7™M INTERNATIONAL CONFERENCE
ON

INTELLIGENT GAMES AND SIMULATION

GAME-ONg 2006

EDITED BY

Lars Wolf

and

Marcus Magnor
NOVEMBER 29-DECEMBER 1, 2006

TU BRAUNSCHWEIG
GERMANY

A Publication of EUROSIS-ETI



Cover art was reproduced by kind permission of Larian Studios, Oudenaarde, Belgium



7™ International Conference
on

Intelligent Games and Simulation

BRAUNSCHWEIG, GERMANY
NOVEMBER 29 - DECEMBER 1, 2006

Organised by
ETI
Sponsored by
EUROSIS

Co-Sponsored by

Binary lllusions
University of Bradford
Delft University of Technology
Ghent University
Larian Studios
Liverpool John Moores University
The Moves Institute

Simulation First

Hosted by

TU Braunschweig

Braunschweig, Germany



EXECUTIVE EDITOR
PHILIPPE GERIL

(BELGIUM)
EDITORS
General Conference Chair General Programme Chair
Lars Wolf . Marcus Magnor
TU Braunschweig TU Braunschweig

Institute of Operating Systems Computer Graphics Lab

and Computer Networks Braunschweig, Germany

Braunschweig, Germany

PROGRAMME COMMITTEE

Bob Askwith
Liverpool John Moores University
Liverpool, United Kingdom

Christian Bauckhage
Deutsche Telekom
Berlin, Germany

Christos Bouras
University of Patras
Patras, Greece

Stefano Cacciaguerra
University of Bologna
Bologna, Italy

Chris Darken
NPS
Monterey, USA

Abdennour El-Rhalibi
Liverpool John Moores University
Liverpool, United Kingdom

Marco Gillies
University College London
London, United Kingdom

Sue Greenwood
Oxford Brookes University
Oxford, United Kingdom

Pieter Jorissen
Universiteit Hasselt
Diepenbeek, Belgium

Borje Karlsson
PUC
Rio de Janeiro, Brazil

Mike Katchabaw
University of Western Ontario
London, Canada

Oliver Lemon
Edinburgh University
Edinburgh, United Kingdom

Olli Leino
University of Lapland
Rovair, Finland

Alice Leung
BBN Technologies
Cambridge, USA

lan Marshall
Coventry University
Coventry, United Kingdom

Yoshihiro Okada
Grad School Kyushu University
Kasuga, Japan

Volker Paelke
University of Hannover
Hannover, Germany

Maja Pivec
FH Joanneum
Graz, Austria



PROGRAMME COMMITTEE

Paolo Remagnino
Kingston University
Kingston, United Kingdom

Marco Rocetti
University of Bologna
Bologna, Italy

Marcos Rodrigues
Sheffield Hallam University
Sheffield, United Kingdom

Leon Rothkrantz
Delft University
Delft, The Netherlands

Leon Smalov
Coventry University
Coventry, United Kingdom

Adam Szarowicz
Kingston University
Kingston, United Kingdom

Ingo Steinhduser
Binary lllusions
Braunschweig, Germany

Oryal Tanir
Bell Canada
Montreal, Canada

Joao Tavares
University of Porto
Porto, Portugal

Ruck Thawonmas
Ritsumeikan University
Shiga, Japan

Christian Thurau
University of Bielefeld
Bielefeld, Germany

Hans Vangheluwe
McGill University
Montreal, Canada

Clark Verbrugge
McGill University
Montreal, Canada

Tina Wilson
Open University
Milton Keynes, United Kingdom

Michael Young
NC State University
Raleigh, USA

Michael Zyda
USC Viterbi
Monterey, USA



© 2006 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Simulation Society. Permission is
granted to photocopy portions of the publication for personal use and for the use of students providing credit is given
to the conference and publication. Permission does not extend to other types of reproduction nor to copying for
incorporation into commercial advertising nor for any other profit-making purpose. Other publications are encouraged
to include 300- to 500-word abstracts or excerpts from any paper contained in this book, provided credits are given to
the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be used
in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in this Proceedings have been peer reviewed

EUROSIS-ETI Publications are ISI-Thomson and INSPEC referenced

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Ghent University,
Faculty of Engineering, Dept. of Industrial Management, Technologiepark 903, Campus Ardoyen, B-9052 Ghent-

Zwijnaarde, Belgium.

EUROQOSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400
Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium

Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium
Cover Pictures by Larian Studios, Oudenaarde, Belgium

EUROSIS-ETI Publication
ISBN-NUMMER-10 : 9077381317

ISBN-NUMMER-13 : 9789077381311
EAN : 9789077381311

\



GAME ON;
2006



Vi



Preface

It is our pleasure to welcome you to this event in the city of Braunschweig and at
the Technische Universitdt Carolo-Wilhemina zu Braunschweig, the oldest
technical university in Germany.

Since a couple of years, the interest in computer-based games has increased
significantly not only on the commercial side but also in research. Several
conferences and workshops have been set up, specializing in this exciting new
field. GameOn is a well established conference series and looks back already on
several successful years. It is a vivid event with interesting presentations and
discussions.

GameOn2006 -- the 7th annual European Game-On Conference — brings
together researchers and games people in order to exchange ideas on
programming and programming techniques, being beneficial to the gaming
industry and academia.

The conference will treat various aspects of computer-based games, from
graphics, artificial intelligence, to robotics and mobile gaming issues. Two invited
talks by Eku Wand and Maic Masuch will provide further insights into current and
future game-technology trends. Moreover, tutorials on Java Gaming and the
workshop on "Gaming with AIBO Robots", as well as a demonstration of a
student strategy game project round up the conference program.

We hope that all attendees will enjoy the conference, the technical program as
well as the possibilities to exchange ideas and network with colleagues from
various countries to provide a base for fruitful collaborations in future.

Marcus Magnor
Lars Wolf

GameOn2006 Program Chairs
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THE MYTHS (AND TRUTHS) OF JAVA GAMES PROGRAMMING

Andrew Davison
Department of Computer Engineering
Prince of Songkla University
Hat Yai, Songkhla 90112
Thailand
E-mail: ad@fivedots.coe.psu.ac.th
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ABSTRACT

This paper examines the commonly-expressed
criticisms of Java as a games programming language:
that's it's too slow, too high-level, prone to memory
problems, too hard to install, not available on games
consoles, not used in 'real' games, and not even
considered a gaming platform by Sun Microsystems.
All of these views are incorrect, aside from the console
issuc.

INTRODUCTION

Java for games programming: are you joking? No, Java
is a great games programming language. When you
learnt Java, I'm sure it's many advantages were
mentioned: an elegant object-oriented paradigm, cross-
platform support, code reuse, ease of development, tool
availability,  reliability = and  stability,  good
documentation, support from Sun Microsystems, low
development costs, the ability to use legacy code (e.g.
C, C++), and increased programmer productivity
(Eckel 2006). That list lcaves out my personal reason
for programming in Java — it's fun, cspecially when
you're programming somcthing inherently good-for-
you, such as games.

Most Java-bashers tend to skip over advantages,
preferring to concentrate on criticisms. Here's a typical
list:

Java is too slow for games programming;

Java has memory leaks;

Java is too high-level;

Java application installation is a nightmare;

Java isn't supported on games consoles;

No one uses Java to write 'real' games;

Sun Microsystems isn't interested in supporting
Java gaming.

e o o o o o o

Almost all of these objections are substantially wrong.
Java is roughly the same speed as C++. Memory leaks

can be avoided with good programming, and
techniques like profiling. Yes, Java is high-level, but it
also offers more direct access to graphics hardware and
external devices. Installation isn't a nightmare, if you
use decent installation software. There's a growing
number of excellent, fun Java games, and an enormous
amount of support available from Sun and Sun-
sponsored sites.

If you're keeping count, I haven't disagreed with the
lack of a games consoles port, which is a tad
embarrassing for a "write once, run anywhere"
language. Things may be changing in this category, as
I explain below.

A general point about these objections is that they had
more validity in the late 1990s, when the language and
its libraries were less sophisticated and slower. The
1990's were a long time ago — Java's user and
developer communities are currently burgeoning,
producing a plethora of useful tools, online help, and
code examples.

Now, back to the criticisms...

JAVA IS TOO SLOW FOR GAMES
PROGRAMMING

This is better rephrased as "Java is slow compared to C
and C++, the dominant languages for games
programming at the moment." This argument was valid
when Java first appeared (around 1996), but has
become increasingly ridiculous with each new release.
Some figures put JDK 1.0, that first version of the
language, at 20 to 40 times slower than C++. However,
J2SE 5—the current release—is typically only 1.7
times slower. Many benchmarks indicate that Java SE
6 is about 20% faster than J2SE 5.

These numbers depend greatly on the coding style
used. Java programmers must be good programmers in
order to utilize Java efficiently, but that’s true of any
language. Jack Shirazi's Java Performance Tuning site
(http://www javaperformancectuning.com/) is a good
source for performance tips, and links to tools and
other resources.



The speed-up in Java is mostly duc to improvements in
compiler design. The Hotspot technology introduced in
J2SE 1.3 cnables the run-time system to identify
crucial areas of code that are utilized many times, and
these are aggressively compiled. Hotspot technology is
relatively new, and it’s quite likely that future versions
of Java will yicld further speed-ups. For example, J2SE
5.0 is 1.2 to 1.5 times faster than its predecessor
(version 1.4).

Hotspot technology has the unfortunate side-effect that
program cxccution is often slow at the beginning until
the code has been analyzed and compiled.

Swing is Slow

Swing often comes under attack for being slow. Swing
GUI components are created and controlled from Java,
with little OS support; this increases their portability
and makes them more controllable from within a Java
program. Speed is supposedly compromised because
Java imposes an cxtra layer of processing above the
OS. This is one reason why some games applications
still utilize the original Abstract Windowing Toolkit
(AWT)—it's mostly just simple wrapper methods
around OS calls.

Even if Swing is slow (and I'm not convinced of that),
most games don't requirc complex GUIs; full-screen
game play with mouse and keyboard controls is the
norm. GUI elements maintained by Swing, such as
menu bars, button, and text fields, aren't needed, while
mouse and keyboard processing is dealt with by the
AWT. The latest versions of Java offer a very efficient
full-screen mode by suspending the normal windowing
environment.

My Program is Slow (Because of Java)

A crucial point about speed is knowing where to lay
the blame when a program runs slowly. Typically, a
large part of the graphics rendering of a game is
handled by hardware or software outside of Java. For
example, Java 3D passes its rendering tasks down to
OpenGL or DirectX, which may emulate hardware
capabilitics such as bump mapping. Often the
performance bottleneck in network games is the
network, not the Java language.

JAVA HAS MEMORY LEAKS

When C/C++ programmers refer to memory leaks in
Java, it often means that they don't understand how
Java works. Java doesn't offer pointer arithmetic, and
typical C-style memory leaks—such as out-of-bounds
array accesses—are caught by the Java compiler.

However, these programmers may mean that objects
which are no longer needed by the program are not
being garbage collected. This becomes an issue if the

program keeps creating new objects—requiring more
memory—and eventually crashes when the maximum
memory allocation is exceeded.

This kind of problem is a consequence of bad
programming style, since the garbage collector can
only do its job when an object is completely
dereferenced, meaning the program no longer refers to
the object. A good profiling tool, such as JProfiler
(http://www.cj-
technologies.com/products/jprofiler/overview.html),
can be a great help in identifying code using cxcessive
amounts of memory. JProfiler is a commercial product;
many open source profilers are listed at http://java-
source.net/; Java SE 6 comes with a great graphical
profiler, jhat.

Another memory-related complaint is that the Java
garbage collector is executing at poorly timed
intervals, causing the application to halt for seconds
while the collector sweeps and cleans. The JVM comes
with several different garbage collectors, which collect
in various ways, and can be sclected and fine-tuned
from the command line. Information on the
performance of the chosen collector can be gathered
and analyzed, and Java SE 6 offers many tools for
these tasks, including jps, jstat, jhat, and jstack.

JAVA IS TOO HIGH-LEVEL

This complaint is the age old one of abstraction versus
speed and control. The details of the argument often
include the following statements:

1. Java’s usc of classes, objects, and inheritance add
too much overhead without ecnough coding
benefit;

2. Java’s machine independence means that low-
level, fast operations—such as direct Video RAM
I/O—are impossible.

Statement 1 ignores the obvious benefits of reusing and
extending Java’s very large class library, which
includes high-speed 1/0, advanced 2D and 3D
graphics, and an enormous range of networking
techniques, from lowly sockets to distributed agents.
Also forgotten arc the advantages of object-oriented
design, typified by UML, which makes complex, large
recal-world  systems morc  manageable  during
development, implementation, and maintenance.

Statement 2 impacts gaming when we consider high-
speed graphics, but it's been addressed in recent
versions of Java. J2SE 1.4 introduced a full-screen
exclusive mode (FSEM), which suspends the normal
windowing environment, and allows an application to
more directly access the underlying graphics hardware.
It permits techniques such as page flipping, and
provides control over the screen's resolution and image
depth. The principal aim of FSEM is to speed up
graphics-intensive applications, such as games. A lot



of the behind-the-scenes speed improvements in Java
SE 6 are related to graphics rendering using OpenGL
and DirectX.

Statement 2 also comes into play for game peripherals,
such as joysticks and game pads; machine
independence seems to suggest that non-standard 1/0
devices won't be uscable. Java games requiring these
types of devices can utilize JNI, the Java Native
Interface, to link to C or C++, and therefore to the
hardware. There's also JInput, a very versatile Java-
based game controller API
(https:/jinput.dev java.net/).

An interesting historical observation is that the gaming
community used to think that C and C++ were too
high-level for fast, efficient games programming, when
compared to assembly language. Opinions started to
change only after the obvious success of games written
in C, such as Doom and Dungeon Master, in the mid
1980s. Also important was the appearance of cross-
platform development tools that supported C, such as
Renderware.

JAVA APPLICATION INSTALLATION IS A
NIGHTMARE

The general point made here is that a user needs to be a
Java expert in order to install and exccute a Java
application, whereas most game players just want to
point and click on a few dialog boxes to get a game up
and running. More specific comments include:

1. Java (specifically, the JRE) has to be on the
machine before the application will run.

2. Code bloat—even small programs require a 16
MB JRE. Downloading this can be very slow.

3. Frequently changing JVMs make it hard to write
code that will work for every possible version of
Java.

4. Non-standard components are often required (c.g.
Java 3D), causing cven more installation
problems.

5. It's not possible to compile the application for a
specific platform.

6. The .jar extension is commonly hijacked by other
softwarc (e.g. by compression programs) at
execution time, meaning that the user can't just
double click on a JAR to get it to start.

7. The JRE is slower to start up compared to a native
compiled application.

All these problems—aside from 2 and 7 perhaps—can
be solved by using good installation softwarc. Java
applets can be delivered via the Web, and the Java SE
6 plug-in for Internet Explorer and Netscape starts very
quickly. Java Web Start (JWS) can be utilized to
download applications, and has been improved

significantly since J2SE 1.4. There's numerous third-
party installers, such as install4j (http://www.ej-
technologies.com/products/install4j/overview.html).

The code bloat comment is increasingly irrelevant,
with many games weighing in at over 100 MB, and
even many graphics and sound card drivers are larger
than 15 MB. Adobe Acrobat requires around 25 MB,
Real Player 13 MB, and .NET 23 MB. Network speeds
arc a problem, especially overscas, but broadband
usage is growing rapidly.

Sun Microsystems estimates that around 70% of all
new PC's come with a JRE pre-installed, although a
game installer must still cater for the others.

There's some truth to point 7, but the slow start-up time
is fairly negligible compared to the total running time
of an average game. Also, Java SE 6's splash screen
feature can be employed to 'entertain' the user during
start-up.

JAVA ISN'T SUPPORTED ON GAMES
CONSOLES

Unfortunately, this criticism has some justification.
Video gaming is a multi-billion dollar industry, with
estimates placing revenues at $29 billion by 2007—the
market will cater to over 235 million gamers. PCs and
game consoles account for almost all the income, but
only about 10-20% of it is from PCs, the majority
coming from three consoles: Sony’s PlayStation 2
(PS2), Microsoft’s XBox, and Nintendo’s GameCube.
Sony is the dominant console maker, having nearly
twice as many units in homes compared to Microsoft
and Nintendo combined. Microsoft accounts for about
95% of the desktop PC market. Arguably, there are
only two important games platforms: the PS2 and
Windows—and Java isn't available on the PlayStation.

This problem has long been recognized by Sun: back at
the JavaOne conference in 2001, Sony and Sun
announced their intention to port the JVM to the PS2.
Nothing was cver officially released, although it is
possible to run Java on Sony's version of Linux, but the
OS requires the PS2 to have a hard disk, and only has
limited access to the PS2's other hardware.

The difficulties of this approach should be contrasted
to the availability of feature rich C/C++ tools and
engines for consoles, such as RenderWare
(http://www.renderware.com/) and Gamebryo
(http://www.ndl.com/). They have a track record of
best-selling games, and can port games across the PS2,
Xbox, GameCube, and PCs.

In the future, Java may have a better chance of
acceptance into the closed-world of console makers
because of two trends: consoles are mutating into home
media devices, and the meteoric rise of online gaming.
Both require consoles to offer complex networking and
server support, strong areas for Java and Sun.



The prospects for Java on the PlayStation 3 (PS3) look
fairly bright. Both the basic and premium PS3 versions
will have 512 MB of RAM, a large hard drive, will
support Linux, and use an extended version of
OpenGL. Sony's software development chief, Tzumi
Kawanishi, has spoken of making it easier for
individuals to create games on the PS3. Development
kits are expected to appear in Spring 2007.

Applications will be written in a high-level, object-
oriented language, but currently there's no word on
what it'll be. It's likely that a virtual machine will
execute the code, utilizing JIT technology.

The PS3 will include a Blu-ray disc for storing high-
definition video and data. All Blu-ray drives support a
version of Java called BD-J for implementing
interactive menus and other GUIs. Also, Blu-ray's
network connectivity means that BD-J can be utilized
for networking applications such as downloading
subtitles, short movies, and adverts.

The lack of Java on consoles is a serious issue, but the
remaining PC market is far from miniscule. The
Gartner Group believes there are 661 million PC users
in 2006. The number will hit 953 million by the end of
2008, and cross over the billion mark in 2009.

Games on PCs benefit from superior hardware—such
as video cards, RAM, and internet connections—so
can offer more exciting game play. There are many
more PC games, particularly in the area of multiplayer
online games.

Another rapidly expanding market is the onc for
mobile games, with sales of $530 million in 2003,
potentially rising to $2.5 billion in 2007. There are
thought to be around 250 million Java-enabled phones
at the moment.

NO ONE USES JAVA TO WRITE REAL GAMES

The word "real" here probably means commercial
games. The number of commercial Java games is small
compared to ones coded in C++ or C, but the number
is growing, and many have garnered awards and
become bestsellers: Tribal Trouble, Puzzle Pirates, Call
of Juarez, Chrome, Titan Attacks, Star Wars Galaxies,
Runescape, Alien Flux, Kingdom of Wars, Law and
Order II, Ultratron, Roboforge, IL-2 Sturmovik,
Galactic Village, and Wurm Online. Many are written
entirely in Java, others employ Java in sub-components
such as game logic.

Java is used widely in the casual gaming market, where
game-play is generally less complex and time-
consuming. Implementation timelines are shorter,
budgets smaller, and the required man-power is within
the reach of small teams. By 2008, industry analysts
believe the casual games market will surpass $2 billion
in the US alone.

There are numerous Java gaming sites, including a
showcase at Sun Microsystems
(http://www java.com/en/games/), community pages at
http://community.java.net/games/, a collection of open-
source gaming tools at https://games.dev.java.net/, the
Java Games factory (http:/javagamesfactory.org/),
works-in-progress at https:/games-forge.dev.java.net/,
and many, very helpful forums at
http://www.javagaming.org/.

There are several excellent books on Java games
programming (Brackeen et al. 2003, Clingman et al.
2004, Croft 2004, Davison 2005).

SUN MICROSYSTEMS ISN'T INTERESTED IN
SUPPORTING JAVA GAMING

The games market isn’t a traditional one for Sun, and
it'll probably never have the depth of knowledge of a
Sony or Nintendo. However, the last few ycars have
demonstrated Sun's increasing commitment to gaming.

J2SE has strengthened its games support through
successive versions: version 1.3 improved its graphics
and audio capabilities, and version 1.4 introduced full
screen mode and page flipping in hardware. Faster 1/0O,
memory mapping, and support for non-block sockets,
which is especially useful in client/server multiplayer
games, also appcared first in 1.4. Version 5.0 has a
decent nanosecond timer at last. Java extension
libraries, such as Java 3D, the Java Media Framework
(JMF), the Java Communications API, Jini, and JAXP
(Java’s peer-to-peer API) all offer something to games
programmers. Java SE 6 has improved graphics
rendering speeds, and offers new features useful for
gaming, such as splash screens, scripting, and a
desktop APL

Sun started showing an interest in gaming back in
2001, with its announcement of the Java Game Profile,
a collaboration with several other companics, including
Sega and Sony, to develop a Java gaming API. The
profile was perhaps too ambitious, and was abandoned
at the end of 2003. However, it did produce three
game-focused technologics: a Java binding for
OpenGL called JOGL, a binding for OpenAL (a 3D
audio library) called JOAL, and JInput.

Part of the 2001 initiative was the creation of the
JavaGaming.org website (http://www.javagaming.org),
initially manned by volunteers. In 2003, the Game
Technology Group was formed, and JavaGaming.org
received a substantial makeover as part of the creation
of the new java.net portal (http://www java.nct) aimed
at the technical promotion of Java. java.net hosts many
discussion forums, user groups, projects, communities,
and news. The communities include: Java Desktop,
Java Education and Learning, Java Enterprisc, and
Java Games.

The Java Games community pages can be accessed
through http://www.javagaming.org or



http://community.java.net/games/. The site includes
Java games forums, projects, news, weblogs, a wiki
(http://wiki.java.net/bin/view/Games/WebHome), and
links to games affiliates.

Numerous Java game forums can be accessed from
http://www .javagaming.org/forums/index.php.  These
arc probably the best sources of technical advice on
Java gaming on the Web, with over 8500 highly
opinionated registered users. Discussion topics include
Java 3D, Java 2D, Java Sound, J2ME, networking,
onlinc games development, performance tuning,
JOGL, JOAL, and JInput. There are also sections on
projects and code examples.

The project sections (https://games.dev. java.net/)
mostly concentrate on JOGL, JOAL, and JInput, but
the games-middleware and games-forge sections are
wider ranging. The games-forge projects include
Chinese chess, jbantumi  (a  strategic game from
Africa), and an onlinc fantasy football management
system.

Sun’s substantial presence at
http://community.java.net/games/ is mostly as a host
for community forums and open source projects (or
projects with licenses very close to open source). The
projects include JOGL, JOAL, JInput, and Java 3D.
Sun is relying on community involvement to move
these projects forward, since the Game Technology
Group is quite small (Twilleager et al. 2004).

One in-house product is Sun's Project DarkStar
(http://games-darkstar.dev.java.net), aimed at
developing tools for supporting massive multi-player
onlinc games. The Sun Game Server (SGS) is it's
server-side platform, and there are client APIs for C++,
Java SE, and Java ME
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ABSTRACT

Lighting in today’s applications is performed by
batching light sources together into small groups of 3-8 lights
that can be managed by current shaders. For each of these
groups the scene is rendered and the light’s contribution is
added into the framebuffer, which at the end contains the
influence of all lights in the world.

A better solution is presented that uses Deferred
Shading. This technique simplify the rendering of multiple
special effects. It also reduces the overhead of performing
several passes on the scene by reducing it to just rendering a
full screen quad on cach pass instead of the complete scene
geometry.

Nonetheless, it is true that Deferred Shading has several
disadvantages. It needs a lot of memory to store the
Geometric Buffer, it produces a noticeable impact on fill rate
and can’t handle transparency efficiently, among others.

This article presents solutions to overcome or reduce
most of the Deferred Shading drawbacks and give tips on
how to implement a scalable system that can run on more
graphic cards. The system uses less memory and optimizes
the whole process not only in the shaders but also from the
application itself by implementing high-level managers that
run on the CPU.

MEMORY OPTIMIZATION

In a Deferred Shading system, lighting and other special
effects are not computed in the same pass were the scene
geometry is processed. Instead, there is a first pass were the
scene geometry is rendered and per-pixel’s attributes like
Position and Normal are saved into several textures
composing an auxiliary buffer called a Geometric Buffer (G-
Buffer). Those textures are then used on subsequent passes to
get the pixel’s geometric data without processing the scene
again.

Common attributes like Position and Normal can usc up
to 3 floats cach and there’s also a nced to store material
values like specular power, glow factor and occlusion term
among others. This can increase the memory footprint
between 10 and 40 MB just to store auxiliary values for
standard game resolutions. However, cleverly packing those
values allows the reduction of the memory footprint.

Normal Vector

Just storing the three components of the normal vector as
floats will take up to 12 bytes per pixel. But using the
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mathematic constraint that normals are unit-length vectors,
then it’s possible to compute one component given the other
two by applying the equation:

z=i\/1—x2 —y2

When performing the lighting on View Space the front-
faced polygons are always going to have same sign
depending on the frame of reference used.

Further optimizations like restraining components into
the 16 bits or 8 bits range and using look up texture instead of
the given cquation to compute the z component, allows
reducing the memory footprint down to just 2 bytes and in
some case also to accelerate the shader.

Position

Position doesn’t have the same unit-length restraint that
follows the normal vectors. However, It’s possible to just
save the distance from the camera to the pixel and then
recreate the world space position by creating a ray from the
camera to the screen location (which is known) and then
multiply it by the stored distance. The above is illustrated in
the following code:

G_Bufter.z= length( Input.PosInViewSpace );

Then to recreate the pixel position, the vertex shader
computes the Screen Position (vSP) and use the previous
value as follow:

EyeToScreen=float3( vSP.x*ViewAspect, vSP.y, invTanHalfFOV );
PixelPos = normalize( EyeToScreen ) *G_Bufter.z;

Material Attributes

While it could be ideal to store all material attributes like
specular power, glow factor, occlusion term, etc into the G-
Buffer, they consume too much memory. Applications that
use one or two attributes could store them directly by first
adjusting the number of bits assigned to them. For example,
when the specular power is constrained to the values [1, 4,
10, 30] it can be saved using two bits, and the original value
can be recreated inside the shader.

In most situations, more attributes are needed, but they
don’t change per pixel but per surface. In that situation, it’s
possible to pack the attributes describing the material and
only store the index in the G-Buffer.

According to the number of materials, they can be
accessed by packing all the attributes in the available unused
shader constants, and retrieving them using an indexed look
up in the shader, or by packing the values into a texture
where each row represent a different material. Also the index



can be adjusted to only use the number of bits that fits the
maximum value.

FILL-RATE REDUCTION

Given that Deferred Shading systems rely on filtering
image pixels, they are likely to become fill-rate limited. Most
implementations, after filling the Geometry Buffer, just loop
through every light source and apply the shader to each pixel.
Instead, it’s possible to implement a high level manager,
which acts as a firewall by only sending to the pipeline the
sources (lights and cffects) that influence the final image and
exccuting the shaders only on the pixels that are influenced
by the effect or light.

This high level manager receives the list of all sources
that should modulate the resulting render and general
information like the bounding object and how strong the
effect should be applied. (e.g. for a light it could be the
brightness). When the list is received, two main stages are
executed.

Social Stage

During this first stage, the manager filters the sources on
the scene, producing a smaller list by executing the following
pscudo code.

1. Visibility and occlusion algorithms are executed to

discard lights whose influence is not appreciable.

2. Project visible Bounding Objects into screen space.

3. Combine similar sources that are too close in screen
space or influencing almost the same screen area.

4. Discard sources with a tiny contribution due to its
projected bounding object being too small or too far.

5. Constraint each pixel to be influenced by no more than a

predefined number of sources. Pick the biggest, strongest
and closer.

Runtime parameters can be defined to control how small
should be the projection of a source to be discarded in step 4
or how much sources can be affecting a single pixel in step 5,
etc.

When the average frame rate is high enough, the runtime
parameters can be relaxed, and if the frame rate drops, the
parameters could be lowered. This produces a fast way to
control the fill-rate of the application and allows maintaining
smooth frame rates.

Social Stage

This second stage will configure the shaders to reduce
the processing cost of cach source. First it classify the sources
in two main groups, the global sources and the local sources.

Global Sources

These are meant to affect all screen pixels, implying that
the shaders must be executed in a complete screen quad.
Examples of these sources are big lights illuminating the
entire world like the sun when outdoors, or special effects
applied to the whole screen like Depth of Field, Fog, etc.

Global sources restrain the number of optimization and
heavily depend on how optimized are the shaders being used.
Fortunately, most of the time there are just a few of them.
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Local Sources

Contrary to global sources, these only affect regions of
the scene. Classical examples include small lights spread over
the scene, effects like volumetric fog or heat hazes.

One way to process them is to render the bounding
object so only the influenced pixels execute the shader. This
can work for simple shapes like boxes, but could became
slow when using spheres or other objects composed by a lot
of polygons.

Another approach involves rendering a full screen quad,
just like for global sources, but cnabling clipping and
rejection features to discard most non-influenced pixels. This
should result in less performance impact but is not as
accurate as the other approach.

While scissor test and clipping planes, can discard the
pixels at the transform level. Dynamic branching can be used
to reject them at the fragment level. For example, when
dealing with spheres, the individual stage passes the sphere
radius and center to the shader and if the pixel’s distance to
the center is found to be greater than the radius, the pixel is
discarded. For Axis Aligned Bounding Boxes, the process is
even casier and just involves checking if the position
components are inside the box.

When dynamic branching is not supported, the stencil
buffer can be used to emulate the behavior. In [ATIOS] a
technique is described to emulate dynamic branching by
creating a pixel mask according to some conditions.

Another non-conservative optimization that can be
applied is to use a sort of Level of Detail to decide the shader
quality according to how far or small is the source. For
example, this can be implemented by computing the full
lighting equation on the closest pixels and remove
components as the pixels get farther. This way, it’s possible
to use diffuse and specular contribution for closer pixels and
discard the specular component as it goes far.

Special care has to be taken to avoid artifacts and sudden
popping that can appear at the transitions points where the
equation components are inserted or removed. This can be
handled by fading the target component. For example, to
discard the specular component, it can be modulated by a
factor that start being 1 on the closer boundary to fully show
its contribution and gradually fades to 0 according to the
distance. From that point on, other shader can be used that
doesn’t compute the specular influence. This process is
described in [fpuig05] and [fpuig06].

OTHER PERFORMANCE OPTIMIZATIONS

Even when the above solutions have being used to
reduce the memory footprint and fill-rate, they are likely to
improve the general performance as well. For instance, using
less memory to store the G-Buffer allows a better use of the
texture cache, which reduces texture transfers, thereby
reducing the performance impact of packing the pixel
attributes in the buffer.

Together with the presented optimizations, the deferred
shading system can be further optimized. It’s possible to
batch sources that arc going to be computed with the same
shaders. They can cven be collapsed into several source



shapes and processed with a single shader that computes the
contribution of more than one source.

When setting the source shaders, call states can be
minimized by first finding those shaders that are going to be
used, and sorting the sources according to them. Finally to
minimize state changes, each shader is set only once and all
sources that use it are processed.

Mixing screen resolutions can make a difference. This
way, the texture that stores the pixels colors in the G-Buffer
can be rendered at full size, but the texturc that holds
normals, positions, ctc could use lower resolutions. Which
implies that the lighting and shading must be computed on a
render target which is 2 or 4 of the viewport dimensions and
then modulated by the full resolution color texture.

When processing the scene geometry to fill the G-Buffer,
lights, fog and all other unneeded effects at that stage should
be disabled. Also it can help to have two different
representation of the scene both presenting the same
geometry but batched differently. One representation is used
to render the color texture in the G-Buffer. It maintains a
group of polygons for each texture and each group has to be
call with an independent draw call.

The other representation is used for rendering position
and normal into the G-Buffer. There’s no need to distinct
between textures so the complete geometry can be batched
and submitted to the pipeline with just one draw call.

On systems where multiple render targets are not
supported and a multi-pass approach is used, the cheapest
pass should be executed first to handle overdraw with the
lowest penalty and then running the more intense passes with
the benefit of not reprocessing the same pixels.

Other possibilities are to combine forward rendering
with the deferred system. The per-vertex influence of some
sources can be written while filling color values in the G-
Buffer. This technique can be used when the geometry is
highly tessellated, or the light sources are far.

Additionally, it’s possible to use most of the general
shader optimizations to further enhance the performance in a
deferred system. A typical example is the use of half data
instead of floats when the extra precision is not needed, etc.

TRANSPARENCY

Alpha Test is easy to integrate with a Deferred Shading
system, but alpha blending requires the same pixels to be
shaded scveral times. However the Geometric Buffer only
stores information about a single pixel in each Texel. So
blending on a deferred shading system is not as simple as on
forward rendering.

Still, there are some hacks that can be done to allow
blending on a deferred shading system. The easiest is not
doing deferred rendering on polygons that need to be
blended. In a first pass, the application can perform the
deferred path for solid polygons and then forward rendering
on all the transparent polygons with alpha blending enabled.

Another approach is to use Screen Door Transparency.
This technique uses a stippling pattern to mask the
transparent polygons in a way that some pixels of the
background can be secing through the mask. For instance, a
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pattern to represent 50% transparency will skip all the even
pixels in one row and all the odd pixels in the next. When
applying the stippling pattern to a polygon, the background
can be seen through the masked pixels. The holes are so
small that they aren’t picked up by the eye and in fact the eye
blends the nearest pixels giving the illusion of a transparent

polygon.

Screen Door Transparency can be implemented directly
on the deferred shading pipeline and doesn’t require depth
sorting. However the screen resolution needs to be relativity
high in order to hide the masking pattern. To make it cven
harder to spot the mask, the pattern can be changed and offsct
every frame, which also has the advantage of producing
better looking results when the transparency has a high depth
complexity.

Further approaches can use depth peeling to break
complexity into layers, which then can be blended one after
the other by using a deferred shading path. Nonetheless, this
technique involves executing the complete deferred pipeline
for each layer, from filling the G-Buffer to source shading,
which can seriously impact performance.

CONCLUSIONS

Deferred Shading is a nice solution to deal with multiple
lights influencing a scene. It keeps everything simple,
separated and allows handling next generation scenes with a
high number of polygons, complex materials and lots of
special effects and lights.

This article has presented several techniques to reduce
some of its drawbacks, by properly planning the shader
implementation and the use of the G-Buffer space while
using a high level manger to increase the overall performance
and scalability of the system. Also, most of the presented
solutions can be controlled in recal time, which allows
adjusting the image quality according to the average frame.

The combination of these techniques and the potential of
a Deferred Shading system to easily handle complex scenes
while maintain a great performance, makes this technique a
very attractive solution for highly detailed graphics on
current and next generation systems.
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ABSTRACT

Trees can be realistically rendered in synthetic environments
by creating volumetric representations from photographs.
However, volumetric tree representations created with previ-
ous methods are expensive to render due to the high number
of primitives, and have very high texture memory require-
ments. We address both shortcomings by presenting an effi-
cient multi-resolution rendering method and an effective tex-
ture compression solution. Our method uses an octree with
appropriate textures at intermediate hierarchy levels and ap-
plies an effective pruning strategy. For texture compression,
we adapt a vector quantization approach in a perceptually
accurate color space, and modify the codebook generation
of the Generalized Lloyd Algorithm to further improve tex-
ture quality. In combination with several hardware accelera-
tion techniques, our approach achieves a reduction in texture
memory requirements by one order of magnitude; in addi-
tion, it is now possible to render tens or even hundreds of
captured trees at interactive rates.

INTRODUCTION

Modeling and rendering trees has been a goal of computer
graphics research since the early days of the field (Bloomen-
thal, 1985; de Reffye et al., 1988; Prusinkiewicz and Lin-
denmayer, 1990). While most of the effort has been in solu-
tions to generate entirely synthetic trees (e.g., (Prusinkiewicz
and Lindenmayer, 1990; de Reffye et al., 1988; Deussen
et al., 1998)), an alternative is the approach to capture and
render real trees (Shlyakhter et al., 2001; Reche-Martinez
et al., 2004). For both synthetic and captured trees, how-
ever, polygonal representations (mainly of the leaves) re-
sult in objects which are very complex and thus expensive
to render. In addition, generating geometric levels-of-detail
(LOD) for disconnected triangle meshes, such as the leaves
of a tree, is an unsolved problem; the few solutions pro-
posed to date require mixing various different representa-
tions(e.g., (Neyret, 1998; Meyer and Neyret, 1998; Behrendt
et al., 2005)). However, trees are a good candidate for vol-
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umetric representations (Reche-Martinez et al., 2004); one
big advantage of such an approach are appropriate multi-
resolution LOD structures resulting naturally from the hier-
archical data structure representing the volume.

Figure 1: A scene with 290 trees running at 12 fps, and re-
quiring 2.9 MB of texture memory for 3 different types of
trees. Using the previous approach (Reche-Martinez et al.,
2004), several seconds are required per frame and 641 MB
texture memory are needed.

Although Reche et al. (Reche-Martinez et al., 2004) did use
a volumetric representation, no multi-resolution solution was
presented, and the texture memory requirements were pro-
hibitively high. Despite the realistic renderings provided by
the approach, the method remains unusable for all practical
purposes (60,000-140,000 polygons and 60-140MB of tex-
ture memory per tree).

In this paper we present solutions to both the rendering speed
and the texture memory problems. We present an efficient
multi-resolution rendering approach, in which we choose
the appropriate data-structure by creating textures for each
level.In addition, we employ an efficient pruning strategy
based on the properties of the generated textures. We then
present a modified texture compression approach, choosing
an appropriate color space during compression.To improve
the results, we introduce a modification to the Generalized
Lloyds Algorithm used during codebook generation for vec-
tor quantization. Finally, we use several graphics hardware
acceleration techniques which allow us to achieve better per-
formance and texture compression rates.



Overall, our technique allows us to render complex scenes
containing tens or hundreds of trees at interactive frame rates.
Texture memory consumption is reduced by two orders of
magnitude. For example, the scene in Fig. 1 shows a scene
with three types of trees using a total of 2.9 MB of memory,
running at 10 fps. Using the previously existing approach,
each frame would take tens of seconds to render, and 641
MB of texture memory would have be required. We believe
that with these improvements, captured volumetric trees will
become an interesting solution for games and other interac-
tive 3D applications.

PREVIOUS WORK

In the interest of brevity, we will restrict our discussion
to a selection of the most relevant previous work. Most
previous methods concentrated on entirely synthetic trees
based on procedural methods such as grammars (L-systems)
(e.g., (Prusinkiewicz and Lindenmayer, 1990; Deussen et al.,
1998)) or rule-based plant growing systems which use
codified botanical knowledge such as the AMAP sys-
tem (de Reffye et al., 1988). Such approaches have been
used to create highly realistic images of forests and trees, al-
beit with high polygon counts.

Other than the method of Reche et al. (Reche-Martinez et al.,
2004) (described in Sect. in more detail), methods for cap-
turing real trees include (Tadamura et al., 1992), based on
two photographs with emphasis on shading, and Shlyakhter
et al. (Shlyakhter et al., 2001) who use a visual hull created
from photographs of the tree. They then fit an L-system to
generate a polygonal model, while leaves are textured by re-
projecting the photographs onto the polygons. As was the
case for the synthetic trees mentioned above, the resulting
models have high polygon counts; in addition, level-of-detail
mechanisms are hard to develop for such representations.
Several image or volume-based rendering methods have been
proposed for trees. The multi-layer z-buffer method uses pre-
computed synthetic images of trees (Max and Ohsaki, 1995;
Max, 1996). In volumetric texture approaches, the com-
plex tree geometry is represented as an approximation of the
reflectance at a distance (Neyret, 1998). An adaptation of
this approach to hardware was developed later using textured
slices for interactive rendering (Meyer and Neyret, 1998).
Meyer et al. (Meyer et al., 2001) presented a hierarchical
bidirectional texture solution for trees at different levels of
detail, resulting in efficient level-of-detail rendering for trees.
Another approach has been developed in (Qin et al., 2003),
in which a volumetric approach effects an implicit level-of-
detail mechanism, for lighting (both sun and sky) and shad-
ows, using shadow maps. Efficient rendering of trees can
also be achieved using point-based methods (Deussen et al.,
2002). More recently billboard clouds (Behrendt et al., 2005;
Fuhrmann et al., 2005) have been used for rendering trees.
All of the above techniques are applied to polygon-based
synthetic trees. As such they could be applied to the cap-
tured trees of Shlyakhter et al. (Shlyakhter et al., 2001), but
it is unclear how these could be applied to volumetric trees.
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Volumetric trees

Our rendering and texture compression approach builds on
the method of Reche et al. (Reche-Martinez et al., 2004). For
clarity, we summarize the method here in more detail.

Tree capture proceeds in three steps. Initially, a set of pho-
tographs is taken from around the tree, and the cameras of
these images are calibrated. Then, alpha-mattes are extracted
from the images, giving an opacity value to each pixel in
each view. In a second step, the opacity values are used to
perform an opacity estimation on a hierarchical grid, simi-
lar to tomography, resulting in the assignment of a density
value for each grid cell. The grid used in (Reche-Martinez
etal., 2004) was a tri-grid, i.e., each cell is subdivided into 27
children. The degree of refinement of the grid directly influ-
ences the quality of the reconstructed volume, where higher
refinement allows the reconstruction of finer details. In the
final step, textures are generated using a heuristic based on
the input images, the depth of the cell in the tree and the al-
pha/opacity values. The generated textures are then assigned
to a billboard in each cell. There is one texture per billboard
per input camera position. To render a novel view, the cells
are traversed in back-to-front order. The billboards generated
from the two closest input cameras are weighted and blended
together in the sense of the over operator. The two closest
cameras are computed once per frame in software.

As mentioned above, despite high-quality tree renderings,
this method suffers from high texture memory requirements
and the lack of multi-resolution rendering. We address both
shortcomings with our new approach.

MULTIRESOLUTION RENDERING

We discuss here two main elements needed to achieve effi-
cient multi-resolution rendering. The first is the choice of
the appropriate hierarchical data structure and the generation
of the corresponding textures, as well as how to choose the
appropriate level of detail. The second is an efficient pruning
strategy, based on the properties of the generated textures.

Using an Octree for Multiresolution Rendering

Our goal is to provide a smoothly varying level-of-detail
(LOD) mechanism for tree rendering. The volumetric rep-
resentation is based on a hierarchical data structure. Thus
LOD can be achieved naturally by choosing and rendering
the appropriate levels of the data structure.

The tri-grid structure used in (Reche-Martinez et al., 2004)
is inappropriate for multiresolution rendering since switch-
ing from one level to the next involves replacing a single
cell (and the corresponding billboards) by 27 sub-cells. This
leads to large jumps in the number of primitives, resulting
in irregular frame rates. It also produces very visible transi-
tion artifacts for the textures which also cannot be avoided
by a dissolve in the sense of (Max, 1996). We choose to use
an octree; as a result the jumps in number of primitives are
not as large as with the tri-grid structure, and the transitions
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Figure 2: Switching from (a) level 4 (51,000 polygons) to (b) level 3 (3,800 polygons) using a tri-grid (average RMS=31.6228).
Octree representation with a switch from (c) level 6 (34,000 polygons, pruned 16,000 polygons) to (d) level 5 (6,300 polygons,
pruned 3,800 polygons). Note that the transition is less abrupt (average RMS=24.5589).

between different levels of detail are less visible, especially
for the lower LODs. Fig. 2(a,b) compares two neighboring
levels of the tri-grid hierarchy with neighboring levels of the
octree hierarchy (c,d). The artifacts are more clearly visible
in the the accompanying video. In the original approach, no
provision was made to create billboards and assign textures
at intermediate nodes of the hierarchy. We use the same tex-
ture generation process as in (Reche-Martinez et al., 2004),
but at each level of the hierarchy. An alternative would be
to average the textures from the lower levels: however, the
overhead of texture computation of the intermediate levels
corresponds to 37.5% of the total texture generation time.
We considered that the tradeoff was worthwhile, since the
resulting intermediate level textures are of higher quality.
The selection of the level of detail to be used is based on the
distance of each cell to the current camera viewpoint. We set
up a fixed number of planes, orthogonal to the camera view-
ing direction before each rendering pass. During rendering,
for each cell of the octree structure, we check whether its
center point lies in front of or behind the current LOD selec-
tion plane. If it lies in front of the plane, the cell is rendered
at the currently active LOD. Else the tree descent stops one
level above the currently set LOD, replacing eight cells by
their parent cell.

Efficient Pruning Structure

In the original method (Reche-Martinez et al., 2004), render-
ing speed was hindered by the large number of billboards to
be rendered. In addition to the multi-resolution, Sect. , a ba-
sic optimization can be performed by better understanding
the properties of the textures associated with the billboards
attached to each cell. We prune the billboards that do not
contribute to the rendered result. For a given cell and a given
viewpoint, there is no need to render a billboard if the texture
contains no color information. Thus, it can be pruned. After
careful study of the generated textures, we realize that this
occurs quite frequently using the texture generation heuristic
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of (Reche-Martinez et al., 2004). During the texture gener-
ation process, for each cell we check whether it is visible
from a given point of view. We trace a ray through the vol-
ume and accumulate the alpha values until we hit the cell.
If the accumulated alpha values of the cells hit by the ray
exceed a threshold, the cell is essentially invisible from the
given viewpoint. The heuristic for texture generation uses
the alpha value in its determination of color; as a result, for
trees with a dense crown, no colors are assigned to the tex-
tures of many of the interior cells or of those cells on the
opposite side of the viewpoint. This is clearly illustrated in
Fig. 3(a) and (b). In (b) we render a view where we "slice
away" the front half of the tree. We can clearly see that most
interior cells contain empty textures, and have been pruned.
For trees with a sparse crown, Fig. 3(c),(d), this strategy also
works, although in a less aggressive manner. The pruning
strategy is applied recursively to the entire octree structure.

TEXTURE CCOMPRESSION

The textures generated by the volumetric approach (Reche-
Martinez et al., 2004) are of the order of 100-150MB of tex-
ture. The packing method reported there did not actually re-
duce the texture memory required at run time. The reduction
reported was for offline storage purposes only.

Since our multiresolution approach makes it necessary to cre-
ate texture information for the lower levels of detail, more
memory may be required, making it even more important to
reduce texture memory.

The change from the tri-grid to the octree means that there
are typically more levels in the hierarchy, which may re-
sult in an increase in the number of billboards. Fortunately,
this is partially compensated by the decrease in billboard tex-
ture size, from 8x8 (typically used in (Reche-Martinez et al.,
2004)) to 4x4. The resulting texture memory is often actu-
ally reduced (see Section ). Nevertheless, the memory re-
quirements are still too high for the use in computer games
or other applications.



(a) (b)

(©) (d)

Figure 3: (a) A tree with a dense crown, (b) seen from the side with the foremost half of the volume cut away (camera is to the
right). (c) A tree with a sparse crown, (d) again seen from the side with the foremost half of the cells of the volume cut away.

Therefore, we additionally employ an approach for texture
compression proposed by Beers et al.(Beers et al., 1996). It
is based on vector quantization (VQ) and offers high com-
pression ratios with little loss in quality. We modify their
approach to use a perceptually oriented color space such as
CIELab for the computation of the texture codebook. We
will elaborate on the details in the following subsections.

Texture quantization

The most crucial part of compressing a texture using VQ is
designing the codebook. As in (Beers et al., 1996), we em-
ploy the Generalized Lloyd Algorithm (GLA), an iterative
clustering algorithm which yields a locally optimal code-
book for a given set of texture blocks, the training vector
set. Our training vector set consists of all 4x4-billboards, en-
coded as vectors. The algorithm starts with a set of potential
codewords from the training set and iterates on the follow-
ing steps. Each texture block is grouped with the nearest
codeword according to a given distance measure. The cen-
troids of the clusters are taken as the new codewords for the
next iteration. This process repeats until the set of codewords
converges.

The choice of the color space is important at this point. While
the use of RGB space with the L,-norm as a distance mea-
sure is simple and fast, GLA often groups textures that are
close according to the distance measure but are of different
perceptual colours. To counter this problem, we transform
the billboard textures to the more perceptually oriented color
space CIELab and use the L,-norm as a distance measure.

The resulting compression has higher overall quality. This
can be seen in the comparison in Fig. 4 for the oak tree.
In (a) we see the tree with the original uncompressed tex-
ture. In (b) we see the compressed texture using RGB space.
Clearly, RGB compression results in loss of contrast and
overall lower visual quality. In (c) we use the CIELab space.
The quality is higher, and contrast is better preserved.
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Alpha channel quantization.

The alpha channel quantization is straightforward. We en-
code each billboard alpha texture into a vector of grey level
values and run the generalized Lloyd algorithm (GLA) on
this data. Since we quantize the alpha channel independently
of the RGB channel, we have to ensure that after quantiza-
tion, every non-transparent pixel maps to a non-black pixel
in the associated color texture. We address this problem by
a heuristic that replaces every black pixel in the quantized
texture with the color of the brightest pixel, computed from
every non-black pixel of the billboard texture. Using the
brightest pixel in this heuristic avoids black pixel artifacts
in the rendition of the compressed tree.

Color channel quantization.

We encode the color channels of each billboard texture into
an appropriately sized vector. Afterwards, GLA is run on this
vector data. The number of clusters is given by the user and
trades compression ratio against quality of the compressed
textures.

A drawback of the quantization method of (Beers et al.,
1996) is the implicit averaging of colors introduced by the
GLA cluster computation, leading to overall darker textures,
as well as loss of contrast in the textures. Our solution is to
modify the GLA to replace the cluster centroid by the closest
original input vector. If we compare Fig. 4(c) to Fig. 4(d),
we can see that in the center of the tree certain regions have
preserved their bright areas.

To avoid extensive texture context switching, the quantized
alpha textures as well as the quantized RGB textures are or-
ganized in a texture atlas, typically of size 512x512. De-
compression consists of simply computing appropriate tex-
ture coordinates in the codebook atlas for each billboard.

RESULTS

All results described here are run on a Linux Fedora PC with
an NVIDIA 6800 graphics card with 128MB of texture mem-
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Figure 4: (a) Tree with uncompressed texture. (b) Quantization using RGB space with visible errors (average RMS=30.1971).
(c) Quantization with CIELAB space, with original GLA algorithm (average RMS=28.1523). (d) Modified GLA algorithm using
CIELAB space (average RMS=28.1017). The RMS is computed with respect to (a) and averaged over the colour channels.

ory, and a 3.06Ghz Xeon CPU. We have tested our approach
using three tree models: the oak and pine which were also
used in (Reche-Martinez et al., 2004), and the additional
small oak model presented in Reche’s thesis. We will always
refer to these trees in this order unless explicitly stated oth-
erwise. We compare the various improvements to the basic,
non-hierarchical tri-grid algorithm of (Reche-Martinez et al.,
2004).

Before pruning, the corresponding number of billboards is
154,000, 54,000 and 35,000 for a 7-level octree subdivi-
sion. The corresponding numbers for a 5-level tri-grid are
361,000, 152,000 and 114,000. After pruning (Sec. ), the
average number of billboards is 53,000, 43,000 and 33,000,
computed by rotating around the tree. In terms of rendering
speeds, the average frame rate for the three trees are: 1.5, 2.6
and 2.5 frames per second (fps) for the tri-grid, 4, 6 and 6 fps
for the complete octree and 11, 11 and 12 fps for the pruned
octree. As we can see, we have an average 78% reduction
in the number of polygons and a 86% average speedup in
rendering speed, for equivalent quality trees.

The texture memory consumption for a multi-resolution tri-
grid version of the above trees is 266, 147 and 228 MB, be-
fore any compression (5-level). The corresponding octree
texture memory consumption, before any compression is 72,
60 and 86 MB (7-level). Using our compression approach
described in Sec. , the memory requirement is 3.1, 2.1 and
6.3 MB. We use a codebook of size 512 for the oak and pine
and 1024 for the small pine, which has less contrast overall in
the textures. Compared to the uncompressed tri-grid we thus
achieve a 64:1 improvement in texture memory consumption
(19:1 for the octree).

The performance of the multi-resolution rendering algorithm
is harder to compare, since there is no equivalent in the
original algorithm. We show in Figs. 1,5 typical interactive
“game-like" environments. The “square” scene renders at an
average frame rate of 20 fps (max. 24 fps and min. 17 fps),
while the scene of the Ancient Greek city of Argos renders
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Figure 5: Scene with 12 trees in a square; this scene runs at
20 fps. All three trees are present.

at 10 fps (max. 25 fps and min. 7 fps) for the walkthroughs
shown on the accompanying video. On average, 6 trees for
the “square” scene and 180 trees for the city of Argos are
inside the viewing frustum. All three trees are used. Using
the original approach, this would require 641 MB of texture
memory, rendering it unusable for common graphics cards.
The total texture memory consumption using our approach
(with hardware support) is 2.9 MB, or a total compression
rate of 240:1 in this case.

Although the improvements in rendering speed and texture
memory consumption now allow for rendering hundreds of
trees, it is still limited by the traversal of the underlying data
structure, needed for correct back-to-front sorting of the bill-
boards. This is done entirely on the CPU and the traversal
time hence gives a lower bound for the speed of our method.

CONCLUSION AND DISCUSSION

We have presented a multiresolution rendering approach for
captured volumetric trees, together with an efficient texture



compression approach. In particular, we use an octree data
structure which allows smoother multiresolution level-of-
detail control. We employ generated textures at every level.
We are able to significantly reduce the number of billboards
required to represent the volume by pruning those which do
not contribute to the image. For texture compression, we use
a vector quantization scheme (Beers et al., 1996) which is
modified in two ways: we use a perceptually uniform color
space (CIELab), and we modify the GLA algorithm for code-
book generation, improving texture quality. The compres-
sion does result in a some quality loss (intensity and contrast
levels) as evidenced in Fig. 4, but the overall quality is high..
It may be possible to further improve the quality by using
alternative heuristics.

The approaches we have introduced, together with the use of
a set of graphics hardware optimizations, reduce the texture
memory required for the display of the captured volumetric
trees by one order of magnitude (e.g., from 72 MB for the oak
tree down to 3.1 MB). The multi-resolution algorithm allows
the display of large numbers of trees in realistic settings for
games or other interactive applications. In the previous ap-
proach (Reche-Martinez et al., 2004) a single tree ran at 2
fps; in the examples we have shown, we are able to render
environments with 290 trees at 10 fps on average.

The methods we have presented are a significant improve-
ment over previous state of the art for captured volumetric
trees. Without these, use of this representation was imprac-
tical for all realistic usage scenarios such as games etc. We
believe that with the solutions presented here, captured vol-
umetric trees will now be a viable and interesting option for
real-world applications such as games etc., since the result-
ing trees are realistic and convincing, and can be displayed
rapidly compared to other approaches.

In future work, we plan to address the two limitations of cap-
tured volumetric trees, that is fixed lighting, which is cur-
rently embedded in the input photographs used to generate
the textures, and the fact that the trees cannot currently be
modified, since they are an exact reconstruction of an exist-
ing tree. For both of these issues, it will be necessary to cre-
ate a semantic representation of the tree by identifying the
trunk, branches and leaves, allowing their manipulation both
photometrically and geometrically. In addition, it would be
beneficial to push the back-to-front sorting of the billboards
onto the graphics hardware.
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Abstract: Point clouds acquired using 3D scanners
usually need to be converted into mesh models for gaming
applications. This involves considerable manual cffort. There is
however increasing interest in using them directly without
conversion. In this paper, we describe the results of our efforts
in realistic rendering of point based geometry with real time
frame rates. We adapt advanced mesh rendering techniques that
help create realistic visual effects. These include self
shadowing effects using ambient occlusion, diffuse lighting
ceffects using spherical harmonic representations of irradiance
environment maps and specular effects by casting a reflected
ray into a pre-blurred environment map. A number of
efficiency improvements enable us to handle considerably
larger number of sample points in point cloud models — we use
an octree hierarchic structure based on feature analysis of the
point cloud data to reduce ambient occlusion computations; we
push all view independent computations in a preprocessing
phase and finally, we perform most of the critical render-time
lighting calculations directly on GPU using vertex and
fragment shaders.

Keywords: ambient occlusion, point based rendering,
environment lighting, GPU programming

1. Introduction:

Point cloud representations of 3D surface
models have been proposed as an alternative to popular
triangle mesh representations [16]. Advances in 3D
scanner technology have considerably simplified their
acquisition. In addition, their representation is much
simpler as no connectivity information is required. Yet,
most gaming applications usually resort to converting 3D
scan data into triangle mesh models involving
considerable manual skill and effort. While considerable
progress has been made in the development of
algorithms for geometric processing and direct rendering
of these point-based models, they have yet to be
enthusiastically adopted by industries such as gaming
and cinema, wherein the concern for high quality
realistic images is paramount. An important step for their
adoption is to adapt and apply popular techniques for
rendering of realistic images of mesh based geometry to
produce similar or better rendering results. In this paper,
we describe our efforts to adapt mesh rendering
techniques of ambient occlusion and environment
lighting to achieve realistic rendering of point cloud
models with real time frame rates.

There are two main issues that need special
consideration when rendering point cloud models.
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Firstly, rendering techniques must be able to handle the
discrete nature of point samples. There is no connectivity
information and hence no underlying topology of the
surface of the 3D object. Usually, the underlying surface
geometry and topology are inferred using ncighboring
point samples. Secondly, sampling resolutions are
usually high to enable capture of fine shape details. The
result is that we have a much larger number of points
representing the 3D object and any rendering technique
must be able to efficiently handle this considerably larger
set of point data.

The rest of the paper is organized as follows. In
section 2 we provide a brief review of related work on
high quality rendering of point based models. Sections 3
and 4 describe adaptation of ambient shadowing and
environment lighting techniques respectively. In section
5 we discuss salient details of our implementation, which
has been implemented as a plug-in for Pointshop3D [14].
Section 6 presents our conclusions.

2. Related Work:

High quality rendering of point sampled
geometry has been the concern of several researchers.
Zwicker et al. [17][18]describe a software renderer using
elliptic splats for points represented as surfels. A surfel is
a surface element represented by a point on the surface, a
normal to that surface, an extent for the point given as a
radius and other material properties such as color,
reflectance, texture coordinates, etc. In a subsequent
paper [25], they provided an object space formulation of
the EWA (elliptic weighted average) filter and described
a hardware implementation using textured polygons.
Botsch ct al. have described a number of works in which
they have tried to improve the performance and
rendering  capability of EWA  renderer.  Their
improvements include the use of point sprites instead of
polygons [26]; this results in a reduced number of
vertices being sent to hardware. Other improvements
include correction for perspective [15], per pixel shading
[27] and deferred splatting [28].

In [14] Zwicker et al. describe a system,
Pointshop3D for editing the shape and appecarance of
point based models. To do this, they gave a formulation
for the parameterization of point cloud models. This
interactive point cloud parameterization allows distortion
free texture mapping. In a follow-up work [21] they
enhanced PointShop3D to allow free form deformation
and Boolean operations on point cloud models.
Pointshop3D is available publicly and supports plug-ins.
We too have written our renderer with ambient occlusion



and environment lighting as an extension of the native
Pointshop3D renderer plug-in, which did not support
any of these realistic rendering techniques.

All rendering techniques can be seen as some
kind of solution to the rendering equation, introduced by
Kajiya in his seminal SIGGRPH 86 paper [29]. The
physical basis for the rendering equation is the law of
conservation of energy, considering all the light
received, emitted and reflected at a particular point.
Depending on whether the rendering techniques deal
with inter-reflection effects (indirect illumination), these
techniques have been classified into two classes -- local
illumination and global illumination. A local
illumination technique, say using the popular Phong
illumination model, requires the computation of two
components. There is a Lambertian component, to
account for the diffuse reflection behavior, and a
specular component to account for surface shininess. It is
difficult to produce high quality images with realistic
effects using just local illumination due to highly
simplified models for lights in the form of distant point
or directional sources; they also do not model
interreflection effects such as shadows, reflections,
refractions, etc. To handle such effects, global
illumination techniques such as ray tracing or radiosity
are usually employed.

A number of papers have reported efforts in
applying ray tracing techniques to point based models to
simulate indirect illumination effects. The main problem
arises due to the fact that both points and rays are
singular geometric entities having no spatial extent. The
different methods vary in the way in which this problem
is solved and also correspondingly in the acceleration
data structures that are employed. Schaufler and Jensen
[1] proposed to intersect a ray with a point sampled
surface by creating a cylinder around the ray. Adamson
and Alexa [2] proposed a number of ray-surface
algorithms based on their moving least squarcs (MLS)
implicit surface definition. They initially create a sphere
hierarchy and intersect the rays with this hicrarchy to
find an approximate intersection. Finally they carry out
the ray intersection with the MLS surface inside the
sphere. In [3] they further improved the efficiency of
intersection calculations. Wald and Secidel[4] use a
combination of different techniques including an SIMD
accelerated intersection code, together with a highly
optimized specially built kd-tree data structure. In [5]
Adams et al. describe techniques for ray tracing of
deformable point sampled surfaces. Once again the
emphasis is on clever update of the hicrarchical data
structure for accommodating the deformation in cach
frame.

The radiosity method is another powerful and
popular  graphics method for achieving global
illumination effects, particularly for environments with
diffuse surfaces. Dobashi et al. [6] describe a very
straightforward extension of the standard radiosity
technique. For this they consider cach surfel as a finite
clement and calculate inter-reflections among the surfels.
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Ray tracing and radiosity based techniques arc
compute-intensive. In general for large models, it is
difficult to obtain real time frame rates using commodity
hardware when applying these techniques. As a result,
there have been a number of approximation techniques
which while not being physically as accurate as the
above global illumination techniques still yield realistic
effects in rendered images. Ambient occlusion and
environment lighting are two such techniques which are
quite popular for the high quality rendering effects they
make possible with real time frame rates. Below we
discuss these techniques, their adaptation to point based
models and the efficiency improvements that we have
devised taking into consideration the specific
characteristics of point cloud representations.

3. Ambient Occlusion:

The ambient occlusion technique [22, 23] trics
to attenuate light based on shadowing factors computed
for parts of the object. It basically adds shadows to
diffuse objects. Ambient occlusion is a crude
approximation of the full rendering equation [29]. It
takes into account inter-object visibility only. Surfels are
shadowed based on whether they are partially occluded
to the environment. For this we calculate the
accessibility value, which is the percentage of the
hemisphere above each surface point that is not occluded
by the rest of the geometry [23]. This is done in two
passes as described below.

3.1 First pass:

We refer to the surfel that is shadowed as the
receiver R and to the surfel that casts the shadow as the
emitter E. Amount of shadow that is transferred to R
from E is given by an approximate form factor (¢f Fig. 1)
[32]:

Acosf, cosb.
e+ A

To calculate how much in shadow is receiver R,
we add the form factors treating all other surfels as
cmitters. We also clamp the value to be less than 1.
Therefore initial shadow value from first pass is given

A, cos6, cosb
by: T, = max(l,Z%
o w4

Since every point (surfel) can be potentially
shadowed by every other point, the above is an order N*
operation. For large point models, this can be very time
consuming, even if this is a view independent
computation and can be done in a preprocessing phase.
For speeding up the computations, we use an octree
hierarchy of surfels. The octree construction is based on
feature analysis of points within a parent node [20],
done based on Eigen value computations. Each node of
the octree is labeled as being flat, or as containing an
cedge or corner. A GPU based hierarchical ambient
occlusion computation technique has also been presented
in [24] for mesh models. However our work offers an



improvement in the manner in which it makes beneficial
usc of feature analysis as described below.

To compute the ambient occlusion (shadow)
factor for each surfel, we consider only those surfels
which lie within a cone with geometry defined as
follows:

- The cone axis is along the normal associated with
the surfel,

- The cone apex is at the 3D point associated with the
receiver

- The cone angle has been empirically chosen to be
150 degrees. This angle works for most models.
Surface parts that arc nearly co-planar contribute
very little to this occlusion. A smaller cone angle
results in rejecting too many surfels. On the other
hand a larger cone angle results in less efficient
culling.

Far off
Emitter
Node

Culled node

Receiver

Figure 1: Illustration for Ambient Occlusion

Fast culling of surfels is made possible by top-down
traversal of the octree and retaining only those octree
nodes lying inside the cone. To further speed up the
calculations, distant and nearly flat nodes of octree are
treated as single surfel. We have therefore two cases in
our form-factor computation:

Form factor for a distant flat node: All the surfels in a
given node are merged to form a surfel at the centre of
the node. Area of this new surfel is equal to sum of areas
of all surfels in node. Since the node is locally planar, we
usc the normal of any surfel as normal of this new surfel.
This way we approximate the computation of form
factors for surfels in a flat node.

Form factor for nearby or non-flat node: Form factors
are computed for every surfel in node and added up to
give the form factor for that node.

3.2 Second pass:

Surfels tend to be too dark after first pass. This
is due to ignoring the fact that an emitter which is itself
in shadow should not contribute fully again to the
shadow factor. We correct this by using the shadow
values obtained in first pass in a second pass as follows:.
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Final shadow factor

S; =max(,) (1-T))

J#i

A;cos6,cos0,

m2+Aj

All ambient occlusion computations are carried
out in a preprocessing phase. The results from the
occlusion computations arc used to modulate the color of
every point and then stored with the model data, thus
causing no increase in file size. Fig. 2 shows an example
to illustrate the results from an implementation of the
above technique. For comparison purposes, we have
implemented both brute force and feature-analysis octree
based ambient occlusion computations. It can be seen
that the picture quality in Fig. 2(c) (octree-method) and
Fig. 2(d) (brute-force method) is almost the same. But
since we have coupled feature analysis with octree
hierarchical structure, our method is significantly faster
(30 times for this model of about 87,000 points).
Depending on the size and complexity of the 3D object’s
surface, our experiments have shown that we are able to
get computation speed-ups by a factor of 25 or more for
the models we have worked with.

4. Environment Lighting:

In most real situations lighting is quite complex,
as it comes from a variety of sources, such as area light
sources, bright reflecting surfaces, skylight, etc. One
approach to modeling of more complex lighting is the
method of environment maps. An environment map is
the incident light at a point in all directions, usually
modeled as a spherical light field surrounding the point.

Blinn and Newell were the first to propose
environment maps to model perfect mirror like reflection
of a small surface illuminated by distant spherical
illumination [12]. In more recent work, Wolfgang ct al.
[9, 10] do prefiltering and determine view independent
environment maps. They also applied a physically more
accurate model than Phong illumination model for local
lighting. For reflections they use their view independent
maps. Kautz et al. [11] extended their technique to
handle a more general reflectance behavior.

In our work, given an environment (spherical)
map of incident light, we compute both diffuse and
specular lighting components for each point as described
below.

4.1 Diffuse Reflectance with Environment Lighting:

Ramamoorthi et al. [7, 8] have shown that for
diffuse lighting, irradiance can be calculated analytically
in terms of spherical harmonics. Further, diffuse lighting
can be well approximated using only 9 low frequency
coefficients. They have very effectively demonstrated
the results of their method as applied to mesh
representations. Spherical harmonic coefficients [13] are
similar to Fourier basis coefficients but defined over a
sphere. An excellent tutorial on spherical harmonics
lighting can be found in [30].



For the benefit of the readers, we repeat the
relevant parts of the formulation given in [7] below.
After ignoring shadows and near-ficld illumination, the
irradiance E is a function of surface normal N only and is
given by an integral over the upper hemisphere
represented using spherical harmonics:

E(0.4) =) 4L,Y,,(0.4) M

lm

Where
L

Im

Y, denote spherical harmonic coefficients,
denote the spherical harmonic cocfficients of the

incident light in their expansion, and 4, denotes the dot

product of the normal and the direction vector for which
analytical formulae have been provided [8].

We can calculate L, in a preprocessing operation:

L, = j ? L(6,9)Y,,(0,4) sin0dodp @

6=0 $=0

As shown in [7], just 9 coefficients (/<2) are
sufficient for a close approximation with average crror
less than 1%. Also, due to the orthonormal property of
spherical harmonics, the above computation is further
simplified into a dot product calculation.

A straightforward application of the above
method to point sampled surface representations was
first presented in [33]. In the present work, we have
extended it by wusing Gaussian blurring of the
environment map for glossy reflectance behavior.
Further, we have also taken into account self shadowing
using ambient occlusion in a computationally efficient
manner.

4.2 Specular Reflectance with Environment Lighting:
In order to simulate glossy reflection, rather
than perfect mirror reflection, we use a Gaussian blurred
version of the environment map. Fortunately, blurring
affects the high frequency components more and the low
frequency components much less. Hence the 9 low
frequency spherical harmonic coefficients do not change
significantly from the original environment map. This
means that we do not need two different versions of the
environment map and we are able to use just the blurred
version. Let E denote the cye vector (eye to surface
point), L the light source vector, N the surface normal
and H the half-vector ([L + EJ/2). We calculate Fresnel
term F [19] to determine how much light is reflected,
assuming that the rest is absorbed by the object,

pole=or {H“(g”)‘l)j]
(g+c) | (c(g-0)+1)

where c=(E®H), g=~+n"+c’—1 andnis the

index of refraction. We also compute a value for the
distribution term D given by:
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D = o

cos® ar(c,” —1)+1

where cos 00 =N ® /1 , and ¢, denotes the shininess of

the model (0 for perfect reflection and 1 for total diffuse
reflection).

If Ks is the specular reflectance coefficient and
L;, is the incoming radiance in reflected direction, then
the specular component of reflected light is given by
Ks*L;,*F*D.

Figures 3 and 4 show two point models
rendered using environment lighting under different
lighting conditions and material property settings
(without using ambient occlusion calculations.) We are
able to render all these models at interactive frames rates
varying between 25 and 50 frames a second. It is clear
that our modified point renderer incorporates this
popular technique very well.

5. Implementation Details

5.1 Preprocessing Computations:

As mentioned earlier, for optimal performance we have

carcfully partitioned the computations, so that all view

independent computations are carried out in a

preprocessing. Further as much of the render-time

computations as possible have been pushed into the GPU
as briefly described below.

In the preprocessing stage we do the following:

- The surfels are organized into an octree with a
feature value (flatness measure) computed for each
octree node [20]. For computing the flatness, we
use the well ecstablished Eigen value analysis
technique [31].

- The shadow factor is computed for cach point by
optimally making use of the octree hierarchy and
flatness measure as described above. The color
associated with each surfel in the data is suitably
modulated using this shadow factor.

- The 9 spherical harmonic coefficients of Eq. 2 are
computed for the given environment light map.
These calculations are done separately for each of
RGB channels and stored in an array.

- A blurred version of the environment map is
created and loaded as a texturec map in the GPU.

5.2 Render-time Computations:

The 9 spherical harmonic coefficients are
received by the vertex shader which then computes the
diffuse lighting component, vDiffuse, for each point as
given in [7]. To further improve implementation
efficiency in the GPU, we have reused a clever technique
introduced in [34], which uses fewer GPU registers.

The GPU implementation of the specular
lighting component is distributed between the vertex
shader and the fragment shader programs. First in vertex
shader, we calculate mirror reflection direction based on



camera position and normal. Using this reflected vector,
we pass corresponding 2D texture coordinate to fragment
shader. Secondly, in the vertex shader, we calculate the
Fresnel and distribution terms and output them to the
fragment shader.

In the fragment shader, based on the 2D texture
coordinate lookup, we get the color vSpecular. We then
compose diffuse and specular lighting components. For
example, if diffuse reflectance coefficient is Kd,
specular reflectance coefficient is Ks and shadow factor
is S;, then what we get as the final color is given by the
following equation:

Final Color=S; *(Kd*vDiffuse + Ks*vSpecular*F*D),

Figure 5 shows that using ambient occlusion
further improves the quality of images produced using
environment lighting. This can be clearly noticed by
looking at the areas around lip, nose and ears.

6. Conclusions:

In this paper we have demonstrated
that high quality mesh rendering techniques can be
efficiently adapted for point based models yielding
equally good quality images and with real time rendering
frame rates. We have presented an efficient method for
ambient occlusion computation using a hierarchic
structure and a flatness measure based on feature
analysis using Eigen value computations on the point
cloud data. We also combine ambient occlusion with
environment map based lighting supporting both diffuse
and specular reflectance  behavior.  Rendering
computation efficiency is improved by partitioning
computations so that view independent calculations are
done in a preprocessing stage and render-time
computations arc carried out by the GPU using vertex
and fragment shaders. These shaders get ambient
occlusion results directly embedded in color channel,
thus avoiding any data overhead due to ambient
occlusion information. Based on tight integration and
adaptation of these techniques, our renderer implemented
as a plug-in for Pointshop3D produces final picture
quality and frame rates which compare very well with
results from mesh based renderers.
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Figure 2: (a) Image without ambient occlusion, (b) after first pass, (c) final result from our method, (d) and brute force result

which is almost same as ours.

Figure 3: Images rendered with decreasing glossiness.
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Figure 4: Model rendered with two different environment maps.
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Figure 5: Improved environment lighting by using ambient occlusion. Notice areas around ear, lips and nose.
Top row gives environment map used for rendering. Second row gives rendering results without ambient occlusion.
Last row shows results with ambient occlusion.
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Abstract

This paper treats an interactive learning interface used to
obtain semantic constraints among 3D objects from
existing 3D scenes for automatic 3D scene generation.
The layout work for 3D scene generation takes a long
time because 3D objects have six degrees of freedom
(DOF) and are difficult to be positioned by using a
standard 2D input device, ¢.g., a mouse device. To deal
with this problem, the authors have already proposed an
automatic 3D object layout system based on contact
constraints. However, when there are too many kinds
of 3D objects to be laid out, it is practically impossible
for the user to define semantic constraints among all of
them. In this paper, the authors propose an interactive
learning functionality and its interface to obtain semantic
constraints among 3D objects from already existing 3D
object scenes. Using this functionality, the user can
generate desirable 3D scenes more easily. This paper
presents the learning process to extract semantic
constraints from already existing 3D scenes, and
delincates its uscfulness by showing experimental
results.

INTRODUCTION

The layout of 3D objects is inevitable task for developing
3D graphics applications. However, it is not easy task
because 3D objects have six degrees of freedom (DOF)
and are difficult to be positioned by using a 2D input
device on a standard 2D computer display screen. In
addition, the 3D layout must satisfy some physical and
functional constraints. As a result, the 3D scene
generation is time consuming and tedious task. To deal
with this problem, we have already proposed an
automatic 3D object layout system [1]. Our proposed
system automatically generates 3D scenes by the random
layout method of 3D objects in keeping with their
physical and functional constraints represented as
semantic database records. Further more, we have
extended our semantic database to support group layout
and regular interval layout methods [2]. Although the
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semantic database is very simple, our extended system
can generate realistic 3D scenes.  The system needs
only a few seconds to gencrate a 3D scene even if there
arc many 3D objects in the scenc. Our prototype
system has to request the user to define semantic
database records for all the 3D objects manually. To
define such semantics becomes time-consuming task if
there are too many kinds of 3D objects to be laid out.
So, this paper proposes an interactive learning interface
used to obtain semantic constraints among 3D objects
from existing 3D scenes. Using this interface, the user
can generate desirable 3D scenes more easily.

Many researches on 3D object layout have been made so
far. Smith et al. [5] proposed the manipulation of 3D
objects using a 2D user interface. This system employs
contact constraints among 3D objects to allow the user to
position 3D objects using a mouse-device. Bukowski
and Sequin [3] also employed a pseudo-physical
approach to position objects in a 3D scene using a 2D
device. This method maps the 2D mouse motion into
vertical and horizontal transformations for determining
the position of an object in the scene. However, when
there are many 3D objects in a scene, it still takes a long
time to lay out them. Coyne and Sproat [4] proposed
the WordsEye system which generates 3D scenes
composed of 3D objects according to the text description.
This method allows a few kinds of 3D scenes to be
generated, based on a few lines of text. However, when
laying out many various types of 3D objects, the text
description approach is not enough for their accurate
layouts. Zeng el al. [7] also proposed natural language
approach for 3D scene construction. For complex
scenes, their system requests the user to write many
sentences. Xu et al. [6] introduced an automatic
placement system of 3D objects through user interaction.
This system drastically reduces time consuming in 3D
scene generation. However the system lays out 3D
objects only on the floor of a room. It neither consider
layout on a ceiling nor on a wall. In contrast, our
system considers layouts of 3D objects on the ceiling, as
well as the floor by the same framework. Moreover our
system can generate 3D scenes including group layouts,
in which some objects of the same type are orderly
placed close to each other as a group, and regular interval
layouts, in which some objects of the same type are



orderly placed in keeping with the specific constant
interval distance among each other. Most of natural
language approaches request the user to define semantic
constraints among 3D objects by the text description. If
the user wants to generate realistic 3D scenes, he/she has
to write complicated text description and nceds a lot of
time. On the other hand, our interface proposed in this
paper overcomes this problem by using the interactive
learning. Moreover, our interface can generate more
preferable 3D scenes using weight parameters as for
semantic constraints among 3D objects those statistically
calculated from existing sample 3D scenes. This is the
new idea that we propose in this paper.

The remainder of this paper is organized as follows.
First of all, we describe placement constraints specified
as records of the semantic database. Next, we explain a
learning process in detail.  After that, we introduce our
prototype system and its experimental results. Finally,
we conclude the paper.

SEMANTICS
PLACEMENT

FOR AUTOMATIC 3D OBJECT

Our learning interface proposed in this paper is the new
part of our automatic 3D object layout system [1].
This interface provides the functionality to update
semantic database records interactively from 3D scenes
already genecrated by the layout system.

Table 1: Semantic database

ot4 (bookshelf)
Face | Occupancy Parent Contact
distance constrai
nt
1 1.0
2 0
3 0
4 0 otl1-3 X
5 0
6 0 ot2-1
ot5 (TV)
Face | Occupancy Parent Contact
distance constrai
nt
1 1.0
2 0
3 0
4 0 ot4-3, X
ot6-3
5 0
6 0
OT(Object type) No.- Face No.:
{ot1(floor), ot2(wall), ot3(ceiling),,,

ot6(desk),...}
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Wall

contact
] constraint

Face 6

Face 4 .
Parent—child relationship
Floor

Figure 1: Parent-child relationship and contact
constraint of a bookshelf

Semantic database

To define the layout of 3D objects, our 3D object layout
system uses a semantic database whose each record
called “object info” means placement constraints of the
corresponding object class.  Among the placement
constraints arc occupancy distance, parent-child
relationship and contact constraints. Table 1 shows two
records of the semantic database, i.e., for the bookshelf
and the TV. In the following subsections, we describe
such placement constraints.

Bounding box

In the real world, every object exists without any
collisions. When laying out 3D objects, we have to
detect collisions for every object. Detecting accurately
collisions for all 3D objects in a scene takes a very long
time because cach object has its own complex shape.
One of the solutions is to simplify such a complex shape.
However, even if the 3D shape of each object is
simplified, it is impossible to calculate collisions among
many 3D objects in real time. To maximally simplify
the layout process, we decided to employ the bounding
box of each 3D object instead of its original 3D shape as
shown in Figure 1. In the real world, every object is in
contact with any other object due to the gravity, e.g., a
desk rests on a floor and a painting is hung on a wall.
While detecting collisions of one object using its
bounding box, it is enough to consider only the surface
on which the corresponding object lies. In this way, by
using bounding boxes, the calculation cost of detecting
collisions is drastically reduced. Our prototype system
can generate a 3D scence consisting of many 3D objects
in an acceptable calculation time.



Figure 2: an example of ten TV objects placement

Parent-child relationship and contact constraints

As previously explained, every object in the real world
has to touch other objects because of the gravity. At
lcast, onc of the faces of a bounding box is defined to be
a contact face. For example, for the bookshelf, face 4
of its bounding box must touch the face of the floor as
shown in Figure 1. If the user moves the floor object,
the bookshelf should move with it. Usually this is
treated as a parent-child relationship in 3D applications.
Every 3D object has information indicating which of the
other 3D objects is allowed to be its parent, and
indicating which face of that 3D object and which face of
its parent object touch each other. In the semantic
database, this information is specified as the parent
attribute of the face which is in contact with the parent
object. In addition to the above information, we have to
specify contact constraints for cach face of a 3D object.
This indicates whether a face should touch a certain face
of another object or not. For example, the bookshelf
often touches a wall in addition to the floor. That is,
face 6 of the bookshelf in Figure 1 has to touch the wall
object. We describe this constraint in the constraint
attribute of each face of each record in the semantic
database. Using the parent-child relationship and the
contact constraint explained above, although these
constraints are very simple, the system can generate
natural 3D scenes by laying out 3D objects randomly in
keeping with those constraints.  See the paper [1, 2] for
its detail.

INTERACTIVE LEARNING PROCESS

In this section, we introduce an interactive learning
process to update the semantic database of 3D objects.
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Extension of semantic database for interactive

learning

Table 2: extended semantic database

ot4 (bookshelf)
Face | Occupancy Parent Contact
distance constraint
1 1.0
2 0
3 0
4 0 ot1-3 (5/5) X
5 0
6 0 ot2-1
ot5 (TV)
Face | Occupancy Parent Contact
distance constraint
1 1.0
2 0
3 0
4 0 ot4-3 (3/10), X
ot6-3 (7/10)
5 0
6 0

OT(Object type) No.- Face No.:
{ot1(floor), ot2(wall), ot3(ceiling),,, ot6(desk),...}

In the real world, strengths of parent-child relationship
constraints are not the same. For example, as shown in
Figure 2, in the case of a TV class, the probability that
bookshelves are chosen as parents of TVs is 3/10.  And,
the probability that desks are chosen as parents of TVs is
7/10. However, our semantic database records do not
have such information so that our layout system chooscs
a parent-child relationship of a 3D object class by equal
probability. To generate more preferable 3D scenes, we
added a weight parameter as the strength of a
parent-child relationship into each semantic database
records as shown in Table 2. The weight parameter
means a probability that a parent of an object is chosen.
After counting the number of parent samples of 3D
object belonging to each class, each weight parameter is
statistically calculated from existing sample 3D scenes
using the following equation (1):

s
n or
2.5
j=1
where both OT and i is the index number of an
Object type, 7 is the total number of Object types, and

POT

1

1)

S IQT is the total number of j -type objects which are

So, PYT

1

used as the parent of any OT object.



robability distributions of
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ndividual learning button

Figure 3: An overview of our interactive learning interface

means the probability that i-type objects are chosen as
the parent of any OT object.

By introducing new parameterPO ’ ={RO T,QO T,A B,O T},

i.e., weights of parent-child relationships between an OT
object and the other object, into the semantic database
and using them, the system can newly generate more
realistic 3D scenes preserving features of already
existing 3D scenes.

The interface for interactive learning

Since it is not casy to definc weights of parent-child
relationships for all of the 3D objects, our system has to
provide any functionality that helps the user to calculate
such weights and update semantic database records
interactively. So, we introduced such an interactive
interface, a learning interface, into our automatic 3D
object layout system. This interface consists of an
individual learning functionality and a scene learning
functionality. The individual learning functionality is
for defining parent-child relationships of an individual
3D object class in a 3D scene. The scene learning
functionality is for defining parent-child relationships of
all the existing 3D object classes in a 3D scene.

First of all, we show an overview of the interactive
learning interface using Figure 3. Since our automatic
3D object layout system was developed using
IntelligentBox, the prototype of the interactive learning
interface is also realized as some composite components
of IntelligentBox, which is a constructive visual 3D
software development system [8, 9]. This interface
mainly consists of a layout panel and a learning panel.
The layout panel controls a 3D scene generated using our
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automatic 3D object layout functionality. If the user
pushes the layout button, the system generates a 3D
scene according to current semantic database records
automatically. The system can also load any 3D scene
from scene files. The learning panel is used to update
semantic database of 3D objects. This panel changes
weight parameters of 3D objects by extracting
parent-child relationships from a 3D scene the layout
panel provides. This panel has two types of buttons, i.c.,
individual learning buttons and a scene learning button.
If the user pushes one of the individual learning buttons,
the system changes the weight parameter of the Object
type corresponding to the pushed button. Each chart
shown in Figure 3 displays the probability distribution of
the weight parameters of a certain 3D object class. The
interface puts sets of the probability distribution
sequentially according to object types. On the other
hand, if the user pushes the scene learning button, the
system changes weight parameters about all of the 3D
objects existing in the current 3D scene.

In this way, our proposed interface provides two types
of learning functionalities. Next, we cxplain these
functionalities 1in detail. Moreover, we discuss
experimental results.

Individual learning functionality

The individual learning functionality  extracts
parent-child relationships of one individual object class
out of a 3D scene. By using this functionality, the user
can interactively change weight parameters of
child-parent relationships of his/her specified object
class.



of learned semantic
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Figure 4: Experiment of the individual learning functionality

Not learned semantics

iScene learning;

earned semantic

Figure 5: Experiment of the scene learning functionality

Experiment of the individual learning functionality

We introduce an experimental result about the individual
learning functionality. At first, our system generates an
initial semantic database which has parent-child
relationships of all 3D objects that means any objects can
be connected to cach other.  Strictly speaking, weights
of parent-child relationships among all 3D objects are the
same value as shown in Figure 4 (a). Next, the system
lays out 3D objects at random using the semantic
database. Since the semantic database initially does not
have any user preference information, the generated 3D
scene is not guaranteed to be desirable for the user. If
the user finds his/her preferable parent-child relationship
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between any two 3D objects in the 3D scene, for instance,
chairs and shelves are correctly laid out on the floor as
shown in Figure 4 (b), the user can update weights of
parent-child relationships in semantic database records
about the chair class and the shelf class using the
individual learning functionality by only choosing the
chair object and the shelf object. Generally speaking,
by counting the number of the same parent-child
relationships between any two object types in a 3D scene,
the system updates the corresponding weight value in the
semantic databasc using cquation (1). This process
means the interactive learning. After several
interactions of the user using the individual learning
functionality, the system obtained the weight parameters



of parent-child relationships of the semantic database
shown in the right part of Figure 4 (c), and the system
can generates the 3D scene shown in the left part of
Figure 4 (c). The system also generates the 3D scene
shown in Figure 4 (d) preserving semantic constraints of
the group layout and the regular interval layout in
addition to the user preference about parent-child
relationships.

Scene learning functionality

The scene learning functionality extracts parent-child
relationships of all the existing object classes out of a 3D
scene. Using this functionality, the user can
interactively change weight values of parent-child
relationships by choosing his/her preferable 3D scenes.

Experiment of the scene learning functionality

We introduce an experimental result about the scene
learning functionality. At first, our system generates an
initial semantic database which has parent-child
relationships of all 3D objects that means any objects can
be connected to each other. Figure 5 (a) shows the
screen snapshot of this case. After the user loads one
sample from existing 3D scenes which he/she likes,
using the scene learning functionality, the system
extracts parent-child relationships among all 3D objects

included in the loaded 3D scene as shown in Figure 5 (b).

Every time when the user indicates new other 3D scene
as one sample for the learning, the system extracts
parent-child relationships about the 3D scene and
updates the weight parameters of parent-child
relationships of 3D objects in the semantic database as
shown in Figure 5 (c). Using the learned semantic
database, the system can generate 3D scenes preserving
the user preference. Figure 5 (d) shows the screen
snapshot of one of the generated 3D scenes.

CONCLUSION
This paper proposed an interactive learning interface to
statistically obtain user preference of semantic

constraints, i.c., parent-child relationships among 3D
objects, from existing samples of 3D scenes. While the
natural language approach for 3D scene construction has
the serious problem that defining semantic database as
the text form is time-consuming, our proposed interface
can help the user to interactively define his/her
preference about parent-child relationships among 3D
objects. To extract such user preferences through our
proposed interface, we added a weight parameter about a
parent-child relationship into semantic database records
of our previous automatic 3D object layout generation
system.  Consequently, our extended system can
generate more realistic 3D scenes according to the user
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preference.

As the future work, we will apply more weight
parameters to other constraints, e.g., a contact constraint,
occupancy distance, etc, in the semantic database.
Especially, about occupancy distance, we try to use
Gaussian distribution determined by calculating the
average and the deviation of distances between any two
3D objects in 3D scenes. We also try to use Genetic
Algorithm to generate more desirable 3D scenes those

preserve  multiple  different user  preferences
simultaneously.
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Abstract

Most approaches to behavior synthesis in artificial characters
assume a set of elementary behaviors which are activated ac-
cording to the agent’s spatio-temporal context, goals, desires,
and needs. Towards the problem of automatically determin-
ing a suitable set of elementary behaviors, this paper reports
on adopting a successful technique from robotics to game
agents. The concept of interpersonal maps has been thor-
oughly tested in experiments with AIBO robots and from ex-
perimenting with recordings of human game-play, we found
that it also allows for distinguishing types of interactions be-
tween human controlled avatars. Interpersonal maps there-
fore provide an avenue to automatically mine and learn ele-
mentary behaviors from human generated data.

1 Motivation and Background

Recently, academic interest in the problem of program-
ming believable computer game agents has grown consider-
ably. Contributors have studied the problem from the per-
spectives of deliberative Al (Laird 2001), machine learn-
ing (Bauckhage, Thurau & Sagerer 2003, Yannakakis &
Hallam 2004, Arvey & Aaron 2005), evolutionary comput-
ing (Priesterjahn, Kramer, Weimer & Goebels 2005), and
robotics (Adobbati, Marshall, Kaminka, Schaffer & Sollitto
2001, Amir & Doyle 2002, Brown, Barnum, Costello, Fer-
guson, Hu & Wie 2004). Common to all these works is that
they implicitly revert to the concept of behaviors.
Computational architectures for synthesizing a suitable
mix of reactive, tactical, or strategic behavior, of course re-
quire a corresponding vocabulary of elementary behaviors.
While in practice this is usually provided by means of prepro-
grammed scripts, modern computer games also allow for a
data-driven approach. Following an idea by Bauckhage et al.
(2003), we record matches of multi-player games played by
human players. Since these recordings contain detailed infor-
mation of where the players steered their avatars in the game
world and what they had them do, elementary behaviors may
be learned directly from human experts. Assuming that be-
haviors are patterns of frequent activity triggered by spatio-
temporal contexts, game data can thus be mined in order to
identify the building blocks of reoccurring human behavior.
After describing an auspicious technique first introduced
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for imitation learning in robotics, in section 3, we will turn to
behavior mining from game data. Our focus will be on inter-
actions between two players. We shall see that different be-
haviors manifest in information theoretic distances between
sensory recordings of the agents. Experimental results indi-
cate that projecting these distances into lower dimensional
spaces allows for distinguishing between different behaviors
in the data. A short discussion of our empirical findings will
end this contribution.

2 Interpersonal Maps in Robotics

Recently, Hafner & Kaplan (2005) introduced the idea of in-
terpersonal maps. Based on information distances between
the sensors that can be measured for two agents over a certain
time window, these maps are extended abstract body maps
which not only represent the body and behavior of one agent,
but the interaction between two agents.

2.1 Information Distance

The conditional entropy for two information sources X; and
X is defined as

H(X;j|1X;) = =YY p(xi,xj)log, p(x)|x;)

Xi Xj

(D

where p(x;[x;) = p(xj,x;)/p(x;). Traditionally, H(X;|X;) is
interpreted as the uncertainty associated with X; if the value
of X; is known.

Crutchfield (1990) defines the normalized information dis-
tance between two information sources as:

H(Xi|X;) + H(X;|X)
H(X;,X;)

d(vaXi> = ()

Since d is a metric for the space of information sources,
it is preferable to classical mutual information MI(X;,X;) =
H(X;)+ H(X;) — H(X;;X;). From the well known equiva-
lence H(X;,X;) = H(X;) + H(X;|X;), we see that d < 1; if
d =1, the two sources are independent.

2.2 Visualization Through 2D-Sensor-Maps

For our purpose, distances between high dimensional sen-
sor recordings, which are captured in a distance matrix D,



(b)

33 behaviours projected onto first 3 PCs.

«  beh1-15
*  beh 16-33

Figure 1: Experiments with AIBOs. (a) Body map of a walk-
ing robot; (b) AIBO robots used for the experiments; (c) clus-
tering of different robotic behaviors (walking, non-walking).

must be transformed into a representation of lower dimen-
sional points {p;j}. This can be cast as a constraint satisfac-
tion problem, where each couple of points p; and p; should
satisfy:

|[pi — pjll = dij (3)

40

Figure 2: Didactic example for placing three points p; in a
two-dimensional space such that their metric distances cor-
respond to the information distances d;;.

and ||p; — pj|| is the Euclidean distance between the posi-
tion of the ith and jth point and d;; the corresponding dis-
tance in the matrix D. This results in a system of @
equations and a set of n points of dimension n — 1 would
permit an optimal solution for these constraints. However,
in order to obtain a representation in dimensions lower than
n— 1, one has to resort to approximation. Pierce & Kuipers
(1997) describe a statistical method to determine a suitable
dimensionality for projecting a given data set. In this paper,
we consider two-dimensional projections for illustrative pur-
poses although they may not be the optimal ones.

The information contained in D can be mapped to a two-
dimensional space using an iterative procedure of positioning
points in the subspace such that the metric distance between
two points in this map approximates the distance in the dis-
tance matrix (see Fig. 2). Our algorithm iterates two simple
steps. After each information source X; is randomly assigned
a point p; in the two-dimensional plane, these steps are:

1. Compute the force f; =Y f;; acting on each point p;,
where

(P —Pi)
fii={pi—pjll —d(Xi, X)) 77—

1y (|| 1 J|| ( 1 ]))||pj_p1||
2. Move each point p; according to the force f;, i.e.

1
pi — Pi+ —/fi-
n

2.3 Experiments with Robot Behaviors

Interpersonal maps are an extension of body maps (see
Fig. 1) where the information distances among all sensory
pairs of two behaving agents are taken into account and the
corresponding 2D representation shows the interaction be-
tween two agents.

The idea of interpersonal maps has been applied by Kaplan
& Hafner (2006) for a range of different robotic experiments.
The robots considered were Sony AIBOs where for each of
which 18 sensors were used. One of the experiments showed
that when one robot was imitating another robot, the respec-
tive interpersonal map was similar to two body maps on top



Figure 3: Screenshot of a QUAKE I1I1® environment used in
our behavior mining experiments.

of each other. When there was no imitation in the behavior or
a long delay in imitation, the interpersonal map showed two
clusters.

Other robotic experiments showed that different robotic
behaviors could be distinguished and walking and non-
walking behaviors were building two clusters in the 3D space
of the first principal components of the information distance
matrices.

3 Interpersonal Maps for Computer
Game Agents

In our work on applying the technique of interpersonal maps
to the game setting, initial experiments were carried out using
the game QUAKE II® . For accessing the information con-
tained in recorded network data, we applied the QASE API
developed by Gorman, Fredriksson & Humphrys (2005).

Considering simple, almost two-dimensional environ-
ments as exemplified in Fig. 3, we recorded several sessions
of four different types of interactions between two human-
controlled agents:

Escaping behavior: One agent tried to escape another agent
who was pursuing him directly.

Chasing behavior: One agent was being chased by the
other agent who tried to anticipate the motions of his

prey.

Following behavior: An agent immediately followed an-
other agent who was not trying to flee but was leading
the way.

Random behavior: The two agents were moving indepen-
dently and randomly so that they only had chance en-
counters.

The sensors we considered are the positions and velocities
of the two agents (see the listing in Tab. 1).
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Number | Name/type of sensor

1 x coordinate of agent 1

2 y coordinate of agent 1

3 x velocity of agent 1

4 y velocity of agent 1

5 x coordinate of agent 2

6 y coordinate of agent 2

7 x velocity of agent 2

8 y velocity of agent 2

9 absolute velocity of agent |
10 absolute velocity of agent 2

Table 1: Numbering scheme of sensors applied in producing
the visualizations in Figs. 4 to 6.

Figure 4: Information distance matrices for chasing, escap-
ing, following and random behavior.

Figure 4 displays the information distance matrices for the
four behaviors. The ten items on each axis correspond to the
sensors introduced in Tab. 1; the coloring scheme encodes
the corresponding information distances: dark blue denotes
zero distance as it appears between identical sensors (i.e. on
the diagonals of the matrices).

Figures 5 and 6 depict corresponding two-dimensional in-
terpersonal maps resulting from our relaxation algorithm.
The ones in Fig. 5 were created from sequences of 600 data
samples (60 seconds), the ones in Fig. 6 resulted from 2000
data samples (200 seconds). Note that, in this form, the maps
provide a first qualitative idea of the interaction, but should
not be confused with a thorough statistical analysis.

None of the behaviors involves the use of a weapon or
other items found in the environment. The first interaction
is a simple escaping behavior where one agent was trying
to flee from the other. The other agent was trying to follow
him directly in order to tag him. Accordingly, the maps in



(b) Interpersonal maps for the chasing behavior.

Figure 5: Interpersonal Maps for escaping and chasing behaviors. Sensors belonging to an individual agent are interconnected.

Fig. 5(a) show considerable overlap. The second behavior
is a chasing behavior. Here, one agent is chasing another
one while trying to anticipate the other’s moves. In con-
trast to the first behavior, the agent therefore rather tried to
corner his prey. Concerning the maps in Fig. 5(b), this re-
sults in clearly separate clusters. This of course agrees with
the intuition behind interpersonal maps. If they show sepa-
rate clusters, the correlation between the agents’ sensors is
less strong. The third behavior is again a more imitative be-
havior: one agent is following the other, who is not running
away, but showing the way. Accordingly, the corresponding
interpersonal maps in Fig. 6(a) show higher degrees of con-
gruence. Finally, the behaviors mapped in Fig. 6 were totally
random; the two agents were moving on the map without
noticing each other but had chance encounters.

As with the AIBOs, one can thus find prototypical distance
matrices that characterize different types of behavior. We are
currently working on a method that tracks the temporal evo-
lution of matrices which are computed online using a sliding
window approach. Different behaviors will then be automati-
cally detected by observing transitions between Voronoi cells
of attractors in the tensor space of information distance ma-
trices.

4 Summary and Outlook

In order to create more realistic and life-like acting game
agents, it is crucial to synthesize different behaviors in an
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automated and adaptive way. This requires an architecture
that is able to switch between reactive, tactical and strate-
gic behaviors. A game bot based on such a cognitive model
should ideally understand and adopt the basic behaviors typ-
ical for human gameplay. In order to appear natural, the ele-
mentary behaviors should not be provided in form of scripted
programs but ideally be mined from observations of genuine
human play.

The idea behind the work presented here is to first iden-
tify behavioral building blocks used by human players. Re-
occurring behaviors extracted from observations of interac-
tions between two human players can then be used as action
primitives for the cognitive architecture of an artificial game
bot. As a first approach, we apply the concept of interper-
sonal maps (Kaplan & Hafner 2005) which was inspired by
psychological findings. As in the case of experiments with
AIBOs, we could show that for the game domain, too, differ-
ent maps are created for different types of interactions. This
allows for identifying and extracting relevant subsequences
from streams of recorded human gameplay. Using machine
learning techniques such as the ones described by Bauckhage
et al. (2003) or Gorman et al. (2005), our next step will be to
derive parametric models from these data to proceed towards
more convincing behavior synthesis.
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ABSTRACT

Real-time strategy (RTS) games are complex decision
domains which require quick reactions as well as strate-
gic planning. In this paper we describe the first RTS
game Al tournament, which was held in June 2006, and
the programs that participated.

Introduction

Creating smart computer adversaries and teammates for
human players in modern video games is challenging. Al
programmers for such games are faced with limited com-
putational resources (because most CPU cycles are still
devoted to graphics), real-time constraints, huge state
and action spaces, and imperfect information. In addi-
tion, the tight release schedule for video games does not
leave much room for conducting Al research in games
companies. Therefore, a common approach to practi-
cally solving these problems is to create an illusion of
intelligence (Livingstone, 2006) by scripting actions for
nonplayer characters (NPCs) and providing them with
more resources including information that is not avail-
able to human players. This way it is relatively easy
to create NPCs that by having more knowledge of the
game state — or bigger virtual muscles — can reach
the playing level of human players or even outperform
them. There are however problems with this method-
ology. Scripted action sequences are brittle — they of-
ten cannot deal with new situations and are casily de-
featable once known. More advanced variations exist
(Spronck et al., 2006), whereby script parts are executed
probabilistically and probabilities are updated depen-
dent on past performance. But even with such modifi-
cations, opponent Al systems still cannot compete with
strong players unless they are given unfair advantages.

To overcome this problem, several Al researchers
have started to use video games as test applications for
their work in recent years. Conferences are now devoted
to progress in computer entertainment Al, and the inter-
action between computer game companies and academia
has increased. Another particularly effective way of
spuring research in Al is holding competitions. Great
examples are the machine-machine and man-machine
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competitions in the 1980s and 1990s which produced
stronger and stronger programs which eventually played
on-par or better than the best human players in chess,
backgammon, checkers, and Othello. Other examples
which have helped to increase the performance of Al
systems considerably include the annual planning com-
petition, SAT competitions, and RoboCup. The goal of
competitions like the one which we are going to describe
here is to repeat the success of classic game Al systems
in the area of more complex video games.

In the remainder of the article we first describe the
game genre we are interested in — Real-Time Strategy
(RTS) games — and the programming framework ORTS
we have developed for it. Then, after presenting the
tournament game categories, we describe the programs
that participated in the first AIIDE RTS game competi-
tion, present their tournament results, and conclude the
paper with ideas on future RTS game Al competitions.

RTS Games and ORTS

Real-time strategy games are typically tactical simula-
tions engaged in by two or more players. These games
are fast-paced and pose several challenging problems
such as incomplete information, the need for long-range
planning, and a continually changing world with limited
time to plan (Buro and Furtak, 2004).

A player can be in control of potentially hundreds
of units, each with several possible actions that may be
taken several times a second. A naive search of the avail-
able action space is clearly intractable. This necessitates
potentially several levels of abstraction, for controlling
individual units and larger armies.

Games typically involve simplified economies consist-
ing of gathering resources which may be used to con-
struct buildings, research new abilities, and train offen-
sive and support units. Resource usage must be bal-
anced to construct an army capable of effectively ex-
ploit opponents’ weaknesses while being able to defend
against potential threats.

Determining an effective strategy often relies on ac-
curate opponent models. Specifically, determining the
types of enemy units that an opponent will likely pro-
duce, and how they will be used to attack, at what time,
and at which location.



ORTS

The Open Real-Time Strategy (ORTS) game engine,
available from www.cs.ualberta.ca/ mburo/orts, pPro-
vides a flexible framework for studying AI problems in
the context of RTS games. The ORTS engine is script-
able, which allows for game parameters to be easily
changed, and new types of games, or subsets of existing
games, to be defined.

Unlike most RTS games, ORTS uses a server-client
framework. Instead of each client maintaining a local
copy of the entire game state, each frame the ORTS
server only sends a client the information actually avail-
able to it. This effectively eliminates the ability of
clients to cheat by applying simple map-revealing hacks.

Units in ORTS are simple geometric primitive (cir-
cles, rectangles, and line segments) located on a fine
grid. Objects may travel at an arbitrary heading, with
collisions accurately computed by the server.

Map terrain is specified by a grid of tiles, with each
tile capable of having arbitrary corner heights and be-
ing one of several terrain types. Boundary objects with
various collision masks are automatically created along
discontinuities between tiles.

Unit vision is tile-based, with different units having
a sight range that determines how many tiles away they
can see. When the “fog of war” is enabled, a player only
has up-to-date information about tiles that are currently
seen by an allied unit. The vision model also supports
“cloaked” units which can only be seen by “detectors”.

All ORTS components are open-source. Along with
the server-client framework, this allows users to cre-
ate their own AI components capable of acting au-
tonomously or to augment a human player.

The AIIDE RTS Game Competition

The RTS Game Competition presented at AIIDE ’06
consisted of three separate game categories, arranged
in increasing order of complexity. These categories ad-
dressed the tasks of multi-unit pathfinding, local com-
bat, and dealing with imperfect information, in that or-
der. Effective solutions in one category relied on imple-
mentations from the previous game types.

Game 1: Cooperative Pathfinding

The first game is stated as the task of gathering as many
resources as possible within a given amount of time. The
player begins the game with one base surrounded by
workers. These workers must travel to resource patches
randomly positioned on the game field, spend a short
amount of time to collect those resources, and finally
bring them back to the base.

At the start of the game the entire map and the lo-
cations of all resources are known to the player. To
complicate the task, the map contains both impassi-
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Figure 1: Game 1 client display.

ble terrain obstacles, and indestructible mobile “sheep”,
which randomly travel a short distance, stop, then con-
tinue. The entire scenario is perfect information, except
for simultaneous actions on the part of the workers and
the sheep.

Practically, the task is then to effectively coordinate
the motion of the workers to minimize total travel time
between the base and the resource patches. Spending a
long time to compute near-optimal routes may result in
the world having changed to the point where the com-
puted solution is no longer valid.

Game 2: Local Combat

The second game is two-player tank combat, where the
objective is to destroy as many of the opposing player’s
bases as possible within 10 minutes. Each player begins
with 5 bases randomly distributed within the playfield,
and 10 tank surrounding each base. A game ends im-
mediately if all of one player’s bases are destroyed.

As with the first game, each player has full visibility
of the entire map. Plateaus, which are impassable and
block line-of-sight tank attacks, are randomly placed on
the map. Neutral, indestructible sheep also wander ran-
domly.

The focus of this scenario is to effectively engage and
destroy enemy squads. Formations which allow one side
to concentrate fire on a small number of tanks while ex-
posing themselves to few attackers are preferable. An
agent must therefore coordinate the motion of the tanks
to bring about these positions while avoiding collisions
with other tanks (both allied and enemy) and unpre-
dictable sheep.

Game 3: Mini RTS

The third game is a stripped-down version of a “real”
RTS game. Two players begin with one base and several
workers located next to a resource patch. The rest of



Figure 2: Game 2 client display.

the map and the location of the enemy base is initially
unknown. A fog-of-war limits the currently observable
parts of the map to those regions that can be seen by
allied units.

A player is able to spend minerals and use a worker
to construct a barracks and then a factory. Barracks and
factories can then be used to train marines and tanks
respectively. Tanks have more hitpoints, attack power,
and range, but cost more than marines.

The objective of this game is to obtain more points
than the opponent before time runs out. Points are
awarded for gathering resources, constructing buildings,
training units, and for destroying enemy buildings and
units. The game ends early if all of one player’s buildings
are destroyed.

Figure 3: Game 3 client display.
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Tournament Setup

All tournament games were played between June 16 and
18, 2006 on 31 undergraduate lab computers in the com-
puting science department at the University of Alberta.
Each machine was equipped with a single Athlon XP
1.5 GHz CPU and 512 MB RAM running Linux 2.4.31
and gce 4.1.1. Shortly prior to the competition a multi-
threaded ORTS tournament manager was completed by
Krysta Mirzayans. This software greatly simplified run-
ning the tournaments and allowed us to play a large
number of games.

Authors had access to the tournament computers on
which they could upload their programs to test them
in individual protected accounts which were frozen just
before the tournament commenced. Each participant
was asked to send a magic integer to a member of the
independent systems group which also set up the tour-
nament accounts. These numbers were then exclusive-or
combined to form the seed of the random number gener-
ators used for creating all starting positions. This way,
no participant was able to know beforehand what games
would be played. In order to reduce dependency of game
results on starting positions

In what follows we describe all tournament entries in
turn and present the results of the tournaments.

Game 1 Entries
brzol
Author:  Michal Brzozowski, University of Warsaw,

Poland

Michal’s entry used a discrete graph-based terrain rep-
resentation where neighboring vertices are connected
if their connecting edge is traversable. Workers are
guided by a finite state machine (FSM) with the fol-
lowing states: move-to, mine, go-back, drop-resources,
avoid (entered when hitting a moving obstacle. Avoids
obstacles by moving to the left. When it hits a static ob-
stacle, it moves to a random direction), and emergency-
path (when hitting a number of obstacles in the avoid
state, tries to get back to original path). A coordina-
tor assigns workers to resources based on shortest paths.
Each worker picks the closest mineral from its starting
point with less than 2 workers assigned already.

creedl
Author: Michal Szostakiewicz (University of Warsaw,
Poland)

A search graph is built from nodes representing tile cen-
ters. Kdge weights depend on mobile objects close by
to prevent collisions. Each worker is assigned a random
mineral patch and is sent to it. Shortest paths are com-
puted by Djikstra’s algorithm. When colliding, workers
move to a random location nearby.

umichl
Authors: Joseph Xu and Sam Wintermute (University
of Michigan, U.S.A.)



This entry was implemented in the SOAR architec-
ture using a modified version of the standard ORTS
pathfinding with an added local obstacle avoidance sys-
tem. Workers are guided by a mining manager and a
FSM. If a worker exceeds its estimated travel time, it
requests a new route from the mining manager. The
mining manager learns which routes are bad.

uofal

Authors: David Deutscher (Tel Aviv University, Israel)
and Nick Wiebe (University of Alberta, Canada)

This entry is based on three modules:

1. A single-unit path planning algorithm using a sim-
ple grid based A* algorithm, which uses a multiple-
resolution world representation, pluggable goal def-
initions (including “touch a target objejct”) which
can handle variable-sized and shaped objects.

2. A path execution system which calculates the nec-
essary motion at each simulation tick to move a unit
along a predetermined path. To do this force fields
are used to attract moving units to a point on the
path in front of them and to repel them from other
objects, buildings, and walls. For each unit travel-
ing along a path, every object, building, and wall
whose distance is below a minimum threshold ex-
erts a force on the unit inversely proportional to the
square of the distance between them. The move-
ment vector for the unit is the sum of the forces
acting on it. This approach solved the problem of
path obstruction by sheep and enemy units, as units
would just roll off the obstruction. It also is used to
give priority to moving units. By calculating and
applying these forces to units that were not moving
along a path, idle units can be pushed out of the
way of moving units. A small randomized vector
is added to this pushing force in order to limit the
distance that units are pushed in a single direction.
Pushing proved to be important for game 2, where
it speeds up large group attacks.

3. Dynamic allocation of minerals to workers, based
on minimizing a weighted (1:1) combination of the
Fuclidean distance from the worker’s current posi-
tion and the static path’s length between the min-
eral and the control center (where static means the
shortest path found while considering only static
obstacles — boundaries, other minerals and the
control center itself). Statically-blocked minerals
are not assigned and a single worker per mineral is
preferred, unless no other option is available. Fail-
ures to plan a path or to reach a mineral raises
a limited-time flag preventing its use for a couple
dozen turns.
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Game 1 Results

Initially it was planned to play 300 games per entry
lasting 10 minutes each on June 16. But twenty hours
into the tournament the tournament manager exceeded
its disk quota which was set too low. So, to stay on
track, the number of games had to be reduced to 225
per program. The final results were as follows:

rank  name score  games ratio
1. umichl 1458455 225 6482.0
2. brzol 1136690 225 (*) 5051.9
3. uofal 1136790 225 (*) 5052.4
4. creedl 559380 225 2486.1

Program brzol was leading over uofal almost all the
time. So, team uofa happily conceded 2AD place to
it (*) due to shortening the tournament. Entry creedl
made the server crash several times by referring to fully
mined mineral patches which had vanished.

Game 2 Entries

umaas?2
Authors: P. Kerbusch, N. Lemmens, M. Urlings,
V. Vorsteveld (University of Maastricht, The Nether-
lands)

This entry creates 5-tank squads in single-file formation.
The squad leader plans a path to the nearest base and
others follow. When enemy tanks are encountered, a
wedge formation is formed and the weakest of all tanks
within range is attacked. Tanks move towards the weak-
est target while firing at the weakest target within range.
When no more enemy tanks are in sight, the squad re-
sumes its path in file formation. When a base is de-
stroyed, a new base is located and the squad starts mov-
ing towards it. All objects excluding opposing tanks are
considered obstacles and each tank reserves one tile.

umich?2
Authors: Joseph Xu and Sam Wintermute (University
of Michigan, U.S.A.)

This entry is a SOAR agent that attacks tanks be-
fore bases. Tanks are grouped by spatial distance, and
groups of tanks will try to attack enemy tank groups
that are smaller than them. If no such enemy groups ex-
ist, smaller groups will try to regroup into larger groups
and go for their target then. Unfortunately, a bug was
introduced just before the deadline, and most of this
behaviour was not realized in the competition.

uofa2
Authors: K. Anderson, J. Bergsma, D. Demyen, T. Fur-
tak, D. Tom, F. Sailer, N. Wiebe (University of Alberta,
Canada), D. Deutscher (Tel Aviv University, Israel)

The program first finds a suitable meeting location for
all tanks close to the average tank position. Then all



tanks are sent there after joining locally first. When the
join operation is finished, the entire group starts hunting
and attacking the closest enemy tank. When all tanks
are destroyed, bases are attacked. The weakest targets
are attacked first while minimizing overkill.

The task architecture utilized in this tournament en-
try (and also in uofa3) was designed to be simple, yet
powerful. Each task is composed of a list of units as-
signed to it, as well as a list of child tasks, and a current
line number. Each task also has an execute function
which defines the task’s behaviour. A task is defined as
a series of statements to execute, and the navigation be-
tween these statements done by having a variable point-
ing to the current line number. The statements can
range from giving individual units precise orders to cre-
ating subtasks for subsets of units. Finally, each task has
an identical update function, which is executed when-
ever an object belonging to that task has completed an
order or has been killed. If all the units of a task have
completed their orders, the task executes its next state-
ment as defined in the execute function. If the task has
reached the end of its execute function, the task itself
completes and notifies its parent and also gives control
of the units back the the parent. The parent then ex-
ecutes its next statement, and so on. This framework
allows complex strategies to be formulated by creating a
series of subtasks, and combining them into more com-
plex tasks.

Game 2 Results

Four hundred two-game matches were played for each
player pair on June 17. Each game lasted at most 15
minutes. Here are the obtained results:

rank name score matches ratio
1. uofa2  390.0 400 0.975
2. umaas2 210.0 400 0.525
3. umich2 0.0 400 0

Entry uofa2 won almost all of its games. It crashed in
20 games, but only lost 10 matches in total. The strat-
egy of all tanks meeting near the center first and then
hunting tanks with a big group tanks was quite success-
ful. It is also hard to beat in the absence of area effect
weapons. Therefore, in subsequent competitions control
centers will likely be made weaker to make leaving bases
undefended more risky.

Game 3 Entries

umich3
Authors: Joseph Xu and Sam Wintermute (University
of Michigan, U.S.A.)

After gathering enough minerals and having built
enough marines this SOAR agent sends marines to ex-
plore and attack. Defensive behaviour takes precedence,
and all units are pulled into battle if the base is under
attack.
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uofa3
Authors: K. Anderson, J. Bergsma, D. Tom, T. Furtak,
F. Sailer, N. Wiebe (University of Alberta, Canada),
D. Deutscher (Tel Aviv University, Israel)

Using the task framework described earlier, this entry
implemented a so-called turtling strategy which creates
a barracks and enough workers such that each visible
mineral patch is mined. It then produces as many
marines as it can which wait for the opponent to arrive.
The squad combat Al described earlier also controls all
combat actions in this game and an older version of the
mining Al controls gathering minerals.

Game 3 Results

Two hundred two-game matches were played on June 18
— each one lasting for at most 20 minutes. The results
were as follows:

rank  name score matches ratio
1. umich3 124.0 200 0.62
2. uofa3 74.0 200 0.37

When watching some replays it becomes apparent that
there is much headroom in terms of increasing playing
strength in game 3. Neither program expanded to other
resource locations, nor did they create tanks in later
game stages.

Conclusion and Outlook

In this paper we have presented the results of the first
RTS game Al competition which was held in June 2006
and described the algorithms used in the tournament
programs. Many areas of improvement have been iden-
tified, including ORTS documentation, program and
server stability, group pathfinding, and high-level Al.
We regard this as a promising beginning of a series of
many future RTS game Al competitions which hope-
fully will help elevating the level of real-time Al to new
heights.
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ABSTRACT

This paper describes a multi-agent soccer simulator based on
a highly simplified soccer model. The simplified soccer
model starts on a high level, and is suitable for research on
high-level strategies. The simulator features a three-layer
model representing the physical environment, robot, and
behavior. This layered approach makes the system
extensible. The system is fully functional and has been used
in an educational environment. Results from this show that it
is possible for unexperienced novice programmers to
implement cooperative intelligent soccer teams in limited
time. The simplified model allows advanced high-level
strategies and self-learning elements.

INTRODUCTION
Challenge

Multi Agent Systems (MAS) deal with multiple agents that
arc collectively capable of reaching goals that are difficult or
impossible to achieve by individual agents. One increasingly
popular example of MAS is robot or embodied agents. The
ultimate challenge of this domain is stated as follows
(Kitano and Asada 2000):

"By mid-21st century, a team of fully autonomous humanoid
robot soccer players shall win the soccer game, complying
with the official rules of the FIFA, against the winner of the
most recent World Cup."”

The 2050 goal is the successor of the chess challenge, that
was accomplished in 1997 (Schaeffer and Plaat 1997). The
domain characteristics of soccer vary largely from those of
chess. Table 1. illustrates this.

Table 1: Comparison of Chess and Soccer

Chess Soccer
Environment Static Dynamic
State Change Turn taking Real time
Info. Accessibility Complete Incomplete
Sensor Readings Symbolic Non-symbolic
Control Central Distributed
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Problem

The high level aspects, such as dealing with cooperation and
team work are not dealt with extensively in present
literature. The main reason why most research is being done
on the low level details of playing soccer is that having a
reliable, fast, low level implementation is a necessary
requirement for any high level strategies. It is however not a
sufficient requirement. There is no use in reasoning about
complex strategies to trick the opponent when simple
commands are not executed in accordance with the
expectation. In both the simulation league, and in all
physical robot leagues, a low level implementation of many
primitive functions is required before having a fully
functional team. Furthermore, there is a large dependance on
the quality and stability of the low-level implementation on
the performance of high-level strategics. As a result, the
problem domain that was already inherently very uncertain
is extended with even more uncertainties.

Simulator

Rules governing fair play dealing with, amongst others, free
kicks, bookings, penalties, throw-ins, corners, goal kicks and
offside, arc all necessary clements of human soccer.
Including these rules in a simulator however, necessitates
their inclusion in the design and implementation of any
team. A further dimension of soccer is coaching and
allocating players with certain strengths and weaknesses to
certain positions. Although attention to all these properties
and events must be paid in order to compete with human
players, they distract attention from developers towards
handling these special cases. For this reason, the
aforementioned elements are not included in the world
model of the system. Furthermore, all robots are physically
identical.

RELATED WORK

As early as in 1994, soccer was introduced as one of the
great challenges for Artificial Intelligence (Sahota 1994). A
lot of research and experimentation has been going on in the
increasingly popular domain since. In the year 2000, the
2050 goal (Kitano and Asada 2000) was formulated as the
new challenge for Al for the coming 50 years, in response to
the completion of the chess challenge in 1997.

Competing with humans and in accordance with the FIFA
rules demands highly sophisticated humanoid robots that
have physical abilities comparable to that of humans.
Developing such robots can not be done overnight. A set of



intermediate targets with regards to the robots, the rules of
the game and the environment in which the game takes place
have been set out in (Burkhard et al. 2002). Through
gradually adding complexity and making competitions ever
more humanoid, the 2050 goal is to be met.

Robocup

RoboCup consists of 5 leagues; (1) small-sized robots; (2)
middle-sized robots; (3) four-legged robots (Aibo's); (4)
humanoid robots; and (5) simulation. The first four leagues
deal with actual physical robots — and face the corresponding
technical problems, whereas the simulation league has no
physical representation.

Simulation League

The soccer simulator was introduced in 1995 (Noda 1995)
and has seen a lot of development since. In this league,
teams of 11 autonomous software agents compete on a
simulator in a match lasting 10 minutes. Unlike the hardware
leagues, this league docs not face the hardware constraints of
current technology. A vast body of literature has been
written on various techniques used to create cooperative
teams, such as machine learning, multi-agent collaboration,
and opponent modeling. There are several variations within
the simulation league; A 2D competition, a 3D competition,
a 3D-development competition and a coaching competition.

The Soccer Simulator is presently a platform for researching
cooperation and team work. It is not restricted by the current
state of technology, however there is a large threshold for
starting working with the simulator. The simulator is
designed from the perspective of being a realistic soccer
simulator. As such, many low level functions have to be
implemented prior to reasoning on a higher level, and this
higher level reasoning depends on the uncertainties that
remain after the lower level implementations. Resulting
implementations are very complex, and research on a
strategic level is difficult.

FLEEBLE

The simulator (Borm 2006) was implemented using a simple
agent framework called Fleeble (Pantic et al. 2004). Fleeble
is Java-based and provides all functionality required for
development and implementation of the simulator and soccer
teams. It allows concurrency (multi-threading), multiple
agents (and easy communication between these agents) and
namespaces.

Namespaces simulate different computers. When loading a
child Agent, a certain name space can be appointed and
Fleeble will lock the Agent's communication to this
namespace. This is particularly useful for multi-agent soccer,
as it enables forced namespaces on player agents, such that
they can only communicate with the framework and not
directly with cach other. Figure 1. shows the Fleeble GUI,
with the soccer simulator running.
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Figure 1: GUI of Fleeble Agent Framework

MODEL

Rather than developing a realistic soccer simulator, the
described model is intended to be suitable as a tool for Al
research. The most important difference with the official
laws of the game is that the ball is always in play in the
soccer model, whereas it can be taken out of play by either
the referee or by leaving the ficld in human soccer. There is
no centralized control such as a coach or a referee. There are
no injuries, bookings, and all players are physically
identical. Furthermore, there are no external influences such
as the weather or audience. Robots have aural and visual
sensors with perfect information in a narrow field. Robots
can change their behavior, shout, and move. Robot speed is
instant and static, speed penalties are awarded for collisions
and shouting. The model features three layers: The player
layer, robot layer and framework layer. This is illustrated in
Figure 2.
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Figure 2: The System Model

The Player Layer

The player layer defines the behavior of the robot. All
reasoning of a robot is done in this layer. The player layer
receives sensory input from the robot layer. This is by
default everything that the robot senses, but a filter can be



added to simulate technical imperfections at the robot. The
player layer can send its desired actions to the robot layer.

The Robot Layer

The robot layer is the intermediate layer that mediates
between the framework (environment) and the player layer
(behavior). It will receive commands from the player layer
and attempt to execute these, when allowed by the
environment. The robot layer senses directly from the
environment. To simulate for the physical imperfections of
actual robots, such as limited processing power, poor camera
quality, imperfect control over all joints, filters can be added
over the input and output of this layer. By default the robot
layer will sense all visual and aural information within a
predefined range without any uncertainty.

The Framework Layer

The framework layer enforces all rules of the game. Rules
governing movement, vision, communication, and the game
arc defined and secured by this layer. The current state of all
robots is kept and updated by this layer. The rules of the
game and the framework parameters are publicly known by
all layers.

Player Capabilities

Basic Player Movement

A robot is a circular solid object. A robot can move cither
forward, backward, left, or right. The orientation of a robot
can be changed by turning either left or right. A robot is able
to kick a ball if it is directly in front of him. A robot can not
leave the ficld, as the framework will prevent it from doing
so. Robots are physically identical and will move at the same
base speed. Certain factors such as recent collisions, the
movement direction, or recent communication, can inflict a
temporary speed penalty on the robot.

Ball Movement

The ball is also a circular object, but unlike robots, it is not
'controlled' by any higher layer. A ball acquires movement
through collision with robots, or through being kicked by a
robot (a special type of collision). The ball will move in a
straight line, in the direction of the collision or kick. The
velocity of the ball decreases with time, as a result of
simulated friction with the field. The ball comes to a halt
naturally. Ball movement is entirely predictable, except
when the ball is kicked. A small random direction element is
added when a ball is being kicked.

Visual Model

Vision is the primary sensor of the robot. Although not the
only one, intelligent tcams can be developed reasoning
solely about the visual perception. Robots have a field of
vision that is equal in size for each robot, and defined by a
given view angle and view range. All objects within this
field of vision will be recognized. For cach of the objects
that are recognized, the name of this object, the team it is
playing for, and the exact position and heading are perceived
without any errors. Robots will also receive their own
position.
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Aural Model

To reach high-level strategic behavior by robots,
communication is essential. The aural model describes how
communication between robots is possible. Robots have a
certain shout range. This is a fixed, predefined distance, and
objects within this range in the circular arca around the robot
will receive any messages that the robot decides to send.
Any type and amount of data can be sent at any time. The
only restriction to communication is that a (severe) speed
penalty lasting several seconds is inflicted on the sender of a
message. Both friendly and opponent robots within the shout
range will receive the message. Apart from the content, the
name of the sender and the time at which the message was
sent are also included.

Changing Behavior

Since the physical capabilities of robots are identical,
substituting them would be a rather uscless activity. To
allow for adaptive team behavior, an option to substitute the
player on a robot is included. Substituting the player on a
robot effectively means replacing the player that is currently
loaded on the robot by another player. This can be done at
any time during the game, and as often as desired. The
knowledge base of the existing player can be stored, and as
such the newly substituted player will be able to access data
collected by the old player. This feature allows for adaptive
team behavior.

SOCCER SIMULATOR
Visualization

The soccer simulator that implements the aforementioned
model is displayed in Figure 3.

During the development of a team, it is convenient to know
the visual and aural areas of a particular robot, and to
determine exactly what input a certain robot received. The
first is visualized in the user interface, as illustrated in

Figure 4. The latter can easily be done in Fleeble, through
monitoring the human-readable channel communication.

Figure 3: The Multi-Agent Soccer Simulator



Figure 4: The Visual and Aural Sensor Areas of a Robot

In addition to the visualization of soccer matches, the
simulator also features team and tournament creation
interfaces. A team consists of 7 players, each with a Player
Agent, name, base position and an icon. The information is
stored in an XML file. The team creation interface (See
Figure 5) will automatically create such an XML file.

Figure 5: The Team Creation Interface

Randomness

The simulator is mostly deterministic. All paramecters are
known to all players, and can be used to calculate for
instance where a ball will come to a stop, how much time it
will take to move to a certain position, etc. There are only
two random clements in the game, causing every run to be
different. First, there is a random factor when kicking the
ball. To prevent lucky shots from a very large distance, and
to stimulate strategic behavior, a certain random distortion is
added to ecvery shot. Sccondly, there is "Java-induced
randomness". There are 2x7 Robot Agents, 2x7
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Player Agents and a Framework Agent. All Agents have
their own thread. These agents use an even larger number of
channels, that are also represented with threads. Since the
updating of all t<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>