8™ INTERNATIONAL CONFERENCE
ON

INTELLIGENT GAMES AND SIMULATION

GAME-ONg 2007

EDITED BY

Marco Roccetti

NOVEMBER 20-22, 2007

UNIVERSITY OF BOLOGNA
BOLOGNA

ITALY

A Publication of EUROSIS-ETI

Cover art was reproduced by kind permission of Koala Games, Bologna, Italy

8™ International Conference
on

Intelligent Games and Simulation

BOLOGNA, ITALY
NOVEMBER 20 - 22, 2007

Organised by
ETI
Sponsored by
EUROSIS

Co-Sponsored by

Binary lllusions
University of Bradford
Delft University of Technology
Ghent University
Koala Games
Larian Studios
The Moves Institute

Simulation First

Hosted by

The University of Bologna

Bologna, Italy

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

EDITORS

General Conference Chair

Marco Roccetti
University of Bologna
Bologna, Italy

Local Programme Committee

Stefano Cacciaguerra, University of Bologna, Bologna, Italy
Antonio Corradi, University of Bologna, Bologna, Italy
Gabriele D'Angelo, University of Bologna, Bologna, Italy
Stefano Ferretti, University of Bologna, Bologna, Italy
Marco Furini, University of Piemonte Orientale, Italy
Luca Genovali, Institute for Advanced Studies of Lucca, Lucca, Italy
Vittorio Ghini, University of Bologna, Bologna, Italy
Silvia Mirri, University of Bologna, Bologna, Italy
Claudio Palazzi, UCLA, USA
Laura Ricci, University of Pisa,Pisa, Italy
Paola Salomoni, University of Bologna, Bologna, Italy
Cesare Stefanelli, University of Ferrara, Ferrara, Italy

INTERNATIONAL PROGRAMME COMMITTEE

Game Development Methodology

Track Chair: Licinio Roque, University of Coimbra, Coimbra, Portugal
Joaquim Ramos de Carvalho, University of Coimbra, Portugal
Barbara M. Griter, Hochschule Bremen University of Applied Sciences, Germany
Oscar Mealha, University of Aveiro, Portugal
Eija Karsten, University of Turku, Finland
Jari Multisilta, University of Tampere, Finland
Esteban Clua, Universidade Federal Fluminense, Brasil

Physics and Simulation

Graphics Simulation and Techniques
Arjan Egges, Universiteit Utrecht, Utrecht, The Netherlands
Magy Self EI-Nasr, Penn State University, University Park, USA
Pieter Jorissen, Universiteit Hasselt, Diepenbeek, Belgium
lan Marshall, Coventry University, Coventry, United Kingdom
Marco Roccetti, University of Bologna, Bologna, Italy

Facial, Avatar, NPC, 3D in Game Animation
Marco Gillies, University College London, London, United Kingdom
Yoshihiro Okada, Kyushu University, Kasuga, Fukuoka, Japan
Paolo Remagnino, Kingston University, Kingston Upon Thames, United Kingdom
Marcos Rodrigues, Sheffield Hallam University, Sheffield, United Kingdom
Joao Manuel Tavares, FEUP, Porto, Portugal

INTERNATIONAL PROGRAMME COMMITTEE

Rendering Techniques
Sushil Bhakar, Concordia University, Montreal, Canada
Joern Loviscach, Hochschule Bremen, Bremen, Germany
Frank Puig, University of Informatics Sciences, Havana, Cuba

Artificial Intelligence

Artificial Intelligence and Simulation Tools for Game Design
Stephane Assadourian, UBISOFT, Montreal, Canada
Michael Buro, University of Alberta, Edmonton, Canada
Penny de Byl, University of Southern Queensland, Toowoomba, Australia
Antonio J. Fernandez, Universidad de Malaga, Malaga, Spain
Tshilidzi Marwala, University of Witwatersrand, Johannesburg, South-Africa
Gregory Paull, The MOVES Institute, Naval Postgraduate School, Monterey, USA
Oryal Tanir, Bell Canada, Montreal, Canada

Christian Thurau, Universitaet Bielefeld, Bielefeld, Germany

Miguel Tsai, Ling Tung University, Taichung, Taiwan

Learning & Adaptation
Christian Bauckage, Deutsche Telekom, Berlin, Germany
Christos Bouras, University of Patras, Patras, Greece
Adriano Joaquim de Oliveira Cruz, Univ. Federal de Rio de Janeiro, Rio de Janeiro, Brazil
Chris Darken, The MOVES Institute, Naval Postgraduate School, Monterey, USA
Andrzej Dzielinski, Warsaw University of Technology, Warsaw, Poland
Maja Pivec, FH JOANNEUM, University of Applied Sciences, Graz, Austria
Martina Wilson, The Open University, Milton Keynes, United Kingdom

Intelligent/Knowledgeable Agents
Nick Hawes, University of Birmingham, United Kingdom
Weniji Mao, Chinese Academy of Sciences, Beijing, China P.R.
Scott Neal Reilly, Charles River Analytics, Cambridge, USA
Marco Remondino, University of Turin, Turin, ltaly

Collaboration & Multi-agent Systems
Victor Bassilious, University of Abertay, Dundee, United Kingdom
Sophie Chabridon, Groupe des Ecoles de Telecommunications, Paris, France
Nicholas Graham, Queen's University, Kingston, Canada

Opponent Modelling
Pieter Spronck, University of Maastricht, Maastricht, The Netherlands
Ingo Steinhauser, Binary lllusions, Braunschweig, Germany
Andrew Ware, University of Glamorgan, Pontypridd, United Kingdom

Peripheral

Voice Interaction

Oliver Lemon, Edinburgh University, Edinburgh, United Kingdom
Bill Swartout, USC, Marina del Rey, USA

Artistic input to game and character design

Anton Eliens, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Olli Leino, IT-University of Copenhagen, Copenhagen, Denmark
Sean Pickersgill, University of South Australia, Adelaide, Australia
Richard Wages, Nomads Lab, Koln, Germany

INTERNATIONAL PROGRAMME COMMITTEE

Storytelling and Natural Language Processing

Jenny Brusk, Gotland University College, Gotland, Sweden
Terry Harpold, University of Florida, Gainesville, USA
Laurie Taylor, University of Florida, Gainesville, USA
Ruck Thawonmas, Ritsumeikan University, Kusatsu, Shiga, Japan
R. Michael Young, Liquid Narrative Group, North Carolina State University, Raleigh, USA
Clark Verbrugge, McGill University, Montreal, Canada

Modelling of Virtual Worlds
Rafael Bidarra, Delft University of Technology, Delft, The Netherlands

Online Gaming and Security Issues in Online Gaming

Marco Furini, University of Piemonte Orientale, Italy
Pal Halvorsen, University of Oslo, Oslo, Norway
Fredrick Japhet Mtenzi, School of Computing, Dublin, Ireland
Andreas Petlund, University of Oslo, Oslo, Norway
Jouni Smed, University of Turku, Turku, Finland
Knut-Helge Vik, University of Oslo, Oslo, Norway

MMOG's

Michael J. Katchabaw, The University of Western Ontario, London, Canada
Jens Mueller-lden, University of Munster, Munster, Germany
Alice Leung, BBN Technologies, Cambridge, USA
Shea Street, Tantrum Games
Mike Zyda, USC Viterbi School of Engineering, Marina del Rey, USA

Serious Gaming

Wargaming Aerospace Simulations, Board Games etc....
Roberto Beauclair, Institute for Pure and Applied Maths., Rio de Janeiro, Brazil
Richard Ferdig, University of Florida, Gainesville, USA
Tony Manninen, University of Oulu, Oulu, Finland
Jaap van den Herik, University of Maastricht, Maastricht, The Netherlands

Games for training
Ahmed BinSubaih, University of Sheffield, Sheffield, United Kingdom
Michael J. Katchabaw, The University of Western Ontario, London, Canada
Jens Miiller-Iden, Universitat Minster, Miinster, Germany
Roger Smith, US Army, Orlando, USA

Games Applications in Education, Government, Health, Corporate,
First Responders and Science
Russell Shilling, Office of Naval Research, Arlington VA, USA

Games Interfaces - Playing outside the Box

Games Console Design
Chris Joslin, Carleton University, Ottawa, Canada

Mobile Gaming

Stefano Cacciaguera, University of Bologna, Bologna, Italy
Sebastian Matyas, Otto-Friedrich-Universitat Bamberg, Bamberg, Germany

\

INTERNATIONAL PROGRAMME COMMITTEE

Perceptual User Interfaces for Games
Tony Brooks, Aalborg University Esbjerg, Esbjerg, Norway
Michael Haller, Upper Austria University of Applied Sciences, Hagenberg, Austria
Carsten Magerkurth, AMBIENTE, Darmstadt, Germany
Lachlan M. MacKinnon, University of Abertay, Dundee, United Kingdom

Vil

© 2007 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Simulation Society. Permission is
granted to photocopy portions of the publication for personal use and for the use of students providing credit is given
to the conference and publication. Permission does not extend to other types of reproduction or to copying for
incorporation into commercial advertising nor for any other profit-making purpose. Other publications are encouraged
to include 300- to 500-word abstracts or excerpts from any paper contained in this book, provided credits are given to
the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be used
in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in these Proceedings have been peer reviewed

EUROSIS-ETI Publications are I1SI-Thomson and INSPEC referenced

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Ghent University,
Faculty of Engineering, Dept. of Industrial Management, Technologiepark 903, Campus Ardoyen, B-9052 Ghent-

Zwijnaarde, Belgium.

EUROQOSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400
Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium
Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium
Cover Pictures by Koala Games, Bologna, Italy

GAMEON;g is a registered trademark of the European Technology Institute under nr: 1061384-761314

EUROSIS-ETI Publication

ISBN: 9789077381373
EAN: 9789077381373

Vi

GAME ON;
2007

Preface

Welcome to Game-On 2007, the Annual European Conference on Simulation and Al in Games.
On behalf of all the people who made this conference happen, | wish to welcome you to this
special event.

During the past years, Game-On offered an opportunity for researchers and practitioners to
present their findings and research results in the new and exciting field of gaming and
concurrent technologies. This year, the 3-day technical program provides a forum to address,
explore and exchange information on the state-of-the-art of Al, simulation, networking, and all
the other allied technologies, in support of gaming, their design and use, and their impact on our
society.

With the emerging importance of gaming, we need to tackle a broad range of technology,
management and design issues, and we need to become familiar with newly introduced
techniques and current applications. To this aim, the gamut of papers presented at Game-On
will cover topics from game methodology and game Al, to art, design and game graphics; from
mobile and online gaming, to games for education and serious gaming, plus others designed to
provide a wide range of topics as reflected in the technical program of the Conference.

All those contributed papers have undergone a serious paper review and helped us to achieve
this goal. Special recognition goes to each of the contributing authors for their dedication and
effort in their field of research. In addition to all the accepted papers, we assembled a program
comprising a keynote speech (given by dr Graham Morgan, University of Newcastle upon
Tyne), a round-table discussion on serious games and a games projects session

On behalf of the Organizing Committee, | would like to extend my personal thanks to all the
members of the International Program Committee for their hard work in reviewing and selecting
the best papers to be presented from all the received submissions. The success of this
conference is credited to them, as well as to session chairs, presenters and attendees. My
sincere thanks also go to Philippe Geril, our deus-ex-machina, who has helped us in putting
together such an excellent program, as well as for his organizational efforts and input with the
Conference.

Finally, | must admit it is my personal pleasure to host, this year, this Conference in the
University of Bologna, the most ancient in the Western World. | am confident you will enjoy the
Conference and as well as the many treasures of my city!

Marco Roccetti

Game-On 2007, General Chair

Xl

X1

CONTENTS

Preface..... e ——————— Xl
Scientific Programme..........ccoo s 1
AUthOr Listing ... e 165

GAME METHODOLOGY

WEBBING: A Smart Architecture for Snappy Browser-Based Games
AleSSANAIO AMOIOSO..ireeusssrrrrmnsssrrrnmnssssrrnnnssssrrsmnsssssssnnsssssssnnssssesnnnssssesnnnsssssnnnn 5

Towards a High-level design Approach for Multi-Server Online Games
Alexander Ploss, Frank Glinka, Sergei Gorlatch and Jens Muller-lden............. 10

A Framework for Network-Agnostic Multiplayer Games
Patric Kabus and Alejandro P. BUChMANN ..o 18

Mobile Virtual Worlds: A Proximity Based Evolution
Stefano Cacciaguerra and Gabriele D’ANGEI0eeeeeemeemmmmmmmmmmmmmmeeeenneeeeeeeeenenee 27

Journey from the Magic Circle to the Therapeutic Gameplay Experience

721 P= 4= 300 L 747 T 32

GAME Al

Data Analysis for Ghost Al Creation in Commercial Fighting Games
Worapoj Thunputtarakul and Vishnu Kotrajaras.......ceccceniiimmmnsecessssnsssennsseennnes 37

Temporal Difference Control within a Dynamic Environment
Leo Galway, Darryl Charles, Michaela Black and Colin Fyfeccccoieeeemmnnnnnn. 42

Evaluation of Multiagent Teams via a New Approach for Strategic Game
Simulator

Vicente V. Filho, Clauirton A. Siebra, José C.Moura, Renan T.Weber,

Patricia C. Tedesco and Geber L. RamMalno ...ciciieeiieeiirmiieeiiee s rensessrnssennes 48

Map-Adaptive Artificial Intelligence for Video Games
Laurens van der Blom, Sander Bakkes and Pieter SproncKcccovveeeemnnnnnnnn. 53

Opponent Modeling in Real-Time Strategy Games
Frederik Schadd, Sander Bakkes and Pieter SPronckeeeeeeeeeeeeeeemeeeeeeeennnnnes 61

ART, DESIGN AND GRAPHICS

PANORAMA -- Explorations in the Aesthetics of Social Awareness
Anton EliEéns and Dhaval Vyas......cccsssssss s 71

Xl

CONTENTS

Issues for Multiplayer Mobile Game Engines
Abhishek Rawat and Michel SiMatiC.....cuueeeeeeeeieieeeeieeeeeeeeeee e e e e e e eeeeeeeeeeees 76

YEAST: The Design of a Cooperative Interactive Story Telling and
Gamebooks Environment
Paola Salomoni, Silvia Mirri and Ludovico Antonio MUuratori...cccceceeeseeeserensrennns 83

Simulating Infinite Curved Spaces using Vertex Shaders
M. C. Bouterse and A. Eli@NS.....cccceemrrriiiiiiiiissnsrss s ssssssssss s s 88

MOBILE GAMING

Mobile Games: What to expect in the near Future
YT oo 0 o 93

Simple, Cheap and Quick: Three Urban Games for Common Mobile
Phones

Helena Karsten, Jan-Erik Skata, Sebastien Venot, Nhut Do, Janne Konttiila,

P2 1o I T Yo = Fo T e =Y | (o] = 96

ONLINE GAMING AND SECURITY

Towards Swift and Accurate Collusion Detection
Jouni Smed, Timo Knuutila and Harri HAKONEN c.e.cvireireeirmireirermren e reneresensees 103

Behavioral Biometrics for Recognition and Verification of Game Bots
Roman V. Yampolskiy and Venu Govindarajueeeeeeeeeeeeeeeeemeeeeeememmeeeenenemennnes 108

The Anatomy of an Inter-Vehicular Gaming Communication Subsystem
with Experiments

Emiliano Manca, Fabio Parmeggiani, Claudio E. Palazzi,

Stefano Ferretti and Marco ROCCEtti ...uvieeiiieeiiriiirriir e reer e reesr e emaas 115

EDUCATION

Clima Futura @ VU -- communicating (unconvenient) science
Anton Eliéns, Marek van de Watering, Hugo Huurdeman, Winoe Bhikharie,
Haroen Lemmers and Pier Vellingacuveeeeiimmeeecnrmrecnsssesscsssssessmsssssessmsssssesnnas 125

Mashups in Second Life @ VU
Anton Eliéns, Frans Feldberg, Elly Konijn and Egon Compter......cccceviiiiininnns 130

Teaching Al Concepts by Using Casual Games: A Case Study
Cesar Tadeu Pozzer and Borje KarlSSONeeeeeeeeeeeemmeemmmmmmmmmmmemmemmenennnnnennnnnnnnnnes 135

XV

CONTENTS

EGO: an E-Games Orchestration Platform
Davide ROSSi @Nd EliSA TUIMINI weureurmirmrmrermrmrmsnrmnsmsrmssnsansmssmssmssnsassmssmssnsansansnns 139

SERIOUS GAMING

Gaming Technology in Cultural Heritage Systems
Tim Horz, Albert Pritzkau, Christof Rezk-Salama, Severin S. Todt and
N T [(== T o] | o 147

AIBO as a Needs-Based Companion Dog
José M. Blanco Calvo, Dragos Datcu and Leon J.M. Rothkrantzccccuu.... 152

Agent Based Virtual Tutorship and E-Learning Techniques Applied

to a Business Game Built on System Dynamics
= 7o T =T 0 0T o {10 TN 157

XV

XVI

SCIENTIFIC
PROGRAMME

GAME
METHODOLOGY

WEBBING: A SMART ARCHITECTURE FOR SNAPPY
BROWSER-BASED GAMES

Alessandro Amoroso
Department of Computer Science
Universita di Bologna
Mura Anteo Zamboni 7, 40127 Bologna, Italy
E-mail: amoroso@cs.unibo.it

KEYWORDS

Smartphone, Wireless, Web applications.

ABSTRACT

This paper presents the main architectural issues of a
new platform to implement multiuser interactive games
based on the browser. Those games runs “inside” the
browser, equipped with standard plug-in, and without
installing any program on the client side.

We named this new architecture WEBBING, that
stands for WEB Based INterpersonal Games. This ar-
chitecture is responsive, reliable and scalable. The main
characteristics of WEBBING suggest that it could be
profitably used to implement browser—based games that
could run on a smartphone.

We also sketch the main design issue of a test bed game
that we are planning to experimentally study our archi-
tecture. The game is aimed to the new iPhone, that
presents several programming challenges.

INTRODUCTION

Online games are very popular these days, and their
popularity is continuously growing. The increasing dif-
fusion of small portable devices, such as the smart-
phones, has been one of the factor that stimulated the
generation of a branch of online games called browser—
based games. Those games do not require any software
to be installed at the client side, they rely solely on the
browser with some common plug-in. The most com-
mon of these plug-ins are Java, Flash, and Shockwave.
In general, the main advantage of browser—based ap-
plications is that they do not require to install software
that will run on the client side. Recently, browser—based
games use Web technologies, like AJAX, to allow for
multiuser interaction.

In this paper we present a novel architecture to im-
plement multiuser browser—based games. We named
this new architecture WEBBING, that stands for WEB
Based INterpersonal Games. Moreover, we show the
main architectural issues of a browser—based game,

aimed to the iPhone, that we are going to implement
as a test bed for our architecture. We discuss several
properties of WEBBING, the main of them are: respon-
stveness, fairness, reliability, and scalability.

The bandwidth available to the Internet users is increas-
ing these days, but the latency of the messages over the
network is almost constant. The best effort nature of
the Internet leads to variable, and unpredictable, mes-
sages latency. The responsiveness of an online game
strictly depends on the latency of the messages. There
are several papers that deal with the responsiveness of
the online games. Among the others, in (Claypool and
Claypool, 2006) the authors studied how the latency in-
fluences the online games, while in (Chen et al., 2006)
there is a study on the effects of the network QoS with
respect to the quality of the game. Some proposed novel
a technique to a smooth and fast delivery of multime-
dia contents in a wireless home entertainment center,
such as(Palazzi et al., 2006). In (Brun et al., 2006b) the
authors discuss the problem of server selection, propos-
ing the idea of critical response time, they compare the
proposed solution with respect to a centralized one.
The consistency of the state of a distributed multiplayer
game has been deeply investigated. Among the others,
(Li et al., 2004) presents a continuous consistency con-
trol mechanism, based on a relaxed consistency control
model for continuous events. The fairness of real-time
online games is studied in (Brun et al., 2006a).

The available smartphones suffer several hardware limi-
tations with respect to the current personal computers.
The main limitations are on the screen size and on the
processor performance. Additionally, these devices are
particularly sensible to energy consumption, while they
are battery equipped. The screens are few hundreds of
pixels per side, and are large at most 3.5” in diagonal.
The above limitations depict a kind of device that resem-
bles the ones available in early 90’s of the last century.
Moreover, several smartphones are not equipped with a
full keyboard; when present, the keys are quite small.
A common feature to almost all the smartphones is a
simply accessible pointer control.

The design of a browser—based game, that takes in ac-
count the above limitations, strictly resembles the old

arcade games. Usually, those games used a joystick,
and few buttons, as means of moves input. This char-
acteristic suits very well the current smartphones.

In addition to the above mentioned features, a modern
arcade style game, running on a device connected to the
Internet, could offer multi—user interactions. Since al-
most all of the smartphones are capable to connect to
the Internet, the design of a game could take advantage
of that. The resulting game could have an interactiv-
ity between the users that ranges from soft real-time to
loose asynchrony.

ARCHITECTURE

The client device of our architecture presents several
challenges, mainly due to software constraints, that
strongly suggest a thin client design. The game, and
client management, run almost entirely on the servers,
while the clients provides for graphical user interface.
To implement WEBBING, we are studying a refinement
of an architecture, called AIDA (Amoroso, 2007), that
supports snappy auctions over the Internet.

The WEBBING architecture inherits from AIDA both
responsiveness and fault tolerance. The importance of
the scalability depends on the nature of the implemented
game. When the implemented game deals with tight
interaction between a small set of users, the scalability
is not a strong issue. This scenario imposes a constraint
to the number of users due to the screen size.
WEBBING is an hierarchical, timed, distributed archi-
tecture, arranged in two logical levels of abstraction.
The servers at the lower level are called cohort servers,
and one of them has the role of leader, that is the unique
server at the higher level. The Fig.1 shows an example
of this architecture. The nodes labelled Sy, S, S3 rep-
resent the servers implementing the WEBBING archi-
tecture, and the unlabeled squared nodes represent the
clients connected to them. The solid edges in the graph
represent communication channels, used to manage the
user interface, while the dashed edges, fully connecting
the set of servers, are communication channels carrying
coordination messages. The clients have no visibility of
each single server, but they perceive the gaming system
as a coherent whole. Needless to say, the set of servers
shown in the figure is largely oversized with respect to
the number of clients. Due to both synchronization and
fault tolerance issues, the minimum number of servers
is three.

Cohort servers these servers are at the lower level
of the WEBBING hierarchy; they accept connections
from the clients. In Fig.1 the servers S; and S are
cohort servers. These servers receive clients moves as
them are submitted. Periodically, each cohort server
computes the set of local moves based on the moves it
has received in the last period, if any, and communicate

Figure 1: System architecture

that to the leader. The cohort servers relay the state
of the game to the clients, upon receiving the specific
messages from the leader. Moreover, the cohort servers
detect and manage possible leader faults.

Leader this is a unique server, at the upper level of
the hierarchy, directly connected to each cohort server.
In Fig.1 the leader is S3. The leader receives the set of
local moves from the cohorts and, periodically, computes
the state of the game based on the moves it has received
in the last period, if any, and broadcasts that to the
cohort servers. The leader resolves the possible conflicts
between the sets of moves that it has received from the
cohorts. Possible failures of the leader are managed by
the reconfiguration mechanism described later.

The content of the message named state of the game de-
pends on the nature of the game. It could be either a
mere sequence of the non conflicting last moves, or a full
snapshot of the game. When the state of the game con-
tains the last moves, the length of the resulting message
could be minimal, but it is mandatory that none of the
messages got lost. When the state of the game contains
the snapshot of the game, the resulting message could
be bigger than the previous, but contains all the infor-
mation to keep the user up—to—date with respect to the
game state.

Client Side The users join the game by means of a
browser request to the Web service of the game. The
Web service answers with a client program, that con-
nects to a server and manage the user participation
to the game. The client program launches sequential
requests of availability to a predefined set of cohort
servers, and waits for their answers. After the last an-
swer, the client program selects the server that answered
in the shortest time, ignoring the other servers. The
client then receives the current state of the game from
the chosen server.

The client program can submit a move to the chosen
server any time it likes, and, almost periodically, it re-
ceives the game state message from that server.

The above strategy provides for the selection of the

server that is nearly the most responsive one. Moreover,
this measured responsiveness take into account both the
server load and the network state, even if these were not
detected exactly at the same time. Each client program
sticks with the chosen server, unless it detects unsustain-
able performance, i.e. it cannot keep the user response
time below a certain threshold. In that case, the client
program starts a new selection procedure. Note that
the above technique allows for a run—time load balanc-
ing with respect to the servers and the network; requir-
ing a negligible effort for the servers, a small amount of
work for any client, and a little overhead of the network
traffic. Moreover, the presented technique is effective
in case of both server and network faults, enabling the
client to autonomously connect to another server.

MAIN PROPERTIES

Timelines The discussion of the main timelines prop-
erties of WEBBING by means of the example shown in
Fig.2, that is a space—time diagram for a simple inter-
action in the system presented in Fig.1l. To simplify
the diagram, the figure shows few clients and all the
servers. The solid horizontal lines represent the com-
putations of both the servers and the clients; the time
flows from left to right. Client Cy is connected to server
S1, while C5 and C3 are connected to Se. The small ver-
tical lines on the server’s computations represent time
ticks, i.e. when the server computation reaches a tick,
it triggers an action accordingly to the server role. The
distance between two consecutive ticks is the duration
of the server period. The arrowed lines represent mes-
sages: the beginning of a line represents the sender time,
while the pointed end represents the receiver time. Note
that those times are measured with clocks that are lo-
cal to each process, and therefore can solely be assessed
by the other servers. At this moment, we may ignore
the points labelled with Greeks letters, these will be dis-
cussed later.

The Fig.2 shows client C; submitting a move to its
server Sy, that receives this move just after a tick.
Therefore, S; will store the received move until either
it receives a conflicting move, or its current period ex-
pires, i.e. its computation reaches the next tick. In case
of conflicting moves, it depends on the game criteria how
to resolve the conflict. In the meanwhile, the clients Cs
and C3 submit a move to their server. The server S5
concatenates these two moves, stores them, and waits
until the next tick to notify the leader server. Note that
the moves of the three clients are independent of each
other, because they are submitted in parallel.

The cohort servers send the messages containing the set
of local moves to the leader at a certain pace. There is
no synchronization between their sending periods. The
duration of the sending periods is a trade—off between
the number — and the size — of the messages, and the
responsiveness of the gaming system. When a server de-

/

g

Qf—]

time——>

Figure 2: Space—time diagram of some users interactions

tects a deterioration of the network performance it can
increase the duration of its period; this leads to both less
sent messages to the leader, and to less system reactivity.
On the other hand, when a server detects an increasing
of the network performance it can reduce the duration
of its period; this leads to both higher number of mes-
sages and better system responsiveness. The duration
of the server’s period could be dynamically adapted to
take into account both the number of messages and its
responsiveness. The servers immediately relay the state
messages because there is no convenience into delaying
them, and doing that will reduce the system responsive-
ness.

As shown in Fig.2, the first cohort server that reaches
a tick is S7. The notification from S; to the leader S;
takes a while and will arrive just after a tick, then Sj
will store it until the next tick. In the meanwhile, S
reaches its tick, and its notification to Sy quickly arrives,
just before a tick.

When the leader reaches its next tick, it multicasts to
the cohort servers the actual state of the game, i.e. the
one updated by the moves previously received from Ss.
When a cohort receives the multicast from the leader,
it immediately relays the message to its clients. In the
given example, all the clients receive the current state
fo the game containing the merged moves of C5 and Cj.
After the above described multicast, the leader S5 re-
ceives the moves from cohort server S7. Since this new
move is still compatible with respect to the actual state
of the game, the leader stores it until the next tick. As
in the previous case, the new state of the game, contain-
ing the move from C] finally reaches all the clients after
few consecutive multicasts.

The leader decides the state of the game, ad it is the
point of synchronization of the system. The ordering of
events is forced by the leader receiving time, that man-
age the consistency of the moves based on the ordering.
In order to reduce both the load of the leader and the
network traffic, the cohort servers locally manage incon-
sistent messages, by means of the same criteria of the
leader. It could happen that same moves, that are incon-

sistent at local level, become consistent at global level,
due to some intermediate moves. This scenario depends
on the nature of the game, and could be circumvented
by inhibiting the check for consistency operated by the
cohorts.

Responsiveness We can express the responsiveness
R as the time spent by the system to merge a new move
with respect to the state of the game, and to commu-
nicate the new state to all the clients. In the example
shown in Fig. 2, the responsiveness with respect to the
move of Cy is the elapsed time between the points «
and w. Let 0,0z and 0., be the maximum and the
minimum latency for any message in the system. Those
values are a parameter of the design; their value could
be either assessed by measurement, or defined by a rea-
sonable default. In addition, we name the periods of
the servers, i.e. the elapsed period between two consec-
utive ticks, as 7., and 7; for the cohorts, and the leader
respectively. Summarizing: R < 7. + 7 + 40max

We can divide the responsiveness in three sequential
step. The first step is the time that the leader takes
to receive a move, named rise time, that is at most
Te + 20maz- In Fig. 2 the rise time for the move of Cy is
the elapsed time between points a and (. The second
step is the leader latency, called coordinator time, that
is at most 7;. In Fig. 2 this is the elapsed time between
points 3 and A. The third step is the “diffusion” of the
current state of the game, called spread time, that is the
elapsed time between the broadcast of a new state, from
the leader, and the last reception of that state by the
clients. In Fig. 2 this is the elapsed time between points
A and w.

Note that this assessment of R does not explicitly con-
sider the load condition of the servers, i.e. how long a
message waits in the queue of the received messages be-
fore being evaluated. Such a delay might occur because
a server is dealing with messages previously received.

Fairness A side effect of the responsiveness is the fair-
ness, F', of the system, i.e. the elapsed time between the
first and last reception of the same state message by the
clients. In other words, F' represents the advantage of
the first client that receives a state message with re-
spect to the last client that receives the same message.
Fig. 2 shows an example of fairness as the elapsed time
between points ¢ and w.

To assess the fairness we consider the maximum differ-
ence between the fastest and the slowest spread times
for the same state message; therefore: F' = 2(0,00 —
57712'71) S 26muz

Fault Tolerance The WEBBING systems remains
available, and properly working, in spite of a predefined
number of servers and communications faults. The max-
imum number of tolerable servers fault is half minus one

of the servers. Our system can tolerate the following
types of faults:

Channel Performance: a communication channel is
overloaded, the connection remains active, the messages
are delivered with higher latency than expected;
Channel Disruption: a communication channel does not
delivers messages anymore, it has to be re-established;
Processor Performance: a computer is overloaded and
responds later than expected;

Processor Crash: a computer becomes not working,
then all the programs and communications executed by
that computer become unavailable. A crashed processor
could, possibly, return available after a fresh restart.
Each client regularly receives the state of the game mes-
sage. In regular running that message is sent almost
periodically, its arrival time gives to each client a gauge
of both the server load and the network traffic. The
missing of a state of the game message signals to the
client the presence of a fault, either of the server or of
the network. In that case the client could connect to
another server, by re-running the procedure to choose
a server that has been described above. This opera-
tion, named client migration, is completely transparent
to the user. The migration does not require any ef-
fort to the servers, therefore, the crashed ones neither
blocks, or interferes with respect to the migration. In
other words, the crashed servers do not influence the
reconfiguration of the system. Moreover, the migration
requires a lightweight work solely to the clients that are
migrating, without any kind of coordination with each
other.

The cohort servers elect the leader The leader remains
in charge for the whole duration of the game, unless it
suffers a fault. In the latter case, the cohort servers
elects another leader. Moreover, by means of the same
mechanism, the leader can manage the joining of a new
server to the group of cohorts.

Scalability As well known in literature, a distributed
system is scalable if it remains effective despite of a sig-
nificant increase in the number of both users and re-
sources.

We can assess the amount of resources required by the
system with respect to the number of clients. Specifi-
cally, we consider both the number of servers and the
number of messages exchanged between the servers. The
number of cohort servers is linearly proportional with re-
spect to the number of clients. The number of parallel
messages exchanged by the servers, is at most twice the
number of communication channels between the servers.
The workload of any cohort server is almost balanced.
As mentioned above, the load of the servers mainly de-
pends on the number of active connections, that could
be easily kept balanced during the growth of the sys-
tem. Due to this property, the single leader does not
represent a performance bottleneck.

IMPLEMENTATION DESIGN

We are implementing a client for WEBBING that tar-
gets the Apple iPhone. Two are the main motivations
for this choice. Firstly, we think that the device is the
first one of a new class of smartphones, that will rapidly
grow in popularity between the users. Secondly, the
programming paradigm proposed by the iPhone is quite
unusual, being strongly oriented to browser—based ap-
plications; therefore it represents a challenging opportu-
nity to modify the way we traditionally write programs
for smartphones. Moreover, a program that runs on the
iPhone — avoiding to take advantage of the devices spe-
cial features — will run without any modification on a
large number of platforms, ranging from other portable
devices to desktop computers.

The iPhone offers two different means to connect
to the Internet: fast Wi-Fi (802.11b/g, at about
1000Kbit/sec) and slow EDGE (about 140Kbit/sec).
The device is capable to silently switch between the two
connection modes without interfere with the current in-
ternet operations. This capability could be used to test
WEBBING with client suffering highly variable connec-
tion delays.

We are planning to implement, as test bed game, a kind
of distributed “pac—man”. This game offers important
characteristics, against which to test our system; the
most relevant of them are:

All-to-all: tight interactions between a small set of users
— we suppose they will be no more than ten;

Soft Real-time by the nature of the game;

Simple User Commands: to the avatar, that responds
by changing its moving direction in the bi—dimensional
constrained space; this allows for small messages, carry-
ing the moves, sent by the client.

iPhone Peculiarities As largely emphasized by Ap-
ple, the input device of iPhone are the user’s fingers that
directly touch the sensitive screen. The main difference
with respect to a built—in device is a resulting lower
precision in the pointing. The iPhone does not send
to the shown Web page some events traditionally gen-
erated by a pointing device, such as the “mouse—over”
events. Moreover, the iPhone screen manage multi touch
gestures performed by means of multiple fingers on the
screen at the same time. For portability reasons, in our
design we do not plan to take advantage of the latter.

The touch—screen of the iPhone is 3" x 2", at the reso-
lution of 160dpi. The device self detects its orientation,
and, automatically swap between landscape and portrait
mode, accordingly with respect to its orientation. The
iPhone is equipped with a “software” keyboard, that is
shown on the screen upon user request. Since the key-
board fills part of the screen, it is not a valuable means
of user input for the application that we are designing.
The browser available on the iPhone is Safari 3.x. The
browser has some restrictions, such as the size of em-

bedded JavaScript limited to 10MB, with respect to the
equivalent version running on personal computers. At
the moment, the operating system of iPhone does not
allows for any access to the file system, and the instal-
lation of any software is unsupported. Therefore, the
application that we are designing can run solely as a
browser script. Moreover, it is not possible to add any
plug-in to the browser, that nowadays does not support
technologies such as Flash. The only technologies avail-
able to build a browser—based application that runs on
the iPhone are: HTML 4.01, XHTML 1.0, CSS 2.1 (and
some 3.x), JavaScript 1.4, DOM, AJAX/Web 2.0 (in-
cluded the XMLHTTPRequest).

CONCLUSION

We presented the main characteristics of WEBBING,
and sketched the main design issue of a test bed game
that we are implementing to experimentally study our
system.

WEBBING is responsive, reliable and scalable. More-
over, the fairness of the system depends, almost entirely,
on the latency of the messages sent over the Internet.
We believe that the system could be well suited to im-
plement browser—based games. At this very preliminary
stage, we have developed part of the WEBBINBG ar-
chitecture, and some proof—-of-concept tests seems to
confirm our study.

Acknowledgment This work has been partially
funded by the Italian MIUR Project (MoMa).

BIBLIOGRAPHY

Amoroso A. 2007. “Aida: Responsive and available auctions
over the internet.” In GLOBECOM 07, Washington DC,
USA, IEEE.

Brun J.; Safaei F. and Boustead P. 2006a. “Managing la-
tency and fairness in networked games”. Commun. ACM,
49(11):46-51.

Brun J.; Safaei F. and Boustead P. 2006b. “Server topology
considerations in online games”. In NetGames '06: Proc.
of 5th ACM SIGCOMM workshop on Network and system
support for games, New York, NY, USA. ACM Press.

Chen K.; Huang P. and Lei C. 2006. “How sensitive are online
gamers to network quality?” Commun. ACM, 49(11).

Claypool M. and Claypool K. 2006. “Latency and player
actions in online games”. Commun. ACM, 49(11):40-45.

Li FW.B.; Li LW.F. and Lau R.W.H. 2004. “Supporting
continuous consistency in multiplayer online games”. In
MULTIMEDIA ’04: Proceedings of the 12th annual ACM
international conference on Multimedia, pages 388-391,
New York, NY, USA. ACM Press.

PalazziC.E.; Pau G. Roccetti M.; Ferretti S. and Gerla M.
2006. “Wireless home entertainment center: reducing last
hop delays for real-time applications”. In ACE ’06: Proc.
of 2006 ACM SIGCHI intl. conf. on Advances in computer
entertainment technology, New York, NY, USA. ACM
Press.

Towards a High-Level Design Approach
for Multi-Server Online Games

Alexander Ploss, Frank Glinka, Sergei Gorlatch, and Jens Miiller-Tden
University of Miinster, Germany
email: {plotzer | glinkaf | gorlatch | jmueller } @math.uni-muenster.de

ABSTRACT

The development of scalable online games is a compli-
cated problem that often requires a large amount of low-
level and error-prone programming. We analyse and
classify currently used development methodologies for
games, and propose a novel, high-level development ap-
proach. As a possible base for a high-level game design,
we describe the RTF (Real-Time Framework) middle-
ware system. The RTF middleware enables an easy and
flexible design of distributed, multi-server game software
with minimized development efforts. We explain how
RTF supports flexible implementation of single-server
online games and how the RTF allows to switch to prac-
tically proven multi-server distribution concepts of zon-
ing, instancing and replication for increased game scala-
bility. The RTF facilitates flexible and problem-oriented
adaptation and combination of these techniques in a
seamless development approach.

KEYWORDS
Online games, Game middleware, Game development
methodology, Real-Time Framework

INTRODUCTION

Current practice of online game development usually re-
lies on using a company’s in-house expertise for a custom
game design. Such custom development employs low-
level programming and networking tools, which makes
it time-consuming, risky and often very expensive.
This paper aims at raising the level of abstraction in the
development of online games, in order to simplify the
development process and improve its productivity. We
suggest a high-level development approach that shields
the human developer from the underlying low-level de-
tails, e.g., allowing him to transfer objects using commu-
nication channels instead of transferring low-level byte
arrays through system-dependent sockets.

We aim both at single-server and multi-server online
games, with the goal of seamless integration of these
concepts: this makes our approach generally usable by
all online game genres and allows for easy and flexible
combination of multi-server network architecture con-
cepts. Handling multiple servers in our approach en-
ables high-level development of Massively Multiplayer

10

Online Games (MMOGs) that pose especially difficult
challenges. These include the efficient realization of the
communication between game participants, as well as
techniques that allow to scale up the player numbers in
the application by using multiple servers. This should
substantially improve the current situation of custom
development, in which every new multi-server game is
designed and implemented almost from scratch.

This paper presents our RTF (Real-Time Framework)
middleware system for seamless and consistent game en-
gine development and operation for single- and multi-
server engines. The RTF middleware provides inte-
grated solutions for a variety of development and run-
time problems in multiplayer online games:

e Design optimized, object-oriented serialization and
communication for game entities and events;

e Integrate fast algorithms and efficient data struc-
tures, e.g., for area of interest management;

e Efficiently distribute and consistently maintain the
game state across servers and clients;

e Parallelize game state processing among distributed
servers to achieve scalability;

e Provide the players with an overall seamless and
responsive virtual environment.

Although there has been extensive work specifically and
exclusively targeting most of these problems, relatively
little research has been conducted so far on integrated
high-level libraries and middleware for games. It is our
goal in this paper to study which middleware concepts
can be adapted and enhanced for a variety of online
games types, ranging from fast-paced and small action
games to large MMOGs and how this can be done.
The contributions and the structure of the paper are
as follows: We develop a comprehensive taxonomy for
current online game design approaches, with respect to
their complexity and flexibility. We sketch a high-level
game development approach and describe the basic con-
cepts of our corresponding game middleware. We show
how RTF is employed for multi-server game processing,
give an overview of a first case study and conclude the
paper by summarizing our contributions in the context,
of related work.

game-specific logic game-specific logic

game-specific engine
(real-time loop)

game-specific engine
(real-time loop)

game-specific communication
(sockets)

v A

(a) Custom Development

game-specific logic

(b) Comm. Middleware (c) Using Existing Engine (d) Modding Game Game

game-specific logic

game engine (rt-loop)

(e) RTF approach

Figure 1: Main Approaches to Game Development. Unfilled: Self-Developed, Shaded: Use Existing Components

GAME DEVELOPMENT APPROACHES

The central part of a game software system consists of
the game state, i.e., the collection of all objects that
form the virtual environment, and the continuous pro-
cessing of the game state. In this paper, we focus on the
development, of the game state and its processing, rather
than on the game user interface, i. e., the representation
of the virtual environment the player interacts with.

In order to compare different development approaches
of the overall distributed architecture of online games,
we identify the following three major aspects of online
game software systems:

e game logic: entities, events (data structures), and
processing rules describing the virtual environment;

e game engine: real-time loop which continuously
processes (user) events, according to the rules of
the game logic, to compute a new game state;

e game distribution: logical partitioning of the
game world among multiple servers, computation
distribution management according to actual game
state, and communication.

The third aspect, game distribution, can be further split
up into two levels of distribution: a) distribution of the
user interface and game state processing between client
and server, and b) distribution of game state processing
in the multi-server architecture.

These three aspects are treated differently, depending
on the requirements and properties of a particular game
genre. For example, fast-paced action games rely on ef-
ficient communication and engine implementation while
using only relatively simple game logic and -content.
The complexity of the game distribution aspect usu-
ally increases with the number and density of the par-
ticipating users within a game and is thus particularly
challenging for MMOGs.

Our classification in Fig. 1 distinguishes common ap-
proaches a) — d) to game development, according to
how they treat these three aspects. In each approach,
the aspects shown in white are managed by the human
developer, whereas the shaded areas are provided auto-
matically by the development system:

(a) Custom Development: The most direct ap-
proach used for game development is to design and im-
plement the entire software system individually. The de-

11

velopment team designs and implements all three major
aspects of the game software system: game logic, game
engine and game distribution. This allows the develop-
ers to have full control over their code and optimized im-
plementation with focus on the individual performance
needs of the game. While the custom development of an
entire game is very complex, hence cost-intensive and
error-prone, it is sometimes the only way to achieve the
particular objectives of the game design because of its
flexibility.

(b) Game Communication Middleware: This ap-
proach uses special communication libraries and mid-
dleware systems (like Quazal Net-Z (Quazal, 2006)) for
game development. As shown in Figure 1(b), the game
developer employs the middleware to realize the com-
munication between clients and servers in a distributed
game while implementing the game engine and logic on
his own. Using this approach, the developer has enough
flexibility to design and implement the aspects of game
logic and game engine whilst the middleware deals with
the game distribution. However, available libraries usu-
ally focus on a particular architecture setup, decreasing
flexibility of the engine development. Furthermore, this
approach has been used only rarely for the development
of multi-server based MMOGs since a pure communi-
cation library is not sufficient for these games. A mid-
dleware for MMOGs also has to deal with the difficult
task of distributing the game processing among multi-
ple servers, for which only a few middleware systems are
available (e.g. Emergent Server Engine (EGT, 2007) or
BigWorld (BIG, 2006)).

(c¢) Using Existing Engine: With this approach,
shown in Figure 1(c), an existing game engine, i.e., the
processing component of a game, is re-used to develop
a completely new game. This reduces the complexity
of development. Some game studios design their game
engines primarily for the purpose of reselling and licens-
ing the engine afterwards. Examples of popular and
often used engines are the Quake 3 engine or the Unreal
engine. However, a particular engine is quite inflexible
because it is usually closely tied to a specific game genre.

(d) Game Modding: Figure 1(d) outlines the ap-
proach of game modding (community jargon for mod-

ifying an existing game) via a dedicated interface for
programming the game logic. This was first done by
hobby developers who modified the actual game content.
Nowadays, the creation of mods is based on high-level
tools created and also used by the game development,
studios themselves. Such tools allow the creation of
game content by designers with minimal programming
effort. The primary aspect of modding is the creation of
new game content within the constraints of an existing
game logic; hence it is rather inflexible. Nevertheless,
modding allows to develop innovative game concepts,
and sometimes a mod becomes even more popular than
the original game as, for example, the mod Counter-
Strike based on Valve’s game Half-Life.

(e) RTF Multi-Server Middleware: Our Real-
Time Framework, as illustrated in Fig. 1(e), allows a
novel game development approach which provides more
processing support than using only a communication
middleware, but does not constitute a complete game
engine, allowing higher flexibility. Thus, the RTF can
be classified in between the approaches (b) and (c). The
characteristics and usage of the RTF, justifying this clas-
sification, are discussed in the next sections.

.

\

(a) Custom
e) RTF Multi-Server (b) Communica- Development

Middleware tion middleware

flexibility

(c) Existing
Engine

(d) Game Modding

complexity

Figure 2: Taxonomy of game development approaches

Figure 2 illustrates our taxonomy of the five discussed
development, approaches with respect to their flexibil-
ity and complexity. The most simplicity in terms of
distributed software infrastructure is offered by exist-
ing game engines (¢) or modding toolkits (d). How-
ever, these approaches have the remarkable drawback of
being quite inflexible. Obviously, the fully custom de-
velopment (a) offers most flexibility while being rather
complex. The use of special middleware (b) is a promis-
ing alternative for particular tasks: its use reduces the
complexity of game development. Pure communication
support is not enough for MMOGs: for such large dis-
tributed systems, the multi-server management is quite
extensive and increases the development complexity. As
indicated in the taxonomy, the RTF is designed to pro-
vide the developer with most flexibility in game design
while freeing him from complex low-level implementa-
tion tasks in the game development process.

12

RTF: MULTI-SERVER MIDDLEWARE

The Real-Time Framework provides a high-level com-
munication and computation middleware for single-
server and multi-server online games. RTF supports
both the server-side and client-side processing of an on-
line game with a dedicated set of services which allows
developers to implement their optimized engine at a
high, entity-based level of abstraction in a flexible man-
ner. Figure 3 shows a generic multi-server example of a
game developed on top of RTF.

Server Server

Game Logic Game Logic]

Real-Time

Real-Time
Server Loop

[() s
Real-Time.
Communication

Pracessing
Managenent

Real-Time
Communication

Protessing
Management

. \) Real-Time Client

S

| User Interface

Client

X

Figure 3: RTF multi-server Middleware

The RTF middleware deals with entity and event han-
dling in the real-time client loop and the continuous
game state processing in the real-time server loop, and
the distribution of the game state processing across mul-
tiple real-time server loops. The developer implements
the game-specific real-time loop on client and server, as
well as the game logic, using the RTF middleware to
exchange information between the processes.

GENERAL DEVELOPMENT TASKS

The development of the game state processing in on-
line games consists of several tasks, as shown in Fig-
ure 4. Regardless of developing a multi-server MMOG

@ general task

o

% 3. Aol 2. Game State| [1. Data Structure
% Distribution Management | |Processing Design

g |

RTF

Figure 4: Development tasks for a multi-server game:
distribution between RTF and developer

or a single-server, small-scale action game, the developer
has to care about three general tasks — Aol manage-

ment, game state processing and data-structure design
— when building the game on top of RTF. If the game
uses multiple servers, then multi-server parallelization
and distribution also have to be taken care of by develop-
ers. Underneath these tasks for the developer, RTF pro-
vides a variety of low-level functionality like optimized
event and entity serialization and communication, man-
agement of the game state and its possibly distributed
processing. Overall, this separation of tasks among the
developer and RTF reflects the overall approach of RTF
sketched in Fig. 1(e): Providing high-level game engine-
related functionality on top of an optimized communi-
cation middleware. While a technical discussion of the
RTF can be found in (Glinka et al., 2007), the following
subsections focus on the developer tasks and present the
overall development methodology provided by RTF.

1. Task: Data Structure Design

The dynamic state of an online game is usually described
as a set of entities representing avatars, NPCs or items
in the virtual world. Besides entities, events are the
other important structure in an online game engine for
representing user inputs and game world actions. Both
events and entities require hierarchical data structures
for designing complex game worlds; they also have to
be serializable in an optimized manner for efficient net-
work communication. When using only a communica-
tion middleware, developers have to build data struc-
tures and serialization mechanisms from scratch, while
using an existing engine requires the use of predefined
entities and events, which reduces flexibility.

The RTF provides an optimized high-level entity and
event concept enabling automatic serialization while still
providing full design flexibility. When using RTF, enti-
ties and events are implemented as object-oriented C++
classes. The developer defines the semantics of the data
structures according to the game logic. The only se-
mantics of entities that is predetermined by the RTF is
the information about their position in the game world.
Entities, therefore, are derived from a particular base
class Local of the RTF that defines the representation
of a position for entities. This is necessary since the
distribution of the game state processing across multi-
ple servers is based upon the location of an entity in the
game world. Besides this requirement of inheriting from
Local, the design of the data structures is completely
customizable to the particular game logic, as illustrated
by the example of an avatar entity shown in Listing 1.

class Weapon :
class Avatar :
private:
rtf_int32 _ser_state_flags; // ducked, jump, etc
rtf_int8 _ser_damageCount; // health value
Weapon _ser_weapon; // yielded weapon
Avatar* _ser_target; // the current target
RTF::Vector _ser_velocity;
RTF::Vector _ser_orientation;
RTF::Collection

public RTF::Serializable;
public RTF::Local {

_ser_inventory;

}s
Listing 1: An entity written in the manner of RTF

13

In order to enable platform independence and the re-
quired introspection, RTF defines primitive data types
to be used (e.g., rtf_int32). Also, easy-to-use complex
data types for vectors and collections are provided to
the developer. Overall, more complex entity and event
data structures can be easily defined using these existing
primitives.

Automatic serialization and network transmission

In online games, entities and events are continuously
transmitted over a network. Therefore, these hierar-
chical data structures have to be serialized in an opti-
mized manner. However, there is no standard serializa-
tion mechanism in C+-, such that the developer has to
define and implement a network-transmittable represen-
tation for each entity and event of a game when using
a traditional communication middleware. As an alter-
native, most engines provide high-level scripting capa-
bilities with automatic serialization, but they decrease
flexibility and possibly also performance due to the ab-
straction overhead from native C/C-++.

RTF provides automatic and native serialization of the
entities and events defined in C+-, considers mar-
shalling and unmarshalling of data types and optimizes
for bandwidth consumption of the messages. The RTF
solves this problem for the developer by providing a
generic communication protocol implementation for all
data structures following a special class hierarchy. All
network-transmittable classes inherit from the base class
Serializable of the RTF. It is possible to have primi-
tive types, pointers to Serializables, and Serializable ob-
jects themselves as attributes of a class. For all entities
and events implemented in this manner, the RTF au-
tomatically generates network-transmittable representa-
tions and uses them at runtime. This code generation
is seamlessly integrated in the data compilation process,
as indicated in Figure 5. To enhance a class with the

@ editor

Avatar.h J____L Avatar.cpp

———,

A
]
I
scot |
/

\automatically generated serialization / @ standard compiler

ey

® linker

@ linker.

libRTF.a

Figure 5: Schema of the development cycle from the
class sources to the binary of the game

serialization functionality of RTF, the particular source
files are processed with our tool called scot (Serialization

COde Tool). Figure 5 illustrates that the usage of scot
is seamlessly integrated in the development cycle, where
it generates optimized serialization and communication
code directly into the compiled classes. This figure also
illustrates how the RTF is linked into the game software.
Items that are part of the RTF are shown unshaded.
Other items belong to the application, such that the de-
veloper of the application is responsible for them. The
first step (@ in the figure) is to implement the class as
designed for the game logic. The next step @ is to gen-
erate the implementation of the network-transmittable
representation of this class using scot. This step circum-
vents the usual implementation of class serialization by
hand which would be necessary for fully custom devel-
opment. The following steps @ and @ are the usual
compilation and linking steps for the application level
sources. The final step ® is to link the application bi-
naries for game logic and game engine against the RTF
library to the complete executable.

Overall, this approach allows to use native C++ data
structures for entities and events, while avoiding to im-
plement the cumbersome, network-specific serialization
by hand. Additionally, our approach is open to be com-
bined with custom, engine-specific scripting capabili-
ties: for example, LUA-bindings for high-level behaviour
scripting can easily be added into the C++-based core
data structures.

2. Task: Game State Processing

Using RTF, the developer still has to implement an own
real-time loop for computing the game state updates,
the so-called ticks. However, RTF provides substantial
support functionality for implementing and running this
real-time loop; in particular, it provides event and entity
manager classes the developer can directly work with, as
illustrated in Figure 6 for a server loop.

Server Real-Time-Loop
1. RTF::onTickBegin()

2. process user actions

3. update all entities

4. process game logic and Al

clients send the 5. RTF::onFinishedTick()

user actions in an

2.2 processEvent(event)
asynchronous way

3. updateEntity(...)
4, processEntity(...)

2.1 event =
eventMgr.popEvent()

event queue s

list of all entities
EventManager

N
Ob tM

i \
ZoneManager § CllentManager MessageManage

on the client side

the modified entities
: 5. send replica updates

of step 2-3 are update
Figure 6: RTF/game state processing integration

14

The figure shows the following standard steps of the real-
time loop to be implemented by the game developer:
process user actions (step 2. in the figure), update en-
tities (3.) and process game logic (4.). In each runtime
step, the processing code interacts with components of
the RTF. The runtime communication and distribution
tasks handled by the middleware happen before and af-
ter the processing steps of the games engine. Therefore,
the developer informs the RTF about the begin and the
end of each tick using the methods RTF: :onTickBegin
() (step 1. in the figure) and RTF: :onFinishedTick()
(5.). The particular tasks — transferring events, trans-
ferring entity states, and managing distribution — are
handled within the RTF in these methods and are de-
scribed in the following. This schema of integrating a
communication and distribution middleware into contin-
uous processing of the game state is an important find-
ing of our studies on using a distribution middleware
in online games: it frees the developer from low-level
network programming as is the case when using a con-
ventional communication middleware, but still provides
full design flexibility for the real-time loop as opposed
to using an existing game engine with a predefined pro-
cessing loop.

3. Task: Aol Management

An Area of Interest (Aol) concept assigns each avatar in
the game world a specific area where dynamic game in-
formation is relevant and thus has to be transmitted to
the avatar’s client. Aol optimizes network bandwidth by
omitting irrelevant information in the communication.
If done in a fine-granular manner, it avoids wallhack-
like cheating (Yan and Randell, 2005; Choo, 2001) at
the client side which makes walls semi-transparent and
reveals hidden opponents outside of the Aol. Unfortu-
nately, determining the relevant set of entities for a par-
ticular client can be quite compute-intense, such that
the Aol management, for which different algorithms are
compared in (Boulanger et al., 2006), has to be imple-
mented in an efficient and optimized manner.

RTF supports the custom implementation of arbitrary
Aol concepts by offering a generic publish/subscribe in-
terface for inter-entity visibility. The engine determines
continuously which entity is relevant for a client avatar
and notifies the RTF of each change of an "interested"
relation through a client.subscribe(...) and client
.unsubscibe(...) call. The RTF automatically takes
care that the entity is available and always updated at
the client or is removed from the client, respectively.
The RTF also takes care that entities are removed from
Aol of all participating clients if they disappear at a cer-
tain server. This is important, as entities can move from
one zone into another and thus maybe leave the Aol of
clients implicitly.

Transferring entity states

Every time the game engine has finished the processing
of a new game state, the RTF automatically synchro-
nizes the state of entities between the distributed pro-
cesses depending on the indicated Aol relations. When
an entity is replicated to another process (for example,
all the entities within the Aol of a particular avatar to its
client), the state of the remote copy has to be updated.
Since the computations are usually performed in repeat-
edly executed cycles (ticks), the best way to perform
state updates is after a computation cycle has finished,
thus preventing propagation of intermediate states and
read-write conflicts between the middleware and game
engine.

The use of RTF simplifies this task of transferring en-
tity states for the developer. He only has to inform
the middleware that a computation cycle of the game
engine has ended by invoking RTF: :onFinishedTick()
(step 5. in Figure 6). The necessary flow of information
to update the game state on all participating processes
is determined by the RTF upon the specified distribu-
tion. At runtime, the middleware automatically creates
messages for changed objects and transmits them. This
is done using the network-transmittable representations
that were generated for the data structures using scot
during the development cycle. The RTF-part of the re-
ceiving process of such an update message automatically
determines the object related to the messages and writes
the updated data directly to the right object. Since the
data is directly written to the objects used inside the
game engine, this writing step is again triggered by the
developer, e. g., directly before a computation cycle, by
invoking RTF: :onTickBegin() (step 1 in Figure 6), to
prevent read-write conflicts.

MULTI-SERVER TASKS

The general development tasks described in the pre-
vious section are fundamental for any client-server
based game. However, when the game should be mas-
sively multiplayer, a multi-server approach is required
for achieving a high scalability for supporting a large
amount of users. This section describes what paralleliza-
tion approaches are supported by RTF and discusses
how developers can easily use them for building MMO
worlds.

Parallelization Concepts supported by RTF

RTF currently supports three parallelization concepts
for scaling virtual world environments: zoning (Cai
et al., 2002; Rosedale and Ondrejka, 2003) and instanc-
ing, as commonly used in contemporary MMORPG, and
replication (Bharambe et al., 2006; Miiller and Gorlatch,
2006a; Miiller et al., 2007), an alternative parallelization
approach recently discussed in academia. All these ap-
proaches aim at different scalability dimensions: zoning
allows large user numbers in large MMORPG worlds,

15

instancing runs a large number of game world areas in-
dependently in parallel, and replication targets high user
density for action- and player-vs-player-oriented games.
Figure 7 illustrates the overall combination of these ap-
proaches in a single game as provided by RTF.

Server
Instance 1

S Zone 2 et "
erver zone ~~ ™ active entity

7 shadow entity

Figure 7: Combination of zoning, instancing, and repli-
cation for a single game world in RTF

The overall goal of integrating these approaches into
RTF, as discussed in detail in (Miiller and Gorlatch,
2006b), is to provide general and dynamic scalability for
all game genres within a single framework, which can
be operated on demand in a Grid computing environ-
ment. The following discussion sketches the envisaged
methodology for developers for using these multi-server
parallelization concepts.

4. Task: Parallelization and Distribution

If the multi-server capabilities of RTF are used, then, in
addition to the general tasks 1-3 (data structure design,
state processing and Aol management), the developer
has to segment the game world into zones, instances and
replication areas and to define the connections between
them in form of portals. Using this information, RTF
automatically assigns servers to each of the segments
and connects each client to the particular segment the
associated avatar resides in. If the user moves his avatar
through a portal area, RTF will recognize this and auto-
matically issue a connection transfer, making the server
of the new segment responsible for processing the avatar.
Each of the participating servers runs the normal server
real-time loop discussed in the previous section for its
associated segment — the RTF internally handles con-
nection migration and distributed entity management.
RTF offers a dedicated interface for specifying how the
overall game world is segmented into a combination of
zones, instances and/or replication areas. Figure 8 il-
lustrates a two-dimensional game world example with
three zones and portals of various types.

The definition of a zone, as illustrated in Fig. 8, consists
of an ID, the occupied space and a flag if it is allowed
to replicate the zone across multiple servers. For the
portals, an entrance area and a connected destination
area are given. During runtime, all zones are assigned to
the set of available servers. Fig. 8 shows different portal

SpaceToSpace

Portal B ~.

SpaceToPoint

Portal A -
\.\’ i \\k
|
ey pmop Bt
2 i+ 7
Ead Source Space
Target Point Standby Space
Bidirectional
Portal C
- T >
2 4 6 8 10 X
Code example:

Zone a = Zone(O, Space(l, 2, 0, 4, 2, 0), PLAIN);
Zone b = Zone(1l, Space(7, 2, 0, 4, 2, 0), REPLICATE);
Zone ¢ = Zone(2, Space(0, 0, O, 4, 2, 0), PLAIN);
Portal& pA = *new SpaceToPointPortal(entrancel,

destinationA) ;
Portal& pB = *new SpaceToSpacePortal (entranceB,

destinationB);
Portal& pC = *new BidirectionalPortal(spacelne,

spaceTwo) ;
Figure 8: Segmentation Specification Example

types supported by RTF for expressing various transfer
relations (uni-/bidirectional, space to space, space to
point) how to move over to a different area of the game
world.

Overall, game developers only have to implement mech-
anisms at a high level of abstraction in the RTF multi-
server task. In particular, they can start developing any
multi-server game engine as a single-server engine at be-
gin and then easily switch over to a scalable multi-server
engine. For this switch, developers, in most cases, only
have to segment the game world into zones, instances
and replication areas, possibly implementing segment-
related game logic mechanisms on top of the already
existing specified entity and event data structures.

IMPLEMENTATION AND
CASE STUDY

RTF is currently under development with a strong em-
phasis on studying and optimizing mechanisms in the
arca of distributed real-time computation and commu-
nication, continuous processing parallelization and de-
velopment methodology of distributed virtual environ-
ments and online games. The work on RTF is part of
the edutain@grid' project funded by the EC IST, where
it provides the fundamental real-time computation and
communication middleware for interactive applications
and online games operated in a Grid computing infras-
tructure.

Based on the current version of RTF, we are develop-
ing Offshore as a MMOG case study taking place in
an aquatic metropolis. Figure 9(a) illustrates the corre-
sponding overall game world being segmented into nine
zones, while Figure 9(b) shows a screenshot of the cur-
rent client prototype giving an overview on the game
world from an elevated position.

“OFFSHORE”

'http://www.edutaingrid.eu/

16

(a) Aquatic Metropolis Segmentation

(b) Overview Screenshot of Current Prototype

Figure 9: Offshore: Aquatic Metropolis Case Study

The Offshore case study has been used so far for tech-
nical evaluation and for verification of the game devel-
opment process and methodology. Here, RTF first sup-
ported the general development tasks for single-server
operation, after which the game engine has been suc-
cessfully switched over to multi-server processing by seg-
menting the game world.

CONCLUSION AND RELATED WORK

In this paper, we have studied and summarized devel-
opment methods for online games and demonstrated to
what extent the low-level custom development can be
substituted by a high-level approach using game mid-
dleware for single-server and for scalable multi-server
engines. We described our RTF system which is used to
support the human developer in the development pro-
cess. The RTF enables a smooth transition of single-
server online games to the multi-server architecture by
its integrated distribution capabilities. Since RTF fo-
cuses on the processing part of games, it puts no con-
straints on the remaining development tasks as, e.g.,
graphics or game logic implementation.

In comparison to existing approaches in the field of
communication middleware like Net-Z (Quazal, 2006),

HawkNL (Hawk Soft, 2006) or RakNet (Rakkarsoft,
2003), RTF provides a much higher level of abstrac-
tion featuring automatic entity serialization and hides
nearly all of the technical network communication as-
pects. On the other hand, RTF is much more flexible
than reusable game engines like the Quake or Unreal
engines, because it is not bound to a specific graphics
engine and leaves the real-time loop implementation to
the developer, supported by high-level entity and event
handling mechanisms. The multi-server capability of
RTF allows to easily incorporate three different paral-
lelization and distribution approaches and is open to
be extended to future approaches. This flexible sup-
port of different parallelization concepts allows RTF to
be usable for a wider range of MMOG concepts than
existing multi-server middleware like Emergent Server
Engine (EGT, 2007) or BigWorld (BIG, 2006) focusing
mostly on the concept of zoning,.

The current implementation of RTF already provides
important features for developers to implement online
games at a high level while still preserving design flexi-
bility for single- and multi-server engines. Summarizing,
RTF offers the following integrated functionality:

e The serialization mechanism liberates the developer
from the details of network transmission program-
ming.

e Communication is optimized with incremental up-
dates to reduce the data sent over the network.

e Segmentation and distribution of the game world
are described on an abstract level in game design.

e The proven multi-server distribution concepts zon-
ing, instancing and replication, as well as their com-
binations, are supported.

o Distribution management and parallelization of the
game state processing is fully handled by the RTF.

e The game logic and entities are implemented using
C++ in a usual object-oriented way and are open
to be integrated with state-of-the-art scripting ca-
pabilities.

Besides developing case studies using the offered multi-
server segmentation approaches in combination for in-
depth scalability evaluation and comparison, we plan to
integrate additional features into RTF in the future. In
particular, audio and video streaming as well as auto-
matic game state persistence are highly interesting to
be integrated for further enhancing the RTF as a com-
prehensive middleware for online games.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their construc-
tive comments helping to improve this paper. The work
described in this paper is supported in part by the Eu-
ropean Union through the IST 034601 project “edu-
tain@grid”.

17

REFERENCES

Bharambe A.; Pang J.; and Seshan S., 2006. A Distributed
Architecture for Multiplayer Games. In PACM/ USENIX
NSDI. San Jose, USA.

BIG, 2006. BigWorld Technology www.bigworldtech.com.

Boulanger J.S.; Kienzle J.; and Verbrugge C., 2006. Com-
paring interest management algorithms for massively mul-
tiplayer games. In NetGames °06: Proceedings of 5th
ACM SIGCOMM workshop on Network and system sup-
port for games. ACM Press, New York, NY, USA. doi:
http://doi.acm.org/10.1145,/1230040.1230069.

Cai W.; Xavier P.; Turner S.J.; and Lee B.S., 2002. A Scal-
able Architecture for Supporting Interactive Games on the
Internet. In Proceedings of the 16th Workshop on Paral-
lel and Distridbuted Simulation. IEEE, Washington, D.C.,
60-67.

Choo C., 2001. Understanding Cheating in Counter-Strike
http://www.fragnetics.com/articles/cscheat/print.html.

EGT, 2007.
www. emergent.net.

Emergent Game Technologies,

Glinka F.; Ploss A.; Miiller-Iden J.; and Gorlatch S.; 2007.
RTF: A Real-Time Framecwork for Developing Scalable
Multiplayer Online Games. In NetGames 2007: Proceed-
ings of 6th Annual Workshop on Network and System Sup-
port for Games. Melbourne, Australia, 81-86.

Miiller J. and Gorlatch S., 2006a. Rokkatan: scaling an RTS
game design to the massively multiplayer realm. ACM
Computers in Entertainment, 4, no. 3, 11. ISSN 1544-
3574. doi:http://doi.acm.org/10.1145/1146816.1146833.

Miiller J. and Gorlatch S., 2006b. Scaling Online Games on
the Grid. In M. Merabti; N. Lee; K. Perlin; and A.E.
Rhalibi (Eds.), GDTW 2006 - Fourth International Game
Design and Technology Workshop and Conference. Liver-
pool John Moores University, Liverpool, UK, 6-10.

Miiller J.; Gorlatch S.; Schroter T.; and Fischer S., 2007.
Scaling Multiplayer Online Games using Prozy-Server
Replication: A Case Study of Quake 2. In 16th IEEE In-
ternational Symposium on High Performance Distributed
Computing (HPDC 2007). IEEE, Monterey, California,
USA.

Quazal, 2006. Net-Z www.quazal.com.
Rakkarsoft, 2003. RakNet www.rakkarsoft.com.

Rosedale P. and Ondrejka C., 2003. Enabling Player-
Created Online Worlds with Grid Computing and
Streaming <hitp://www.gamasutra.com/resource_
quide/20030916 /rosedale_ 01.shtml>.

Hawk Soft, 2006. HewkNL www.hawksoft.com/hawknl.

Yan J. and Randell B., 2005. A systematic classification of
cheating in online games. In NetGames '05: Proceedings of
4rd ACM SIGCOMM Workshop on Network and System
Support for Games. ACM Press.

A FRAMEWORK FOR NETWORK-AGNOSTIC MULTIPLAYER GAMES

Patric Kabus
Alejandro P. Buchmann
Databases and Distributed Systems Group
Technische Universitdt Darmstadt
64289 Darmstadt, Germany
{pkabus,buchmann} @dvs1.informatik.tu-darmstadt.de

Abstract

Producing computer games is a complex and resource-
intensive task nowadays. Since this task involves many peo-
ple with a great variety of expertise, a clear separation of
concerns within the project is essential. Especially multi-
player online functionality, which is probably the most pop-
ular aspect currently, raises the complexity significantly.
Getting this aspect separated allows game developers to fo-
cus on design issues rather than on writing sophisticated
network code. This paper presents a framework that pro-
vides a complete abstraction from network related imple-
mentation details.

1. Introduction

“Ten or twenty years ago it was all fun and games. Now
it’s blood, sweat, and code.”’[4] In the early days, computer
games could be developed by a only few people or even a
single person. Most of the work was about writing opti-
mized game code for hardware with very limited resources.
Due to these resource limitations other aspects of a game,
like design, graphics or sound, had to remain very simple.
Today’s games are multi-million dollar projects including
dozens of highly specialized professionals like 3D artists,
level designers, musicians or storytellers. Yet at the core of
a game remains a large piece of code, the game engine. It’s
purpose is to combine all the digital content (called assets)
created by various artists into a playable game.

Since asset creators are mainly artists, they usually have
a very limited knowledge about writing code. Thus, the
interface to the game engine must require a minimum of
programming skills. But at least when creating assets that
exhibit behavior (like an enemy which is controlled by the
computer) one usually cannot avoid getting in touch with
coding. For this purpose, easy-to-learn scripting languages

are incorporated into the game engine. Together with pre-
defined methods, which handle common in-game function-
ality (e.g. a move(x,y) method, which moves a game object
to a certain position and automatically performs path find-
ing and collision detection) and can be called from within a
script, the programming task is kept as simple as possible.

Hiding complexity gets even more difficult when net-
work gaming comes into play. Network functionality is
probably the most important gaming feature today, with net-
works ranging from a few nodes in a LAN environment
to a few thousand nodes in Massively Multiplayer Online
Games. Providing a sufficiently consistent view of the game
on all nodes of the network is non-trivial. Consequently, as-
set creators should not be burdened with the task of han-
dling inconsistencies or performing manual synchroniza-
tion of game objects. However, even programmers will ben-
efit from being shielded from consistency issues. Modern
game engines are complex systems composed of various
modules. It is generally a good idea to keep consistency-
related code within a single module, allowing developers
of other modules to focus on their specific tasks. Finally,
a clean separation of concerns is a good basis for reusabil-
ity. Nowadays many game engines are reused by multiple
game projects and selling engine licenses is even part of the
business model of some producers.

In this paper we present a gaming framework that com-
pletely shields game developers from network and consis-
tency issues. Unlike existing game engines, our system
does not only abstract from a specific network architec-
ture. Games built using our framework can be deployed
in many different environments by simply changing a con-
figuration file. Besides running the game in single player
mode locally, we currently support three modes: classic
Client/Server, a Peer-to-Peer mode usually known as Repli-
cated Simulation [2] and a hybrid one, called Mutual Check-
ing [13]. In the following we will refer to these modes as
CCS, RS and MC respectively. All three modes provide
some protection against cheating, an essential property for

18

today’s games. The underlying abstraction allows develop-
ers to extend the framework with their own custom network
modes, if necessary. Without the need to commit to a spe-
cific network architecture, it is much easier to reuse a game
engine in different projects. Furthermore, game develop-
ers may allow players of a certain game to change the net-
work architecture by simply altering a configuration file. If
a group of players doesn’t trust a single node to host a server
for a Client/Server session, they could switch to Peer-to-
Peer mode where each node maintains its own local copy of
the game state. Finally, home-brewn or independent games
as well as academic projects may benefit from the possibil-
ity of playing around with different network settings with-
out having to change their game code.

In the following section we discuss related work. Sec-
tion 3 describes the architecture of our framework, while
in Section 4 we delve into some implementation details.An
example game that we have implemented to show that the
framework can actually be used for games is shortly pre-
sented in Section 5. Since cheating is an omnipresent issue
in online games, Section 6 briefly examines this topic. Fi-
nally, Section 7 concludes the paper.

2. Related Work

To our knowledge, no scientific work exists that deals
with the complete abstraction from different network archi-
tectures within a gaming context.

Kaneda et al. [14] propose a middleware that allows the
reuse of Client/Server-based games in a Peer-to-Peer set-
ting. The authors argue that this may be necessary if, for
some reason, the producer of a game discontinues to pro-
vide the necessary servers. Each player has to install an
application on his node which connects to the other player
nodes in a P2P fashion. The application acts as a fake server
to the local game application by capturing and answering
the game related traffic. The global state is synchronized
between all nodes, making it appear as if all players were
connected to the same server. A major drawback of this ap-
proach is that the game’s network protocol must either be
openly specified or reverse-engineered. Every implemen-
tation of this middleware is specific to a certain game and
hardly reusable for other games.

The Real-Time Framework (RTF) [11] also aims at pro-
viding an abstraction from the underlying network, but from
a different perspective. It does not address pure P2P or hy-
brid architectures. Instead, it abstracts from the way a mul-
tiplayer game is distributed in a multi-server architecture.
RTF supports three distribution concepts, namely zoning,
instancing and replication. Similar to our framework, RTF
provides a way for game developers to deal with game ob-
jects without concerning about synchronization issues. The
paper does not go into detail about the underlying network

interface

networkin

interface

Figure 1. High-level overview

architecture. Thus, it is currently difficult to say in which
parts our works complement each other.

Modern commercial game engines usually provide some
level of network abstraction, but are mostly tied to a certain
network architecture. The technology overview of the up-
coming Unreal 3 Engine [10] states that it will be possible
to run games either in a C/S or P2P mode. Unfortunately,
the architecture is not openly documented and details thus
unavailable. It is uncertain whether the engine supports a
transition from P2P to C/S or vice versa without altering
code. Moreover, it is very unlikely that the engine easily
supports hybrid or custom network architectures.

3. Architecture

Our proposed architecture can be divided into three lay-
ers and two intermediate interfaces, as shown in Figure 1.
The discussion in this section remains on a rather abstract
level; important implementation details are addressed in the
following section. We start on the highest layer, the game
layer, and work our way down to the lowest one.

3.1. Game Layer

This layer contains components like the input manager,
the presentation manager and the game engine. The input
manager is responsible for accepting commands issued by
the player via keyboard, mouse, a gamepad or any other
kind of input device. The presentation manager provides
the player with an audiovisual representation of the game
and probably even some haptic feedback. At the core of any
game there is a game engine which manages all the assets
that the game is composed of and controls their behavior
which is defined by the game logic. The engine may also
manage the other components of the game and perform ad-
ditional tasks like logging in and out of a network game.
Although virtually every game is made of components like

19

those mentioned above, actual implementations may show
a great variety. Professional games today will most likely
consist of much more components, while simple games may
combine everything into a single one. Note that these com-
ponents do not necessarily have to be implemented by the
game developers themselves. There are many implemen-
tations that can be bought off the shelf or are available for
free. The game layer is connected to the lower layers via the
object interface which serves as the top-level abstraction for
our framework.

3.2. Object Interface

The central element of a game is a collection of objects
that constitute the state of the virtual world. The game ob-
Jjects may represent nearly every aspect of the game: the
players’ avatars, computer-controlled enemies or allies, in-
teractive objects (like vehicles and machines) or completely
static objects (like trees and walls). Even purely logical en-
tities that have no perceptible representation (at least none
that is perceived by a human player), like containers that
aggregate game objects into a logical unit or triggers that
activate in-game actions, may be modelled as game objects.

In a multiplayer game, multiple participants share the
same game world and thus need to have a consistent view
of its state. If the players are located on different nodes of a
network, local copies of the game objects, which as a whole
represent the state, need to be synchronized. Our architec-
ture hides this synchronization effort completely, allowing
a game developer to access and manipulate game objects as
if they were local. Consequently, the interface that is pre-
sented to the developer allows the creation and deletion of
game objects as well as reading and changing their state.
The components of the game that run on a player’s node
may work as usual. E.g., the input manager translates input
events into appropriate changes of the player’s avatar object.
The presentation manager may read the state of the game
objects and generate audio-visual and haptic feedback. And
last not least, the game engine changes game objects when-
ever the rules and the logic of the game require it. Fur-
thermore, the interface provides methods that perform the
necessary bootstrapping when setting up or joining a net-
work session as well as methods that leave or shut down a
session. The following subsection describes the implemen-
tation of the object interface.

3.3. Object Layer

The object layer is responsible for holding up the illusion
that all game objects seem to be local and can be manipu-
lated without concerning about synchronization. Further-
more, it has to handle the necessary bootstrapping when a
new node joins the network or cleanup when a node leaves.

In our framework, every game object has an owner which
keeps a master copy of it. Whenever a node wants to change
a local copy of an existing game object it must send a re-
quest to the owner. If the request is granted, the owner
changes the object state accordingly and sends an update to
every node that keeps a local copy (including the one which
has sent the request). Whenever a node receives an update
sent by the owner of an object, it will perform the contained
change on its local copy. This way we achieve a single-
copy consistency since the owner of an object serializes all
operations on it. Note that in the MC example a group of
region controllers acts as the owner of a game object. Each
region controller in the group receives a request, processes
it independently and sends an update. Whichever node has
alocal copy will receive the updates and elect the one which
holds the majority. Please refer to [12] for details, including
a discussion on consistency.

Until now we have only talked about existing game ob-
jects which contain the owner information in their metadata.
What remains is the question of how ownership is deter-
mined when creating a game object. Burdening a game de-
veloper with this task when creating an object would break
our abstraction. To avoid this, the object layer has to pro-
vide a factory method for each supported architecture which
encapsulates the knowledge about determining ownership.
A game developer simply creates an object (using the ob-
ject interface) and, depending on the network configuration,
an appropriate factory is chosen. In our CCS example, the
server is the owner of all game objects and whenever a client
needs to create one, the respective object factory determines
the server as the owner of this object. In contrast, in the RS
example a peer node always takes ownership of objects it
creates. Finally, in the MC setting, the owner id addresses
the whole group of region controllers. As we can see, a
node does not only create objects for itself but it may also
request the creation on another node. Thus, the creation of
anew game object is treated the same way as the manipula-
tion or deletion of an existing one: it is sent as a request to
the future owner. Upon receiving and processing a creation
request, the owner sends an update to all nodes the creation
may concern.

Note that all operations needed for the management of an
object can be mapped onto two types of messages, namely
a request message and an update message. We still need a
third kind of message to inform nodes about organizational
events like the joining and leaving of nodes. Whenever a
node joins the network it sends an announcement to the ex-
isting nodes. Every node that owns a game object which is
relevant for the newly joined node may now send an update
containing the current state of this object. This way, a new
node can be provided with the current state of the game.
When the node leaves again, it may inform the other nodes
that it won’t process request or updates anymore. If the ob-

20

jects it owns are still needed, it may request the creation of
replacements on remaining nodes.

3.4. Networking Interface

The discussion above showed that the messages needed
for game object synchronization and node housekeeping
may be divided into three categories: requests, updates and
announcements. What we have to make sure is that mes-
sages are sent to the appropriate recipients. For instance, a
client in the CCS example is never interested in receiving
request messages, since it doesn’t own any objects. On the
contrary, the server doesn’t care about updates since — due
to the fact that it owns all the objects — it is the only one to
send them. To complicate matters, nodes join and leave and
thus the list of senders and recipients changes dynamically.

However, this problem is not new and a solution for
it is well-established: the Publish/Subscribe (pub/sub)
paradigm [9]. One of the main advantages of pub/sub sys-
tems is the decoupling of message senders from message
receivers. Participants of such a system only need to know
what kind of messages they want to send. They do not need
to know who are actually the recipients of these messages.
The other way round, receivers only need to know what kind
of messages they are interested in, not who may actually be
sending them. The sending of messages of a certain kind is
called a publication, while registering interest for a certain
kind is called a subscription. The pub/sub system matches
every publication to its respective subscriptions and thus
takes care that a message will reach its intended recipients.
Both, publishers and subscribers, may join and leave dy-
namically without requiring other participants to take notice
of this.

Applying this concept to our framework avoids that own-
ers of game objects and keepers of local copies have to be
aware of each other. Any node which wants to manipu-
late an object simply publishes an appropriate request mes-
sage. Owners of game objects are subscribed to this kind
of message and thus will automatically receive change re-
quests. After processing the request they publish an update
and nodes which keep a local copy will receive the change
since they are subscribed to update messages. To sum it
up, the networking interface has to provide means to issue
publications and register subscriptions.

3.5. Networking Layer

The lowest layer of our framework’s architecture is re-
sponsible for implementing the pub/sub methods that are
offered by the networking interface. Publications have to
be routed over the network to the appropriate subscribers.
This layer also has to take care of managing publishers and
subscribers which dynamically join and leave the network.

Please refer to Section 4.2 for a detailed discussion on im-
plementation issues regarding the networking interface and
layer.

3.6. Concluding Overview

Figure 2 gives a more detailed overview of our three-
layer framework including its two interfaces. On top is the
game layer which connects to our framework via the ob-
ject interface. Within the game layer, one may simply ma-
nipulate game objects as if they were local without paying
attention to the layers below. The only thing that may be no-
ticeable is a delay until a manipulation actually takes effect.
(This delay may be hidden from the player by using com-
monly known techniques like Dead Reckoning [18].) Below
the object interface is the object layer where the configura-
tion of the desired network architecture takes place. A node
has to define to which topics it publishes and subscribes
and which factory it uses for creating objects with the cor-
rect ownership. Supporting different network architectures
means providing the appropriate definitions and factories.
This layer is also responsible for handling the login and lo-
gout of nodes. Finally, the networking interface serves as
an abstraction to the message handling. By using a generic
interface one may use different implementations in order
to fulfill certain performance or scalability requirements or
simply to experiment.

4. Implementation Issues

This section will give more insight on some of the im-
plementation issues of the framework architecture. In order
to be able to speak of a complete framework, we must pro-
vide more than merely a networking middleware. A gaming
framework should also provide standard components that
are located on the game layer, like the input and presen-
tation managers and the game engine. However, our re-
search focus lies on the network transparency which is not
directly related to these components. Additionally, there
exists a vast amount of — free and commercial — imple-
mentations that may easily be integrated. Consequently, we
only provide implementations of these components to the
extent they are necessary for our example game (see Sec-
tion 5). In the following, we focus on the object model and
the pub/sub system implementations. The former is the part
that game developers have to deal with if they want to cre-
ate a game that is agnostic of the underlying network archi-
tecture. The understanding of the latter is important if one
wants to extend the framework with new network architec-
tures or optimize existing ones.

21

PRESENTATION
MANAGER

GAME
ENGINE

LOGIN/-OUT

I\
networking 4 F
interface

Figure 2. Detailed overview

4.1. Object Model

Many different ways exist to manage objects within a
virtual gaming environment [3, 5, 7, 8].We have chosen an
approach that provides high flexibility as well as ease of
use. Itis completely data-driven, i.e. every aspect of a game
object can be changed at any time dynamically without the
need for a recompilation. This speeds up the development
process and should make it easy to integrate this framework
into the workflow of a game developer.

The type system of the game object model doesn’t rely
on static types defined by the programming language’s class
hierarchy (our prototype is implemented in Java). Instead,
a generic GameObiject class is used which is assigned a
game object type dynamically. The type itself consists of
a number of state variables and methods plus possible base
classes. Every type inherits all of the states and methods
from its base types and thus new types can be easily com-
posed of existing ones. Game object methods may be de-
fined in any scripting language which is available for the
Java Scripting Platform [16]. The type definition itself is
currently written in XML, but by providing an appropriate
import plugin, any format may be used. Figure 3 shows how
a simple type definition may look like. The example shows

<type id="bomb">
<state name="x" default="50.0"/>
<state name="y" default="50.0"/>
<state name="countdown" default="10"/>
<script name="tick" lang="js">
<! [CDATA[
countdown -= 1;
if (countdown == 0)
{
go.execute ("explode");
}
11>
</script>
</type>

Figure 3. Example of a game object type def-
inition

a definition of a bomb which contains a two-dimensional
position state and a detonation counter. The “tick method,
which is always called by the node owning the object, al-
lows to trigger time-dependent behavior like decrementing
the internal counter of the bomb. Note that in our example
game, the tick method doesn’t decrease the counter every
time it is called but takes into account a variable that con-
tains the amount of time that has passed since the last call.
From within the script additional references may be used,
e.g. the current game object (“go”), the object manager (al-
lowing access to other game objects) or the object’s state
variables.

All game objects are stored hierarchically within a tree.
The object interface allows insertion, manipulation and
deletion of objects. Furthermore, a query method allows
finding objects that match a certain regular expression. Fi-
nally, it is possible to define arbitrary groups of objects
as views which provide an easy way to access objects that
match certain criteria.

Inserting and deleting objects as well as changing their
state triggers the notification of registered listeners. A cer-
tain listener is responsible for automatically publishing ap-
propriate requests and updates whenever necessary. Listen-
ers may also be used to manage the membership of views. If
a new object is created or an existing one changes its state,
any listening view may add the object if it matches the view
definition. The same way, objects can be removed if they
are deleted or do not match the view criteria anymore.

4.2. Publish/Subscribe

To demonstrate how a pub/sub messaging service can
be integrated into our framework we have chosen a sim-
ple form of pub/sub, a topic-based approach. Later on we

22

will discuss how more powerful approaches may be used to
lower bandwidth consumption or improve scalability.

4.2.1 Topic-based Publish/Subscribe

As the name implies, in a topic-based pub/sub system par-
ticipants publish and subscribe to topics and each topic rep-
resents a certain kind of message. The obvious way to
model our communication is to assign each type of message
— requests, updates and announcements— its own topic.
We first demonstrate how requesting a change and sending
an update works within the three example architectures we
have implemented. Next, we will show how the announce
topic may be used for handling nodes joining and leaving
the network.

The following is a short overview of how those architec-
tures distribute the ownership of game objects. For more
detailed information please follow the references given in
Section 1.

Classic Client/Server (CCS) The central server is the
owner of all objects and thus keeps all master copies.
Clients only store local copies which are updated by
the server.

Replicated Simulation (RS) Each peer may own certain
objects for which it keeps the master copies. It stores
local copies of the objects owned by other peers.

Mutual Checking (MC) In order to avoid arbitrary ma-
nipulations by malicious nodes, each object is owned
by multiple region controllers (RCs). Thus, each RC
keeps its own master copy of an object and any change
request has to be sent to each RC. After changing the
state of a master copy, each RC sends an update to the
local copies on the clients. The client compares the
update messages and elects the one that holds the ma-
jority.

Figure 4 shows the request/update process in the CCS
context. Client 1 wants to change an object and publishes
a message to the request topic. The server which owns all
objects has subscribed to this topic and thus receives all re-
quests. After performing the requested changes the server
publishes a message containing the changes to the update
topic. All clients, including the one that has sent the re-
quest, are subscribed to this topic and receive the update.

In the RS context (Figure 5), a peer that wants to change
an object publishes a request. All peers within the system
are subscribed to the request topic, but only the owner of
that object needs to process the request. The state update is
then published and received by all peers, since each of them
is subscribed to the update topic.

2: Server sends
UPDATE OBJECT

1: Client 1
requests
UPDATE
OBJECT

CLIENT 2

CLIENT 1

CLIENT N

Figure 4. Request/update in CCS mode

1: Peer 1
request:
UPDATE
OBJECT

2: Peer N sends
UPDATE OBJECT

PEER 1 PEER 2

PEER N

Figure 5. Request/update in RS mode

Our last example, the MC context (Figure 6), is very sim-
ilar to the CCS setting. Instead of having a single server, all
RCs are subscribed to the request topic. After performing
the requested change, each RC publishes an update. The
clients, which are subscribed to the update topic, receive all
updates from the RCs. Before an update will be performed,
the correct one is elected out of the received updates.

To handle events like nodes logging in and out of the
system, a third topic, called announce, is used.

Whenever a new player joins the game, an object has to
be created that represents that player. The nodes already
in the system need to be informed about the state of this
new player object. Figure 7 illustrates this process in the
CCS context. The server, which is subscribed to the an-
nounce topic, receives a login announcement published by
the new client. It creates a new avatar object representing
that player and publishes an appropriate update. This up-
date is received by all clients, since they are subscribed to
the update topic.

After logging in, the new client needs to be supplied
with the current state of the game. For this purpose, every
node that owns game objects must be subscribed to the an-
nounce topic. Upon receiving the login message, the owners
may publish an update containing the complete state of their

23

RC1 RC N-1 RC N

2: RCs send
UPDATE OBJECT

1: Client T
requests
UPDATE
OBJECT

CLIENT 1 CLIENT 2 CLIENT N

Figure 6. Request/update in MC mode

2: Server sends
CREATE PLAYER
OBJECT

1: Client 1
announces
LOGIN

CLIENT 1 CLIENT 2 CLIENT N

Figure 7. Client login in C/S mode

master copies. Unfortunately, publishing the whole state of
all master copies every time a node joins the game would be
a waste of bandwidth. Every node subscribed to the update
topic would receive the current state, even if its local copy
is up-to-date. Optimizations that avoid this are discussed in
the following subsection.

If a node wants to leave the network it simply publishes
a log-out announcement. After receiving this message, the
server publishes an update that removes the avatar object of
the corresponding player from the game. Note that in our
RS setting things are slightly more complex, since a leaving
peer node may be itself the owner of certain game objects
which are still needed. Bevor leaving the network, the node
has to make sure that these objects are transferred to other
peers. In order to do so, it can request the creation of an
object on another peer by specifying this peer’s id as the
owner id.

4.2.2 Optimizations

An important way to reduce network bandwidth require-
ments in online games is to restrict the amount of updates
a certain node receives. Obviously, a node does not need
to be informed about changes of game objects that the lo-
cal player can neither perceive nor interact with in any way.
Limiting the update message to ones relevant for the player
is commonly known as Interest Management. Instead of
subscribing to all messages that are published to the update
topic, a filtering based on the in-game position of objects
may be performed.

For example, the Java Message Service [20] combines
a topic-based pub/sub approach with filtering based on
key/value pairs. Every update published may be enriched
with additional properties that contain the position of the
updated object. Only when the player’s avatar is in the in-
teraction range of that object the update will be sent to that
player’s node.

Instead of using a flat topic space, a hierarchical one
may be employed to restrict messages to certain game re-
gions. This approach is usually referred to as subject-
based filtering [17]. E.g. in a game that uses a real-
world setting, subjects like Earth, Earth.Europe and
Earth.Europe.Germany could exist. Whenever an avatar
enters a region (e.g. Germany) the node subscribes to the
corresponding subjects. On the one hand, this makes sure
that the node won’t be bothered with unrelated messages of
events that happen in a different country or even on a dif-
ferent continent. On the other hand, the node will receive
messages of events that are relevant for the whole continent
or even globally. Naturally, changes made by the node will
be published to the appropriate subjects in the same manner,
depending on their relevance.

Not only the addressing model but also the implemen-
tation of a specific model has an impact on performance
and scalability. One very important performance criteria of
network games is the latency when propagating updates of
game objects. Usually nodes of gaming networks talk di-
rectly to each other, be it a client talking to a server or peers
talking to each other. The delay of changing an object (i.e.
issuing a request and getting a reply) equals the roundtrip
time between nodes. In an implementation that wants to
avoid higher latencies, a node that requests the change of
an object must send the request directly to the owner node.
Afterwards, the owner has to send its updates directly to
all nodes which keep a local copy of the updated object.
This way, extra delay caused by additional hops on the net-
work path is avoided. In such an implementation a local
software component running on each node can provide the
pub/sub interface to the object layer. Internally, this com-
ponent stores for all topics it publishes messages to a list of
all subscriber nodes. Whenever a node publishes a message
it can send it directly to the appropriate nodes. The sub-

24

scription management service may be located on a separate
node. Every time a node subscribes for a topic, the manage-
ment service can inform the publishers about it. By sending
a so called advertisement, a node can inform the manage-
ment service about its intention to act as a publisher for a
certain topic.

A further optimization is that whenever a node wants to
change a game object that it owns, it may directly publish
an update without the need to send a request first. But one
should be aware that this may affect fairness. While the
change is propagated to other nodes with the delay of a sin-
gle hop it is perceived nearly instantly on the local node.
This may enable the local player to react much faster than
players on remote nodes. To avoid this, an artificial delay
may be introduced (e.g. Local Lag [15]).

While the implementation above minimizes latency
caused by network delays, it severely limits scalability.
Think of a node in a Replicated Simulation which has to
send updates to a very large amount of other nodes in the
game. This way a node will soon reach the limits of its net-
work connection, especially when using an asynchronous
DSL connection with a very limited upload bandwidth. This
is where pub/sub systems that rely on intermediate brokers
play out their strength. While introducing additional de-
lays for message delivery, the intelligent routing and filter-
ing mechanisms can minimize bandwidth and connectivity
requirements on the game nodes.

5. Example Game

For demonstrating the feasibility of our approach, we
implemented a game that includes many important aspects
found in today’s games. These aspects include a graphical
representation, changes in object state through player input
or progress of time and interaction between game objects.
While in our example they remain very basic, our frame-
work imposes no limits onto their implementation. Rich
three-dimensional graphics and sound are possible as well
as control of game objects through complex artificial intel-
ligence.

Our game is a simplified version of a famous multi-
player game concept that has been implemented by the
open-source game XBlast [1]. Every player controls an
avatar which may move freely around the game field. By
pressing a button, he can place a bomb at his current loca-
tion. Placing the bomb starts a timed detonator and when
the countdown reaches zero the bomb explodes. All avatars
that are in the vicinity of the detonation are removed from
the field and, as in the original XBlast game, the last re-
maining player wins. Figure 8 shows a screenshot of the
game.

As intended, the same game code can be used within all
three network architectures without any modifications.

Figure 8. Example game

6. A Word on Cheating

No multiplayer online game today can come along with-
out some protection against cheating, since the possibil-
ity to cheat poses a major threat to the fairness of the
game.[6, 12, 19] Fairness is a critical factor for enjoying
a game and consequently cheating may drive away paying
customers. However, we will not delve into that topic. In-
stead, we only want to point out that the level of cheat-
resistance is determined by the implemented architecture,
not by our framework. In the classic C/S setting, all trust
is imposed on the server and our framework doesn’t change
this. A P2P node within the Replicated Simulation is re-
sponsible for the object it owns. However, all peers re-
ceive updates about changes of that object and they may
check themselves if those changes conform to the rules of
the game. Otherwise they may reject an update. In the Mu-
tual Checking scenario, each RC votes for a certain update.
The larger the group of RCs is, the less likely it is for cheat-
ing nodes to insert a falsified update.

The only thing the framework has to guarantee is that no
one is able to forge messages. E.g., if a node receives an
update, it must be sure that the sender is really the owner
of that object. Nodes may simply identified by IP addresses
or, if a higher level of security is necessary or object own-
ership must outlast network sessions, cryptographic signa-
tures may be used. For this purpose a public key infrastruc-
ture is necessary which can be run by the game provider.

7. Conclusion

In this paper we have presented a framework that pro-
vides a game developer with a complete abstraction from
network related issues. The framework can be divided into
three layers: on the highest level the game layer, underneath
the object layer and at the bottom the networking layer.

25

On the game layer, standard components, like the game
engine and components managing audiovisual feedback and
player input, are located. This is also where a game devel-
oper has to implement the rules and the logic of a specific
game. All components on this layer communicate through
an interface to the layer below, the object layer. Game de-
velopers can create, manipulate and delete all game objects
as if they were local; network consistency as well as owner-
ship management is handled automatically. The networking
interface below hides network related issues behind a pub-
lish/subscribe abstraction. If it is necessary to optimize the
network layer for different quality requirements, like higher
scalability or lower latency, custom implementations can be
used.

With network implementation details hidden, game de-
velopers can focus more on game design rather than writing
specialized code. Implementation details like data-driven
game objects further emphasize this approach.

References

[1] XBlast. xblast—center.com.

[2] P. Bettner and M. Terrano. 1500 archers on a 28.8: Net-
work programming in age of empires and beyond. In GDC
Proceedings, 2001.

[3] S. Bilas. A data-driven game object system. In Proceedings
of the Games Developer Conference, 2002.

[4] J. Blow. Game development: Harder than you think. ACM
Queue vol. 1, no. 10, February 2004.

[5] D. Church. Object systems: Methods for attaching data
to objects and connecting behavior. In Proceedings of the
Game Developers Conference, 2002.

[6] S.B. Davis. Why cheating matters - cheating, game sccurity,
and the future of global on-line gaming business. In Pro-
ceedings of the 2003 Game Developers Conference, March
2003.

[7] M. Doherty. A software architecture for games. Technical
report, University of the Pacific Department of Computer
Science, 2003.

[8] A. Duran. Building object-systems: Features, tradeoffs and
pitfalls. In Proceedings of the Game Developers Conference,
2003.

[9] P.T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-

rec. The Many Faces of Publish/Subscribe. ACM Computing

Surveys, 35(2):114-131, 2003.

E. Games. Unreal 3 engine. www.unrealtechnology.

com/html/technology/ue30.shtml, 2007.

F. Glinka, A. PloB, J. Miiller-Iden, and S. Gorlatch. RTF:

A real-time framework for developing scalable multiplayer

online games. In Proceedings of NetGames 07, 2007.

P. Kabus and A. P. Buchmann. Design of a Cheat-Resistant

P2P Online Gaming System. In Proceedings of DIMEA 07,

2007.

P. Kabus, W. W. Terpstra, M. Cilia, and A. P. Buchmann.

Addressing cheating in distributed MMOGs. In NetGames

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

(20]

26

"05: Proceedings of 4th ACM SIGCOMM workshop on Net-
work and system support for games, pages 1-6, New York,
NY, USA, 2005. ACM Press.

Y. Kaneda, H. Takahashi, M. Saito, H. Aida, and H. Tokuda.
A challenge for reusing multiplayer online games without
modifying binaries. In Proceedings of the 4th ACM Work-
shop on Network & System Support for Games, 2005.

M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag
and Timewarp: Providing Consistency for Replicated Con-
tinuous Applications. [EEE Transactions on Multimedia,
6(1):47-57, Feb. 2004.

S. Microsystems. JSR-223 Scripting for the Java Platform,
2006.

B. Oki, M. Pfluegl, A. Siegel, and D. Skeen. The information
bus: an architecture for extensible distributed systems. In
SOSP ’93: Proceedings of the fourteenth ACM symposium
on Operating systems principles, pages 58—68, New York,
NY, USA, 1993. ACM Press.

W. Palant, C. Griwodz, and P. Halvorsen. Evaluating dead
reckoning variations with a multi-player game simulator. In
Proceedings of the ACM International Workshop on Net-
work and Operating Systems Support for Digital Audio and
Video, pages 20-25, May 2006.

M. Pritchard. How to hurt the hackers: The scoop on internet
cheating and how you can combat it. Gamasutra, 2000.
Sun Microsystems Inc. Java Message
Service (IMS) Specification Version 1.1.
http://java.sun.com/products/jms/docs.html, 2002.

MOBILE VIRTUAL WORLDS: A PROXIMITY BASED EVOLUTION

Stefano Cacciaguerra, Gabriele D’ Angelo
Department of Computer Science
University of Bologna
Via Sacchi 3, Cesena (FC), Italy
E-mail: {scacciag, gdangelo}@cs.unibo.it

KEYWORDS
Virtual Worlds, Pervasive Entertainment,
Entertainment, Game Design.

Agent-based

ABSTRACT

The wireless revolution has enabled a new generation of
applications for nomadic users. In this work we propose a
new paradigm for the creation of games based on virtual
worlds that are hosted on mobile devices. Each time mobile
devices “get in touch”, their virtual worlds have the
opportunity to interact. This form of interaction is based on
the remote control of a subset of the agents that populates
the virtual world. In accord with this, it is possible to create
games with an unpredicted and unforeseeable evolution.
Finally, we introduce PReDA, a prototypal implementation
of the proposed mechanism that is based on the Netlogo
environment.

INTRODUCTION

The pervasive diffusion of the wireless technology has
lead to wide effects on the ICT field. First of all the wireless
access to the Internet telephony and, then, the use of wireless
mobile devices to browse the Web, anytime and anywhere.
Thanks to more capable hardware, pervasive networks and
adaptive software protocols, the wireless technology is
fostering a new generation of applications, as an example:
sensors’ networks, wearable computers, ubiquitous and
context aware applications (Chen at al., 2003; Kanter, 2003).

In this scenario, it is easy to predict a future where
mobile users will daily use many forms of Internet access
(e.g. wireless hotspots, private networks, ad hoc networks
etc.), in order to share contents and to take advantage of the
resources offered by the broadband connectivity. As an
example, the participative virtual worlds are gaining more
and more popularity: they allow the users to keep in touch
with friends and colleagues, to collaborate in the resolution
of shared tasks, to run brainstorming meetings and to share
common resources. It is worth noting that this kind of social
environments supports both forms of collaboration and
competition between users, building a new kind of
interactive and immersive metaworld. To some extent, using
these technologies is possible to build virtual worlds that
mimic many of the daily activities (Linden, 2007). In this
case, the world is virtual and under some viewpoints it is
safe: it represents a sort of sandbox.

In this field, an important role has been played by the
participative simulation (Colella et al., 1998; Wilensky et al.,
2007) that is a gaming activity often used to explore

27

complex systems. As an example (Terna, 2003), a virtual
marketplace where users can be sellers and customers, at the
same time. As another example, the road transportation: we
could imagine a system where each user is in charge of
managing a specific traffic light, with the capability to
trigger the “green” and “red” lights. In this case the users
would be able to choose a strategy based on collaboration or
competition. For the sake of simplicity and clearness, all
these examples are immediate and obvious, but it is worth
noting that participative simulation has many fields of
application in both scientific and technical arcas (c.g.
diffusion of wviruses, vehicles behavior, modeling of
molecules in a membrane and the prisoners’ dilemma).

The main part of a participative simulation is the
underlying Multi-Agent System (MAS). It offers a
programmable system to model and simulate complex
behaviors. In a MAS, the simulation developer can define
groups of agents, to each group can be assigned autonomous
or shared tasks, and can be instructed to achieve a specific
goal. The global state of a multi-agent simulation is obtained
as the result of a large set of interactions among the agents.
During the simulation lifespan each agent will be part of
many local interactions, data exchanges, cooperation and
competition activities. Each agent (during its artificial life)
can be driven by a form of artificial intelligence or by a
human being. In both cases, the agents will play following
their capabilitics, in example their past knowledge, the
ability to explore the environment and the available
activities.

In this scenario, the wireless technologies enable the
participation of nomadic users, cxtending the access to
MAS:s also to users with mobile devices. The first and more
direct consequence of the wireless technology is that human
users can remotely control agents that are within a MAS,
anytime and anywhere. Furthermore, less immediate and
more complex consequences can be foreseen. Despite of a
human being, the player could be a remote MAS that
controls one or more external agents. In this case the
interaction would be between MASs. Using wircless
connectivity, would it be possible to imagine that a MAS
running on a mobile device would connect to another MAS,
to take control of a part of its agents?

The main goal of this work is to demonstrate that this
scenario is realistic, and to propose a new framework based
on the Netlogo environment. Following this approach,
different MASs implemented by Netlogo will be able to
interact together, based on their proximity, and to affect the
evolution of the whole system. In this case, we are not
proposing a new game based on MASs, but a new paradigm
for the creation of games based on mobile virtual worlds.

Following this approach, the evolution of the game is
determined by new factors, as the proximity of gamers and
the consequent random interactions between MASs. In our
vision, this work is the first step in the direction of a new
class of mobile games.

The next Section explains why it is important to give the
possibility to remotely drive agents. The third Section shows
similarities and differences with computer entertainment
applications. The fourth illustrates the system architecture.
The fifth suggests a case study based on Netlogo. Finally,
we conclude this paper with some final remarks and future
works.

REMOTE DRIVEN AGENTS

A MAS allows to represent, mimic and study complex
systems where different components interact among them in
a cooperative or competitive way. It promotes the
understanding of a complex system by means of the
description of its rules and the representation of its
evolution. Modern MASs are based on 2D raster graphical
functionalities (North et al., 2006; SWARM, 2007;
Wilensky, 2007) that, in many cases, arc inadequate for the
human perception. Only lately, the introduction of recent 3D
rendering engines (Cacciaguerra et al.,, 2004; Wilensky,
2007) has lead to higher expressivity and a better
representativeness of the system (sec Fig. 1). Expressivity
becomes either the capacity to mimic, with a higher detail of
accuracy, a complex system (if this is necessary for the
modeling effort) or to show to the viewer (i.e. the player)
another dimension in order to enhance his comprchension.
Essentially, we are introducing a new dimension to our
discussion, referring either to another physical dimension
(i.e. geometric plane) or an improvement of the
representation (i.c. expressive power). In accordance with
these considerations, we believe that enabling a MAS to
control the agents of another one, would permit to add a new
dimension in the evolution of complex systems. The idea
behind this approach is not related on the opportunity to
decrease the computational load, distributing the agents on
other computers (that is a well known approach in literature,
e.g. Riley, 2003). It refers to the opportunity that two or
more MASs get in touch and interact when are close, that is,
under the wireless coverage area of one or more network
adapters. This translates to a system that can evolve in a
“less deterministic” (i.e. unpredictable) mode: that is because
the interaction duc to the proximity with other systems
would be able to change their evolution. This kind of system
will be by far more unpredictable than a system where all
agents are driven by a single piece of local software (i.e. the
standard approach). In the first case, the movements of
mobile devices are the basis for unplanned meetings and the
availability of a wireless network is the media that allows the
interaction. In this scenario, the unplanned meetings add a
new degrec of indeterminism to the whole system.
Furthermore, following this approach, the game modelers
can define different behaviors of agents when reacting to the
same perception, implementing different course of action. In
any case, all the implementations are bounded by a sct of
game-related roles. For example, in the wolf-sheep predation
model, the sheeps should adopt different strategies to eat the
cabbage and to flee from the wolves. In any case, it is not

28

acceptable that a sheep eats a wolf! In other words, this
means that the freedom in the implementation of a specific
behavior have always to be coherent with the specific role of
the agent. Following this approach, it is possible to mix the
behaviors of agents that have been implemented by different
parties. This will allow to generate combined actions that
can lead to results that are unpredicted and unforeseeable in
the original system. In a causal meeting, the exchange of
behaviors among systems that are hosted on mobile devices,
can be described as the spread of a virus in an epidemiologic
scenario. In this metaphor, the remote system can affect the
behavior of many agents due to the comtact (i.e. the
proximity). A posteriori, if the resulting effect is seen as
interesting then it would be possible to analyze the log files,
in order to trace the interactions and inspect step-by-step the
evolution of the system. In most cases, videogames can be
considered as complex systems. Therefore, very often the
participatory simulation is seen as a form of game-based e-
learning. In this sense, we think that our approach could be a
first step in the direction of a new paradigm for mobile
gaming.

Rotate £ Zoom Move | B¢ 2D als (slower) & Arti-siasing (slowesr) Home § Full Scree

Fig. 1 Display of NetLogo bouncing balls model: 2D and 3D

RELATED WORK

In the state of art of computer entertainment there are
some applications partially based on the proposed paradigm,
such as: Ubiquitous Monster (Kawanishi, 2005), Insectopia

(Peitz et al., 2007), WSNMP (Liu et al., 2006) and Pirates!
(Bjork et al., 2001).

Ubiquitous Monster is a monster collection videogame
where the players wander about the real world to collect
monsters that will be used in the virtual world. In this case,
the transfer of monsters is based on the RFID technology.
Within the game, the behaviors and aptitudes of monsters
are predefined, and they appear in the virtual world in
relation with the geographical position of the player. The
monsters, accommodated in the virtual world running on a
mobile device, can: born, make friends, evolve, breed and
die on the basis of the weather conditions (i.e. lightness,
temperature, pressure, electric potential). All these
conditions arc detected by a sensors nctwork in the arca
where the user is located. For example, given a monster that
uses the light to obtain its vital energy, it is simpler to
capture it in a sunny place instead of a dark zone. Further,
the weather and light conditions change along the day: so, it
is very difficult to find such kind of monster during the
night! In the game, when two players meet, some monsters
may migrate from one virtual world to another, in order to
find more comfortable environments, and therefore to obtain
as much energy as possible. This game promotes the
movement of the players in the real world in order to collect
different monsters and to exchange them, by means of the
migration process. Since that the virtual world is an
ecosystem with limited resources, it is not possible to
capture a great number of monsters. Therefore, the aim of
the game is to reach a sort of instable equilibrium in each
local ccosystem, trying to support the higher possible
number of monsters of different breeds.

Similarly, Insectopia is an insect collection video game
running on mobile phones. Each player must collect and
domesticate his insects. The lifespan is limited to a fixed
amount of time. After a week, each insect dies and the player
must capture a new one. The catch of a specific insect
depends on the type of mobile devices that are in proximity
of the player. This game adopts the Bluctooth technology in
order to discover the different types of mobile devices.

Wireless Sensor Network based Mobile Pet game
(WSNMP) is a game where the user must control domestic
animal by means of a mobile device. In this case, the game is
based on a wireless sensor network. The players can interact
with virtual pets, feeding them, taking care of them and
playing with them. And furthermore, they can share their
pets with others, trade them, watch them compete against
each other, become friends, create offspring and develop a
virtual pet society. The players can also communicate each
other through their shared pets. Each virtual pet is
represented by a sensor node. The sensor nodes are
composed by many sensors; each sensor is an organ of
perception, such as, light detector, smoke detector and
microphone for eye, nose, and ear, respectively.

Pirates! is a videogame where the player takes the role of
a captain pirate sailing his ship in a fantasy archipelago. The
ship permits to transport commodities from the different
islands in order to be sold at markets. Each ship has a crew
and is equipped with cannons. If the captain successfully
completes the missions, then he can sturdier the ship thanks
to the gained rewards. There are some dangers such as
sinking in a battle, meeting cannibals or getting lost during
the exploration of an island. The aim is to find treasures and

29

commodities in each visited island. Islands are different and
provide many kinds of merchandisc and dangers. Further, at
the free harbor it is possible to recruit new crew members, to
repair a ship, to trade for goods and to obtain a new mission.
Each ship is represented by a PDA equipped by an IEEE
802.11 WLAN card and a RF proximity sensor, while the
islands are physical locations in the real world (e.g. different
rooms in a building).

The similarities of these applications with our proposal
arc: 1) the dynamism in the evolution of the ecosystems, and
ii) the migration of agents among mobile devices. The above
introduced applications use sensor networks to detect the
ambient conditions and to get the geographical position.
Differently in our approach, the possible evolutions of the
virtual world are, a priori, less predictable. In fact in the
other approach, the behavior of monsters, insects, pets or
pirates does not change during the lifespan of the game: all
of them arc defined and implemented by the application
developer and can not be changed at runtime.

To the contrary, in our approach, each player can modify
the behavior of its agents (e.g. implementing new actions) in
cach moment, also if the game has already started. The only
imposed limitation is to respect the general rules of the
virtual world that, above, we have called roles. In this way, it
will be impossible to define a priori the evolution of the
simulated ccosystem. A posteriori, it will be very important
to study the evolution of the system, inspecting the different
phases of the evolution and taking care to study emergent
patterns. This analysis will be possible using the log files
that trace the evolution of the whole system.

SYSTEM ARCHITECTURE

In our vision, we have a set of virtual worlds, each one
runs on a different mobile device. The virtual worlds should
be able to interact together depending on their proximity.
The position of a virtual world is due to the mobile devices
that hosts it. Each virtual world is composed by a set of
agents living in a defined environment. When a virtual world
gets in touch with another one, it can take control of a sub-
set of the agents in the other one.

In accord with this vision, we implemented the
Proximate Remotely Driven Agents (PReDA) framework.
PReDA is a prototypal communication framework, based on
the proximity of mobile devices, that is in charge of: i)
discovering devices that host a PReDA virtual world; ii)
managing the communication among PReDA virtual worlds
and iii) enabling the remote control of agents.

Given such requirements, the proposed architecture is
based on ultra-portable notebooks, tablet PCs and PDAs,
Java-enabled and with Bluetooth connectivity. The
discovery phase of PReDA takes advantage of the Bluctooth
discovery mechanism. Each device continuously searches
other devices within its coverage areca. Each time a new
device is detected, an inquiry scan is performed to obtain the
list of available services (i.c. a virtual world based on the
PReDA framework). If the new device is running PReDA,
then it is possible to start a direct communication between
the local and the remote virtual worlds. The communication
is implemented using the Bluetooth Logical Link Control
and Adaptation Protocol (L2CAP). PReDA uses the L2CAP
protocol to pair the local and the remote virtual worlds. Each

instance of PReDA verifies if there are remotely controllable
agents that are flagged as available. An agent is available if
no other PReDA systems are now controlling it. If at least
one available agent is found then the local virtual world will
send a set of commands to a subset of them. Due to the
nomadic nature of the hosting devices, only a limited amount
of time (in order of a few seconds) would be available for
the interactions among virtual worlds. Therefore, in a short
time frame, it is possible to transfer a single command or a
complex behavior (in form of a set of actions). In the
following section we will introduce a prototypal
implementation of PReDA based on Netlogo.

A CASE STUDY WITH NETLOGO

NetLogo (Wilensky, 2007) is a programmable tool that
allows to simulate the evolution of complex systems. This
tool permits to the modeler to give instructions to a high
number of independent agents all operating concurrently,
either in a cooperative way or in a competitive one.
Therefore, it promotes the exploration of the connection
between the micro-level behavior of individuals and the
macro-level patterns that emerge from the interaction of
these individuals. Further, the users can “open simulations”
(i.e. explore the internal state), can play with them, in order
to explore their evolution under various conditions and can
crecatc their own models (i.e. implementing new
functionalities). This tool is simple enough that any user can
casily run simulations or even implement the behavior of his
agents. The possibility to see the code of other models and to
access an clevated number of high-level primitives
promotes the reuse of the code, allowing everyone to
implement its own routines. The simple approach, that can
be used to program the tool, does not reduce the expressive
power of the models that can be simulated, making it an
interesting tool for many research fields (i.e. the simulation
of many natural and social phenomena). Moreover, the
Netlogo community is very active and has made a large
number of models frecly available, models that are related to
many fields as: biology and medicine, physics and
chemistry, mathematics and computer science, economics
and social psychology. This wide adoption demonstrates that
Netlogo is very casy to use and that can cope with many
different topics and problems. One of the most interesting
features (introduced in version 2.0) is the “‘extensions”
module, it allows the developers to introduce new
commands and reporters (Wilensky, 2007) that can be used
inside the Netlogo environment. The idea behind this
module is to extend the primitives by means of Java code,
that is archived in a jar file. In this way, it is possible to
write high-level functions but also to integrate the Netlogo
environment within other projects! In accord with this
consideration, we have integrated the Netlogo environment
within a new framework. The goal of this new framework is
to support communication among many Netlogo
environments that are executed on different devices. The
framework exploits the Netlogo extensions module to obtain
this result. The framework has to provide two main
functionalities: 1) it must supply an access point to cach local
instance of the environment by means of an agent discovery
system; ii) it must support the exchange of commands
among different mobile devices. The communication

30

between different environments needs a protocol that
permits to exchange commands (as string of characters) from
different worlds (e.g. Netlogo instances). Given the “A
world” and the “B world”, that are different environments
accommodated on two mobile devices, our mechanism
provides a form of addressing (i.c. to make the environments
reachable) and a communication protocol.

In detail, Netlogo classifies agents into two types:
passive and active. The virtual world is divided in square
picces of ground, cach picce is called “patch”. Netlogo
classifies the patches as passive agents. These agents can be
affected only by active ones and by the Observer (that is the
Demiurge of the world). The active agents (called turtles)
can interact among them and with the patches.

In the following, we report some details about the
implementation of our framework. Firstly, we report a piece
of code from a Netlogo model. It is worth noting that the
cxample contains an include of the PReDAextension.jar
archive. This archive provides the basic functionalities for
communication and discovery. In this way, the developer
can directly use its own Java routines inside Netlogo. Each
Netlogo model begins with the pressure of a button that
starts the sefup of the ecosystem, initializing the agents and
the environment variables. In particular, in the code example
reported below, after the initial setup, the setup bootstraps
the discovery system specifying which agents can be
remotely controlled. In detail, the rmt-crt-turtles and rmt-crt-
patches routines report the set of turtles and patches that will
be remotely controllable. By means of the definition of these
routines, the user can determine which agents can be
remotely controllable while leaving untouched the others.
The startCommFrmwrk initializes the communication
framework. The GO button runs the body of a Netlogo
model. The ask construct is used to specify commands that
are to be run by a set of agents. The run routine allows an
agent to interpret the given string as a sequence of one or
more NetLogo commands and runs them. The routine
recvmsg that has been declared inside PReDAextension.jar
receives a message, that is a string sent by a remote Netlogo
environment accommodated on a mobile device. Obviously,
this means that the remote Netlogo environment will use the
sendmsg routing (also in this case defined in
PReDAextension.jar) to send messages, that are strings
dispatched to one or more remotely controlled agents.

In last part of the code, it is possible to analyze the
approach used in the implementation of our framework. In
the first case (see Example 1), the received string will
contain the number of steps that a set of turtles must cover.
In the second case (see Example 2) is defined the new color
of a sct of patches. For example, if the string returned by
recvmsg is “3”, then all turtles will be moved straight of 3
steps in their direction, while, if it is “yellow” then all
patches will become yellow colored.

It is worth noting that in the third casc (scec Example 3
and Figure 2), the string directly reports a sequence of
commands, respectively: 1) “ask turtles with color = red [fd
3] - all red turtles will be moved straight on their direction
of 3 steps, while, ii) “ask patches with pcolor = yellow [set
energy 0] - the energy level of all yellow patches will be
decreased to zero.

-

o

§

Fig. 2 NetLogo Wolf — Sheep Predation

__extensions["PReDAextension. jar"]
to setup

setup-turtles
setup-patches
set clock O

Discovery(rmt-ctr-turtles, rmt-ctr-patches)
startCommFrmwrk
end

to GO

ask turtles

run fd recvmsg ;; (Example 1)

ask patches

run set pcolor recvmsg ;; (Example 2)

run recvmsg ;; (Example 3)

set clock clock + 1
end

CONCLUSIONS AND FUTURE WORK

In this work, we have introduced the Proximate
Remotely Driven Agents (PReDA) framework. PReDA is a
prototypal framework based on the Netlogo environment and
its “Extensions” module. PReDA exploits the Bluetooth
connectivity in order to discover other PReDA copies
running on top of mobile devices. Each mobile device runs a
local virtual world composed by an environment and a set of
agents. In this way, the PReDA-based virtual worlds running
in each mobile device can interact together, taking control of
a part of the remote agents. Since cach player can casy
modify the behavior of agents and since the game is subject
to random interactions, the evolution of the game will result
very unpredictable.

As a future work, we aim to build a rcal game based on
the proposed paradigm. Furthermore, we plan to develop a

31

light version of the PReDA framework that will run on Java-
cnabled mobile phones.

Another direction of this research will involve the study
of the behavior of nomadic users and the impact of the
proposed paradigm on social sciences.

REFERENCES

Bjork S., Falk J., Hansson R., Ljungstrand P., 2001 Pirates! - Using
the Physical World as a Game Board. in proc. of Human-
Computer Interaction conference (July), Tokyo, Japan.

Cacciaguerra S., Mirri S., Pracucci M., Salomoni P., 2006.
“Wandering about the City, Multi-Playing a Game” in proc. of
IEEE International Workshop on NIME (January), Las Vegas
(NV-USA).

Cacciaguerra S., Roccetti M., Roffilli M. Lomi, A, 2004. “Wirceless
Software Architecture for Fast 3D Rendering of Agent-Based
Multimedia Simulations on Portable Devices” in Proc. of the
First Consumer Communications and Networking Conference
(CCNC), IEEE Communications Socicety (January), Las Vegas
(NV-USA)..

Chen H., Finin T., 2003 “An Ontology for a Context Aware

Pervasive Computing Environment”, in Proc. of [JCAI
Workshop on Ontologies and Distributed Systems.
Colella V., Borovoy R., Resnick M., 1998 “Participatory

Simulations: Using Computational Objects to Learn about
Dynamic Systems” in Proc. of Computer Human Interface
Conference, (April) Los Angeles (USA - CA).

Kanter T. G., 2003 “Attaching Context-Aware Services to Moving
Locations” in IEEE Internet Computing Magazine,(March-
April) Vol. 7, N. 2.

Kawanishi N, Kawahara Y., Morikawa H., Aoyama T., 2005
“Prototyping a Recal-World-Oriented Monster-Collection
Game” in Proc. of 5th International Workshop on Smart
Appliances and Wearable Computing, (June) Columbus,(USA -
OH).

Linden Lab 2007, “Secon Life”, http://www.secondlife.com/.

Liu L., e Ma, H., 2006 “Wirecless Sensor Network Based Mobile
Pet Game”, In Proc. of NetGames, (October), Singapore.

North M.J.,, Collier N.T., Vos J.R., 2006 “Experiences Creating
Three Implementations of the Repast Agent Modeling Toolkit”,
in ACM Transactions on Modeling and Computer Simulation,
Vol. 16, Issue 1, pp. 1-25, (Jannuary), New York (USA - NW).

Peitz J., Saarenpdd H., Bjork S., 2007 “Insectopia - Exploring
Pervasive Games through Technology already Pervasively
Available” in Proc. of Advanced in Computer Entertainement
Technology, (June) Salisburg (Austria).

Riley P., 2003 “SPADES: System for Parallel Agent Discrete Event
Simulation”, in Al Magazine.

Terna P., 2003 “Decision making and enterprise simulation with
JES and Swarm.”, in Proc. of the Seventh Annual Swarm
Users/Researchers Conference (April), Notre Dame, Indiana
(USA -IN).

Swarm Development Group. 2007 “Swarm” http://www.swarm.org
Swarm Development Group, Santa Fe (USA — NM).

Wilensky U., 2007 “NetLogo” http://ccl.northwestern.edu/netlogo/.
Center for Connected Learning and Computer-Based Modeling,
Northwestern University, Evanston, IL.

Wilensky U, Stroup W, 2007 “HubNet”
http://ccl.northwestern.cdu/netlogo/hubnet.html. Center for
Connected Learning and Computer-Based Modeling,
Northwestern University. Evanston, IL.

JOURNEY FROM THE MAGIC CIRCLE TO THE THERAPEUTIC GAMEPLAY
EXPERIENCE

Balazs Jozsa

Institute of Psychology,
University of Debrecen
4032 Egyctem tér 1. Debrecen, Hungary
E-mail: jozsabalazs@yahoo.co.uk

KEYWORDS
player’s experience, presence, avatar, methodology

ABSTRACT

This paper combines several theories which try to define
player’s The three component player’s
experience model is unique in that way, that it gives a
complex and full explanation how player’s experiences
come into exist. As avatar makes interaction with game
elements, game events arise and its interpretation has affect
on player’s emotion and opinion creating an experience.
This experience will influence the avatar’s behaviour.
Series of player’s experiences merged into gameplay
experience, which can be analysed by content analysis and
Experiential Analysis Technique.

experience.

INTRODUCTION

Researching player’s experience is quite a new field of
game researching, but its root date back to the past. In this
paper the question I am trying to answer is: What are the
components of player’s experience, how they establish and
how can we examine them?

Previous theories

According to Huizinga (1955) games arc onc of the
building stone of our society. If we observed a playing
animal or a human, we would find that their behaviour is
very similar to their everyday activity. So player’s game
experience - in my opinion - could be very similar to
player’s everyday experiences. Whereas Huizinga said,
games have their own space, time and rules, they are not in
connection with everyday life. This is what game research
called magic circle. Later, number of researchers attacked
this opinion (e.g. Callois 1961) but they also did not
mention what kind of experiences player could go through
during a game session.

If the magic circle was traversable, games would have long
term effect on players, so it would be worthy to plan
player’s experience in advance. There are several theories

32

trying to uncover components, which can influence player’s
experiences. One type of theories underlines immersion or
presence. Ermi and Miyrd (2005) set up a model called
SCI to explain how player’s experiences come into exist. It
has three components: Sensory Immersion,
Challenge-based immersion and Imaginative immersion.
Later, Arsenault (2005) modified this model, and used
Systemic immersion instead of Challenge-based immersion
and Fictional immersion instead of Imaginative immersion
(SSF-model). Despite its complexity the model
distinguishes only three types of experience: sensorial-,
systemic- and fictional type.

Other theories’ main concept is gameflow as gamec
researchers use it. Flow is a state of consciousness that is
sometimes experienced by people who are deeply involved
in an enjoyable activity (Pace, 2004). It has 8 components
which existence is necessary establishing flow
(Csikszentmihalyi 1990). Later Novak at al. (2000, in.
Fernandez 2007) criticized GameFlow theory that some of
its base components just consequences of flow and have no
any role in establishing it. GameFlow model tells how flow
could come into exist - which is a complex experience-
pack. So this model is not useful to distinguish different
type of experience.

Other theories emphasize player’s motivation and its role
in establishing experience. For example Mitchell’s
Situational Interest model (1993) separates catch and hold
triggering conditions. He said computer games are catch
conditions, which can capture player’s attention but cannot
hold it. I am not agree with Mitchell, I think computer
games could provide both catch and hold experiences - that
is why some players replay their favourite game. These are
two different types of experiences.

Fernandez (2007) tried to explain emotional aspect of
player’s experience. She create the Game Experience
Model to describe elements of digital game experiences
especially elements that determinate fun experience.
According to this model, as player playing with a computer
game it is elicit a cognitive and emotional response from
him/her and these two components are responsible for both
fun experiences and the evaluation of the game.

main

Bobko et al. (1984) asked people to compare ten computer
games pairwise how similar are they. Multidimensional
scaling showed 3 underlying dimensions: destructiveness,
dimensionality and graphic quality. However it is a quite
acceptable model it interpreted only 30% of the result.

PLAYER’S EXPERIENCE

According to Fernandez (2007) fun is the main result of
player’s experience. I think fun is just one type of player’s
experience. One of my interviewee said about a computer
game: “it is possible to learn a lot from games”. 1 think
players have not got main experience, they have different
kind of experiences (e.g. fun, growing knowledge, aesthetic
experience...etc.).

Intentions of

Game the designers B harware

element possibiliti
H es

Game
R Computer
.’
 JL

(and its
capabilities)

| PHYSICAL REALITY

If we try to understand player’s experience, we have to
make a model how experiences come into exist. At a game
situation there are two main components: the game and the
player. Computer is the transmitter medium between game
and player. Games have elements and interface, players
have opinions and emotions. This is a very simple model
and every element in it can be taken to further pieces. Every
game has an avatar (a special game clement mostly
controlled by the player): hero or heroine, a car driver, a
mayor...etc. Even Tetris has one: the force with which I can
manipulate tetris elements. So avatar is the player’s
representation in the game (reality). Avatar is a game
element with which a player can identify his/herself. Figure
1. shows components of player’s experience.

Game
elements

Figure 1: Components of player’s experience

Process of player’s experience

There are two different realities: avatar is in the game
reality (virtual reality) while player is in the physical
reality. In this model, presence is a function which makes
possible that player indentifies him/herself with the avatar
and that time the two realities become one. According to
this model, player’s experience can establish in that way:
Player starts to play, then with the help of presence, (s)he
becomes one with the avatar. Then avatar makes different
kind of connections with game clement, thus game event
come into exist. Finally, this game event takes effect on
player and creates an experience. So player’s experience is
a subjective interpretation of a game event(s) in the
player’s mind.

Levels of Player’s Experience

The definition of player’s experience has two components:
game events and its subjective interpretation in the player.
Subjective interpretation means game cevents can change
player’s opinion and emotions about what happens. After
player interprets a game event (s)he behaves (with his/her
avatar) according to it (in game reality). This model is
similar to the phenomenon of attitude, which is known from

33

social psychology. We can say player’s experience is a
special attitude which can change from game event to game
event. Attitude has 3 components: cognitive (intellectual),
affective (emotional) and conative (bchaviour). In case of
computer games, behaviour level is in the game reality,
while the other two are in the physical reality. Figure 2
shows the

arrangement of levels and theirs connection with reality.

AY NG o \\\ ~
NN N
NG N N
A NS
NN SN
N = ver's opintons, evulations {cognition i&g@gr}\ N N
<
N o . . N
\i\ . Mayer's amotion [sffestive lavar] N N
v : | N ~
\\\ Jodeglgame sndwadd sty —————-— a
N N
h : o N
N\ Avatar’s action {behaviour layer) N

Figure 2: Three Levels of player’s experience and their
Connection with reality

Cognitive level means what are my thoughts about the
game, about my avatar...etc. Affective level means my
emotions about game events, about my avatar and its
action...ctc. Conative level connects to avatar because
avatar ‘“does things” (walk, steer...etc.). Let’s see an

example: I moect with a dragon fovara mkes coneciion
switds ¢ pamie element). 1 think T am
to defeat that dragon and I feel myself in L
attack {wame evends the dragon. But dragon wemnnd me 2 lof
foame s recction fo ny hehavious). 1 think T am

to defeat that dragon and I am
starting to . Finally I run away
cmviavatar hehovieur). Fernandez (2007) also stressed, that
players have cognitive and emotional responses but she did
not define the way how they relate back on gameplay. In
my model player’s cognitive and emotional responses
manifesting in the behaviour of the avatar. Figure 3. shows
how components of player’s experience connect to each
other.

Figure 3: Relations of the three levels of player’s
experience

Gameplay Experience

The combination of the players’ personality and game
events results lots of different player’s experience.
Gameplay experience is a series (or combinations) of
player’s experiences during a gameplay - like an exciting
race in Need for Speed. This experience consist series (or
combinations) of game events (overtakings, drifts).

If I ask you to tell your opinion about a concrete game, you

will not speak about your gameplay experience. Gameplay
experience consists cognitive, emotional and behavioural
level at the same time. If you mention some remarkable
moments from the game, that will be a gameplay
experience. It is possible that every game, game genres or
even players have their own map of gameplay experience.

DISCUSSION—
EXPERIENCES

METHODS FOR EXAMINING GAMEPLAY

Resecarching player’s experience is very difficult task,
because if a rescarcher wants to know what players
experiencing during a game session, (s)he keeps player
from experiencing anything. Content analysis is good for
research this issue by ask players about their remarkable
memories. With this method gameplay experiences can take
to pieces. These will be player’s experiences. After coding
them we have to identify its cognitive, affective and
conative level and theirs connection with game elements.
EAT (Experiential Analysis Technique, Sheehan et al.
1978) can be useful in it. Using EAT, subjects are asked to
play with a computer game. A camera records game cvents

34

and players’ behaviour at the same time. After it a
questioner asks subjects to play the recorded video,
comment it, stop it whenever they want and explain what is
happening at that moment. Theirs explanations will be
analysed the same way as has been mentioned at content
analysis.

Although this model is preliminary yet, If we connected
game events to player’s experiences, some day we would
be able to create (or integrate) healing/therapeutic
experiences into a computer game. Finally, we will be able
not just play with games, but use them in favour of a good
matter.

BIBLIOGRAPHY

Arsenault, D. 2005. “Dark Waters: Spotlight on immersion.” In
Proceedings of Game-On North America 2005 Conference.
http//www te-ludophile. comyFiles/Arsenault%e20-%20Dark
0Waters.pdf, 2007. 11. 03.
Bobko, D., Bobko D.J. and Davis M.A. 1984. “Multidimensional
scaling of video games.” In Human Factors 26, No. 4, 477-482.
Callois, R. 1961. Man, play and games (M. Barash, Trans.). Free
Press of Glencoe, New York

Csikszentmihalyi, M. 1990. Flow: The Psychology of Optimal
Experience. HarperPerennial, New York

Ermi, L. and F. Miyrd. 2005. “Fundamental Components of the

Gameplay Experience: Analysing Immersion.” In Proceedings
of DIGRA 2005 Conference: Changing Views — Worlds in Play.
htip//www.gamesconiorence. org/digral0s/view
abstract.php?id=267, 2007.09.20.

Fernandez, A. 2007. “Fun Experience with Digital Games: a
Model Proposition.” In Proceedings of Interact 2007 Workshop.
httpsAwww fun-of-use.org/interact200 7/ papers/
FunExperienceWithDigitalGames.pdf, 2008.11.03.

Huizinga, J. (1955). Homo ludens: A study of the play element in
culture. Beacon Press, Boston

Mitchell, M. 1993. “Situational interest: Its multifaceted structure
in the secondary school mathematics classroom,” In Journal of
Educational Psychology 85, No. 3, 424-436.

Pace, S. 2004. “A grounded theory of the flow experiences of
Web wusers.” In International Journal of Human-Computer
Studies 60, 327-363.

Sheehan, P.W., McConkey, K.M. and Cross, D. 1978.
“Experiential analysis of hypnosis: Some new observations on

hypnotic phenomena.” In Journal of abnormal psychology, No.
87, 570-573.

BIOGRAPHY

BALAZS JOZSA was born in Debrecen, Hungary.
Hungary and went to the University of Debrecen. First he
studied as a programmer mathematician, then he was
admitted to psychology and he obtained his degree in 2005.
He has made two researches in relation with computer
games: one was about absorption effects on computer game
playing; second one (his final thesis) was about computer
game playing situation and its relation with hypnosis and
meditation. Now he is a PhD student at the same university.
His rescarch arca is gameplay ecxperiences, identifying
player’s experience and map of digital game experiences.

GAME
Al

36

DATA ANALYSIS FOR GHOST AI CREATION
IN COMMERCIAL FIGHTING GAMES

Worapoj Thunputtarakul and Vishnu Kotrajaras
Department of Computer Enginecring
Chulalongkorn University Bangkok Thailand
worapoj.t@student.chula.ac.th, vishnu@cp.eng.chula.ac.th

KEYWORDS: Ghost Al Fighting Game, Casc basc
ABSTRACT

In this paper we present a simple, rapid and efficient
method for creating a ghost Al, an Artificial Intelligence
that can imitate playing styles of players in fighting games.
The created ghost Al can perform combination actions and
make a decision about any movement in a similar fashion to
a player it is copying. We scan a player’s battle data, and
then create situation-action pair cases for its corresponding
ghost Al to use in actual battles. A ghost Al can be created
and run swiftly, using small amounts of memory, making it
suitable for console games. Our method is general enough
to be used in most 2D and 3D fighting games. We carried
out our experiment on Street Fighter Zero 3, one of the
most well crafted fighting games, using AI-TEM testbed
engine.

1. INTRODUCTION

1.1 Ghost Al

In fighting games there have been various attempts at
ghost Als (Als that imitate players). Virtua Fighter 4
allowed players to train computer Als to fight like them.
Such ghosts could then be assigned to fight another player.
However, feedback from players was not good at the time
the game was released because it was hard to train their
ghosts case by case. But in recent years, a ghost Al system
has been used once more, in Tekken5: Dark resurrection.
This time many things have been changed. Players do not
need to train their ghosts in a training mode. They just play
the game normally and the system will mechanically create
their ghosts. This method makes fighting games more
interesting because there will be many fighting styles for
computer controlled opponents. Despite the fact that the
ghost Al system is being acknowledged as the definitive
Al for fighting games, the method for ghost Al creation
remains undisclosed. In this paper, we propose a method
for ghost Al creation using data obtained from game
memory. Our method can be used in most fighting games.
It also requires very small amounts of memory and
therefore is suitable for console games.

1.2 Street Fighter Zero3 (SFZ3)

Strect Fighter Zero3 is regarded as onc of the best fighting
games of all times. In a fighting game, a player must select
one character from many characters, and fight one by one

with an opponent character (another player or computer Al).

37

A character can perform normal action such as move,
crouch, jump, guard, punch or kick. There are also special
attacks, such as firing bullets or executing a powerful flying
punch. These special actions can be performed when a
player presses a correct sequence of commands at the right
time. A player must choose to perform actions in various
situations based on the status of his character and opponent
character. Getting into action with SFZ3 requires only a
few minutes of tutorial. Nevertheless, the game has many
ways to play a single character. For that reason, we have
chosen SFZ3 as our game for experimenting with the ghost
Al

1.3 Testbed Environment

For the reliability of experimental results, game researchers
may want to test their Al on real commercial game
environments (Graepel et al 2004). But such environments
are scarcely available. Results obtained from a researcher
created game may not be convincing enough to warrant an
actual use of discovered techniques in genuine games. Some
researchers used mod of a commercial game (Spronck et al
2004), or a clone game (Ponsen et al 2005). Some
developed test games on their own (Kendall and Kristian
2004) or used a testbed (Bailey and Katchabaw 2005). But
none of those methods fit our experimental goal.
(Thunputtarakul and Kotrajaras 2006) proposed a system to
test Al modules in real commercial games without using any
sourcc code. They implemented a testbed from
VisualboyAdvance (VBA), a Nintendo GameboyAdvance
emulator. The testbed was called AI-TEM. An overview of
AI-TEM is presented in figure 1 and its workflow diagram
is presented in figure 2. By accessing the memory pool of
the emulator, AI-TEM users are able to know states of the
game at any particular moment. For fighting games, a state
can consist of characters’ positions, current animation
frames, health points, etc. Users can insert their AT modules,
in the form of C/C++ code or python script, into the testbed
to control the game characters by providing controller
signals. Our work uses AI-TEM as its testbed.

2. OUR APPROACH FOR CREATING GHOST Al

The main concept of our ghost Al creation is case based Al
construction. We extracted a player character’s reaction in
various situations from battle log data created while playing,
then produced situation-action pairs for the ghost of that
character. Our experiment was made using SFZ3 training

mode with character Ryu versus Ryu. AI-TEM was
modified to suit our experiment. The ghost Al creation
processes are displayed in figure 3. The following
subsections describe each component in the process.

| Menu Control |

\\\\\\\§ Python e e Game ROM
) Interface State State
Custom Normalize | Observer E mu Iator
Al Core
Module > Input Controller (VBA)

Figure 1: AI-TEM Testbed System Overview.
The Light Blue Modules are VBA Original Modules.

Game State Observer
1P Position X
Address: 0x20007C2
Value(16 bits): 002C(h)

002C = 44
820007C2 32
Game state Normalizer o2
Normalize by subtract 44 8280687E2
1P Position X = 0 92@8067F2
Signal
A| (update) A| (run loop) PRESS_A
Charl.m posX =0
Sharacter Glase delta = abs(char1.m_posX —
G char2.m_posX); Input
Lf (delta <= 10) Controller
m:animation:) / do attack. .. press A butlton Module

Figure 2: Workflow Diagram of AI-TEM System in SFZ3.

2.1 Obtaining Player Battle Log Data

First, while a player is playing, game states data need to be
dumped from memory onto a battle log file. The data are
used to identify each case in the case based Al system. The
data consist of characters animation, characters positions in
x and y axes, characters health points, characters bullet
positions in x axes, damage that characters obtain in that
frame, player character’s facing direction and the corner
status of characters. Recorded battle log data is in the
following form:

Frame Data no: 00001
P1:Ani=002,X=120,Y=40,bullet=0, damage=0, HP=90
P2:Ani=002,X=240,Y=40,bullet=0, damage=0, HP=90

Frame Data no: 00720
P1:Ani=016,X=150,Y=40,bullet=0,damage=0, HP=30
P2:Ani=030,X=560,Y=40,bullet=0, damage=5, HP=20

These criteria can change depending on game or user.
Creating the ghost Al while the game is running without
creating the battle log file is possible if complete
information about the game mechanic is known (such as
short or shared animation frame, that will be described in
section 2.3). For SFZ3 on AI-TEM, we did not have such
information. Therefore we had to use the log file.

2.2 Animation Set Database

An animation set database is used for identifying whether a
character animation frame belongs to an animation set. An
example is illustrated in Figure 4. Ryu animation frame

38

number 0 to 6 belong to animation set ID 0, which
represents Ryu’s standing animation, while frame number
707 to 713 belong to Ryu’s medium punch action, set ID 15.
Together with the battle log file, the animation sets are used
to create situation-action pair cases. In our experiment, we
manually defined this database. There are totally 912
frames for character Ryu. This seems daunting. However, it
is relatively casy for a game company to do because any
game development team usually has access to animation
data.

Ghost Al Creator

Scan & Mark Short

Obtain Animation<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>