

6™ INTERNATIONAL CONFERENCE
ON INTELLIGENT GAMES AND SIMULATION

GAME-ON 2005

EDITED BY

Marwan Al-Akaidi

and
Abdennour El Rhalibi

NOVEMBER 24-25, 2005

DE MONTFORT UNIVERSITY
LEICESTER, UNITED KINGDOM

A Publication of EUROSIS-ETI

Printed in Ghent, Belgium

Cover art of Divinity 2 was reproduced by kind permission of Larian Studios, Oudenaarde,
Belgium

6™ International Conference
on
Intelligent Games and Simulation

LEICESTER, UNITED KINGDOM
NOVEMBER 24-25, 2005

Organised by
EUROSIS

Co-Sponsored by
Liverpool John Moores University
Binary lllusions
University of Bradford
Delft University of Technology
GIGnews.com
Ghent University
The Moves Institute
Simulation First

Sheffield University

Hosted by
De Montfort University

Leicester, United Kingdom

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

General Conference Chair
Marwan Al-Akaidi
De Montfort University
Department of Electronics
Leicester, United Kingdom

EDITORS

General Program Chair
Abdennour Al-Rhalibi
Liverpool John Moores University
School of Computing and Mathematical
Sciences
Liverpool, United Kingdom

PROGRAMME COMMITTEE

Adam Szarowicz, School of Computing and Information
Systems, Kingston University, Kingston, United Kingdom
Alice Leung, , BBN Technologies, Cambridge, USA
Chris Darken, Dept. of Comp. Sci., Naval Postgraduate
School, Monterey, USA
Christian Bauckhage, Center for Vision Research, York
University, Toronto, Canada
Christian Reimann, C-LAB, Universitat Paderborn,
Paderborn, Germany
Christian Thurau, Applied Comp. Sci., Universitaet
Bielefeld, Bielefeld, Germany
Christos Bouras, Computer Engineering and Informatics,
University of Patras and RACTI, Greece
Clark Verbrugge, School of Computer Science, McGill
University, Montreal, Canada
Dottie Agger-Gupta, Human and Organization
Development, Fielding Graduate University, Santa
Barbara, USA
Hans Vangeluwe, School of Computer Science, McGill
University, Montreal, Canada
lan Marshall, Engineering, Mathematical & Information
Science, Coventry University, United Kingdom
Ingo Steinhasuser, Binary lllusions, Braunschweig,
Germany
Javier Marin, Electronic Digital Systems, Universidad de
Malaga, Malaga, Spain
Jorg Kienzle, School of Computer Science, McGill
University, Montreal, Canada
Jo&o Tavares, Dept. of Engineering, Universidade do
Porto, Porto, Portugal
L.eon Rothkrantz, Data and Knowledge Engineering,
Delft University of Technology, Delft, The Netherlands
Leon Smalov, Digital Entertainment and Creativity
Department, Coventry University, Coventry, United
Kingdom
Maja Pivec, Learning and Knowledge-based Systems,
Institute for Information Technology, Graz, Austria
Marco Gillies, Dept. of Computer Science, University
College London, London, United Kingdom
Marco Roccetti, Computer Science, University of
Bologna, Bologna, Italy
Marcos Rodrigues, Materials and Engineering Research
Institute, Sheffield Hallam University, Sheffield, United
Kingdom

Mark Ried|, Institute for Creative Technologies,
University of Southern California, Marina del Rey, USA
Markus Koch, C-Lab, Universitdt Paderborn, Paderborn,

Germany
Michael Young, Center for Digital Enertainment, NC
State University, Raleigh, USA
Michael Zyda, School of Engineering's GamePipe
Laboratory, USC Viterbi, Monterey, USA
Mike Katchabaw, Comp. Sci., University of Western
Ontario, London, Canada
Oliver Lemon, School of Informatics, Edinburgh
University, Edinburgh, United Kingdom
Olli Leino, Media Studies, U. of Lapland, Rovainiemi,
Finland
Oryal Tanir, Knowledge Engineering and Simulation, Bell
Canada, Montreal, Canada
Paolo Remagnino, Digital Imaging Research Center,
Kingston University, Kingston, United Kingdom
Pedro Demasi, Univ. federal de Rio de Janeiro, Riode
Janeiro, Brazil
Robert Askwith, Network Security, Liverpool John Moore
University, Liverpool, United Kingdom
Robert Zubek, Comp. Sci., Northwestern University,
Evanston, USA
Ruck Thawonmas, Department of Human and Computer
Intelligence, Ritsumeikan University, Shiga, Japan
Stephen McGlinchey, Artificial Neural Network Research
Group, University of Paisley, Paisley, United Kingdom
Sue Greenwood, Department of Computing, Oxford
Brookes University, Oxford, United Kingdom
Tina Wilson, Coventry University, Coventry, United
Kingdom
Victor Bassilious, Division of Software Engineering,

University of Abertay, Dundee, United Kingdom

Volker Paelke, Dept. of Computer Science, University of
Hannover, Hannover, Germany

William Swartout, Information Sciences Institute,

University of Southern California, Marina del Rey, USA
Yoshihiro Okada, Department of Informatics, Kyushu
University, Kasuga, Japan
Dave England, Liverpool John Moores University,
Liverpool, United Kingdom
Nicolas Szilas, Macquarie University, Sydney, Australia
Borje Karlsson, PUC, Rio de Janeiro, Brazil

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Simulation Society. Permission is
granted to photocopy portions of the publication for personal use and for the use of students providing credit is given
to the conference and publication. Permission does not extend to other types of reproduction nor to copying for
incorporation into commercial advertising nor for any other profit-making purpose. Other publications are encouraged
to include 300- to 500-word abstracts or excerpts from any paper contained in this book, provided credits are given to
the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be used
in any form, written or electronic, without the written permission of the author and the publisher.

All the articles published in these Proceedings have been peer reviewed.

EUROSIS-ETI publications are ISI-Thomson and INSPEC referenced

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Ghent
University, Faculty of Engineering, Dept. of Industrial Management, Technologiepark 903, Campus Ardoyen, B-9052
Ghent-Zwijnaarde, Belgium or to Philippe Geril, ETI Executive Director, The European Technology Institute,

Torhoutsesteenweg 162 Box 4, B-8400 Ostend, Belgium.

EUROSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400
Ostend, Belgium

EUROSIS-ETI Publication

ISBN: 90-77381-23-6

\

GAME’ON
2005

Vil

PREFACE

We extend a hearty welcome to all participants at the 6" GAME-ON 2005
International Conference on Intelligent Games and Simulation. In its six years of
existence, it has rapidly gained recognition worldwide as being one of the first
scientific conferences dealing with important research issues surrounding the use of
Al and computer simulation in next-generation commercial games. A characteristic,
which, is now recognized across the Atlantic, where the first counterpart of the
conference was held at McGill University in Montreal, the first of many, we are sure.

This year, modelling and simulating agent behaviour again make up the biggest group
of papers, thus enforcing its importance in commercial games research. The topic of
gaming environments stimulated intense discussion last year and appears again in this
year’s programme.

Our Keynote Speaker this year, Jim Parker of the University of Calgary, Calgary,
Canada, addresses the different challenges in creating a driving game simulation,
which constitutes an area of considerable interest to researchers in computer driving
simulation games: As usual, participants will be able to select the best paper for the
annual games award from the previously designated papers.

One of the highlights of this year’s event is the visit to the new Virtual Reality Suite
of the De Montfort University, where a demonstration will be given on the multiple
graphical based applications offered by such a versatile system.

We hope participants will have the chance to explore some of the sights and sounds of
Leicester and will enjoy this year’s games event.

Marwan Al-Akaidi, General Conference Chair
Abdennour El-Rhalibi, General Programme Chair
Leicester, November 2005

CONTENTS

(=1 = T IX
Scientific Programme............cccimmiinessrr s 1

N UL g oY gl T3 1 o T 109
SIMULATION AND Al

Carcassonne Java Jess Expert Game: Intelligent Board Games and Query-
Based Utility Reasoning
René Molenaar, Ludo Maat and L.J.M. Rothkrantz........ccccveriiiinnnnnnnninnicnncinnnns 5

Hybrid fuzzy system and Fuzzy behaviour implemented in Computer Go
P.Lekhavat and C.J. HINAEcovveeieiirrccrcrrcscrnnssnsss s 10

Optimising Reinforcement learning for neural networks
Evan Hurwitz and Tshilidzi Marwala ..., 13

Simple Games that Teach Artificial Intelligence
Y F= TS F Tl /= T3 =Y 0T 19

Situation Switching in the AIBO Robot
Zhenke Yang and Leon ROthKrantzccmueeeeessissnniimnnssssssssssssssssss s sssssssssssns 24

SYNTHETIC CHARACTERS AND AGENTS

Advanced Synthetic Characters, Evil, and E*
Selmer Bringsjord, Sangeet Khemlani, Konstantine Arkoudas, Chris McEvoy
Marc Destefano and Matthew Daigleeu.cciiiiiiimminsecmssisssssssssssssssssssssssssssseennns 31

Simulation and Modeling of Adversarial Games
Erol Gelenbe, Varol Kaptan and YU Wang.....cccoommmmmeeesssnnnnnsssssssssssssssssssseenn 40

GAME PHYSICS AND FACIAL ANIMATION

Enhancing Game Physics using Gauss Map Computation
L. Alboul, G. Echeverria and M. ROAMQUESccvvvrrirsssssssssssssssssssssssssssssssssssses 47

Issues in the Physics of a Motocross Simulation
Benoit Chaperot and Colin FYfe ..uurriiiiiiiirrsesscssssssssssessssssssssssssssssssssssnnns 52

Xl

CONTENTS

Producing Animations from 3D Face Scans
Alan Robinson, Marcos A Rodrigues and Lyuba AlIDOUL.........eeeeemeemmmmmmmmeennnnennes 57

GAME DESIGN

Application of Volere Shells as a principled Approach to Requirements
Capture and Test Planning for Computer Games
Robert Clutton and ANArew TUSON....cccccrrerrrrresssssssssssssssss s ssssssssssssnnns 67

Modelling and Prototyping for Psychological Time in Games
David England and Abdennour EI-Rhalibi.......ccuuiiiiiininnnns 4

Space Syntax Graph Theoretic Methods applied to an investigation into
the navigability of large scale virtual game environments
NN TTe3 o] £= Es TS O D T 1 o] o 75

ONLINE GAMES RESEARCH

Requirements for Communication Frameworks for Mobile Games on
Ad Hoc Networks
Stefan Fiedler and Michael WEDETuu.iiieeiiieeiirecir e s s e e e enas 85

Optimization of Multi-Player Online Game, Server based on Predicted
Dynamic System

Soon-Jeong Ahn, Woo-Suk Ju, Ying Quan and Choong-Jae Imccccceeeveenn. 88
Hierarchical Solution to Scalability Issues in P2P MMOG

Abdennour El Rhalibi and Madjid Merabti.........cccoiimmmmmmmncnniniessssssesssssnns 94
LATE PAPER

Harnessing Agent-based Games Research for Analysis of Collective
Agent Behaviour in Critical Settings
Abdennour El Rhalibi and A. Taleb-Bendiab........cccoeisssisinnnnnennnnnnnnnennnnnnnenenens 101

X

SCIENTIFIC
PROGRAMME

SIMULATION
AND
Al

Carcassonne Java Jess Expert Game
Intelligent Board Games and Query-Based Utility Reasoning

René Molenaarl, Ludo Maatl, L.J.M. Rothkrantz'

' Media and Knowledge Engineering - Faculty of Electrical Engineering, Mathematics and Computer Science
Mekelweg 4
2628 CD Delft
The Netherlands
Renem@ch.tudelft.nl - LudoMaat@zonnet.nl - L.J.M.Rothkrantz @ewi.tudelft.nl

KEYWORDS

Carcassonne, Jess, Java Swing, Artificial Intelligence, Expert
Games, Intelligent Query Based Utility Reasoning.

ABSTRACT

Board games like Carcassonne involve lots of rules that players
have to obey. In a digital version of such a game a rule based
expert system shell like Jess functions as a rule supervisor,
while Java manages all the interaction. The game knowledge
base can make the board react intelligently and since all the
game facts are present in the knowledge base an artificial
player can reason and play along. The reasoning is
accomplished by adding all the different and sometimes
conflicting reasons into a utility score. The artificial player
makes a one shot decision on the best move accordingly.
Strategy and heuristics can also be implemented as rules. This
decision making is guided by a list of weighting factors that
allows the Al to be customized and its level scaled. By using a
Java command post the program flow is controlled and easily
extended into a network game. By adding lots of details like
sound and graphical details the game is made more involving.

1. INTRODUCTION

Carcassonne is a well known award winning board game and
became game of the year in 2001 in Germany. Carcassonne
involves a randomly growing board with different elements.
The game like any other game is made up by rules. Making
decisions when playing depends on a lot of factors. Sometimes
these decisions have conflicting interests. The topic of this
paper is a design and implementation of a digital version of the
game. Related work can be found on Internet (Wikipedia).
Expert Systems are capable of using rules to assert new facts
from a knowledge base. If the game state is in the knowledge
base and the rules are in the expert system, the expert system
can act as a supervisor. But not only that, the rule engine also
makes it possible to make complex decisions by analyzing the
knowledge base and running a list of queries thus creating an
artificial player.

This is the goal of the project: To use an expert system to
make an intelligent computer version of the game Carcassonne.
The expert system acts as game supervisor and artificial
player(s).

2. BACKGROUND

This project involved bringing three elements together which
we will first discuss individually. These elements are:

e The board game Carcassonne,
e Java Swing GUI and
e Jess Expert System.

2.1 Carcassonne

Carcassonne is a turn based board game. The game can be
played with two to six players. The game consists of 72 tiles,
with each tile having one or more of the following elements:
city, road, church and field. The game starts with one tile that
shows the elements road, city and 2 fields as seen in figure 1.

Figure 1. Example Tiles

After the placement of this first tile, the game continues
according to the flow in figure 2.

Draw Place yes Process
tile tile unit(s)

no

Next i
player

Figure 2. Game Turn Flow

Each turn a player gets one random tile to connect with the
placed tiles on the table. This placement has to be valid, that is
all roads, fields and cities must be connected between
neighboring tiles.

tile #

place # xyr
unit @

chat ...

£ .
network . -
commands J

IWTERNET

homan client server A client

Figure 3. Structural scheme of connected expert systems acting as autonomous entities each with 3 Elements: Jess, Java and
Swing GUIL The game logic (i.e. state, rules, and intelligence) is implemented in Jess (the brain). The interactive aspects and
network communication are implemented in Java (the mouth and ears). The server draws a random tile from the stack and
announces the number, listens till a place command has been issued by the current player or Al, and then announces the issued

command. Each networked game instance is responsible for inferring the results of interaction independently

After the tile placement the player gets the opportunity to
place a unit (called follower or meeple) on one of the unowned
elements of that tile making that player the owner of that
element (city, road or field). When an element is completed,
the units placed on that element earn points for their owning
players and are returned to the players to be stationed again
later. Finished elements only produce points for the players
with the most units on it. If two or more players tie for the
most units, all tied players own that element and score points.
Thus the players collaborate in connecting and finishing the
elements on the tiles. When there are no more tiles available
points are awarded for owning unfinished elements. The units
on the fields are counted to produce points for finished cities in
the fields. A city can be located in a few unconnected fields.
The players contributing the most units added up together
scores for a city. The player with the most points wins the
game.

2.2 Java Swing for GUI

Java is a very well known cross-platform, reflective, object-
oriented programming language from Sun Microsystems. Java
provides several toolkits to create Graphical User Interfaces.
The two well known toolkits are Java AWT and Java Swing.
These toolkits consist of common graphical components used
in interfaces, like text fields, message boxes, buttons, scroll
bars and mouse listeners. Java Swing includes lightweight
graphical components and is one part of the Java Foundation
Classes (JFC). It consists of roughly the same functionality as
AWT, but the graphical design is fancier. Since Java Swing is
written in the Java language, it can run uniformly on every
platform providing the same results, unlike Java AWT.

2.3 Jess for Logic

Jess is a rule engine and scripting environment written in Java,
created by Ernest Friedman-Hill of Sandia National Labs in

1995. Jess is a descendant of the (rule-based portion of) CLIPS
language. CLIPS was developed (by Gavin Riley) starting in
1984 at NASA-Johnson Space Center and provided an expert
system extension for the C-language. The powerful scripting
language Jess is integrated in the Java environment. Using this
Java expert system shell Java software can be extended to
reason with declarative rules. It is also possible to create,
modify and reason with Java objects without compiling Java
code. Jess is small, light, and one of the fastest rule engines
available (Friedman-Hill 2005). Jess uses an enhanced version
of the Rete algorithm to process rules and works with a
network of nodes that make up the rules. Rules are activated by
facts. But one fact can activate many rules. Activated rules are
placed in a conflict set. Rules have to be selected from the
conflict set to be fired. This problem can be solved by the Rete
Algorithm. Rete has become the basis for many popular expert
systems. This algorithm sacrifices memory for increased speed
(Treijtel, Waveren van, 2001) an important factor for gaming.

3. CONCEPT AND IMPLEMENTATION

To build the game, two distinct modules are needed. The first
module shows the board to the user and handles the
interfacing. The second module manages all the game rules
and intelligence. See figure 3 for an abstract interpretation of
this scheme in which the individual systems are depicted as
autonomous persons. The Java Jess combination allowed a
smooth integration of the two modules for intelligence and
interfacing.

3.1 Java and Jess Integration

The communication between Jess and Java is easily
established. Their combination can roughly be done in 5
different ways, varying from Jess with some Java support to
Java with some Jess support. Our approach was the middle
(completely integrated): Jess manages the intelligent elements;

Java does the rest (i.e. graphics, sounds, mouse etc.). A central
command post allows for a controlled communication between
the two parts. Few commands are communicated through the
command post (see figure 3). These commands are:

e Details on the new drawn tile,

e The location and rotation where a tile is placed and

e If or where a unit is placed.

The command post also allowed upgrading to a network
version by simply rerouting the command to remote players.
The command post can be used as a Jess interpreter. A text
field and execute button in the user interface allows any Jess
statement to be executed directly without recompiling. This
way the rules, reasons and state of the board can be
manipulated very directly even in the middle of a game.

3.2 Framework

The game flow can be divided in several steps, which are
shown in figure 4. During each turn, a player gets a tile from
the stack and places it somewhere on the board. The flow of
events in each turn is specified in figures 5, for tile and unit
phase respectively.

s ety

Start Next no End
player game

Figure 4. Game Flow

3.3 Adding Intelligence to the Game

Every game is build by rules. When playing games some entity
has to check the validity of actions. Jess is used for this
purpose. Jess knows the state and the rules of the game and
acts as a supervisor, making sure all game rules are applied.
Jess prevents illegal moves, indicates options, calculates scores
and returns units, and checks connections and ownership of
elements. For example Jess has rules to tell Java to highlight
potential spots green, invalid spots red and to mark those that
are impossible for the rest of the game with an X. Jess works
with lists that always consists of an enclosing set of
parentheses and zero or more symbols, Java objects, numbers,
strings, or other lists. For instance a road fact contains a
number and a list of tile facts. The (combination of) facts make
rules fire. This way some new facts can be asserted. Rules and
facts in Jess look like this:

Example facts:
(road (nr 2001) (tiles <Fact-170> <Fact-154>))
(roadtofinish <Fact-122> 4 2001)

Example rule:

(defrule road-finished
?road <- (road (nr ?nr) (tiles $?tiles))
(not (roadtofinish ? ? ?nr))

printout t crlf "$$$ road finished: $3$$S$" crlf)

=>
(bind ?points 0)
(
(foreach ?k $?tiles

(bind ?points (+ ?points 1))
)
(assert (finished road ?nr ?points))

)

3.4 Adding Intelligent Reasoning Opponents - Query Based
Utility Reasoning Score

We will now spend some time on the rules needed to place
units and tiles by giving an example. Our game has many —
some more complicated than other - rules for the placing of
tiles and units. Generally the following happens in two phases:

First a place for the tile is sought
for each found place:
run all specific utility-queries
make a checkutil by adding the scores * factors
if it is better then previously found spots then
bind this spot to ?result.
check if a unit should be placed.
place tile on ?result.

Then the unitphase is handled:
if placeunit or good grasspot
place unit
else
no-unit

The reasoning is done by running a list of queries (rules
without an antecedent) and adding their score times factor into
a positive or negative utility score. The queries represent
reasons similar to those of a human expert player. Sometimes
some queries don't have to be executed, for example when a
player has no units. And sometimes some specific scores are
made 0 again, for example when sneaking a unit in someone’s
field the take-new-score is 0 again, because the unit will be
used otherwise. The factors are mainly used by the
programmer to focus Al on certain aspects of the game. This is
for testing and debugging new reasoning and for indicating the
importance of tactics (like cooperating or taking risks)
according to the expert programmer. The factor and score
products (i.e. the utility scores of specific reasons) are
manipulated by (player) specific properties: how many units
are left, how many tiles are left in the game. Some utility
scores are limited to a maximum or minimum. For example the
risk utility makes sure that difficult places are avoided, this
score is limited, else helping an enemy might have a less
negative score. In order for all utility queries to be compact a
few extra rules and functions are implemented. This is needed
to extract facts from the current situation. For example:
checking what can be connected, counting units, checking who
will win and finding out what new places can be started. The
Jess code that causes reasoning looks like this:

Example factor:
(defglobal ?*helpmine* = 20)

Example query:

(defquery extendmine

"search extend fact with current player ruler"
(declare (variables ?G ?PNUM))

?G <- (SEARCH::found ?place ?ii ?rt)
(extend ?place ?x1 ?ii ?rt ?scorel ?nrl TRUE
$?countsl)
(test (total-build-ruler ?PNUM $?countsl))

)

Network:
Tile

Network
Placc

Next Draw Show red/green Human: place Place Show Unit points /
player tile highlights tile listener tile tile locations
Java 4 A
Jess
Check AL find Focus Focus

7| possibilities

place

tile

1l

units

Unit

Human unit placement]
listener

Y

Unit op loc Show / Return Next
or: No unit unit (Points) player
A A

AT places
unit or not

Focus unit
placement

nit?
yes
no

Figure 5 - Place Tile and Unit Phase - Java shows the Graphical User Interface, Jess checks possibilities, updates the new
interconnections in the fact database after tile placement and calculates the unit scores and their return. Jess also controls the Al

reasoning

Example reasoning:

(bind ?ul (get ?*player* unitsleft))

(bind ?utilmine (* (- 7 2ul) ?*helpmine* (count-
query-results extendmine ?factid ?pnum)))

Each computer player turn the search-best-place-rule runs all
queries and manipulates all scores to find the best spot and
rotation. Strategy and heuristics can also be implemented as
rules. When there are only a few tiles left, the artificial player
will focus more attention on owning the fields if there are
enough units available.

3.5 Adding Network Capabilities

One of the goals of this project was to provide the game with
network capabilities to play across LAN or Internet. Every
remote player uses its own Jess Engine and keeps a local copy
of the board and the tiles to be drawn in memory. Using this
separation it is only needed to broadcast the three types of
events that were discussed in section 3.1 to all remote players.

f////// ////
7//ﬁ

L

R
%/// :
-

¥

& % & v B

\

Figure 6. Galﬁe Screenshot

4. RESULTS

We implemented a Carcassonne Expert System (see figure 6)
that acts as game supervisor and artificial player(s). We tested,
we played and we improved by trial and error. The rules of the
intelligent board are easily manipulated and extended even in
the middle of a game. Intelligent opponents are a challenge and
can also be manipulated and extended in a simple manner. The
challenge depends on the players’ skill and the number of
players, but generally the skill of the artificial opponent is
better then we had expected. Human players tend to take
bigger risks and can be very lucky sometimes or very unlucky
or they make one fatal mistake. The Al players tend to have
more steady results (the content of the 2 player high-score
tables is shown in figure 7). It takes an expert player to be able
to defeat the artificial players time and again. The Artificial
players are much faster in making their decisions then most
humans. We added sounds, icons, messages, game manual,
zooming functions, high score system and network capabilities
and this resulted in a game that can be executed cross platform.

a) | |

266.867 | 6355 | 1124133 |
481183 909.817 1338.45

52.55

b) —
l

143867 |
160,55

| 77133 [1105 [
£0.45 2.7 127.183

Figure 7. Time (a) and Scores (b):
a) Time needed in Seconds to complete the game

for a human (top) and Al (bottom) player and
b) Final Scores for human (top) and AI (bottom)

5. CONCLUSION

We have described the framework and concept of making a
digital intelligent version of the turn-based board game
Carcassonne with intelligent opponents and shown how the
different elements of reasoning and interfacing are combined.
The board reacts intelligently on interaction and acts as a rule
supervisor. The independently operating rules made the
creation of the digital board game straightforward by
translating all the game rules into Jess statements. The
existence of the game logic in separate facts made the addition
of artificial players possible. The implementation of game
logic was far less complicated then adding the feature of Al
players. Reasoning is not a straightforward translation of rules
and takes expert game knowledge.

Difficulties with AI

It was complicated to test and debug our system since changes
in the reasoning files could have unknown effects on the
average score. It is possible that the players had luck so
multiple tries had to be run to draw conclusions. Debugging
the reasoning is difficult, because if a strange move occurs, it
takes some time to locate the flaw. The errors are mostly quite
small. Facilities to test the same complex situation time and
again and better output on decisions are therefore a welcome
feature for the future.

The reasoning system is not foolproof. More rules could
improve the difficulty level of the artificial players, but will
also make the AI more complex and harder to analyze. Most
reasoning is based on simple risk analyses and the
programmer’s expertise of the game. In this particular game it
seems to be more important not to make (big) mistakes then to
make the best possible decision.

Drawbacks of Reasoning System

The main drawback of this first prototype is that all decisions
are made in a one-shot fashion. The utility-score does not
doubt twice, it settles with the highest utility score. Human
players might think twice before committing. The computer
most of the times 'forgets' what he was doing and bases the
decision on the current situation, the only thing that is
‘remembered’ is sneaking into grass. And it is here that our
weak point is located: Having a versatile future plan that
involves more than one or two tiles is beyond the capabilities
of our current reasoning system. This might sometimes play a
role in a 2 player game, because you will get many choices and
tiles, with more players most good decisions are based on the
current situation. On the other hand, human players tend to
help weak players and sabotage strong player. The Al does not
see any difference (yet). It tries to find the best place at that
moment for itself. This plays an important role in the final
score with multiple opponents. In the near future adding
strategy and heuristics similar to (Treijtel 2001) (Waveren van,
2001) will have high priority. This can be realized in the rule
based way of Jess. Rules can for example be placed in a
category with common dynamic salience.

The scoring system doesn't translate easily to good reasons;
sometimes the least negative score is the reason. Sometimes
scores might differ from -10000 to +10000, but usually scores
are in the -500 + 500 range. And finally compared to playing
with humans, the Al won't feel the pleasurable satisfaction of
winning or care about loosing, though speech samples offer a
wonderful illusion of these human feats.

Odds versus shrewdness

The computer is far better at calculating the chances and the
scores; Al for example doesn't forget that there are no units left
in the players’ possession (a common mistake made by human
players, especially in a computer version of the game).
However being wicked can drastically change the odds. The
original game-manual mentions that other players may give
opinions and suggestions about placements, a factor that is
lost: mentioning one place over another is not possible against
Al Instead the human player is helped (a lot) by coloring
potential places green, which also makes the game go faster. It
helps a lot to know the capabilities of the Al it is possible in
some cases to fool or trick the Al on its weak points. It does
however always make an interesting and involving match, the
AT has one goal: to win the match.

Advantages

The combination of Java and Jess is very robust and versatile.
It is very easy to add and delete rules to the engine. Each rule
stands alone and can be manipulated separately. These things
can be done with a build in console even in the middle of a
game (i.e. without compiling). The reasoning of Al-players is
also easily adaptable, because it is a series of loose factors that
are added together, new factor can be inserted alongside.
Factor can be manipulated independently to create different
levels of challenge, changing this dynamically after judging
skills or providing these options to players is one of the future
goals. Currently the goal considering artificial players was to
play the best possible game.

Making use of a Java command post allowed the game to be
extended into a network game very simply. We learned that
‘the little things’ like sounds and graphical details are a very
important factor in making a game fun and involving.

Left for the Future:

There are some possibilities left for the future like undo option,
difficulty levels / manipulating factors, environment reasoning
agents instead of a one-shot score system, more dynamical
strategies, saving complex situations and better output on
reasoning.

Jess 7 will have a lot of improvements that could be
exploited to improve the implemented game: better run-query
facilities, slot-specific statement, for each statement and many
more new features that would have been very convenient.

6. REFERENCES

Friedman-Hill, E. - Jess — The Rule Engine for the Java platform
official website:
http://herzberg.ca.sandia.gov/jess/

Molenaar, R.C.; Maat, L.; Gangadajal, R.-“Carcassonne: Making an
intelligent agent to play the game Carcassonne”, EWI
Report 07/2005

Riley, G - Clips — A tool for building expert systems
Official website:
http://www.ghg.net/clips/CLIPS.html

Treijtel, C.; L.J.M. Rothkrantz “Stratego Expert System Shell”,
Proceedings of the 2001 GAME ON, 17-21

Waveren van, J.M.P.; L.J.M. Rothkrantz “Artificial Player for Quake
IIT Arena”, Proceedings of the 2001 GAME ON, 48-55

Wrede KJ. - Carcassonne —Klaus Jirgen Wrede
website: http://www.carcassonne.de

Wikipedia, the free encyclopedia
Official website:
http://en.wikipedia.org/

Hybrid fuzzy system and Fuzzy behaviour implemented in Computer Go
P Lekhavat & C.J. Hinde
Computer Science, Research School of Informatics
Loughborough University, United Kingdom
P.Lekhavat@lboro.ac.uk, C.J.Hinde @lboro.ac.uk

Abstract

In the game of Go, especially in an opening stage, most
expert players rely on their sense and reasoning, which is
commonly represented in linguistic terms. Instead of
calculating the stone potential in a hard crisp value, they
usually state their estimation as this group being light or
heavy and use that as a reason for their actions. This paper
explains an approach using fuzzy reasoning to simulate a
human players knowledge, which the system would be
able to acquire and tune. In addition, fuzzy behaviour can
be learned and would simulate characteristics which
would be useful in a field of computer games.

Key words: Computer Go, Fuzzy, Fuzzy reasoning,
Fuzzy behaviour, Hybrid system, A, Machine learning.

1. Introduction

Go is a strategy board game [BGA, 1999], well known in
far east, also known as Wei Qi (Chinese), Igo (Japanese)
and Baduk (Korean). The game is normally played on a
19x19-grid board. Two players take turns to place a stone
on the board. The objective of the game is to secure the
most area on the board to win the game.

2. Computer and a game of Go

Computer Go has been developed for more than 20 years.
However, it has not achieved the level of an amateur
human player yet. In the 19x19 game, an average number
of the reasonable games is about 10, from an average of
10 plausible choices per move for an average 200 moves
per game. In the opening stages there are close to 400
possible moves and so even a short look ahead is
prohibitively large. There needs to be some mechanism
for selecting a small number of plausible moves so
Artificial Intelligence or Machine Learning is needed. The
main objective is to develop the system that is able to
learn and play Go at high human player level. To achieve
that goal, the main approach is using a hybrid Al system
to imitate the way that human players think and learn.

2.1 Territory and Potential

In the game of go, the winner is determined by the player
with higher territory at the end of the game. However, in
early stage of the game, because most groups of stones
are not totally settled and there is far too much open
space, positional judgment needs to rely on both territory
and potential of the group. Territory is an area inside the
group that likely to be surrounded. Whereas, potential is
the outside area that is influenced by the stones.

10

@ Territory
@ Potential
] Border

Figure 1 Territory and Potential of stones group A

2.2 Fuzzy Influence

An area inside a group of stones is considered as its
prospective territory. On the other hand, the outside area
can be considered as the potential of the group where it
can expand in the future. As the stones are placed, other
empty spaces receive influence from the stones near by.
Since the influence effected from the stones, a space near
a larger string receives higher influence. The following
algorithm is used to calculate stone influence. Compare to
Zobrist’s [Zobrist, 1970] and Ryder’s [Ryder, 1971], an
advantage of this algorithm is that the stones potential is
extended when more stones are placed together.

Step 1: All liberties around the stones are given
the value of 30

Step 2: Regarding to stones near by, increase a
liberty value by 20 for each stone in contact position, and
10 for stone in diagonal position.

Step 3: Value of extended liberties are decreased
by 10 until less than O or blocked by another stone. In
addition, if an extended liberty is shared by 2 sources, the
value is average of the source values.

-
i

16-20-
10-20-30-201
10-20-30-40-30-20-19
10-20-30-40-50-40-30-20.10.
10-20-30-40-50-{f) 50-40-30-20-1

10-20-30-40-50-49-30-20-1
10-20-30-40-30-20-

10-20-30-20-1

1
<

N,

10-20-1

Aq
1

‘.|3-21-30-21-1|
‘.|7—2|S—3:2— 40-3|F—Z‘I5-1 7
20-2|9—3|7-45-50-4I5-3|7-29-
20-30-4'0-5'!} i 6|l]-5|0- 4]!1»][!»20-1
10-2 0-30-4|D-5|0’ 0 6’]-5’]-40»30»20-1
29-37-45-50-45-37-29-.
||7-Z:5-3:2' 4:0-3:2—2:5—1 7
132 1-3|0-21—1 ¥

=i

With the results from influence algorithm, Black and
White influence values are compared, according to rule
set, to determine whether that coordinate is under Black,
‘White or neutral potential, unlike most algorithms that use
sum of positive and negative value.

Black Influence Rule set 2 g E g
2 ; 2 ; White Hetral Black
White Influence

3. Fuzzy reasoning and Hybrid system

Unlike conventional computing and searching methods as
often used in chess, the human Go players usually
describe stones or groups of stones with linguistic words
in their reasoning; such as weak, strong, light or heavy, by
setting local objectives for each group of stones then
compare them as a global view to find the best operation
for the situation.

3.1 Fuzzy reasoning: determined group status and
strategy

Commonly, game status is judged by the stones position.
Positional judgment usually relies on basic information;
stones, territory and influence [Yen, 2001]. If they were
accurately estimated, it is possible to use a fuzzy system
to justify each group status then summarise the local
objective or strategy for each group.

According to the size of the group, its territory and its
potential, the group can be described using Go terms such
as weak, strong, thick, thin, light or heavy. Each type of
the group has its own characteristic which can be used as
a guide for the player’s objective; carry on by the
operations or actions that can be done with or to the
group.

11

Cleoup indorimation
i OR0R

= terribory

= ongtazde indlnence

U

ey stodns

» woak o gtrong
w thack <= thin

» Heht < heavy

U

Steatesy
= eyente b
w oxtend framework
» treatern opponent
LI 2

3.2 Hybrid fuzzy system

Although fuzzy reasoning capable of deducing the
objective, it is only one part of the cycle. Sub-objectives
suggested by Fuzzy reasoning module need to be matched
up with a pattern move that support the objective. The
pattern recognition module explores pattern moves stored
in database regarding to objectives that suggested by the
fuzzy module. As the result, search trees can be created
and used to find the best move or the best variation.

As for the fuzzy rulebase, it should be able to improve.
Starting from the initial state, rulebase can be developed
by learning from the games that have been played or
games from professional human players.

3.3 Fuzzy behaviour

Even though the best objective can be very clear in some
situations, most situations have no clear answer. Even the
top professional players can have a very different opinion
of the same situation, which they can spend hours arguing
with no result, especially in early stage of the game. That
because each player always has there own preferences and
style, one may prefer territory before potential or vice
versa. On the other hand, the game usually continues for
one or two hundred moves, so the result of the game
cannot be used as a measurement since there usually
several mistakes occur during the game. In addition, from
the view of computer game, if the computer player is
always using the same style and playing a predictable
move, the human player can feel bored, does not matter
how good the computer player is.

Character-based Al for computer games has been
discussed before as in [Isla, 2002]. With the learning
ability for the hybrid fuzzy reasoning system, it is
possible to generate different style of play by adjusting
rulebase with the learning system. The idea is to learn the
game from a certain player; the rulebase can reflect the
style of the player that it uses as a model.

Fuzzy

Fuzzy |ﬂ’:> reasoning
rulebase module

Pattern
[::j recognition Pattern
moves
medule database

1)

Learning
module

L}

Professional games

&

Actual games

oo

.

Search tree

Figure 2 Hybrid system cycle

3.4 Experiment and future work

So far, the project is in an early stage, apart from
perception level, about half of the fuzzy system module
has been done. However, it is capable of determining and
selecting operations for groups of stones, concerning only
local area environment regarding to initial set of rulebase.
Although the test was limited, the results were very
acceptable. As for future work, global reasoning and
pattern recognition are most important parts which are
expected to be done. However, this system concentrates
on early stage of the game, so-called opening game. The
system needs an extended module to assist the search tree
before it can play a complete game.

4. Conclusion

This paper is concerning with a way to develop computer
games. Although it is implemented to a certain board
game called Go, it can be adapted to other kinds of games
that need AI as well as other fields of use such as expert
systems. The ideas suggested in this paper are
e New way of calculating stone influence for game
of Go
e How fuzzy reasoning can be used in Game of Go
e A model of Hybrid fuzzy system that capable of
reasoning, searching and learning
e Fuzzy behaviour that can be useful in developing
of Al computer game

12

References

[BGA, 1999] British Go Association. Go: The most
challenging board game in the world. London, United
Kingdom, 1999.

[Bozolich, 2001] R. Bozolich. The Go players almanac.
Kiseido publishing company. Tokyo, Japan 2001.
[Bozolich, 2002] R. Bozolich. Five hundred and one
opening problems. Kiseido publishing company. Tokyo,
Japan 2002.

[Zadeh, 1965] L.A.Zadeh. Fuzzy sets.
Information and Control, 8:338-353, 1965.
[Zobrist, 1970] A.Zobrist. Feature extractions and
representation for pattern recognition and the game of Go.
PhD thesis, Graduate School of the University of
Wisconsin. Wisconsin, United States, 1970.

[Ryder, 1971] J. Ryder. Heuristic analysis of large trees as
generated in the game of Go. PhD thesis, Department of
Computer Science, Standford University, 1971.
[Burmeister, 2000] J.M.Burmeister. Study in human and
computer Go: Assessing the game of Go as a research
domain for cognitive science. PhD thesis, School of
Computer Science and Electronical Engineering and
School of Phychology, The University of Queensland,
Queensland, Australia 2000.

[Yen, 2001] SJ. Yen, S.C. Hsu. A positional judgment
system for computer Go. Advance in computer games,
9:313-326, 2001.

[Isla, 2002] D. Isla, B. Blumberg. New Challenges for
Character-Based AI for Games, MIT Media lab,
Cambridge, 2002.

Journal of

Optimising Reinforcement learning for neural networks

Evan Hurwitz
School of Electrical and Information Engineering
University of the Witwatersrand
Johannesburg, Gauteng, South Africa
e.hurwitz@ee.wits.ac.za

Abstract — Reinforcement learning traditionally utilises
binary encoders and/or linear function approximators to
accomplish its Artificial Intelligence goals. The use of
nonlinear function approximators such as neural networks
is often shunned, due to excessive difficulties in
implementation, usually resulting from stability issues. In
this paper the implementation of reinforcement learning
for training a neural network is examined, being applied to
the problem of learning to play Tic Tac Toe. Methods of
ensuring stability are examined, and differing training
methodologies are compared in order to optimise the
reinforcement learning of the system. TD(1) methods are
compared with database methods, as well as a hybridised
system that combines the two, which outperforms all of the
homogenous systems.

Keywords: reinforcement, learning, temporal, difference,
neural, network, tic-tac-toe.

1 Introduction

Artificial intelligence (A.l.) can only truly be considered
worthy of the name when the system in question is capable
of learning on its own [l], without having an expert
teacher available to point out correct behaviour. This leads
directly into the paradigm of reinforcement learning [1].
The advantage of using such techniques for gaming A.L is
that it would allow a gaming agent to actually learn while
in-game, and adapt its own play to that of the player. Most
reinforcement learning techniques explored utilise binary
system representations, or linear function approximators,
which severely hinder the scope of learning available to the
artificial intelligence system. One notable exception is the
work by G. Tessauro on 7D-Gammon, in which he
successfully applied the TD(A) reinforcement learning
algorithm to train a neural network, with staggeringly
successful results. Following attempts to emulate his work
have, however, been met with failure due to the extreme
difficulties of combining backpropagation with TD(R).
These difficulties, and some solutions to them, are explored
in this paper, with the A.I. system being applied to learn to
play the game of tic-tac-toe by playing against itself. The
reason for Tic-Tac-Toe as a choice of games is deliberately
because of its simplicity, as the commonly occurring
problems become easier to identify within the simpler
system, and solutions are then also easier to develop.

13

Tshilidzi Marwala
School of Electrical and Information Engineering
University of the Witwatersrand
Johannesburg, Gauteng, South Africa
t.marwala@ee.wits.ac.za

2 Background

It is necessary to understand the workings and advantages
of neural networks to appreciate the task of applying them
in the reinforcement learning paradigm. It is likewise
important to fully grasp the implications of reinforcement
learning, and the break they represent from the more
traditional supervised learning paradigm.

2.1

The fundamental building-blocks of neural networks are
neurons [2]. These neurons are simply a multiple-input,
single-output mathematical function [2]. Each neuron has a
number of weights connecting inputs from another layer to
itself, which are then added together, possibly with a bias,
the result of which is then passed into the neuron’s
activation function [2]. The activation function is a
function that represents the way in which the neural
network “thinks”. Different activation functions lend
themselves to different problem types, ranging from yes-
or-no decisions to linear and nonlinear mathematical
relationships. Each /ayer of a neural network is comprised
of a finite number of neurons. A network may consist of
any number of layers, and each layer may contain any
number of neurons [2]. When a neural network is run, each
neuron in each consecutive layer sums its inputs and
multiplies each input by its respective weight, and then
treats the weighted sum as an input to its activation
function. The output will then be passed on as an input to
the next layer, and so on until the final output layer is
reached. Hence the input data is passed through a network
of neurons in order to arrive at an output. Figure 1
illustrates an interconnected network, with 2 input neurons,
three hidden layer neurons, and two output neurons. The
hidden layer and output layer neurons can all have any of
the possible activation functions. This type of neural
network is referred to as a multi-layer perceptron [2], and
while not the only configuration of neural network, it is the
most widely used configuration for regression-type
problems [3].

Neural network architecture

Figure 1. Sample Connectionist network

2.2 Neural network properties

Neural networks have various properties that can be
utilised and exploited to aid in the solving of numerous
problems. Some of the properties that are relevant to this
particular problem are detailed below.

2.2.1 Universal approximators

Multi-layer feedforward neural networks have been proven
to be universal approximators [2]. By this one refers to the
fact that a feedforward neural network with nonlinear
activation functions of appropriate size can approximate
any function of interest to an arbitrary degree of accuracy
[2]. This is contingent upon sufficient training data and
training being supplied.

2.2.2 Neural networks can generalise

By approximating a nonlinear function from its inputs, the
neural network can learn to approximate a function [2]. In
doing so, it can also infer the correct output from inputs
that it has never seen, by inferring the answer from similar
inputs that It has seen. This property is known as
generalisation [2]. As long as the inputs received are
within the ranges of the training inputs, this property will
hold [2].

2.2.3 Neural networks recognise patterns

Neural networks are often required to match large
input/output sets to each other, and these sets are often
noisy or even incomplete [2]. In order to achieve this
matching the network learns to recognise patterns in the
data sets rather than fixate on the answers themselves [2].
This enables a network to ‘see’ through the data points and
respond to the underlying pattern instead. This is an
extended benefit of the generalisation property.

2.3 Reinforcement learning

Reinforcement learning involves the training of an artificial
intelligence system by trial-and-error, reflecting the same
manner of learning that living beings exhibit [4].
Reinforcement learning is very well suited to episodic tasks
[4], and as such is highly appropriate in the field of game-
playing, where many episodes are encountered before a
final result is reached, and an A.l. system is required to

14

evaluate the value of each possible move long before a
final result is achieved. This methodology allows for online
learning, and also eliminates the need for expert knowledge

[4].

2.3.1 Rewards and Returns

Any artificial intelligence system requires some sort of goal
or target to strive towards [2], [4]. In the case of
reinforcement learning, there are two such quantities that
need to be defined, namely rewards and returns [4]. A
reward is defined to be the numerical value attributed to an
individual state, while a return is the final cumulative
rewards that are returned at the end of the sequence [4].
The return need not necessarily be simply summed,
although this is the most common method [4]. An example
of this process can be seen below in Figure 2, where an
arbitrary Markov process is illustrated with rewards given
at each step, and a final return at the end. This specific
example is that of a Random walk problem.

Figure 2. Random walk rewards and returns.

An AL system utilising reinforcement learning must learn
to predict its expected return at each stage, hence enabling
it to make a decision that has a lower initial reward than
other options, but maximising its future return. This can be
likened to making a sacrifice in chess, where the initial loss
of material is accepted for the future gains it brings.

2.3.2 Exploitation vs Exploration

An A.lL system learning by reinforcement learning learns
only through its own experiences [4]. In order to maximise
its rewards, and hence its final return, the system needs to
experiment with decisions not yet tried, even though it may
perceive them to be inferior to tried-and-tested decisions
[4]. This attempting of new approaches is termed
exploration, while the utilising of gained knowledge to
maximise returns is termed exploitation [4]. A constant
dilemma that must be traded off in reinforcement learning
is that of the choice between exploration and exploitation.
One simple approach is the e-greedy approach, where the
system is greedy, ie attempts to exploit, in every situation
with probability €, and hence will explore with probability
1- & [4].

233 TD (L)

One common method of training a reinforcement learning
system is to use the TD (A) (Temporal Difference)
algorithm to update one’s value estimates [4] [5]. This
algorithm is specifically designed for use with episodic
tasks, being an adaptation of the common Widdrow-Hoff
learning rule [5]. In this algorithm, the parameters or
weights w to be altered are updated by equation (1) [5].

)Y A*VwP,

k=1

Aw=a(P

+1

(M

The prediction Py is used as a target for finding the error
in prediction P, allowing the update rule to be computed
incrementally, rather than waiting for the end of the
sequence before any learning can take place [5]. o and A are
the learning rate and weight-decay parameters, respectively.

2.4 Neural network advantages

Neural networks have a number of advantages that can be
exploited in order to optimise a reinforcement learning A.I.
system. Some of these advantages are:

Faster learning. Due to the generalisation property
of neural networks, learning from one position can
be generalised to learn for all similar positions.

Positional understanding. As a result of the pattern
recognition property of neural networks, the
system can learn to judge positions, rather than
simply remember individual state configurations.

For these reasons it is desirable to utilise a neural network
as a function approximator for a reinforcement learning
system.

3 Implementation

In this section we detail the implementation of the problem
domain and the various methods of optimising the neural
network reinforcement learning, as well as the performance
measures used to evaluate the usefulness of each presented
method.

3.1 Tic Tac Toe

The game of Tic Tac Toe, or noughts and crosses, is played
on a 3x3 grid, with players taking alternate turns to fill an
empty spot [6]. The first player places a ‘O’, and the
second player places a ‘X’ whenever it is that respective
player’s turn [6]. If a player manages to get three of his
mark in a row, he wins the game [6]. If all 9 squares are
filled without a winner, the game is a draw [6]. The game
was simulated in Matlab, with a simple matrix
representation of the board.

15

3.2 Player evaluation

The A.L system, or player, needs to be evaluated in order
to compare different players, who have each learned using
a different method of learning. In order to evaluate a
player’s performance, ten different positions are set up,
each with well-defined correct moves. Using this test-bed,
each player can be scored out of ten, giving a measure of
the level of play each player has achieved. Also important
is the speed of convergence — ie how fast does each
respective player reach its own maximum level of play.

3.3 TD(») for backpropogation

In order to train a neural network, equation (1) needs to be
adapted for use with the backpropogation algorithm [7].
The adaptation, without derivation, is as follows [7]:

1+1 ! t+1 t)t
Wy =Wy +“ZK60(PK Pk @
where the eligabilities are:
1+ ' + e+
eijZ = Z’eijk + 5kj+ v (3)
and 0 is calculated by recursive backpropogation
oP!
t k
=—t 4)
ki 1 (
as’

as such, the TD(X) algorithm can be implemented to update
the weights of a neural network [7].

3.4 Stability issues

The TD(A) algorithm has proven stability for linear
functions [6]. A multi-layer neural network, however, is
non-linear [2], and the TD(L) algorithm can become
unstable in some instances [4] [8]. The instability can arise
in both the actual weights and in the predictions [4] [8]. In
order to prevent instability, a number of steps can be taken,
the end result of which is in most cases to limit the degree
of variation in the outputs, so as to keep the error signal
small to avoid instability.

3.4.1 Input/Output representation

The inputs to, and outputs from, a typical A.l. system are
usually represented as real or integer values. This is not
optimal for TD(A) learning, as the values have too much
variation. Far safer is to keep the representations in binary
form, accepting the dimensionality trade-off as a fair price
to ensure a far higher degree of stability. Specifically in the
case of the outputs, this ensures that the output error of the
system can never be more than 1 for any single output, thus
keeping the mean error to within marginally stable bounds.

For the problem of the Tic Tac Toe game, the input to the
network is an 18-bit binary string, with the first 9 bits
representing a possible placed ‘0’ in each square, and the
second 9 bits representing a ‘1’ in each square. The output
of the network is a 3-bit string, representing a ‘0’ win, a
draw and an ‘x’ win respectively.

3.4.2 Activation Functions

As shown in section 2, there are many possible activation
function that can be used for the neural network. While it is
tempting to utilise activation functions that have a large
scope in order to maximise the versatility of the network, it
proves far safer to use an activation function that is limited
to an upper bound of 1, and a lower bound of zero. A
commonly used activation function of this sort is the
sigmoidal activation function, having the form of:

B 1
l+e™

f(x))

This function is nonlinear, allowing for the freedom of
approximation required of a neural network, and limiting
the upper and lower bounds as recommended above. While
this activation function is commonly used as a middle-layer
activation function, it is unusual as an output layer
activation function. In this manner, instability is further
discouraged.

3.4.3 Learning rate

As the size of the error has a direct effect on the stability of
the learning system, parameters that directly effect the error
signal also have an effect on the said stability. For this
reason, the size of the learning rate o needs to be kept low,
with experimental results showing that values between 0.1
and 0.3 prove safe, while higher values tend to become
unstable, and lower values simply impart too little real
learning to be of any value.

3.4.4 Hybrid stability measures

In order to compare relative stability, the percentage
chance of becoming unstable has been empirically noted,
based upon experimental results. Regardless of each
individual technique presented, it is the combination of
these techniques that allows for better stability guarantees.
While no individual method presented gives greater than a
60% stability guarantee (that is, 60% chance to be stable
given a 100-game training run), the combination of all of
the above measures results in a much better 98%
probability of being stable, with minor tweaking of the
learning rate parameter solving the event of instability
occurring at unusual instances.

16

4 The players

All of the players are trained using an e-greedy policy, with
the value of € = 0.1. i.e. for each possible position the
player has a 10% chance of selecting a random move,
while having a 90% chance of selecting whichever move it
deems to be the best move. This selection is done by
determining all of the legal moves available, and then
finding the positions that would result from each possible
move. These positions are sequentially presented to the
player, who then rates each resultant position, in order to
find the best resultant position. It obviously follows that
whichever move leads to the most favoured position is the
apparently best move, and the choice of the player for a
greedy policy. The training of each player is accomplished
via self-play, wherein the player evaluates and chooses
moves for both sides, learning from its own experiences as
it discovers errors on its own. This learning is continued
until no discernable improvement occurs.

As a benchmark, randomly initialised networks were able
to correctly solve between 1 and 2 of the posed problems,
beyond which one can say genuine learning has indeed
taken place, and is not simply random chance.

4.1 Player #1 — Simple TD(2)

Player #1 learned to play the game using a simple TD(A)
backpropogation learning algorithm. This proved to be
very fast, allowing for many thousands of games to be
played out in a very short period of time. The level of play
achieved using this method was however not particularly
inspiring, achieving play capable of solving no more than 5
of the 10 problems posed in the rating system. The problem
that is encountered by player #1 is that the learning done
after each final input, the input with the game result, gets
undone by the learning of the intermediate steps of the next
game. While in concept the learning should be swifter due
to utilising the knowledge gained, the system ends up
working at cross-purposes against itself, since it struggles
to build its initial knowledge base, due to the generalisation
of the neural network which is not present in more
traditional reinforcement learning arrangements.

4.2 Player #2 — Historical database learning

In this instance, the player learns by recording each
position and its corresponding target, and storing the pair
in a database. Duplicate input data sets and their
corresponding targets are removed, based on the principle
that more recent data is more accurate, since more learning
has been done when making the more recent predictions.
This database is then used to train the network in the
traditional supervised learning manner. A problem
encountered early on with this method is that early
predictions have zero knowledge base, and are therefore
usually incorrect. The retaining of this information in the
database therefore taints the training data, and is thus

undesirable. A solution to this problem is to limit the size
of the database, replacing old data with new data once the
size limit is reached, thus keeping the database recent. This
methodology trains slower than that employed to train
player #1, making long training runs less feasible than for
TD()) learning. The play level of this method is the lowest
of those examined, able to solve only four of the ten
proposed problems. Nonetheless, the approach does show
promise for generating an initial knowledge base from
which to work with more advanced methods.

4.3 Player #3 — Fact/Opinion DB learning

Building on the promise of Player #2, a more sophisticated
database approach can be taken. If one takes into account
the manner of the training set generation, one notes that
most of the targets in the database are no more than
opinions — targets generated by estimates of the next step,
as seen in equation (1) — while relatively few data points
are in fact facts — targets generated by viewing the end
result of the game. In order to avoid this problem, the
database can be split into two sub-databases, with one
holding facts, and the other holding opinions. Varying the
sizes, and the relative sizes, of these two sub-databases can
then allow the engineer to decide how much credence the
system should give to fact versus opinion. This method
proved far more successful than Player #2, successfully
completing 6 of the 10 problems posed by the rating
system. It’s speed of convergence is comparable to that of
Player #2.

4.4 Player #4 — Widdrow-Hoff based DB
learning

In this instance, a very similar approach to that of Player #2
is taken, with one important distinction: Instead of
estimating a target at each move, the game is played out to
completion with a static player. After each game finishes,
the player then adds all of the positions encountered into its
database, with the final result being the target of each
position. This means that no opinions can ever enter into
the training, which trades off speed of convergence for
supposedly higher accuracy. This method is not optimal, as
it loses one of the primary advantages of reinforcement
learning, namely that of being able to incorporate current
learning into its own learning, hence speeding up the
learning process. Unsurprisingly, this method trains with
the same speed as the other database methods, but takes far
longer to converge. It achieves a similar level of play as
does Player #1, being able to solve 5 of the posed
problems.

4.5 Player #5 - Hybrid Fact/Opinion DB
TD(%) learning

The logical extension to the previous players is to hybridise
the most successful players in order to compensate for the

17

failings of each. Player #5 thus utilises the Fact/Opinion
database learning in order to build an initial knowledge
base from which to learn, and then proceeds to learn from
thence using the TD(X) approach of Player #1. This proves
more successful, since the intrinsic flaw in player #1’s
methodology lies in its inability to efficiently create a
knowledge base, and the database method of player #3
creates that knowledge base from which to learn. Player #5
begins its learning with the expected sluggishness of
database methods, but then learns much faster once it
begins to learn using the TD(A) approach. Player #5
managed to successfully solve seven of the ten problems
once trained to convergence. The problem of unlearning
learned information is still apparent in Player #5, but is
largely mitigated by the generation of the initial knowledge
base.

4.6 Player comparisons

o
J
o
.
y
.
4
o
:

-

Ha

Figure 3. Relative player strengths

As is illustrated in figure #3, the hybrid method learns to
play at the strongest level of all of the methods presented.
Due to the drastic differences in speed and computational
power requirements, it is preferable to stay away from
database-based methods, and it is thus worth noting that
only the fact/opinion database method arrives at a stronger
level of play than the simple TD(A)-trained player #1, and
that this methodology can easily be incorporated into a
TD(A) learning system, which produces the far more
promising player #5. The fact that after a short knowledge-
base generation sequence the hybrid system uses the highly
efficient TD(A) approach makes it a faster and more
reliable learning system than the other methods presented.
As can be seen in Figure 3, however, there is still a greater
level of play strength that should be achievable in this
simple game, and that has been limited by the unlearning
error seen in Players #1 and #5.

For future work, it is recommended that research goes into
a more efficient method of calculating eligability traces,
since a better calculation of the eligibility traces would
solve the problem of unlearning encountered in the TD(X)
methods, removing the play-level limit that has been
encountered.

5 Conclusion

While the stability of TD(A) methods for neural networks is
in question, many precautions have been presented that
greatly improve the stability of the neural network learning
process. Far more important is the generalisation property
of neural networks. The generalisation that is the great
boon of neural networks also is its greatest weakness when
applied to reinforcement learning. The ability to generalise
comes at the cost of updating all position prediction with
each individual prediction, which limits the development of
a knowledge base. Database building techniques are useful,
but also lose some of the benefits of reinforcement
learning, and are hence undesirable. Lastly, the usage of
database techniques to develop an initial database,
followed by further learning utilising the TD(A) approach
leads to the best player in terms of player strength,
illustrating the need for a teacher to ‘show the ropes’ to an
AL system, before it is capable of learning on its own.

For future work, the issue on wunlearning needs to be
further explored and solved before neural network
reinforcement learning is in fact a viable tool for use in
gaming A.L, although once this is accomplished, the scope
of the method holds great promise to allow truly adaptable
AL agents in games, able to give players a true challenge.

References
[1] Sutton, R. S. What’s wrong with Artificial
intelligence, Last viewed 24/08/2005

http://www.cs.ualberta.ca/~sutton/Incldeas/WrongWithAlL
htm] 11/12/2001.

[2] Wesley Hines J. Matlab supplement to Fuzzy and
Neural Approaches in Engineering. John Wiley & Sons
Inc. New York. 1997.

[3] Miller, Sutton and Werbos. Neural Networks for
Control. MIT Press. Cambridge, Massecheussettes. 1990

[4] Sutton, R. S, Barto A. G. Reinforcement learning: An
Introduction, MIT press, 1998.

[51 Sutton, R. S. Learning fto predict by the methods of
temporal differences. Mach. Learning 3, (1988), 9-44.

[6] Morehead A. H, Mott-Smith G, Morehead P. D.
Hoyle’s Rules of Games, Third revised and updated
edition. Signet book. 2001.

18

[71 Sutton, R. S. Implementation details of the TD(2)
procedure for the case of vector predictions and
Backpropogation. GTE laboratories technical note TN87-
509.1, 1989.

[8] Sutton, R S. Frequenlty asked questions about
reinforcement learning, last viewed 24/08/2005,
http://www.cs.ualberta.ca/~sutton/RL-FAQ.html

SIMPLE GAMES THAT TEACH ARTIFICIAL INTELLIGENCE

Alasdair Macleod
University of the Highlands and Islands
Lews Castle College
Stornoway
Isle of Lewis

UK

HS2 0BW
Email: Alasdair.Macleod @lews.uhi.ac.uk

KEYWORDS

Games, Artificial Intelligence, Education

ABSTRACT

It is proposed that by a fundamental exploration of Al
techniques using interesting but simple games and puzzles,
games development students will become more aware of
the potential advantages and the limitations of each of the
established methods in common use. The puzzle of Sudoku
and the game of Pegboard Solitaire are explored in this
context. The expectation is that the application of Al to
computer games may consequently become realistic, with
the result that effective intelligent systems may be realised.
The adoption of this approach for a group of students is
reported and the findings may be of interest to educators in
general and games technology course designers in
particular.

INTRODUCTION

There is currently a strong perception that Artificial
Intelligence (AI) should be incorporated into modern
computer games to enhance interest. However the impact of
such innovation has been limited and it is interesting to
consider the reasons [1]. Whilst our relatively poor
understanding of the nature of intelligence and the
disappointing progress up to now in developing methods
that simulate intelligence is certainly a major reason for
this, we propose in the paper that another factor is a failure
by some practitioners to appreciate the basic limitations of
the Al techniques that are in common use. Thus AI methods
are often applied with greater expectation than is
reasonable.

This conclusion is apparent from the observation of game
design and programming students developing their basic
skills and knowledge in a programming environment. It is
frequently the case that the student will choose an Al
technique without fully understanding how it works or what
it can do in the context of the application. The technique is
nevertheless applied (often after diligent study) to a

19

complex computer game in the expectation of enhanced
performance. There is a failure to recognise that no
established Al technique is generic and all are application
dependent.

In recently reorganising the BSc degree programme at the
University of the Highlands and Islands (www.uhi.ac.uk), it
was decided to try and address this issue by presenting the
Al teaching modules entirely in the context of games
development. The subject had previously been taught in the
context of commerce, engineering, computing etc. with
little reference to games.

The basic underlying principle is that the application of
specific Al methods to complex computer games should
only occur at the end of a long process where the technique
has been fully characterised through extensive application
in more controlled, simpler games environments where
quantitative testing is possible. This may be through the use
of simple highly-constrained games. Although it is possible
to directly create Al modules for online games [2], this is
not generally useful to the learner as the programming is
complex, and it is often extremely difficult to evaluate the
effectiveness of Al in such a complex environment. It is
preferable to select simple well-constrained games where
the effectiveness of an Al implementation is clearly
measurable. For the interest of the students, it is desirable to
select topical subject matter and annually modify the
material to reflect what is ‘fashionable’. To illustrate this
point, in this paper we will evaluate both the traditional
game of pegboard solitaire and the number puzzle Sudoku
as suitable Al teaching environments rather than using
clichéd examples such as tic-tac-toe [3].

We also comment on the use of games as a general tool to
teach computing. Many students who choose to study
computing are interested in computer games and indeed this
may be the original inspiration for their career choice.
Perhaps for this reason (amongst others), it has been found
that the incorporation of the study, design and
implementation of computer games into the curriculum (or
used a vehicle for presenting theory) results in accelerated
learning. Of particular interest is the GameMaker program
created by Mark Overmars [4] that is exceptionally good
for teaching an understanding of game structure and design

in the context of games development, but also illustrates
object-orientated principles.

SUDOKU

Sudoku is a number placement puzzle that has become
something of a craze over the last year [5]. The problem in
its normal form consists of a 9 x 9 rectangular grid of cells
where each cell must be occupied with a single digit
between 1 and 9. In the completed array every column and
row must consist of a permutation of the available digits. In
addition, the 9 x 9 grid is divided into nine 3 x 3 regions,
and each region must contain one and only one occurrence
of the digits from 1 to 9. The problem is initially presented
with numbers already in some of the cells, the quantity
given ranging from a total of 20 for very hard puzzles to 35
for the easy puzzles. The puzzle is solved by placing the
correct digits in the empty cells by the application of logic
and the use of deduction.

There is a great deal of literature on the puzzle and how Al
may be used to both solve and create puzzles; however the
focus in this paper is on the value of the game as an
educational tool to teach the basic principles of Al This is
particularly appropriate to students who wish to apply their
Al knowledge to games in general and Internet games in
particular. We will show that the puzzle is a good vehicle
for exploring the foundational principles. One should also
mention that before Al methods can be applied, a user
interface must be developed using some programming
language. The game environment is almost as simple as tic-
tac-toe but much more interesting. The development of an
environment is a useful exercise for teaching elementary
programming - the problem is easily represented and
demands the application of object orientated principles and
a good understanding of multidimensional arrays.

Mathematically, the puzzle is related to scheduling and
timetabling, Latin squares, magic squares, path-finding
problems, and map-colouring problems. In formal terms,
Sudoku is a constraint problem and there has already been
significant research conducted using established constraint
programming methods [6, 7]. In most cases, this Al
technique is more advanced that that encountered in starting
undergraduate Al computing courses and should be
introduced at a later stage. We recommend that students
should not at this stage be expected to discover the best
technique, but instead be asked to implement a variety of
very simple methods and critically evaluate these.

One of the most important and fundamental methods used
in Al is search and the first approach suggested to students
after a user interface has been created is to try solve the
problem following a methodical search procedure. The
purpose of the exercise is to determine if a search procedure
is feasible and if so, whether a breadth-first, a depth-first or
if some pruning method is appropriate. In fact, even the
crudest depth-first search can be used to solve the problem
in less than second on a home PC with an algorithm
implemented in C++. This is because the constraints grow
as numbers are added thus the number of possibilities down
the chain decreases rapidly. Student may be encouraged to
join Sudoku programming forums, where the programming

20

methods are discussed and interesting (and effective) search
techniques are presented. Whilst apparently adequate, pure
number-crunching techniques are too slow when trying to
create puzzles (as we will see further on), particularly as all
tree branches must always be executed to test for duplicate
solutions. It is therefore necessary to explore other
approaches even though the student may consider their
search process adequate.

Because the puzzle of Sudoku represents a formal task, and
a unique solution can be found by adopting formal
reasoning, the next objective for the student might be to
identify the rules human beings apply to solve the puzzle
and represent these in a formal way. A restricted search
over the game space can then be conducted by applying the
derived rules. This will lead to a rapid solution. The method
can be related to a very simple Expert System, and used to
illustrate the operation of the inference engine. However, in
reality, the rules are easily implemented through procedural
programming, though it is more illuminating to implement
the solution using an Al language such as LISP or Prolog.

Unfortunately the puzzle is fundamentally flawed in that it
can be solved by a simple inverse elimination method. If all
the cells are temporarily filled with each number from 1 to
9, and the impossibilities eliminated by constraints imposed
as cells are occupied with given numbers, the puzzle
becomes much easier. A program to implement this
procedure is easily written. A student variant is shown in
Fig. 1. Many programs of this type are available off the
Internet, although the competent student programmer
should be able to replicate the core functionality of these in
a few hours. Once the given numbers are entered, the
program output shows the allowed numbers for the
remaining cells (Fig. 1(a)). In many cases, singletons (only
possibilities) become immediately apparent. As these
numbers are entered (Fig. 1(b)) more singletons appear and
the puzzle is often solved with no reasoning or thought
(Fig. 19¢)).

5u Dok Solves

CocCicks | P |
4 & 1 5
1 6 | 9
8 7 9 4 1
2 7 4 9
9 3 |6 7 | 4
5 2 6
7 4 8 6 2
5 |9 7
6 i 7|8 5

Figure 1 (a): Initial puzzle with the given digits already imposing
restrictions on the empty cells.

.

=
e

8 2 1 7 4 18 g 39
9 & 316 7 8 4
5 7 412 g 11 6 8

Figure 1 (c): Final Solution

Whilst the method removes the elements of memory and
simple reasoning in basic to moderate puzzles, it is not
entirely automatic and appears to fail with difficult Sudoku
puzzles such as the one illustrated in Fig. 2.

When the supplied digits are entered, it is apparent there are
no cells that can now be filled by direct observation.
However, the problem is always solved through the
application of two simple rules:

1. Look for a number in a candidate number in a
row, column or group that occurs just once.

2. Identify contingencies, narrowing a group of
numbers to the same number of cells, thus they

21

cannot be in other cells in the set of which the
restricted group is a subset.

5u Doku Solver

Resst | ComcolCicks | Fint n

9 2 7 6
T B .
5 8 9
3 1

i s) i
s |2 7
. e . ne

Figure 2: Example of a difficult Sudoku puzzle.

Rule 1 is shown in Fig. 3(a) and rule 2 is illustrated in Fig.
3(b).

134
& a0 89
7
1 34 |1 1
89 89 8
13
59
§ 2

Figure 3(a) Look for instances of a number appearing once is a
column, row or group. In this case 6 in the marked cell.

Interestingly, the contingency technique is closely related to
the Karnaugh-Veitch method of obtaining simplified
Boolean expressions from logic truth tables [8]. The student
would be expected to implement these rules to generate an
extremely fast solver.

59
§ 7
A 34 [T
E o Y 8
Ex
E:2s
§ 2

Figure 3(b) An example of contingencies. 1, 8, and 9 must be
permuted in the red-bordered squares and these cannot be valid
possibilities in the other empty vertical cells.

Much of the attraction of the puzzle is lost when it is seen
to be solvable in such a straightforward way. Nevertheless,
the student may then consider the much more difficult
problem of creating puzzles. One method is to adopt a trial-
and-error process to fill the grid. Then numbers are
removed with checking taking place that the uniqueness
condition still holds by using the fast software tools that
were created. These should be adequate to solve a position
in a time of the order of milliseconds. In fact there are
several authors who rely on automated systems to create
puzzles and apply AI [9, 10].

The puzzle is interesting mathematically, and whilst the
structure of the problem suggest the matrix be filled
diagonally to start the creation process by initially filling
the grid, a mathematics student may choose to take a closer
look at this. Mathematically, the Sudoku puzzle is related to
the branch of mathematics dealing with matrices and
groups. Students with a mathematical background should
be encouraged to investigate theoretical questions such as
whether an initial configuration that can be shown by a
computer analysis technique to have a single unique
solution can always be logically solved.

This approach encourages students to look at the structure
and principles of a game and let this guide a strategy. The
puzzle is therefore rich in Al possibilities and can be an
excellent Al testbed and a fine pedagogical tool. It clearly
highlights the relationship between reasoning, pattern
searching and memory. However, it is important to
remember the puzzle represents a formal task and
possibilities of generalisation to more complex computer
games are limited. Many elements of complex computer
games have mundane facets, a type of task that is not easily
handled by the techniques we have been considering.
Consider the much harder mundane task of completing a
large jigsaw puzzle. The emphasis moves away from the
reasoning that one would normally associate with human
intelligence, to visualising and search. However the effort
in creating an automated jigsaw solver is many orders of
magnitude greater (though an interesting project
nevertheless).

Sudoko does not have the necessary complexity of game
space to test learning algorithms and heuristics. For this we
must consider other games.

PEG SOLITAIRE

The game of peg or pegboard solitaire is frequently played
on a wooden board with 32 marbles (or pegs) that sit in 32
recessed slots arranged in the form of a cross. The centre
slot is normally unoccupied. The object of the game is to
remove the marbles by jumping horizontally or vertically
(removing the jumped marble) to leave one marble on the
board. The game interface is easy to implement and is
again a good student exercise. Fig. 4 shows a typical board
where the programmer has chequered the board (though
this has no effect on the play). This will be the starting
point of any Al and the VB.NET 2003 implementation of
this user interface is available from the author.

22

Figure 4: A representation of the game of pegboard solitaire
(position of the initially empty square can be changed for
variation)

The game is very much more difficult to solve using a
computer than Sudoku because the complete tree has an
estimated 10% branches. It is therefore not possible to solve
the game by a simple search technique. Nor is it possible to
describe the strategy in clear formal terms. It is therefore
necessary to apply heuristics (or rules of thumb) to narrow
the search if this approach is followed. For example, it is
known that it is easier to solve the puzzle if the block of
remaining marbles is kept compact (Fig. 5). The high
degree of symmetry can also be used to reduce unnecessary
search. There is a significant theory on the game and some
mathematical principles associated with the game can also
be applied [11].

Figure 5: This game is completed with two successive jumps by
the lower left purple counter, its immediate capture by the
uppermost counter, and two horizontal jumps.

Students are asked to adapt the game for a 9 x 9 playing
area for consistency with Sudoku (Fig. 6).

Figure 6: Games are altered for programming consistency as far as
is possible. Here is Peg Solitaire playing space is made compatible
with Sudoku and can be described by the same arrays. In this way
generic objects may be developed.

Students have been encouraged to use neural networks to
solve the puzzle, and evolutionary and genetic algorithms
are readily applied. However the game lacks variety — the
only real variable is the selection of the square that is
initially empty. It is more interesting and challenging to
create computer opponents than solvers. This means of
course turning a two-play game into a single player game.
Students are encouraged to apply game design skills to
make the game more interesting by equipment and rule
changes (though retaining the basic game principles).
Students when asked to do this have demonstrated some
ingenuity. One obvious modification is to recognise the
connection with chequers (or draughts). If the 9 x 9 board is
filled with alternatively coloured counters, the board is
effectively two overlaid and offset grids, each player being
confined to their own grid. This reduces the level of
interaction below that which is desirable in a complex
game. Nevertheless, games using this motif proved
interesting.

In essence, this very simple game is a good trainer for more
advanced Al principles and has the advantage that the
methods are implemented with the minimum of
programming through the simplicity of the game landscape.

CONCLUSION

The experience so far is that simple games are very
effective at teaching foundational Al principles. Sudoku is
effective at teaching about search and rule based systems;
pegboard solitaire teaches, heuristics and learning.
However, by the end of the process students are still very
far away from being able to apply these ideas to the more
complex arena of multi-player Internet computer games
where the mundane aspects are significant and the
constraints are poorly defined.

The very negative aspect of the approach was that students
became very sceptical of what could be achieved with Al in
any context because of the limited success of the techniques
with even simple games. A very negative approach toward
the application of Al to computer games became apparent

23

with frequent criticism of the AI used in commercial
games, and doubts as to whether it even constituted Al

We considered this result undesirable and introduced an
intermediate project-based module where it is necessary to
learn strategies appropriate to the human mundane
behaviour that is so common in game play but so difficult
for the machine to deal with. For example, the game of
Perudo has been found useful to explore these ideas and has
been described elsewhere [12, 13, 14]. It is found that Al
techniques can be relatively effective in this context and
stimulates the student to apply Al to more complex
computer games.

With this approach, games students have been found to
emerge with a good understanding of Al and an awareness
of the possibilities and its limitations when applied to
complex systems.

REFERENCES

[1] A. Nareyek, “Al in computer games”, ACM Queue 1,
10 58-65 (2004)

[2] G. A. Kaminka, M. M. Veloso, S. Schaffer, C. Sollitto,
R. Adobbati, A. N. Marshall, A. Scholer, and S Tejada,
“Gamebots: A flexible testbed for multiagent team
research”, Communications of the ACM, 45(1), 43 (2003).
[3] M. Gardner, “Tictacktoe and its complications"
Scientific American, 225, 102-104 (1971).

[4] M. Overmars, “Game design in education”, Technical
Report UU-CS-2004-056 (2004).

[5] S. Singh, “The science of Su Doku”, BBC Focus, 155
(2005).

[6] H. Simonis, “Sudoku as a constraint problem”,
www.icparc.ic.ac.uk/~hs/sudoku.pdf

[7] D. Eppstein, “Nonrepetitive paths and cycles in graphs
with application to Sudoku”, Arxiv/cs.DS/0507053 (2005).
[8] A. Abdelilah, Digital Circuits: Truth Tables, Minterms,
Maxterms, Karnaugh Maps, Engineer's Tutor Series, Weber
System (1990).

[9] P. Sinden, “The little book of Sudoku”, Michael O'Mara
Books Ltd (2005).

[10] For example, the forum http://act365.com/sudokuy/
(Accessed 20 Sept 2005)

[11] A. B. Matos, “Depth-first search solves Peg Solitaire”,
Technical Report, DCC-FC & LIACC, Universidade do
Porto (1998).

[12] A. Macleod, “Perudo as a development platform for
Artificial Intelligence”, 8CGAIDE 2004 Conference on

Computer Games: Artificial Intelligence, Design and
Education, Reading (2004).
[13] A. Macleod, “Selecting games for Artificial

Intelligence”, The Second Annual International Workshop
on Game Design and Technology, Liverpool John Moores
University (2004).

[14] A. Macleod, “Game design through self-play
experiments”, ACM SIGCHI International Conference on
Advances in Computer Entertainment Technology, Valencia
(2005).

SITUATION SWITCHING IN THE AIBO ROBOT

Zhenke Yang
Leon Rothkrantz
Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science
Mekelweg 4,
2628 CD Delft
The Netherlands
{Z.Yang, L.J.M.Rothkrantz } @ewi.tudelft.nl

KEYWORDS

AIBO Entertainment robot, Situational AI, Reactive
control, Clips, Robot behavior.

ABSTRACT

This work is focused on implementing situation
switching in an AIBO robot inside an unpredictable
environment. The goal is to achieve intelligent situation
dependent reactive behavior without modifying the
underlying planning algorithm. The focus is on visible
intelligent behavior for a robot. Our ideas are illustrated
using a benchmark experiment featuring an AIBO in a
maze. The implementation is in accordance to the model
and terminology for data fusion adopted by the
Department of Defense Joint Directors of Laboratories.

1 Introduction

Robots are physical agents that perform tasks by
manipulating the physical world. Traditionally, robots
where applied in the manufacturing industry where they
performed a single task in a fixed environment. For
mobile robots in the entertainment industry however,
parallel tasking in dynamic environments is desirable if
not mandatory. Recent research has shown that, robot
owners not only think of their robot as mobile, intelligent
interfaces to information systems, but also expect their
robots to behave similar to a familiar and amusing pet
(Kobayashi et al. 2003, Matsui et. al. 1999). This implies
that owners expect their robots to show some intelligent
behavior. One manifestation of intelligent behavior is
that the robot can act differently under different
circumstances. For example, the robot walks in a straight
line or circumvents depending on the existence of
obstacles. In our view, sometimes changes in the
environment are so subtle that they (1) require change in
robot behavior to justify intelligence (externally) but (2)
do not justify a change in the planning/problem solving
algorithm (internal).

To illustrate this, consider a person driving to work. His
goal is to arrive at the office on time. Depending on the
current time and the current position the driver will have

24

a different driving behavior. For example, if he has
plenty of time he will adopt a relaxed driving style (and
maybe allow the old lady and the children to cross the
street first), otherwise he will adopt a more aggressive
and risky driving style. Notice that the route the driver
takes to get to work (the plan) does not change. In
general, the driving style (actions taken by the driver)
reflects the mental perception of the situation the driver
thinks he is in. This mental perception of the situation
depends on observables (e.g. time, place) and the current
goal (e.g. get to work on time).

From an application development point of view, it is not
desirable to have the designer of the planning algorithm
to consider all possible situations. It is also not desirable
to have the robot ignore the situations by showing the
same behavior all the time. In this paper we propose a
situation switching architecture as a solution to this
problem. This paper describes the application of a
situation switching architecture to solve a benchmark
problem which consists of an AIBO robot exploring a
maze.

2 Background
2.1 Robot planning and control

In the classical planning approach (Spalazzi 1998, Yang
1997), systems do not react to external events. Therefore
success of a plan is not affected by changes in the outside
world. When a failure occurs, a new plan is formed.
Because of this, planning systems do not perform well in
dynamic environments. An alternative approach is
reactive control (Pearce et al. 1992, Safiotti 1993), which
attempts to transform sensor data into information that
directly affects the behavior of the robot. These systems
usually do not have reasoning capabilities. Situated
systems (Hanks et al. 1990, Saffiotti, et al. 1995) try to
integrate the reasoning and reacting capabilities. An
special kind of situated system is one with a reactive
system (first layer) which interacts with a classical
planner (second layer). Research on situated systems has
focused on producing better plans. Our experiments,
build on the results of this research, but our focus
however is on visible intelligent behavior for a robot.

22 AIBO

The Sony AIBO entertainment robot was first released in
June 1999. Due to (1) its wide array of sensors and
activators, (2) the open architecture, which allows us to
create behaviors for it and (3) its relatively low price, the
AIBO is a good test subject for our experiments.

In our benchmark problem, the basic scenario involves a
maze of about 3x3 meters build out of cardboard boxes.
The AIBO is entered in this environment. The goal of the
AIBO is to explore this maze and stop when it finds an
exit sign (Figure 1). The AIBO has no prior knowledge
about the size or shape of the maze. It only knows how to
detect an exit sign and how to detect an obstacle. The
AIBO must decide on which actions to perform to
achieve its goal.

Our goal is to let the AIBO show intelligent behavior by
walking faster in some situations (e.g. through the long
hallway) and slower in different situations (e.g. near
corners) without modifying the exploration algorithm.

In the extended scenario there will also be an alarm
sound. In this case the AIBO should walk carefully in all
situations.

2.3 Multisensor data fusion

Multisensor data fusion seeks to combine data from
multiple sensors to perform inferences that may not be
possible from a single sensor alone. This is exactly the
way we envision our AIBO to steer its behavior: by
integrating data continually from different sensors to
make inferences about the external world. As a result our
implementation is done in accordance to the model and
terminology for data fusion adopted by the Department
of Defence Joint Directors of Laboratories (JDL) (Hall
and Llinas 2001).

Following the JDL terminology, we use the term data
fusion node. Data fusion nodes can be connected to each
other so that the results of the processing in one node can
be used as the input to the next node. A network of

25

interconnected nodes thus formed is called a data fusion
architecture.

To determine the distance and the location of an obstacle
(if any), it is necessary to combine the sensor readings of
the infrared distance sensor and the value of the neck
joint. Since the AIBO is continuously scanning its
environment by rotating its head left and right and the
infrared distance sensor is located on the nose of the
AIBO. The same holds for the detection of the exit sign
using the camera (the camera is also located on the nose).
Finally we can combine the location of an obstacle with
the location of the exit sign to reinforce the belief that the
exit sign has really been found (since the exit sign is a
special obstacle).

3 Approach to the problem

Let us assume that the task the AIBO has to fulfill does
not depend on the dynamics of the environment not due
to the robot itself. This assumption implicates that the
task can be solved using the classical planning approach.
Let us furthermore assume, for simplicity, that the goal of
the robot does not change during its lifetime. The above
assumptions allow us the concentrate on the area we are
actually interested in: the case where situations change
(due to changes in the environment) within a task. A
situation is a state of the environment which can be
detected by the sensors of the robot. Situation changes
are inherent to the dynamics of the environment.

Classical planning, including mechanisms for goal
switching, is covered extensively in literature (Russel
and Norvig 1995, Yang 1997). Context switching (the
case where the goal as well as the situation changes
simultaneously) falls within the area of operating
systems. We will focus only on situation switching. The
discussion above gives rise to Table 1.

Table 1: Focus Area

Goal same | Goal change

Situation same Task switch

Situation change [Situation switch|Context switch

3.1 Situation Estimation and Selection

The AIBO is equipped with a range of sensors to monitor
the dynamics in its environment. These observations
determine the state of the AIBO’s internal representation
of the environment. We assume that knowledge of the
state at time t is sufficient for the AIBO to determine the
situation at time t i.e. no historical values are necessary.
Of course there are issues with sensors: noise, situation
constituted by the sensor readings can be ambiguous, etc.
But these issues are left out of the scope of this paper.

With the above assumptions, situation estimation can be
reduced to the process by which the data fusion
architecture is used to transform the sensor readings
(observations) in to a state of the environment and
situation selection is a function that maps a given state
into a set of situations. Of course, more sophisticated and
versatile situation estimation and selection methods could
be devised. However, this method of situation selection is
sufficient for our problem.

3.2 Skills-sets

The set of actions a robot can perform are called the
skills of the robot. Skills form the robot-specific interface
with the world, in the sense that a skill defines how a
higher level command is transformed into continuous
control of the robots actuators. Generally robots can vary
greatly in physical characteristics and sensors
capabilities. As a result, the skill of each robot can also
vary greatly between robots and environments. This
concept is not new, Skill have been developed for various
robots and various environments (Bonasso et al. 1995,
Slack 1992).

As every situation essentially constitutes a different
environment in which the robot has to perform its tasks,
each situation may demand different skills. We therefore
create a set of skills and let the robot choose the
appropriate skill to use depending on the situation it is in.
As a result, the situation switching process is essentially
reduced to the selection of the appropriate skill from the
skill-set given the current situation.

3.3 Selection of skill set from situation

The robot behavior is defined by task-directed selection
of a skill from the skill-set. Using a slight modification of
universal plans (Schoppers 1987), selection rules for skill
sets, in a given situation, can be expressed as follows:

If a situation satisfying condition P arises while trying to
achieve goal G, then use skill set S to perform the
actions.

As an illustrative example consider an environment with
2 possible situations: Hazardous (SH) and Save (SS). The
possible actions are moving forward (Fx) and Turning
(Tx) where x denotes the speed and the degree
respectively. A skill for situation SS = {F40, T90} and a
skill for SH = {F10, T20}. As a consequence, an
environment satisfying situation SS will cause the robot
to move and turn faster then an environment satisfying
situation SH.

4 Implementation

Our prototype is based on a client-server architecture,
with the server being the AIBO and the client being a PC.
The data processing (situation detection and switching,
exit detection, exploration etc.) are done on the PC and

26

AIBO is responsible for sending raw sensor information
from the sensors and executing the commands send from
the client. The communication between client and server
is through WiFi. Our long term goal is to have both client
and server running on AIBO and in this way having an
entirely autonomous robot.

4.1 AIBO

For this experiment we created a combined memory stick
containing both URBI (Baillie 2005) and Tekkotsu
(http/fwww-2.cs.cmu.edu/~tekkotsu/) software.

Tekkotsu provides walking routines (that were not
available for URBI at the time the experiment was done)
while URBI provides better control over and easier
access to the sensors. In order to prevent
conflicting/simultaneous accessing of the AIBO
hardware the actuator functions in URBI have been
disabled in favor of Tekkotsu. URBI is mainly used to
retrieve sensor information: Distance IR sensor, joint
values, camera images, microphone data. Tekkotsu is
used for walking and lower resolution UDP video from
the camera.

4.2 PC client

The client is implemented according to the JDL data
fusion model. The client takes care of the retrieval and
distribution of the sensor data from the AIBO
(SensorManager in Figure 2). Each data fusion node can
get all the sensor information available by subscribing to
the appropriate services provided by the SensorManager.
The client also takes care of the translation from a
symbolic commands used in the skill sets to concrete
AIBO understandable commands (ActionManager in
Figure 2). In addition the client consists of several
modules which are implemented as data fusions nodes.

Whlalivaton module

N\
\

ion modile

AIBC

Bihsation Soabysls
and swiiching mnduis

Figure 2: Module Overview

The Visualization module

This module is intended for global control of the
application and to show feedback to the user. Included
are views for real-time camera images and a
representation of the current map created by the
exploration module (Figure 3). These views are provided
for convenience and have no functional meaning in our
experiment.

i

_

View Mo [

Ready o

Zaomn Showfiid | tp

Zo6m Dut Show Aibo | Left %

Floest ShowMap

Figure 3: Views of the Visualization Modules

The Exploration module

The exploration module constitutes the planning part of
the system (in the classical sense). Since planning is not
the focus of our research, the exploration algorithm is
kept extremely simple. Listing 1 shows the pseudo code
for the exploration algorithm.

1. exitfound = false;
2. while (not exitfound)
/* Get distance to obstacle in
front.*/
3. dc = GetIRDistanceChest () ;
if (dc > THRESHHOLD)
4. /* walk save distance forward */
5. Forward (0.5*THRESHHOLD) ;
6. else
7. Turn90Degrees () ;
8. i
5. updateMap () ;
10. exitfound = detectExitSign();

End While

Listing 1: The Exploration Algorithm

Basically, the AIBO walks a save distance forward if
there is no obstacle in front it, otherwise it makes a 90
degrees turn to the left. Until the exit sign is detected.

The situation analysis and switching module

Given the nature by which the situation switching
conditions are expressed, the choice to use a production
system, such as CLIPS, to implement the situation
analysis module is a logical one. In addition, the CLIPS
source code is already ported to an OPEN-R object

27

(which can be run directly on a AIBO). So this also fits
well with our long term goal of complete autonomy.

In our scenario we distinguish 4 different situations:
{normal, alarm, clear, cornered} and 3 different skill sets
labeled {Normal, Cautious, Fast, Alarm}. Table 2 shows
the relationship between the situations and the skill-sets.

Table 2: conditions for the situations and mapping to

skill set
Skl
Normal Default Normal
Alarm If alarm sound is | Cautious
detected
Clear If distance in front is | Fast
greater then Threshold
and NOT Alarm
Cornered | If distance in front is | Cautious
less then Threshold and
NOT Alarm

5 Evaluation

The benchmark problem described in this paper is a first
experiment to show our ideas. The working system was
demonstrated on several occasions. As the focus of the
demonstrations was on other research areas (path finding,
exit sign/landmark recognition, etc.) the situation
switching part discussed in this paper was mostly lost to
the public.

Currently work is done to extend this problem with the
sound modality. In the extended problem, sound is used
to influence the situation. For example, the AIBO has to
walk hastily towards the source of the sound when an
urgent sound is played. With this extension, situation
switching as well as the data fusion model can be further
evaluated.

The architecture used did not modify in any substantial
way the task of the planner. Moreover, the classical
planning approach can be considered a special case of
our architecture, namely the case of that of one situation
and one set of skills. As a result, dividing situation
switching and task switching as proposed in this paper, is
not difficult to achieve and can add another dimension in
robot/character behavior in games.

6 Future Work

A situation can seldom be determined by observations at
a single point in time. A conclusive statement about the
situation, usually involves an analysis of a series of
related observations at several distinct moments in time.
Therefore situation switches involve keeping track of
sensor history. Furthermore, a situation is seldom
determined by readings from a single sensor (as is the
case in our benchmark example). Invariably, it takes a
combination of sensor information from different
modalities to determine the situation. In this case data

fusion techniques (e.g. Kalman filtering) can be used to
determine the current situation and predict the future
situation. Finally, in our benchmark problem, a simple
rule-based selection of skills is implemented. Next, other
Al techniques (genetic algorithms, reinforcement
learning) can be used to create learned skill-sets and
selection rules.

7 Conclusions

This paper presents a solution and a proof of concept to
the problem of achieving an integration of planning and
sensor driven reaction. Our idea is realized by a
benchmark problem featuring an AIBO in a maze.
Previous research on situated control has focused on
producing better plans. Our experiments build on the
results of this research, but the focus is on immediately
visible intelligent behavior. Dividing situation switching
and task switching in games as proposed in this paper, is
not difficult to do and can add another dimension in
robot/character behavior in games. The ideas presented in
this paper can readily be adopted in games.

References
Baillie, J., “URBI Server for AIBO ERS2xx ERS7
Introduction Manual v1.0”, January 2005.

(http://www.urbiforge.com/eng/)

Bonasso, P et. al., “Experiences with an Architecture for
Intelligent, Reactive Agents”, 1995

Hall, D. L., Llinas, J., "Handbook of Multisensor Data
Fusion," CRC Press, 2001.

Hanks S. et. al., “Issues and Architectures for Planning
and Execution. In Proceedings of the workshop on
Innovative Approaches to Planning, Scheduling and
Control”, pages 59-70, 1990.

Kobayashi, A. et. al., “Robot Middleware Architecture
Mediating Familiarity-Oriented and Environment-
Oriented Behaviors”. in the 5th IEEE International
Symposium on Computational Intelligence in
Robotics and Automation, pp.544-551, July 2003

Matsui, T. et. al., “Integrated Natural Spoken Dialogue
System of Jijo-2 Mobile Robot for Office Services”.
In Proc. Of the 16" National Conference on
Artificial Intelligence (AAAI-99), Florida, July
1999.

Pearce M. et. al.,, “The Learning of Reactive Control
Parameters Through Genetic Algorithms”. IEEE/RSJ
International Conference on Intelligent Robots and
Systems, 1992 .

Russel S. and Norvig, P., “Artificial Intelligence — A
Modern Approach”, Prentice Hall, Englewood
Cliffs, New Jersey, 1995.

Saffiotti, A. et. al.,, “A Multivalued Logic Approach to
Integrating Planning and Control”. Artificial
Intelligence, 76(1-2):481-526, 1995.

Saffiotti, A., “Some Notes on the Integration of Planning
and Reactivity in Autonomous Mobile Robots”,

28

1993. AAAI Spring Symposium on Foundations of
Planning, pp. 122-126. March 1993.

Slack, M. G., “Sequencing Formally defined reactions for
robotic activity: Integrating raps and gapps”, In
Proceedings of SPIE’s Conference on Sensor Fusion,
1992.

Schoppers, M. J., “Universal plans for Reactive Robots
in Unpredictable Environments”. In Proc 10® IJCAL,
1987

Spalazzi, L., “An Architecture for planning in embedded
systems”. Istituto di Informatica, University of
Ancone, Italy, 1998

Yang, Q., “Intelligent Planning: A Decomposition and
Abstraction Based Approach”. Springer Verlag,
Berlin, Germany, 1997.

SYNTHETIC
CHARACTERS
AND
AGENTS

30

Advanced Synthetic Characters, Evil, and E*

Selmer Bringsjordl, Sangeet Khemlani?, Konstantine Arkoudas®, Chris McEv0y4, Marc Destefano®, Matthew Daigle6

Department of Cognitive Science
Department of Computer Science
Rensselaer AI & Reasoning Laboratory:

1-5
1,3,4
1-5

http://www.cogsci.rpi.edu/research/rair/index.php
Rensselaer Polytechnic Institute (RPI)
Troy NY 12180 USA
{selmer, arkouk,mcevoc, khemls, destem}@ rpi.edu
6: Dept. of Computer Science Vanderbilt University Nashville TN mdaigle@isis.vanderbilt.edu

Abstract

We describe our approach to building advanced synthetic
characters, within the paradigm of logic-based Al. Such char-
acters don’t merely evoke beliefs that they have various men-
tal properties; rather, they must actually have such properties.
You might (e.g.) believe a standard synthetic character to be
evil, but you would of course be wrong. An advanced syn-
thetic character, however, can literally be evil, because it has
the requisite desires, beliefs, and cognitive powers. Our ap-
proach is based on our RASCALS architecture, which uses
simple logical systems (first-order ones) for low-level (per-
ception & action) and mid-level cognition, and advanced log-
ical systems (e.g., epistemic and deontic logics) for more ab-
stract cognition. To focus our approach herein, we provide a
glimpse of our attempt to bring to life one particular advanced
synthetic character from the “dark side” — the evil charac-
ter known simply as E. Building E entails that, among other
things, we formulate an underlying logico-mathematical def-
inition of evil, and that we manage to engineer both an ap-
propriate presentation of E, and communication between E
and humans. For presentation, which we only encapsulate
here, we use several techniques, including muscle simula-
tion in graphics hardware and approximation of subsurface
scattering. For communication, we use our own new “proof-
based” approach to Natural Language Generation (NLG). We
provide an account of this approach.

The Dearth of Al in Al

There’s an unkind joke — which made the rounds (e.g.) at
the Fall 2004 AAAI Fall Symposium on Human-Level Al —
about the need to create, within Al, a special interest group
called ‘AI’. This kind of cynicism springs from the not un-
common, and not totally inaccurate, perception that most of
Al research is aimed at exceedingly narrow problems light
years away from the cognitive capacities that distinguish hu-
man persons.!

Human-level Al is now so unusual that an entire upcom-
ing issue of Al Magazine will be devoted to the subject —
a bit odd, given that, at least when the field was young,
AT’s journal of record would have routinely carried papers

*The R&D described in this paper has been supported in part
by much appreciated grants from AFRL-Rome and DARPA-IPTO.

' An endless source of confirming examples can be found in the
pages of the Machine Learning journal. The dominant learning
technique that you yourself employ in striving to learn is reading;
witness what you’re doing at the moment. Yet, a vanishingly small
amount of R&D on learning is devoted to getting a computer pro-
gram to learn by reading.

31

on mechanizing aspects of human-level cognition. Seminal
Al thinkers like Simon, Newell, Turing — these researchers
didn’t shy away from fighting to capture human-level intelli-
gence in machine terms. But now their attitude seems mori-
bund.

But gaming, simulation, and digital entertainment (and
hereafter we refer simply to ‘gaming’ to cover this entire
field/market), thankfully, are different: ultimately anyway,
they call for at least the appearance of human-level Al
(Bringsjord 2001). (On a case-by-case basis, as various
games show (e.g., The Sims (Electronic Arts Inc. 2000)), a
non-advanced character will of course do just fine.) Gaming
doesn’t strive just for a better SAT-based planner, or another
tweak in a learning algorithm that doesn’t relate in the least
to human learning. A SAT planner doesn’t constitute a vir-
tual person. But that’s precisely what we want in gaming, at
least ultimately. And even in the short term we want char-
acters that at least seem human. Methodologically speaking,
gaming’s best bet for characters that seem human is to bite
the bullet and strive to engineer characters that have what it
takes to be human. This, at least, is our strategy.

Gaming and Full-Blown Personhood

Now, there are various ways to get clearer about what gam-
ing, at least in the long-term, needs when it comes to human-
level intelligence. One way is to say simply that gaming
needs artificial creatures which, behaviorally at any rate, sat-
isfy one or more plausible proposed definitions of person-
hood in the literature. One such definition has been pro-
posed by Bringsjord in (Bringsjord 1997). This definition
essentially amounts to the view that z is a person if and only
if z has the capacity

1. to “will,” to make choices and decisions, set plans and projects
— autonomously;

2. for consciousness, for experiencing pain and sorrow and happi-
ness, and a thousand other emotions — love, passion, gratitude,
and so on;

3. for self-consciousness, for being aware of his/her states of mind,
inclinations, preferences, etc., and for grasping the concept of
him/herself;

4. to communicate through a language;

5. to know things and believe things, and to believe things about
what others believe, and to believe things about what others be-
lieve about one’s beliefs (and so on);

6. to desire not only particular objects and events, but also changes
in his or her character;

7. to reason (for example, in the fashion exhibited in the writing
and reading of this very paper).

Unfortunately, this list is daunting, especially if, like us,
you really and truly want to engineer a virtual person in
the short term. A large part of the problem is conscious-
ness, which we still don’t know how to represent in third-
person machine terms (Bringsjord 1998; Bringsjord 2001).
But even if we leave aside consciousness, the rest of the
attributes in the above list make for mighty tough chal-
lenges. In the section “Making the Challenge of Person-
hood Tractable” we shall retreat from this list to someting
doable in the near term, guided by particular scenarios that
make natural homes for E. But in the end, whatever appears
on this list is an engineering target for us; in the long term
we must confront each clause. Accordingly, in the section
“How Does E Talk?” we explain how we are shooting for
clause 4, communication. We have made progress on some
of the other clauses, but there is insufficient space to present
that progress herein. Clause 5 is one we believe we have
pretty much satisfied, via the formalization and implemen-
tation given in (Arkoudas & Bringsjord 2005).>

Current State of the Art versus Computational
Persons

Synthetic Characters in Gaming

What’s being done now in gaming, relative to full-blown
personhood, is clearly inadequate; this can be quickly seen
by turning to some standard work: Figure 1 shows an array
of synthetic characters from the gaming domain; these will
be familiar to many readers.’

None of these creatures has anything close to the distin-
guishing features of personhood. Sustained treatments of
synthetic characters and how to build them are similarly lim-
ited. For example, consider Figure 2, taken from (Cham-
pandard 2003).* As a mere FSA, there is no knowledge and
belief, no reasoning, no declarative memories, and no lin-
guistic capacity. In short, and this is perhaps a better way of
putting the overall problem infecting todays’s virtual char-
acters, all of the cognitive capacities that distinguish human
persons, according to the science of cognition (e.g., (Gold-
stein 2005)), are missing. Even the state of the art using cog-
nitive architectures (e.g., SOAR) is primitive when stacked
against full-blown personhood (Ritter ef al. June 2002).

ZA preprint is available online at
http://kryten.mm.rpi.edu/arkoudas.bringsjord.clima.crc.pdf.

3Worst to best, in our eyes: Top-left, The Legend of Zelda; SC
spits text upon entering room. Top-right, Chrono Trigger; tree-
branching conversations. Middle-left, Might & Magic VI (Shop-
keepers). Middle-right, Superfly Johnson from Daikatana; behav-
ior scripting, attempts to follow player and act as a sidekick (fails!).
Bottom-left, Galatea — Interactive Fiction award winner for Best
NPC of 2000 (text-based). Bottom-right, Sims 2. But even here,
nothing like what our RASCALS architecture has is present.

“This is an excellent book, and it’s used in our lab for building
synthetic characters. But relative to the loftier goals of reaching
bona fide personhood in artificial characters, there’s clearly a lot of
work to be done.

32

iy wen i

Figure 1: Sample Synthetic Characters

What About Synthetic Characters in Cutting Edge
Research?

What about research-grade work on synthetic characters?
Many researchers are working on synthetic characters, and
have produced some truly impressive systems. However,
all such systems, however much they appear to be human
persons, aren’t. We now consider three examples of such
work, and show in each that the character architectures
don’t have the underlying cognitive content that is necessary
for personhood.

REA

An agent developed by (Cassell et al. 1999) known as REA
is an example of a successful, robust agent whose developers
focused primarily on embodied conversation and the conver-
sational interface. She is described as being an expert in the
domain of real estate, and interactions with REA are both
believable and informative.

REA, however, is representative of many of the indus-
try’s most successful agents in that she excels at content
management, but fails to deliver rich emotive and cognitive
functionality. REA, after all, cannot generate English from
arbitrary underlying knowledge. Like many of her peers,
REA’s underlying cognitive capabilities are modeled in
an ad-hoc fashion. Her personality is in no way defined;
her interactions within a particular situation lack subtlety
and depth. While she excels as a simulated character and
a conversational agent, she is bereft of the rich cognitive
content with which advanced synthetic characters must
behave.

The BEAT Architecture
In an engaging paper (Gratch et al. 2002), Gratch and
colleagues present an architecture for developing rich syn-
thetic characters. This architecture is known as the Behavior
Expression Animation Toolkit Text-to-Nonverbal Behavior
Module (BEAT). Under this architecture, emotion and cog-
nitive content are produced systematically in a simulation-
based approach.

Their simulation-based approach is built on top of ap-

Emotions

e R

|
et
Sensations

.. Feelings
S foame

Memories

Figure 2: Impoverished Formalism for Synthetic Characters

praisal theories of emotion, where emotions emerge from
analysis of events and objects in a particular domain with
respect to the agent’s goals, standards, and attitudes. But
as Gratch et al themselves point out, appraisal theories “are
rather vague about the assessment process...A promising
line of research is integrating Al-based planning approaches,
which might lead to a concretization of such theories.” We
will present the RASCALS paradigm as one that utilizes pre-
cisely the Al-based planning techniques Gratch et al. regard
as promising.

Unfortunately, while Gratch and colleagues make won-
derful advancements in the logistics of realizing agents,
the issue of developing rich underlying cognitive content
is eschewed. Even assuming that their simulation-based
approach utilizes robust Al-based planning, the focus is
not on developing true cognitive content but rather on its
simulation and modeling.

Believable Interactive Embodied Agents

An approach more focused on building believable characters
was proposed by (Pelachaud & Poggi 2002). They argue that
research should include three distinct phases:

e Phase 1: Empirical Research. This phase involves research
“aimed at finding out the regularities in the mind and behavior
of Human Agents, and at constructing models of them.”

e Phase 2: Modeling Believable Interactive Embodied Agents.
Here, “rules are formalized, represented, and implemented in
the construction of Agents.”

e Phase 3: Evaluation. Finally, agents are tested on several levels,

including “how well they fit the User’s needs and how similar
they look to a real Human Agent.”

The “rule formalization” characterized in Phase 2 is, as
Pelachaud and Poggi point out, indispensable when building
believable characters. Since such rule formalizations are all

33

expressible in first-order logic, their approach is actually a
proper subset of the RASCALS approach. But formalizing
and implementing rules is not enough to achieve true cog-
nition; after all, cognition involves much more than simple
rules/first-order logic. Iterated beliefs are beyond the reach
of first-order logic. Finally, while Pelachaud and Poggi elab-
orate on linguistic rules and formalizations, they fail to men-
tion anything about modeling cognition or interacting with a
given knowledge base, and they make no remarks concern-
ing the logistics behind rule formalization and implementa-
tion. The agents described therein all possess rudimentary
cognitive content but come nowhere close to true cognitive
or emotive capacity.

Making the Challenge of Personhood
Tractable

How can we make the challenge of engineering a virtual
person tractable in the very short term? Our lab has a two-
part answer. First, assimilate everything out there regarding
the craft of making viewers and users believe that the syn-
thetic character they interact with is a genuine person. This
is the same route that was followed by Bringsjord and Fer-
rucci in the design of the BRUTUS story generation system
(Bringsjord & Ferrucci 2000). In a nutshell, B&F studied
the literature on what responses are desired in readers by
clever authors, and then reverse engineered back from these
responses to a story generation system that triggers some of
them. In connection with synthetic characters, this general
strategy has impelled us to build up a large library on the
design of synthetic charaters in stories and movies. In ad-
dition, we have built up a library of characters in film —
specifically one that specializes in candidates for true evil.
Within the space we have herein, however, this general strat-
egy, and the results so far obtained, can’t be presented. So
we will settle here for a shortcut; it’s the second part of our
two-part answer. The shortcut is to work from concrete sce-
narios backwards by reverse engineering. We currently have
two detailed scenarios under development. One is based on
the evil people whose personalities are revealed in conversa-
tions in (Peck 1983); we leave this one aside for now. The
second scenario, which is part of R&D undertaken in the
area of wargaming, can be summarized as follows. (At the
conference, we would provide a demo of conversation with
E regarding the first of these scenarios, where that conver-
sation conforms to our account of evil; see On our Formal
Account of Evil.)

E in Scenario 2, and Inference Therefrom

Let us imagine a man named simply E, a brutal warlord in
a war-torn country. E is someone you’re going to have to
vanquish. He has moved up the ranks of the underworld
in post-apocalyptic America after “success” in many, many
murderous missions. E has taken a number of prisoners from
an organization (let’s call it simply O) he seeks to intimidate.
O is chosen specifically because it is trying to rebuild the
fractured US in the direction of a new federal governing’.
Conforming to what has unfortunately become a gruesome
pattern, E decides to film the beheading of one of these poor
prisoners, and to release the video to O.

SCoincidentally, we have recently learned that the game Shat-
tered World for the XBox is related to our scenario.

Given just this small amount of information, what can we
infer about E’s knowledge and reasoning? That it has at least
the following six attributes:

1. Mixed Representation. E’s knowledge is not simply linguistic
or symbolic in nature. It includes visual or pictorial knowledge
as well. For example, E clearly is thinking in terms of mental
images, because he plans to gain leverage from the release of
images and video. In addition, though it isn’t pleasant to con-
template, E certainly has a “mental movie” that he knows he can
turn into real life: he envisions how such executions work before
performing them.

2. Tapestried. Presumably E’s knowledge of his prisoners is rel-
atively new. But this new knowledge is woven together with
extensive prior knowledge and belief. For example, in E’s case,
he has extensive knowledge of O, and its principles regarding
treatment of prisoners.

3. Extreme Expressivity. E’s knowledge and reasoning requires
highly expressive propositions. For example, he believes that O
believes that it is universally forbidden to execute prisoners, and
he believes that some of those aiding the United States’ rebuild-
ing effort will be struck with fear once the execution is complete
and suitably publicized, and that that fear will affect their beliefs
about what they should and shouldn’t do.

4. Mixed Inference Types. E’s reasoning is based not only on de-
ductive inference, but also on educated guesses (abduction), and
probabilistic inference (induction).

5. Uses Natural Language. E communicates in natural language,
with his comrades, and with others as well.

6. Multi-Agent Reasoning. E is of course working in coordinated
fashion with a number of accomplices, and to be effective, they
must reason well as a group.

Working within the paradigm of logic-based AI (Bringsjord
& Ferrucci 1998a; Bringsjord & Ferrucci 1998b; Nilsson
1991; Genesereth & Nilsson 1987), and using the MARMML
knowledge representation and reasoning system, which is
based on: the theory known as mental metalogic (Yang
& Johnson-Laird 2000a; Yang & Johnson-Laird 2000b;
Yang & Bringsjord 2005; Rinella, Bringsjord, & Yang 2001;
Yang & Bringsjord 2001a; Yang & Bringsjord 2001b; Yang,
Braine, & O’Brien 1998), the Denotational Proof Language
known as Athena (Arkoudas 2000), Barwisean grids for di-
agrammatic knowledge and reasoning (see the mathemati-
cal section of (Barwise & Etchemendy 1995)), and RAS-
CALS®(see Figure 3), a revolutionary architecture for syn-
thetic characters, we are building a virtual version of E that
has the six attributes above.

Brief Remarks on the RASCALS Architecture

Let us say a few words about RASCALS, a brand new en-
try in the field of compuational cognitive modeling, which
revolves around what are called cognitive architectures
(e.g., SOAR (Rosenbloom, Laird, & Newell 1993); ACT-
R (Anderson 1993; Anderson & Lebiere 1998; Anderson &
Lebiere 2003); CLARION (Sun 2001); Polyscheme (Cas-
simatis 2002; Cassimatis et al. 2004)). What makes the
RASCALS cognitive architecture distinctive? There is in-
sufficient space here to convey any technical detail (for more
details, see (Bringsjord forthcoming)); we make just three
quick points about RASCALS, to wit:

®Rensselaer Advanced Synthetic Character Architecture for
Logical Systems

34

%m\ i}ﬂ‘? RABCALS: Renwsetner v Syribetic Chumsorer Atshieeture for “Living” Sesterms
W &
- +

S
vy
—

© : AT
i :

DYNARIC
BELIEFS

Pragical
oy

i

PLARNER

se i PARSER

MR C M MBS RGN

B e ot Bennsing)

D@

Figure 3: RASCALS: Rensselaer Advanced Synthetic
Character Architecture for Logical Systems

o All other cognitive architectures we know of fall far short
of the expressive power of RASCALS. For example,
SOAR and ACT-R struggle to represent (let alone reason
quickly over) textbook problems in logic (e.g., the Wise
Man Problem = WMP) but in RASCALS such representa-
tions are effortless (see (Arkoudas & Bringsjord 2005) for
the solution to WMP in Athena, included in RASCALS).

e The great challenge driving the field of computational
cognitive modeling (CCM) is to unify all of human cogni-
tion; this challenge can be traced back to the birth of CCM
in the work of Newell 1973. Such unification is achieved
in one fell swoop by RASCALS, because all of cognition
can be formalized and mechanized in logic (though do-
ing so requires some very complicated logics well beyond
first-order logic, as in (Arkoudas & Bringsjord 2005)).”

e While logic has been criticized as too slow for real-time
perception-and-action-heavy computation, as you might
see in first-person shooter (as opposed to a strategy game,
which for obvious reasons fits nicely with the paradigm of
logic-based Al), it has been shown that RASCALS is so
fast that it can enable the real-time behavior of a mobile
robot. We have shown this by having a logic-based mobile
robot successfully navigate the wumpus world game, a

"It will naturally occur to some skeptics to enquire about
traditional-style learning, and speech recognition. As to the former,
it’s well-known that there are logic-based approaches to divining a
function f by repeated trial; see, e.g., (Russell & Norvig 2002).
There are also well-known knowledge-based (which become, in
RASCALS, more formal, logic-based) techniques for learning:
EBL, RBL, etc.; again, see (Russell & Norvig 2002) for a survey.
Of course, RASCALS does reject purely statistical and probabilis-
tic approaches to learning (and other cognitive phenomena). That
seems quite unsurprising, since statistical approaches in Al rou-
tinely reject, to their peril, declarative/logic-based techniques. As
to the latter problem, RASCALS insists that all language be rep-
resented in logical form, and Bringsjord concedes that this is cur-
rently not achieved, nor even on the horizen. However, with respect
to natural language understanding, all researchers, whatever their
approach, are currently in the same dismal boat.

staple in Al. (See Figures 4 and 5.)

Hunt the Wumpus

Gold!

Figure 4: The Wumpus World Game

Solid Performance
Based on Logic

Figure 5: Performance of a RASCALS-Powered Robot in
the Wumpus World

To show part of the underlying structure of E in con-
nection with the attribute Extreme Expressivity, we now
present an informal version of the formal account of evil
that is implemented in our RASCALS architecture. This ac-
count specifically requires logics expressive enough to han-
dle knowledge, belief, and ethical concepts. These logics go
well beyond first-order logic; details and an implementation
can be found in (Arkoudas & Bringsjord 2005). In the sec-
tion “E: The Presentation Level” we explain the technology
that allows E to speak naturally in English; that is, we show
there part of the underlying structure of E associated with
Uses Natural Language.

On our Formal Account of Evil
If we charitably push things in the direction of formally rep-
resenting a definition of evil,® then we can understand Fein-

8Feinberg’s work is informal, and not suitable for direct use in
AT and computer science.

35

berg 2003 as advancing pretty much this definition:

Def 1 Person s is evil iff there exists some action a’ such that
performing a is morally wrong;

s is morally blameworthy for performing a;

s’s performing a causes considerable harm to others; and

the reasons or motives for s’s performing a, along with
“the elements that ground her moral blameworthiness,”
are unintelligible.

L

This is a decent starting place, but for us there are prob-
lems. For example, imagine that E invariably fails to cause
actual harm. Surely he would still qualify as evil even
if he were a bumbling villain. (If the knife slipped when
he attempted decapitation, he would still be just as black-
hearted.) This means that clause 3 should at least be replaced
by

3’. s performs a in the hopes of causing considerable harm
to others

But even this new definition, for reasons we don’t have
space to explain, is wholly inadequate. To give just a flavor
for what E is currently based upon, we present simply our
current best replacement for clause 4:

4" were s a willing and open participant in the analysis of
reasons and motives for s’s seeking to perform a, it would
be revealed that either
(i) these reasons and motives are unintelligible, or
(ii) s seeks to perform a in the service of goal g, and

(a) the anticipatable side-effects e of performing a are
bad, but s cannot grasp this, or

(b) g itself is appraised as good by s when it is in fact
bad.

Just this clause alone required much sustained analysis. (For
a full chronicle of the evolution of a formally refined defini-
tion of betrayal from a rough starting one, see the chapter
“Betrayal” in (Bringsjord & Ferrucci 2000).)

Keep in mind that this is still informal, kept that way in the
interests of easing exposition. In the RASCALS-based im-
plementation of E, evil must be expressed in purely formal
form, which requires, again, that we use advanced logics of
belief, knowledge, and obligation.'?

Keep in mind as well that we’re not claiming that we have
the perfect definition of evil. Some may object to our defi-
nition, and some of their objections may be trenchant. But
the important point is to see how rich evil is — to see that it
involves all kinds of highly cognitive powers and concepts
that simply aren’t found in today’s synthetic characters. To
be evil, one has to have beliefs, desires, and one has to have
a lot of knowledge. The detailed configuration of these el-
ements may not be exactly as we claim they ought to be,
but no one can deny that the elements are needed. Without
them, a synthetic character who is supposed to be evil is only
a fake shell. And in the end, the shell will be revealed to be
a shell: the illusion, at some point, will break down.

°Or omission.

OFor a look at the deontic logic (i.e., the logic of ethical con-
cepts) we are relying upon, see (Horty 2001). Our mechanization
of this this logic will be presented at the AAAI November 2005
Fall Symposium on Machine Ethics. The paper is available online
at http://kryten.mm.rpi.edu/FS605ArkoudasAndBringsjord.pdf.

How Does E Talk?

As everyone knows, once the daunting challenge of render-
ing consciousness in computational terms is put aside, the
greatest remaining challenge is that of giving an advanced
synthetic character the power to communicate in a natural
language (English, French, etc.) at the level of a human per-
son. As you’ll recall, communicative capacity is one of the
clauses in the definition of personhood presented above. A
plausible synthetic character must necessarily communicate
in a fluid, robust manner. How, then, is such a rich form of
communication implemented in E?

Reconciling Knowledge Representation and NLG

E speaks by parsing and processing formal knowledge; he
develops an ontology based on internal and external queries,
and then reasons over his knowledge to produce meaningful
content. This content is then sent to his NLG module, trans-
lated into English, and finally presented to the user. Before
we examine what goes on inside E’s NLG module, let’s take
amoment to examine how E produces “meaningful content.”

When we ask E a question, we are clearly interested in
an answer that is both relevant and meaningful, an answer
indistinguishable from those given by a real person. Assum-
ing we have incomplete knowledge, suppose we ask of E,
“Is John dangerous?” E approaches this question through
formal logical analysis. The idea is to have E determine
incontrovertibly whether John is dangerous or not. So, for
instance, suppose E’s knowledge base includes the follow-
ing three facts:

1. DANGEROUS PEOPLE HAVE AUTOMATIC WEAPONS.
2. JOHN HAS A BERETTA AR-70 ASSAULT RIFLE.

3. THE BERETTA AR-70 ASSAULT RIFLE IS AN
AUTOMATIC WEAPON.

None of the information above explicitly tells E whether
John is dangerous or not, but clearly, when presented
the above query, we want E to answer with an emphatic
“Yes.” Still, the answer itself is not enough. To ensure
that E understands the nature of the question as well as
the information he is dealing with, he must, upon request,
provide a justification for every answer. The justification
presented to the user is a formal proof, translated into
English. Thus, E could answer as follows:

JOHN IS IN FACT DANGEROUS BECAUSE HE HAS

A BERETTA AR-70 ASSAULT RIFLE. SINCE A
BERETTA AR-70 ASSAULT RIFLE IS AN AUTOMATIC
WEAPON, AND SINCE DANGEROUS PEOPLE HAVE
AUTOMATIC WEAPONS, IT FOLLOWS THAT JOHN IS
DANGEROUS.

Content is thus generated in the form of a formal proof. In
general, the proofs generated will be more complex (they
will use larger knowledge bases) and more sophisticated
(they will use deontic and epistemic logic).

While the example is simple and rudimentary (that is, it
makes use of only first-order logic and a small knowledge
base), it demonstrates that E is taking heed of his knowledge
to generate a meaningful reply. In the RASCALS architec-
ture, answering “Yes” to the query above implies that E must
in fact have the corresponding knowledge, an implication
that does not hold for other architectures.

36

For a more formal method of analysis, we introduce
the “Knowledge Code Test”: If synthetic character C' says
something X or does something X designed to evoke in
the mind of the human gamer/user the belief that C' knows
P, P, ..., then we should find a list of formulas, or the
equivalent, corresponding to Pi, P», ... in the code itself.
The characters in Figure 1 would fail such a test, as would
characters built on the basis of Champandard’s specifica-
tions. An FSA, as a matter of mathematical fact, has no
storage capability. A system with power that matches that of
a full Turing machine is needed to pass the Knowledge Code
Test (Lewis & Papadimitriou 1981).

But formal proofs are oftentimes too detailed to be of in-
terest. Before we can even begin translating a proof into
an English justification, we need verify that its level of ab-
straction is high enough that it is easy to read and under-
stand. After all, formal natural deduction proofs are difficult
and tedious to read. To represent proofs at a more wholis-
tic, abstract level, we utilize the denotational proof language
known as Athena (Arkoudas 2000). Athena is a program-
ming language, development environment, and interactive
proof system that evaluates and processes proofs as input.
Its most prominent feature is its ability to present proofs in
an abstract, top-level manner, isomorphic to that of a natu-
ral argument a human might use. By developing proofs in
Athena at this level, a level high enough to be of interest to
a human reader, we can be sure that the language generated
from our NLG module is at precisely the level of abstraction
we desire — neither too detailed nor too amorphous.

It’s now time to look at precisely how English is generated
from a formal proof.

Proof-based Natural Language Generation

Very few researchers are experimenting with the rigorous
translation of formal proofs into natural language!!. This is
particularly odd when one considers the benefits of such a
program. Natural deduction proofs, provided that they are
developed in a sensible manner, are already poised for ef-
ficient translation. They require absolutely no further doc-
ument structuring or content determination. That is, docu-
ment planning, as defined by (Reiter & Dale 2000), is com-
pletely taken care of by using formal proofs in the first place.

Our NLG module receives as input a formal proof and re-
turns as output English text. The English generated is an
isomorph of the proof received. The structure of the justi-
fication, then, is precisely the same as the structure of the
proof. If the justification uses reductio ad absurdum in the
middle of the exposition, then you can be sure that there’s a
proof by contradiction in the middle of the formal proof.

Formal proofs are constructed from various different sub-
proofs. A proof by contradiction is one such example of
a type of subproof, but there are of course many others.
Our system breaks a proof down to its constituent subproofs,
translating each subproof from the top down. For example,
assume the following:

1. CHICAGO IS A TARGET OR NEW YORK IS A
TARGET

"' An example of one such team is a research group at the Uni-
versity of Saarlande. The group had, at least until 1997, been devel-
oping a system called PROVERB (Huang & Fiedler 1997). Their
approach to proof-based translation was unique and extremely in-
fluential, though their project was largely unsuccessful.

2. Ir CHICAGO IS A TARGET, MILLIONS WILL DIE.

3. Ir NEW YORK IS A TARGET, MILLIONS WILL
DIE.

To deduce something meaningful from this information,
we’ll use a proof by cases. Our system translates this proof
form as follows:

RECALL THAT CHICAGO OR NEW YORK IS A TARGET.
EACH CASE PRODUCES THE SAME CONCLUSION; THAT
Is, IF CHICAGO IS A TARGET THEN MILLIONS
WILL DIE, AND IF NEW YORK IS A TARGET THEN
MILLIONS WILL DIE. IT FOLLOWS THAT MILLIONS
WILL DIE.

Predictably, documents produced in this manner, even
when presented at a level abstract enough to make sense
to a layperson, are rigid and, well, inhuman. They use the
same phrases over and over again, they lack fluidity, and
they are completely divorced of grace and wit. To boot,
they disregard contextual information. Merely translating
constituent subproofs to English will not produce natural
English.

Nevertheless, this methodology provides a foundation for
more sophisticated development. Once constituent sub-
proofs are translated properly, they are sent to a microplan-
ning system that maps particular subproofs to discourse rela-
tions (Hovy 1993). This mapping is known as a message and
is not isomorphic. While the structure of the overall proof
is preserved in the final document, individual subproofs are
not treated with the same stringency. They can be molded
and fitted to a number of different discourse relations for the
sake of fluidity. Two more steps remain before natural lan-
guage can be produced.

Lexicalization is the process by which a lexicon of
words is selected and mapped onto its symbolic coun-
terparts. The content implicit in the proof, structured
through subproof analysis and discourse relations, needs
to be lexicalized before it can be presented as English
text. That is, exact words and phrases must be chosen
to represent relationships and predicates. For instance,
TARGET (CHICAGO) must be translated to CHIcAGO Is
A TARGET and BERETTA (JoHN) must be translated to
JOHN HAS A BERETTA before we can move on to glu-
ing everything together. The only way this can happen is
if a lexical database such as WordNet (Miller 1995) is aug-
mented with domain-specific lexicalizations such as those
specifying how to lexicalize “Beretta AR-70.”

For even more fluidity, it’s necessary to avoid referring to
the same entities with the same phraseology. At the very
least, pronouns should be substituted when referring to re-
peated concepts, persons, places, and objects. These substi-
tutions are known as referring expressions, and need to be
generated to truly produce fluid, humanlike English.

Fortunately, once the above issues are resolved, the infor-
mation gathered therein can be plugged easily into a surface
realizer such as KPML (Bateman 1997). In this fashion,
proof-based NLG allows for the generation of both struc-
tured and expressive expositions.

How far can an approach to NLG based on logic go? What
about rhetorical structure, for example? The engineering of
E reflects a belief that all of NLG, in the context of an ad-
vanced synthetic characters, can indeed be achieved through

37

the mechanization of sufficiently complex logical systems.
Only time will tell if this approach has the necessary breadth,
but rhetorical structure seems particularly well-suited to cap-
ture in logic. Of note here is the fact that it was logic that
dictated including the present paragraph.

E: The Presentation Level

To concretize our thoughts on evil, we show E; a realistic
real-time presentation of an evil talking head in the formal
sense. In order to give E a realistic look and a range facial
expressions, we have created a muscle model of the face.
Each simulated muscle in our model can contract and this
contraction perturbs the vertices of the skin (E is rendered
as a triangle mesh.) The effect of muscle simulation is sup-
plemented by limited use of morph target based animation
for some fine details. In addition, specialized actions are
used to animate the eyes, jaw, and neck.

Prior Work

There have been several recent efforts in the presentation of
talking heads. A VRML based approach shown by (Breton,
Bouville, & Pel 2001) addresses all aspects of facial anima-
tion working in real-time, but for very low polygon models.
The face is parameterized in a simplified manner similar to
E.

A more complex, physics-based system is described in
(Albrecht, Haber, & Seidel 2002). Here the focus is on lip
synchronization and simulation of the mouth and lips. Other
aspects of the face are not specifically addressed.

Our muscle simulation is based largely on that presented
in (Waters 1987), (Parke & Waters 1996), and expanded
upon in (Bui, Heylen, & Nijholt 2003). We chose to work
from the Waters model because we feel it is most practi-
cal for real-time applications and implementation and pro-
grammable graphics hardware. We simulate two types of
muscles.

Linear Muscles

Linear muscles contract along a single axis, and are parame-
terized by five values. The points O and T define the origin
and terminus of the muscle respectively. The scalar F' de-
fines the radius from O where the effect of muscle contrac-
tion begins to decline. The angle Z defines the angle about
O where the muscle affects the skin. Finally, the scalar W
gives the distance between wrinkles that form as the muscle
contracts.

We define a vertex shader (implemented in HLSL) that
modifies the position of skin vertices based on muscle con-
tractions. For a linear muscle this shader computes three
values. Given a vertex at position P with normal N, the
angular displacement, D 4, is:

min(1 — (norm(P — O), norm(T — O) % C, 0)

C is the muscle contraction in the above equation. The
radial displacement, Dg, is:

clamp(len(P — O) — F,0,len(T — O) — F)1?
(len(T —O) — F)
Finally, the wrinkle offset, Dyy, is:
1 — fmod(len(P — O), W) — (W % 0.5))?
(W %0.5)2

‘We combine all these values to determine the final vertex
displacement:

Many of the values in the above equations can be pre-
computed before the vertex shader executes. The resulting
implementation uses about 30 shader instructions.

Sphincter Muscles

Sphincter muscles draw together in circular shape and we
use them to model the puckering lips and squinting eyes.
A sphincter muscle is parameterized by an origin O, and a
horizontal and vertical extent, H and V respectively. In the
vertex shader the contraction of sphincter muscles displace
vertices in the following manner:

VD V?) + (D} + H?))

]__
Hx*xV

max ,0| xC

In the above equation, D is the vector from a skin vertex
to the origin of the muscle.

Putting It All Together

Each facial expression, be it a viseme used in speech or an
emotional state, is described in terms of muscle contractions.
To specify those contractions and drive E’s facial animation
systems, we use a very simplified scripting system for trig-
gering named expressions at specified times with specified
intensity values and blending parameters. We use the data
from (Bui, Heylen, & Nijholt 2004) to prevent physically
impossible muscle contractions. A parameterization for the
tongue similiar to (King 2001) is used. A module for eye
movements implements many of the ideas presented in (Lee,
Badler, & Badler 2002). Finally, we simulate subsurface
scattering on the skin using the algorithm of (Sander, Gos-
selin, & Mitchell 2004).

Figure 6: Tool for Manipulating Facial Muscles on E. (Note:
Face shown resembles E’s, but isn’t his. E himself will be
unveiled at the conference.)

Our Demos @ GameOn!

As mentioned above, at the conference we will show a con-
versation with E based on the first of the two aforementioned

38

scenarios. This interaction will show our approach to the
presentation level in action, and will manifest our formal ac-
count of evil in ordinary conversation that is based on our
NLG technology.

References

[Albrecht, Haber, & Seidel 2002] Albrecht, I.; Haber, J.; and Sei-
del, H. P. 2002. Speech synchronization for physics-based facial
animation. In Proceedings WSCG, 9-16.

[Anderson & Lebiere 1998] Anderson, J. R., and Lebiere, C.
1998. The Atomic Components of Thought. Mahwah, NI:
Lawrence Erlbaum.

[Anderson & Lebiere 2003] Anderson, J., and Lebiere, C. 2003.
The newell test for a theory of cognition. Behavioral and Brain
Sciences 26:587-640.

[Anderson 1993] Anderson, J. R. 1993. Rules of Mind. Hillsdale,
NJ: Lawrence Erlbaum.

[Arkoudas & Bringsjord 2005] Arkoudas, K., and Bringsjord, S.
2005. Metareasoning for multi-agent epistemic logics. In Fifth
International Conference on Computational Logic In Multi-Agent
Systems (CLIMA 2004), volume 3487 of Lecture Notes in Artifi-
cial Intelligence (LNAI). New York: Springer-Verlag. 111-125.

[Arkoudas 2000] Arkoudas, K. 2000. Denotational Proof Lan-
guages. Ph.D. Dissertation, MIT.

[Barwise & Etchemendy 1995] Barwise, J., and Etchemendy, J.
1995. Heterogeneous logic. In Glasgow, J.; Narayanan, N.; and
Chandrasekaran, B., eds., Diagrammatic Reasoning: Cognitive
and Computational Perspectives. Cambridge, MA: MIT Press.
211-234.

[Bateman 1997] Bateman, J. A. 1997. Enabling technology for
multilingual natural language generation: the kpml development
environment. Nat. Lang. Eng. 3(1):15-55.

[Breton, Bouville, & Pel 2001] Breton, G.; Bouville, C.; and Pel,
D. 2001. Faceengine: a 3d facial animation engine for real time.
In Proceedings of 6th International Conference on 3D Web Tech-
nology, 15-22.

[Bringsjord & Ferrucci 1998a] Bringsjord, S., and Ferrucci, D.
1998a. Logic and artificial intelligence: Divorced, still married,
separated...? Minds and Machines 8:273-308.

[Bringsjord & Ferrucci 1998b] Bringsjord, S., and Ferrucci, D.
1998b. Reply to Thayse and Glymour on logic and artificial in-
telligence. Minds and Machines 8:313-315.

[Bringsjord & Ferrucci 2000] Bringsjord, S., and Ferrucci, D.
2000. Artificial Intelligence and Literary Creativity: Inside the
Mind of Brutus, a Storytelling Machine. Mahwah, NJ: Lawrence
Erlbaum.

[Bringsjord 1997] Bringsjord, S.
Indianapolis, IN: Hackett.

[Bringsjord 1998] Bringsjord, S. 1998. Chess is too easy. Tech-
nology Review 101(2):23-28.

[Bringsjord 2001] Bringsjord, S. 2001. Is it possible to build
dramatically compelling interactive digital entertainment (in the
form, e.g., of computer games)? Game Studies 1(1). This is the
inaugural issue. Url: http://www.gamestudies.org.

1997. Abortion: A Dialogue.

[Bringsjord forthcoming] Bringsjord, S. forthcoming. The RAS-
CALS cognitive architecture: Logic top to bottom. In Sun, R.,
ed., The Handbook of Computational Cognitive Modeling. Cam-
bridge University Press.

[Bui, Heylen, & Nijholt 2003] Bui, T. D.; Heylen, D.; and Nijholt,
A. 2003. Improvements on a simple muscle-based 3d face for
realistic facial expressions. In Proceedings of 16th International
Conference on Computer Animation and Social Agents, 33-40.

[Bui, Heylen, & Nijholt 2004] Bui, T. D.; Heylen, D.; and Nijholt,
A. 2004. Combination of facial movements on a 3d talking head.
In Proceedings of Computer Graphics International.

[Cassell er al. 1999] Cassell, J.; Bickmore, T.; Billinghurst, M.;
Campbell, L.; Chang, K.; Vilhjalmsson, H.; and Yan, H. 1999.
Embodiment in conversational interfaces: Rea. In CHI "99: Pro-
ceedings of the SIGCHI conference on Human factors in comput-
ing systems, 520-527. New York, NY, USA: ACM Press.

[Cassimatis ef al. 2004] Cassimatis, N.; Trafton, J.; Schultz, A.;
and Bugajska, M. 2004. Integrating cognition, perception and
action through mental simulation in robots. In Proceedings of the
2004 AAAI Spring Symposium on Knowledge Representation and
Ontology for Autonomous Systems.

[Cassimatis 2002] Cassimatis, N. 2002. Polyscheme: A Cogni-
tive Architecture for Integrating Multiple Representation and In-
ference Schemes. Ph.D. Dissertation, Massachusetts Institute of
Technology (MIT).

[Champandard 2003] Champandard, A. 2003. Al Game Develop-
ment. Berkeley, CA: New Riders.

[Electronic Arts Inc. 2000] Electronic Arts Inc. 2000. The
SimsT™ : The People Simulator from the Creator of SimCity™™
Austin, TX: Aspyr Media.

[Feinberg 2003] Feinberg, J. 2003. Problems at the Roots of Law.
New York, NY: Oxford University Press.

[Genesereth & Nilsson 1987] Genesereth, M., and Nilsson, N.
1987. Logical Foundations of Artificial Intelligence. Los Altos,
CA: Morgan Kaufmann.

[Goldstein 2005] Goldstein, E. B. 2005. Cognitive Psychology:
Connecting Mind, Research, and Everyday Experience. Belmont,
CA: Wadsworth.

[Gratch ef al. 2002] Gratch, J.; Rickel, J.; Andre, E.; Cassell, J.;
Petajan, E.; and Badler, N. 2002. Creating interactive virtual
humans: Some assembly required. IEEE Intelligent Systems
17(4):54-63.

[Horty 2001] Horty, J. 2001. Agency and Deontic Logic. New
York, NY: Oxford University Press.

[Hovy 1993] Hovy, E. H. 1993. Automated discourse generation
using discourse structure relations. Artif. Intell. 63(1-2):341-385.

[Huang & Fiedler 1997] Huang, X., and Fiedler, A. 1997. Proof
verbalization as an application of NLG. In Pollack, M. E., ed.,,
Proceedings of the 15th International Joint Conference on Ar-
tificial Intelligence (IJCAI), 965-970. Nagoya, Japan: Morgan
Kaufmann.

[King 2001] King, S. A. 2001. A Facial Model and Animation
Techniques for Animated Speech. Ph.D. Dissertation, Ohio State
University.

[Lee, Badler, & Badler 2002] Lee, S. P.; Badler, J. B.; and Badler,
N. I. 2002. Eyes alive. ACM Transactions on Graphics
21(3):637-644.

[Lewis & Papadimitriou 1981] Lewis, H., and Papadimitriou, C.
1981. Elements of the Theory of Computation. Englewood Cliffs,
NJ: Prentice Hall.

[Miller 1995] Miller, G. A. 1995. Wordnet: a lexical database for
english. Commun. ACM 38(11):39-41.

[Newell 1973] Newell, A. 1973. You can’t play 20 questions with
nature and win: Projective comments on the papers of this sym-
posium. In Chase, W., ed., Visual Information Processing. New
York: Academic Press. 283-308.

[Nilsson 1991] Nilsson, N. 1991. Logic and Artificial Intelli-
gence. Artificial Intelligence 47:31-56.

[Parke & Waters 1996] Parke, F. 1., and Waters, K. 1996. Com-
puter Facial Animation. New York, NY: AK Peters.

39

[Peck 1983] Peck, M. S. 1983. People of the Lie. New York, NY:
Simon and Shuster.

[Pelachaud & Poggi 2002] Pelachaud, C., and Poggi, I. 2002.
Multimodal embodied agents. Knowl. Eng. Rev. 17(2):181-196.

[Reiter & Dale 2000] Reiter, E., and Dale, R. 2000. Building nat-
ural language generation systems. New York, NY, USA: Cam-
bridge University Press.

[Rinella, Bringsjord, & Yang 2001] Rinella, K.; Bringsjord, S.;
and Yang, Y. 2001. Efficacious logic instruction: People are
not irremediably poor deductive reasoners. In Moore, J. D., and
Stenning, K., eds., Proceedings of the Twenty-Third Annual Con-
ference of the Cognitive Science Society. Mahwah, NJ: Lawrence
Erlbaum Associates. 851-856.

[Ritter et al. June 2002] Ritter, F.; Shadbolt, N.; Elliman, D.;
Young, R.; Gobet, F.; and Baxter, G. June 2002. Techniques
for modeling human performance in synthetic environments: A
supplementary review. Technical report, Human Systems Infor-
mation Analysis Center, Wright-Patterson Air Force Base, OH.

[Rosenbloom, Laird, & Newell 1993] Rosenbloom, P.; Laird, J.;
and Newell, A., eds. 1993. The Soar Papers: Research on In-
tegrated Intelligence. Cambridge, MA: MIT Press.

[Russell & Norvig 2002] Russell, S., and Norvig, P. 2002. Artifi-
cial Intelligence: A Modern Approach. Upper Saddle River, NJ:
Prentice Hall.

[Sander, Gosselin, & Mitchell 2004] Sander, P. V.; Gosselin, D.;
and Mitchell, J. L. 2004. Real-time skin rendering on graphics
hardware. In Proceedings of ACM SIGGRAPH.

[Sun 2001] Sun, R. 2001. Duality of the Mind. Mahwah, NJ:
Lawrence Erlbaum Associates.

[Waters 1987] Waters, K. 1987. A muscle model for animating
three-dimensional facial expression. In Proceedings of ACM SIG-
GRAPH, volume 21, 17-24.

[Yang & Bringsjord 2001a] Yang, Y., and Bringsjord, S. 2001a.
Mental metalogic: A new paradigm for psychology of reasoning.
In Proceedings of the Third International Conference on Cogni-
tive Science (ICCS 2001). Hefei, China: Press of the University
of Science and Technology of China. 199-204.

[Yang & Bringsjord 2001b] Yang, Y., and Bringsjord, S. 2001b.
The mental possible worlds mechanism: A new method for ana-
lyzing logical reasoning problems on the gre. In Proceedings of
the Third International Conference on Cognitive Science (ICCS
2001). Hefei, China: Press of the University of Science and Tech-
nology of China. 205-210.

[Yang & Bringsjord 2005] Yang, Y., and Bringsjord, S. 2005.
Mental Metalogic: A New, Unifying Theory of Human and Ma-
chine Reasoning. Mahway, NJ: Erlbaum.

[Yang & Johnson-Laird 2000a] Yang, Y., and Johnson-Laird, P. N.
2000a. How to eliminate illusions in quantified reasoning. Mem-
ory and Cognition 28(6):1050-1059.

[Yang & Johnson-Laird 2000b] Yang, Y., and Johnson-Laird,
P. N. 2000b. Illusory inferences with quantified assertions. Mem-
ory and Cognition 28(3):452-465.

[Yang, Braine, & O’Brien 1998] Yang, Y.; Braine, M.; and
O’Brien, D. 1998. Some empirical justification of one predicate-
logic model. In Braine, M., and O’Brien, D., eds., Mental Logic.
Mahwah, NJ: Lawrence Erlbaum Associates. 333-365.

Simulation and Modelling of Adversarial Games

Erol Gelenbe, Varol Kaptan and Yu Wang
Department of Electrical and Electronic Engineering
Imperial College London
Exhibition Road, London SW7 2AZ
e-mail: {e.gelenbe|v.kaptan|yu.wang3} @imperial.ac.uk

KEYWORDS

Al, Simulation & Modelling, Autonomous Agents, Naviga-
tion.

ABSTRACT

Simulation is an important tool for both training and assess-
ment of systems of adversarial agents involved in a conflict,
especially in the case of military tactical scenarios where real
exercises tend to be very costly and come with a high risk of
injury for the participants. One of the challenges of tacti-
cal simulations is the ability to represent a large number of
agents, which while acting as individuals are also embedded
in the social structure of the groups involved. In this paper,
we present a behaviour-based model of agent control which
can model aspects of both individual and group behaviour.
Within this context, we describe our approach to solving two
questions of current interest. The first one is how to obtain,
through mathematical modelling, estimates of long-term and
average behaviour of an agent system in a timely manner.
The second is how to adapt agent models to take advantage
of specific features of the urban environment, which appears
to be the primary theatre of operations of modern conflicts.

INTRODUCTION

Discrete event simulation is widely used to model, evaluate
and explore operational contexts of real systems under vary-
ing synthetic conditions. Simulation runs can predict the ca-
pabilities and limitations of different operational rules or of
different combinations of tactical assets. An important as-
pect of agent simulations, within this context, is the realism
of agent behaviour. Depending on the particular application
domain, agents which exhibit very limited or even very ad-
vanced intelligence may be considered unrealistic. This is es-
pecially true in the context of simulations designed for train-
ing personnel or evaluating tactical situations. Unfortunately,
human behaviour being a product of natural intelligence is a
very complex topic and is still not well understood.

Traditionally, discrete event simulation has concentrated
on the algorithmic description and control of synthetic en-
tities which are being modelled as they accomplish some
meaningful function, and simulation research has devoted
much attention to appropriate workload representation and
output data analysis.

Less attention has been paid to the design of simula-

40

tion systems in which individual animated objects (such as
manned or robotic vehicles, or human individuals) are pro-
vided with broad goals (such as “go quickly to that hill, and
do not get killed”’) and are then allowed to dynamically at-
tain their objective through emergent behaviour based on
individual adaptation and learning (Gelenbe 1999; Gelenbe
et al. 2000; Gelenbe et al. 2001). Our research has been in-
spired by the need to be able to simulate a large number of
concurrent agents through methods which offer a balanced
trade-off between realism and computational efficiency.

The rest of the paper consists of three main sections.
In the first section, we consider how a variety of adaptive
paradigms, including reinforcement learning, social poten-
tial fields and imitation, can be used in a simulation to in-
vestigate how the simulated entities may attain broadly de-
fined goals without detailed step-by-step instructions within
a physically precise environment. In the second section, we
describe a novel approach for modelling large-scale agent
systems with similar capabilities through stochastic popula-
tion models. The last section describes a method for adapting
our simulation and modelling algorithms to complex terrains
with particular emphasis on urban environments.

SIMULATING COLLECTIVE AUTONOMOUS
BEHAVIOUR

To illustrate our approach to modelling collective au-
tonomous behaviour we will focus on the problem of goal-
based navigation of a group of autonomous entities in a dan-
gerous terrain. The design of our agent model is based on
the assumption that agents will perform outdoor missions in
a terrain containing simple obstacles and enemies. In the last
section we will show how this model can be adapted to more
specialised terrains like urban environments.

A mission in our model is defined as the problem of go-
ing from some position A to some other position B avoiding
being hit by an enemy, and avoiding the natural and artificial
obstacles present in the terrain. The success of the mission
can be measured by the amount of time necessary for the
whole group to achieve the goal and its the survival rate, for
example.

Different decision mechanisms are used to model different
aspects of the agent behaviour and a higher level coordina-
tion module is combining their output. Such an architecture
allows versatile agent personalities both in terms of hetero-

% # %
% %
. L . "
¢ %
8o g % e
2 % % %% %
% - L 4 :
% Br e
%, P i
%
iisat
e 6?0 g i “
44 2 % Red Team i &
% %% &
W w # | @; #
o o By
B
% [
f %%@ %
B t
E E % %
i
% i L
% . i
% o %%%ﬁ & " - @2 @
e Green Team 2 " .
. “
% @
% |
%

Figure 1: Screenshots of the agent simulator: (a) left, scenario configuration; (b) right, an example mission outcome

geneity (agent specialisation) within a group and dynamic
(i.e. mission-context sensitive) agent behaviour.

In our current model, we have three basic modules that we
call the navigation module, grouping module and imitation
module.

e The Navigation Module is responsible for leading a sin-
gle agent from a starting location to a destination loca-
tion, avoiding danger and obstacles.

e The Grouping Module is responsible for keeping
a group of agents together in particular formations
throughout the mission.

e The Imitation Module is modelling the case when an in-
experienced agent will try to mimic the behaviour of the
most successful agents in the group and thus increase its
chances of success.

In the most simple case, the navigation behaviour can be
modelled simply as moving in such a way as to minimise the
time it will take to go to the destination. When travelling
in a dangerous environment, an agent can also take into ac-
count the probability of being incapacitated/destroyed when
estimating the transition time to destination based on terrain
information provided a priori or acquired through local ob-
servations.

Group behaviour is modelled through Social Potential
Fields (SPFs) (Reif and Wang 1995). In order to “encourage”
members of an agent team to keep a certain spatial configu-
ration while performing a mission, we set a combination of
attractive and repulsive forces between the respective team

41

members. The parameters of the forces can be adjusted to
generate a force profile which is attractive at long distances
and repulsive at short distances. By varying both force pa-
rameters and force connectivity, a wide range of spatial for-
mations with different sizes can be achieved.

Some of these approaches may incorporate memory (navi-
gation) while others others can be purely reactive (grouping)
and some may depend on the performance of other members
in an agent group (imitation and grouping).

Figure 1(a) describes a particular scenario involving three
groups of agents colour-coded as the Red, Green and Blue
teams. The Blue team has the goal to go to the destination
and avoid conflicts with adversaries in the process. The Red
team has the goal to engage the Blue team. The goal of the
Green team is to help the Blue team by engaging the Red
team. Figure 1(b) shows a particular outcome of this mis-
sion. The exact details of the agent control algorithms are
described in (Gelenbe et al. 2004).

MATHEMATICAL MODELS OF AGENT
SIMULATION

The world that we live in is filled with large scale agent sys-
tems, from diverse fields such as biology, ecology or finance.
Inspired by the desire to better understand and make the best
out of these systems, we are extending the detailed simu-
lation work that we describe in the preceding paragraphs,
to an approach based on building stochastic mathematical
models, in particular G-networks (Gelenbe 1994; Fourneau
et al. 1996) models from the simulation. We aim to pro-
vide insight into systems in terms of their performance and
behaviour, to identify the parameters which strongly influ-

55

sof

Agent 1 reaching its destination
Agent 1 is killed
Agent 2 is killed
Agent 3 is killed i |

PR

bbbt

No. of iterations

40

60 80 100

Figure 2: Example results of a stochastic agent model: expected times for certain events of interest

ence them, and to evaluate how well individual goals can be
achieved.

Quite often a metric of interest will happen to be defined
over an ensemble of simulation runs. In order to get mean-
ingful estimates of mission outcome one has to collect data
over many simulations to get statistically significant results.
‘We propose an approach where some of this information can
be provided by a mathematical framework based on stochas-
tic population models. Such models can be used by them-
selves as well as to complement results obtained through dis-
crete event simulation of adversarial tactical scenarios.

We model the agents and their interactions as a G-network
where each agent class has a queue at each location and
agents travelling and interacting in the environment are mod-
elled as customers being serviced by their respective queues.
The G-network model is quite capable of representing the
spectrum of interactions available to the agent model de-
scribed in the previous section, like goal-based navigation,
group behaviour, adversarial action, etc. It can even repre-
sent situations like changing plans (e.g. destination or target),
splitting forces to carry out alternative plans, or even agents
mutating into a different class (agents switching sides, for
example).

We can assess the performance of an individual or group
goal, the time it takes for a group to achieve its goal, the
survival rate of a group, etc., by using the equilibrium prob-
ability distribution of an agent’s location which can be found
from the steady state-solution of the respective G-network.
Figure 2 shows an example result of a scenario similar to the
one described in the previous section (the terrain is quantised
to a 15 x 15 grid, for simplicity of presentation, each group
has only one agent). The graph shows time estimates of cer-
tain events (i.e. expected time to reach a destination, average
live expectancies of the different agents) as a function of the
number of fixed-point iterations over the G-network. In this
example it takes only 40-50 iterations for the model to con-

42

verge to steady state.

This mathematical model can also be used to model sys-
tems at different abstraction levels, in terms of the number
of agents or the size of the geographical location. This al-
lows us to extrapolate results for smaller systems as a means
of achieving faster convergence when solving a system at a
higher level of detail. In doing so, we can greatly reduce
computational complexity and save time and resources.

SIMULATING AND MODELLING AGENTS IN UR-
BAN ENVIRONMENTS

One of the main problems of predominantly-reactive be-
haviour control techniques like the methods of simulating
group behaviour described in the first section is that these
methods suffer from the local minima problem. This prob-
lem is common in mathematics when searching for param-
eters which globally maximise or minimise the value of a
function - simple search approaches can be easily trapped at
a local extremum point. In the problem of agent navigation,
getting stuck in a local minima can be due to either the partic-
ular agent configuration or extra constraints imposed on the
agents by the terrain. The former is difficult to quantify, since
the force profiles involved in the agent model usually encode
only the rough intent of a mission designer and maybe based
on intuition. As such it is quite subjective since it can be
argued that a particular outcome was intended or can be con-
sidered good enough for a particular purpose.

In this section we will focus on the latter which is usually
more troublesome, especially in urban environments. Let us
illustrate the problem with a very simple example - suppose
an agent is embedded in an environment where its motion
is controlled through social potential fields or similar meth-
ods. The terrain includes some obstacles which have to be
avoided. In the case when the collision avoidance scheme
adversely affects the motion towards an intended goal, the
agent may either become stationary or be stuck on a localised

(a) Some buildings

(b) Obstacle implosion

(c) An example of a clear path

Figure 3: Example of urban terrain navigation

cyclic path which does not get it nearer to the final goal.

Our approach to dealing with obstacles is based on the idea
of finding a transformation between the real navigation space
and a virtual obstacle-free space and applying the classical
control methods within this new space. A complete math-
ematical description of our methods is beyond the scope of
this paper so we will try to illustrate our approach in a more
informal but accessible as follows.

1. We assume that all obstacles have a continuous bound-
ary which is a closed contour. The obstacles occupy the
inside of the contours. The space outside the contours
is free (i.e. accessible to agents).

2. We continuously shrink the contour inwards until the
obstacles collapse into a point singularity. The contour
will stretch the surrounding free space in the process of
shrinking.

3. When all the obstacles have collapsed, the free space
would span the whole real terrain and any point in the
morphed free space will be accessible from any other
point trivially, by navigating along a straight line.

4. It is very important that our transform function con-
serves the local continuity of the space in the process
- this property guarantees that a straight line in the mor-
phed space is a continuous curve (thus a valid naviga-
tion path) in the real space.

The above transform can be used for controlling groups of
agents in urban environments in the following way: When a
goal or an object exerting force on an agent is within a line of
sight, the agent can base its behaviour on application of the
respective control methods within the real space. When this
is not the case the agent will simply “switch” to operating in
the virtual space where an unobstructed line of sight, while
not necessarily optimal, is at least guaranteed. The approach

43

is graphically illustrated in Figure 3. The picture on the left
shows a birds-eye view over a simple terrain containing three
non-convex obstacles (buildings). The picture in the middle
shows how the shape of the obstacles gradually collapse into
singularities during the transformation of the terrain. The
picture on the right shows two locations on the terrain with
no clear line of sight (connected with a straight line) and the
respective route that is generated while navigating with the
help of the transformation to the virtual obstacle-free space.

One of the main advantages of such an approach is that it
can be used to provide improvement to heuristic or reactive
control methods as used in a wide range of application do-
mains where due to computational or time constraints classi-
cal path planning and optimisation methods are not feasible.

CONCLUSIONS AND FUTURE WORK

In this paper, we presented a behaviour-based approach for
modelling groups of adversarial agents. In particular, we de-
scribed some recent results on building G-networks inspired
mathematical models which allow the estimation of long-
term and steady state properties of such agent systems with-
out having to rely on gathering statistics from lengthy simu-
lation runs. The other contribution of this paper is a novel
method of transforming an urban environment with many
complex obstacles into a virtual obstacle-free space which
allows the application of a number of mostly reactive (but
usually very efficient and scalable) techniques to the domain
of adversarial action in an urban environment.

Possible future directions for research include qualitative
comparison of results obtained through simulation versus
modelling, especially with respect to the spatial resolution
at which a G-network models a simulated scenario. We are
also planning to perform a quantitative analysis of the perfor-
mance of our urban terrain approach with respect to a clas-
sical path-planning approach, both in term of computational
cost and optimality.

REFERENCES

Fourneau, J.-M.; Gelenbe, E.; and Suros, R. 1996. “G-
networks with multiple classes of positive and negative
customers”. Theoretical Computer Science, 155:141—
156.

Gelenbe, E. 1994. “G-networks: An unifying model for
queuing networks and neural networks”. Annals of Op-
erations Research, 48(1-4):433-461.

Gelenbe, E. 1999. “Modeling CGF with learning stochastic
finite-state machines”. In Eighth Conference on Com-
puter Generated Forces and Behavioral Representation,
pages 113-115, Orlando, Florida.

Gelenbe, E.; Kaptan, V.; and Hussain, K. 2004. “Simulat-
ing the navigation and control of autonomous agents”.
In Svensson, P. and Schubert, J., editors, Proceedings
of the Seventh International Conference on Information
Fusion, volume I, pages 183-189, Mountain View, CA.
International Society of Information Fusion.

Gelenbe, E.; Seref, E.; and Xu, Z. 2000. “Discrete event sim-
ulation using goal oriented learning agents”. In A7, Sim-
ulation & Planning in High Autonomy Systems, Tucson,
Arizona. SCS.

Gelenbe, E.; Seref, E.; and Xu, Z. 2001. “Simulation with
learning agents”. Proceedings of IEEE, 89(2):148-157.

Reif, J. H. and Wang, H. 1995. “Social potential fields: A
distributed behavioral control for autonomous robots”.
In Peters, A. K., editor, International Workshop on Al-
gorithmic Foundations of Robotics (WAFR), pages 431—
459, Wellesley, Massachusetts.

44

GAME
PHYSICS
AND
FACIAL
ANIMATION

46

ENHANCING GAME PHYSICS USING GAUSS MAP COMPUTATION

L. Alboul, G. Echeverria; and M. Rodrigues
Geometric Modelling and Pattern Recognition Group
Materials and Engineering Research Institute
Sheffield Hallam University
City Campus, S1 1WB, Sheffield, United Kingdom
e-mail: l.alboul@shu.ac.uk, g.echeverria@shu.ac.uk, m.rodrigues@shu.ac.uk

KEYWORDS
Gauss Map, Discrete Curvature, Polyhedral Surfaces,
Game Physics, Game Terrain

ABSTRACT

The present paper presents an algorithm to make fast
and simple computations of the surface curvature of
polyhedral objects in 3D, using a method called the
Polyhedral Gauss Map. The computations are simple
and can be done either in advance for static objects that
are not modified during the game, or in real time, for
dynamically changing entities. The curvature informa-
tion can be applied for the computations of the physical
properties and behaviour of objects in a game, for exam-
ple, estimating the ‘roughness’ of terrain or measuring
the curvature of a race track in order to find the opti-
mal path or identify objects of different curvature when
sliding down a sloped surface.

INTRODUCTION: GAME PHYSICS

Modern computer and console games look to represent
a more believable simulation of environments. Recent
advances in technology mean more powerful platforms
with much more resources available to developers. How-
ever, as the technological possibilities increase, so does
the required amount of realism expected from games.
The area with the most improvement has generally been
graphics. But graphics alone do not completely convey
reality. The objects in the game must also behave in
a natural way. With better graphics, it is expected a
greater level of credibility in all other aspects of the
game, such as the interaction of the in-game objects.

In order to represent an accurate motion of game ob-
jects, a physical model is used, which will compute
the appropriate behaviour of each object. Unfortu-
nately game systems have limited processing resources,
which must be divided among several tasks: processing
of graphics, game logic, artificial intelligence, access to
peripherals, as well as the computation of the physics
model. For this reason, it is necessary to use simple and
effective algorithms to compute physical properties of

*Corresponding author

47

objects, without using too much processing time.
Having extra information about the properties of an ob-
ject can improve the simulation of its behaviour and
interaction with other similar objects. Measurements
of shape parameters of an object, for example, of how
‘rounded’ an object is, can help to convey more believ-
able reactions. This paper presents a new method, based
on curvature computation and visualisation, that allows
an efficient shape description of complex objects, espe-
cially surfaces. The method might be useful in various
games genres, in particular in action-adventure games,
racing games, sport and puzzle games, and educational
games [Quize 2003].

CURVATURE

Among physical properties of an object one of the most
important is the object’s shape. In computer games ob-
jects used are mostly of two types: two-dimensional sur-
faces and three-dimensional solid objects. A solid object
is also commonly represented by its boundary, which is,
in general, a surface. In games, objects are often un-
dergoing transformation and deformation. Therefore, a
thorough and quick apprehension of a surface shape at
various moments of the game is very important.

The curvature of an object is a good measure of how it’s
shape varies from one point to another in its surface.
Two main curvatures: Gaussian curvature and Mean
curvature are basic measures to describe local shape of
a smooth surface. Roughly speaking, the Gaussian cur-
vature of the surface is the measure of the ‘deviation’ of
the surface from a plane and the Mean curvature is the
measure of its ‘bending’ in space.

For smooth objects, curvature can be computed at each
point using methods of calculus. However, most of the
surfaces of game objects are not smooth and represented
by triangular or polygonal meshes, which are common in
computer-related applications. In these cases, a differ-
ent approach to determine curvature is required which
will be analogous to the method for smooth surfaces.
If we consider integral relations for curvature of smooth
surfaces, then the basic concept behind curvature mea-
sures, namely the concept of the angle appears explic-
itly. This can be illustrated by means of the Gauss Map.

Integral curvature measures are to be taken then as the
main quantities to determine curvature analogues for
polygonal meshes.

GAUSS MAP

For a domain U of smooth surface S the Gauss map
N(U) is the map assigning to each point p € U the point
on the unit 2-sphere S € R3, by ‘“translating’ the unit
normal vector N (p) to the origin [Kiihnel 2002]. If U(p)
is small enough that the map N(U(p)) is one-to-one then
normals will form a solid angle, whereas the end-points
of normals will carve a certain region on S? (see Fig-
ure 1). The area of this region, numerically equal to the
measure of the solid angle, formed by normals, is the
measure of (integral) curvature of the region U(p). This
measure is considered positive if the map N(U(p)) is
orientation-preserving (outward normals at correspond-
ing points correspond), and negative otherwise. In the
former case U (p) represents is a convex (concave) region,
and in the latter case it is a saddle region.

Figure 1: Gauss Map of a smooth surface

The (classical) Gaussian curvature K (p) at a point p is

then defined by setting |K (p)| = limy (), %@
where the limit is taken as the neighbourhood U (p) con-

tracts down to the point p.

If the map N(U(p)) is not one-to-one then the region
U(p) can be represented as the union of non-overlapping
subregions U, (p) for each of which N(U,(p)) is one-to-
one. Different subregions can be mapped to the same
region on the unit sphere, which results in multiplicities
of the Gauss map.

Under the integral Gaussian curvature one understands
the algebraic area of the image U(p) under the Gauss
mapping:

King = / KdU. (1)
U

If we define on S the function KT = maxK,0 (i.e.
equal to the Gaussian curvature K if K is positive,
and zero wherever K is zero or negative) then for the
region U(p) the positive integral curvature defined as
Kpos = [;; K*dU. The integral [|K|dU is called the
total absolute curvature of U.

48

DISCRETE CURVATURE

Designating V as a finite point set in three-dimensional
space, V = {V;,i =1,...,n}; then by P (V,E) we de-
note a polyhedral surface (aka discrete surface) with the
vertex set V and edge set E. It represents a union of
finite number of planar polygonal region, called facets.
Without loss of generality we assume that each polygo-
nal region is a triangle, referred further to as a face.
Curvature of a polyhedral surface is expressed in terms
of the angles created around its vertices (analogue to the
integral Gauss curvature) and along the edges (analogue
to the the integral Mean curvature). A vertex v together
with the faces to which it belongs forms the star Str(v)
of the vertex.

The method proposed here measures both types of cur-
vatures but we mostly concentrate on the curvature
around the vertices.

Currently existing methods to analyse curvature rely
only on measuring the angles of the faces around a ver-
tex (see, for example, [Yamauchi et al. 2005]). How-
ever, this method is not sufficient, as it only obtains the
correct result for convex vertices or pure saddles, but
fails whenever a vertex is of another type.

Discrete Curvatures and Types of Vertices

In the previous section several integral curvature mea-
sures were listed: the integral Gaussian curvature, in-
tegral positive curvature, and total absolute curvatures.
For discrete surfaces each of these measures has an ana-
logue, although not always a straightforward one. Such
extensions are described as follows.

Curvature w around vertex v: The curvature w
around the vertex, which is analogous to the integral
Gaussian curvature, and therefore often simply referred
to as the Gaussian curvature, is defined as follows:

w=27r—0

(2)

where 0 = Y «; is the total angle around vertex v, and
a; are those angles of the faces in the Str(v) that are
incident to v (see Figure 2).

The value returned for w is also called the angle deficit
of the vertex, and it can be computed for any point x in
P, but only for vertices w might be not equal to zero.

Figure 2: Computation of the Gaussian Curvature (w)
around vertex v

For a domain U C P then we have

Qu=> w. (3)

velU

Let us note that the positive value of w(r) does not guar-
antee that the vertex is convex, as well as the negative
value does not guarantee that v represents a saddle, as
we show below.

Positive (extrinsic) curvature w™: The following
measure to be determined is an analogue of the (inte-
gral) positive curvature for a polyhedral domain. How-
ever, if we look at the picture in Figure 3, we can see
that in both polyhedra all curvatures w, are positive
and actually are equal for every corresponding vertex.

v

‘
;
x ‘

¥y o W v

v A " 2
Figure 3: Two polyhedra with equal Gaussian curvature

Therefore, we have:

QP =QP) =D |l =) |wy|=4n.

veP; vEP:

(4)

But for the smooth compact surface S the following in-
equality takes place: f K TdA > 4m, which is equal to
47 only for convex surfaces. The left polyhedron is non-
convex, and the above equation does not reflect this fact.
The problem is that positive and negative ‘parts’ of the
curvature, if they exist, are ‘glued’ together; but it is
not difficult to separate them. If vertex v belongs to the
boundary of the convex hull of its star (i.e. the convex
hull of v and all vertices in its star), then we can single
out another star Str*(v) with v as the vertex and those
edges of Str(v) that belong to the boundary of the con-
vex hull. The edges of Str*(v) will determine the faces
of Strt(v). We refer to Str*(v) as the convex cone of
vertex v. Then

wt=2r-6% (5)

where 6% is the total angle around v in Strt(v). If the
convex cone around v doesn’t exist, i.e. v lies inside the
convex hull of Str(v), then w¥ is, by definition, equal
to zero. This would be the case of a saddle vertex.
Negative (extrinsic) curvature w™: We can now
‘extract’ the negative part of w as follows:

+

(6)
This component will be different from zero in vertices

which have at least one concavity, or on saddles.
Absolute (extrinsic) curvature wgps:

w =w' —w

49

(7)
The curvature of an entire object is computed as the sum
of the Absolute Curvatures for each one of its vertices,
and is referred to as the Total Absolute Curvature.
Considering these types of curvatures, vertices of a
polyhedral object can be classified as: Conver vertices
(wt = w), Saddle vertices (w~ = —w) and Mized ver-
tices (wt > 0,w™ # w). Examples of all these vertices
are shown in Figure 4.

N T

i i
Figure 4: Examples of vertices: convex (i), saddle (ii),
and mixed (iii) with its convex cone (iv)

Wabs = wh +w™

i)

In computer-aided applications the angle deficit
computation is commonly used [Meyer et al. 2003,
Peng et al. 2003] , but other types of curvature seem
to be almost completely unrecognised, which results in
losing important features of objects under consideration.

POLYHEDRAL GAUSS MAP

The computation of curvature of a discrete surface as
defined above can be represented graphically in a sphere,
by analogy with the Gauss map for smooth surfaces.
To compute the Gauss Map of a single vertex v, the
procedure is to take the normal vectors of all faces in
Str(v). All these vectors are translated so that they
have the same origin, and their end-points lie on the
surface of a sphere.

The next step is to join the ends of the vectors, ordered
according to the corresponding faces around the vertex,
in counter clockwise direction. The vectors are linked
using arc segments of great circles on the sphere.

One or more areas will be delimited on the surface of
the sphere by the arcs, thus creating a series of spher-
ical polygons, each one of which represents a certain
curvature feature of the vertex. Positive curvature will
generate spherical polygons with counter clockwise ori-
entation, while a negative curvature creates a spherical
polygon with clockwise orientation.

However, each of these spherical polygons will split the
sphere into two areas, complement of each other. The
algorithm has to determine which of these areas is the
correct one. A number of parameters are used to deter-
mine this, depending on the characteristics of the vertex.
For vertices without self-intersections, all areas should
be less than 27, but otherwise, other checks are carried
out: whether the vertex is a saddle or not, and the length
of the arcs delimiting the area (the spherical perimeter)
being less than 2.

The correct values for each curvature are then directly
computed from adding the area of the spherical poly-
gons obtained using this method. The same procedure
is then carried on for all required vertices, to obtain the
Total Absolute Curvature (TAC), which will be the sum
of the areas of all spherical polygons, taking into con-
sideration their orientation. Figure 5 shows the Gauss
maps of the basic types of vertices, described in the
previous section (red colour areas correspond to the in-
corporated positive curvature, and the blue colour, to
the negative one). However, this algorithm is capable of
determining curvature measures of much more complex
vertices with various self-intersections (for more detail
see [Alboul and Echeverria 2005]).

il iTH

(a) Convex vertex (b) Saddle vertex

|

(d) Mixed (with
convex hull)

(c) Mixed vertex

Figure 5: Gauss Map of different kinds of vertices

APPLICATIONS OF THE CURVATURE IN-
FORMATION

In a video game, curvature can be computed for indi-
vidual objects, to determine whether they have round
or sharp vertices, and thus, if the object would present
more resistance or friction. The information provided
by the curvature analysis can be as simple as a single
number representing the Total Absolute Curvature of
the object, or a series of numbers each characterising a
specific part.

The analysis of curvature proposed is effective even in
the case of self intersecting polygonal meshes, making it
useful for almost any kind of object in a video game.
This kind of application can be also useful in puzzle or
sport games. For example, the curvature of a ball could
be used to simulate different behaviours, or the wear of
a ball during the game.

50

In the most general case, any object that is completely
convex and has no ‘indents’ or saddle-type parts, such
as a sphere or a cube, will have a TAC = 4, while any
deviation from a convex object will add to that value.
Using our algorithm, it is easy to identify whether a
game object has holes or cuts that can affect its be-
haviour. The numerical value obtained can simply be
integrated into further computations; for instance, the
bounce of a ball in a certain direction, or its speed when
rolling down a hill (see Figure 6).

(a) Smooth sphere
TAC = 12.566372

(b) Cut sphere
TAC = 21.923119

Figure 6: Spheres with different roundness

Other applications discussed here are related to virtual
terrains. Terrains are very important in many computer
games, as they provide the foundation of the digital
worlds. Curvature characterisation of terrains give us
a very suitable information for describing types of ter-
rains. Indeed, a terrain can be viewed as an irregular
surface, and it is possible to determine areas of the sur-
face with similar values of curvature, by grouping to-
gether vertices of the same type (convex, mixed or sad-
dle). Areas of positive curvature would represent moun-
tains or valleys, while areas with mixed curvature are
rugged terrain. The border between mountains and val-
leys would be composed of saddles, and thus have a neg-
ative curvature. This information can be used for terrain
reasoning in 3D action games [Van der Sterren 2001],
for example, for path finding on a terrain, which sat-
isfies certain requirements. One requirement might be
to minimise the energy that a game object needs to ap-
ply to navigate on the surface, or that the path chosen
should go over the tops of mountains.

Some experiments have been carried out on the use of
the curvature computed at each vertex of a surface. By
trying to remain within regions of negative curvature,
new paths can be found, which avoid obstacles and nav-
igate around them, as shown in Figure 7. Here, regions
of different curvature are coloured in red for positive,
blue for negative, and green for mixed. For the two
different terrains shown, two paths are considered, the
straightest possible one, going from vertex to vertex, and
another that considers curvature. This second approach
can produce longer paths, but avoids going through the

peaks of the mountains, thus having less climbs and de-
scents, and a smaller change in height (Ah).

e

e
.
e

.

1

(a) One hill

(b) Length: (c) Length:

4.96, Ah: 0.91

5.18, Ah: 1.99

e

e

L

(d) Two hills

(e) Length:)
5.33, Ah: 3.01

Length:
5.99, Ah: 2.25

Figure 7: Path finding using curvature

Using curvature we will also define some other measure-
ments for properties of a surface, for example the Rough-
ness of a terrain surface can be defined, either in terms
of the Gaussian curvature (i.e computing only the angle
deficits of vertices) or in terms of all incorporated cur-
vatures by applying the Polyhedral Gauss Map method.
As seen before, both measurements identify regions of
positive and negative curvature. The Roughness is ob-
tained as the ratio of the total value for the positive
curvature over the total value of the negative curvature,
when the negative curvature is larger. The opposite ra-
tio is taken when the positive curvature is larger. As
a surface becomes more rugged, its Roughness will ap-
proach the value of one. This is illustrated with an ex-
ample in Figure 8. The values presented clearly indicate
that the Polyhedral Gauss Map method describes this
feature more precisely and accurately. Other similar pa-
rameters can be derived by using curvature measures.

Conclusions and further work

The method presented to compute curvature of poly-
hedral objects, using Gauss Map, can provide extra in-
formation about objects and surfaces in a video game.
The data obtained provides a good representation of the
roundness of objects, and could be applied to improve
the realism of the physical simulations.

51

|

(a) Deficit = 0.008
Gauss map = 0.090

(b) Deficit = 0.033
Gauss map = 0.273

Figure 8: Roughness of two different surfaces

The algorithm is specially adequate for the kind of poly-
gon meshes used in games, since it works for discrete
polyhedral structures, and can cope with several differ-
ent cases of vertices.

It still remains to implement these computations into
an actual game physics engine, but the possibility offers
good potential, as the algorithm proposed would not
interfere with other aspects of a game, in a noticeable
way.

REFERENCES

[Alboul and Echeverria 2005] Alboul, L. and Echever-
ria G. Polyhedral Gauss Maps and Curvature Char-
acterisation of Triangle Meshes. In: Bez, H., Mar-
tin, R., and Sabin, M.(eds.), The Mathematics of
Surfaces XI, pp. 14-34, LNCS 3604, Springer 2005.

[Kiithnel 2002] Kiihnel, W.,
Curves-Surfaces-Manifolds,
2002.

Differential geometry.
Amer Math Society,

[Meyer et al. 2003] Meyer, M., Desbrun, M., Schroder,
P., and Barr, A. H., Discrete differential-geometry
operators for triangulated 2-manifolds. In: Hege,
H.-Ch., and Polthier, K. (eds.), Visualization and
Mathematics I1I, pp. 35-59, Springer-Verlag, 2003.

[Peng et al. 2003] Peng, J., Li, Q., Ja Kuo, C.-C., and
Zhou, M., Estimating Gaussian Curvatures from
3D Meshes. In: Rogowitz, B.E., Pappas, Th. N.
(eds.), Human Vision and Electronic Imaging VIII,
Proc. of SPIE 5008, pp. 270-280, 2003.

[Van der Sterren 2001] Van der Sterren, W., Terrain
Reasoning for 3D Action Games,2001 GDC Pro-
ceedings, 2001.

[Quize 2003] Quize, K. S., Video Games in Education,
1JIGS, vol.2, no. 1, pp. 49-62.

[Yamauchi et al. 2005] Yamauchi, H., Gumbold, S., Za-
yer, R., and Seidel, H.-P., Mesh Segmentation
driven by Gaussian Curvature, Visual Comput., 21,
pp- 659-668, 2005.

Issues in the Physics of a Motocross Simulation

Benoit Chaperot, Colin Fyfe,
School of Computing,
The University of Paisley, Paisley, PA1 2BE, SCOTLAND.
email: benoit.chaperot, colin.fyfe@paisley.ac.uk

Abstract

In this paper, we investigate the use of a rigid
body simulation engine to simulate a motocross
bike. We discuss the movement of bikes from a
theoretical perspective and apply this perspective
to a simple motocross bike. This initial model suf-
fers from control problems and we introduce sev-
eral extensions which lead to a stable and enjoy-
able game. We believe that we have created the
first realistic motocross simulator (as opposed to
arcade game).

1 Introduction

Rigid body simulation, or physics simulation, is a method
for simulating mechanical systems. It is generally present
as a piece of software (library), used as part of another
piece of software (in this case a video game).

Motocross Madness is a motocross game, released in
year 2000; it is a popular and fun game to play. It does
not make use of rigid body simulation. Other games, like
MX Unleashed have been released since (see [10] and [9]),
are nearly equally fun to play, and make use of rigid body
simulation. However the simulation is used not to make
the control of the bike more realistic, but to make the an-
imation more attractive to the eye. One can see the rider
moving on the bike, and the suspensions working as the
bike goes over bumps, but the bike handles in a unreal-
istic way. These are called arcade games, as opposed to
simulator games. In arcade games, fun and game play is
preferred to simulation and realism.

The main difference between an arcade racing game
and a simulation racing game is that in an arcade rac-
ing game the behavior of the vehicle is controlled by a set
of rules, procedures and animations, whereas for a sim-
ulation the behavior of the vehicles is controlled by the
physical and mechanical properties of the vehicle, and by
the physics engine.

Simulators can offer a different, still enjoyable gaming
experience, as proved by the success of games like Gran
Tourismo. The use of rigid body simulation for vehicle
simulation is not new. The library used for vehicle simu-
lation can either be:

e A general purposes rigid body simulation library (for
example (6], [11], [13], [12] or [4]); this solution has
the advantage that it gives a lot of freedom and flex-
ibility to developers to experiment and implement
realistic vehicle simulation.

52

e A vehicle simulation library ([5] or [1]); this works
well since the library is dedicated to vehicle simu-
lation; it makes development easier; however, this
solution may not offer as much flexibility as when
using a general purposes rigid body simulation li-
brary.

e In house solution. This offers the most flexibility;
however it may be very costly in terms of develop-
ment.

There is no motorbike simulator on the market; this,
together with a strong interest in bikes, simulators and
video games, is our main motivation for creating what
can be considered as the first motocross simulator.

In this paper, we investigate the use of rigid body sim-
ulation, to simulate a motocross bike, in the context of the
Motocross The Force game. Motocross The Force is a mo-
tocross game featuring terrain rendering and rigid body
simulation. An example of it in use can be seen at

http://cis.paisley.ac.uk/chap-cil

The game has been developed and is still being developed
in conjunction with Eric Breistroffer (2D and 3D artist).
First, we have an overview of the theory behind bike rid-
ing, then we detail our approach to using rigid body sim-
ulation to simulate a motorbike and some of the improve-
ments made over the original models. Finally we conclude
by discussing the right trade off between simulation and
arcade methods.

2 Riding a bike: theory

First, it is worth noting that a motorbike is by nature sta-
ble; this means that, in normal conditions, while riding a
motorbike, the handle bars and front fork do not oscillate;
the bike tends not to lean to one side, and it tends to go
in a straight line.

There are two main things that make bikes naturally
stable:

e Gyroscopic precession: this is a phenomenon occur-
ring in rotating bodies in which an applied force is
manifest 90 degrees later in the direction of rotation
from where the force was applied.

e Rake angle and trail: as described on The Master
Strategy Group site [2], wobble and weave are di-
minished because, when the wheel is pointing at an
angle other than straight ahead, the contact patch is
not in alignment with the direction of travel of the

bike, that is, a slip angle is created. A restoring force
is applied to the contact patch by the ground which
attempts to force that alignment. Thus, because of
trail, the front wheel tries to go in a straight line
(see Figure 1).

In practice, a rider can ride a motorbike with no hands,
except to operate the throttle.

Let’s now consider the main forces acting on the motor-
bike; for simplicity it is assumed that the rider is attached
to the bike, and bike and rider can be considered as one
body. The three main forces acting on the bike are:

e The weight, acting down: Fy, = mg with m the total
mass, and g the gravity.

e The centrifugal force, acting horizontally, directed
towards the outside of the turn:

mv?

F.=— 1
= (1)
with m the total mass, v the linear velocity, and r
the turn radius.

e The contact force, from the contact between the
tyres and the ground.

The sum of these three forces can be assumed to be
zero and the triangle of forces closed, if the bike is bal-
anced.

Other forces, including traction, inertia, air friction,
gyroscopic precession are also acting on the bike, but these
can be ignored for now for clarity, mainly because these
forces have no effect or no negative effect on the balance
of the bike.

From Figure 1, and with the concept of these three
main forces acting on the motorbike, one can assume that
what makes a motorbike turn, is not the direct action on
the handle bar; instead, it is the angle the bike is making
with the ground (roll angle).

Besides, one can notice that the only force that can be
controlled by the rider is the horizontal component of the
ground contact force. This horizontal force, which acts at
ground level, determines the roll angle the bike is making
with the ground and is obtained by action on the handle
bars.

As an example, let say the bike is going in a straight
line; the rider wants to turn right:

1. The rider would first counter steer left, in order to
pull the front wheel contact patch to the left, and
put the weight of the bike to the right of the contact
patches.

2. The weight makes the bike lean to the right.

3. The rider would then gently steer right, to close the
triangle of forces, and balance the bike; the bike can
be assumed to be balanced when the sum of weight
and centrifugal forces lie in between the two contact
patches.

53

The procedure is reversed if the rider wants to turn left or
wants to go back to a straight line.

We are confident that most of the mechanical phenom-
ena described here can be reproduced using physics simu-
lation.

3 Physics Simulation model

Open Dynamics Engine (ODE) [6] was chosen for the sim-
ulation, because it is an open source project, with a large
community of users maintaining it and enhancing it. Also
it is probably as fast, accurate and stable as expensive
commercial rigid body simulation packages. Open source
gives the possibility to modify the engine and add the fea-
tures that are missing for a particular requirement. LUA
is a script engine which is used for scene creation. It allows
modifying the simulation scene without having to recom-
pile the executable. It allows the separation of code and
scene data.

3.1 Collision Model

On a car simulation, wheels are often modelled as spheres.
This is not appropriate in the case of our motorbike sim-
ulation, because as the bike makes an angle with the
ground, the effective radius of the bike would reduce.
Other primitives have been tested, such as thin cylin-
der primitives (disks), but these primitives proved not to
be very stable. Another problem with thin disks is that
because of the limited time step used for the simulation
(1/100 of a second), a thin disk can fall through a plane,
if lying against this plane. With this limited time step the
simulation engine does not handle collision between prim-
itives with limited thickness well (due to gravity, a very
thin object can travel more than its thickness during one
time step, and the collision with a coplanar plane can be
missed).

For the rendering, a terrain engine is created. All ver-
tices are positioned on a regular grid (horizontal x and
y coordinates), but with different height (z coordinate).
This makes the creation and editing of terrains easy and
efficient because all the terrain can be created, edited, and
stored in memory as a two dimensional height map. A tri-
angle mesh collision primitive could have been used, but
it would not take advantage of the two dimensional dis-
tribution of vertices, hence would not be as efficient as a
collision primitive that will take advantage of this partic-
ular distribution.

For these reasons, two collision primitives have been
created for ODE. One primitive is a cone, with high ra-
dius to length ratio, which is used for the wheels. The
other primitive is a terrain, making full use of the partic-
ular distribution of vertices.

One problem with creating new primitives is that for
each primitive, a call back function is needed for collision
with any other primitive. Hence the number of collision

functions grows exponentially with the number of prim-
itives. For the terrain the problem has been solved by
considering the collision of primitives with the terrain as
collisions of primitives with the planes and edges making
the terrain; hence reducing the collision problem as reusing
all the other primitives collision functions with planes and
rays. For the cone, only two collision functions have been
implemented, collision between cone and plane, and col-
lision between cone and ray, in order for cones to collide
with terrains. For any other collision, the sphere collision
functions are used; this proved not to be a problem and
any discrepancies are not noticeable in the vast majority
of cases.

3.2 Dynamic Model

Dynamic bodies are used for the simulation. Each dy-
namic body can be associated with one or more collision
objects. More than one collision object can be used on the
same body to create a simulation object with a complex
collision shape. Rigid bodies have mass and inertia ten-
sors; these masses and inertia tensors can be set indepen-
dently from the shape of the associated collision objects.
As an example, wheels are set to have cones as collision
object, but have hollow cylinders for mass and inertia ten-
sor. As a first attempt, a fork and front wheel have been
modelled using ODE joints. The wheel was attached to
the fork using a Hinge joint, and the fork is attached to
the bike frame using a Hinge2 (suspension and double ro-
tation joint). This proved not to be successful; because of
the limited time step and corresponding lack of accuracy
of the physics engine, each joint introduces an error, and
the sum of the two errors means the front wheel looked
as if it was very loose. Instead, a Hinge2 joint has been
used to attach the front wheel directly to the frame; this
proved to be more successful but removes the trail as dis-
cussed above. The fork is attached to the frame, using
a Hinge joint and is given the same rotation as the front
wheel Hinge2 top axis. The rear wheel is also attached
to the frame using a Hinge2 joint. The rider’s trunk is
attached to the frame using a Fixed joint, to prevent him
from falling off the bike. All riders’ articulations, elbows,
knees, wrists, are modelled using Universal, Hinge, or ball
and socket joints, with limits set on the joints to prevent
the rider doing forbidden moves, and allow him to be ani-
mated by the simulation in a realistic way. All simulation
objects’ size, position and orientations, and joints’ position
and orientation are obtained procedurally, from the ren-
dering meshes. The user has the possibility, through LUA
script, to choose the collision primitive for each object, set
joint types, and modify objects’ sizes, positions and orien-
tations, and joint positions and orientations, masses and
inertia tensors.

An AMotor (angular motor) is used on the rear wheel,
to allow for bike acceleration and braking.

All masses, inertia tensors, and mass parameters are
set experimentally.

54

The player controls are the direct action on the handle
bar, and the torque applied on the rear wheel.

3.3 Initial Results

All tests and experiments have been carried out using a
Evaluation Panel composed of three regular gamers; these
regular gamers evaluated the game at every stage of de-
velopment and fed back to the main game developer crit-
icisms and comments. To ride a bike, the user has 2 pairs
of controls used to turn left/right or accelerate/decelerate
the bike. The bike is extremely difficult to control.

1. It keeps on falling onto its sides; it is nearly impossi-
ble to control the balance of the bike by direct action
on the handle bar.

2. It keeps on flipping while accelerating or decelerat-
ing; it is difficult to find the right angular motor
parameters (target angular velocity and torque to
achieve acceleration and deceleration).

3. The biker seems very rigid, because the rider is glued
to the bike seat.

4 Improving the simulation

A few improvements to the original models have been
made in order to improve the simulation.

4.1 Indirect action on the handle bar

What the player really wants is to turn left or right; turn-
ing left and right is not achieved by direct action on the
handlebar; instead, as described above, it is the angle
the bike is making with the ground, that makes the bike
turn, and this angle is obtained through action on the
handlebar. Hence, as an experiment, let us interpret the
left /right player control of the bike as a target roll angle
the bike is to make with the ground; and let the game
engine evaluate the appropriate action to apply on the
handle bar in order to achieve this target angle. As a first
consideration, we can state that the action on the handle
bar is dependant on the bike’s velocity; a rider does not
turn the handle bar as much while riding at high speed
than while riding at low speed. We also state that the
action of the handle bar is dependant on the difference
between the current bike roll angle and the target bike
roll angle, and also dependant on the current bike roll an-
gle. As an experiment, we test with the following rotation
for the handle bar:

CCox(Ac—A)+Crx A,
v

Ry, (2)
With A, the current bike roll angle, A; the target bike
roll angle (mapped as left/right control of player), v the
linear velocity, and C; and C,, two parameters to be de-
termined experimentally.

After a few tests to find appropriate values for C; and
C.,,, this proved very successful; the bike does not fall onto
its sides anymore and balance is maintained. However, it
is still difficult for the player to fully control the direction
of the bike.

4.2 Adding a force

As an experiment, instead of using an angular motor for
the rear wheel, a force is applied directly on the bike frame.
Applying directly a force is appropriate because it conveys
the feeling of a continuous thrust one can have while rid-
ing a motocross bike. This feeling of continuous thrust is
in practice mainly due to the loose traction between the
bike wheels and the ground.

This proved to be very successful; the bike was not
flipping anymore at acceleration and deceleration. Beside,
by changing the position where this force is applied, it is
possible to get the front wheel to rise while accelerating
hard, and the rear wheel to rise while decelerating hard.

4.3 Adding torques

To make the bike even more stable, as an experiment,
the bike frame is attached to the static environment using
an angular motor. For the three bike axes, target angles
are set for the frame in relation to the static environment
(ground), and the angular motor applies torques to the
frame in order to achieve those target angles. Spring and
damping can also be adjusted on this joint, in order to ob-
tain the right joint behavior. The ODE AMotor joint had
to be modified, in order to allow an object to be attached
to the static environment, and to accept angles outside
the {—m, 7} range. This proved extremely successful; the
bike was a lot more stable, and it was easier to turn. This
also allowed for one extra control, lean forward or back-
ward (biker weight on the front or on the rear of the bike).
More details about AMotors can be found in the ODE use
guide [8]:

4.4 Detaching the rider from the motor-
bike

A new joint called linear motor, has been implemented.
It is very similar to the angular motor, but works with
forces and translations instead of torques and rotations.
The rider trunk is attached to the bike frame using this
joint, and the fixed joint is removed. This proved very
successful. The rider with his body weight is now able to
absorb part of the shocks, just as a real rider would. The
simulation looks more realistic, and the bike is more sta-
ble. More information about creating new joints in ODE
can be found in this paper [7].

55

4.5 Simulating trail

As seen above, because a Hinge2 joint has been used, there
is no more trail to force the front wheel in alignment with
the ground. A trail can be simulated by forcing the front
wheel in the direction of the moving ground. The rotation
for the handle bar now becomes:

CCox (A —A)+Crx A+ Cyx Ay
v

Ry, (3)

With A, the current bike roll angle, A; the target bike
roll angle (mapped as left /right control of player), A, the
current bike yawl angle, or difference angle between the
forward direction of the bike frame, and the velocity vec-
tor of the bike. v is the linear velocity. C,, C,, and C,, are
three parameters to be determined experimentally. This
also proved to be successful as it made the bike even more
stable.

5 Conclusion

Simulating a motorbike is more difficult than simulating a
car, because a lot more bodies, joints and mechanical phe-
nomena are involved. We believe that this is the first time
such a motocross simulator has been successfully created.

Simple simulation models can make a bike realistic but
makes the game totally unplayable. Modifying the models,
to make the game playable may involve introducing con-
trols and objects which are unrealistic. The work is not
finished yet, but so far the simulated bike seems realistic,
and the game seems fairly easy and fun to play.

The game is slightly harder to play than most arcade
motocross games, but making the game easier would mean
adding more unrealistic controls, cutting on the simula-
tion, and the game would loose some of its appeal. It
is also a choice to have the game appeal to a large pub-
lic, and not only to young children. Current and future
work involve fine tuning the simulation, and creating more
bikes.

We [3] have also trained artificial neural networks using
backpropagation and evolutionary algorithms to learn to
ride such bikes. Future work will also investigate whether
other computational intelligence techniques can be used
for this purpose.

References

[1] http://www.carsim.com/. Technical report, Mechan-
ical Simulation, 2005.

[2] C. Anthony and J. Davis. http://www.msgroup.org.
Technical report, The Master Strategy Group, 2005.

[3] B. Chaperot and C. Fyfe. Motocross and artificial
neural networks. In Game Design And Technology
Workshop 2005. TBA, 2005.

Bteering axis at
ground level

Figure 1: The three main forces acting on the bike. Rake angle and trail are used to make the bike stable, figure used
with permission of The Master Strategy Group http://www.msgroup.org

Figure 2: The bike has seen in the game and its associated collision objects used for the simulation

[4] David Lam. http://www.tokamakphysics.com/. [9] Various. http://ps2.ign.com/articles/445/445638p1.html.

Technical report, 2005. Technical report, IGN, 2003.

[5] E. Laptev. http:/ /www.oxforddynamics.co.uk/. [10] Various. http://thg.com/game.asp?1052—46045.
Technical report, Oxforddynamics, 2005. Technical report, Rainbow Studios, 2003.

[6] R. Smith. http://www.ode.org/. Technical report, [11] Various. http://www.havok.com/. Technical report,
2005. Havok, 2005.

[7] R. Smith. http://www.ode.org/joints.pdf. Technical [12] Various. http://www.novodex.com/. Technical re-
report, 2005. port, AGETA Technologies, 2005.

[8] R. Smith. http://www.ode.org/ode-latest- [13] Various. http://www.renderware.com/physics.asp/.
userguide.html. Technical report, 2005. Technical report, Criterion, 2005.

56

PRODUCING ANIMATIONS FROM 3D FACE SCANS

Alan Robinson, Marcos A Rodrigues and Lyuba Alboul
Geometric Modelling and Pattern Recognition Group
Materials and Engineering Research Institute
Sheffield Hallam University, Sheffield S1 1WB, UK
{ARobinson, M.Rodrigues, L.Alboul } @shu.ac.uk

KEYWORDS
3D face scanning, Structured Light Scanning, Facial
Animation.

ABSTRACT

In this paper we take our existing research into 3D surface
scanning using uncoded structured light, optimized for
human faces, and develop a method to record a sequence
of face movements and visualise these as an animation in
real time; we call this method the 3D Animation Processor
(3DAP). The applications for this work include 2D and 3D
face recognition, broadcast and feature film animation, and
computer games production. It should be stressed that the
3D recording of facial movements in real time is a difficult
problem that is attracting considerable research attention;
but accurate and appealing results have so far proved
elusive. We record the faces of a number of speaking
subjects, process the data representing their shape and
colour as it changes over time, and visualise the animated
face models. We identify a particular problem in frame
continuity, whereby unacceptable jumps and jitters occur
in both the shape of the face and its colour mapping, and
begin to solve this problem using hole-filling and
interframe interpolation. We also investigate methods of
feature tagging, so that the model can be placed in a fixed
coordinate system and thereby incorporated into computer
generated animations.

INTRODUCTION

Current research on facial animation from live recordings
is incipient. Computer generated animation often uses live
recordings — such as from video footage which is then
mapped onto the face, or when the keyframe artist refers
to the action of a real person, when drawing the figure.
However, these live recordings are nearly always in 2D, in
the pixel space of a computer or the raster scan of a video
signal. To use 3D recordings, in other words to have a 3D
model of the face which changes at a suitably fast frame
rate, requires firstly a robust 3D recording system, and
secondly the methods and strategies required to
incorporate the recordings in the finished work. This work
may be an interactive computer game, a broadcast TV
production, or a feature film, all of which media are
looking to increase the liveliness and realism of their work.

57

These two requirements, a robust 3D recording system and
a set of methods to incorporate the recordings into media
productions, are the subject of a research programme in
the Geometric Modelling and Pattern Recognition group,
at Sheffield Hallam University, in the fields of animation
and face recognition. In this paper we will discuss the
application of 3D recordings for facial animation, and the
main problems that have been discovered and are being
addressed. The purpose of such research is to produce an
appealing and lifelike rendition of the subject while
maintaining temporal coherence. In computer games this
needs to be achieved in an interactive environment, which
means that the 3D model must maintain its shape and
texture if its pose is changed by the player. A number of
limitations exist such as the problem of achieving
automated animation on a per frame sequential basis using
information from current and previous frame. A common
source of error is the general under-constrained
“correspondence problem” which has been tackled through
a number of techniques in computer vision with limited
success (M.A. Rodrigues and Y. Liu. 2002), (Y. Liu and
M.A. Rodrigues 2002), (Y. Liu, M.A. Rodrigues, Q. Wei,
2002). Extensive manual correction is required to
compensate for errors and improve temporal coherence.
Furthermore, traditional techniques such as streak-lines, or
squash and stretch deformation require extensive temporal
analysis for applications to video.

To solve the problems arising from the 3DAP method we
create a sequence of 3D face models by straightforwardly
adapting the methods for single scans, and then visualise
this sequence as an animation of a talking face. Typical of
these problems are hole filling, registration and texture
mapping (Lu and Jain, 2005), which can all be included in
a more general issue that we call frame continuity. Frame
continuity can be addressed either in the input video frame,
which is a 2D discrete pixel space, in the 3D surface mesh,
which is a graph of 3D vertices, or in the rendered model,
which is a multi-valued space including polygonal surfaces
and colour values.

RIGID 3D SCANNING USING UNCODED
STRUCTURED LIGHT

Our existing research into 3D scanning uses a novel
“uncoded structured light” method, which projects a
pattern of evenly-spaced white stripes onto the subject, and
records the deformation of the stripes in a video camera

placed in a fixed geometric relationship to the stripe
projector. Figure la shows a detail from one such video
frame, clearly showing the deformed stripes. The
advantage of this over stereo vision methods is that the
stripe pattern provides an explicitly connected mesh of
vertices (Figure 1c), so that the polyhedral surface can be
rendered without the need for surface reconstruction
algorithms. Also, a smoothly undulating and featureless
surface (such as in Figure 1) can be more easily measured
by structured light than by stereo vision methods. We will
also see that these advantages for single frame scanning are
even more important for sequential scanning, i.e.
animation.

Figure 1. (a) Part of image showing stripe deformation. (b)
Detail showing pixel array (c) resulting mesh of vertices.

Once the surface shape has been modelled as a polygonal
mesh, we return to the video image, take the colour of the
reflected white stripe at each pixel that maps to a vertex,
and colour the vertex (or triangle) accordingly. The final
model therefore contains the (x, y, z) coordinates and their
corresponding RGB (red, green, blue) values for each
vertex, and the face can be visualised as in Figure 2. This
shows the original bitmapped image (the stripes are too
fine to be discernible), and five arbitrary poses of the 3D
colour-mapped 3D model.

Figure 2. The input image (left) is transformed into the 3D
model (right), showing five poses.

58

PRODUCING ANIMATED MODELS FROM VIDEO
SEQUENCES - THE 3D ANIMATION PROCESSOR

To produce the video sequence, the system is set up as
described above, and the video image received by the
sensing camera is recorded as a sequence of standard PAL
video frames at 25 frames per second. Typically the
subject is speaking and an audio track is simultaneously
recorded of their voice, so that the resulting 3D animation
will be speaking synchronously.

Great care must be taken over the video recording device,
and it was found that if the data is compressed as normally
happens in an MPEG-2 recording, or if the video is
recorded onto tape causing a loss of resolution and
increased signal to noise ratio, then the bitmap image is
degraded to the point where it may become unusable. In
this work we record from a Canon XM1 video camera,
through the Firewire IEEE-1394 output, into the capture
software (iMovie) on an Apple computer. We then export
the captured video as a sequence of .bmp files (24 bit,
768x576 pixels), which is the same data type as is used for
the existing rigid scanner. Visual inspection and
subsequent tests show that the image quality (in terms of
stripe definition and bandwidth of the greyscale) matches
very closely with the images from the rigid scanner. A
detail of one frame is shown in Figure 3.

Figure 3. Detail of one frame in the recorded sequence,
showing the deformed stripes.

Generating the 3D model from the sensed bitmap image
requires our standard Indexing Method as described in (A.
Robinson, 2005), (A. Robinson, L. Alboul and M.A.
Rodrigues, 2004), followed by the output coordinates of
the vertices (x,y,z) and their colour values (,g,b) to our
customised file format .rgb with six parameters for each
vertex. This process is then semi-automated so that at a key
press the next image file in the sequence is loaded, the
indexing algorithm is performed, and the corresponding
xgb file is generated. This semi-automation allows the

operator to compare the algorithms and resulting 3D model
“live” as the process is happening, which reveals any
problems in the continuity between frames. During this live
operation, adjustment is provided for the following
parameters: all intrinsic and extrinsic constants, stripe
width and amplitude, illumination threshold, seed position,
hole filling, and others.

TESTING AND INITIAL ANALYSIS OF FRAME
CONTINUITY

The attributes to be tested in the animation sequences will
of course depend upon the chosen application, but the
measures that will give general indications of success are
variance in geometric measurements between frames, and
subjective appeal to the viewer. Although these appear to
be two totally independent and quite distinct measures,
they are in fact closely related; a sudden jump in say the
position of the eye between two frames will be picked up
in the variance results and will also be subjectively noticed
by the viewer. In this regard the viewer may well be more
reliable, as he or she will easily track the position of the
eye and report any inconsistent movements, whereas the
measuring system will firstly have to recognize the eye.
Although recognizing the eye is a well-understood task,
other features, even obvious ones such as the tip of the
nose, are more difficult to find consistently, and so will
make the variance report less reliable.

The first tests were conducted on a speaking person, who
was scanned and texture-mapped by our 3DAP method.
113 frames were recorded, at 25 frames per second, of
which six are shown in Figure 4. Figure 3 shows a detail of
one frame. If we consider only a single frame, in other
words a rigid body, then results show that all of these scans
will work well, and using standard reconstruction and hole-
filling algorithms will give a good model of the face.
However, both data analysis and subjective inspection
clearly show that for the moving subject, while there is
good continuity from frame to frame within the surfaces,
on the boundaries there are unsatifactory jumps between
frames. For instance, the boundary of the nostril changes
irregularly in shape, because the occluded area within the
nostril is very sensitive to slight changes in pose; and
whereas the pose itself is changing smoothly, the discrete
nature of the pixel samples and of the segmentation
algorithms combine to give unpredictable results. Similar
problems occur around the lips, which in a speaking
subject will inevitably be moving and deforming quickly
and significantly. Inspection of the test data shows that the
boundary of the lips, what one might call the inside of the
mouth, is dependent upon the occlusions created by the
mouth shape, and does not provide a consistent description
of the lip shape. This in turn presents serious consequences
if, say, a recording of the lip movements is to be
incorporated into a computer generated model.

59

Figure 4. Texture-mapped model of six consecutive
frames.

This in turn leads to the question of how we can define the
edge of the nostril, and of the lips, chin, eyes, and any
other features; because if we can do so then we can
constrain the algorithms to give a better definition of the
feature boundaries. This feature-finding is important in a
number of scenarios: to control the edges of the holes and
therefore improve hole-filling, to provide cleaner and more
consistent edges to the model, and as a basis for
registration issue, which will be dealt with in the Frame
Registration by Feature Tagging section of this paper.
Firstly we will look at the general issue of hole-filling.

FILLING HOLES

Structured Light scanning has the advantage over Stereo
Vision methods in providing an explicit graph of the
connections between vertices, which in our case is in a
rectangular grid pattern formed by the vertical stripes. If
every projected light element is reflected on the target
surface, sensed in the recorded image, and measured as a
surface point, then there will be a one-to-one
correspondence between projected elements and modelled
points. This also means that the graph of connections of the
projected elements is homeomorphic, or bicontinuous, with
the graph of connections in the modelled mesh. Therefore
the mesh can be connected using the same pattern as has
been projected. However, it is likely that some elements
will be missing from this grid, maybe because a projected
element misses the target surface, or is occluded from the
camera view, or is rejected by the indexing algorithm, and
we will call these holes in the graph of vertices.
Additionally there are projector occlusions, where there are

no missing vertices, such as may happen on the side of the
nose. Here the graph connections do not apply, and so if
we are to fill in the occlusions, we must add new mesh
connections.

Figure 5. Model of two successive frames, showing detail
of lips. Above is the original source image, with
recognized stripes emphasised. Below is the resulting mesh
visualisation.

Figure 5 shows the principles involved, for two successive
frames shown left to right. At the top are details of the
bitmap image showing the mouth slightly opening from the
left frame to the right frame. The bitmap is similar to that
seen in Figure 3, with the white stripes as recognized by
the algorithms emphasised in the image. In this case the
algorithm stops when it reaches the lips, but in an uneven
manner due to the occlusions presented by the lips. The
generated meshes shown underneath are derived via the
mapping between each pixel on the white stripe above, and
its corresponding vertex in the mesh below. It is clear that
the uneven lip boundary is also present in the mesh, and
over the course of the animated sequence this produces
unattractive jitters. The problem here is that the viewer is
very critical of temporal changes which do not flow
smoothly, and will be disturbed by surface edges which
jitter from frame to frame. One solution is to fill in the hole
in a way which smoothly follows from frame to frame. The
holes in the mesh correspond exactly to the missing parts
of the stripes, so that if those stripes can be connected in
some way, then the homeomorphism will allow the vertices
to be similarly connected in the mesh (Remember that this
does not include projector occlusions). This is a simpler
and potentially more accurate alternative to surface
reconstruction from the polygonal mesh, which is the more
usual approach, and requires a 3D interpolation rather than
the 2D interpolation which can be used here..

Hole filling methods (Tekumalla and Cohen, 2004), (Wang
and Oliveira, 2003), or stripe connecting methods in our

60

context, range from simply connecting the edges of the
holes with straight lines and planes, to using curves such as
cubic splines and Beziers, to our ‘“hole-patching method”
(see below in Figure 9) which replaces the hole with the
patch on the symmetrically opposite side of the face. These
techniques can work well for a rigid surface, but when the
surface is moving the problem becomes much harder,
because the interpolation of missing surface may be
inconsistent from surface to surface.

For single frames, i.e. rigid surfaces, we currently use a
simple straight line interpolation, which if the controls are
set correctly will produce satisfactory results. So the first
step here is to try the same method over a number of
frames.

N
e W N
s —

Figure 6. As in Figure 5, with automatic straight line
interpolation across the mouth.

Figure 6 shows the same data, but with a simple automatic
straight line filler added. This is a worst case example
showing lines which almost meet, and in general an
inconsistent spacing between the stripes. The problem
occurs partly because the edge of the lips, which is the
point at which the straight line should join with its
continuation on the other side of the mouth, is irregular,
and partly because there the teeth provide a specular
surface which reflects the stripes in unpredictable ways. It
has been found that even if the stripes are prevented from
irregular changes of direction as shown here, if the spacing
between stripes is not smoothly continuous, the results will
be unacceptable due to interframe jitters.

Therefore our solution is to introduce some interpolation
between frames, and to keep the spacing between the
stripes as even as possible. The key issue here is that this
solution is only relevant for the mouth, where a straight
line between the lips gives satisfactory results. It is not
appropriate for, say the side of the nose (see the Frame
Registration and the Texture Mapping sections). This
means that we must segment the face, approximately as

shown by the rectangles in the Figures 5, 6 and 7, to
constrain the hole filling region. The results of this
interpolated straight line filling can be seen in Figure 7,
which shows a much smoother and more consistent filling,
which provides smooth results between frames. This will
also allow a better colour mapping to be achieved, with the
proviso as mentioned below that problems may occur if the
interpolation causes a colour to map to the wrong colour.

Figure 7. As in Figure 4, with interpolated hole-filling
across the mouth.

despite this proviso, these results become even more
appealing when colour mapping is applied to the surface,
as in the example shown in Figure 10.

As has been said, this interpolation method is not suitable
for the common occurrence of an occlusion at one side of
the nose. Instead we assume that the other side of the nose
will not be occluded, and find a symmetrical patch of
shape and texture which can be reflected and used. Details
of this are included in the next section, and are visualised
in Figure 9.

FRAME REGISTRATION BY FEATURE TAGGING

The registration problem (M.A. Rodrigues, R. Fisher and
Y. Liu 2002) is normally encountered when two
overlapping patches modelling the same surface each have
their own independent coordinate system. The task is then
to join, or register, the two patches, by finding a
transformation (translations and rotations) between the two
local coordinate systems. In our 3DAP the problem is
slightly different in that we are trying to register two or
more patches which are separated in time, but have the
same coordinate system. Therefore if we consider, say, a
fixed point on the forehead of the subject, that will not
have the same location from frame to frame if he or she is
moving. We need a common coordinate system from frame

61

to frame referenced from a fixed point on the face or head,;
the ideal candidate would be the skull, which of course is
not possible!

Figure 8. Two views of the tagging procedure.

We currently use a "tagging" method, as shown in Figure
8, by manually marking the outside corner of each eye in
each frame. This can be done either in the bitmap image or
in the polyhedral model, but we currently use the
polyhedral model, because the 3D space is then used to
find further features. These extra features are found
automatically having tagged the corner of the eyes; the
most important current one is the tip of the nose. Finding
this has long been acknowledged as a difficult problem in
face recognition - what exactly is the tip of the nose? One
method is to use a convex hull, such as offered in Matlab
as the function convhulln. This will give a small area
around the tip, and the centre of mass can then be used to
give a specific point. Another method is to describe an
ellipsoid

S A | D

using the tagged eyes as foci, such that the distance a is
from the left eye to the tip of the nose, b from the right eye
to the tip of the nose, and ¢ is minimised so that the
ellipsoid just touches the nose at its tip. This is the method
shown in Figure 8. Tests have shown that these methods
will still give some jittering from frame to frame, partly
because of the pixel sampling which models the surface
discretely. Again the solution, which is under investigation,
is likely to be interframe interpolation, to smooth out the
location jumps.

The points are then used as the basis of a registration
method, whereby the tip of the nose is taken as the origin
of the face coordinate system, and the line from the origin
bisecting the two eyes then forms the negative Z-axis. If
frame continuity is achieved for these points, then the face,

or more precisely the eyes and the nose, when animated,
will remain fixed in the display.

There are a number of applications for frame registration,
as suggested in the previous section. One is to enable
patching of holes in the surface; a method which we are
developing uses the Y-Z plane as a plane of symmetry,
which enables us to fill holes in one side of the face with
the corresponding patch in the reflected side of the face. A
likely candidate is the hole which can occur on one side of
the nose due to occlusions, which can often be successfully
filled because the shape and texture of the nose is fairly
symmetrical.

Figure 9. The patcher used to recover nose shape. Top left
shows the occluded hole; top right shows the line of
symmetry and filled patch; below is the finished model.

Figure 9 shows one such example; the top left image shows
the occlusion on the (subject’s) left side of the nose. At the
top right a tagging method similar to the one discussed
above has been used to find a plane of symmetry at the
centre of the face. A correspondence is then determined
between vertices on the right and left half of the face, and a
mapping is found between each missing vertex on the
(subject’s) left half of the face, and its pair on the right
half. In this application the structured light scanning
method proves very useful, as the explicit mesh exists for
all vertices, even if those vertices are missing in the
polyhedral representation. However, if the missing vertices

62

are the results of projector occlusions, new connections
will have to be added, such as by Delaunay triangulation
(implemented by the delaunay function in Matlab). The
patch as filled is shown by the dark (green) area in the top
right image, and the final model is shown in the lower
image. Note that colour mapping has been included as well
as shape. This method gives good results for single frames,
but at the moment the issue of frame continuity has not
been solved for this application.

An important application for frame registration is when the
animated model is to be combined with a synthetic object
produced by computer generated methods. For instance, if
the black triangle seen in Figure 8 were replaced by a pair
of spectacles, it should be possible, if there is sufficient
frame continuity, for the animation of the person to be
wearing the glasses in a consistent manner, no matter how
much the head was moving.

An extension of this application, and probably the most
important goal of 3D scanning, is to add even more feature
points so that the whole face, or possibly just parts of the
face such as the lips, can replace the synthetically
produced feature in a computer generated model. This
would give the CG animation the added realism of live
action of, say, a persons lips moving in perfect
synchronicity with an audio speech track. (See Future
Work for more ideas on this subject).

COLOUR MAPPING

%x

Figure 10. (left) face visualised as illuminated grey surface,
(right) with colour mapping.

In the colour mapping process we decorate the surface,
without making any changes to the shape. In the 3DAP
process we take the colour from each pixel in the centre of
each white stripe, and map that to the corresponding vertex
in the polyhedral mesh. This colour mapping has
advantages and disadvantages in terms of the 3D modelling

of the face. Figure 10 (left) shows the triangles produced
from the polyhedral mesh rendered synthetically (in this
case using the OpenGL Lighting Model for a diffuse
surface) as an illuminated grey surface, and Figure 10
(right) shows the same polyhedral mesh with colour
mapped onto the triangles. Clearly the colour mapped
surface has a greater appeal, although it is insignificant in
terms of surface measurement. The advantage of colour
mapping is that with very little effort it makes the face look
more realistic, but it can then be very difficult to persuade
the viewer that he or she is looking at a 3D model and not
a 2D photgraph. We ask the reader to make their own
judgement on this by inspecting Figure 10. It is then very
difficult to dispel this thought that they are looking at a 2D
photograph, unless there is some form of user interaction
to prove the 3D-ness of the visualisation. Another problem
with colour mapping is that the map will probably need to
be distorted in order to fit the shape. In our scanning
system the colour map is a single 2D image usually taken
from the front, which means that surfaces that are oblique
to the viewing direction will have apparently smeared or
stretched texture, due to the horizontal scaling required;
this can be seen in Figure 11 at the side of the nose. Taking
multiple colour images from different directions would
alleviate this effect. If the subject is carefully lit the colour
map can be used inversely to modify the actual surface
shape. Standard texture mapping methods such as “bump”
and “displacement” mapping (James F. Blinn, 1978) can
be used here. For successive frame animation the colour
mapping process can again cause frame continuity
problems, mainly when there is a hole in the surface.

Figure 11. Texture mapping of three successive frames,
without post processing. Occlusions around the nose and
mouth, misregistering of the eyes, and streaking on the side
of the nose, are clearly visible.

This effect is noticeable in Figure 11 around the eyes. If
the hole is caused by an occlusion then no colour will be
available at that part of the surface, and so interpolation
will be difficult. The current method performs a bilinear
interpolation of the colour starting at boundary edges, but
this gives an undesirable plain colouring, and possible

63

jittering. A better method is to use our ‘“hole-patching
method” to provide the colour map, although this is still
subject to frame discontinuity.

It should also be noted that our 3DAP method can cause
problems with the interpolation of the colour map, because
the vertex has to correspond to the colour at the exact
centre of the stripe. Therefore if the vertex is interpolated
and moved to a new position, it may map, say, to a dark
part of the stripe, and cause unwanted artefacts.

CONCLUSIONS

This paper presents an initial analysis of sequential 3D face
scans, which is becoming an interesting and important area
in face recognition and multimedia disciplines. We identify
three typical issues — hole filling, registration and colour
mapping — and report the investigations that we have
undertaken to improve the key problem area, that of frame
continuity. The analysis uses subjective viewing (relevant
especially in multimedia applications), and variance in the
surface measurement (relevant for face recognition and
industrial applications). The initial approach that we have
taken is mainly heuristic, one of identifying problems and
trying various solutions. However, as our investigations
have progressed we have identified two key issues that
show a more logical progression between problem and
solution. Firstly, it has become obvious that smooth frame
continuity is extremely critical, both for shape and texture,
and therefore an interframe interpolation must be used.
Initial work shows that this will have a dramatic effect on
subjective appeal. Secondly, both interpolation techniques
and registration methods require at least a small amount of
feature tagging; a minimum would be the eyes and tip of
the nose. In an animation context this comparatively simple
task can be achieved manually by the animator, but our
work in face recognition shows that there are also possible
methods of achieving this automatically.

We would like to stress that our novel method allows the
capture of 3D motion in a sequence of video and then
visualise the effects in real time. This is a significant
advance over current methods with specific applications to
the game industry. A computer game typically has a game
engine for rendering objects and for managing sound and
motion. Normally, a game engine is re-used across game
adventures. Game designers use the tools in the game
engine to create interactions between the player character
and the various game objects. We argue that one important
development of our techniques is the creation of
specialised libraries, for instance, of realistic lip
synchronised sequences that can be used across many
games. The creation of such libraries is a straightforward
process, and only requires the use of existing editing tools
for subsequent integration into specific game sequences.

FURTHER WORK

We have identified a number of areas for further work
including automatic feature tagging, colour mapping from
multiple cameras, time-dependent interpolation for filling
surface holes, and smoothing colour and shape jitters. An
immediate task is to begin incorporating these live
recordings into computer generated animations, and the
work so far clearly demonstrates that a lifeliness is easily
achieved by these methods which will enhance and speed
up the work of the animator. We have performed distortion
of the nose and overall face shape based on the tagged
features, and will also add computer generated elements
such as a motion captured body to the model. These
investigations will begin to show how well the recorded
and generated elements can be seamlessly mixed in the
final output. The research reported here, despite the many
problems yet to be solved, can already provide significant
benefits to the games, film and TV community by
including measurement and visualisation in time and in 3D.

ACKNOWLEDGMENTS
This research is supported by Sheffield Hallam
University’s Strategic Investment Fund (SIF) and

Yorkshire Concept funding.

Many thanks to Willie Brink for his contributions to the
hole-filling methods.

REFERENCES

M.A. Rodrigues and Y. Liu. 2002 "On the Representation
of Rigid Body Transformations for Accurate
Registration of Free Form Shapes", Robotics and
Autonomous Systems, Volume 39, Issue 1, Pages 37-
52, 30 April 2002.

Y. Liu and M.A. Rodrigues. 2002 "Geometrical Analysis
of Two Sets of 3D Correspondence Data Patterns for
the Registration of Free-Form Shapes", Journal of
Intelligent and Robotic Systems, vol. 33, no. 4 ,(2002)
409-436.

Y. Liu, M.A. Rodrigues, Q. Wei, 2002 "Using
Neighouring Relationships to Eliminate False Matches
for Accurate Registration of Free-Form Surfaces",
Journal of Digital Imaging Vol 15 (2002) pp 267-269.

A. Robinson, 2005 “Surface Scanning with Uncoded
Structured Light Sources”, PhD Thesis, Sheffield
Hallam University, UK, 2005.

64

Xiaoguang Lu and Anil K. Jain, 2005. “Integrating Range
and Texture Information for 3D Face Recognition”, To
appear in Proc. IEEE WACYV, Breckenridge, Colorado,
2005.

A. Robinson, L. Alboul and M.A. Rodrigues, 2004
“Methods for Indexing Stripes in Uncoded Structured
Light Scanning Systems”, Journal of WSCG, 12(3),
2004, pp 371-378.

Lavanya Sita Tekumalla, Elaine Cohen, 2004. A hole-
filling algorithm for triangular meshes. Technical
Report UUCS-04-019, School of Computing,
University of Utah (2004).

Wang, J., Oliveira, M. 2003. A hole-filling strategy for
reconstruction in smooth surfaces in range images. In:
16th Brazilian Symp. on Computer Graphics and Image
Processing, IEEE Computer Society (2003) 11-18.

M.A. Rodrigues, R. Fisher and Y. Liu 2002. “Special Issue
on Registration and Fusion of Range Images”,
Computer Vision and Image Understanding, Volume
87, Issues 1-3, Pages 1-131 (July 2002).

James F. Blinn, 1978. “Simulation of wrinkled surfaces”,
Proceedings of the 5th annual conference on Computer
graphics and interactive techniques, p.286-292, August
23-25, 1978.

GAME
DESIGN

66

APPLICATION OF VOLERE SHELLS AS A PRINCIPLED APPROACH TO
REQUIREMENTS CAPTURE AND TEST PLANNING FOR COMPUTER GAMES

Robert Clutton and Andrew Tuson
Department of Computing
City University, London
Northampton Square
London EC1V OHB, UK
E-mail: robert.clutton@ntlworld.com, andrewt@soi.city.ac.uk

KEYWORDS
Software Engineering, Requirements Capture, Testing

ABSTRACT

Software Engineering is an issue of increasing importance to
the games industry. This paper looks at the linked issues of
requirements capture and testing, and argues that an
adaptation of a modern requirements method — Volere Shells
— is potentially useful to games developers as a lightweight
but principled approach to addressing these issues. A simple
case study will be used to illustrate the points made in this

paper
INTRODUCTION

Computer game projects are increasing in size and
complexity, driven by both ever more advanced technologies
and increasing customer expectations. However, this means
that such projects are increasingly vulnerable to expensive
failure, and thus the use of more effective software
development methods is needed.

To this end, this paper focuses on two of the key areas in any
software development project; these are requirements
capture and testing (Sommerville 2001). This paper shows
how a modern requirements method — Volere Shells — is
applicable to games development.

Software Engineering in Games

The waterfall model and prototyping methods seem to be
applied across the industry but there are also examples of
companies using agile methods such as extreme
programming (XP), e.g. (Beck 2004), and other methods
such as the unified process (UP) to develop their games and
indeed a combination of all of the above.

On the other hand, there appears to be little literature,
academic or otherwise, on software engineering in games
and one main source we found were developer websites. To
compound this, current practice is not well-studied or
documented, an important first step to identifying issues in
current practice that can be developed.

Otherwise the best literature on software engineering in
games are books such as Object Oriented Games
Development by (Gold 2004) and the Game Programming
Gems series, e.g. (DeLoura 2000). However much of the
content of these texts (e.g. object-orientated approaches and

67

design patterns) can now be found on most modern
computing undergraduate degrees.

The emphasis in software engineering practice in games
appears not to be even. For example, testing and quality
assurance in games is relatively well-developed. In fact the
International Games Developers Association have produced
“good practice” guidelines in this area (Rees and Fryer
2003).

In contrast, the requirements process is invariably an
informal process derived from discussions with the creative
team. As we will now discuss, this is a problem not only
because clear requirements prevent possibly expensive
misunderstandings as to what is to be built, but that also
good requirements capture informs testing.

Linking Requirements and Testing

Requirements and Testing issues are extricably linked., even
in “agile” methods such as XP (Beck 2004). XP is an
increasingly popular approach in games development; it
suggests placing a high emphasis on testing and evolutionary
design at each iteration of the application. However, despite
claims by extreme proponents of XP, for the test cases to be
derived it must be clear what the system must do; this
requires clear requirements, and thus some form of
principled requirements capture.

One aspect of value from agile methods is the neccessity that
the requirements process needs to be lightweight and easily
adaptable to changes; in constrast with some traditional
methodolgies for software development, e.g. SSADM
(Ashworth and Goodland 1989), that largely assume that
requirements will not change during development.

Rapid development and change in requirements is definitely
the case in games development projects. For example,
(Eberly 2004) stresses the importance of change control in
the context of scene graph management:

“This aspect of frequent change is what makes software
engineering for a game somewhat different than that for
other areas of application. Knowing that change will occur
as often as it does, you need to carefully architect the scene
graph management system so that the impact of a change is
minimal and confined to a small portion of the engine.”

Therefore tools and methods are required that can achieve all
of the following: act as an effective requirements capture

process, be lightweight and thus adaptable to changing
requirements, and help in providing a test plan that is easily
kept consitent with these requirements.

Structure of this Paper

Given the above, this paper examines the application of a
modern requirements engineering method — Volere Shells —
with the aim of providing games developers with a
principled and useful method.

This paper will first provide an informal introduction to
Volere Shells and how they are used, and how they can be
adapted to games development projects.

The case study used here to illustrate the application of
Volere Shells is then described, a reimplementation of an
arcade classic: Battle City. The application of Volere Shells
to produced both requirements and test plans is then
described.

Finally the results are put into context, conclusions made and
future work discussed.

VOLERE SHELLS

The Volere Requirement Shell was developed by James and
Suzanne Robertson of Atlantic Systems Guild and represents
a lightweight template for requirements specification
(Robertson and Robertson 2002). It is a way of storing a
single requirement in a tabled format (see Figure 1) and can
be used to reference other requirements within a project as
well as content relating to that requirement.

The Volere process puts a strong emphasis on quantifiable
requirements and also complements traceability and test
planning processes. These templates are generic and it is
encouraged to modify them as best suits the project. This
means that this template is not only suitable for one industry,
but it is suitable for many industries, including games.

Volere should not be considered to be part of a lifecycle
process, but should be seen to complement any software
process as a way of storing requirements and creating test
plans.

As mentioned, Volere puts a strong emphasis on achieving
quantifiable requirements by specifying a fit criterion. This
is an objective measure of the requirement and this is what is
evaluated in order to test whether the requirements have
been met. All requirements must have a fit criterion and it
should not be ambiguous, or include several requirements at
one time. Each requirement must be specified separately and
with separate fit criterion.

A requirement may contain dependencies or conflicts which
this template will allow for. It will also allow for links to
previous requirements and further literature relating to the
requirement.

68

Lt of ovents /

32 ?{iﬁg that
we tik
%%@ ;4;,% vrpirament

Spaeet % Ynigue I Pegprens Tas Pl das 0

Ko utin ot it

Eptionaie A tifheation of the regrivoment

Sories YWhe ralsed iz ?%@aixm wtt

witeron § # 4k o ek Phat B By ponaible

et ﬁzg wwm w@m o wrigheal renwroment
Gthar

T Camtrnr T At that sannnt by

descien b ligt @é wihar requirenats that oo Zﬁgﬁ”mm 1iis

v powm Supendenny 1e thin oeg

spting hasteis Palwtor o doopmunty that F o
- Brostion, Hnrraty wed vupinie This %f gﬁ?ﬁ
chieges, v g B e st B
Pegrannfy imas if this rogud i

saﬁ%mf@ﬂy wiptomented,
Buale frows 1 » unbeteraated 18 § ¢ antrondy ploaned,
Beasere st gfwwwg»ésa wesy i this
vt of the fiaal prodpet.
meaktors to § <axtromgly dsplesssd,

Figure 1: An Example Volere Shell (Robertson and
Robertson 2002)

The example project chose to implement the following
structure within the template:

* Requirements Number: Requirement identifier

* Requirement Type: The type of the requirement (e.g.
functional, performance etc)

* Event: An event that would trigger this requirement

* Rationale: The reason for this requirement to be
included

* Source: Were this requirement was initially gathered

* Fit Criterion: A quantifiable description of the
requirement

e Satisfaction: A measure of 1-5 of how satisfied the
client would be if this requirement was met.

* Dissatisfaction: A measure of 1-5 of how dissatisfied the
client would be if this requirement was not met.

* Dependencies: Any requirements that would have to be
met for this to be achieved.

* Conlflicts: Any requirement that conflicts with this.

e Supporting Materials: Any references relating to this
requirement.

* History: any old requirements that this requirement may
have evolved from.

Any project, regardless of its size and chosen methodology
will contain requirements, games are no different in this
respect. In many agile methods, keenly used in games, an
extensive requirements and analysis phase are often
overlooked. However, the Volere Shell offers a lightweight
and simple solution to documenting requirements and
producing relevant test scripts that are vital to any project.

THE CASE STUDY: BATTLE CITY

The case study used is taken from (Clutton 2005), and full
details can be found there. The original Battle City had a
playing field with different environmental elements on the
field. The player(s) operated a tank against Non-Player
Character (NPC) tanks. The objective of the NPCs was to

search and destroy the players’ tank and the players’ home
base, whereas the players’ objective was to protect their base
by eliminating the NPCs. Awem Studios have created their
own shareware version of Battle City, Battleman, which
performs in the same way as Battle City. You can see from
the screen shot (Figure 2) there are several types of
environments, brick walls, water and grass as well as various
collectables that can be picked up.

Figure 2: Screenshot of Awen Studio’s Battleman

The requirements for this project included upgrading of the
games engine to contain additions of new components and
also the requirements on the artificial intelligence within the
game play.

Battle City was chosen as there was a wealth of shareware
applications of this game to use and these were observed
during game play to gather requirements from and to use to
compare with the finished product that this project produced.

Battle City was a project of adequate size with a variety of
different requirement types to use the Volere Shells that was
representative of requirements that occur in industry.

VOLERE SHELL RESULTS: REQUIREMENTS

The shell is in table format as it is easy to duplicate, read
from and write into. There is also an excellent case to hold
this information in a database with a simple data entry form
to read and write with.

Table 1 shows our first requirement. Requirement FR1
describes that an NPC should be aware of a players presence
and should respond to that. The requirement includes the
rationale, source and measure as well as supporting materials
and the importance of this requirement through its
satisfaction arguments. This requirement contained no
associated event, dependency, conflict or history so these
fields are empty.

69

Table 1: Requirements Volere Shell (Clutton 2005).

Req. # FR1 | Req. Functional | Event
Type

Description An NPC shall respond to a player’s
presence, either firing or chasing.

Rationale This was a notable absentee in previous
games, meaning the computer was easy to
defeat.

Source Competition Analysis by Robert Clutton

Fit Criterion If in a fit condition, the NPC, upon

recognising the player, should attack.

Satisfaction 5 | Dissatisfaction 5
Dependencies Conflicts
Supporting Player Awareness in Requirements From
Materials Competition Analysis

P1.4.2 Project Definition Document
History

A full set of Volere Shells for this case study can be found in
(Clutton 2005).

AN EXTENSION: VOLERE TEST SHELL RESULTS

A Volere Shell is a requirements specification template.
Through the lifecycle of Battle City it seemed a natural
approach to extend the Volere Shell to incorporate test
planning information. It was decided to have an associated
test shell that extracted information from a Volere Shell. It
would not be possible to include this information on the
Shell itself, as the test script should include failure data
which should be kept and repeated as necessary and not
disregarded when the requirement is met.

In our example, the test scripts were run against the product
and the shareware products used to gather the requirements.
This data was then analysed to see if there was an
improvement on the shareware versions available and to see
if the projects objectives had been met.

Test scripts had been developed using the Volere Shell as a
template. The Volere shell was used once again due the
flexibility of the shell and the close traceability of
requirements and testing. The following information has
been compiled for the test scripts.

* Req. #: Requirement number from the requirements
phase

* Req. Type: The type of requirement

* Fit Criterion: A measurement of the requirement

* Test Type: Black box, white box or play test

* Pass/Fail: A true or false value if the requirement has
been met

* Fault Type: The type of error that occurred

* Error Description: Detailed description of the error

* History: Any previous failed tests associated.

* Inspector: The name of the person testing.

Table 2 shows the Test Shell for the requirement FR1. It
follows the Volere Shell for the same requirements. Here we
see a recap of the requirements’ description and fit criterion.
Then we add further information relevant for our tests. Our
test type is observational as we want to be able to see this

objective. There is a pass/fail mark and although this
requirement has passed, it has not done so fully. An error
description has been provided as to why this is so.

Table 2: Proposed Test Volere Shell (Clutton 2005)

Req. # FR1 Req. Functional
Type
Description An NPC shall respond to a player’s

presence, either firing or chasing.
If in a fit condition, the NPC, upon
recognising the player, should attack.

Fit Criterion

Test Type Observation

Pass/Fail Pass

Error Tank continuously attacks as there is only

Description a small game world, however, the tank will
escape if collision is about to happen.

Inspector Robert Clutton

There is a strong link shown here between the requirement
and the test, and with the format of the shells corresponding,
it is easy to see this. Once again, these shells should be seen
as complementary to any lifecycle processes, not exclusively
part of any particular model.

A full set of the extended Volere Test Shells for this case
study can be found in (Clutton 2005).

CONCLUSIONS

Effective software engineering methods are increasingly
needed to support games development. To that end, this
paper focused on the link between requirements and testing
and how to support that process using Volere Shells.

The case study showed that this was workable in the context
of a small-scale games development project, and that there
appear to be a number of advantages in using Volere Shells.
In particular they represent a flexible, lightweight, low-
overhead approach to gathering requirements and deriving a
consistent and thorough test plan.

The explicit linkage between requirements and testing has
clear practical use — given the rapidity of requirements
change that can be characteristic of games development
projects, this linkage helps ensure that changes in
requirements are fully reflected (which is especially useful
for agile methods), and that no tests arsing (or made
redundant) from changed requirements are inadvertly
missed.

In the context of games development projects, the ability and
freedom to adapt Volere Shells to fit the needs of each

70

project is clearly useful. In addition Volere Shells can be
used independently of the choice of software development
process, whatever be it the unified process or some form of
agile method such as XP.

Further work would involve a much more extensive case
study, preferably examining the use of Volere Shells in the
context of a full-scale commercial games development
project.

ACKNOWLEDGMENTS

We would like to thank Dr Rob Saunders for his advice in
the early stages of this work.

REFERENCES

Ashworth, C. & Goodland, M. 1989. SSADM: A Practical
Approach. McGraw-Hill Publishing Co.

Beck, K. 2004. Extreme Programming Explained: Embracing
Change. Addison Wesley.

Clutton, R., 2005. An Introduction of Artificial Intelligence into an
Arcade Classic. Undergraduate Final Year Project, City
University, London.

DeLoura, M. (Editor), 2000. Game Programming Gems. Charles
River Media.

Eberly, D, 2004, 3D Game Engine Architecture,
Kaufmann.

Gold, J. 2004, Object-Oriented Game Development, Addison
Wesley, Essex.

Rees, E. & Fryer, L., 2003., IGDA Business Committee: Best
Practices in Quality Assurance/Testing. International Games
Developers Association.

Robertson, J. & Robertson, S. 2002. Volere: Requirements
Specification Template, 9th Edition, Atlantic Systems Guild,
London

Sommerville, I, 2001, 6th Edition, Software Engineering, Addison
Wesley, Essex

Morgan

BIOGRAPHY

ROBERT CLUTTON was born in Barking, England and
went to City University, London where he studied for a
Bachelors degree in Software Engineering. He graduated in
2005 and is currently working for British Telecom and has
previously worked for Lloyds TSB, Group IT.

ANDREW TUSON was born in Dagenham, England and
and was educated in Oxford and Edinburgh Universities
where he studied Chemistry and then Artificial Intelligence.
He has been research active since 1994 with over 25
published papers Dr Tuson joined City University, London
in 1998 and is currently a Senior Lecturer in Computing.

Modelling and Prototyping for Psychological Time in Games

David England
Abdennour Rhalibi
School of Computing and Maths
Liverpool John Moores University
Byrom St
Liverpool L3 3AF,
United Kingdom
Email: d.england@livim.ac.uk

KEYWORDS

Modelling, time, interaction

ABSTRACT

Time is an important factor in interaction and particularly
so in real-time games. We described our approach to
modelling user time in games in terms of temporal
durations and temporal relations of user actions. We also
present our notation PUAN, Pattern-Oriented User
Notation for modelling temporal aspects of game play.
Finally we present our Java Engine for Temporal
Constraints, JETeC which is able to read PUAN
descriptions to support prototyping, experimentation and
testing of temporal aspects of game play.

INTRODUCTION

Time in computer games development is usually
considered in terms of systems time. That is, developers
usually think it terms of screen frame rates, CPU/GPU
clock cycles used and network propagation rates. All these
have an affect on the users’ experience but represent a
bottom-up approach to dealing with the temporal aspects
of game play. In this paper we will look at time from the
player’s point of view or psychological time. We will
consider how it can be modelled and how we can express
temporal properties of games play that can be prototyped
for evaluation and testing.

Time in Interaction

In standard approaches to human computer interaction,
time is usually only considered in terms of simple response
time to wuser input [Diaper 1989]. However, later
researchers [Gray 1994] started to add temporal features to
modelling the behaviour of users, in terms, not just of
temporal durations, but also the temporal relations
between the tasks that the user was carrying out. This latter
feature is important when we are considering multi-tasking
environments such as windows where users are switching
between applications and are using applications in

71

combination to perform a larger, overall task. Similarly in
networked or multi-user environments, users will be trying
to coordinate their activities with other users or agents in
the network. Their performance will be affected both by
the speed of the network and the rate or pace of response
from other users.

These temporal factors at the interface have an effect on
the temporal performance of the user, particularly on
short-term memory when acting in a fast moving and
complex environment. An often-quoted guideline in
human computer interaction is that people can only hold 7
+/- 2 items in short-term memory at any particular time.
However, this is only part of the story [Lindsay 1977].
Short-term memory as its name implies degrades quickly
over a few seconds so any interruptions or distractions can
wipeout its contents. Short-term memory is also subjected
to ordering and frequency effects. So we are more likely to
remember items that are presented at the beginning and
end of a list of items. And with the interplay with long-
term memory we are more likely to remember items that
are presented more frequently. The term ifems does not
simply mean a single digit or number. People can use
chunking to put sets of numbers and digits together. Thus
we can learn and remember phone numbers much longer
that 7+2 items because we break them down into chunks
of area code, local code and individual number.

The pace of events with which they have to deal also
affects people’s cognitive performance. There is some
debate amongst psychologists as to whether people have
an internal clock [Zakay 1990] against which they can
measure the assign of time. Regardless of this people can
feel driven by the pace of events at a computer interface
and this can have a positive or detrimental effect on their
performance depending on their level of ability.

Time in Game Play

The best games designers are probably intuitively aware of
at least some of the above factors when they are designing
interactive, real-time games. They know that the pace of a
game can affect the player’s successful progress through
levels. They know how to move up the response times of
enemies to give the game player less thinking time. They

know that adding more enemies impacts on working
memory and requires the user to learn new strategies for
slicing their time between multiple enemies so that they
can be defeated. They know that distracting elements at
crucial times interferes with player performance. In
general games designers will have some feeling for how
these factors can be manipulated to present increasing
challenges to players as they progress through the levels of
a game. Psychological time then is one of the key
components of good games design.

However, as software engineers, we are always thinking
about how we can capture good design knowledge and
decision making so that it can be re-used, tested and
evaluated for a more planned and productive approach to
games development. In the rest of the paper we will
present our method for capturing and modelling these
temporal aspects of design as patterns. We will then show
how we can then use these pattern descriptions in a Java-
based prototyping tool so they can be tested and evaluated.

PATTERN-ORIENTED USER NOTATION

Our Pattern-Oriented User Action Notation, or PUAN, is
based on the User Action Notation of [Hartson and Gray
1991]. It has been developed over the years to cover more
temporal aspects of interaction. We have applied it to
cover interaction in Virtual Reality [England and Du 1998]
and Multi-platform interaction [England and Du 2003]. It
is more fully described in [Du 2004]. Here we will give a
brief overview before giving some game-related examples.

The PUAN follows a similar template to the software
engineering patterns. That is a pattern has a name, a
description of the problem it is attempting to solve and the
names of other patterns, which it uses, or references. In our
pattern language, in addition to an informal problem
description, we also have a formal PUAN description that
can be executed by a prototyping tool. The PUAN formal
description allows the description of temporal relations
between tasks such as:

Tasks are in sequence

Tasks are truly concurrent &
Tasks can be interleaved ||

Tasks can be interrupted ->

Tasks can be order independent <[>

The symbols above are used in the written description.

In addition we can query the start,

stop and duration time of a task and use temporal
comparators to express temporal constraints. We can
check whether tasks can start before, during or after each
other and use conditionals as with any other programming
language.

Example — Comanche 4

72

As an example let us present a moderately complex but
partial scenario from a real-time simulation game,
Comanche 4. We will take the Spetnaz rescue mission as a
complex example (i.e. the author has not completed it).
The overall task

at this level is to fly a helicopter to rescue forces from a
train. The train is in a wooded area surrounded by enemy
forces. The enemy consists of other helicopters, mobile
SAM, tanks and armoured snowmobiles. The player has
several sub tasks:

Flying the helicopter

Scanning the radar for enemies
Visually scanning for enemies
Choosing weapons

Choosing targets

Firing weapons

Additionally there are higher level tasks composed of
these subtasks

e Achieve mission
e Plan a path of attack
e Find cover behind trees and terrain

Temporal constraints also exist in the scenario:

e Enemy vehicles will detect the player within a
certain time and attack

e New enemy vehicles will join the scene if the
mission is not completed within a certain time

e The mission has to be completed before too much
damage is sustained.

We could proceed to further refine the scenario and
describe it in a conventional engineering notation like
UML but for our purposes we wish to examine the player
issues. In the scenario we have several tasks going on at
the same time with different temporal relationships
between them. Some tasks are truly concurrent like flying
the helicopter and scanning for enemies because we are
using different input and output channels in terms of visual
input to short term memory and motor control of the
helicopter controls. Other tasks are interleaved because we
are switching between different tasks such as scanning the
radar and scanning the sky and ground for enemies. And
some tasks have to be done in sequence such as choosing a
target and firing a weapon. We can start to express these
relationships more formally so we have a basis for testing
and evaluating them in our prototyping tools. For example,

While (damage != 100%)
{Plan_of attack }

Plan_of attack is our top-level pattern of interaction which
could be applied to any number of games scenarios. In this
instance it breaks down to

(Fly helicopter || (scan radar || scan scene) |
Choose weapon || (choose target, fire weapon))*

The asterisk is standard BNF notation for repeating tasks
zero or more times. We have a collection of concurrent,
interleaved and sequential tasks to accomplish our
mission. We have written the Flying helicopter task as
interleaved with the other tasks as there is a task
dependency between the position of the player (helicopter)
and choosing and firing at a target. There are further
temporal dependencies as the enemies move, target the
helicopter and fire. Additionally there is gap of
opportunity between the firing rates of enemies.

Enemy Action
(move enemy || (target helicopter, fire)*)*

We can now express a relation between the player and
enemy as

(Plan_of attack | Enemy Action)

where the difficultly of the plan of attack is a function of
the number of the enemy, N, as the more enemies we have
the less time we have to carry out an attack task for each
one. In temporal constraint terms

duration(Plan_of attack) = F(N)
and

duration((scan radar || scan scene) | Choose weapon ||
(choose target, fire weapon) = F(1/N)

i.e. we have less time per enemy as their number increases.
In terms of testing and evaluation we can play around with
the value of N to find a balance between the level being
too easy or hard.

As an aside there is a cognitive overhead in switching
between the concurrent and interleaved tasks. The short-
term memory for each task has to be re-established as we
switch. In conventional interfaces we try and minimise the
switching overhead with cues on the screen but in games
it’s a mechanism for adding to the challenge.

Looking at our collection we can see where the further
challenge and level progression in the number of enemies
facing us. This adds cognitive load in the scan radar and
scan scene tasks, and subsequently the choose target task.

Prototyping the Scenario

Prototyping the scenario is achieved using our JETeC
(Java Engine for Temporal Constraints) tool set to execute
the PUAN description. JETeC provides an APl which
links the temporal descriptions in PUAN and to the scene
objects written by the developer. JETeC creates a java
thread for each task and uses the temporal constraint

73

descriptions to manage the temporal relations and time
checking of task execution.

As PUAN is a textual notation we can make changes to the
temporal behaviour and properties of a game scene
without changing the game artwork or other game objects.
We can thus make hypotheses about the users’ behaviour
given certain temporal conditions and test whether those
conditions hold.

There are some current limitations to our current toolset.
The toolset does not enforce hard-real time. It can only
give a notification that a temporal constraint has been
broken. Secondly our tool set is itself a prototype or proof-
of-concept vehicle to test our ideas about specifying and
testing temporal properties. Hence it is not robust enough
for development testing. However, we believe sufficiently
demonstrates the value of specifying temporal constraints
for games design and testing.

The JETeC Engine consists of two main components: the
parser for reading PUAN descriptions, checking them and
linking them with Java functions; and the scheduler. The
scheduler is responsible for monitoring the behaviour of
PUAN tasks which are converted to Java threads in the
running prototype. The scheduler executes the PUAN
description linking it will other components which provide
the graphical interface to the game and the underlying
logic of the game. It also monitors compliance for
temporal constraints for the prototype as expressed in the
PUAN. Thus it can take alternative actions if these are
specified or flag up deviations from the PUAN when these
are spotted. For example, a time duration may be exceeded
or a sequencing of events or functions may fail.

FUTURE WORK

Our approach to temporal aspects of usability is just one
approach to dealing with temporal issues. Other
researchers have used Petri nets and other techniques from
real-time systems development to tackle the problem.
However these tools are often inaccessible to the designers
of interactive systems. A simpler approach to temporal
task dependency may be found in [El-Rhalibi 2005]. This
paper looks forward to the new multi-processor consoles
such as the Xbox 360 and Playstation 3, and proposes a
method of partitioning games threads to make use of the
new platforms. The same technique could be used to
partition user tasks. In addition we can look at other work
in the use of Al and scheduling to perform some a-priori
analysis of PUAN descriptions to ensure they are workable
and robust before we try to use them in prototyping. This
will become an important aspect as games and PUAN
descriptions become more complex, and thus harder for
human developers to debug.

The new platforms also posed new challenges to games
designers. As discussed at DiGRA 2005 developers have
hardly begun to thing about the possibilities of using

multi-threaded processing in games. Our approach to
modelling multiple threads in games may support an
approach to modelling games that take advantage of multi-
processor platforms. At the same time it offers a way of
testing and evaluating what are often difficult or even
intractable problems found when developing multi-
threaded applications.

Returning to our opening psychological theme there has
been much work in user modelling as a means of testing
interaction models. However, much of this work has not
yet considered multi-tasking by users. More recent work
by [Vera 2005] attempts to match a task description with a
set of guidelines which describe optimum ways of doing
tasks with task switching.

Overall then there is a great deal of potential from both the
computer science theory side and the psychological
modelling side in modelling complex scenarios involving
time in interaction in games.

CONCLUSIONS

We began by considering the psychological aspects of
time in interaction and games play. We can see that
temporal issues are an important factor in designing for
good games play. We gave an outline of our notation
PUAN which aims to capture good design decisions of
time in game play but allowing the modelling of patterns
of temporal relations and durations. A toolset JETeC was
briefly described which allows PUAN descriptions to be
executed for testing and evaluation.

There is a great deal of scope for future work in terms of
the psychological understanding of time in game play, the
development of better models of time in computing and
the development of better tools to support games
researchers and developers, in dealing with the ever more
complex and demanding development of modern and
future games.

REFERENCES

D Diaper 1989, Task analysis for human-computer interaction,
Chichester, West Sussex, England: New York: E. Horwood;

Min Du, 2004 “Temporal Patterns For Complex Interaction
Design”, PhD thesis, Liverpool John Moores University

A El-Rhalibi, S Costa, D England 2005, Game engineering for a
multiprocessor architecture, proceedings of DIGRA 2005,
Vancouver, CA

England D, Gray P D, 1998 "Temporal aspects of interaction in
shared virtual worlds", interacting with Computers, Vol. 11, pp
87-105,

England D, Du M, 2003 "Temporal Aspects of Multi-Platform
Interaction" in Multiple User Interfaces: Multi-devices, Cross-

74

platform and Context-awareness, Ahmed Seffah, Homa Javahery
(eds) , John Wiley, 2003

E Gamma, R Helm, R Johnson, J Vlissides, G Booch — 1995,
Design patterns: elements of reusable object-oriented software,
Addison Wesley

P Gray, D England, S McGowan 1994, XUAN: enhancing UAN
to capture temporal relationships among actions, Proceedings of
the conference on People and computers IX, 1994

HR Hartson, PD Gray , 1991, Temporal Aspects of Tasks in the
User Action Notation

PH Lindsay, DA Norman 1977, Human information processing:
An introduction to psychology, New York: Academic Press

Vera, A., Howes , A., Lewis, R.L., Tollinger, L., Eng, K.,
Richardson, J. (2005). A Constraint-based Approach to
Understanding the Composition of Skill. Invited paper:
Cognitive Architectures in HCI (Ed. M.Byrne). HCI
International , 22-27 th July 2005, Las Vegas, Nevada, USA

D Zakay, RA Block 1990 Cognitive models of psychological
time, Erlbaum, Hillsdale, NJ,

BIOGRAPHIES

Dr David England is a principal lecturer in Computer
Systems and head of the Computer Systems group at
Liverpool John Moores University, School of Computing
and Maths. His teaching and research interests are in
Computer Graphics, Virtual Reality and Human Computer
Interaction. More recently he has been involved with new
media artists in producing experimental games that explore
themes of Human Computer Interaction. These can be seen
at www.hei-fun.org.uk

Abdennour Rhalibi is a principal lecturer in Computer
Systems at Liverpool John Moores University, School of
Computing and Maths. His teaching interests are in
computer games development, Al and Animation. He was
the founding programme leader of the Computer Games
Technology degree course at Liverpool John Moores
University. His research interests span Al and its
applications to games and Computer Graphics. He is on
the technical committee of many current games
conferences and he the organiser of the Games Design and
Technology Workshop at Liverpool John Moores
University, now in its third year.

Space Syntax, Graph Theoretic Methods Applied to an Investigation into the
Navigability of Large-scale Virtual Game Environments
Nicholas S.C. Dalton

University College London
Gower Street
London WCIE 6BT, UK

Email sdalton@cs.ucl.ac.uk

ABSTRACT

This paper suggests that the analytic techniques used in
space syntax might play a role in the support of the
design of certain types of games as they do of urban and
building design. After briefly introducing the audience to
the mathematics of the graph theoretic analytic
techniques under discussion, the paper proceeds to
present an analysis of one particular game map, Grand
Theft Auto - San Andreas. In particular, the analysis is
used to investigate the 'reward' structure of the game. The
paper concludes that there is sufficient evidence to
support the use of such techniques in the analysis of
games: first, the syntactic structure of the game matches
the intuitive layout of the virtual urban-structure, second,
the placement of the game's 'rewards' are not placed
randomly (an analysis of the reward-placement suggests
possible superior placement-strategies based on the graph
analyses) and finally, the intelligibility of the three cities
in San Andreas appears to affect navigational ability, a
finding which is substantiated up by a user-preference
rating-poll for the cities.

Keywords
Game level design, navigation, intelligibility, space syntax.

INTRODUCTION

As In many ways, the difficulties of designing large-scale
games, incorporating unrestricted movement (so called
free roaming games), can be likened to the problems
encountered in the design of complex buildings or urban
landscapes. Games designers, like traditional urban
planners, have the difficulty of crafting a landscape that
will operate as anticipated. For example is one particular
urban-layout more disorientating than another? Does one
design favour one set of routes to those intended?
Alternatively, might the design be so complex as to make
it impossible for players to find their way without a
detailed map? In large-scale games it becomes difficult to
intuitively anticipate all possible a problems and
solutions.

For the past thirty years, urban designers and architects
have had similar problems and have looked to a analytic
theory known as 'space syntax' to help interpret and
measure the potential roles of space and pedestrian
movement when making changes to the wurban
environment.

As games hardware continues to become more powerful,
a number of game-environments have grown to the extent

75

where they can be classified as massively large—scalel.
This paper defines a large-scale environment as one that
incorporates many route choices and typically requires
many hours of exposure for users to become familiar
with navigation in that environment. Games such as
Grand Theft Auto (Rockstar Games. 2005) and Getaway
(Team Soho -Sony Entertainment- 2003), typify the move to
large-scale backdrops to support the narrative elements.
In these cases, the design and construction of the
environment becomes a considerable proportion of the
design-budget. For games, the traditional process of build
and test becomes problematic when seemingly
inconsequential early-design decisions eventually lead to
problems that only emerge during late end-user testing.
One such potential problem-area is that of navigability -
the ability of the average user to navigate successfully
through an environment. It might be that a game is
designed to be deliberately maze-like; alternatively it
could be that an otherwise very good level is accidentally
un-navigable. In these situations, user testing may show
that the players are getting lost and perhaps becoming
frustrated with the level design. Alternatively, the users,
in confusing environments, may navigate unanticipated
(by the designer) routes that by-pass some of the
narrative elements of the game. In these circumstances,
the solution may come from redesigning the level and in
these cases, the size of environment and long
construction processes may lead to long production
delays.

This uncertainty of design outcome is reflected in
traditional architecture and urban design. In this case,
design oversights may equally be irreparable once the
construction process has been committed. Over the last
thirty years, traditional architecture and urban design has
begun to apply a design theory known as 'Space Syntax'
to help understand the 'movement variable' in advance of
the construction process. In practice, space syntax helps

' A “large-scale’ virtual environment is defined as one that
cannot be seen, in it’s entirety, from a single vantage point. A
new term is needed to define virtual worlds that are
sufficiently complex that they can not only not be seen from a
single vantage point, but that considerable time is required to
navigate from one side of the world to another. This paper
terms this a ‘massively large-scale’ environment, partly in
reference to the category of games known as ‘massively
multi-user’, although it should be stressed that not all
massively large-scale environments are MMU (and vice
versa).

the designer understand how design decisions might
affect pedestrian flow and so avoid what is known as the
‘empty windswept plaza' effect. By applying the
analytical methods early on, architects and planners can
to begin avoid early mistakes in the design process while
they are still remediable.

This paper is premised on the likelihood that it may be
possible to apply space syntax theories to the same kinds
of design questions encountered in games as those found
in large-scale architectural/urban design. The benefits
may potentially go in both directions, while the design of
games may learn from the theories and software tools
used in building and urban design. It might also be that,
changes necessary to facilitate level design might feed
back to the real world context. Equally architectural
theory suffers, like the natural sciences, from only being
able to study the existing universe. Like natural scientists,
it is hard for urban designers to perform an 'experiment'
where two identical urban environments differ through a
single variable under study. The use of game and virtual
environments offers the potential for a truly experimental
urban design science.

The first question, which must be addressed is, can
gamers navigate in the same way that they do when
moving though real space. The work of Ruddle, (Ruddle,
R. A et al, 1997 , Ruddle, R. A et al, 1998) Conroy (Conroy,
R.A. 2001, Conroy Dalton, R. 2003) and Haq(Hag, S. 2005)
suggests that people in immersive environments certainly
do navigate in a comparable way to movement patterns in
real-environments. While further work needs to be done
to reinforce these findings it seems reasonable that this
work can be built upon by using this premise as a
working assumption.

SPACE SYNTAX

The core work for the theory of space syntax is produced
by Hillier and Hanson (Hillier, B. and Hanson, J. 1984,
Hillier B,1996.). While this theoretic field is constantly
developing, the primary notions and techniques might be
simplified down to this level; space syntax promotes the
concept that 'space is the machine', that the logical unit of
analysis for the interaction between society and the built
form is the permeable space between buildings.
Permeable space differs for different modes of transport.
A canal becomes part of the permeable space for a boat
or swimmer but part of the impermeable space for a
driver or pedestrian. In London, Oxford Street constitutes
parts of the pedestrian- and bus-permeability maps but
not the car map”. Equally motorways/freeways and
railways often form blockages to pedestrian movement.

Space syntax analysis frequently begins with the
production of a permeability map for a 'spatial system'
(building, village, town, city or neighbourhood). Initially,

2 This is because private cars are denied access to this street,
unlike pedestrians and buses. Therefore, the barriers to
permeability may not always be physical but may be
legislated.

76

all spaces are identified. What constitutes a 'space'
depends on the spatial-decomposition method chosen.
For small buildings, spaces might simply be rooms. For
larger urban systems, spaces are commonly defined as
‘axial lines', these being the smallest set of the longest
lines of sight that fully describe a system (Hillier, B. and
Hanson, J. 1984).

Once the permeability-map has been decomposed into its
discrete spatial units (typically axial lines) the units are
processed to form a graph. The graph consists of a node
representing each axial line. Where axial lines intersect,
then an edge (a link) between both nodes is introduced in
the graph. It should be noted that this is quite a different
representation to the 'node-at-junctions' and 'edges-along-
streets' representations that might initially be expected
and is most familiar to transportation engineers. It should
also be noted that these axial derived graphs are normally
non-planar. Conceptually, an axial line can be seen as a
unit of conceptual complexity that is to say that
continuing in the same direction is simpler than
remembering a number of twisting turns (Conroy, R.A.
2001,. Conroy Dalton, R. 2003)

There are a great number of operations that can be
applied to any graph. Typically these are calculating
global properties of a graph: its size, its girth, its
diameter, whether the graph is closed, and if it is a small
world graph, what is its chromatic polynomial. Space
syntax differs by being interested in the local (the node or
axial line) properties and how these relate to the global
properties (the structure of the whole graph) of the graph.
Core to this mechanism is the concept called integration.

Figure 1 Example of a Simple Graph

To demonstrate the concept of integration, consider the
simple graph presented in figure 1. This graph contains
nodes labelled A and E. Beginning from node A, a
minimum-spanning tree’ can be constructed. The set of
all nodes connected to A (set S;) can be held to have
depth 1; all the items directly connected to those items in
set S| which are not in set S; (nor are starting-node A) are

*In space syntax terminology, this is called a justified graph or
j-graph.

placed in Set S,. This process continues, incrementing
depths, until all nodes have been allocated to a set*.

Figure 2 Distribution of depth from different origins

Each node has a depth attribute that is the length of
shortest path length from that node to the starting node A
(Figure 2). The total depth of the node A is the sum of all
the shortest path lengths from A,(see Equation 1 Definition
of Total Depth D for node i where d(j,i) is the smallest path
length between node i and j in this example 15.
Surprisingly, if this process is repeated using second
node, E, as the starting point a different total depth value
is produced, 27 in this case.

j=N
D, =Y d(j.i)
j=1

Equation 1 Definition of Total Depth D for node i where
d(j,i) is the smallest path length between node i and j

In space syntax terminology, if a node has a relatively
low total depth it is described as being 'integrated'. If a
node possesses a large value (relative to the values of the
other nodes in the system) then it is termed 'segregated'.
Repeating this analysis for each node in the graph a
spectrum of values is calculated, which are particular to
the spatial system. However, by using the normalisation
equations introduced by Hillier and Hanson (Hillier, B.
and Hanson, J. 1984) values, known as the integration
values, are calculated which permits comparisons
between spatial systems of different sizes.

The above computations on the graph, formed from the
intersection of the axial lines, can be repeated for
different systems. Visualising these 'integration' values
by colouring the original axial map, it is found that busy
streets (such as London's Oxford Street) are the most
integrated. Cut-off locations (back alleys, cul-de-sacs)
tend to have segregated (low) integration values. These

* The starting node can be considered to be at depth zero and
therefore in a set of its own, S0).

77

values can be visualised by plotting them on the axial
map as a spectrum of colours from red (highly integrated)
through orange, yellow, green, light blue, dark blue (for
highly segregated). For real urban locations it is found
that the integration values reflect something of our
knowledge of configuration of the streets. Busy streets
tend to be towards the integrated (red) end of the
spectrum and quite 'dead’ streets tend to be towards the
segregated (blue) end. Previous research has shown that
if the pattern of pedestrian movement is noted (by
counting the number of people walking past a notional
'gate’) and compared to the integration values of the axial
lines, that pedestrian flow values tend to strongly
correlate with the integration values (Hillier, B., Penn, A.,
Hanson, J., Grajewski, T. and Xu, J. 1993).

Note that in this form of analysis the only input to the
'model' is the configuration’ of space. This analysis does
not include attractors, (shops, offices, restaurants) or
generators (train, tube bus stations, parking lots). Neither
does the analysis include land use patterns, road quality
or the 'mental models' of average pedestrians. This
minimal input modelling makes syntactical analysis very
suitable for early-stage conceptual design.

Finally, in large-scale analyses, a parameter called
‘radius' is introduced. This creates an artificial window
centred on the axial line under study. With a Radius of r
the total depth of a node, j, is limited to those whose
depth-values are less than or equal to r. The use of radius
r= 3 has been broadly found to be a suitable one for use
in pedestrian analysis and is, in the absence of any
observational data, the radius used in this paper.

ANALYSIS OF THE GRAND THEFT AUTO
ENVIRONMENT

This paper is a part of a larger investigation into
navigation in large-scale virtual environments. The focus
of this work lies in the types of environment found in
desktop VR and three-dimensional game worlds. This
paper will concentrate on the study of one game, Grand
Theft Auto - San Andreas (GTA-SA) (Rockstar Games.
2005), an example of the current generation incarnation in
a series of 'free-roaming games'. The foundation to this
analysis is the similarity between the game environment
and real-world urban environments. That is, the theatrical
and narrative elements of the game are dependant upon
the users' mobility such that they are generally free to
move from one location to another using any navigational
method they may chose (as per real life). The game
Grand Theft Auto is set in a notional universe/state that is
intentionally similar to California. There are three
fictional cities, which bear comparison to San Francisco
('San Fierro', centre left on Figure 3), Los Angeles ('Los
Santos', bottom right on the map) and Las Vegas ('Las
Venturas', top right on the map). The cities are connected

> A configuration is defined as a set of spaces and spatial
relations where each space affects and is affected by all
others; a change to one space will ultimately produce a
change to the status of all other spaces.

by a series of highways. The global syntactical model® is
presented in Figure 3. It can be see from this analysis that
the most integrated point (coloured red-orange) is the
central highway linking the cities. This would suggest
that if observational studies could be conducted (as per a
real-world study) that the highways shown in red would
tend to be those most visited. This is not a surprising
finding; in real US cities the interstate/motorways
frequently have the highest traffic flow counts.

Figure 3 Global Pattern of Movement in the Game

In practice the narrative thread prevents global free
movement before a number of missions are completed.
As a consequence it makes sense to investigate each city
as a separate entity.

If we look at the integration pattern, such as that in Figure
4, of Los Santos we find that the game's use of space is
consistent with its configurational layout (as analysed
using space syntax methods). For example, the
downtown area is centred on the most integrated (red)
areas. The docks are located in highly segregated (blue)
locations are as the high status buildings (the blue areas
to the north/top). These patterns are typical of those
found in real cities.

8 Rockstar Games published the original maps, upon which the
axial map is derived.

78

e

Figure 4 Global Integration Map of Los Santos. Game's Home-
base Labelled 'a'

THE PLACEMENT OF 'REWARDS'

Is there a way of testing the applicability of space syntax
to the design of large-scale games like Grand Theft
Auto? As a preliminary to further, proposed research into
patterns of user-navigation, there are a number of simpler
studies investigating the design of the game (rather than
its use) that may be investigated. One of the aspects of
GTA-SA is the existence of 'odd jobs'. The player is
presented with a number of 'odd jobs' such as overwriting
'tags”' (graffiti placed by the games designers);
overwriting tags (by replacing it with your own) gains
'respect' points and helps the player's overall objectives.
According to the official strategy guide (Bogenn, T and
Barba, R. 2005), if all the tags are overwritten then special
rewards become available. Each tag can be removed in
any order and non completion does not effect the
narrative or completion of the game. Each city, within the
game, has a number of similar odd-job activities that are
available in this way: photographing key views in San
Fierro and finding 'lucky horse shoes' in Las Venturas.

Clearly, a game like GRT-SA is a game designed to be
explored. The presence of location-based rewards is
indicative of this, as the rewards cannot be collected
without extensive exploration. The challenge of these
rewards lies in the difficulty of finding them. Note that
the game dynamic is quite clear here, if the items are in
locations that are too segregated then the players is
unlikely to chance upon them. If all the tag locations, for
example, were in central and frequently visited
(integrated) locations then they would be too simple to
find and the challenge and skill to finding them would be
diminished. Obviously, the game must strike a balance
between placing items in obvious locations to encourage
the player to begin collecting reward points and locating
some rewards in the most remote places in order to create
rarity (and so add value to the difficulty of finding them).

" In graffiti culture "tagging” is a term that describes a graffiti
artist's personal logo, which is incorporated into their graffiti
art.

From an architectural point of view, the question
becomes one of whether the locations of the tags are a
simple random selection from all spaces or does their
placement reflect an understanding of the underlying
spatial structure of the game world? Furthermore, we
need to ask if the integration values, according to space
syntax analyses permit the exposure of this implicit
knowledge and aid the wunderstanding of the
configurational structure of the game space.

One preliminary test is to examine the distribution of
integration values for the location of game 'gifts' and
more specifically 'tags'. This paper makes the basic
assumption that each tag is related to its nearest driveable
street and hence may be assigned an integration value
matching this street. The distribution of the integration
values of all the streets may then be analyzed. Taking the
subset of all streets, which have are associated with a tag,
(Sy), it is possible to restate the above question in a
statistical form. Is the distribution of the sample set, S, a
random sample drawn from the general distribution of
integration values (S) or not?

| wagged
iy Vales

Normalized frequency

Distribution

Figure 5 Normalised Frequency Distribution of the Global
Integration Values of 'Tags' in Los Santos

This question can be partially visualized by creating the
histogram in Figure 5. To permit the comparison between
the different sample sizes the values have been
normalised. By inspecting this chart, it can be seen that
the tagged axial lines are disproportionately skewed. At
the right-hand side of the histogram the number of tags is
higher than would be expected, if the tags followed the
distribution of all lines. Namely, there are more tags on
highly integrated and hence highly visited lines. This
follows the paper's initial hypothesis that a large number
of tags should be places on highly visited lines in order to
encourage the player to start their 'tag' collection. The
high numbers of mid-range values (bin 14 on Figure 5) are
found in the spaces near the starting point (or home base)
of the game. This reflects the natural assumption that the
tags are identifying 'gang turf, that is that they are
centred on the opposing gang's territory.

Here the conflict between a good game and a good
simulation is evident. It would be expected that a good

79

simulation would focus 90% or more of the tags in gang
territory and close to the geometric centre of their region,
whereas the greater urban distribution of tags supports
the 'treasure hunt' aspect of the game. Finally, it can be
seen (on Figure 5) that the segregated bins (4,5,6 and 7)
are mostly empty and that the most segregated bins (2
and 3) have a higher than expected number of tags. Bins
1-3 represent the most segregated (blue in Figure 4)
locations. This is where the player has to be most
persistent and diligent in the collection of tags (or where
they must cheat and use a guide-map of tag-locations).
Why are the bins 4-7 mostly empty? By checking the
locations of these axial lines, it can be seen that these
spaces tend to be the ones leading to the most segregated
lines rather than the most segregated. Why place the
reward halfway down a long, winding track when it can
be placed at the end of it?

Such a visual inspection of the histogram can be
supported by performing a Z-test between the set of 'all
axial lines' (the population) and the sub-set of 'tagged
axial lines' (S;). The outcome of the Z-test produces a
value of 7.66, which is larger than 1.96 suggesting that,
we can say with a confidence of 95%, that the sample
sub-set of tagged axial lines (S;) is not a random sample
of the population.

If this test is repeated using the integration radius three
(r3) values (rather than integration values, as per the
previous example), the Z value changes to 10.97. This
result suggests that the positioning of the tags relate more
strongly to the local centres rather than to global spatial
structures (often the vehicular as opposed to pedestrian
movement patterns). This result should be taken with
some reservation, however, as the map analysed is the
virtual 'vehicular map'. Were a detailed pedestrian
permeability map available then a more subtle use of
space might begin to emerge.

This experiment can be repeated by examining the
'snapshot' locations of San Fierro. In this city, the player
has to take photographs of specific key locations. In this
case, we might expect the photograph points chosen to be
well distributed and if previous experience is any guide
skewed towards more integrated (well-used) locations.
The Z-test value for this is 5.54; again this gives us more
than a 95% confidence that these points are not randomly
selected from all available streets. For radius 3 (local or
pedestrian movement) a Z value of 42.20 This is
reinforces the findings from Los Santos that better results
might be found by using a more detailed pedestrian-level
map.

Finally, locations of the lucky 'horseshoes' in Las
Venturas can be examined. In this section, the greater the
number of lucky horseshoes that a player finds, the
greater their luck on the gambling tables. Repeating the
Z-test for Las Venturas on integration values, a Z value
of 5.59 is found. Interestingly, this is very similar to the
value for Z for global integration in San Fierro. Perhaps
this suggests that further investigations might
demonstrate that the choice of hiding places in San Fierro

is similar to that for Las Venturas. The radius three
(pedestrian scale) Z-test value is 9.95; again this
reinforces the suspicion that analysis with a pedestrian
permeability map would produce more clear-cut results.

INTELLIGIBILITY, NAVIGATION AND USER-
PREFERENCE

In the field of space syntax, one factor that has been
suggested is an emergent property of a city or urban
region is the property of 'intelligibility' (Hillier B 1996)
Intelligibility is the generally defined as the strength of
the relationship between a system's local and global
properties. Experientially this is a formal measurement of
‘the degree to which, how much of what I can see, can
guide me in my global movement through the whole
system'. An alternative description of intelligibility might
be how 'maze-like' is the system? One way of measuring
intelligibility is to examine the correlation coefficient (r-
squared) between a global measure (like integration) and
a local one (such as integration of radius 3 or
connectivity). In the real world low intelligiblity factors
are common in places like desolate houseing
estates/housing projects.

If the three cities are considered isolation, it can be seen
that Los Santos has an r3/integration r-squared value of
0.648, San Fierro of 0.807 and Las Venturas of 0.496. It
would be interpreted that San Fierro is the most
intelligible and least maze-like of the three fictional cities
and Las Venturas the least intelligible.

One independent discussion board (Neoseeker 2005) asked
GTA-SA players the question "What is your favourite
City?" Respondents were able to provide answers in any
format they cared; by reformulating the results into a
score for each city®. It was found that Los Santos was the
most popular city (with a score of 92), followed by San
Fierro (76) and finally Las Venturas (score 48). There
were 53 clear (and encodable) respondents to this
particular question. One hypothesis is that Las Venturas
is the last city to be visited in the narrative and so has less
exposure than the others. However, an alternative
hypothesis, and the one which is suggested here, would
be that an unintelligible (more maze-like) city would be
less amenable to free-roaming exploration than a more
intelligible one. Intelligibility factors of 0.807 (San
Fierro) and 0.648 (Los Santos) are fairly high while the
value of 0.496 (Las Venturas) is relatively low. While the
relationship between intelligibility and user-preference is
clearly not causal (a highly intelligible city is not
necessarily going to make it preferable) it could be
argued that it is at least facilitative (i.e. easier to make a

¥ The answers were re-coded into a numerical score. Where a
clear preference was given for one city, a score of 3 was
assigned. If an unequivocal dislike for a city was expressed, it
was ranked 1 of 3, with a score of 2 being reserved for the
middle category: neither a marked preference nor dislike
expressed. If a respondent simply did not mention a city, no
score was given. The scores were summed for all answers.

80

'good city' if it has an intelligible layout) of ease of
navigation and hence good game-play.

CONCLUSION

First, it has been demonstrated that an analysis of the
hidden 'rewards' for different cities, consistently produces
a non-random shift in the distribution of the integration
values of the locations of these rewards. Furthermore, the
data indicates that these rewards' are even less randomly
distributed if the player is searching on foot as opposed to
driving. This result is consistent with the logic that the
game was intentionally designed to create a simulated
experience of urban space. Secondly, these results are
consistent with this paper's hypothesis that the space
syntax methods presented here are applicable to the
analysis of game environments as well as traditional
architecture and urban design.

Finally it has tentatively been shown that the
intelligibility of a city may be consistent with the players'
subjective impressions of the cities. Again, this
contributes to the hypothesis that the design factors
applicable for real cities are relevant to the virtual/game
domain.

The work presented here is the initial stage of a larger
investigation into the movement patterns of players in
immersive games. The hypothesis that movement
patterns in immersive games would be similar to those
found in the real world will be better supported by a
detailed observation of the movement patterns of players
in the environment. The navigational patterns can then be
compared to and correlated with the patterns of
integration produced by space syntax analysis. It is
intended that this be applied to a large number of sample
worlds.

Clearly, more work needs to be done before it can be
established that there is a reliable link between world
design and player experience as mediated through space.
The design of massively large-scale games like GTA-SA
creates a number of novel demands on current spatial
analysis methods. For example, is it possible to examine
the role of narrative in the game and the effects this has
on the learning of the urban layout? What is the
relationship between spatial configuration and narrative
structure? These kinds of questions will necessarily
demand changes to and new insights into current real-
world space syntax theories.

ACKNOWLEDGMENTS
My thanks to Ruth C Dalton for her assistance in
proofreading and formatting.

REFERENCES

Bogenn, T and Barba, R. 2005, Grand Theft Auto San Andreas
Official Strategy Guide. Pearson Educational. 2005.

Conroy, R.A. 2001, Spatial Navigation in Immersive Virtual
Environments, PhD Thesis, submitted to the University of
London, 2001.

Conroy Dalton, R. 2003, The secret is to follow your nose:
Route path selection and angularity, Environment and Behavior,
35,2003, 107-131.

Hagq, S. 2005, Comparison of Configurational, Wayfinding and
Cognitive Correlates in Real and Virtual Settings. In
Proceedings of 5" International Space Syntax Symposium.
Delft, 2005.

Hillier, B., Penn, A., Hanson, J., Grajewski, T. and Xu, J. 1993,
Natural Movement: or, Configuration and Attraction in Urban
Pedestrian Movement. Environment and Planning B, 1993.

Hillier, B. and Hanson, J. 1984, The Social Logic of Space.
Cambridge University Press, Cambridge, 1984.

Hillier B 1996. Space is the Machine. 1996, London,
Cambridge University Press, 1996.

Neoseeker 2005,
http://www.neoseeker.com/forums/index.php?fn=view_thread&
t=468284. Accessed 2005.

Penn, A. 2003, Space syntax and spatial cognition: Or, why the
axial line? Environment and Behavior, 35, 2003, 30-65.

Rockstar Games. 2005, Grand Theft Auto — San Andreas.
London, 2005.

Ruddle, R. A., Payne, S. J. and Jones, D. M. 1997, Navigating
Buildings in "Desk-Top" Virtual Environments: Experimental
Investigations Using Extended Navigational Experience.
Journal of Experimental Psychology: Applied. 3(2), 143-159,
1997.

Ruddle, R. A., Payne, S. J. and Jones, D. M 1998. Navigating
Large-Scale "DeskTop" Virtual Buildings: Effects of

Orientation Aids and Familiarity. Presence: Teleoperators &
Virtual Environments, 7(2), 1998, 179-192.

Team Soho (Sony Entertainment) 2003, Getaway, 2003.

BIBLIOGRAPHIE

NICK SHEEP CONROY DALTON born in 1963
Studied Appropriate Technology at the University of
Warwick (UK). He worked as a computer science
researcher at UCL and went on to engage in research in
to ‘Space Syntax’. In 1998 he setup the Masters In
Virtual Environments in the Bartlett School of Graduate
Studies. Currently he has returned to pure research as a
EngD PHD student.

81

82

ONLINE
GAMES
RESEARCH

84

Requirements for Communication Frameworks for Mobile Games on Ad Hoc Networks

Stefan Fiedler
Departement of Media Informatics
University of Ulm
e-mail: stefan.fiedler@uni-ulm.de

KEYWORDS
Massive Multiplayer Games, Mobile Games, Context
Awareness, Ad Hoc Networks

ABSTRACT

Mobile computer games are not only under development
by the industry but also an area for researchers to ex-
plore new genres for mobile environments. The new
generation of mobile game consoles allows new types of
applications by supporting wireless networks. In this pa-
per we introduce an approach that enables mobile games
to communicate using highly dynamic mobile ad hoc
networks. In order to allow for a fluent game play, we
classify the interactions provided by a game according
to their network requirements into different communi-
cation categories. We present a framework that incor-
porates these requirements and provides context infor-
mation for the game. Then the game is able to use this
context information to integrate it into the game logic.

Introduction

Multiplayer support is nowadays an essential feature for
games to be successful. Especially Massive Multiplayer
Games, where several thousand players interact in the
same virtual world over the internet enjoy great popu-
larity. With the large number of participants new chal-
lenges regarding consistency, persistence and synchro-
nization arise.

With the increasing spread of mobile devices computer
games become part of their basic configuration. But
most computer games on mobile phones, PDAs, and
early mobile game consoles are limited to simple sin-
gle player games or multiplayer games with very few
participants. The new generation of portable game con-
soles offers new opportunities, based on their superior
hardware. The most important feature is their network-
ing capability: With the introduction of wireless net-
works, especially Wireless LAN, ad hoc networks can
be formed.

Nowadays games on these new mobile consoles support
only a limited number of local players. All Players must
stay in direct radio range and thus the same broadcast
area. Such wireless networks provide quite the same
conditions that were existent in classical Local Area

85

Michael Weber
Departement of Media Informatics
University of Ulm
e-mail: weber@Quni-ulm.de

Networks. The new opportunities provided by the new
consoles are left unused, i.e. ad hoc networks and the
mobility of players.

Related Work

Some games available are already designed for mobile
devices and take advantage of their additional features.
Games designed for mobile scenarios still under research
are Mixed reality and Pervasive games which try to in-
corporate the real world context in which the players re-
side into the story and even in the handling of the games
[BMLO5]. These games often use localisation mecha-
nisms to provide this context.

Nearly all Massive Multiplayer Games in the internet
use a client server communication architecture [Kus05].
The main reason for this is the simple control over the
system. Persistence is easily accomplished, and syn-
chronization algorithms are only needed between servers
with a known infrastructure. Consistency is not a prob-
lem either as there is only one defined game state at the
server cluster.

In order to operate Mobile Massive Multiplayer Games
without central infrastructure, clients need to establish
ad hoc networks to communicate with other players.
But these networks introduce new problems like node
failure and network partitioning. With nodes only be-
ing able to communicate within their direct neighbour-
hood only parts of the game state are accessible. Simi-
lar problems can be found in the areas of distributed file
systems and mobile databases. [MS04]. In the discon-
nected state the clients usually work on a locally cached
or replicated data set and propagate their updates to
the server when they are online again. An essential dif-
ference to the scenario described here is the fact that
they synchronize with a central server or database that
updates the common global state and resolves inconsis-
tencies.

Requirements

The goal of this paper is to present a framework that
enables Massive Multiplayer Games on mobile gaming
devices without a central infrastructure. All commu-
nication relies solely on peer to peer connections over
multihop ad hoc networks. This enables nodes to com-

municate indirectly through additional nodes in between
them, even if they are not in direct radio range.

Through the limited radio range of these consoles and
their constant mobility we must assume that the ad
hoc networks are built of dynamically changing subnets.
There may occur network partitioning and fusion when
nodes are regrouping. Especially in the case of network
fusions a common state has to be found which is ac-
ceptable for all participants, while the game is running
continuously and seamlessly onward. Furthermore the
connection quality between the communicating nodes
within a partition depends heavily on the network topol-
ogy and has enormous impact on the game and thus has
to be taken into account by the game logic itself.

The different forms of interaction in games [EPB05] re-
sult in different requirements referring to latency, per-
sistence, and synchronization. For instance one class fo-
cuses on reactivity, which is especially important when
interacting directly with other players. Other forms of
interaction require a reliable transaction mechanism, for
example when trading items with other players. An-
other class is indirect unit commands used for example
in real time strategy games, which tolerate a moderate
latency and the nodes are typically kept strictly syn-
chronized.

Framework

A Framework for games that take these requirements
into account must provide a content based communica-
tion interface. Depending on the requirements of every
object their desired connection properties must be speci-
fied individually. To get to a profound model we propose
a classification of typical interactions found in computer
games taking in account communication parameters like
network properties, consistency, and persistence.

Network Properties

The effect of latency and jitter on games for example
depends heavily on the genre and has great impact on
the subjective perception of the game flow. Jitter should
be kept as small as possible and uniform especially in
direct player interaction.

Direct User Interaction A latency of 100-225 ms
enables direct interaction between players as is needed
for e.g. fights [HenO1]. Higher latencies break the feeling
of direct interaction and can lead to unfair game results.

Indirect Unit Commands Up to 500 ms are ac-
ceptable when using indirect commands to control char-
acters, comparable to those used in real time strategy
games [BTO01].

86

Message Transference Even larger latencies are tol-
erable for the third category that includes for example
messaging or item trading. Durations of several minutes
up to hours per transaction are acceptable.

Consistency

As stated earlier not all events require strict synchro-
nization to keep the virtual world consistent [LKDT04].
For example no strict synchronization is needed if the
character positions are transmitted in absolute coor-
dinates allowing the game even to compensate packet
losses for a certain amount of time by extrapolating the
characters position. Since every node can communicate
only with its neighbourhood new weak synchronization
mechanisms must be provided to compensate the lack
of a global view of the game state.

Persistence

In pure peer to peer architectures persistent storage and
availability of objects is a major challenge. This is espe-
cially true for ad hoc networks in which the place where
to store the object has to be chosen carefully. In order
to guarantee high availability techniques similar to peer
to peer approaches used in file sharing networks can be
used.

Character Properties We propose to store all char-
acter properties and items associated with it on the
player’s device. Whenever a participant leaves the net-
work no further interaction with that player or its asso-
ciated items is necessary or possible.

Environmental Objects Objects not associated di-
rectly with a player could be handled by different meth-
ods. Many properties and objects in games have a
volatile character and are only managed during runtime
and are not stored permanently. If objects are persistent
the framework has to replicate them in an appropriate
way. These replicates don’t have to represent exactly
the same state. This is often not even possible due to
network partitioning.

Messages Another category of persistent objects are
messages or transactions between players. The nodes
have to store and forward them in a reliable way to the
receiver. To achieve this even in paritioned networks
where users are not allways in reach, network context
information can be used, for example if the framework
saves a buddy list of players it has often contact to
[DFLO1].

Game Context

Users should be aware of the games context like the qual-
ity of network conditions or currently available players
[Hen03].

Adaptation of Communication In order to map
the different interaction classes to the game, it must be
aware of context state of its surrounding. The frame-
work collects this information and provides it for the
game. This enables the game to estimate which envi-
ronmental objects can be perceived by other players and
thus determine which objects have to be synchronized.
By taking into account the physical position of players
a natural subdivision of the virtual world evolves. The
division of the world in smaller parts allows a more effi-
cient synchronization. A further optimization is to syn-
chronize only objects within the player’s sight. Weaker
mechanisms can be used to synchronize objects not in
direct visibility or far away from the player.

Integration into Game Logic These context infor-
mation are not only used internally by the game to adapt
the communication. They are also presented to the user
when appropriate. This may vary from simple technical
presentation in the user interface to direct integration
into the logic of the game like instancing techniques used
in massive multiplayer games.

In order to evaluate the practicability of such a system
we are developing a prototype emulating such a game
using a network simulator. We chose the network sim-
ulator Jist/Swans that allows an efficient simulation of
network traffic with many nodes over a long period of
time [Bar04].

Conclusion

We presented essential aspects that must be considered
when implementing massive multiplayer games for mo-
bile consoles without a central infrastructure. A major
issue is the classification of interaction based on net-
work requirements. This enables fluent gameplay de-
spite largely varying connection quality in a dynamic
multihop ad hoc network. We pointed out that inte-
gration of environmental context allows the game to in-
corporate technical conditions of the network and social
context information on the one hand. On the other hand
it is able to integrate context information into the game
logic itself, and to present this information to the user.
Considering these aspects a framework is developed that
provides an interface through which an application can
communicate and receive context information. In our
future work we intend to further extend our game logic
covering all essential communication classes to test our
framework with network simulations. Using these net-
work simulations we will evaluate and verify different

87

algorithms and parameters on synchronization, persis-
tence and context information.

REFERENCES
[Bar04] Rimon Barr. An efficient, unifying approach

to simulation using virtual machines. PhD
thesis, Cornell University, May 2004.

Steve Benford, Carsten Magerkurth, and Pe-
ter Ljungstrand. Bridging the physical and
digital in pervasive gaming. Commun. ACM,
48(3):54-57, 2005.

[BMLO5]

P. Bettner and M. Terrano. 1500 archers on
a 28.8: Network programming in age of em-
pires and beyond. In Game Developers Con-
ference 2001, San Jose, CA, March 2001.

[BT01]

[DFLO1] James A. Davis, Andrew H. Fagg, and
Brian N. Levine. Wearable computers
as packet transport mechanisms in highly-
partitioned ad-hoc networks. In ISWC "01:
Proceedings of the 5th IEEE International
Symposium on Wearable Computers, page
141, Washington, DC, USA, 2001. IEEE

Computer Society.

[EPB05] Daniel Eriksson, Johan Peitz, and Staffan
Bjrk. Enhancing board games with elec-
tronics. In PerGames ’05: Proceedings of
the ACM Pervasive workshop on Pervasive

Games. ACM Press, 2005.

[Hen01] Tristan Henderson. Latency and user be-
haviour on a multiplayer game server. In
NGC ’01: Proceedings of the Third In-
ternational COST264 Workshop on Net-
worked Group Communication, pages 1-13.

Springer-Verlag, 2001.

[Hen03] Tristan Nicholas Hoang Henderson. The ef-
fects of relative delay in metworked games.
PhD thesis, University of London, February

2003.

[Kus05] David Kushner. Engineering everquest.

IEEE Spectrum, 42(7):28-33, July 2005.

H. Lu, B. Knutsson, M. Delap, J. Fiore,
and B. Wu. The design of synchro-
nization mechanisms for peer-to-peer mas-
sively multiplayer games. Technical re-
port, Penn CIS, 2004. Available on-
line: http://www.cis.upenn.edu/~hhl/
Papers/MS-CIS-04-xy.pdf, last accessed
20.7.2005.

Bela Mutschler and Giinther Specht. Mobile
Datenbanksysteme. Springer, 2004.

[LKD*+04]

[MS04]

Optimization of Multi-Player Online Game
Server based on Predicted Dynamic System

Soon-Jeong Ahn , Woo-Suk Ju
Ying Quan , Choong-Jae Im
Dongseo University, Busan, South Korea
E-mail : {sjahn,savrang}@dongseo.ac.kr,
emilyquan@hanmail.net, dooly@dongseo.ac.kr

Keywords :
Online game server,Prediction based dy-
namic thread pool system

Abstract

Online game servers usually has been
using the static thread pool system. But
this system is not fit for huge online
game server because the overhead is al-
ways up-and-down. Therefore, in this
paper, we suggest the new algorithm
for huge online game server. This algo-
rithm is based on the prediction based
dynamic thread pool system. But it was
developed for web ser vers and every
0.1 seconds the system prediction the
needed numbers of threa ds and deter-
mine the thread pool size. Some experi-
mental results show that the check time
of 0.4 seconds is the best one for on-
line game server and if the number of
worker threads do not excess or lack to
the given threshold then we do not pre-
dict and keep the current state. Other-
wise we apply the prediction algorithm
and change the number of threads. Some
experimental results shows that this pro-
posed algorithm reduce the overhead
massively and make the performance
of huge online game server improved
in comparison to the static thread pool
system.

88

1 Introduction

Computer online game is a kind of game
that includes hundreds of players dis-
tributed over WAN scale networks. Now,
there have been two fundamental server
architectures proposed Peer-to-Peer and
Client-Server (C/S) for communicating
each other. We concentrate on the re-
search based on C/S model. To con-
struct C/S online game, we need make
a server program to do with players’
requests and send related data to spe-
cific clients. For designing this program
we need first know some characteristics
about online game. First, every player
requests game packets in the time of
o.1seconds constantly until the game is
ended and its processing time must be
very short. Second, a huge of requests
is transferred to game server from hun-
dreds of player simultaneity. Third, re-
quests need to be response and the re-
sponse packet are sent to related clients
by game server in time but its size is
extremely small in contrast with web
server. Finally, normally, the number of
player is below 1000 in the same game
server and take the static thread pool
system.

In this paper, we experiment with be-
low 1000 users based on prediction based
dynamic thread pool system. But we
find that the system was not fit for huge
online game server because overhead is

up-and-down constantly and the addi-
tion and reduction process happened
frequently. So the the amount of pro-
cessed packets is reduced. Therefore,
we propose to set the threshold for the
number of working thread and find the
fact that the check time must be in-
creased by some experiment. Under the
se condition, we apply the prediction-
based dynamic thread pool system to
huge online game server. Some experi-
mental results show that our proposed
algorithm can make the overhead re-
duced and the performance of online
game ser ver increased. This paper is
composed as followings. We first intro-
duce some characteristics of current on-
line gam e server and the theories of
static/predic tion based dynamic thread
pool system in Section 2. We suggest
the our proposed algorithm for huge
online game server in Section 3. Finally,
we compare the performance of the pro-
posed online game server with static
thread pool system and give some re-
sults in Section 4. Conclusions are pre-
sented in Section 5.

2 Previous Works

The client’s requests transferred by the
TCP/UDP layer are processed in worker
thread . Fig 1 shows the overall archi-
tecture of thread pool system.

BIATION

TLRDR

Recening
- Sideg
| |} wingey

Sencing
> Siding
||} window

Fig. 1. architecture of thread pool system

89

There are two methods to determine
the number of worker threads, called
static thread pool system and dynamic
tread pool system. In this section, we
will introduce the static thread pool
system for online game server and predi
ction-based dynamic thread pool sys-
tem for online game server.

2.1 Static thread pool system
for online game server

This system use the fixed worker thread
pool size as follows .

worker thread pool size
= the number of CPU x 2

This means that the size of thread
pool should be two times of the num-
ber of CPUs on the host machine [6].
Normally, it is considered as a start
point and then is tuned according as
the ability of processing packets and
overhead to game system in order to
further optimize the size of thread pool.
Because there is not any time-waste on
creating and destroying threads dur-
ing the runtime, it reduces the response
time. And it also avoids consuming the
resource of server such as CPU usage
and memory, when it creates overfull
threads in game server. However, from
the fixed the pool size, it can not use
the system resource effectively, thus it
can make lower the game server perfor-
mance lower [2]. To solve this problem,
it is desirable to have a kind of thread
pool which can configure itself based on
the current status of thread pool. That
is dynamic thread pool system. D. Xu
and B. Bode [7] suggested the dynamic
thread pool system using the heuris-
tic algorithm. J.H. Jung et al. [3] sug-
gested that the worker thread pool size
is determined by the prediction-based
dynamic thread pool system.

2.2 Prediction-based Dynamic
Thread Pool System

It is a combination of a worker thread
pool and a pool manager thread. Pool
manager thread can tune the size of
worker thread pool based on the cur-
rent status of worker thread pool so as
to deal with more requests through us-
ing the rest of game server’s resource.
Fig 2 shows about internal operation of
Pool Manager Thread. Pool Manager
Thread can tune the size of Worker
Thread Pool.

Fig. 2. Flow chart of pool manager thread
operation

the performance because it can add sev-
eral worker threads when most of worker
threads are busy to work and there are
still many requests waiting for process-
ing. However, because its variance of
thread pool size is fixed and the amount
of clients’ requests changes constantly,
tho ugh worker threads added into the
dynamic thread pool can increase the
ser ver performance of processing re-
quests, som etimes they are not enough.
To solve this problem, exponential av-
erage can be used to predict the amount
of worker threads in next time. If we
can predict how many extra worker thre
ads is needed in next time, we can save
creating time and avoid process those
packets until the idle worker thread is
created when there are big amount of
packets arrived. And we can also re-
duce wasting in system resource because
thread waste a part of memory and CPU
scheduling time when too many idle wor
ker threads still exist. Today, predictable
dynamic thread pool has been advanced.
Before tuning the thread pool size, game
server program first predicts the amount
of threads needed in the next time thr
ough using exponential average idea [3]
[5] in favor of increasing the server per-
formance and saving the extra system
resource waste. Exponential average ap-

It is unique and works through check- proach [5] is used in the CPU schedul-

ing the status of worker thread pool
(Busy, Idle and Normal) at intervals of
a check time. If the status of worker

ing problem for the prediction of the
idle period. In the CPU scheduling prob-
lem, operating systems need to predict

thread pool is busy, pool manager thread the length of the next CPU burst in or-

adds some new worker threads. If the
status of worker thread pool is idle, pool
manager deletes some free worker threa
ds. If status is normal, there is not any
change in worker thre ad pool until next
check. Dynamic Thread Pool avoids the
management overhead of too many thr
eads because it can delete extra worker
threads by itself. And it can increase

90

der to make appropriate process schedul-
ing. In general, the next CPU burst
is predicted as an accumulative aver-
age of the measured lengths of previous
CPU bursts. Similarly, we can predict
the next idle period by the accumula-
tive average of the previous idle peri-
ods. Exponential average formula is

Loy =at, +(1—a)l,, (0<a<]l1)

The parameter a controls the rela-
tive weight of recent and past history in
the prediction. If @ = 0, then I},41 =
C. In other words, the recent history
has no effect. On the other hand, if
o 1, then I}, = t,. In this case,
the prediction only takes into account
the most recent running threads but ig-
nores the previous predictions. In our
implementation, « is set to be 0.5 so
that the recent history and past history
are equally weighted.

3 Proposed system and
experimental results

3.1 Proposed System

Fig 3 shows internal operation of pool
manager thread in addition to the func-
tion of predicting how many worker thre
ads need be added/deleted based on
the amount of worker threads in the
next time when the status of worker
thread pool is busy or idle.

This figure is full operation of pool
manager thread in our proposed sys-
tem. There are two problems to realize
proposed system to online game server
programming. Problem 1 is whether pro-
posed system must be better than static
thread pool for any amount of users
or not. Problem 2 is how to determine
check time. That is to say the frequency
of checking the status of worker thread
pool. If check time is too small, game
server program has to add/delete some
threads very frequently. It brings so mu
ch Creation /Destroy of thread as to
spend much time on creating/destroyin
g thread instead of processing game pac
kets. The benefit of adding worker threa

91

Fig.3. Flow Chart of Pool Manager
Thread operation with predicting variance
of worker threads

ds is canceled by the overhead of threads’
creation. If check time is too big, the
Pool Manager Thread can not monitor
the status the dynamic thread pool ef-
fectively. To judge that dynamic thread
pool fits what kind of online game server
and describe the effect of check time
for improving the performance of game
server program, I do several groups of
experimentations with different user amo
unt and tune the check time value in
every group. The game server operat-
ing system is Windows 2000 Server run-
ning on two 2GHz Intel(R) Xeon(TM)
processors. The physical memory size is
2G. Game server’s I/O model is IOCP.
And clients run on one 2.8GHz Intel(R)
Pentium(R) 4 processor and physical
memory size is 512MB. They are 800
users and 1000 users. We run 200 threads
(every thread simulates one client) on
one client PC at best. A new thread
will be created every one second. Ev-
ery client sent 3 kinds of different pack-
ets. Sending method is as follows. The
whole testing time is 3 minutes.

3.2 Experimental results for
problem 1

We did 10 tests about proposed sys-

tem with different check times (they

are from 100ms to 1000ms) and one

test about static thread pool. These fol-

lowing 3 figures are comparison diagram
s of game server with dynamic and static
thread pool as follows.

400 Users

tima(z)

Fig. 4. Proposed/Static Thread Pool for
400 Users

Fig 4 shows the experimental result
that the proposed system does not have
difference with static system.

HEBHERARIER

1 1528 43 587 71 85 99 113127 141155 169

dima(s)

Fig. 5. Proposed/Static Thread Pool for
800 Users

Fig 5 shows that the effect of static
thread pool and dynamic thread pool is
different. We can see the performance
of dynamic thread pool is much better
than the one of static thread pool when
check time equals 0.4s.

92

1000 Users

115 79 43 57 71 85 99 113127 141 155 169
time(s)

Fig. 6. Proposed/Static Thread Pool for
1000 Users

Fig 6 also shows that the effect of
static thread pool and dynamic thread
pool is different. This time we also can
find the performance of dynamic thread
pool is much better than the one of
static thread pool when check time equa
Is 0.4s again. Through these experimen-
tations above, we find that the dynamic
thread pool doesn’t make much differ-
ence to the performance of game server
using static and proposed system when
the amount of users is 200, 400 and
600. However, the dynamic thread pool
starts to make much difference to the
performance of game server when the
amount of game users is 800 and 1000.
And when check time of dynamic thread
pool is modified properly, the effect of
dynamic thread pool is the best.

3.3 Experimental results for
problem 2

Because the check time of dynamic thread
pool give the effect to the performance
of game server using dynamic thread
pool, we listed the average packets pro-
cessed by dynamic thread pool when
the amount of users is 800 and 1000.

We find that the performance of game

server is the best when check time equals
400ms in the Fig 7 and Fig 8 above.

600 Users

100 200 300 400 SO0 600 OO 800, 900 100D
check time{ms)

Fig. 7. Average Packets processed by pro-
posed system for 800 Users

1000 Users

100 200 300 4000 SO0 600 700 8O0 900 1000
check time(ms)

Fig. 8. Average Packets processed by pro-
posed system for 1000 Users

4 Conclusion

In this paper, I built a dynamic thread
pool system for online game server pro-
gram based on exponential average. It
can check the status of worker thread
pool at intervals and predict how many
worker threads are needed in the next
time and add/delete proper worker thre
ads for improving the performance of
game server program and saving the
game server’s resource. From experimen-
tal results, the dynamic thread pool sys-
tem can increase the throughput of game
server only when the amount of game
user is huge. If there are not so huge
game users, it is possible in using static
thread pool or dynamic thread pool. In
reverse, it is better in using dynamic
thread pool in game server program wh
en the scale of online game is big. And
when we use dynamic thread pool sys-
tem in online game program, we need

93

to tune the check time in order to ob-
tain the best performance for game server
program.

References

1. Cox, T., Engineer, L. , Windows
8rd Party Gaming Group, Multithread-
ing for Windows Multiplayer Gaming
Servers

2. Jones, A., Ohlund, J. , Network pro-
gramming for Microsoft windows, Sec-
ond Edition

3. Jung,J.J., Han, S.Y., Park, S.Y. ,
Prediction-based dynamic thread pool
model for efficient resource wusage,
Computer Systems and Theory, Vol. 31
, No. 4 (2004) 213-223.

4. Ling, Y., Mullen, T., Lin, X. , Analy-
sis of Optimal Thread Pool Size, ACM
SIGOPS Operating System Review,
Vol.34, No.2 (2000) 42-55.

5. Peterson, J. L., Silberschatz, A., Op-
erating System Concepts, 2nd Ed. 118-
120, Addison-Wesley Publishing Co.
Inc.

6. Richter, J. , Advanced Windows. 3rd
Edition, Microsoft Press, 1996

7. Xu, D., Bode, B. , Performance study
and dynamic optimization design for
thread pool system, preprint (2004)

Biography

Soon-Jeong Ahn was born in Ko-
rea and went to the Ewha Womens Un-
versity in Seoul, where she obtained her
Ph.D degrees in 2003. At the same year,
she employed at Research center for ad-
vanced science and technology in Dongseo
University. She is researching about the
technology for 3D animation and game.

Hierarchical Solution to Scalability Issues in P2P MMOG

Abdennour El Rhalibi, Madjid Merabti
School of Computing and Mathematical Sciences
Liverpool John Moores University
Liverpool, UK
a.elrhalibi@limu.ac.uk ; m.merabtitolimu.ac.uk

Abstract

MMOG are very large distributed applications,
sharing very large states, and supporting
communication between potentially thousands of
player nodes. Despite the development of many
solutions to define suitable architecture,
communication protocol and enabling efficient
deployment of these types of applications, many issues
remains which still require a solution. In this paper we
discuss MOG deployed over a Peer-to-Peer
architecture, supporting a distributed model of systems
with shared state and we address issues related to
scalability, interest management and communication.
We identify an efficient partitioning and distribution of
the shared state as an important aspect in such models
and propose a hierarchical multi-level interest
management algorithm which enables contextual
communication between peers. Experiments have been
carried out and show the performance of the
approach.

1. Introduction

The past few years have been very profitable to
networked multiplayer games. PC, console and even
mobile phone games have benefited from the
increasing bandwidth and possibilities, technology and
internet providers are offering. Nowadays, networked
multiplayer games are going from the simple turn-
based card games like Microsoft Hearts to massive
multiplayer online games with hundreds of thousands
of users playing at the same time like in the recent
UltimaOnline [1], EverQuest II [2], and World of
Warcraft [3].

Games such as flight simulators, first person
shooters (FPS), massive multiplayer online games
(MMOG) and real time strategy (RTS) games have
high requirements in maintaining the consistency of
the virtual world. However, today’s Internet protocols
are poorly suited for games because they need security
and very fast transmissions [4][5].

94

The paper discusses the feasibility of using peer-to-
peer (P2P) overlays to support a typical persistent
world MMOG, as a replacement for the client/server
model. The technical details of these topologies will be
discussed, along with the issues. We will discuss the
possibility to exploit the hierarchical and distributed
nature of P2P architecture to provide an efficient
scalability scheme and a suitable P2P interest
management algorithm [9] which could reduce greatly
the amount of data exchanged in the network.

The rest of the paper is organized as follows:
section 2 provides background information about
current MMOG issues, section 3 presents the Peer-to-
Peer architecture we are experimenting to deploy in a
MMOG P2P overlay, section 4 introduces the details
of the interest management we propose, and discusses
experiments to evaluate scalability, and volume of data
exchanged Finally in section 5 we conclude and
expose the future work.

2. Issues in MMOG Development

2.1. Scalability Issues for MMOG

The appearance of networking environments
provides a platform for the development of gaming
systems which can be accessed by many players
simultaneously. The Internet is the main platform for
the generalized adoption of this kind of systems,
making it possible for a large number of users to
simultaneously and cost-effectively access these
systems, and for designers to consider the development
of massively multiplayer gaming experiences, and thus
raising the question of scalability.

We define scalability as the ability a system has to
deal with increasing demand from the users, without
significantly degrading the level of interactive
experience. So, quality of service decay in a controlled
way, the removal of bottlenecks, the extension of
system resources to deal with increasing demand and
technology updating to avoid becoming outdated, are

all challenges in the design of a scalable solution
[4][6][7].

Considering the characteristics of MMOG, we will
define the main scalability issues that these systems
must consider along the following considerations:

+ game state simulation component that allows
thousands of players to share the same virtual event or
interactive context;

+ storage capacity for all the data that is used to
represent the virtual environment (data model and
multimedia elements) and its efficient and timely
distribution;

¢ communication performance that enables the
interactive system to maintain the quality and
coordination of the game experience;

« an overall architecture that enables the integration of
new components, resources and technologies for
system extension.

Next, we will present a discussion of some these
issues and the techniques relevant to deal with these
requirements.

2.2. MMOG Architecture Issues

The issues related to traditional architecture used
for MMOG are well known [4][5], and we are going to
discuss some possible solutions.

Although the majority of existing networked
systems are based on the Client/Server architecture
[8][9], there is another architecture worth of
consideration, the Peer-to-Peer architecture.

Peer-to-Peer architectures are gaining ground over
client/server, as more experiences are made and some
of its problems are overcome. Recently various
distributed systems emerged based on this architecture,
with file sharing as the most common application [10].
The idea for Peer-to-Peer architecture is based on the
concept of a system where all components are treated
as equally important and thus avoiding the scenario
where a specific resource becomes more critical and
the overall system performance dependent on it [11].
Another characteristic of Peer-to-Peer architecture is
the design that tries to take advantage of the existing
resources available on the Peers’ — load or processing
capacity, bandwidth capacity and storage capacity —
and use them for common benefit.

One of the possible solutions to achieve scalability
using P2P architecture, is based on game space
subdivision. Each of the resulting game regions is
attributed to a peer that became responsible for
simulating or communicating the events that occur in
that region [12] thus taking advantage of each peers’
load capacity. In this approach some of the challenges
known for client/server architecture also applies and

95

others appear. Firstly, in the process of attributing a
game region to a peer, it is important to take into
account some measure of load capacity, memory and
network bandwidth, to avoid to allocate a game region
management to a peer that does not have the necessary
resources thus damaging the quality of gameplay for
all players in the sector. Other challenges are inherent
to Peer-to-Peer architecture and relate to the
unpredictability that is typical of the P2P networks,
with the arbitrary joining and leaving of peers. While
we can manage to have backup servers to compensate
for those leaving, this feature introduces a new
problem in keeping simulation object addressing
updated and simulation data persistent. There is
already some work being done in this area [13][14].
Another solution that is based on the P2P architecture
and is more drastic than the previous one, is to have no
central simulation. In this case we would need a
distributed simulation model where all peers would
have to virtually simulate the space where the player is
interacting [15][16]. This is the approach we advocate
in our paper.

3. Peer-to-Peer Architecture Proposed

3.1. A Peer-to-Peer Architecture for MMOGS

Considering the scalability requirements discussed
in section 2 we propose an approach to the challenge
of balancing these for the purpose of designing a
generic MMOG architecture [15]. For this approach
we will need to analyze the dependencies between the
requirements, we have considered as the basis for this
approach a Peer-to-Peer architecture with a distributed
simulation model where each peer computes, locally,
the game region where the player interacts. A
distributed peer-to-peer simulation brings clear
advantages by lowering the cost of centralized
infrastructures and by distributing the processing load
to where it is benefited from, while complexity
increases for maintaining the consistency and
persistence of virtual world [15].

3.1.1. A P2P Topology. The topology we propose is
a hybrid solution starting with an initial architecture
based on a main server, and building-up a P2P
topology as the number of players increases (Figure 1).
As the players connect to the game, the server
delegates more and more of its role as game and
network/communication manager to the connected
player machines, which self-organize in a P2P fashion.
The peers still rely on the initial server to join and
leave the game, and to help them discover their peer-

group if already created and to receive the game data
when a new region is required. However all the in-
game communications once the players is connected to
his peer-group are done in P2P fashion [15].

Main Server

.

Instance of a P2P Architecture

Peers Control Hierarchy

Figure 1. Proposed Architecture

The architecture allows the developers to maintain
direct control and authority over the players account
information. Once a joining player has been checked,
he will granted connection to his peer-group and will
be managed in a P2P game session until he leaves the
game.

The architecture is flexible, robust and dynamic.

Several spatial data structures such as BSP, octrees, or
PVS can be used to control peers group and their
relations in a dynamic way, and to map the peer-
groups.
In the following sections we discuss the meta-model
architecture and the P2P protocol for joining and
leaving the game. This protocol is the most important
as regards to the P2P architecture.

3.2. Meta-Model Architecture

The first step in our P2P architecture and protocol
development is the design of an agent based meta-
model architecture. We have defined a high level
design based on mobile agent model and suitable for
the development of the MMOG and a simulation
environment. Our meta-model architecture provides
the rules to develop a simulation environment for
MMOGs, and to implement an instance of P2P
protocol for MMOGs. Using a mobile agent model we
can represent all the dynamic and static aspects of an
MMOG [15].

To support multi-agent organization, communication
and coordination as a P2P infrastructure, we also
incorporate the concept of agent groups. Any agent
within the agent group may perform multicast or
subcast. A multicast communication allows an agent in

96

the group to send a message to all other agents in the
group, no matter where the agents are in the system. A
subcast enables an agent to send a message to a subset
of the group.

Figure 2. Agent communication level — an example

3.2.1. P2P Protocol for Joining/Leaving. Below we
present briefly the main scenarios in the P2P protocol
for joining and leaving the game [15]:

. In the initial state there are no players, no
peers, only the main game server (world server)
maintaining the full game, the players database, the
current game data for existing players, etc...

. If a new player joins the game, he will be
connected to the world server and assigned the role of
new region server for the region he will play on. He
will be sent all the data required to maintain the region,
and the identity of any other currently running region
server. Any new player joining in the same region will
be connected in P2P fashion to the peer-group
managed by the region server. The region server will
be sent the data of the game, the data of the players
joining, and the data of the others existing regions
server controlling the others regions.

. If a player moves to another region we have
two situations which might occur. Firstly if the region
is already controlled by another server region, the new
player will join the peer-group associated to this
server-region. Secondly if no peer-group for the region
exists, the client machine will be assigned the role of
server region.

. If a player leaves the game. We have again
two cases. If the player is a client in his region peer-
group, it will be simply disconnected and the peer-
group will be informed. If the leaving player is a
region server, the protocol will elect a current peer

(client) to become the new region server. The
connection with the world server will be re-
established. If there are others regions server they will
be informed of the disconnection of the leaving region
server, and will be given the identity of the new region
server. Only the region servers are connected to the
world region (i.e. the main server).

Figure 2 shows an example for the agent
communication level, part associated to a peer. Note in
particular the states Join and Quit which implement the
protocol described in this section. The interest
management stage is discussed in section 4.

4. Interest Management and Experiments

Interest management [18] is an important technique
which enables scalability and reduces communication.
As the scale of an MMOG increases in terms of
number of players (clients or peers), and game objects,
world state and information broadcasting will consume
important network resources. Therefore techniques
such as interest management, which work as message
and data filtering mechanism, become very important
to guarantee scalability. The basic idea of interest
management is relatively straightforward: All clients or
peers should receive only the information from the
game that concerns them, rather than all the
information related to the whole game world state and
changes. Changes to shared environment or game
objects are automatically made available only to
involved clients / peers.

In the P2P architecture we have proposed there is a
natural structure which can be used to reduce the
information to communicate between peers. The
hierarchical partitioning of the game world in region,
controlled by a region super-node (which is a region
server, but also a peer), and forming a P2P network for
this region guarantee that only the information updates
occurring in this region will be sent to /exchanged by
the peers mapped in this region. As noted in above,
many spatial partitioning techniques can be used,
based on Octree, BSP or PVS, and all require the
dynamic management of a subscription list [12][17], to
enable to peers to join a region network, identify the
region super-node, and identify the peers’ addresses.

However, as a node joins a region, the size or
resolution of the region chosen will not guarantee that
all the information communicated to a peer are all
relevant. A further stage of data/events filtering is
required to reduce further the messages exchanged.
The mechanism used is based on aura detection [17],
and on line of sight/perception, or contextual line of
sight (i.e. considering different level of awareness).

97

When a peer joins a region, it is elected as super-node
to manage the interest management and data filtering
mechanism for the region, or simply joins as peer.
Upon joining it subscribes to region subscription list
and gets a copy informing it of the peer network
members. It sends an update of its state to the super-
node which determines the intersection of all the peers’
aura and contextual line of sight, calculating cliques of
peers sharing the same interest and line of perception,
and updates the subscription lists to be sent to all the
peers’ clique members.

A new level of partitioning is applied to create a sub-
region with a new elected sub-region super-node
which will create a new subscription list and manage
the sub-region P2P network in which multicast
communication is used between peers of the same
clique, to exchange in-game messages.

We exploit the recursive properties of the spatial

partitioning of the game world to create different level
in a hierarchy of communication, where full multicast
is only used at the lowest level of the hierarchy. This
involves only peers belonging to the clique determined
by peers’ aura intersection and line of perception
determination. The mechanism makes the interest
management and data filtering requirement distributed.
It is managed by different super-nodes at different
level of the hierarchy, and scalable with the
management of hierarchical list of subscription which
supports a full multicast only at the lowest level.
We have carried out 100’s of experiments to forecast
and compare the performance of client/server with
interest management and our peer-to-peer architecture
with/without interest management controlled by
regions and data-filtering controlled by contextual line
of sight. The spatial partitioning used is based on BSP
with a 3 level hierarchy, and calculation and update of
clique is done upon joining and leaving a region.

= Poer-to-Peer2
«i- Client/Server
Peer-to-Peer1

number of messages
exchanged
- - N
- 8 88§ §

o
Fi
]

10 20 30 40 50 60 70 80 90 100 110
number of clients / peers

Figure 3: Performance Test Simulations

We have compared client/server vs. P2P with
(Peer-to-Peer2) and without (Peer-to-Peerl) interest
management. The results show that interest
management, combined with data filtering mechanism

provides better performance to ensure scalability and
reduce the number of the messages exchanged.

5. Conclusions

Despite the development of solutions to define
suitable architecture, protocol and enabling efficient
deployment of MMOG applications, many issues
remains which still require a solution. In this paper we
discuss MMOG deployed over a Peer-to-Peer
architecture, supporting a distributed model of systems
with shared states and we address issues related to
scalability, interest management and communication.

These issues and the integrated approach which has
been presented are being tested and developed with the
following questions - what should be the...?:

- Best spatial subdivision to use, which will depend on
the nature and complexity of the game world. Outdoor
vs. Indoor, large room vs. corridor, perception limited
to visual vs. extra-sensorial perception. The spatial
partitioning techniques choice is important as they
provide different performance and accuracy.

- Region resolution and size. It is related to spatial
partitioning, but also determines the size of the
networks, and has a great effect on the number of
communication required, and load balancing.

- Number of level in the hierarchy. It is related to the
region size, and determine the required overhead to
calculate regions, sub-regions,..., and cliques.

- Size of subscription list. It is determined by all the
above and contribute to scalability and overall
communication performance.

- Cycle of clique determination and update. It can be
done upon joining and leaving a clique/region, or at
regular time interval. It contributes to the overall
performance and scalability of the dynamic and
distributed deployment of the peer-to-peer network.

The research is at its first stages, and many

problems are still open and will constitute our future
work.

6. References

[2] Sony Online Entertainment INC., The EverQuest II
homepage; hitp://everguest?. station.sony.com/

[3] Blizzard Entertainment, The World of Warcraft
homepage; hitp://www.worldofwarcraft.com/

[4] Coulouris, G., J. Dollimore, and T. Kindberg, Distributed
System: Concepts and Design, Addison-Wesley, England,
2001.

98

[5] J. Smed, T. Kaukorante and H. Hakonen, “Aspects of
Networking in Multiplayer Computer Games”, International
Conference on Development of Computer Games in the 21st
Century, Hong Kong SAR, China, November 2001.

[6] P. Jogalekar, “Evaluating the Scalability of Distributed
Systems”, IEEE Transactions on Parallel and Distributed
Systems, 2002 IEEE, Vol. 11, No. 6, June 2000, pp. 589-603.

[7]1 A.B. Bomdi, “Characteristics of Scalability and Their
Impact on Performance”, Proceedings of the second
international workshop on Software and performance, ACM
Press, Ottawa Canada, 2000, pp. 195 - 203.

[8] P. Rosedale and C. Ondrejka, “Enabling Player-Created
Online Worlds with Grid Computing and Streaming”,
September 2003, Available at:
httpy//www.gamasutra.convresource_guide/20030916/roseda
le_O1.shtml

[91 L. Aarhus, K. Holmqgvist and M. Kirkengen,
“Generalized Two-Tier Relevance Filtering of Computer
Game Update Events”, Proceedings of the first workshop on
Network and system support for games, ACM Press, April
2002, pp. 10-13.

[10] Gnutella.com Inc., Gnutella; http://www.gnutella.com/

[11] Oram, A., Peer-to-peer : harnessing the benefits of a
disruptive technology, O'Reilly, 2001.

[12] T. Limura, H. Hazeyama and Y. Kadobayshi, “Zoned
Federation of Games Servers: a Peer-to-Peer Approch to
Scalable Multi-player Online Games” SIGCOMM’04, ACM
Press, August 2004.

[13] B. Y. Zhao, J. Kubiatowicz, and A. D. Joseph,
“Tapestry: An Infrastructure for Fault-tolerant Wide-area
Location and Routing”, Internal Report, Computer Science
Division, University of California, April 2001.

[14] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P.
Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weatherspoon,
W. Weimer, and B. Zhao “OceanStore: An Architecture for
Global-Scale Persistent Storage”, ACM, 2000.

[15] Abdennour El Rhalibi and Madjid Merabti, “Agents
Based Modeling for a Peer-to-Peer MMOG Architecture”.
ACM Computer in Entertainment Journal. April 2005, Edited
by Newton Lee — Editor-in-Chief of ACM CiE.

[16] C. Diot and L. Gautier, “A Distributed Architecture for
Multiplayer Interactive Applications on the Internet”, IEEE
Networks magazine, IEEE, July/August 1999, pp. 6-15.

[17] H. Abrams, K. Watsen, and M. Zyda, “Three-tiered
interest management for large-scale virtual environments”,
Proceedings of 1998 ACM Symposium on Virtual Reality
Software and Technology (VRST’98), ACM Press,
November 1998.

[18] K. L. Morse, “Interest management in large-scale
distributed Applications” report, Department of Information
& Computer Science, University of California, Irvine, 1996.

LATE
PAPER

100

Harnessing Agent-based Games Research for Analysis of Collective Agent
Behaviour in Critical Settings

Abdennour El Rhalibi, A. Taleb-Bendiab

School of Computing and Mathematical Sciences
Liverpool John Moores University

a.elrhalibi@livim.ac.uk ; cmsatale@livim.ac.aik

ABSTRACT

Despite the complexity of modern computer games and
the wide range of different themes explored, there has
been only a few games that feature large chaotic groups
of people, such as those found at riots or protests. The
most popular, State of Emergency, features hundreds of
individual people on the screen at any one time, however
the Artificial Intelligence (AI) that controls the rioting
NPCs is fairly simplistic — the civilians run in seemingly
random directions, unaffected by one another and don't
seem to have specific objectives. In real protest and riot
situations, each individual person involved has many
factors that dictate their behaviour. Mood, temperament,
behaviour of surrounding people and any perceived
danger are all among the important aspects of the
situation.

This paper gives a brief overview of an Al
mechanism that has been developed specifically for
controlling riots and protests in games. The model is
based on previous research into Emotional Societies and
presents a realistic and believable environment for
games, which can operate effectively with a relatively
minimal impact on resources.

INTRODUCTION

In recent years, there has been a marked increase
in the number of games that feature large groups of
artificially intelligent entities. However, these tend to be
military strategy games such as Cossacks or the Total
War series, where groups of hundreds of soldiers make
up squads and divisions. Because these kinds of large
groups of troops are well disciplined in reallife, their
actions are predictable and the Al that controls their
behaviour in the games can be simpler and still maintain
a high level of realism. Large groups of people that don't
follow military discipline, such as crowds of individuals
in a public place, are a lot nore chaotic. In real crowd
situations, each individual person involved has many
factors that dictate their behaviour. This includes mood,
temperament, behaviour of surrounding people,
perceived danger, and a number of other aspects of the
situation. Due to these reasons, there have only been a
handful of games that have attempted to tackle that
environment, and have achieved varying degrees of
success.

A significant amount of research has already
been done into developing better AI for managing

101

crowds. However, this majority of the research in the
field is usually aimed at recreating purely chaotic and
random crowds. There is very little done to develop real-
time AI simulations of disorganised crowds with
common objectives, such as is found in riot or protest
situations. These crowds share a number of common,
unspoken objectives. In the case, for example, of a
peaceful student protest against tuition fees, those
objectives are likely to be:

1. Gain as much attention as possible
2. Maintain the protest for as long as possible

Individuals within the crowd may have their own
objectives in addition to these, and may even work
against those goals, such as vandals wishing to cause
damage to property — this activity increases the
likelihood of police resistance force and indirectly works
against the second goal as police stop the protest early.
Although riots and protests are certainly not the only
types of crowd that have goals or common objectives
amongst their participants, they are far more interesting
in a computer game environment than, say, a tour group
in a museum.

THE MODEL

The primary objective of research into riots and
protests was to identify a simple model that describes
how human beings operate in a riot or protest situation,
and that answers the most pertinent questions- What
stimuli are there in a riot or protest? How does a human
respond to this? What kind of interactions are there
between people in riots or protests? How does this affect
their behaviour?

The model that has been developed is described
briefly in this paper and at more length in [6]. The
mechanism for controlling the riots is based on research
into a number of fields, including AI (Rule Based
Systems and Fuzzy Logic especially), Multi-Agent
Systems (MAS), Chaos Theory and Cellular Automata.
The rules that drive the model are based on research into
riots and protests, including police public order training
manuals [4], interviews with officers from the
Merseyside Police and personal accounts of riot and
protest experiences.

EMOTIONAL MODEL

Each artificial agent in the riot control

mechanism is treated as an individual humanlike entity.
That is, decisions in movement and behaviour for that
agent are based entirely on a humanlike reasoning
processes for that agent alone, rather than a pattern-based
system that dictates movement and behaviour for many
agents at once. The mental model for the agents in the
system is based loosely on research into emotional
societies by David Chaplin [2], who defined a model for
emulating a human society that involves such concepts as
mood, social responsibility and inter-agent relationships.

Each agent has a different “mood”. This mood is
a collection of values that represent different emotions
the progression of the simulation. These emotions
represent the way the agent feels at any given point
during the simulation. Like the fixed attributes, they are
set initially based either on random values, or patterns
observed in real life.

1] Confidence 100 Sugnyestibility 100

0 Aggressiveness 100 0 Energy 100

Figure] - Dirft Calenlations
o Confidence — How confident and secure they feel in
the current situation

o Suggestibility — How easily they are affected by the
behaviours of others

o Aggressiveness — How aggressive the agent is feeling
at the current time

o Energy — How much energy the agent has left, how
long will they will stay involved

All emotions are variable, but only to a certain
extent. “Drift” is an additional mechanism that is
included to stop emotions from being changed too far
from their original values (i.e. An individual behaving
too far out of character). Every time the agent is updated,
all emotions tend back towards their original state, at
different rates based on the difference between the
original and current values (Figure 1).

AGENT ARCHITECTURE

Figure 2 illustrates the agent architecture behind
the riot and protest control mechanism. It is fairly self
explanatory. There are two main process that occur when
updating the agent's state:

Evaluation of the environment, in which the agent
evaluates the behaviours of other agents in the crowd
who are within two certain ranges, the attributes local
environment and their current emotional state. The result
of this evaluation is to see if these factors affect the
emotional state, and therefore perhaps the behaviour, of
that agent.

Reaction to the mood, where the agent chooses an
appropriate behaviour to exhibit based on their current
mood. The choice of behaviour affects their movement,
and in turn the evaluation process of other agents,
thereby emulating the non-verbal emotional
communication seen in riot or protest situations.

Mechanically, both processes are rsolved using
a combination of Fuzzy Logic and Rule Based Systems.
Emotion and attribute values of the mood of the agent are
sorted into different fuzzy sets, depending on their
current state. In the evaluation phase, the different sets
are combined with ficts about the environment taken
from the sensors to create a current “knowledge base”
(KB) for that agent. This KB is fed into a RBS (CLIPS is
used in the example implementation) which contains a
list of fixed rules. These rules describe the emotional

4 Agent

Evaluation
(How does this affect
my ermotions?)

Closs Range Sensor

Current
Ermotional State
Confidence
Aggressiveness

Fixed Attributes
Innate Charisma
Attitude
etc...

Reaction
(Ghren iy emations,
hat s my behaviour?,

Behaviour

Mlov ement
(Ghran iy behavionr,
how do §move?)

éhaviuur of Agents within
k Long Range

|

0 a Environment N

Close Range

Lacale Data
(Map, Police Presence)

This Agent's
Eehaviour
{ This Agent's j
EE—
M iy

Ehaviour of Agents wit@

Location

Tigure B Leent Architecture

102

changes an individual goes wunder given specific
circumstances. For example:
TABLE I ExamPLE RULES
Rule Condition Action Salience

Flee Suggestibility>=HIGH, Confidence-=10,

CloseAgent=FLEE_IN_TE Suggestibility+=5

RROR 0.8
Seen Confidence <HIGH, Confidence-=5,
Arrest

CloseAgent=ARRESTED Suggestibility -=5 0.4
Incited to | Aggressiveness >=LOW, Confidence +=3
Violence

Suggestibility=HIGH, Aggressiveness

+=15

Confidence >MINIMUM,

CloseAgent=ATTACK_IN

CITE 0.3

In the reaction process, the rules are simpler — for
each possible behaviour in the riot or protest, there is a
specific set of mood values that trigger that behaviour.
Behaviours are mutually exclusive, so that only (and
always) one behaviour occurs as the result of any given
combination of mood values. The exact rules and fuzzy
logic definitions can be found in [6].

MOVEMENT

The movement of agents in the riot or protest
simulation is possibly the most important factor for better
games — the movement is the most visible external effect
of the model. The movement is performed using a simple
algorithm based on a technique called Orchid Fractal
Analysis [8] (OFA). OFA was developed at Warwick
university to model crowd movements into and out of

large stadia. There are obvious similarties between these
situations and riots and protests, and OFA proved a very
useful base to build the movement algorithm on. The
algorithm itself is expressed as a flow chart in Figure 3.

The algorithm includes flocking based on agent
confidence, as agents with low confidence follow other
agents with similar behaviours. OFA has been modified
to allow patience, as agents will not wait too long in a
static crowd if they wish to move past it. Movement
destinations are chosen based on perceived risk of a
given location.

RISK ASSESSMENT

For an individual moving around a riot or protest
situation, precise destinations of movement are not
important if the person is trying to stay with the crowd.
They will willingly allow themselves to move with the
flow of a moving crowd while they still want to be an
active participant. Despite this, crowds in riots or protests
are self-ordering to an extent. It is clearly observed in [5]
and [7] that more passionate and excited individuals tend
towards the leading edge of a crowd, and those with
wavering support tend to be further back.

Therefore, the model is able to automatically rate
locations based on assessed risk. This allows individual
agents to select preferred locations based on their current
mood — confident and passionate individuals tend to
move towards the leading edge (a high risk area) while
nervous individuals move away from the action.

Each location in a “world” using the model is
rated for risk based on a number of factors — proximity to
police units, behaviour of nearby agents and the presence
of any tear gas or other environmental variables. Four
sample ratings are described in Table 2.

Wes

Hawve | been Waiting
Too Long?

Wait Mowe

|5 the Wayto My
Target Clear?

Ha= my Behaviour es

Changed?

h 4

Drecide Preferred Risk
Level, Randomly Decide
Target Within That Lewvel

= my Confidence
High'

l= &nyone Similar
Mearby?

Figure § Movemert Flowr Chart

Make Them My
Tem porary Target

103

TABLE 2 ZONED BEHAVIOURS

Risk Level Behaviours Present

BLUE Innocent Bystanders and other Non-participants

GREEN Participants that are an active part of the crowd, but
are "keeping out of trouble"

YELLOW More enthusiastic individuals, leaders and instigators
that form the core believers in the crowd

RED More aggressive and forward individuals that may be
violent or resistant to force.

Figure 4 shows a simple illustration of how the world
may be rated. In this example, agent X has a current
mood which dictates that he would prefer to get closer to
the leading edge of the riot, so the algorithm chooses a
target location that has the appropriate risk level
associated with it. The precise physical location is not as
important to riot participants as the risk associated with

0 Confidence 100 o Suggestibility 100

100 0 Energy

0 Aggressiveness 100
that location.

Throughout runtime of the simulation, each
agent chooses an appropriate preferred risk level based
on their current emotional state and behaviour. This
choice is not permanent and is re-evaluated every time
the agent's mood is changed. If the agent does not already
have a specific target destination within that risk bvel,
one is chosen from random from the set of locations with
the appropriate risk. When the agent reaches that target,
or its behaviour changes its preferred risk, or the target
location's risk level becomes altered, a new target is
chosen at random as before.

CONCLUSION

This paper has given a brief overview of all the
major features of the riot control mechanism. When the
features are combined into a fully operating application,
as has been done in the proof of concept [6] (the thesis
also has much more technical details regarding this
implementation), the model works very well. The system
gives a good emulation of what can happen in real riot or
protest situations, at least in terms of movement and
behaviour. This paper has given an indication of the

possibilities of this model, and the greater opportunities
for exciting gameplay that riots or protests present.

Figure 5 depicts some screenshots of the 3D application
supporting the agent architecture with a variant of the
model involving a leader. The screenshots shows the
variety of situation the agents might be dealing with,
such as interacting with a different class of agents
controlled by different rules, or coordinating their action
to have a more efficient effect on the environment or on
their common goals.

Figure 4: 3D Application supporting Protest Mechanism
with Leader

Beside the potential application of the model and
architecture to a computer entertainment environment,

104

the model is generic and can be used as well for
“serious” applications which involve distributed
emerging behaviour, scenarios based simulation,
complex agent-based modelling including emotional,
reactive and deliberative reasoning. For example this
model can easily be extended to support different
emotional models, agent architectures, reasoning
techniques, and application to a swarm of robots
wandering in a hazardous environment.

REFERENCES
[1] Axelrod, R., (1984), The Evolution of Cooperation,
Penguin
[2] Chaplin, D.,(2003) Emotional NPC Societies in
Games, Liverpool John Moores University
[3] Col. Dewar, M., (1992), War in the Streets, BCA

[4] English, J. and English, B., Police Training Manual
(Tenth Edition), 2003

[5] Joshua, H., & Wallace, T., (1983), “To Ride the
Storm”, Heinemann Educational

[6] Kirman, B. (2004), Better Riots and Protests in
Games: Modelling Large, Disorganised Groups of
Emotionally Driven Artificial Agents, Liverpool John
Moores University

[7] Northam, G., (1988), Shooting in the Dark: Riot
Police in Britain, Faber and Faber

[8] Still, G. K., (2000), Crowd Dynamics, PhD Thesis,
Mathematics department, Warwick University

[9] Waddington, P.A.J., (1991), The Strong Arm of the
Law, Oxford University Press

105

106

AUTHOR
LISTING

108

AUTHOR LISTING

AhN S.-J. e 88 JUW.-S..rereeee 88
AlIboul L..eeerivrrreeenieerneens 47/57
Arkoudas K.ccceeeeennnes 31 Kaptan V..ccceeciiiennnnns 40
Khemlani S.ccoeeuieenns 31
Bringsjord S.cccceeiiinne 31
Lekhavat P......cccceeuuunns 10
Chaperot B......cccvvvvveeeenn. 52
Clutton R.ceeeeeceeereeeneeeas 67 \V/F=F- | o I 5
Macleod A....coeeeereennnees 19
Daigle M.....cccoeviviiiininnnne 31 Marwala T....ceeeeeeereennnnn 13
Dalton N.S.C.....cccceeeeeeeee 75 McCEvoy C. ..ueeceiiiiirrnnnas 31
Destefano M.cccvveenne. 31 Merabti M......ccceeervennnneee 94
Molenaar R.ccoveeuuenee. 5
Echeverria G.......cccveeuee. 47
El Rhalibi A. .cceeeveierreenee. 71/94/101 Quan Y. e, 88
England D. ...cceverrrveeenneee 71
Robinson A. ..coeeeeevreennnns 57
Fiedler S.ccriiirreeennnns 85 Rodrigues M.A.............. 47/57
Fyfe C. s 52 Rothkrantz L.J.M. 5/24
Gelenbe E......ceevrveennnnenas 40 Taleb-Bendiab A........... 101
TUSON .erreeerrencereenreennas 67
Hinde C.J. oo, 10
Hurwitz E. ...coovevirireeeennes 13 VATE= T T N 40
Weber M. ...cceceevreenrrene. 85
[T O S 88
2 1o o 74— 24

109

110

	inleiding
	boek

