. Each team is comprised of six players maximum,
depending on the game’s topic. The game is moderated by
the teacher (as it has been already mentioned, the game is
designed to be used as supplement to normal in-class
teaching, but it is not impossible to be used independently
from a class course). Each game is described by a specific
theme created by the teacher. The aim of the players is to
comprehend their specific role inside their team and have an
argumentation with the players of other teams over a specific
subject, which is specified by the theme of the game. The
players gain knowledge over this subject by searching for
information and using it in the discussions that follow with
other teams’ members. The game’s platform offers several
means for communication to its users. Users are able to
communicate with each other by using private or public
forums, both text and voice chat modules and virtual
meetings, which are enhanced by audio/video interaction, a
shared whiteboard and a presentation table, where users are
able to create an on-line presentation. All the above-
mentioned functionality is provided to the users in the public
forum or chat areas and in the teams or the common virtual
conference area.
The game ends when all the specified sub-parts of the
selected subjects have been discussed. In each discussion the
goal of the players is to reach a consensus with the other
teams. If they reach a consensus they gain some points
(chips). The amount of points they can win from each
discussion has been specified by them before the beginning
of the discussions, when the ‘chip allocation procedure’
takes place. In ‘chip allocation’ each team allocates 100
points in total to three of the six available sub-parts of the
subject that will be discussed. The winner team is the one

that has attained to gather the higher number of points when
the game comes to its end.

Scenario of the Game

In this section important parts of the “UniGame: Social
Skills and Knowledge Training” scenario are briefly
outlined. More detailed information about all the possible
game’s scenarios can be found in the UniGame website
(Dziabenko et al. 2003).
The game initiates by the teacher, who has to define the
‘Game Theme’ that provides the students with the
assignments and subjects to be discussed during the game.
The students join in the game’s website to participate in the
game. During the navigation in the website, the
students/users are capable of communicating or searching
for information about the particular theme. The playtime of
the game varies, fluctuating from several days to few weeks,
depending on the difficulty of the theme and the basic skills
of the students. The game flow and its various stages are
presented in Figure 1.

Seminar:
Theme Presentation
Teams Design
Registration

Team Work:
Sharing Subjects
Development Strategy
Searching for Information

Team Session:
Brainstorming

Posting the general standpoint of
the Speaker in the Team Library

Posting the final
mission statement
of the Team

Chips

ONLINE

Students feedback
on the teamwork

Seminar:
Feedback
on the Game

General Discussion
with moderator

Figure 1: Time Plan of the Game

The basic stages of the game can be distinguished as
follows:

Introductory Seminar
In this introductory seminar the teacher explains the theme
to the students. The teacher provides information about the
theme, the particular subjects (interest areas) of the subjects
that are available for discussion, the teams that will be
formed, and the roles within each team. The teacher
discusses with the students about the theme and provides
more information if requested. Finally, the teacher and the
students reach an agreement about how the teams will be
formed and how the whole game process will be initiated
and completed.

Team Work and Team Preparation
In order to play the game, the students form four teams.
These teams are going to have totally different roles in the
discussion that will follow. For example, in a theme about
environment protection, the teams could be ‘Government’,
‘Heavy Industries’, ‘Environmental Groups’ and ‘Labor
Unions’. Each student has to select a particular role within
his team. After that, the team members have to connect to
the ‘map of the Subjects’, which are relevant for future

discussions. In this screen each member of the team has to
select a subject for which he/she will be responsible. Each
team has to create a strategy for the general discussion that
will take place with the members of the other teams as well
as with the teacher (moderator) of the game. The preparation
of the team for each subject has to be as perfect as possible
in order to confront the other teams in the final general
discussion.
During the teamwork, the players develop a game strategy,
collect and select valuable information and prepare for the
argumentation. Teams communicate and exchange
information in the ‘Team Space’, which consists of several
screens that allow synchronous or asynchronous
communication of the members of a team (Forum, Virtual
Conference, Library, Member List and MyInfo). Each team
member uploads all relevant collected information about the
subject he/she is responsible for, in the Library of the Team
Space.
When search for information is finished, each team has to
organize a ‘Team Session’. This session enables students to
discuss all the problems that came up concerning the
subjects. Moreover, the members of the team have to
categorize and rank all the gathered information that can be
used during the argumentation process with the other teams,
in order to use this information in the most efficient way to
win the game.
At the end of the ‘Team Session’, the team preparation time
has finished; consequently the teams have to present a final
mission statement within the game platform. In this
statement, the members of each team will outline their
general standpoint.

Chip Allocation
Following the teamwork and preparation, the teams have to
allocate chips (points) to the available subjects. Each team
has to decide which subjects are more important for them.
The team members can select up to three subjects for
discussion. They have a maximum number of 100 chips that
they must allocate to the three subjects they selected. The
available time for the completion of this procedure is 30
minutes.
During the game the chips allocated to the subjects can be
viewed by the members of the team in the screen. However,
teams are not able to view the chip allocation of other teams.
Only the teacher obtains the all information about allocated
chips of all teams.

General Discussion
The General Discussion is the process where all teams meet
in the ‘Virtual Conference’ screen to discuss the subjects of
the provided theme. In particular the representatives of each
team participate in this conference. The discussions are
moderated by the teacher. The aim of each discussion is to
reach a consensus, while the specific role of the moderator is
to formalize the reached consensus. If the moderator decides
that the teams reached a consensus during the discussion
about a subject, all the teams that had allocated chips in this
subject win these points. These points are automatically
added to their total score. The game winner is the team that

gained the major number of points when all the subjects
have been discussed. In this stage, the game ends but the
educational process continues with the discussion of the
game in a seminar.

Student Feedback and Discussion of the Game in a Seminar
This is the last stage of the learning procedure. The general
discussion is followed by detailed feedback of all the players
who participated in the game. This discussion contains a
debriefing carried out in a seminar that highlights the most
important aspects covered by the game.

Important Areas of the Game Website

In this section a brief description of the most important areas
(screens or web pages) of the game’s website are presented.
Some of these web pages must not be accessible from all the
visitors of the website. For this reason, the system specifies
users’ roles and rights, since there has to be a distinction
between visitors, players and teachers. These are the three
different users’ categories. The areas provided by the system
in the game’s website are the following:

Training and Help
These web pages are designed in order to provide the users
with all the necessary guidelines on how to participate in the
game. This section is composed of several screens which
aim to help new users to join in a game, to get information
about how to use it and finally to make a practice on how
each player’s game will be efficient. These pages are
essential for the users’ familiarity with the game’s
environment.

Community Area
The Community Area consists of the game’s web pages that
can be accessed by all the website’s visitors. It consists of
two main spaces: the ‘Community Chat’ screen and the
‘Community Forum’ area. The Community Area can be used
for communication among all the visitors of the game
platform, even those who do not participate in a game. The
communication can be synchronous (text chat) or
asynchronous (forum).

Registration Screen
The Registration Screen is a web page used for registration
in the game platform. In this page, the user notifies its
tension to participate in a game and provides the system with
all the necessary information. This information includes
user’s personal data and options. Each user is able to choose
which information is going to be visible by the other
members of the game’s platform.

Play Game Screen
The Play Game Screen is the introductory page of the games
area. This screen is also used for logging-in the game
platform. The system identifies each user and provides the
personalized components of the platform. Every visitor of
the game’s website is able to register in the game through

the above-mentioned process and then join in the platform
through this screen.

Game Overview Screen
The Game Overview Screen presents all the ongoing games
and provides the user with the ability to form a new game.
Therefore this the screen used by both the teachers and the
players in order to join an existing game or to create a new
one. The users who want to participate in a new game must
express their interest through this page, and then wait for the
teachers’ invitation to join the game.

Introduction
Each game has an introductory page. This introduction is
composed of several screens, which aim to introduce the
players in the particular game when they join in it for the
first time. These web pages include some quiz screens where
the player is challenged to prove his/her knowledge. There
are also some teams and role selection screens, which are
requisite in order to choose the team and the role that each
user will perform.

Chip Allocation
This section of the platform contains the information
regarding the Chip Allocation. The members of each team
have to decide which subjects are more important for them
and in this screen they have to allocate chips (points) in three
subjects for discussion.

Virtual Conference
The Virtual Conference is the area where the members of a
team are able to communicate. In this screen the General
Discussion between team members takes place. Text chat,
shared whiteboards, audio/video conference and presentation
tables are the means of communication available to the
players.

Team Space
The Team Space is composed of several screens, which are
used by team members for communicating and exchanging
information before and during the General Discussion.
These screens are the Team Forum, the Team Virtual
Conference, My Info, the Member List and the Team
Library.

General Library
The General Library contains general information about
each game’s theme. The trainer and the players have access
to these pages in order to upload or download valuable
information. This information aims the users to participate
efficiently in the ongoing discussions. It has to be mentioned
that both teachers and students are able to store information
in the General Library.

Info-Bank
The Info-Bank is similar to the ‘Library’, that is an area
where players are able to retrieve information. The main
difference is not the type of information but the person that

provides it. In this area only the trainer is able to upload the
information that will be accessed by the players during the
game.

Theme Creation/Modification Screen
The Theme Creation/Modification Screen is the area where
each game theme is being created or modified. Only a trainer
has access to these pages, which are used by the teachers for
creating new themes or modifying existing ones. These web
pages contain all the needed information that describes the
specific subject the players are going to discuss.

New Game Feature
The New Game Feature is the area where a new game
initiates. These pages are accessed only by trainers who use
them in order to start a game, by defining the theme, the
difficulty level and which players may participate in it.

Possible Use Cases

To illustrate possible application of the proposed UniGame
framework, we present two examples of the game usage. A
teacher who wants his/her students to reflect actively upon
interdisciplinary consequences and ethical behavior of
engineers defines a game-theme called Tunnel Building. The
aim of the game is that 4 teams are competing to make the
best offer and technical solution to build a tunnel on the
defined location. The solution should consider different
parameters like financial frame, time deadlines, technology
applied, ecological acceptance, etc. During the game teams
can “buy” knowledge from other experts. Teams are also
expected to be able to react on unexpected new conditions
e.g. new emission law, or the law regarding an area near the
tunnel location that was declared for natural park, etc. Teams
use the preparation time of the game to elaborate their
solution. During general discussion different important
subjects should be discussed and a consensus on which
solution is the most appropriate should be achieved.
To experience Multicultural Differences another game-
theme could be defined. In this game students worldwide
can form teams. There are various possibilities:
multinational teams or each nationality builds own team.
Teams should work on the same task e.g. to design a
multicultural website. Within the team session teams should
work on their proposition, research similar web pages in
different cultural environments. Teams should publish their
ideas and propositions about functionality and design of a
page. Within the general discussion teams have to discuss
the subjects and to reach a consensus (e.g. about features of
a web page, which design would be the best, which
parameters should be considered for cultural adaptation,
etc.).

ARCHITECTURE

As mentioned above, the “UNIGAME: Social Skills and
Knowledge Training” game is a web-based game. This
means that the players and trainers do not need to install the

game software in their personal computers in order to use
the game. This brings the game closer to the habits of
today’s users who are accustomed to use Internet
applications without having to install any piece of software
locally. In addition, the fact that this is a web-based game
makes its use easier, since the users are not ‘bounded’ to use
it from a specific computer (every information that must be
saved about a user is saved centrally and not in his/hers
specific computer). The fact that the game must be
downloaded every time a user wants to use it is not a
problem since the game website is quite lightweight.
Moreover, each game area is divided in different web pages;
therefore participating in the game is similar to navigating a
web site. A simple Internet connection is only needed
(additional bandwidth is only prerequisite during the Virtual
Conference for a high-quality audio and video interaction
between the users).
The game is a web application. The game’s website structure
has a three-tier architecture (CTI 2003). This architectural
structure is composed of the following three layers: the thin
client (a web browser), the middleware (the servers that
public through the Internet the game and enable the users to
participate) and the storage layer (a database management
system). The architecture is depicted in Figure 2 and it will
be analytically described in this section.

INTERNET

Client (Web browser)

Games Server Communication and
Collaboration Server

Game Database

M
I
D
D
L
E
W
A
R
E

S
T
O
R
A
G
E

T
H
I
N

C
L
I
E
N
T

INTERNET

Figure 2: General End-To-End Architecture

Thin Client

The ‘Thin Client’ is the interface between the users and the
game platform. It is a common web browser (like Microsoft
Internet Explorer, Netscape, Mozilla etc.), which is used by
the players in order to browse the pages of the game’s
website. Macromedia’s Flash Player must also be installed in
the browser as a plug-in, since some of the system pages
include Flash objects. The Flash Player is available for most
of the major web browsers. The thin client is the only piece
of software running in the users’ personal computers. It does
not contain the logic of the game and does not use the local
hard drive for storing information. All information is stored

centrally. This enables the users to participate in the games
through different personal computers (since no data is stored
locally).

Middleware

The second layer in the system’s architecture is the
Middleware. The middleware is the server software that is
responsible for the provided functionality. All the game’s
‘logic’ is in the middleware. In addition, the middleware
handles the communication between the different users of
the game, presents the game to the users and connects
(transparently) the client software with the storage system.
The two main components that constitute the middleware are
the ‘Game Server’ and the ‘Communication and
Collaboration Server’. The latter is responsible for the
communication between the different users of the game,
while the game server is responsible for all the other
functionality. In this section these two components of the
system are described.

Game Server
The Game Server is a web server. When a request comes for
a web page by the user’s browser, the web server creates
dynamically the content of the web page and sends it to the
user. The game server contains server-side scripts, written in
a scripting language, that are responsible for the on-demand
creation of web pages. These scripts include the ‘logic’ of
the game. Wherever there is need for making decisions in
the client-side, client-side JavaScript code is utilized. The
Game Server, besides the scripts that dynamically create the
web pages, contains all the other files that are needed for
them, for instance image files or Flash files.
Almost all scripts that exist in the game server connect to the
database management system (‘Storage System’) in order to
obtain the needed information or to store information. When
there is need for storing users’ information (for instance
storing a user’s profile) the thin client sends this information
to the web browser (included in an HTTP message), the Web
server passes this information to the relevant script and this
script stores the information in the storage system. If there is
need for information to be returned, the opposite procedure
is followed.

Communication and Collaboration Server
The Communication and Collaboration Server is the server
software that provides the means for the real-time
communication of the system’s users. This is an important
functionality of the game, since the whole game-play is
based on the communication between the users. The pages
that enable the users to communicate in real-time contain
Flash objects, which provide this functionality. These
objects connect to the Communication and Collaboration
Server, which handles their ‘interconnection’. We will refer
more analytically to the Communication and Collaboration
Server and the different forms of communication it can offer
in the Implementation section.

Storage Layer

The Storage Layer consists of a Relational Database
Management System (RDBMS). It is used for the storage of
the data that are required for the functionality of the game.
These data are related to the users’ profiles, to the themes of
the game, to the games in progress or past games, to the
presentation of the game site, etc. The thin client (web
browser) does not have direct access to the storage system.
The scripts of the game server are the only software modules
that access the RDBMS.

IMPLEMENTATION ISSUES

In this section we describe the technological selections we
have made for the architecture described above and the way
all the desirable functionality was implemented. Also, the
interconnection of the various parts of the architecture is
explained. These are shown in Figure 3.

INTERNET

Game Database

M
I
D
D
L
E
W
A
R
E

S
T
O
R
A
G
E

T
H
I
N

C
L
I
E
N
T

Flash MX Communication Server

Communication and Collaboration Server

Server-side ActionScript
Scripting Environment

IIS Web Server

Games Server

ASP.NET
Scripting Environment

INTERNET

HTTP RTMP

Client (Web browser) Flash MX Player

RTM
P

HTTP

Figure 3: Analytical End-To-End Architecture

As mentioned before, the thin client is a web browser with
Macromedia’s Flash Player (Allaire 2002) installed. It
presents the pages of the website to the users and gets their
feedback. Through the web browser the users participate in
the different game stages, search for the information stored
in the game’s libraries and communicate through forums.
The Flash Player is used because it has built-in functionality
for the real-time communication of the users, besides being a
powerful technology for building aesthetically elegant
websites and animations. It is also quite widespread and is
provided by Macromedia free-of-charge. It is used in the
‘Virtual Conference’, ‘Team Virtual Conference’ and
‘Community Chat’ pages of the system. These web pages
can be accessed by many users simultaneously and constitute
the multi-user environment of the system. Users interact
through text chat, audio/video conference, shared
whiteboards and presentation tables.
The middleware is the ‘heart’ of the game platform. It is
managed and supported by the game administrator. It
contains the application’s logic, handles the real-time

communication of the users, creates and serves the web
pages of the system and holds the various files that are used
in the web pages of the system. As mentioned in the
Architecture section, the middleware is composed by a web
server (‘Game Server’) and the real-time communication
server (‘Communication and Collaboration Server’). These
two servers should be running in the same server machine or
should be running in separate servers that are connected
through a Local Area Network (LAN). This choice depends
on the most important criteria (cost effectiveness or
performance) during the system installation.
The Game Server is the web server of the game platform. Its
role is to dynamically create and serve the web pages that
compose each game to the browsers of the users. The web
server selected to support the website is Microsoft’s IIS
(Microsoft 2003), extended with the ‘.NET framework 1.1’
in order to support the ASP.NET scripting language (Homer
et al. 2002), in which the functionality of the web site has
been developed. In addition, XML – eXtensible Markup
Language has been integrated with the ASP.NET scripting
environment in order to provide the trainer with the ability to
easily create and modify the Game Themes. An XML
Schema containing the necessary elements was created in
order to provide this functionality.
The Game Server is the only part of the system that accesses
the RDBMS (Storage System) through the use of the
scripting environment (ASP.NET). Users’ browsers interact
with the Game Server over the Internet using the HTTP
protocol.
The Communication and Collaboration Server has been used
for enabling the real-time communication among the users.
The Flash objects that built this functionality connect to the
Communication and Collaboration server and exchange data
through it. The Communication and Collaboration server
selected in order to support the above mentioned
functionality is a product provided by Macromedia, the
Flash Communication Server MX (Gay and Allen 2002).
The types of real-time communication developed by the use
of Flash Communication Server are text chat, voice chat,
shared whiteboards, presentation tables and audio/video
conference. All this functionality was developed by
enhancing Flash Communication Server MX capabilities
with the conjunction of the scripting language used for
programming the server, ActionScript and the Flash Player
as the client. The ActionScript is a scripting environment
able to provide and support communication components
through network connections, based on a client-server
architecture.
The protocol used for the interconnection between the Flash
objects that enable the real-time communication
functionality and the Flash Communication Server MX is
Macromedia’s Real-Time Messaging Protocol (RTMP),
utilized by the ActionScript scripting language.
An Internet connection is the only requisite for enabling the
above-mentioned functionality. Users, who connect to the
Internet through a high bandwidth connection, will
experience the highest quality audio and video interaction.
The user according his/her Internet connection is able to
adjust the audio and video quality. By default this

adjustment is taking place automatically when the user signs
in the Virtual Conference.
The RDBMS selected for the storage layer of the game
platform is Microsoft SQL Server 2000. This selection was
made mainly because Microsoft’s products IIS and .NET
Framework are used in the middleware. Consequently, using
SQL Server 2000 for the storage system of the game
platform provides better integration between the system’s
components (Iseminger 2001) and the maximum
performance.
As it has been explained so far, the software of the game is
distributed between the users’ personal computers (web
browser and Flash player) and a central server (or more) of
the game provider. The Game Server, the Communication
and Collaboration Server and the SQL Server can be
installed in the same machine in order to minimize the cost
of the overall system, or they can be installed in more than
one machines interconnected over a LAN, providing the best
system performance, specially for the real-time
communication functionalities.
In order to show a sample of the system’s functionality, a
screen from the game is provided in Figure 4, which pictures
a screenshot from the game’s Virtual Conference. In the
Virtual Conference the members of the teams are able to
communicate with each other through various ways, such as
text chat, shared whiteboards, presentation tables and
audio/video conference. Each user is represented by an
avatar (a photo chosen from a gallery) while some gestures
are shown beside the avatar. The audio/video conference
area and the shared whiteboard are also pictured in this
figure.

Figure 4: Screenshot from the Virtual Conference

FUTURE WORK

The “UNIGAME: Social Skills and Knowledge Training”
game has been designed with the goal to enhance the
communication skills of its users and to make learning easier
by using the theory of the lectures in practice. In order to
achieve an efficient and powerful platform there is an
important phase of the game development to be done. This
stage will follow: is the testing and evaluation phase with
users. The game will be used in classes with themes that will
be developed for these specific classes and the trainers will
try to understand whether the game effectively enhances the
teaching experience. This evaluation will be used for
improving the game concept and achieving better acceptance
and playability. In addition, feedback from the users will
help in identifying which points of the game could be
enhanced. Perhaps some enhancements would be to make
the game more media-rich (for example, using streaming
video in the introduction) or even enrich the games’
functionality by providing the users with a 3-D multi-user
environment, which will enable the students to practice what
they have learned during the educational process, or by
providing the ability to include external simulation
programs.

CONCLUSIONS

The “UNIGAME: Social Skills and Knowledge Training” is
a game aimed at enhancing the traditional learning process,
emphasizing e-teamwork and soft skills training. By using
the game as a complement to lectures or even as a standalone
learning process, it is believed that it will enable the students
to understand better the theory, as they apply it in practice.
Moreover, the students acquire knowledge in other fields
too, such as communication and team management, while
they also increase other soft skills such as responsibility and
creativity.
Towards this direction, a game environment was created that
emphasizes on the communication and collaboration of the
users. By joining a team in the “UNIGAME: Social Skills
and Knowledge Training” game and participating in the
game procedure, the user acquires experience of working as
a member of a team, communicating effectively, working as
a team leader and using in the discussions knowledge
acquired in the lectures or in the game. The game is a web-
based and multi-user (multi-player). It offers its users many
different communication and collaboration means, such as a
text chat module, a forum (public or private) and several
areas where they can upload or download information.
Moreover, the Virtual Conference area provides the users
with the ability to communicate and collaborate through
audio/video interaction plus shared whiteboards and
presentation tables. Having completed the implementation
phase, the game must now be tested in real classes by
students and evaluated by the users. The received feedback
from the students will help the development process, in
order to apply usability and playability improvements to the
game, according to the suggestions.

ACKNOWLEDGEMENTS

This work is partially funded by ‘UniGame: Game-based
Learning in Universities and Lifelong Learning’, Minerva
Project: 101288-CP-1-2002-1-AT-MINERVA-M. Many
thanks to everyone involved in the project for their
contributions, fruitful discussions and excellent work that
contributed to the progress of the project.

REFERENCES

Allaire J. 2002. ‘Macromedia Flash MX: A next-generation rich
client’, March 2002.

CTI (Research Academic Computer Technology Institute) 2003.
Functional and Technical Specifications. “UniGame: Social
Skills and Knowledge Training”, Minerva project. Deliverable
1.3 “Functional and Technical Specifications”, Retrieved
18.08.03, http://www.unigame.net/html/case_studies/D3.pdf

Dondi C., Moretti M. 2003. Survey on online game-based learning.
“UniGame: Social Skills and Knowledge Training”, Minerva
project. Deliverable 1.1, Retrieved 18. 08. 2003, from:
http://www.unigame.net/html/case_studies/D1.pdf

Dziabenko O., Pivec M., Schinnerl I. 2003. Game Scenario.
“UniGame: Social Skills and Knowledge Training”, Minerva
project. Deliverable 1.2: Conceptual Design, Retrieved
18.08.2003,
http://www.unigame.net/html/case_studies/Game_scenario.pdf

Gay J. and Allen S. 2002. Macromedia Flash Communication
Server MX: Use cases and Feature Overview for rich Media,
Messaging and Collaboration, July 2002.

Homer A., Sussman D., Francis B., Howard R., Watson K.,
Anderson R. 2002. Professional ASP.NET 1.0, Special Edition,
Wrox February 2002.

Iseminger D. 2001. Microsoft SQL Server 2000 Reference Library,
November 2001.

Microsoft. 2003. “Technical Overview of Internet Information
Services (IIS) 6.0”, Microsoft Corporation, April 2003.

MIT and Microsoft. 2002. Environmental Detectives (by MIT and
Microsoft).
http://cms.mit.edu/games/education/Handheld/Intro.htm

Monkey Wrench Conspiracy. 1999. “The Monkey Wrench
Conspiracy (how to get engineers to learn and to like it)”.

Myzel. 2002. Myzel: Online community game (by Institut für
Gestaltungs und Wirkungsforschung Technische Univeristät
Wien), http://www.myzel.org

Pivec M., Dziabenko O., Schinnerl I. 2003. “Aspects of Game-
based Learning”. I-Know’03. J.UCS Proceedings of I-KNOW
’03, pp. 217 – 224.

Prensky M. 2001. Digital Game-based Learning. McGraw-Hill.
Rowan D. 2003. “Getting hooked on an internet role-play fantasy”,

TIMESONLINE, February 01, 2003.
TopSIM. 2002. TOPSIM – Planspiele (by TERTIA Edusoft),

http://www.topsim.com
UniGame. 2003. UniGame: Game-based Learning in Universities

and Lifelong Learning. Project Workplan, “UniGame: Social
Skills and Knowledge Training”, Minerva project. Retrieved
18. 08. 2003, from http://www.unigame.net

Combining Self Organizing Maps and Multilayer Perceptrons to Learn
Bot-Behavior for a Commercial Game

C. Thurau, C. Bauckhage, and G. Sagerer
Applied Computer Science

Bielefeld University
P.O. Box 100131, 33501 Bielefeld, Germany�

cthurau,cbauckha,sagerer � @techfak.uni-bielefeld.de

ABSTRACT

Traditionally, the programming of bot behaviors for com-
mercial computer games applies rule-based approaches. But
even complex or fuzzyfied automatons cannot really chal-
lenge experienced players. This contribution examines
whether bot programming can be treated as a pattern recog-
nition problem and whether behaviors can be learned from
recorded games. First, we sketch a technical computing in-
terface to a commercial game that allows rapid prototyping of
classifiers for bot programming. Then we discuss the use of
self organizing maps to represent manifolds of high dimen-
sional game data and how multilayer perceptrons can model
local characteristics of such manifolds. Finally, some exper-
iments in elementary behavior learning are presented.

INTRODUCTION

Throughout the last 30 years, computer games have under-
gone an astounding evolution. Compared to their ancestors
in the 1970s, present day games create complex and atmo-
spheric virtual worlds and thus convey a deep and haunting
experience for the player. However, in contrast to graph-
ics and physics simulation, programming intelligent behavior
for artificial opponents (also called bots) did not proceed that
fast. Rather, techniques applied here still mainly revert to
ideas developed two decades ago (Cass 2002).

Up to now, actions and behaviors of bots usually are
scripted or rely on (fuzzyfied) finite state machines (of ad-
mittedly complex structure). Plainly spoken, implementing
bot behavior thus boils down to collecting huge sets of ’if
then’ rules. For many genres, however, this certainly does
not reproduce the way experienced human players act. Con-
sider for instance the (in)famous genre of first person shooter
(FPS) games on which we will concentrate in this contribu-
tion. Already after a short period of practice players usually
have learned how items are distributed on a map, how to to
cycle the map efficiently, and how to react to different actions
of their opponents. I.e. while playing FPS games, humans
tend not to think or plan. What seems like the outcome of
anticipation or planning can be effectively reduced to reac-
tive behaviors and strategies they gathered from experience.

In this paper, we propose to make use of this experience.
The basic idea is to record many matches of human players
(in gamers terminology such recordings are called demos)
and to apply techniques from statistics, data mining, and pat-
tern recognition in order to develop bots that imitate the be-
havior of individual players. To investigate this idea, we con-
sidered ID Software’s game QUAKE II R

�
(which was chosen

for experimentation because its source code is freely avail-
able and there are numerous demo resources). Assuming the
state of a player at time � to be given by a feature vector ���� ,
his state at the next time step �	��
 can be modeled to result
from a function

������������� �������������� ���������� � !��� �"#�%$ (1)

where � !� denotes environmental influences at time � and �"&�
represents the player’s (re)action according to the history of
his last ' states �� � � �� ���(� ��������� �� ���)� . Hence, reactions can be
understood to result from

�" � �+*,� �� ��-� � �� � �������.� �� ���)� � � � $ (2)

where the function * might be learnable from training data.
Although bot programming thus seems to be treatable as

a problem of subsymbolic machine learning, surprisingly lit-
tle efforts have been made in this direction. The growing
body of literature on game bots still mostly deals with AI
reasoning (Adobbati et al. 2001, Laird and Duchi 2000, Laird
and v. Lent 2000) and known approaches to behavior learn-
ing from training data either consider computer vision appli-
cations or rather simplified games (Galata et al. 2001, Je-
bara and Pentland 1999, Pyeatt and Howe 1998, Spronck
et al. 2002). But to the best of our knowledge, subsymbolic
behavior learning for commercial games was not reported
yet. A potential reason for this became apparent when we at-
tempted to apply monolithic multilayer perceptrons (MLPs)
for behavior learning in QUAKE II R

�
: dimensions and distri-

butions of feature vectors turned out to be too high and too
discontinuous for simple classifiers (Bauckhage et al. 2003).

Before we discuss a possible solution to this problem, the
next section shall describe how state vectors can be extracted
from QUAKE II R

�
demos and how MATLAB R

�
may be used

as a rapid prototyping tool for bot behavior learning exper-

iments. Then, section 3 describes the use of self organiz-
ing maps (SOMs) to identify the intrinsic dimension of demo
data and section 4 presents results in simple behavior learn-
ing obtained from hybrid coupling of SOMs and MLPs. Fi-
nally, a conclusion and an outlook will close this contribu-
tion.

LINKING MATLAB R
�

TO QUAKE II R
�

QUAKE II R
�

demo files are records of the network traffic be-
tween a player and the server he was connected to. Since
QUAKE II R

�
is able to fully reproduce whole game scenes

from demo files, it is safe to say, that a single demo file con-
tains every state ��!� and reaction vector �"�� of the observed
player / in a given match.

To give a little insight in demo files, it is necessary to
have a look at how QUAKE II R

�
network transmission is han-

dled. A players origin �02143 5�3 6 , his viewangle �7 5�8:9-3 ;�< �>=@? 3 ACB%DED
and velocity �F4123 5�3 6 are just a few but important variables in
a QUAKE II R

�
network packet. Since a network packet sent

from a server contains all relevant information regarding the
current game state, it can be interpreted as a ”world” state
vector. However, when it comes to static or moving objects
(flying rockets, health packages...) QUAKE II R

�
demos do

not include any visual information about object shape and are
merely referencing entities, which are labeled and fully de-
scribed inside local gamedata files. A sideffect of this kind of
information transmission is, that object detection is not nec-
essary at all, as global knowledge about the type and state
of every object is provided. Almost the same applies to a
players reaction vector �" � at a give time � . It can be directly
extracted from recorded matches, since it is represented as a
client-server packet block.

Although the state vector gained in a first parsing step is
complete and depicts a whole game scene, it might be use-
ful to further enhance it. Bump sensors for collision detec-
tion or range sensors for a more local position estimation are
relatively easy to implement, if external map information,
which is not included in the demo data files, is available. In
fact, lots of known sensors from classical mobile robotics
could be emulated. A lot of them are obviously useless in a
gameworld environment, since robotic sensors are most com-
monly used to localize the robot or surrounding objects. But,
in a world where we already know every object’s location,
there is no real need for position estimation.

The bot implemenation itself is completely realized in
MATLAB R

�
. Since MATLAB R

�
provides a rich environment

for vector/matrix handling and allows for rapid prototyping
of classifier systems, we decided to use it as a backend en-
gine controlling the QUAKE II R

�
bot. The parsed state and

reaction vectors are normalized and can be used as training
samples for classifier systems. Once a classifier is trained,
it can be used to control a QUAKE II R

�
character. Therefore

MATLAB R
�

connects to a QUAKE II R
�

server and forwards
incoming state vectors to the classifier, which in turn com-
putes the reaction vector and sends it back to the server.

SELF ORGANIZING MAPS

Accurately analyzing a collection of high dimensional data
suffers from the curse of dimensionality: the required num-
ber of samples grows exponentially with the dimension of the
data points. However, for most practical problems G dimen-
sional samples do not fill a G dimensional volume but reside
on a H dimensional manifold where HJIKG . Self organizing
maps (SOMs) provide a means to identify and represent such
manifolds (Kohonen 2001, Ritter et al. 1992). Next, we thus
will briefly summarize some essentials of SOMs. Readers
who are familiar with this topic should skip this section.

Given a G dimensional vector space LNM , a SOM consists
of a collection of vectors (called codebook) �OQPSR LTM where U
denotes the coordinates of �O on a given topological structure
(usually a H dimensional lattice with HVIWG). In a training
phase from time � �
 until � � �YX , feature vectors �Z[R L\M
are presented to the SOM and �O�]_^` 1�a � � $ is determined where

b#� �Z�$c��d4eYfhgjilkP mnm �Zpo �O P mnm (3)

i.e. �O] is the codebook vector closest to �Z . Then �O] � � $ is
updated according to �O] � �	��
 $q� �O] � � $ �srt�O] � � $ where

rt�O] � � $u�wvNx#� �Zpo �O] � � y (4)

i.e. �O] will slightly move towards �Z . A similar update hap-
pens to all �O P that are topologically adjacent to �O] . I.e. for
all lattice coordinates U close to b we have

rt�OzP2� � $u��v\x!{|P] xh� �Z}o �O] � � Y (5)

where { P] is usually given by

{~P] �����&�	�%o mlm U o�b mlm ��2� � � � $ $ (6)

i.e. the displacement of �O P depends on it lattice-distance to�O] . Since this algorithm causes adjacent points U � U4� on the
lattice to be assigned to adjacent points �O P � �O Py� in the feature
space, it realizes a topology preserving mapping from a high
dimensional space to a lower dimensional manifold.

As an example, Fig. 1 shows a 3D projection of ten � D
codebook vectors arranged on a 1D lattice unfolding into the
manifold that contains the presented training vectors.

In our experiments we clustered our training samples in
state space using self organizing maps. In a second step
of training, each cluster was assigned two multi-layer per-
ceptrons that were trained using the data in the correspond-
ing cluster, one for viewangle, the other for velocity adjust-
ment. To model time series context, we might have used
time-delayed-neural-networks (Bauckhage et al. 2003) or re-
current networks. Since our training set did not include con-
text critical player reactions, we reverted to classical MLPs.

The MLPs finally map our state vectors �� � to an appro-
priate player reaction �"��:� ����y$. Whenever a bot’s reaction to
a given situation ���� has to be generated, the MLP with the
associated highest SOM Neuron activity will be selected.

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0.1

0.2

0.3

0.4

0.5

0.6
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0.1

0.2

0.3

0.4

0.5

0.6
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.2
0.25

0.3
0.35

0.4
0.45

0.5

0.1

0.2

0.3

0.4

0.5

0.6
0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Figure 1: A self organizing map of 10 neurons unfolds into a set of feature vectors which depict several runs around a map. Note
that feature vectors and SOM weights actually reside in ��� but the figure shows projections in the �>Z	�Y�����#$ subspace.

Opponent state:
(distance,

 vertical angle)
 horizontal angle,

(x,y,z)
Player Position:

Player Velocity:

 velocity y direction)
(velocity x direction,

Player Viewangles:
(yaw,pitch)

Figure 2: A game-bots perception and reaction spectrum.

We tried to investigate the importance of our self organiz-
ing map topology and how it influences training results and
overall classifier performance. Classifier performance was
measured by computation of the mean squared error �_� of
given data set � , containing G state �� and reaction �" � X%� <lA X �
vector pairs.

��� �
G
M�
<l� �N� �" � X%�

<nA X �< o �"�<�� ��!<�$ � � (7)

To determine, how the number of implicitly encoded be-
haviors coheres with the overall performance of our classi-
fication system, we were using two different sets of train-
ing/test samples. In the first set, a movement path had to
be learned. In the second set, aiming was introduced as an
additional behavior to the movement behavior. Both behav-
iors were implicitly encoded in demo files, showing a human
player aiming at an opponent and running around the map.

The player’s state vectors � � at a given time � were used
for training a SOM and served as an input vector for each
associated classifier. We limited the world state vector to the
player position �Z�R �p� , his distance � R � to the near-
est opponent, and the vertical � and horizontal � angles to
this opponent. Although this leaves the bot with a cheap
view of what else is going on, it is sufficient for an indepth
look onto the behaviors introduced in our two training sets.

The player’s reaction spectrum was also reduced to what is
required for our particular task, adjustment of the player’s
viewangle and movement speed. Viewangle adjustments are
coupled in a 4 dim. vector, containing the player’s YAWR�� �# ¡�
�� �# C¢ and PITCH R�� �# 4�Y£h�h C¢ angles, each being as-
signed a signum

� � YAW $.� � � PITCH $¤R�¥ho
 �
2¦ , in order
to cover the full range. The player’s velocity is represented
by a 2 dimensional vector, containing Fh1�R§�no�¨h�h�~�Y¨h�4�2¢ andF25}R��Eo � �4�|� � �h�¡¢ . Fig. 2 illustrates the bot’s perception and
reaction spectrum. Therefor, we realized our agent by means
of at least 2 classifiers, one responsible for viewangle ad-
justment with a 4 dimensional output vector, the other for
player velocity control with a 2 dimensional output vector.
Although we treated viewangle and velocity adjustment as
equal important player reactions, in-game evaluation showed
that viewangle adjustment has a greater influence on overall
bot performance; it is also harder to learn. A mediocre per-
formance for velocity classifiers does not necessarily lead to
poor bot behavior. Consequently. viewangle adjustment has
to be seen as the main player reaction to be improved.

All MLPs were trained using the Levenberg-Marquardt
backpropagation algorithm and contained 6 neurons in their
hidden layer. For improved accuracy, we eliminated MLP in-
puts where minimal and maximal values in a given training
subset were equal, thus containing no relevant information

for that particular MLP. As a consequence, the input vectors
size of our MLP varied among clusters.

Experiment 1: Our first set of training samples showed a
player running various routes around a map, and thus im-
plicitly encoded a running behavior. The demos we used for
training contained a total of 6970 state/reaction vector pairs,
our evaluation set contained 1028 test samples. In this exper-
iment, partitioning our training samples reduced the learning
task for every MLP by lowering their responsibility to just a
subset of possible state vectors, decreasing their number of� ����:� �"#�%$ pairs to be learned. Although the SOM is switching
between the different MLPs, it is not really switching dif-
ferent behaviors. Every MLP represents the same behavior,
only that it is specialized on a certain part of the state space.
Our experiments showed some interesting results here, which
can be seen in Fig. 3 and Tab. 1. Increasing the number of
SOM neurons did lower our training mean squared error, but
not as dramatically as we expected it. The same applies to
our evaluation results, which tended to improve with an in-
creasing size of neurons and associated MLPs. However,
a single MLP still showed very good performance and was
quite capable of learning the behavior encoded in our train-
ing set. A distribution of training samples, belonging to the
same behavior, does not necessarily improve overall classi-
fier performance.

Experiment 2: The second set of training samples in-
cluded an aiming behavior, besides a single map run. An
overall number of 2362 training samples had to be learned.
For evaluation we used a set of 1599 test samples. In case of
different behaviors encoded in our training set, a SOM auto-
matically switches the appropriate behavior to a given state�� � , a capability which emerges from input space clustering.
Here, increasing the number of SOM neurons had a huge
influence on our training and evaluation results, the overall
results can be seen in Fig.4 and Tab.2. In case of a SOM with
just one neuron, thus training a single MLP for viewangle and
velocity adjustment, it showed, that the MLPs were not able
to learn the desired behaviors (or at least not satisfyingly). It
is interesting to note that the MLPs failure did not depend on
training set size, which was considerably smaller than in our
first series of experiments, nor on the incapability of learning
an aiming behavior (which can be done). The failure seemed
rather to depend on the difficulty of learning different behav-
iors in a single classifier. With two neurons in a SOM, our
state space partitioned in two subsets, leading to specialized
MLPs for both behaviors and greatly improving the � � AC8:< M
and more important � � Xy� � . A further increasing SOM size did
improve the classifier performance in some cases, but again,
even one classifier per behavior showed good results, which
could not be improved very much by means of increasing the
number of SOM neurons.

When it comes to in-game evaluation, the excepted bot
performance could be watched in a realtime game. The clas-
sifiers, which already showed good offline evaluation results,

# SOM ©	ª¬«@:®E¯ © ªl°�±�ª ©�ªl«%C®n¯ © ª¬°�±�ª
neurons Viewangle Viewangle Velocity Velocity

1 0.340 0.224 0.141 0.058
2 0.173 0.136 0.040 0.025
4 0.105 0.125 0.077 0.015
6 0.149 0.137 0.092 0.010

10 0.088 0.121 0.076 0.081
20 0.203 0.117 0.063 0.064
30 0.106 0.133 0.062 0.017

Table 1: Summary of training and offline evaluation results
in viewangle and velocity adjustment, when learning a move-
ment behavior.

# SOM ©	ª¬«@:®E¯ © ªl°�±�ª ©�ªl«%C®n¯ © ª¬°�±�ª
neurons Viewangle Viewangle Velocity Velocity

1 2.294 2.442 0.137 0.053
2 0.144 0.260 0.061 0.066
4 0.157 0.218 0.049 0.051
6 0.631 0.623 0.225 0.449

10 0.185 0.315 0.154 0.221
20 0.203 0.388 0.112 0.070
30 0.177 0.289 0.118 0.088

Table 2: Summary of training and offline evaluation results
in viewangle and velocity adjustment, when learning a move-
ment and aiming behavior.

made up for a much better in-game performance, showing
some nice moves and a good aiming, once an opponent en-
tered their view. Aiming did not seem to be perfect though,
but the training data wasn’t perfect either.

CONCLUSION AND FUTURE WORK

This paper reported about a MATLAB R
�

interface to
QUAKE II R

�
that facilitates the examination of different pat-

tern recognition techniques for bot programming. Given
training sets of recorded games, functions that map the cur-
rent state of the player’s character onto a reaction can be
learned. As the corresponding data spaces are rather high
dimensional and just sparsely covered by the training data,
we discussed the idea of using self organizing maps to rep-
resent the manifolds on which player states are distributed.
By means of multilayer perceptrons attached to the neurons
of a SOM, local mappings from a state vector to a reaction
vector can be realized. And indeed, several experiments with
different hybrid neural network architectures indicate that it
is possible to realize bots which behave human-like simply
because they learned from human-generated training data.

Currently, we extend our approach to more complex be-
haviors. This includes efforts in online learning as well as
the investigation of more sophisticated neural network archi-
tectures like hierarchical SOMs or mixtures of experts. Sec-
ond, we plan to explore the appropriateness of other classifier
techniques like support vector machines, decision tree meth-
ods or particle filtering. Also, with an increasing behavior
complexity adequate datamining methods for feature selec-
tion need to be considered.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 5 10 15 20 25 30

m
ea

n
sq

ua
re

d
er

ro
r

Number of SOM Neurons

(a)

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0 5 10 15 20 25 30

m
ea

n
sq

ua
re

d
er

ro
r

Number of SOM Neurons

(b)

Figure 3: 3(a)Training performance when learning to run with a varying self organizing map size.3(b) Offline evaluation results.

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

m
ea

n
sq

ua
re

d
er

ro
r

Number of SOM Neurons

(a)

0

0.5

1

1.5

2

2.5

0 5 10 15 20 25 30

m
ea

n
sq

ua
re

d
er

ro
r

Number of SOM Neurons

(b)

Figure 4: 4(a) Training performance when learning to run and aim with a varying self organizing map size. 4(b) Offline evaluation
results.

ACKNOWLEGDEMENTS

This work was supported by the German Research Founda-
tion (DFG) within the graduate program “Strategies & Opti-
misation of Behavior”.

References
Adobbati, R., A.N. Marshall, G. Kaminka, S. Schaffer and C. Sol-

litto. 2001. Gamebots: A 3D Virtual World Test-Bed for
Multi-Agent Research. In Proc. 2nd Int. Workshop on In-
frastructure for Agents, and Scalable Multi Agent Systems.
pp. 47–52.

Bauckhage, C., C. Thurau and G. Sagerer. 2003. Learning Human-
like Opponent Behavior for Interactive Computer Games. In
Pattern Recognition. Springer. to appear.

Cass, S. 2002. “Mind Games.” IEEE Spectrum pp. 40–44.

Galata, A., N. Johnson and D. Hogg. 2001. “Learning Variable-
Length Markov Models of Behaviour.” Computer Visiosn and
Image Understanding 81(3):398–413.

Jebara, T. and A. Pentland. 1999. Action Reaction Learning: Auto-
matic Visual Analysis and Synthesis of Interactive Behaviour.
In Proc. 1st Int. Conf. on Computer Vision Systems. pp. 273–
292.

Kohonen, T. 2001. Self-Organizing Maps. 3rd ed. Springer.
Laird, J. E. and J. C. Duchi. 2000. Creating Human-Like Synthetic

Characters with Multiple Skill Levels: A Case study using the
Sour Quakebot. In Proc. AAAI Fall Symposium: Simulating
Human Agents. pp. 75–87.

Laird, J. E. and M. v. Lent. 2000. Interactice Computer
Games: Human-Level AI’s Killer Application. In Proc. AAAI.
pp. 1171–1178.

Pyeatt, L. D. and A. E. Howe. 1998. Learning to Race: Experiments
with a simulated Race Car. In 11th Int. Florida Artificial In-
telligence Research Society Conf. pp. 357–361.

Ritter, H., T. Martinetz and K. Schulten. 1992. Neural Computation
and Self-Organizing Maps. Addison-Wesley.

Spronck, P., I. Sprinkhuizen-Kuyper and E. Postma. 2002. Evolving
Improved Opponent Intelligence. In Proc. 3rd Int. Conf. on
Intelligent Games and Simulation (GAME-ON’02). pp. 94–
98.

AGENT
ONTOLOGY

AND
ARCHITECTURE

Ontology for Perception in Cognitive Agents
 and Synthetic Environments

H. Suliman, Q.H. Mehdi, and N. E. Gough

Multimedia and Intelligent Systems Technology (MIST) Research Group
School of Computing and Information Technology

University of Wolverhampton, UK, WV1 1EQ
H.Suliman@wlv.ac.uk

KEYWORDS
Synthetic environments, Ontology, Perception, Events,
Attention.

ABSTRACT

This paper presents the ontological development of agent
world and perception. A robust and integrated structure is
presented that will empower a developer to design a virtual
environment and its AI without sacrificing any agent
capabilities or incur unnecessary computational costs.

INTRODUCTION

Designing agents in conjunction with their environments is
no trivial matter, issues such as integration, behaviour and
time constraints require that agents and environments be
designed on a sound and robust basis (Rollings & Morris
1999, Saltzmann 1999). Computer Games are widespread
examples of synthetic environments where NPCs are
required to show increasing believable behaviour.
 Perception is a vital cognitive layer for an agent that senses
its environment. Agents must show adequate perceptual
ability in computer games that demand more in terms of
game AI (Woodcock 1999). Relevant aspects of visual
perception (also referred to as visual cognition) were given
by Marr (1998), Aschcraft (1998) and Sekuler & Blake
(1994). The visual percept is only one component of a NPC’s
percepts and tactile and auditory percepts may also be
required.
 The visual and auditory cognition systems in humans
identify objects using biological neural networks as features
in percepts. Synthetic perception implies that we assume that
they are received directly as perceived objects with the
wanted information included or tagged with the object.
Different aspects of synthetic perception were studied by Isla
(1999), Kuffner & Latombe (1999), Thalman (1992), Funge
(1999), among others. Funge (1999) identifies the differences
between perceptions in a real world relative to a virtual one
and briefly discusses issues such as discretisation and
uncertainty.
 This paper addresses three important points: how to
structure and design the agent world, establish the main
concepts in this world and identify the relations they forge.
Code is provided to demonstrate the concepts and designs
presented using C++ and an example is provided to
demonstrate how this information is stored and used in an
agent.

VISUAL & AUDITORY COGNITION FOR
SYNTHETIC PERCEPTION

If the agent’s process of perception is considered as a
computer program, the identification of percepts best
involves the passing of a memory address (or pointer in
programming terms) in computer memory where further

details on the perceived object can be followed up. We will
refer to these as percept objects. A visual percept object in
the visual field or view can include a description on the
object seen. For example ‘red’ can be included with a percept
passed to the agent whenever it sees a red rose flower in
some view. More generally percepts refer to events. For
example auditory percept objects can signal the occurrence
of events such as: door shuts, bomb blast, a phone rings,
footsteps, etc. These events attract the agent’s attention
because of the sound emanating from the spatial position of
the event. An agent may react and look towards the source
and decide on some course of action, or it may identify the
type of sound and deliberate over what to do before acting.
So agents must satisfy conditions for the reception of these
percept objects. The minimal conditions for reception of
visual and auditory percept objects are outlined below.

Conditions for reception of visual percept objects:

• The agent is alert enough and has adequate attention.

• The percept object is visible and there are no obstacles

occluding it (i.e. a ray emanating from the agent to the

source of the visual percept object is not obstructed).

• The agent is facing the source (i.e. the source lies in the

view triangle/pyramid).

• The percept object is recognisable

Conditions for reception of auditory percept objects:

• The agent is alert enough and has adequate attention.

• The sound intensity at the recipient is audible enough

(Intensity of sound can be attenuated through dispersion or

travelling through different media).

• The percept object is recognisable

It is clear that perception involves the recognition or
matching of the objects in view to what the agent knows. At
the programming level, a percept object is considered
recognisable if there is an explicit reference to its visual
presence or absence as a percept object in AI code. If a view
contains a physical item of interest to an agent, then the agent
identifies and matches it with its memory (or knowledge) of
that item. A view may also describe a relationship between
objects in it. For example, book on a table is a description of
a relation between physical objects. An appropriate choice of
representation for descriptive percept objects would be
selected if conducive to the thought processes of its agent.
For example if the data collected from a view is utilised in a
deliberative system that operates on sentences, then percept
objects would include sentential descriptions of views
(Suliman 2001).
 Hence when designing a character, instilling knowledge
associated with the character implies that percept objects
include information the character expects to understand or
use. In addition it is important for information in percept
objects to be organised to show descriptions at different

levels of perceived detail (LOPD). For example consider a
sound event as the result of gunshot. If the agent cannot
recognise the sound as a gun shot it must at least recognise
that a loud bang did occur. If the NPC’s hearing is impaired
then no sound event at all can be identified. Similarly the
identification of a person with visual percept objects shows
LOPD. If lighting conditions are dim, perhaps only the
silhouette can be seen. Further levels of detail may reveal the
clothes on an NPC, at the highest level of detail the identity
of the individual is revealed.
 On the other hand the level of world granularity (LOWG)
determines the maximum level of detail at which contents of
the world can be divided. For example a car may be
described as the composition of wheel, door, engine and
steering wheel objects. At a higher level of granularity each
of these objects are decomposed into further objects
describing more detail, e.g. the engine into cylinders, axle,
engine belt, battery, etc. Specifying how percept objects are
related and categorised require an ontology for precept
objects. Later sections are concerned with regard to how
percept objects and a synthetic world can be structured. An
ontology provides a good basis for designing and
implementing in software a synthetic perception for agents.
 In conclusion, the environment can be tailored towards the
functioning of its AI, the percepts themselves can be
designed or altered to suit the visual cognitive process
adopted for the agent. So it is in this sense it is sometimes
referred to as ‘smart’ or ‘intelligent’ synthetic perception.

ONTOLOGY OF WORLD, MENTAL PERCEPTS AND
CONCEPTS

The term ontology is a philosophical term and refers to the
study and conceptualisation of being or existence. In a
broader sense the term ontology refers to any structure in
concepts. Phenomenology on the other hand is the study of
objects of mental perception, i.e. the conceptualisation of
percept objects. Concepts formed in the mind that are non-
phenomenological are considered epistemic, i.e. relate to
what the agent knows. A conceptualisation constitutes a
description of the relationships involved between various
concepts (can include meta-concepts) as well as the
enumeration of the relevant concepts. For example, the word
object is a word concept stated often in this research, hence
ontology considered for percepts must be considered in
relation to this concept. A categorisation is a type of relation
between concepts (a subsumption or inheritance relation) in
ontology. A natural categorisation of objects is proposed
where the world is partitioned into objects considered being
with in the mind of the agent (i.e. phenomenological and
epistemological) and those external to it (strict ontological).
A suitable top-level categorisation of objects ontology for a
synthetic world is presented in Figure 1.
 At the top level of the objects category, all objects are
world objects and these are split into mental and environment
types. At the level immediately below mental objects are
percept objects and mental conception objects. Mental
Objects are defined here as whatever the mind notices or
recognises, and that the agent is able to give it a name or in
code be ascribed a symbol. These are commonly events in
the environment. Objects of Mental Conception are non-
percept objects such as plans, goals and ideas. Percept
objects are further split into visual and auditory objects. The

majority of Environment Objects (EOs) are the physical
objects that exist in the synthetic world. These include all
NPCs, players, buildings, weapons, etc, i.e. all world objects
that could be graphically rendered. EOs are responsible for
generating mental objects. The tree in Figure 1 can be
expanded further at the bottom levels with more nodes
specialised towards a particular world or game
situation.Objects of mental perception relate to observations
of processes in the environment. Hence what is mentally
perceived can be defined as an event that reports details of
the inspection of a process in the environment or in the
agent’s mind. For example an NPC roaming the environment
might witness a bird flying (visual perception of an ongoing
process in the environment), or see a monster pounce (visual
perception of the initiation of a process), or hear a door shut
(auditory perception of the termination of a process). In
addition, the NPC might notice to feel hungry (introspective
perception of the initiation of an internal process), or
conclude that a monster is hiding somewhere by
retrospection on all monster related memories to see how
long since it was last seen (retrospective perception of an
ongoing process). Hence what the agent perceives are
descriptions of a state of a process. As events are the main
drive behind change in the synthetic world, all environment
objects can be naturally partitioned into those that can be
affected by changes and those that cannot. These are later
distinguished by their ability to receive event messages. In
this respect agents are broadly defined as a perceptive EO.
For example a window may be considered a perceptive agent
because an acoustic shockwave can cause the window to
shatter (reception of an auditory percept object). Perceptive
agents can also be discarnate EOs that have not form to be
graphically rendered. These are referred to as imaginary EOs
in Figure 1. For example AI code that generates a percept
object for NPCs in reaction to the presence of a grenade near
a canister does not have a physical form in the world but it is
still a process nevertheless. On the other hand non-perceptive
agents can affect the environment but do not receive percept
objects. For example weapons, sky, water are not considered
to respond to visual, auditory, tactile… etc percept objects,
this is a common feature in computer games. Weapons in
particular such as knives, guns, grenades, etc, can be
considered extensions of the NPC using it. In other words if
the NPC uses a gun, it does not need to generate a tactile
percept object sent to the gun every time it needs to use it, in
the same manner as issuing a command to move or jump.
Similarly introspective percept objects can be treated in the
same manner. This categorisation reduces the computational
overheads of the sense-perceive-think-act cycle (Nilsson
1998, Russell and Norvig 1995) common to agents.
 Note that more than one categorisation can be possible in
the same ontology of concepts for a particular world. For
example environment objects could also be partitioned
according to their physical features such as into solids and
liquids, and not just with regard to recipiency of percept
objects. Hence a ontological concept can exhibit many
distinct features and each can be ascribed its own ‘sub-
ontology’. The ontology presented in Figure 1 can be
described as ‘oriented’ towards perception and related
concepts.
 In the work of Isla (1999) a categorisation or classification
tree for stimuli has been referred to as a percept tree and
used by the system C4. Similar systems showing a hierarchy

World Object

Environnent Object (EO)
(Processes)

of stimuli have been presented by Bordeux et al (1999),
Kline and Blumberg (1999). The synthetic perception of the
system C4 acts as a filter to the symbolic visual information
that is received from the virtual world in the form of visual
data records. These data records are then interpreted by a
simple perception system that utilises this percept tree. This
ontology is limited in its restriction to stimuli as the only
objects of perception, contrasting with the ontology in the
above figure that considers events as objects of perception.
Russell & Norvig (1995) present ontology for the world that
includes events and processes but not as objects of
perception.

PERCEPTION OF EVENTS AND PROCESSES

A process in the synthetic world can be characterised as
anything showing activity or any system interacting with it.
An environment object (EO) is characterised as a collection
of some processes. In theory all EOs can be attributed spatio-
temporal extensions, as the simulated reality exists in a
synthetic space-time continuum (Russell & Norvig 1995).
Hence a static process is still a process that could be
perceived by an agent. This is acceptable because an agent
could just be interested in an unchanging process as much as
an active one. For example a soldier NPC may notice a
motionless ammo pack in a FPS scenario when it runs out of
bullets. The ammo pack is not doing anything that could be
considered a form of change, but the NPC still perceives it.
This cognitive aspect will be returned to later in the context
of selective attention.

Hence perceived events are state descriptions of processes
in the environment or the agent’s mind. In one moment of

observation an agent is only able to perceive limited
temporal and state information on a process. For example the
agent is only able to perceive the current state of the process
and not any other state at the same moment in time. In
addition it can only perceive the process undergoing a state
change or maintaining the same state. Steady states or states
of change such as initiating (or activating), ongoing (or
active), terminating (or deactivating) and idle (or inactive)
are suitable for categorising the perceivable states of a
process. Figure 2 shows a gun undergoing these states.

A change (or transition) in states is considered a perceivable
event and states initiating and terminating can be categorised
as types of change events. It is assumed that states can be
ascribed to continuously changing ones. For example a
change in spatial position in an EO can be considered an
event. However if the EO is constantly moving then the
process can be ascribed a new and perceivable state of
continuous change. The process of motion best describes the
continuous changes in the EO because it can be described
using states initiating, ongoing, terminating and idle. The
perception of change can also be retrospective. For example
an agent will not be able to notice a change in the state of a

 Figure 1: The top-level ontological categorisation of world objects

Cognitive

Visual

Non Cognitive

NPCs Players Machines

Inanimate

Strict Ontological Phenomenological

Mental Object (MO)

Conception

…

…

Introspective Retrospective

Perception
(Percept Objects)

Perceptive
(Agents)

Non Perceptive

Tactile

Description Individual
Effect

Utterance

Animal Cry

Auditory

Plan Goal

Walls

WDoor indow
Floor

Sky Imaginary

Weapons

Proprioceptive Sensory or
Receptive

Heat Collision

States

q`

LOADED
 q RELOADING

Ongoing
state q

Initiating
a new state

Ongoing
state q`

Deactivating
q` state

FIRING

timeinac ve

ti

NO
BULLETS

NOT
LOADED

Figure 2: The gun as an example of a process.

door (whether open or closed) unless it remembers its earlier
state. This agent capability will require a memory to
remember past experiences in the environment.
 The perceived steady states of a process can also be
considered descriptions of states of processes at the lowest
LOPD. It is assumed that a perceptive agent is able to
distinguish between these states if unable to recognise more
detailed process behaviour. The importance of these states
for perception can be attributed to evolution. In nature visual
stimuli of interest or of threat are moving animals or insects.
The process of motion clearly exemplifies these states that
occur as ‘triggers’ to animal and insect behaviour. For
example consider the process that surrounds the opening and
shutting of a door and the passage of someone through the
door. An insect at the door does not perceive that an opening
door usually precedes an entrant. But it perceives at the
lowest LOPD some change in visual stimuli or acoustic
perturbations that cause it to be cautious.
 Representing events using the notion of ‘state change’
were first formalised using John McCarthy’s situations.
McCarthy (1963) introduced situational fluents (objects with
only temporal extensions) and used first order logic for
reasoning about situations in his situation calculus. Funge
(1999) used the situation calculus as a basis to his cognitive
modelling language (CML) for AI applications in computer
games. Unfortunately the situation calculus is inadequate for
describing continuous events or events of variable duration
(Allen 1991, Russell & Norvig 1995). The use of time
intervals and time interval relations for the presentation of
temporal extensions provide a better means for the reasoning
about time. This was introduced first by James Allen (Allen
1983, Allen 1984) and marked a major advance over the
situation calculus. Other researchers such as Shoham (1987)
and Ladkin (1986) consider similar and more sophisticated
approaches. In Allen’s work among others, event ontology
for reasoning about time provided a practical means for
comparison of temporal extensions, such as whether events
are simultaneous, subsumed, overlap or stagger.

5 MESSAGES FOR REPORTING EVENTS

Perceptive agents may query an EO about the status of its
processes as part of the perceiving the environment. The EO
(or another acting on its behalf) is expected to reply in the
form of a message that delivers percept objects. It is common
in software object messaging such as windows messaging
(Schildt 2000, Orkin 2002) to code messages as hexadecimal
or binary ID numbers. If necessary, segments of the number
can also code for details of the type. These ID numbers are
usually included as definitions in a header file and declared
using macro #define statements in C/C++ programs. Code
listing 2.6-1 shows a typical example.

#define EVNT_Hear_DoorOpens 0x100

#define EVNT_Hear_DoorCloses 0x200

#define EVNT_Hear_FootSteps 0x300

#define EVNT_Hear_Scream 0x400

#define EVNT_See_Gun 0x500

#define EVNT_Hear_GunReload 0x600

#define EVNT_Hear_GunFire 0x700

#define EVNT_Hear_PoliceSiren 0x800

Code Listing 1: Event message ID numbers for a hold-up
scenario.

Hence all messages must be declared in advance and an
agent’s behaviour is coded with these message IDs to
activate behaviours. More generally the agent can receive a
structured object as a message. A status report object reports
state details of the observed process. Code listing 3 shows a
class specification example for a status report.

class EO_StatusReport {

unsigned int MessageID; //ID number of Msg.
String *Description; // Description
EnvObject *Source;//Source/Referral of Rep.

Time &Dispatch; // Time Of Rep. Dispatch

Time &Delay; //Time Delay

Time &Start; //Time Of State Activation

Time &End; //Time Of State Deactivation

 public:

// Constructor

EO_StatusReport(unsigned int, String, EnvObject,
Time, Time, Time, Time);

// Deconstructor - Implement deletions here

~EO_StatusReport();

unsigned int RtMessageID();

String *RtDescription();

EnvObject *RtSource();

Time RtDispatchTime();

Time RtDelayTime();

Time RtStartTime();

Time &RtEndTime();

};

Code Listing 2: C++ Class specification for an EO status
report.

Processes in the environment can issue a status report object
when they undergo changes or upon request from agents. The
status report provides a pointer to the EO source of the report
stored in class member Source. If an EO source is an
imaginary process, Source can be used to refer to another
EO. A status report also includes temporal information on the
queried process. The temporal information in an
EO_StatusReport object is contained in the Time type
member variables of the class definition (code listing 2).
Time is considered a user defined class type that is used for
declaring time objects and provides methods that can be used
to compare and manipulate time objects. Start conveys the
time of transition into the perceived state reported. End
conveys the time of end of this state and hence the validity of
the contents of its status report. A status report may provide
some or no values for temporal variables Start and End
and depending on the perceived event. For example a visual
snapshot of a rolling ball does not necessarily indicate when
its motion has began or when will it end. The variable
Delay is used to issue a time delay before which the
contents of the message can be read. It is not necessary to use
all the member variables of the class in every status report
generated. Therefore variables are declared as pointers or
references (Daconta 1996, Osborne 2001) and instantiated to
zero (Null address in programming terms) in the
constructor (Code listing 2). Hence by default Null pointers
indicate that a member variable was not used (as no memory
address is created to store the contents of the variable).

 The pointer to string variable Description provides a
description of the perceived state. This description can be a
note of the perceived states of change or steady behaviour
described in section 4. Alternatively it can be a more detailed
sentential description of the state and its process to be
utilised by a deliberative or planning type of agent.
Normally, MessageID is solely adequate for the
identification of the state and the triggering of all agent
behaviour. Therefore Description can be omitted.
However events that describe relationships between EOs
cannot be enumerated for every EO involved. Coding
MessageID such that segments refer to the EOs involved is
a solution but is ultimately equivalent to a sentential
representation. Segmenting MessageID is inadequate for
expressing complex relations between EOs and therefore
Description must be retained in such a case.
 The public functions in the class declaration of the status
report and prefixed ‘Rt’ return the member variables in their
respective names. Definitions are shown in code listing 2.
For example RtMessageID returns the contents of the
variable MessageID. The use of this member functions
sanctions the use of the member variables. Recipients of the
status report are not permitted to change its contents. Hence
all member variables are declared as private and access of
this content is only permitted through the member functions
with names prefixed with ‘RT’.

6 INSTATING SPECIALISED PROCESSES

The concept of using messages is particularly useful in event
driven systems where there are many concurrent processes
that suffer changes at different times, and can have varying
effects on each other because of the times of these changes.
The agent’s synthetic world is a typical example of such a
system and messaging makes its simulation more
computationally efficient. To understand why messaging
makes this possible, one must remember that a message is
data that refers to the outputs of a particular module of code,
such as a function that does a particular job and returns a
result. The result of a function can be stored in a temporary
location in memory and referred to as a message. The
message describes the results of the invoked function and
thus saves any unnecessary effort to invoke it anew by other
parts of the program interested in the same computation.
Besides EOs cannot be ‘re-simulated’ every time an agent
queries into their state. In addition, a message (such as the
status report object) includes temporal information about the
invoked function, therefore recipients can check at which
times are the contents of the message valid. Hence, all calls
to functions in AI code can be replaced by references to
messages.
 Messages can be considered more than just logbooks of
events. A message normally implies that information is
passed or delivered to a recipient. Hence each recipient must
retain a personal copy of a delivered message. Recipients are
expected to sift through their respective mailboxes of
messages, and implement behaviours as a result of reading
messages. In contrast, agent AI code can be written including
explicit references to the EOs that it is interested in. This
however does not provide an event driven AI. It is also
inefficient if there are multiple agents or if an agent is
interested in multiple EOs. Consider an example: an agent
reacts to a loud auditory bang (such as a gun shot) by

jumping up. The agent AI code may contain an explicit
reference to the state of the gun and constantly has to check
for the gunshot event every time the state of the agent is
updated. This is commonly referred to as polling (Deloura
2000, Rabin 2001, Treglia 2002). If there are multiple agents
that react to the same event, this distributed method will
demand a lot of CPU resources, as each agent has to monitor
the gun for the event. It is clearly more efficient to let the
source of the event generate a message so that agents only
react when a message of the event arrives.
 More generally, imaginary processes can be instated for
more efficient simulation of the agent world. Specialised
processes can be instated to manage the capture of events
and broadcasting of messages more efficiently on behalf of
some EOs. Capturing an event involves placing code to
detect its occurrence. Specialised processes will be privileged
to utilise expert knowledge on the type of messages delivered
and the EOs that generate them. EOs will no longer be
required to retain this knowledge, thus economising memory
space. Knowledge can include conditions of reception of
percept objects, or data structures for the spatial organisation
of the environment. If multiple EOs share common or similar
conditions of reception then a specialised process can group
or sort EOs according to these similarities for more efficient
delivery of messages. EOs can also be sorted according to
other criteria, such as spatial position, speed, character, etc.
For example, tactile perception and proximity generated
events will benefit from a hierarchically organised spatial
environment. For example Quadtrees (Prittchard 2001, Watt
& Policarpo) or quadratic trees can be used to hierarchically
organise a 2D environment. Quadtrees are tree data
structures created by recursively subdividing the
environment into 4 rectangular bounding areas. Each added
level of a quadtree data structure corresponds to a
subdivision of the bounding areas into 4 further ones.
Therefore nodes in a quadtree branch to at most 4 nodes
away from the root. An NPC’s position will correspond to a
unique terminal node in a quadtree. A list of EOs that belong
to the same terminal node can be maintained and used in
proximity tests. Therefore, it is sufficient for the an
automatic door for example to evaluate proximity tests on all
NPC that are members of its own terminal-node-list! Octrees
(Ginsburg 2000, Watt & Policarpo 2000, Ulrich, T. 2000)
are 3D generalisations of quadtrees and can be used to
hierarchically organise a 3D spatial environment by
subdividing 3D space into cubic bounding volumes.
 Therefore instating specialised processes not only makes
the simulation of the agent world more efficient, but also
reduces overall clutter in AI code and simplifies the AI
programmer’s task to that of only implementing behaviours.
 In some respects, instating a specialised process also offers
a centralised solution. A centralised process can offer more
efficient simulation through the sharing of information and
resources. For example NPCs can request path plans
generated by a single path planning system. This has obvious
applications in computer games such as real-time strategy
(RTS) where multiple agents may be interested in travelling
along the same routes. In this case a path planner operates as
an EO that generates path plans as mental conception objects.
Different agents can query this EO about paths. Note
EO_StatusReport objects are solely designed for
delivering percept objects. Hence messaging path plans
requires an alternative message object.

 Unfortunately instating a specialised process may not be
possible or centralisation may not be a solution, especially if
information common to EOs is unavailable. For example
proprioceptive objects (Figure 1) include retrospective and
introspective percept objects. These precept objects can be
very dependent on the states of EOs that generate them. For
instance, retrospective percept objects are a function of an
agent’s past experiences, therefore can be very specific to an
agent. Consider a game example where an imaginary EO
(call hide) informs soldier NPCs that alien NPCs are hiding
from their respective viewpoints. hide is clearly a function of
an NPC’s past experiences (how long has it been since it last
saw a alien) and therefore behaves differently for every
agent. Hence instating hide as a single central process does
not present any clear benefits to NPCs each using their own
personalised versions of hide.

SENSORY MEMORY AND BEHAVIOUR

Cognitive agents require a sensor memory (SM) that acts as a
temporary mailbox where the most recent messages can be
stored. Sensory memory (also referred to as echoic memory)
is a brief memory system for storing percept objects, like an
initial input buffer (Ashcraft 1998, Nessier 1967). Examples
include Visual Persistence; visual information persists
beyond the physical duration of the event.
 Messages stored in SM are used by the agent’s AI code to
alter its mental state and effect behaviours. Productions are
commonly used in programming for implementing message
handlers. A production implemented as if-then statements
contains a premise body and consequent body. The premise
is implemented as a test clause on a message’s content,
which if satisfied the consequent is evaluated. For each
message we can associate one production in the AI, as two
productions with identical test clauses can be merged into
one. Hence there is a 1:1 correspondence between message
and production.
 There are two main methods that can be used to implement
messages triggered behaviour in code. Messages first
inspection or productions first inspection. In the first method
an agent evaluates all productions for each message in turn.
Only productions that code for a message will fire. In the
second method each production is inspected first: for each
production SM is searched for messages relevant to its test
clause. Messages first inspection is the more common
method for implementing message triggered behaviour. Code
listing 2.8 is an example of messages first inspection.

/* For each status report message Msg in policeman
NPC’s sensory memory do the following:*/

if(Msg->MessageID == Evnt_Hear_GunFire) {

//NPC Withdraws Gun & turns towards source
}

if(Msg->MessageID == Evnt_Hear_Scream) {

//NPC runs towards source & calls backup
}

if(Msg->MessageID == Evnt_See_Gun) {

//NPC throws his gun & puts his hands up
}

Code Listing 2.8 C++ example of messages triggered
behaviour for a policeman NPC

Both inspection methods can benefit tremendously by sorting
messages or productions to improve on the their time
complexities. If there were m messages and p productions
then each production would be inspected mp times. As
MessageIDs are numbers this provides a straightforward
presentation for messages to be ordered. As messages can be
delivered at any time the SM must be sorted every time a
new message is delivered. This implies that a new message
ID number must be inserted in the correct position among
other ID numbers already sorted and in the agent’s SM (see
Knuth 1997 for a good mathematical exposition, Horrowitz
1995 for C++ code implementations). Hence the SM remains
sorted in ascending or descending order every time a new
message is added. Hence in productions first inspection
method, a production involves querying the SM to whether a
particular message is present. If the SM is sorted then a
sequential search will inspect m messages in the worst case.
Binary search methods yield better performance with at most
log2m inspections. Productions can also be ordered in code
according to the message IDs used in their test clauses. In
that case the messages first inspection method will use at
most log2 p production inspections using binary search.
 Ordering both messages and productions can merge both
methods. As there is a 1:1 correspondence between
production and a message, the general problem involves the
matching of identical messages from different lists of
messages. In this case one for the productions and one for the
SM. A production first inspection would be more appropriate
for the merged method as the number and order of
productions usually remains fixed, where as the messages in
SM normally varies. Each production would be examined in
turn and the SM searched for each inspected production. A
search yields a position (say y) of a matching message in SM
if one is found (Figure 3). If no matching message is found
then the last position m+1 in the SM is returned. When
inspecting another production an SM search can resume from
the last position determined by the last production, i.e. all
searching entries with positions below y. For this newly
inspected production all messages at positions above y
cannot match because productions and messages are ordered.
Hence this method is more computationally efficient.
 Utilisation of messages can also be improved if sensory
memory is partitioned into separate sensory memories for
each type of stimulus (visual, auditory, etc), and messages
are delivered directly into the correct memories. Hence
productions would also be grouped accordingly. Sensory
memories can also be further divided into smaller memories
according to the type of information stored. For example one
area in visual SM can be solely reserved for receiving and
storing messages about NPCs. Other part of the SM can be
dedicated to messages from imaginary EOs. Fragmenting SM
serves to further cut computational costs of searching for
messages to fire any corresponding productions, therefore
improving the overall performance of triggering behaviours.

CONCLUSIONS

Perception for cognitive and believable agents in synthetic
environments such as computer games has been thoroughly
investigated in this paper. Concepts such as events, states and
processes have been studied and modelled in the context of
perception. Aspects of perception such as levels of perceived
detail (LOPD) are shown to be essential for intelligent and

Sensory Memory (SM)

believable agency. LOPD is also observed in the perception
of events.
 This paper all presents ontology for the conceptualisation
of the agent world and perceivable objects in it. The structure
provides a strong basis for designing computationally
efficient and robust software models for agents and synthetic
environments. Such as game AI and architectural design of
game engines. The overall software architecture is presented
as a distributed system of processes that operate
cooperatively for economy of computation and computer
memory space across the entire system. Messaging is used
for the exchange of information between processes. It is also
used implement an event driven environment. Specialised
processes can also be instated for more efficient capture or
messaging of events. Specialised processes can be beneficial
to simulating the agent world if there is information that can
be exploited in capturing events or delivery of messages. The
benefits summarised are:

• Reduces overall clutter in AI code.

• Economises the usage of computer memory and CPU

• Simplifies the AI programmer’s task to that of only

implementing behaviours

• Agents that make common requests for status reports can be

remembered as a group for more efficient delivery.

• Knowledge common to EOs can be exploited for more

efficient capturing of events or to form groups for more

efficient delivery of messages.

OOP software code was also provided for the
implementation of the above-mentioned technologies.
 The research undertaken here motivates further work on
other related features of cognition. Such as attention and
human memory and provides a good foundation for designing
these.

REFERENCES

Abrash, M. (1997), Michael Abrash’s Graphics Programming

Black Book, Special Edition, Coriolis Group, Inc.

Allen, J.F. (1984), ‘Towards a general theory of action and time’,
Artificial Intelligence, 23:123-154.

Allen, J.F. (1991). ‘Time and time again: The many ways to
represent time’, International Journal of Intelligent Systems,
6:341-355.

Ashcraft M. H. (1998). Fundamentals of Cognition, Addison–
Wesley Educational Publishers Inc.

Bordeux, C., Boulic, R., and Thalmann, D. (1999), ‘An efficient
and flexible perception pipeline for autonomous agents’. In
Proceeding of Eurographics 99, pages 23-30, Milano, Italy.

Burke, R., Isla, D., Downie, M., Ivanov, Y. and Blumberg, B.
(2001), ‘Creature Smarts: The art and architecture of a virtual
brain’. In Proceedings of the Game Developers Conference, San
Jose, CA, March.

Daconta, M. C. (1995), C++ Pointers and Dynamic Memory
Management, John Wiley & Sons, Inc.

Downs, R. M. and Stea, D. (1973), ‘Cognitive maps and spatial
behaviour: Process and product’, In: R.M. Downs and D. Stea,
eds Image and Environment. London: Edward Arnold.

Dewhurst, S.C. and Stark, K. T. (1989), Programming in C++,
Prentice Hall Inc.

Franz, M. O., Schölkopf, B., Mallot, H. A. and Bulthoff, H. H.,
(1998). ‘Learning view graphs for robot navigation’,
Autonomous Robots, 5, 111-125.

Funge, J. D. (1999), AI for Computer Games and Animation: A
Cognitive Modelling Approach, A K Peters Ltd.

Gruber, T. R. (1993), 'A translation approach to portable
ontologies'. Knowledge Acquisition, 5(2):199-220, 1993.

Ginsburg, D. (2000), ‘Octree Construction’, Game Programming
Gems, Deloura, M. editor, Charles River Media, Inc.

Heibert, G. (2002), ‘Creating a Compelling 3D Audio
Environment’, Game Programming Gems 3, Treglia, D. editor,
Charles River Media, Inc.

Horowitz, E., Sahni, S. and Mehta, D. (1995), Fundamentals of
Data Structures in C++, Computer Science Press, New York.

Harvey, M. & Marshall, C. (2002), ‘Scheduling Game Events’,
Game Programming Gems 3, Treglia, D. editor, Charles River
Media, Inc.

Isla, D., Burke, R., Downie, M. and Blumberg, B. (2001), ‘A
layered brain architecture for synthetic creatures’. In The
Proceedings of the International Joint Conference on Artificial
Intelligence IJCAI, Seattle.

Isla, D. (2001), The Virtual Hippocampus ; Spatial Common Sense
for Synthetic Characters, PhD Thesis, MIT.

Jähne, B. (1997), Digital Image Processing, Springer-Verlag, Berlin
Heidelberg.

Johansson, G. (1975), ‘Visual motion perception’, Scientific
American, vol.232, no.6; June 1975, p.75-80, 85-8.

//Production #1
if(Msg->MessageID == Evnt_Hear_GunFire) { … }

//Production #2
if(Msg->MessageID == Evnt_Hear_Scream) { … }

//Production #3
if(Msg->MessageID == Evnt_See_Gun) { … }

//Production #4
if(Msg->MessageID == Evnt_Hear_GunFire) { … }

 …

…

Position Pointers to
Messages

1 0x101A5

2 0x1574F

3 0x11A31

Msg:=0x123F5
y 0x123F5

y+1 0x120C5
y+2 0x133AA …

.

Productions ordered according to
message IDs m

Figure 3: Merging Messages first inspection and production first inspection.

Kallman,M. and Thalman, D. (1998), ‘Modelling objects for
interaction tasks’, Proceedings of Eurographics Workshop on
Animation and Simulation.Kline, C. and Blumberg, B. (1999),
‘The art and science of synthetic character design’. In
Proceedings of the AISB 1999 Symposium on AI and Creativity
in Entertainment and Visual Art, Edinburgh, Scotland, 1999.

Knuth, D. E. (1997b), The Art of Computer Programming: vol 2,
Searching & Sorting, Addison-Wesley.

Kuffner & Latombe (1999), ‘Fast Synthetic Vision, Memory, and
Learning for Virtual Humans’, Proc. of Computer Animation,
IEEE, pp. 118-127, May 1999.

Ladkin, R (1986). ‘Primitives and Units for Time Specification’. In
National Conference on Artificial Intelligence, pages 354-359.

Marr D. (1982), Vision: A Computational Investigation into the
Human Representation and Processing of Visual Information,
Freeman, New York.

McCarthy, J. (1963). A Basis for a Mathematical Theory of
Computation. In Braffort, P. and Hirschberg, D., editors,
Computer Programming and Formal Systems, pages 33-70.
North-Holland, Amsterdam.

Orkin, J. (2002), ‘A General-Purpose Trigger System’, AI Game
Programming Wisdom, Rabin, S. editor, Charles River Media,
Inc.

Prittchard, M. (2001), ‘Direct Access Quadtree Lookup’, Game
Programming Gems 2, Deloura, M. editor, Charles River
Media, Inc.

Rabin, S. (2002a), AI Game Programming Wisdom, Charles River
Media, Inc.

Rabin, S. (2002), ‘An Extensible Trigger System for AI Agents,
Objects and Quests’, Game Programming Gems 3, Treglia, D.
editor, Charles River Media, Inc.

Rosenblatt, F. (1961). Principles of Neurodynamics: Perceptrons
and the Theory of Brain Mechanisms. Buffalo, NY; Cornell
Aeronautical Laboratory.

Russell S. & Norvig P. (1995), Artificial Intelligence A Modern
Approach, Prentice Hall Inc.

Schölkopf, B. and Mallot, H. (1995), ‘View based cognitive
mapping and path planning’, Adaptive Behaviour, 3, 311-348.

Suliman, H., Mehdi, H. & Gough, N.E. (2001), ‘Spatial Cognitive
Maps in Agent Navigation and Informed Path Planning’,
(Paper Code # G-127) ISCA 10th International Conference on
Intelligent Systems, Virginia, USA, June 13-15, 2001.

Sekuler, R. and Blake, R. (1994), PERCEPTION, McGraw-Hill,
Inc.

Schildt, H. (1998), C++ from the Ground Up, McGraw-Hill.
Schildt, H. (2000), Windows 2000 from the Ground Up, McGraw-

Hill.
Shoham, Y. (1988). Reasoning about Change, MIT Press,

Cambridge, Massachusetts (1988).
Thalmann, D., Noser, H. and Huang, Z. (1996), ‘How to Create A

Virtual Life?’, Interactive Computer Animation, Prentice Hall,
pp. 263-29.

Ulrich, T. (2000), ‘Loose Octrees’, Game Programming Gems,
Deloura, M. editor, Charles River Media, Inc.

Watt, A. & Policarpo, F. (2001), 3D Games: Real Time Rendering
and Software Technology, 1st Edition, ISBN 0-201-61921-0,
ACM Press 2001.

MULTI-AGENT BASED MODELLING: FROM SOCIAL SIMULATION TO REAL
TIME STRATEGY GAMES

Marco Remondino
Department of Computer Science

University of Turin
10149 Torino, Italy

E-mail: remond@di.unito.it

KEYWORDS
Intelligent agent, simulation, genetic algorithm, classifier
system, strategy game

ABSTRACT

Simulation has been regarded as the third way to represent
social models, alternative to other two symbol systems: the
verbal argumentation and the mathematical one. Simulation
can be processed by a computer and is particularly suited for
complex systems, in which the aggregate behaviour is not
necessarily the sum of the sincle parts. Agent Based
Modelling (ABM) is for sure the most interesting and
advanced approach for simulating a complex system: in a
social context, the single parts and the whole are often very
hard to describe in detail; by using intelligent agents as basic
building blocks, there are formalisms which allow to study
the emergency of social behaviour through the creation of
models, known as "artificial societies". This paper deals with
an hybrid agent based methodology, borrowed from the
social sciences application field, which could be succesfully
applied to real-time strategy games; this would create a
realistic environment and a less deterministic behaviour,
thanks to the AI technology enbedded in the hybrid
approach.

INTRODUCTION

According to (Ostrom 1988), simulation can be considered a
third way to represent social models; in particular, it can be a
powerful alternative to other two symbol systems, the verbal
argumentation and the mathematical one. The former is, of
course, a non computable way of modelling, though a highly
descriptive one. As to the mathematical argumentation,
everything can be done with equations, in principle, but the
complexity of differential equations increases exponentially
as the complexity of behaviour increases. Describing
complex individual behaviour with equations often becomes
intractable. Simulation has a great advantage over the other
two, which is to be found in its high portability on a
computer, through a program or a particular tool, and in the
possibility of describing complex behaviour starting from
simple interacting entities. Computer programs can then be
used to model either quantitative theories or qualitative ones.
Since real time strategy games are more and more complex,
and take place in dynamic worlds in which complex
decisions, often based on partial knowledge must be made,

the artificial intelligence behind them can be modelled with
agent base techniques, already used in social simulation. In
particular, a hybrid methodology will be discussed, which is
particularly fitted for those situations in which some parts of
the environment are strictly deterministic, while others must
act basing their decisions on the interaction among them and
the environment itself.

DIFFERENT KINDS OF AGENTS

Agent Based Modelling (ABM) is for sure the most
interesting and advanced approach for simulating a complex
system: in a social context, the single parts and the whole are
often very hard to describe in detail; by using intelligent
agents as basic building blocks, there are formalisms which
allow to study the emergency of social behaviour through
the creation of models, known as "artificial societies".
Thanks to the ever increasing computational power, it's been
possible to use such models to create software, based on
such intelligent agents, which aggregate behaviour is often
complex and difficult to predict, and which can be used in
open and distributed systems. A software agent can be
described as a flexible system, capable of dynamic,
autonomous actions in order to meet its design objectives,
that is situated in some environment. The main features for a
software agent are: situatedness, that is ability to perform
actions according to a particular input received from outside,
which can, in turn, change the environment itself; autonomy
in performing actions, without intervention of humans;
flexibility and adaptability. Some particular agents can also
be proactive, which means they are goal-directed, and social,
in the way they can interact with other artificial agents,
robots, and humans. Such an intelligent agent can be referred
to as a Belief-Desire-Intention (BDI) one. There are many
agent based paradigms that can be applied to simulation:

• Symbolic: highly structured agents, described through

expressions of modal logic. This is perfect when there is
only a single agent, which must interact with the
environment, but it's not versatile when used to simulate
big communities

• Sub-symbolic: many simple (not structured) agents
which interact among them and with the environment. A
multi-agent context of this kind allows the emergency of
complex behaviour and self-organization. Intelligent
behaviour is a product of the interaction among agents
and environment, and of the interaction among many

simple behaviours. It can be really hard to describe the
real world under every aspect: some fundamental
macro-actions can thus be defined on single agents,
which allow cooperation with the environment and with
other agents. The concept of Multi Agent System for
Social Simulations is thus introduced: the single agents
have a very simple structure. Only few details and
actions are described for the entities: the behaviour of
the whole system is a consequence of those of the single
agents, but it's not necessarily the sum of them. This can
bring to unpredictable results, when the simulated
system is studied.

• Hybrid Architectures: at the lower levels, we find
reactive agents, like the ones described above, while at
the upper levels there are more complex and structured
agents. In this way, we can combine reactive capabilities
with planning.

In some situations, effective results can be obtained just by
building simple, sub-symbolic agents, whose behaviour is
randomly determined or is built by applying fixed pre
defined reaction rules; this is the case, for instance, of
Heatbugs, one of the canonical Swarm demonstrations
(www.swarm.org):

“It’s an example of how simple agents acting only on local
information can produce complex global behaviour. As we
read on Swarm main site, each agent in this model is a
heatbug. The world has a spatial property, heat, which
diffuses and evaporates over time. In this picture, green dots
represent heatbugs, brighter red represents warmer spots of
the world. Each heatbug puts out a small amount of heat,
and also has a certain ideal temperature it wants to be. The
system itself is a simple time stepped model: each time step,
the heatbug looks moves to a nearby spot that will make it
happier and then puts out a bit of heat. One heatbug by itself
can't be warm enough, so over time they tend to cluster
together for warmth”

EVOLUTIONARY METHODS

This is a useful approach when we wish to simulate
situations in which we give the rules of the environment and
we want to observe some emerging aggregate behaviour
arising from simple entities; of course, the way the agents
will act tends to be deeply dependent on the choices made by
the programmer. As an alternative we can choose to create
agents with the ability to compute rules and strategies, and
evolve according to the environment in which they act; in
order to model them, we can use some methods derived from
the studies on artificial intelligence (AI), such as artificial
neural networks and evolutionary algorithms. While the
former is a collection of mathematical functions, trying to
emulate nervous systems in the human brain in order to
create learning through experience, the latter derives from
observations of biological evolution. Genetic Algorithms
(GA) are inspired by Darwin's theory of evolution, often
explained as "survival of the fittest": individuals are
modelled as strings of binary digits and are the encode for
the solution to some problem. The first generation of
individuals is often created randomly, and then some fitness

rules are given (i.e. better solutions for a particular problem),
in order to select the fittest entities. The selected ones will
survive, while the others will be killed; during the next step,
a crossover between some of the fittest entities occurs, thus
creating new individuals, directly derived from the best ones
of the previous generation. Again, the fitness check is
operated, thus selecting the ones that give better solutions to
the given problem, and so on. In order to insert a random
variable in the genetic paradigm, that’s something crucial in
the real world, a probability of mutation is given; this means
that from one generation to the next one, one or more bits of
some strings can change randomly. This creates totally new
individuals, thus not leaving us only with the direct
derivatives of the very first generation. GA have proven to
be effective problem solvers, especially for multi-parameter
function optimization, when a near optimum result is enough
and the real optimum is not needed. This suggests that this
kind of methodology is particularly suitable for problems
which are too complex, dynamic or noisy to be treated with
the analytical approach; on the contrary, it’s not advisable to
use GA when the result to be found is the exact optimum of
a function. The risk would be a convergence to some results
due to the similarity of most the individuals, that would
produce new ones that are identical to the older ones; this
can be avoided with a proper mutation, that introduces in the
entities something new, not directly derived from the
crossover and fitness process. In this way, the convergence
should mean that in the part of the solution space we are
exploring there are no better strategies than the found one.
It’s crucial to choose the basic parameters, such as crossover
rate and mutation probability, in order to achieve and keep
track of optimal results and, at the same time, explore a wide
range of possible solutions.

Classifier Systems (CS) derive directly from GA, in the
sense that they use strings of characters to encode rules for
conditions and consequent actions to be performed. The
system has a collection of agents, called classifiers, that
through training evolve to work together and solve difficult,
open-ended problems. They were introduced in (Holland
1976) and successfully applied, with some variations from
the initial specifics, to many different situations. The goal is
to map if-then rules to binary strings, and then use
techniques derived from the studies about GA to evolve
them. Depending on the results obtained by performing the
action corresponding to a given rule, this receives a reward
that can increase its fitness. In this way, the rules which are
not applicable to the context or not useful (i.e. produce bad
results) tend to loose fitness and are eventually discarded,
while the good ones live and merge, producing new sets of
rules.

FROM REAL MODELS TO STRATEGY GAMES

Strategy games are those in which the player must manage
and control military units, workers, resources and so on, and
is generally charged with choices and tasks (construction,
conquest, organization, etc.) in order to reach a main
objective. There is of course an environment, which
sometimes can be changed by the actions taken by the player
himself, and other actors, that can also be human players or,
more generally, artificial entities, managed by some form of

AI. There are mainly two classes of strategy games: Turn
Based and Real Time. While the former category is not very
interesting for this paper, the latter is the one in which many
actions (issued by different entities) take place in parallel.
That’s where many similarities arise with real time
simulators of real world situations; we may think, for
example, to some stock market simulations: by observing the
general trend of the artificial stock market created with some
basic rules, one can be amazed, by seeing that it resembles in
many ways a real one. The market can be simulated by
creating some different types of intelligent agents, which
follow inner rules; some of them can simply act randomly,
while others will “study” the trend before acting. Some of
them could even use advanced techniques, such as stop loss.
We can now set up things such as of one of these agents is
indeed a human player, and we have a sort of real time
strategy game, in which the main objective is to become
richer and richer, while other computer driven entities try to
pursue the same target.

Other interesting examples can be found into the enterprise
simulation field; here we have mainly three techniques to
model enterprises:

• Process Based: used to model a very well structured and

known situation, in order to perform a what-if analysis:
it’s used to create models of parts of enterprises or
mechanical/electronic systems. Its greatest advantage is
that it starts from a basic scheme, often derived from
existent documents, through which it becomes very easy
to bring a real situation into a process simulator: usually,
a model to be used for process simulation looks like a
flow chart, in which a token passes from one box to
another one, in a deterministic way, on the basis of the
given rules. This kind of approach is widely spread and
allows to deeply analyze a part of a whole, studying the
expected behaviour of a system, when some change is
operated. This is why process simulation is a great
support to decisions; the simulator can answer to many
questions and what-if problems, that would require big
efforts in the real environment; for example, a part of a
manufacturing plant can be simulated, by dividing it
into its main processes, and then it will be possible to
check what would happen on the final output if some
change occurs.

• Agent Based: when the system to be simulated has a
complex aggregate behaviour, not easy to describe just
studying and modelling the single entities, agent based
simulation is the only usable approach. In complex
systems the sum of the parts is often not enough to
describe the whole, and usually from the interaction of
many simple entities a complex behaviour emerges. So,
if we want to model an enterprise in which also the
human factor is present, or we want to consider also the
influence of the environment, it will be impossible to do
that with a process based approach, thus leaving agent
based simulation as the only feasible method. While in
process simulation the stress is on the function of the
single parts, which are deeply modelled as resembling
the reality, in agent based simulation the most important
side is interaction among entities, which creates the
aggregate behaviour.

• Hybrid (Agent-Process based): according to
(Remondino, 2003), combining the two approaches, we
can have a detailed model of the whole enterprise, with
its production units, sales, purchases and account
departments, logistics, warehouses and so on, modelled
with a process based approach, and the environment,
customers and sellers behaviour simulated using agent
based technology. This approach, called Agent Based
Process Simulation, allows to model machineries and
the production units of an enterprise; the most difficult
part to simulate, but probably also the most interesting
for which regards the emergence of aggregate behaviour
and self organization, is the human factor. For this
reason, propositional logic is used to model the
deterministic parts of the enterprise, while GA and CS
constitute the mind of the agents involved.

When one of the agents involved (plausibly the director, the
disposer or a manager), is a human player which must take
decision to pursue a main objective (e.g. obtain profit,
overcome competitors, etc.), the enterprise simulator built
with an agent based, or even better a hybrid approach could
be regarded as a complex and realistic real time strategy
game. The environment and the various entities involved
(customers, competitors and so on) are governed by the
computer, according to AI rules, using GA and CS. The
deterministic parts are simply modelled using logic based
formulas, which can be easily translated into if-then
conditions.

AGENT BASED PROCESS SIMULATION

Usually, since processes can be modelled as deterministic
flows, my proposal is to use both Propositional and Modal
Logic to describe their structure. In (McCartney 2001) we
read that:

“The basis for most current systems of formal logic is
Propositional Logic, also known as Propositional Calculus
or PC. PC describes truth-based rules using the fundamental
ideas of not and or, and derivations of the concepts of and,
implication, and strong implication. A common extension to
PC is predicate logic. Predicate logic includes variables as
well as non-truth-based validity; or mapping variables into
values other than the Boolean true or false. Another non-
truth based logic is modal logic, which is based on PC and
introduces the concepts of necessity and possibility. Modal
logic is closely related to PC and predicate logic, but is able
to describe states that would be indescribable in either of
these languages”

In order to model a deterministic process, the Propositional
Logic could be enough, since it allows to create truth tables
of the single sub-processes. Modal Logic allows having a
more versatile environment, allowing to determine if a
proposition is true for sure, false for sure or sometimes true
and sometimes false (i.e. it’s possible). In my framework I
will only suppose the use Propositional Logic, to model
simple processes: this allows to describe a process, create a
model of it and simplify the transition to programming code
required to port it into a working simulation. A sub-block of
a process produces output_1 if the logic formula is True, or

output_2 if it’s False; one of the two outputs can be simply
Void. In this way, a part of a whole process can be like
exemplified in Figure 1.

Figure 1: Propositional Logic Based Sub-block

Passing from this kind of representation to a programming
language is a very easy step, since all the single boxes can be
represented with if-then functions. In this way a very
complex deterministic process can be modelled starting from
very simple building blocks. Modal Logic can even add
concepts of probability and necessity, so that a particular
output going out from a basic building block can always
occur or it’s possible that it occurs. In this case a probability
function can be given, representing the views on the possible
modal worlds, to specify how often an output can be
produced, given the initial rule.
This approach allows to model machineries, production units
and all the parts based on a deterministic or stochastic
behaviour in a real time strategy game. Agent Based Process
Simulation is a way to model deterministic structures, made
up of single processes, divided into Propositional Logic
based building blocks, and having them interact with agents
belonging to the sub-symbolic paradigms. This allows to
simulate situations in which not only the deterministic
structure, but also unpredictable situations could arise,
caused by the environment or the human factor are
important. In this way all the agents that require to have a
human-like behavior could be modeled using AI derived
approaches, thus creating a realistic behaviour in the game.
At the same time, these agents will deal with deterministic
(or stochastic) structures, thus learning how to interact with
them.

ARTIFICIAL SOCIETIES AND INTERACTION

A very important feature for Real-time Strategy games is
multiplayer capability, so that in the same environment many
different human player can interact and create their own
world. While this has been made relatively easy thanks to
the internet, the artificial intelligence behind the computer
driven players is still lagging behind, thus creating the
impression that the actions performed by theartificial players

are somewhat predictable and fixed. In my opinion, a good
single-player mode, that means a good AI, is really
important for a game and people appreciate it.
While creating a working framework employing the
proposed methodology is beyond the purpose of this paper,
I'll try to give an example of what could be achieved with it.
In the present games, the evolution of a computer driven
society is often following precise patterns, set by the
programmers themselves. Usually, The computer "knows"
how to accomplish certain types of strategies that are
common. In games in which the player has to build his own
party, often the members act in a mechanical (and not
intelligent way); the only commercial example of a learning
AI is, in my opinion, the game Creatures (and its sequels), in
which "heterogeneous" neural networks are used; the
developer (T. Simpson, 2002) describes this technique
saying that:

"Heterogeneous as in not harmonious. The neurones are
divided up into lobes which serve different purposes,
although the neurones in each lobe are the same. Things
such as leakage rate, dendrite migration and so forth can be
set for particular lobes without simply having a collection of
the same old neurone as it would be in a "normal" net. This
is the way mother nature does it, etc. As for what they
actually do, well, they act like real living brains, only
somewhat smaller than our own right now."

The problem about this game is that it was too much CPU
intensive and, above all, it was not really a strategy game,
but rather a virtual "pet" to grow up. Using the technology
I'm proposing in this paper, it would be possible to create a
storm of intelligent agents able to learn from one generation
to the next one, by using the GA and CS paradigms, yet not
charging the CPU that much, since all the parts that can be
represented through processes will be simple deterministic
structures. In this way, the player will have the opportunity
to play into a self organizing world and at each round the
game would be different, according to the actions taken by
the human players themselves and the other artificial agents
involved in the game.

CONCLUSIONS

The number of degrees of freedom in modern strategy games
makes them a perfect field of application for agent based
techniques, which can often exploit the complex aggregate
behaviour even when applied to real situations, like social,
anthropological and economical simulations. Besides
modern games take place in dynamic complex worlds in
which complex decisions, often based on partial knowledge
must be made. This is exactly what happens, for example, in
a real enterprise, a stock market or, in general a society.

According to (Fairclough et al., 2001), the actual trend in AI
for games is to use schedule based finite state machines
(FSMs) to determine the behaviour of the player’s
adversaries. Although this has been achieved to very good
effect, FSMs are by their nature very rigid and, behave
poorly when confronted by situations not dreamt of by the
designer. That’s why an agent based approach could deliver
more realistic and less deterministic behaviour: agents could

2

2

N

A and B

A B

C

1

D

D or N

C and E

1

E

F

2

F

F 1

1

2

self organize, producing intelligent aggregate behaviour,
able to puzzle the human player and, at the same time,
presenting different paths of evolution at every match.
Besides, using hybrid approaches (agent based and process
based) would allow the intelligent agents to self organize
according to the deterministic structures, just giving simple
rules; this would cause the behaviour to be consistent with
the one that could be observed in the real world and would
be quite independent from the choices of the programmers.
In this way, the game could also deal with unforeseeable
situations that were not implemented as possible ways of
evolution. The main drawback of using such methods for
simulating the AI in a game is that these techniques are quite
hungry of CPU resources; though, in the last seven years, we
have witnessed to the rise of dedicated graphics hardware
(3D cards) which now, thanks to the integrated transform
and lighting, pixel and vertex processing and so on, leave to
the CPU just the management of the basic computing
functions and of AI.

REFERENCES

Holland, J.H. 1976, “Adaptation”, In R. Rosen and F. M. Snell,
editors “Progress in theoretical biology”, New York: Plenum

Fairclough C. et al., 2001 "Research Directions for AI in Computer
Games", TCD-CS 2001

Ostrom T. 1988, “Computer simulation: the third symbol system”,
Journal of Experimental Social Psychology, vol. 24, 1998,
pp.381-392.

Remondino M. 2003, “Emergence of Self organization and Search
for Optimal Enterprise Structure: AI Evolutionary Methods
Applied to ABPS”, ESS03 proceedings, SCS Europ. Publish.
House

Simpson T. 2002, in “Games Making Interesting Use of Artificial
Intelligence Techniques”, the web

AUTHOR BIOGRAPHY

MARCO REMONDINO was born in
Asti, Italy, and studied Economics at the
University of Turin, where he obtained
his Master Degree in March, 2001 with
110/110 cum Laude et Menzione and a
Thesis in Economical Dynamics. In the
same year, he started attending a PhD at
the Computer Science Department at the

University of Turin, which will last till the end of 2004. His
main research interests are Computer Simulation applied to
Social Sciences, Enterprise Modeling, Agent Based
Simulation and Multi Agent Systems. He has been part of
the European team which defined a Unified Language for
Enterprise Modeling (UEML). He is also participating to a
University project for creating a cluster of computers, to be
used for Social Simulation.

����������	
������
������������������������������

������������	��	���

�

��������	
��	����������������
�

��� �

!��������"�#�������$%����

&'()'�������

*���%��

�+�����,�-�������.������/������.�������01��# .���

�

�

�

����	
��

"���������� �2������� �%����� ����%������ ����������� ��������

3���������.�

��������

"�����������2������-"$0�������������%���������%4���%����������

��%����54������������

��%4� ����.� 6�� 5���� �7#����� 542� �4���� �2������ ���� �����

%���������������4�����#��3���%���������%�������%4����������

������-������������#��2��0.������� �������%����89�"$������

%������� ��%4���%����� ���#���� ��� �4�� �#�%���%� %����������� ���

�����#��2��� ������� 5�� 5���� #������� �4�� ������ �������� ��� ��

��������	��

����

���%������.�

���	
����	��

�� ��5� ������%���� ����������%�� �##���%4� ��%����� ��� �4��

�2��4����� ��� ���#��3�� ���������� �������� ��� ����� �������

-%������ ����	
0�� 54���� ��%4������� ���� ���#����� �����

������2� ���� ��4����2� ��� ��%4� ��� #�������� -�������� ����

8�2���:(((0.�����������4������4���������;�54�%4�#��3����

������������ ������ ���� ��3��������� ��� ��������� ������ +� ����

����%�����;�54�%4�����5�������%4�����������3��������.������

�����������3�3��� ��� ��� ����5���5��4��� %���������%4���%�����

�4���%����%��� ��������������� ��������%��������%4���%4���%�����

������ ����� ��� ���#�� ��� %4������� %��%������%��� �4����4�

����#��3�������������.�

�� ���� ��� ����� ���� ����������� �� 4����� #��2��� ��� ��

�����#��2���3���������.�6 ��4������2��4�������������������

��� 4����� #��2����� �4�2� ����� ��� ����� ��� ����%�� �4��

�##��#�������%�����������������4���������.�����������4�3����

%����%����4�3�����������������#����%���������4�����#��2����

5��.�

����� ��4�3���� ��� �4���� ������ ���� �������� ��� �������� ���

�4����������%����#��2����4�3��������#��������������2����%���2�

%4������� ��3����������� ��� ���������� ������ ���� ���

��#����%�������%������������4��#��2���.�

4�� %������� ��%4���%������ ��3���#��� �2� �4�� �������

%�������2�����������������3�����#��3����4�3��������������.�

���#����%����������<������������� +��4����+%���������

����

��
	��� -"$0� 54�%4� ��� �� #�#�������� ��� �%��������+�%������

������ %������ %����������� -9�������)=! 0� +� ��� ��#�%����2�

%��3�������������������%4���%������������������%�����2�����%��

54�%4� �%������ �4�� ���� �4����� #������.� �� "$� %��� ������

54�%4�%���������� ��� ������� �4�������4��� ����%4��3���� ��3���

���<.�>�5�������%��������������%�3������4����4��4��%��������

��� ��5� %����������� �4��<�� ��� ��� �3�������� #��%���� ��<�� ��

������%��������4�.�

�

�

������),�$%�����4�������������������%�������"�

����4���#�#����5��5�������%������4�������%4���%�������%�����

89�"$���4����%4���%�����5���������������4�����������"$����

������ ��� %�#�� 5��4� 3����� ����� %����������� -	������ ��� ��.�

:((:0.�6��5�����4���#����������������� ����������������	����

���������-"*0��%������������������	��

����

��-*"0����

5���� <��5�� ������%������ -8
?0� ��� �4�� ��
	� ���
���

����	���-*�$0��������������
�
-@��3���A)===0�-*������)0.�

�

*������:,��������������������89�"$��4�5����4�5��%���������%��������������%������4����3����

�	�����
������������������

��*�$� ����� ����+����� B?������#��2�������� ���54�%4���%4�

#��2���-4�����������0�4��������3���������4����� ���%4��4��

����������4������.�

�������5�2�����������������$���������4�3������������ ���

������%4� ���� ��� �4�2� ������ �� %��#��7� ���� ��%4� �����

��3��������,�-�.�.� �C��<��-�������5�����A)== 0��2�-������

����?�%4��:(((0���������-�#�%��A)==!0��2�-"������������

"�3�DD�� :(()0�� 9���+����� -@��3��� A)===0� �2� -E4��� ����

F���<�:((:0��������2�8
?�����4������������-C��<������

������������������"�������$���<�����%.00.�?����������������

����������������2���3��3�������4��������������*�$�������.�.�

������3������������2���������������4�������%��%�������������

5��������%���������%�����-�D����:((:0.�

����4��"*�5���#�%����2��##�2�����4���#�#�����4���������5��

���������#��2���.�4������� ��������<���4���##����������G��

����� ��� ���� ����� ���� ��� ������ ��� ��� �4�� ����� ����.� ��� �4���

�%���������4������������%���2������%���������%��������������%4�

����4�������������4������������-��������%<��4������2�����0��

�4�� #�������� ����� -<������� �� ��7����� ��� �##������0� ����

#��#��� ����3������� ���� �#� �2� �4�� ���� ��������� -�.�.�

��������3�����0.� ��� ��%4� 4����� #��2��� ��2� 4�3�� ���

��#����%��������4�3��������������%4��������������������������

��%����� �4���� ��4�3������ 5���� ���� ��5�2�� 4�3�� �4�� �����

����%���%2�� ���� �4�2� ����� ��� ����� ��� �2����%���2� ��+

�3��������4����<��5�����.�89�"$���4��%���������%4���%�����

5��5�����������%����5�������������3���4���#����%����������.�

��������������	���������	�������������

�	��	���

6�� 4�3�� ������2� ���%������ �4�� �������� ��� �� "����������

$2����������#��3�����#�#���������4���5��4�������%4���%�����

89�"$� +� �� 8������� ���� 9�����%4�%��� "$� ��%4���%�����

����%��������3�������#��2������������#��2���������-	���������

��.�:((:0.�6��5����4�������2������#����������%4���%�������%���

���������������*������:.�

4�� ���������2� ��� �4�� ��%4���%����� ����5�� �4�� ������� ���

3������� <����� ��� ������ ��� 54�%4� �������� %����� ���

�����������������������5�2�.�4������������%�����#�������

���������� "$��� ���#��%4��� ��� �5�� 4�����%4�%��� ��3���.� ���

��3��������3�����"$����������4�����G������3������.������3���

������4��� "$�� 5���� ��������4�� �%�����%�������������3����.�

@�����������3�����������4���2�������2�4�3�����������4����

"$�� ��� %�����.� 5�� ��5��� ��3���� -���� ���� �@0� ��� ����

��%����� ��2� "$� ���� %��%���� �4�� �7�%������ ��� �4�� ������

�%����.����������������3������4������������3���������#���2��4��

����������������7#�����%��.��

�������������������������������

��%4� ���� 4��� ���� �5�� ����3������� ;� �.�.� ����� �������

���������
������ �����

����

.� �� ����3������ ���

����%������ 5��4� �5�� 3�����,� ���	��� ��!��� -	�0� ����

"�	��	��� #����� -8@0.� 4����4� �4�� 	�� 3������ �4��

��������� %��� ���������� �� H#���������2G� ��� �4�� ����� ����

�7��#����2���3�������4��4������5���������3�����.�4��8@�

��� �� 3����� ���5���� (� ����)�� 54�%4� ��%������� 54��� �4��

����3������������������������������%���������4��5���.��

��%4�����3�������������%������5��4����#�%���%�"$��4����������

�4������2���4�������3�������+����������������#�%���%�"$��%���

4�3�� �������� �%����� %�������.� 4�� ����� ��� �� "$� ��� ���

������2��4������3�������4���4������������������4���������������

����8@.� ��%4� �����-%���������0� ����� "$�4�����#������2�#����

��������%4��������5��������������%������������������������2�

��������.����%%���������4�����������#��%������4���#������2� ���

����������5��3�����,�����	�������

�-:$0�����$%���	���

����-�0.�:$�����4���3��������������5�����4���%��3������

�����%����������-54�������������%�������������%�����#�����%��3�0�

���� �4�� ��7�� 8@� ��%������.� �� ��� �4�� �3������ ����� ��

%������������<����������7�%����.�

$�3����� "$� ���������� ��� ����3������� ��� ��3��� �� %��� ���

��������������4�����������.� 4������	��	���#����
� -�@0�

��#��������4���� 	������8@� 3������-�@�I� 	�J8@0.����

������%������-��<��K�4������L����K�##���%4�������L0���������

��� ����%������ 5��4� �� ������� -K�##�����L� ��� K����L0�� ��%4�

����%����%�����������������%������5��4���������.��

$�3����� �%����� %�������� ���������� ��� ���������� "$� %���

�4��� ��� ����%���� ��� ���������� �������.� 4���� �%�����

%��������%������������4��"$������3������-������������%�����

��#�����������0��������%��2��4���%�����������3������.�

�����	�����������������������

��� ��3����� %����������� %��� ��� ����%���� ��� �4�� ����� ������

��3������%�����%��������%�������7�%������������3������.���

����%�� 54�%4� �%����� 5���� ��� �7�%������ �4�2� ���� ������� �2�

#������2� ������� ������ �4����4� �4�� ��3��� �@� �%�����

	�����%��.� 4��� #������2� ��� ����������� �2� �4�� $%���	���

��	��
	��-��0�3����������%4�#����-�%������������0�����%�����2�

�4�� ����3������� ��� ��3��� �� -��� ��0.� ��� ��� %��#����� ��� �4��

����������4���@�����4��%�����#�������%���������-�0�����������

�7�%����������,�

���I�-�@�J�)((((0�;���7�-:$���0�

��� �4��� ��������� �@� ��3��� #������2� ��� %����������� 54�%4�

������2� �� ��7����� ��� ����3������.� :$� ���� �� ����%��

����������%�����������5��4��4��������@.�

�����	����
�����	�������������������

��3����@�#��3�����������%��������%������7�%���������#�%����2�

������4�3��������������������<���	���&�!��'�		����		��(��

���!������������%.�

4�� �%����� %������� 5��4� �4�� 4��4���� ��� 3����� 4��� �4��

#����%2� ��� ���� �4�� ��������� ������%��.�
�4��� �7�%�������

�%������ %������ �������� �4���� ������2+����� ������%���� ����

4�3�����2��%%��������3������������.�4����4�3������4���5����

��� ���#���� �2� �4�� ���� ��� �4�� ��3��������� 5���� ��� ��

%�������������������4���%��3�����������%��.��

������� !�� "#��������$�"%�

89�"$������������������5��%��#������,�89�"$����������

89�"$������.������4������������4������������"$������������

���89�"$�����.�4�����������������������4������2������4��

�%��3�� ����.� 4�� #��#���� ��� ��� �4���� <��5������ ����

������������5�����4��������������������%�������2�������2�

%������������������.�*�����%4������4���� �����89�"$�������

%��#�����.��������4��#�������89�"$�54�%4���<������%<�����4��

��������3�������������������%��3��%����������������%���������

5������������2����%� ������������%��#������2��4��89�"$�

�������4��������4������.�

������ &"�"$��&'(�!!�

���%�����%��� �����4������� ��7���%����������������%��������

�3���������2�#�2�������%4�������4�������%�.����3������������

����� 4�������%�� ���� ���� ���2� ��� �%������ �2� ��%4� ������

��%���������4�������#��%��2����#��������%��������%��.�*���

�7��#���� ��� �� ���G�� ����4� ��� �����3���������� ���� ���� �����

�%��������%�������������������%����%��������������G�������;�����

����������%����� ��+��#����������������4������� ����4������.�

89�"$�4����4��%��3�����%���������������4��32�4�������%��

����#�2�������%4.����M��������%����4�������%�����������%%�������

�������:$�������3�������#������������������%4���������#.�

64��� �� ����3������ ��%�������� :$� ��� �#������ ���� ����

%������������4���4�3��������%��3������2��4�������3���������%��

�4�� ����� 8@� ��%������.� ��%4� ����� ��� �%����� ���#�� ����

�7�%��������4�� �� 3����� ��� �#���������� ����%����������� �4���

4�3���%��3������4����%����.�����������#�������4����5�3�����

�����4��:$������4���������%���������������������4��89�"$�

����� ��� ��#��%��� �2� �4�� 5���4���� �3������ ���5���� �4��

#��3������������ 3�����������4����5����.�8�<������%4����

�3������ ���5���� ���� ���� ��5� 3������ �����4��� �4��

���#�������#��%���.�

�)�����������
��������

4���7#����������������������4��89�"$�%�#�%��2���������2��

�4����4� �� ��������� #��%����� �4�� :$� ���� �� ��� ��%4�

%���������� ��� ������ �����%�������4��8@�����4���� %�����������

�2����.�

����4��������##��%������-"*��%����������*"0��4��������:�-)�

3�.�)0����!�-N�3�.�N0�#��2���.�4��������������������������:(�

�������.�
��������4�3���������������2�4�����#��2���������

���� ����������3�� ��������� 5�� 4�3�� %��#����� �4��� ��� 9���

�������3���#����2���������54����%�������������2���������

9���+�����8
?������+��������%�����.����9��������������4��

����������4���+%�����5��4�������������%�#�%�����.�4�2�������

5�2#�������3���������2������������%4�����������������4��

�����������%�����.�

9�����4��������������%��#��������9�������������4�������

��������89�"$�����.���%4������������������������%�#������

�4���##����������G�������-�2���������� �����%<�����4�������

����0���4���������%������������%����5��4�)(�#�����.�

��89�"$�����4����4��������3������,������

����

�-	�,�

:0�� ����� ������ -	�,�)0� ���� ���������
����� -	�,� (.B0.�

��������3������8@� ��%�������54����4�����������4��������

��%������� 54��� ��� <����� ��� �##�����.� ���� $%���� 8@�

��%������� 54��� �##������ ���� $%���� ��%������� ����

��%�������54����4������$%������%������.�����3�������%����

8@���%�������5��4������������%�������54���������<��������

�##�����.�

���� %����������� 4�3�� ��7� ���������� %��������� #����,�'�	� ��
�

������'�	���
���	����	���������
�������$�����	������
�������

)�����������	���	�(������������	�
���������/��������4��

�����������%�����#����,� ��������� 	����	��
���	� 	����	�� ���(�

�������������	��*��������	�!�����	
�+�������	�	���������

	��	���������	�	������������������	���������
	��	�����	����

���������,����������	���������	�	��������.���������4�����

������������%�����5�2��<��5�54�����4���##����������������

��.�

4���������4�����#�%���%�%����������������4����������3������

"$��)(������4������3������$%����"$�����)N������4������

$%����"$.�����4���7#���������5��5������%�������4�����������

��� �4��� ����� "$.� *���� ���� ���� ��3���� ��� ��%4� ����������

5�2#�����54����4������4����4��*�������3�� 54�����������

����� ����4�������4����4�������������3��54���������� ����4��

�����4����4������.���%4�%�����������������5��4��4�������:$�

-)�0�������-(�0�3�����.�

�

0

50

100

150

200

250

300

350

400

450

Time

M
ax

 (T
2S

, E
T)

 in

Move to my team
flag goal

Move to my team
flag start
Move to opponent
team flag

Move to opponent
team flag goal
Move to opponent
team flag start

�

*������B,�8�7�-:$���0�3�����������%4�%����������54�%4�

%������������K����4�������II*����L�����4�������:�����4��

�������7#��������

6��4�3��������%4��7#�������������3��������5��4��4�������

��������%���������.�

����4���������7#������������� 9�������%��#����� 5��4�����

89�"$� ���.� 4�� #��#���� ��� ��� ������������ �4�� 89�"$�

���G��%�#�%��2����������4�5���� ��%������ ��������$%���� ���

�#���� ��� �4�� �##�����G�� �%������ ���� ���� ��������3������

����3������ �4��� ���4�� %�����%�� 5��4� �4�� ����� ������

����3�����.�

�

1 vs. 1

0

20

40

60

80

100

120

140

Game 1 Game 2 Game 3 Game 4 Game 5

Sc
or

e MHiCS Bots

HBP Bots

�

*������N,�$%����������4�����������4���������7#��������

*������B��4�5���5��#4����� ����4�����������#��%���.�����4��

������#4�����4��"$�5��������%����%4�%������������������54�%4�

����%���������2��4������$%��������3�����.�64��������4��

������ ����� �4�� ����� ��� ��%%�������2� %�#������� ���� $%����

����3��������%������������4��:$�3���������#������������%4�

%���������.�9�����4��%����������5��4��4���%�����#����"���� 	��

�������	� 	��������� 4����4����������:$� 3����.� ����4���

%����������������������������5����%������������������%��������

�����M��������:$�������3�����.�

���4��'���������4��89�"$������5���N�5��4�����3������

����$%�������=:��3��� ':� -*������ N0� 54�������4�2�5����

���������5��4���� ��������<��5���������4�5���� ��%�������4��

����� �%���� ���� ������ %�#������ �4���� ������ ����� ������ �4��

�##�����������4���������2�%�#���������2.�

�

0

20

40

60

80

100

120

140

160

180

Time

M
ax

 (T
2S

, E
T)

 in
 s

Move to my team
flag goal

Move to my team
flag start
Move to opponent
team flag

Move to opponent
team flag goal
Move to opponent
team flag start

�

*������',�8�7-:$���0�3�����������%4�%����������54�%4�

%������������K����4�������II*����L�����4�������N�����4��

��%�����7#��������

��� �4�� ��%���� �7#��������� N� 9��� ����� %��#���� 5��4� N�

89�"$� ����.� 4�� #��#���� ��� ��� ������������ �4���� ��� ��

�����+��������3����������89�"$������%���������������4�5�

��� ��%������ �4�� �%����� 5��4� �4�� ����� �#����� ������� -�4��

����3��������%�����0���3�����������������������54���3���

�4�� �%������ ������2� ����� -�3��� �4���4� ���2� ���� ���� %���

��������%<��4������0.�

�

4 vs. 4

0

20

40

60

80

100

Game 1 Game 2 Game 3 Game 4 Game 5

Sc
or

e MHiCS Bots

HBP Bots

�

*������ ,�$%����������4�����������4����%�����7#��������

6 ��4� �� �������� ������� ��� �##�������� ����� ����������

��%������������%����������%�#��������4������.�*������'��4�5��

4�5�89�"$�4��������4���<����������������.����������������

�4��� �4�� %���������� 5��4� �4�� �%����� #����"���� 	�� �������	�

	��������� ����4�����������%�������������%������������%�������

5��4� �4��� �%����.� �� ��%���� %���������� 5��4� �4�� �%����� #����

"����	���������	�	���������
	��	���%������%��3��������3���

����� �������� ���.� ���� �4�� ����� ��%������� ����� �����%�������

5��4��4�����5�%���������.� ��������������5��4������%%�����4��

%����������5��4��4���%�����#����"����	���������	�	����
	��	��

�4��%����������"���� 	�� �������	� 	���� ����� ��� ��%%�������2�

����%���� M���� ������� �4�� ���� ��� �4�� ����.� 4��� �7��#���

�4�5�� �4�� %�#�%��2� ��� �4�� 89�"$� ��%4���%����� ���

�2����%���2����#���4��%����������#������2.�

���4��'���������4��89�"$������5���N�-*������ 0�5��4����

�3����������$%������� !��3���'(.�

�������	����
��	������	��

��� �� %���������� ��� ����%���2� ��� K�� ����	��� 	���� ��	��-�

������ �4�� "$� ��� �� ���� %����� ��� ��������D��� �2� �� �����

��������� 5��4��������� ��������������%����������� ���.� ����4���

#�#���� �4��� ������ ���#� 4��� ����� ��������%���2� ����� �2�

89�"$��54�%4�4�����������4�5������#��3������3����������

��������������������%�������4��������%�����������������	��

�

���

�� �%������.� 4�� %��#������� ��� 89�"$� ����� 5��4�

4���+������ 9��� ����� ��3����� �4�� ����%���%2� ��� �4���

��������%�#��%���.�

�������4����7#������������ �����������������#��%����5�������

����� 5��4� �4�� #��#���� ��� �2����%���2� ���#����� �����

��4�3����������#�%���%�#��2���G���%��%�.�

"�����������2������ ��%��#������ ����3��������������������4�2�

���������������%����%��3�����������#��%������+� �.�.��3�������.�

������%� �������4��� ����5� �4�� ���%�3��2� ��� ��5� �������

%����������������4�������������������������.�>�5�%�����������

���� %������� �2� ������%� �#�������� ��<�� %�����3��� ����

���������� 54�%4� �7%4����� ��� ���������� �4�� %��������� ���

�%�����#������������%����������.�����%�����������������M�%�������

�4������������##��#��������������%��������.�

9���� �4��� %��������� 5���� ��%��� ��� �4�� �3��������� ��� ��7�

-:$���0�3���������54�%4��4�����������#��%���� ��������.�

����4�5�����*������B�����*������'���4����3�������������M�%��

��� ������ 3���������.� �� ������� ������� �4�� ������2� ��� ��

%����������� �4���� 3���������� 5���� ��� ��<��� ����� �%%������ ���

�����"$��������2����-O"$��6 ������)=='/����D��)===0���2�

����%����� %����������� ����%������ 5��4� �4�� ����� %����������

3������ ���� ����3���� %����������� ����%������ 5��4� �4�� �����

���%������������.�

�4��� ��#��3����������������������%���������������<���4��

��������� ��� ��4��� <����� ��� ��������� ��� #�������� ����������

-P�"$���Q�����:((:0.�6 ��4���%4�����������������5��������

����������<����3���������������������#���������%4��3����3���

�������������������������������#4����;��.�.�5��4������5����+�

���������������%4�����������%��#��7���3���������.�

������

9������,�4��#,RR555.#�����4�������.%��R������R�

*",�4��#,RR555.#�����4�������.%��R��%R�

����������

"�������� ".� ���� 8.� "�3�DD�.� :(().� S������ ������ �������� ���

��#������� ������������ 3������� ��3���������S.� ��� .����/��

0112�� C.� 8�4���� >.� ����4�� ���� ?.� ��+?������ -���.0.$"$�

����#���3����&)+&'.�

�Q�������.�:((:.�SP�"$�,�����5����������"����������$2�����������

����%�#�����S.����	������	����>�. -B+N0��:) +::!.�

���������.� ����T.�.�8�2��.� :(((.� S*����$��=N����$��:(((� ,�

64�������5���������US.��������������
�	������	
�3��T.��.�

8�2���� �.� ����4�D�� ?.� *��������� 9.� 	��������� ���� $.� 6 .�

6 ������-���.0.4��8�������R������������<���B+):.�

9�������� T.� 9.�)=! .� S��%�#���� �����������,� �4�� #������������� ���

�������� #��#���� �������4��� �##����� ��� #�������� ����+������

�2�����S.�"��������������4��������>�.:��'=B+ :B.�

E4���� �.� ���� 	.� F���<.� :((:.� S�##�2���� ���7#����3�� ���

�%4����������"��#����������S.��$$$���	������	���
	��
��

>�.)&-N0��N!+'B.�

������T.�.�����T.".�?�%4�.�:(((.�S"��������9����+��<��$2��4���%�

"4���%�����5��4�8����#���$<������3���,� ��"����$���2�������

�4��$����C��<����S.���������
������ 	���0111������������

�����
��� �����	�������	��������� ���������	���.���
��

'N+'!.�

���D��� �.�)===.� S��� ����2���� ��� ��������D������ ��� �4�� O"$�

"����������$2����S.�$����	�����������	�	����>�.&-:0��):'+

)N=.�

	�������.���.��������������.��������.�:((:.�S"�����������2���������

�����������%4���%�����������%���������%��������88
	��S.����

.����/�� 0110�� C.� 8�4���� >.� ����4�� ���� 8.� "�3�DD��

-���.0.$"$�����#���3����):)+):'.�

�D���� �.� :((:.S� *����+������� $4������ ��� ��%4���%����S� ��� ���

�����������������6 ������T�������>�����-���.0.�9���4����

8����%4�������(:(NB��B!&+B= .�

6 ������� $.� 6 .�)=='.� S"���������� *������� ������ ��� �%%���%2S.�

$����	�����������	�	����>�.B-:0��)N=+)&'.�

3-D
GRAPHICS

CURRENT DEPTH OF FIELD ALGORITHMS &
TECHNIQUES FOR GAMES

DANIEL RHODES, RICHARD CANT, DAVID AL-DABASS

School of Computing & Technology

The Nottingham Trent University
Nottingham NG1 4BU
richard.cant@ntu.ac.uk

Abstract: We review the phenomenon of depth of field in computer graphics and discuss various techniques
that have been used to generate it. In particular we examine the state of current graphics technology and analyse
the scope which it provides for depth of field simulation with reference to existing methods and possible future
enhancements.

Keywords: depth of field algorithms, techniques, games, real time animation

1. INTRODUCTION

Computer graphics hardware for the home market
has developed in gigantic leaps and bounds over
the past few years. This is due largely to the push
towards “Cinematic Computing” [NVIDIA, 2003a]
which grows in momentum on an almost daily
basis.

The ongoing quest for realism is leading to the
requirement for more and more advanced
techniques in computer graphics systems. One such
advanced technique is the depth of field
phenomenon, which has yet to be modelled with
any great degree of accuracy in real-time computer
graphics.

The depth of field phenomenon is an optical effect
best described in terms of the human eye. When we
focus on an object the rays of light from that object
are refracted by the eyes lens directly onto the
retina, this provides a sharp in-focus image.
Because of this any rays of light from objects
sufficiently far away from that (in focus) object
will be focused either just in-front of or just behind
the retina. This causes blur circles to form of a size
proportional to the source objects distance from the
point of focus. This is why the further away an
object is from the point of focus the more blurred it
becomes. Rokita [1996] provides a more in-depth
look at the physics behind the depth of field
phenomenon.

Most computer graphics systems take the easy
route and ignore depth of field altogether, opting
instead to use the pinhole camera model which
produces completely sharp images. By not taking
into account depth of field these systems are

limiting how realistic they can be, as without depth
of field any computer graphics system no matter
how advanced will look synthetic. This is quite
simply because we; as humans are used to seeing
this effect all the time through our eyes. If we’re to
obtain truly realistic images all aspect of the eye
need to be taken into account, even those which
may be described as a deficiency of our natural
optical system

Systems that choose to ignore depth of field are
also starving themselves of an excellent method for
providing depth cues and diverting the viewers’
attention to areas of importance. For example
Hollywood films have utilised the depth of field
phenomenon to great effect over the years, using it
to divert the viewers’ attention to important aspects
of the scene. If done properly this is not picked up
on consciously and provides a very powerful
special effect in the Hollywood arsenal.

A more accurate implementation of the depth of
field phenomenon would not necessarily be of use
throughout computer graphics but it would provide
much needed realism for many different types of
simulators and perhaps even games, where the
quest for greater realism is constantly gaining
momentum.
Possible uses for such an implementation of depth
of field include military simulators where depth
cues are vitally important, such as flight simulators.
Over the long term this would potentially provide
much more realistic simulations and hence better
training conditions. This would of course have the
effect of lessening the jump between simulator and
real life which would provide numerous benefits,
particularly from a military perspective as complex

training scenarios could be worked on from the
safety of the base.

Current attempts at implementing real-time depth
of field effects suffer from a number of problems.
The major problem with most solutions is a lack of
support for the see-through effect. This is defined
as the phenomenon of being able to see a sharp
object when viewed through a de-focused object.
For example NVIDIA [2003b] and ATI [2003]
both provide solutions that do not support the see
through effect. Both these solutions are based
around a method similar to that proposed by
Potmesil and Chakravarty way back in 1981.

This lack of support for the see through effect
causes the effect of a visible aura around de-
focused objects, which causes an unnatural look. In
some cases this is potentially even worse than
having no depth of field effect at all.

Another popular solution is to use multiple discreet
samples (multisampling). Microsoft [2003]
provides one of the solutions which take this route.
This method has the advantage of supporting the
see through effect; however multisampling throws
up several other problems. The most noticeable
problem is the multi image effect. This occurs
when the number of samples is too small, often
resulting in a fuzzy appearance of images rather
that actual blurring. Unfortunately the only current
solution which can provide enough samples to
make this unnoticeable is ray-tracing; as this
requires the sample points to be varied per-pixel it
is not a viable real-time effect.

2. WHAT IS DEPTH OF FIELD?

The depth of field phenomena is something
experienced perhaps unknowingly by everyone on
a daily basis. When the eye focuses on a particular
object the objects around it are perceived as
increasingly more blurred the further they are away
from the object of focus. This also applies to other
lens based optical systems such as photography.
The actual range in which the eye can see
completely sharp objects is relatively small. In-fact
the eye is actually rather poor at distinguishing the
detail of objects not directly on its focal plane.
Most of what the eye sees is non-sharp and a large
amount of image enhancement is performed by the
brain to get to the final image we see. For an
example of how much work the brain actually does
after the eye sends its images we can examine the
human eyes blind spots, which few people realise
exist. Each eye has a blind spot where the optic
nerve meets the back of the eyeball, the brain fills
in these blind spots utilising image data from the
surrounding area. For a practical example see

Serendip, 2003. This emphasises the point that the
eye can only see clearly directly in its plane of
view, hence all the surrounding objects will appear
blurred. Figure 2.1 shows and example of Depth of
Field in an optical system.

Figure 2.1: Depth of Field in an optical system

As observed by Rokita [1996] Depth of Field is a
direct result of the process of accommodation;
which is one of many depth cues that influence the
way humans perceive their surroundings. Figure
2.2 shows a visual example of how the depth of
field effect is created, the sharp image is created
where the rays of light focus directly onto the
photoreceptor; this could be the film (in the case of
photography) or the retina (in the case of the
human eye). In the case where the rays of light
focus in front of or behind (i.e. the image is de-
focused) the photoreceptors blur circles are created.
Blur circles are best explained by taking into
account a single point of light as in Figure 2.2.

Figure 2.2: How the depth of field effect occurs

Taking Figure 2.2 as an example; if the rays from
the light source are in focus then the rays will
converge on the view plane to create a sharp image,
for example in the eye the in-focus rays will
converge on the retina. However if they’re not in

focus then the rays will converge either in front of
or behind the sharp image plane, in the case of the
eye this would mean the defocused light rays are
spread over an area which is dependant on the
sources distance from the focal plane. The brain
fills in any missing information from the de-
focused light which creates a blur circle. Obviously
in the real world there is much more than a single
point light source, so many thousands of blur
circles will appear in any one particular optical
image.

This effect is taken advantage of extensively in the
worlds of film and photography, for example the
recent film ‘The Lord of the Rings’ makes heavy
use of Depth of Field along with various other
techniques to draw the viewers’ attention to the
important aspects of a scene. Obviously this could
also be used to the same effect in things such as
computer games. However one of the main uses of
the depth of field phenomenon for computer
graphics images would be to add realism to Virtual
Reality systems such as flight training simulators.

The problem with most current computer rendered
images is that they’re based on the pin-hole camera
model. Meaning that each image is potentially
infinity sharp, obviously taking into account
practical limitations. As shown by the image in
Figure2.3 taken from Quake 3. In Figure 2.3 it can
be reasonably assumed that the point of focus
should be somewhere around the door at the end of
the corridor, this would mean that the gun should
be partially blurred. So some method is needed to
create more realistic computer generated images by
inclusion of a depth of field effect.

3. EXISTING SOLUTIONS

There are currently a number of solutions to this
problem all of which have shortcomings:

3.1 Blurring by multiple viewpoints

This is by far the simplest approach to solving the
depth of field problem and also currently the most
successful for real-time applications, providing
moderate results and supporting the fabled see
through effect. The effect is achieved by creating
the image from multiple discrete viewpoints as
shown in Figure 2.4. The image from each
viewpoint is added to an accumulation buffer
where the final image is built up.

Figure 2.4: Sampling multiple viewpoints

As can be seen in Figure 2.5 this method creates
the unwanted effect of multiple images being
clearly distinguishable, this is due to the fact that
not enough sample have been used. The simple
solution to this is to increase the number of
samples, however; increasing the level of blurring
slightly drastically increases the number of samples
that are needed to disguise help this artefact. The
number of samples required even for a small level
of blurring is potentially very large, particularly
with more complex images. Rendering the same
scene multiple times is also potentially very time
consuming, so a large number of samples will
obviously lead to a big performance hit in your
application.

Figure 2.5: Depth of field by multisampling
[Microsoft, 2003]

There is another problem with this method that is
apparent from figure 2.5; particularly when
compared with figure 2.6. It can be seen that the
effect created via multiple images is not actually
blurring of the image and is perhaps better
described as adding fuzziness to the image.

Figure 2.3: An example of a computer generated
image without depth of field

3.2 Ray Tracing

Blurring by ray tracing is a form of blurring by
multiple viewpoints; the major difference is that
ray tracing allows varying of the sample points
pixel by pixel. The most realistic depth of field
effects can be obtained via ray tracing techniques,
where rays of light are traced from the viewpoint to
the light source. The calculations involved in ray-
tracing make use of the actual physics of light.
Figure 2.6 show an example of a ray traced image
taken from Pixar’s film Monsters Inc. Ray tracing
does produce correct results, however; with current
technology it is impossible to perform such
complex calculations in real time. As such ray
tracing is only of use for pre-processed scenes such
as the one shown in Figure 2.6.

Figure 2.6: Depth of field by ray tracing

3.3 Blurring dependant on depth

The basic idea of these systems is to create a
blurring effect dependant on depth (usually the
value of Z). Examples of this type of system
include work by Snyder and Lengyal [1998],
Rokita [1996] and also Potmesil and Chakravarty
[1981].

Figure 2.7: Depth of field by depth and image
processing [NVIDIA, 2003b]

NVIDIA® Corporation have implemented a
variation of the Potmesil and Chakravarty method
[NVIDIA, 2003b], this can be seen in Figures 2.7
and 2.8.

Figure 2.8: NVIDIA Artefacts [NVIDIA, 2003b]

There are problems with the method employed by
NVIDIA. For example some of the objects within
the scene appear to have an aura surrounding them;
this is because of the lack of support for the see
through effect. This is a common problem which
plagues the Rokita, Potmesil and Chakravarty and
similar methods. This artefact can be seen more
clearly in ATI’s [ATI, 2003] Depth of Field
demonstration, shown in Figure 2.9 with the focus
plane on the chequered wall. This uses virtually the
same method as the NVIDIA example with the
exception that pixel shader version 2.0 is preferred
over the version 1.1 used by NVIDIA. This of
course has the disadvantage of limiting the number
of people able to view this demo to those with
high-end graphics cards that support pixel shader
2.0. However it does mean that a much higher level
of blurring is achieved due to the extra instructions
and resisters available.

Figure 2.9: ATI artefacts [ATI, 2003]

Snyder and Lengyel (1998) however get around
this problem via the use of a layering system.
Assuming that the objects in question truly are on
separate layers the see through effect is supported.
However Snyder and Lengyel’s system does have
two major drawbacks. Firstly the choice of which

objects go on each layer depends on hidden surface
removal considerations rather than depth, hence
correct ordering for use with depth of field cannot
be guaranteed. Also in order to be able to use
Snyder and Lengyel’s system a non standard
method for hidden surface removal must be used.
This causes a huge problem as it would require an
entirely new type of graphics rendering system and
is simply not practical for such a specialised
requirement.

4. CONCLUSIONS
At present the most popular graphics APIs do not
really provide sufficient support to implement an
effective depth of field algorithm, although limited
success can be achieved. However forthcoming
extensions such as Cg (C for graphics) together
with more powerful hardware offer hope for the
future.

REFERENCES

ATI Technologies Inc. 2003. Depth of Field
[online]. Ontario, Canada: ATI Technologies Inc.
Available at:
<URL:http://www.ati.com/developer/samples/dx9/
DepthOfField.html> [Accessed 23rd March 2003].

Microsoft® Corpiration. 2003. Depth of Field
Sample [online]. USA: Microsoft® Corporation.
Available at:
<URL:http://msdn.microsoft.com/library/default.as
p?url=/library/en-
us/directx9_c/directx/graphics/programmingguide/t
utorialsandsamplesandtoolsandtips/samples/depthof
field.asp> [Accessed 23rd March 2003].

NVIDIA® Corporation, 2003a. GeForceFX
[online]. Santa Clara, USA: NVIDIA®
Corporation. Available at:
<URL:http://www.nvidia.co.uk/view.asp?PAGE=g
eforcefx> [Accessed 23rd March 2003].

NVIDIA® Corporation, 2003b. Depth of Field
[online]. Santa Clara, USA: NVIDIA®
Corporation. Available at:
<URL:http://developer.nvidia.com/view.asp?IO=de
pth_field> [Accessed 23rd March 2003].

Potmesil, M., Chakravarty, I. 1981. A Lens and
Aperture Camera Model for Synthetic Image
Generation. USA: Computer Graphics
(Proceedings of SIGGRAPH 1981).

Rokita, P. 1996. Generating Depth-of-Field
Effects in Virtual Reality Applications. (s.l.):
IEEE Computer Graphics and Applications.

Serendip, 2003. Seeing more than your eye does
[online]. USA: Bryn Mawr College. Availible at:

<URL:http://serendip.brynmawr.edu/bb/blindspot1.
html> [Accessed 9th April 2003]

Snyder, J. Lengyel, J. 1998. Visibility Sorting and
Compositing without Splitting for Image Layer
Decompositions. USA: Microsoft® Corporation.

3D SCENE GENERATION SYSTEM AND ITS INTUITIVE INTERFACE

Yoshiaki Akazawa1, Yoshihiro Okada1,2 and Koichi Niijima1

1Graduate School of Information Science and Electrical Engineering
Kyushu University

6-1 Kasuga-koen, Kasuga, Fukuoka, 816-8580 JAPAN
{y-aka, okada, niijima}@i.kyushu-u.ac.jp

2Intelligent Cooperation and Control, PRESTO, JST

KEYWORDS

3D layout, Motion capture, Motion recognition, Shape
recognition, Interface, 3D games, IntelligentBox

ABSTRACT

This paper proposes a new 3D scene generation system for
3D game construction. The manual layout for 3D scenes
takes a long time because 3D objects have six degrees of
freedom (DOF) and are difficult to be controlled by using a
standard 2D input device, e.g., a mouse device. To deal with
this problem, the authors propose a new method that
automatically generates 3D scenes based on placement
constraints of 3D objects. Furthermore, for manual
repositioning of 3D objects to modify the automatically
generated 3D scenes, the authors also propose an intuitive
interface that is the extension of the real-time video based
motion capture system already proposed by the authors
(Akazawa et al., 2002b). This paper mainly explains the
automatic 3D scene generation method and the extended
algorithm of the video based motion capture system.

1. INTRODUTION

This paper treats a new 3D scene generation system.
Manual positioning of 3D objects takes a long time because
3D objects have six degrees of freedom (DOF) and are
difficult to be controlled using a standard 2D device, e.g., a
mouse-device. For this problem, recently many researches
have been made. Calderon et al. (2003) proposed a virtual
design system for spatial configuration. This system
automatically lays out 3D objects based on declarative
placement constraints using Prolog. This system is
sophisticated but it requests the user to write Prolog
programs. Zeng el al. (2003) proposed natural language
approach for 3D scene construction. For complex scenes,
their system requests the user to write many sentences.
Smith et al. (2001) proposed a manipulation system of 3D
objects using a 2D user interface. This system employs
contact constraints among 3D objects to allow the user to lay
out 3D objects using a mouse-device. However, when
laying out many 3D objects to create a complex scene, it still
takes a long time even if using this system. Xu et al. (2002)
introduced an automatic placement system of 3D objects
through user interaction. This system drastically reduces the

time taken in 3D scene generation. However the system lays
out 3D objects on only the floor of a room. It neither
consider layout on the ceiling nor on the wall. In contrast,
our system automatically generates 3D scenes based on
placement constraints using the semantic database of 3D
objects. It considers layout of 3D objects on the ceiling and
the wall as well as the floor using the same mechanism.
Concerning the higher DOF problem for 3D object
manipulations to create 3D scenes, there are researches on
the use of higher DOF input devices. For example, the
Roller Mouse (a three DCF mouse) (Venolia, D. 1993), the
Bat (a six DOF mouse) (Ware, et al, 1988), and Data Glove
(a six DOF device) exist. These devices allow the user to
manipulate 3D objects as if he/she would do in the real
world. However, these devices have two main problems.
One is that these devices have their own manual operation
way so the user suffers from the difference among such
various ways. The other one is that specialized hardware is
expensive and difficult to get. As an answer for the manual
3D object positioning problem, we propose an intuitive
interface that is the extended version from the real-time
video based motion capture system we have already
proposed (Akazawa et al., 2002b). This extension enables to
output the rotation data of hand besides the x-y position data.
For manual layout of 3D objects, three DOF data, i.e., x-y
position and one rotation data, are enough because 3D
objects must exist on a floor or on other objects then they
have only three DOF. The extended version also recognizes
hand poses. This is used for input information like a mouse-
click. In this way, the extended video based motion capture
system is available for the 3D layout interface. In this paper,
we mainly explain the automatic 3D scene generation
method, and how the extended video based motion capture
system generates rotation data of the hand and recognizes a
couple of hand poses.
The remainder of this paper is organized as follows. Section
2 explains automatic 3D scene generation method. Section 3
introduces the intuitive interface for the layout of 3D objects.
Section 4 describes experimental results and performances.
Finally, Section 5 concludes the paper.

2. AUTOMATIC 3D SCENE GENERATION

This section describes automatic 3D layout method. This is
based on placement constraints using a semantic database of
3D objects. First of all, we describe the 3D object placement

constraints and the semantic database. Then we explain the
3D object placement algorithm.
2.1 3D object placement constraints

2.1.1 Bounding box and occupancy space
When laying out 3D objects, each 3D object has to avoid
colliding with other objects and each has contact constraints
with the floor, the wall or the ceiling. It is difficult to
calculate their positions satisfying such conditions because
3D objects have their own complex shape. To simplify the
layout process, we decided to employ the bounding box of
each 3D object instead of its original 3D shape as shown in
Figure 1. All 3D objects have to consider distances among
each other. For example, as shown in Figure 1, a bookshelf
needs some space in its front in order to take a book out.
Face 1 of a bookshelf has to be kept away from the faces of
other objects. In this way, some faces of a 3D object have
the minimum distance not to touch other objects. We call it
“occupancy distance”. Using the bounding box and the
occupancy distance, a 3D object has its own space to avoid
other objects. We call it “occupancy space”. The system
can lay out 3D objects by collision detection based on their
occupancy spaces.

2.1.2 Parent-child relationship and contact constraints
Every object in the real world has to touch other object
because of the gravity. For example, face 4 of the bookshelf
shown in Figure 1 must touch the face of a floor. If the user
moves the floor object, the bookshelf should move with it.
This is treated as the parent-child relationship in common
among 3D applications. Every 3D object has information
indicating what kinds of 3D objects allow to be its parent,
which face of the 3D object and which face of its parent
object touches each other. In addition to the above
information, we have to specify a contact constraint for each
face of a 3D object. This indicates that the corresponding
face should touch the certain face of other object or not. For
example, a bookshelf often touches a wall in addition to a
floor. That is, face 6 of the bookshelf in Figure 1 has to
touch a wall object.

2.1.3 Semantic database
The above placement constraints are treated as a semantic
database. The system lays out 3D objects using the semantic
database. Every 3D object belongs to any object type. Each
object type is defined by the information such as shown in
Table 1 separately. This information is called ‘object info’.
The semantic database consists of multiple object info. In

the object info, the distance attribute means occupancy
distance for each face. Every object type has its parent
object types. Only one of six faces is specified as the face
that touches the parent. This is specified in the parent
attribute of that face. The other faces of a 3D object has
contact constraints specified in the contact constraint
attribute.

2.1.4 Inside placement
Our system considers occupancy spaces of 3D objects to
avoid their collisions. However, some objects exist in the
bounding box of other 3D object. For example, as shown in
Figure 1, books are placed on the shelves of the bookshelf.
For this case, we also assign a bounding box to each shelf of
the bookshelf manually and add ‘object info’ of a shelf into
the semantic database. The shelf should be specified in the
inside components attribute of the bookshelf object info in
order to allow child objects of a shelf to exist inside of the
bookshelf.

2.2 3D object placement algorithm

The system lays out 3D objects using the semantic database.
At first, the system generates a parent-child relationship
graph from the semantic database as shown in figure 2.
Then, the system places each 3D object randomly based on

Figure 1: Bounding box, occupancy space and inside
components of a bookshelf.

Table 1: Semantic database

Figure 2: Parent-child relationship graph of the
semantic database.

the parent-child relationship using this graph. After that, the
system rotates and moves the 3D object to the position that
satisfies the contact constraints written in the semantic
database. The system repeats the random layout several
times until the result satisfies the user. The concrete
placement algorithm is as follows.

1. Select one object type according to the distance from the

root object type in the parent-child relationship graph.
This distance is the priority of the selection. If there are
multiple object types in the shortest distance from the
root object type, select one object type that has the
maximum number of contact constraints.

2. Choose one 3D object, which belongs to the selected
object type, from the 3D objects the user prepared.

3. Randomly choose one from already placed 3D objects as
the parent of the 3D object chosen in step 2 according to
the graph.

4. Place the object chosen in step 2 at random position on
the object chosen in step 3 as shown in Figure 3 (a).

5. Rotate and move the object to the position that satisfies
all contact constraints as shown in Figure 3 (b), (c) and
(d) according to the semantic database record.

6. This random placement in step 4 and 5 is repeated until
the object does not interpenetrate other objects.

7. Steps 3-6 will be applied to all 3D objects that belong to
the object type selected in step 1.

8. Steps 2-7 will be applied to all object types in the graph.
Then the system outputs one placement result.

9. Repeat the above steps until the placement result satisfies
the user.

3. INTUITIVE INTEFACE FOR 3D OBJECT
PLACEMENT

In this section, we introduce an intuitive interface for 3D
object placement. Our intuitive interface is the extended
version of our previous video based motion capture system
(Akazawa et al., 2002b). In the following subsection, we
explain the essential algorithm for motion tracking of our
previous system. After that, in subsection 3.2, we explain
the extended algorithm dedicated for 3D object placement.

3.1 Essential algorithm of video based motion capture
system

Conventional video based motion capture systems (Gravrila,
1999, Luck, et al, 2001) use many video cameras to obtain

accurate, desired motion data so they cannot generate motion
data in real time because it takes a long time to deal with
many video images. Moreover such systems are very
expensive and needs a large working space (Wren et al,
1997) so they are not suitable as an input device for a
standard PC. To escape from these problems, our system
uses only one video camera and employs a very simple
motion-tracking algorithm based on color and edge
distributions. It is capable of tracking the upper part of the
body of a person, e.g., hands, a face, etc, and generates their
motion data in real time. Our system is easily extended to
track the lower part of the body of a person as well as the
upper part of the body and to generate more accurate 3D
motion data by using two video cameras (Akazawa et al,
2002a) In the followings, we briefly explain this tracking
algorithm.
The motion tracking is done based on the color information
of each specific area of the body. Strictly speaking, the
median point of the color information is used as the center of
the corresponding focus area as shown in Figure 4.
However, practically the color information is insufficient for
tracking the motion robustly. For example, the color of the
skin is uniformly distributed over the arm. So if one wants
to track the hand, its color center is influenced by the arm
color and it moves to the center of the arm area gradually.
Consequently the system will loose the focus area. To
compensate this weakness, we employed a new measure
involving the edge distribution in addition to the color
information. Similar to the color information, the median
point of the edges, which are the contour pixels of a focus
area, is used to calculate the center of the area. The edge
centroid is always located on the upper part of the hand. So
the system does not loose the focus area. However, the edge
centroid is strongly influenced by the change in the shape of
a hand. Therefore, we use weight values for both the color
centroid and the edge centroid. As a result, the focus area
becomes stable. The centroid of the focus area is calculated
using next equations.

ec

eecc
p

ec

eecc
p ww

YwYwY
ww

XwXwX
+
+

=
+
+

= , (1)

where Xp and Yp are the centroid coordinates of a focus area,
Xc and Yc are the centroid coordinates of color distribution,
Xe and Ye are the centroid coordinates of edge distribution,
we is the weight for the edge distribution and wc is the weight
for the color distribution.

Motion data

Figure 3: Four steps of the placement of an object
having two contact constraints.

Figure 4: Computing focus point

Our system generates x, y location data for each tracking
area. This is enough for most applications. Especially when
using our motion capture system as a mouse device, this is
enough. However, for some cases it is not enough. For
example, in a virtual reality application, usually we need 3D
position data for manipulating 3D objects. Therefore, we
employ another measure concerning the depth.
The depth value is determined by the size of a focus area.
The reason is easy to understand because the size of an
object far from the camera position is smaller than that of the
near one.
Furthermore, the system recognizes some shapes of a
specific object besides generating motion data. The previous
system can recognize hand shapes, e.g., a stone and a paper.
To recognize a requested hand shape, the system has to
calculate the difference between a current hand image and a
candidate hand shape image. We employ a very popular
method; to calculate the difference between two images, the
system compares the histograms of their edge distributions.
Since the images of different shapes of a hand have different
histograms, therefore, by calculating the error between the
histograms of a current hand image and a candidate stone
shape image, and the error between the histograms of the
current hand image and a candidate paper shape image, and
then finding their minimum, the system recognizes whether
the current hand image is a stone shape image or not.

3.2 Hand rotation and shape recognition

This subsection explains how we extended our previous
system to apply for 3D object placement. For laying out 3D
objects, three DOF data, i.e., x-y position and one rotation
data, are necessary because 3D objects must exist on a floor
or on other objects, so they have three DOF. The extended
version enables to output the rotation data of the hand
besides the x-y position data. First of all, as shown in Figure
5, the system determines a margin area of a focus area to
find particular pixels called anchor pixels, which are hand
image pixels included in the margin area. Then the hand
axis angle can be calculated from the centroid coordinates of
the anchor pixels and the centroid coordinates of the focus
area using following equation.

　

−
−

=
ac

ac

XX
YYRot arctan (2)

where, Rot is the angle of a hand axis, Xc and Yc are the
centroid coordinates of a focus area, Xa and Ya are the
centroid coordinates of anchor pixels.
Moreover, using this hand axis angle, the extended system
comes to recognize a couple of hand poses more accurately
rather than the previous system. As explained in previous
subsection, our previous system employed edge pixel
distributions for the hand shape recognition. Actually, the
system compares the histogram of edge pixel distances from
their center of a template hand image to that of a captured
hand image. The use of histograms of images is not affected
the rotation of the images. It is invariant against the rotation.
However, the histogram of an image does not have detail
information of its contour shape. This means that the
recognition becomes ambiguous. Therefore, we change the
error metric from the difference of hand image histograms to
the difference of hand image bitmaps because our extended

system outputs the hand axis angle, and this keeps away
from the image rotation problem.
The system captures the hand image and keeps it as a bitmap
like the Figure 6 (a). Using the hand axis angle, this bitmap
can be normalized through the rotation operation, and then
the normalized bitmap like the Figure 6 (b) is obtained. The
Figures 6 (c, d, e) are three bitmaps of typical hand shape
images. The system calculates the error between the
normalized bitmap of a captured hand image and that of a
candidate hand shape image. It calculates the error for each
of candidate hand shape image, and then finds the best
match candidate hand shape image that has the minimum
error. In this way, the system recognizes hand shapes more
accurately rather than the previous system.
Currently, our system recognizes three hand shapes shown in
Figure 7. The paper shape and the stone shape are used for
the information to grab and release a 3D object, and the hand
shape shown in the Figure7 (c) is used for the information to
rotate a 3D object.

Figure 5: Hand axis from the centroid of
anchor pixels to the centroid of a focus

Figure 6: Recognition of three hand shapes

Figure 7: Three hand shapes to lay out 3D objects

4. EXPERIMENTS

4.1 Prototype system

A prototype system is developed using IntelligentBox, which
is a constructive visual 3D software development system
(Okada et al, 1995, 2002). Figure 8 shows a message flow
between Intelligentbox and our motion capture system.
VMCBox communicates with the motion capture system and
controls the mouse pointer.
Figure 9 shows four placement results generated by the
system. The 3D objects of each result are laid out like those
in the real world. The user selects desirable one from the
results. After the user obtains his/her desirable layout,
he/she can interactively move and rotate any 3D object using
our extended motion capture system. During the
manipulation of a 3D object, it moves according to the
contact constraints specified in the semantic database.

4.2 Performance

As for the performance of the automatic 3D layout, the
execution time is around a few seconds when the number of
objects is around 40. As for the performance of the
extended motion capture system, the sampling rate, when the
resolution is 320x240 pixels, is around ten fps on a standard
PC (Pentium IV 2.0 GHz, 1.5GB). In the above experiments
shown in Figure 8, both the motion capture system and
IntelligentBox ran on the same PC.

5. CONCLUDING REMARKS

This paper proposed a 3D scene generation system
consisting of an automatic object placement system for 3D
scene generation, and of an intuitive interface for manually
laying out 3D objects to create more satisfactory 3D scenes
by modifying the automatically generated 3D scenes. For
the automatic 3D scene generation system, we proposed new
concept “occupancy space” of 3D objects represented as
their bounding box to avoid collision among each other, and
the semantic database that defines contact constraints among
the faces of bounding boxes. With the proposed placement
method, the system automatically generates 3D scenes even
if there are huge 3D objects in the scenes. For intuitive
interface to manually lay out 3D scenes, we extended our
previous video based motion capture system to output the
rotation data besides the x-y position data because 3D
objects must exist on a floor or on other objects then they
have three DOF, i.e., the x-y position and one rotation data.

Furthermore, we modified the hand shape recognition
algorithm in order to output more accurate data by using the
hand rotation data.
As the future work, we will develop GUI to incrementally
enter new data record into the semantic database.
Furthermore, we improve our motion capture system to track
the hand more accurately.

REFERENCES

Akazawa, Y., Okada, Y. and Niijima, K. 2002a. “Real-Time Video
Based Motion Capture System Based on Color and Edge
Distribution, Proc. of IEEE Int. Conf. on Multimedia and Expo,
Vol. II, 333-336.

Akazawa, Y., Okada, Y. and Niijima, K. 2002b. “Real-Time Video
Based Motion Capture System as Intuitive 3D Game Interface",
Proc. of Third International Conference on Intelligent Games
and Simulation (GAME-ON2002), SCS Publication, pp. 22-28.

Calderon, C. and Cavazza, M. 2003. “A new approach to virtual
design for spatial configuration problems.” Proc. of Information
Visualization 2003 (IV03), 518-523.

Gravrila, D. M. 1999. “The Visual Analysis of Human Movement:
A Survey.” CVPR, Vol. 73, 82-98.

Luck, J., Small, D. and Little, C.-Q. 2001. “Real-time Tracking of
Articulated Human Models Using a 3D Shape-from-Silhouette
Method.” Robot Vision 2001, LNCS 1998, 19-26.

Okada, Y. and Itoh, E. 2000. “IntelligentBox: Its Aspects as a
Rapid Construction System for Interactive 3D Games.” Proc. of
First International Conference on Intelligent Games and
Simulation, SCS Publication, 114-125.

Smith, G., Salzman, T., and Stuerzlinger, W. 2001. “Integration of
constraints into a VR Environment”, VRIC 2001, pp. 103-110,
ISBN 295157300-6.

Venolia, D. 1993. “Facile 3D direct manipulation”, ACM SIGCHI,
pp. 31-26.

Ware, C., and Jessome, D.R. 1988. “Using the Bat: a six
dimensional mouse for object placement”, IEEE computer
Graphics & Applications, 8(6): pp. 65-70.

Wren, C., Azarbayejani A., Darrel, T. and Pentland, T. 1997.
“Pfinder: Real-Time Tracking of the Human Body. ” IEEE
Trans. Pattern Anal. and Machine Intel., Vol. 9, No. 7, 780-785.

Xu, K., Stewart, A. J., and Fiume, E. 2002. “Constraint-Based
Automatic Placement for Scene Composition”, Graphics
Interface, pp. 25-34.

Zeng, X., Mehdi, Q. H. and Gough, N. E. 2003 “Shape of the
Story: Story Visualization Techniques” Proc. of Information
Visualization 2003 (IV03), 144-149.

Figure 9: Four results of random layouts generated
by the prototype system.

Figure 8: Message flow between Intelligentbox and our
motion capture system

A NEW DEPTH OF FIELD ALGORITHM WITH APPLICATIONS TO
GAMES

DANIEL RHODES, RICHARD CANT, DAVID AL-DABASS

School of Computing & Technology

The Nottingham Trent University
Nottingham NG1 4BU
richard.cant@ntu.ac.uk

Abstract: Investigations into the depth of field phenomenon and currently existing real-time graphical simulations of it lead to the conclusion
that the current solutions did not provide a sufficiently high level of accuracy to convincingly portray the depth of field phenomenon. In particular
these techniques do not provide support for the see-through effect, which is defined as being able to see a sharp object viewed through a de-
focused object. We investigate the possibilities of implementing a technique that does support the see-through effect using currently available low
cost graphics hardware and APIs.

Keywords: Algorithms for depth of field, see-through effect, animation.

1. INTRODUCTION
The purpose of this paper is to investigate the possibilities of
creating a hardware implementation of a new depth of field
algorithm designed to run in real time but without any of the major
problems identified by Rhodes, Cant and Al-Dabass [2003].

2. THE ALGORITHM

The first important aspect is the inclusion of a layering system
similar to that proposed by Snyder and Lengyal [1998]. However
for our purposes the layers are determined directly by depth and not
by hidden surface removal considerations as in Snyder and
Lengyal’s system. This method guarantees that two objects
rendered on the same level will have a similar level of blurring,
which was not the case with Snyder and Lengyal’s system.

Each pixel with in the system consists of x, y and z values (assumed
to be in the form 1/z) along with their associated colour values as
per a standard z-buffer based system. However unlike a normal z-
buffer based system more than just the winning pixel contributions
from the depth test must be retained. This is because these values
are necessary if the ‘see though’ effect is to be supported. These
must be stored in a depth of field A-buffer structure. Schilling and
Staßer [1993] provide a description of a suitable A-buffer however
the purpose in that case was quite different, they set out to solve the
HSE (Hidden Surface Elimination) problem on the sub-pixel level.

Schilling and Staßer state that the major difference between the A-
buffer and a traditional z-buffer is that where a z-buffer only retains
one item per-pixel the A-buffer retains a list of pixel contributions.

Obviously all this retention of extra information can potentially
cause performance problems. In order to combat this culling can be
performed to remove redundant data. For example any winning
pixel contribution from behind the focus plane can be ignored,
similarly any contributions at a similar depth to the current wining
pixel (but obviously still behind it) can be ignored. These culls
could potentially be beneficial for a hardware implementation of the
algorithm.

The contents of the A-buffer are then blurred to varying degrees
dependant on their depth values relative to the focal plane of the
system. The in-focus part of the image can be determined by the
formula in Figure 1.1. The resultant in-focus image will be at a

distance v where the object in question is at a distance u from a lens
with a focal length f.

1 1 1
— = — + —
f u v

Figure 1.1: Equation 1

 |v – p|
 C =

a
 v

Figure 1.2: Equation 2

This is fine for the simple case where the system is focused on this
object, however if the system is not focused on this object more
elements need to be taken into account. The image plane of an out
of focus object will be a distance p and the degree of blurring is
dependant on the circle of confusion. The circle of confusion can be
defined as “The image of a point source that appears as a circle of
finite diameter because of defocusing or the aberrations inherent in
an optical system” [Melles Griot, 2003]. In terms of our system the
size of the circle of confusion can be determined by the paths of the
rays of light which will pass through the edges of our ‘lens’
aperture and converge on the focal point. As shown by the formula
in Figure 1.2 if we take the aperture a, we can calculate the size of
the circle of confusion C.

This is probably best understood visually; Figure 1.3 shows a visual
representation of the two preceding formulae. C and p refer to the
case where the image plane is closer to the aperture than the focal
plane and where C’ and p’ refer to the case where the image plane
is further away than the focal plane. The same equation as shown in
Figure 1.2 applies to both cases.

Figure 1.3: Calculating the Circle of confusion

This blurring can be achieved via the use of two mip map style sets
known as the b-buffers. One set is used for the areas of the image in
front of the focal plane and one for the areas behind, this can be
seen in Figure 1.4. The b-buffers start at the screen resolution (level
0) and finish at a resolution consistent with the maximum level of
blur required by the scene (level n).

Figure 1.4: B-buffers

The advantages of this method is that the different resolutions can
be easily obtained by splatting [see Watt, 2000, p389] the pixels to
a lower resolution and also a high level of blurring can be obtained
with relatively little processing required. Extra b-buffers cost little
time and memory so a higher level of blur can be obtained
relatively cheaply.

The reason two sets of b-buffers are required is that pixel
contributions in-front of the focal plane will have a different
priority to those behind the focal plain when the final image is
generated by matting the contents of the b-buffers. Any z
information can be discarded at this stage however information on
pixel occupancy (alpha) is now required as the original high
resolution pixels will only partially cover the lower resolution
pixels generated in the b-buffers. Figure 1.5 shows an example of
the occlusion problem.

Figure 1.5: Occupancy

The final stage is to recombine the images into our final image. The
amount of processing required for this stage can be greatly reduced
by using a hierarchical method such as a Gaussian Pyramid. By
splatting each layer onto the layer directly above rather than
attempting to splat the lowest resolution directly to the highest
resolution a lot of processing can be saved.

3. A WORKING SOLUTION?

The question still remains; is all this possible on current
commercially available graphics hardware and API’s? Currently on
commercially available fixed function style graphics boards the
answer is simply no, not without the addition of the algorithm into
the hardware itself. So is there an alternative that allows us to
potentially utilise today’s hardware (= NVIDIA GeForce3 for our
purposes)?

SIGGRAPH ’99 included a panel discussion about the future of
graphics hardware [Dempski, 2002]. The general consensus of this

discussion was that the programmer should have a greater level of
control over what happens inside graphics hardware. Most of
today’s graphics cards have hard wired functionality for lighting,
texture mapping etc. what this discussion found was the need for
some method to open up the graphics hardware and to allow the
programmer to create their own non-standard effects such as
anisotropic lighting or cartoon rendering.

In DirectX the ‘programmable pipeline’ (or more specifically vertex
and pixel shaders) provides the interface for this greater flexibility
with regards to what can be done with the hardware; for example
while the DirectX fixed function pipeline doesn’t support Phong
shading it can be implemented using a combination of Vertex and
Pixel shaders on supporting hardware (e.g. NVIDIA GeForce3 /
ATI Radeon9700).

Vertex shaders are also a recent addition to OpenGL in the form of
extensions such as GL_VERTEX_PROGRAM_NV. Although as
the _NV indicates these were added to OpenGL by NVIDIA and
are not currently supported by any of the other OpenGL vendors (at
the time of writing).

NVIDIA are in-fact the driving force behind vertex and pixel
shaders in both OpenGL and DirectX; having worked closely with
Microsoft to integrate support for these advanced shaders into
Direct3D.

Although the programmable pipeline does offer a much greater
degree of flexibility it does have the disadvantage that it is slower
than the fixed function pipeline. Traditionally anything that even
approached this sort of flexibility needed to be run largely on the
CPU (Central Processing Unit) rather than the GPU (Graphics
Processing Unit, also known as the VPU or Visual Processing Unit)
which has severe performance penalties for graphical applications
where lots of fast floating point arithmetic is required. For example
the vertex shader hardware on the NVIDIA GeForce3 graphics card
(now over two years old) is a SIMD (Single Instruction Multiple
Data) FPU (Floating Point Unit) and is considerably faster than
even most powerful of the modern Intel Pentium 4 series for
floating point arithmetic (at the time of writing), which is the main
operation in any graphical system.

4. DEPTH OF FIELD DEVELOPMENT

So in theory we have a means to produce a working version of the
algorithm running on hardware, but will it work in reality?

4.1 Depth testing: Within Direct3D the programmer has
three Depth testing options Z-Buffer, W-Buffer and no depth
testing. Standard depth testing is performed once per frame
and is largely managed by DirectX. The Depth of field problem
requires a Z-Buffer solution as outlined in section 2; this is not
inline with the standard single pass approach to Z-Buffering but
instead requires multiple passes to separate each layer.

While there are various settings that can be changed within
Direct3D depth testing (for example to set a Z-Bias) there is no
direct way to allow discarded Z values to be retained as is required
to build up the multiple layers as outlined in section 2.

The proposed solution is to use “Depth Peeling” [NVIDIA, 2003b],
this is an area currently undergoing a large amount of research at
NVIDIA. The basic idea of this is that each pass across the scene
allows us to get a level deeper into the image. The levels can be
thought of as levels of depth; level 0 is the standard Z-Buffer test.
Level 1 is the result that the same standard Z-Buffer would provide
if level 0 were not part of the image. Level 2 is the result that the Z-

Buffer would provide if level 0 and level 1 were not part of the
image and so on.
So for example three passes will end up with the scene three levels
down within the image, and everything in front of that layer which
would normally beat it in a standard depth test will be ignored. This
can be seen in Figure 4.1 & 4.2.

Figure 4.1 Depth Peeling [NVIDIA, 2003b]

This is made possible by the use of multiple depth tests on a single
pass. On the first pass Z-buffering occurs effectively as normal,
however on subsequent passes the winning pixel contributions from
the previous pass are used to discard anything from a previous layer
by performing the exact inverse of a standard depth test and setting
the comparison value in such a way as to remove the previous
winning layer.

Once previous layers have been discarded by the first test the
second test kicks in and performs Z-Buffering as normal.

Figure 4.2: Depth Peeling in Action [NVIDIA 2003b]

So where does this extra Z-Buffer come from when as mentioned
earlier Direct3D only allows one Z-Buffer pass per frame. Shadow
mapping plays a surprising role in providing a second depth buffer.
Basically shadow mapping is a form of depth testing; there are in
fact very few differences between a standard depth test and shadow
mapping. The first difference is that shadow mapping sets colour
values rather than discarding pixels. However this can be worked
around by setting the results of the shadow mapping to the alpha
channel. Then the alpha test can be used to actually discard the
relevant pixels. The second difference is that unlike Z-Buffering the
shadow mapping test is not tied to the camera position and as such
must be explicitly set to the camera position to allow it to be used as
a depth test.

4.2 B-Buffers
Modern Graphics cards have the ability to use textures of any size
not just the standard multiples of 2. This coupled with the fact that
Direct3D has the ability to render to textures means that the levels
of the b-buffer can be stored as textures of varying resolutions.

Our original idea was to create the layers as described in section 1
by abusing the D3D texture system and having the D3D mip

mapping system create our levels for us. This however proved
impossible due to the fact that although D3D will create the mip
map levels it manages the selection of those levels automatically by
considering standards texturing techniques. Obviously for our
purposes we require full control over the level selection as our use
of the mip levels would be far from standard.

So some other method for blurring was required, the obvious
solution is to use some form of filter to lower the resolution and to
store the results as textures. This is made possible by pixel shaders
as they operate on the pixel level which is exactly what is required
of such a filter.

There is however a potential problem with this solution; the limits
on texture addressing and texture blending forced on us by pixel
shader 1.1 mean that even if enough instructions are available to
implement the method then only a relatively small change in
resolution should be possible.

While pixel shader 2.0 would provide a much higher chance of
success no card currently available provides support for both pixel
shader 2 and hardware shadow maps, meaning that depth peeling
would not be possible. The highest pixel shader version currently
available on a graphics card which supports hardware shadow
mapping is version 1.3. This support comes in the form of the
NVIDIA GeForce4 although unfortunately the author did not have
access to such a card.

4.3 Pixel Obscuration and Occlusion
Pixel shaders provide the facility to perform texture blending. So as
the layers will be stored as textures pixel shaders are ideal to help
calculate the final pixel colours taking into account occlusion and
occupancy to allow the see through effect. This is a situation where
standard texturing facilities could not be used; as this would be
using standard texture blending techniques which would not take
into account the pixel obscuration problem as discussed in section
1.

Ideally this would be done as the A-buffer is processed; however
due to the use of depth peeling the alpha value will be already in
use during the processing of the layers and so cannot be used for
these calculations.

Another potential place to do this is when the images are re-
integrated; this would be an addition to the blending pixel shader
used to re-combine the layers. Unfortunately, there are simply not
enough operations available to be able to do this. One way to get
around this would be to perform several passes loading a slightly
different pixel shader for each pass, however intermediate values
would need to be stored. This raises another problem as the only
logical place to do this is the alpha channel which is as mentioned
already in use. Although even if it were not already in use the alpha
channel doesn’t really provide enough accuracy for these purposes.

4.4 Depth Peeling Code
To begin with Depth Peeling was implemented on its own, with the
aim of integrating it with the blurring code (see section 4.5) at a
later stage in the development process.

The use of depth peeling limits us to graphics hardware which
supports shadow mapping within DirectX. This means that in the
current market we’re limited to the NVIDIA GeForce3 and
GeForce4 series. This restricts us with regards to the programmable
pipeline options (required later), although the differences between
pixel shader 1.1 (GeForce3) and pixel shader 1.3 (GeForce4) are to
a large extent negligible. The first real leap in pixel shader
technology and the first increase in the number of allowed registers

was pixel shader 1.4. Pixel shader 1.4 was proposed by ATI and is
currently only supported by ATI hardware, as is shown by The
Tech Report [2003].

4.5 Blur Code
Due to the problems described in section 4.2 arising from a lack of
available pixel shader instructions / registers an exact
implementation of the method form section 1 is not possible; on
currently available hardware through DirectX. However as shown
by NVIDIA [2003a] approximations of some of these things are
possible. Hence the blurring method implemented is based on that
shown by NVIDIA [2003a].

4.6 Putting it all Together
The final task for the development was to attempt to combine the
depth peeling with the blurring method. This again posed a problem
and again this is due to the same old problems caused in part by the
limitations of pixel shader version 1.1.

Both methods push the limit of the number of instructions pixel
shader 1.1 offers and combining the two would require a
combination of some of the created pixel shaders due to the order of
operations that would be required. This is simply not possible with
the limits on texture addressing and texture blending put in place by
pixel shader version 1.1.

The other problem with combining the two methods is that both
require heavy use of the alpha cannel and unfortunately the two
separate uses are not compatible. Using the alpha for circle of
confusion information would prevent the storage of occupancy
information, thus preventing the successful completion of depth
peeling and visa versa.

5. RESULTS / DISCUSSION

5.1 Depth Peeling Test
The depth peeling test was set-up to show that the process did in
fact split the layers correctly. Figure 5.1 shows the depth peeling
process in action and shows clearly that four distinct layers are
apparent from the tests.

Figure 5.1: Depth peeling tests

This shows almost 250 frames a second have be lost when
compared to a simple texturing and lighting example.

5.2 Blurring Test
The blurring test in figure 5.2 shows the NVIDIA [2003a] style
blurring method in operation. This shows the same deficiencies

which the NVIDIA [2003a] Depth of Field implementation suffered
from due to the incompatibility issues between the blurring method
and depth peeling on the GeForce3 platform.

Figure 5.2: Blurring test

This series of tests resulted in a similar frame rate to the one
witnessed in the depth peeling tests, this would indicate that even if
it were possible to marry the two methods under pixel shader
version 1.1 that a further drastic drop in frame rate would ensue.
Although this would probably still provide better performance than
a software only implementation running on the same test platform.

6. CONCLUSIONS

The first interesting point is Depth Peeling; this is an area still
under research by NVIDIA and as such can be expected to push
current hardware to its limits. This is certainly the case as the
results in section 5 show; a clear and dramatic drop in frame rate is
witnessed when compared to the earlier tests within the same
environment. The requirement that depth peeling will not operate
without hardware shadow map support effectively killed any chance
of coupling it with any form of blurring implementation that
requires pixel shaders. This is due to the instruction restrictions of
pixel shader 1.1 on the GeForce3. So once the mip map style idea
was ruled out due to the limitations of DirectX and it was necessary
to utilise pixel shaders to implement the blurring the chances of
integrating depth peeling with a blur engine effectively died.

The second major consideration is the blurring code. Again
hardware implementations within this area are rare as this is a
relatively new field of development. This point can be shown by
taking the case of the NVIDIA and ATI Depth of Field attempts
both of which appeared well within the last year.

This method like depth peeling also shows poor performance on the
GeForce3, as can be seen in the GeForce3 Depth of Field video.
This inevitably leads to the conclusion that even if it were possible
to combine depth peeling and the blurring code on the GeForce3
platform the potential reduction in frame rate would make it
extremely impractical for use in real-time applications.

7. FUTURE WORK

The scope for future work in the field is quite large as much is
currently not possible. Future hardware developments will
undoubtedly lead to a solution similar to the one proposed in
section 1 being possible.

One such contender to make this all possible is the forthcoming
GeForceFX from NVIDIA. This looks to be a promising prospect
although only the official NVIDIA spiel is currently available and
this is always to be taken with a pinch of salt.

NVIDIA claim the FX will revolutionise the graphics industry and
will provide “effects on par with the hottest motion pictures”
[NVIDIA, 2003c]. Having looked at some of NVIDIA
specifications for their CineFX engine (the replacement for
nFiniteFX used in the GeForce3 / 4 series) they may well deliver
their promises. The FX’s vertex and pixel shaders on the face of it
appear to be far superior to anything currently available.

Table 1: GeForce4 Vs GeForceFX [NVIDIA, 2002a]

If the numbers provided by NVIDIA in Table 6.1 are accurate then
the FX’s shader capabilities will dwarf anything that preceded it.
The dramatic increase in instruction count for pixel shaders along
with the added accuracy of 128-bit floating point numbers should
prove invaluable in any future effort to implement the described
depth of field method. The extra texturing capabilities should prove
more than enough to be able to integrate depth peeling and the blur
engine within an application.

This would unfortunately mean that the technique would be
NVIDIA specific until such a time that other manufacturers decide
to introcuce hardware shadow mapping facilities on their cards.
However there may be an alternative to this; with instruction counts
reaching ever high levels coupled with the huge leaps forwards in
terms of data precision, it may be possible to use pixel shaders to
perform extra the depth testing required by depth peeling. This
would potentially mean the technique would run on any card which
has good enough pixel shader support.

Instruction counts are liable to continue to rise at exponential rates
as the battle for market domination between NVIDIA and ATI heats
up; so as time passes it gets increasingly likely that the proposed
method and much more besides will become possible in real time
and on consumer level hardware.

REFERENCES

Dempski, K. 2002. Real-rime rendering tips and techniques in DirectX.
1st ed. USA: Premier Press.

Melles Griot Inc., 2003. Circle of Confusion [online]. Carlsbad, California:
Melles Griot Inc. Availible at:
<URL:http://www.mellesgriot.com/glossary/wordlist/glossarydetails.asp?wI
D=132> [Accessed 9th April 2003].

NVIDIA® Corporation, 2003a. Depth of Field [online]. Santa Clara, USA:
NVIDIA® Corporation. Available at:

<URL:http://developer.nvidia.com/view.asp?IO=depth_field> [Accessed
23rd March 2003].

NVIDIA® Corporation, 2003b. Interactive Order-Independent
Transparency [online]. Santa Clara, USA: NVIDIA® Corporation.
Available at:
<URL:http://www.nvidia.co.uk/docs/IO/1316/ATT/order_independent_tran
sparency.pdf> [Accessed 23rd March 2003].

NVIDIA® Corporation, 2003h. GeForce FX 5800 [online]. Santa Clara,
USA: NVIDIA® Corporation. Available at:
<URL:http://www.nvidia.co.uk/view.asp?PAGE=fx_5800> [Accessed 23rd
March 2003].

Rhodes,D Cant R.J. and Al-Dabasss, D. 2003 Current Depth Of Field
Algorithms & Techniques For Games, Game-on 2003.

Schilling, A. Staßer, W. 1993. EXACT: Algorithm and hardware
architecture for an improved A-buffer. USA: Computer Graphics
(Proceedings of SIGGRAPH 1993).

Snyder, J. Lengyel, J. 1998. Visibility Sorting and Compositing without
Splitting for Image Layer Decompositions. USA: Microsoft®
Corporation.

The Tech Report. 2003. Dissecting the 3DMark03 controversy [online].
USA: The Tech Report. Available at: <URL:http://www.tech-
report.com/etc/2003q1/3dmark03-story/index.x?pg=3> [Accessed 23rd
March 2003].

Watt, A. 2000. 3D Computer Graphics. Essex: Pearson Education Limited.

AGENT
BEHAVIOURS

BEHAVIOUR SELECTION USING NEURAL NETWORKS

Paul Thompson
Department of Computer Science

University of Newcastle upon Tyne, NE1 7RU
United Kingdom

E-mail: p.r.Thompson@ncl.ac.uk

KEYWORDS

Behaviour selection, neural networks, NPC, agent,
backpropagation.

ABSTRACT

Artificial Neural networks (ANNs) have been successfully
used in a handful of commercial game success to date , such
as Lionhead Studios’ Black and White [Evans]. The
technology is still shrouded in mystery for many developers
and the perceived complexity of implementation halts further
take up of the technology. The experiment described in this
paper gives a brief background to neural networks and
applies the backpropagation neural network architecture to a
simple agent behavior selection controller, which could
equally have been implemented with a finite state machine or
similar technology. The procedure and results of the
experiment are discussed in relation to the general
applicability of ANNs to game environments compared to
the more traditional methods such as finite state machines.

INTRODUCTION

In real time simulations and games non-player characters
(NPCs or agents) form a large part of both single and multi
user environments. Agents have improved with new
generations of hardware in terms of their visual appearance
and animation but it is only now, with the release of more
processor cycles to other parts of a simulation (principally
due to the increase in power of graphics cards), that the
intelligence of these characters can be improved with more
complex algorithms and techniques.

From a user perspective it is important that agents not only
look realistic but also that they behave realistically. The last
situation a player wants is a beautifully modeled character
running towards them gracefully but ignoring the fact that

the player had just disposed of a few dozen of its colleagues
seconds before. The quality of agents in games is one reason
why lots of people opt for multiplayer or online games
against human opponents, since there are more human (or
natural) responses when playing against other people.

There are many techniques available for programming agents
and giving them more (or less) sophistication in a game.
These techniques range from deterministic algorithms to rule
based systems and genetic algorithms. All techniques have
their place and their particular advantages and disadvantages.
This paper addresses neural networks, or artificial neural
networks (ANNs), as they are more accurately called, and
discusses their application to games. ANNs are “artificial”
neural networks since they aim to mimic the functioning of
the real neural network that is inside each of our brains.

BACKGROUND

In the early days of gaming the artificial intelligence of an
agent didn’t really require any complex algorithms or
intensive processor cycles. Agents were based in simpler
environments compared to today’s complex 3D
environments (take for example Pong, Pac Man). Finite
state machines (FSMs) and rule based approaches were the
norm in many early games due to the ease of their
application and the more simplistic needs of the games.

The complexity of today’s simulation and game
environments doesn’t necessarily mean that an equivalent
increase in the intelligence of the players is required but
game play issues resulting from insufficient intelligence in
the agents can spoil a beautifully rendered game. No one
would advocate more complex techniques to achieve little
gain in a real time game situation but neural networks,
assumed to be complex, are based on simple principles
whilst providing a method of sophisticated machine learning.

Neural networks have been used in the past for a variety of
tasks. They are most suited to pattern recognition and data

mailto:p.r.Thompson@ncl.ac.uk

analysis problems [Callan], but obviously the learning
techniques that are used can be applied to many other tasks,
such as the example in this experiment, a behavioural
controller for a game agent.

NEURAL NETWORKS FOR BEHAVIOUR
SELECTION

Agent Behaviours

Typical behaviours that a game agent might exhibit included
patrolling, chasing, evading, and random walks. Obviously
this is a basic set but the behaviors an agent demonstrates
will be game specific, these cases are outlined only for the
purpose of this experiment. Such behaviors can be coded
using a finite state machine based approach or other similar
technology but these techniques can be difficult to extend in
many circumstances, requiring more lines of code and
increasing complexity of logic management to deal with
adding new situations. Neural networks offer an alternative
method to implement a control and decision management
system for agent behaviours.

Behaviour Control

Agents can be considered abstractly as a state machine when
in action, in one of their set states or in a transition between
states. The management of an agent’s state change is usually
implemented through a rule base working on what
information the agent has available to it from the
environment or game engine (its sensors). Such sensor
information might include the location of the player, how
many allies the agent has near, health levels, available exits
etc. This information is fed to the agent during a cycle of its
processing routine and then the rules governing its state
change are applied if applicable. For instance in a finite state
machine implementation a rule might say that if the player is
nearby AND the health of the agent is more than 50% that
the state should change to ATTACK. This type of
behavioral control is an important element of game-play and
as such any techniques to improve its realism to enhance
game-play should be considered as desirable.

Why Neural Networks? What Benefits Do They Offer?

The decision to use ANN technology in a software project
involves choosing between lots of competing technologies
such a genetic algorithms, FSMs, decision trees and other
technologies. The perceived complexity of neural networks
– or the perceived hardship involved in their use – is often a
reason why the technology is sometimes overlooked while
making this decision. Neural networks offer several

advantages over other technologies, here are documented
some of those advantages related to games in particular:

- Mapping of input data to desired responses
(supervised learning)

- Adaptability to environment and ease of retraining

- Capacity for generalisation from training data

This is a small list of the benefits of neural networks, the
reader is referred to [Sawhney] for a complete analysis.

Winner Takes All Multi-layer Feed Forward Networks

Multi-layer networks usually have an input layer, n number
of hidden layers and an output layer. This enables the
learning of complex non-linear relationships of input to
output (compared to other ANN architectures such as single
layer networks). Training a multi-layer network with
backward error propagation (backpropagation) is a popular
learning technique in this architecture. An error in the output
is corrected by adjusting the weights in reverse from the
output layer back through the network. Furthermore, in a
winner take all network there is one output that is chosen
from all available outputs, the one with the highest sum (the
“winner”). This is the distinct network architecture that is
used in this experiment.

Agent Experiment

To test the application of multi-layer feed forward networks
and the backpropagation learning algorithm this experiment
attempts to use the technology to teach a game agent how to
learn to respond to its environment and therefore
demonstrate the utility of the technique.

AGENT FRAMEWORK DISCUSSION

Generic Behaviours

The agent in this experiment exists in an environment in
which it can exhibit the following behaviours-

Table 1: Agent behaviour descriptions

The agent is has the following sensors –

Agent Sensor Description

HEALTH What is the agent’s
health level?

CAN_SEE_PLAYER Can the agent see the
player?

CLOSE_FOR_ATTACK Is the agent close
enough for attack?

HAS_WEAPON Does the agent have a
weapon for attack?

IN_HIDING_AREA Is the agent in a
“hiding” area?

Table 2: Agent sensor types

The agent must respond appropriately in its environment
based on both its sensors and the behaviours it has available.

Appropriateness is taught to the agent via the training data
set which emphasizes human like responses based on its
available data (ie to attack when healthy and near the player,
to avoid the player when health is low and so on…). Agent behaviour Description

CHASE Attempt to get closer to the
player

ATTACK When close enough, attack
the player

EVADE Try to evade the player

PATROL Follow a pattern to patrol
around an area

HIDE Hide from the player

RANDOM Follow a random direction
and change randomly

Neural Controller

Back propagation ANNs can be used to recognize patterns in
training data. For use in games this data can include the
state of the environment and any sensors the agent has.
During training the network will train on a dataset of sensor
information and the appropriate output. When the trained
neural controller is presented with an input data set it will
map this input to the most similar training pattern it
encountered.

The Experiment

The experiment was programmed using C++ and the SDL
graphics library for visual output testing. The aim of training
the neural controller is to allow the network to perform well
for every situation the agent is in, whether or not it was
presented in the training set. This is an intrinsic benefit to
using an ANN approach but the technique itself will not be
enough, the design of the network and training data can
mean the difference between a successful agent and a poor
one. The neural controller network was designed as per the
following diagram –

Figure 1: Neural Network Architecture

Five inputs nodes were shared across three nodes in the
hidden layer, feeding a set of six winner takes all nodes in
the output layer.

The neural controller was trained with a suitable dataset
representing what could be classed as genuine “lifelike”
responses to the environment based upon sensor information.
The emphasis was on an agent that would change behaviour
based principally on its health level and locality to the player.
Training changes the weights in the ANN as appropriate.
The learning used in this experiment was a supervised back-
propagation learning technique, where the desired output for
each input training vector is provided for the ANN to learn
from and errors are fed backwards throughout the
network.(please consult [Bishop95] for details on the
algorithm). This means that the network can be trained
offline and then loaded when you want to use it – therefore
there is no penalty or complexity involved during runtime
game-play.

The network was trained with a sample set of 24 training
cases over 100000 iterations. The experiment did not take
into account stopping criteria or over training – two issues
that a follow up experiment are set to address.

Neural Network Results

The neural network was trained with the training set
described above. The network was then tested with the
following test data set (with actual network output in final
column) –

Health Weapon See Attack Hiding Action

3 1 1 1 0 ATTACK

3 0 1 0 0 PURSUE

2 1 0 0 0 PATROL

2 0 1 1 0 RANDOM

1 0 1 0 1 RANDOM

Table 3: Network test data

As can be seen from the above table, the agent chose realistic
behaviours for sensor combinations. The network was then
tested in a real time environment with an agent and a player.

A basic 2D application was written to allow a user to control
a player in the presence of an agent trained with this neural
network. The player was able to move around the
environment and the agent would follow the appropriate
behaviour the network provided for its input sensor data.
The sample application demonstrated appropriate behaviour
within the test environment. The agent was able to follow
what would be classed as “instinctual” behaviours, chasing
the player when close, adopting random or patterned
behaviour when not. As health levels changed the behaviour
of the agent adapted to be more reserved and not as eager to
attack. The sample allowed a toggle to change if the weapon
was available to the agent. This had the effect of changing
the instinctual behaviour since the agent was missing a key
ingredient to a successful attack – its weapon.

CONCLUSION

This experiment was an attempt to use backpropagation
neural network technologies to control an agent’s behavior in
a simple environment.

The backpropagation technique was used in the training of
this ANN. Supervised back propagation was used since it is
a simple and easy to implement technique which allowed a
variety of training data to be used easily and since it can be
used for training offline - useful for training agents outside
of game. Properly trained backpropagation networks tend to
give reasonable answers when presented with inputs that
they have never seen- exactly the behaviour required for this
game agent. This generalization from training data makes it
possible to train a network on a representative set of input
data and get good results without training the network on all
possible combinations.

Although the environment was not as sophisticated as a real
game or simulation environment, the experiment
demonstrated that the use of agent sensors, coupled with a
trained neural network, could provide the agent with
sufficiently life like responses in all situations. The benefit
to this approach is clear when the training data set is changed.
Change the training data to represent a more cautious or
scared agent and this will lead to the required different
behaviours being exhibited in the environment- thus no need
for a complex reengineering of the logic behind the agent
just to change its behaviour. This and the other benefits of
neural networks make them an excellent choice of
technology for creating a variety of agents in games that can
behave in whatever ways you can imagine.

The main two disadvantages of this technique are as follows.
There is generally a lack of explanation of what has been
learned by the network. This isn’t always required but in
some cases it would be useful to understand why a network

learns in a certain way and what a trained network represents
in terms of production (if/then) type rules. Secondly
although these networks are good at prediction and
classification they are slow compared to other learning
algorithms.

REFERENCES

[Bishop95] Bishop, C.M. “Neural Networks for Pattern
Recognition”, Oxford University Press, 1995.

[Callan] Callan, R. “The Essence of Neural Networks”,
Essence of Computing , Prentice Hall Europe, 1999.

[Champandard02] Champandard, A.J. “The Dark Art of
Neural Networks” , AI Game Programming Wisdom pg 640-
651.

[Evans] Evans, R. “AI in Computer Games: The Use of AI
Techniques in Black & White”, Online-
http://www.dcs.qmul.ac.uk/seminars/theory/abstract/EvansR
01.html

[Sawhney] Sawhney, N, Abrahamson, S.M, “Neural
Networks Introduction and Applications”, online
http://web.media.mit.edu/~nitin/classes/adaptive/NNtalk/
MIT, March 1997.

http://www.dcs.qmul.ac.uk/seminars/theory/abstract/EvansR01.html
http://www.dcs.qmul.ac.uk/seminars/theory/abstract/EvansR01.html

AUTOMATIC ACQUISITION OF ACTIONS FOR ANIMATED AGENTS

Adam Szarowicz 1 Marek Mittmann 1,2 Paolo Remagnino
CIS School, Kingston University Institute of Informatics CIS School, Kingston University

Penrhyn Road Silesian University of Technology Penrhyn Road
Kingston upon Thames, KT1 2EE ul. Akademicka 16 Kingston upon Thames, KT1 2EE

United Kingdom
a.szarowicz@kingston.ac.uk

PL 44-100 Gliwice, Poland
mittmann@ps.edu.pl

United Kingdom
a.szarowicz@kingston.ac.uk

Jarosław Francik 1,2

Institute of Informatics CIS School, Kingston University
Silesian University of Technology Penrhyn Road

ul. Akademicka 16 Kingston upon Thames, KT1 2EE
PL 44-100 Gliwice, Poland United Kingdom

jfrancik@ps.edu.pl

KEYWORDS
Q-learning, intelligent agents, lifelike characters.

ABSTRACT

The generation of animated human figures especially in crowd
scenes has many applications in such domains as the special ef-
fects industry, computer games or for the simulation of the
evacuation from crowded areas. Automation in action creation
eliminates the need for human labour, which shortens the task of
generation of the crowd scenes and also reduces the costs. This
paper addresses a shortcoming of the architectures designed for
creation of animated scenes with autonomous agents by propos-
ing a module for automatic acquisition of new high-level actions.
Agents use reinforcement learning to acquire these actions and
the chosen algorithm is the deterministic version of Q-learning.
This allows for easy definition of the task, since only the ultimate
goal of the learning agent must be defined. Generated actions can
then be used to enrich the animation produced by the animation
system. The paper also compares results achieved when training
agents with forward and inverse kinematics control.

INTRODUCTION

The creation of animated scenes involving interacting characters
is a problem in such applications as film post-production and
special effects, computer games or event simulation in crowded
areas. Crowd scenes, created by dedicated intelligent systems or
by human animators, usually rely on a number of high-level ac-
tions assigned to the avatars and performed at specific times. In
scenes, where the fine detail is not a crucial factor, generation of
those actions could be automated. This paper focuses on rein-
forcement learning as a means of extending such intelligent sys-
tems. The proposed solution addresses the elimination of the

1 Supported by British Council and Polish Committee for Scientific
Research as Polish-British Research Partnership Programme project
no 239.
2 Supported by the Polish Committee for Scientific Research under
the grant no 4 T11C 024 24 (2003).

tedious animation job performed by human animators and direc-
tors to create new sets of more complex actions. It also provides
a way of easy scripting and parameterisation of generated anima-
tion. Such scripting is difficult to achieve when working with
sequences acquired by applying manual animation or motion
capture techniques. On the other hand automatically generated
sequences can later be incorporated into existing animation tools.

The problem of automatic creation of computer characters has
been addressed by researchers trying to make the animated char-
acters more intelligent (Funge 1999; Isla et al. 2001). The main
problem with those architectures is that they miss features needed
to generate realistic crowd scenes (interaction, details of the cog-
nitive architecture (Funge 1999), bias on animal-like creatures in
the C4 architecture (Isla et al. 2001; Blumberg et al. 2002) and
therefore leave a broad scope for research into the problems in-
volved, especially with human-like creatures. The growing popu-
larity of agent-based architectures and methodologies brought
new discoveries into the field of autonomy, distribution and in-
teraction (Rao and Georgeff 1995; Wooldridge et al. 2000;
Wood and DeLoach 2001; Mylopoulos et al. 2001; Winikoff et
al. 2001) and gave a new opportunity to apply recent advances in
AI to the problem of automatic animation generation. However
there has been a very limited application of those systems into
the field of computer animation.

An example of a system trying to solve this problem is FreeWill
(Szarowicz et al. 2002) upon which we based our implementa-
tion. FreeWill proposed an architecture suitable to create intelli-
gent and realistic animation by incorporating elements found in
both animation-driven systems and distributed (multiagent) solu-
tions. Each avatar participating in the animation consists of an
intelligent agent together with a body layer, which is responsible
for handling the visible part of the agent.

FreeWill utilises the idea of high-level actions, which are the
same as plan libraries often used in the agent literature.
These high-level actions (e.g. shaking hands with another
avatar or opening a door) contain sequences of simple ac-
tions, which can be readily copied and pasted into the action
sequence generated by each agent. Therefore the quality of
the simulation highly depends on the number of different

high-level actions an agent has at its disposal. An off-line
automatic acquisition of those actions would greatly improve
the results obtained from the system.

The goal of the presented work is to propose a method for such
an automatic acquisition of high-level actions based on machine
learning. It should be faithful enough to be applied in crowd
scenes thus relieving the human animator of some of the most
tedious tasks. A sample action that we have succeeded to auto-
matically generate and acquire consists of opening a door and
walking through it.

We are assuming that the avatar is able to perform a number of
low-level actions and there is a high-level goal defined for the
agent to achieve. The problem solution will include a sequence
of low-level actions, which allow the agent to achieve the goal.
We will call this sequence a high-level action.

MACHINE-LEARNING BASED
ACTION ACQUISITION

A fully automated acquisition of high-level animation actions
requires very little user intervention. Only goals for the learning
task must be defined, while performance adaptation is unsuper-
vised. Reinforcement Learning (RL) methods (Sutton and Barto
1998; Mitchell 1997) fulfil these criteria. RL is a Machine Learn-
ing technique whereby autonomous software (the agent) learns
by trial and error which action to perform by interacting with the
environment. Explicit precompiled models of the agent or envi-
ronment are not required. It is sufficient to define states and ac-
tions available for them. Although not one of the requirements of
the technique, one can imagine that a priori knowledge could
also be incorporated. For instance both physical and dynamic
constraints could be imposed making states and actions partially
available or completely unavailable. The Machine Learning
technique does learn, incrementally a reactive model for each
one of the defined states, affected only by the models of
neighbouring states. At each discrete time step, the agent selects
an action given the current state and executes the action, causing
the environment to move to the next state. The agent receives a
reward that reflects the value of the action taken given that the
agent is in the current state. The objective of the agent is to
maximise the sum of rewards received when starting from an
initial state and ending in a goal state. One incarnation of RL is
Q-Learning (Watkins 1989). The objective in Q-learning is to
generate Q-values (quality values) for each state-action pair. At
each time step, the agent observes the state st, and takes action a.
The choice of actions in early stages is usually random (any ac-
tion may be selected from the possible actions set) and becomes
more informed as the agent learns more about the environment
(agent prefers actions which give higher rewards thus exploiting
its knowledge). After executing an action the agent then receives
a reward r dependent on the new state st+1. The reward may be
discounted into the future, that is rewards received n time steps
into the future are worth less by a factor γ n than rewards received
in the present (the discount factor expresses the confidence the
agent has in the current policy: the further in the future the
smaller the confidence). Thus the cumulative discounted reward
is given by

R = rt + γ r t+1 + γ 2 r t+2 + … + γ n r t+n (1)

where γ ∈ [0,1) is constant for the entire simulation. If γ = 0 the
agent only considers the immediate results of its actions and thus
the reward is not discounted. The Q-value is updated at each step
using the update equation (1) for a deterministic Markov Deci-
sion Process (MDP) as follows:

Qn(st , a) ← rt + γ max Qn-1(st+1 , a’) (2)
 a'

A sequence of actions ending in a terminal state is called an ep-
och or iteration.

Q-learning can be implemented using a look-up table to store the
values of Q for a relatively small state space. Neural networks
are also used for the Q-function approximation (Bertsekas and
Tsitsiklis 1996; Haykin 1999).

Reinforcement Learning has been applied to create success-
ful board games implementations (Nicol and Schraudolph
1994; Thrun 1995), with unmanageable state spaces. Back-
gammon is the most successful example (Tesauro 1994).
Reinforcement Learning has also been used in robotics to
control one or more robotic arms (Davison and Bortoff 1994;
Schaal and Atkeson 1994) and in animation to create motiva-
tional and emotional states for human-character interaction
(Yoon et al. 2000), no results have hitherto been published
on applying RL to control complex biped actions either in
simulated or robotic environments.

The only architecture of the above-mentioned, which explicitly
employs machine learning is C4, where machine learning tech-
niques allowed the animated creatures to acquire new skills, es-
pecially in the form of training a home pet (a dog).

For the purpose of Q-learning our agent was assigned a number
of simple actions, which are listed below:

• Forward kinematics control

- Rotate arm up / down by ∆α
- Rotate arm forward / backward by ∆α
- Rotate forearm by ∆α
- Move forward / backward by ∆α

• Inverse kinematic control
- Move palm by ∆x, ∆y, ∆z
- Move forward / backward by ∆x

where ∆α = 20 degrees, ∆x = 35 cm for walk (the size of a sin-
gle step) and ∆x = ∆y = ∆z = 5 cm for the motion of a hand, γ =
0.95.

It was also assigned a goal of getting itself behind a closed door.
Its task was to learn a way of doing so. The only represented
states were those of the agent, the state of the door was repre-
sented externally as a variable to reduce the size of the state
space. The door knob was not rotated in the experiments, al-
though it is relatively easy to add such an action without much
increase in the simulation time (in another task currently under
investigation the agent has to grab an object).

Positive rewards were given to the agent whenever it man-
aged to get through the door successfully, whereas negative
rewards were used to prevent it from performing illegal

moves, e.g. outstretching a joint or colliding with an obsta-
cle. For this purpose a quick and efficient way of detecting
collisions was necessary, as collision detection algorithms
were not a part of the animation package.

The agent's perception of the ambient environment was limited to
detecting the collisions between its arms and exterior objects.
This approach is sufficient in most cases, as the collisions practi-
cally determine constrains for the physically possible movements
(at least these not resulting from internal, i.e. biomechanical con-
ditions). The desired collision detection algorithm should avoid
testing all the polygonal faces in both objects for overlap. In-
stead, much more efficient solutions are based on spatial vol-
umes (volumes that entirely enclose objects). Tightness of fit
between an object and its bounding volume is crucial for the
precision of the collision test. The simplest, yet widely used
bounding volumes are spheres. However, when objects are in
close proximity this approach is imprecise or it requires strong
spatial subdivision techniques applied in a hierarchical manner.
Another solution is axis aligned bounding boxes method
(AABB). This method also produces relatively large bounding
boxes if the underlying objects are not axis-aligned, and that was
the case with the avatar's arms. Therefore we have chosen the
OBB (oriented bounding boxes) approach (Arvo and Kirk 1989)
as a good trade-off: they are a snug fit and the method is not very
computationally intensive. Applying the separating axis theorem
proposed by Gottschalk (1996; Gottschalk et al. 1996) it is
enough to make just 15 tests to determine if the boxes overlap.

Two ways of character control were tested: forward kinematics
and inverse kinematics. The state space for the first case con-
sisted of approximately 12000 states distributed across 4 dimen-
sions (2 degrees of freedom for the left arm, 1 for the forearm
and 1 for backward/forward walk). The second simulation com-
prised less than 50000 states (a 3-dimensional cube of x,y,z posi-
tions around the avatar's hand, the last dimension was walk along
one axis), eight simple actions were available at each time step.
These were three rotations -- two for the arm and one for the
forearm -- in two directions and walk along one axis for the for-
ward kinematics case (2*3+2) and hand motion along 3 spatial
axes in two directions for each axis plus walk for the inverse
kinematics case (2*3+2). The difference in the number of states
for the two modes was caused by the necessity for greater sam-
pling of the space in the case of inverse kinematics control.
Number of states across each dimension was chosen to provide
sufficient sensitivity but also to eliminate as many unnecessary
states as possible. Therefore only reasonable angles for joint
movements were selected, these were taken from human joint
contraints: forarm can only rotate by about 180 degrees around
the x-axis, arm 270 degress around the x-axis (for-
ward/backward) and 180 degrees around the y-axis (up/down).
Two additional states were added for each joint to represent the
illegal motions, so called forbidden states (e.g. for the forarm
rotation -20 degrees and 200 degrees would be the forbidden
states). For walking only the route through the door was repre-
sented as walking to the door could easily be achieved within the
FreeWill system.

THE FRAMEWORK

The experimental apparatus consists of an application communi-
cating with 3DStudio Max software package, which was used to
model the three-dimensional scene. The characters were created
by the Biped Plugin.

The main part of the framework is an external application written
in C++ that processes all simulations. It controls the scene and
acquires information about object interactions through the COM
interface, which is exposed from within the 3DStudio package by
means of a dedicated script (a max script). This script contains
definitions of functions for manipulating the objects and defines
the appearance and initial positions of objects placed in the
scene. Since the communication through COM interfaces is not
fast enough, some critical components have been moved to a
plug-in, that directly communicates with the max script engine.
This solution is very efficient, but inconvenient to implement, so
only necessary functions have been implemented in this way.
The final sequence of actions is saved as a script controlling the
avatar and the scene objects. Animation created with that script
can then be rendered.

Recently another software architecture has emerged. The KINE+
framework (Francik 2003) makes the main application inde-
pendent of the 3DStudio Max concerning the simulation task.
The new framework contains a biped model compatible with
3DStudio, and has collision detection built-in. However it is not
yet fully integrated with the main solution, we have strong
grounds to believe that it will significantly improve its efficiency.
Additionally, it supports animation output format compatible
with MoCap.

RESULTS

The results obtained are depicted below. Figure 1 shows a few
shots from the actual animation generated from the sequence of
simple actions learned by the agent. At the beginning of the
simulation the agent has no knowledge about the appropriate
actions, and as the simulation progresses it gradually improves its
performance. Figure 2 shows an average number of low-level
actions performed per epoch as a function of time. Initially the
numbers are low: `inexperienced' agent immediately encounters
negative terminal states: collisions and forbidden states (see Sec-
tion 2). It then gradually explores the state space until eventually
the best path is found. This is when the number of actions per-
formed stabilises (until perhaps the agent finds an even better
path or decides to explore again).

The stabilisation is more stable in the case of the forward kine-
matics (FK) control (for this method of control the agent had
fewer ways of fulfilling the goal) and the solution size is about 5
simple actions. For the state space defined above (4 dimensions,
12000 states) the solution was found in about 250 iterations (ep-
ochs), on a computer with Pentium 4 1,50GHz processor, 0,5GB
RAM, and with the scene redraw switched off this was about 30
seconds. Because the animation obtained still relied on unnatural
moves (lack of arm rotation) which could not be eliminated
within the action set given a bigger state space was also investi-
gated. Two additional degrees of hand freedom (hand and arm
rotation around the z-axis) were added which made the total

number of states of over 2 million and 12 actions per state. In this
case the solution was usually found in about 1500 iterations (80
seconds), but some initial exploration was enforced on the agent
-- for the first several hundred iterations the agent started each
iteration in a different, randomly chosen state. The obtained solu-
tions were very similar.

For the inverse kinematics the stabilisation threshold is slightly
higher than in the previous case: 6-7 simple actions (more actions
are necessary because of smaller steps). Inverse kinematics gen-
erates more natural motion (joint angles, position of limbs in
space) during the simulation thus implicitly rejecting some of the
unnecessary states. It also requires fewer constraints to be
checked against during the simulation (e.g. in terms of limits on
joint angles), the representation was more natural and no exten-
sions to it were necessary. However it takes longer to learn
(approx. 800 iterations in 90 seconds). Also, decreasing the sam-
pling rate for the IK control was increasing the number of itera-
tions necessary to find the solution. We believe this was due to

loss of precision by the avatar when performing the actions, that
is, because of the rare sampling of the space, the avatar had to be
very `lucky' to come across the door knob, open the door and
fulfil the goal. The solution found was comparable to that ac-
quired for the FK control - both the general motion of the agent
and the timing were similar.

Although adding just two degrees of freedom increased the
learning time from 30 to 80 seconds the resulting state descrip-
tion allows to simulate most manoeuvres of a single upper limb.
Therefore further extensions of simulations involving one hand
will not turn this solution intractable. Current experiments with
an avatar learning how to lift an object confirm this statement.

CONCLUSIONS AND FUTURE WORK

In this paper a way of learning sequences of low-level actions to
achieve a goal of an animated agent has been explained. The
agent has been controlled using both forward and inverse kine-

Figure 1: Learning avatar (above), animation derived from the best solution found (below)

Figure 2: Learning curves (left – forward kinematics control, 12000 states; right – inverse kinematics, 50000 states)

matics and the learning algorithm applied was Q-learning. This
algorithm proved to be sufficiently effective to learn new actions
by a virtual agent with several degrees of freedom. Another
benefit given by this technique is that automatically generated
sequences can easily be scripted and parameterised and used in
other animation tools. Application of a solution to a different
character could be done by adjustment of the resultant motion
parameters (e.g. for some types of motions only some of the an-
gles have to be modified), it is also possible to learn a new se-
quence for each distinct character.

The created animation sequences are faithful enough to be ap-
plied in a crowd scene. Additionally our results can also be ap-
plied in the field of robotics, provided that the robot can already
perform more basic actions such as walking. The experiments
show that although inverse kinematics control takes longer to
reach the solution it is easier to program (fewer dimensions in the
state space, less different low-level actions). On the other hand
scaling up is easier for the forward kinematics (the representation
of states is more consistent). Additionally, because the technique
generates multiple solutions, different sequences can be used by
the avatars in the final crowd scene to perform the same task.
This way of introducing randomness into the scene would gener-
ate more realistic results than the current techniques relying on
phase offseting.

However, adding too many degrees of freedom to the presented
technique will eventually create a very substantial state space
with long simulation times and therefore a more compact repre-
sentation is required. Therefore our next step will be an applica-
tion of neural networks for state approximation. Other learning
techniques (such as genetic programming) will also be applied to
the constructed framework to compare results achieved from
different methods.

So far we have only experimented with avatars interacting with
static objects. A bigger challenge would be to try to learn interac-
tion between agents – e.g. passing an object. The experiments
presented in this paper provide good foundation for attempting
that challenge.

REFERENCES

Arvo J. and D. Kirk. 1989. A survey of ray tracing acceleration tech-
niques. An Introduction.

Bertsekas D. P. and J. N. Tsitsiklis. 1996. Neuro-Dynamic Program-
ming. Athena Scientific.

Blumberg B. M., M. Downie, Y. Ivanov, M. Berlin, M. P. Johnson and
B. Tomlinson. 2002. “Integrated learning for interactive synthetic
characters”. ACM Transactions on Graphics Vol. 21, No 3, pp.
417–426.

Davison D. E. and S. A. Bortoff. 1994. "Acrobot software and hardware
guide”. Technical Report Number 9406. Systems Control Group,
University of Toronto, Toronto, Canada.

Francik. 2003. “A Framework for Programmatic Control of Animation
of Human Avatars”. Studia Informatica, to appear.

Funge J. D. 1999. AI for Games and Animation. A Cognitive Modeling
Approach. A K Peters Natick.

Gottschalk S., M. C. Lin and D. Manocha. 1996. “OBBTree: A Hierar-
chical Structure for Rapid Interference Detection”. Proceedings of
ACM SIGGRAPH, New Orleans, Lopp. 171–180.

Gottschalk S.. 1996. "Separating axis theorem”. Technical report TR96-
024. Dept. of Computer Science, UNC, Chapel Hill.

Haykin S. 1999. Neural Networks. Prentice Hall.
Isla D., R. Burke, M. Downie and B.M. Blumberg. 2001. “A Layered

Brain Architecture for Synthetic Creatures”. Proc. of 17th Joint
Conf. on Artificial Intelligence IJCAI-01, Seattle, USA, pp. 1051–
1058.

Mitchell T. M. 1997. Machine Learning. McGraw Hill.
Mylopoulos J., M. Kolpand and J. Castro. 2001. “UML for Agent-

Oriented Software Development: The Tropos Proposal”. Proc. of
the 4th Inmt. Conf. on the Unified Modeling Language, Toronto,
Canada.

Nicol N., Schraudolph, P. Dayan and T.J. Sejnowski. 1994. “Temporal
difference learning of position evaluation in the game of Go”. In
Proceedings of Advances in Neural Information Processing Systems
Conference, San Mateo, CA, pp. 817–824.

Rao A. S. and M. O. Georgeff. 1995. “BDI Agents: From Theory to
Practice”. Proc. of the 1st Conf. Conference on Multiagent Systems
ICMAS95.

Schaal S. and Christopher Atkeson. 1994. “Robot juggling: An imple-
mentation of memory-based learning”. Control Systems Magazine
No 14.

Sutton R. S. and A. G. Barto. 1998. Reinforcement Learning: an Intro-
duction. MIT Press.

Szarowicz A., J. Amiguet-Vercher, P. Forte, J. Briggs, P.A.M. Gele-
pithis and P. Remagnino. 2001. “The Application of AI to Auto-
matically Generated Animation”. Advances in AI, Proceedings of
the 14th Australian Joint Conf. on Artificial Intelligence, Springer
LNAI 2256, pp. 487–494.

Tesauro G. 1994. “TD-Gammon, a self-teaching backgammon program,
achieves master-level play”. Neural Computation Vol. 6, No 2, pp.
215–219.

Thrun S. 1995. “Learning to play the game of chess”. Advances in Neu-
ral Information Processing Systems (G. Tesauro, D. S. Touretzky,
and T. K. Leen, editors), The MIT Press, Cambridge, MA.

Winikoff M., L. Padgham and J. Harland. 2001. “Simplifying the De-
velopment of Intelligent Agents”. Advances in AI, Proceedings of
the 14th Australian Joint Conf. on Artificial Intelligence, Springer
LNAI 2256, pp. 557–568.

Wood M. and S. A. DeLoach. 2001. “An Overview of the Multiagent
Systems Engineering Methodology”. In Agent-Oriented Software
Engineering, LNAI 1957, Springer.

Wooldridge M., N. R. Jennings and David Kinny. 2000. “The Gaia
Methodology for Agent-Oriented Analysis and Design”. Autono-
mous Agents and Multi-Agent Systems, Vol. 3, No 3, pp 285–312.

Yoon S.-Y., B. M. Blumberg and GG. E. Schneider. 2000. “Motivation
Driven Learning for Interactive Synthetic Characters”. In Proceed-
ings of Autonomous Agents Conference, 2000.

A MODEL FOR CREATIVITY IN CREATURE GENERATION

Paulo Ribeiro, Francisco C. Pereira, Bruno Marques, Bruno Leitão and Amílcar Cardoso
AILab – Creative Systems Group

Centro de Informática e Sistemas da Universidade de Coimbra (CISUC)
Polo II, Pinhal de Marrocos

3030 Coimbra, Portugal
E-mail: pjcr@mail.telepac.pt

KEYWORDS
AI, Creature Generation, Creativity, Conceptual Blending.

ABSTRACT

This paper brings a proposal and general specification of a
new project that aims at applying Conceptual Blending
(Fauconnier and Turner 1998) as a process of creature
generation in games. The project we describe is based on
Divago (Pereira and Cardoso 2003) and should be able to
bring novelty among creatures that populate a game.
Moreover, it is expected to extend these capabilities to other
objects in a game, towards a very dynamic environment.

Given that this is a work in progress, we provide the first
preliminary results or experimental examples and try to
provide the reader with a clear image of the framework to
be followed.

INTRODUCTION

Following the ever growing need for novelty in games as
well as a growing development community that works in
the creation and enhancement of new Artificial Intelligence
techniques for games, our work is aiming at the building of
a computer-based creativity system that can generate
creatures, scenarios, objects and other kinds of game
concepts, based on a computational model of Conceptual
Blending (Fauconnier and Turner 1998). The generated
concepts, although based on previous concepts, should
present a newly created structure of their own. This work
follows the steps of Divago (Pereira and Cardoso 2003), a
computational model that uses Conceptual Blending (CB).
CB is proposed as an explanation for various cognitive
phenomena, describing the integration of knowledge from
different sources, using a set of cognitive principles and
processes. A conceptual blend, or blend, is itself a concept
that can achieve independent identity and structure, but at
the same time remains linked to its original knowledge (the
input concepts). Divago, a computational model for
creativity, uses the same principles and processes of CB,
resulting in the generation of new concepts. Based on the
results achieved by Divago and on the work already done
within our project, we have good expectations of ending up
with a creative system that will enhance the novelty factor
in game content.

In this document, we will first introduce Conceptual
Blending and the Divago system as a basis for our work.
We will then describe the architecture and inner workings
of our creature creation system, as well as the current state
of the project. Finally, we will discuss some of the results
already obtained and how we expect the system to work
when it is concluded.

CONCEPTUAL BLENDING AND DIVAGO

Conceptual Blending, as proposed by Fauconnier and
Turner, may be a plausible model for creativity and it also
includes a detailed and explored set of principles and
processes that provide to some extent the construction of a
computational model. We will now give an overview of the
framework but, in order to understand it in more detail, we
suggest the reader to look at the reference works
(Fauconnier and Turner 1998; Fauconnier and Turner
2002).

An Introduction to Conceptual Blending

As stated before, a blend is a concept or web of concepts
that is based on previous knowledge but maintains an
identity and structure of its own. The inputs constitute the
previous knowledge of a blend, i.e. the concepts that are
blended in order to generate a new one. To give an example
of a blend, we can think of a mythic character, the
werewolf, half man, half wolf, or we can think of computer-
related terms, such as “windows explorer” or “recycle bin”.

Starting with the main element of Conceptual Blending, we
have the mental space. Mental spaces are knowledge
structures regarding a domain, a reasoning, an object or an
action. We can blend two or more mental spaces by finding
a mapping between them. These mappings, known as cross-
space mappings, connect an element of one mental space to
another element in the other mental space, which makes
these elements counterparts. These elements do not have to
have counterparts, but they can also have more than one
counterpart.

Another important part of CB is the frame. When “elements
and relations are organized as a package that we already
know about, we say that the mental space is framed and we
call that organization a frame” (Fauconnier and Turner

2002). There are many types of frames and they can have
different degrees of abstraction and functional aspects. For
example, we could have “illumination device”, a very
specific frame defining the conditions and concepts that
need to be present for a given mental space to be considered
an “illumination device”. A light bulb would fit this frame,
whereas a computer mouse would not.

A blend is generally achieved in three steps. The first step
involves projecting the elements of each input into the
blended space. The second step consists of filling patterns
in the blend, when its structure matches information
contained in long-term memory. The third step consists of
the “simulated mental performance of the event in the
blend, which we may continue indefinitely” (Grady et al.
1999).

The projection of data to the blend is a process involving
selection, and it is guided by the use of a set of principles
that ensure the consistency of the blend. These are known
as Optimality Principles or Optimality Constraints.

Due to the lack of space and scope of this document, we
advise interested readers to obtain more information about
CB in the cited sources, whereas now we’ll continue giving
a brief description of Divago.

The Divago System

Divago started out as a project to model computational
creativity, inspired by human cognitive theories, such as J.
P. Guilford’s Divergent Thinking (Guilford 1967), or
metaphorical reasoning (Leite et al. 2000), which recently
led to modelling Conceptual Blending, as it provides the set
of necessary principles and processes. As far as we know,
Divago contains the only implemented computational
account of Conceptual Blending (Pereira 2003).

Divago works with two input domains and a generic space
domain, a domain being the equivalent to CB mental
spaces. Each of these domains is contained in the system’s
knowledge base. It begins by mapping the concepts from
the two input domains, also using knowledge from the
generic space domain. With mappings done between the
elements of each domain, the system tries to create a fourth
domain, which is called the blend. This is done with a
parallel search engine, a genetic algorithm that parses the
large search space of possible projections from the inputs to
the blend. To establish a means of evaluation during this
process, there is a constraints module (Pereira and Cardoso
2003), based on Fauconnier and Turner’s Optimality
Principles. In the end, there is another module that applies
knowledge from the generic space, usually a set of rules
that will probably alter the blend’s content and structure.

The following figure is a representation of a possible blend
between a bottle and a cup. With the help of the Generic
Space, the system makes two mappings: the first between
“plastic” and “glass” (materials), and the second between
“bottle” and “cup” (objects). The dashed lines represent the

resulting projections, and the final blend is a “blue plastic
cup with a round shape”.

Figure 1: Bottle and Cup Blend

Divago was recently tested against a set of classic blend
examples, taken from the literature (mostly Fauconnier and
Turner’s). These experiments had the purpose of testing
Divago’s ability to model Conceptual Blending. From the
results, it is able to find the targets (or very similar
solutions) also found in the literature. Having achieved this,
it is our opinion that it reached a capacity for making
Conceptual Blending, although still at a relatively basic
level in comparison to our own cognition; it is expectable
that the system reaches higher levels of complexity after
improvements. These and other conclusions will be
published in a forthcoming article. These results lead us to
think that there may be an opportunity to explore new paths
in computer creativity with CB. The fact that Divago is
such a generalist system that works with almost every kind
of concept constitutes a considerable challenge to its inner
workings, because it deals with large amounts of
knowledge and data. However, our creature generation
system only has to deal with expectable inputs,
considerably smaller amounts of knowledge, and a much
more specific blender module. These are the reasons that
made us think we could attain slightly better results by
restricting the system’s use to a given game environment.
This can also result in performance improvements for the
system, a determinant factor for the use of this project in
computer games, which require real-time processing most
of the time.

CREATURE GENERATION SYSTEM

Our project is based on the same foundations of Divago.
Conceptual Blending being a promising path for
computational creativity, we learnt from the internal
workings and results of the generic Divago system and tried

 material

object

bottle

plastic

round
cup

glass

blue

cup plastic

round
blue

Generic
Space

Bottle Cup

Blend

to adapt this information to the building of a more specific
system. Although we plan to extend the system capabilities
to the generation of scenarios and objects, we are now
experimenting solely with the creation of new creatures for
game environments.

The system is made up of four main modules, specified in
the following figure:

Figure 2: System Architecture

Input Module

The Input Module is responsible for getting and parsing
scripts containing two input creatures in the form of
concept maps. These concept maps are semantic networks
containing a description of the creatures and using a set of
relations that can be easily reduced to standard attribute-
value pairs. For example, a script describing a human
fighter could be:

isa(fighter,human)
strength(fighter,5)
defense(fighter,4)
food_consumption(fighter,4)
team_colour(fighter,white)
colour(fighter, flesh_colour)
made_of(fighter,flesh)
pw(head,fighter)
pw(left_arm,fighter)
pw(right_arm,fighter)
pw(torso,fighter)
pw(left_leg,fighter)
pw(right_leg,fighter)

We need to make a remark regarding the pw keyword,
which represents a part-whole relation (meaning, for
example, that the head is a part of the whole, in this case the
fighter). All the other relations should be self explanatory.
Although the example could be more detailed, this should
give the reader a clear view of what is intended as an input
script. However, given that we are working on a game
system, the contents of a script can vary greatly in detail,
depending on the kind of game.

Assuming we have two scripts like the one in the example
just given, we can pass them on to the input module.
Optionally, we can add some restrictions that we want to
apply to the blend (e.g. we want the blended creature to
keep the input 1 team colour), which are passed into the
input module via a third script, normally consisting of what
we call goal frames. After the input phase, the module
starts to process the scripts, parsing them, looking for
syntax errors, and creating internal structures with the input
data. If no errors are found, these structures are passed into
the next module, the Creature Builder (or blender).

Creature Builder & Game Knowledge Base

This second module in the system chain is responsible for
the blend process itself. As described in Figure 2, this
module interacts with another one, the Game Knowledge
Base. The latter can be individually adapted to a game’s
requirements and contains the generic space of the game
environment, which includes the optimality constraints as
well as both the data and the rules to be used during the
elaboration phase of the blend.

When the Creature Builder module receives the input
structures, it starts building mappings between the concepts
of each input. The mapping process can be more or less
restrictive. For example, it can allow a mapping between a
head and a leg or it can only allow a head to be mapped
with a head. Although the first possibility greatly increases
the search space for the blend, that does not mean the
results will be more “creative”, because there is a set of
constraints that will ensure a desirable coherence in the
results, according to the game.

After the mapping is finished, the module starts making the
projections for the blend. This is the most time-consuming
part of the process, as it needs to search a usually large
number of possibilities. This is done with a parallel search
engine that works by seeking the projections that give the
best possible individual. Current implementation is based
on a genetic algorithm, which allows a massive search in a
large search space. This process is accomplished with the
help of a weighted set of constraints (an implementation of
Fauconnier and Turner’s Optimality Constraints),
composing the evaluation function; in our context, this is
known as fitness function. During this search phase, one of
the constraints verifies if the blend falls into any of the
possible frames.

When the search process ends, we have the best blend
found by the mechanism but, before delivering it to the
Output Module, there are two more phases comprised in the
blender module: elaboration and validation.

The elaboration phase tries to enhance and refine the blend.
It uses the Game Knowledge Base to search for further
concepts that can be added to the new blend. For example,
if the blend results in a bird, the knowledge base may
contain information regarding the fact that a bird has
feathers and is able to fly. Thus, we can add new features to

Game
Knowledge Base

Input
Module

Output
Module

Creature Builder

the blended creature. The elaboration phase also applies a
set of rules to the blend. As an example, if the blend
represents a human fighter with just one leg, and there’s a
rule specifying that “if X is human and X has just one leg,
then add a wooden leg to X”, the blended creature will end
up with a wooden leg.

The validation phase ensures that the blend does not violate
any game rules and that it can be successfully converted
into the desired kind of output. In this project, we are
working with script and 3D outputs and, when it comes to
3D, a lot of problems can arise in the final object if, for
example, we leave an axe and a sword in the same hand.
The validation phase was conceived to reduce or eliminate
these situations. After this stage, the blend is ready to leave
the Creature Builder module.

Output Module

The Output Module is responsible for converting the
structure containing the blend to the desired kind of output.
Before starting with the description of this last module, it is
important to note that the whole system was planned to be
used in two distinct scenarios. First, it can be used by both
character designers and modellers to help them in the
development of new concepts and ideas. Second, it can be
used in real-time as part of a complete game, generating
new content as the game runs. To demonstrate this second
possibility we have plans to develop a full-featured game
running around the whole blending concept.

Continuing with the Output Module itself, there are two
output modes: script and 3D. The script output mode
returns a string with the description of the new creature in a
format identical to the one used by the inputs. Since this is a
simple format, it turns out to be an easy base for altering
and experimenting with the scripts, which can help
character designers to come up with new creatures derived
from the ones generated by the Creature Builder. This
format is also useful for storing new creatures in a database
thus allowing their reuse as test inputs or to add new
content to the Game Knowledge Base.

The 3D output mode is much more complex and it works
with a 3D model database where each one of the models is
associated with a creature property. It parses the blended
creature concepts and generates a new 3D model using new
parts acquired during the blend. Currently, the mounting of
the model is accomplished with the use of pre-specified
connection points. This process also applies colour and
texture changes whenever needed by the result. As an
example, a gold-plated armour can end up as an old rusty
steel vest. All the 3D work is done using the well-known
Wavefront OBJ file format, so the resulting creatures can be
edited in almost any 3D modelling application. There are
also plans to develop filters to other widely used file
formats, as well as an SDK that can provide custom output
for proprietary formats. This way, it can be used in the early
stages of game design or as a vital part in a final game
product. To exemplify some of the results provided by the

Output Module, the following picture shows some of the
creatures produced:

Figure 3: Creatures Produced by the Output Module

The creatures represented in Figure 3 are, indeed, two
inputs and a blend generated by the Output Module. In
order to generate the 3D models, we first created two
scripts describing the two inputs, which represent a
werewolf and a horse, respectively. These two scripts were
then used as inputs for Divago to process. The resulting
blend was another script. Then we entered all of the three
scripts (two inputs and one blend) into the Output Module
one by one and this module, using its internal 3D model
database, generated the creatures represented in the figure.
It is an interesting fact that, from all the possible results that
could be given by Divago in this specific situation (i.e.
blending a werewolf with a horse), this was the one that
best satisfied the evaluation criteria. Thus, the mechanism
stabilised after achieving this blended creature. In the
example, we applied the following weights to the
Optimality Constraints: 40% to Integration (measures how
much the structures within the blend are part of frames and
how well the many frames may fit together), 50% to
Topology (measures the maintenance of neighbourhood
relations in the whole concept map of the domain) and 10%
to Unpacking (measures the extent to which it is possible to
reconstruct the connections of elements from the blend to
the inputs and vice-versa). In this experiment, as in many
others that we have done, we used the following goal
frames: “creature(_), frame(_), shape_transfer(X,_),
shape_transfer(Y,_), {X\=Y}”. This can be paraphrased as
follows: “a single creature that unifies the two inputs; this
creature must maintain the general structure of only one of
the inputs (either resemble a horse or a werewolf), but must
contain at least two different parts from each of the inputs”.
This corresponds to a goal setting that came out of many

“free association” experiments we made ourselves (we
consistently applied these constraints throughout a set of
over 50 hand-made creature generations).

It may be of relevance to state that we are only presenting
an example that is a result of the interaction between
Divago and the Output Module. We have made many more
experiments under these conditions, yielding a large variety
of results. However, it is not intended in this document to
evaluate the results obtained with the help of Divago,
although it may give the reader an idea of how our system
is going to work when concluded.

Obviously, there are some properties of the new creature
that cannot be drawn in 3D, such as strength, defense or
food_consumption. However, these too are handled by the
Output Module and returned in a formatted structure and
should be interpreted by the game environment. There are,
of course, better and worse programming practices to
handle the output of our system, but that information is
outside the scope of this document.

Although we described all the processes and phases
involved in the creation of a new creature, we must remind
the reader that this is work in progress and some parts of
the system are in the development stage. If we show a more
confident tone in some passages of this text, it certainly has
to do with the background experience gained with Divago,
as we already know how the different parts of the system
are, at least, expected to work.

The Input Module is completed, as well as 80% of the
Output Module. The Creature Builder and the Game
Knowledge Base are in the early to middle stages of
development.

CONCLUSIONS

As we are in the development stage of our project, we
provide no results of the blending engine, yet we are using
Divago to provide us with some test results which are of
great help both in the building and testing phases of our
system. For example, the Output Module was developed
using Divago blends as a testing bed. By now, we can assert
that both the Input Module and the Output Module are
working as expected and should play an important role in
providing a stable environment for testing the performance
and evaluate the results of the Creature Builder and Game
Knowledge Base modules. Based on the results achieved by
Divago, we have good reasons to think that the creature
creation system will indeed prove to be a good starting
point for the introduction of Conceptual Blending as a
computational creativity model in the game AI field, and as
a base for exploring not only the conception of new
creatures but also the creation of new scenarios, objects and
other types of game content in which novelty is an
important factor.

Recent games show that AI plays an active role in the
success of computer titles. Games are less deterministic,

therefore more realistic. However, this also leads us to
conclude that there is a whole new world of possibilities to
explore in the field. There are endless opportunities still
open that can help us achieve better games with less effort.

As far as we know, we can find in Microsoft Impossible
Creatures (MIC) and Computer Artworks Evolva the works
that can be most similar to ours. However, there are
considerable differences both in approach and in general
objectives. MIC is a game that generates creatures by
composition of parts from different sources (which is also
possible in our work), but it does not work at the conceptual
level; this means that, in principle, it is not possible to blend
a creature with an object or a scenario, which is viable in
our project depending on the used frames. As far as we
know, creatures in MIC all share the same representation
scheme (i.e. the same set of slots, but different values), also
a big difference to our work. Evolva is also a game for
dynamic generation of creatures, but, as with MIC, the
space of possibilities is limited to a number of predefined
chromosomes with which the user is allowed to play. We
believe that, for achieving a genuinely dynamic game, we
need a world that is as open as possible, even taking the risk
of generating less valued outcomes, which also happens
many times with Divago.

Although this is an academic work with scarce funding, we
want to experiment to what extent we can improve content
novelty in games using recent AI techniques, and in which
way these are received by both the game industry and the
gaming community.

REFERENCES

Fauconnier G. and M. Turner. 1998. “Conceptual Integration

Networks”. Cognitive Science, 22(2), 133–187.
Fauconnier G. and M. Turner. 2002. The Way We Think. Basic

Books.
Grady, J.; T. Oakley; and S. Coulson. 1999. “Blending and

Metaphor”. In Metaphor in Cognitive Linguistics, G. Steen
and R. Gibbs (Eds.). John Benjamins, Philadelphia.

Guilford, J.P. 1967. The Nature of Human Intelligence. McGraw-
Hill, New York.

Leite, J.A.; F.C. Pereira; A. Cardoso; and L.M. Pereira. 2000.
“Metaphorical Mapping Consistency Via Dynamic Logic
Programming”. In Proceedings of the AISB’00 Symposium on
Creativity in Arts and Science. AISB. Birmingham, UK.

Pereira, F.C. 2003. “Experiments with Free Concept Generation in
Divago”. In Proceedings of 3rd Workshop on Creative
Systems. IJCAI. Acapulco, Mexico.

Pereira, F.C. and A. Cardoso. 2003. “Optimality Principles for
Conceptual Blending: A First Computational Approach”. The
Interdisciplinary Journal of Artificial Intelligence and the
Simulation of Behaviour (AISB Journal), Alonso, E., Wiggins,
G. (Eds.), 1(4), SSAISB, 2003.

A SYSTEM FOR CREATING SIMPLE CHARACTER BEHAVIOURS

Stefan M. Grünvogel
Stephan Schwichtenberg

Laboratory for Mixed Realities
Institute at the Academy of Media Arts Cologne

Am Coloneum 1, D-50829 Köln, Germany
E-mail:

�
gruenvogel, schwichtenberg � @lmr.khm.de

KEYWORDS
character animation, scripting behaviour, dynamic motion
model, augmented reality

ABSTRACT

We introduce a real-time character animation system which is
currently used in an augmented reality environment for the fast
creation of simple character behaviour. By placing and ma-
nipulating commands on a timeline, the overall choreography
of the characters’ movement is created. The movement of the
character is controlled by subtasks which model reactive be-
haviour and control the dynamic motions model for the pro-
duction of the animation.

1. INTRODUCTION

Creating character animation within an augmented reality en-
vironment is a relatively new topic. We are developing such
an animation system for the augmented reality project mqube
(http://www.mqube.de). The aim of this project is to build a
prototype of a multi-user environment, where several people
work together to create the stage set and to place the lights on
a miniaturised stage. It is also important for the stage set cre-
ators to get an impression on how an actor would look like on
the stage under dynamic change of the light and the properties.
Figure 1 shows the augmented view of an user on the minia-
turized stage. In the foreground a virtual character can be seen
walking along a user defined path. In the background the phys-
ical stage set and static (physical) puppets can be seen, which
by then were used for representing actors. The users need an
easy-to-use interface to create fast and simple animations of
characters on the stage.

Nevertheless the requirements for the character animation
system are clear in this context and resemble the tasks for
scripting character animation sequences in games. It has to be
possible to create, choose and delete different characters. For
each character there should be an easy way to create and edit
simple animations. It is not important for the user/editor to ma-
nipulate niceties of the animations. But he or she should have
the possibility to choose between large building blocks for the
animation e.g. let the character walk along a given path and
wave with its arms at a certain time. Furthermore a character
should react on the properties on the stage automatically, e.g.
jump over obstacles which occur on his path.

In this article we will describe the underlying character ani-
mation system of the augemented reality system. Because the

Figure 1: Augmented user view of the miniaturized stage. Pi-
cuture c

�
by Fraunhofer FIT.

user interface is still under development and usability tests are
pending, these topics will be reported in an upcoming article.

In Section 2 related work on character animation systems
is summarised. In the following sections we present our ap-
proach in a top-down manner, starting with an overview on the
systems architecture in Section 3. In Section 4 how the editing
process is performed at the highest level. Then in 5 we ex-
plain the representation of virtual characters within the system
and the way complex animations (choreographies) are created
and edited. Section 6 explains the conversion from abstract
choreographies to concrete motion models which create the fi-
nal animation. Finally Section 7 concludes with a summary on
the results and ends with some remarks on future and ongoing
work.

2. RELATED WORK

There are still only a few approaches in literature where the
interaction with virtual characters in augmented reality is ex-
amined. A general overview about augmented reality is given
by Azuma (Azuma, 1997). In (Torre et al., 2000) a system is
described where interaction techniques between real and vir-
tual humans are explored. A public domain checkers simula-
tor is used to control the movement of a virtual character. In
(Balcisoy et al., 2001) a virtual character was used within this
system for rapid prototyping in a mixed reality environment.

In Tamuras’ RV-Boarder guards (Tamura, 2000) non-human
virtual characters are created as opponents in an augmented re-
ality shoot-em-up game.

The two systems mentioned above create the behaviour and
the animation of the characters by an underlying system auto-

matically. In our augmented reality project, the mixed reality
environment is used itself to edit the movements and the be-
haviour of the character.

A system for authoring complex scenes and animations
within a virtual environment can be found e.g. in Balaguer et.
al. (Balaguer & Gobbetti, 1995), (Balaguer & Gobbetti, 1996).

For the creation of the movement and the behaviour of vir-
tual characters (Badler et al., 1993) specify a three layer system
by their Jack system. On the lowest level motion is described
by the bio-mechanical simulation of the character and at the
highest level the behaviour of the character is controlled by a
parallel transition network.

Perlin and Goldberg also define with their Improv-System
(Perlin & Goldberg, 1996) a multi layer architecture. At the
lowest level, single movements of the character and the transi-
tions between the animations are given. To create complex be-
haviour of characters, scripts are used to define the things each
object (the character and other entities) is capable of doing and
used to define what can be done with it. Our description of
human movements at the lowest level resembles their approach
for the lowest level (cf. (Grünvogel, 2003) for a discussion on
the differences).

In (Sannier et al., 1999) and (Kalra et al., 1998) the real-
time animation system VHD is presented which allows users
to control the walking of a character with simple commands
like walk faster.

The idea of building intelligent characters by creating mul-
tiple layers of different interaction with its environment can be
found in a more general context in Brooks subsumption archi-
tecture (Brooks, 1991).

The Unreal Tournament Editor (Epic Games, 2003) is an
example of a scripting environment for a current professional
game engine. There Action commands are used to create so
called ScriptedSequences of animation and behaviours. The
editing process is made within a graphical user interface.

We also follow a multi-layer approach for the generation
of character behaviour. At the lowest level we describe sin-
gle movements by dynamic motion models. The term motion
model is lent by Grassia (Grassia, 2000), who used motion
models to build a script based system for the offline creation
of character animation. In (Grünvogel, 2003) dynamic motion
models are introduced for the real-time creation of character
animation in interactive environments. We take these results to
build our character animation system presented in this paper.

3. SYSTEM ARCHITECTURE

Figure 2 shows the hierarchical structure of the character an-
imation system. If we follow the diagram top down it shows
how abstract commands which are passed to the system are
transformed into more and more low level commands, result-
ing finally in animation data which is put into the rendering
engine.

At the top of the hierarchy lies the Manager which is the
interface to the user interface component. The creation, selec-
tion and manipulation of characters is triggered by the user in-
terface component of the AR-System by sending commands to
the Manager. The Manager creates and deletes the geometrical

Directive

CECommand

Manager

ChoreographyEditor

CECommand

User Interface Component

Animation Data

AECommand

Character N

AnimationEngineN....

Character 1

AECommand

Directive

Scene Graph

Animation Data

AnimationEngine 1

Figure 2: The System Architecture.

and the logical entities of a character, while at the lower levels
the choreography editor and animation engine are independed
of its geometrical representation.

The choreography editor consists of the ChoreographyEd-
itor object together with its Characters and controls the be-
haviour of all the characters in the scene. For each character
there is an AnimationEngine which is responsible for the cre-
ation of the animation data. The animation data is finally send
to the scene graph of the rendering engine.

Within the ChoreographyEditor a character is represented
by a Character object. The ChoreographyEditor is responsible
for the creation, manipulation and deletion of Characters. The
commands the Manager receives for changing a choreography
script of a character are send to the ChoreographyEditor and
then translated into control commands (Directives) for the cor-
responding Character. Each Character also has a link to an
AnimationEngine. If a choreography is played, the Character
controls the animation of the character by sending commands
(AECommands) to the AnimationEngine.

The Manager and each animation engine are separately syn-
chronised by a time controller component. This component
also transforms the systems time of the AR-system into the in-
ternal time (simulation time). Within the character subsystem
the simulation time is discretized, currently by 30 frames per
second. The simulation time can be moved forward or back-
ward or with arbitrary speed relative to the systems time.

4. THE EDITING PROCESS

In this section we describe how the editing process is carried
out with the help of the Manager. In general the creation of
the animation can be compared with the creation of complex
animations with non-linear editing tools, like the Trax-Editor
in Maya or the NLE in Kayadaras Filmbox. But there is a dif-

ference to these products to which we will come in a moment.
The general philosophy is that there is a global timeline for

all characters and a timeline for each character. The behaviour
of the characters is ruled by so called subtasks which may start
and can be layered at an arbitrary point on the timeline and
produce the animation of the character in the end. But in com-
parison to the products mentioned above, these subtasks are not
fixed pieces of animations which produce always the same re-
sult. Instead subtasks represent simple behaviour of characters,
like walking along a given path or waving with hands. The
resulting animation of such a subtask may change during the
execution of the subtask. For example suppose that at a certain
time on the timeline the character was given a path which is
lying on the flat ground of the stage and was advised to walk
along the path by the corresponding subtask. If the choreogra-
phy is played, i.e. the time moves on, this results in a character
walking along a fixed path. Now the user spools back in time
and restarts the animation. Then while the character is walking
along his path, the user puts an obstacle (e.g. sofa) on the path.
As the character reaches the obstacle, it has to decide if he just
can walk over the obstacle, or if it has to jump over it, because
it is too high. The corresponding subtask takes this decision
and in the latter case, the choreography is changed by the char-
acter on its own and the whole timing of the animation may be
changed.

A typical editing process would look like the this: Start at
time 0 with a path the character should follow. Then the time is
spooled forward 10 second and the subtask wave is send to the
Manager. Thus the character still follows his path starting to
wave at this time mark. At 15 seconds we pause the animation
again and change the style of the walk movement to ’happy’
by sending the corresponding command to the Manager. The
result is a short animation, where a character starts to follow a
given path, after 10 seconds starts to wave with his hands and
while walking changes the style of the walk movement after 15
seconds.

It is possible that there are conflicts between different sub-
tasks. E.g. the character could be in the middle of a pathfollow-
ing animation and gets the command to sit down. Walking and
sitting can in general not be executed simultaneously, because
both movements need the same parts of the body. Thus there
could be three different methods for the character to deal with
the problem: ignore the sit command, execute the sit command
as soon as it is possible (e.g. if the character has reached the
end of his path) or abort the path following subtask and execute
the sit subtask immediately. Usability tests will show us in the
future, which default behaviour is preferred by the users of the
application.

The commands the Manager receives from the user interface
component are called CECommand and consist of four parts

� The character ID indicates the character for which this
command is determined.

� The sub task ID indicates the sub task.

� The command for this subtask, like start, stop or delete

� A list of parameters which are needed to further describe
the subtask.

With this simple interactive approach to create choreography
scripts by moving forward and backward in time and sending
commands to the character while observing the current state of
the animation complex animations are created fast and easily.

5. CHARACTER REPRESENTATION

5.1 Anatomy of the Character

A character within the choreography editor component is rep-
resented by a Character object. The ChoreographyEditor is
the interface between the Manager and the Characters (cf.
Figure 2). If the Manager receives the command to create a
new character, it sends the new build AnimationEngine to the
ChoreographyEditor which creates the corresponding Char-
acter. The ChoreographyEditor also interprets the CECom-
mands received from the Manager, creates appropriate com-
mands (Directives) for the Characters and sends these com-
mands to the Character.

Within the choreography editor a Character can be seen as
an abstract representation of a character neglecting the actual
appearance (e.g. textures, mesh). The SubTaskManager holds
a varying set of SubTasks (cf. Figure 3). These are the im-
plementation of reflexive behaviour like Brooks’ subsumption
architecture’s level 0 (cf. (Brooks, 1991)) exhibiting a fixed
behavioural pattern in response to given stimuli. The Sub-
TaskManager controls the creation, manipulation and deletion
of SubTasks. The Character also holds a reference to the An-
imationEngine. As mentioned above, the AnimationEngine is
responsible for the low level creation of the movement of the
character. For executing their behaviour, the SubTasks control
the animation of the character by sending commands (AECom-
mands) to the AnimationEngine.

Character

SubTaskManager

Directive

SubTask1 SubTask2 SubTaskN...

Active SubTasks A=

Choreography L=D D D...21 M

D kD l D n

AECommand

AnimationEngine

ChoreographyEditor

Directive

CECommand

DirectiveDirective

Figure 3: Structure of a Character.

Each Character has two modes, play and edit which can be
set by the ChoreographyEditor. In the play mode, the Char-
acter reacts to every change of the current time on the global
timeline, i.e. its active SubTasks send commands to the Ani-
mationEngine to control the animation of the character at this
current frame. In the edit mode the Character is able to receive
new Directives from the ChoreographyEditor and changes the
choreography of the character.

5.2 Scripting Choreographies

The time-dependent behaviour of a Character is ruled by the
Directives which are created by the ChoreographyEditor by
interpreting CECommands. Directives are commands used to
create new subtasks at a current time or to change the state
of an active subtask. A Directive

�
can be represented as a

quadruple
���������
	�����������������������������

where

�
�

is the time on the timeline where the directive is inter-
preted by the SubTaskManager.

�
	

is the addressed SubTask.

�
�

is a specific command for the
	

which may change the
state of the SubTask.

�
� � � ���������!� � �

is a list of parameters for the command�
.

The Directives are kept in a ordered list " � � �#�$���������%�&� �
where

�&'(�)���*'%�	�'%��+'%��� � '� ���������!� '�-, ���
are directives such

that
� '&. � '0/1�

(cf. Figure 3). This list represents the chore-
ography of the character and works like a script. The chore-
ography can be changed by inserting new Directives into the
list, modifying a Directive or deleting a Directive from this list.
Currently it is not necessary to make a plausibility check if one
adds, modifies or deletes a Directive. If a directive wants to
modify a SubTask which is not existing at this specific frame,
then this directive is ignored.

5.3 Playing Choreographies

The choreography of a character can be played by moving the
current time

�%2
on the timeline forward or backward. Accord-

ing to the current time
�%2

on the timeline, the SubTaskManager
holds the set 3 of SubTasks which are active at this specific
time (cf. Figure 3). First every change of the current time

� 2
is

send to every active SubTask. The SubTask eventually update
their state and send (if necessary) commands to the Animatio-
nEngine.

For every increase of the current simulation time
� 2

the Sub-
TaskManager checks if one of these SubTask has reached its
goal and finished its task. This SubTask is taken out of the set
of active SubTasks and deleted. Then the SubTaskManager in-
terprets all those directives

�4'
with

�5'4�6�52
. Depending on

the meaning of the Directive, two actions can follow. First the
Directive could mean that a new SubTask has to be created.
If the new SubTask can be created without colliding with an-
other currently active SubTask, this SubTask is put into the list
of active subtasks 3 . Second if the command

�7'
of the Di-

rective addresses an active SubTask, the Directive is passed to

this SubTask. Then the SubTask checks the command
�7'

and
eventually changes its state according to the command.

If the current simulation time
� 2

decreases which corre-
sponds to a rewind on the timeline, we update the Chacter by
playing the whole choreography " from the beginning to this
new time

� 2
. This has to be done, because the environment

may have been changed such that subtasks get influenced from
events backwards in time. To accelerate this procedure, we
disconnect in this case the simulation of the characters move-
ment from the rendering engine. Currently we do not have very
complicated or long choreographies, thus this approach works
still in real-time. For more complex scenarios with SubTask
needing a lot more computer power, another approach has to
be chosen.

6. REALISATION OF SUBTASKS

6.1 Two Layer Model

The structure of our character animation systems resembles
Brooks’ subsumption architecture. It is build upon two layers,
where the lower layer models the simplest and atomic parts of
character movements. The basic movements of the character
are described by dynamic motion models (Grünvogel, 2003)
which are described below. The upper layer lying above the
motion models are the SubTasks, modelling reactive behaviour
with the help of one or more motion models. We will now de-
scribe these layers and how they interact with each other.

6.2 Dynamic Motion Models

In (Grünvogel, 2003) we describe the dynamic motion models
in detail, but we will here restate the major features.

The AnimationEngine controls the dynamic motion models.
Dynamic motion models are models for movements like walk-
ing, waving with hands or jumping. They can change their
movements according to some stimuli but have no planning
component for complex tasks. Therefor the motion model walk
lets the character walk straight ahead, but to follow a path
the character has to be steered along the path, which is done
within a SubTask. Each motion model can have a set of param-
eters which are motion model specific, e.g. for a walk motion
model there are parameters describing the style of the move-
ment (happy, sad etc.) or the speed, for a waving motion model
the is the choice between left or right arm waving. In contrast
to Grassias approach (Grassia, 2000), the parameters of a dy-
namic motion model can be changed in real-time during the
execution of the motion model.

Dynamic Motion Models are implemented as state ma-
chines. All motion models have three states in common: RE-
SET, START and STOP. In the RESET state the motion model
is inactive, in START and STOP state it is active and produces
animation data. After the motion model has carried out its task,
it automatically switches into STOP mode, where the character
is brought into a neutral pose.

The animations of the motion models are created by combin-
ing short animation clips (so called base motions) with clip op-
erators. Clip operators are used to manipulate (e.g. time warp,
loop) and combine (e.g. blend) clips. For a detailed discussion

on how these clip operators are used within motion models to
create dynamic animation cf. (Grünvogel, 2003).

6.3 SubTasks

The motions of the dynamic motion models are only influenced
by AECommands or by geometric objects in the virtual envi-
ronment. The AECommands are used for changing the indi-
vidual characteristics of the resulting motion. The virtual envi-
ronment where the geometric representation of the character is
acting puts geometrical constraints upon the movement.

SubTasks are used to solve more general goals than motion
models, like following a path or another character. These goals
are characterised by the fact that they can not be fulfilled by
starting only a motion model with a given set of parameters.
Instead the goals of the SubTask can be reached by controlling
motion models while they are executed. Thus depending on the
current situation of the character the SubTasks sends AECom-
mands to the motion model to change its behaviour. The Sub-
Task can react up to a certain degree upon obstacles to the goal.
But at the layer of the SubTasks planning in the sense that the
character uses beliefs about the situation and the consequences
of movements to search for a solution in a more abstract space
is not intended. This could be implemented in a layer upon the
SubTasks.

7. CONCLUSION AND FURTHER WORK

We have introduced a character animation subsystem for the
use in an augmented reality environment. Simple Animations
are created by placing commands on the timeline of a virtual
character. These commands are interpreted by the choreog-
raphy editor and turned into SubTasks. SubTasks are models
for reactive behaviour and create their animation by controlling
dynamic motion models. Dynamic motion models implement
basic motions, where the characteristics of the motions can be
changed in real-time.

At the moment the final design of the user interface within
the augmented reality system and usability tests are still pend-
ing. We hope that these tests will bring us more insight, which
features are still missing in the character animation system.
Another interesting point of research is to put an additional
layer upon the given two layers choreography editor and ani-
mation engine for the implementation of planning and learning
processes.

ACKNOWLEDGEMENT

This work was supported by the German Ministry of Education
and Research (BMBF Grant 01 IR A04 C: mqube - Eine mobile
Multi-User Mixed Reality Umgebung, www.mqube.de).

References

Azuma, Ronald T. 1997. A Survey of Augmented Reality.
Presence: Teleoperators and Virtual Environments, 6(4),
355–385.

Badler, Norman I.; Phillips, Cary B., & Webber, Bonnie Lynn.
1993. Simulating Humans: Computer Graphics and Con-
trol. Oxford University Press.

Balaguer, Jean-Francis, & Gobbetti, Enrico. 1995. Sketching
3D Animations. Computer Graphics Forum, 14(3), 241–
258.

Balaguer, Jean-Francis, & Gobbetti, Enrico. 1996. 3D User In-
terfaces for General-Purpose 3D Animation. IEEE Com-
puter, 29(8), 71–78.

Balcisoy, Selim; Kallmann, Marcelo; Torre, Remy; Fua, Pas-
cal, & Thalmann, Daniel. 2001. Interaction Techniques
with Virtual Humans in Mixed Environments. In: Inter-
national Symposium on Mixed Reality, Yokohama, Japan.

Brooks, Rodney A. 1991. Intelligence Without Representation.
Artificial Intelligence, 47, 139–159.

Epic Games. 2003. Unreal Tournament 2003. Atari.
http://www.unrealtournament2003.com.

Grassia, F. Sebastian. 2000. Believable Automatically Syn-
thesized Motion by Knowledge-Enhanced Motion Trans-
formation. Ph.D. thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh.

Grünvogel, Stefan M. 2003. Dynamic Character Animation.
International Journal of Intelligent Games & Simulation,
2(1), 11–19.

Kalra, Prem; Magnenat-Thalmann, Nadia; Moccozet, Lau-
rent; Sannier, Gael; Aubel, Amaury, & Thalmann, Daniel.
1998. Real-Time Animation of Realistic Virtual Humans.
IEEE Computer Graphics and Applications, 18(5), 42–57.

Perlin, Ken, & Goldberg, Athomas. 1996. Improv: A System
for Scripting Interactive Actors in Virtual Worlds. Com-
puter Graphics, 30, 205–218.

Sannier, Gael; Balcisoy, Selim; Magnenat-Thalmann, Nadia, &
Thalmann, Daniel. 1999. ”VHD: A System for Directing
Real-Time Virtual Actors. The Visual Computer, 15(7/8),
320–329.

Tamura, Hideyuki. 2000. Real-Time Interaction in Mixed Re-
ality Space: Entertaining Real and Virtual Worlds. In:
Proc. Imagina 2000.

Torre, Rémy; Fua, Pascal; Balcisoy, Selim; Ponder, Michal, &
Thalmann, Daniel. 2000. Augmented Reality for Real and
Virtual Humans. Pages 303 – 308 of: CGI 2000. IEEE
Computer Society Press.

ALGORITHMS
FOR

ROUTING
AND

FLIGHT
SIMULATION

DIRECTIONAL EXTENSIONS OF SEEK STEERING BEHAVIOR

Michal Jakob

Gerstner Laboratory, Department of Cybernetics,
FEE, Czech Technical University

Technicka 2, 166 27 Prague 6
and

Illusion Softworks,
Opatovicka 4, 110 00 Prague 1

E-mail: jakob@labe.felk.cvut.cz

KEYWORDS

steering, motion control, autonomous agents, computer games

ABSTRACT

Steering behaviors present an important component of low-
level control of autonomous agents in computer games, ani-
mation and robotics. The article extents existing steering be-
haviors with the directed seek behavior, which steers the agent
to arrive at a given waypoint in a given direction while consid-
ering minimum turn radius of the agent. In contrast to exist-
ing ad-hoc approaches, the presented solution is geometrically
well-founded, robust, computationally efficient and compati-
ble with other steering behaviors. Three-dimensional gener-
alization of the steering algorithm as well as its several ex-
tensions are also presented. Directed seek behavior was im-
plemented and has been tested as a part of the motion control
system in a commercial action-strategy computer game.

1 INTRODUCTION

Practically all computer games involve moving agents,
whether it be game characters, vehicles or other objects. The
fundamental requirement is that the movement is realistic.
Foremost, the agents must obey physical laws holding in the
game world, which is the requirement secured by the game
physic subsystem. Most computer games, however, involve
goal-oriented intelligent agents. The minimum requirement on
such agents to appear realistic is the ability to move towards
locations specified by their higher-level goals while avoid-
ing mobile and static obstacles. The game subsystem imple-
menting such functionality is called the steering subsystem.
Originating in the research on collision avoidance in robotics
[BK89, KB], steering nowadays plays an important role in
computer games, animation, virtual reality as well as in the
control of real mobile robots. Its importance is reflected by the
fact that it is one of the six areas of game artificial intelligence
in which standardization is pursued [NPK03].

The article proceeds as follows. After a brief introduction
to steering, we introduce and describe a new steering behavior
called the directed seek. We explain the rationale behind it and
present its algorithmic implementation. Next, we extended the
behavior also for directed seeking in 3D space. We touch on
the experience with the implementation of directed seek in a
commercial computer game, and finally, we discuss its several
possible extensions.

2 STEERING FOR AUTONOMOUS AGENTS

Steering is reactive, non-deliberative movement of physical
agents based on the local environment surrounding every sin-
gle controlled steered entity. [NPK03] In the three-level agent
motion control framework introduced by Reynolds [Rey99],
steering comprises the middle level of the hierarchy. The lower
level called locomotion is responsible for actual articulation of
the motion while the higher level called action selection deals
with the deliberative part of motion control, i.e., path-planning
and path-finding.

The core of the steering control system are steering behav-
iors. These are reactive, stateless procedures that take local
information about the environment surrounding an agent as in-
put, and produce a steering goal as output. The steering goal is
often expressed as the steering force which should be applied
to an agent to obtain the desired movement. An alternative pos-
sibility, followed in this article, is to output directly the desired
direction towards which the agent should turn as the steering
goal [AOM03].

Basic steering behaviors include, among others, seek, ar-
rival, pursuit, wander, path and wall following [Rey99]. The
basic behaviors can be combined to produce more complex be-
haviors such as queuing and flocking. Combined steering be-
haviors are also used for the control of groups of characters
moving in herds and formations [VBOM00]. In practice, the
most frequently used behavior is the seek behavior, which at-
tempts to steer the agent so that it approaches a specified target
location (waypoint). In addition to being used alone, the seek
behavior is a crucial part of many other behaviors, eg. pursuit
and path following.

2.1 Directed Seeking

It is often useful to specify not only the target location but also
the target agent heading for the seek maneuver. Situations in
which it is useful include arriving at an attack location so that
a target is in front of the agent (for agents with limited angular
attack range), pursuing a target and trying to match its pre-
dicted heading (eg. for aerial dogfight) or directed formation
movement (when used for multiple agents). Because major-
ity of real-world agents cannot turn in place, it is necessary to
incorporate minimum turn radius of the agent in the steering
procedure to obtain feasible trajectories.

The above given situations could be – at least partially –
dealt with using the standard seek behavior (eg. by using sev-
eral subsequent waypoints or by continually adjusting the way-
point location). Such ad-hoc solutions, however, are generally
more complex, hard-to-debug and cannot usually take the min-
imum turn radius into account.

In contrast, the directed seek behavior introduced in this
article is explicitly designed to account for waypoint direction
and agent minimum turn radius. As such it produces smooth
and simple paths, while staying computationally efficient and
easy-to-combine with other steering behaviors.

3 DIRECTED SEEK BEHAVIOR

Wd

A
Ad

I II

III

Path A

Path BI

II

W

minr

minr
III

Sd

Figure 1: Two Possible 3-Segment Paths (steering vector ds

for path A is drawn)

3.1 Problem Definition

The input of directed seek procedure consists of (Figure 1):

1. Current agent location A and current agent direction dA

(by direction/heading, we understand a unit-length vec-
tor).

2. Waypoint location W and waypoint direction dW

3. Agent minimum turn radius rmin.

The output of the procedure is the direction ds the agent should
turn to to arrive at W in direction dW .

We first consider steering in 2D space, i.e., on a plane.
The generalization to 3D space is given in Section 4. For the
moment, we assume that the turn radius does not depend on
the agent speed. Furthermore, we assume that the agent can
move only forwards, i.e., it cannot perform 3-point turns. Both

the extension to speed-dependent turn radius and to backward
moving agents will be discussed in Section 6.

3.2 Geometric Formulation

A path towards a waypoint followed by the directed steer ma-
neuver consists of three segments/stages (Figure 1). No steer-
ing is applied in segment II. In segments I and III, the agent
makes tightest possible turn with its minimum radius rmin.
Depending on the position and orientation of A and W , there
can be up to two 3-segment paths. In majority of cases, one of
them is the overall shortest path from A to W , although a 5-
segment paths can be shorter if A and W are closer than 2rmin.
Nevertheless, we do not presently consider 5-segment paths in
the directed steer algorithm.

Key to determining the steering direction is to determine
the type of path (A or B), which the steering maneuver follows,
and the current segment of the path. The former is discussed in
Section 3.4, the latter can be decided based on the geometrical
formulation of the problem (Figure 2).

Wd

Ad A W

Wk

−
Ak

+
Ak

−
AS

+
AS

WS

w

directs

Wk ′crosss

crosst

directt

Figure 2: Three-Segment Paths with Osculating Circles

Here, kA and kW are circles of rmin radius. Directions dA

and dW are tangent to circles k+
A , k−

A and kW at points A and
W , respectively. Circle kW lies at the same side of line w as
A. All circles are oriented so that their orientations agree with
the directions of dA and dW , respectively (a closed curve c is
positively oriented if its interior is on the right when travelling
along it). We denote orientation of circle k as O(k).

Since all the circles k+
A , k−

A and kW are fully defined by the
inputs of the directed seek procedure, the problem of determin-
ing the current path segment is transformed into determining
common tangents of pair of appropriate circles.

3.3 Common Tangent Problem

Depending on their relative position, two circles can have any-
where between zero and four common tangents (except for a
very special case of two identical circles, i.e., two circles with
the same radius and center points; identical circles have infinite
number of common tangents). These tangents can be divided
into direct tangents, which have both circles on the same side
(lines t++

direct and t−−

direct), and cross tangents, which have the
circles on opposite sides (lines t+−

cross and t−+
cross). Circles of the

same radius, which we deal with in our problem, always have

two direct tangents and anywhere between zero and two cross
tangents. Moreover, their direct tangents are parallel with the
line connecting their centers.

Ak

Wk

++
directt

−−
directt

−+
crosst

+−
crosst

Figure 3: Common Tangents (admissible tangent is drawn in
bold)

For 3-segment paths, however, we are interested only in
the tangent whose direction is in accord with the orientation of
both circles, and which goes from kA to kW . It can be easily
seen that there is at most one such admissible tangent for two
oriented non-identical circles. If both circles have the same
orientation, then it is a direct one, if they have opposite orienta-
tions, it is a cross one. So while two identically oriented circles
always have one common admissible tangent, two oppositely
oriented circles have a common admissible tangent only if they
do not overlap.

Since k+
A and k−

A have opposite orientations, one of them
always has the same orientation as kW and thus has an admissi-
ble common tangent with it. Common admissible tangent then
corresponds to segment II of the agent path. Therefore, there
always exists at least one 3-segment path from A to W . Based
on the type of tangent, we speak of a direct path and a cross
path to the waypoint.

3.4 Choosing the Better Path

In case there are two 3-segment paths, we have to decide which
one the agent should follow. We base this decision on the total
angle an agent turns along its path to the waypoint. Path total
angle is defined as

Φ(dA,dW ,dt) =

ϕO(kA)(dA,dt) + ϕO(kW)(dt,dW)
(1)

where ϕO(d1,d2) ∈ [0, 2π) is the directed angle between d1

and d2, measured from d1 to d2 in direction O. Direction dt

is the direction of the straight segment of the path, i.e., either
tdirect or tcross (see Figure 2). Path total angle is computed for
both possible paths, and the one with the smaller value is fol-
lowed.

−
Ak

Wk´

+−
crosst

),(Wt dd+ϕ

Ad
td td

Wd

td

),(tA dd−ϕ

Figure 4: Path Angles

3.5 Achieving Reactivity

For the sake of simplicity and high reactivity, the steering be-
haviors are stateless, i.e. the steering procedures do not hold
any information about the state of a steering maneuver between
successive procedure calls. The directed seek procedure thus
cannot record in which stage it currently is – in each call it has
to again determine the current stage solely from its inputs (as
described in Section 3.1). The stage can be determined using
the following two vectors (see Figure 2):

1. vector sdirect = SW − S
O(kW)
A , i.e. the vector connecting

the centers of circles pertaining to the direct path (which
always exists)

2. vector dA

The following conditions hold for individual path stages:

Stage I
||sdirect|| > 0 ∧ sdirect ∦ dA (2)

Stage II
||sdirect|| > 0 ∧ sdirect ‖ dA (3)

Stage III
||sdirect|| = 0 (4)

Conditions (2) and (4) follows directly from the definition of
path segments. Condition (3) is obviously met when the direct
path is followed. It is, however, met also for the cross path,
because in case the cross common tangent exists, the direct
common tangent also exists, and both tangents coincide.

Since the three conditions are mutually exclusive, they al-
low to unambiguously determine the path segment an agent
currently is in. For practical use, it is useful to add some toler-
ance to equality and parallelism tests.

3.6 Directed Seek Algorithm

By combining the evaluation of the path total angle and the test
described in the previous section, the directed seek procedure
can determine all information necessary to compute the steer-
ing direction. The algorithm implementing this reasoning is
depicted in Figure 5.

4 GENERALIZATION TO 3D SPACE

The essentially two-dimensional directed seek algorithm can
be extended to 3D space by considering a steering plane Ω
with a 2D coordinate system F . The 3D situation is then pro-
jected to Ω, the 2D directed seek algorithm is applied, and the
resulting 2D steering vector transformed back into 3D space.

The steering plane Ω is defined by agent location A, way-
point location W and its direction dW . Coordinate system F
is defined by origin W and two orthonormal basis vectors

fx = dW (5)

Let SW be the center of the waypoint tangent circle kW so that kW lies on the same side of w as A.
Let OW and −OW be the orientation of kW and its opposite.
Let S

OW

A
and S

−OW

A
be centers of agent tangent circles k

OW

A
and S

−OW

A
(as depicted in Figure 2).

Let s+
A

and s
−

A
be the right and left side vector of agent A (perpendicular to agent heading dA).

sdirect := SW − S
OW

A
; scross := SW − S

−OW

A

if ||sdirect|| = 0:
[stage III]
Do the tightest OW -oriented turn towards dW : ds = mindS

(s
OW

A
,dW)

(minw(u,v) is the vector of u and v which forms a lower angle with w; for implementation reasons, it is used to
limit the steering direction to form at most the right angle with agent current heading.)

else
if sdirect ‖ dA:

[stage II]
No steering needed, proceed in the current direction

else
[stage I]
if ||scross|| ≤ 2rmin:

[only the direct path exists]
Do the tightest OW -oriented turn towards tdirect: ds = mindS

(s
OW

A
, tdirect)

else
[both direct and cross paths exist]
Determine path total angle Φ(dA,dW ,dt) for both variants
if the cross path has lower Φ

Do the tightest −OW -oriented turn towards tcross: ds = mindS
(s
−OW

A
, tcross)

else
Do the tightest OW -oriented turn towards tdirect: ds = mindS

(s
OW

A
, tdirect)

Figure 5: Two-Dimensional Directed Steer Algorithm

and
fy = dWA − 〈dWA, fx〉fx (6)

where 〈., .〉 is the dot product and

dWA =
A − W

||A − W ||
(7)

is a unit vector directed from the waypoint to the current agent
location. Vector fy is thus a unit vector parallel with Ω, or-
thonormal to fx and directed to the half space containing A.
We can now express A, dA, W and dW in in F , apply the 2D
directed seek procedure and transform the returned 2D steering
direction d

2
S = (d2

Sx
, d2

Sy
) back to 3D space as

dS = d2
Sxfx + d2

Syfy (8)

An important remark is in order. While A, W and dW can
be exactly expressed in F , dA cannot as it generally has a
component d

⊥

A perpendicular to Ω. However, because the re-
sulting steering direction dS is by definition parallel with Ω,
the perpendicular component d⊥

A gradually vanishes during the
maneuver. Agent heading becomes parallel with the steering
plane Ω, and the agent finishes the seek maneuver along a pla-
nar path exactly as in the 2D case. A problem arises if d⊥

A is too
large and the waypoint too close, in which case it might hap-
pen that d

⊥

A does not vanishes entirely, and the agent reaches
the waypoint not perfectly aligned with dW . Fortunately, such
problem is rare in real-world scenarios and can be fully elimi-
nated if a condition on some minimum distance between A and
W is added as a requirement of the directed steer algorithm.

The generalization given above does not present a truly 3D
algorithm because, in each moment, the steering takes place on

a plane. This does not mean, however, that the resulting path is
planar. The steering plane changes with the movement of the
agent, resulting in a non-planar path and allowing to steer the
agent into proper target location and direction even if dA does
not initially belong to the steering plane Ω (with the limitation
discussed in the previous paragraph).

5 IMPLEMENTATION

Directed seek behavior was implemented and has been tested
as a part of the motion control system in a commercial game.
Experiments performed so far has confirmed its smooth inter-
operability with other steering behaviors. Moreover, the algo-
rithm exhibited good robustness. Agents were able to reach a
waypoint in the specified direction even in situations, in which
the directed seek was interfered with collision avoidance ma-
neuvers.

6 POSSIBLE MODIFICATIONS AND EX-
TENSIONS

Speed-dependent turn radius It is often useful to specify
not only the desired heading at a waypoint but also the desired
speed. Acceleration and deceleration can be easily integrated
in the directed seek behavior in case the agent minimum turn
radius is independent of the agent speed.

In reality, however, this is rarely the case. The current agent
speed vA and the desired waypoint speed vW can differ, and so
can differ the minimum turning radii rmin(vA) and rmin(vW).

Experiments showed that thanks to its reactivity, the direct
steer algorithm works quite well even in this situation. Nev-
ertheless, we currently test several modifications which make
the original algorithm more robust in case of speed-dependent
rmin. The first and the easiest modification always take the
maximum of rmin(vA) and rmin(vW) for the computation of
the steering direction. The other modification explicitly con-
siders different radii of kA and kW in the directed seek algo-
rithm.

Opposite half space waypoint tangent circles A straight-
forward modification is to consider both waypoint tangent cir-
cles kW and k′

W (Figure 2) for the determination of the best
path. In some situations, using the circle k′

W in the opposite
half space might result in a path with lower path total angle.

Backward motion The spectrum of possible directed seek
paths can be extended by allowing agents to move backwards,
and thus to perform 3-point turns. Although the directed steer
could be in principle extended to account for such situations,
a question arises whether the reactive design would still be ef-
ficient and useful, or whether the control of such maneuvers
should be rather left to the higher-level action-selection sub-
system.

Truly 3D directed steer algorithm In contrast to a pseudo
3D algorithm given in Section 4, a truly 3D steering algorithm
considers a full 3D situation at each moment. Three-segment
path in this case is not planar and can be decomposed into
two planar parts. Curved segment I then lies in the first plane,
curved segment III in the other one, and straight segment II in
the intersection of both planes. Since repetitive determination
of the two steering planes is computationally expensive and
the pseudo 3D algorithm turned out sufficient for most cases,
we have not so far decided to implement the fully 3D algo-
rithm. Nevertheless, it remains an interesting option for future
research.

7 CONCLUSIONS

In this paper, we introduced the directed seek behavior, which
attempts to steer an agent so that it reaches a given target loca-
tion with a given heading. In contrast to existing approaches to
directed seeking, the presented solution is geometrically well-
founded, easy-to-combine with other steering behaviors, and
takes agent minimum turn radius into account. The result is
a robust and computationally efficient behavior which can be
used for directed steering in both 2D and 3D space. Several
extensions of the behavior and future research directions were

also outlined. The directed seek behavior has been success-
fully implemented and is gradually extended as a part of the
steering subsystem in a commercial computer game.

Acknowledgements

The research presented in this paper was supported by Czech
Technical University grant No. CTU0306313.

BIOGRAPHY

MICHAL JAKOB obtained a master degree in computer sci-
ence in 2001 at Czech Technical University Prague. Since
then, he has been pursuing a PhD in artificial intelligence there.
His main research interests include machine learning and rea-
soning in multi-agent systems. At the end of 2002, he joined
Illusion Softworks game studio as an artificial intelligence de-
signer/programmer. He currently works there on the develop-
ment of an A-class action-strategy title.

References

[AOM03] Heni B. Amor, Oliver Obst, and Jan Murray. Fast,
neat and under control: Inverse steering behav-
iors for physical autonomous agents. Technical
Report 12–2003, Universität Koblenz-Landau,
2003.

[BK89] Johann Borenstein and Yoram Koren. Real-time
obstacle avoidance for fast mobile robots. IEEE
Transactions on Systems, Man, and Cybernetics,
19(5):1179–1187, 1989.

[KB] Yoram Koren and Johann Borenstein. Potential
field methods and their inherent limitations for
mobile robot navigation. In Proceedings of the
IEEE International Conference on Robotics and
Automation, pages 1398–1404.

[NPK03] Alexander Nareyek, Nick Porcino, and Mark
Kolenski. AI interface standards: The road ahead.
A roundtable discussion. In Game Developers
Conference, 2003.

[Rey99] Craig Reynolds. Steering behaviors for au-
tonomous characters. In Game Developers Con-
ference, 1999.

[VBOM00] Jim Van Verth, Victor Brueggemann, Jon Owen,
and Peter McMurry. Formation-based pathfind-
ing with real-world vehicles. In Game Developers
Conference, 2000.

ROBOT RESCUE
A RESCUE SERVICE GAME BASED ON DYNAMIC ROUTING

Leon J.M. Rothkrantz, Bogdan Tatomir, Luca Porzio

Data and Knowledge Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft,

The Netherlands
E-mail: L.J.M.Rothkrantz@ewi.tudelft.nl, B.Tatomir@ewi.tudelft.nl

KEYWORDS
Dynamic routing, Ant Based Control, wireless ad hoc
networks

ABSTRACT

In this paper we describe a game between a human player
and a robot. The robot tries to escape from a labyrinth using
a dynamic routing system. The robots are connected by a
wireless network and are able to communicate about their
position and blocked routes. The player can prevent the
escape by blocking special routes. At every moment the
player has a limited and at random varying number of
blocks available. The game is implemented in the LEGO
software environment. Our shortest path algorithm, named
Ant Based Control (ABC-algorithm) is based on ideas from
artificial life. The first prototype will be presented and the
results of testing.

INTRODUCTION

At Delft University of Technology there is a project
running on dynamic routing. One of the goals of the project
is to evacuate people out of a building or area in case of a
crisis. Common rescue routes can be blocked by
explosions, fire or terror attacks in a dynamically way.
Usually a rescue is based on a crisis plan and a static
routing system. Visual icons show people how to reach the
exit. In case of a dynamic changing environment the static
routing system is not valid anymore, so a dynamic routing
system is necessary.
Some people in a crisis area play a special role, such as
policemen firemen or first aid helpers. The idea is to
provide those people with handheld computers or PDA’s.
On such a PDA a Personal Intelligent Rescue Service
system (PIRA) is running. The information about the
dynamic changing environment is provided by the PIRA’s
itself. When a PDA meets a blocked route it can send a
message containing the time and location of the block. The
Routing System tracks moving PDA’s. At regular times the
PDA send a message containing the identity, time and
position. So these PDA’s provide information about which
routes are blocked and which routes are still open. Tracking
the individual PDA’s provides also information about the
travel time along the links.

One we know the travel times along the links in a graph
from one node to the other we can compute the shortest
path. Many algorithms are available such as the well known
Dijkstra algorithm (Cormen 2000) or A* algorithm. In this
paper we introduce a new shortest path algorithm based on
ideas from insects life.
On request of an individual PIRA, the shortest path to the
closest exit is computed and the PIRA user is routed along
the shortest route. In case of dynamic changing the
environment the PIRA computes the shortest path at regular
times to provide the user by an up to date rescue route.
As a spin off of the project the rescue game was created.
The RoboCupRescue project is an international cooperation
to promote research and development in the socially
significant domain of rescuing people. The game is inspired
by the earthquake disaster in the city Kobe in Japan. In the
game many disasters take place in the city of Kobe, ranging
from earthquakes, fires, collapsing houses etc. The players
have to organize rescue teams by robots. The winner is the
team with the minimal amount of victims.
Our project is inspired by and similar to the
RoboCupRescue project. In our project the player plays the
role of crisis generator. The player blocks roads by
accidents, explosions etc. His goal is to prevent the rescue
of the robots from the crisis area. The challenge of the
designers is to make the robot so smart that he is able to
escape from the dangerous area under changing conditions.
At this moment we have a digital version of the game
(Kroon and Rothkrantz 2000), which can even be
implemented on a PDA and a more real life version using
LEGO robots.
Our rescue game can be considered as a simulation of a real
life situation. In the next section we will describe a
dynamic routing algorithm based on the natural behaviour
of ants. Next we will describe our LEGO simulation
environment.

LITERATURE

A large variety of path finding algorithms can be found in
literature and most of them have their own advantages and
disadvantages (Chen 1999; Evans and Minieka 1991; Ran
and Boyce 1996). Of the most important algorithm is the
Dijkstra’s algorithm. The original algorithm was presented
in 1959 and many successors appeared. Dijkstra’s

mailto:L.J.M.Rothkrantz@ewi.tudelft.nl
mailto:B.Tatomir@ewi.tudelft.nl

algorithm aims at optimise one static parameter, which is
the distance in our case. The extended Dijkstra algorithm is
able to use dynamic information, but this implies that we
need a way to collect dynamic information about the maze
(Ford and Fulkerson 1962; Eggenkamp and Rothkrantz
2001). In the best first algorithm a heuristic function is used
which is able to estimate the distance between the current
position and the goal.
The problem of all Pathfinding algorithms (Dijkstra
included) is the enormous amount of resources (in memory
needed and time complexity) they require. The A*
algorithm works like the Dijkstra’s algorithm only it values
the node costs in a different way. Each node’s cost is the
sum of the actual cost to that node from the start plus the
heuristic estimate of the remaining cost from the node to
the goal. In this way, it combines the tracking of the
previous length from Dijkstra’s algorithm with the heuristic
estimate of the remaining path. The A* algorithm is
guaranteed to find the shortest path as long as the heuristic
estimate is admissible.

EXTENDED DIJKSTRA ALGORITHM

In Fig 1 we display the basic idea. In the X, Y-plane we
show the basic topology or our labyrinth represented as a
graph. Along the Z-axis we plot the time. At regular times
(i.e. every second) we consider a horizontal layer with the
graph of our network but with different weights of the
edges and new or deleted links. So at regular times we have
an adapted version of our graph and we compute the
shortest path between possible nodes using Dijkstra. In this
way the shortest route between two different nodes can
change in the course of the time because of the changing
travel times or changes in the topology of the network. At
some time a

Figure 1: 3-dimensional graph

robot starts travelling from one node to another. When he
has been arrived at the next node, he is switched to a
different time layer with adapted routing tables. This

approach places one constraint: the travel time has to be
discretized to intervals. When using a very high sample rate
an enormous graph is required, while a lower sample rate
results in loss of information.
There are improved versions of Dijkstra's algorithm
available adapted for dynamically changing networks, but
we developed a new approach for dynamic routing which
will be presented in the next section.

ANT BASED CONTROL ALGORITHM

At the base of this algorithm is the idea of emergent
behaviour of natural ants (Di Caro and Dorigo 1998;
Rothkrantz et al. 2000; Schoonderwoerd et al. 1997). We
will apply it in a traffic network in a labyrinth. This
network is represented by a directed graph. Each node in
the graph corresponds to an intersection. The links between
them are the paths/corridors in the labyrinth. Mobile agents,
whose behaviour is modelled on the trail-laying abilities of
natural ants, replace the ants. Each node in the network has
a probability table for every possible final destination. The
tables have entries for each neighbouring node that can be
reached via one connecting link. The probabilities influence
the agent’s selection of the next node in their journey to the
destination node. The probability tables only contain local
information and no global information on the best routes.
Thus, the entire route from a source node to a destination
node is not determined beforehand.
This algorithm makes use of forward and backward agents.
The forward agents collect the data and the backward
agents update the corresponding probability tables in the
associated direction. The algorithm consists of the
following steps:
• At regular time intervals from every network node s, a
forward agent is launched with a random destination d:
Fsd. This agent has a memory that is updated with new
information at every node k that it visits. The identifier k
of the visited node and the time it took the agent to get
from the previous node to this node (according to the
timetable) is added to the memory. This results in a list of
(k, tk)-pairs in the memory of the agent. Note that the
agent can move faster than the time in the timetable.
• Each travelling agent selects the link to the next node
using the probabilities in the probability table. The
probabilities for the nodes that have already been visited
by this agent are filtered out for this agent. Then a copy of
the remaining probabilities is made for this agent and
these probabilities are normalized to 1. Only this agent
uses this temporary probability distribution to choose a
next node, so the probability table is not updated yet.
• If an agent has no other option than going back to a
previously visited node, the arising cycle is deleted from
the memory of the agent.
• When the destination node d is reached, the agent Fsd
generates a backward Bds. The forward agent transfers all
its memory to the backward agent and then destroys itself.
• The backward agent travels from destination node d to
the source node s along the same path as the forward

agent, but in the opposite direction. It uses its memory
instead of the probability tables to find its way.
• The backward agent with previous node f updates the
probability table in the current node k. The probability pdf
associated with node f and destination node d is
incremented. The other probabilities, associated with the
same destination node d but another neighbouring node
are decremented. The used formulas are given below.

The probability of the entry corresponding to the node f
from which the backward agent has just arrived is increased
using the following formula:

P
PP

P fold
fnew ∆+

∆+
=

1
,

, (1)

Here, Pnew,i is the new probability, Pold,i the old probability
and ∆P the probability increase. ∆P should be inversely
proportional to the age of the forward agent. The formula
we use is:

b
t
aP +=∆ (2)

Where a and b are constants and t is the trip-time of the
forward agent from this node to the destination node. This
trip-time is the sum of the trip-times from this node to the
destination node of the forward agent. We do not take into
account that the conditions of the traffic network can
change from the moment that the node is visited by the
forward agent and the updating of the backward agent.
The other entries in the probability table with the same
destination but other neighbouring nodes are decreased
using the formula:

fi
P

P
P iold

inew ≠∀
∆+

= ,
1

,
, (3)

These formulas ensure that the sum of the probabilities per
destination remains 1. Probabilities can only decrease if
another probability increases. Probabilities can approach
zero if other probabilities are increased much more often.
This is not very desirable, because in time it may appear
that the choice associated with that probability is the best at
that time, but the agents will not detect it because they
hardly ever take that route. This problem can be solved
after analogy with the natural ants; they do not always use
the pheromone trail as their guide, but sometimes just
explore new routes. Therefore we introduce an exploration
probability as a minimum value for each probability. An
example could be 0.05 divided by the number of next
nodes. After setting this minimum, the probabilities per
destination are normalized to one again. This ensures that
none of the entries in the probability table will approach
zero.
For a given value of ∆P, the absolute and relative increase
of Pnew is much larger for small values of Pold than for large
values of Pold. This results in a weighted change of
probabilities. The quality of the routes found by the agents
improves with time. At first the agents will find many
cycles, but the number of cycles decreases as the
probability tables are filled with information that is more

accurate. Appearing congestion causes further adjustments.
Finally the vehicles will be routed according to the highest
probabilities in the tables. They do not have to explore
other routes. They just want the best route.

LEGO SIMULATION ENVIRONMENT

The goal of our research project was to develop and test our
rescue game under real conditions. To build a robot and
simulation environment we used LEGO bricks (Robotics
Invention Kit). The brain of the robot is a LEGO
microcomputer called RCX brick. It can control up to 3
engines and can receive the input of three different sensors.
It can be programmed so to react to external stimuli. We
used two light sensors, which are able to sense the colour
(in greyscale) of the object they are aiming to. Using these
sensors the robot is able to follow a track (a black line). We
used touch sensors as bump sensors. For the movement of
the robot two motor bricks have been used. These motors
cover the role of actuators in the robot. It is provided with
gears so it can change velocity (from 0 to 7) and switch
direction.
The RCX communicates with the PC via an Infrared (IR)
Transmitter. This transmitter is attached to the serial port of
the computer. Lego provides an interface between IR
sensor and programming language by mean of an ActiveX
control that is called Spirit. The Spirit ActiveX control is
able to compile code, which will be uploaded onto the RCX
for a completely autonomous execution or send direct
commands to it through the IR sensor.

Figure 2: The Lego robot used in our lab simulation

Environment

To build an environment we created a labyrinth, a white
sheet with black lines. The minimum requirements for a
moving robot are: knowing its position, capabilities of
understanding bumping situation and communication with
the server and executing commands. To make sure the
robot sticks to its path we used two light sensors. One of
these sensors is used to know where the robot is on a track;
the other sensor is used to decide if the robot has arrived on

a crossing. To resemble distance sensors we used a touch
sensor. This sensor switches on when the robot touches
something: a zero-distance sensor. If the robot bumps into
something a blocked road or another robot then the robot
knows that road is obstructed and has to find another path.
The limited capabilities of the RCX led us towards a
centralized approach. The routing system is running on a
computer that covers the server role. During the research,
we uploaded onto the RCX only the code needed for
navigation and state generation code. The program
uploaded onto the RCX is able to handle the information
coming from sensors and translate them in knowledge
about the current state of the robot. In this way the robot is
able to accomplish task like following a line drawn on the
floor, deciding if it has reached a cross and turn on a cross
according to the server information. Moreover the robot is
able to sense an obstacle on its way, through the bumper
sensor and sends this message to the server. In the same
way it sends at regular time its position to he server.

EXPERIMENT

The goal of our robot is to rescue from the labyrinth. The
player tries to block the roads as indicated in Fig 3. A
limited number of blocks are available and the player can
change the position of the blocks constantly. In the digital
version of the game, blocks have a limited lifetime. In a
first experiment we want to test the adaptability of the
Routing system when some roads are disabled. When the
Routing system is in an optimal state and the state of the
traffic network changes, the Routing system has to adapt to
the new situation. The agents do this: they constantly move
through a virtual traffic environment and change the
probability tables. By judging whether they have found

good routes, they increase the probabilities for that route
more or less. We would like to measure the time it takes for
the Routing system to adapt to the new situation.

Figure 3: Image acquired from the camera

The traffic network is a grid with 4 x 4 intersections (Fig
4). All the vehicles in the simulation will drive from the
road between intersections 1 and 2 to the road between
intersections 15 and 16 or vice versa from 15/16 to 1/2.
This is accomplished by setting the source and destination
rates of all other roads to zero. Because all roads have the
same length and maximum speed there are four possible
routes the traffic could take to accomplish the shortest
travel time. Indicated by the numbers of the passed
intersections, these routes are:

2 – 3 – 7 – 11 – 15; 2 – 6 – 7 – 11 – 15;

Figure 4: Simulation environment

 2 – 6 – 10 – 11 – 15; 2 – 6 – 10 – 14 – 15;
The vehicles driving from the road between intersection 15
and 16 to the road between intersections 1 and 2 should
choose the reverse order of one of these routes. When
computing the shortest path with the built-in Dijkstra’s
algorithm, the first one is chosen as the shortest route (in
time). This does not mean that the other routes are longer,
but just one has to be chosen and this happens to be the
first. All vehicles that do not use the Routing system will
use this route. The vehicles that do use the Routing system
will initially also use this route, because the initial state of
the Routing system is copied from these static routes. So in
the beginning all vehicles will be driving via intersections
2, 3, 7, 11 and 15 (or in reverse order). Now we will
disable the roads between intersections 7 and 11 (one road
in each direction) as if there was a roadblock because of an
accident or roadworks. The vehicles that do not use the
Routing system will choose a random alternative when
arriving at the blocked road. In most cases this means that
the vehicles will take a longer path than necessary. The
vehicles that do request the Routing system for a route, will
probably make that same mistake at first. But the Routing
system can adjust this route dynamically.
We display the different traveling times between dynamic
routing and static routing systems in the following graphs.
The vehicles, which used the static one, needed in average
about 146 s to reach the destination (Fig. 5). For the ones,
which used the dynamic system, the traveling time was
around 123 s (Fig 6). That means 15% improvement.

Number of timesteps
2,0001,5001,0005000

Av
er

ag
e

 s
ta

nd
ar

d
ro

ut
e

tim
e

140

120

100

80

60

40

20

0

Figure 5: Average standard route time

Number of timesteps
2,0001,5001,0005000

Av
er

ag
e

 s
m

ar
t r

ou
te

 ti
m

e

120

100

80

60

40

20

0

Figure 6: Average smart route time

CONCLUSION AND FUTURE WORK

We have created two prototypes of our robot rescue

game. The first prototype is a digital version of the game

and is based on a simulation of labyrinth with moving
agents as robots. The second prototype the game uses real
Lego-robots and the simulation environment of Lego. In
the real or simulated environment of the labyrinth the
moving robots send information about their position. This
information is used to make assessments about the
travelling time along the links. The labyrinth world is
changing during time. Players can block or de-block
different routes. The speed of different robots is changing
in time too.
The kernel of the game is the dynamic routing system. We
adapted the Ant Based Control system to our game. This
ABC algorithm shows an enormous reduction in travelling
time of the robots if we compare it with a static routing
system. In the current system the routing system is
implemented on a central server. Now all the
communication of the robots is routed via the central
server. In the future the system will set up an ad hoc
wireless network between the robots connected via a virtual
communication layer. Then the routing system will also run
on this wireless network. The situation will be more
complex because of the dynamic character of the
communication network too. Robots can join the network
or leave the network. But we have to guarantee that robots
are optimal routed based on the information provided by
the robots itself in the (sub-) network. The data and the
routing system have to be distributed along the processing
devices of the robots itself.

REFERENCES

Chen, H.K. 1999. “Dynamic travel choice models: a variational

inequality approach”. Springer, Heidelberg.
Cormen, T.H. 2000. “Introduction to Algorithms”. ISBN: 0-262-

53091-0.
Di Caro, G. and M. Dorigo. 1998. “AntNet: distributed

stigmergetic control for communication networks”. Journal of
Artificial Intelligence Research (JAIR), Volume 9, pages 317-
365.

Eggenkamp, G. and L.J.M. Rothkrantz. 2001. “Inteligent dynamic
route planning”. BNAIC, Amsterdam.

Evans, J.R. and E. Minieka. 1991. “Optimization algorithms for
networks and graphs”. Marcel Dekker Inc., New York, 2nd
edition.

Ford, L.R. and D.R. Fulkerson. 1962. “Flows in Networks”.
Princeton University Press, Princeton, New Yersey.

Kroon, R. and L.J.M. Rothkrantz. 2003. “Dynamic vehicle routing
using an ABC-algorithm”, Proceedings of the Conference
“Transportation and Telecommunication in the 3rd
Millenium”, Prague, Czech Technical University of Prague.

Ran, B. and Boyce, D.E. 1996. “Modeling dynamic transportation
networks: an intelligent transportation system oriented
approach”. Springer-Verlag, Berlin, 2nd edition.

Rothkrantz, L.J.M.; J.C. Wojdel; A. Wojdel; and H. Knibbe.
2000. “Ant based routing algorithms”. Neural Network World,
Volume 10, pages 455-462.

Schoonderwoerd, R.; O. Holland; J. Bruten; and L.J.M.
Rothkrantz. 1997. “Load balancing in telecommunication
networks”. Adaptive Behaviour, 5, 2.

Van Waveren, V. and L.J.M. Rothkrantz. 2001. “Artificial player
for Quake III Arena”, Game-on 2001, London, SCS Europe
Bvba

FAST MARCHING AND FAST DRIVING: COMBINING OFF-LINE SEARCH
AND REACTIVE A.I.

Daniel Livingstone, Robert McDowell,

School of Computing, Real Time Worlds,
University of Paisley, 1 Courthouse Square,

Paisley, Dundee,
PA1 2BE DD1 1NH

Email: daniel.livingstone@paisley.ac.uk Email: bert@realtimeworlds.com

KEYWORDS
AI, Fast-March Method, A-star, Path-Planning

ABSTRACT

Fast Marching Methods, FMM, have a wide range of
applications, including path planning and navigation, but
rarely feature in surveys of path planning techniques. For
some applications, however, FMM are more suitable than
other popular techniques, such as A*. This paper provides a
brief outline of how FMM may be applied to path planning
problems and notes the strengths and weaknesses of the
method. Finally, an example application of the FMM is
provided, derived from work that was carried out on a
published game.

INTRODUCTION

Fast Marching Methods, FMM, (Sethian, 1998; Sethian,
1999) are highly efficient numerical techniques for tracking
the evolution of interfaces (such as wavefronts) with a wide
range of applications. Aside from uses in fluid mechanics,
FMM have been applied to problems in graphics, vision
and imaging, as well as other topics that more typically
work with evolving fronts (seismology, combustion)
(Sethian, WWW).

Although the most common applications of the FMM
revolve around the extraction of shape or other information
from three-dimensional data sets, FMM can also be applied
to problems of search and Path planning (Kimmel and
Sethian, 2001). Like any search-method, the FMM has
some particular strengths and weaknesses, and these are
discussed later.

We also provide an outline of an implementation of the
FMM in a recent video game, illustrating how the
combination of a simple reactive vehicle controller AI and a
global search can generate interesting and surprising, yet
life-like, behaviours.

But first, we provide some more detail on the workings of
the FMM, illustrated with examples of how it performs in
some example two-dimensional path planning problems.

In this paper we restrict our discussion to the use of the
FMM for path planning in two dimensions, although the

method can easily be used for search problems in three
dimensions. We assume the problem domain to be a two-
dimensional grid of nodes, containing a given goal node. To
apply these techniques to a continuous game world, a grid
may be superimposed over the continuous problem domain.

PATH PLANNING WITH THE FMM

The FMM works in the manner of an expanding wavefront,
starting at the goal and working outwards. Initially, the
wavefront is in a given position (which may be a single
point). Over time, the wavefront expands, reaching more of
the nodes. The time taken to reach any node, the travel-
time, being determined by the distance from the start point
and by resistance offered along the wavefront (e.g.
obstacles and impeding terrain) as it progresses. Once the
travel time is known, it is a simple matter to calculate the
direction which should be followed to reach the goal from
any given point (see below).

In its working, the FMM categorises all nodes as either
known – for nodes with known travel-time values, near –
for nodes adjacent to those already calculated, or far – for
all other nodes. Starting with a single known node (the
goal, with a travel-time of 0), the FMM works outwards in
a manner broadly equivalent to a weighted breadth-first
search, or Dijkstra’s method (Dijkstra, 1959; Stout, 1996).

The general algorithm is as follows:

Start at Goal, travel-time = 0
Add neighbouring points to near

list (and remove from far list)
Repeat

Select node with smallest
travel-time value. Remove
from near list, add to
known.

Compute travel-time values for
each neighbour of the
selected point (recalculates
values for any neighbours
already in near list)

Add neighbouring points to near
list (and remove from far
list)

Until near list is empty

The use of an efficient insertion-sort algorithm is required
to ensure that adding nodes to the near list, and selecting
the node with the smallest value, does not adversely affect
performance. An array based implementation of a ‘min-
heap’ structure, which guarantees that the root element is
always the one with the (possibly equal) smallest travel-
time value of is outlined in Sethian (1998,1999).

CALCULATING THE TRAVEL TIME TO A NODE

A number of calculations are required to compute the
travel-time at a given point. For a considerably more
involved description of the process than given here,
including the derivation of the FMM, again see Sethian
(1998).

For our purposes, every node has a known slowness, s,
which is determined by the terrain cost at that node. The
travel time, ui,j, at point i,j, is determined from the
neighbouring nodes in x and y with the minimum travel
time values. For this calculation, any points in the far list,
or off the edge of the grid, are treated as having infinite
travel-time values. As an intermediary step, we can find the
minimum travel times of the neighbouring nodes:

ux = min (ui-1,j , ui+1,j) (1)

uy = min (ui,j-1 , ui+1,j+1)

The new travel time value is then found by:

(ui,j - ux)2 + (ui,j - uy) = s2 (2)

Finally, solve for ui,j using the quadratic equation. As any
unknown travel time value must be greater than or equal to
all currently known travel time values, the new travel time
value will be the minimum result that satisfies the
condition:

ui,j >= max (ui-1,j , ui+1,j , ui,j-1 , ui+1,j+1) (3)

Impassable terrain can be simply represented as points with
infinite slowness.

The algorithm given calculates the travel-time from every
point in the world back to the goal – starting with the points
next to the goal, and working outwards. To find the optimal
path from any given point back to the goal is then a simple
matter of calculating the travel-time gradient at each point,
which can be done as the travel-times are derived.

Figure 1: The Travel Time Gradient at Each

Point Gives The Direction Back To The
Goal. The direction of travel is not
constrained by grid connectivity

The path found by the FMM is a continuous one, rather
than one that leads from node-to-node. In effect, this is
similar to result of smoothing the path. Smoothing is
sometimes applied after finding a path using other
techniques to create more natural and less angular paths –
however, when using the FMM the path generated already
has this feature.

STRENGTHS AND WEAKNESSES OF THE FMM

As noted above, this method is similar to Dijkstra’s, which
also starts at a single point and, expanding outwards, visits
each neighbouring node in turn and keeps track of the cost
to reach each point. However, the optimal path found by
Djikstra’s method is a solution that is constrained to
following the existing network connections. In contrast, the
FMM can find a path which follows any arbitrary diagonal
(Figure 1). This advantage of FMM is also true for
comparisons against most other popular search methods,
which require that additional smoothing operations be
carried out in order to produce realistic paths without a
noticeable ‘zig-zag’ pattern.

Perhaps the most widely used search methods for path-
planning are those based on the A* algorithm. A* is a
heuristic search which tries to find the shortest path from a
given start point to a goal point, while exploring as little of
the search space as possible. Much has already been written
about A* (see, for example, Ginsberg, 1993; Stout, 1996),
and a description of its operation will not be repeated here.
In most cases we would expect A* to find a path from a
given start point to a goal using far less operations than
would be used by the FMM. Accordingly, in most
applications where we need to calculate in real-time the
path to be followed to reach a set goal from a set start point,
A*, or one of its variants, would be preferred over FMM.

While it is possible to modify FMM such that it terminates
its search as soon as it has found a path from the goal back
to the required start point, saving some processing time, the
breadth-first nature of the FMM search means that it would
still require more operations than the equivalent A* search.
This is assuming that the heuristic function, h’(n), of the A*
search has been set to a value such that 0 < h’(n) < h, where
h is the perfect heuristic. Where h’(n) = 0, A* also performs
as a breadth-first search.

However, in any case where the goal is shared by a number
of different units, which may have different start points, A*
requires a different search for each pair of start and goal
points. FMM would only have to be run once to find the
route for each of the units to follow. These strengths and
weaknesses of the FMM for path-planning are summarised
in Table 1.

Table 1: Strengths And Weaknesses Of FMM For Real-
Time Path-Planning

Strengths Weaknesses
Guaranteed to find optimal
path

Generates ‘smooth’ paths

Finds path to goal from
ALL points

Slow (In comparison to A*
using good heuristic)

FMM has only one notable weakness, which is its
computing overhead is high relative to the popular A*. This
alone is enough reason to rule out the use of FMM in many
game applications, where computing time resources are
precious and performance is always a high priority. In the
next section we outline one application where the benefit
gained by using FMM outweighed what turned out to be a
negligent cost of the slow processing speed.

While the FMM as presented, and as used in our work,
relies on a regular grid-like search space, the method can be
extended for applications using triangulated-meshes
(Kimmel and Sethian, 1998).

OFF-ROAD RACING WITH REACTIVE A.I.
VEHICLES

In this section we briefly outline some issues relating to the
design of off-road racing games, which led to the selection
of FMM search for use in a commercially released racing
game.

The majority of video high-speed racing games, including
those that market themselves as accurate simulations,
possess incredibly simplistic vehicle controller AI for the
computer controlled cars. For most titles, the AI is limited
to a ‘catch up-slow down’ speed controller and a fixed
route round the track for the AI cars to follow.

‘Catch-up/slow-down’ is implemented to make the game
more interesting to the player, although it is highly
unrealistic. When the player is behind the computer
controlled cars, they slow down in order to let the player try
and overtake them. When the player is ahead, the AI cars
speed up. Indeed, it is interesting, and very simple, to test
this out. In a racing game, try slowing down to a stop, and
observe the effect this has on the time it takes the AI cars to
complete a lap. It also explains why, in many racing games
without any apparent difficulty settings, AI cars ‘improve’
as players get better.

The AI track following is commonly so strict that while
collisions between player and AI vehicles may have a
dramatic effect on the player vehicle, knocking it
considerably off course, the converse is usually not true.
Again, this can be easily tested, and the outcome can be
quite striking. We suggest trying deliberately colliding with
computer-controlled cars in Gran Turismo 3.

Creating a realistic AI for an off-road racer, which does not
possess these flaws, presents a number of challenges. AI
cars should react to the presence of other cars – swerving to
avoid collisions if necessary. As a result of collisions (or
attempts to avoid collisions), cars may leave the track. In
some cases they could be knocked considerably off course,
down gullies, or over other impeding terrain. As such, the
best route to get to the race end may not be to try to rejoin
the track as soon as possible, but to follow an alternative
route – perhaps rejoining the track at some later point
(Figure 2).

Figure 2: Small Perturbations Can Lead To

Dramatically Different Routes

Accordingly, we note that this problem has the following
features:

• All AI vehicles share a common goal
• The goal is known at compile time – real-time

search is not required
• We need to know paths to the goal from a wide

variety of points – including many ‘off-track’.

This makes off-road racing an ideal task for solving using
FMM. The slow compute speed is not an issue, as the paths
to the goal can be computed at compile time.

In use, some tweaking of the slowness values of terrain may
be required – in practice the FMM search succeeded in
many cases to find short cuts that omitted large portions of
the track. Adjusting impedance values was sufficient to
keep cars closer to the track, while allowing them the
freedom to take different routes when forced off it.

Finally, it should be noted that a general awareness of the
working of the FMM can be exploited by level designers.
Careful design can lead to the deliberate inclusion of a
number of key intersections in a level, where small
variations in AI vehicle position can lead to the vehicles
taking different routes to reach the goal There is little ‘off-
road’ about a racing game where all vehicles are forced to
take the same route.

CONCLUSIONS

Game players have ever increasing expectations. To date in
racing games, realistic AI has not been in great demand –
the lack of it has not adversely affected sales. Indeed, the
simple, yet unrealistic, catch-up/slow-down is often used to
guarantee that players are not left alone on a stretch of
track. Ensuring that other cars keep pace with the player
(and vice-versa) also ensures that the race remains exciting.

However, as newer games innovate, the audience are likely
to become more aware of shortcomings of existing games
and their demands are likely to rise. We are going to see
more reactive AI in racing games – and this will introduce
an opportunity to think differently about the search and
path-planning methods used.

More generally, the FMM has obvious application in off-
line search – which may be applicable to a wider range of
game applications. The directions followed by agents
towards a goal are not constrained to a superimposed grid,
providing for realistic path following when applied to a
continuous game world.

On line search applications are also possible, particularly in
any situation where it is required to find multiple paths for
multiple units to a single target – such as can easily occur in
many strategy games – where FMM may be more efficient
than multiple A* searches. Future studies might look at a
comparison of the performance of FMM against that of A*
for solving such problems.

For many games A* will remain the search of choice, but it
is not the only algorithm worth considering – new and
innovative search techniques continue to be developed, and
many of these should, by right, find a place in a
programmers repertoire.

ACKNOWLEDGEMENTS
Robert would like to acknowledge Gordon Yeoman for
introducing him to the FMM. We would also like to thank
Darryl Charles and the anonymous reviewers for their
comments on earlier drafts.

REFERENCES
Dijkstra, E. W. (1959). A Note on Two Problems in

Connexion with Graphs. Numer. Math. Vol.1: 269-271.

Ginsberg, M. (1993). Essentials of Artificial Intelligence,
Morgan Kaufmann.

Kimmel, R. and J. A. Sethian (1998). Computing Geodesic
Paths on Manifolds. Proceedings of National Academy
of Sciences, 95(15):8431-8435, July.

Kimmel, R. and J. A. Sethian (2001). Optimal Algorithm
for Shape from Shading and Path Planning. Journal of
Mathematical Imaging and Vision 14(3): 237-244.

Sethian, J. A. (1998). Level Set Methods and Fast Marching
Methods: Evolving Interfaces in Computational
Geometry, Fluid Mechanics, Computer Vision and
Materials Sciences. Cambridge, UK, Cambridge
University Press.

Sethian, J. A. (1999). Fast Marching Methods. SIAM
Review 41(2): 199-235.

Sethian, J. A. (WWW).
Http://Math.Berkeley.Edu/~Sethian/. (Accessed:
14/09/2003)

Stout, B. (1996). Smart Moves: Intelligent Pathfinding.
Game Developer (October).

DANIEL LIVINGSTONE is a lecturer at the University
of Paisley, where he recently completed his PhD. He also
holds an MSc from the University of Essex and a BEng
(Hons) from the University of Strathclyde. His current
research interests include Artificial Life, and almost
anything games related.

ROBERT MCDOWELL is a games programmer working
for Real Time Worlds. He has been a part of the games
industry since his graduation from the University of Paisley
a few years ago. He has a number of published titles under
his belt, that have provided him the opportunity to work in
many areas of games development. This has included A.I.,
engine development and general game programming.

http://math.berkeley.edu/~Sethian/

A RULE-BASED AND A PROBABILISTIC SYSTEM FOR SITUATION
RECOGNITION IN A FLIGHT SIMULATOR

Patrick A.M. Ehlert, Quint M. Mouthaan and Leon J.M. Rothkrantz
Data and Knowledge Systems Group

Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Mekelweg 4, 2628 CD Delft, the Netherlands

E-mail: {P.A.M.Ehlert, L.J.M.Rothkrantz}@ewi.tudelft.nl

KEYWORDS
situation recognition, artificial pilot, flight simulator,
knowledge based systems.

ABSTRACT
In this paper we describe two situation recognition systems
that have been developed for a flight simulator
environment. The first system uses heuristic rules based on
a state-transition diagram to determine the current stage of a
flight. The second system does the same by calculating the
probabilities of both the start and end of possible situations
and determining the most probable situation. The idea is
that the best situation recognizer system will be used as part
of a more elaborate situation-aware system. This situation-
aware system can be seen as a first step to an intelligent
pilot bot.

1. INTRODUCTION
The Intelligent Cockpit Environment (ICE) project is a
project of the Knowledge Based Systems group of Delft
University of Technology. Originally, the main purpose of
this project was to investigate techniques that can be used to
create a situation-aware crew assistance system [Ehlert and
Rothkrantz 2003]1. Basically, a crew assistance system
functions as an electronic co-pilot looking over the shoulder
of the crew of an aircraft. This system tries to support the
crew by providing useful information or taking over (some
of) the crew’s tasks if necessary. The idea is that this way
the situation awareness of the crew will be improved and
their workload reduced, leading to better and safer
performance [Endsley 1999]. For this purpose we are
investigating methods to create a situation-awareness
module. The function of such a module is to create a
“mental computerized picture” of the current situation. This
mental picture includes aircraft status, flight progress, and
crew performance among others. The situation-awareness

1 More information on the ICE project can also be found via
http://www.kbs.twi.tudelft.nl/Research/Projects/ICE/

module is used by the assistance system to make decisions
when and how to support the crew.
Although, we are still investigating this application, our
attention has also been drawn to artificial pilots that can be
used for simulations. The idea is that the larger part of the
situation-awareness module can just as well be used as the
basis for decision-making of a simulated artificial pilot.
Our first step towards a situation-awareness system was to
investigate the data that is available from a flight simulator
[Ehlert, Mouthaan and Rothkrantz 2002]. Then we designed
and tested some approaches to perform automatic
recognition of situations based on this data. The goal of our
situation recognition subsystem is to determine in real-time
the status of the aircraft and the corresponding phase of the
flight. In this paper we will describe two systems that we
have created for this purpose. The first system uses heuristic
rules embedded in a rule-based system. The second system
uses probabilities to determine the most likely situation.
Before we present both systems we will first discuss the
related literature on artificial pilots.

2. RELATED WORK
We have found two different projects in the literature that
deal with the construction of an artificial pilot, also called
flight bot. The first one is TacAir-Soar. TacAir-Soar is an
intelligent rule-based system that generates believable
human-like pilot behaviour for fixed-wing aircraft in large-
scale distributed military simulations [Jones et al 1999].
Each instance of TacAir-Soar is responsible for controlling
one aircraft and consists of a Soar architecture [Laird,
Newel and Rosenbloom 1987] linked to the ModSAF
simulator. The interface between the Soar architecture and
the simulator regulates the information that each aircraft
receives from its own “sensors”, such as aircraft status,
radar, radio messages, etc. The advantage of using Soar is
that the reasoning and decision-making of the system is
similar to the way humans are generally believed to reason.
The second project dealing with the construction of flight
bots is TAC BRAWLER. TAC BRAWLER is a simulation
tool for air-to-air combat developed by the Linköping
University in collaboration with Saab Military Aircraft AB
in Sweden [Coradeschi, Karlsson and Törne 1996]. The
system is designed specifically for air-to-air combat experts

and allows them to specify the behaviour and decision-
making of the intelligent pilot agents without the help of a
system expert. The agents in TAC BRAWLER are
modelled by decision trees. These trees contain production
rules that describe the agent’s dynamic task priorities.
During one decision cycle, several branches of the tree can
be processed in parallel after which all selected actions are
evaluated for priority and compatibility. Due to the dynamic
task priorities, sequential tasks that are spread over multiple
decision cycles can be interrupted if the need arises.
Both TacAir-Soar and TACBRAWLER focus primarily on
decision-making and both try to simulate realistic pilot
flight behaviour. They do not specify how to deal with
situation recognition or achieve situation awareness.
Although achieving good situation awareness is not
necessary to simulate the behaviour of (a large number of)
artificial pilots, we feel that more realistic flight bots cannot
do without. The better the understanding of the available
data, the better a flight bot can deal with the current
situation. By evaluating the current situation in real-time the
flight bot can show much more flexible behaviour and come
up with problem-solving strategies, resembling human
reasoning.
After an extensive search, we have found one application in
another domain that uses an approach similar to ours.
[Nigro et al. 2002] describes two systems called Intelligent
Driving Recognition with Expert System (IDRES) and
Driving Situation ReCognition (DSRC). The goal of both
systems is to provide support for a driving assistance system
that is to be used in future cars. The DSRC system is able to
recognize certain states of a manoeuvre performed by a car
in a simulator. At a higher level, the second system called
IDRES recognizes transitions between manoeuvres. Both
systems are rule-based. Uncertainty of data is handled using
fuzzy sets and beliefs on hypotheses.

3. THE GENERAL DESIGN
The ultimate goal of the flight bot in the ICE project is to
create an intelligent system that has the knowledge,
understanding and skill to fly an airplane, in the same way a
human pilot does. We have devised a general architecture of
this flight bot, which is shown in Figure 1. The bot uses
decision cycles to read data from the simulator, create a
representation of the current situation and decide which
action to take. The function of the situation awareness
module is to read all data coming from the simulated
aircraft. This data is integrated with previous recorded
information in order to create a representation of what is
going on. Then, this world representation is used by the
decision module to decide which action to take. The
decision module can make use of several planners that are
able to make predictions about future situations, for
example the expected position of other aircraft. After the
decision module has chosen an action to perform, this
action is sent to the aircraft control manager. The aircraft
control manager functions as an interface between the bot
and the simulator. Ultimately, we want to be able to set
certain properties of the flight bot, for example setting the

level of pilot expertise so we can simulate different types of
pilots. This is the function of the system manager, which
forms the interface between the user and the flight bot.
In the next sections of this paper we will discuss two
situation recognition systems that we have devised as part of
the situation awareness module: a rule-based system and a
probabilistic system.

4. THE RULE-BASED APPROACH
One of our first attempts to implement the situation
recognition subsystem was to use a rule-based approach.
Rule-based systems, also known as production systems,
allow simple, understandable, and transparent reasoning
using IF-THEN rules. This makes rule-based system
suitable for rapid prototyping, which is probably also the
reason that they are one of the most popular methods of
reasoning in artificial intelligence.

4.1 Design
The first step in the design of the rule-based situation
recognition system was to gather knowledge on flying.
Since there are many different types of aircraft we decided
to restrict ourselves and start out by looking only at a simple
and standard passenger aircraft: the Cessna 172C Skyhawk.
Different types of situations during a flight were identified
and for every situation the actions the pilot is expected to
perform and typical situation-related variables were defined.
We made rules for the following situations; pre-start, start-
up, taxiing, hold-short, take-off, aborted take-off, set course,
cruise, start-landing, aborted landing, final approach,
touchdown and shutdown. All situations can be recognized
based on a number of parameters such as airspeed, vertical

Situation
awareness

module

Decision
module

Aircraft control
manager

actions

Planners

System manager

commands & settings

User

system settings

Simulated
aircraft

predictions

flight plan

aircraft
data

control
commands

Situation
recognizer

Figure 1: General architecture of the flight bot

speed, throttle, brakes status, gear status, etc. For each state
we tried to use multiple variables since this allows us to still
get an accurate indication of the situation, even if one of the
parameters is not normal for that situation. For example, if
the pilot lowers the gear, it is obvious that he is trying to
land. However, if for some reason the pilot forgets to lower
the gear, we are still able to determine that the pilot is
landing by looking at his airspeed, flaps, vertical speed and
altitude. While normally this is not necessary for an
artificial pilot, it allows us to identify possible malfunctions,
which we plan to add later to our situation awareness
module.
To reduce the amount of rules that have to be checked every
decision cycle, we devised a state-transition diagram, part
of which is shown in Figure 2.

Startup

Aborted take-off

Take-off

Taxing

(ParkBrakes = 0 AND IsThrottleFull) OR
 IsSpeedTakeOff

Climb-out and
Set course

IsVSpeedClimbOut OR
not GearDown OR
IsSpeedClimbOut

(not IsThrottleIdle AND ParkBrakes = 0) OR
(not IsSpeedStandStill)

Brakes = 1
OR

ParkBrakes = 1
OR

IsThrottleIdle

(IsSpeedTaxiing and IsPitchLevel)
 OR

(Brakes = 0 AND ParkBrakes = 0)

Pre-Start

Starter = 1
OR

Magnetos > 0

Figure 2: Partial state-transition diagram containing several
situations of a flight with the Cessna airplane

The system is initialised in the Pre-Start state. Normally,
only the rules belonging to this state are checked, until one
of the rules changes the state to Startup. Then only the rules
belonging to the Startup state are checked, etc. To make the
system more robust, states are changed not only when
evidence is found for a state transition (a new situation has
arisen), but also when there is evidence that the current state

cannot be the correct one. In this case we have to make a
decision which connecting state is most likely.

4.2 Implementation
The rule-based system was implemented with Borland
Delphi 5 and the simulator we used to test the system was
Flightgear, version 0.7.10 [Perry and Olsen 2001]. Newer
versions of the open-source Flightgear simulator are
available, but proved to be less stable.
The rule-based system receives information from the
simulator about the state of the airplane (e.g. airspeed,
altitude, pitch), the actions of the pilot (e.g. setting flaps,
pushing the throttle), and the environment (e.g. wind), all
via a Telnet connection. The rules and state-transition
diagram were hard-coded into our program using IF-THEN
statements. Using hard-coded rules has the advantage that
reasoning can be done very fast. There is less overhead
compared to using a third-party rule-based system such as
CLIPS or JESS. However, it can be difficult to alter rules or
add new rules, especially when the rule-base is large.
Below we show (part of) an example rule corresponding to
the Take-off state in Figure 2:

 procedure StateTakeOff;

 begin
 if IsVSpeedClimbOut(VertSpeed) or
 (not GearDown) or
 IsSpeedClimbOut(AirSpeed)
 then
 State := sSetCourse;

 if IsThrottleIdle(Throttle) or
 (Brakes = 1) or
 (ParkBrakes = 1)
 then
 State := sAbortTakeOff;
end;

Due to some difficulties with the Telnet connection between
our program and Flightgear we were only able to retrieve
data from the simulator about once every 500 ms. This is a
fairly large timeframe and it is possible that the system
misses certain events that have a shorter duration. This is
another reason that we check multiple variables (besides
identifying possible malfunctions which we mentioned
earlier).

5. THE PROBABILISTIC APPROACH
One of the disadvantages of using a rule-based system is
that IF-THEN rules are always deterministic. Either the IF-
condition of the rule is fulfilled or it is not. A certain event
or variable value may be an indication for more than one
situation. For example, a pilot can reduce the throttle if he
wants to land, but also simply to reduce speed and save fuel.
We tried to solve this problem by introducing probabilities
to determine the likelihood of the start and end of each
possible situation.

5.1 Design
Our probabilistic approach extends the rule-based approach
described in the previous section in a sense that now the
rules are not used to detect a situation deterministically, but
to generate probabilities about situation starts and endings.
Since this requires us to check multiple situations at the
same time, the state-transition diagram was abandoned.
However, to reduce the number of rules that need to be
checked, we added preconditions that need to be fulfilled
for each situation. For example, for the taxiing situation to
occur, the landing gear has to be down.
Another extension in our probabilistic system is that we
have added the possibility to load different rules for
different aircraft. The architecture of the probabilistic
situation recognition system is shown in Figure 3.

The knowledge converter converts all the situations
knowledge for a particular aircraft stored in an XML file to
IF-THEN rules. These rules are loaded into the rule base
before the recognition system is started.

The flight plan interpreter converts the information in the
flight plan to a number of rules that are put in the rule base.
These rules can help situation recognition by predicting
which situations will occur in the near future. Just as the
aircraft situations knowledge, the flight plan is loaded
before a flight.

During a flight, the input module receives aircraft data
from the flight simulator and converts this data to facts that
are forwarded to the rule base.

The rule base contains all the rules and facts that have been
generated by the flightplan interpreter and knowledge
converter. When data (facts) from the flight simulator are
added to the rule base, some of the rules will fire and
generate probabilities concerning the start or end of a
situation. These probabilities are then passed to the overall
controller.

The overall controller receives event data and situation
probabilities from the rule base, combines these
probabilities, and calculates for every situation the
probability that it has started or the probability that it has
ended. It then draws a conclusion about the situation that is
most likely to be the current one. Calculating probabilities
is done using a probabilistic network.

5.1.1 The start probability calculator
Figure 4 shows the probabilistic network that is used to
calculate the probability that a situation has started.

Figure 4: Probabilistic network that calculates the probability that

a situation has started

The start conditions for a situation are conditions that must
be satisfied before a situation can possibly have started,
otherwise the probability that the situation is started will be
zero. When the start conditions are satisfied, the probability
of the conditions that is specified in the aircraft situations
knowledge will be the output of this node.

The action probabilities are passed to the probability
network by action rules that are activated when the pilot
performs a particular situation-related action. Action rules
are rules that check if an action has been performed that
belongs to a situation. An action rule can only fire if the
start conditions of a situation have been met. All action

Input moduleFlight simulator

Aircraft
situations
knowledge

Rule base Overall controller

Knowledge
converter

facts probability

probability

probability

situation

rules
XML
data

Flight plan XML
data

rules

time windows
and priorities

Flightplan
interpreter time windows

and priorities

Figure 3: Architecture of the probabilistic situation recognizer

probabilities contribute to the probability that the situation
is occurring (has been started).

The additional rules are rules that fire when the state of the
aircraft changes or when a specific event occurs. They also
include rules similar to the consistency checks used in the
rule-based approach that check if the current state is still the
correct one. When an additional rule fires, it generates a
probability that the situation has started or ended.

The probability calculator (situation-started node in the
figure) combines the probabilities of the nodes that have
been described above using the noisy-OR model.

The previous situation influences the start probability of a
situation. The idea is that the probability that a situation is
occurring increases when the probability increases that one
of the previous situations that can lead to this situation has
ended.

Based on this network the probability that a situation has
started and is occurring can be calculated with the following
formula:

∏∏
==

−−−−=

>
=

=

=

n

j
j

n

i
iscs

sc

sc
cond

sendcondstart

PcrPcaPP

Pif
Pif

P

PPPP

11

))1(*)1(*)1((1

01
00

**

In this formula, Psc is the probability of the start conditions,
Pend is the probability that one of the previous situations has
ended, Pcai is the probability of the i-th action that should
be performed during the situation and Pcrj is the probability
of the j-th event or state change that can occur during the
situation.

5.1.2 The end probability calculator
In Figure 5 the probabilistic network is shown that
calculates the probability that a situation has ended. In this
network we see a lot of the same nodes as in the network for
the start of the situation. The nodes that are different are
discussed below.

The time window for a situation is the maximum duration
of that situation. If the start of a situation has been detected
the probability that it has ended should grow after a certain
time.

The situation-started node produces a 1 if the situation has
started and a 0 if the situation has not yet started. This node
is necessary because we only want to calculate the
probability that the situation has ended, after a (probable)
start of that situation.

Figure 5: Probabilistic network that calculates the probability that

a situation has ended

The probability that the situation is ended can be calculated
with the following formula:

∏
=

−−−−=
n

i
itscend PcrPPP

1

))1(*)1(*)1((1

More details about the design of our probabilistic system
can be found in [Mouthaan 2003].

5.2 Implementation
The probabilistic system was implemented in Java. Unlike
the rule-based system, the rules were not hard-coded since
we wanted to be able to load different rules for different
aircraft. Therefore, we chose to use the JESS rule-based
system [Friedman-Hill 1997]. The system was tested using
Microsoft’s Flight Simulator 2002, which was found to be
more realistic and stable than the Flightgear simulator that
we used earlier with our rule-based recognition system.
Flight Simulator 2002 allows retrieving data from the
simulator by an external program via a shared memory
space. The interface between the simulator and the system
was implemented with C++. We have devised a situations
XML file for the military F-16 aircraft and the civilian
Cessna C172 plane. Using these aircraft, we have
performed several experiments to test the system. The
flightplan interpreter that was described in the design of the
probabilistic system was not implemented yet.

6. EVALUATION
We have evaluated a prototype version of both situation
recognizer systems by performing several flights and
logging the results. The time and name of all detected
situation changes were logged, as well as the time a new
situation started according to the pilot. This allowed us to
check if the systems recognized a situation correctly and in
time. However, one must note that the time a situation starts
is often a bit vague and subjective. For example, the change
between the situations “climb out/set course” and “normal
flight” is difficult to pinpoint precisely. For this reason we
have rounded off all recorded times to whole seconds.

The test results of both the rule-based system and
probabilistic system were fairly good. On average, the rule-
based recognizer detects situations one or two seconds after
they occur. The rule-based system sometimes has some
difficulties detecting the start of the landing situation. The
probabilistic recognizer performs similarly. It has less
difficulty with the landing situation but for some unknown
reason it sometimes detects the normal flight situation
several seconds before it actually occurs. In one of our
experiments we found that the probabilistic system is even
able to correct a mistake immediately in the next reasoning
cycle. The mistake occurred during landing, when the
recognizer inadvertently thought the landing was being
aborted. We suspect the mistake was made due to an error
in the rule base that resulted in keeping a fact in the rule
base for too long.
In Table 1 and 2 we have presented some results of both
systems on one of our simpler flights, which was to fly a
standard circuit with the Cessna 172C. Flying a circuit
means that the pilot has to take-off, circle around to the
beginning of the runway and land again (see also Figure 6).

Figure 6: A standard circuit

The first column in both tables contains the names of the
situations that occurred or were detected by the system. The
second column contains the times at which the pilot
considered the situations to be started. The third column
contains the times at which the situations were detected by
the recognition system. Times are given in seconds from the
moment the program was started. Note that comparing the
two presented tables is not entirely fair since the flights
were flown by different pilots and on different simulators.
However, at the moment we have no better way of
comparing the two systems.
From the tables it can be seen that both systems did not

make any serious errors and were able to recognize most
situations in a matter of seconds. The probabilistic situation
recognizer performed slightly better (less time wrong) than
the rule-based recognizer. We have calculated the error rate
of the flights by dividing the amount of time that a
recognizer was incorrect by the total time of the flight.
However, in this case the pilot of Table 1 took longer to
complete the circuit than the pilot in Table 2, so therefore
the error rate of Table 1 is lower even though the recognizer
was incorrect for a slightly longer amount of time.
Other experiments that were performed showed similar
results. On average the error rate over the performed
experiments for the probabilistic recognizer (4 flights) was
0.08, with 0.05 being the lowest recorded error rate and
0.11 being the highest. The rule-based recognizer reached
an average of 0.09 over 5 flights, with 0.03 as best and 0.15
as worst. As mentioned earlier, the comparison between the
two systems is inconclusive, but the results seem to indicate
that the probabilistic approach performs slightly better than
the rule-based approach.

7. CONCLUSIONS AND FUTURE WORK
We have created two systems that can recognize the current
situation during a flight with a simulated aircraft. The first
system uses a combination of a rule-based approach and
state-transition diagram. The system was able to detect
situations flying the Cessna aircraft. The second system is
based on a probabilistic model. This system can load a
model for a specific type of aircraft before the flight.
Currently we have a model for both the F-16 and the Cessna
aircraft.
Investigating a number of test scenarios, both systems seem
to work fairly well. They make few mistakes and are even
able to correct them immediately. Furthermore they are able
to come to a conclusion about the current situation in real-
time. We have tried to compare the results of both systems,
but this comparison is complicated due to the vagueness of
the exact start of a situation, and the different pilots and
simulators we used. We are currently busy redesigning the
rule-based system to work with the same simulator used in
our experiments with the probabilistic recognizer, so we can
make a more accurate comparison between the two systems.

Table 1: Results of a standard circuit flight with a Cessna
using the rule-based situation recognizer

 Table 2: Results of a standard circuit flight with a Cessna using
the probabilistic situation recognizer

Situation Time
started (s)

Time
detected (s)

 Situation Time
started (s)

Time
detected (s)

Start-up 0 0 Start-up 0 0
Taxiing to runway 16 17 Taxiing to runway 7 10
Taking off 27 29 Taking off 22 27
Normal flight 73 72 Normal flight 61 59
Landing 187 179 Landing 119 121
Taxiing from runway 272 275 Taxiing from runway 220 221
Shutdown 302 302 Shutdown 251 251
Error: 15 seconds (5,0%) Error: 13 seconds (5,2%)

Although the test results of both systems are fairly good, we
are not yet satisfied. It often takes a few seconds to
accurately detect a situation. This is no problem for a
Cessna, but in an F-16 covering more than 500 meters per
second, this can be a problem. Therefore, we would like to
detect situation changes almost immediately. Our future
work will consist of improving and fine-tuning the rules
used by both systems to detect situation changes faster and
increase reliability. One way to do this is to use the flight
plan to help detect the current situation and predict future
situations. However, it is possible that pilots deviate from
the flight plan, so this should be included in the recognition
process. In addition we would like to expand the systems to
include more detailed, synchronous situations and specific
events such as malfunctions. Together with our other efforts
currently underway to implement a decision module and
planner modules, we want to use this improved situation
awareness module to create a human-like intelligent flight
bot.

REFERENCES
Coradeschi, S., Karlsson, L. and Törne, A. (1996) “Intelligent

agents for aircraft combat simulation”, in Proceedings of the
6th Computer Generated Forces and Behavioral
Representation Conference, pp. 23-25 July 1996, Orlando,
Florida, US

Endsley, M. R. (1999) “Situation awareness in aviation systems”,
in Human factors in aviation systems, Garland,D.J., Wise, J.A.
and Hopkin, V.D. (Eds.), pp. 257-276, Lawrence Erlbaum.

Ehlert, P.A.M. and Rothkrantz, L.J.M. (2003) “The Intelligent
Cockpit Environment Project”, Research Report DKS03-
04/ICE 04, Knowledge Based Systems group, Delft University
of Technology, The Netherlands.

Ehlert, P.A.M, Mouthaan, Q.M. and Rothkrantz, L.J.M. (2002)
“Recognising situations in a flight simulator environment”, in
Proceedings of 3rd Int. Conference on Intelligent Games and
Simulation (GAME- ON 2002), London, Great Britain, pp.
165-169.

Friedman-Hill, E.J. (1997) “JESS, the rule engine for the Java
platform”, JESS manual for version 6.1, Sandia National
Laboratories, http://herzberg.ca.sandia.gov/jess/docs/61 (link
checked November 6th, 2003)

Jones, R.M., Laird, J.E., Nielsen, P.E., Coulter, K.J., Kenny, P.
and Koss, F.V. (1999) “Automated intelligent pilots for
combat flight simulation”, in AI Magazine, Vol. 20, No.1, pp
27-41.

Laird, J.E., Newell, A. and Rosenbloom, P.S. (1987) “Soar: an
architecture for general intelligence”, in Artificial Intelligence,
Vol. 33, No.1, pp. 1-64

Nigro, J.M., Loriette-Rougegrez, S. and Rombaut, M. (2002)
“Driving situation recognition with uncertainty management
and rule-based systems”, in Engineering Applications of
Artificial Intelligence, Vol. 15, pp 217-228, Elsevier Science
Ltd.

Perry, A.R. and Olson, C. (2001) “The FlightGear flight
simulator: history, status and future”, LinuxTag July 2001,
Stuttgart, Germany.

Mouthaan, Q.M. (2003) “Towards an intelligent cockpit
environment: a probabilistic approach to situation
recognition in an F-16”, MSc. thesis, Knowledge Based
Systems group, Delft University of Technology, The
Netherlands

AUTHOR BIOGRAPHY
PATRICK EHLERT has obtained his Master’s degree in
Computer Science at the Delft University of Technology.
There he now works as a PhD student on the ICE project.

QUINT MOUTHAAN has obtained his Master’s degree in
Computer Science at the Delft University of Technology.
He recently started working as an engineer at Force Vision,
a company developing mission-critical systems for the navy.

LEON ROTHKRANTZ has a degree in psychology and
mathematics and is working as a lecturer at the Delft
University of Technology.

http://herzberg.ca.sandia.gov/jess/docs/61

MOBILE
AND

WIRELESS
GAMES

THE DESIGN AND PERFORMANCE OF A RECEIVER-INITIATED
EVENT DELIVERY SYNCHRONIZATION SERVICE

FOR INTERACTIVE MULTIPLAYER GAMES

Stefano Ferretti Marco Roccetti
Department of Computer Science

University of Bologna
Mura A. Zamboni 7, 40127 Bologna, Italy

E-Mail: {sferrett, roccetti}@cs.unibo.it

KEYWORDS
Multiplayer Games, Interactivity, Event Delivery,
Consistency, Reliable Communication.

ABSTRACT

The emerging market of networked multiplayer games is
characterized by a growing demand for scalable responsive
strategies able to provide players with full interactivity
during the game evolution. To this aim, this paper presents
a receiver-initiated event delivery service for multiplayer
games that has been devised to guarantee an adequate
interactivity degree among players while maintaining the
consistency of the distributed game state. In particular,
based on relationships that exploit the semantics of the
game events, our approach drops obsolete events to reduce
the communication delays without affecting the validity of
the game evolution, as only events that have lost their
importance may be discarded. We carried out an
experimental study that confirms the efficacy of our
receiver-initiated (NACK-based) approach for game event
synchronization in networked multiplayer games.

1. INTRODUCTION

The pace of development in hardware and software
networking technologies is enabling a rapid evolution of
exciting online video-games. Currently, a major trend
relates to the provision of these distributed applications to
players plugged to the network with wired/wireless
connections using different terminals (e.g. desktops, PDAs,
cells, game consoles). In particular, to support networked
multiplayer games, the common approach is that of using
scalable distributed architectures that deploy several Game
State Server (GSS) entities over the network. Each GSS is
in charge of maintaining the game state, or a part of it. To
accomplish this task, each GSS communicates with other
GSSs, and with Input/Output Client (I/O_C) software
entities that perform I/O with their corresponding players.

 Moreover, the main objective to pursue in the design of
networked multiplayer gaming applications is that of
making a compelling, realistic representation of the virtual

world and its evolution. To this aim, perhaps, a dominant
factor is that of ensuring a real-time evolution of the game,
so that players may enjoy a game experience which is
similar to real-life gaming. This results in a great effort to
provide distributed users with interactivity.

 As a consequence, it is clear that a fast, consistent
delivery of the game events among GSSs assumes a key
role to support networked multiplayer games. In fact,
consistency is needed to guarantee that each participant
perceives the same evolution of the game. Moreover,
interactivity is needed to assure a real-time evolution of the
game. Unfortunately, it turns out that consistency
maintenance and interactivity are two antithetic
requirements. Indeed, the most common approach to keep
synchronized and consistent the state of a distributed game
amounts to the use of a totally ordered, reliable
synchronization scheme. However, the use of such a
strategy among GSSs may result in performances
degradation (Cheriton and Skeen 1993; Steinman 1995;
Défago et al. 2000).

 With this in view, in (Ferretti and Roccetti 2003; Ferretti
and Roccetti 2003a) we devised an approach for the design
of an event delivery service for distributed games that
fulfils the interactivity requirements while maintaining the
consistency of the game state. In particular, by exploiting
the event semantics we introduce relations among events
that enable to relax the request for total order and reliability
in the event delivery. In essence, our strategy periodically
monitors the time difference elapsing between the
generation of a game event at a given GSS and its delivery
to another GSS (we term such time difference as Game
Time Difference or GTD). If such a GTD is above a
predefined interactivity time threshold value (termed Game
Interaction Threshold or GIT), then our mechanism acts on
the game evolution by dropping events, thus reducing the
communication delays and gaining interactivity. Our
mechanism uses an event dropping strategy based on the
notion of obsolescence, i.e. events that lost their importance
may be dropped without affecting the validity of the game
evolution. Thus, our strategy is able to keep the interaction
level among players within an acceptable time value, and
guarantees that state inconsistencies are not caused as only
obsolete events are discarded.

 To implement our event synchronization service based on
the notion of obsolescence, in (Ferretti and Roccetti 2003;
Ferretti and Roccetti 2003a) we have followed a sender-
initiated approach where event reliability were ensured by
the use of ACKs to recover from (non obsolete) game event
loss. However, it is well known that in a multiparty
environment, as group size increases, the sender-initiated
strategy may cause ACK implosion since each delivered
message triggers an acknowledgment from every receiver
in the group (Obraczka 1998). In view of this observation,
we have developed a receiver-initiated version of our
obsolescence-based event synchronization service where
requests for retransmission of lost (non obsolete) messages
are issued by generating NACKs. It is shown in (Towsley
et al. 1997) that placing the responsibility of recovering
message losses from receivers may help in ameliorating the
ACK implosion problem.

 In this paper we present the NACK-based version of our
event delivery service and discuss an experimental study
we have conducted to confirm the efficacy of the adopted
approach. The reminder of this paper is organized as
follows. Section 2 discusses on the design issues that are at
the basis of our work. Section 3 presents the receiver-
initiated event delivery service we designed and
implemented. Section 4 reports results obtained from an
experimental evaluation we conducted to assess the
performances of our strategy and, finally, Section 5
concludes the paper.

2. DESIGN ISSUES

2.1 The Need For Scalability, Interactivity And
Consistency

Networked multiplayer game applications are well
supported only if the underlying system is able to guarantee
the satisfaction of real-time and scalability requirements,
also ensuring that the consistency of the game state is
maintained. However, the combination of these
requirements is difficult to achieve in a distributed scenario
because of the poor QoS provided in a best-effort network.
In particular, in this context the use of a distributed
architecture is the most common solution to ensure
scalability and robustness (Cronin et al. 2002; Griwodz
2002; Openskies Network Architecture Project 2002;
Ferretti and Cacciaguerra 2003). Such an architecture is
typically composed of I/O Client control (I/O_C) entities
and Game State Server (GSS) entities. An I/O_C entity is a
client application that performs input/output with its player
and receives/notifies events to the GSS which is connected.
Each GSS maintains the game state, or a part of it.

 However, the distribution of several GSSs through the
network enforces the use of algorithms that maintain the
consistency of the distributed game state. Moreover, the
typical solution to address the consistency requirement

concerns to the use of totally ordered, reliable
synchronization schemes which guarantee that all generated
events are reliably delivered according to the same unique
order to all the GSSs (Cronin et al. 2002; Jefferson 1985;
Gafni 1988; Mauve 2000; Steinman et al. 1993; Steinman
1995).

 Unfortunately, the request for interactivity among players
collides with the adoption of a totally ordered delivery
among GSSs, as the use of mechanisms that ensure total
order may introduce a significant communication overhead
(Birman and Joseph 1987; Cheriton and Skeen 1993;
Chockler et al. 2001; Défago et al. 2000). As a
consequence, it results clear that the communication among
GSSs plays a crucial role to support distributed gaming
applications, as it must guarantee both the consistency of
the distributed computation and an adequate interactivity
degree among players.

2.2 Reliable Event Delivery

Event delivery communication schemes among groups of
GSSs are typically built by exploiting reliable multicast
approaches (Aarthus 2002; Bauer et al. 2002; Bharambe et
al. 2002; Cai et al. 2002; Fiedler et al. 2002; Griwodz 2002;
Openskies Network Architecture Project 2002). These
protocols may be classified depending on which type of
GSS is responsible for ensuring the reliability, i.e. sender-
initiated, receiver-initiated (Rezende et al. 1996). In
particular, in sender-initiated reliable multicast protocols,
such as RMTP (Paul 1998; Liu et al. 1999), the sender
performs loss recovery whenever receivers do not confirm
the event reception. Events are thus retransmitted if the
acknowledgment (ACK) of the event is not received at the
sender side.

 Vice versa, in receiver-initiated multicast protocols, such
as SRM (Floyd et al. 1997), LBRM (Holbrook et al. 1995),
PGM (Crowcroft et al. 2000) and RML (Azevedo et al.
2002), receivers are responsible for detecting and
recovering from packet losses. Events are thus
retransmitted upon reception of a negative acknowledgment
(NACK) at the sender side. Moreover, in order to detect
event losses, senders periodically multicast specific
messages that summarize the history of the sent events.
Based on the work by (Azevedo et al. 2002), we term such
messages as refresh messages.

 Typically, receiver-initiated approaches are more scalable
than sender-initiated, since the use of (positive)
acknowledgements enforces the sender to retransmit
messages until ACKs from all processes are received.
Instead, several techniques have been devised to avoid
NACK implosion, e.g. each receiver does not need to send
a NACK if some other process did. In view of this
observation, in this paper we present the receiver-initiated
version of an event delivery strategy devised to support

distributed games (Ferretti and Roccetti 2003; Ferretti and
Roccetti 2003a). In the following Subsections, we report a
simplified discussion on the concepts that are at the basis of
our work; the interested reader may find a detailed
presentation in (Ferretti and Roccetti 2003a).

2.3 Towards Interactivity

To measure the interactivity degree provided by the system,
we propose to take into account that a threshold exists
representing the limit above which the interaction among
players is not guaranteed, termed Game Interaction
Threshold (GIT). In essence, interactive game applications
are well supported only if the time difference between the
generation of an event and its delivery is kept within this
threshold along the game lifetime. Assuming that the GSSs’
physical clocks are kept synchronized by resorting to some
physical clock synchronization algorithm, such as, for
example, those proposed in (Cristian 1989; Drummong and
Babaoglu 1993; Gusella and Zatti 1989; Halpern et al.
1984; Mills 1991), we denote the event generation time of a
game event e with Tg(e). Instead, we denote with Td

p(e) its
event delivery time at a given GSS p. We term Game Time
Difference (denoted GTDp(e) or simply GTD) the
difference among the event generation time of e and its
event delivery time at a given GSS p, i.e. GTDp(e) = Td

p(e)–
Tg(e). It is easy to observe that this measure provides an
estimation of the interactivity degree given by the system
during the game activity. As a consequence, interactivity
may be provided by assuring that the GTD of the delivered
events is maintained within the GIT at each GSS in the
game.

2.4 Trading Ordering And Reliability For Interactivity

We have already mentioned that a reliable, totally ordered
delivery is a sufficient condition to ensure game state
consistency across different GSSs as it guarantees that all
generated events are reliably delivered according to the
same unique order. Moreover, we also pointed out that the
demand for totally ordered delivery may slow down the
evolution of the game. Further, situations emerge where the
total order is not a necessary condition to guarantee game
state consistency. The typical example is that of two events,
possibly generated by two different sources, that are fully
independent according to a given game semantics. As they
are independent, they may be processed by different GSSs
according to different orders, without affecting the game
consistency.

 This consideration enables the introduction of a relation
(termed correlation) that identifies events that must be
executed in the same order at all the GSSs. In essence,
while different delivery orders for semantically
independent events (i.e. non correlated events) do not
cause inconsistencies, instead the execution of correlated
events in different orders may cause different results at

different GSSs. Thus, to maintain the consistency of the
game state, a delivery strategy has to ensure that correlated
events are delivered in the same order to all the GSSs. On
the contrary, no ordering guarantee has to be provided for
the delivery of non correlated events (Ferretti and Roccetti
2003a). It is clear that such an approach ensures that the
game consistency is maintained while the ordering
requirement is relaxed.

 As to the reliability requirement, we observe that in
several interactive applications the importance of the
delivery of an event decreases with the time; in particular,
in some games certain events may modify the relevance of
subsequent events. For example, knowing the position of an
avatar at time t may be no longer important after a certain
time period, if the position of the avatar has changed after t.
Additionally, a shooting event is not important if it does not
hit anyone. On the contrary, the shot assumes a critical
importance if it causes the death of a character in a game.
In essence, we observe that certain events must be
eventually delivered, independently of their delivery time
(we term such an event as Persistent Event or PE). Instead,
other events may exist whose validity is restricted to a
given time interval, as their effectiveness may be annulled
by subsequent events (we term such an event as Timed
Event or TE).

 In essence, while PEs represent important interactions
among players (e.g. shooting at another character), instead,
TEs are events that do not constitute strong interactions
among players (e.g. independent movements of characters
in a virtual world). In particular, the importance of a TE
diminishes when a new event is generated that annuls the
previous one. For example, denoting with e1, e2 two
subsequent movements of the character Alice, where
Tg(e1) < Tg(e2), we may have the case when e2 annuls e1
(i.e. e2 makes e1 obsolete). This means that if a GSS does
not receive e1 but receives e2, still a consistent state of the
current game is maintained at that GSS, since the execution
of e2 without the execution of e1 does not modify the final
game state. However, the presence of a further event e
correlated to e1, and interleaved between e1 and e2, may
break the obsolescence relation between e1 and e2. For
example, consider the case when Alice is moving through
two subsequent moves; if a further event e that represents a
“shot” generated by Bob occurs in between the two
different moves by Alice, then no kind of obsolescence may
be considered. In fact, the position of Alice is important to
determine if the shot has hit her.

 Based on these considerations, in (Ferretti and Roccetti
2003a) we introduced a formal definition of obsolescence
according to which we say that an event e2 makes another
event e1 obsolete (denoted e1 |<o| e2), if the execution of the
two events e1 and e2, and the execution of the single event
e2 (i.e. without executing e1), during the game evolution,
bring to the same result.

 The use of such a property has allowed us to devise an
obsolescence-based delivery strategy which guarantees that
all PEs (and non obsolete TEs) are reliably delivered at the
receiver. In essence, this property may be enforced by
requiring that each PE is delivered by every GSS, while for
each TE e, it is assured that every GSS delivers it or
eventually delivers a further event e* such that e |<o| e*.

 As a final consequence, it is clear that an augmented
interactivity degree may be obtained by dropping obsolete
events and by relaxing the reliability requirement for these
events, as their execution is no longer important for the
consistency maintenance.

3. THE EVENT DELIVERY SYNCHRONIZATION
SERVICE

This Section presents a receiver-initiated version of the
obsolescence-based delivery service mentioned above. This
approach exploits the obsolescence property to drop useless
messages, thus relaxing (when possible) the reliability
property to gain interactivity. To provide reliability, our
receiver-initiated approach adopts the typical solution of
using negative acknowledgments (NACKs) coupled with
refresh messages that contain information related to the
sent events. In particular, we piggyback obsolescence
information on the refresh messages that identifies non
obsolete events, thus allowing receivers to idividuate those
events for which retransmission must be requested.

Figure 1: Model of the Receiver-Initiated Approach

 A graphical model of the proposed mechanism is reported
in Figure 1; it works as follows. Each GSS measures the
GTD of each delivered event. When this value exceeds the
GIT, the GSS enters in a stabilization phase so as to report
the GTD within the GIT. The strategy used to this aim

amounts to dropping obsolete events. In essence, each GSS
performs the following activities:

1. Each receiving GSS stores incoming TEs into a FIFO

game_queue. Whenever a TE (say e) at the head of the
FIFO queue is fetched to be executed (played-out at
the game layer), a check for obsolescence is carried
out. If e is non obsolete (i.e. there is no other event
stored in the FIFO queue that annuls e based on the |<o|
relation) then e is executed; otherwise e is dropped.
Moreover, when a receiving GSS experiences a loss of
a non obsolete event, a NACK is sent to the sender.

2. Each sending GSS exploits the obsolescence relation to

save the retransmission of a number of obsolete events,
whose elimination allows to report the GTD within the
GIT. In fact, each sending GSS maintains the list of
those events that must be retransmitted if NACKs are
received from a given GSS. Upon request for a given
event e, a GSS retransmits it only if e is not obsolete;
otherwise, the most recent event that makes e obsolete
is transmitted.

 In the following, we illustrate the main activities
performed by our obsolescence-based event delivery
service. In particular, as shown in Figure 2 (lines 0-9), this
software component exploits the three following
procedures: send-event, receive-NACK, receive-event.

send-event: It implements a simple event transmission
procedure. Whenever an event (say e) is fetched from the
event_queue of a given GSS to be sent, the send-event
procedure is invoked (line 4). In essence, this procedure
simply transmits e using an unreliable communication
channel, without requiring any acknowledgment that
confirms the event reception (lines 11-12).

receive-NACK: It implements the NACK management
procedure. Whenever a NACK for an event e is received at
a given GSS, the receive-NACK procedure is invoked (line
6). This procedure exploits a data structure I that maintains
the set of all those events which make e obsolete. In
essence, a check is performed to verify whether some event
in I exists (lines 17-18); in this case, instead of
retransmitting e, our approach transmits the most recent
event that makes e obsolete (i.e. the event in I with the
largest event generation time Tg, lines 19-20). Otherwise e
is retransmitted, as in a traditional reliable receiver-initiated
approach (line 16).

receive-event: It manages events at the receiver-side.
Whenever an event e is received at a given GSS, the
receive-event procedure is invoked (line 8). In particular,
when a process is notified with an event (say e), e is
checked for obsolescence (line 24). In a positive case, e is
dropped (line 25); otherwise, e is buffered in the

enqueue_event

UNRELIABLE COMMUNICATION

Sender

Receiver

Obsolescence

Correlation

 event_queue game_queue

 receive_NACK receive_event send_NACK

 push send_event

process_event

 send

 refresh

0 Process Event_Deliver_Service {
1 while (true)
2 case action of
3 send_event :
4 send-event();
5 receive_NACK :
6 receive-NACK();
7 receive_event :
8 receive-event();
9 }

10 procedure send-event() {
11 e := pop(event_queue);
12 send(e);
13 }

14 procedure receive-NACK() {
15 e := return_nacked_event();
16 etransm := e;

17 I := {ei | e |<o| ei};

18 if (I ≠ NULL)
19 etransm := maxTg (ei ∈ I);
20 send(etransm);
21 }

22 procedure receive-event() {
23 e := receive();
24 if (marked_to_drop[e])
25 drop(e);
26 else {
27 push(e, game_queue);
28 for each ei in game_queue

29 if (ei |<o| e)
30 drop(ei);

31 I := {ek | ek |<o| e ∧
 ek not yet received};

32 for each ek ∈ I
33 marked_to_drop[ej] := true;
34 J:={ek |(sender(ek)=sender(e))∧
 ek not yet received ∧
 (Tg(ek) < Tg(e)) ∧
 !(ek |<o| e) };

35 for each ek Œ J
36 send_NACK(ek);
37 }
38 }

Figure 2: Event Delivery Service: a Receiver-Initiated Obsolescence-Based Implementation

game_queue (line 27). Upon insertion of a new event in the
game_queue, this queue is scanned searching for obsolete
events to be dropped according to the |<o| relation (lines 28-
30). In essence, the aim of the statements from line 28 to
line 33 is to drop all the queued events which are annulled
by e (and to mark as obsolete all those events annulled by e
but not yet received). Based on the information contained
in the refresh message, a data structure J is maintained that
contains knowledge about all those non obsolete events that
were generated before e. If those events have not been
received yet, they are requested again (lines 34-36).

4. EXPERIMENTAL ASSESSMENT

This Section presents results obtained from an experimental
study we developed in order to assess the effectiveness of
our receiver-initiated obsolescence-based delivery
approach. To quantify the amount of events delivered to
maintain the game state consistency, we compared our
mechanism with the delivery service provided by the
Reliable Multicast Library (RML) described in (Azevedo et
al. 2002). This service implements an enhanced receiver-

initiated reliable multicast delivery that uses a particular
NACK suppression algorithm to reduce the number of
messages transmitted through the network. In essence, this
approach specifies in a single NACK message the request
for a certain amount of events that the receiver has not yet
received and that it is able to handle. Both the two
compared strategies are built over the IP Multicast protocol.

 We used three hosts, located at the Department of
Computer Science of the University of Bologna, that
exchanged messages representing game events. To evaluate
our approach in different traffic scenarios, we resorted to a
particular software tool, provided by the RML library, that
allows establishing a specific packet loss probability. The
size of a message transmitting a given game event was 200
Bytes on average so as to emulate a real game event
(Borella 2000; Faber 2002). In order to allow GSSs to relax
the event reliability, events were generated as PEs or TEs.
Each TE annulled only a subset of earlier TEs depending on
their semantics. Each sending GSS produced events at a
frequency of 20 Hertz.

Message Loss : 0%

0
20
40
60
80

100
120

1 14 27 40 53 66 79 92

messages

jit
te

r (
m

se
c)

Our Approach
RML

Message Loss : 1%

0
20
40
60
80

100
120
140

1 14 27 40 53 66 79 92

messages

jit
te

r (
m

se
c)

Our Approach
RML

Message Loss : 5%

0

500

1000

1500

1 15 29 43 57 71 85 99

messages

jit
te

r (
m

se
c)

Our Approach
RML

Message Loss : 10%

0

500

1000

1500

2000

1 15 29 43 57 71 85 99

messages

jit
te

r (
m

se
c)

Our Approach
RML

Message Loss : 15%

0

500

1000

1500

2000

1 15 29 43 57 71 85 99

messages

jit
te

r (
m

se
c)

Our Approach
RML

Figure 3: Event Delivery Jitter

 Figure 3 reports the variation of the time intervals (jitter)
elapsed between the delivery of subsequent game events
transmitted using the two alternative approaches mentioned
above. In particular, each graph is concerned with a
particular message loss probability experienced during the
game event transmission. Using the RML delivery, we
observe an higher number of spikes (very large delays)
experienced for delivering game events to the final
destination. Further, the number of spikes increases with
larger message loss probabilities. A clear motivation for
these results is that events which are subsequent to a late
event e are not delivered to the final destination until e may
be delivered. When using our approach, instead, as obsolete

events are never retransmitted, the probability of incurring
in large spikes decreases. In particular, this phenomenon is
shown in the Figure by the fact that the black curve (our
approach) is almost flat, and is covered by the oscillations
of the grey curve (RML).

 Figure 4 shows the percentage of the number of the
delivered events, as a function of the packet loss. It is
possible to observe that the larger the packet loss
probability the smaller the number of events delivered by
our approach, as obsolete events are not retransmitted
during the communication. Figure 5 shows the percentage
of NACKs generated and transmitted during the game

events transmission. As shown in the Figure, our approach
reduces this value w.r.t. the RML approach.

86
88
90
92
94
96
98

100
102

0 1 5 10 15

% packet loss

%
 d

el
iv

er
ed

 m
es

sa
ge

s

Our Approach
RML

Figure 4: Average Number of Delivered Events (%)

0

2

4

6

8

10

0 1 5 10 15

% packet loss

%
 N

A
C

K
s

Our Approach
RML

Figure 5: Number of NACKs (%)

95

100

105

110

115

120

125

0 1 5 10 15

% packet loss

%
 tr

an
sm

itt
ed

 m
es

sa
ge

s

Our Approach
RML

Figure 6: Total Amount of Message Throughout the

Network (%)

 Figure 6 reports the total number of events sent
throughout the network depending on the packet loss. As
expected, our approach generates a smaller amount of
messages (NACKs + game events) w.r.t. RML. Finally,

Figure 7 shows the average GTD values (expressed in
msec) provided by our receiver-initiated obsolescence-
based delivery approach contrasted with the RML delivery,
as functions of the packet loss. As lower GTD values
correspond to an higher interactivity degree, we may
conclude that our approach guarantees an higher
interactivity degree w.r.t. RML.

0

200

400

600

800

1000

1200

0 1 5 10 15

% packet loss

G
TD Our Approach

RML

Figure 7: Average GTD Values

5. CONCLUSIONS

In this paper we presented the design of a receiver-initiated
event delivery service devised to support networked
multiplayer games on distributed computing architectures.
This approach enables one to drop obsolete events in order
to maintain an acceptable interactivity degree among
players. At the same time, by considering the semantics of
the game events, the algorithm does not cause
inconsistencies in the distributed game state. Results
obtained from the experimental study we have carried out
confirm the viability of our approach.

ACKNOWLEDGEMENTS

We are indebted to Alessandra Innocenzi for her assistance
during the implementation of the software architecture
discussed in this paper. We wish to thank the Italian
M.I.U.R. (Interlink) and Microsoft Research (UK) for the
partial financial support to our research.

REFERENCES

Aarthus L., Holmqvist K. and Kirkengen M. 2002. “Genaralized

two-tier relevance filtering of computer game update events”.
In Proceedings of NetGames2002, (Braunschweig, Germany,
April 16-17), 10-13.

Azevedo J.A., Scanferla M. and Sadoc D. 2002. “The Reliable
Multicast Library (RML) and Tangram II”. Whiteboard
Developer Documentation, (June),
http://www.land.ufrj.br/tools/rmcast.

Bauer D., Rooney S. and Scotton P. 2002. “Network
Infrastructure for Massively Distributed Games”. In

Proceeding of NetGames2002, (Braunschweig, Germany,
April 16-17), 36-43.

Birman K. 1994. “A Response to Cheriton and Skeen’s criticism
of causally and totally ordered communication.” ACM
Operating System Review 28, No. 1, (January), 11-21.

Bharambe A.R., Rao S. and Seshan S. 2002. “Mercury: a scalable
publish-subscribe system for Internet games”. In Proceedings
of NetGames2002, (Braunschweig, Germany, April 16-17), 3-
9.

Borella M.S. 2000. “Source models for network game traffic.”
Computer Communications 23, No. 4 (February), 403-410.

Cai W., Xavier P., Turner S.J. And Lee B. 2002. “A Scalable
Architecture for Supporting Interactive Games on the
Internet”. In Proceedings of the 16th Workshop on Parallel
and Distributed Simulation (Washington, DC, May 12-15),
54-61.

Cheriton D.R. and Skeen D. 1993. “Understanding the Limitations
of Causal and Totally Ordered Multicast”. In Proceedings of
the 14th Symposium on Operating System Principles
(SOSP’93), (Asheville, NC, December 5-8), 44-57.

Chockler C.V., Keidar I. and Vitemberg R. 2001. “Group
Communication Specifications: A Comprehensive Study”.
ACM Computing Surveys 33, No. 4 (December), 427-469.

Cristian F. 1989. “Probabilistic clock synchronization”,
Distributed Computing 3, No. 3, 146-158.

Cronin E., Filstrup B., Jamin S. and Kurc A.R. 2002. “An efficient
synchronization mechanism for mirrored game architectures”.
In Proceedings of NetGames2002 (Braunschweig, Germany,
April 16-17), 67-73.

Crowcroft J., Gemmell J., Leshchiner D., Luby M., Rizzo L.,
Speakman T., Farinacci D., Lin S., Tweedly A., Bhaskar N.,
Edmonstone R., Johnson K.M., Sumanasekera R. and
Vicisano L. 2000. “PGM Reliable Transport Protocol”.
Internet Engineering Task Force, Internet Draft (April).

Défago X., Schiper A. and Urban P. 2000. “Totally ordered
broadcast and multicast algorithms: a comprehensive study”.
Technical Report, DSC/2000/036, Swiss Federal Ecole
Politechnique Fédérale de Lausanne, Switzerland
(September).

Drummond R. and Babaoglu O. 1993. “Low-cost Clock
Synchronization.” Distributed Computing,6, No. 3, 193-203.

Farber J. 2002. “Network game traffic modelling”. In Proceedings
of NetGames2002 (Braunschweig, Germany, April 16-17), 53-
57.

Ferretti S. and Cacciaguerra S. 2003. “A design for networked
multiplayer games: an architectural proposal”. In Proceedings
of Euromedia 2003 (Plymouth, UK, April), 88-93.

Ferretti S. and Roccetti M. 2003. “On Designing an Event
Delivery Service for Multiplayer Networked Games: An
Approach Based on Obsolescence”. In Proceedings of
IASTED International Conference on Internet and Multimedia
Systems and Applications (IMSA 2003), (M.H. Hamza Ed.),
Acta Press, (Honolulu, HI, August 13-15), 109-114.

Ferretti S. and Roccetti M. 2003a. “A Novel Obsolescence-Based
Approach to Event Delivery Synchronization in Multiplayer
Games”. Submitted for publication to an International Journal.

Fiedler S., Wallner M. and Weber M. 2002. “A communication
architecture for massive multiplayer games”. In Proceedings
of NetGames2002 (Braunschweig, Germany, April 16-17), 14-
22.

Floyd S., Jacobson V., Liu C., McCanne S. and Zhang L. 1997.
“A Reliable Multicast Framework for Light-weight Sessions
and Application Level Framing.” IEEE/ACM Transactions on
Networking 5, No. 6 (December), 784-803.

Gafni A. 1988. “Rollback mechanism for optimistic distributed
simulation systems”. In Proceedings of the SCS

Multiconference on Distributed Simulation (San Diego, CA,
July), 61-67.

Griwodz C. 2002 “State replication for multiplayer games”. In
Proceedings of NetGames2002 (Braunschweig, Germany,
April 16-17), 29-35.

Gusella R. and Zatti S. 1989. “The accuracy of clock
synchronization achieved by TEMPO in Berkeley UNIX
4.3BSD.” IEEE Transactions of Software Engineering 15, No.
7 (July), 47-53.

Halpern J.Y., Simons B.B., Strong H. R. and Dolev D. 1984.
“Fault Tolerant Clock Synchronization”. In Proceedings of the
3rd Annual ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing (Vancouver, Canada, August 27-
29), 89-102.

Holbrook H., Singhal S. and Cheriton D. 1995. “Log-Based
Receiver-Reliable Multiscat for Distributed Interactive
Simulation”. In Proceedings of the ACM SIGCOMM’95,
Conf. on Applications, Technologies, Architectures, and
Protocols for Computer Communication (Cambridge, USA,
August 28 – September 1), 328-341.

Jefferson D.R. 1985. “Virtual Time.” ACM Transactions on
Programming Languages and Systems 7, No. 3 (July), 404-
425.

Liu C., Ezhilchelvan P.D. and Barcellos M. 1999. “A Multicast
Protocol for Reliable Group Applications.” Lecture Notes in
Computer Science, 1736. (First International Workshop on
Networked Group Communication - NGC'99). Springer-
Verlag, 170-187.

Mauve M. 2000. “Consistency in replicated continuous interactive
media”. In Proceedings of the 2000 ACM Conference on
Computer Supported Cooperative Work (Philadelphia, PE,
December 2-6), 181-190.

Mauve M., Fisher S., Widmer, J. 2002. “A Generic Proxy System
for Netwoked Computer Games“, in Proceeding of
NetGames2002, (Braunschweig, Germany, April 16-17), 25-
28.

Mills D.L. 1991. “Internet Time Synchronization: the Network
Time Protocol.” IEEE Transactions on Communications, 39,
No. 10 (October), 1482-1493.

Obraczka K. 1998. “Multicast transport protocols: A survey and
taxonomy.” IEEE Communication Magazine 36, No. 1
(January), 94-102.

Openskies Network Architecture Project, 2002. Web Site:
http://www.openskies.net

Paul S. 1998. Multicasting on the Internet and its applications.
Kluwer Academic Publishers.

Rezende J.F., Mauthe A., Fdida S. and Hutchison D. 1996. “Fully
reliable multicast in heterogeneous environments”. In
Proceedings of Protocols for High Speed Network (Sophia
Antipolis, France, October 28-30), 121-133.

Steinman J.S., Bagrodia R. and Jefferson D. 1993. “Breathing
time warp“. In Proceedings of the 1993 Workshop on Parallel
and Distributed Simulation (San Diego, CA, May 16-19),
109-118.

Steinman J.S. 1995. “Scalable parallel and distributed military
simulations using the Speedes framework”. In Proceedings of
Object-Oriented Simulation Conference (Las Vegas, NV), 3-
23.

Towsley D.F., Kurose J.F. and Pingali S. 1997. “A Comparison of
Sender-Initiated and Receiver-Initiated Reliable Multicast
Protocols.” IEEE Journal on Selected Areas in
Communications 15, No. 3, 398-406.

A GENERIC ARCHITECTURE FOR MULTI-PLATFORM
WIRELESS GAME DEVELOPMENT

Alexandre Damasceno
Börje Karlsson

Danielle Rousy D. da Silva
Informatics Center (CIn)

Pernambuco Federal University (UFPE)
Av. Prof. Luiz Freire, s/n, CIn/CCEN/UFPE, Cidade Universitária,

Recife, Pernambuco, Brazil
50740-540

E-mail: {algd,bffk,drds}@cin.ufpe.br

KEYWORDS
Wireless games, game architecture, game engine.

ABSTRACT

With the current growth of the wireless devices (especially
cell phones) and digital games markets, several
manufactures started providing some infra-structure for the
development of games for their products. With the creation
of a myriad of technologies, developers realized the need
of some sort of multi-platform architecture that could help
game development across devices and technologies.
Considering the above and the authors experience on the
development of several games, this work presents a simple,
generic architecture, easily adaptable to help the wireless
game developer in developing mobile games quickly and
efficiently a across devices such as cell phones.

INTRODUCTION

The digital games market is a market going through a huge
growth, moving annually millions of dollars worldwide
(IDSA 2003). In turn, the wireless devices market, is also
facing a high growth, as cell phones stop being devices
dedicated to voice calls and start to incorporate features
like calendars, e-mail readers, MP3 players.
It is not a surprise that such devices are being explored by
the electronic entertainment industry as platforms for
digital games distribution.
Initially, the device manufactures were the game
producers, creating applications and games specifically for
their handsets. But as demand for new applications and
games grew, the industry realized that there was a need for
the creation of some way to allow other companies to
develop these applications. Pushed by this need, several
device manufacturers and software companies decided to
design software and hardware layers to fit between the
devices operational systems and applications, allowing
other companies and developers to work with this layer.
One of the first initiatives in this direction was Sun’s Java
2 Micro Edition (J2ME), a “compact” version of the Java
language and platform focused on devices with smaller
processing power and little memory. With this support,
device manufacturers could implement a Java virtual
machine on their devices to run Java byte code. The

adoption of such solution allowed the development of a
much higher number of applications in much less time and
combined with the availability of Java developers that
knew the standard Java platform.
Some of the greatest difficulties on developing mobile
games are the restriction imposed by the devices and the
wide range of available development technologies. The
situation gets even more complicated when the application
domain is a complex one, as is the case with digital games.
Also, many of the techniques and architectures applied in
computer game development can not be directly applied to
cell phone games, because these techniques usually require
high processing loads and have a large memory.
Considering these aspects, this work tries to present a
generic architecture that is both simple and easily
adaptable to help a quicker and more efficient game
development across devices and technologies, but is
primarily focused on cell phone games.
This architecture was created based on the experience
acquired during the development of several games (Arruda
2002) by the team of which the authors are part and was
used on various games as is the case of GoldHunter,
SpaceRunner, PodRace, Atlantis etc. (see Figure 1).

Figure 1 – Stalingrado and PodRace

PROPOSED ARCHITECTURE

The proposed architecture was based on the experience of
a Research & Development team of which the authors are
part and that has already produced several development
frameworks (Pessoa 2001; Barros 2003; Nascimento
2003), extensions (Karlsson and Ramalho 2002) and more
than 20 games for various wireless platforms; and allowed
for faster game development and good code reuse.

Presentation Layer

Control Layer

Logical objects / Logic Layer

Logic Layer Canvas

A
u
xilia

ry L
a
ye

r

User input/output

Paint loop Update loop

Form 2 Form 3 Form 4Form 1 Presentation Layer

Control Layer

Logical objects / Logic Layer

Logic Layer Canvas

A
u
xilia

ry L
a
ye

r

User input/output

Paint loop Update loop

Form 2 Form 3 Form 4Form 1

Figure 2: Proposed Architecture

It is divided into five main layers: the presentation layer;
the control layer; the game logic layer; a canvas layer; and
an auxiliary layer. They are related as shown in Figure 2.
• The presentation layer is composed of the classes

responsible for the game presentation screens, game
menus (setup menus, main menu etc.), animations, and
every screen necessary for the navigational model
before the player gets to the game itself.

• The control layer is the game controller, responsible
for the screen changes in the presentation layer.
Depending on the user input, this layer will provide
the necessary support to change the game screens and
the game state. When a new game is started, the
controller needs to launch a parallel process to handle
the game life cycle until the game is finalized. This
looping cycle is responsible for dealing with the game
logic layer, updating its information, according to its
previous state and the user inputs. After that, this
process must start the screen rendering in order for the
user to perceive the game environment changes.

• The game logic layer has the responsibility of
representing logically the game objects, game items,
the player’s avatar, the opponents and allies, obstacles
as well as the object attributes and the game world
representation. This layer is composed basically by a
component with two functions: update and key handle.
The key handle is responsible for the game input
mechanism sent by the game canvas. These events are
handled and the game state is updated by them. The
update is responsible for the world updating process,
updating all the necessary game components. Each
game component must implement a update
method/function, that will be called with the relevant
information for the object updating.

• The game canvas has two main
functions/responsibilities. One of them is to listen for
the user input events, handle these events and send
them to the game logic layer. The canvas’ other main
function is to perform the screen rendering of the
game info required by the control layer. This function
is requested by the control layer each game iteration,
right after the game world update procedure.

• The auxiliary layer responsibility is to provide
important information to the whole system, global
variables, internationalization resources, and every
other support required by several architecture layers.

Usage demonstration

In order to more easily demonstrate the architecture, two
simple usage examples are presented bellow. The first one
(Figure 3), shows the architecture behaviour on a scenery
where the user is navigating trough the game menus
(before the game itself). And the second one (Figure 4),
shows a game cycle without user intervention.

Presentation Layer

Main Menu

<New Game>
Configuration

Help

New Game

<Start>
Continue
Network

Back Select

Back Select

Control Layer

Game One

Press Start

Exit Start

1

23

4

5 6

7

Logic Layer
Canvas

8

updatepaint

Presentation Layer

Main Menu

<New Game>
Configuration

Help

New Game

<Start>
Continue
Network

Back Select

Back Select

Control Layer

Game One

Press Start

Exit Start

1

23

4

5 6

7

Logic Layer
Canvas

8

updatepaint

Figure 3: User Alternating Menus Diagram

User Alternating Menus
1. The presentation layer shows the “main menu”

options to the player
2. The player selects the “new game” menu option,

by pressing the Select command.
3. The presentation layer receives the Select

command event, analyses the select menu option
and asks the control layer to change the game
screen to the “new game” menu.

4. The control layer changes the screen focus to the
“new game” menu.

5. The presentation layer exhibits the “new game”
menu options to the player.

6. The user chooses the “start game” menu option,
by pressing the vertical keys and the Select
command.

7. The presentation layer receives the Select
command event, analyses the selected menu
option and asks the control layer to start a new
game and pass the screen control to the canvas.

8. The control layer starts a parallel process to
handle the game life cycle loop. This loop will go
on until the game is over, calling the game logic
layer for updates and the game canvas for the
game screen rendering.

As can be seen on the diagram on Figure 3, the control
layer is responsible for changing menus and game screens
before the game action begins. The events generated and
received by these screens that are part of the presentation
layer, are then sent to the control layer for analysis and
processing. In the case the chosen screen is the game
canvas, the controller stops handling events and starts the

game cycle, which is responsible for updating and
rendering the game progress.

Exit Pause

Control Layer

1

Logic Layer
Canvas

updatepaint

Enemy
Ship

Exit Pause

(1,1) (1,1)

(10,10) (8,10)

4

5

6

7

8

2 3

Exit Pause

Control Layer

1

Logic Layer
Canvas

updatepaint

Enemy
Ship

Exit Pause

(1,1) (1,1)

(10,10) (8,10)

4

5

6

7

8

2 3

Figure 4: Game Iteration with User Interaction

Game iteration with user interaction
1. The “player” logical object on the game model of

the game logic layer has attributes like position
and speed. The game canvas renders the player in
the screen considering its attributes.

2. The user presses the left directional key,
indicating that he wants its ship to move to the
left.

3. The game canvas receives the left key pressing
event and calls the game logic layer responsible
for handling this event. The game logic layer
handles the event, changing some game internal
representation indicating the key pressing.

4. With the game life cycle started (the loop process
on the control layer); the update function of the
game logic layer is called with the information
that the left key was pressed by the player.

5. The update function on the player object verifies
that the key pressed was the left key and updates
the player ship speed. Then updates the ship
position according to its speeds.

6. After the update execution ends, the control layer
calls the game canvas screen rendering function.

7. The game canvas verifies the new object position
and renders it on the correct screen position.

8. This cycle is repeated until the game is over or
the game state changes.

Figure 4 shows the diagram of a game cycle with user
interaction, where an event is captured by the game canvas
and sent to the game logic layer for processing. During the
next game cycle, the control layer requests the update of
the game representation taking into account the player
input. And after every game object and the world are
updated, the game logic layer will again requests the game
canvas to render the new game frame according to the
objects new attribute values.

CONCLUSION

 Despite being quite simple, the architecture presented here
was used as a base for the development of several games
(as for example Atlantis, GoldHunter, SpaceRunner,
SeaHunter, PodRace, Stalingrado, X-agon) using different
technologies and for different handsets. Some of these
games even won wireless game development contests
throughout the world, proving their quality.
The architecture simplicity is one of its greatest strengths
allowing for the simple creation of games letting the
developer focus on the game design and on the game rules
instead of implementation details (as how the screens will
be drawn, or how the events will be handled).
Another advantage of such architecture is that it allows
task division. Each module can be implemented by a
different sub-team after agreeing on a simple set of
interfaces between the components.

REFERENCES

Arruda, W., Souza, P., Silva, D., Damasceno, A. and
Ramalho, G. 2002. “Developing J2ME games: Problems and
Saves”, In Proceedings of the Brazilian Games and Digital
Entertainment Workshop (WJogos 2002), Fortaleza, CE,
Brazil, October, 2002.
Barros, T. 2003. “SymbG(r)aF - Symbian Games
Framework”, Graduation work, Centro de Informática,
Universidade Federal de Pernambuco, Recife, Brazil,
August, 2003.
IDSA. 2003. “Essential facts about the computer and video
game industry - 2003 Sales, Demographics and Usage data”,
Market report, Interactive Digital Software Association,
USA, May, 2003.
Karlsson, B. and Ramalho, G. 2002. “Incorporating
Movement Behaviours and Physical Modelling into wGEM”,
In Proceedings of the Brazilian Games and Digital
Entertainment Workshop (WJogos 2002), Fortaleza, CE,
Brazil, October, 2002.
Nascimento, I. 2003. “Desenvolvimento de um Framework
para Jogos sobre a plataforma BREW”, Graduation work,
Centro de Informática, Universidade Federal de Pernambuco,
Recife, Brazil, August, 2003.
Pessoa, C. 2001. “wGEM: um Framework de
Desenvolvimento de Jogos para Dispositivos Móveis”.
Master Thesis, Centro de Informática, Universidade Federal
de Pernambuco, Recife, Brazil, November, 2001.

AUTHOR BIOGRAPHY

ALEXANDRE DAMASCENO is a Masters Student in
AI at Centro de Informática (CIn), Universidade Federal
de Pernambuco (UFPE) and has a BSc and is finishing his
Masters degree, both in Computer Science.
BÖRJE KARLSSON is a Student Researcher in AI also
at CIn/UFPE and has a BSc in Computer Science and is
finishing a specialization in Software Engineering at
CIn/UFPE.
DANIELLE SILVA is a PHD Student in AI at CIn/UFPE
and has a BSc and a Msc in Computer Science.

The three authors are currently working in projects at
CIn/UFPE and C.E.S.A.R, related to development and
testing for mobile devices.

GAME DESIGN FOR WIRELESS DEVICES

Börje Karlsson
Danielle Rousy D. da Silva

Alexandre Damasceno
Informatics Center (CIn)

Pernambuco Federal University (UFPE)
Av. Prof. Luiz Freire, s/n, CIn/CCEN/UFPE, Cidade Universitária,

Recife, Pernambuco, Brazil
50740-540

E-mail: {bffk,drds,algd}@cin.ufpe.br

KEYWORDS
Game design, wireless technologies, software engineering.

ABSTRACT

The present article describes the current status of wireless
games and goes on to discuss conceptual aspects of
wireless game design, showing design “rules” and real
solutions to try to solve the several restrictions that the
wireless devices and technology present to the game
developer. This work is based on the experience of a
Research & Development team of which the authors are
part and that has already produced several development
frameworks and more than 20 games for various wireless
platforms.

INTRODUCTION

With the growing market for wireless devices and the
increase in memory and processing power as well as the
growth of the gaming market, gaming has become a clear
target for many manufacturers and developers.
The wireless technologies exhibit some characteristics
very handy to game development, as connectivity,
interactivity and mobility. The key attribute in this
environment is that it allows for the users to play
anywhere and at anytime. This, added to the fact that
thousands of people have access to wireless devices, opens
broad perspectives to the mobile game development
market.
However, there are some restrictions regarding the wide
range of user profiles and technologies and hardware
platforms. And these restrictions need to be taken into
account during the design and implementation stages of a
gem development.
This article has as objective, the discussion of the
conceptual design of games for wireless devices using the
experience of a Research & Development team of which
the authors are part and that has already produced several
development frameworks and more than 20 games for
various wireless platforms. Probably due to the fact that
these technologies are maturing, little is dedicated in the
available literature to the study of game design in this
environment, which is a crucial area in game development.

WIRELESS GAME DESIGN

When the first games for mobile devices were developed,
they were made specifically to a single limited device,
what restricted the game so much that only very simple
games were possible. With the market growth and some
technology maturity, the device manufacturers started
providing some infra-structure (J2ME, BREW, Mophun,
etc.) to support game creation by third parties. And that
allowed for richer games, however, most games were (and
still are) fairly simple, finding their inspiration in games
from the early '80s, like early Palm games (Spronck 2001).
With the complexity growth and the completely
interdisciplinary nature, digital games require a complex
development cycle. The conceptual project of a game (also
called game design) became one of the most important
stages of a game project life cycle. This stage covers the
definition of the game feature set as storyline; characters
(physical appearance and psychological profiles); game
goals; ending sequence, scoring systems; object hierarchy;
game world rules and several other aspects. The important
thing is that, at the end of this stage, all the game
properties have been well thought and defined, including
the user interface project, graphics, sound effects and
soundtrack.

In a wireless device environment, the game design
must be adapted to the imposed restrictions, regarding
both the technology and the device features.

Nowadays, mobile handsets are very different from
each other in several aspects, among them: screen size and
shape, number of colors available, input mechanisms,
development platforms, operational system (when
available), available memory for storage and execution
and processing power. Besides that, games can be
developed using one of several available technologies
(such as WAP - Wireless Application Protocol, SMS -
Short Message Service, Sun’s J2ME - Java 2 Micro
Edition, Qualcomm’s BREW - Binary Runtime
Environment for Wireless, Sony’s Mophun and several
others).

WIRELESS DEVICES

One of the first considerations to be made during the game
design stage is what is the target platform for the game, a

cell phone or a bigger device? If it is a cell phone game,
which set of handsets will be targeted? For even in the
same series of devices by the same manufacturer, there are
huge differences. Some of which, are extremely relevant
to game development, as the number of available colors,
display size, frame rate, key placement, processing power
and memory capacity. Also the availability or lack of
features must be studied (like image transparency for
instance, that is not supported on all devices) and some
devices restrict the maximum application size even if
enough more storage space is available.
Most of the issues presented here, are focused on cell
phones or devices with small screens; but every
“rule/idea” can be applied to several different devices.
Trying to reach a good level of portability, a solution to
this problem has been to specify a common denominator
to all handset features. However, this approach presents
some disadvantages as not allowing the use of some
features available in more powerful devices. Another
approach is to develop different versions for the different
devices. A better approach is to start developing to the
common baseline, and then incorporate device specific
features.

GAME STYLES

Another relevant aspect is related to the game style, or
game category, of the title that is going to be developed.
Depending on the required resources e the resources
available on the target devices (be they hardware or
software), it could be impossible to implement the game
maintaining a good gameplay. Our experience has shown
that the best styles for cell phone games are: arcade style,
as Space Invaders, Pacman, Breakout, Snake, Galaxian,
Lode Runner, Seaquest, Frogger and others; or board
games, like Checkers, Chess, Go; or card-games as Black
Jack and Poker. The puzzle category is another one with a
very good acceptance if the device restrictions are well
handled. Good candidates are memory games, tic-tac-toe
and the like. Figure 1 shows one classic game inspired
game in Java 2 Micro Edition (J2ME) and Figure 2 shows
two classic inspired games developed in J2ME and ported
to BREW.
With the rise in processing power and display quality and
size, it is also possible to enhance older games with new
visuals and to develop larger and more complex games
with levels and more features. Independent of the selected
genre, it is always good to make the game as simple as
possible. Figure 3 shows one such game, a racing game
with several tracks and features, but still adequate to a
wireless device.

Figure 1 – Stalingrado using Java 2 Micro Edition

Figure 2 – GoldHunter and SeaHunter ports to BREW

Figure 3 – PodRace

DEVICE RESTRICTIONS

Some of the more important restriction imposed by the
devices and that influence game design are as follows.

Controls

The available input mechanisms are a very important issue
to be considered during the creation of a wireless game.
Cell phones present a high variety of keypads and some
even provide a stylus, as other wireless devices such as the
Palm that have some similar problems (Spronck and Herik
2002).
One must remember that mobile phones were designed
first and specially for voice telephony, and so were the
controls on most of these devices (although that’s
changing).
Besides that, keypads are sometimes tiny and sometimes
present a confusing layout; in some other cases, it is not
possible to press more than one key at he same time. For
example, create a Tetris like game where it’s necessary to
move and rotate a piece at the same time (or a racing game
where the player needs to press the accelerator and the
steering wheel on a curve) can be very tricky.
In order to mitigate these issues, a good practice is to map
some keys from the numeric pad to actions (as the 2, 4, 6
and 8 keys representing the directions). This practice came
from the fact that some handsets had a very small size, and
so, their directional keys were very close, what made it
very difficult to users to control the characters on games.
Another good approach is to not change the platform
expected behaviour for a certain key (for instance, in
BREW, the CLR key always cancels an action or erases a
character on a text field).

One possible solution for games that require simultaneous
key pressing (for example, moving the hero and shooting
at the same time) is to specify one of the actions to happen
automatically. As for example in PodRace, the player can
choose if there will be automatic acceleration or if the
player will have to press the “gas”; on the easier mode, the
player most only control the vehicle wheel and the ship
will break and accelerate automatically, but the user has
the option to have manual control over breaking and
accelerating if he wants that (making the game much
harder) or if the device supports multiple keys pressed
simultaneously.
This was also the approach used in Sea Hunter that
follows the style of the classic SeaQuest, every time the
diver gets in the confront area of the game, he starts to
shoot automatically, freeing the player to focus on the
diver movements.
During the development of a new game, a high priority
concern is to try to find ways to simplify user interaction
and improve gameplay. In the Tic-Tac-Toe game, for
example, a mapping between the key pad and the game
spots was made.

Graphical User Interface

Another problem found during the design of a game is the
definitions of the images and graphical items to be used,
especially because of size limitations for application
storage, the display shape and size and the number of
colors on each device palette. A good approach is
modifying the graphics for different screen sizes, to help
ensure an optimal user experience. Or in some cases, try to
work around the limitations like, if all game action occurs
in the center of the screen, try to center the image and clip
the rest. For example, in GoldHunter, the action always
happens near the screen corners, so the game level can be
bigger than the screen in some devices and the screen
scrolls, and the screen can be big enough for the whole
map to fit on it at once.
An even more basic rule is to always focus on the device
limitations. This means, don’t use too many or highly
detailed images, and favor simplicity and clarity. Even
when using color devices it is important to keep a small
palette consistent between all the images.
Another problem is related to text, on some platforms, if
you write a word to the screen with a certain font, this font
can be different on another device, and the visual result
may get compromised. Some times it’s better to have an
image representing the text, but than this approach brings
problems when one must have an application that supports
several languages.
Regarding the game menus, one should avoid nested levels
and complex navigation schemes. For example, in the
PodRace game, the menu appears over the splash screen
avoiding the presentation of another layer of screens and
reducing the number of key presses for the user to start
playing the game.
It is also good to emphasize that special care shall be taken
to the user interface, providing the user a good degree of
configuration and a consistent navigational model.

Networking

Networking and multiplayer gaming can add a lot to a
game gameplay and replay value. It is possible to project a
multi-user game for wireless devices (either using SMS
messages or protocols such as HTTP) if the developers
consider workarounds for issues as high latency and low
data transfer rates, which if not addressed can have the
opposite effect and lower the gameplay and replay values.
Good games genres that could make use of networking
and avoid these issues would be turn-based games and
strategy games. Or yet, one could incorporate these
usually undesired network behaviours into the game
storyline/environment.
Another possibility to make use of the networking features
available is to create servers that host score rankings or
even allow the downloading of new levels or characters to
a game.

Sound

Sound support is very different from device to device, and
some (especially older devices) don’t even provide support
for this feature, so it is another point that deserves special
attention during development. Some handsets allow for
one single sound, some for a sound track and some
synthesized sound effects to play concurrently, and some
even provide MP3, WAV and MIDI support. But the game
developer must take care not to over use this feature,
because repetitive sound can get boring and as the player
can play games anywhere sound may be inconvenient in some
situations, especially as some devices do not provide enough
volume control.

Interruptions

As stated before, mobile phones (and most wireless
devices) were designed first and foremost for voice
telephony (or some sort of office assistants), so it is
important to guarantee that the device can be used the way
originally intended and that the game can handle
interruptions gracefully, be they from a phone call, a
message arriving or a simple alarm clock ringing to warn a
user of a corporate meeting.

GAME DESIGN RULES

One should always remember that even with a quite
complex game in mind, in this context presented here, it is
targeted to a mobile device (usually a cell phone);
consequently the game should be kept as “casual” as
possible, where accessibility is favored instead of
deepness and immersion; focusing on minimizing player
frustration.
Game design is mainly focused on player actions,
fundamentally, when playing a game; a player takes
actions that cause changes in the game state; the game
world receives these actions; and is updates accordingly.
Games are a mix of struggle and effort. That is, a game
that is too simple gets boring; and a game that is too
difficult is frustrating to the player. Users usually enjoy
games that challenge them with problems that they can

overcome. There are typically three types of challenges:
physical, mental and opponents.
The physical ones are the ones related to physical abilities,
like, how fast someone can press a key several times, or
how quick are his reflexes. The mental ones are the ones
related to puzzles and memory. And the “opponents”
category is the one provided but the game AI or by other
players in case of a multi-player game.
A good and entertaining game usually consists of a
combination of those kinds of challenges. The game
should also be structured in a way that makes easy for the
developer to adjust de difficulty level (or even, the game
could have several difficulty levels) and change game
design to balance and balance the game.
Apart from the game challenges, there are several “rules”,
or rules of thumb, both collected via our experience or
from sources as (Crawford 2003), that provide insights and
guidelines for the design of new games (wireless or not).
One of such rules and a very powerful one is to always try
to build a community around your game, so that your
game will benefit from the increased replay value; for
example, a racing game like PodRace, could easily be
extended to support a server that could provide new race
courses and vehicles and that could store user created
tracks allowing users to exchange files and “improve”
their games, and this same server could host a ranking,
what would improve competition on the game. This
solution could also be faced as changing a single player
game into some sort of single-player multi-player game,
were even with single-player games, several players would
“fight” each other to win, increasing the “opponent”
category of challenges.
One other rule, more specific to the wireless games world,
is that as cell phones are a platform for “free-time” gaming
(gaming is not the main focus of the devices), the player
will usually play for short amounts of time. This shall be
taken into account in the game design, and the game
should provide short term goals for small playing sessions
and longer term goals for longer sessions and once these
long term goals are implemented, it would be nice to have
some way to store game progress so that the player does
not have to begin everything again every time he wants to
play, or every time the phone receives a voice call and
suspends the game (this was implemented in PodRace, the
player could choose to race one course in the Single Race
option, or could choose to race the whole championship at
once; and in this case, the game state would be saved
between each race course).
A very interesting project that deals with “game design
rules” is the 400 Project (Falstein 2003), where a set o 400
game design rules is being collected. Although still at the
beginning, the project already offers some insights into
game design issues. Some of the rules that most fit a
wireless gaming environment (and our experience
interpretation based on our experience) are:

• Turn Constants into Variables: like the physical
modeling in a game does not have to be realistic, one
can use constants and several simplifications, but the
user must think it is real.

• Fight Player Fatigue: especially true in the wireless
world, the game must always present challenges to the
players but without frustrating them.

• Maintain Suspension of Disbelief: true for any game,
even in mobile devices were it is difficult to have
player immersion; the games must focus the player
attention and games simplifications or platform
restriction should not harm the gameplay.

• Make Sub-games: accomplished by providing the
ability to play just a little game, like racing a single
race in PodRace.

• Provide Clear Short-Term Goals: somehow
intersecting with the above one, but not equal. Present
even on a single race, passing a opponent is a shorter
term goal.

• Let the Player Turn the Game Off: Both to be able to
save game state and allow the player to resume the
game and to be easy to exit the application.

• Identify Constraints: this one is the main focus of the
article; identify the constraints and work with and
around them.

• Provide an Enticing Long Term Goal: this one
complements the short term goals one.

• Make the First Player Action Painfully Obvious: also
especially true for the wireless gaming world, the
game must not require that the player read a manual in
order to start playing. It may be that if the player reads
the manual he will have access to more features, but it
must be obvious how to start playing.

• Keep the Interface Consistent: already commented on
the User Interface restrictions.

• Create AI in the Mind of the Player: same trick as the
Turn Constants into Variables one, one does not need
a real AI to make the game fun; little tricks can do the
magic (as real AI can also).

• Don’t Penalize the Player: could be stated as Reward
the Player, the user is playing to have fun, so give him
an entertaining experience.

• Make the Game Fun for the Player, not the Designer
or Computer: this one works closely with the previous
one; of course it is fun to develop games and
developers want their favorite features into games.
But the end user is the game target and especially with
the different profiles of wireless gamers, their
interests will probably be different from the developer
ones.

An important artifact and guide through the game
development process is the Game Design Document.
Often neglected, especially in smaller games like the ones
commented here, it is essential to record design decisions
and provide a unified view of the project to the whole
team. It should start as general design thoughts and be
refined over and over again until a good foundation is
reached. A good way to start would be to discuss what
could be present on the game (the possible), what must be
present (the essential) and what the developers would like
to see present (the desirable).

CONCLUSION

Wireless games were once a niche, but are now becoming
a huge growing market, and constitute a great area to be
explored by both commercial developers and academics.
Offering great opportunities in technology
experimentation and game development techniques, this
kind of game requires an additional effort to take into
account the different wireless devices user profiles and
different device restrictions. By one side, more intuitive
games (but with high game play) are required. And from
the other side, the range of target audiences grows, as for
example, games for company executives.
Several rules of thumb used in order to help on the design
of new games for this environment and the importance of
a game design document documenting the decisions made,
were presented.
But the strongest issue to be concerned with is that
wireless games can run a variety of platforms and devices
with different and restricted resources, each one having to
be considered. And also an important point is that every
platform require constant tests on the devices and not only
on the development kit emulators, in order to guarantee
that your design decisions work across several devices.

REFERENCES

Crawford, C. 2003. “Chris Crawford on Game Design”.
Indianapolis, IN: New Riders Press, USA.
Falstein, N. 2003. “The 400 Project – Rules of GameDesign”,
The Inspiracy, Greenbrae, USA. Available at
http://www.theinspiracy.com

Spronck, P. 2001. “Palm Game Design”. In Proceedings of
The Second International Conference on Intelligent Games
and Simulation (GAME-ON 2001), pp. 95-99, London, UK.
Spronck, P. and Herik, J. 2002. “Complex Games and Palm
Computers”. In Proceedings of the International Workshop
on Entertainment Computing (IWEC2002), pp. 28-35,
Makuhari, Japan.

AUTHOR BIOGRAPHY

BÖRJE KARLSSON is a Student Researcher at Centro
de Informática (CIn), Universidade Federal de
Pernambuco (UFPE) in the field of Artificial Intelligence
and is currently working in projects at CIn/UFPE and
C.E.S.A.R, related to development and testing for mobile
devices. Börje has a BSc in Computer Science and is
finishing a specialization in Software Engineering at
CIn/UFPE.

DANIELLE SILVA is a PHD Student at Centro de
Informática (CIn), Universidade Federal de Pernambuco
(UFPE) in the field of Artificial Intelligence and is
currently working in projects at CIn/UFPE and C.E.S.A.R,
related to development and testing for mobile devices.
Danielle has a BSc and a Msc in Computer Science.

ALEXANDRE DAMASCENO is a Masters Student at
Centro de Informática (CIn), Universidade Federal de
Pernambuco (UFPE) in the field of Artificial Intelligence
and is currently working in projects at CIn/UFPE and
C.E.S.A.R, related to development and testing for mobile
devices. Alexandre has a BSc and is finishing his Masters
degree, both in Computer Science.

COMPUTER VISION BASED INTERACTION-TECHNIQUES
FOR MOBILE GAMES

Christian Reimann, Volker Paelke, Dirk Stichling

University of Paderborn, C-LAB
Fürstenallee 11

33102 Paderborn, Germany
E-mail: {reimann; vox; tichel}@c-lab.de

KEYWORDS
HCI, Mobile Computing, Computer Vision

ABSTRACT

In this paper we present a simple mobile gaming
application on a standard PDA that employs computer
vision (CV) as it's main interaction modality. Practical
experience with the application demonstrates the
feasibility of CV as a primary interaction modality and
indicates the high potential of CV as an input modality for
mobile devices in the future.

INTRODUCTION

Advances in mobile computing and wireless
communication technology now enable the creation of
games with appealing graphics and game logic on a variety
of mobile devices ranging from smart phones to PDAs and
other portable computing devices. Because these
applications are targeted at a diverse user population that
will often employ them without previous training or
reference to a manual a highly usable interface design is
critical for their success. Effective interface design
becomes even more crucial when dealing with applications
that are aimed at fun and entertainment without an external
incentive for their use, such as games. A number of recent
conferences and workshops have therefore examined
specific problems of user interaction with mobile devices
(e.g. Dunlop and Brewster, 2001; Johnson, 1998;
WMCSA, 2002). Despite advances in several areas the
creation of attractive and usable mobile user interfaces is
still hindered by a lack of related design experience,
guidelines, processes and corresponding tools. A key
problem in the design of interfaces for mobile applications
is posed by limited and miniaturized input modalities.

Based on the observation that an increasing number of
mobile devices like smart phones and PDA's is equipped
with a camera we aim to exploit this capability as an input
modality for interaction in games. While the first
generation of cameras was usually limited to static images
the current generation allows capturing low-resolution
video streams, which can be exploited for interaction
through APIs. In the future camera sensors with even
higher resolution can be expected, enabling more precise
interaction techniques that could also be applicable outside
the gaming context.

RELATED WORK

Experience shows that the adaptation of existing mouse
and keyboard centered interaction techniques from desktop
computing to a mobile use context often encounters
serious problems due to the more limited and miniaturized
input modalities (for details see e.g. Dunlop and Brewster,
2001; WMCSA, 2002). A possible solution is the use of
additional input modalities like speech and computer
vision that are better suited to a mobile context of use. In
this paper we examine the use of mobile computer vision,
based on existing work that studied the use of CV based
hand and body gesture recognition as an input modality
(Nölker and Ritter, 1999)(Gravila 1999). Recently, such
techniques have entered into the commercial domain of
console games with the EyeToy technology presented by
Sony for the Playstation 2.

INTERACTING WITH MOBILE DEVICES

Typically, users interact with mobile device in a way that
differs significantly from the interaction with desktop
systems. While games for desktop systems rely heavily on
keyboard, mouse and/or joystick to capture the input from
the user, mobile games are usually executed on special
game devices, like the Gameboy from Nintendo. These
mobile game devices typically have some buttons and
sometimes a 4- or 5-way switch for interacting with the
game. General-purpose mobile devices like PDAs or to
some extend also mobile phones (so called Smartphones)
offer sometimes additional or different possibilities for
interaction. In comparison to desktop-systems developer
have to face several important constraints, especially
regarding the display (Paelke, Reimann and Rosenbach,
2003): limited resolution, limited number of available
colors, limited processing power and small display size.
The small display size of mobile devices is of special
importance, as it will not change significantly within the
next few years (unlike e.g. processing power). The
displaysize is of course limited at least to the overall size
of the device and the devices are more likely to become
smaller than bigger.

Similarly, the interaction mechanisms and input devices
offered by mobile devices differ significantly from the
desktop computing domain. Key differences include: No
standardization (proprietary interaction techniques), no full
keyboard (alpha-numeric input is often implemented by
indirect means, e.g. virtual keyboard, handwriting

character recognition, introducing additional problems), no
mouse (Pointing devices on mobile devices often have
significantly lower resolution, e.g. touch-screens, or
require the use of additional hand-held components) and
specific interaction techniques (like location sensing,
camera-based input).

Additional differences introduced by a mobile context of
use relate to: Auditory environment (e.g. sound not always
viable in public), Visual environment (variety of lighting
conditions, from total darkness to glaring sun) and Level
of attention (e.g. due to interruptions).

COMPUTER VISION BASED INTERACTIONS

Using the cameras with which an ever increasing number
of mobile devices is equipped it becomes possible to run
computer vision software on these devices and analyze the
video stream from the camera in (or nearly in) real-time.
This offers a completely new possibility for interacting
with the device, making these devices aware of the world
around them. Typically the cameras used in mobile
devices can also be rotated by the user, either to face him,
or to look in the same direction as the user. Within the AR-
PDA project (see also AR-PDA 2003) we have shown,
that it is possible to use a PDA with camera as „magic
lens“, so that PDA-screen shows the camera picture
augmented with additional information three-
dimensionally registered to the real objects on the screen.
But due to the complexity of the algorithms necessary for
such an application, the AR-PDA is realized as a client-
server architecture, where the client (the PDA) only
captures the camera-image, sends it to the server, receives
an augmented image from the server and displays it. All
the computation for the computer vision, the rendering and
all the data and application-logic is running on the server.

For mobile gaming this is obviously not a suitable option,
because of several important drawbacks. First of all a
working broadband-network connection is required at all
time, which can pose economical problems due to
connection costs as well as technical problems. The
biggest technical problem is the latency caused by the
network transmission and the incorporated encoding and
decoding. For technical illustrations (such as used within
the AR-PDA project) the latency (in some cases more than
1 second) is already a problem, but even more so for
games, which are often highly interactive and need to be
very responsive.

Computer vision is already used in some academic
projects for interacting with the system. However these are
single solutions to only a few and very focused interaction
task within a usually controlled environment. To utilize
data generated by computer vision software for
interaction-tasks in a systematic and general way, we are
actually working on a mapping of computer vision data to
basic and advanced interaction tasks.

PROTOTYPE: AR-SOCCER

To examine the potential of computer vision for interaction
with mobile games, a small game called AR-Soccer was
developed. In the game the player should shoot a virtual
ball on the PDA-screen with his real foot into a virtual
goal, bypassing the virtual goalkeeper. To play the game
the user takes a PDA with a camera, which points away
from him (see figure 1). The screen shows the camera-
picture nearly fullscreen, a goal with a goalkeeper at the
top of the screen and a small status bar at the bottom. The
user holds the PDA so that he can see his foot on the
screen. After some seconds a virtual ball roles onto the
playing field and the user can kick it with his foot, aiming
for the goal.

The first prototype of the game was build using the client
server-architecture from the AR-PDA project, as described
before. This allowed us to quickly develop the necessary
computer vision algorithms and test them. Due to the
client server approach the game was not playable because
of the high latencies of approximately one second.

For the second prototype the software was ported to run on
the PDA only, without server or network connection. As
the computer vision algorithms were already designed with
the PDA in mind (fast with a small memory-footprint), the
porting was straightforward. The current version has a low
latency (approx. 1 frame), but is still pretty slow (approx.
5-6 fps). The main reason for the slow framerate is the
very limited memory-bandwidth of the used PDAs, as the
image has to be grabbed from the camera, transferred into
memory for analysis and augmentation and after that it has
to be written into the frame buffer. The CPU is not the
bottleneck, as we choose very simple 2D-sprites for
rendering and the computer vision algorithms are quite
efficient (for details about the computer vision see below).

Currently the next prototype is in development. It will also
be ported to a mobile phone, to take advantage of the huge
amount of new mobiles with cameras on the market.
Another feature will be a multiplayer mode, in which one
player tries to score a goal while the other one is acting as
the goalkeeper.

Figure 1: AR-Soccer Screenshot

COMPUTER VISION

The task of the computer vision (CV) part of ARSoccer is
to calculate a collision detection of the ball with an
arbitrary kicking object like a foot. The results of the
collision detection are used to calculate the new direction
and speed of the virtual ball. Collision detection needs to
be performed only in the region of interest (ROI) beneath
the actual position of the ball as shown in figure 2. Due to
performance issues instead of calculating the optical flow
of the ROI we developed a fast 2D edge extraction and
tracking algorithm. This algorithm is presented in
(Stichling and Kleinjohann, 2003). It is based on a design
methodology developed for real-time CV algorithms
called CV-SDF (Computer Vision Synchronous Data
Flow) (Stichling and Kleinjohann, 2002).

To calculate the collision detection straight edges inside
the ROI are vectorized and tracked between two
consecutive images. The median direction and speed of the
motions of all edges inside the ROI is computed
afterwards. If the median direction points towards the ball
the speed and direction of the virtual ball is updated.

Figure 2: Edge-Detection and Motion-Tracking

EVALUATION

The current prototype was informally evaluated by more
than 30 users (both experienced with IT and not) with
different educational backgrounds. The overall feedback of
the users was very positive. The users had no general
problems with the CV based interaction and found it very
intuitive. The main problem was the reliability of the
computer vision, which was caused by the low framerate.
Because the program runs at only 5-6 fps, very fast
movements can not be recognized. A test with a PC-
version of the game (holding the camera in your hand and
looking at the screen on a table), which was much faster,
has shown that the occurring problems are caused by the
low framerate. Nevertheless after a short time most users
get used to the restriction and kick the ball more slowly.
Most test users pointed out that the more physical
interaction of standing and kicking (compared to just
sitting and pressing buttons) caused a lot of fun and made
the game much more exciting. But especially the older
users were often too shy to play so actively, because they
were afraid to look too ridiculous. Nevertheless, they tried
pretty hard to win the game when they felt unwatched

CONCLUSION AND OUTLOOK

As the recent presentation of the Eye Toy technology by
Sony for Playstation 2 shows the potential of computer
vision (CV) as an interaction technique for computer
games has already been recognized. Our experience with
the AR-Soccer prototypes indicates that an even higher
potential exists in the domain of mobile entertainment
applications. The development of mobile devices with a
higher memory bandwidth, increased processing power
and integrated graphics capabilities will increase the
possibilities of CV based games on mobile devices even
more, a trend that we are willing to exploit with more
advanced interaction techniques. While currently the
limitations of CV based interaction techniques are still
quite pronounced, suggesting their use mostly as part of
games where the interaction is part of the challenge we
hope to be able to transfer the insights gained in CV based
games to general interaction techniques for productivity
applications on mobile devices in the long run.

REFERENCES

AR-PDA (2003): The AR-PDA, a personal digital mobile

assistant for virtual and augmented reality, Project-homepage
http://www.ar-pda.com

Dunlop, M. D. and Brewster, S. A. (Eds.) (2001): Proceedings of
Mobile HCI 2001: Third International Workshop on Human
Computer Interaction with Mobile Devices, IHM-HCI 2001
Lille, France, September 2001

Gavrila, D.M. (1999): The Visual Analysis of Human
Movement: A Survey. In Computer Vision and Image
Understanding, Vol.73, no.1, 1999, Academic Press, pp.82-98

Johnson, C. (Ed.) (1998): Proceedings of the First Workshop on
Human Computer Interaction with Mobile Devices, GIST
Technical Report G98-1, University of Glasgow, Scotland

Nölker, C. and Ritter, H. (1999). GREFIT: Visual Recognition of
Hand Postures. In Proc. Int. Gesture Workshop GW '99, 1999 ,
pp. 61-72.

Paelke, V.; Reimann, C. and Rosenbach, W. (2003): A
Visualization Design Repository for Mobile Devices: Proc.
ACM Afrigraph 2003, Cape Town, February 2003

Stichling, D. and Kleinjohann, B. (2002): {CV-SDF} - A model
for Real-Time Computer Vision Applications, in proceedings
of WACV 2002: IEEE Workshop on Applications of
Computer Vision, Orlando, FL, USA, December 2002

Stichling, D. and Kleinjohann, B. (2003): Edge Vectorization for
Embedded Real-Time Systems using the {CV-SDF} Model, in
proceedings of VI2003: 16th International Conference on
Vision Interface, Halifax, Canada, June 2003

WMCSA (2002): Workshop on Mobile Computing Systems and
Applications, IEEE, http://wmcsa2002.hpl.hp.com/

GAME
OF
GO

GENETIC SEARCH TECHNIQUES FOR LINE OF PLAY GENERATION IN THE
GAME OF GO

Julian Churchill, Richard Cant, and David Al-Dabasss

School of Computing & Technology
The Nottingham Trent University

Burton St.,
Nottingham NG1 4BU

E-mail: richard.cant@ntu.ac.uk

KEYWORDS

 Go, Genetic Algorithm, Artificial Intelligence, Games.

ABSTRACT

 A Genetic algorithm method for searching game trees in
Go is presented. The method is compared to a traditional
alpha-beta search method MTDf in a series of tests and
results are presented.

INTRODUCTION

This paper investigates the genetic search techniques to
generate line of play and the application of such techniques
to games. In particular, the paper will concentrate on
applying the search techniques to the game of Go.
Currently, Go playing programs have been markedly less
successful than their chess playing counterparts. Whilst
success in playing chess has come from a move away from
attempting to copy human play, this approach has failed in
the field of Go

What is Go?

Go is a relatively simple game the complexity of which
emerges as you become familiar with the ideas presented.
A comparison with Chess is often made, as these are both
board-based games of zero-chance (Muller 1995). The
rules are simpler in Go, however the board is larger and
due to the unrestrictive nature the rules there are many
more moves available for the Go player to consider.

The game is played on a board, which has a grid of 19x19
intersections. Two players, black and white, take turns to
place a single stone on any unoccupied intersection, with
the aim of surrounding as much territory as possible. A
player can pass at any turn (giving one point to his
opponent) instead of placing a stone. Capturing the
opponent’s stones is also used to increase a player’s score.
A stone is captured when the last of its liberties is
removed. A liberty is an empty intersection directly next to
the stone. Suicide is not allowed unless it is to capture
some opponent’s stones.

The end of the game is usually reached by mutual
agreement between the players, when they both pass

consecutively. Stones which are effectively dead and
territory points are then totalled up and the winner
declared, see Figure 1.

Figure 1 – A Game in progress

Previous Search Techniques

Traditional Alpha-Beta search techniques, as used
successfully in other games suffer from two problems
when applied to Go.

Firstly the potential depth and breadth of the search is
substantially larger than in other games. The number of
legal moves available can be 250-300 or more (roughly a
factor 10 larger than in chess for example) leading to a
very rapid expansion in the number of positions that need
to be examined as the depth increases. The depth itself can
be substantial, a simple ladder sequence, which even a
novice human player can read out, can contain up to 70
moves. It follows that any search algorithm that is to be
successful must have a very effective and flexible move
selection function, able to narrow the search dramatically
when a long forced sequence occurs and yet take account
of a wide range of possibilities at other times.

Secondly there is no simple evaluation algorithm that can
be applied at any point in the game. In Chess it is usually
sufficient simply to count material with any positional
evaluation being used only as a tie breaker. In Go the

mailto:richard.cant@ntu.ac.uk

capture of stones is of minor significance unless the
number involved is very large (which is rare) or the stones
have a particular strategic importance (which requires a
positional evaluation to determine). To make things worse
the actual capture of stones is often omitted since once
their fate is inevitable it is undesirable for either side to
actually play out the final moves in the sequence. The
obvious alternative is to count territory but this is an
unreliable measure except near the end of the game. At
earlier stages the territories are only loosely defined and
may often be invaded or reduced. The ability of a player to
make such an invasion (or build more territory of his own)
depends in turn on the strategic attributes of influence and
thickness. Whilst these concepts are usually assessed
simply by looking at the superficial pattern of stones on
the board this gestalt evaluation needs to be backed up by
tactical analysis if it is to be relied on. The judgement of
exactly where such analysis is needed is a key skill for
human players.

Line Of Play GA Flow Chart –Attack phase

Start genetic search loop: Count ‘initial successful genomes’

If ‘initial successful
genomes’ >0

If ‘successful
genomes’ now >0

If phase has run
over ½ population

size times

If all genomes
have failed

‘maxUnrefuted’
attacks

Have all genomes
without failures,

refuted
‘maxRefuted’

attacks?

If time
limit has
run out

Start phase loop

If
‘successful

genomes’ >0

Choose randomly
amongst successful
genomes with less
than ‘maxRefuted’

attacks

If untested
genomes >0

Randomly
choose from
population
with bias of

‘1/failure
count’

Choose
randomly

amongst them

If capture goal

Generate
dynamic
search

boundary

Y N

Y

Y

N
Y

N

N

Y
Y

N

N

NY

N
Y

Y

N

Next

Figure 2 Attack Phase

Existing Go playing programs generally take an “expert
system” approach (although they do not utilise commercial
knowledge based system software for performance
reasons). As a consequence they include a large amount of
hard coded go-specific information that requires careful
tuning to achieve good results. A typical example is Go4pp
(Reiss 2003). Alternative approaches, based on Neural
networks are explored in (Richards et al 1996;
Schraudolph et al 1994). A more detailed discussion of
earlier work can be found in (Churchill et al 2002a).
The goal of our research program is to produce a Go
playing program that utilises an absolute minimum of
domain specific knowledge. The motivation behind this is

that such an exercise will yield far more that is useful to
the general domain of artificial intelligence than a
dedicated approach would. The original plan of the
program was to combine a neural network move finder
(Churchill et al 2002) with a state of the art search
algorithm (MTDf) (Plaat 1997) and an evaluation function,
again using neural networks, similar to that described in
(Schraudolph 1994). The initial neural network move
finder has been successful. Unfortunately the evaluation
function has proved more difficult and we have so far been
unable to construct anying that is better than simple stone
or liberty counting without using domain specific
knowledge. Although initial results (Churchill et al 2001a;
2001b) seemed to indicate that the MTDf algorithm and
the move finding neural network could reinforce each
other we have since discovered that the performance of the
program is either dominated by the initial move selection
or by the evaluation function. The choice between these
alternatives is dependent of the search parameters. The
reason for this seems to be that, even when helped by the
move finder, MTDf cannot explore a sufficiently broad or
deep search space.

To overcome this difficulty we have been investigating the
use of the genetic algorithm (GA) search technique that
forms the main subject of the present paper. We hope that
the GA technique will show improvements on the MTDf
algorithm in three ways. Firstly where there are a large
number of moves that have equivalent effects (which is
often the case in practical play) a random sample that
includes a few of them is equally useful as the complete
set. The mutation mechanism of a genetic algorithm
(which includes the “attack” mechanism described in the
present paper) exploits this property. Secondly the genetic
reproduction mechanism allows sequences of moves that
work in one context to be tried in another. The equivalent
mechanism in a minimax search algorithm is (arguably)
the transposition table but this is only applicable where the
contexts are identical. Finally the genetic algorithm allows
very deep sequences of moves to be created using the
move finder network or other simple heuristics. If such a
sequence is valid then there must exist refutations of
variations that can occur at any point in the sequence.
However many of these refutations will be essentially the
same irrespective of the point in the sequence at which
they occur. A good degree of confidence can be obtained
by trying a statistical sample of these within the GA
mechanism. Such deep sequences are unsupportable in
minimax algorithms because of the exponential growth of
the move tree.

In the present paper we will avoid the complexities of a
general evaluation function by confining ourselves to
situations in which a specific goal (for example to capture
a group of stones) can be used instead. The ability to
determine when such a goal is achievable can form an
important component of a general evaluation system.

GENETIC SEARCH ALGORITHM

Human Go players seem to be able to cope with the large
search space and find optimal sequences of moves without

exploring more than a tiny fraction of the variations that
are possible. Moreover these lines of play can be very long
and may contain a significant number of different branches
at certain key points. Furthermore they sometimes try the
effect of moving a whole sequence of moves from one
context to another. Based on these observations we have
devised a genetic algorithm. This algorithm is designed to
produce lines of play, given a board position, which a
human Go player might devise.

Swap attack move into genome,
save replaced move

If genome
sequence is illegal

If goal is
achieved

If attack
move is
illegal

Replace attack
move with original

Goto start
phase loop

Try
refutations.

Any refutation
successful?

Add note
of refuted
attack to
genome

Add note of
unrefuted attack

to genome

If failure
count >0

Fitness = goal.score +1 Fitness = goal.score / failure count

YN

Y

Y

N

N

Figure 3 Attack Refutation

We attempt to model the human players move selection
and line of play construction as best we can given our own
knowledge and experience of playing the game. A line of
play is represented as a genome in this algorithm and a
move as a gene. The move selection is aided by previous
work into neural networks to score available moves
according to how plausible they appear given the local
board situation. The neural network used during the
construction of this genetic algorithm shows signs of
having learnt some properties of the abstract concept of
shape and of simpler reflex action response moves.

The line of play construction and development parts of the
algorithm we have created and modified over some time.
To summarise, the algorithm currently accepts some
automatically generated lines of play, such as ladder
sequences, into a population and adds to it with randomly
generated sequences, using the neural network to bias

move selection. The population is then subjected to attacks
by randomly selected enemy moves, again using the neural
network to bias the selection, to see how the lines of play
stand up to this criticism, noting which attacks succeed and
which fail and on which genomes. This attack phase
continues until we must stop the algorithm, perhaps due to
time constraints, until we have at least one unbeaten
genome that we have tested enough, or until there are no
unbeaten genomes left in the population.

Line Of Play GA Flow Chart – After attack phase

Adjust genome fitness
values for all

genomes.

If time limit has run out or max generations reached

StopPromote all successful
genomes with no

failures to the next
generation

Randomly choose 2 parents using fitness scores to bias

Produce 2 children with 1 point crossover

For each child: If child is legal and unique and successful

Trim child so it ends when successful and add to next generation

Count =
0

Count++. If count < population size
Y

Y

N

N

Y

If successful genomes > 0 and all have refuted ‘maxRefuted’ attacks

N

N

Y

Figure 4 Sexual reproduction of lines of play

We continue to a new generation only if we have run out
of unbeaten genomes, otherwise the algorithm stops,
having found the best result given the constraints supplied
to it. Given that we continue the population, which now
contains genomes, which have at least one flaw each, they
must be evolved in an effort to create new successful
genomes from the best parts of the previous generation.
Standard genetic reproduction and mutation phases are run
on the population and then the attack phase is repeated.

A more detailed description of the algorithm is shown in
the flowchart in Figures 2-5. The flowchart in Figure 2
starts immediately after the initial population has been
generated and describes the process of “attacking” the
initial lines of play, that is attempting to find enemy moves
that prevent the designated goal from being achieved.

Figure 3 shows the second half of the attack phase in
which initially successful attacks are examined to see if the
initial genome can be easily modified to refute the attack.
Figures 4 and 5 show the process of creating a new
generation. Figure 4 uses “sexual reproduction” whilst
Figure 5 introduces mutation to the process.

TESTS, RESULTS AND COMPARISONS

We have tested the algorithm using a set of Go problems,
mainly taken from “Go Problems for Beginners” (Kano
1990), an elementary instructional text. For comparison we
have run the same tests using a state of the art alpha-beta
search algorithm known as MTDf (Plaat 1997; Churchill et
al 2002). Both algorithms must use some form of pattern
recognition based move pre-selection. In the case of MTDf
this is used to determine the order in which variations are
searched, becoming a tree pruning mechanism when the
search breadth is limited. The genetic algorithm uses pre-
selection to build initial genomes as well as for attacks and
mutations. To ensure fairness, considerable care has been
taken to ensure that exactly the same combination of
liberty counting and Neural Network based pre-selection
has been used in each case. The neural network used is one
that we have developed earlier and reported in (Churchill
et al 2001a; 2001b; 2002a; 2002b; 2002c). The results are
reported in tables 1 and 2.

Fill remaining spaces in next
generation with highest scoring
genomes left in old population

For each genome

If ‘random number’ > mutationRate

Generate mutated genome

If mutated genome is legal, successful and unique

If old genome is successful
and has no failures

Keep old genome and add
new mutated genome if

population is < maxPopSize

Replace old
genome with

mutated genome

If genome left to check

Goto start genetic
search loop

Y

Y

Y
Y

N

N

N

N

Figure 5 Mutation
The tests labled GG2 are from Graded Go problems for
beginners Volume 2 the remaining tests are simple capture
problems, mostly involving ladders, devised by the
authors. As stated above we have taken considerable
trouble to ensure that the tests are fair, however MTDf has
been allowed to run up to a fixed limit of breadth and
depth whereas The GA has been time limited to 60
seconds. (Where the algorithms have terminated without
hitting these limits, because they “think” that they have

solved the problem the pass/fail entry is marked with a
star.) This difference may have occasionally
disadvantaged one algorithm or the other however a fair
result can be seen in cases where both methods succeed
(by comparing times) or the more successful method takes
less time than the failure.

We have measured the computational workload of the
algorithms in terms of the number of board positions
examined and the number of calls to the evaluation
function since these events exist in both algorithms and
provide an implementation independent performance
measure. However there are some aspects of the
algorithms that are not included in these measures and so
we have also included the time in seconds for our
particular implementation to give some indication of the
relative effects of these factors.

Where the genetic algorithm appears to be inferior to
MTDf we have investigated the move sequences involved
and in all cases examined so far we have located defects in
the liberty counting heuristic that correct the problem.
However we have not yet incorporated these changes into
the MTDf program and so it would not be fair to present
the revised results here. This suggests that the genetic
algorithm is more dependent on the move selection
heuristic. In the cases where the GA performs better there
is usually a long sequence of moves involved. A good
example of this is the ladder test (test 2). We can interpret
this by saying that the GA makes better use of the move
selection heuristic. Overall the results indicate that, at
present, the genetic algorithm is still on average, slightly
inferior to MTDf but does outperform it in certain tests.

CONCLUSIONS

A genetic algorithm was proposed and tested against
MTDf and shown to be competitive, although not yet
superior. This is understandable given that MTDf is a
highly developed example of its type whilst the GA is still
at an early stage. We hope to demonstrate the superiority
of the GA after further development.

REFERENCES

Kano, Y , Graded Go Problems for Beginners Vol 2 The Nihon

Ki-in 1990.
Müller, M, “Computer Go as a Sum of Local Games: An

Application of Combinatorial Game Theory”, PhD thesis, ETH
Zürich, 1995, available on the Internet at

http://www.cs.ualberta.ca/~mmueller/publications.html
Plaat, A, “MTD(f), A Minimax Algorithm Faster than

NegaScout”, 1997, available on the Internet at
 http://www.cs.vu.nl/~aske/mtdf.html
Reiss, M, Go4++, 2003 information can be found on the Internet

at
http://www.reiss.demon.co.uk/webgo/compgo.htm
Richards, N, Moriarty, D, Miikkulainen, R, 1996, “Evolving

Neural Networks to Play Go”, Applied Intelligence, available
on the Internet at

http://www.cs.utexas.edu/users/nn/pages/publications/neuro-
evolution.html

http://www.cs.ualberta.ca/~mmueller/publications.html
http://www.cs.vu.nl/~aske/mtdf.html
http://www.reiss.demon.co.uk/webgo/compgo.htm
http://www.cs.utexas.edu/users/nn/pages/publications/neuro-evolution.html
http://www.cs.utexas.edu/users/nn/pages/publications/neuro-evolution.html

Schraudolph, N, Dayan, P, Sejnowski, T, “Temporal Difference
Learning of Position Evaluation in the Game of Go”, Neural
Information Processing Systems 6, Morgan Kaufmann, 1994,
available on the Internet at
ftp://bsdserver.ucsf.edu/Go/comp/td-go.ps.Z

Muller, M, “Computer Go: A Research Agenda”, 1999, available
on the Internet at

http://www.cs.alberta.ca/~mmueller/publications.html
Churchill J., R. J. Cant, D. Al-Dabass, 2001a "Using Hard And

Soft Artificial Intelligence Algorithms To Simulate Human Go
Playing Techniques", Int. J. of Simulation, Vol. 2, No.1, June
2001, pp 31-49, ISSN 1473-804x Online, ISSN 1473-8031
Print.

Churchill J., R. J. Cant, D. Al-Dabass, 2001b "A New
Computational Approach to the Game of Go", GAME-ON
2001, OHPs,The Second International Conference on
Intelligent Games and Simulation, London, November 30 -
December 1, 2001, pp81-86, ISBN 90-77039-04-X.

Churchill J., R. J. Cant, D. Al-Dabass, 2002a “A Comparative
Assessment of Recent Hybrid AI Techniques for Games”, 3rd

International Conference on Intelligent Games and Simulation,
London, November 29-30, pp10-15, ISBN 90-77039-10-4.

Churchill J., R. J. Cant, D. Al-Dabass, 2002b, “Feasability Of
Distributed Parallel Simulation Of AI Search Algorithms”,
ESM2002, Darmstadt, 3-5 June, pp 168-171, ISBN 90-77039-
07-4.

Churchill J., R. J. Cant, D. Al-Dabass, 2002c, “A Hybrid
Artificial Intelligence Approach With Application To Games”,
World Congress on Computational Intelligence (2002-WCCI),
IEEE Int Joint Conf on Neural Networks (IJCNN02), 12-17
May 2002, Honolulu, Hawaii, pp1575-80, ISBN 0-7803-7278-
6, and ISBN 0-7803-7281-6 (CD-Rom).

6044852Pass*1Short capture1
3564146Pass*1Ladder2
246074Pass*0Ladder23
445156Pass*02nd line trap4

854624431294Pass59GG2-P35
1009416621007Pass59GG2-P436

254462Pass*0GG2-P27
970435163437Fail59GG2-P78

185449Pass*0GG2-P109
5889882617918Fail60GG2-P1310

126971186914491Pass60GG2-P3211
6289372402Fail59GG2-P3512

827714890Pass*4GG2-P4113
1071836423566Fail60GG2-P6814

580736056356Pass60GG2-P7015
3745741330Pass*3GG2-P7916

57511020931328Fail60GG2-P8617
1558135Pass*0Ladder318

774614781182593545Totals

Test Name Time(s) Success BoardsExamined EvaluationCalls AttackLoopCount

Table 1 Genetic Algorithm Results

4268Pass*0Short capture1
496865Fail*3Ladder2

36435731Pass*14Ladder23
261469Pass*12nd line trap4
293515Pass*2GG2-P35

964018618Fail88GG2-P436
408669Pass*2GG2-P27

1160116200Fail49GG2-P78
18173426Pass*16GG2-P109

9501461Pass*4GG2-P1310
536947Pass*3GG2-P3211

1155620993Fail93GG2-P3512
1091820792Pass78GG2-P4113

43437141Pass*26GG2-P6814
531994Pass*5GG2-P7015

22374226Pass*18GG2-P7916
20883931Pass*16GG2-P8617

1231222476Pass82Ladder318

736721500Totals

Test Name Time(s) Success BoardsExami EvaluationCal

Table 2 MTDf Resul

ftp://bsdserver.ucsf.edu/Go/comp/td-go.ps.Z
http://www.cs.alberta.ca/~mmueller/publications.html
http://ducati.doc.ntu.ac.uk/uksim/dad/webpagepapers/Cant.doc
http://ducati.doc.ntu.ac.uk/uksim/dad/webpagepapers/Cant.doc
http://ducati.doc.ntu.ac.uk/uksim/dad/webpagepapers/Cant.doc
http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-2/No-1/cover.htm
http://ducati.doc.ntu.ac.uk/uksim/dad/webpagepapers/Game-14.pdf
http://ducati.doc.ntu.ac.uk/uksim/dad/webpagepapers/Game-14.pdf
http://biomath.rug.ac.be/~scs
http://biomath.rug.ac.be/~scs
http://ducati.doc.ntu.ac.uk/uksim/dad/webpagepapers/Game-14-ohps.ppt
http://ducati.doc.ntu.ac.uk/uksim/dad/webpagepapers/Darmstadt 02/Churchill AI-10.doc
http://ducati.doc.ntu.ac.uk/uksim/dad/webpagepapers/Darmstadt 02/Churchill AI-10.doc
http://ducati.doc.ntu.ac.uk/uksim/dad/webpagepapers/IEEE02/CantChrchill-Hawaii.pdf
http://ducati.doc.ntu.ac.uk/uksim/dad/webpagepapers/IEEE02/CantChrchill-Hawaii.pdf

A GENERAL FRAMEWORK FOR VISION-BASED INTERACTIVE BOARD
GAMES

Jinchang Ren, Peter Astheimer and Ian M Marshall

IC CAVE, University of Abertay,
Bell Street, Dundee, Scotland, DD1 1HG United Kingdom
E-mail: {J.Ren, P.Astheimer, I.Marshall}@abertay.ac.uk

KEYWORDS

Vision-based interactive board games (VIBG), moving
object tracking (MOT), vision-based human machine
interaction (V-HMI), smart home entertainment and
education (SHEE).

ABSTRACT

This paper presents the case that the use of the mouse,
joystick or keyboard disrupts the natural flow of board
games. It briefly summarises the development of novel
interfaces for interactive toys and board games to facilitate
natural interactions with a computer. A general framework
that integrates real views from camera and virtual views
generated by image processing and computer simulation is
discussed. The main vision technologies are described in
terms of spatial and illumination normalization, skin
detection, moving object detection and tracking as well as
object classification. An overview of experimental results
will be presented which demonstrates that the proposed
techniques can be applied in many applications which
require real-time and robust object movement detection as
part of a gameplay or other interaction. The technology
developed works with a low-cost and portable USB web-
cam device and has potential applications in a number of
areas beyond games.

INTRODUCTION

For thousands of years children and adults have used
everything from lines in the sand and pebbles to richly
carved and expensively created game pieces and boards to
play the precursors of most of the modern board games.
However, very few board games can be played in isolation
and normally require one or more opponents. The
introduction of a computer as an opponent can be traced
back to Douglas’ (1952) adaptation of noughts and crosses
for the EDSAC computer developed at Cambridge. Since
then most classic and modern board games have been
converted to run on computer and games consoles.
Depending on the skills of the designers and the capability
of the interface device these converted games provide
access to a computer-based opponent and reduce the
drudgery of scoring but unfortunately this is usually at the
expense of the simplicity of interface presented by the more
tactile original.

While it is relatively simple to create an electronic toy
which presents a simple tactile interface for board games

such as chess or draughts, indeed such toys have existed
since the early 1970’s, creating an interface to a board game
which would allow any game to be played using any game
piece is a lot more difficult. A prototype system that makes
use of low-cost USB-based web-cams has been developed
which achieves these aims. The prototype system robustly
and reliably recognises the board, allows the player to use
their own game pieces, detects the movement of the pieces
and provides an interface to the game running on the
computer. This paper briefly reviews the use of vision
systems in games before presenting the framework for
vision games technologies. The experimental results, final
conclusions and directions for future work are then
presented.

LITERATURE REVIEW

In recent years there has been a trend to combine vision
technologies with computer games to develop more user-
friendly and natural applications (Bentivegna et al 2002;
Gorodnichy et al 2002; Isidoro and Sclaroff 1998; Pera et al
2001). These applications provide a friendly user interface
and natural human-machine interaction. One aspect of
providing a natural interaction is to develop methods by
which the computer captures the human’s intentions by
understanding their visual actions. Consequently,
vision-based human-machine interfaces (V-HMI) such as
gesture or face recognition and object tracking have been
widely applied in many interactive applications including
computer games, virtual reality, robotics and content-based
information retrieval (Freeman et al. 1999; Ren et al 2000).

A very simple application of V-HMI which is usually
applied in real-time tracking applications is to use a camera
to detect a moving object and use this to simulate the
movement of a mouse. Gorodnichy et al (2002) used a web-
camera to detect the moving nose of the operator to
demonstrate a nose-based mouse (Nouse) for hands-free
games and interfaces. Pera et al (2001) demonstrated real-
time tracking of two players in live squash games and
incorporated them in computer-generated graphical scenes.
Isidoro and Sclaroff (1998) used a moving voodoo doll as
an input device for non-rigid control of the virtual object in
the computer.

These prototypes all indicate that in real-time games it is
relatively simple to detect and use the tracking data from a
moving object. However, in turn-based games such as a
board game, the system must also have the capacity of
automatically determining turn changes. Bentivegna et al

(2002) developed an air hockey game in which a humanoid
robot can detect the movement of the puck and play games
with people. To give more accurate responses to the
movement of the puck and the player, several vision
techniques and domain-specific knowledge are applied in
visual processing and error recovery. In Kanjo and
Astheimer (2002) a coloured farm is explored by moving of
a doll for turn-based story-telling interactions.

Although these authors have demonstrated some successful
applications, games based on real-time tracking are still
quite limited because the simulated mouse produces rough,
inaccurate and inefficient interactions. As for turn-based
vision games, they are more interactive and attractive.
However, they are usually domain-specific or environment-
dependent such as applications developed by Bentivegna et
al (2002) or Kanjo and Astheimer (2002) which rely on a
hockey or a farm environment for their respective games. It
is reasonable to assume that the game logic needs to be
application-dependent but the vision technologies should be
capable of moving object detection and tracking irrespective
of the domain. Unfortunately, most are dependent on
specific applications, even specific equipment or
environments, such as special fast or high-resolution
cameras (Bentivegna et al 2002; Freeman et al 1999) or
uniform lighting conditions (Pera et al 2001).

FRAMEWORK FOR VISION GAMES AND VIBG

Board games such as chess and Ludo are popular and this is
the main reason for developing an application-independent
framework for vision-based interactive board games (VIBG)
which will provide rich and variable computer-based
interactions. Vision games (VG) are those which use image
tracking and computer graphics technologies to simulate the
movement of objects in real scenes and give multimedia
feedback to generate interactive games with sensual
qualities including touch and feel which are experienced
when playing with traditional toys and board games
(Astheimer 2003).

Usually there are at least two views in a vision game: one is
a real view of scenes from the camera and the other is a
virtual scene of simulated results on the computer. Vision
systems are employed to map the movement in real scenes
to virtual scenes by automatic detecting and tracking of the
movement of game objects. The framework for a general
vision game is given in Figure 1. Generally, users interact
in real view by manipulating or moving objects and
receiving feedback from the virtual view. The computer
vision system is a bridge to translate information from real
view to virtual view. Detecting and tracking moving objects
by using motion analysis is normally used to achieve this.

Computer Vision System

Real View Virtual View

Motion Analysis Moving Object
Detection/Tracking

Simulated Movement with
Multimedia Feedback and

Actions

Board Games with
Moving Pieces

Active

Camera Input Multimedia Output

User

Figure 1: Framework of General Vision Games

In some vision games, the computer system and virtual view
cannot provide feedback to change the object in the real
view (Gorodnichy et al 2002; Isidoro and Sclaroff 1998;
Kanjo and Astheimer 2002; Pera et al 2001). We can call
them Passive Vision Games (PVG) which means the vision
system is passive to users which restricts its interaction to
screen-based responses. However, in games with robot
players (Bentivegna et al 2002), the system can interact with
users and can be defined as Active Vision Games (AVG). In
Figure 1 there is an information flow indicated by the dotted
arrows. This shows that the vision system and virtual view
can manipulate real views to interact directly with the user
using a robot device (see Bentivegna et al 2002) to
manipulate game objects in the real view.

The proof of concept development of the VIBG was
designed with the requirement that it must be capable of
deployment in an average home and therefore a low-cost
CMOS sensor is used in image capture. The VIBG must
also be capable of developing passive or active games
depending on whether there is a robot to interact with users.
Since robot techniques are hardware and device-dependent,
they are being developed as an extension to the general
VIBG prototype presented. However, vision technologies
for tracking moving objects and board-based interactions
are general for almost all board games. A typical board
game usually contains a rectangular game board and several
classes of coloured pieces with associated turn-based rules
for placing, moving or removing pieces and some methods
of determining the winner. Therefore, VIBG makes use of
several special vision technologies such as object
classification and recognition, detection of turn changes as
well as board detection and normalization. The following
section provides an overview of these features.

VISION TECHNOLOGIES IN THE VIBG SYSTEM

To detect and track moving objects a number of different
techniques have been proposed such as methods based on
change detection, Kalman filtering, temporal template and
background or foreground model (Ren et al 2003).
However, the movements in VIBG are normally slow and

motion detection can be achieved using simple change
detection for real-time applications. To improve the
robustness and accuracy, spatial and illumination
normalization as well as region labelling and object
classification are also applied in moving object detection,
tracking and recognition (see Figure 3).

Board Detection and
Normalization

Detection of Turn
Changes

Object Classification and
Recognition

Moving Object Detection
& Tracking

Captured Images Output Objects

Figure 2: Processing Sequence of VIBG Systems

Board detection and normalization

In designing the VIBG it was essential to ensure that the
system was robust enough to work in normal home
conditions. Therefore board detection and normalization are
used to produce a reliable and invariant object tracking
system that determines the correct positions of game objects
even if the board or camera moves or the lighting conditions
change. The system also detects the board and does not
respond when the user acts out of the board area. Spatial
normalization is used to solve these problems and to provide
consistent and unchanged relative locations of game objects
within the board.

To achieve this four corners of the board
image are first detected based on edge Sobel detection. If

 is any non-background pixels in the edge image

]3,0[|),(∈kyxCk

),(yxf F ,
then:

)min(),(
)min(),(

)min(),(
)min(),(

3

2

1

0

yxyxC
yxyxC

xyyxC
yxyxC

−=
−−=

−=
+=

 (1)

where correspond to top-left, top-right,
bottom-right and bottom-left of the board respectively. A
bilinear transformation is then used to map the detected four
corners to the actual corners of the virtual board (Ren et al.,
2003).

]3,0[|),(∈kyxCk

2222

1111

'
'

dycxbxyay
dycxbxyax
+++=
+++=

 (2)

And the target positions will be:

 (3)
(), −−= Hy

In Equation (3), W and H are the width and height of the
captured image; the standard board image before and after
transformation is shown in Figure 3.

Figure 3: Spatial Normalized Image (From left to right, the

three images in turn are original colour image, detected
corners in edge image and normalized image)

Illumination normalization can be used for invariant change
detection under varying lighting conditions. Histogram
equalization (HE) and colour moment matching (CMM) can
both be taken to achieve this. In CMM, the colour moments

1,0];1,1[|),(=−∈ pMnpnCMk with k are defined as: bgr ,,=

∑ ∑

∑ ∑

−

=

−

=

−

=

−

=

−=

=

1

0

1

0

1

0

1

0

|)0,1(),,(|1)1,(

),,(1)0,(

H

h

W

w

n
kk

H

h

W

w

n
k

CMkhwf
HW

nCM

khwf
HW

nCM
 (4-1)

Unlike traditional moments for object recognition in (4-2),
the spatial position is omitted but different colour degrees
with]1,1[−∈ Mnk

bgr ,,

p

 are applied in (4-1) as we only consider
the overall colour distributions. A set of colour moments
from colour spaces is then extracted. Usually, is
taken as the degree of the moment which is defined no more
than 3. When is 0 or 1, we have two kinds of moments.

n

[] []

Objectwhif

hwfChCw
HW

qp

hwfhw
HW

qpC

h w

qp

h w

qp

∈

−−=

=

∑∑

∑∑

),(

),()1,0()0,1(1),(

),(1),(

µ
(4-2)

Figure 4: CMM Based Illumination Normalization (From
left to right, the three images are reference image, original

image and normalized image respectively)

Figure 5: Illumination Normalization Results by the HE

Method of the First Two Images in Figure 4

)1,0()','(
)1,1''(

)0,1()','(
)0,0()','(

33

22

11

00

−=

−=
=

Hyx
Wx
Wyx

yx

From Figure 4 and Figure 5 we can see CMM is more
robust than histogram equalization in illumination
normalization.

Detection of turn changes

Player turn changes can normally be detected by the
intrusion of a player’s hand in the board area. If there are
hands in the images the system will wait until the players
remove them from the board area. Hands can be detected
by skin detection in different colour spaces such as HSV

and YCbCr. After a fast linear transformation from RGB to
YUV given in (5),

YRVYBU

wwbgrkyxkwyxY k
k

k
k

k

−=−=

≥=== ∑∑ 0,1,,,),(),((5)

Skin regions can be easily detected by checking if each of
the components in YUV space lies in specified ranges by:

10

21

10

YYY
VU

VVV

<≤
≤+≤

≤≤
γαγ (6)

Although skin regions can also be extracted from HSV
space, skin regions can be detected efficiently and
effectively using (5) and (6) due to the simple and fast
colour transform and the detection strategies. Figure 6 to
Figure 7 show two examples of skin detection from YUV
space.

Figure 6: Skin Detection with Original Colour Image (Left)

and Detected Results from YUV Space (Right)

Figure 7: Skin Detection from Game Scenario with Original

Image (Left) and Detected Results (Right)

Moving object detection and tracking

Change detection and region labelling are then used to
detect the moving objects. For two given normalized
images and , their difference image can be defined
as:

1F 2F D

bgrkFF kyxFkyxFkyxD ,,21, |),,(),,(|),,(
21 =−= (7)

A threshold τ is then applied to detect apparent changes in
 and form another binary image D T :

 =>

=
otherwise

bgrkkyxDif
yxT

0
,,,),,(1

),(
τ

 (8)

Afterwards, region labelling is applied to find all closed
regions in image T and gives each of them a unique label.
To improve the system, all regions with areas smaller than a
given threshold γ are ignored which only leaves big regions
containing moving objects.

Object classification and recognition

After moving object detection and tracking, all the
candidate objects are represented by their geometrical centre
and closed regions in sequential frames. Object
classification is then employed to recognize different

coloured pieces for transfer to the virtual view for
subsequent interactive application in the game. Usually,
there are a number of different coloured pieces in board
games which are circular or rectangular in shape thus colour
and shape features are applied in recognition of these pieces.
Colour features here are the dominant colours in each
candidate object region which are extracted near the centre
of the region and are matched in HSV space.
Shape features are defined by the contour of each region.
Suppose there is a region with an area A and contour
length , we can easily define the circular rate of the
contour as:

L

2/4 LACR π= (9)

where]1,0(∈CR . If is close to 1, then the contour looks
more like a circle. If the contour is not a circle, then it is
possible to extract its critical points to generate a polygonal
representation. When there are 4 critical points it is likely to
be a rectangle or square game piece.

CR

EXPERIMENTAL RESULTS

The prototype system implementing all the vision
algorithms was developed for a PC-based Windows
platform using C++. A low-cost USB web-cam enables
image sequences to be captured at 15 fps (frames per
second) with a resolution of 352*288. After spatial and
illumination normalization, skin detection, change detection,
moving object detection and classification, the system can
still achieve real-time applications at about 10 fps. Figure 8
and 9 show the experimental results for the vision systems.

Figure 8: Moving Object Detection and Tracking Under
Varying Lighting Conditions

Figure 9: Moving Object Detection and Tracking with

Rotated Board, Camera Zooming and Varying Illumination

Figure 10: Moving Object Detection and Classification

Figure 10 shows original images without and then with
pieces. Figure 11 shows the system has recognized the
coloured pieces. Figure 12 shows another test result if the
players hands are over the game board or the camera cannot
see the whole board in this case a warning message will be
generated and the system will pause for external
intervention. When the user removes their hand(s) or moves
the board or camera to put the whole board in the image, the
system will resume.

Figure 11: Example of Colour Object Classification

Figure 12: Warning Message When Board Out of Range or

Hands in Image
Figures 7 to 12 demonstrate that the vision systems can
detect moving objects and classify them even when the
board is being rotated, the camera is being zoomed in or out
and the lighting is being turned on or off. In addition, the
system correctly determines if the board is out of range and
if the player’s hands are over the board. The prototype
forms a robust basis for future VIBG development and has
potential for applications in other areas.

CONCLUSIONS

The prototype VIBG system has proven that it is feasible to
develop a system using low cost web-cams which could
form the basis for interactive board games. Since no
additional devices or special environments are required,
VIBG represents an important development in vision games
which also has potential applications in the home and office
environments. Moreover, the proposed technologies can
also be applied in the development of mobile phone-based
games using the cameras that are an increasingly common

feature of such devices. Future enhancements include the
on-going development of low cost robot-based response and
active camera control systems.

ACKNOWLEDGEMENTS

The authors would like to thank Scottish Enterprise Proof of
Concept Project “Interactive toys and board games” for
supporting the development of this prototype.

REFERENCES

Astheimer P. 2003. “Interactive Toys and Board Games”. In
Proceedings of Software Technology One Day Conference.
London (March).

Bentivegna, D. C.; A. Ude; C. G. Atkeson and G. Cheng. 2002.
“Humanoid Robot Learning and Game Playing Using PC-
Based Vision”. In Proceedings of International Conference on
Intelligent Robots and Systems. Lausanne, Switzerland (Oct).

Douglas, A. (1952). “Noughts and crosses programme for
ESDAC”. Cambridge University.

Freeman, W. T.; P. A. Beardsley; H. Kage; K. Tanaka; K. Kyuma
and C. D. Weissman. 1999. “Computer Vision for Computer
Interaction”. ACM SIGGRAPH Journal, Vol.33, No.4.

Gorodnichy D. O.; S. Malik and G. Roth. 2002. “Nouse `Use Your
Nose as a Mouse' - a New Technology for Hands-free Games
and Interfaces”. In Proceedings of International Conference on
Vision Interface. Calgary, (May), 354-361.

Isidoro J. and S Sclaroff. 1998. “Active Voodoo Dolls: A Vision
Based Input Devices for Nonrigid Control”. In Proceedings of
Computer Animation. Philadelphia (June).

Kanjo E. and P. Astheimer. 2002. “Coloured Farm: Interactive
Toys Environment for Story-telling and Games Applications”.
In Proceedings of 8th International Conference on Virtual
Systems and Multimedia. Gyeongju, Korea, (Sept).

Perą J.; G. Vučkovič; S. Kovačič and B. Deľman. 2001. “A Low-
Cost Real-Time Tracker of Live Sport Events”. In Proceedings
of 2nd International Symposium on Image and Signal
Processing and Analysis. Pula, Croatia (June), 362-365.

Ren J.; P. Astheimer and D. D. Feng. 2003. “Real-time Moving
Object Detection Under Complex Background”. In
Proceedings of 3rd International Symposium on Image and
Signal Processing and Analysis, Rome (Sept).

Ren, J.; R. C. Zhao; D. D. Feng and W. C. Siu. 2000. “Multimodel
Interface Techniques in Content-Based Multimedia Retrieval”.
Lecture Notes in Computer Science, Vol. 1948, 634-641.

TOWARDS MULTI-OBJECTIVE GAME THEORY – WITH APPLICATION TO GO

A.B. Meijer and H. Koppelaar
Delft University of Technology. Faculty EWI. Section Mediamatics.

Mekelweg 4, P.O.Box 356, 2600 AJ, Delft, The Netherlands.
{a.b.meijer, h.koppelaar}@ewi.tudelft.nl

KEYWORDS Combinatorial Games, Multiple Ob-
jectives, Computational Intelligence, Dependence of
Games, Threat, Game of Go, Ko

ABSTRACT

We de…ne a multi-goal as a conjunction and/or disjunc-
tion of ordinal-scaled objectives. We give exact formu-
las to compute the conjunction and disjunction of in-
dependent combinatorial games associated with the ob-
jectives. Dependence of games is formalized. We also
propose a de…nition for the (con/dis)junction of e¤ec-
tively dependent games. In all the above formulas, we
can work with uncertain and unresolved (ko) outcomes.
With these formulas, the status of a multi-goal can be
computed with considerable less e¤ort compared to cur-
rent search approaches. Algorithms to compute multiple
solutions elegantly and to extract the threats to a won
game from its search tree are outlined, implemented and
applied.

INTRODUCTION

Multiple objectives (or shorter: multi-goals) are com-
monly used by human players of strategic games like
Chess and Go. For instance, in Chess, one could aim
at simultaneously attacking a horse and a rook. In Go,
one can rescue an endangered group either by connect-
ing it to another living group or by making life on its
own. Achieving a multi-goal does not necessarily imply
to win the game, the other part of the trick is to choose
the right set of goals to strive for. The use of multi-goals
helps the player to obtain overview and structure in the
game.
Computers are not humans and do not have to follow
the same (multi-goal) approach as humans. Deep Blue
beat human Chess world champion Kasparov in 1997
with the single goal of getting a better position than the
opponent, using a brute force approach where heuristics
gave an estimate of the state of the game. Other good
Chess programs use a similar approach.
Go is a game far more complex than Chess. Its aver-
age branching factor is around 240, compared to around

40 for Chess. Full board evaluation is expensive to com-
pute and cumbersome to design and implement, whereas
for Chess exist fast and reasonably good heuristics. Go
needs a di¤erent approach (Wilmott e.a., 1999; Bouzy
and Cazenave, 2001).
In their respected computer Go survey, Bouzy and
Cazenave (2001) pointed out that a full board Go evalu-
ation function needs tactical searches to determine prop-
erties like safety and connectivity. Several Go programs
use multiple goals in some way. However, there is little
theoretical work on this subject or publications about
it. Bouzy and Cazenave conclude that ”the problem of
performing tree search on conjunctions and disjunctions
of goals remains to be solved”. Also, ”An interesting
idea would be to formalize (...) the interaction between
several games”.
This paper addresses the problem of multi-goals, i.e.
conjunctions and disjunctions of goals. First, we give
an introduction to the game of Go and Combinato-
rial Game Theory. Then we discuss independent multi-
goals, followed by a treat of dependent games. We con-
tinue with algorithms for …nding multiple solutions and
threats, show some experimental results and end with
concluding remarks.

THE GAME OF GO

Go is an ancient game, originated in China about 4000
years ago. It is a two-player, deterministic, complete-
information, partizan, zero-sum game. Go is played on
a 19£19 grid (although other sizes are also used), which
is initially empty. The two players have to embark ter-
ritory by alternately placing a stone on a grid, gradu-
ally building strongholds and eventually walls that com-
pletely surround one’s territory. The goal of the game
is to end with more territory than your opponent.
The rules of Go are very simple in principle (but in …-
nesse, di¤erent rule sets like the Chinese, Japanese or
mathematical Go rules vary quite a bit). The captur-
ing rule is the most important, stating that a string
of stones gets captured if all of its neighbouring inter-
sections (called liberties) are occupied by enemy stones.
For example, white can capture the four black stones

Figure 1: Examples on the Go rules and game states

in the middle left of …gure 1 by playing a. It also
implies that the two x ’s are suicide, which implies in
turn that the white group that surrounds them cannot
be captured (Go terminology: the group lives). The
white group can only be captured if white would co-
operate foolishly and plays at one of the x ’s himself.
Black is then allowed to play the “temporary suicide” of
the other x, because this would capture the entire white
group and the suicide is resolved. The black group in
the upper left should also live, even if white moves …rst.
If white b, then black c (and vice versa) and black has
two eyes.
The ko rule is also important. The simplest formulation
is that immediate recapture is prohibited. However, the
ko rule varies a lot over di¤erent rule sets. A useful
and general formulation is that a move is forbidden if it
repeats the board position. An example of a ko is the
situation around k. White can capture a black stone by
playing k, and if black were to recapture immediately
by playing to the right of k the board situation would
be repeated. Without a ko-rule this could go on and on
until one of the players falls asleep.

COMBINATORIAL GAME THEORY

This section introduces (the representation of) Combi-
natorial Game Theory. It is a mathematical theory for
two-player games and numbers, developed by J.H. Con-
way (1976) and adapted to many games by Berlekamp,
Conway and Guy (1982). However, it can also be used
for subgoals like ”capture string” or ”kill group”. A

combinatorial game can be associated with every goal.

De…nition 1 A combinatorial game G = fF jOg is
composed of two sets F and O of combinatorial games.
Every combinatorial game is constructed this way.

The left part of G, F, can be seen as the set of board
positions that player Friend can reach with one legal
move. Right part O can be looked at as the options for
player Opponent. Essentially, F can have two possible
values, W (a win for Friend) or L (a loss for Friend, so
a win for Opponent). If Friend has a legal move which
ensures a won game, then the value of F is W. For a mo-
ment we assume that we have enough computing power
to compute the values, otherwise we would have to intro-
duce another symbol to represent uncertain outcomes.
This gives four possible states for a combinatorial game:
WjW, WjL, LjL and LjW (we will use both WW and
WjW as abbreviations for {WjW}). The left half of a
game value is the maximum result that Friend can ob-
tain, the right half is Opponent’s best result.
WjW denotes a game that is won by Friend, irrespective
of who moves …rst (both player can at best move the
game to W = a win for Friend). This means that Friend
does not have to spend a move to win the game. A
Go example is the (life status of the) white group in
the bottom left of …gure 1, which lives unconditionally.
Another example is the black group in the upper left, it
lives even if white moves …rst (white b, black c and vice
versa).
WjL is an unsettled game, it is won by the player who
moves …rst. An example is the life status of the white
group in the bottom right corner. If white moves …rst he
can play at d, resulting in a living shape (two eyes). If
black plays d, the resulting shape is dead (one eye only).
LjL is a lost game for Friend, so a sure win for Opponent,
even if Friend moves …rst. It is the opposite of WjW.
Killing the black group in the upper left corner is a lost
game for white.
LjW is a somewhat strange equilibrium situation where
the player who moves …rst will lose the game. In Go, this
situation is known as seki. The triangled stones form a
seki: either player who wants to capture the opponent
string of triangled stones and plays at one of the two
shared intersections will immediately be captured him-
self. Not playing in this game is best for both players.
In essence, a game can have only two values, W or L.
However, it is often intractable to compute the precise
game value. Cazenave (1996) therefore extended Con-
way’s theory to uncertain outcomes. He introduced a
symbol U to denote an uncertain game value. Cazenave
showed that U can be used as a control parameter along
the risky-safe axis, since one is free how to evaluate of U.
Evaluating U as if it were L models a very conservative
strategy, evaluating U as if it were W models a highly
risky strategy. More neutral strategies are equally well
possible.

In Go, even more symbols are useful because of the ko
rule. The outcome of a game can be ko, like the life and
death situation of the black group in the upper right of
…gure 1. In order to make f his second eye, black needs
to capture the white stone with e and prevent recap-
ture. The outcome of this ko will eventually depend on
the existence of threatening moves somewhere else on
the board, since after a threat is answered by the op-
ponent the ko-recapture is no longer prohibited. In the
end, a ko …ght will be either W or L, depending on the
number of threats of each side. However, it would be
wise to call the outcome ”ko” and not to try and resolve
the ko immediately (i.e. during a search procedure), by
searching lines of play starting with a ko-threat. This
would mix up local and global issues, causing all kinds
of complications, result in higher branching factors and
might not even be necessary (e.g. example 8).
There are di¤erent types of ko: ko with Opponent to
…nd a threat …rst, ko with Friend to …nd a threat …rst,
indirect ko’s like multi-stage ko and multi-step ko and
even more exotic types. For clarity, we will only intro-
duce symbols for the …rst two, most common, types. We
denote them KO" and KO#, respectively. KO" means
that Friend can move the game to W (if the ko rule al-
lows it). Opponent can move KO" to KO#, upon which
Friend will have to …nd a useful ko-threat …rst, before he
can move the game back to KO". If Friend has no use-
ful ko-threat, Opponent can move the game to L with a
second play. Summarizing,

KO"= fW jKO#g; KO#= fKO" jLg;

if the ko-rule allows the required move.
Game notations like LjL, UjL, WjL and WjKO# corre-
spond to what Go players call the status of a game. It
is a summary of the outcomes of a game with either of
the players moving …rst. However, Combinatorial Game
Theory is more general. The left and right parts of a
game are games themselves, each having a left and right
part (remember that the de…nition of a combinatorial
game is recursive). These latter left and right parts de-
note the results which can be achieved if a player moves
twice in a row in the same game (e.g. if the opponent
passes or plays in a di¤erent game).
We now have new games like for example WjLjjLjL. This
is a game which Opponent can move to the right side
of the double vertical bar, i.e. LjL or lost for Friend.
Friend can only move the game to WjL, unsettled, upon
which Opponent can answer and move WL to L in the
usual way. If Friend got a chance to play a second move
in a row, he can move this game to W. In other words,
this game is won for Opponent, but Friend has a threat
to snatch victory away if he gets two moves in a row. In
Go, such moves are useful ko-threats.
We can also have games like KO"jLjjLjLjjjLjLjjLjL,
where it would take Friend three moves in a row to turn
this lost game into KO" (and a fourth to win the ko).

And so on.
When there is no ambiguity in how to read games,
we will drop some vertical bars and even some out-
come symbols. For example, WjLjjLjL is also de-
noted WLjLL and sometimes simpli…ed to WLjL.
KO"jLjjLjLjjjLjLjjLjL becomes KO"LLLjLLLL and can
be simpli…ed to KO"LLLjL.
Some games have outcomes representing a score, for in-
stance the territory game in Go. The symbols of such
games correspond to natural numbers and valuate on a
nominal scale, whereas W, L, U, and ko outcomes are
symbols valuating on an ordinal scale. These games can
be added up, for instance to …nd the total ’amount’ of
territory (amount is written between inverted commas,
as in general a sum of games remains a game and not a
number). It makes little sense, though, to add up sym-
bols of an ordinal scale. Conway’s famous formula for
adding up two independent games G and H is as follows
(Conway, 1976),

G + H =
©
GL + H;G + HLjGR + H;G + HRª

;

where GL and GR denote the left and right part of G,
respectively. The commas indicate that both players
have two options, to move in either G or H.
Sums of independent games is a well-studied subject in
combinatorial game theory, see for instance (Berlekamp
e.a., 1982). It has been applied to Go endgames, where
the games are (almost) independent, resulting in nearly
perfect play and performance superior to the best pro-
fessional players. On the contrary, research on sums of
dependent games is still in its infant stage. There are
currently two approaches, each having its own draw-
backs: (1) assume that the games are independent and
(2) merge the games into one bigger game.
To our knowledge, the only publication on multiple goals
in two-player games is (Willmott e.a., 1999). It devises
a method to solve conjunctions of goals, by means of
hierarchical planning. Although this results in a greatly
reduced search space, the method requires hand-coded
domain knowledge and is very sensitive to gaps in the
knowledge-base. Moreover, disjunctions and combina-
tions of conjunctions and disjunctions of goals are not
treated.

MULTI-GOALS

Multi-goals may appear in many games, at least in the
mind of a strategic player, but also in real world situa-
tions. They come in many forms, sometimes expressing
one wants to do two or more things simultaneously, an-
other time it enumerates di¤erent means to achieve the
same goal. Our de…nition is as follows.

De…nition 2 A multi-goal is a logical expression of two
or more ordinal-scaled objectives in two-player games.

A logical expression is a conjunction and/or disjunction.
Ordinal-scaled means that the symbols (W, L, etc.) are
partially ordered. A combinatorial game can be asso-
ciated with a multi-goal just as well as with a single
goal.

Example 3 H = G1 AND (G2 OR G3).

This example expresses a general multi-goal, not tied
to a particular game. The Gn could perfectly well be
associated with Chess goals like capture pawn or isolate
queen. The multi-goal would have little sense, though,
had the compound goals integer-valued outcomes. For
such games, one would rather use a sum of games.
Multi-goal generation could be automated by means of
hierarchical decomposition, or simply by hand-coding.
With automated multi-goal generation, one would be
close to a Go playing machine. We will not elaborate on
it here.
Multi-goals are not at all new. Their status can be com-
puted using the same algorithms as for single goals, e.g.
alpha-beta- or proof-number search. The main di¤er-
ences between current single- and multi-goal search are
the evaluation function and move generation. A typical
current multi-goal evaluation function looks the same
as a single-goal evaluation function from the outside, it
evaluates a goal. Internally, the multi-goal evaluation
function will do several single-goal evaluations (one for
each compound goal Gn) and then evaluates the logical
expression, compared to just one for a single-goal evalua-
tion function. A multi-goal move generator will be some
sort of combination of the move generators of the com-
pound goals. For example, a simple, uninformed and
straightforward method would be to generate the union
of all the moves, generated by the respective compound
move generators. With the triple-goal of example 3, this
method would result in an average branching factor of
around three times the average branching factor of one
of the Gn’s search tree.
The current method of computing multi-goals is not ef-
…cient. It does not employ possible independence of the
compound goals. When the games in a multi-goal are
independent, then they can be solved separately (with
a relatively small branching factor) after which the logi-
cal expression can be computed in almost no time. With
this method, the computation time can be sped up quite
dramatically.
Thomsen (2002) ran an experiment on a simple double-
goal. Solved separately, the goals were disproved with
80 nodes. Solved as a multi-goal, using a method com-
parable to the straightforward one above, the disproof
took 2520 nodes. This shows it is indeed worth to im-
plement a computational intelligent approach (Thomsen
also pointed out that it is of even greater importance in
multi-goals to use a transposition table).
We propose the following de…nition for a disjunction of
two independent goals G and H (inspired by Conway’s

formula for addition):

De…nition 4 G OR H =©
GL OR H;G OR HL j GR OR H;G OR HR

ª
:

The de…nition for a conjunction of two independent
goals is obtained by replacing OR by AND. De…nition
4 expresses that both players can choose whether they
play in G or H (e.g. if Friend plays in G, then he moves
the multi-goal from G OR H to GL OR H). In order to
compute multi-goals, we just need the next de…nition,
in which g is an arbitrary game.

De…nition 5

W OR g = W
L OR g = g
W AND g = g
L AND g = L
U OR U = U
U AND U = U

U is also an uncertain outcome, but we designate it an
extended symbol, because it is less uncertain to win one
of two uncertain games than just one. U is more un-
certain than U, because it means winning both of two
uncertain games. Summarizing the partial ordering of
all the symbols: W > U > U > U > L and W > KO"
> KO# > L. The ordering between uncertain and ko
outcomes is subject to a strategy regarding risk. One is
free to adapt this strategy at any moment to the state
of the game.
Further we assume each player can win an uncertain
game if he can make an extra move in it. This implies
for instance that WjU = WjjUjL and UjL = WjUjjL
(note that this is di¤erent from saying UL = W and UR

= L).
The following four examples, applying de…nitions 4 and
5, all assume the games are independent. Black is player
Friend.

Example 6
W jL OR W jL =
W OR WL, WL OR W j L OR WL, WL OR L =
W,W jWL,WL =
W jWL.

This example shows that it always possible to win one
of two unsettled games. Friend does not have to play
in this game to win it, Opponent just has threats.
The third line expresses both players have two ways to
achieve the same result. Moving in either of the two
WjL games yields the same result for both players. A
Go instance of this multi-goal is the upper side of …gure
2. Black string 2 has one eye. It can get a second eye
either by connecting to string 1 or by catching string
3. The game Connect(string 2, string 1) is WjL. Black
wins it with a, but black loses after white a. The game
Catch(string 3) is also WjL. The vital move for both

players is b. Black can always win on of the two goals,
so string 2 lives. White only has a and b as (ko) threats.
Playing both of them would kill string 2.

Example 7
WL AND WL =
{W AND WL} j {L AND WL} =
WLjL.

Winning both of two unsettled games is a lost game,
as it would take two moves in a row. A threat is the
only result for Friend. An instance concerns string 4, it
lives when both C and D become an eye. The games
Make_eye(C) and Make_eye(D) are both WjL, the vi-
tal point for both players is e, respectively f. So, string
4 is dead, e and f are threats for black to save his string.

Figure 2: A collection of multi-goal examples.

Example 8
KO" OR KO# =
{W jKO#} OR {KO"jL} =
W OR KO"jL, ... jj KO# OR KO#, W jKO# OR L =
W jj W jKO#, W jKO# =
W jWKO#.

This is also a won game for Friend, regardless the
amount of ko-threats at Opponent’s disposal. All that
is in it for Opponent is a threat to make a ko (in the ex-
otic situation that Opponent has a double-ko elsewhere
on the board, the supply of ko-threats is in…nite; the
outcome will then depend on the rule-set). An instance
is the black group in the upper right. It has already one
certain eye, H. The other potential eyes, G and I, are

both subject to a ko …ght. Make_eye(G) is KO", black
can win it with j, white can move the ko …ght to KO#
with j. If white wins the ko with a second move at 1,
then G has become a so-called false eye. Even though it
is surrounded by two black stones, G is not a suicide for
white. A false eye is of no use for living. Make_eye(I)
is KO#, black will lose it if white covers at k, turning
I into a false eye. Black can turn this game into KO"
by catching stone 6 with k and possibly win it with a
second move at 6. However, as example 8 shows, black
does not have to play in order to win the multi-goal.
White cannot win both ko’s. If white plays in one ko
…ght, black can simply play in the other.
De…nition 4 applies to two-compound multi-goals. As
the conjunction/disjunction of two games returns a
game, a multi-goal of three (or more) goals can be com-
puted by applying de…nition 4 …rst to two of the com-
pound goals and then to the result and the third com-
pound (and so on, were there more goals).

Example 9
WU AND (WL OR UL) =
WU AND {W OR UL, ... j L OR UL, WL OR L} =
WU AND {W j UL, WL} =
WU AND W jUL =
WU AND WU =
{W AND WU jjj U AND W jU} =
{WU jjj ... , U AND W jj L, U AND U} =
WU jUU.

DEPENDENT GAMES

Conway’s formula for addition and de…nition 4 for con-
junction and disjunction of games apply to independent
games. They embody that both players must choose
which of the two games to play in. In general, a move
can play in more than one game. Then the games are
not independent and the above formulas do not apply.
We will give four examples of a move which plays in two
goals, in which Friend plays white.
In games with moving pieces, like Chess, it is com-
mon that moving a piece to achieve one goal renders
it unusable to achieve another goal, for which it was
also needed. This situation is an analogy of the Suss-
man anomaly in hierarchical planning (Sussman, 1975),
where the postconditions of an action achieving one goal
con‡ict with the (previously satis…ed) preconditions of
another goal. In games with non-moving pieces like Go,
the Sussman anomaly is less common. It would occur if
a winning move in one game is a losing move in another
game, while a winning move does exist. A Go example
is the left side of …gure 2, where string 7 already lives.
Connect(string 8, string 7) is WjW: white m, black n,
white o, black p and string 8 is saved. Connect(string
9, string 8) is WjL. However, by connecting string 9 to

string 8) black takes away a liberty of string 8. Con-
sequently, Connect(string 8, string 7) has become WjL
and after white m, black n, white can capture a 14-stone
string with p. We say these two games are Sussman-
dependent.
Another case of goal dependency is when a move si-
multaneously achieves two goals. An instance is at the
bottom right of …gure 2, where black can turn both U
and V into eyes by playing w. White can turn them
both into false eyes with w.
When a friend move plays both in WL and in WLjLL,
Go players call that move sente. It achieves one goal and
at the same time threatens another goal. Opponent will
have to reply if he wants to ensure the latter. (There
is also another kind of sente move, playing just in one
nominal-scaled game. It makes a little pro…t with the
…rst move, but threatens big pro…t with a second.) In a
way, a sente move achieves a goal for free, as it holds the
initiative. An instance is white v. It wins Capture(string
10) and next threatens w, turning Make_eye(U) into L
(playing w immediately does not work).
A double threat by Opponent plays in two WjWL
games. A double threat can lead him to victory in one
of two (dependent) WW games! Usually, Friend will
then have to choose which game to give up, unless he
has a double winning move to rescue both games si-
multaneously. In that case, we speak of an ine¤ective
double threat. An example of an e¤ective double threat
is white x. Black would like to connect his one-eyed
strings 12 and 14 in order to live. Connect(string 12,
string 13) and Connect(string 13, string 14) are both
won (WjWL), but they share threat x. After white x,
black cannot guard against y and z simultaneously.
Current Combinatorial Game Theory has its focus on
the value of games. The notation of a game does gen-
erally not include the move(s), which achieves a certain
value. As said above, to determine dependence between
games: winning and threatening moves are indispens-
able. To detect Sussman-dependency in Go, one needs
to keep track of the losing moves as well. For the rest of
this article, we will assume the games are not Sussman-
dependent.

De…nition 10 A move is an achieving move if it is
the …rst move in a game and achieves a better result
compared to when the opponent would have moved …rst.
A move achieving a win is called a winning move.

In a WjL game, all moves achieving W are winning
moves for Friend. All moves achieving L are winning
moves from Opponent’s point of view. In games like
KO#jL and UjL, the moves leading to KO# and U are
achieving moves for Friend. A game like WLjLL does
not have achieving moves, as the game is already a win
for Opponent.

De…nition 11 A move is an n-move if it is one of n
moves in a row, which together achieve a better result

than when the opponent responds in the meantime. A
2-move is simply called a threat or a direct threat. An
achieving move is also called a 1-move.

The most straightforward direct threat is in games like
WLjLL and WWjWL, where Friend respectively Oppo-
nent have to move twice in a row to turn the result
around. KO#LjLL or ULjLL is a threat for Friend to
turn a lost game into a ko respectively an uncertain out-
come. Cazenave (1996) identi…ed WUjUU as a general
threat for Friend. However, we prefer to also consider
games like ULjLL and KO#LjLL a threat.
3-moves correspond to games like WLLLjL and
WjWWWU, these games can be moved to a direct
threat. Generally, an n-move moves a game to an (n–
1)-move game (n>1). A direct threat moves a game to
unsettled.

De…nition 12 Two combinatorial games are (n,m)-
dependent if n-moves of one game overlap with m-moves
of the other, else they are (n,m)-independent. Moves in
the overlap are called (n,m)-moves.

Two unsettled games are (1,1)–dependent if a move
plays in both of them. An example of (2,2)-dependency
is when a double threat occurs. A sente move, holding
the initiative, expresses (1,2)-dependency between two
games.

De…nition 13 Two combinatorial games are e¤ec-
tively (n,m)-dependent if the opponent has no move
which successfully answers an (n,m)-move in both
games simultaneously, else they are e¤ectively (n,m)-
independent.

Whether or not a (n,m)-move is e¤ective has to be com-
puted carefully, but we will not elaborate on that in this
article.

De…nition 14 The tally of a game is the number of
moves in a row, for which the game has been evaluated.

Example 15
tally(W jL) = 1,
tally(WW jWL) = 2,
tally(WWWW jWWUL) = 3).

Please note that the number of symbols doubles with
every increment of the tally. Now it is time to introduce
an axiom on e¤ectively dependent games.

Axiom 16 If Friend (Opponent) has an e¤ective
(n,m)-move on combinatorial games G and H and if G
and H are games at tally n respectively m, then Friend
(Opponent) can move the multi-goal G OR H to GL OR
HL (respectively to GR OR HR).

For e¤ectively independent games de…nition 4 still holds.

Example 17
Friend has an e¤ective double winning move in two
games G and H. Then:
G AND H =
WL AND WL =
(WL)L AND (WL)L j L AND WL =
W AND W jL =
W jL.

Compare WjL to WLjL for (1,1)-independent and e¤ec-
tively (1,1)-independent games.

Example 18
Opponent has an e¤ective (2,2)-move in games G and
H. Then:
G AND H =
W jWL AND W jWL =
W AND W jWL jj (W jWL)R AND (W jWL)R =
W jWL jj WL AND WL =
W jWL jj WLjL '
W jL (simpli…ed to tally 1).

Both players can move to a game where the opponent
only has a threat. Compare WjL to WLjL for (e¤ec-
tively) (2,2)-independent games.

ALGORITHMS

As one can see in the previous section, all achieving
moves and direct threats are important in multi-goals.
Below we will shortly describe two algorithms, one to
compute multiple solutions and one to compute direct
threats. Next, we will run them on some Go situations
to determine (n,m)-dependency.
We used the generic proof-number search algorithm
from the PubGo++ package (publicly available at
www.bath.ac.uk/~eespjl/go.html), and extended it to
our purposes. Proof-number search was invented by
Allis (1994). It is neither a depth-…rst algorithm like
alpha-beta, nor is it breadth-…rst. It is best-…rst, each
iteration expanding the most promising frontier node,
based on a pair of so-called proof-and disproof-numbers.
Each node in the search tree has such a pair, recording
the number of (grand)child nodes needed to prove (dis-
proof) in order to prove the node itself. It is (almost)
the A* analogue for two-player search.
A disadvantage of proof-number search is that it only
has proven, disproved and uncertain outcomes. In or-
der to …nd ko’s, one could redo the search with another
evaluation function, which would judge a ko outcome as
proven. We have not yet implemented this. Another
characteristic of proof-number search, often referred to
as a disadvantage, is that the whole search tree must be
stored in memory. We, however, see this as an advan-
tage, at least as far as the computation of multiple solu-
tions and threats is concerned. When the algorithm has

found one solution, it has also spent some time on trying
other solutions. These e¤orts do not go to a waist, we
simply reuse relevant parts of the tree. To …nd threats,
we post-process the search tree.
Our method for …nding another solution for any node
X in the tree is as follows:

1. temporarily detach the existing solution node(s)
from X,

2. make X the new root of the tree (if it was not the
root node already),

3. restart the search till another solution is found,

4. re-attach the already found solution(s) to X.

Figure 3: Black to capture the triangled stone. Winning
moves and threats are depicted.

This algorithm is simple and elegant. For the computa-
tion of multiple winning moves we apply this method to
the root node.
The idea behind our method for computing the threats
to a proven node is that every intersection in a proven
line of play is a potential threat. Had there been an
opponent stone on that intersection, then that line of
play could be thwarted. Lines of play not resulting in a
proof are neglected, they did not achieve a result and
therefore there is nothing to be threatened. This is
the biggest di¤erence with a very simple and straight-
forward method, described by Thomsen (2001), which
would consider a threat every move that has been played
in the search. His method does not need any tree post-
processing, but simply records all the moves played in

a search. Disadvantage is that some nodes, possibly
many, are falsely classi…ed as a threat (although Thom-
sen’s lambda-search method avoids most misclassi…ca-
tions indirectly by avoiding unnecessary lines of play).
The pseudo code of our depth-…rst method is as fol-
lows, where THREATS is a global variable collecting
the threats:

find_threats(node){
while(child = node.nextChild()){

if(child.isProven()){
THREATS.add(node.move());}

else{continue while;} // skip this child
find_threats(child);

endwhile;
}

After the above steps, we add all the neighbours of
THREATS, since a move on these points also has the
potential to disturb a winning line of play, as Thomsen
(2001) already pointed out. However, these threats may
appear to be ine¤ective.
Although our method for computing threats is di¤erent
than Thomsen’s, it yields similar results.

EXPERIMENTAL RESULTS

In this section we apply the two algorithms of the previ-
ous section. We keep it brief as we did not implement all
the details of the theory in this paper yet, only the (es-
sential) parts of …nding winning and threatening moves.
The goal is to capture the triangled stone in …gure 3,
black to play. The same situation is depicted three times
under rotation. In the upper left quadrant the output
of the multiple solution algorithm is given. We used a
simple move generator. For the attacker (black) it adds
moves at the liberties of the target string and intersec-
tions next to the liberties (in Go terminology: ladders
and loose ladders). For the defender it adds the same
moves plus attacks on vulnerable stones surrounding the
target string (ataris). Two solutions were found, a and
b. With both of them, black moves the capture game to
WjWL.
The upper right shows the output of the threat …nding
algorithm after black has played solution a, the bottom
left shows the output after solution b. Although many
more moves than the T’s were played during the search,
the algorithm was able to …nd all the real threats. How-
ever, it did falsely identify a few threats, mainly because
of the …nal step in the algorithm where it adds all the
neighbours of THREATS (see previous section).

CONCLUSIONS AND FUTURE WORK

We de…ned multi-goals as logical expressions of ordinal-
scaled objectives and de…ned a formula for the conjunc-
tion and disjunction of two independent games. In this

formula, we can use uncertain and (Go-speci…c) unre-
solved outcomes (ko). The formula introduces some
computational intelligence into the calculation of multi-
goals, which current approaches lack. We formalized
dependence between games, including sente moves and
double threats. We proposed a new formula for the con-
junction and disjunction of two e¤ectively dependent
games. Algorithms to compute multiple solutions and
threats have been outlined, implemented and applied.
Our plans for the near future are to implement the for-
mulas for dependent and independent games and some
other issues necessary to fully automate the computa-
tion of multi-goals. Another points is to enhance proof-
number search with unresolved outcomes like ko.

REFERENCES

Allis, L.V., 1994. Searching for Solutions in Games and Ar-
ti…cial Intelligence, PhD thesis, University of Limburg,
Maastricht.

Berlekamp, E., J.H. Conway and R.K. Guy. 1982. Winning
Ways (for your mathematical plays). Academic Press,
New York.

Bouzy, B. and T. Cazenave, 2001. "Computer Go: an AI
Oriented Survey". Arti…cial Intelligence, Vol 132(1),
pp. 39-103.

Cazenave T., 1996. Systeme d’Apprentissage par Auto-
Observation. Application au Jeu de Go. PhD thesis,
Université Pierre et Marie Curie, Paris.

Conway J.H., 1976. On Numbers and Games. Academic
Press, New York.

Sussman, G.J., 1975. A Computer Model of Skill Acquisition,
Elsevier, New York.

Thomsen, T., 2001. "Lambda-Search in Game Trees - with
Application to GO". ICGA journal.

Thomsen, T., 2002. Personal communication.
Willmott, S., J. Richardson, A. Bundy and J. Levine, 1999.

"An Adversarial Planning Approach to Go." In H.J.
van den Herik and H. Iida, eds., Computers and Games:
Proceedings CG’98, Springer-Verlag, Japan.

LATE
PAPER

Rapid Application Development of Games for Undergraduate and
Postgraduate Projects Using DirectX

Stuart Slater

GSAI Research Group
School of Computing

Wolverhampton University
E-mail: s.i.slater@wlv.ac.uk

KEYWORDS
Direct X, Education, Game Engines, Applications.

ABSTRACT
For several years the PC commercial games market has been
dominated with the DirectX application-programming
interface (API). This API is used extensively to simplify
graphics, sound and networking during the games
development lifecycle, with other APIs such as OpenGL
struggling to make an impression. With such an
overwhelming domination of the market it is of no surprise
that the term DirectX is familiar to both PC gamers and many
non-games programmers alike, though the level of
understanding of what exactly DirectX is, seems varied.
Couple this lack of understanding with the fact that the API
undergoes periodic transformations to incorporate new
technologies such as pixel shaders in graphics cards and it is
obvious that the API can be difficult to work with outside the
dedicated area of professional games developments, whose
teams are using it on a daily basis.
In parallel with Industry, academia is trying to educate and
prepare Undergraduate and Postgraduate students so that on
graduation these students are able to appreciate and work in a
fast moving Industry. In order to provide this education and
training it is necessary to have tools that are utilised by
Industry but that are also capable of being used to teach
fundamentals of computer science.
The PC computer games market is presently dominated by
both the Microsoft Visual Studio and DirectX SDK (Software
Development Kit) for development of games which creates a
dilemma in that many Undergraduate students have only 14-
week blocks for each module and have very little experience
of using SDK’s such as DirectX which can have a
considerable learning curve associated with their use and this
means that little meaningful work can be carried out by
students new to the SDK in the time scale given.

 Therefore the purpose of this paper is to investigate how and
why a standalone set-up tool for DirectX was developed to
support undergraduate and postgraduate projects utilising the
API.

INTRODUCTION
The last 20 years has seen a growth in the video game industry
that is predicted to continue for both PC and consoles over the
next few years (Staples 2003) this increase has meant that the
consumer base for video games has risen and widened into
new territories such as mobile phones and portable gaming
devices like Nintendo’s Gameboy. Therefore it is of no
surprise to find that there is an increase in the choice of
development of computer game related work taking place in
both undergraduate projects and postgraduate research study
in Universities which will continue to be fuelled by a growing
pool of game players who according to some Industry sources
will need to be nurtured from an early age in order to provide
a sustained flow of new talent. (Purdy 2003). This nurturing
will undoubtedly be easier if games could be created without
much of the tedium currently involved in games writing, such
as learning APIs and SDK’as.

The DirectX API is not the only tool that students and
researchers must use in order to develop computer games-
related projects; they could easily choose packages such as
Dark Basic (The Game Creators Ltd) or Renderware but the
DirectX API does offer easy to access hardware acceleration,
experience using the most popular games API and a vast pool
of online and written material to enable almost any application
to be developed given the time to tackle the steep learning
curve associated with it. This steep learning curve often
begins with the user understanding the initialisation and
setting up of the various parts of DirectX prior to any
development from the user’s own designs. Given that many
full time undergraduate students have less than 6 months of
part time study to complete their project it is difficult to see
how a student can both learn the DirectX API and develop a
project to utilise it in the time scale allowed.

Because the aim of most academic projects is not to look at
learning a new API or programming language but to actually
research and implement an application it is necessary with
game related projects to find tools that are suitable to develop
prototypes and sample applications quickly as the time scale
for undergraduate related projects is limited to between three
and six months and MSc projects between six and twelve
months. Realistically it is hoped that the student or researcher
does not spend the majority of time learning the API but can
spend a smaller proportion of time on learning a language

mailto:s.i.slater@wlv.ac.uk

and/or API, ideally around 25% of the whole development
time. This is in contrast to Industry where games are typically
developed by up to 60 skilled professionals working for up to
2 years involved in a complex software engineering project,
funded by multi million pound investment (Masuch 2002).

To help reduce the time spent learning how to use the API a
set up program with helper functions was developed as part of
a larger project (Slater 2003a) functionality of which would
include:

1) Enumeration of key hardware in the PC.
2) Create an external report on the main software/ hardware
components
3) Create a list of the users set up requirements that could
subsequently be used to quickly initialise DirectX for any
application
4) Provide detailed error reporting when and if DirectX
components failed to initialise.
5) Rely on very little knowledge of C or DirectX in order to
get primitives on the screen.

DIRECTX
DirectX is actually a suite of technologies that incorporates
the following five main components Direct3D the 3D graphics
side of DirectX, Direct Input deals with input from devices
such as keyboards and mice, DirectPlay incorporates
networking components, Direct Music/Sound simplifies music
and sound development and DirectShow is mainly used for
multimedia presentations.

Therefore when a student or “newbie” developer talks about
DirectX it is imperative to identify which components are
being discussed, which is often Direct3D. The set-up tool
developed as part of the MSc development (Slater 2003a) was
mainly for setting up Direct3D and Direct Input, though it
does incorporate tools for checking sound and network
connectivity.

ALTERNATIVE SETUP TOOLS
An inspection of the Direct3D 8.1 SDK samples shows that
the user has no control over the initial settings of the
applications but by pressing F2 can access the control panel
shown in figure 1.

Figure 1. Microsoft’s Direct3D Control Panel.

This control panel allows the selection of the Adapter the user
wishes to use, for multi VGA card systems. An option to
allow the user to choose between hardware acceleration
(HAL) or to use an optimised software rasteriser (REF). The
user can also choose to run the current application windowed
or full screen. Finally the user can choose the level of anti-
aliasing through the multi-sample option.

The main problems encountered with using this dialogue box
were that the control panel is embedded in each SDK sample
application and took some time to figure out where it was and
how it could be used in the development of a different
application. It also requires the user to drop down from full
screen to windowed mode when changing settings. The
dialogue box also has a limited number of options for
changing settings so advanced users would have to tweak the
settings through code for subsequent projects. Finally the set
up box could only be activated from the application and so
was little help if DirectX did not start up initially forcing the
user to look at another tool for diagnosing DirectX such as the
DirectX diagnostic tool available with the runtime. When
using the DirectX application wizard found in Microsoft’s
Visual C++ the same dialogue box is embedded in the user’s
application along with nearly a 1000 lines of Class based code
for the user to absorb before writing any of their own code,
meaning a loss of time for the developer. To this end it was
decided to develop a standalone application that could be used
for initialising applications quickly and with the minimum of
code by the user.

DIRECTX SETUP TOOL REQUIREMENTS
From an initial investigation of the SDK samples and a look at
applications such as 3D Mark 2001 which incorporate set-up
facilities for the application; the functionality of the
standalone application was set at allowing the user to control:

1) Screen resolution.
2) Whether the application runs full screen or windowed.
3) The colour depth.
4) Whether or not to use hardware acceleration.
5) Texture quality.
6) Level of anti-aliasing.
7) Frequency of the display.

It will also allow the user to view:

1) The graphic card and driver detected.
2) What version of DirectX is currently installed.
3) Total system memory and free memory.
4) Processor and operating system installed.
5) Network connectivity i.e. IP address and host name.
6) DirectSound drivers and sound test facility.

A necessity of any application using DirectX is the need for a
stable and optimised environment and therefore the set-up
options are split into two distinct areas that can easily overlap
between performance and image quality, in that some options
such as the choice of hardware or software acceleration affects
speed in a positive way but texture quality improves image

quality at the cost of performance. Therefore during the first
stage of the work the set up program was developed with
performance and image quality control in mind.

SET UP TOOL
A set-up tool was developed based on suitable HCI guidelines
(Torres 2002) as well as feedback from external testers
recruited during the applications development and is shown in
Figure 2.

Figure 2. Main Set Up Screen

A sample of subsequent screens can be accessed from the
controls on the right hand side of the main screen and are
shown in figures 3 & 4

Figure 3. Graphic Card Information.

Figure 4. Main System Information.

The information screens shown provide the user with a list of
useful information that can be used when developing their
application; otherwise this information can be ignored as long
as DirectX will initialise. If the user is a complete novice then
the application also generates a text file shown in figure 5 that
can be e-mailed to the developer of the application in order for
them to offer advice on failed initialisations.

Figure 5. Contents of System.txt

The Bitmap image shown in figure 2 as well as the title bar
can be changed easily to allow full customisation of the
application. The set up program also creates a very simple text
file, which stores the users selection ready to used by the main
application (Figure 6).

Figure 6 Contents of con

STEPS FOR CREA
APPLICATION
Before a single primitiv
requires a number of
involve pages of code to
is going to use and to s
windows messages. Th
followed by Direct3D. T
object is followed by th
extensive amount of cod
required, else the user
settings and hope that th

Hardware acceleration (1 = yes)
Screen Width
Screen Height
Colour depth (22=32 bit)(23=16bit)
Refresh Rate
Texture Quality (0 low, 2 = high)
Hardware Vertex Processing
Z Buffer Format
Full Screen = 1
fig.txt file.

TING A DIRECT 3D

e can be drawn on the screen Direct3D
steps to be carried out. These steps
 firstly initialise the Window the user
et up the message pump to deal with
en DirectX needs to be initialised
he initialisation of the Direct3D com.
e creation of a device that can be an
e if any customisation of the object is
 can default to the desktop display
e creation of the device works. Once

this device is created, the user has to write code in order to
load in meshes etc and display them and create vertex buffer
structures to hold the details of the objects they wish to use on
the screen. Then once these steps are completed, the user can
finally use the “Begin Scene” and “End Scene” functions in
order to display the primitives or meshes they have created.
This final stage between the begin and end scene is really the
most important few lines of code to developers who are
constrained by time but as a glance at any SDK sample shows
this can be hundreds of lines of code not including the Direct
Input code.

One of the key problems with writing games and applications
in DirectX is the range of skills needed in order to utilise the
API and are shown below:

Knowledge of:
WIN32 Programming for
a) Creation and interaction with dialogue boxes.
b) Creation and interaction with windows.
c) Dealing with windows messages.
Direct X
a) Initialisation and use of Direct3D including use of text,

primitives, meshes, lighting followed by freeing up of
pointers.

b) Creation and use of Direct Input for keyboard and mouse
use.

c) Creation and use of Direct Play, Direct Music and Direct
Show

Area Specific Knowledge
a) 3D Geometry including matrix manipulation, structure

of primitives.
b) Use and tacking of view ports.
c) Sound Mixing
d) Variations in Graphic Formats i.e. JPEGs taking time to

uncompress in Direct 3D.

Furthermore an overall good knowledge of C++ is required
deal with functions, pointers etc.

Alternatively the user could use the DirectX Set Up Wizard
provided when the DirectX 8.1/9.0 SDK is installed. This
wizard provides a complex framework that can be used to
develop DirectX application by experienced developers but
due to the size of the application, typically 27MB before the
user types a line of code and the nesting and massive
incorporation of reusable code it is unlikely that student s
without knowledge of using an SDK , Visual Studio IDE,
Object Orientated programming and SDK knowledge will be
able to both design and build a suitable application in the time
scales mentioned earlier.

Alternatively suing the framework/engine provided such as
the DXHELPER file included as part of the set-up program
(not to be confused with Dxhelper.h, which is located in the
DXMedia\Include folder) this process can be drastically
accelerated and the level of users’ knowledge does not have to
hinder progress.

ACCELERATING APPLICATION
CREATION

Using the files such as the DXHELPER included with the set-
up program an application can be written quickly without the
need for programmers to learn the initialisation, set up code
and the many codes used for colour depths etc, this still allows
a novice maximum control over the initialisation environment
through the dialogue based front end. Shown below is
simplified code to get a Direct 3D application started and a
Mesh Displayed:

Int API ENTRY
{
SetUp(hinstance); //Initialises DirectX
NewDXObject=ReturnDirectXSettings(); //reads in and
initialises DirectX based on dialogue box settings (fig2).
Mesh NewMesh;
NewMesh=LoadMesh(“Mesh.x”);

**** Inside Message Loop
Begin Scene

DisplayMesh();
End Scene

**** Message Loop Finishes
}

The lengthy learning curve involved with learning the API, or
the need to dissect complex pages of code disappears and the
user can spend more time deciding on what they want to put
on the screen rather than how to set up the environment ready
for display. The most difficult area to understand for the
novice from the code provided above is the windows message
loop. In many of the SDK samples a developer might be
forgiven for thinking that the message loop is not needed, but
a careful scan of the d3dapp.cpp file that is included, as part of
most of the SDK samples will show that the message loop is
still used and is an integral part of all DirectX applications,
but the novice user does not really need to understand this,
just include it in the code.
If the user wants to use meshes that have come from packages
like 3Dstudio max, then as long as they are converted into .x
file format using the supplied SDK tool the user only has to
then use the following 3 lines of code to utilise and display
their model as already mentioned above:

Mesh NewMesh;//set up meshes from .x files

NewMesh=LoadMesh("NewMesh.x",NewDXObject);//Load
in mesh data and associate with the DirectX object

DisplayMesh(NewMesh,NewDXObject);
//To be placed between the begin and end scene

This is because the set up application also includes functions
for taking care of the tedious work in setting up meshes, as
well as easy to use functions to allow Direct Input to be used
for keyboard and mouse control.

CONCLUSIONS
The choice of DirectX as a programming API for projects
must be a choice of careful consideration. The API as a whole
requires at least 3-6 months experience in order to grasp the
fundamentals without the actual specialist knowledge such as
music composition, 3D geometry, or mathematics needed to
actually apply the API. Therefore the use of the DirectX set up
program presented in this paper would allow a student or
researcher to quickly begin to put primitives onto the screen
with the minimum of experience and make the prospect of
using DirectX much easier to comprehend at an early stage of
a project development. It is not suggested that the addition to
the arena of games development of a set up application will
influence the multi million pound game industry but as has
been said in other research (Aaseth 2001) it is possible to
expand the idea of computer games development into an
upcoming generation of students

It is intended that the application will continue to grow to
incorporate new technologies and releases of the DirectX API
such as the High Level Shader Language Support or Nvidia’s
variance of the Cg Programming language. What is important
to note is that to enhance the game playing experience of PCs
many users like to change settings so as to push the hardware
in their machine to maximum performance. Games in general
are split on this issue with some like Unreal (Id Software)
allowing the user a lot of control over all aspects of the
game’s environment so that if the game’s performance
degrades the user then has the option of changing settings.
Others such as Age Of Mythology (Ensemble) initially
suffered with crashing with the user having no control over
the settings in order to solve the problems. With both a
growing increase in the use of game engines in commercial
games (Slater 2003b) and a wider interest from students and
researchers in game related projects it is important that
applications like the DirectX set up program continue to
improve and grow so that the audience and technicality of
projects is not held back by the learning curve of the API.

Microsoft has not been idle with the release of the DirectX 9
API and as can be seen in figure 7, a new set up program is
included with the SDK samples in order to offer a greater
degree of flexibility for users in their environment. But again
the same problem exists for users in that they must dissect a
lot of code in order to make any sense of the dialogue box for
their own application and they must also have an excellent
grasp of Class based programming. However the set up
program for the advanced user is extremely promising in the
environmental control it offers.

Figure 7. DirectX 9 Set Up Interface

REFERENCES
[1] Aaseth, Espen.(2001) Editor – In Chief. Computer Game
Studies, Year One. The International Journal of Computer
Game Research July 2001.
[2] Barry,I.(2201). “Tools of the trade: The changing Nature
of design Tools”. Games Developer Conference 2001. San
Jose Convention Centre. San Jose. California.
[3] Masuch, M. Freudenberg B.(2002) Teaching 3D Computer
Game Programming. Institutes of Simulation & Graphics.
Univeristy of Magdeburg.
[4]Purdy, J. (2003) “Back to Play School”. Develop Magazine
February 2003 Issue 25. Intent media.
[5]Staples, S. (2003) “Video Game Industry Recovering
Cautiously.” ACACIA Research Group.”
www.acaciarg.com/news/ar051302b.htm
 Last accessed 29 August 2003.
[6] Slater, S. (2003a). An Investigation Into an Isometric View
3D Computer Game Graphics Engine. MSc Dissertation .
Wolverhampton University.
[7] Slater, S. (2003b). Are Reusable Engines The Future of
Computer Games Development” Digital Games Industries:
Developments, Impact and Direction. ESRC Centre for
Research on Innovation and Competition .University of
Manchester. 2003.
[8] Torres, R.J. (2002). “Practitioners Handbook for user
Interface Design and Development”. Prentice Hall.

BIOGRAPHY
Stuart Slater is currently a Lecturer of IT and Computing at
Wolverhampton University. He holds a BEng (Hons) in
Software Design for Engineering Systems from the University
of Central England, an MSc in Computer Science from
Wolverhampton University and is currently a PhD Researcher
at Wolverhampton University. He is also a member of the
British Computer Society and his research interests include
both commercial game engine developments and current
developments in PC graphics specifically for games.

http://www.acaciarg.com/news/ar051302b.htm

AUTHOR
LISTING

AUTHOR LISTING

Akazawa Y.152
Al-Dabass D.147/157/233
Allen M.............................26
Assadourian S.5
Astheimer P.238

Bauckhage C.....................119
Bertelle C..........................31
Bouras C.111

Cant R.147/157/233
Cardoso A.175
Chadou K..........................69
Chan T.K.Y.61
Churchill J.233
Cunningham P.41

da Silva D.R.D..................219/222
Damasceno A....................219/222
Davies A.5
de O. Cruz A.J.101
Demasi P...........................101
Dutot A.31
Dziabenko O.111

Ehlert P.A.M.....................201

Fairclough C.R.41
Ferretti S.211
Francik J.170

Gough N.26/53/127
Grünvogel S.M.180
Guillot A.140

Hassaku H.........................47

Igglesis V..........................111
Izumi T.23

Jakob M.187
Jankovic L.34

Kapoulas V.111
Karlsson B.74/219/222
Kobayashi W.23
Koppelaar H......................243

Leitão B.175
Lerebourg S.31
Livingstone D.197

Madden N. 77
Marques B........................ 175
Marshall I......................... 238
McDowell R..................... 197
McGlinchey S.J. 106
Mehdi Q. 26/53/127
Meijer A.B. 243
Misedakis I. 111
Mittmann M. 170
Mouthaan Q.M................. 201

Nakamura Y..................... 23
Natkin S. 13/82
Niijima K. 69/152

Okada Y. 69/152
Olivier D. 31
Onoye T. 23

Paelke V........................... 227
Pereira F.C. 175
Pivec M............................ 111
Porzio L. 192
Postma E. 93
Prévost G. 31

Reimann C. 227
Remagnino P.................... 170
Remondino M. 135
Ren J. 238
Rhodes D. 147/157
Ribeiro P. 175
Robert G. 140
Roccetti M. 211
Rothkrantz L.J.M. 192/201

Sagerer G. 119
Schwichtenberg S. 180
Shigiya A. 23
Slater S............................. 253
Sprinkhuizen-Kuyper I. ... 93
Spronck P......................... 93
Stichling D. 227
Suliman H. 127
Szarowicz A..................... 170

Tanaka K.......................... 47
Tatomir B......................... 192
Thawonmas R. 47
Thompson P. 165
Thurau C. 119

AUTHOR LISTING

Tomlinson S.L.5
Tsujino K.23

Vega L.82

Wink B..............................26

Zeng X.53
Zhang Z.61

	GAMEON2003 WorkingAI paper 1.09 (final).pdf
	A YEAR IN THE LIFE OF A GAMES AI PROGRAMMER
	INTRODUCTION – A CURRICULUM VITAE
	SIMPLICITY RULES
	CODING FOR CONSOLES
	SMOKE AND MIRRORS
	PHYSICS AND AI: CASE STUDIES
	
	
	Space Combat
	Formula 1 Racing
	Walkers
	Billiards Games

	TO SCRIPT OR NOT TO SCRIPT
	MIDDLEWARE – THE FINITE STATE OF THE ART
	
	
	
	THE ROLE OF PIZZA

	CONCLUSION
	REFERENCES
	AUTHOR BIOGRAPHY

	paper_34.pdf
	A REVIEW OF EYE-TRACKING AND USABILITY IN COMPUTER GAMES
	Mike Allen, Norman Gough, Quasim Mehdi and Brian Wink
	Game Simulation and Artificial Intelligence Group, University of Wolverhampton,
	35–49 Lichfield Street Wolverhampton, WV1 1EQ, Un

	ABSTRACT
	INTRODUCTION
	USABILITY AND COMPUTER/VIDEO GAMES
	INTERFACE EVALUATION USING EYE TRACKNG
	DISCUSSION
	CONCLUSIONS
	REFERENCES

	Xin_35.pdf
	KEYWORDS
	ABSTRACT
	1. INTRODUCTION
	2. LANGUAGE INFERENCE TECHNOLOGY
	3. VISUAL INFORMATION REPRESENTATION IN VIRTUAL ENVIRONMENT
	Temporal Presentation
	Spatial Relation Representation

	4. METHOD
	Temporal Inference
	Spatial Relation Reasoning

	REFERENCES:

	PaperNo_9.pdf
	INTRODUCTIUON
	PREVIOUS WORKS
	BRACHIATION, MODEL AND EQUATIONS
	Brachiation Phase
	Features of Each Phase

	Model Designing
	Links

	SFD Phase In this phase, from the viewpoint of energy conversion, the brachiator should convert the potential energy to kinetic energy. The more kinetic energy that it obtains at the end of SFD, the higher the position it could achieve in the phase SFU.
	SFU Phase In this phase, the brachiator tries to swing forward-up toward the target bar. From the viewpoint of energy conversion, it should convert the kinetic energy obtained from SFD to potential energy, P(t). In other words, it tries to swing higher
	GRP Phase The goal of the GRP phase is to catch the target bar with a proper posture. The objective function of this phase contains the collision term, D(t), and the gesture function, G(t). The desired angles within G(t) are designed according to t
	FINAL-TARGET HEURISTIC CONTROL
	Swing Forward-Down In this phase, there are two terms in objective function, the local term gesture, G(t), and the final term collision sensor, D(t).
	Swing Forward-Up There are two terms in the objective function, the local gesture term, G(t), and the final collision term, D(t). The gesture term is similar to PHC's SFU gesture term. Meanwhile, D(t) is as same as the D(t) term of SFD in PFHC.
	Grasp The two terms in the GRP objective function, the gesture term G(t) and the collision term D(t) are the same as G(t) and D(t) in the phase GRP of PHC. The GRP objective function of PFHC is given in Equation (9).
	RESULTS
	REFERENCES

	38PAPER.pdf
	KEYWORDS
	ABSTRACT
	INTRODUCTION
	
	FROM FILM TO GAME ANALYSIS
	SEGMENTATION OF A GAME
	Levels
	Quests
	A PETRI NET MODEL OF A GAME

	Introduction to Petri Nets
	
	PN Model of Quests
	Places
	Figure 2: A Basic Model of a Transaction

	Ordering Between Transactions
	
	
	
	Figure 4: B before A

	Figure 9: Example Door with Three Transactions

	Quests Categories and Model
	
	Figure10: Level Solutions

	MYST EXAMPLE
	Synopsis
	Figure 11: Myst Quests
	Petri Net model for the beginning of the first quest
	Quests in Myst
	CONCLUSIONS

	REFERENCES
	
	AUTHOR BIOGRAPHY

	Ontology for Perception in Cognitive Agents and Synthetic Environments (Final)_36.pdf
	ABSTRACT
	INTRODUCTION
	VISUAL & AUDITORY COGNITION FOR SYNTHETIC PERCEPTION
	ONTOLOGY OF WORLD, MENTAL PERCEPTS AND CONCEPTS
	PERCEPTION OF EVENTS AND PROCESSES
	5MESSAGES FOR REPORTING EVENTS
	6INSTATING SPECIALISED PROCESSES
	CONCLUSIONS
	REFERENCES

	Behaviour selection using neural networks-1.pdf
	KEYWORDS
	ABSTRACT
	INTRODUCTION
	BACKGROUND
	NEURAL NETWORKS FOR BEHAVIOUR SELECTION
	Agent Behaviours
	Behaviour Control
	Why Neural Networks? What Benefits Do They Offer?
	Winner Takes All Multi-layer Feed Forward Networks
	Agent Experiment

	AGENT FRAMEWORK DISCUSSION
	Generic Behaviours
	Neural Controller
	The Experiment
	Neural Network Results

	CONCLUSION
	REFERENCES

	fmmandreactiveai-46.pdf
	FAST MARCHING AND FAST DRIVING: COMBINING OFF-LINE SEARCH AND REACTIVE A.I.
	KEYWORDS
	ABSTRACT
	INTRODUCTION
	PATH PLANNING WITH THE FMM
	CALCULATING THE TRAVEL TIME TO A NODE
	STRENGTHS AND WEAKNESSES OF THE FMM
	OFF-ROAD RACING WITH REACTIVE A.I. VEHICLES
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

	GAME-ON2003-15.pdf
	Keywords
	Abstract
	Introduction
	Related work
	The general design
	The rule-based approach
	Design
	Implementation

	The probabilistic approach
	Design
	The start probability calculator
	The end probability calculator

	Implementation

	Evaluation
	Conclusions and future work
	References
	Author biography

	reimann-paelke-stichling_Poster27.pdf
	KEYWORDS
	ABSTRACT
	INTRODUCTION
	RELATED WORK
	INTERACTING WITH MOBILE DEVICES
	COMPUTER VISION BASED INTERACTIONS
	PROTOTYPE: AR-SOCCER
	COMPUTER VISION
	EVALUATION

	CONCLUSION AND OUTLOOK
	REFERENCES

	paper43.pdf
	GENETIC SEARCH ALGORITHM
	We have tested the algorithm using a set of Go pr

	gameon03-41.pdf
	KEYWORDS
	ABSTRACT
	INTRODUCTION
	LITERATURE REVIEW
	FRAMEWORK FOR VISION GAMES AND VIBG
	VISION TECHNOLOGIES IN THE VIBG SYSTEM
	Board detection and normalization
	Detection of turn changes
	Moving object detection and tracking
	Object classification and recognition

	EXPERIMENTAL RESULTS
	CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

	gameonslater.pdf
	Rapid Application Development of Games for Undergraduate and Postgraduate Projects Using DirectX
	
	KEYWORDS
	ABSTRACT
	INTRODUCTION
	DIRECTX
	ALTERNATIVE SETUP TOOLS
	DIRECTX SETUP TOOL REQUIREMENTS
	SET UP TOOL
	STEPS FOR CREATING A DIRECT 3D APPLICATION
	WIN32 Programming for
	Direct X
	Area Specific Knowledge

	ACCELERATING APPLICATION CREATION
	CONCLUSIONS
	REFERENCES
	BIOGRAPHY

	gameonslater.pdf
	Rapid Application Development of Games for Undergraduate and Postgraduate Projects Using DirectX
	
	KEYWORDS
	ABSTRACT
	INTRODUCTION
	DIRECTX
	ALTERNATIVE SETUP TOOLS
	DIRECTX SETUP TOOL REQUIREMENTS
	SET UP TOOL
	STEPS FOR CREATING A DIRECT 3D APPLICATION
	WIN32 Programming for
	Direct X
	Area Specific Knowledge

	ACCELERATING APPLICATION CREATION
	CONCLUSIONS
	REFERENCES
	BIOGRAPHY

