7™M INTERNATIONAL CONFERENCE
ON

INTELLIGENT GAMES AND SIMULATION

GAME-ONg 2006

EDITED BY

Lars Wolf

and

Marcus Magnor
NOVEMBER 29-DECEMBER 1, 2006

TU BRAUNSCHWEIG
GERMANY

A Publication of EUROSIS-ETI

Cover art was reproduced by kind permission of Larian Studios, Oudenaarde, Belgium

7™ International Conference
on

Intelligent Games and Simulation

BRAUNSCHWEIG, GERMANY
NOVEMBER 29 - DECEMBER 1, 2006

Organised by
ETI
Sponsored by
EUROSIS

Co-Sponsored by

Binary lllusions
University of Bradford
Delft University of Technology
Ghent University
Larian Studios
Liverpool John Moores University
The Moves Institute

Simulation First

Hosted by

TU Braunschweig

Braunschweig, Germany

EXECUTIVE EDITOR
PHILIPPE GERIL

(BELGIUM)
EDITORS
General Conference Chair General Programme Chair
Lars Wolf . Marcus Magnor
TU Braunschweig TU Braunschweig

Institute of Operating Systems Computer Graphics Lab

and Computer Networks Braunschweig, Germany

Braunschweig, Germany

PROGRAMME COMMITTEE

Bob Askwith
Liverpool John Moores University
Liverpool, United Kingdom

Christian Bauckhage
Deutsche Telekom
Berlin, Germany

Christos Bouras
University of Patras
Patras, Greece

Stefano Cacciaguerra
University of Bologna
Bologna, Italy

Chris Darken
NPS
Monterey, USA

Abdennour El-Rhalibi
Liverpool John Moores University
Liverpool, United Kingdom

Marco Gillies
University College London
London, United Kingdom

Sue Greenwood
Oxford Brookes University
Oxford, United Kingdom

Pieter Jorissen
Universiteit Hasselt
Diepenbeek, Belgium

Borje Karlsson
PUC
Rio de Janeiro, Brazil

Mike Katchabaw
University of Western Ontario
London, Canada

Oliver Lemon
Edinburgh University
Edinburgh, United Kingdom

Olli Leino
University of Lapland
Rovair, Finland

Alice Leung
BBN Technologies
Cambridge, USA

lan Marshall
Coventry University
Coventry, United Kingdom

Yoshihiro Okada
Grad School Kyushu University
Kasuga, Japan

Volker Paelke
University of Hannover
Hannover, Germany

Maja Pivec
FH Joanneum
Graz, Austria

PROGRAMME COMMITTEE

Paolo Remagnino
Kingston University
Kingston, United Kingdom

Marco Rocetti
University of Bologna
Bologna, Italy

Marcos Rodrigues
Sheffield Hallam University
Sheffield, United Kingdom

Leon Rothkrantz
Delft University
Delft, The Netherlands

Leon Smalov
Coventry University
Coventry, United Kingdom

Adam Szarowicz
Kingston University
Kingston, United Kingdom

Ingo Steinhduser
Binary lllusions
Braunschweig, Germany

Oryal Tanir
Bell Canada
Montreal, Canada

Joao Tavares
University of Porto
Porto, Portugal

Ruck Thawonmas
Ritsumeikan University
Shiga, Japan

Christian Thurau
University of Bielefeld
Bielefeld, Germany

Hans Vangheluwe
McGill University
Montreal, Canada

Clark Verbrugge
McGill University
Montreal, Canada

Tina Wilson
Open University
Milton Keynes, United Kingdom

Michael Young
NC State University
Raleigh, USA

Michael Zyda
USC Viterbi
Monterey, USA

© 2006 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Simulation Society. Permission is
granted to photocopy portions of the publication for personal use and for the use of students providing credit is given
to the conference and publication. Permission does not extend to other types of reproduction nor to copying for
incorporation into commercial advertising nor for any other profit-making purpose. Other publications are encouraged
to include 300- to 500-word abstracts or excerpts from any paper contained in this book, provided credits are given to
the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be used
in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in this Proceedings have been peer reviewed

EUROSIS-ETI Publications are ISI-Thomson and INSPEC referenced

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Ghent University,
Faculty of Engineering, Dept. of Industrial Management, Technologiepark 903, Campus Ardoyen, B-9052 Ghent-

Zwijnaarde, Belgium.

EUROQOSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400
Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium

Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium
Cover Pictures by Larian Studios, Oudenaarde, Belgium

EUROSIS-ETI Publication
ISBN-NUMMER-10 : 9077381317

ISBN-NUMMER-13 : 9789077381311
EAN : 9789077381311

\

GAME ON;
2006

Vi

Preface

It is our pleasure to welcome you to this event in the city of Braunschweig and at
the Technische Universitdt Carolo-Wilhemina zu Braunschweig, the oldest
technical university in Germany.

Since a couple of years, the interest in computer-based games has increased
significantly not only on the commercial side but also in research. Several
conferences and workshops have been set up, specializing in this exciting new
field. GameOn is a well established conference series and looks back already on
several successful years. It is a vivid event with interesting presentations and
discussions.

GameOn2006 -- the 7th annual European Game-On Conference — brings
together researchers and games people in order to exchange ideas on
programming and programming techniques, being beneficial to the gaming
industry and academia.

The conference will treat various aspects of computer-based games, from
graphics, artificial intelligence, to robotics and mobile gaming issues. Two invited
talks by Eku Wand and Maic Masuch will provide further insights into current and
future game-technology trends. Moreover, tutorials on Java Gaming and the
workshop on "Gaming with AIBO Robots", as well as a demonstration of a
student strategy game project round up the conference program.

We hope that all attendees will enjoy the conference, the technical program as
well as the possibilities to exchange ideas and network with colleagues from
various countries to provide a base for fruitful collaborations in future.

Marcus Magnor
Lars Wolf

GameOn2006 Program Chairs

CONTENTS

Preface..... e ————— IX
Scientific Programme..........cccccoi s 1
AUthOr LisStingcoooiiiiiiiiciii i e 99
TUTORIAL

The Myths (and Truths) of Java Games Programming
ANAreW DaViSON.....cciiiiiiieimeeneaassrrrrrsnmmssssas s s s rresnmmssssssss s s e e s e s nmmnsssssssssssennnnmnnnnnn 5

GRAPHICS AND RENDERING

Optimizing the Deferred Shading
Frank Puig PlaCeres. .. i rrsnmmm s s e s nm s e s e s 13

Effective Multi-resolution Rendering and Texture Compression for
Captured Volumetric Trees
Christian Linz, Marcus Magnor, Alex Reche-Martinez and George Drettakis ...16

Realistic Rendering of Point Cloud Models with Ambient Shadowing and
Environment Lighting
Sushil Bhakar, Feng Liu, Thomas Fevens and Sudhir Mudur........ceeeeeeceiiinnnes 22

Interactive Learning Interface for Automatic 3D Scene Generation
Yoshiaki Akazawa, Yoshihiro Okada and Koichi Niijimacccceeeeemenccciienseeennns 30

ARTIFICIAL INTELLIGENCE IN GAMES

Applying Robotic Techniques for Behavior Recognition in Game Agents
Verena V. Hafner, Christian Bauckhage and Martin Roth.......cceeeeeceeiiiieinenneees 39

Al System Designs for the First RTS-Game Al Competition
Michael Buro, James Bergsma, David Deutscher, Timothy Furtak, Frantisek Sailer,
David Tom and NIiCK WIEDEceeeeeeeeeeeeeeeeeeeeeeeeeeeeesseeeeeeeeseessssssesessnnsssssssnssnsnnnne 44

A Multiagent Soccer Simulator based on a Simplified Soccer Model
Iwein J.J. Borm and L.J.M. ROthKrantzuueeeeiciiiniiirinseecsnss e 49

A Guided Genetic Algorithm for the Planning in Lunar Lander Games
ZNANGDO LU i 55

Xl

CONTENTS

A First Look at Build-Order Optimization in Real-Time Strategy Games
Alex Kovarsky and MiChael BUrOuueeeeeecceiiiiiirieeccenssssss s s seseescsssssssssssessessnnnnes 60

GAMING WITH ROBOTS

Robot Soccer Strategy Described By Text File

Vaclav Snasel, Jan Martinovijc, Pavel Kromer and Bohumil Horak.................. 67
AIBO as a Watchdog
Zhenke Yang, Bou Tsing Hau and Leon Rothkrantz..........oveeceiiimecciiinececnnns 74

MOBILE GAMING

On guaranteeing Equity to Mobile Players in a Metaverse
1 =] =] g Lo T =Tt el E= Lo [U =T o = 81

On Bringing Adventure Games into the Mobile Gaming Scenario
1Y =T T o TN Ty o 86

Using Mobile MultiHop Adhoc Networks for MultiPlayer Games
Oliver Wellnitz and Lars WOIF.....ccccccceeeeerrienssrsssssssssssssssssssssssssnes 91

X1

SCIENTIFIC
PROGRAMME

TUTORIAL

THE MYTHS (AND TRUTHS) OF JAVA GAMES PROGRAMMING

Andrew Davison
Department of Computer Engineering
Prince of Songkla University
Hat Yai, Songkhla 90112
Thailand
E-mail: ad@fivedots.coe.psu.ac.th

KEYWORDS

java, games programming, myths, criticisms

ABSTRACT

This paper examines the commonly-expressed
criticisms of Java as a games programming language:
that's it's too slow, too high-level, prone to memory
problems, too hard to install, not available on games
consoles, not used in 'real' games, and not even
considered a gaming platform by Sun Microsystems.
All of these views are incorrect, aside from the console
issuc.

INTRODUCTION

Java for games programming: are you joking? No, Java
is a great games programming language. When you
learnt Java, I'm sure it's many advantages were
mentioned: an elegant object-oriented paradigm, cross-
platform support, code reuse, ease of development, tool
availability, reliability = and stability, good
documentation, support from Sun Microsystems, low
development costs, the ability to use legacy code (e.g.
C, C++), and increased programmer productivity
(Eckel 2006). That list lcaves out my personal reason
for programming in Java — it's fun, cspecially when
you're programming somcthing inherently good-for-
you, such as games.

Most Java-bashers tend to skip over advantages,
preferring to concentrate on criticisms. Here's a typical
list:

Java is too slow for games programming;

Java has memory leaks;

Java is too high-level;

Java application installation is a nightmare;

Java isn't supported on games consoles;

No one uses Java to write 'real' games;

Sun Microsystems isn't interested in supporting
Java gaming.

e o o o o o o

Almost all of these objections are substantially wrong.
Java is roughly the same speed as C++. Memory leaks

can be avoided with good programming, and
techniques like profiling. Yes, Java is high-level, but it
also offers more direct access to graphics hardware and
external devices. Installation isn't a nightmare, if you
use decent installation software. There's a growing
number of excellent, fun Java games, and an enormous
amount of support available from Sun and Sun-
sponsored sites.

If you're keeping count, I haven't disagreed with the
lack of a games consoles port, which is a tad
embarrassing for a "write once, run anywhere"
language. Things may be changing in this category, as
I explain below.

A general point about these objections is that they had
more validity in the late 1990s, when the language and
its libraries were less sophisticated and slower. The
1990's were a long time ago — Java's user and
developer communities are currently burgeoning,
producing a plethora of useful tools, online help, and
code examples.

Now, back to the criticisms...

JAVA IS TOO SLOW FOR GAMES
PROGRAMMING

This is better rephrased as "Java is slow compared to C
and C++, the dominant languages for games
programming at the moment." This argument was valid
when Java first appeared (around 1996), but has
become increasingly ridiculous with each new release.
Some figures put JDK 1.0, that first version of the
language, at 20 to 40 times slower than C++. However,
J2SE 5—the current release—is typically only 1.7
times slower. Many benchmarks indicate that Java SE
6 is about 20% faster than J2SE 5.

These numbers depend greatly on the coding style
used. Java programmers must be good programmers in
order to utilize Java efficiently, but that’s true of any
language. Jack Shirazi's Java Performance Tuning site
(http://www javaperformancectuning.com/) is a good
source for performance tips, and links to tools and
other resources.

The speed-up in Java is mostly duc to improvements in
compiler design. The Hotspot technology introduced in
J2SE 1.3 cnables the run-time system to identify
crucial areas of code that are utilized many times, and
these are aggressively compiled. Hotspot technology is
relatively new, and it’s quite likely that future versions
of Java will yicld further speed-ups. For example, J2SE
5.0 is 1.2 to 1.5 times faster than its predecessor
(version 1.4).

Hotspot technology has the unfortunate side-effect that
program cxccution is often slow at the beginning until
the code has been analyzed and compiled.

Swing is Slow

Swing often comes under attack for being slow. Swing
GUI components are created and controlled from Java,
with little OS support; this increases their portability
and makes them more controllable from within a Java
program. Speed is supposedly compromised because
Java imposes an cxtra layer of processing above the
OS. This is one reason why some games applications
still utilize the original Abstract Windowing Toolkit
(AWT)—it's mostly just simple wrapper methods
around OS calls.

Even if Swing is slow (and I'm not convinced of that),
most games don't requirc complex GUIs; full-screen
game play with mouse and keyboard controls is the
norm. GUI elements maintained by Swing, such as
menu bars, button, and text fields, aren't needed, while
mouse and keyboard processing is dealt with by the
AWT. The latest versions of Java offer a very efficient
full-screen mode by suspending the normal windowing
environment.

My Program is Slow (Because of Java)

A crucial point about speed is knowing where to lay
the blame when a program runs slowly. Typically, a
large part of the graphics rendering of a game is
handled by hardware or software outside of Java. For
example, Java 3D passes its rendering tasks down to
OpenGL or DirectX, which may emulate hardware
capabilitics such as bump mapping. Often the
performance bottleneck in network games is the
network, not the Java language.

JAVA HAS MEMORY LEAKS

When C/C++ programmers refer to memory leaks in
Java, it often means that they don't understand how
Java works. Java doesn't offer pointer arithmetic, and
typical C-style memory leaks—such as out-of-bounds
array accesses—are caught by the Java compiler.

However, these programmers may mean that objects
which are no longer needed by the program are not
being garbage collected. This becomes an issue if the

program keeps creating new objects—requiring more
memory—and eventually crashes when the maximum
memory allocation is exceeded.

This kind of problem is a consequence of bad
programming style, since the garbage collector can
only do its job when an object is completely
dereferenced, meaning the program no longer refers to
the object. A good profiling tool, such as JProfiler
(http://www.cj-
technologies.com/products/jprofiler/overview.html),
can be a great help in identifying code using cxcessive
amounts of memory. JProfiler is a commercial product;
many open source profilers are listed at http://java-
source.net/; Java SE 6 comes with a great graphical
profiler, jhat.

Another memory-related complaint is that the Java
garbage collector is executing at poorly timed
intervals, causing the application to halt for seconds
while the collector sweeps and cleans. The JVM comes
with several different garbage collectors, which collect
in various ways, and can be sclected and fine-tuned
from the command line. Information on the
performance of the chosen collector can be gathered
and analyzed, and Java SE 6 offers many tools for
these tasks, including jps, jstat, jhat, and jstack.

JAVA IS TOO HIGH-LEVEL

This complaint is the age old one of abstraction versus
speed and control. The details of the argument often
include the following statements:

1. Java’s usc of classes, objects, and inheritance add
too much overhead without ecnough coding
benefit;

2. Java’s machine independence means that low-
level, fast operations—such as direct Video RAM
I/O—are impossible.

Statement 1 ignores the obvious benefits of reusing and
extending Java’s very large class library, which
includes high-speed 1/0, advanced 2D and 3D
graphics, and an enormous range of networking
techniques, from lowly sockets to distributed agents.
Also forgotten arc the advantages of object-oriented
design, typified by UML, which makes complex, large
recal-world systems morc manageable during
development, implementation, and maintenance.

Statement 2 impacts gaming when we consider high-
speed graphics, but it's been addressed in recent
versions of Java. J2SE 1.4 introduced a full-screen
exclusive mode (FSEM), which suspends the normal
windowing environment, and allows an application to
more directly access the underlying graphics hardware.
It permits techniques such as page flipping, and
provides control over the screen's resolution and image
depth. The principal aim of FSEM is to speed up
graphics-intensive applications, such as games. A lot

of the behind-the-scenes speed improvements in Java
SE 6 are related to graphics rendering using OpenGL
and DirectX.

Statement 2 also comes into play for game peripherals,
such as joysticks and game pads; machine
independence seems to suggest that non-standard 1/0
devices won't be uscable. Java games requiring these
types of devices can utilize JNI, the Java Native
Interface, to link to C or C++, and therefore to the
hardware. There's also JInput, a very versatile Java-
based game controller API
(https:/jinput.dev java.net/).

An interesting historical observation is that the gaming
community used to think that C and C++ were too
high-level for fast, efficient games programming, when
compared to assembly language. Opinions started to
change only after the obvious success of games written
in C, such as Doom and Dungeon Master, in the mid
1980s. Also important was the appearance of cross-
platform development tools that supported C, such as
Renderware.

JAVA APPLICATION INSTALLATION IS A
NIGHTMARE

The general point made here is that a user needs to be a
Java expert in order to install and exccute a Java
application, whereas most game players just want to
point and click on a few dialog boxes to get a game up
and running. More specific comments include:

1. Java (specifically, the JRE) has to be on the
machine before the application will run.

2. Code bloat—even small programs require a 16
MB JRE. Downloading this can be very slow.

3. Frequently changing JVMs make it hard to write
code that will work for every possible version of
Java.

4. Non-standard components are often required (c.g.
Java 3D), causing cven more installation
problems.

5. It's not possible to compile the application for a
specific platform.

6. The .jar extension is commonly hijacked by other
softwarc (e.g. by compression programs) at
execution time, meaning that the user can't just
double click on a JAR to get it to start.

7. The JRE is slower to start up compared to a native
compiled application.

All these problems—aside from 2 and 7 perhaps—can
be solved by using good installation softwarc. Java
applets can be delivered via the Web, and the Java SE
6 plug-in for Internet Explorer and Netscape starts very
quickly. Java Web Start (JWS) can be utilized to
download applications, and has been improved

significantly since J2SE 1.4. There's numerous third-
party installers, such as install4j (http://www.ej-
technologies.com/products/install4j/overview.html).

The code bloat comment is increasingly irrelevant,
with many games weighing in at over 100 MB, and
even many graphics and sound card drivers are larger
than 15 MB. Adobe Acrobat requires around 25 MB,
Real Player 13 MB, and .NET 23 MB. Network speeds
arc a problem, especially overscas, but broadband
usage is growing rapidly.

Sun Microsystems estimates that around 70% of all
new PC's come with a JRE pre-installed, although a
game installer must still cater for the others.

There's some truth to point 7, but the slow start-up time
is fairly negligible compared to the total running time
of an average game. Also, Java SE 6's splash screen
feature can be employed to 'entertain' the user during
start-up.

JAVA ISN'T SUPPORTED ON GAMES
CONSOLES

Unfortunately, this criticism has some justification.
Video gaming is a multi-billion dollar industry, with
estimates placing revenues at $29 billion by 2007—the
market will cater to over 235 million gamers. PCs and
game consoles account for almost all the income, but
only about 10-20% of it is from PCs, the majority
coming from three consoles: Sony’s PlayStation 2
(PS2), Microsoft’s XBox, and Nintendo’s GameCube.
Sony is the dominant console maker, having nearly
twice as many units in homes compared to Microsoft
and Nintendo combined. Microsoft accounts for about
95% of the desktop PC market. Arguably, there are
only two important games platforms: the PS2 and
Windows—and Java isn't available on the PlayStation.

This problem has long been recognized by Sun: back at
the JavaOne conference in 2001, Sony and Sun
announced their intention to port the JVM to the PS2.
Nothing was cver officially released, although it is
possible to run Java on Sony's version of Linux, but the
OS requires the PS2 to have a hard disk, and only has
limited access to the PS2's other hardware.

The difficulties of this approach should be contrasted
to the availability of feature rich C/C++ tools and
engines for consoles, such as RenderWare
(http://www.renderware.com/) and Gamebryo
(http://www.ndl.com/). They have a track record of
best-selling games, and can port games across the PS2,
Xbox, GameCube, and PCs.

In the future, Java may have a better chance of
acceptance into the closed-world of console makers
because of two trends: consoles are mutating into home
media devices, and the meteoric rise of online gaming.
Both require consoles to offer complex networking and
server support, strong areas for Java and Sun.

The prospects for Java on the PlayStation 3 (PS3) look
fairly bright. Both the basic and premium PS3 versions
will have 512 MB of RAM, a large hard drive, will
support Linux, and use an extended version of
OpenGL. Sony's software development chief, Tzumi
Kawanishi, has spoken of making it easier for
individuals to create games on the PS3. Development
kits are expected to appear in Spring 2007.

Applications will be written in a high-level, object-
oriented language, but currently there's no word on
what it'll be. It's likely that a virtual machine will
execute the code, utilizing JIT technology.

The PS3 will include a Blu-ray disc for storing high-
definition video and data. All Blu-ray drives support a
version of Java called BD-J for implementing
interactive menus and other GUIs. Also, Blu-ray's
network connectivity means that BD-J can be utilized
for networking applications such as downloading
subtitles, short movies, and adverts.

The lack of Java on consoles is a serious issue, but the
remaining PC market is far from miniscule. The
Gartner Group believes there are 661 million PC users
in 2006. The number will hit 953 million by the end of
2008, and cross over the billion mark in 2009.

Games on PCs benefit from superior hardware—such
as video cards, RAM, and internet connections—so
can offer more exciting game play. There are many
more PC games, particularly in the area of multiplayer
online games.

Another rapidly expanding market is the onc for
mobile games, with sales of $530 million in 2003,
potentially rising to $2.5 billion in 2007. There are
thought to be around 250 million Java-enabled phones
at the moment.

NO ONE USES JAVA TO WRITE REAL GAMES

The word "real" here probably means commercial
games. The number of commercial Java games is small
compared to ones coded in C++ or C, but the number
is growing, and many have garnered awards and
become bestsellers: Tribal Trouble, Puzzle Pirates, Call
of Juarez, Chrome, Titan Attacks, Star Wars Galaxies,
Runescape, Alien Flux, Kingdom of Wars, Law and
Order II, Ultratron, Roboforge, IL-2 Sturmovik,
Galactic Village, and Wurm Online. Many are written
entirely in Java, others employ Java in sub-components
such as game logic.

Java is used widely in the casual gaming market, where
game-play is generally less complex and time-
consuming. Implementation timelines are shorter,
budgets smaller, and the required man-power is within
the reach of small teams. By 2008, industry analysts
believe the casual games market will surpass $2 billion
in the US alone.

There are numerous Java gaming sites, including a
showcase at Sun Microsystems
(http://www java.com/en/games/), community pages at
http://community.java.net/games/, a collection of open-
source gaming tools at https://games.dev.java.net/, the
Java Games factory (http:/javagamesfactory.org/),
works-in-progress at https:/games-forge.dev.java.net/,
and many, very helpful forums at
http://www.javagaming.org/.

There are several excellent books on Java games
programming (Brackeen et al. 2003, Clingman et al.
2004, Croft 2004, Davison 2005).

SUN MICROSYSTEMS ISN'T INTERESTED IN
SUPPORTING JAVA GAMING

The games market isn’t a traditional one for Sun, and
it'll probably never have the depth of knowledge of a
Sony or Nintendo. However, the last few ycars have
demonstrated Sun's increasing commitment to gaming.

J2SE has strengthened its games support through
successive versions: version 1.3 improved its graphics
and audio capabilities, and version 1.4 introduced full
screen mode and page flipping in hardware. Faster 1/0O,
memory mapping, and support for non-block sockets,
which is especially useful in client/server multiplayer
games, also appcared first in 1.4. Version 5.0 has a
decent nanosecond timer at last. Java extension
libraries, such as Java 3D, the Java Media Framework
(JMF), the Java Communications API, Jini, and JAXP
(Java’s peer-to-peer API) all offer something to games
programmers. Java SE 6 has improved graphics
rendering speeds, and offers new features useful for
gaming, such as splash screens, scripting, and a
desktop APL

Sun started showing an interest in gaming back in
2001, with its announcement of the Java Game Profile,
a collaboration with several other companics, including
Sega and Sony, to develop a Java gaming API. The
profile was perhaps too ambitious, and was abandoned
at the end of 2003. However, it did produce three
game-focused technologics: a Java binding for
OpenGL called JOGL, a binding for OpenAL (a 3D
audio library) called JOAL, and JInput.

Part of the 2001 initiative was the creation of the
JavaGaming.org website (http://www.javagaming.org),
initially manned by volunteers. In 2003, the Game
Technology Group was formed, and JavaGaming.org
received a substantial makeover as part of the creation
of the new java.net portal (http://www java.nct) aimed
at the technical promotion of Java. java.net hosts many
discussion forums, user groups, projects, communities,
and news. The communities include: Java Desktop,
Java Education and Learning, Java Enterprisc, and
Java Games.

The Java Games community pages can be accessed
through http://www.javagaming.org or

http://community.java.net/games/. The site includes
Java games forums, projects, news, weblogs, a wiki
(http://wiki.java.net/bin/view/Games/WebHome), and
links to games affiliates.

Numerous Java game forums can be accessed from
http://www .javagaming.org/forums/index.php. These
arc probably the best sources of technical advice on
Java gaming on the Web, with over 8500 highly
opinionated registered users. Discussion topics include
Java 3D, Java 2D, Java Sound, J2ME, networking,
onlinc games development, performance tuning,
JOGL, JOAL, and JInput. There are also sections on
projects and code examples.

The project sections (https://games.dev. java.net/)
mostly concentrate on JOGL, JOAL, and JInput, but
the games-middleware and games-forge sections are
wider ranging. The games-forge projects include
Chinese chess, jbantumi (a strategic game from
Africa), and an onlinc fantasy football management
system.

Sun’s substantial presence at
http://community.java.net/games/ is mostly as a host
for community forums and open source projects (or
projects with licenses very close to open source). The
projects include JOGL, JOAL, JInput, and Java 3D.
Sun is relying on community involvement to move
these projects forward, since the Game Technology
Group is quite small (Twilleager et al. 2004).

One in-house product is Sun's Project DarkStar
(http://games-darkstar.dev.java.net), aimed at
developing tools for supporting massive multi-player
onlinc games. The Sun Game Server (SGS) is it's
server-side platform, and there are client APIs for C++,
Java SE, and Java ME

REFERENCES

Brackeen , D., Barker, B., Vanhelswue. L. 2003.
Developing Games in Java, New Riders Games;
August.

Clingman, C., Kendall. S., and Mesdaghi . S. 2004.
Practical Java Game Programming, Charles River
Media, June

Croft, D.W. 2004. Advanced Java Game
Programming, Apress, April.

Davison, A. 2005. Killer Game Programming in Java,
O'Reilly Media, May.

Eckel, B. 2006. Thinking in Java, Prentice Hall, 4th
ed., February

Twilleager, D., Kesselman, J., Goldberg, A., Petersen,
D., Soto, J.C., and Meclissinos, C. 2004. "Java
Technologies For Games", ACM Computers in
Entertainment, Vol. 2, No. 2, April.

BIBLIOGRAPHY

ANDREW DAVISON received his Ph.D. from Imperial
College in London in 1989. He was a lecturer at the
University of Melbourne for six years before moving
to Prince of Songkla University in Thailand in 1996.

His research interests include scripting languages,
logic programming, visualization, and teaching
methodologies. This latter topic led to an interest in
teaching games programming in 1999.

His O'Reilly book, Killer Game Programming in Java,
was published in 2005, accompanicd by a website at
http://fivedots.coc.psu.ac.th/~ad/jg/.

10

GRAPHICS
AND
RENDERING

12

OPTIMIZING THE DEFERRED SHADING
Frank Puig Placeres
University of Informatics’ Sciences
Cuba
E-mail: fpuig@fpuig.cjb.net

KEYWORDS
Rendering, Deferred Shading, Optimization.

ABSTRACT

Lighting in today’s applications is performed by
batching light sources together into small groups of 3-8 lights
that can be managed by current shaders. For each of these
groups the scene is rendered and the light’s contribution is
added into the framebuffer, which at the end contains the
influence of all lights in the world.

A better solution is presented that uses Deferred
Shading. This technique simplify the rendering of multiple
special effects. It also reduces the overhead of performing
several passes on the scene by reducing it to just rendering a
full screen quad on cach pass instead of the complete scene
geometry.

Nonetheless, it is true that Deferred Shading has several
disadvantages. It needs a lot of memory to store the
Geometric Buffer, it produces a noticeable impact on fill rate
and can’t handle transparency efficiently, among others.

This article presents solutions to overcome or reduce
most of the Deferred Shading drawbacks and give tips on
how to implement a scalable system that can run on more
graphic cards. The system uses less memory and optimizes
the whole process not only in the shaders but also from the
application itself by implementing high-level managers that
run on the CPU.

MEMORY OPTIMIZATION

In a Deferred Shading system, lighting and other special
effects are not computed in the same pass were the scene
geometry is processed. Instead, there is a first pass were the
scene geometry is rendered and per-pixel’s attributes like
Position and Normal are saved into several textures
composing an auxiliary buffer called a Geometric Buffer (G-
Buffer). Those textures are then used on subsequent passes to
get the pixel’s geometric data without processing the scene
again.

Common attributes like Position and Normal can usc up
to 3 floats cach and there’s also a nced to store material
values like specular power, glow factor and occlusion term
among others. This can increase the memory footprint
between 10 and 40 MB just to store auxiliary values for
standard game resolutions. However, cleverly packing those
values allows the reduction of the memory footprint.

Normal Vector

Just storing the three components of the normal vector as
floats will take up to 12 bytes per pixel. But using the

13

mathematic constraint that normals are unit-length vectors,
then it’s possible to compute one component given the other
two by applying the equation:

z=i\/1—x2 —y2

When performing the lighting on View Space the front-
faced polygons are always going to have same sign
depending on the frame of reference used.

Further optimizations like restraining components into
the 16 bits or 8 bits range and using look up texture instead of
the given cquation to compute the z component, allows
reducing the memory footprint down to just 2 bytes and in
some case also to accelerate the shader.

Position

Position doesn’t have the same unit-length restraint that
follows the normal vectors. However, It’s possible to just
save the distance from the camera to the pixel and then
recreate the world space position by creating a ray from the
camera to the screen location (which is known) and then
multiply it by the stored distance. The above is illustrated in
the following code:

G_Bufter.z= length(Input.PosInViewSpace);

Then to recreate the pixel position, the vertex shader
computes the Screen Position (vSP) and use the previous
value as follow:

EyeToScreen=float3(vSP.x*ViewAspect, vSP.y, invTanHalfFOV);
PixelPos = normalize(EyeToScreen) *G_Bufter.z;

Material Attributes

While it could be ideal to store all material attributes like
specular power, glow factor, occlusion term, etc into the G-
Buffer, they consume too much memory. Applications that
use one or two attributes could store them directly by first
adjusting the number of bits assigned to them. For example,
when the specular power is constrained to the values [1, 4,
10, 30] it can be saved using two bits, and the original value
can be recreated inside the shader.

In most situations, more attributes are needed, but they
don’t change per pixel but per surface. In that situation, it’s
possible to pack the attributes describing the material and
only store the index in the G-Buffer.

According to the number of materials, they can be
accessed by packing all the attributes in the available unused
shader constants, and retrieving them using an indexed look
up in the shader, or by packing the values into a texture
where each row represent a different material. Also the index

can be adjusted to only use the number of bits that fits the
maximum value.

FILL-RATE REDUCTION

Given that Deferred Shading systems rely on filtering
image pixels, they are likely to become fill-rate limited. Most
implementations, after filling the Geometry Buffer, just loop
through every light source and apply the shader to each pixel.
Instead, it’s possible to implement a high level manager,
which acts as a firewall by only sending to the pipeline the
sources (lights and cffects) that influence the final image and
exccuting the shaders only on the pixels that are influenced
by the effect or light.

This high level manager receives the list of all sources
that should modulate the resulting render and general
information like the bounding object and how strong the
effect should be applied. (e.g. for a light it could be the
brightness). When the list is received, two main stages are
executed.

Social Stage

During this first stage, the manager filters the sources on
the scene, producing a smaller list by executing the following
pscudo code.

1. Visibility and occlusion algorithms are executed to

discard lights whose influence is not appreciable.

2. Project visible Bounding Objects into screen space.

3. Combine similar sources that are too close in screen
space or influencing almost the same screen area.

4. Discard sources with a tiny contribution due to its
projected bounding object being too small or too far.

5. Constraint each pixel to be influenced by no more than a

predefined number of sources. Pick the biggest, strongest
and closer.

Runtime parameters can be defined to control how small
should be the projection of a source to be discarded in step 4
or how much sources can be affecting a single pixel in step 5,
etc.

When the average frame rate is high enough, the runtime
parameters can be relaxed, and if the frame rate drops, the
parameters could be lowered. This produces a fast way to
control the fill-rate of the application and allows maintaining
smooth frame rates.

Social Stage

This second stage will configure the shaders to reduce
the processing cost of cach source. First it classify the sources
in two main groups, the global sources and the local sources.

Global Sources

These are meant to affect all screen pixels, implying that
the shaders must be executed in a complete screen quad.
Examples of these sources are big lights illuminating the
entire world like the sun when outdoors, or special effects
applied to the whole screen like Depth of Field, Fog, etc.

Global sources restrain the number of optimization and
heavily depend on how optimized are the shaders being used.
Fortunately, most of the time there are just a few of them.

14

Local Sources

Contrary to global sources, these only affect regions of
the scene. Classical examples include small lights spread over
the scene, effects like volumetric fog or heat hazes.

One way to process them is to render the bounding
object so only the influenced pixels execute the shader. This
can work for simple shapes like boxes, but could became
slow when using spheres or other objects composed by a lot
of polygons.

Another approach involves rendering a full screen quad,
just like for global sources, but cnabling clipping and
rejection features to discard most non-influenced pixels. This
should result in less performance impact but is not as
accurate as the other approach.

While scissor test and clipping planes, can discard the
pixels at the transform level. Dynamic branching can be used
to reject them at the fragment level. For example, when
dealing with spheres, the individual stage passes the sphere
radius and center to the shader and if the pixel’s distance to
the center is found to be greater than the radius, the pixel is
discarded. For Axis Aligned Bounding Boxes, the process is
even casier and just involves checking if the position
components are inside the box.

When dynamic branching is not supported, the stencil
buffer can be used to emulate the behavior. In [ATIOS] a
technique is described to emulate dynamic branching by
creating a pixel mask according to some conditions.

Another non-conservative optimization that can be
applied is to use a sort of Level of Detail to decide the shader
quality according to how far or small is the source. For
example, this can be implemented by computing the full
lighting equation on the closest pixels and remove
components as the pixels get farther. This way, it’s possible
to use diffuse and specular contribution for closer pixels and
discard the specular component as it goes far.

Special care has to be taken to avoid artifacts and sudden
popping that can appear at the transitions points where the
equation components are inserted or removed. This can be
handled by fading the target component. For example, to
discard the specular component, it can be modulated by a
factor that start being 1 on the closer boundary to fully show
its contribution and gradually fades to 0 according to the
distance. From that point on, other shader can be used that
doesn’t compute the specular influence. This process is
described in [fpuig05] and [fpuig06].

OTHER PERFORMANCE OPTIMIZATIONS

Even when the above solutions have being used to
reduce the memory footprint and fill-rate, they are likely to
improve the general performance as well. For instance, using
less memory to store the G-Buffer allows a better use of the
texture cache, which reduces texture transfers, thereby
reducing the performance impact of packing the pixel
attributes in the buffer.

Together with the presented optimizations, the deferred
shading system can be further optimized. It’s possible to
batch sources that arc going to be computed with the same
shaders. They can cven be collapsed into several source

shapes and processed with a single shader that computes the
contribution of more than one source.

When setting the source shaders, call states can be
minimized by first finding those shaders that are going to be
used, and sorting the sources according to them. Finally to
minimize state changes, each shader is set only once and all
sources that use it are processed.

Mixing screen resolutions can make a difference. This
way, the texture that stores the pixels colors in the G-Buffer
can be rendered at full size, but the texturc that holds
normals, positions, ctc could use lower resolutions. Which
implies that the lighting and shading must be computed on a
render target which is 2 or 4 of the viewport dimensions and
then modulated by the full resolution color texture.

When processing the scene geometry to fill the G-Buffer,
lights, fog and all other unneeded effects at that stage should
be disabled. Also it can help to have two different
representation of the scene both presenting the same
geometry but batched differently. One representation is used
to render the color texture in the G-Buffer. It maintains a
group of polygons for each texture and each group has to be
call with an independent draw call.

The other representation is used for rendering position
and normal into the G-Buffer. There’s no need to distinct
between textures so the complete geometry can be batched
and submitted to the pipeline with just one draw call.

On systems where multiple render targets are not
supported and a multi-pass approach is used, the cheapest
pass should be executed first to handle overdraw with the
lowest penalty and then running the more intense passes with
the benefit of not reprocessing the same pixels.

Other possibilities are to combine forward rendering
with the deferred system. The per-vertex influence of some
sources can be written while filling color values in the G-
Buffer. This technique can be used when the geometry is
highly tessellated, or the light sources are far.

Additionally, it’s possible to use most of the general
shader optimizations to further enhance the performance in a
deferred system. A typical example is the use of half data
instead of floats when the extra precision is not needed, etc.

TRANSPARENCY

Alpha Test is easy to integrate with a Deferred Shading
system, but alpha blending requires the same pixels to be
shaded scveral times. However the Geometric Buffer only
stores information about a single pixel in each Texel. So
blending on a deferred shading system is not as simple as on
forward rendering.

Still, there are some hacks that can be done to allow
blending on a deferred shading system. The easiest is not
doing deferred rendering on polygons that need to be
blended. In a first pass, the application can perform the
deferred path for solid polygons and then forward rendering
on all the transparent polygons with alpha blending enabled.

Another approach is to use Screen Door Transparency.
This technique uses a stippling pattern to mask the
transparent polygons in a way that some pixels of the
background can be secing through the mask. For instance, a

15

pattern to represent 50% transparency will skip all the even
pixels in one row and all the odd pixels in the next. When
applying the stippling pattern to a polygon, the background
can be seen through the masked pixels. The holes are so
small that they aren’t picked up by the eye and in fact the eye
blends the nearest pixels giving the illusion of a transparent

polygon.

Screen Door Transparency can be implemented directly
on the deferred shading pipeline and doesn’t require depth
sorting. However the screen resolution needs to be relativity
high in order to hide the masking pattern. To make it cven
harder to spot the mask, the pattern can be changed and offsct
every frame, which also has the advantage of producing
better looking results when the transparency has a high depth
complexity.

Further approaches can use depth peeling to break
complexity into layers, which then can be blended one after
the other by using a deferred shading path. Nonetheless, this
technique involves executing the complete deferred pipeline
for each layer, from filling the G-Buffer to source shading,
which can seriously impact performance.

CONCLUSIONS

Deferred Shading is a nice solution to deal with multiple
lights influencing a scene. It keeps everything simple,
separated and allows handling next generation scenes with a
high number of polygons, complex materials and lots of
special effects and lights.

This article has presented several techniques to reduce
some of its drawbacks, by properly planning the shader
implementation and the use of the G-Buffer space while
using a high level manger to increase the overall performance
and scalability of the system. Also, most of the presented
solutions can be controlled in recal time, which allows
adjusting the image quality according to the average frame.

The combination of these techniques and the potential of
a Deferred Shading system to easily handle complex scenes
while maintain a great performance, makes this technique a
very attractive solution for highly detailed graphics on
current and next generation systems.

REFERENCES

[ATIOS] ATI, “Dynamic branching using stencil test,” ATI
Software Developer’s Kit, June 2005.

[Delphi3D] “Deferred Shading” available online at

www.delhphiddonet/articles/viewarticle. php?articie=deterred him

[Fabio05] “Deferred Shading Tutorial” Available online at
http://fabio.policarpo.nom.br/docs/Deferred Shading_Tutorial SBG
AMES2005.pdf

[Pritchard04] Pritchard, Matt “Deferred Lighting and
Shading” Available online at
www.gdconf.com/conference/archives/2004/pritchard_matt.ppt.

[Puig05] Puig, Frank “Fast Per-Pixel Lighting with Many
Lights”, Graphic Programming Gems 6

[Puig06] Puig, Frank “Overcoming Deferred Shading
Drawbacks”, ShaderX5

Effective Multi-resolution Rendering and Texture Compression for Captured
Volumetric Trees

Christian Linz, Marcus Magnor

Institut fiir Computergraphik, TU Braunschweig

Miihlenpfordtstr.23
38106 Braunschweig, Germany

KEYWORDS
Three-Dimensional Graphics and Realism

ABSTRACT

Trees can be realistically rendered in synthetic environments
by creating volumetric representations from photographs.
However, volumetric tree representations created with previ-
ous methods are expensive to render due to the high number
of primitives, and have very high texture memory require-
ments. We address both shortcomings by presenting an effi-
cient multi-resolution rendering method and an effective tex-
ture compression solution. Our method uses an octree with
appropriate textures at intermediate hierarchy levels and ap-
plies an effective pruning strategy. For texture compression,
we adapt a vector quantization approach in a perceptually
accurate color space, and modify the codebook generation
of the Generalized Lloyd Algorithm to further improve tex-
ture quality. In combination with several hardware accelera-
tion techniques, our approach achieves a reduction in texture
memory requirements by one order of magnitude; in addi-
tion, it is now possible to render tens or even hundreds of
captured trees at interactive rates.

INTRODUCTION

Modeling and rendering trees has been a goal of computer
graphics research since the early days of the field (Bloomen-
thal, 1985; de Reffye et al., 1988; Prusinkiewicz and Lin-
denmayer, 1990). While most of the effort has been in solu-
tions to generate entirely synthetic trees (e.g., (Prusinkiewicz
and Lindenmayer, 1990; de Reffye et al., 1988; Deussen
et al., 1998)), an alternative is the approach to capture and
render real trees (Shlyakhter et al., 2001; Reche-Martinez
et al., 2004). For both synthetic and captured trees, how-
ever, polygonal representations (mainly of the leaves) re-
sult in objects which are very complex and thus expensive
to render. In addition, generating geometric levels-of-detail
(LOD) for disconnected triangle meshes, such as the leaves
of a tree, is an unsolved problem; the few solutions pro-
posed to date require mixing various different representa-
tions(e.g., (Neyret, 1998; Meyer and Neyret, 1998; Behrendt
et al., 2005)). However, trees are a good candidate for vol-

16

Alex Reche-Martinez, George Drettakis
REVES/Inria Sophia-Antipolis
2004 route des lucioles BP 93
06902 Sophia Antipolis, France

umetric representations (Reche-Martinez et al., 2004); one
big advantage of such an approach are appropriate multi-
resolution LOD structures resulting naturally from the hier-
archical data structure representing the volume.

Figure 1: A scene with 290 trees running at 12 fps, and re-
quiring 2.9 MB of texture memory for 3 different types of
trees. Using the previous approach (Reche-Martinez et al.,
2004), several seconds are required per frame and 641 MB
texture memory are needed.

Although Reche et al. (Reche-Martinez et al., 2004) did use
a volumetric representation, no multi-resolution solution was
presented, and the texture memory requirements were pro-
hibitively high. Despite the realistic renderings provided by
the approach, the method remains unusable for all practical
purposes (60,000-140,000 polygons and 60-140MB of tex-
ture memory per tree).

In this paper we present solutions to both the rendering speed
and the texture memory problems. We present an efficient
multi-resolution rendering approach, in which we choose
the appropriate data-structure by creating textures for each
level.In addition, we employ an efficient pruning strategy
based on the properties of the generated textures. We then
present a modified texture compression approach, choosing
an appropriate color space during compression.To improve
the results, we introduce a modification to the Generalized
Lloyds Algorithm used during codebook generation for vec-
tor quantization. Finally, we use several graphics hardware
acceleration techniques which allow us to achieve better per-
formance and texture compression rates.

Overall, our technique allows us to render complex scenes
containing tens or hundreds of trees at interactive frame rates.
Texture memory consumption is reduced by two orders of
magnitude. For example, the scene in Fig. 1 shows a scene
with three types of trees using a total of 2.9 MB of memory,
running at 10 fps. Using the previously existing approach,
each frame would take tens of seconds to render, and 641
MB of texture memory would have be required. We believe
that with these improvements, captured volumetric trees will
become an interesting solution for games and other interac-
tive 3D applications.

PREVIOUS WORK

In the interest of brevity, we will restrict our discussion
to a selection of the most relevant previous work. Most
previous methods concentrated on entirely synthetic trees
based on procedural methods such as grammars (L-systems)
(e.g., (Prusinkiewicz and Lindenmayer, 1990; Deussen et al.,
1998)) or rule-based plant growing systems which use
codified botanical knowledge such as the AMAP sys-
tem (de Reffye et al., 1988). Such approaches have been
used to create highly realistic images of forests and trees, al-
beit with high polygon counts.

Other than the method of Reche et al. (Reche-Martinez et al.,
2004) (described in Sect. in more detail), methods for cap-
turing real trees include (Tadamura et al., 1992), based on
two photographs with emphasis on shading, and Shlyakhter
et al. (Shlyakhter et al., 2001) who use a visual hull created
from photographs of the tree. They then fit an L-system to
generate a polygonal model, while leaves are textured by re-
projecting the photographs onto the polygons. As was the
case for the synthetic trees mentioned above, the resulting
models have high polygon counts; in addition, level-of-detail
mechanisms are hard to develop for such representations.
Several image or volume-based rendering methods have been
proposed for trees. The multi-layer z-buffer method uses pre-
computed synthetic images of trees (Max and Ohsaki, 1995;
Max, 1996). In volumetric texture approaches, the com-
plex tree geometry is represented as an approximation of the
reflectance at a distance (Neyret, 1998). An adaptation of
this approach to hardware was developed later using textured
slices for interactive rendering (Meyer and Neyret, 1998).
Meyer et al. (Meyer et al., 2001) presented a hierarchical
bidirectional texture solution for trees at different levels of
detail, resulting in efficient level-of-detail rendering for trees.
Another approach has been developed in (Qin et al., 2003),
in which a volumetric approach effects an implicit level-of-
detail mechanism, for lighting (both sun and sky) and shad-
ows, using shadow maps. Efficient rendering of trees can
also be achieved using point-based methods (Deussen et al.,
2002). More recently billboard clouds (Behrendt et al., 2005;
Fuhrmann et al., 2005) have been used for rendering trees.
All of the above techniques are applied to polygon-based
synthetic trees. As such they could be applied to the cap-
tured trees of Shlyakhter et al. (Shlyakhter et al., 2001), but
it is unclear how these could be applied to volumetric trees.

17

Volumetric trees

Our rendering and texture compression approach builds on
the method of Reche et al. (Reche-Martinez et al., 2004). For
clarity, we summarize the method here in more detail.

Tree capture proceeds in three steps. Initially, a set of pho-
tographs is taken from around the tree, and the cameras of
these images are calibrated. Then, alpha-mattes are extracted
from the images, giving an opacity value to each pixel in
each view. In a second step, the opacity values are used to
perform an opacity estimation on a hierarchical grid, simi-
lar to tomography, resulting in the assignment of a density
value for each grid cell. The grid used in (Reche-Martinez
etal., 2004) was a tri-grid, i.e., each cell is subdivided into 27
children. The degree of refinement of the grid directly influ-
ences the quality of the reconstructed volume, where higher
refinement allows the reconstruction of finer details. In the
final step, textures are generated using a heuristic based on
the input images, the depth of the cell in the tree and the al-
pha/opacity values. The generated textures are then assigned
to a billboard in each cell. There is one texture per billboard
per input camera position. To render a novel view, the cells
are traversed in back-to-front order. The billboards generated
from the two closest input cameras are weighted and blended
together in the sense of the over operator. The two closest
cameras are computed once per frame in software.

As mentioned above, despite high-quality tree renderings,
this method suffers from high texture memory requirements
and the lack of multi-resolution rendering. We address both
shortcomings with our new approach.

MULTIRESOLUTION RENDERING

We discuss here two main elements needed to achieve effi-
cient multi-resolution rendering. The first is the choice of
the appropriate hierarchical data structure and the generation
of the corresponding textures, as well as how to choose the
appropriate level of detail. The second is an efficient pruning
strategy, based on the properties of the generated textures.

Using an Octree for Multiresolution Rendering

Our goal is to provide a smoothly varying level-of-detail
(LOD) mechanism for tree rendering. The volumetric rep-
resentation is based on a hierarchical data structure. Thus
LOD can be achieved naturally by choosing and rendering
the appropriate levels of the data structure.

The tri-grid structure used in (Reche-Martinez et al., 2004)
is inappropriate for multiresolution rendering since switch-
ing from one level to the next involves replacing a single
cell (and the corresponding billboards) by 27 sub-cells. This
leads to large jumps in the number of primitives, resulting
in irregular frame rates. It also produces very visible transi-
tion artifacts for the textures which also cannot be avoided
by a dissolve in the sense of (Max, 1996). We choose to use
an octree; as a result the jumps in number of primitives are
not as large as with the tri-grid structure, and the transitions

(a) (b)

(©) (d)

Figure 2: Switching from (a) level 4 (51,000 polygons) to (b) level 3 (3,800 polygons) using a tri-grid (average RMS=31.6228).
Octree representation with a switch from (c) level 6 (34,000 polygons, pruned 16,000 polygons) to (d) level 5 (6,300 polygons,
pruned 3,800 polygons). Note that the transition is less abrupt (average RMS=24.5589).

between different levels of detail are less visible, especially
for the lower LODs. Fig. 2(a,b) compares two neighboring
levels of the tri-grid hierarchy with neighboring levels of the
octree hierarchy (c,d). The artifacts are more clearly visible
in the the accompanying video. In the original approach, no
provision was made to create billboards and assign textures
at intermediate nodes of the hierarchy. We use the same tex-
ture generation process as in (Reche-Martinez et al., 2004),
but at each level of the hierarchy. An alternative would be
to average the textures from the lower levels: however, the
overhead of texture computation of the intermediate levels
corresponds to 37.5% of the total texture generation time.
We considered that the tradeoff was worthwhile, since the
resulting intermediate level textures are of higher quality.
The selection of the level of detail to be used is based on the
distance of each cell to the current camera viewpoint. We set
up a fixed number of planes, orthogonal to the camera view-
ing direction before each rendering pass. During rendering,
for each cell of the octree structure, we check whether its
center point lies in front of or behind the current LOD selec-
tion plane. If it lies in front of the plane, the cell is rendered
at the currently active LOD. Else the tree descent stops one
level above the currently set LOD, replacing eight cells by
their parent cell.

Efficient Pruning Structure

In the original method (Reche-Martinez et al., 2004), render-
ing speed was hindered by the large number of billboards to
be rendered. In addition to the multi-resolution, Sect. , a ba-
sic optimization can be performed by better understanding
the properties of the textures associated with the billboards
attached to each cell. We prune the billboards that do not
contribute to the rendered result. For a given cell and a given
viewpoint, there is no need to render a billboard if the texture
contains no color information. Thus, it can be pruned. After
careful study of the generated textures, we realize that this
occurs quite frequently using the texture generation heuristic

18

of (Reche-Martinez et al., 2004). During the texture gener-
ation process, for each cell we check whether it is visible
from a given point of view. We trace a ray through the vol-
ume and accumulate the alpha values until we hit the cell.
If the accumulated alpha values of the cells hit by the ray
exceed a threshold, the cell is essentially invisible from the
given viewpoint. The heuristic for texture generation uses
the alpha value in its determination of color; as a result, for
trees with a dense crown, no colors are assigned to the tex-
tures of many of the interior cells or of those cells on the
opposite side of the viewpoint. This is clearly illustrated in
Fig. 3(a) and (b). In (b) we render a view where we "slice
away" the front half of the tree. We can clearly see that most
interior cells contain empty textures, and have been pruned.
For trees with a sparse crown, Fig. 3(c),(d), this strategy also
works, although in a less aggressive manner. The pruning
strategy is applied recursively to the entire octree structure.

TEXTURE CCOMPRESSION

The textures generated by the volumetric approach (Reche-
Martinez et al., 2004) are of the order of 100-150MB of tex-
ture. The packing method reported there did not actually re-
duce the texture memory required at run time. The reduction
reported was for offline storage purposes only.

Since our multiresolution approach makes it necessary to cre-
ate texture information for the lower levels of detail, more
memory may be required, making it even more important to
reduce texture memory.

The change from the tri-grid to the octree means that there
are typically more levels in the hierarchy, which may re-
sult in an increase in the number of billboards. Fortunately,
this is partially compensated by the decrease in billboard tex-
ture size, from 8x8 (typically used in (Reche-Martinez et al.,
2004)) to 4x4. The resulting texture memory is often actu-
ally reduced (see Section). Nevertheless, the memory re-
quirements are still too high for the use in computer games
or other applications.

(a) (b)

(©) (d)

Figure 3: (a) A tree with a dense crown, (b) seen from the side with the foremost half of the volume cut away (camera is to the
right). (c) A tree with a sparse crown, (d) again seen from the side with the foremost half of the cells of the volume cut away.

Therefore, we additionally employ an approach for texture
compression proposed by Beers et al.(Beers et al., 1996). It
is based on vector quantization (VQ) and offers high com-
pression ratios with little loss in quality. We modify their
approach to use a perceptually oriented color space such as
CIELab for the computation of the texture codebook. We
will elaborate on the details in the following subsections.

Texture quantization

The most crucial part of compressing a texture using VQ is
designing the codebook. As in (Beers et al., 1996), we em-
ploy the Generalized Lloyd Algorithm (GLA), an iterative
clustering algorithm which yields a locally optimal code-
book for a given set of texture blocks, the training vector
set. Our training vector set consists of all 4x4-billboards, en-
coded as vectors. The algorithm starts with a set of potential
codewords from the training set and iterates on the follow-
ing steps. Each texture block is grouped with the nearest
codeword according to a given distance measure. The cen-
troids of the clusters are taken as the new codewords for the
next iteration. This process repeats until the set of codewords
converges.

The choice of the color space is important at this point. While
the use of RGB space with the L,-norm as a distance mea-
sure is simple and fast, GLA often groups textures that are
close according to the distance measure but are of different
perceptual colours. To counter this problem, we transform
the billboard textures to the more perceptually oriented color
space CIELab and use the L,-norm as a distance measure.

The resulting compression has higher overall quality. This
can be seen in the comparison in Fig. 4 for the oak tree.
In (a) we see the tree with the original uncompressed tex-
ture. In (b) we see the compressed texture using RGB space.
Clearly, RGB compression results in loss of contrast and
overall lower visual quality. In (c) we use the CIELab space.
The quality is higher, and contrast is better preserved.

19

Alpha channel quantization.

The alpha channel quantization is straightforward. We en-
code each billboard alpha texture into a vector of grey level
values and run the generalized Lloyd algorithm (GLA) on
this data. Since we quantize the alpha channel independently
of the RGB channel, we have to ensure that after quantiza-
tion, every non-transparent pixel maps to a non-black pixel
in the associated color texture. We address this problem by
a heuristic that replaces every black pixel in the quantized
texture with the color of the brightest pixel, computed from
every non-black pixel of the billboard texture. Using the
brightest pixel in this heuristic avoids black pixel artifacts
in the rendition of the compressed tree.

Color channel quantization.

We encode the color channels of each billboard texture into
an appropriately sized vector. Afterwards, GLA is run on this
vector data. The number of clusters is given by the user and
trades compression ratio against quality of the compressed
textures.

A drawback of the quantization method of (Beers et al.,
1996) is the implicit averaging of colors introduced by the
GLA cluster computation, leading to overall darker textures,
as well as loss of contrast in the textures. Our solution is to
modify the GLA to replace the cluster centroid by the closest
original input vector. If we compare Fig. 4(c) to Fig. 4(d),
we can see that in the center of the tree certain regions have
preserved their bright areas.

To avoid extensive texture context switching, the quantized
alpha textures as well as the quantized RGB textures are or-
ganized in a texture atlas, typically of size 512x512. De-
compression consists of simply computing appropriate tex-
ture coordinates in the codebook atlas for each billboard.

RESULTS

All results described here are run on a Linux Fedora PC with
an NVIDIA 6800 graphics card with 128MB of texture mem-

(a) (b)

(©) (d)

Figure 4: (a) Tree with uncompressed texture. (b) Quantization using RGB space with visible errors (average RMS=30.1971).
(c) Quantization with CIELAB space, with original GLA algorithm (average RMS=28.1523). (d) Modified GLA algorithm using
CIELAB space (average RMS=28.1017). The RMS is computed with respect to (a) and averaged over the colour channels.

ory, and a 3.06Ghz Xeon CPU. We have tested our approach
using three tree models: the oak and pine which were also
used in (Reche-Martinez et al., 2004), and the additional
small oak model presented in Reche’s thesis. We will always
refer to these trees in this order unless explicitly stated oth-
erwise. We compare the various improvements to the basic,
non-hierarchical tri-grid algorithm of (Reche-Martinez et al.,
2004).

Before pruning, the corresponding number of billboards is
154,000, 54,000 and 35,000 for a 7-level octree subdivi-
sion. The corresponding numbers for a 5-level tri-grid are
361,000, 152,000 and 114,000. After pruning (Sec.), the
average number of billboards is 53,000, 43,000 and 33,000,
computed by rotating around the tree. In terms of rendering
speeds, the average frame rate for the three trees are: 1.5, 2.6
and 2.5 frames per second (fps) for the tri-grid, 4, 6 and 6 fps
for the complete octree and 11, 11 and 12 fps for the pruned
octree. As we can see, we have an average 78% reduction
in the number of polygons and a 86% average speedup in
rendering speed, for equivalent quality trees.

The texture memory consumption for a multi-resolution tri-
grid version of the above trees is 266, 147 and 228 MB, be-
fore any compression (5-level). The corresponding octree
texture memory consumption, before any compression is 72,
60 and 86 MB (7-level). Using our compression approach
described in Sec. , the memory requirement is 3.1, 2.1 and
6.3 MB. We use a codebook of size 512 for the oak and pine
and 1024 for the small pine, which has less contrast overall in
the textures. Compared to the uncompressed tri-grid we thus
achieve a 64:1 improvement in texture memory consumption
(19:1 for the octree).

The performance of the multi-resolution rendering algorithm
is harder to compare, since there is no equivalent in the
original algorithm. We show in Figs. 1,5 typical interactive
“game-like" environments. The “square” scene renders at an
average frame rate of 20 fps (max. 24 fps and min. 17 fps),
while the scene of the Ancient Greek city of Argos renders

20

Figure 5: Scene with 12 trees in a square; this scene runs at
20 fps. All three trees are present.

at 10 fps (max. 25 fps and min. 7 fps) for the walkthroughs
shown on the accompanying video. On average, 6 trees for
the “square” scene and 180 trees for the city of Argos are
inside the viewing frustum. All three trees are used. Using
the original approach, this would require 641 MB of texture
memory, rendering it unusable for common graphics cards.
The total texture memory consumption using our approach
(with hardware support) is 2.9 MB, or a total compression
rate of 240:1 in this case.

Although the improvements in rendering speed and texture
memory consumption now allow for rendering hundreds of
trees, it is still limited by the traversal of the underlying data
structure, needed for correct back-to-front sorting of the bill-
boards. This is done entirely on the CPU and the traversal
time hence gives a lower bound for the speed of our method.

CONCLUSION AND DISCUSSION

We have presented a multiresolution rendering approach for
captured volumetric trees, together with an efficient texture

compression approach. In particular, we use an octree data
structure which allows smoother multiresolution level-of-
detail control. We employ generated textures at every level.
We are able to significantly reduce the number of billboards
required to represent the volume by pruning those which do
not contribute to the image. For texture compression, we use
a vector quantization scheme (Beers et al., 1996) which is
modified in two ways: we use a perceptually uniform color
space (CIELab), and we modify the GLA algorithm for code-
book generation, improving texture quality. The compres-
sion does result in a some quality loss (intensity and contrast
levels) as evidenced in Fig. 4, but the overall quality is high..
It may be possible to further improve the quality by using
alternative heuristics.

The approaches we have introduced, together with the use of
a set of graphics hardware optimizations, reduce the texture
memory required for the display of the captured volumetric
trees by one order of magnitude (e.g., from 72 MB for the oak
tree down to 3.1 MB). The multi-resolution algorithm allows
the display of large numbers of trees in realistic settings for
games or other interactive applications. In the previous ap-
proach (Reche-Martinez et al., 2004) a single tree ran at 2
fps; in the examples we have shown, we are able to render
environments with 290 trees at 10 fps on average.

The methods we have presented are a significant improve-
ment over previous state of the art for captured volumetric
trees. Without these, use of this representation was imprac-
tical for all realistic usage scenarios such as games etc. We
believe that with the solutions presented here, captured vol-
umetric trees will now be a viable and interesting option for
real-world applications such as games etc., since the result-
ing trees are realistic and convincing, and can be displayed
rapidly compared to other approaches.

In future work, we plan to address the two limitations of cap-
tured volumetric trees, that is fixed lighting, which is cur-
rently embedded in the input photographs used to generate
the textures, and the fact that the trees cannot currently be
modified, since they are an exact reconstruction of an exist-
ing tree. For both of these issues, it will be necessary to cre-
ate a semantic representation of the tree by identifying the
trunk, branches and leaves, allowing their manipulation both
photometrically and geometrically. In addition, it would be
beneficial to push the back-to-front sorting of the billboards
onto the graphics hardware.

REFERENCES

Beers A.C.; Agrawala M.; and Chaddha N., 1996. Rendering from
compressed textures. In Proc. SIGGRAPH 96. ACM Press, New
York, NY, USA, 373-378.

Behrendt S.; Colditz C.; Franzke O.; Kopf J.; and Deussen O.,
2005. Realistic real-time rendering of landscapes using billboard
clouds. In Eurographics 05. 507-516.

Bloomenthal J., 1985. Modeling the mighty maple. In SSGGRAPH
'85: Proceedings of the 12th annual conference on Computer
graphics and interactive techniques. ACM Press, New York, NY,
USA, 305-311.

21

de Reffye P.; Edelin C.; Franson J.; Jacger M.; and Puech C., 1988.
Plant models faithful to botanical structure and development. In
Proc. SSIGGRAPH 88. 151-158.

Deussen O.; Colditz C.; Stamminger M.; and Drettakis G., 2002.
Interactive visualization of complex plant ecosystems. In Proc.
IEEE Visualization 2002. 219-226.

Deussen O.; Hanrahan P.; Lintermann B.; Méch R.; Pharr M.; and
Prusinkiewicz P., 1998. Realistic Modeling and Rendering of
Plant Ecosystems. Proc SIGGRAPH 98, 275-286.

Fuhrmann A.L.; Umlauf E.; and Mantler S., 2005. Extreme Model
Simplification for Forest Rendering. In EG Workshop on Natural
Phenomena 05. 57-66.

Max N., 1996. Hierarchical rendering of trees from precomputed
multi-layer Z-buffers. 1In Proc. 7th EG Rendering Workshop.
165-174.

Max N. and Ohsaki K., 1995. Rendering Trees from Precomputed
Z-Buffer Views. In Proc. 6th EG Workshop on Rendering. 74-81.

Meyer A. and Neyret F., 1998. Interactive Volumetric Textures. In
Proc. 9th EG Rendering Workshop 1998. 157-168.

Meyer A.; Neyret F.; and Poulin P., 2001. Interactive Rendering of
Trees with Shading and Shadows. In Proc. 12th EG Workshop on
Rendering, 2001. 183-196.

Neyret F, 1998. Modeling Animating and Rendering Complex
Scenes using Volumetric Textures. IEEE Trans on Visualization
and Computer Graphics, 4, no. 1, 55-70.

Prusinkiewicz P. and Lindenmayer A., 1990.
beauty of plants. Springer, New York.

The algorithmic

Qin X.; Nakamae E.; Tadamura K.; and Nagai Y., 2003. Fast Photo-
Realistic Rendering of Trees in Daylight. In Proc. of Eurograph-
ics 03.243-252.

Reche-Martinez A.; Martin 1.; and Drettakis G., 2004. Volumet-
ric reconstruction and interactive rendering of trees from pho-
tographs. ACM Trans Graph, 23, no. 3, 720-727.

Shlyakhter I.; Rozenoer M.; Dorsey J.; and Teller S., 2001. Recon-
structing 3D Tree Models from Instrumented Photographs. IEEE
CG & A, 21, no. 3, 53-61.

Tadamura K.; Kaneda K.; Nakamae E.; Kato F.; and Noguchi T,
1992. A Display Method of Trees by Using Photo Images. Jour-
nal of Information Processing, 15, no. 4, 526-534.

Realistic Rendering of Point Cloud Models with

Ambient Shadowing and Environment Lighting
Sushil Bhakar, Feng Liu, Thomas Fevens, Sudhir Mudur

Department of Computer Science and Software Engineering
Concordia University, Montreal, Quebec, H3G 1MS8, Canada
sushil@cs.concordia.ca, william7ba@yahoo.com, fevens@cs.concordia.ca mudur@gcs.concordia.ca

Abstract: Point clouds acquired using 3D scanners
usually need to be converted into mesh models for gaming
applications. This involves considerable manual cffort. There is
however increasing interest in using them directly without
conversion. In this paper, we describe the results of our efforts
in realistic rendering of point based geometry with real time
frame rates. We adapt advanced mesh rendering techniques that
help create realistic visual effects. These include self
shadowing effects using ambient occlusion, diffuse lighting
ceffects using spherical harmonic representations of irradiance
environment maps and specular effects by casting a reflected
ray into a pre-blurred environment map. A number of
efficiency improvements enable us to handle considerably
larger number of sample points in point cloud models — we use
an octree hierarchic structure based on feature analysis of the
point cloud data to reduce ambient occlusion computations; we
push all view independent computations in a preprocessing
phase and finally, we perform most of the critical render-time
lighting calculations directly on GPU using vertex and
fragment shaders.

Keywords: ambient occlusion, point based rendering,
environment lighting, GPU programming

1. Introduction:

Point cloud representations of 3D surface
models have been proposed as an alternative to popular
triangle mesh representations [16]. Advances in 3D
scanner technology have considerably simplified their
acquisition. In addition, their representation is much
simpler as no connectivity information is required. Yet,
most gaming applications usually resort to converting 3D
scan data into triangle mesh models involving
considerable manual skill and effort. While considerable
progress has been made in the development of
algorithms for geometric processing and direct rendering
of these point-based models, they have yet to be
enthusiastically adopted by industries such as gaming
and cinema, wherein the concern for high quality
realistic images is paramount. An important step for their
adoption is to adapt and apply popular techniques for
rendering of realistic images of mesh based geometry to
produce similar or better rendering results. In this paper,
we describe our efforts to adapt mesh rendering
techniques of ambient occlusion and environment
lighting to achieve realistic rendering of point cloud
models with real time frame rates.

There are two main issues that need special
consideration when rendering point cloud models.

22

Firstly, rendering techniques must be able to handle the
discrete nature of point samples. There is no connectivity
information and hence no underlying topology of the
surface of the 3D object. Usually, the underlying surface
geometry and topology are inferred using ncighboring
point samples. Secondly, sampling resolutions are
usually high to enable capture of fine shape details. The
result is that we have a much larger number of points
representing the 3D object and any rendering technique
must be able to efficiently handle this considerably larger
set of point data.

The rest of the paper is organized as follows. In
section 2 we provide a brief review of related work on
high quality rendering of point based models. Sections 3
and 4 describe adaptation of ambient shadowing and
environment lighting techniques respectively. In section
5 we discuss salient details of our implementation, which
has been implemented as a plug-in for Pointshop3D [14].
Section 6 presents our conclusions.

2. Related Work:

High quality rendering of point sampled
geometry has been the concern of several researchers.
Zwicker et al. [17][18]describe a software renderer using
elliptic splats for points represented as surfels. A surfel is
a surface element represented by a point on the surface, a
normal to that surface, an extent for the point given as a
radius and other material properties such as color,
reflectance, texture coordinates, etc. In a subsequent
paper [25], they provided an object space formulation of
the EWA (elliptic weighted average) filter and described
a hardware implementation using textured polygons.
Botsch ct al. have described a number of works in which
they have tried to improve the performance and
rendering capability of EWA renderer. Their
improvements include the use of point sprites instead of
polygons [26]; this results in a reduced number of
vertices being sent to hardware. Other improvements
include correction for perspective [15], per pixel shading
[27] and deferred splatting [28].

In [14] Zwicker et al. describe a system,
Pointshop3D for editing the shape and appecarance of
point based models. To do this, they gave a formulation
for the parameterization of point cloud models. This
interactive point cloud parameterization allows distortion
free texture mapping. In a follow-up work [21] they
enhanced PointShop3D to allow free form deformation
and Boolean operations on point cloud models.
Pointshop3D is available publicly and supports plug-ins.
We too have written our renderer with ambient occlusion

and environment lighting as an extension of the native
Pointshop3D renderer plug-in, which did not support
any of these realistic rendering techniques.

All rendering techniques can be seen as some
kind of solution to the rendering equation, introduced by
Kajiya in his seminal SIGGRPH 86 paper [29]. The
physical basis for the rendering equation is the law of
conservation of energy, considering all the light
received, emitted and reflected at a particular point.
Depending on whether the rendering techniques deal
with inter-reflection effects (indirect illumination), these
techniques have been classified into two classes -- local
illumination and global illumination. A local
illumination technique, say using the popular Phong
illumination model, requires the computation of two
components. There is a Lambertian component, to
account for the diffuse reflection behavior, and a
specular component to account for surface shininess. It is
difficult to produce high quality images with realistic
effects using just local illumination due to highly
simplified models for lights in the form of distant point
or directional sources; they also do not model
interreflection effects such as shadows, reflections,
refractions, etc. To handle such effects, global
illumination techniques such as ray tracing or radiosity
are usually employed.

A number of papers have reported efforts in
applying ray tracing techniques to point based models to
simulate indirect illumination effects. The main problem
arises due to the fact that both points and rays are
singular geometric entities having no spatial extent. The
different methods vary in the way in which this problem
is solved and also correspondingly in the acceleration
data structures that are employed. Schaufler and Jensen
[1] proposed to intersect a ray with a point sampled
surface by creating a cylinder around the ray. Adamson
and Alexa [2] proposed a number of ray-surface
algorithms based on their moving least squarcs (MLS)
implicit surface definition. They initially create a sphere
hierarchy and intersect the rays with this hicrarchy to
find an approximate intersection. Finally they carry out
the ray intersection with the MLS surface inside the
sphere. In [3] they further improved the efficiency of
intersection calculations. Wald and Secidel[4] use a
combination of different techniques including an SIMD
accelerated intersection code, together with a highly
optimized specially built kd-tree data structure. In [5]
Adams et al. describe techniques for ray tracing of
deformable point sampled surfaces. Once again the
emphasis is on clever update of the hicrarchical data
structure for accommodating the deformation in cach
frame.

The radiosity method is another powerful and
popular graphics method for achieving global
illumination effects, particularly for environments with
diffuse surfaces. Dobashi et al. [6] describe a very
straightforward extension of the standard radiosity
technique. For this they consider cach surfel as a finite
clement and calculate inter-reflections among the surfels.

23

Ray tracing and radiosity based techniques arc
compute-intensive. In general for large models, it is
difficult to obtain real time frame rates using commodity
hardware when applying these techniques. As a result,
there have been a number of approximation techniques
which while not being physically as accurate as the
above global illumination techniques still yield realistic
effects in rendered images. Ambient occlusion and
environment lighting are two such techniques which are
quite popular for the high quality rendering effects they
make possible with real time frame rates. Below we
discuss these techniques, their adaptation to point based
models and the efficiency improvements that we have
devised taking into consideration the specific
characteristics of point cloud representations.

3. Ambient Occlusion:

The ambient occlusion technique [22, 23] trics
to attenuate light based on shadowing factors computed
for parts of the object. It basically adds shadows to
diffuse objects. Ambient occlusion is a crude
approximation of the full rendering equation [29]. It
takes into account inter-object visibility only. Surfels are
shadowed based on whether they are partially occluded
to the environment. For this we calculate the
accessibility value, which is the percentage of the
hemisphere above each surface point that is not occluded
by the rest of the geometry [23]. This is done in two
passes as described below.

3.1 First pass:

We refer to the surfel that is shadowed as the
receiver R and to the surfel that casts the shadow as the
emitter E. Amount of shadow that is transferred to R
from E is given by an approximate form factor (¢f Fig. 1)
[32]:

Acosf, cosb.
e+ A

To calculate how much in shadow is receiver R,
we add the form factors treating all other surfels as
cmitters. We also clamp the value to be less than 1.
Therefore initial shadow value from first pass is given

A, cos6, cosb
by: T, = max(l,Z%
o w4

Since every point (surfel) can be potentially
shadowed by every other point, the above is an order N*
operation. For large point models, this can be very time
consuming, even if this is a view independent
computation and can be done in a preprocessing phase.
For speeding up the computations, we use an octree
hierarchy of surfels. The octree construction is based on
feature analysis of points within a parent node [20],
done based on Eigen value computations. Each node of
the octree is labeled as being flat, or as containing an
cedge or corner. A GPU based hierarchical ambient
occlusion computation technique has also been presented
in [24] for mesh models. However our work offers an

improvement in the manner in which it makes beneficial
usc of feature analysis as described below.

To compute the ambient occlusion (shadow)
factor for each surfel, we consider only those surfels
which lie within a cone with geometry defined as
follows:

- The cone axis is along the normal associated with
the surfel,

- The cone apex is at the 3D point associated with the
receiver

- The cone angle has been empirically chosen to be
150 degrees. This angle works for most models.
Surface parts that arc nearly co-planar contribute
very little to this occlusion. A smaller cone angle
results in rejecting too many surfels. On the other
hand a larger cone angle results in less efficient
culling.

Far off
Emitter
Node

Culled node

Receiver

Figure 1: Illustration for Ambient Occlusion

Fast culling of surfels is made possible by top-down
traversal of the octree and retaining only those octree
nodes lying inside the cone. To further speed up the
calculations, distant and nearly flat nodes of octree are
treated as single surfel. We have therefore two cases in
our form-factor computation:

Form factor for a distant flat node: All the surfels in a
given node are merged to form a surfel at the centre of
the node. Area of this new surfel is equal to sum of areas
of all surfels in node. Since the node is locally planar, we
usc the normal of any surfel as normal of this new surfel.
This way we approximate the computation of form
factors for surfels in a flat node.

Form factor for nearby or non-flat node: Form factors
are computed for every surfel in node and added up to
give the form factor for that node.

3.2 Second pass:

Surfels tend to be too dark after first pass. This
is due to ignoring the fact that an emitter which is itself
in shadow should not contribute fully again to the
shadow factor. We correct this by using the shadow
values obtained in first pass in a second pass as follows:.

24

Final shadow factor

S; =max(,) (1-T))

J#i

A;cos6,cos0,

m2+Aj

All ambient occlusion computations are carried
out in a preprocessing phase. The results from the
occlusion computations arc used to modulate the color of
every point and then stored with the model data, thus
causing no increase in file size. Fig. 2 shows an example
to illustrate the results from an implementation of the
above technique. For comparison purposes, we have
implemented both brute force and feature-analysis octree
based ambient occlusion computations. It can be seen
that the picture quality in Fig. 2(c) (octree-method) and
Fig. 2(d) (brute-force method) is almost the same. But
since we have coupled feature analysis with octree
hierarchical structure, our method is significantly faster
(30 times for this model of about 87,000 points).
Depending on the size and complexity of the 3D object’s
surface, our experiments have shown that we are able to
get computation speed-ups by a factor of 25 or more for
the models we have worked with.

4. Environment Lighting:

In most real situations lighting is quite complex,
as it comes from a variety of sources, such as area light
sources, bright reflecting surfaces, skylight, etc. One
approach to modeling of more complex lighting is the
method of environment maps. An environment map is
the incident light at a point in all directions, usually
modeled as a spherical light field surrounding the point.

Blinn and Newell were the first to propose
environment maps to model perfect mirror like reflection
of a small surface illuminated by distant spherical
illumination [12]. In more recent work, Wolfgang ct al.
[9, 10] do prefiltering and determine view independent
environment maps. They also applied a physically more
accurate model than Phong illumination model for local
lighting. For reflections they use their view independent
maps. Kautz et al. [11] extended their technique to
handle a more general reflectance behavior.

In our work, given an environment (spherical)
map of incident light, we compute both diffuse and
specular lighting components for each point as described
below.

4.1 Diffuse Reflectance with Environment Lighting:

Ramamoorthi et al. [7, 8] have shown that for
diffuse lighting, irradiance can be calculated analytically
in terms of spherical harmonics. Further, diffuse lighting
can be well approximated using only 9 low frequency
coefficients. They have very effectively demonstrated
the results of their method as applied to mesh
representations. Spherical harmonic coefficients [13] are
similar to Fourier basis coefficients but defined over a
sphere. An excellent tutorial on spherical harmonics
lighting can be found in [30].

For the benefit of the readers, we repeat the
relevant parts of the formulation given in [7] below.
After ignoring shadows and near-ficld illumination, the
irradiance E is a function of surface normal N only and is
given by an integral over the upper hemisphere
represented using spherical harmonics:

E(0.4) =) 4L,Y,,(0.4) M

lm

Where
L

Im

Y, denote spherical harmonic coefficients,
denote the spherical harmonic cocfficients of the

incident light in their expansion, and 4, denotes the dot

product of the normal and the direction vector for which
analytical formulae have been provided [8].

We can calculate L, in a preprocessing operation:

L, = j ? L(6,9)Y,,(0,4) sin0dodp @

6=0 $=0

As shown in [7], just 9 coefficients (/<2) are
sufficient for a close approximation with average crror
less than 1%. Also, due to the orthonormal property of
spherical harmonics, the above computation is further
simplified into a dot product calculation.

A straightforward application of the above
method to point sampled surface representations was
first presented in [33]. In the present work, we have
extended it by wusing Gaussian blurring of the
environment map for glossy reflectance behavior.
Further, we have also taken into account self shadowing
using ambient occlusion in a computationally efficient
manner.

4.2 Specular Reflectance with Environment Lighting:
In order to simulate glossy reflection, rather
than perfect mirror reflection, we use a Gaussian blurred
version of the environment map. Fortunately, blurring
affects the high frequency components more and the low
frequency components much less. Hence the 9 low
frequency spherical harmonic coefficients do not change
significantly from the original environment map. This
means that we do not need two different versions of the
environment map and we are able to use just the blurred
version. Let E denote the cye vector (eye to surface
point), L the light source vector, N the surface normal
and H the half-vector ([L + EJ/2). We calculate Fresnel
term F [19] to determine how much light is reflected,
assuming that the rest is absorbed by the object,

pole=or {H“(g”)‘l)j]
(g+c) | (c(g-0)+1)

where c=(E®H), g=~+n"+c’—1 andnis the

index of refraction. We also compute a value for the
distribution term D given by:

25

> 2

D = o

cos® ar(c,” —1)+1

where cos 00 =N ® /1 , and ¢, denotes the shininess of

the model (0 for perfect reflection and 1 for total diffuse
reflection).

If Ks is the specular reflectance coefficient and
L;, is the incoming radiance in reflected direction, then
the specular component of reflected light is given by
Ks*L;,*F*D.

Figures 3 and 4 show two point models
rendered using environment lighting under different
lighting conditions and material property settings
(without using ambient occlusion calculations.) We are
able to render all these models at interactive frames rates
varying between 25 and 50 frames a second. It is clear
that our modified point renderer incorporates this
popular technique very well.

5. Implementation Details

5.1 Preprocessing Computations:

As mentioned earlier, for optimal performance we have

carcfully partitioned the computations, so that all view

independent computations are carried out in a

preprocessing. Further as much of the render-time

computations as possible have been pushed into the GPU
as briefly described below.

In the preprocessing stage we do the following:

- The surfels are organized into an octree with a
feature value (flatness measure) computed for each
octree node [20]. For computing the flatness, we
use the well ecstablished Eigen value analysis
technique [31].

- The shadow factor is computed for cach point by
optimally making use of the octree hierarchy and
flatness measure as described above. The color
associated with each surfel in the data is suitably
modulated using this shadow factor.

- The 9 spherical harmonic coefficients of Eq. 2 are
computed for the given environment light map.
These calculations are done separately for each of
RGB channels and stored in an array.

- A blurred version of the environment map is
created and loaded as a texturec map in the GPU.

5.2 Render-time Computations:

The 9 spherical harmonic coefficients are
received by the vertex shader which then computes the
diffuse lighting component, vDiffuse, for each point as
given in [7]. To further improve implementation
efficiency in the GPU, we have reused a clever technique
introduced in [34], which uses fewer GPU registers.

The GPU implementation of the specular
lighting component is distributed between the vertex
shader and the fragment shader programs. First in vertex
shader, we calculate mirror reflection direction based on

camera position and normal. Using this reflected vector,
we pass corresponding 2D texture coordinate to fragment
shader. Secondly, in the vertex shader, we calculate the
Fresnel and distribution terms and output them to the
fragment shader.

In the fragment shader, based on the 2D texture
coordinate lookup, we get the color vSpecular. We then
compose diffuse and specular lighting components. For
example, if diffuse reflectance coefficient is Kd,
specular reflectance coefficient is Ks and shadow factor
is S;, then what we get as the final color is given by the
following equation:

Final Color=S; *(Kd*vDiffuse + Ks*vSpecular*F*D),

Figure 5 shows that using ambient occlusion
further improves the quality of images produced using
environment lighting. This can be clearly noticed by
looking at the areas around lip, nose and ears.

6. Conclusions:

In this paper we have demonstrated
that high quality mesh rendering techniques can be
efficiently adapted for point based models yielding
equally good quality images and with real time rendering
frame rates. We have presented an efficient method for
ambient occlusion computation using a hierarchic
structure and a flatness measure based on feature
analysis using Eigen value computations on the point
cloud data. We also combine ambient occlusion with
environment map based lighting supporting both diffuse
and specular reflectance behavior. Rendering
computation efficiency is improved by partitioning
computations so that view independent calculations are
done in a preprocessing stage and render-time
computations arc carried out by the GPU using vertex
and fragment shaders. These shaders get ambient
occlusion results directly embedded in color channel,
thus avoiding any data overhead due to ambient
occlusion information. Based on tight integration and
adaptation of these techniques, our renderer implemented
as a plug-in for Pointshop3D produces final picture
quality and frame rates which compare very well with
results from mesh based renderers.

8. Acknowledgement:

We thank Paul Debevec for providing light probes.
(Available from http://www.debevec.org). We gratefully
acknowledge for 3D models Stanford 3D Scanning
Repository, Mannequin model by Hugues Hoppe and
Gnome model from Pointshop3D site. We also thank
PointShop3D community for providing such an excellent
tool for experimentation.

References:

[1] G. Schaufler and H. Jensen. Ray tracing point
sampled geometry. Rendering Techniques 2000. Eds.
Peroche and Rushmeier. Springer-Verlag, pages 319-
328, 2000

26

[2] A. Adamson and M. Alexa. Ray tracing point sct surfaces.
Proceedings of Shape Modeling International 2003, pages 272-
279.

[3] A. Adamson, M. Alexa and Andrew Nealen. Adaptive
sampling of intersectable models exploiting image and object-
space coherence. SI3D 2005. pages 171-178
[4] I. Wald and H. Seidel. Interactive ray tracing of point based
models. Proceedings of 2005 symposium on Point Based
Graphics
[5] B. Adams, R. Keiser, M. Pauly, L. Guibas, M. Gross, and P.
Dutre. Efficient Raytracing of deforming point-sampled
surfaces. Proceedings of the 2005 Eurographics conference
[6] Y. Dobashi, T. Yamamoto and T. Nishita, T. Radiosity for
point-sampled geometry: 12th Pacific Conference on Computer
Graphics and Applications 2004.

[7] R. Ramamoothi and P. Hanrahan. An efficient
representation for irradiance environment maps. SIGGRAPH
2001
[8] R. Ramamoorthi and P. Hanrahan. The relationship
between radiance and irradiance: Determining the illumination
from images of a convex lambertian object. Journal of the
Optical Society of America, 2001
[9] W. Heidrich and H. Seidel. View-independent environment
Proceedings of the 1998 workshop on Graphics hardware

[10] W. Heidrich, and H. Seidel Realistic, Hardware-
accelerated Shading and Lighting. SIGGRAPH 1999
[11] J. Kautz and M. McCool. Approximation of Glossy
Reflection with Prefiltered Environment Maps. Graphics
Interface 2000

[12] J. Blinn and M. Newell. Texture and reflection in
computer generated images. Communications of the ACM
1976
[13] T. MacRobert. Spherical harmonics: an elementary treatise
on harmonic functions, with applications. Dover publications
1948
[14] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop
3D: An interactive system for Point-based surface editing
SIGGRAPH 2002
[15] M. Zwicker, J. Rdsdnen, M. Botsch, C. Dachsbacher, M.
Pauly. Perspective accurate splatting. Graphics Interface 2004
[16] S. Rusinkiewicz, M. Levoy., “QSplat: A Multiresolution
Point Rendering System for Large Meshes”,SIGGRAPH, 2000.
[17] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels:
Surface elements as rendering primitives. SIGGRAPH 2000
[18] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface
splatting. SIGGRAPH 2001
[19] R. Cook and K. Torrance. A reflectance model for
computer graphics ACM Transactions on Graphics 1982.
[20] S. Bhakar, L. Luo, and S. Mudur. View Dependent
Stochastic Sampling for Efficient Rendering of Point Sampled
Surfaces. Journal of WSCG 2004.

[21] M. Pauly, R. Keiser, L. Kobbelt, M. Gross. Shape
Modeling with Point-Sampled Geometry ACM SIGGRAPH
2003
[22] S. Zhukov, A. lones, and G. Kronin. An Ambient Light
IMlumination Model. Rendering Techniques 1998
[23] H. Landis. Production-Ready Global Illumination,
“RenderMan in Production” SIGGRAPH Course Notes 2002
[24] M. Pharr. Ambient occlusion. In GPU Gems, R.
Fernando, Ed., 667-692 Year 2004
[25]1 L. Ren, H. Pfister and M. Zwicker. Object Space EWA
Surface Splatting. A Hardware Accelerated Approach to High
Quality Point Rendering. EUROGRAPHICS 2002
[26] M. Botsch and L. Kobbelt. High-Quality Point-Based
Rendering on Modern GPUs. Pacific Graphics 2003

[27] M. Botsch, M. Spernat, L. Kobbelt. Phong Splatting.
Eurographics Symposium on Point-Based Graphics 2004

[28] M. Botsch, A. Hornung, M. Zwicker and L. Kobbelt High-
Quality Surface Splatting on Today's GPUs. Eurographics
Symposium on Point-Based Graphics 2005, pp. 17-24.

[29] J. Kajiya The rendering equation SIGGRAPH 1986

[30] R. Green. Spherical Harmonic Lighting: The Gritty Details
GDC 2003 Tutorial notes

[31] S. Gumhold, X. Wang and R. McLeod. Feature Extraction

(@ (b)

from Point Clouds. Proc. 10th Int. Meshing Roundtable, 2001
[32] M. Bunnell Dynamic Ambient Occlusion and Indirect
Lighting GPU Gems 2

[33] F. Liu, S. Bhakar, T. Fevens, S. Mudur Environment
Lighting for Point Sampled Geometry CGIV 06

[34] P. Pike and J. Sloan. Efficient Evaluation of Irradiance
Environment Maps. In Book ShaderX2, shader programming
tips & tricks with DirectX 9

© (d)

Figure 2: (a) Image without ambient occlusion, (b) after first pass, (c) final result from our method, (d) and brute force result

which is almost same as ours.

Figure 3: Images rendered with decreasing glossiness.

Uftizi Light Probe|

Figure 4: Model rendered with two different environment maps.

28

Figure 5: Improved environment lighting by using ambient occlusion. Notice areas around ear, lips and nose.
Top row gives environment map used for rendering. Second row gives rendering results without ambient occlusion.
Last row shows results with ambient occlusion.

29

Interactive learning interface for automatic 3D scene generation

Yoshiaki Akazawa" %, Yoshihiro Okada' and Koichi Niijima'
'Graduate School of Information Science and Electrical Engineering
Kyushu University
*Reseach Fellow of the Japan Society for the Promotion of Science
744 Motooka, nishi-ku, Fukuoka, 819-0395 JAPAN
{y-aka, okada, niijima}@i.kyushu-u.ac.jp

Keywords: Automatic placement, Semantic database, 3D
scene construction, Virtual reality, 3D CG

Abstract

This paper treats an interactive learning interface used to
obtain semantic constraints among 3D objects from
existing 3D scenes for automatic 3D scene generation.
The layout work for 3D scene generation takes a long
time because 3D objects have six degrees of freedom
(DOF) and are difficult to be positioned by using a
standard 2D input device, ¢.g., a mouse device. To deal
with this problem, the authors have already proposed an
automatic 3D object layout system based on contact
constraints. However, when there are too many kinds
of 3D objects to be laid out, it is practically impossible
for the user to define semantic constraints among all of
them. In this paper, the authors propose an interactive
learning functionality and its interface to obtain semantic
constraints among 3D objects from already existing 3D
object scenes. Using this functionality, the user can
generate desirable 3D scenes more easily. This paper
presents the learning process to extract semantic
constraints from already existing 3D scenes, and
delincates its uscfulness by showing experimental
results.

INTRODUCTION

The layout of 3D objects is inevitable task for developing
3D graphics applications. However, it is not easy task
because 3D objects have six degrees of freedom (DOF)
and are difficult to be positioned by using a 2D input
device on a standard 2D computer display screen. In
addition, the 3D layout must satisfy some physical and
functional constraints. As a result, the 3D scene
generation is time consuming and tedious task. To deal
with this problem, we have already proposed an
automatic 3D object layout system [1]. Our proposed
system automatically generates 3D scenes by the random
layout method of 3D objects in keeping with their
physical and functional constraints represented as
semantic database records. Further more, we have
extended our semantic database to support group layout
and regular interval layout methods [2]. Although the

30

semantic database is very simple, our extended system
can generate realistic 3D scenes. The system needs
only a few seconds to gencrate a 3D scene even if there
arc many 3D objects in the scenc. Our prototype
system has to request the user to define semantic
database records for all the 3D objects manually. To
define such semantics becomes time-consuming task if
there are too many kinds of 3D objects to be laid out.
So, this paper proposes an interactive learning interface
used to obtain semantic constraints among 3D objects
from existing 3D scenes. Using this interface, the user
can generate desirable 3D scenes more easily.

Many researches on 3D object layout have been made so
far. Smith et al. [5] proposed the manipulation of 3D
objects using a 2D user interface. This system employs
contact constraints among 3D objects to allow the user to
position 3D objects using a mouse-device. Bukowski
and Sequin [3] also employed a pseudo-physical
approach to position objects in a 3D scene using a 2D
device. This method maps the 2D mouse motion into
vertical and horizontal transformations for determining
the position of an object in the scene. However, when
there are many 3D objects in a scene, it still takes a long
time to lay out them. Coyne and Sproat [4] proposed
the WordsEye system which generates 3D scenes
composed of 3D objects according to the text description.
This method allows a few kinds of 3D scenes to be
generated, based on a few lines of text. However, when
laying out many various types of 3D objects, the text
description approach is not enough for their accurate
layouts. Zeng el al. [7] also proposed natural language
approach for 3D scene construction. For complex
scenes, their system requests the user to write many
sentences. Xu et al. [6] introduced an automatic
placement system of 3D objects through user interaction.
This system drastically reduces time consuming in 3D
scene generation. However the system lays out 3D
objects only on the floor of a room. It neither consider
layout on a ceiling nor on a wall. In contrast, our
system considers layouts of 3D objects on the ceiling, as
well as the floor by the same framework. Moreover our
system can generate 3D scenes including group layouts,
in which some objects of the same type are orderly
placed close to each other as a group, and regular interval
layouts, in which some objects of the same type are

orderly placed in keeping with the specific constant
interval distance among each other. Most of natural
language approaches request the user to define semantic
constraints among 3D objects by the text description. If
the user wants to generate realistic 3D scenes, he/she has
to write complicated text description and nceds a lot of
time. On the other hand, our interface proposed in this
paper overcomes this problem by using the interactive
learning. Moreover, our interface can generate more
preferable 3D scenes using weight parameters as for
semantic constraints among 3D objects those statistically
calculated from existing sample 3D scenes. This is the
new idea that we propose in this paper.

The remainder of this paper is organized as follows.
First of all, we describe placement constraints specified
as records of the semantic database. Next, we explain a
learning process in detail. After that, we introduce our
prototype system and its experimental results. Finally,
we conclude the paper.

SEMANTICS
PLACEMENT

FOR AUTOMATIC 3D OBJECT

Our learning interface proposed in this paper is the new
part of our automatic 3D object layout system [1].
This interface provides the functionality to update
semantic database records interactively from 3D scenes
already genecrated by the layout system.

Table 1: Semantic database

ot4 (bookshelf)
Face | Occupancy Parent Contact
distance constrai
nt
1 1.0
2 0
3 0
4 0 otl1-3 X
5 0
6 0 ot2-1
ot5 (TV)
Face | Occupancy Parent Contact
distance constrai
nt
1 1.0
2 0
3 0
4 0 ot4-3, X
ot6-3
5 0
6 0
OT(Object type) No.- Face No.:
{ot1(floor), ot2(wall), ot3(ceiling),,,

ot6(desk),...}

31

Wall

contact
] constraint

Face 6

Face 4 .
Parent—child relationship
Floor

Figure 1: Parent-child relationship and contact
constraint of a bookshelf

Semantic database

To define the layout of 3D objects, our 3D object layout
system uses a semantic database whose each record
called “object info” means placement constraints of the
corresponding object class. Among the placement
constraints arc occupancy distance, parent-child
relationship and contact constraints. Table 1 shows two
records of the semantic database, i.e., for the bookshelf
and the TV. In the following subsections, we describe
such placement constraints.

Bounding box

In the real world, every object exists without any
collisions. When laying out 3D objects, we have to
detect collisions for every object. Detecting accurately
collisions for all 3D objects in a scene takes a very long
time because cach object has its own complex shape.
One of the solutions is to simplify such a complex shape.
However, even if the 3D shape of each object is
simplified, it is impossible to calculate collisions among
many 3D objects in real time. To maximally simplify
the layout process, we decided to employ the bounding
box of each 3D object instead of its original 3D shape as
shown in Figure 1. In the real world, every object is in
contact with any other object due to the gravity, e.g., a
desk rests on a floor and a painting is hung on a wall.
While detecting collisions of one object using its
bounding box, it is enough to consider only the surface
on which the corresponding object lies. In this way, by
using bounding boxes, the calculation cost of detecting
collisions is drastically reduced. Our prototype system
can generate a 3D scence consisting of many 3D objects
in an acceptable calculation time.

Figure 2: an example of ten TV objects placement

Parent-child relationship and contact constraints

As previously explained, every object in the real world
has to touch other objects because of the gravity. At
lcast, onc of the faces of a bounding box is defined to be
a contact face. For example, for the bookshelf, face 4
of its bounding box must touch the face of the floor as
shown in Figure 1. If the user moves the floor object,
the bookshelf should move with it. Usually this is
treated as a parent-child relationship in 3D applications.
Every 3D object has information indicating which of the
other 3D objects is allowed to be its parent, and
indicating which face of that 3D object and which face of
its parent object touch each other. In the semantic
database, this information is specified as the parent
attribute of the face which is in contact with the parent
object. In addition to the above information, we have to
specify contact constraints for cach face of a 3D object.
This indicates whether a face should touch a certain face
of another object or not. For example, the bookshelf
often touches a wall in addition to the floor. That is,
face 6 of the bookshelf in Figure 1 has to touch the wall
object. We describe this constraint in the constraint
attribute of each face of each record in the semantic
database. Using the parent-child relationship and the
contact constraint explained above, although these
constraints are very simple, the system can generate
natural 3D scenes by laying out 3D objects randomly in
keeping with those constraints. See the paper [1, 2] for
its detail.

INTERACTIVE LEARNING PROCESS

In this section, we introduce an interactive learning
process to update the semantic database of 3D objects.

32

Extension of semantic database for interactive

learning

Table 2: extended semantic database

ot4 (bookshelf)
Face | Occupancy Parent Contact
distance constraint
1 1.0
2 0
3 0
4 0 ot1-3 (5/5) X
5 0
6 0 ot2-1
ot5 (TV)
Face | Occupancy Parent Contact
distance constraint
1 1.0
2 0
3 0
4 0 ot4-3 (3/10), X
ot6-3 (7/10)
5 0
6 0

OT(Object type) No.- Face No.:
{ot1(floor), ot2(wall), ot3(ceiling),,, ot6(desk),...}

In the real world, strengths of parent-child relationship
constraints are not the same. For example, as shown in
Figure 2, in the case of a TV class, the probability that
bookshelves are chosen as parents of TVs is 3/10. And,
the probability that desks are chosen as parents of TVs is
7/10. However, our semantic database records do not
have such information so that our layout system chooscs
a parent-child relationship of a 3D object class by equal
probability. To generate more preferable 3D scenes, we
added a weight parameter as the strength of a
parent-child relationship into each semantic database
records as shown in Table 2. The weight parameter
means a probability that a parent of an object is chosen.
After counting the number of parent samples of 3D
object belonging to each class, each weight parameter is
statistically calculated from existing sample 3D scenes
using the following equation (1):

s
n or
2.5
j=1
where both OT and i is the index number of an
Object type, 7 is the total number of Object types, and

POT

1

1)

S IQT is the total number of j -type objects which are

So, PYT

1

used as the parent of any OT object.

robability distributions of
parent-child relationships

ndividual learning button

Figure 3: An overview of our interactive learning interface

means the probability that i-type objects are chosen as
the parent of any OT object.

By introducing new parameterPO ’ ={RO T,QO T,A B,O T},

i.e., weights of parent-child relationships between an OT
object and the other object, into the semantic database
and using them, the system can newly generate more
realistic 3D scenes preserving features of already
existing 3D scenes.

The interface for interactive learning

Since it is not casy to definc weights of parent-child
relationships for all of the 3D objects, our system has to
provide any functionality that helps the user to calculate
such weights and update semantic database records
interactively. So, we introduced such an interactive
interface, a learning interface, into our automatic 3D
object layout system. This interface consists of an
individual learning functionality and a scene learning
functionality. The individual learning functionality is
for defining parent-child relationships of an individual
3D object class in a 3D scene. The scene learning
functionality is for defining parent-child relationships of
all the existing 3D object classes in a 3D scene.

First of all, we show an overview of the interactive
learning interface using Figure 3. Since our automatic
3D object layout system was developed using
IntelligentBox, the prototype of the interactive learning
interface is also realized as some composite components
of IntelligentBox, which is a constructive visual 3D
software development system [8, 9]. This interface
mainly consists of a layout panel and a learning panel.
The layout panel controls a 3D scene generated using our

33

automatic 3D object layout functionality. If the user
pushes the layout button, the system generates a 3D
scene according to current semantic database records
automatically. The system can also load any 3D scene
from scene files. The learning panel is used to update
semantic database of 3D objects. This panel changes
weight parameters of 3D objects by extracting
parent-child relationships from a 3D scene the layout
panel provides. This panel has two types of buttons, i.c.,
individual learning buttons and a scene learning button.
If the user pushes one of the individual learning buttons,
the system changes the weight parameter of the Object
type corresponding to the pushed button. Each chart
shown in Figure 3 displays the probability distribution of
the weight parameters of a certain 3D object class. The
interface puts sets of the probability distribution
sequentially according to object types. On the other
hand, if the user pushes the scene learning button, the
system changes weight parameters about all of the 3D
objects existing in the current 3D scene.

In this way, our proposed interface provides two types
of learning functionalities. Next, we cxplain these
functionalities 1in detail. Moreover, we discuss
experimental results.

Individual learning functionality

The individual learning functionality extracts
parent-child relationships of one individual object class
out of a 3D scene. By using this functionality, the user
can interactively change weight parameters of
child-parent relationships of his/her specified object
class.

of learned semantic

earned semantic

dividual learnin

Learned semantic

roup and regular interval layou

Figure 4: Experiment of the individual learning functionality

Not learned semantics

iScene learning;

earned semantic

Figure 5: Experiment of the scene learning functionality

Experiment of the individual learning functionality

We introduce an experimental result about the individual
learning functionality. At first, our system generates an
initial semantic database which has parent-child
relationships of all 3D objects that means any objects can
be connected to cach other. Strictly speaking, weights
of parent-child relationships among all 3D objects are the
same value as shown in Figure 4 (a). Next, the system
lays out 3D objects at random using the semantic
database. Since the semantic database initially does not
have any user preference information, the generated 3D
scene is not guaranteed to be desirable for the user. If
the user finds his/her preferable parent-child relationship

34

between any two 3D objects in the 3D scene, for instance,
chairs and shelves are correctly laid out on the floor as
shown in Figure 4 (b), the user can update weights of
parent-child relationships in semantic database records
about the chair class and the shelf class using the
individual learning functionality by only choosing the
chair object and the shelf object. Generally speaking,
by counting the number of the same parent-child
relationships between any two object types in a 3D scene,
the system updates the corresponding weight value in the
semantic databasc using cquation (1). This process
means the interactive learning. After several
interactions of the user using the individual learning
functionality, the system obtained the weight parameters

of parent-child relationships of the semantic database
shown in the right part of Figure 4 (c), and the system
can generates the 3D scene shown in the left part of
Figure 4 (c). The system also generates the 3D scene
shown in Figure 4 (d) preserving semantic constraints of
the group layout and the regular interval layout in
addition to the user preference about parent-child
relationships.

Scene learning functionality

The scene learning functionality extracts parent-child
relationships of all the existing object classes out of a 3D
scene. Using this functionality, the user can
interactively change weight values of parent-child
relationships by choosing his/her preferable 3D scenes.

Experiment of the scene learning functionality

We introduce an experimental result about the scene
learning functionality. At first, our system generates an
initial semantic database which has parent-child
relationships of all 3D objects that means any objects can
be connected to each other. Figure 5 (a) shows the
screen snapshot of this case. After the user loads one
sample from existing 3D scenes which he/she likes,
using the scene learning functionality, the system
extracts parent-child relationships among all 3D objects

included in the loaded 3D scene as shown in Figure 5 (b).

Every time when the user indicates new other 3D scene
as one sample for the learning, the system extracts
parent-child relationships about the 3D scene and
updates the weight parameters of parent-child
relationships of 3D objects in the semantic database as
shown in Figure 5 (c). Using the learned semantic
database, the system can generate 3D scenes preserving
the user preference. Figure 5 (d) shows the screen
snapshot of one of the generated 3D scenes.

CONCLUSION
This paper proposed an interactive learning interface to
statistically obtain user preference of semantic

constraints, i.c., parent-child relationships among 3D
objects, from existing samples of 3D scenes. While the
natural language approach for 3D scene construction has
the serious problem that defining semantic database as
the text form is time-consuming, our proposed interface
can help the user to interactively define his/her
preference about parent-child relationships among 3D
objects. To extract such user preferences through our
proposed interface, we added a weight parameter about a
parent-child relationship into semantic database records
of our previous automatic 3D object layout generation
system. Consequently, our extended system can
generate more realistic 3D scenes according to the user

35

preference.

As the future work, we will apply more weight
parameters to other constraints, e.g., a contact constraint,
occupancy distance, etc, in the semantic database.
Especially, about occupancy distance, we try to use
Gaussian distribution determined by calculating the
average and the deviation of distances between any two
3D objects in 3D scenes. We also try to use Genetic
Algorithm to generate more desirable 3D scenes those

preserve multiple different user preferences
simultaneously.
ACKNOWLEDGEMENT

This study has been supported by the Research
Fellowships of the Japan Society for the Promotion of
Science for Young Scientists.

REFERANCES

[1] Y. Akazawa, Y. Okada and K. Niijima, Automatic
3D object placement for 3D scene generation, The
European Simulation and Modecling Conference
2003 (ESMC2003), pp. 316-318, 2003.

Akazawa, Y., Okada, Y., and Niijjima, K.
Automatic 3D scene generation based on contact
constraints, Proc. of the Eighth International
Conference on Computer Graphics and Artificial
Intelligence (31A’2005), pp. 51-62, Limoges,
France, May 11-12, 2005.

Bukowski, R. W. and Sequin C. H. Object
Associations, Symposium on Interactive 3D
Graphics, pp. 131-138, 1995.

Coyne, B. and Sproat, R. WordsEye: an automatic
text-to-scene conversion system, SIGGRAPH 2001,
pp. 487-496, 2001.

Smith, G, Salzman, T. and Stuerzlinger, W.
Integration of constraints into a VR Environment,
VRIC 2001, pp. 103-110, ISBN 295157300-6,
2001.

Xu, K., Stewart, A. J., and Fiume, E.
Constraint-Based Automatic Placement for Scene
Composition, Graphics Interface, pp. 25-34, 2002.
Zeng, X., Mehdi, Q. H. and Gough, N. E. 2003
“Shape of the Story: Story Visualization
Techniques” Proc. of Information Visualization
2003 (IV03), pp. 144-149, 2003

Y. Okada, and Y. Tanaka,: IntelligentBox: A
Constructive Visual Software Development System
for Interactive 3D Graphic Applications, Proc. of
Computer Animation '95, IEEE Computer Society
Press, pp.114-125,1995.

Y. Okada, and Y. Tanaka,: Collaborative
Environments of IntelligentBox for Distributed 3D
Graphics Applications, The Visual Computer, Vol.
14, No. 4, pp. 140-152, 1998.

(2]

(3]

[4]

(3]

(6]

[7]

(8]

(9]

36

ARTIFICIAL
INTELLIGENCE
IN
GAMES

38

Applying Robotic Techniques to Behavior Recognition in Game Agents

Verena V. Hafner
Berlin
Germany
vvh@ieee.org

Abstract

Most approaches to behavior synthesis in artificial characters
assume a set of elementary behaviors which are activated ac-
cording to the agent’s spatio-temporal context, goals, desires,
and needs. Towards the problem of automatically determin-
ing a suitable set of elementary behaviors, this paper reports
on adopting a successful technique from robotics to game
agents. The concept of interpersonal maps has been thor-
oughly tested in experiments with AIBO robots and from ex-
perimenting with recordings of human game-play, we found
that it also allows for distinguishing types of interactions be-
tween human controlled avatars. Interpersonal maps there-
fore provide an avenue to automatically mine and learn ele-
mentary behaviors from human generated data.

1 Motivation and Background

Recently, academic interest in the problem of program-
ming believable computer game agents has grown consider-
ably. Contributors have studied the problem from the per-
spectives of deliberative Al (Laird 2001), machine learn-
ing (Bauckhage, Thurau & Sagerer 2003, Yannakakis &
Hallam 2004, Arvey & Aaron 2005), evolutionary comput-
ing (Priesterjahn, Kramer, Weimer & Goebels 2005), and
robotics (Adobbati, Marshall, Kaminka, Schaffer & Sollitto
2001, Amir & Doyle 2002, Brown, Barnum, Costello, Fer-
guson, Hu & Wie 2004). Common to all these works is that
they implicitly revert to the concept of behaviors.
Computational architectures for synthesizing a suitable
mix of reactive, tactical, or strategic behavior, of course re-
quire a corresponding vocabulary of elementary behaviors.
While in practice this is usually provided by means of prepro-
grammed scripts, modern computer games also allow for a
data-driven approach. Following an idea by Bauckhage et al.
(2003), we record matches of multi-player games played by
human players. Since these recordings contain detailed infor-
mation of where the players steered their avatars in the game
world and what they had them do, elementary behaviors may
be learned directly from human experts. Assuming that be-
haviors are patterns of frequent activity triggered by spatio-
temporal contexts, game data can thus be mined in order to
identify the building blocks of reoccurring human behavior.
After describing an auspicious technique first introduced

39

Christian Bauckhage, Martin Roth
Deutsche Telekom AG, Laboratories

Berlin, Germany

www.telekom.de/laboratories/

for imitation learning in robotics, in section 3, we will turn to
behavior mining from game data. Our focus will be on inter-
actions between two players. We shall see that different be-
haviors manifest in information theoretic distances between
sensory recordings of the agents. Experimental results indi-
cate that projecting these distances into lower dimensional
spaces allows for distinguishing between different behaviors
in the data. A short discussion of our empirical findings will
end this contribution.

2 Interpersonal Maps in Robotics

Recently, Hafner & Kaplan (2005) introduced the idea of in-
terpersonal maps. Based on information distances between
the sensors that can be measured for two agents over a certain
time window, these maps are extended abstract body maps
which not only represent the body and behavior of one agent,
but the interaction between two agents.

2.1 Information Distance

The conditional entropy for two information sources X; and
X is defined as

H(X;j|1X;) = =YY p(xi,xj)log, p(x)|x;)

Xi Xj

(D

where p(x;[x;) = p(xj,x;)/p(x;). Traditionally, H(X;|X;) is
interpreted as the uncertainty associated with X; if the value
of X; is known.

Crutchfield (1990) defines the normalized information dis-
tance between two information sources as:

H(Xi|X;) + H(X;|X)
H(X;,X;)

d(vaXi> = ()

Since d is a metric for the space of information sources,
it is preferable to classical mutual information MI(X;,X;) =
H(X;)+ H(X;) — H(X;;X;). From the well known equiva-
lence H(X;,X;) = H(X;) + H(X;|X;), we see that d < 1; if
d =1, the two sources are independent.

2.2 Visualization Through 2D-Sensor-Maps

For our purpose, distances between high dimensional sen-
sor recordings, which are captured in a distance matrix D,

(b)

33 behaviours projected onto first 3 PCs.

« beh1-15
* beh 16-33

Figure 1: Experiments with AIBOs. (a) Body map of a walk-
ing robot; (b) AIBO robots used for the experiments; (c) clus-
tering of different robotic behaviors (walking, non-walking).

must be transformed into a representation of lower dimen-
sional points {p;j}. This can be cast as a constraint satisfac-
tion problem, where each couple of points p; and p; should
satisfy:

|[pi — pjll = dij (3)

40

Figure 2: Didactic example for placing three points p; in a
two-dimensional space such that their metric distances cor-
respond to the information distances d;;.

and ||p; — pj|| is the Euclidean distance between the posi-
tion of the ith and jth point and d;; the corresponding dis-
tance in the matrix D. This results in a system of @
equations and a set of n points of dimension n — 1 would
permit an optimal solution for these constraints. However,
in order to obtain a representation in dimensions lower than
n— 1, one has to resort to approximation. Pierce & Kuipers
(1997) describe a statistical method to determine a suitable
dimensionality for projecting a given data set. In this paper,
we consider two-dimensional projections for illustrative pur-
poses although they may not be the optimal ones.

The information contained in D can be mapped to a two-
dimensional space using an iterative procedure of positioning
points in the subspace such that the metric distance between
two points in this map approximates the distance in the dis-
tance matrix (see Fig. 2). Our algorithm iterates two simple
steps. After each information source X; is randomly assigned
a point p; in the two-dimensional plane, these steps are:

1. Compute the force f; =Y f;; acting on each point p;,
where

(P —Pi)
fii={pi—pjll —d(Xi, X)) 77—

1y (|| 1 J|| (1]))||pj_p1||
2. Move each point p; according to the force f;, i.e.

1
pi — Pi+ —/fi-
n

2.3 Experiments with Robot Behaviors

Interpersonal maps are an extension of body maps (see
Fig. 1) where the information distances among all sensory
pairs of two behaving agents are taken into account and the
corresponding 2D representation shows the interaction be-
tween two agents.

The idea of interpersonal maps has been applied by Kaplan
& Hafner (2006) for a range of different robotic experiments.
The robots considered were Sony AIBOs where for each of
which 18 sensors were used. One of the experiments showed
that when one robot was imitating another robot, the respec-
tive interpersonal map was similar to two body maps on top

Figure 3: Screenshot of a QUAKE I1I1® environment used in
our behavior mining experiments.

of each other. When there was no imitation in the behavior or
a long delay in imitation, the interpersonal map showed two
clusters.

Other robotic experiments showed that different robotic
behaviors could be distinguished and walking and non-
walking behaviors were building two clusters in the 3D space
of the first principal components of the information distance
matrices.

3 Interpersonal Maps for Computer
Game Agents

In our work on applying the technique of interpersonal maps
to the game setting, initial experiments were carried out using
the game QUAKE II® . For accessing the information con-
tained in recorded network data, we applied the QASE API
developed by Gorman, Fredriksson & Humphrys (2005).

Considering simple, almost two-dimensional environ-
ments as exemplified in Fig. 3, we recorded several sessions
of four different types of interactions between two human-
controlled agents:

Escaping behavior: One agent tried to escape another agent
who was pursuing him directly.

Chasing behavior: One agent was being chased by the
other agent who tried to anticipate the motions of his

prey.

Following behavior: An agent immediately followed an-
other agent who was not trying to flee but was leading
the way.

Random behavior: The two agents were moving indepen-
dently and randomly so that they only had chance en-
counters.

The sensors we considered are the positions and velocities
of the two agents (see the listing in Tab. 1).

41

Number | Name/type of sensor

1 x coordinate of agent 1

2 y coordinate of agent 1

3 x velocity of agent 1

4 y velocity of agent 1

5 x coordinate of agent 2

6 y coordinate of agent 2

7 x velocity of agent 2

8 y velocity of agent 2

9 absolute velocity of agent |
10 absolute velocity of agent 2

Table 1: Numbering scheme of sensors applied in producing
the visualizations in Figs. 4 to 6.

Figure 4: Information distance matrices for chasing, escap-
ing, following and random behavior.

Figure 4 displays the information distance matrices for the
four behaviors. The ten items on each axis correspond to the
sensors introduced in Tab. 1; the coloring scheme encodes
the corresponding information distances: dark blue denotes
zero distance as it appears between identical sensors (i.e. on
the diagonals of the matrices).

Figures 5 and 6 depict corresponding two-dimensional in-
terpersonal maps resulting from our relaxation algorithm.
The ones in Fig. 5 were created from sequences of 600 data
samples (60 seconds), the ones in Fig. 6 resulted from 2000
data samples (200 seconds). Note that, in this form, the maps
provide a first qualitative idea of the interaction, but should
not be confused with a thorough statistical analysis.

None of the behaviors involves the use of a weapon or
other items found in the environment. The first interaction
is a simple escaping behavior where one agent was trying
to flee from the other. The other agent was trying to follow
him directly in order to tag him. Accordingly, the maps in

(b) Interpersonal maps for the chasing behavior.

Figure 5: Interpersonal Maps for escaping and chasing behaviors. Sensors belonging to an individual agent are interconnected.

Fig. 5(a) show considerable overlap. The second behavior
is a chasing behavior. Here, one agent is chasing another
one while trying to anticipate the other’s moves. In con-
trast to the first behavior, the agent therefore rather tried to
corner his prey. Concerning the maps in Fig. 5(b), this re-
sults in clearly separate clusters. This of course agrees with
the intuition behind interpersonal maps. If they show sepa-
rate clusters, the correlation between the agents’ sensors is
less strong. The third behavior is again a more imitative be-
havior: one agent is following the other, who is not running
away, but showing the way. Accordingly, the corresponding
interpersonal maps in Fig. 6(a) show higher degrees of con-
gruence. Finally, the behaviors mapped in Fig. 6 were totally
random; the two agents were moving on the map without
noticing each other but had chance encounters.

As with the AIBOs, one can thus find prototypical distance
matrices that characterize different types of behavior. We are
currently working on a method that tracks the temporal evo-
lution of matrices which are computed online using a sliding
window approach. Different behaviors will then be automati-
cally detected by observing transitions between Voronoi cells
of attractors in the tensor space of information distance ma-
trices.

4 Summary and Outlook

In order to create more realistic and life-like acting game
agents, it is crucial to synthesize different behaviors in an

42

automated and adaptive way. This requires an architecture
that is able to switch between reactive, tactical and strate-
gic behaviors. A game bot based on such a cognitive model
should ideally understand and adopt the basic behaviors typ-
ical for human gameplay. In order to appear natural, the ele-
mentary behaviors should not be provided in form of scripted
programs but ideally be mined from observations of genuine
human play.

The idea behind the work presented here is to first iden-
tify behavioral building blocks used by human players. Re-
occurring behaviors extracted from observations of interac-
tions between two human players can then be used as action
primitives for the cognitive architecture of an artificial game
bot. As a first approach, we apply the concept of interper-
sonal maps (Kaplan & Hafner 2005) which was inspired by
psychological findings. As in the case of experiments with
AIBOs, we could show that for the game domain, too, differ-
ent maps are created for different types of interactions. This
allows for identifying and extracting relevant subsequences
from streams of recorded human gameplay. Using machine
learning techniques such as the ones described by Bauckhage
et al. (2003) or Gorman et al. (2005), our next step will be to
derive parametric models from these data to proceed towards
more convincing behavior synthesis.

REFERENCES

Adobbati, R., Marshall, A., Kaminka, G., Schaffer, S. & Sol-
litto, C. (2001), Gamebots: A 3D Virtual World Test-

(b) Interpersonal maps for uncorrelated behavior.

Figure 6: Interpersonal Maps for following and random behaviors. Sensors belonging to an individual agent are interconnected.

Bed for Multi-Agent Research, in ‘Proc. Int. Workshop
on Infrastructure for Agents and Scalable Multi Agent
Systems’, pp. 47-52.

Amir, E. & Doyle, P. (2002), Adventure games: A challenge
for cognitive robotics, in ‘Proc. Int. Cognitive Robotics
Workshop’, pp. 9-16.

Arvey, A. & Aaron, E. (2005), Online Markov Decision Pro-
cesses for Learning Movement in Games, in ‘Proc. Int.
Conf. on Computer Games, Al and Mobile Systems’,
pp. 48-52.

Bauckhage, C., Thurau, C. & Sagerer, G. (2003), Learning
Human-like Opponent Behavior for Interactive Com-
puter Games, in ‘Pattern Recognition’, Vol. 2781 of
LNCS, Springer, pp. 148-155.

Brown, C., Barnum, P., Costello, D., Ferguson, G., Hu, B.
& Wie, M. V. (2004), Quake II as a Robotic and Multi-
Agent Platform, Technical Report 853, University of
Rochester, Computer Science Dept., Rochester, N.Y.

Crutchfield, J. P. (1990), Information and its metric, in
L. Lam & H. C. Morris, eds, ‘Nonlinear Structures
in Physical Systems — Pattern Formation , Chaos, and
Waves’, Springer, pp. 119-130.

Gorman, B., Fredriksson, M. & Humphrys, M. (2005),
QASE: An Integrated API for Imitation an General Al

43

Research in Commercial Computer Games, in ‘Proc.
Int. Conf. CGAMES’, pp. 207-214.

Hafner, V. & Kaplan, F. (2005), Interpersonal maps and the
body correspondence problem, in ‘Proc. Int. Symp. on
Imitation in Animals and Artifacts’, pp. 48-53.

Kaplan, F. & Hafner, V. (2005), Mapping the space of skills:
An approach for comparing embodied sensorimotor or-
ganizations, in ‘Proc. IEEE Int. Conf. on Development
and Learning’, pp. 129-134.

Kaplan, F. & Hafner, V. (2006), ‘Information-theoretic
framework for unsupervised activity classification’, Ad-
vanced Robotics 20(10), 1087-1103.

Laird, J. E. (2001), ‘Using a Computer Game to develop ad-
vanced Al’, IEEE Computer pp. 70-75.

Pierce, D. & Kuipers, B. (1997), ‘Map learning with unin-
terpreted sensors and effectors’, Artificial Intelligence
92, 169-227.

Priesterjahn, S., Kramer, O., Weimer, A. & Goebels, A.
(2005), Evolution of Reactive Rules in Multi Player
Computer Games Based on Imitation, in ‘Proc. Int.
Conf. on Natural Computation’, pp. 744-755.

Yannakakis, G. N. & Hallam, J. (2004), Interactive Oppo-
nents Generate Interesting Games, in ‘Proc. Int. Conf.
CGAIDE’, pp. 240-247.

Al System Designs for the First RTS-Game AI Competition

Michael Burof, James Bergsma!, David Deutscher!, Timothy Furtak®, Frantisek Sailer, David Tom®, Nick Wiebef
"Department of Computing Science
University of Alberta, Edmonton, Alberta, Canada
ITel Aviv University, Isracl
email: mburo@cs.ualberta.ca

KEYWORDS
Real-time strategy games, ORTS, real-time Al systems

ABSTRACT

Real-time strategy (RTS) games are complex decision
domains which require quick reactions as well as strate-
gic planning. In this paper we describe the first RTS
game Al tournament, which was held in June 2006, and
the programs that participated.

Introduction

Creating smart computer adversaries and teammates for
human players in modern video games is challenging. Al
programmers for such games are faced with limited com-
putational resources (because most CPU cycles are still
devoted to graphics), real-time constraints, huge state
and action spaces, and imperfect information. In addi-
tion, the tight release schedule for video games does not
leave much room for conducting Al research in games
companies. Therefore, a common approach to practi-
cally solving these problems is to create an illusion of
intelligence (Livingstone, 2006) by scripting actions for
nonplayer characters (NPCs) and providing them with
more resources including information that is not avail-
able to human players. This way it is relatively easy
to create NPCs that by having more knowledge of the
game state — or bigger virtual muscles — can reach
the playing level of human players or even outperform
them. There are however problems with this method-
ology. Scripted action sequences are brittle — they of-
ten cannot deal with new situations and are casily de-
featable once known. More advanced variations exist
(Spronck et al., 2006), whereby script parts are executed
probabilistically and probabilities are updated depen-
dent on past performance. But even with such modifi-
cations, opponent Al systems still cannot compete with
strong players unless they are given unfair advantages.

To overcome this problem, several Al researchers
have started to use video games as test applications for
their work in recent years. Conferences are now devoted
to progress in computer entertainment Al, and the inter-
action between computer game companies and academia
has increased. Another particularly effective way of
spuring research in Al is holding competitions. Great
examples are the machine-machine and man-machine

44

competitions in the 1980s and 1990s which produced
stronger and stronger programs which eventually played
on-par or better than the best human players in chess,
backgammon, checkers, and Othello. Other examples
which have helped to increase the performance of Al
systems considerably include the annual planning com-
petition, SAT competitions, and RoboCup. The goal of
competitions like the one which we are going to describe
here is to repeat the success of classic game Al systems
in the area of more complex video games.

In the remainder of the article we first describe the
game genre we are interested in — Real-Time Strategy
(RTS) games — and the programming framework ORTS
we have developed for it. Then, after presenting the
tournament game categories, we describe the programs
that participated in the first AIIDE RTS game competi-
tion, present their tournament results, and conclude the
paper with ideas on future RTS game Al competitions.

RTS Games and ORTS

Real-time strategy games are typically tactical simula-
tions engaged in by two or more players. These games
are fast-paced and pose several challenging problems
such as incomplete information, the need for long-range
planning, and a continually changing world with limited
time to plan (Buro and Furtak, 2004).

A player can be in control of potentially hundreds
of units, each with several possible actions that may be
taken several times a second. A naive search of the avail-
able action space is clearly intractable. This necessitates
potentially several levels of abstraction, for controlling
individual units and larger armies.

Games typically involve simplified economies consist-
ing of gathering resources which may be used to con-
struct buildings, research new abilities, and train offen-
sive and support units. Resource usage must be bal-
anced to construct an army capable of effectively ex-
ploit opponents’ weaknesses while being able to defend
against potential threats.

Determining an effective strategy often relies on ac-
curate opponent models. Specifically, determining the
types of enemy units that an opponent will likely pro-
duce, and how they will be used to attack, at what time,
and at which location.

ORTS

The Open Real-Time Strategy (ORTS) game engine,
available from www.cs.ualberta.ca/ mburo/orts, pPro-
vides a flexible framework for studying AI problems in
the context of RTS games. The ORTS engine is script-
able, which allows for game parameters to be easily
changed, and new types of games, or subsets of existing
games, to be defined.

Unlike most RTS games, ORTS uses a server-client
framework. Instead of each client maintaining a local
copy of the entire game state, each frame the ORTS
server only sends a client the information actually avail-
able to it. This effectively eliminates the ability of
clients to cheat by applying simple map-revealing hacks.

Units in ORTS are simple geometric primitive (cir-
cles, rectangles, and line segments) located on a fine
grid. Objects may travel at an arbitrary heading, with
collisions accurately computed by the server.

Map terrain is specified by a grid of tiles, with each
tile capable of having arbitrary corner heights and be-
ing one of several terrain types. Boundary objects with
various collision masks are automatically created along
discontinuities between tiles.

Unit vision is tile-based, with different units having
a sight range that determines how many tiles away they
can see. When the “fog of war” is enabled, a player only
has up-to-date information about tiles that are currently
seen by an allied unit. The vision model also supports
“cloaked” units which can only be seen by “detectors”.

All ORTS components are open-source. Along with
the server-client framework, this allows users to cre-
ate their own AI components capable of acting au-
tonomously or to augment a human player.

The AIIDE RTS Game Competition

The RTS Game Competition presented at AIIDE ’06
consisted of three separate game categories, arranged
in increasing order of complexity. These categories ad-
dressed the tasks of multi-unit pathfinding, local com-
bat, and dealing with imperfect information, in that or-
der. Effective solutions in one category relied on imple-
mentations from the previous game types.

Game 1: Cooperative Pathfinding

The first game is stated as the task of gathering as many
resources as possible within a given amount of time. The
player begins the game with one base surrounded by
workers. These workers must travel to resource patches
randomly positioned on the game field, spend a short
amount of time to collect those resources, and finally
bring them back to the base.

At the start of the game the entire map and the lo-
cations of all resources are known to the player. To
complicate the task, the map contains both impassi-

45

Figure 1: Game 1 client display.

ble terrain obstacles, and indestructible mobile “sheep”,
which randomly travel a short distance, stop, then con-
tinue. The entire scenario is perfect information, except
for simultaneous actions on the part of the workers and
the sheep.

Practically, the task is then to effectively coordinate
the motion of the workers to minimize total travel time
between the base and the resource patches. Spending a
long time to compute near-optimal routes may result in
the world having changed to the point where the com-
puted solution is no longer valid.

Game 2: Local Combat

The second game is two-player tank combat, where the
objective is to destroy as many of the opposing player’s
bases as possible within 10 minutes. Each player begins
with 5 bases randomly distributed within the playfield,
and 10 tank surrounding each base. A game ends im-
mediately if all of one player’s bases are destroyed.

As with the first game, each player has full visibility
of the entire map. Plateaus, which are impassable and
block line-of-sight tank attacks, are randomly placed on
the map. Neutral, indestructible sheep also wander ran-
domly.

The focus of this scenario is to effectively engage and
destroy enemy squads. Formations which allow one side
to concentrate fire on a small number of tanks while ex-
posing themselves to few attackers are preferable. An
agent must therefore coordinate the motion of the tanks
to bring about these positions while avoiding collisions
with other tanks (both allied and enemy) and unpre-
dictable sheep.

Game 3: Mini RTS

The third game is a stripped-down version of a “real”
RTS game. Two players begin with one base and several
workers located next to a resource patch. The rest of

Figure 2: Game 2 client display.

the map and the location of the enemy base is initially
unknown. A fog-of-war limits the currently observable
parts of the map to those regions that can be seen by
allied units.

A player is able to spend minerals and use a worker
to construct a barracks and then a factory. Barracks and
factories can then be used to train marines and tanks
respectively. Tanks have more hitpoints, attack power,
and range, but cost more than marines.

The objective of this game is to obtain more points
than the opponent before time runs out. Points are
awarded for gathering resources, constructing buildings,
training units, and for destroying enemy buildings and
units. The game ends early if all of one player’s buildings
are destroyed.

Figure 3: Game 3 client display.

46

Tournament Setup

All tournament games were played between June 16 and
18, 2006 on 31 undergraduate lab computers in the com-
puting science department at the University of Alberta.
Each machine was equipped with a single Athlon XP
1.5 GHz CPU and 512 MB RAM running Linux 2.4.31
and gce 4.1.1. Shortly prior to the competition a multi-
threaded ORTS tournament manager was completed by
Krysta Mirzayans. This software greatly simplified run-
ning the tournaments and allowed us to play a large
number of games.

Authors had access to the tournament computers on
which they could upload their programs to test them
in individual protected accounts which were frozen just
before the tournament commenced. Each participant
was asked to send a magic integer to a member of the
independent systems group which also set up the tour-
nament accounts. These numbers were then exclusive-or
combined to form the seed of the random number gener-
ators used for creating all starting positions. This way,
no participant was able to know beforehand what games
would be played. In order to reduce dependency of game
results on starting positions

In what follows we describe all tournament entries in
turn and present the results of the tournaments.

Game 1 Entries
brzol
Author: Michal Brzozowski, University of Warsaw,

Poland

Michal’s entry used a discrete graph-based terrain rep-
resentation where neighboring vertices are connected
if their connecting edge is traversable. Workers are
guided by a finite state machine (FSM) with the fol-
lowing states: move-to, mine, go-back, drop-resources,
avoid (entered when hitting a moving obstacle. Avoids
obstacles by moving to the left. When it hits a static ob-
stacle, it moves to a random direction), and emergency-
path (when hitting a number of obstacles in the avoid
state, tries to get back to original path). A coordina-
tor assigns workers to resources based on shortest paths.
Each worker picks the closest mineral from its starting
point with less than 2 workers assigned already.

creedl
Author: Michal Szostakiewicz (University of Warsaw,
Poland)

A search graph is built from nodes representing tile cen-
ters. Kdge weights depend on mobile objects close by
to prevent collisions. Each worker is assigned a random
mineral patch and is sent to it. Shortest paths are com-
puted by Djikstra’s algorithm. When colliding, workers
move to a random location nearby.

umichl
Authors: Joseph Xu and Sam Wintermute (University
of Michigan, U.S.A.)

This entry was implemented in the SOAR architec-
ture using a modified version of the standard ORTS
pathfinding with an added local obstacle avoidance sys-
tem. Workers are guided by a mining manager and a
FSM. If a worker exceeds its estimated travel time, it
requests a new route from the mining manager. The
mining manager learns which routes are bad.

uofal

Authors: David Deutscher (Tel Aviv University, Israel)
and Nick Wiebe (University of Alberta, Canada)

This entry is based on three modules:

1. A single-unit path planning algorithm using a sim-
ple grid based A* algorithm, which uses a multiple-
resolution world representation, pluggable goal def-
initions (including “touch a target objejct”) which
can handle variable-sized and shaped objects.

2. A path execution system which calculates the nec-
essary motion at each simulation tick to move a unit
along a predetermined path. To do this force fields
are used to attract moving units to a point on the
path in front of them and to repel them from other
objects, buildings, and walls. For each unit travel-
ing along a path, every object, building, and wall
whose distance is below a minimum threshold ex-
erts a force on the unit inversely proportional to the
square of the distance between them. The move-
ment vector for the unit is the sum of the forces
acting on it. This approach solved the problem of
path obstruction by sheep and enemy units, as units
would just roll off the obstruction. It also is used to
give priority to moving units. By calculating and
applying these forces to units that were not moving
along a path, idle units can be pushed out of the
way of moving units. A small randomized vector
is added to this pushing force in order to limit the
distance that units are pushed in a single direction.
Pushing proved to be important for game 2, where
it speeds up large group attacks.

3. Dynamic allocation of minerals to workers, based
on minimizing a weighted (1:1) combination of the
Fuclidean distance from the worker’s current posi-
tion and the static path’s length between the min-
eral and the control center (where static means the
shortest path found while considering only static
obstacles — boundaries, other minerals and the
control center itself). Statically-blocked minerals
are not assigned and a single worker per mineral is
preferred, unless no other option is available. Fail-
ures to plan a path or to reach a mineral raises
a limited-time flag preventing its use for a couple
dozen turns.

47

Game 1 Results

Initially it was planned to play 300 games per entry
lasting 10 minutes each on June 16. But twenty hours
into the tournament the tournament manager exceeded
its disk quota which was set too low. So, to stay on
track, the number of games had to be reduced to 225
per program. The final results were as follows:

rank name score games ratio
1. umichl 1458455 225 6482.0
2. brzol 1136690 225 (*) 5051.9
3. uofal 1136790 225 (*) 5052.4
4. creedl 559380 225 2486.1

Program brzol was leading over uofal almost all the
time. So, team uofa happily conceded 2AD place to
it (*) due to shortening the tournament. Entry creedl
made the server crash several times by referring to fully
mined mineral patches which had vanished.

Game 2 Entries

umaas?2
Authors: P. Kerbusch, N. Lemmens, M. Urlings,
V. Vorsteveld (University of Maastricht, The Nether-
lands)

This entry creates 5-tank squads in single-file formation.
The squad leader plans a path to the nearest base and
others follow. When enemy tanks are encountered, a
wedge formation is formed and the weakest of all tanks
within range is attacked. Tanks move towards the weak-
est target while firing at the weakest target within range.
When no more enemy tanks are in sight, the squad re-
sumes its path in file formation. When a base is de-
stroyed, a new base is located and the squad starts mov-
ing towards it. All objects excluding opposing tanks are
considered obstacles and each tank reserves one tile.

umich?2
Authors: Joseph Xu and Sam Wintermute (University
of Michigan, U.S.A.)

This entry is a SOAR agent that attacks tanks be-
fore bases. Tanks are grouped by spatial distance, and
groups of tanks will try to attack enemy tank groups
that are smaller than them. If no such enemy groups ex-
ist, smaller groups will try to regroup into larger groups
and go for their target then. Unfortunately, a bug was
introduced just before the deadline, and most of this
behaviour was not realized in the competition.

uofa2
Authors: K. Anderson, J. Bergsma, D. Demyen, T. Fur-
tak, D. Tom, F. Sailer, N. Wiebe (University of Alberta,
Canada), D. Deutscher (Tel Aviv University, Israel)

The program first finds a suitable meeting location for
all tanks close to the average tank position. Then all

tanks are sent there after joining locally first. When the
join operation is finished, the entire group starts hunting
and attacking the closest enemy tank. When all tanks
are destroyed, bases are attacked. The weakest targets
are attacked first while minimizing overkill.

The task architecture utilized in this tournament en-
try (and also in uofa3) was designed to be simple, yet
powerful. Each task is composed of a list of units as-
signed to it, as well as a list of child tasks, and a current
line number. Each task also has an execute function
which defines the task’s behaviour. A task is defined as
a series of statements to execute, and the navigation be-
tween these statements done by having a variable point-
ing to the current line number. The statements can
range from giving individual units precise orders to cre-
ating subtasks for subsets of units. Finally, each task has
an identical update function, which is executed when-
ever an object belonging to that task has completed an
order or has been killed. If all the units of a task have
completed their orders, the task executes its next state-
ment as defined in the execute function. If the task has
reached the end of its execute function, the task itself
completes and notifies its parent and also gives control
of the units back the the parent. The parent then ex-
ecutes its next statement, and so on. This framework
allows complex strategies to be formulated by creating a
series of subtasks, and combining them into more com-
plex tasks.

Game 2 Results

Four hundred two-game matches were played for each
player pair on June 17. Each game lasted at most 15
minutes. Here are the obtained results:

rank name score matches ratio
1. uofa2 390.0 400 0.975
2. umaas2 210.0 400 0.525
3. umich2 0.0 400 0

Entry uofa2 won almost all of its games. It crashed in
20 games, but only lost 10 matches in total. The strat-
egy of all tanks meeting near the center first and then
hunting tanks with a big group tanks was quite success-
ful. It is also hard to beat in the absence of area effect
weapons. Therefore, in subsequent competitions control
centers will likely be made weaker to make leaving bases
undefended more risky.

Game 3 Entries

umich3
Authors: Joseph Xu and Sam Wintermute (University
of Michigan, U.S.A.)

After gathering enough minerals and having built
enough marines this SOAR agent sends marines to ex-
plore and attack. Defensive behaviour takes precedence,
and all units are pulled into battle if the base is under
attack.

48

uofa3
Authors: K. Anderson, J. Bergsma, D. Tom, T. Furtak,
F. Sailer, N. Wiebe (University of Alberta, Canada),
D. Deutscher (Tel Aviv University, Israel)

Using the task framework described earlier, this entry
implemented a so-called turtling strategy which creates
a barracks and enough workers such that each visible
mineral patch is mined. It then produces as many
marines as it can which wait for the opponent to arrive.
The squad combat Al described earlier also controls all
combat actions in this game and an older version of the
mining Al controls gathering minerals.

Game 3 Results

Two hundred two-game matches were played on June 18
— each one lasting for at most 20 minutes. The results
were as follows:

rank name score matches ratio
1. umich3 124.0 200 0.62
2. uofa3 74.0 200 0.37

When watching some replays it becomes apparent that
there is much headroom in terms of increasing playing
strength in game 3. Neither program expanded to other
resource locations, nor did they create tanks in later
game stages.

Conclusion and Outlook

In this paper we have presented the results of the first
RTS game Al competition which was held in June 2006
and described the algorithms used in the tournament
programs. Many areas of improvement have been iden-
tified, including ORTS documentation, program and
server stability, group pathfinding, and high-level Al.
We regard this as a promising beginning of a series of
many future RTS game Al competitions which hope-
fully will help elevating the level of real-time Al to new
heights.

Acknowledgments

Financial support was provided by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES

Buro M. and Furtak T., 2004. RTS Games and Real-Time Al
Research. In Proceedings of the Behavior Representation
in Modeling and Simulation Conference (BRIMS). 63-70.

Livingstone D., 2006. Turing’s test and believable Al in
games. Computers in Entertainment (CIE), Vol. 4(1).

Spronck P.; Ponsen M.; Sprinkhuizen-Kuyper I.; and Postma
E., 2006. Adaptive Game AT with Dynamic Scripting. Ma-
chine Learning, Vol. 63(3), 217248.

A MULTI-AGENT SOCCER SIMULATOR BASED ON A
SIMPLIFIED SOCCER MODEL

Iwein J.J. Borm
L.J.M. Rothkrantz
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Meckelweg 4, 2628 CD Delft, The Netherlands
E-mail: {iweinb} @ gmail.com

KEYWORDS
Multi-Agent Systems, Cooperative Agents, Soccer
Simulation.

ABSTRACT

This paper describes a multi-agent soccer simulator based on
a highly simplified soccer model. The simplified soccer
model starts on a high level, and is suitable for research on
high-level strategies. The simulator features a three-layer
model representing the physical environment, robot, and
behavior. This layered approach makes the system
extensible. The system is fully functional and has been used
in an educational environment. Results from this show that it
is possible for unexperienced novice programmers to
implement cooperative intelligent soccer teams in limited
time. The simplified model allows advanced high-level
strategies and self-learning elements.

INTRODUCTION
Challenge

Multi Agent Systems (MAS) deal with multiple agents that
arc collectively capable of reaching goals that are difficult or
impossible to achieve by individual agents. One increasingly
popular example of MAS is robot or embodied agents. The
ultimate challenge of this domain is stated as follows
(Kitano and Asada 2000):

"By mid-21st century, a team of fully autonomous humanoid
robot soccer players shall win the soccer game, complying
with the official rules of the FIFA, against the winner of the
most recent World Cup."”

The 2050 goal is the successor of the chess challenge, that
was accomplished in 1997 (Schaeffer and Plaat 1997). The
domain characteristics of soccer vary largely from those of
chess. Table 1. illustrates this.

Table 1: Comparison of Chess and Soccer

Chess Soccer
Environment Static Dynamic
State Change Turn taking Real time
Info. Accessibility Complete Incomplete
Sensor Readings Symbolic Non-symbolic
Control Central Distributed

49

Problem

The high level aspects, such as dealing with cooperation and
team work are not dealt with extensively in present
literature. The main reason why most research is being done
on the low level details of playing soccer is that having a
reliable, fast, low level implementation is a necessary
requirement for any high level strategies. It is however not a
sufficient requirement. There is no use in reasoning about
complex strategies to trick the opponent when simple
commands are not executed in accordance with the
expectation. In both the simulation league, and in all
physical robot leagues, a low level implementation of many
primitive functions is required before having a fully
functional team. Furthermore, there is a large dependance on
the quality and stability of the low-level implementation on
the performance of high-level strategics. As a result, the
problem domain that was already inherently very uncertain
is extended with even more uncertainties.

Simulator

Rules governing fair play dealing with, amongst others, free
kicks, bookings, penalties, throw-ins, corners, goal kicks and
offside, arc all necessary clements of human soccer.
Including these rules in a simulator however, necessitates
their inclusion in the design and implementation of any
team. A further dimension of soccer is coaching and
allocating players with certain strengths and weaknesses to
certain positions. Although attention to all these properties
and events must be paid in order to compete with human
players, they distract attention from developers towards
handling these special cases. For this reason, the
aforementioned elements are not included in the world
model of the system. Furthermore, all robots are physically
identical.

RELATED WORK

As early as in 1994, soccer was introduced as one of the
great challenges for Artificial Intelligence (Sahota 1994). A
lot of research and experimentation has been going on in the
increasingly popular domain since. In the year 2000, the
2050 goal (Kitano and Asada 2000) was formulated as the
new challenge for Al for the coming 50 years, in response to
the completion of the chess challenge in 1997.

Competing with humans and in accordance with the FIFA
rules demands highly sophisticated humanoid robots that
have physical abilities comparable to that of humans.
Developing such robots can not be done overnight. A set of

intermediate targets with regards to the robots, the rules of
the game and the environment in which the game takes place
have been set out in (Burkhard et al. 2002). Through
gradually adding complexity and making competitions ever
more humanoid, the 2050 goal is to be met.

Robocup

RoboCup consists of 5 leagues; (1) small-sized robots; (2)
middle-sized robots; (3) four-legged robots (Aibo's); (4)
humanoid robots; and (5) simulation. The first four leagues
deal with actual physical robots — and face the corresponding
technical problems, whereas the simulation league has no
physical representation.

Simulation League

The soccer simulator was introduced in 1995 (Noda 1995)
and has seen a lot of development since. In this league,
teams of 11 autonomous software agents compete on a
simulator in a match lasting 10 minutes. Unlike the hardware
leagues, this league docs not face the hardware constraints of
current technology. A vast body of literature has been
written on various techniques used to create cooperative
teams, such as machine learning, multi-agent collaboration,
and opponent modeling. There are several variations within
the simulation league; A 2D competition, a 3D competition,
a 3D-development competition and a coaching competition.

The Soccer Simulator is presently a platform for researching
cooperation and team work. It is not restricted by the current
state of technology, however there is a large threshold for
starting working with the simulator. The simulator is
designed from the perspective of being a realistic soccer
simulator. As such, many low level functions have to be
implemented prior to reasoning on a higher level, and this
higher level reasoning depends on the uncertainties that
remain after the lower level implementations. Resulting
implementations are very complex, and research on a
strategic level is difficult.

FLEEBLE

The simulator (Borm 2006) was implemented using a simple
agent framework called Fleeble (Pantic et al. 2004). Fleeble
is Java-based and provides all functionality required for
development and implementation of the simulator and soccer
teams. It allows concurrency (multi-threading), multiple
agents (and easy communication between these agents) and
namespaces.

Namespaces simulate different computers. When loading a
child Agent, a certain name space can be appointed and
Fleeble will lock the Agent's communication to this
namespace. This is particularly useful for multi-agent soccer,
as it enables forced namespaces on player agents, such that
they can only communicate with the framework and not
directly with cach other. Figure 1. shows the Fleeble GUI,
with the soccer simulator running.

50

£ swipens

Sndgad Thawaie

G Stnd

2 e B M
% ot & Fosk Rider
st & Hsseren bt
atsstnod§ Koo D
st § R fobot
sttt 4 Schost Bkt

% st 7 P et

% el 8 Hors dor Sor Mk
%wm&w&wm&m

wshost 18 Seedef Dok
absstnot 1 e Rt

R T ——
& § ot U1 Hespe Kot
&% atuadued 14 ConsPobd 'J

e T T

Figure 1: GUI of Fleeble Agent Framework

MODEL

Rather than developing a realistic soccer simulator, the
described model is intended to be suitable as a tool for Al
research. The most important difference with the official
laws of the game is that the ball is always in play in the
soccer model, whereas it can be taken out of play by either
the referee or by leaving the ficld in human soccer. There is
no centralized control such as a coach or a referee. There are
no injuries, bookings, and all players are physically
identical. Furthermore, there are no external influences such
as the weather or audience. Robots have aural and visual
sensors with perfect information in a narrow field. Robots
can change their behavior, shout, and move. Robot speed is
instant and static, speed penalties are awarded for collisions
and shouting. The model features three layers: The player
layer, robot layer and framework layer. This is illustrated in
Figure 2.

Simulatar

effectors

Realworld metaphor
. :
g n
i
W N

- o D

A E s

H

i
&

(filtered) sensors

(filtered) effectors SENSOrS

Physical laws

I

World maodel

Contextworld

Figure 2: The System Model

The Player Layer

The player layer defines the behavior of the robot. All
reasoning of a robot is done in this layer. The player layer
receives sensory input from the robot layer. This is by
default everything that the robot senses, but a filter can be

added to simulate technical imperfections at the robot. The
player layer can send its desired actions to the robot layer.

The Robot Layer

The robot layer is the intermediate layer that mediates
between the framework (environment) and the player layer
(behavior). It will receive commands from the player layer
and attempt to execute these, when allowed by the
environment. The robot layer senses directly from the
environment. To simulate for the physical imperfections of
actual robots, such as limited processing power, poor camera
quality, imperfect control over all joints, filters can be added
over the input and output of this layer. By default the robot
layer will sense all visual and aural information within a
predefined range without any uncertainty.

The Framework Layer

The framework layer enforces all rules of the game. Rules
governing movement, vision, communication, and the game
arc defined and secured by this layer. The current state of all
robots is kept and updated by this layer. The rules of the
game and the framework parameters are publicly known by
all layers.

Player Capabilities

Basic Player Movement

A robot is a circular solid object. A robot can move cither
forward, backward, left, or right. The orientation of a robot
can be changed by turning either left or right. A robot is able
to kick a ball if it is directly in front of him. A robot can not
leave the ficld, as the framework will prevent it from doing
so. Robots are physically identical and will move at the same
base speed. Certain factors such as recent collisions, the
movement direction, or recent communication, can inflict a
temporary speed penalty on the robot.

Ball Movement

The ball is also a circular object, but unlike robots, it is not
'controlled' by any higher layer. A ball acquires movement
through collision with robots, or through being kicked by a
robot (a special type of collision). The ball will move in a
straight line, in the direction of the collision or kick. The
velocity of the ball decreases with time, as a result of
simulated friction with the field. The ball comes to a halt
naturally. Ball movement is entirely predictable, except
when the ball is kicked. A small random direction element is
added when a ball is being kicked.

Visual Model

Vision is the primary sensor of the robot. Although not the
only one, intelligent tcams can be developed reasoning
solely about the visual perception. Robots have a field of
vision that is equal in size for each robot, and defined by a
given view angle and view range. All objects within this
field of vision will be recognized. For cach of the objects
that are recognized, the name of this object, the team it is
playing for, and the exact position and heading are perceived
without any errors. Robots will also receive their own
position.

51

Aural Model

To reach high-level strategic behavior by robots,
communication is essential. The aural model describes how
communication between robots is possible. Robots have a
certain shout range. This is a fixed, predefined distance, and
objects within this range in the circular arca around the robot
will receive any messages that the robot decides to send.
Any type and amount of data can be sent at any time. The
only restriction to communication is that a (severe) speed
penalty lasting several seconds is inflicted on the sender of a
message. Both friendly and opponent robots within the shout
range will receive the message. Apart from the content, the
name of the sender and the time at which the message was
sent are also included.

Changing Behavior

Since the physical capabilities of robots are identical,
substituting them would be a rather uscless activity. To
allow for adaptive team behavior, an option to substitute the
player on a robot is included. Substituting the player on a
robot effectively means replacing the player that is currently
loaded on the robot by another player. This can be done at
any time during the game, and as often as desired. The
knowledge base of the existing player can be stored, and as
such the newly substituted player will be able to access data
collected by the old player. This feature allows for adaptive
team behavior.

SOCCER SIMULATOR
Visualization

The soccer simulator that implements the aforementioned
model is displayed in Figure 3.

During the development of a team, it is convenient to know
the visual and aural areas of a particular robot, and to
determine exactly what input a certain robot received. The
first is visualized in the user interface, as illustrated in

Figure 4. The latter can easily be done in Fleeble, through
monitoring the human-readable channel communication.

Figure 3: The Multi-Agent Soccer Simulator

Figure 4: The Visual and Aural Sensor Areas of a Robot

In addition to the visualization of soccer matches, the
simulator also features team and tournament creation
interfaces. A team consists of 7 players, each with a Player
Agent, name, base position and an icon. The information is
stored in an XML file. The team creation interface (See
Figure 5) will automatically create such an XML file.

Figure 5: The Team Creation Interface

Randomness

The simulator is mostly deterministic. All paramecters are
known to all players, and can be used to calculate for
instance where a ball will come to a stop, how much time it
will take to move to a certain position, etc. There are only
two random clements in the game, causing every run to be
different. First, there is a random factor when kicking the
ball. To prevent lucky shots from a very large distance, and
to stimulate strategic behavior, a certain random distortion is
added to ecvery shot. Sccondly, there is "Java-induced
randomness". There are 2x7 Robot Agents, 2x7

52

Player Agents and a Framework Agent. All Agents have
their own thread. These agents use an even larger number of
channels, that are also represented with threads. Since the
updating of all threads is not synchronous, a message sent on
the same time, on the same channel, by two different robots
may reach the framework layer at different times. Since
positions are not updated continuously but on discrete time
intervals, this will cause robots to occasionally be lucky or
unlucky. These random variations are equally distributed
amongst both tecams, and make every game unique.

STRATEGY

In order to develop an intelligent cooperative tcam in the
soccer simulator, a number of design and implementation
decisions must be made. A moderately intelligent reference
team is included with the simulator that uses rule-based
reasoning to reason about the environment. The structure of
such teams is laid out in the following list:

1. Roles in the Team: A number of roles have to be
identified and included in the design. It is common to
distinguish between a goal keeper and other players, but
further distinctions such as defensive or offensive are
also possible.

2. Formation: The placement of all robots on the ficld in
start position. For more advanced teams, the base
positions of all robots may vary among strategies or
even within strategies.

3. Player Skills: A wide array of low-, medium-, and high-
level player skills have to be designed and implemented.
Examples of such player skills include:

a. Scout the area.

b. Move to a position.
c. Avoid opponent.
d. Pass the ball.

4. High-level information: Raw observations from the
environment arec not useful for the rulebase. A
transformation from sensory input to high level
information results in the input for the rulebase.
Examples include:

a. Determine if the Ball is Visible.

b. Determine if the Ball is Kickable.

¢. Determine whether an opponent is up ahead.

d. Determine whether there is a teammate

standing free.

5. Rule-Based Action Selection: The high-level
information can be used to reason about the
environment and to determine the best combination of
player skills to be used.

Cooperation

The aforementioned clements together do not constitute a
cooperative intelligent soccer team. Of utmost importance is
the adoption and consideration of social conventions,
autonomous reasoning, and the communication model.
These have to be embodied in the rule-based action selection
mechanism, and taken into account when deciding on what
high-level information to elicit.

The soccer model was specifically designed to encourage
users to consider the autonomous reasoning (and social

laws) versus communication tradeoff. The severely restricted
ficld of vision for robots drastically reduces the amount of
information they can reason about. Since any amount and
type of data can be communicated through shouting, visual
information from neighboring robots can be transmitted and
used to draw better conclusions.

To illustrate how powerful communication is in strategy,
Figure 6. shows you, with the ball, unaware of the presence
of two opponents, and the tcammate. The tcammate sends a
message with this information, and suggests a plan. This
particular plan consists of the teammate moving towards the
flank, and you passing the ball to the teammate. You will
reason about the likelihood of this plan succeeding (based on
the newly gained information). If the plan is better than the
previous plan, execute this. The teammate will be able to
observe by the actions of you whether or not the suggested
plan is being exccuted. The teammate will suffer from the
communication speed penalty, but the robot with the ball
(you) does not need to communicate.

In general, deciding on what plan to execute should be
decided by the players taking an active part in the play, as
they have the visual information of nearby objects that other
passive robots might not have. When it may seem like a
good plan to pass the ball to a player by a passive observer,
this plan should be suggested to the active player. As
communication by the active player has a large cost, the
passive players should attempt to anticipate based on the
active player's movement. After an active player has passed
the ball, it can safely communicate and inform neighboring
teammates about the plan it has attempted.

Opponent1

Teammate

OpponentGoalKeeper Goal

(a) Start of Scenario

53

RESULTS

The soccer simulator was used in conjunction with the
default moderately intelligent team in a first-year
undergraduate introductory Al project (Borm and
Rothkrantz 2006). Students were instructed to design and
implement an intelligent cooperative team capable of
defeating the reference implementation. Students had 3
weeks to complete this assignment. The assignment ended
with a competition between all student teams. The results of
this competition, held at the 6th of June, 2006 at Delft
University of Technology, are shown in Table 2. The fact
that first-year students, without any significant aid, are
capable of developing such an intelligent cooperative team,
is a proof of concept. The simplified soccer model ensures
that the focus is not on optimizing skills over players, a
coach, taking penalty kicks, or any other non-game quality,
but solely on playing the game. Playing the game in term
does not require as much effort or code as existing soccer
simulators. The results from this assignment were gathered
through classroom observations and an anonymous survey.

Table 2: Results. The number indicates the group number, S
= SimpleTeam, R = RandomTeam, T = total score. Win =3
points, Lose = 0 points, Draw = 1 point. [i,j] = {score of i -
score of j}

2 3 4 5 S R T
1 6-0 1-4 | 0-10 1-4 7-5 13-3 9
2 X 3-15 | 9-19 | 4-22 | 2-20 | 30-5 3
3 X X 4-9 6-3 | 22-9 | 18-7 15
4 X X X 8-4 | 21-9 | 34-3 18
5 X X X X 28-5 | 36-2 12
S X X X X X 32-2 6
R X X X X X X 0
Ym\
Opponent1 \'x_
Opponent2 .
\‘!‘Tﬁdmate
OpponentGoalkeeper Goal Lg,j
(b) Get Ready to Score!

Figure 6: Example use of Communication to Outplay
Opponents

A similar conclusion can be drawn from both evaluations.
Developing a team for the soccer simulator is considered
challenging, motivating, and fun.

Adaptive Teams

Existing soccer simulators are plagued by a large amount of
uncertainties for attempts at high-level behavior. Attempting
to implement a self-learning team in such an environment is
prohibitively difficult. An approach was suggested in (Borm
2006) to develop a more advanced team that has a self-
learning mechanism using the soccer simulator. This
approach will optimize variables governing the execution of
high-level actions. For example, the desired result of dodge
opponent would be to move past a specific opponent player
without colliding. Although robots reason about a limited
part of the field, they can store and share their observations
over a longer period of time. As such, they can reconstruct
events and their decisions - given their knowledge at the
time. Optimizing decision thresholds through experimenting
with their values, and then statistically evaluating the
resulting performance measures, will converge to the
optimal values against a specific team.

It is also possible to include a probabilistic element
to the agent models. Such an approach features both
advantages and disadvantages. It makes it more difficult for
opponents to predict movement, but it also makes it more
difficult for teammates to predict movement, and judge from
this by means of social conventions.

CONCLUSIONS

In this paper we have introduced a Multi-Agent Soccer
simulator based on a simplified soccer model. The model is
composed of three layers, making the system extensible. The
model removes all forms of centralized control and
uncertainties present in the environment. Players are
physically identical, and have limited aural and visual arcas
with perfect information. An important tradeoff is that of
autonomous reasoning and social conventions versus
communication. Both types are of utmost importance to
successful cooperative teams.

An assignment was constructed for first-year
undergraduate students, instructing them to defeat an
intelligent reference team. This was considered challenging,
motivating, and fun. It also serves as a proof of concept,
since a limited background knowledge and programming
experience do not obstruct the development of cooperative
teams.

FUTURE WORK

An interesting addition to the simulator would be a network
option. Users should be able to join or host matches and
tournaments with other users. This can for instance be done
by setting up a central soccer team database and connecting
to this, then downloading the desired team, and finally
playing against this team.

Another addition would be to add another layer
over the player layer that contains pre-implemented
functions for, amongst others, movement. This would
cffectively reduce the process of creating a team to defining
a good rulebase.

54

To bridge the gap with reality, it is possible to
extend the model with uncertainty, to model various states of
technological progress, and use this to test the impact of this
progress on the performance of a team.

A particularly interesting area of future work is the
development of highly advanced tecams, and testing their
performance. An approach has already been suggested by
(Borm 2006). It is also interesting to consider the suitability
of various other Al techniques, such as dynamic bayesian
networks, for intelligent soccer teams.

REFERENCES

Borm, 1.J.J. 2006. “The Design and implementation of a Multi-
Agent Soccer Simulator as a Tool for Al Research and
Education.” Technical Report MMI-06-12, Delft University of
Technology (Aug).

Borm, 1.J.J. and L.J.M. Rothkrantz. 2006. “Teaching Al
Techniques Using Multi-Agent Soccer.” In Proceedings of 3
E-Learning Conference, Coimbra, Portugal, pp. 113-118. (Sep).

Burkhard, H.; D. Duhaut; M. Fujita; P. Lima; R. Murphey; and
Rojas, R. 2002. “The Road to RoboCup 2050”. IEEE Robotics
& Automation Magazine, 9(2):3138.

Kitano, H. and M. Asada. 2000. “The RoboCup humanoid
challenge as the millennium challenge for advanced robotics”,
Adv. Robot., vol. 13, no. 8, pp. 723-737.

Noda, 1. 1995 “Soccer server: a Simulator of RoboCup”. In
Proceedings of Al Symposium ’95, Jap. Soc. For Al, pp. 29-34
(Dec).

Pantic, M.; R.-J Grootjans; and R.Zwitserloot. 2004. “Flecble
Agent Framework for Teaching an Introductory Course in Al”,
Proc. Int’l Conf. Cognition and Exploratory Learning in Digital
Age, Lisbon, Portugal, pp. 525-530.

Sahota, M.K. and A.K. Mackwordt. 1994. “Can situated robots
play soccer?” Proceedings of Canadian Al-94, pp.249-254.

Schacffer J. and A. Plaat. 1997. “Kasparov versus Deep Blue: The
Re-Match”, Journal of the ICCA.” Volume 20, Issue 2, pp.95-
101.

A GUIDED GENETIC ALGORITHM FOR THE PLANNING IN LUNAR LANDER
GAME

Zhangbo Liu
Department of Computer Science
University of British Columbia
2366 Main Mall
Vancouver, B.C, V6T 1Z4, Canada
email: zephyr@cs.ubc.ca

KEYWORDS
Guided Genetic Algorithm, Reinforcement Learning,
Planning, Games

ABSTRACT

We propose a guided genetic algorithm (GA) for plan-
ning in games. In guided GA, an extra reinforcement
component is inserted into the evolution procedure of
GA. During each evolution procedure, the reinforcement
component will simulate the execution of a series of ac-
tions of an individual before the real trial and adjust
the series of actions according to the reinforcement thus
try to improve the performance. We then apply it to a
Lunar Lander game in which the falling lunar module
needs to learn to land on a platform safely. We com-
pare the performance of guided GA and general GA as
well as Q-Learning on the game. The result shows that
the guided GA could guarantee to reach the goal and
achieve much higher performance than general GA and
Q-Learning.

INTRODUCTION

There are two main strategies for solving reinforcement
learning problems. The first is to search in the space
of behaviors in order to find one that performs well in
the environment. The second is to use statistical tech-
niques and dynamic programming methods to estimate
the utility of taking actions in states of the world (Kael-
bling et al. 1996). Genetic algorithms (GA) and Tempo-
ral Difference (TD-based) algorithms (e.g. Q-Learning)
belong to each of the two categories, respectively.

Both GA and TD-based algorithms have advantages and
disadvantages. GA leads to very good exploration with
its large population that can be generated within a gen-
cration but weak exploitation with elitism selection op-
erator, because its other two operators, the crossover
and mutation operators are usually randomly working.
TD-based algorithms use two strategies to solve prob-
lems with continuous space which are discretization and
function approximation. It usually faces the curse of di-
mensionality when using discretization. With function

55

approximation it is said to be able to alleviate such a
problem but might be stuck into certain local optima.
In this paper, we first investigate the GA as well as Q-
Learning approach on the Lunar Lander game. Then
we propose the guided GA by inserting a reinforcement
component into the evolution procedure of GA. Since
general GA uses random crossover and mutation opera-
tions, its performance is quite unstable. Guided GA is
designed to achieve higher efficiency by involving the re-
ward concept of reinforcement learning into general GA
while keep all components of general GA unchanged so
that the extension from general GA to guided GA is
easy to achieve.

The remainder of this paper is organized as follows. In
section 2 we introduce research work that is relevant to
this paper. In section 3 we describe the Lunar Lander
game as well as alternative approaches for the problem
implemented with general GA and Q-Learning. In sec-
tion 4 we present the guided GA approach for the prob-
lem. The results of the experiment are shown in section
5 following by the conclusions.

RELATED WORK

Reinforcement Learning for Continuous State-
Action Space Problems

The issue of using reinforcement learning to solve contin-
uous state-action space problem has been investigated
by many researchers. And game is an ideal test bed.
There are a few well known benchmark problems in the
reinforcement learning domain such as Mountain Car
(Moore and Atkeson 1995), Cart-Pole (Barto et al. 1983)
and Acrobot (Boone 1997). Another popular implemen-
tation described in (Ng et al. 2004) made an autonomous
inverted helicopter flight.

Two main strategies here are discretization and func-
tion approximation. For the first strategy, discretiza-
tion techniques have been widely pursued and provide
convergence results and rates of convergence (Munos
and Moore 2002). For the second strategy, several ap-
proaches come out on how to configure with multiple
function approximators (Gaskett et al. 1999).

Reinforcement Learning + Genetic Algorithm

Some researches on combining the advantages of GA and
TD-based reinforcement learning have been proposed in
(Chiang et al. 1997), (Lin and Jou 1999). However, both
of them use gradient decent learning method which is
complex and the learning speed is always too slow to
achieve the optimum solution. The idea of guided GA
we propose is inspired by (Ito and Matsuno 2002), in
which Q-Learning is carried out and fitness of the genes
is calculated from the reinforced Q-table. However, in
guided GA, instead of using Q-table, we directly insert a
reinforcement component into the evolution procedure
of the general GA so that the large Q-table and hid-
den state problem are avoided. In (Juang 2005), Juang
proposed another approach to combine online clustering
and Q-value based GA for reinforcement fuzzy system
design. Compared with the approach described in that
paper, guided GA is much simpler in structure and eas-
ier to implement while the problem we address in this
paper has a higher dimension than that of in (Juang
2005), thus it has the potential to be used in game ap-
plications.

THE LUNAR LANDER GAME

The Lunar Lander Game

The Lunar Lander game is actually a physically-based
problem in which the controller needs to gently guide
and land a lunar module onto a small landing plat-
form.The space is a 400 x 300 pixel rectangle area. It
simulates the real environment on the moon that the
lunar module has mass and is influenced by the grav-
ity on the moon (1.63m/s?). The controller here has
5-dimensional state spaces which are: position (z,y),
velocity (4, y) and orientation (6). The controller is able
to do four actions: rotate left, rotate right, thrust and
do nothing (drift).

When agent becomes the controller instead human
player, the problem becomes to an advanced path find-
ing issue. The successful landing requirement consists
the checking of the following variables when any part of
the lunar module reach the ground:

1) Distance from the pad

2) Speed

3) Degrees of rotation

All of them must be below certain thresholds to achieve
safe landing, otherwise it will crash and the game will
start from beginning again. The game runs in real time
thus it is a good test bed for problems with continuous
state and discrete action spaces.

56

Alternative Approaches

Genetic Algorithm

One alternative approach to this problem is using ge-
netic algorithm (GA) for planning. The GA approach
to this problem follows the steps below in one epoch to
try to achieve the goal. First, the genome is encoded
as a series of genes each of which contains an action-
duration pair.The duration here represents the period of
time that each specific action is applied. At the begin-
ning, all the actions and durations in those genes in one
genome are randomly assigned. A number of genomes
will be created together in one generation. Next, the
controller starts a trial according to the action-duration
series in each genome and uses a fitness function to eval-
uate their utilities when they crash. There might be
many approaches to build the fitness function to this
problem. In (Buckland and LaMothe 2002), Buckland
and LaMothe suggested the following fitness function:

Fitness = wy - disFit +ws - ot Fit + ws - airTime (1)

where disFit and rotFit represent the value function of
the position and the orientation feature separately. The
airTime is the time period that the lunar module stays
in the air which is defined as n,/(v + 1) where n,, is
the number of actions it does ignoring the duration and
v is the velocity at landing. w; are the weights that
are applied to balance the function. If the safe landing
requirement is satisfied, the fitness value will be assigned
with a predefined Big_Number instead of calculating
using the equation (1).

After one trial for all genomes of the current generation,
the fitness value of each genome will be calculated out
and the best n genomes with the highest fitness values
will remain and put into the next generation. Other
genomes of the next generation are created by using
crossover and mutation operators. The crossover opera-
tor works by stepping through each gene in its parents’
genome and swapping them at random to generate their
offspring. The mutation operator runs down the length
of a genome and alters the genes in both action and
duration according to the mutation rate.

The operator will periodically do one epoch after an-
other until one genome’s result reaches the goal or the
number of generations exceeds the predefined maximum
value. An implementation of a GA solution to this prob-
lem can be found in (Buckland and LaMothe 2002).

Q-Learning

Based on our experience, Q-Learning with only dis-
cretization won’t work for this problem. So we im-
plement a linear, gradient-descent version of Watkins’s
Q(A) to this problem with binary features, e-greedy pol-
icy, and accumulating traces described in (Sutton and
Barto 1998). Tile coding (Sutton and Barto 1998) is

also used to partition the continuous space into multi-
ple tilings.

THE GUIDED GENETIC ALGORITHM AP-
PROACH

The approaches we mentioned in the previous section
both have advantages and disadvantages. The GA is
simple to implement and is able to achieve the goal,
while its disadvantage is that all its actions are randomly
assigned so that its performance is quite unstable. The
basic concept of Q-Learning approach is also simple and
supposed to be efficient. However, for this game which
is a realtime continuous-state problem, Q-Learning with
discretization does not work and Q-Learning with func-
tion approximation is hard to accommodate. We design
the guided GA which incorporates the concept of reward
in Q-Learning into GA. Here we call our function "rein-
forcement function” because unlike the reward function
in Q-Learning whose values need to be summed to cal-
culate the Q-value (Q = > rewards), the reinforcement
function here gets the immediate fitness value and will
be extended to fitness function at the end of each epoch.

Reinforcement Function Design

To model the reinforcement function is a very challeng-
ing work. It has to be smoothly transformed to the
fitness function of the general GA (equation (1)) at the
end of each epoch so that we can easily extend the gen-
eral GA to a guided GA without modifying the existing
fitness function. On the other hand, it should be prop-
erly defined to efficiently guide the agents to perform
better. We tried many different versions until finally
reaching a solution.

In equation (1) there are 3 parameters and we need to
modify two of them which are disFit and airTime in our
reward function. The main difference between equation
(1) and the reinforcement function is that in equation
(1), all lunar modules reach the ground (position.y = 0)
and each of them has an accumulator n, whose value is
the number of actions they do during the whole pro-
cedure; while in the reinforcement function, the lunar
modules are in the air and they only focus on the next
action. Based on this difference, we build our reinforce-
ment function as follows:

We use disFite to represent disFit in (1), then we build
disFity which is similar to disFitx but for y coordinate.
Then our distance function is:

(disFity)?
Wy

disFit' = \/(disl*"itac)2 + (2)
where w, is used for balancing the weight between
disFitr and disFity.

airTime, as mentioned in equation (1), is defined as

nq /(v + 1). In our reinforcement function, n, no longer

57

exists, while we find that a single defined function does
not work well all the time since on different stages our
focuses might be different. For example, when the lunar
module is high in the air we would pay more attention
on its horizontal position; while when it is close to the
ground it needs to slow down to prepare for landing. So
instead of simply redefining it as 1/(v + 1), we take the
vertical position into consideration and come with the
following definition:

* Defining disF'it’ and airTime’ x\
if position.y < hi{
disFit' = disFit’ x r;
if position.y < ho
airTime’ = 1/(w; x v+ 1);}
else airTime =1/(v+1);

where hy and hg (hy > hs) are values of height at which
we think should change our strategies and w; is the
weight that can help slow down the velocity of the lunar
module to very small values when they nearly reach the
ground. r is a scaling factor. Then the reward function
we build is:

R =w; - disFit' + ws - rotFit + ws - airTime’

(3)

where w; and rotFit are the same as in (1).
Algorithm Description

In each epoch of the GA, the evolution of its genomes is
done by three operators: selection, crossover and mu-
tation. The selection is based on elitism, while the
crossover and mutation are by random, which leads to
the unstable performance of the general GA. In order
to better perform the evolution, we insert a reinforce-
ment component whose idea comes from the reward in
Q-Learning. There are two strategies to do this. The
first one is on-line updating which is similar to other
reinforcement learning algorithms. The second one is
off-line updating which updates the whole genome at
one time before each epoch. We choose the latter based
on the consideration of both the standard mechanism
of GA and the real time property of the problem. The
high-level description of the guided GA is shown below:

algorithm guided genetic;
begin
obtain last generation;
put a few best individuals directly into new
generation;

use crossover operator to generate new generation;

use mutate operator on the new generation;
evolve the new generation;
end

What we add here is the last step whose input is the
mutated new generation. Below is the procedure:

procedure evolve;
begin
for each individual 7 in the generation
for each gene in 7’s action-duration series
get duration d, current state s;

from state s consider all possible actions

with duration d, suppose s, are
possible resulting states;
select @’ and s’ based on equation (3);
if s’ satisfies safe landing requirement
a+— a’;
else if a’ #a
a + &’ with probability (1 — ¢);
update state;
end

where the greedy rate € has the same meaning as the e-
greedy policy in reinforcement learning. For any given
gene of an individual’s genome, there are 4 possible ac-
tions and numerous durations (in our implementation
for the problem the duration ranges from 1 to 30, which
means for any given state there are 120 possible states
in the next step). And we would only change the action
in action-duration pair so that for any given state there
are only 4 possible states in the next step.

We use the e-greedy policy here, but unlike the so called
greedy genetic algorithm (Ahuja et al. 1995) which fo-
cuses on greedy crossover, guided GA is inspired by (Ito
and Matsuno 2002) in which the authors used Q-table to
integrate Q-Learning with GA. However, for our prob-
lem using Q-table won’t work because of the large state
space. Instead, we use the above method to directly
insert the reinforcement component into the evolution
procedure without saving any previous state or function
value in the memory.

EXPERIMENTAL DETAILS
Experimental Design and Results

We conducted an experiment to test the performance of
our guided GA and compared it with the general GA
and Q-Learning. For guided GA and general GA, we
made all variables the same for both of them to ensure
fairness. The parameters of our experiment were given
as follows:

1. Both of the two contained 100 individuals in one
generation. The maximum number of generations
was 500. It supposes to be failed if it did not
achieve the goal within 500 generations and then
would start from the beginning again. The length
of chromosome was 50. The crossover rate was 0.7
and the mutation rate was 0.05. The ¢ was 0.1.

2. The thresholds for the safe landing requirements
were:

(a) Distance = 10.0

58

(b) Velocity = 0.5
(¢) Rotation = /16

3. To define the values of weights was the most diffi-
cult work for the experiment. Below are the best
value settings that were selected by empirical study:

(a) wy =1, ws =400, w3 = 4 (got from (Buckland
and LaMothe 2002))

(b) w, = 3,w; = 6,7 = 1.7, hy = 100, hy = 30

We also introduced the same feature of guided GA to
Q-Learning implementation for building its reward func-
tion. To learn to solve a problem by reinforcement
learning, the learning agent must achieve the goal (by
trial-and-error) at least once (Lin 1992). Testing results
showed that general and guided GA were able to achieve
the goal almost every time. However, it was very hard
for Q-Learning to complete the task. Besides the general
reasons such as function approximation strategy often
falls into local optimal and Q-Learning converges too
slowly, we believed that another important reason was
in this realtime problem the control of duration of the
action is crucial. GAs could evolve the durations with
the crossover and mutation operation. But Q-Learning
could not. Adding duration together with action into
the state space might make the state space extremely
huge, thus lead to Q-Learning’s fail. Based on this fact,
we only compared the data we got from the testings
using general GA and guided GA. The experimental re-
sults that we ran both of general and guided GA for 25
trials are shown in Figure 1.

DSetweal GAMOuided S4 Difepneral G BCuded G4
. i e
e I
£ s 2
2 g
§ 2 3
a0 T
il £
- iz oo =
w5
51 . 3
¥ ln It | '§ ooz ¢
L e e i
IR S T S O T RS L S I N B "
Triad Frarage

Figure 1: Experimental Results

From the results we can observe that for most of the time
the performance of the guided GA were much higher
than the general GA except the last trial. Figure 2
shows the fitness that both of them gained during all
the generations before the last generation in the 13th
trial. According to the data, both the highest and the
average fitness of guided GA were higher than general
GA.

4880
380
5 Zgg e Gugsded GA-Bighest
& st oo (R e 4;3—3V§‘rage
A i fpameral Gi-Highest
= 15l o Gemeral GhsSverase
1000
o
n
102630 % 37 41 45 42 53 67
Geperat ion

Figure 2: Fitness Gained in the 13th Trial

Analysis

Some questions came out when we observed the
data of the results. First, what was the goal’s fit-
ness/reinforcement value? Second, why the highest fit-
ness of guided GA was much higher than that of general
GA while they achieved the goal in very close steps?
Third, why guided GA lost in the last trial while per-
formed much better in previous trials?

First, we used the thresholds for the problem to calcu-
late out the fitness value and found that the fitness value
of the goal was just no more than 900. The reason why
those individuals with very high fitness values failed to
achieve the goal was that there were three parameters in
the fitness/reinforcement function. No matter how high
the fitness value that certain individual gained, as long
as there was one parameter whose value was above the
threshold then it failed to achieve the goal. So it was
possible that one individual with a low fitness achieved
the goal in the next generation by randomly evolving
its genome which accidentally hit all the thresholds and
triggered a sudden success. And that was the reason
that sometimes the individual who achieved the goal
was not the one who performed the best in the previous
state. Second, both general and guided GA involved
randomness that brought the uncertainty to the proce-
dure. So the possible explanation to the third question
was that the randomness caused a sudden success to the
general GA before the guided GA got out of certain lo-
cal optimal states. Third, although the highest fitness
in each step did not make much sense to us, the av-
erage fitness were useful because higher average fitness
demonstrated a better chance for the whole generation
to achieve the goal. For all the trials we observed, the
average fitness of guided GA were much higher than the
average fitness of general GA.

CONCLUSION

In this paper we proposed a guided genetic algorithm by
adding a reinforcement component into GA. We success-
fully applied the guided GA for the planning of Lunar
Lander game. Based on the experimental results, guided

59

GA achieved much higher performance than general GA
and Q-Learning.

REFERENCES

Ahuja, R.; J. Orlin, and A. Tivari. 1995. A greedy genetic
algorithm for the quadratic assignment problem. Working
paper 3826-95, Sloan School of Management, MIT.

Barto, A.G.; R.S. Sutton, and C.W Anderson. 1983. Neu-
rolike adaptive elements that can learn difficult control
problems. IEEE. Trans. on System Man and Cybernetics.

Boone, G. 1997. Minimum-time control of the acrobot. In-
ternational Conference on Robotics and Automation.

Buckland, M. and A. LaMothe. 2002 Al techniques for game
programming. Premier Press.

Chiang, C.K.; H. Y. Chung, and J. J. Lin. 1997. A self-
learning fuzzy logic controller using genetic algorithms
with reinforcements. IEEE Transactions on Fuzzy Sys-
tems.

Gaskett, C.; D. Wettergreen, and A. Zelinsky. 1999. Q-
learning in continuous state and action spaces. In Aus-
tralian Joint Conference on Artificial Intelligence, pages
417-428.

Tto, K. and F. Matsuno. 2002. A study of reinforcement
learning for the robot with many degrees of freedom -
acquisition of locomotion patterns for multi-legged robot.
In ICRA ’02. IEEE International Conference on Robotics
and Automation, pages (4):3392-3397.

Juang, C.F. 2005. Combination of online clustering and
g-value based ga for reinforcement fuzzy system design.
IEEE Transaction on Fuzzy Systems.

Kaelbling, L.P.; M.L. Littman, and A.P. Moore. 1996. Rein-
forcement learning: A survey. Journal of Artificial Intel-
ligence Research, 4:237-285.

Lin, C.T. and C.P. Jou. 1999. Controlling chaos by ga-based
reinforcement learning neural network. IEFE Transaction
on Neural Networks.

Lin, L.J. 1992. Self-improving reactive agents based on rein-
forcement learning, planning and teaching. Mach. Learn.,
8(3-4):293-321.

Moore, A.-W. and C.G. Atkeson. 1995. The parti-game al-
gorithm for variable resolution reinforcement learning in
multidimensional state-spaces. Mach. Learn., 21(3):199-
233.

Munos, R. and Andrew Moore. 2002. Variable resolution
discretization in optimal control. Mach. Learn., 49(2-3):
291-323.

Ng, AY.; A. Coates, M. Diel, V. Ganapathi, J. Schulte,
B. Tse, E. Berger, and E. Liang. 2004. Inverted au-
tonomous helicopter flight via reinforcement learning. In-
ternational Symposium on Experimental Robotics.

Sutton, R.S. and A.G. Barto. 1998. Reinforcement Learning:
An Introduction. Number 206-214. MIT Press, Cambridge,
MA.

A FIRST LOOK AT BUILD-ORDER OPTIMIZATION
IN REAL-TIME STRATEGY GAMES

Alex Kovarsky and Michael Buro
Department of Computing Science
University of Alberta, Edmonton, Alberta, Canada
email: kovarsky|mburo@cs.ualberta.ca

KEYWORDS
planning, real-time strategy games, concurrent actions

ABSTRACT

Planning is an important cognitive process. We are con-
stantly involved in planning even when executing seem-
ingly simple tasks such as driving to school. The ability
to plan becomes essential in unfamiliar environments
where we cannot rely on previously learned action se-
quences, but instead have to generate novel solutions
by considering consequences of action choices on the fly.
Planning in real-world domains poses a big challenge
to current Al systems because of inadequate abstrac-
tion and search mechanisms. Human planning ability is
therefore still considered superior. A good example is
modern video games in which it is apparent that com-
puter characters lack human planning, learning, and rea-
soning abilities. In this paper we approach the real-time
planning problem by considering build-order optimiza-
tion in real-time strategy games. This problem class can
be formulated as a resource accumulation and allocation
problem where an agent has to decide what objects to
produce at what time in order to meet one of two goals:
either maximizing the number of produced objects in a
given time period or producing a certain number of ob-
jects as fast as possible. We identify challenges related
to this planning problem, namely creating and destroy-
ing objects, concurrent action generation and execution,
and present ideas how to address them.

INTRODUCTION

Planning refers to finding an action sequence that
achieves a given goal. People are involved in planning for
a variety of tasks in their everyday lives. Most of the
time we do not realize that we are actually executing
plans, since for most behaviors we use memorized ac-
tion sequences. For example, we may have memorized a
plan to buy groceries which could look as follows: make
a list of what you need to buy, drive to the grocery
store, buy what is on the list, drive home, and unload

60

the groceries. However, what happens when one of the
links in the above chain is broken? If the car does not
start, we will have to plan how to achieve the goal of
getting the groceries another way. We have many op-
tions of getting to the grocery store, including taking a
bus, walking, fixing the car, and in turn each of those
options requires planning. If a person has never taken
a bus to the store before, he will need to find out about
the bus’s route, schedule, and fare, etc. Thus, in real-life
we become engaged in planning when we are facing new
situations to which we have no immediate solutions.

Today, most video game Al systems are designed as
complex rule-based scripted systems. Specifically, game
designers try to foresee with every possible scenario that
Al characters can encounter and then write a script of
actions for that situation. Such systems are difficult to
maintain and expand. Moreover, it is impossible to pre-
dict and effectively plan for every potential future state.
Most games do not have capabilities to handle unfamil-
iar situations. In such cases the Al behavior is usually
ineffective and predictable. We believe that adding real-
time planning capabilities to computer games will result
in improved Al behavior. Recently, the commercial suc-
cess of the action game F.E.A.R. (Orkin, 2005) shows
the positive effects automated planning can have on the
performance of Al characters. In F.E.A.R., unlike other
action games, the Al system performs real-time plan-
ning that allows computer characters to adapt their be-
havior to the current situation.

The focus of our research is creating Al systems for
real-time strategy (RTS) games such as Starcraft and
Age of Empires. The common objective in RTS games is
to eliminate other players through military superiority.
Players first instruct workers to gather resources, then
use those resources to build more workers and structures
that can create military units. These are then sent to
battle the enemy in real-time.

Research in RTS game Al can be divided into two
branches: higher-level and lower-level Al. Higher-level
Al refers to management of resources, decisions on what
to build, and strategic decisions such as sending units
into battle. Lower-level Al refers to the behaviors of

single units and small groups of units that are given
commands.

Today, most commercial RT'S games are designed as
rule-based systems with limited planning capabilities.
However, some Al techniques such as influence maps and
terrain analysis to deal with new maps have been im-
plemented in commercial RT'S games (Pottinger, 2000).
Progress has also been made in wall-building (Reid and
Davis, 2006), pathfinding (Sturtevant and Buro, 2005)
(Demyen and Buro, 2006), and local combat (Kovarsky
and Buro, 2005). The improvement of lower-level Al
modules is important because without effective solutions
in this area, research on higher-level reasoning and plan-
ning cannot proceed. Currently, because of the signif-
icant advances in lower-level Al the missing link for a
complete RT'S game Al system is a higher-level AT mod-
ule responsible for global planning.

Such module could be looked at as an “all knowing”
general that makes decisions affecting all global aspects
of an RTS game, including resource collection, build-
ing decisions, and military expansion. Those general
decisions and commands are then passed to lower-level
modules which are responsible for the implementation
details.

Our focus is build-order optimization in RT'S games.
We aim to optimize the gathering of resources and the
creation of buildings and units in the initial stage of RTS
games. In this research we only consider actions of our
units, since in the initial game phase there is no or little
interaction with the opponent. Our planning domain is
defined by a technology tree that specifies the relation-
ships between units, buildings, and resources. For exam-
ple, in order to build a factory we require a worker, bar-
racks, and sufficient resources. We consider two types of
optimization problems: minimizing the time to achieve
a certain goal, such as creating 2 tanks and 5 marines,
or maximizing the amount of a resource or unit type in
a specified time, e.g. gathering the maximum amount of
iron within 10 minutes).

The build-order optimization problem presents sev-
eral challenges that have not been addressed previously
in planning research. One problem is the creation of
new objects which can act in the world. Another is the
concurrent execution of actions in RTS games, which
leads to problems such as determining whether a given
set of actions is executable concurrently and efficiently
generating concurrent action sets.

In the remainder of the paper we first formulate
a build-order optimization problem in the planning
domain definition language (PDDL, (McDermott and
Committee, 1998)). We then discuss the limitations
of PDDL with regard to our planning domain. Subse-
quently, we describe the new challenges we face in build-
order optimization in RTS games and then we discuss
several approaches to address the unique challenges of
RTS games.

61

(define (domain build-order)

(:types worker building)
:predicates
(canProduceWorkers ?b - building)
(canProduceMarines ?b - building)
(activatedW ?x - worker)
(busyW ?x - worker))
:functions
(amount-of-resources)
(num-marines))

~

~

~

:durative-action create-worker

:parameters (?x - worker ?b - building)

:duration (= ?duration 1)

:condition (and (at start (>= (amount-of-resources) 50))
(at start (canProduceWorkers ?7b))
(over all (canProduceWorkers ?b))
(at end (canProduceWorkers 7b)))

ceffect (and (at start (decrease (amount-of-resources) 50))

(at end (activatedW 7x))

~

:durative-action create-marine

:parameters (?b - building)

:duration (= ?duration 2)

:condition (and (at start (>= (amount-of-resources) 100))
(at start (canProduceMarines ?b))
(over all (canProduceMarines ?b))
(at end (canProduceMarines 7b)))

ceffect (and (at start (decrease (amount-of-resources) 100))

(at end (increase (num-marines) 1))

~

:durative-action gather-resource
:parameters (?x - worker)
:duration (= ?duration 5)
:condition ((at start (at ?x 71))
(at start (not (busyW ?x)))
:effect ((at end (increase (amount-of-resources) 100))
(at start (busyW 7x))
(at end (not (busyW ?7x)))))

Figure 1: Simple build-order domain Specification in
PDDL with three actions: create-worker, create-marine,
and gather-resource.

BUILD-ORDER OPTIMIZATION AND PDDL

Research on automated planning has mostly concen-
trated on classical planning, which in short can be sum-
marized as planning without regard to time. In such
planners a plan is an ordered sequence of actions, ac-
tions are instantaneous and do not interact with each
other. However, in real life very few domains adhere to
such restrictions. Therefore, in recent years temporal
planning has gained attention. Temporal planners take
time into account. Each action requires a certain time
to execute and in certain situations several actions are
allowed to execute concurrently.

The development of PDDL and subsequently the
PDDL 2.1 (Fox and Long, 2003) extension, that incor-
porates time in its semantics, have further facilitated
the research for creating temporal planners. However,
the PDDL 2.1 semantics is still too restrictive for our
RTS domain. But since PDDL has become a standard
in the planning research community, we would like to
stay compatible with PDDL.

PDDL was developed to standardize planning do-
main and problem description in order to enable differ-
ent planners to compete against one another in interna-

(define (problem SimpleBuildOrder)

(:domain build-order)

(:objects
commandCentre barracks - building
workerl worker2 worker3 worker4 - worker)

(:init
(not
(not

(activated workerl))
(activated worker?2))
(not (activated worker3))
(not (activated worker4))
(canBuildMarines barracks)
(canProduceWorkers commandCentre)
(= (num-marines) 0)
(= (amount-of-resources) 700))
(:goal (and (>= (num-marines) 5)))
(:metric minimize (total-time)))

Figure 2: Build-order problem specification in PDDL.
Starting with two buildings, the goal is to create 5
marines as fast as possible using at most four workers.

tional planning competitions. PDDL supports the syn-
tax of STRIPS, ADL, and some other previously used
planning languages. A PDDL definition of a planning
problem consists of two parts: the domain definition
and the problem definition. The domain definition file
is where the types, predicates, functions and actions are
defined, while the problem definition file is where the
objects of types defined in the domain files are declared,
the predicates and functions acting on objects are ini-
tialized, and the goal conditions for the plans are spec-
ified. The following example shows a simplified PDDL
RTS domain and problem files.

In the domain file in Figure 1 there are two types
(worker and building), four predicates, and two numeri-
cal functions. Functions in this context are used to store
numerical fluents such as resource amounts. The two ac-
tions are temporal actions for which the duration clause
specifies the number of steps required for the action to
complete. In the condition clause the preconditions for
triggering the action are specified. The “at start”, “over
all” and “at end” expressions specify when a given con-
dition has to hold (i.e. at the beginning of action execu-
tion, during, or at the end, respectively). In the effect
clause, the effects of a given action are specified. The
effect on functions is a numerical change of functions
values (increase or decrease), while the effect on pred-
icates is Boolean, i.e. a predicate for a given object or
objects can be set to true (e.g. ActivatedW 7x), or to
false (not (ActivatedW ?x).

The first action in Figure 1 is create-worker. In order
for this action to execute the amount-of-resources value
has to be at least 50 and the building has to be able
to produce workers (i.e. CanProduceWorkers is true).
The effect of this action is a reduction in resources and
the activation of a worker (i.e. activatedW is true). The
second action in Figure 1 is create-marine. Similarly, in
order for it to execute there must be sufficient resources
and the building has to be able to produce marines. The

62

effect is a reduction in resources and numerical increase
in the number of marines. Unlike workers, marines are
not objects. They are modeled numerically, like re-
sources. We do not have to model them as objects since
in the domain in Figure 1 they are not involved in any
actions. Workers have to be created as objects since
workers are involved in the gather-resource action.

In the problem specification in Figure 2 two objects
of type building (i.e. commandCentre and barracks) and
four objects of type worker are declared. These objects
as well as functions are initialized in the :init clause. The
worker type objects are set to not activated (since they
are not built yet) and the barracks and commandCen-
tre objects are enabled to build marines and workers,
respectively. The goal (:goal) of this plan specification
is to increase the number of marines to 5 and to do so
in a minimal possible time (:metric).

PLANNING IN RTS ENVIRONMENTS

PDDL is quickly becoming the standard input language
for planners (Kautz and Selman, 1999) (Hsu et al.,
2006). The International Planning Competition (IPC)
is an annual event, which is run in conjunction with the
ICAPS conference. Currently, IPC is the key test-bed
for both classical and temporal planners. However, even
the newest extension of PDDL fails to address some of
the challenges present in RTS games. First, we divide
the issues arising in build-order optimization into two
parts: object creation and destruction and concurrent
action execution. We then discuss each of the problems,
describe the restrictions of the PDDL semantics with re-
spect to each problem and propose ways to relax these
restrictions.

Object Creation and Destruction

The typical problems that PDDL aims to address and
that are used in the international planning competition
are so called closed problems in which the number of
objects in the world remains constant. Even the most
recent version of PDDL does not allow for the creation
or deletion of objects. In RTS games, however, creating
objects is key. A typical game starts with a small num-
ber of units and a limited amount of resources. Then,
those units can create structures that can produce new
units, mine resources, or perform other functions. An-
other important aspect of RT'S games is combat. As the
RTS game progresses, military units start fighting with
their opponents. As a result some units or structures
can be destroyed. Currently, PDDL does not provide
means for object destruction. Even though no explicit
mechanisms for the creation and the destruction of ob-
jects exist there is a way to implicitly simulate object
creation and destruction in PDDL. All objects that can
potentially be created in the future have to be specified
in advance in the problem file. Creation and destruction

of an object in this setting means switching this object
on and off by using a predicate (for example activate
(object name)). Refer to Figure 1, where a worker is
created by activating (activatedW 7x) a previously de-
fined (Figure 2) object (e.g. workerl) from the problem
definition file. This approach is computationally ineffi-
cient and awkward to implement. Since all objects have
to be specified in advance, at every point the planner has
to examine each of the objects when generating possi-
ble actions. This examination is inefficient, since in the
beginning of the planning process most of the objects
are not active. Furthermore, in some scenarios it is dif-
ficult to predict the maximum number of objects that
are needed in advance. Pre-declaring a large number
of objects will lead to the above-mentioned inefficiency,
while declaring too few objects might result in a short-
age of objects (and possibly in an inability to achieve
a given goal). The problem of object creation and de-
struction should be straightforward to address. We can
add an explicit object CREATE and DESTROY capa-
bility to PDDL. This can be done by adding a new effect
to any given action that will create or destroy a certain
object by adding or removing that object from the list
of objects. For example, in the domain specification in
Figure 1 instead of activatedW worker, we would have a
new object create clause. In Figure 2 we will no longer
have to specify the worker objects in advance.

Concurrent Action Execution

RTS games are inherently concurrent environments. In
many situations objects can execute their actions simul-
taneously. Thus, when we have a set of actions, we need
to determine whether such a set is executable concur-
rently. Concurrent executability depends on interdepen-
dence among actions. If all actions in a set are indepen-
dent of each other, then they all can be executed con-
currently. Sometimes, however, actions in RTS games
are dependent. For example, building actions usually
require resources, while resource gathering actions pro-
duce resources (e.g. create-marine and gather-resource,
respectively). Whether a set consisting of resource pro-
ducing and consuming actions is executable simultane-
ously depends on the accumulated resource amount, the
amount currently produced, and the amount being con-
sumed. Such computation is non-trivial in general. In
recent years, some progress has been made on concur-
rently executing actions with shared resources (or nu-
meric fluents) (Lee and Lifschitz, 2001) (Erdem and Ga-
baldon, 2005). This research has concentrated on for-
malizing the semantics for such actions, without much
emphasis on the computational effort of generating con-
current action sets and determining concurrent action
executability. Another challenge is generating all sets of
concurrent actions efficiently given all actions that can
be executed individually.

To understand the computational effort required for

63

determining whether a set of concurrent actions is exe-
cutable, first we need to make a distinction. Two types
of concurrent actions are possible: serializable and non-
serializable. By serializable we refer to the sets of ac-
tions, which when executed serially, one after another,
have the same result as when executed concurrently.
Non-serializable actions produce different effects. For
example, two units may be required to lift an object
or two actions are interlocked in such a way that both
preconditions require the effect of the other action to
be true. For typical RTS game build-order optimization
problems considering serializable actions is sufficient.

A second distinction relates to the action execution
environment. In the first case one could demand that
for any chosen execution sequence the preconditions of
all actions in the sequence is met. Alternatively, a set
could be called serializable if only one such sequence
exists. This approach can lead to faster plans, since
more sequences will be declared serializable. However,
the first condition is more robust, since in some envi-
ronments there is no way to ensure that a set of actions
will be executed in a given order. This is especially true
for RTS game engines.

PDDL only allows for limited concurrency. No two
or more actions can simultaneously use a given resource
if at least one of the actions is changing its value. In
PDDL actions can be executed concurrently as long as
they are independent from each other. This is the so-
called “no moving targets” rule which is very conserva-
tive and will prevent resource related actions from being
executed simultaneously in our RTS game environment.
For instance, in Figure 1, actions create-worker and
create-marine consume the same type of resource. As-
suming that their preconditions are satisfied (i.e. there
are enough resources to create both unit types), these
two actions will not be allowed to execute concurrently
in PDDL because they both modify the same resource.
Thus, in order for PDDL to work properly in our domain
we need to remove the “no moving targets” restriction.
This relaxation allows for dependent concurrent actions
but also increases the computational effort for checking
concurrent executability of an action set and for gener-
ating concurrent sets of actions.

Checking Concurrent Ezecutability

One way of reducing the computational effort of plan-
ning in RTS environments is through examining the
types of actions required (i.e. the expressiveness of their
preconditions and effects) for a typical problem specifi-
cation. By restricting the complexity of preconditions
and effects we can greatly improve the runtime speed of
determining whether a given set of actions is executable
concurrently. We have started to look at constructing
a hierarchy of precondition and effect restrictions with
growing expressiveness that still allows us to decide ro-
bust serializability quickly. The first level of the hierar-
chy is when all actions are independent of each other.

Therefore, all actions can be executed concurrently if all
the preconditions hold. At the second level the actions
are no longer independent of each other. In the RTS do-
main this means that two or more actions can increase
and decrease the value of a single resource. At this level
we restrict the preconditions to having only logical oper-
ators (i.e. no arithmetic operators) and effects to having
only commutative operations (i.e. increase and decrease
but not set). Here the runtime effort will partly de-
pend on the available amount of the shared resource.
At level three of the hierarchy we will allow for a num-
ber of resources to be shared between actions. At the
next level we will increase the expressiveness once more
by allowing preconditions to contain arithmetic opera-
tors. Finally, we will examine the general case in which
effects are not commutative.

Generation of Action Sets

Another challenge is to generate all possible sets of con-
current actions efficiently. Given the set of actions exe-
cutable at a certain time point, we need to generate po-
tential sets of such actions efficiently. We should aim to-
wards complexity that is linear with respect to the num-
ber of generated sets of actions. In general, given n pos-
sible actions there are 2™ ways to choose sets of actions
of arbitrary length. Such computation is infeasible in a
real-time environment. Thus, suitable approximations
need to be found. We could allow objects to execute at
most one action at a time. The number of generated ac-
tion sets will then be reduced since actions performed by
the same object can be grouped together and will be left
out from further consideration once a single action from
that group is selected in a potential action set. Another
way to decrease the number of potential action sets is
through abstraction. The main challenge for planning
in RTS games is that the game is unbounded — mean-
ing the number of units (i.e. workers, buildings, military
units) generally grows as the game progresses. As the
number of units reaches a certain point, generating all
potential action sets will become infeasible in real-time.
In most RTS games, however, several units are often as-
signed to perform similar tasks. Thus, one reasonable
approach is to group units by their type into groups,
which will be treated as “super-units” and only execute
identical tasks during the planning process. Such groups
can be flexible. That is, new objects can be added and
removed to groups and groups themselves can be merged
to form larger groups, or split into smaller groups. How
to do such grouping to maximize the use of available
computational resources is an interesting research issue
by itself. Yet another way of decreasing the number of
actions is forcing units to perform a given task for a cer-
tain minimum number of time steps. Again this will re-
sult in a lower number of units available at a given time
and will reduce the number of potential action sets, at
the cost of optimality.

64

CONCLUSION

In this paper we have introduced the build-order opti-
mization problem for real-time strategy games and dis-
cussed the following core challenges for creating an au-
tomated planning system for this domain: how to deal
with object creation and destruction in PDDL, how to
decide what actions can be executed simultaneously, and
how to generate action sequences efficiently? We have
presented initial research ideas on how to tackle these
problems. Our hope is that these become the seed for a
high-performance RTS game planning system that can
be used to aid human players and to improve the playing
strength of computer opponents.

ACKNOWLEDGMENTS

Financial support was provided by the Natural Sciences
and Engineering Research Council of Canada (NSERC).

REFERENCES

Demyen D. and Buro M., 2006. Efficient Triangulation-
Based Pathfinding. In Proceedings of the AAAI Confer-
ence. Boston, 942-947.

Erdem E. and Gabaldon A.; 2005. Cumulative effects of con-
current actions on numeric-valued fluents. In Proceedings
of the AAAI Conference. Marina del Ray, 627-632.

Fox M. and Long D., 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Jour-
nal of Artificial Intelligence.

Hsu W.; Wah B.; Huang R.; and Chen Y., 2006. Handling
Soft Constraints and Preferences in SGPlan. In Proceed-
ings of ICAPS Workshop on Preferences and Soft Con-
straints in Planning.

Kautz H. and Selman B.,; 1999. Unifying SAT-based and
Graph-based Planning. In Proceedings of International
Joint Conference on Artificial Intelligence. Stockholm.

Kovarsky A. and Buro M., 2005. Heuristic Search Applied to
Abstract Combat Games. In Proceedings of the Eighteenth
Canadian Conference on Artificial Intelligence. Victoria.

Lee J. and Lifschitz V., 2001. Additive Fluents. In Pro-
ceedings of the AAAI Spring Symposium: Answer Set
Programming: Towards Efficient and Scalable Knowledge
Representation and Reasoning. 116-123.

McDermott D. and Committee A., 1998. PDDL — the plan-
ning domain definition language. In Technical Report.
Orkin J., 2005. Agent Architecture Considerations for Real-
Time Planning in Games. In Proceedings of the AIIDE

Conference.

Pottinger D., 2000. Terrain Analysis in Realtime Strategy
Games. In Computer Game Developers Conference.

Reid T. and Davis 1., 2006. AI Base Building in Empire
Earth II. In Proceedings of the AIIDE Conference. Marina
del Rey, CA.

Sturtevant N. and Buro M., 2005. Partial Pathfinding Using
Map Abstraction and Refinement. In Proceedings of the
AAAI Conference. Pittsburgh, 1392-1397.

GAMING
WITH
ROBOTS

66

ROBOT SOCCER STRATEGY DESCRIBED BY TEXT FILE

Vaclav Snasel, Jan Martinovic, Pavel Kromer, Bohumil Hordk
VSB - Technical University of Ostrava,

Faculty of Electrical Engineering and Computer Science,
Department of Computer Science and
Department of Measurement and Control,

Ostrava, Czech Republic

KEYWORDS

Robotic soccer game, Strategy, Evolution strategy.

ABSTRACT

This paper deals with method of representing robotic
soccer game in a simulated and/or real form. This
representation is used for controlling robots playing
soccer. Our approach to robot soccer is to view it as
a local interaction game. We describe our concept of
virtual grid and implementation of robot soccer sim-
ulator in this paper, as tools for building the strat-
egy and tactical movement database for real game.
Strategy learning from game observation is impor-
tant for discovering strategies of the opponent team
and searching of tactical movements groups replay-
ing, simulation and synthesis of anti-strategies.

INTRODUCTION

The typical example of distributed control system
with embedded subsystems is the task of controlling
physical robots playing soccer. The selection of this
game as a laboratory task was motivated by the fact
that the realization of this complicated multidisci-
plinary task is very hard. The task can be divided
into a number of partial tasks (evaluation of visual in-
formation, image processing, hardware and software

implementation of distributed control system, wire-
less data transmission, information processing, strat-
egy planning and controlling of robots). The task
is attractive both for students and teachers, and al-
lows direct evaluation and comparison of various ap-
proaches. For the improvement of the game strategy,
we develop an abstract description of the game and
propose how to use this description for e.g. learning
of rules. We also take inspiration from the ant-like
systems that reduce the need of complexity of indi-
vidual robots and lead to robust, scalable systems
[?, 7,7, 7). We build on our previous work - the
hardware implementation and basic control of robots
- and we would like to achieve higher level control of
the game strategy.

The rest of the paper is organized as follows: First
we briefly describe the base hardware and software
implementation. Then we describe the representa-
tion of the game field using virtual grids. Then we
describe possible game strategies. Using the virtual
grids and game strategies, we show how to learn rules
that describe particular game strategy. Particular at-
tention is paid to the learning using latent semantic
analysis. We conclude with the discussion of the pre-
sented approach.

The game system can be described as up to twice
eleven autonomous mobile robots (home and visit-
ing players), which are situated at the field of the
size of 280 x 220cm. In our approach we are using
software simulator for robot soccer game [?]. Out

67

software part is implemented by decision making and
executive agents. The agents corresponding to indi-
vidual robots are controlled by a higher level agent
[?, 7, 7, 7). The coordinates are saved in the scene
database [?], which is common for all agents. Both
agent teams have a common goal to score the goal
and not to get any goal. For a success, it is also
important to extract the strategy of the opponent
team. The extraction and knowledge of opponent
game strategy is an approach that is known to be
successful in other situations as well [?].

The game can be represented as a trajectory in
what we call the virtual grid. The virtual grid gener-
ally allows us to reduce data volume for easy descrip-
tion of player motion and subsequently for control-
ling the game or for learning game strategies. The
data volume of the description using the virtual grid
is obviously smaller than the description using nat-
ural coordinates. The exact values depend on the
frequency of samples and on the maximal velocity of
the mobile robot movement at game field.

GAME STRATEGY

The game strategy can be dynamically changed based
on the game progress (i.e. the history and the current
position of the players and the ball [?]). The game
progress can be divided in time into the following
three ground playing classes (GPC):

e GPC of game opening (GPCO)
o GPC of movements in game site (GPCS)
o GPC of game end (GPCE)

The game progress, especially in the GPCS class,
can be also divided into the following two game play-
ing situations (GPS):

e GPS of attack (GPSA). The interactions of sim-
ple behaviours cause the robots to fall into a V-
formation where the ball is in motion roughly
towards the opponents goal.

o GPS of defense (GPSD). When the ball is not
moving roughly towards the opponents goal, the

robots move around it to form an effective bar-
rier and to be in a good position for recovery.

Each GPC has its own movement rules. The classes
GPCO and GPCE consist of finite number of possi-
ble movements that are determined by initial posi-
tions of players and the ball. The class GPCS has
virtually unlimited number of possible movements.
The movements are determined by the current game
situation (GPS) and by the appropriate global game
strategy (in next GGS). The movement of the par-
ticular robot is determined by the current game class
and situation, and also by the robot role. For exam-
ple, the goalkeepers task is to prevent the opponent
to score a goal. His movements are in most cases
limited along the goalmouth near of goal line. The
preferred movements are in goal line direction. The
preference of these movements comes from the partic-
ular GGS, where the goalkeeper prevents to score a
goal in the way of moving in the position between the
central goal point and the ball (or the expected ball
position). The preference of other movement direc-
tions is created using GPSA, where the movements
of goalkeeper secure kicking the ball from the defense
zone.

BASIC DESCRIPTION OF
STRATEGY SELECTION
PROCESS

In this section we describe our approach for learning
game strategy from observation. Our goal is to learn
an abstract strategy. The main steps of the learning
process are:

e Transformation of observations into virtual

grids.

e Transformation of observations into strategy
grids.

e Learning a strategy based on the observed tran-
sitions in the strategy grid.

We adopt definition of strategy [?]: Strategy is the
direction and scope of an organization over the long-
term: which achieves advantage for the organization

68

through its configuration of resources within a chal-
lenging environment...

Strategy application for one movement of players
is computed in following steps:

Get coordinates of players and ball from camera
Convert coordinates of players into strategic grid

Convert ball and opponents’ positions into vir-
tual and strategic grids

Choose goalkeeper and attacker, exclude them
from strategy and calculate their exact positions.

Detect strategic rule from opponents’ and ball
positions

Convert movement from strategic grid to physi-
cal coordinates

Send movement coordinates to robots

Fach strategy is stored in one file and currently
consists of about 15 basic rules.

.Strategy "test"
.Algorithm "Offensive"

.Author "Vaclav Snasel"

.Date "10.11.2006"

.Size 11 9

.PriorityMine 100 100 100 100 100
.PriorityOpponent 50 50 560 50 50
.PriorityBall 50

.Rule 1 "Attackl"

.Mine a6 c7 d6 e3 £f9
.Opponent d3 e7 e8 g2 k6
.Ball i6

.Move a6 g7 f5 j3 i8

.Rule

2 "Attack2"

.Mine a6 c7 d6 e3 £f9
.Opponent d3 e7 e8 g2 k6
.Ball ib

.Move a6 g7 gb h3 h8

Furthermore the file contains following metadata:

e Information about the name of strategy

The algorithm to strategy choosing

The author responsible for current strategy

The date of last modification

The size of strategic grid

Strategic rules
Each strategic rule consists of five records:

The rule ID and description (e.g. Rule 1 7 At-
tackl”),

the coordinates of our players in strategic grid
(e.g. .Mine a6 c¢7 d6 e3 19),

the coordinates of opponent’s players in strategic
or virtual grid (e.g. .Opponent d3 e7 e8 g2 k6),

the ball coordinates in virtual or strategic grid
(e.g. .Ball i6)

strategic or virtual grid positions of the move
(e.g. .Move a6 g7 5 j3 i8).

// algorithm for rule selection

// Game.Mine
// Game.Opponent
// Game.Ball

maxWeight
selectRule

-- actual positions
-— actual positions
-- actual position

0
0

foreach r in Rule

{

69

weight = 0
ruleTmp = r.Mine
foreach p in Game.Mine
{
s = nearest position in ruleTmp to p
w =1/ (distance(s, p) + 1)
w *= Strategy.PriorityMine
weight += w
remove s from ruleTmp

}

ruleTmp = r.Opponent

foreach p in Game.Opponent

{
s = nearest position in ruleTmp to p
w =1/ (distance(s, p) + 1)
w *= Strategy.PriorityOpponent
weight += w
remove s from ruleTmp

}

w =1/ (distance(Game.Ball, r.Ball) + 1)
w *= Strategy.PriorityBall
weight += w

if weight > maxWeight
{
maxWeight = weight
selectRule = r
}
b

return SelectRule

From observation of opponent’s strategy a new set
of rules can be written, without necessity of program
code modification. Furthermore, there is a possibil-
ity of automatic strategy (movement) extraction from
running game.

There exist two main criteria in the Rule selection
process. The selection depends on opponents’ coor-
dinates, mines’ coordinates and ball position. The
strategy file contains rules, describing three possible
formations suggesting danger of current game situa-
tion. The opponent’s team could be in offensive, neu-
tral or defensive formations. Furthermore, we need
to weigh up the ball position risk. Generally, oppo-
nent is not dangerous if the ball is near his goal. The
chosen rule has minimal strategic grid distance from
current

Optimal movements of our robots are calculated by
applying minimal distance from strategic grid posi-
tion. The goalkeeper and attacking player, whose dis-
tance is closest to the ball are excluded from strategic
movement and their new position is calculated in ex-
act coordinates.

To summarize, the strategy management can be
described in the following way:

e Based on incoming data from the vision system,
calculate virtual and strategy grid Coordinates
of the players and the ball.

e The virtual grid is then used to decide which
player has under the ball control.

e This player is issued a kick to command that
means that it has to try to kick the ball to a
given strategy grid coordinates.

e All other players are given (imprecise) go to co-
ordinates. These coordinates are determined by
the current game strategy and are determined
for each robot individually. The goalkeeper is
excluded from this process since its job is special-
ized, and does not directly depend on the current
game strategy.

EVOLUTIONARY STRATEGY
OPTIMIZATION AND VERI-
FICATION PROPOSAL

In previous section was identified the need to learn
opponents strategy from the game and resolve ap-
propriate anti-strategy in response. Also the verifi-
cation of created strategy is of notable importance.
An off-line (out of the gameplay) verification process
validating the strategy and ensuring that there are
no:

e Contradictory rules, leading to contradictory
game situations

e Extra rules, describing immediately or in more
steps the same game situations

Such a verified game strategy could provide better
and more complex goal-targeted robot behavior (lit-
erally).

Genetic Algorithms are powerful and popular op-
timization and search algorithms inspired by natural
evolution introduced by John Holland and extended
by David Goldberg. GA are wide applied and highly

70

Tnitial ~.| Optimal
Population e Solution

Figure 1: Evolutionary algorithm

successful variant of evolutionary computation [?].
GAs operate over a population of potential solutions
encoded into chromosomes. Each chromosome is re-
warded with a fitness value expressing its suitability
as a solution of given problem. The workflow of GA
consists of iterative application of genetic operators
on population of chromosomes (see figure ?7). Ge-
netic operators are [?]:

e Selection operator: to select the fittest chro-
mosomes from the population to be parents.
Through this operator, selection pressure is ap-
plied in the population.

e Crossover operator: for varying chromosomes
from one population to the next by exchanging
one or more of their subparts.

e Mutation operator: random perturbation in
chromosome structure; used for changing chro-
mosomes randomly and introducing new genetic
material into the population.

A population of chromosomes in particular itera-
tion of evolutionary computation is called generation.
When applying evolutionary optimization on robot
soccer game, a strategy can be naturally seen as gen-
eration of rules encoded as binary chromosomes. The
evolution over strategy rules should lead to new im-
proved set of rules that will form better anti-strategy
against particular opponent. The challenge of this
approach is to find suitable rule encoding (that will
allow easy application of genetic operators and re-
spect the nature of investigated problem) and dis-

cover useful fitness function to judge the rules against
each other.

FUTURE DIRECTIONS

Introduced approach to robot soccer strategy is based
on the overall knowledge of global game situation.
Next moves of robot players are resolved after an
analysis of overall positions of all players and ball.
In fact robots are rather being moved (by an om-
niscient operator) than move independently. More
advanced multi agent approach should next to goal
targeted strategic manners incorporate also agent be-
havior based on artificial life methods like ant algo-
rithm and stigmery, a multi-agent coordination and
control using techniques inspired by the behavior of
social insects. In such a game will the robot players
solve simple or trivial gameplay situations according
to their own decisions and local knowledge following
their individual simple behavior patterns. The pat-
terns could be as follows:

e The attacker is attracted to the ball (when the
ball is moving towards opponents goal)

e The attacker with ball is attracted to competi-
tors goal

e The defender is attracted to the ball (when it is
moving towards own goal). The defender is ex-
tremely attracted to the ball when there is op-
ponents attacker (and no own player is close).

e The goalie is attracted to the ball but also to its
goal area (so he goes after ball only in his goal
area).

The strategy concept, presented in previous sections,
will then be used to solve complex non-trivial game
situations (like standard situations in real soccer
game) or to incorporate surprising, innovative moves
to the game. If the robot activity is partly or mostly
independent, there will be no need to evaluate global
game situation and search for appropriate move in
every TMG. Gained processor time could be used for

71

better strategy learning and in game strategy opti-
mization and optimized game strategy applied in cer-
tain gameplay situations (the opponents’ team loses
ball when attacking by more players; own team can
gain advantage by attacking in more players too caus-
ing bigger treat to opponents goal) could lead to no-
tably superior results.

CONCLUSION

The main goal of the control system is to enable
immediate response in the real time. The system
response should be shorter than time between two
frames from camera. When the time response of the
algorithm exceeds this difference the control quality
deteriorates. The method we described provides fast
control. This is achieved by using rules that are fast
to process. We have described a method of game rep-
resentation and a method of learning game strategies
from observed movements of players. The movements
can be observed from the opponents behaviour, or
e.g. also from the human players behaviour. We be-
lieve that the possibility of learning the game strat-
egy that leads to a fast control is critical for success of
the robotic soccer players. Like in chess playing pro-
grams, the database of game strategies along with
the indication of their success can be stored in the
database and can be used for subsequent matches.
In future we want to use the modular Q-learning ar-
chitecture [?]. This architecture was used to solve the
action selection problem which specifically selects the
robot that needs the least time to kick the ball and
assign this task to it. The concept of the coupled
agent was used to resolve a conflict in action selec-
tion among robots.

Acknowledgements

The Grant Agency of Czech Academy of Science sup-
plied the results of the project No. p. 1ET101940418
with subvention.

References

[(Bernatik et al. 2001)] Bernatik, R., Hordk, B.,
Kovar, P. 2001. Quick image recognize algo-
rithms. In: Proceeding International workshop
Robot-Multi-Agent-Systems R-MAS 2001. VSB-
TU Ostrava 2001, Czech Republic 2001, 53-58.

[Deneubourg et al. 1991)] Deneubourg, J.L., Goss,
S., Franks, N., Sendova-Franks, A., Detrain, C.,
Cretien, L. 1991 The dynamics of collective sort-
ing: Robot-like ants and ant-like robots. In Pro-
ceedings of the First International Conference on
Simulation of Adaptive Behavior: From Animals
to Animats, pages 356363. MIT Press, 1991.

[(fira)] FIRA robot soccer, http://www.fira.net/ (15-
08-2006)

[(Holland and Melhuish 2000)] Holland, O., Mel-
huish, C. (2000). Stigmergy, self-organisation,
and sorting in collective robotics. Artiffcial Life,
5:2:173202, 2000.

[(Hordk) et al. 2004] Hordk, B., Obitko, M., Smid,
J., Snasel, V. Communication in Robotic Soccer
Game. Communications in Computing 2004: 295-
301.

[(Hordk) et al. 2005] Hordk, B. Obitko, M., Smid,
J., Snasel, V. Strategy and Communication in
Robotic Soccer Game. EUROCAST 2005: 565-
570.

[(Johnson and Scholes 2001)] Johnson, G., Scholes,
K. (2001). Exploring Corporate Strategy: Text
and Cases. F'T Prentice Hall, 2001.

[(Obitko and Sn4sel2004)] Obitko, M., Snagel, V.
(2004) Ontology Repository in Multi-Agent Sys-
tem. TASTED, International Conference on Ar-
tifical Intelligence and Applications (ATA 2004),
Innsbruck, Austria, 2004.

[(Mitchell 1996)] Mitchell, M. (1996) An Introduc-
tion to Genetic Algorithms. MIT Press, Cam-
bridge, MA, 1996.

72

[(Park et al. 2001)] Park, K.H., Kim, Y.J., Kim,
JH. (2001) Modular Q-learning based multi-
agent cooperation for robot soccer, Robotics
and Autonomous Systems, Elsevier, 35 (2001) p.
109122.

[(Sng et al. 2002)] Sng, H.L., Gupta, G.S., Messom,
C.H. (2002) Strategy for Collaboration in Robot
Soccer. The First IEEE International Workshop

on Electronic Design, Test and Applications
(DELTA ’02) p. 347.

[(Smid et al. 2004)] Smid, J., Obitko, M., Snéasel,
V. (2004) Communicating Agents and Property-
Based Types versus Objects. SOFSEM. Matfyz-
Press 2004.

[(Snasel et al. 2006)] Snésel V, Martinovic J., Hordk
B. Observation for Strategic Control Input Ex-
pansion, FIRA RoboWorld Cup 2006

[(Srovnal et al. 2004)] Srovnal, V., Hordk, B.,
Bernatk, R., Sndsel, V. Strategy Extraction
for Mobile Embedded Control Systems Ap-
ply the Multi-agent Technology. International
Conference on Computational Science 2004:
631-637.

[(Slywotzky et al. 1999)] Slywotzky, A.J., Morrison,
D., Moser, T., Mundt, K., Quella, J.(1999). Profit
Patterns: 30 ways to anticipate and profit from
strategic forces reshaping your business. 1999.

[(Werger and Mataric 2000)] Werger, B-B., Mataric,
M.J. (2000). From Insect to Internet: Situated
Control for Networked Robot Teams. Annals of
Mathematics and Artiffcial Intelligence. 2000.

[(Kim et al. 2004)] Kim, J., Kim, D., Kim, Y., Seow,
K. (2004). Soccer Robotics (Springer Tracts in
Advanced Robotics), Springer-Verlag, 2004.

[(Veloso and Stone 1998)] Veloso, M. and Stone, P.
(1998) Individual and collaborative Behaviours
in a Team of Homogeneous Robotic Soccer
Agents, Proceedings of International Conference
on Multi-Agent Systems, 1998, p. 309-316.

73

[(Nakashima al. 2006)] Nakashima T., Takatani M.,
Namikawa N.; Ishibuchi H. and Nii M.: Robust
Evaluation of RoboCup Soccer Strategies by Us-
ing Match History, 2006 IEEE Congress on Evo-
lutionary Computation, Vancouver, BC, Canada.

AIBO AS A WATCHDOG

Zhenke Yang, Bou Tsing Hau, Leon Rothkrantz
Delft University of Technology, Faculty of Electrical Engineering, Mathematics and Computer Science
Mekelweg 4,
2628 CD Delft
The Netherlands
{Z.Yang, L.J.M.Rothkrantz } @ewi.tudelft.nl

KEYWORDS
AIBO Entertainment robot, Stimulus-response control,
Dynamic scripting.

ABSTRACT

This paper presents an ongoing project on an AIBO
watchdog. The goal of the project is to add watchdog
functions into the AIBO, without modifying its original
function of a robot pet. The advantages of using an AIBO
for watchdog and surveillance purposes are discussed and
an overview of the necessary capabilities to employ an
AIBO in this way are given. Finally, two prototypes of
the AIBO watchdog are presented. The first prototype
uses a simple stimulus-response model for reasoning
while the second prototype reasons with dynamic scripts.

INTRODUCTION

Security at home can be greatly enhanced by having
several smart robots performing watch functions in and
around the house. Toy robots nowadays have become so
advanced, that they have the capability to perform
common security functions. For example, the AIBO
entertainment robot, which was introduced by Sony in
1999, allows people the choice of an electronic pet.
However, few know that the same AIBO contains all
capabilities of a watchdog. More specifically, the AIBO
contains a wide array of sensors (including a camera and
microphones), activators (allowing it to move around the
house), and wireless LAN capability allowing it to
connect to other wireless enabled devices or even the
internet. Furthermore, AIBO’s open architecture allows
programmers to create behaviors for it.

With the increasing availability of these smart toy robots
such as AIBO, the vision of multi purpose robots
patrolling the home becomes increasingly a reality. In
this paper we describe work done to create an AIBO
watchdog while retaining all its previous properties.
Because, we think the watchdog functionality is a
valuable addition to the AIBO’s existing functionality,
although we have to acknowledge that the main and
primary purpose of the AIBO is still that of an
entertainment robot. Therefore, AIBO must still remain a
robot pet while keeping an eye on the home. Our focus is
not on creating a complete home security or surveillance
solution from the AIBO, but rather see a, surveillance
functionality enabled, AIBO as an addition to existing

74

security systems or a nicety for homes without such an
existing security system at all.

The rest of the paper is organized as follows: first we will
start with some background and give an overview of the
work leading up to this research. Then we continue by
defining what makes a watchdog, and argue the
suitability and advantages of the AIBO for the job. Then
we give the global model of our AIBO watchdog based
on a stimulus response model. Next, we extend this
model with a more complex situated scripting model.
Finally we discuss some of the implementation details
and finish with the direction of future work and
conclusions.

BACKGROUND

Current home surveillance systems consist of static
cameras attached to a ceiling or wall and sometimes even
come with microphones for sound registration and sound
event detection. Oftentimes these sensors are quite
obtrusive and visible in plain view. The sensors are
connected to a control unit via either a low-voltage
hardwire or narrowband RF signal, which in turn
connects to a means for announcing the alarm, hopefully
to elicit some response.

Because of AIBOs range of sensors and actuators, it’s

open architecture, and its’s low cost, a lot of researchers

around the world have chosen for the AIBO as a research
medium for robotic research (Pransky 2001). Using

AIBO to help in home surveillance introduces several

benefits:

e AIBO is mobile; the mobility of the AIBO has clear
benefits above the wall mounted cameras as it allows
AIBO to move to other places to investigate at places
or maneuver itself to get out of occluded view.

e AIBOis also a robot pet; as we try to add surveillance
functionality in the AIBO while retaining the primary
function of the AIBO (that of an entertainment robot).
The AIBO can carry out the surveillance functions in
a less unobtrusive way (compared to wall mounted
cameras).

e AIBO provides a flexible platform for multimodal
fusion. Cameras and microphones are unimodal
sensors, meaning that they can only sense sight or
sound. Even though some current surveillance
systems contain audio as well as video sensors,
generally both modalities are treated separately.

AIBO provides a programming platform to fuse data
from the camera and the microphones.

Although there are a lot of benefits by using multimodal
systems compared to unimodal system (Llinas and Hall
2001), there are problems that need to be conquered.
Using more sensors means more inputs. More input
information can be very helpful to decide the most
appropriate action but is also more complex.

The current AIBO software provided by Sony uses
behaviors that come from a “manually designed
database”. This software functions well for a robot pet,
but is not open for extension. Therefore we used a
alternative personality model. This personality is based
on an open-ended system or an ever-evolving system by
which new behaviors are emerged through the interaction
with human and environment (Dobai 2005). This model is
more flexible then Sony’s database model, but is still
under development.

WATCHDOG FUNCTIONS

Before we start presenting the design of the surveillance

robot, we have to determine what the robot is actually

supposed to be capable of doing. The most common
ways to secure a house can be divided in four categories

(MinBuza 2006, Utrecht 20006).

1. Discourage — under this category fall measures to
give outsiders the impression that there is someone
in the house, even if there is no one present. A lively
house discourages intruders.

2. Prevent - time and safety of the intruder are
inversely proportional. The more time it costs to
break in, the less safe the intruder feels. Prevention
measures include the use of good locks etc.

3. Detect - detection system give an alarm when e.g.
the door has been opened abnormally, the detection
system can alarm the police. But the false alarms can
become a nuisance as well as potentially dangerous.

4. Register - surveillance cameras which can be
monitored by a professional security company can
provide the surveillance guards or police the needed
information to track and identify the intruder.

After mapping these four categories on the AIBO
watchdog the resulting AIBO watchdog capabilities are
as follows:

e Capability to discourage the intruder by making
sounds randomly and turn on the lights by wireless
intranet/internet or touch.

e Capability to prevent intrusion by locking and
opening doors and switch lights on or off when
necessary to delay/prevent intrusion.

e Capability to detect the intruder by its sounds sensor
and its camera.

e Capability to register the intruder by its camera and
possibly its sounds sensor.

THE PROCESS MODEL

75

Figure 1 shows the global model of the
illustrating the process interactions.

watchdog

Environment AIBO sensors

Reasoning system

Features
of objects

execution

Interpretation

Interpretec

Actions ;
ctio objects

Reasoning

Reasoning engine Interpreted world

Figure 1: Global model of the watchdog illustrating the
process interactions

In this model we distinguish several data processing

steps.

e Perception; the environment contains a collection of
physical objects which are spread across the
environments area, e.g. table, door or fire. All objects
have features which can be perceived by the AIBO
sensors. The AIBO robot dog has 4 types of sensors
which can be interact with its environment: sound
sensor, image sensor, distance sensor and touch
sensor. The inputs of these sensors create a feature list
at a certain time and location.

¢ Interpretation; from the data gathered in the first step,
AIBO is able to extract particular features which are
located in space and time. The features in the feature
list will be used for reconstruction of the objects in
the environment. The correctness of this mapping is
heavily depending on the correctness of the sensor’s
signal and the quantity of features that the sensors can
distinguish. Furthermore due to ambiguity of the
features the interpreted objects will not always match
the original object. This problem can partly be solved
by introducing more detectable features to decrease
the ambiguity level. The interpretation process will
result to the interpreted objects.

e Reasoning; the reasoning part includes the process of
creating and adapting the internal world map, once
the objects are located, AIBO can continue to update
its internal world map. The world map consists of a
snapshot of the location of objects that the AIBO has
sensed in space. This enables the AIBO to compute a
path from one point to another based on this world
map. In order to perform watchdog functions, the
AIBO should be sensitive to changes in the
environment. These changes are reflected in the
internal world map, but the reasoning process also has
to determine whether the changes constitute
dangerous situations, situations that need further
investigation or adaptation of the internal world
model.

e Actions; an outcome of the reasoning process can be
that a certain action has to be executed. In the
simplest form the actions can be generated via a
stimulus response model. = However, more
sophisticated models such as stimuli trigger scripts
which include a predefined series of actions to

achieve a certain goal, or BDI models (Rao 1995) can
be used. In the case that there are multiple possible
actions a process of action selection to determine
which action to execute has to be carried out. After
execution of the selected action the environment will
provide the sensors with new data and this process
will continue again.

THE REASONING SYSTEM

As discussed in the previous section, the reasoning
component in our model is responsible for determining
what actions to take given the (interpreted) sensor
information arriving in the course of time. The following
sections describe two possible reasoning approaches to
achieve this goal.

Stimulus-response approach

In the stimulus response approach hard rules are given to
the AIBO when it encounters some event. Table 1 shows
some examples of stimulus-response rules The first
prototype of the watchdog is based on this reasoning
system.

Table 1: Stimulus response rules related to watchdog
functions
Response

Stimulus

Go to the direction of the sound
source and find the cause.

Unknown sound

Missing
television

Stand still and alarm people /
Capture image and send it by
email.

Flames visible Sound alarm send alarming

email and escape from room.

The degree of intelligence is determined by the reactions
that the reasoning system comes up with after reviewing
the input data. Giving the AIBO hard rules to execute
when it encounters a certain object will not make the
AIBO act intelligently. This stimulus response approach
therefore is not a suitable approach for the AIBO
watchdog. To give the AIBO more intelligence it is
needed that AIBO can memorize the objects that it
encountered before and prioritize the actions that need to
be carried out.

Dynamic scripting approach

As a better alternative to the stimulus response approach,
the second prototype uses dynamic scripting as reasoning
model. In this approach, the AIBO has in its memory a
list of predefined script. From sensing the environment,
detected features are stored in a memory and can
contribute to the activation of a script. If a script passes a
certain activation threshold, this script becomes dominant
and the actions in this script are executed (see Figure 2).
In time features are removed from memory and scripts
can loose their domination.

76

Rulde i I wigger i 11 no seript activared then
senerate aviion AL

Trigger | If trigger i ’
then N =NP4 N
Tl‘jg:ge[1 Ir N = tueshold
then Script] s ocinvoted |

Seript | Seript n

- o .
Lompute max ¢ N N, X

Ir W, = max then N, donunant script.

Iy » . N then dominant script
I N * dominant sevipt then look for missing
trigger .

Figure 2: Reasoning scheme for a dynamic scripting
system

In the dynamic scripting approach, we can distinguish
between two kinds of memory components, the short
term memory and long term memory (Figure 3). The
short term memory component contains the object and
event that AIBO is dealing with at the moment.

Long Term Memory

Short Term Memory

Ohiect Eveni

Reasoning System

Figure 3: The two memory components, their contents
and their relationships

First, when an object is recognized, it will be compared
with the object in the short term memory. When the new
object and its related event has a lower priority than the
current object in the short term memory, the new object
will be placed in the long term memory. Otherwise the
new object will be placed in the short term memory and
the old object which was in short term memory, will be
placed in the long term memory. Duplication in the long
term memory is not allowed. When AIBO encounters a
lower priority object on its way to the goal point and also
encounters it at the way back, the oldest object will be
removed from the long term memory and a new one will
be placed in the long term memory.

This last-in-first out approach for the long term memory
is chosen above the approach based on the priority of the
objects. The explanation for this choice is that when the
current event consumes a lot of time the event with the
next highest priority will probably not exist any more
when the current event is completed. Therefore it is no
use to leave that event in memory. Except the time issue
there is also another reason to choose for the last-in-first-
out approach, the place issue. When AIBO has just
finished its last mission, the event of the last object is
also the closest object to its current point. There is one
exception: when AIBO has not encountered an object for

a long time and AIBO is walking in a circle. Then the
closest object can be the oldest detected object. Figure 4
shows this situation. In general the last-in-first out
approach will be more efficient.

Object *

Object 2

O

Figure 4: AIBO has not encountered an object for a long
time and AIBO is walking in a circle. The closest object
is the oldest detected object

The best approach for the long term memory issue is a
combination of the two approaches. We can set some
threshold to determine which of the two approaches will
be used. This can be based on the nearest place to satisfy
a certain long term event or based on the priority level
which has arrived within the last 5 minutes.

IMPLEMENTATION

The watchdog functionality is built on top of the modular
architecture introduced by (Dobai 2005) (which is itself
based on another architecture developed in the URBI
Project at ENSTA Laboratories. URBI (Universal
Robotic Body Interface) (Baillie 2004) is a scripted
language designed to work over a client-server
architecture in order to remotely control a robot. URBI is
released under the GNU General Public License. Our
present prototype runs the server on AIBO (the original
URBI server) and the client on a PC (developed by us),
therefore the reasoning is done on the PC and AIBO is in
charge of sending raw data information from the sensors
and executing complex commands written in the URBI
scripting language. Our long term goal is to have both
client and server running on AIBO and in this way
having an autonomous robot.

The sensor data received from the AIBO consist of

e Raw images from the AIBO camera. From these
images visual waypoints, indicated by special cards,
can be extracted allowing the AIBO to navigate and
position itself. The recognition of the waypoint cards
is however very sensitive to lighting conditions.
Therefore, the waypoint cards need to be calibrated
under current lighting conditions beforehand (see
Figure 5). At this moment the software of the
prototype is not advanced enough to recognize
arbitrary objects such as televisions or tables, so these
objects are currently entered manually in the system
via the GUI on the PC (Figure 6).

e Raw stereo waves from the AIBO microphones. From
the sound data, the direction of the sound source is

77

calculated using the algorithm described in (Datcu
2004). By applying a simple volume thresholding
algorithm on the wave samples, loud sounds can be
easily detected. The automatic recognition of relevant
characteristic sound events such as the sound of
breaking glass are not implemented yet, these sound
events can be manually added through the GUI on the
PC (Figure 6).

- Infrared distance reading. With these readings, the
AIBO can determine the existence of obstacles on its
direct path.

Ve

Auto threshofd...

Figure 5: AIBO can recognize waypoint cards, but the
recognition software has to be calibrated beforehand

An external event generator module which is part of the
GUI module simulates special events that the AIBO is
currently not able to detect automatically. Technically,
these special events are stored in nodes on the map.
When the AIBO arrives at that node, all these events are
unleashed upon the AIBO. The events at each node can
be modified by the user using the GUI module (Figure 6).

Legend
»

neo OF. omer 2
com i me S o moxonciass < weom
; L e il
ABOIP Seen Ohjoct Seon Fvent Short Torm Memory 1 ong Torm emory Ad Obects
102168314 FIRE FIRE | FRE INTRUDER s'r':m
- = e wer
" HssSsEEEE " =
- - v A -
G Coe .o s | [
L © o i
i B Q%‘ 5& ,‘§ ﬁ 62 : FRE
L F 1 1 IR
g@ L %\ L. @ o
e e e, .

Figure 6: GUI to create special events for AIBO to
handle. For each node events can be specified. These
events are sent to AIBO when it reaches that node

To test the system, we have built an artificial home
environment of which a map is shown in Figure 7. There
are objects such as furniture from the real world in the
test environment. As a first scenario, we introduced a
patrolling behavior consisting of a simple waypoint
system for the AIBO to follow.

A
Il o) o o) o (l
// “ (Charge

statior
Figure 7: A map of the home, with furniture and
waypoints

For simplicity, the start point and end point are given to
the AIBO beforehand. The navigation goals are
represented as the small squares with a character above
it. The next destination node is default the next character
in alphabetic order. When special situations arise, the
goal node will be adapted. The path between the two
nodes will freely be chosen by the route planner, but it
will take the node with the shortest distance to the
destination node by default. Except when there are
objects on its way, it will take another route to avoid
collision. Since this project is not dealing with the pre
processing of the sensors input, the input of the sensors
are simulated and stored in the nodes of the waypoints.

CONCLUSIONS

The AIBO entertainment robot has the ability to perform
surveillance functions. Its mobility and its array of
sensors make it ideal for investigating in places where
surveillance cameras have no view of vision. Because of
its primary function of robot pet, its presence is non
obtrusive to the robot owner. Furthermore, its open
architecture allows for the implementation of data fusion
algorithms to get more reliable and robust conclusions
then are possible with a single modality.

In this paper we described the model and two reasoning
approaches of our AIBO watchdog. We also described
the artificial room in which the AIBO performs its
watchdog duties. Because of the lack of a suitable object
detection module, we created a GUI in which the user
can manually add objects the AIBO will detect. Also the
localization method is based on artificial waypoint marks
instead of real landmarks, but this also is a result of the
lack of an object detection module.

REFERENCES

Hall, D. L., Llinas, J., "Handbook of Multisensor Data Fusion,"
CRC Press, 2001.

Baillie, J.C., “URBI: A UNIVERSAL LANGUAGE FOR
ROBOTIC CONTROL”, International Journal of
Humanoid Robotics, 2004, World Scientific Publishing
Company

78

Dobai, 1., Rothkrantz, L., van der Mast, C. “Personality Model
for a Companion AIBO”, ACM SIGCHI International
Conference on Advances in Computer Entertainment
Technology, Broadway New York, June 2005, pp. 438-
441.

Datcu D., Richert M., Roberti T., de Vries W., Rothkrantz
L.J.M., "AIBO Robot as a soccer and rescue game
player", Proceedings of GAME-ON 2004, ISBN 90-
77381-15-5, pp. 45-49, November 2004.

Joanne Pransky, “AIBO- the Nr. 1 selling service robot.”,
Industrial Robot: an international journal, Volume 28,
Number 1 2001, pp24-26.

MinBuza, Dutch department of foreign affairs “Wijs op reis - Je
huis veilig achterlaten.”
https://minbuza.nl/default.asp?CMS ITEM=MBZ458731

Utrecht, Gemeente Utrecht. “Utrecht steeds veiliger.”,
http://www.utrecht.nl/smartsite.dws?id=131024

Rao, A. etal., “BDI Agents: From Theory to Practice”,
Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS-95), San Francisco, USA,
June 1995.

MOBILE
GAMING

80

ON GUARANTEEING EQUITY TO MOBILE PLAYERS IN A METAVERSE

Stefano Cacciaguerra
Department of Computer Science
University of Bologna
Via Sacchi 3, Cescna (FC), Italy
E-mail: scacciag@cs.unibo.it

KEYWORDS
Multi-Player Online Games, Pervasive Entertainment,
Agent-based Entertainment, Virtual Environments.

ABSTRACT

In the 1992, Neal Stephenson described his vision of
how a virtual reality-based Internet should evolve in the near
future coining the word Metaverse. The access to the
Metaverse is possible from any location adopting portable
devices. With the advent of virtual environments like World
of Warcraft, Second Life, Project Entropia and Sociolotron
many prototypes of Mectaverse arc born. Further, leader
companies in the entertainment promote portable consoles
that exploit wireless hotspots. In this sense, wireless
infrastructures extend the Internet allowing the participation
in virtual environment cven from mobile devices.
Unfortunately, wireless infrastructures belong to the
unreliable networks. Therefore, the movement of a mobile
player under the coverage area of these networks might
causc interruptions and lags in the participation. In this
context, our aim is to ensure good playability to all players
apart from the kind of networked infrastructures and devices
used, or, at least, to try to upper bound the critical situations
guaranteeing cquity among all users.

INTRODUCTION

In the 1992, Neal Stephenson invented in his Snow
Crash, a science fiction novel, the word Metaverse. The
Metaverse constitutes his vision of how a virtual reality-
based Internet should evolve in the near future. The
Metaverse world is a black sphere 65536 km in
circumference where Street runs around the equator. In this
world, there are 256 Express Ports located at 256 km
intervals beside the Street. Here, it is possible to buy a
development license and build anything is approved by the
group which manages the Street protocol. In this novel, a
user can access the Metaverse through a private terminal that
allows to customize the avatar and, overall, to participate
from any location adopting portable devices. In accord with
the Stephenson’s vision, one of the main possible future
scenarios of Internet shows its evolution as a global
cyberspace where cach user can interact through his own
avatar. From this standpoint, the avatar becomes a tool that
allows the humans to create a virtual world (e.g. as shown in
the Matrix trilogy). This synthetic world should be so
accurate to build up the ideal environment for the artificial
life of the user. Hence, it promotes to study the social
behavior of humans and supports the basis of a new form of

81

communication (Schell J. 2002). The immersive reality and
the possibility to interact with the virtual world without
constrains allow theirs usc as a support to the decision
making (Cacciaguerra et al. 2005). The entertainment
industry is investing money in implementing the concept of
the Metaverse. Many commercial Virtual Environments
(VE) have an own cconomy, an own government, an own
currency and many synthetic inhabitants are born and die,
daily. Participants from across the globe can leave the real
world behind and undertake heroic quests exploring virtual
lands. In this evolutional shared reality, denizens can
explore, build on virtual land, socialize, or vie for status. The
main examples are:

e World of Warcraft, a massively multiplayer online
role play game that enables over five millions of
subscribed players;

e Second Life, a massive virtual universe where there
are hundred shops that sells items from virtual i-
Pod up to synthetic Ferrari;

e Project Entropia, a massive virtual universe where
the total economic turnover amounted to more or
less 165,000,000 US dollars in 2005;

e and Sociolotron, a multiplayer online role play
game for adults that takes pride in being a highly
politically incorrect game.

In this scenario, as described by Stephenson, it becomes
interesting to allows users to share interactive activities
while they are moving with theirs mobile devices under a set
of wircless adapters spread on a building, a district or a town
directly connected to the Internet (Cacciaguerra et al., 2006).
Since movements cause interruptions and lags in the
participation, our aim becomes to upper bound these critical
situations ensuring a good playability and, overall, equity to
all players even if they use portable devices under unreliable
networks. The reminder of the paper is organized as follows.
Section 2 illustrates the problems in participating in a
metaverse from a mobile device. Section 3 highlights design
issues to ensure equity to all players. Section 4 describes the
system architecture. Section 5 presents some results. Finally,
Section 6 concludes this work with an open question.

PARTICIPATION OF MOBILE PLAYERS

Many public places, such as, parks, airports, railway
stations and megastores are increasing the availability of
network connectivity through wircless adapters.
Furthermore, leading companies such as Nintendo, Sony and
Nokia are competing in the handheld entertainment market

promoting respectively Dual Screen, Play Station Portable
and N-Gage, which can take advantage of multi-playing
through the wireless connections. In this sense, it becomes
possible to promote exciting interactive experiences with
other users worldwide, exploiting ubiquitous connectivity by
means of integrated wired and wireless infrastructures.
Although wireless technologies suggest new possibilities,
such as, mobility, location and context awareness to multi-
player gaming, problems arise when they try to extend the
wired Internet. From a technical viewpoint, Bluctooth, Wi-
Fi, Wimax and UMTS technologies allow to communicate
with nearby access points in less than a hundred of
milliseconds. According to this consideration, the main
problem in wireless communication arise from the mobility
of user, which creates a complex networked scenario to
investigate. This complex scenario emerges questions, like:

e what happens when a mobile user needs to
participate in an Internet game, but is too far from
the nearest access point?

e Or when he wants to continue playing while he is
moving from one access point to the others?

In these cases, handovers, transmission errors and temporary
link outages occur causing lags. Lag refers to noticeable
period experienced in computing communications to the user
caused as a result of extended or unexpected delay. In this
sense, the packet coming from the mobile device to the VE
might be lost because no coverage area is available or
delayed because the users is moving from an area without
coverage to another with it. Furthermore, it is well-known
that increasing the distance from the access point to the
mobile device, the bandwidth decreases and there is a higher
probability to find more obstacles that dissipate the signal.
Moreover augmenting the number of users more collisions
among packets occur and, in this condition, increasing the
quantity of access points amplifies interference in the
communications. From a technical viewpoint, all this means
that vertical or horizontal handovers, transmission errors
and temporary link outages might causc a momentary
interruption of the network communication. Instead,
extended link outages might cause long interruption, while a
disconnession caused by failed handover or an application
shutdown could even cause a permanent interruption. At a
higher level, this means that a user may not be able to send
or may send with a significant delay his actions to the VE,
losing some turns of the match and, worst, having fewer
chances to win the game. In this sense, playing from a
mobile device over an unreliable network could
disadvantage users making unfair theirs participation in the
game.

ON DESIGNING A PARTICIPATORY FRAMEWORK

Our approach promotes a mechanism able to handle the
communication on both sides of the networked infrastructure
when problem due to the movements of the players occur.
This mechanism should be able to guarantee a transparent
playability for the players maintaining interactivity, and
coherence in the game realizing a playing session. The
playing session sustains the equity/fairness for all players.

82

Our idea suggests to place the entire game system on the
wired Internet side and to allow the participation from a
graphical shell on a mobile device. In this scenario, we
design a Participatory Framework (PF) accommodated on
both sides able to monitor the network infrastructures and to
manage the game when problems due to the movements
occur, implementing the playing session over the stack
TCP/IP. On the mobile side, this framework is able to detect
if the game system is unreachable or reachable with a certain
delay. In accordance with these considerations, the
framework is in charge of waiting for the next game ack or
of trying to connect again the system. On the game side, the
framework is able to detect if the application on the mobile
device had some problems or if the movement of the player
caused problems. In this case, the framework gives the
control of the player’s avatar to a Mimicking Mechanism
(MM) that plays it until the problems are solved. In this way,
the system is not affected by the fault of a single player and
the game continues its evolution as if nothing had occurred.

Interactivity

In line with these considerations, the game system
should maintain the interactivity under a sensorial
perceptivity threshold, providing a realistic “look and feel”
and bounding low quality scenes or jumpy shots on mobile
devices as limited as possible. To reach an adequate “look
and feel” is inevitably reflect on the subjective impression
about the scores in the game. In particular, we do not support
with the fact that a better player loses with weaker one
because he is at a disadvantage due to network impairment
in the communications. In this context, interactivity is
related to the latency and jitter between action generation on
a mobile device and the next event visualization in its
graphical shell (after its execution on the game system). In
(Cacciaguerra ct al. 2006), we tested the effectiveness of the
management of interactivity in the PF over a networked
scenario where mobile players participate in the game, when
two link outages occur. Our measurement was related to the
performance of the whole game engine when players begin
to have problem in the communications. This measurement
is different from the player’s perspective approach adopted
in (Dick et al. 2005) where a normalized value represents the
score of cach player in comparison with the others and a new
metric, the degree of subjective quality in audio and video
contents. Our idea is to upper bound the time (in relation to
the human perceptivity threshold) to deliver an action to the
game system. To reproduce in our lab a scenario with real
networks, we involved a synthetic emulative platform to
route IP packets (Cacciaguerra 2005) according to the
proposed scenario, linking real mobile devices and
workstations to the game server. In onc case, the synthetic
emulative platform was configured to reproduce a static
transmission delay between a workstation and the server
simulating a reliable and uncongested channel. In the other
case, the transmission delay between a mobile device and the
game server was calculated through a function that simulates
two consecutive outages. In order to study the performance
of our approach, we compared the game evolution when five
different managements of the human perceptivity threshold.
Results confirmed the effectiveness of our approach.

Coherence

Coherence is related to the uniformity of the evolution of
the game obtained as if all players participate through
reliable and effective network communications. This means
that each player participates in the game, correctly (i.e.
without wasting time), in a perfect world, from the
viewpoint of the network communications, and, of course,
under the hypothesis to have not any other problem coming
from the game system or from the interface on the mobile
device. In order to maintain coherence, it is important to
implement a MM able to substitute the player when his
action does not arrive to the game system within the
perceptivity threshold. In particular, the mechanism must not
play better than the user, making unuseful his future actions,
or, worst, binding his possibility to win the match. As an
interesting side effect, each player should be not able to
understand who has some problems in communication
looking the behavior of the avatars of the other participants.
Although the research of this mechanism is not our
responsibility, we propose some considerations on its
working to improve the effectiveness of our framework.

Unfortunately, the believability of an avatar is subjective,
influenced by the culture and the skills of the other players
(Mac Namee 2004). Further, to show an adequate degree of
humanness (Livingstone 2005), the avatar should adopt
human-like reaction and deccision times, avoid to give
superhuman capabilities and realize some tactical/strategy
reasoning (McGlinchey and Livingstone 2004). Hence,
which is the best action the MM has to play when it is in
charge of the orphan avatar? The key point is what means
the best action (Cacciaguerra and Roffilli 2005). From the
player’s viewpoint the MM should choose the most
predictable action while from the others’ perspective it
should try to reproduce the strategy of the user.

In the former case, the default action could be the natural
consequence for the correct evolution of the game and could
be casily predicted. This approach is successful if the loss of
control is limited to a low percentage of the whole actions
and, if possible, with a low frequency. The main advantages
are the easy implementation using a lookup table of state-
action pairs. Unfortunately, if the avatar uses a hard-coded
default action for a long period will be recognized quickly.

If the loss of control is a substantial percentage of the
whole actions or its frequency is too high, the avatar will
most likely start to show non-human behavior. In this latter
case, keeping coherence should take into account the
stochastic/strategic behavior of human beings. Traditionally,
this effect was limited increasing the complexity of the
algorithms that control the avatar. The development of these
algorithms is problematic because they must take into
consideration many combinations of events and situations.
An alternative idea is to monitor each user during the game
evolution in order to recognize the typical pattern of his
behavior and to instruct the MM on his strategy. The MM
must be adaptive to capture the essence of the user’s
strategy. In this sense, we need techniques (Dietterich 1997)
that analyzes a collection of task pairs (instance, solution)
without knowing the dynamics of the solution (i.c. without
formalizing the algorithm). With the collection of an
adequate number of situation, a MM should be able to
resemble the user’s strategy/ability with an appropriate level

83

of mimesis and with a good generalization. Another issues is
related to the computational effort to produce a good action
in a short time (i.e. shorter than the perceptivity threshold).
Finally, the last issue is associated to produce a model
knowledge: collecting data off-line or performed on-line
during the game cvolution.

Equity/Fairness

The good management of the interactivity and of the
coherence together improve the equity/fairness to all players.
In distributed systems, fairness is related to guarantee to
avoid starving any process in order to assure to all of them
the same priority in allowing their accesses to the shared
resource. In this sense, all processes in a distributed system
should have the same chance to make progress. Similarly,
our aim is to guarantee equity among all players allowing
them to play a correct number of actions with the same
frequency inside the metaverse. In particular, this mean that
all users are able to participate correctly in the game and
cannot take advantage respect the others because they play
more. Unfortunately, the problem coming from the network
communications might disadvantage some of them. From
our viewpoint, we can consider avatars as separate processes
(independently from the fact to be played by a software code
or by a human being). Therefore, the possibility to play the
same number of actions with the same frequency in the
match becomes our measure of the equity in this procedure.
Hence, if the framework is able to detect the problems in the
network communications and, simultaneously, to substitute a
lost action with an adequate level of mimesis, it becomes
possible to play under fair conditions. Of course, this means
that not all players will take the same number of actions at
the end of the match, but at least the number of events is the
same for cach avatar! In this sense, our framework shall give
all players the same chances to participate in the game and
the same possibility to do not lose.

SYSTEM ARCHITECTURE

In order to support our thesis, we developed a prototype
that integrates a Multi-Agent System with our PF. From this
standpoint, the System for Parallel Agent Discrete Event
Simulation (Riley 2003) implements the game environment
setting up the rules of the synthetic world and programming
the behavior of its agents. On the other hand, we realize a
playing session layer on the stack TCP/IP between the user
and his avatar implementing the PF. Hence, if a short
interruption makes the player unable to deliver an action to
his avatar within the perceptivity threshold, the PF detects
the problem and tries to maintain the interactivity in the
game evolution forcing the MM to control the orphan avatar
guarantceing the coherence with an adequate level of
mimesis. Or worst, if the interruption lasts along becoming a
permanent one, the PF recovers the communication allowing
users to resume the control of his avatar while the MM
produces an adequate strategy for the avatar. As
consequence, the PF (see Fig. 1) is splitted into two coupled
modules residing, respectively at the user side (called Shell
Participatory Framework; SPF) and at the game side (called
Avatar Participatory Framework; APF). In particular, the
APF accommodates the MM.

Avatar Participatory Framework

The APF manages cither prolonged failures due to any
critical problem, or brief temporary malfunctions due to
short interruption. At the beginning of a match, it checks for
the TCP connection to its SPF, while the MM controls the
avatar until it receives an action from its player. Then, it
accepts the connection to the avatar from a SPF, or,
eventually, it recovers a previously instantiated
communication after the occurrence of a long or permanent
interruption. When the connection is active, the APF checks
up two different timeouts continually. The former (called
Action Timeout) is useful to prevent low interactivity from
slowing down the evolution of the game, monitoring the
responsiveness of its SPF within an upper bound period of
time. Clearly, when the upper bound is overcame, the APF
allows the MM to play an action in place of his user. If the
MM plays a number of consecutive times exceeding a
maximum value (called TCP Timeout), the APF leaves to it
the control of the avatar setting the state of the
communication as “broken”. As a consequence, the APF
shuts down the connection, jumping to the listening phase,
ready to recover this communication.

Shell Participatory Framework

Every time, the SPF checks if its avatar is reachable or if
a new connection is necessary. When the SPF connects the
first time its APF, it starts a new playing session. Each turn,
this protocol forces each APF to send a RequestAction event
to its own SPF. The SPF waits for a RequestAction event
until a period long an Action Timeout and checks up its
incremental identifier. In this way, it is possible to know if
there is some delays or if some communications get lost. If
the RequestAction comes too late, it buffers the last
generated action, waiting for the next slot time. If, in the
meantime, the player generates another action, the SPF will
buffer the last one so as not to deliver an old action related to
a previous situation in the game. If, unfortunately, the SPF
does not receive any request within an amount of time equal
to the value of the maximum admissible number of
consecutive Action timeout (called in this case TCP
timeout), it scts the state of the communication as “broken”.
In this case, it shuts down the connection trying to recover
the previously instantiated communication by reconnecting
to its own avatar.

World Maodel

Figure 1: The Participatory Framework

84

CASE STUDY

This paper tries to demonstrate the effectiveness of the
playing session implemented through our PF. The previous
work (Cacciaguerra et al. 2006) showed that the framework
is able to guarantee interactivity, but it does not prove that
this system architecture lets unchanged the chances of
victory in the game. Along with this, it does not demonstrate
that, at the higher application level (i.e. at the game level)
the playing session does not alter the progress of the strategy
of an user and, as consequence, docs not modify the whole
evolution of the match. To demonstrate it, we realize a case
study implementing over our architecture a clone of the
game Tron. The environment of Tron is an arena where
players challenge cach other driving a synthetic motorbike
that leaves behind, as wake, a wall. Each motorbike must
avoid to crash in any wall during its movement. When a
motorbike hits one of the walls or the borders of the arena, it
cxplodes leaving its player out of the game. The aim is to
remain the last one alive avoiding the walls and trying to
close the ways of the other players. A motorbike can never
stop: it could accelerate from the minimum speed to the
maximum and vice versa. Turning left or right decreases the
speed of the bike. We choose Tron because is a fast-paced
multi-player game with a low complexity in its
implementation but that allows the performance of
sophisticated strategies. In fact, it has just one kind of agent
(i.e. the motorbike) that can go, each turn, straightforward,
left or right. As being a fast-paced game, it allows to conduct
an adequate number of trails in few time.

Experimental Campaign

With the aim of studying the performance of our PF, we
reproduce in a lab two scenarios executing the same trials
under cither reliable or unreliable networks. In particular, in
the scenario with unreliable networks the mobile player
passes, cyclically, through three different phases. At the
beginning, he stays near the access point exploiting good
coverage arca. After, he moves toward the border while the
coverage area becomes worst. Finally, he goes out and
comes back. The measure of performance is to verify how
much the outcomes of the same match in both the scenarios
diverges. In order to demonstrate that our PF is not invasive
we believe that the percentage of victory of a strategy
respect another one should remain the same, also if we
conduct the same trails under different scenarios. In order to
produce an adequate number of trials for the comparison in
the two scenarios, we automate the process reproducing the
behavior of expert players, studying the main strategies to
win a match in Tron. Each strategy has been implemented
through an apposite code accommodated at the mobile side
over SPF.

I. The first strategy mimics a newbie player: when it
arrives near a wall, it checks up both the right and the
left side and chooses that one without an obstacle.

II. The second tries to move each turn in the direction
where it is possible to cover the longest practicable
way before crossing a wall.

III. The third goes on the direction that guarantees the
highest number of practicable way in the next turn.

IV. The fourth is equal to the previous but it checks more
than the first next turn.

We study the capabilities of each strategy conducting 30
trails where each agent adopts the same behavior. To
understand the difference among the strategics we collect
data regarding on the number of cell taken up from the wake
of cach avatar and theirs lifetime (see Tab. 1). In order to
reduce the number of confrontations, only the winning
strategics are compared between them. As we can sce in the
Tab. 2 the lifetime of each strategy is more important of the
taken up space. For example, strategy 111 is successful with I
e II also if they occupy a greater percentage of the arena
with theirs wake. This means that III is a more adaptable
strategy that exploits the ways among the wakes of its
opponents.

In order to reproduce the behavior of a player, each MM
runs the same code, accommodated in the SPF,
implementing the strategy. In line with this, when an action
generated from the code on the mobile device does not reach
the avatar, the same code inside the MM generates the event.
By means of this trick, we reproduce with an adequate level
of mimesis the behavior of the player (being the same code).
Hence, if we are able to show that the percentage of victory
does not change in both the scenarios, as shown in Tab. 2, it
is high probably that our PF guarantee equity for all players.
In particular, the difference in Tab. 2 are due to the adoption
of random components inside the code that implements the
strategies. For example, strategies I chooses randomly if
more paths have the same length. The high number of trials
conducted should support this opinion. Further, Fig. 2 show
the snapshots of the playlogs of the same match where are
engaged avatars adopting strategies without random
components, under the same conditions, apart from the
networked scenario. The evolution of the match is the same!
Hence, we can claim that the tendency to win a match from a
better strategy is reported also if our PF interact hardly with
the game to guarantee equity among players.

CONCLUSIONS

This approach prevents that problems coming from
unrcliable networks decrease the chances of victory of
mobile users guaranteeing equity among all players of a
metaverse. The experimental campaign has shown that
coupling an improved network framework with a mechanism
able to reproduce the behavior of a user with an adequate
level of mimesis allows to promote fair matches
guaranteeing equity among all players. The trick to
accommodate the same code either over the SPF and inside
the MM has supported this theory as it is highlighted in Fig.
2. In particular, the outcomes of this approach show that the
percentages of victory due to the adoption of a specific
strategy do not changes also if the PF interact hardly with
the game. In essence, the PF does not alter the progress of
the strategy of an user and, as consequence, does not modify
the whole evolution of the match. If we admit that our
framework substitutes the player an acceptable number of
times not invasive for his entertainment, a main question still
remains: which is the best way to reproduce the behavior of
a user? This open question represents in our opinion, one of
the hottest topic in the literature, while our implemented

85

prototype a way to test it. As side effect, it promotes also,
the interesting possibility to allow a user to challenge against
him-self, for a better comprehension of his own errors and of
his good actions.

Table 1: Study of the Behavior of Strategy

% AVG taken up g AVG lifetime §
space (sim time)

1 6.4 0.8 145 359
11 6.9 0.7 127 32.1
111 4.3 0.4 442 133.1
v 6.5 0.8 561 133.6

Table 2: % of Victory Changing Scenario

Match unreliable reliable
1vs I 0-100 0-100
11 vs 111 4-96 0-100
11l vs IV 0-100 8-92

Figure 2: Snapshots Coming from two Videos Showing the
Same Match, Left) Under Unreliable Networks, Right)
Under Reliable Network

REFERENCES

Cacciaguerra S. 2005. “Experiences with Synthetic Network Emulation for
Complex I[P based Networks”, Ph.D. dissertation, University of
Bologna (Italy).

Cacciaguerra S., Cagneschi C., Fabbri R., 2005 “The Architectonical Design
of Virtual Environments Fuels a new Form of the WWW?” in proc. of
ESMc (October), Porto (Portugal).

Cacciaguerra S., Mirri S., Pracucci M., Salomoni P., 2006. “Wandering
about the City, Multi-Playing a Game” in proc. of IEEE International
Workshop on NIME (January), Las Vegas (NV-USA).

Cacciaguerra S., and Roffilli M., 2005. “Agent-based Participatory
Simulation Activities for the Emergence of Complex Social Behaviors”
in proc. of AISB (April), Hatfield (England).

Dick M. Wellnitz O. and Wolf L. 2005. “Analysis of Factors Affecting
Players’ Performance and Perception in Multiplayer Games” in proc. of
NetGames ACM conference (Oct), Hawthorne (NY - USA).

Dietterich T. G., 1997. “Machine Learning Research: Four Current
Directions” Al Magazine, 18 (4), 97-136.

Livingstone D. 2006. “Turing Test and Believable Al in Games” in
Computers in entertainment ACM, Vol. 4, No 1 (Jan), 1-13.

Mac Namee, B. 2004. “Proactive persistent agents: Using Situational
Intelligence to Create Support Characters in Character-Centric
Computer Games™ Ph.D. dissertation, University of Dublin (Ireland).

Mc Glinchey, S. and Livingstone D. 2004. “What Believability Testing Can
Tell us” in proc. of the CGAIDE, Redding, (WA-USA).

Riley P., 2003. “SPADES: System for Parallel Agent Discrete Event
Simulation” 4/ Magazine, 24(2):41-42.

Schell J., 2002. “Understanding Entertainment: Story and Gameplay are
One” The human-computer interaction handbook: fundamentals,
evolving technologies and emerging applications archive, Lawrence
Erlbaum Associates, pp. 835 — 843.

ON BRINGING ADVENTURE GAMES
INTO THE MOBILE GAMING SCENARIO

Marco Furini
Computer Science Department - University of Piemonte Orientale
Via Bellini 25/G - 15100 Alessandria, Italy

Email: furiniOmfn.unipmn.it

KEYWORDS
Mobile Gaming, Game on low-resource devices, embed-
ded games, 3GP.

ABSTRACT

Videogames developed in 80s are very popular in the
current mobile scenario. These games don’t require sev-
eral system resources and hence they are well suited for
the limited system resources of current cellphones. In
this paper we focus on a genre that was very popular in
the past, but is not receiving much attention today: the
adventure games. These games are proper for the cur-
rent mobile scenario as they require very little system
resources. We propose a software architecture to poten-
tially transform an audio mobile device into an adven-
ture games console. The adventure game is described
through MPEG7 and is embedded into a 3GP file. Our
approach ensures interoperability, transparency, light-
ness and security. The simplicity of our approach along
with the large availability of audio devices may bring
new life to adventure games, which can become an ex-
citing game genre also for today’s users.

INTRODUCTION

A recent research indicates that the mobile-gaming mar-
ket has grown, since its first appearance in 1997, to a
total of $590 millions in revenue in 2005, with a forecast
of $1.5 billion by 2008 (see, ABI (2006)). The interest
around this market is so high that giants of the game
industry, like Electronic Arts and Ubisoft, are entering
the mobile-gaming market.

Looking at the best sellers video games of the Verizon
wireless provider, it is interesting to note that several ti-
tles come from mid 1980s: Tetris, Pac-Man and Pong are
some examples. This popularity is due to the multime-
dia features of current cellphones, which are comparable
to the one of the gaming console of the mid 80s. This is
why, the gaming industry is using old video games for
the current mobile scenario.

In this paper we focus on a particular genre of
videogames: the adventure games. These games were
very popular in the 80s and 90s and although the ad-
venture game market suffered from the introduction of

86

high performing game consoles, today, some adventure
games are still released, and many fans develop their
own adventure games with tools like Adventure Game
Studio and Visionaire.

The main characteristic of these games is that the player
has to deal with problem-solving rather than to shoot
against something; Being focused on a narrative story,
instead of being based on reflex-based challenges, ad-
venture games are well suited for the mobile scenario,
as they don’t require several system resources (some ad-
venture games are text-based and don’t even require a
graphical screen). Famous adventure games included
Zork, King’s Quest and The Secret of Monkey Island.
The contribution of this paper is to propose a simple,
transparent, inter-operable and secure mechanism to po-
tentially transform any portable music player into an
adventure game console. The idea is to describe the
script of an adventure game through a text-based de-
scription and then to store this description inside a me-
dia stream without modifying its structure. For interop-
erability reasons, our approach involves standard mech-
anisms like the Advanced Audio Coding, the MPEGT7-
DDL for the multimedia content description and the
3GP media container format as the file format.

Our proposal is composed of a script manager, a scene
manager and an interaction manager, which cooperate
to produce the adventure in a transparent and secure
way. Transparency ensures that every audio player can
potentially become an adventure game console. In fact,
the only requirement is the presence of an enhanced
player able to read and understand the stored adventure
game description. Hence, only a simple software update
is necessary. To achieve transparency, we consider the
3GP file format, which is a container of different multi-
media resources. Security is essential to avoid any ma-
licious alteration of the adventure game description and
is achieved through the development of a security mech-
anism that ensures that only a legal 3GP file owner can
enjoy the full features of an adventure game and also
ensures that alterations cannot be done to the 3GP file.
This mechanism is developed with classic security tools
(encryption, watermarking and hash functions).

The characteristics of our approach, along with the
never-ended interest around adventure games and con-
sidering the large availability of audio devices, may bring

_+, Multimedia objects

Media data container

Descriptive metadata

Figure 1: The 3GP ISO Base Media File structure.

new life to adventure games, which can become an ex-
citing game genre of current cellphones.

The remainder of this paper is organized as follows.
First, we review the 3GP, AAC, MPEG7 and the used
security tools and then we present our proposal.

PRELIMINARIES

In the following we present basics of the standards used
in our mechanism: i) the 3GP (the media file container
of the adventure game); ii) the AAC (the audio stream
format used to encode the narrator voice) and iii) the
MPEG7-DDL (the markup language that describes the
adventure game). We also review the tools used by our
security mechanism.

The 3GP File Format

Our approach introduces the adventure games inside
3GP files. This file format is based on the ISO Base
Media File Format (readers can refer to MPEG (2005)
for a detailed description) and can contain time-based
audio-visual information with an object-oriented struc-
ture (each object represents a media object). In par-
ticular, the file is made of data structures called boxes,
which may contain actual media data or metadata (in-
formation to define the media properties). By combin-
ing these boxes, different multimedia objects can be-
come a single presentation (called movie in 3GP files).

Figure 1 shows a simple example. The file has three
main boxes: Movie (moov), Media Data (mdat) and User
Data (udta). The moov box includes all the data related
to the presentation; it may contain several trak boxes,
each of them represents the container of an individual
object. The mdat box is the media data container, while
the udta box is used to store descriptive metadata (in
MPEG-T7 format) related to the whole presentation. As
we show in the following, our proposal uses a trak box
for the audio and a udta box for the game description.

The MPEG7-DDL

Our approach uses MPEGT7-DDL to describe the ad-
venture game. MPEGT7-DDL is a markup description

87

language based on XML and is provided with a set of
tags to describe multimedia contents. It produces a de-
scription of the spatial layout of different media objects
(video, audio, graphics, text) as well as the temporal
order in which these object will be played out during
the presentation. These tags have attributes and val-
ues and are usually enclosed between angle brackets in
the form <tag attribute=value>, with the exception
of tags that do not have attributes.

Among the several pre-defined tags, it is worth pre-
senting some tags that will be used to describe data in
this paper. The <AudioSegment>...</AudioSegment>
tags allow decomposing an audio stream into several au-
diosegments, by specifying the showtime and the dura-
tion (through the tags <MediaTime>...</MediaTime>)
of each audio-segment. The <Image>...</Image> tags
allow specifying an image, which is located through the
<MediaUri> tag. The <Label>...</Label> tags al-
low labeling a portion of the MPEGT description. The
<TextAnnotation> and <FreeTextAnnotation> tags
are used for simple text description. For a detailed
MPEG?7 description, readers can refer to Hunter (2001).

The AAC File Format

Our approach uses the Advanced Audio Coding (AAC)
format to encode the vocal narration of the adventure
game. AAC is an MPEG standard audio encoding al-
gorithm and can be used inside 3GP files. This format
provides high audio quality at low bit-rates and is gain-
ing wide adoption in the marketplace. Readers can refer
to Brandenburg (1998), Herre and Purnhagen (2002) for
further details about this format.

Here, we simply highlight that an AAC stream is com-
posed of a set of self-encoded audio blocks. This is the
main difference with other encoding algorithms, where
to decode an audio block, it is necessary to have several
(adjacent) audio blocks. Conversely, an AAC player can
jump from one block to another without any problem,
and, as we better show in the following, this is a fun-
damental characteristic for our proposal. In fact, in an
adventure game, the player might jump from one audio
portion to another, depending on the user’s choices.

Security Tools

The goal of a content protection mechanism is to disclose
the material only to authorized users. Today, this pro-
tection is achieved through a digital right management
system that wraps the media file with a control mecha-
nism that is usually based on classic security techniques
like encryption and information hiding.

With encryption, the player has to know the crypto-
graphic key (which should be kept secret to the user
to avoid unauthorized usage or distribution) to play
out the media file. Information Hiding is a technique
that hides information inside a media file. It is achieved

through watermarking techniques as explained by Cox
et al. (1997), where a watermarking key is used to gen-
erate a random sequence during the embedding process.
The random sequence is used to spread out the hidden
information (the watermark) into the media file. The
knowledge of the watermarking key is essential to ex-
tract the watermark. The security of the watermark
relies on the fact that it has to be: hidden, impercep-
tible, directly connected to the media content, statisti-
cally invisible, robust and tamper resistant. If all these
properties are met, extracting and altering a watermark
is hard with no knowledge of the watermarking key.

OUR PROPOSAL

In this section we present details of our proposal that
aims at describing and storing an adventure game in-
side a 3GP file in a transparent, light, inter-operable
and secure way, so that adventure games may be poten-
tially played over any mobile audio device. Our focus is
on adventure games for two main reasons: i) old games
are getting new life thanks to their use over modern
cellphones and adventure games were the most popular
games in the 80s and ii) adventure games are well suited
for the mobile scenario where system resources are lim-
ited, and where several devices are still released without
any graphical screen (think of portable MP3 players).
The architecture we propose aims at transforming an au-
dio mobile device into an adventure game console. As
we mentioned, we seek for: lightness, interoperability,
transparency and security. Lightness is essential for a
scenario with limited resources and is achieved through
MPEGT7-DDL, which allows describing and synchroniz-
ing different media streams through a simple and light
text-based description; Interoperability ensures that the
produced file can be used over several different devices
and is achieved through the usage of standard tools like
MPEGT7-DDL and the AAC format (for the encoding
of the vocal narration); Transparency is ensured by the
usage of the 3GP files. Security ensures that only a le-
gal owner of the media file can play out the adventure
game and also that alterations of the adventure data
(or a part of it) are not allowed. It is guaranteed by a
security mechanism designed using classic security tools
such as watermarking and hash function.

In the following we show how a text-based adventure
game is produced, protected and played out.

Production of the Adventure Games Script

Let us consider a simple Knight Adventure: A knight en-
ters into the castle. He is looking for a treasure. Three
doors are before him: one leads to a death-trap; another
to lion cage and only one is the door that has to be
opened in order to reach for the treasure. Although very
simple, this story present a character (the knight) that
has to take decisions (which is the right door?) in order

88

Production

Interaction Manager

Play out

Figure 2: The porposed software architecture to produce
and protect adventure games.

to accomplish a task (to find the treasure).

Users can affect the story development by interacting
with the story. Since user’s choices are unknown in ad-
vance, the adventure game plot has to contain all the
possible story developments that can happen. Hence,
multiple storyline and multiple user’s choices have to be
described in advance. Figure 2 shows the proposed soft-
ware architecture where the script, scene and interaction
manager cooperate to produce an adventure game.

Script manager

Since the story development depends on the user’s
choices, the story, along with all the possible story de-
velopments, is divided into basic audio chapters.

An audio chapter contains the vocal narration of a por-
tion of the adventure and can be of four possible types:
initial, interactive, sequential and ending. The initial
chapter is the first audio part that is played out; only one
initial chapter per adventure game is allowed. The in-
teractive chapter allows users to interact with the story.
The sequential chapter does not allow interaction (it just
presents information to the user) and the ending chapter
is the one that ends a storyline (note that multiple end-
ing chapters may be present). For instance, our Knight
Adventure may be composed of six different chapters:

e Ch 1. (Initial) A knight enters the castle. He is
looking for a treasure.

e Ch 2. (Interactive) He has three doors before him.
Left, right or center door?

e Ch 3.1. (Ending) He opens the door and fifty
swords hit him.

e Ch 3.2. (Ending) He opens the door. A lion appears
and roars at him. He tries to escape, but the Lion
is already upon him.

e Ch 3.3. (Sequential) He opens the door and he takes
the stairs up to the roof.

e Ch 4. (Ending) A box is partially hidden, but he
spots it and he finally finds the treasure.

<AudioSegment>
<label>"41"</label>
<MediaTime>
<MediaTimePoint>00:22:30</MediaTimePoint>
<MediaDuration>00:00:10</MediaDuration>
</MediaTime>
<TextAnnotation><FreeTextAnnotation>
He opens the door and fifty swords hit him.
</FreeTextAnnotation></TextAnnotation>
</AudioSegment>

Table 1: MPEGT description of an audio chapter.

Although very simple and with only one interactive
chapter, three different stories with three different end-
ings are possible (1-2-3.1, 1-2-3.2 and and 1-2-3.3-4).
Once the plot has been divided into several audio chap-
ters, an MPEGT7-DDL description has to take place.
This description has to specify: i) all the audio chapters
information, and ii) the choices offered to the user. Ta-
ble 1 shows an example of an audio chapter description.
The audiosegment tag is used to define an audio chap-
ter; every audio chapter (identified with a unique label)
specifies the beginning (mediatimepoint) and the dura-
tion of the audio segment (mediaduration). If available,
a text description of the audio chapter may be specified
through the textannotation tags.

In addition to the audio chapters description, all the
possible user’s choices have to be described too. To
this aim, the script manager defines a table (the scene
transition table); Table 2 shows how a text-based de-
scription can be used to handle possible user choices.
Each entry is identified by the Chapter IDentifier num-
ber (num="X") and includes a possible question (for
interactive chapters) and the possible chapter destina-
tions. If the chapter is interactive, there are at least two
possible audio chapter destinations; if the chapter is of
an ending type, no chapter destination is present. If the
chapter is sequential, a single destination is present.
Once the script manager has produced the text-based
description, content protection has to be added.

Adventure Game Protection

The security mechanism is in charge of protecting the
content with the following goals: i) every user can listen
to a pre-defined story and ii) only a legal owner can enjoy
the adventure game. To this aim, the vocal narration
(AAC stream) is produced with the following rules:

e A single pre-defined storyline is linearly encoded so
that the audio chapters that compose the story can
be sequentially found from the first to the last (no
interactive chapters are present). This story is in
clear and any player can play it out.

e All the other audio chapters are encrypted and
stored in the second part of the file. Without the

89

<ROWSET>

<ROW num="2">

<QUESTION>What door would you like to open?
Left, center or rigth?</QUESTION>

<DEST1>3.1</DEST1>
<DEST2>3.2</DEST2>
<DEST3>3.3</DEST>

</ROW>

<ROW num="3.3">
<QUESTION></QUESTION>
<DEST1>4.</DEST1>
<DEST2></DEST2>
<DEST3></DEST>

</ROW>

</R6&éET>
Table 2: A text-based description of the possible choices
a user can take.

decryption key, the play out produces audio noise.

e The first and the second part are separated by 120
seconds of silence, so that, if played with an ordi-
nary player, the pre-defined storyline would not be
immediately followed by audio noise.

The audio stream (AAC format) and the adventure de-
scription (MPEG7-DDL format) have to be stored inside
the 3GP file. As previously described, a 3GP file is orga-
nized through boxes. Hence, the AAC stream is stored
inside a trak box, while the static MPEG7 description
is stored inside the udta box. In this way, transparency
and lightness and interoperability are achieved: thanks
to the use of the 3GP file format, every player that can
handle 3GP files can handle the AAC stream and the
MPEG?T7 description.

To ensure security, the 3GP file has the following data
watermarked in it, as shown in Figure 3:

e «, the key for the audio stream decryption; The
key is watermarked in the first audio chapter and
the player can retrieve it while playing it out. The
key is watermarked as it has to be provided to the
media player, but not the the user.

e k, the decryption key for the audio description
Agese; Again, the key is needed by the player to
decrypt the adventure game description, but it has
to remain unknown to the user. The key is water-
marked inside the first audio chapter.

e WID = H(Fx(Agesc)) is watermarked to protect
the audio from unauthorized alteration. It en-
sures integrity via a lightweight verification pro-
cedure that compares the hash of the whole ad-
venture game description (encrypted) against the
WID. Note that, for performance reasons, the use
of stronger cryptographic tools is avoided.

CID,,

|

CID, & K WID CID, CiD, CID,, CID,, CID,

Clear Audia Data Silence Encrypted Audio Data

Figure 3: Information watermarked inside the 3GP file.

e CID, the audio chapter identifier (watermarked in-
side any audio chapter, with the exception of ending
scenes); This ID uniquely identifies each chapter.

Data are hidden into the file using classical spread-
spectrum techniques as the ones proposed by Cheng
et al. (2002). These techniques require a watermark-
ing key to spread out the data in the media file. Since
the software player must know the watermarking key
to read the watermarked data, the key is hidden in the
player’s code with suitable software engineering tech-
niques (hence users don’t know the key). To avoid illegal
copies, each 3GP file is released for a specific instance
of a software player.

Adventure Game Play Out

To enjoy the adventure game an enhanced player is
necessary. In fact, if played with an ordinary player,
only the unencrypted audio stream is rendered. The
enhanced player is in charge of: i) playing the audio
stream, ii) decrypting the encrypted data, iii) interact-
ing with the user and iv) jumping from one audio chap-
ter to another depending on the user’s choices. As shown
in Figure 2, to perform all these tasks, the player coop-
erates with the scene and with the interaction manager.
The player retrieves the hidden data during the play
out of the first audio chapter: the embedded watermark
WID (for weak integrity verification), k (for decrypting
the adventure game description), and « (for decrypting
the second part of the audio stream). Right after the
extraction, the player checks the integrity by computing
H(Ek(Agesc)) and by comparing it with the retrieved
WID. If the integrity check fails, reproduction is inter-
rupted, otherwise the audio description and the second
part of the audio track are decrypted.

Once the security check has passed, the rendering of the
adventure game is done in cooperation with the interac-
tion and the scene manager as described in the following.

Interaction manager

The interaction manager is in charge of handling the
interactions between the user and the system. It is ac-
tivated when an interactive audio chapter is played out;
by using the scene transition table, it identifies the ques-
tion to pose to the user and, using the answer and the
scene transition table, it gives the next audio chapter
CID to the scene manager. Note that the interaction
interface depends on the available hardware: in cell-
phones the interactions are done through the keyboard,

90

but more complex systems may be available (e.g., a pad,
a voice or visual recognition system).

Scene manager

The scene manager is in charge of identifying the au-
dio chapter to play out. It controls both the player and
the interaction manager. By cooperating with the in-
teraction manager, it gets the CID of the chapter that
has to be played out; using this CID, it accesses the
MPEGT7-DDL description and finds out the correspond-
ing audio segment in the AAC stream; it analyzes the
audio-segment description and gives the play out timing
information to the enhanced player.

CONCLUSIONS AND DIRECTIONS

In this paper we presented a software architecture to
transform an audio device into an adventure game con-
sole. The proposed mechanism is provided with features
like: i) Transparency (no modification to the 3GP file),
ii) interoperability (3GP files can be managed by mobile
device), iii) lightness (the MPEGT description requires
limited system resources), iv) security (the digital con-
tent is protected from illegal usage and modifications).
Our proposal can be expanded with multi-modal recog-
nition system (e.g., a voice recognition system, a point-
and-click interface) and with multiplayer capabilities.

ACKNOWLEDGEMENTS

This work has been partially supported by the Italian
M.I.U.R. under the MOMA initiative.

REFERENCES

ABI, 2006. ABI Research - Market Research Report. In
www. abiresearch.com [online].

Brandenburg K., 1998. Perceptual coding of high quality dig-
ital audio. In Applications of digital signal processing to
audio and acustics. Kluwer, 39-83.

Cheng S.; Yu H.; and Xiong Z., 2002. Enhanced spread spec-
trum watermarking of MPEG-2 AAC audio. In Proceed-
ings of the IEEE Int. Conf. on Acoustics, Speech, and Sig-
nal Processing. 3728-3731.

Cox J.; Killian J.; Leighton F.T.; and Shamoon T., 1997.
Secure spread spectrum watermarking for multimedia. In
IEEE Trans. Image Process. vol. 6, 1673—1678.

Herre J. and Purnhagen H., 2002. General audio coding. In
The MPEG4 Book. Prentice Hall.

Hunter J., 2001. An overview of the MPEG-7 description def-
inition language (DDL). IEEE Trans Circuits Syst Video
Techn, 11, no. 6, 765-772.

MPEG, 2005. Information technology Coding of audio-visual
objects Part 12: ISO base media file format. ISO/IEC
14496-12:2005. In wwuw.chiariglione.com [online].

Using Mobile Multi-Hop Ad-hoc Networks
for Multi-Player Games

Oliver Wellnitz

IBR

Lars Wolf

Technische Universitat Braunschweig
Muhlenpfordtstrasse 23, 38106 Braunschweig, Germany

{wellnitzjwolfi@ibr.cs.tu-bs.de

ABSTRACT

Over the last couple of years, multi-player games have be-
come more and more popular. Additionally, new mobile de-
vices now have sufficient resources to play these multi-player
games in mobile and wireless networks. While commercial
mobile game consoles start to emerge, we take a step forward
and take a look at future mobile gaming.

In this paper, we discuss the concept of playing multi-
player games in mobile ad-hoc networks. Such networks
are created spontaneously, can be used free-of-charge and
have the ability to communicate beyond the range of a sin-
gle wireless device. Here, we describe a general architec-
ture for mobile gaming and analyse its challenges in three
phases: Before the game starts, during the game and af-
ter the game. We then discuss possible solutions to these
problems and present and refer to related work where possi-
ble. Furthermore, we introduce four reference scenarios for
mobile multi-player gaming which can be used for a future
evaluation of our approach.

1. INTRODUCTION

During the last decade, computer games evolved from
single-user games to multi-player games which allows people
to play with or compete against each other. This develop-
ment contributed to the huge success of computer games for
the last couple of years. Today, small and mobile devices
have become very popular and the trend towards mobile
devices also has an impact on computer games. Some ex-
amples are handheld gaming devices like Sony’s Playstation
Portable (PSP) or Nintendo’s Dual-Screen (DS). Both de-
vices contain wireless communication equipment that allows
for multi-player gaming. In addition to games that exist to-
day, multi-player games on mobile devices allow their users
to play anywhere at any time. They also have the chance to
introduce new kinds of games to the market such as mixed
reality or location-based games that make use the player
himself in the real world instead of relying on avatars in a
virtual world.

To achieve communication between mobile devices, sev-
eral different technologies such as GSM, UMTS, Bluetooth,
Wireless LAN, or others can be employed. However, all wire-
less technologies share common problems like attenuation,
fading, shadowing, reflection, scattering, and diffraction.

There are two different basic forms of mobile communi-
cation. Infrastructure-based communication requires often
fixed base stations which relay messages to other mobile

91

nodes and also act as a coordinator for the wireless network.
Secondly, ad-hoc communication allows for direct commu-
nication between the mobile devices. Today, mobile gaming
in infrastructure networks mainly uses cellular networks to
play games on mobile phones or a private WLAN access
point at home to connect laptops or consoles.

In this paper, we propose the use of a mobile multi-hop
ad-hoc network to connect the players of a multi-player game
without the need for any network infrastructure. Mobile ad-
hoc networks are created in a spontancous manner whenever
two devices move within communication range of each other
and can be used free of charge. Furthermore, mobile ad-hoc
networks can support communication to remote devices by
using intermediate nodes as relays to forward data to their
destination. Thus, multi-hop ad-hoc networks can grow be-
yond the range of a single wireless transmitter by using a
fair cooperation between mobile devices.

In general, multi-player games for mobile devices often
do not take the different networking environment into ac-
count. Wireless networks are more error-prone than wired
networks like the Internet. Thus, existing approaches like
a central game server for a multi-player game are unsuit-
able for networks with such a dynamic environment. On
the other hand, a fully distributed approach like peer-to-
peer networks does not make efficient use of the available
bandwidth, makes cheating in a game easier and does not
take differences in terms of resources of the mobile devices
into account. By using a distributed server architecture,
the game can create the necessary redundancy while keep-
ing network requirements at a minimum. Each game server
is responsible for game clients in his vicinity to which it can
communicate efficiently. In [10], we proposed a game archi-
tecture that introduces the idea of zone servers, which are
responsible for a certain area (zone) of the network. Zone
servers are not independent devices. The game server soft-
ware runs on a player’s mobile device in addition to the game
client. Zone servers communicate in a peer-to-peer fashion
with each other. Although, due to the knowledge of the
game rules, they are able to make local decisions on their
own and delay and aggregate or omit information to other
servers. We proposed that these game servers should be de-
termined from the group of players and that this selection
should be made based on the capabilities and performance
of the mobile device as well as its position in the ad-hoc
network. Other possible factors may include mobility infor-
mation, battery level and energy consumption or the player’s
trustworthiness to act as a game sever.

Legend:
O Player node I:' Supporting node

Figure 1: Mobile Ad-hoc Network

Multi-player games can be distinguished in several cat-
egories. First-Person Shooters (FPS) or sports games like
car racing are fast, reaction-based games with high net-
work requirements regarding delay or latency. Role-playing
Games (RPG) are usually round-based games with low net-
work requirements and Massively Multi-Player Online Role-
Playing Games (MMORPG) support tens of thousands of
concurrent players. Their problem mainly lies with scal-
ability issues on the server side. Our goal is to support
all kinds of multi-player games in mobile environments that
can be played in the Internet today and establish a game
architecture that also allows for the creation of new kinds
of mobile games such as mixed reality games. The only ex-
ception is made for MMORPGs because we do not expect
that an infrastructure-less network will be able to cope with
thousands of users at the same time. For the purpose of
this paper, we focus on mobile ad-hoc networks only and
do not rely on any infrastructure network or the Internet.
Although, it is possible to integrate such a connection in the
future.

Figure 1 shows an example of a mobile ad-hoc network in
which vertices represent mobile nodes and edges denominate
the possibility of a direct wireless communication between
two nodes. For this paper, we assume that every link be-
tween two nodes is bidirectional.

We distinguish two different types of nodes participating
in the game: Players participate in the game (player nodes)
while other nodes cooperatively forward traffic in the net-
work but otherwise do not have knowledge about the game
(supporting nodes). Supporting nodes may use the network
for other applications and may also rely on player nodes to
forward their traffic to its destination. For purpose of this
paper, we use the terms user and node interchangeably.

The remainder of this paper is structured as follows: Sec-
tion 2 discusses likely scenarios for mobile gaming in multi-
hop ad-hoc networks. Section 3 shows the three phases of
a mobile game and examines the problems in each phase.
Finally, Section 4 concludes this paper.

2. MOBILE GAME SCENARIOS

It is safe to assume that not in every situation players will
rely on mobile multi-hop ad-hoc networks for their connec-

92

Figure 2: An InterCityExpress at a train station

tivity. If only a few players in close vicinity play together,
they may choose to directly communicate with each other
in a peer-to-peer fashion. The same is true when they can
use exisiting infrastructure free of charge, like a wireless ac-
cess point at home. But if the number of players gets higher
and/or the players are distributed over a larger area, the
use of mobile multi-hop ad-hoc networks is more likely to
be beneficial.

In general, the network characteristic between mobile nodes
depends on various properties of the mobile nodes like their
number, position, or speed as well as the attributes of their
ambient environment such as noise/background traffic, the
possibility of line-of-sight communication, or the attenua-
tion of the materials found there.

In order to ascertain the feasibility and to determine the
performance of protocols and mechanisms for games in mo-
bile ad-hoc environments, all these different characteristics
have to be taken into account. Hence, specific and realis-
tic scenarios which allow us to identify all parameters men-
tioned above are mandatory. In the following, we define
four reference scenarios where mobile games will most likely
be played. All scenarios are based on the assumption that
players remain nearly stationary while playing games. We
only allow one exception to this rule for new types of mo-
bile games where players have to move around in order to
interact with the game.

2.1 Scenario A: Train station

This scenario involves a medium-sized area, e.g. 100 X
250 m?. People in train stations usually walk around, wait in
designated waiting areas, or wait on a platform. The group
of players only comes from the group of waiting people while
supporting nodes may also be carried by people roaming
around. This scenario contains a number of attractors such
as the rail service center, the shops, the entries and exists,
and the plattforms. When moving around, people usually
travel on foot, hence we assume a maximum speed of 2m/s.
Meanwhile, other mobile nodes in trains that pass through
the train station can have speeds up to 25m/s Players as
well as other people carrying supporting nodes walk in the
hallways or on the plattforms.

When discussing wireless communication at train stations,
some particular problems have to be taken into account. Be-
sides the usual obstacles for wireless communication such as

Figure 3: The inside of an InterCityExpress

walls or other people, a commercial wireless infrastructure
may exist at train stations (e.g. one or more WLAN access
points that can be used to access the Internet). Any commu-
nication with this infrastructure interferes with game trans-
missions if both utilize the same frequency. Wireless com-
munication between platforms is impaired if a train blocks
the line of sight between two devices. Additionally, elec-
tromagnetic noise from the overhead line and other electric
equipment also has a negative effect on wireless communi-
cation.

Generally, people do not stay very long at train stations.
They either get on or off the train. Therefore, we expect
the game time for one player usually to last no longer than
15 minutes. However, train delays could increase that num-
ber.

2.2 Scenario B: Train ride

On the train, the scenario size is approx. 3 x 175m?>.
In this scenario, two different situations should be distin-
guished. First of all, during the train ride, people usually
sit at their seats and do not move often. The second situ-
ation is a stop at a train station when people get on or off
the train and in the following minutes while they make their
way through the coaches. So again, players are not expected
to move during their game and the mobility of supporting
nodes is also low as long as the train is on the move. Again,
people travel on foot, so we assume a maximum speed of
2m/s. Generally, we conclude as far as node mobility is con-
cerned the train scenario is of rather static nature.

The area in this scenario is quite long but not very wide
which means from a communication point of view that data
always has to travel along the axis of the train. There is
usually no alternate route available so that e.g. game traffic
may have to be routed through congested areas in order to
reach the players. Another problem for wireless networking
is that carbodies are made of metal mostly aluminium or
steel. This leads to attenuation of the wireless signals to
stations in other coaches. To communicate between nodes
at both ends of the train could require up to 10 hops. Again,
commercial access points may be present in trains which
may lead to an increased usage of ISM-band frequencies.
Finally, other nodes outside the train may pass by at relative
speeds of up to 100 ™/s.

A train ride usually lasts longer than ten minutes with

93

Figure 4: A school yard

exceptions for local trains or subways. In trains, games could
also last several hours with some users playing the whole
time while other leave or join late in the game as the get on
or off the train.

2.3 Scenario C: School yard

For the school yard scenario, we assume a larger rectan-
gular area of 250 x 250 m? and define it as an open outdoor
space. The main difference between the previously men-
tioned scenarios is the lack of supporting nodes and the
grouping of players. For this scenario, we assume that stu-
dents who turned on their mobile nodes are playing games.
So there are no additional supporting nodes. Secondly, we
think that students will stand or sit in groups together rather
than playing from different positions distributed across the
school yard. We define these groups as clusters of players or
mobile nodes. On a school yard, several player clusters can
evolve for two different reasons: Different clusters of players
can play different games or clusters are formed up of mem-
bers of the same team which compete against other teams in
the same game. With players remaining stationary and no
supporting nodes, this scenario is static. However, students
can decide to switch on their mobile devices and join the
game or players may decide to leave the game.

2.4 Scenario D: Mixed reality and location-
based games

Mobile devices allow the player himself to be integrated
into the game thus leading to new kinds of game types. Mo-
bile games are able to integrate the player’s location as well
as his heading, speed, position, or other properties in the
gameplay. Examples of these new type of games are the hu-
man pacman game(3] or a first person shooter in which play-
ers use sensor-equipped plastic guns to hunt virtual monsters
in a park[6]. A scenario for these new types of games could
range from small parks with an edge length of a few hun-
dred meters to the size of a larger city covering several square
kilometers. To help interaction between the players, it may
be sufficient if mobile devices are able to directly communi-
cate with each other in a peer-to-peer fashion. However, the
game may require some kind of global game state, e.g. the
players position, that must be transmitted to all players in
the game. Hence, an infrastructure network and/or mobile
ad-hoc network may be necessary. Players in this scenario
can move at various speeds as they walk, take the bus or
even drive a car.

3. MOBILE GAME CYCLE

In this section, we will split up a game into three phases.
Each phase has distinct problems which we will discuss in
detail. In the pre-game phase, players have to find each
other, agree on a game to play and set up the necessary
software and infrastructure to play the game. During the
game, a game architecture has to deal with communication
errors and link failures as well as game server redundancy
and the mobility of the players. After the game, the results
of the game such as the high-score can be uploaded to the
Internet.

3.1 Creating the Game - The Pre-Game Phase

The pre-game phase is the first of three phases of a game.
We assume that at least two players are equipped with mo-
bile devices and participate in the same wireless ad-hoc net-
work. All devices within this network can either commu-
nicate directly with each other or are able to forward data
through supporting nodes.

3.1.1 Player Discovery

Before a game can be played, a user has to find one or
more other users in his neighbourhood with whom he agrees
on a game. This neighbour discovery can be implemented
as a broadcast or multicast request which is sent into the
ad-hoc network. A mobile node should either send a re-
quest using a low, fixed maximum hopcount (TTL) or by
employing a mechanism which increases the hopcount for
each subsequent discovery request if it did not receive an
answer to its previous request in time. Both strategies are
suitable to keep the overhead low if the ad-hoc network is
large. Whenever a discovery request is received by a mobile
node whose user is interested in playing a multi-player game,
the mobile node should send a discovery reply message to
the originator of the request. This reply should at least
contain information about the sender but may also contain
information and preferences about other mobile nodes which
users share the same interest in gaming. We believe that a
player discovery mechanism should focus on finding players
in general rather than specific games because while a user
might not find teammates for the game of his choice, a group
of users may find a common interest and agree on a game
to play. Konark[5] was developed as a discovery protocol
for mobile ad-hoc networks and could be used for this pur-
pose. Also, a simple chat application which is already used
in today’s multi-player games to let the player’s discuss the
parameters and settings of the game should be implemented
to help users to find suitable partners for a game.

3.1.2 Game Software Distribution

Another problem is the availability of the game software
itself at the mobile nodes. Unlike with multi-player games
on the Internet, a user will probably find only a few other
users in his network, e.g. in a long-distance train. While
they could all possibly agree on the type of game to play to
spend their time during the long ride, the group may have
a disjunctive set of games installed on their mobile devices.
One possibility to solve this issue is to buy the needed soft-
ware over an wireless infrastructure connection, e.g. UMTS,
from a vendor on the Internet. However, this method relies
on network infrastructure to be present and available. But
the most important downside of this idea is that the cost of
such transaction which includes not only the costs for the

94

game software itself but also the costs for communicating
through the wireless infrastructure network is most likely to
be considered to high for a regular player. Another idea is
to include several licenses with a multi-player game, so that
the owner of the game software is allowed to invite a certain
number of other players to his game. The software could
then be copied freely in the ad-hoc network up to the max-
imum number of available licenses but may only be used if
the owner of the software is also present.

3.1.3 Assigning Game Servers

We now assume that our user has found a group of other
players, that they agreed on a game and that the game soft-
ware is installed on all mobile nodes. Before a game can
be started, suitable nodes should be assigned as servers for
the game. As previously discussed in Section 1, we do not
consider peer-to-peer games for mobile ad-hoc networks. In
[11], we introduced a distributed dominating set algorithm
for game server selection which uses local information to de-
termine well-suited mobile nodes from the group of players.
This algorithm calculates an initial game server set and can
adjust to network changes during the game. With our al-
gorithm only players of that game are eligible to play the
role of game server because we believe that a user not par-
ticipating in the game will not be willing to spend battery
power and other resources of his mobile device to support
the game. Also, each instance of a game will have its own
game servers for the same reason. In a mobile ad-hoc net-
work, mobile nodes can fail for various reasons. Nodes can
move out of the wireless range of other nodes, their con-
nection could be temporarily impaired, or a mobile device
could simply run out of battery. Hence, for redundancy rea-
sons at least two nodes should act as server for the game.
However, in static scenarios such as the school yard scenario
mentioned in Section 2, a single game server might also be
sufficient if no other suitable game server can be found.

After the game server infrastructure is set up, the game
can be started.

3.2 Playing the Game - The In-Game Phase

During the game, communication between mobile devices
may be impaired for several reasons. A robust game ar-
chitecture should be able to cope with mobility of users,
temporary network congestion, and changing background
noise. The mobility of devices can either apply to play-
ers which currently have the role of a game server, players
that have no special role in the game, or supporting nodes.
Our definition of mobility also includes significant changes
in the environment that have an effect on the characteristic
of the network such as bit error rate or signal strength as
this change is indistuingishable from node movement by a
mobile node measuring network connectivity to other nodes.

3.2.1 Mobility Issues

One should keep in mind that with our zone server ar-
chitecture, game servers and their respective clients usually
reside in close vicinity of each other. Players are able to
switch to another game server whenever they experience
degradation from the network. As game servers exchange
information to keep the game synchronised, players should
have little problem in restoring their network connection by
using another server and continue playing the game. To en-
sure a smooth transition from one server to another, players

500

450

400

w
a
=]

w
=]
S

N
a
=]

Latency [ms]

N
=]
S

o
@
=]

o
=)
[=]

o
=]

=]

AODV DSR DSDV OLSR

Figure 5: Ad-hoc Routing Protocol Latency

should continuously monitor the network conditions to their
servers. Whenever the connection degrades below a thresh-
old, the node should find a suitable new server and establish
a backup connection. This way, the player can speed up the
handoff to another server. In order to be helpful, the thresh-
old mechanism must ensure that a player does not switch
back and forth between game servers.

Game server movement effects not only a single but all
players connected to that server. Additionally, it can also in-
fluence the synchronisation between the moving game server
and the other game servers. If a game server moves away,
e.g. its user gets off a train, all players attached to this game
server will either notice a decrease in network performance
when communicating with their game server or in case of
fast fading, the game server will vanish from the network.
In both cases, players will use the method described above
to reconnect to another server of the game. The number and
the location of players can change during the game if players
decide to leave while others may decide to join during the
game. Hence, the number of game servers should also adjust
to the number of players, their location in the network, and
the connectivity inside the ad-hoc network. For this reason,
our game server algorithm[11] runs continuously during the
game and determines new game servers if necessary. Game
servers must give up their server role when they have no
more clients. The game itself is responsible for defining how
many game servers are necessary as this requirement varies
from game to game.

The movement of supporting nodes does not affect the
game directly. But in a mobile ad-hoc network players and
game servers may need to use a number of supporting nodes
to transmit their game data to its destination. While we can
not prevent that supporting nodes move, a robust architec-
ture must ensure that a new path between communication
partners can be reestablished swiftly. In mobile ad-hoc net-
works, this responsibility lies with the ad-hoc routing proto-
col. Several papers have analysed the network requirements
for games regarding packet loss, latency and other parame-
ters[1, 4, 7, 9]. They found that the packet loss ratio should
be generally kept under 5% and latency should be below
100 — 200 ms although these values depend on the type of
game. We have done an initial evaluation with the net-
work simulator NS-2 that suggests that the reactive Ad-hoc
On-Demand Vector routing protocol (AODV)[8] as the best
candidate for mobile gaming (see Figure 5).

95

It goes without saying, that prediction of mobility using
a threshold based mechanism cannot deal with all kinds of
wireless problems. The previously mentioned fast fading,
for example, is hard to forecast and any mobile game may
introduce additional game-specific mechanisms to hide such
problems from the user. Also, extended time periods with-
out any connection to the game must be dealt with accord-
ingly so that the remaining players can continue to play the
game in a fair and uninterrupted way.

3.2.2 Quality of Service

Game traffic can also be influenced by other traffic which
is sent by supporting nodes through the ad-hoc network.
The rules of a multi-hop ad-hoc network state that a node
that expects other nodes to forward its data should also in
return be willing to forward theirs. So while the support-
ing nodes forward our game traffic, they might also want to
send data of their own. This data could come from other
applications as well as other games. Examples of other appli-
cations are accessing the Internet through an access point or
exchanging documents with a business partner. Contention
in the network can lead to increased latency, jitter, and data
packets being dropped which can have a huge impact on the
playability of a game. Applying quality of service (QoS)
mechanisms in these situation such as priority queuing and
rate control, as well as broken link detection can help to de-
liver real-time game traffic more reliable and on-time while
preventing other applications from starving. In [2], QoS
modifications for multi-player games in mobile ad-hoc net-
works were discussed in detail. It shows that such modifi-
cations can be used to ensure that the packet loss ratio is
kept below 5% and latency and jitter is kept below 25ms
for connections up to three hops even if there is significant
background traffic.

3.2.3 Game Splits & Merges

During a game, two or more groups of players can become
separated from the network. This can happen if a group of
players gets off the train at a train station or a cluster of
players on a school yard looses their network connection to
the rest of the network. In cases where a group does not con-
tain a game server, the players in that group cannot continue
to play the game. However, if two or more groups can still
communicate with a game server in their neighbourhood, the
game in one group continues independently of the games in
the other groups. Such game splits are easy to detect with a
simple time-out-based mechanism for the game server syn-
chronisation. If the game is permanently split, it is possible
for the game to continue with a reduced number of players.
For temporary game splits, it may be a nice feature to be
able to merge two or more games again.

A game merge would heavily rely on the type of the game
and the game data structure that must be synchronised.
However, a game synchronisation mechanism has to deal
with small inconsistencies in the game state anyway and it
may be able to support game merges up to a certain point.

Finally, it should be pointed out that for games that last
longer than a few minutes, game developers should ensure
that players are allowed to join a game that is already in
progress because of the volatile nature of mobile networks.

3.3 After the Game - The Post-Game Phase

After the game has finished, players can decide to con-

tinue playing another round of that game using the same
players and game infrastructure that is already established,
they can pick another game to play or they could choose to
quit playing. Nevertheless, storing the outcome of the game
such as the high score in a persistent way can prove useful.
Players can utilize existing infrastructure to store the results
of the game, such as the high-score, on the Internet. In situ-
ations where no wireless infrastructure network is available,
the mobile device can store this information and try it again
later, e.g. by sending it through the player’'s WLAN access
point at home.

Besides high scores, massively multi-player games (MM-
ORPGs) could be enhanced with small mobile multi-player
games. For example, one could allow the user to download
his MMORPG character to a mobile device and take it with
him. A separate mobile multi-player game could then allow
players to trade items or fight with each other during a train
ride without any connection to the online game itself. The
results of this fight or the trade could be then fed back into
the MMORPGs allowing the player to virtually participate
in an online world even without a permanent connection to
the Internet.

4. CONCLUSION

In this paper, we proposed a concept for mobile multi-
player games by using multi-hop ad-hoc networks. For this,
we have introduced four reference scenarios where we believe
multi-player games are most likely to be seen in the future.
We also examined the challenges of mobile gaming in all
three phases of a game and presented algorithms for these
problems based on related work where possible. Otherwise,
we suggested practicable solutions.

Creating network support for fast-paced games in mobile
ad-hoc environments is not an easy task. This remains true
even if you only restrict yourself to the games that are played
on the Internet today. Nevertheless, we are convinced and
believe to have shown that ad-hoc networks are a viable
and cost-effective method for communicating data for mobile
multi-player games.

In the future, we will further refine our ideas and design
algorithm and protocols that will reflect the suggestions pre-
sented in this paper. Further on, we plan to evaluate our
concept using the mobile gaming reference scenarios from
this paper.

5. ACKNOWLEDGEMENT

The photo in Figure 2 was taken by Greg O’Beirne. The
photo in Figure 3 was taken by Reinhard Kraasch. Used
with permission.

6. REFERENCES

[1] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett,
E. Agu, and M. Claypool. The Effects of Loss and
Latency on User Performance in Unreal Tournament
2003. In Proceedings of the 3rd Workshop on Network
and System Support for Games, pages 144-151, Aug.
2004.

[2] D. Budke, K. Farkas, O. Wellnitz, B. Plattner, and
L. Wolf. Real-Time Multiplayer Game Support Using
QoS Mechanisms in Mobile Ad Hoc Networks. In
Proceedings of the 3rd Annual Conference on Wireless

96

3]

(9]

[10]

[11]

On demand Network Systems and Services (WONS
2006), Les Ménuires, France, Jan. 2006.

A. D. Cheok, S. W. Fong, K. H. Goh, X. Yang,

W. Liu, and F. Farzbiz. Human pacman: A
sensing-based mobile entertainment system with
ubiquitous computing and tangible interaction. In
Proceedings of the 2nd Workshop on Network and
System Support for Games, May 2003.

M. Dick, O. Wellnitz, and L. Wolf. Analysis of Factors
Affecting Player’s Performance and Perception in
Multiplayer Games. In Proceedings of 4th
International Workshop on Network and System
Support for Games (Netgames 2005), Hawthorne,
USA, Oct. 2005.

S. Helal, N. Desai, V. Verma, and C. Lee. Konark — A
Service Discovery and Delivery Protocol for Ad-hoc
Networks. In Proceedings of the Third IEEE
Conference on Wireless Communication Networks
(WCNC), New Orleans, Mar. 2003.

K. Mitchell, D. McCaffery, G. Metaxas, and J. Finney.
Six in the city: Introducing real tournament: A
mobile ipv6 based context-aware multiplayer game. In
Proceedings of the 2nd Workshop on Network and
System Support for Games, May 2003.

L. Pantel and L. Wolf. On the impact of delay on
real-time multiplayer games. In Proc. of the 12th
international Workshop on Network and Operating
Systems Support for Digital Audio and Video
(NOSSDAV), pages 23-29, New York, USA, 2002.

C. E. Perkins, E. M. Belding-Royer, and S. R. Das. Ad
hoc On-Demand Distance Vector (AODV) Routing.
RFC 3561, Nokia Research Center, University of
California, University of Cincinnati, July 2003.

P. Quax, P. Monsieurs, W. Lamotte, D. D.
Vleeschauwer, and N. Degrande. Objective and
subjective evaluation of the influence of small amounts
of delay and jitter on a recent first person shooter
game. In Proc. Workshop on Network and System
Support for Games, pages 152-156, 2004.

S. M. Riera, O. Wellnitz, and L. Wolf. A zone-based
gaming architecture for ad-hoc networks. In
Proceedings of the Workshop on Network and System
Support for Games (NetGames2008), Redwood City,
USA, May 2003.

O. Wellnitz and L. Wolf. Assigning Game Server Roles
in Mobile Ad-hoc Networks. In Proceedings of the 16th
ACM International Workshop on Network and
Operating Systems Support for Digital Audio and
Video (NOSSDAV’06), Newport, USA, May 2006.

AUTHOR
LISTING

98

Akazawa Y. ..ccccceeeemrnnes 30
Bauckhage C.cccee... 39
Bergsma J..cccceeeeeiniennns 44
Bhakar S. ...ccceeeeennen.e. 22
Borm LLJ.J.eireieeceeeeee 49
BUuro M. e 44/60
Cacciaguerra S. 81
Davison A. .ceeeeeeemennes 5
Deutscher D....cveeeeeneee. 44
Drettakis G...coeevenemnennes 16
Fevens T..ocveeveevecenennes 22
Furini M. coeeeeeeeeeeeceeeee 86
Furtak T. oo 44
Hafner V.V. coveeeeeenn. 39
Hau B.T..oeieieeieeeeeeee 74
Horak B...cveeeeeeeceeeeees 67
Kovarsky A....ceeeeeeerenns 60
Kromer P 67
N1 A O 16
LiUF . eeeeeeeeeeeeemeeeas 22

AUTHOR LISTING

99

U 55
Magnor M.ceeeeeeeeeennes 16
MartinoviiCc J. «eveeeueirrneees 67
MudurS. e 22
Niijima K. eeeeeeeeeeeeeeeeeens 30
(©]17¢-To -1 30
Placeres F.P................. 13
Reche-Martinez A.......... 16
Roth M. e 39
Rothkrantz L.J.M........... 49/74
SailerF. o 44
Snasel V. wcevieeceeeceeeeee 67
TOM D.vreeeeeeeeemceeecemeenns 44
Wellnitz O. coveveeeeeieeceenns 91
Wiebe N. coeeeeieceeceeeeeens 44
L7A7/e] | i 91
Yang Z. cccceeeeeeeeecennnnnnns 74

	inhoud
	boek

