12™ INTERNATIONAL CONFERENCE
ON

INTELLIGENT GAMES AND SIMULATION

GAME-ONg 2011

EDITED BY

Colm O’Riordan
Sam Redfern
Valerie Butler

Fergal Costello

AUGUST 22-24, 2011
NUI

Galway
IRELAND

A Publication of EUROSIS-ETI

Cover art: Divinity Il — The Dragon Knight Saga ©2010 Larian Studios and Focus Home Interactive.
Published by Focus Home Interactive under license from Larian Studios. Divinity Il, The Dragon
Knight Saga, Larian Studios and their respective logos are trademarks or registered trademarks of
Larian Studios, Focus, Focus Home Interactive and their respective logos are trademarks or
registered trademarks of Focus Home Interactive. All rights reserved. All other names, trademarks
and logos are property of their respective owners.

Monkey Tales © 2010 Larian Studios. All rights reserved. Developed by Larian Studios. All company
names, brand names, trademarks and logos are the property of their respective owners

12™ International Conference
on

Intelligent Games and Simulation

GALWAY, IRELAND
AUGUST 22 - 24, 2011

Organised by
ETI
Sponsored by
EUROSIS

Co-Sponsored by

Binary lllusions
BITE
Delft University of Technology
Ghent University
Higher Technological Institute
National University of Ireland
Larian Studios

University of Skévde

Hosted by

National University of Ireland

Galway, Ireland

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

EDITORS

General Conference Chair
Colm O'Riordan
National University of Ireland, Galway, Ireland

General Program Chair
Sam Redfern
National University of Ireland, Galway, Ireland

Local Programme Committee

Colm O'Riordan, National University of Ireland, Galway, Ireland
Sam Redfern, National University of Ireland, Galway, Ireland
Fergal Costello, National University of Ireland, Galway, Ireland
Valerie Butler, National University of Ireland, Galway, Ireland

INTERNATIONAL PROGRAMME COMMITTEE

Game Development Methodology

Oscar Mealha, University of Aveiro, Portugal
Esteban Clua, Universidade Federal Fluminense, Brasil

Physics and Simulation

Graphics Simulation and Techniques
lan Marshall, Coventry University, Coventry, United Kingdom

Facial, Avatar, NPC, 3D in Game Animation
Yoshihiro Okada, Kyushu University, Kasuga, Fukuoka, Japan
Marcos Rodrigues, Sheffield Hallam University, Sheffield, United Kingdom
Joao Manuel Tavares, FEUP, Porto, Portugal

Rendering Techniques
Joern Loviscach, Hochschule Bremen, Bremen, Germany

Artificial Intelligence

Artificial Intelligence and Simulation Tools for Game Design
Stephane Assadourian, UBISOFT, Montreal, Canada
Daryl Charles, University of Ulster, Northern Ireland, United Kingdom
Flavio Soares Correa da Silva, USP, Sao Paulo, Brazil
Patrick Dickinson, Lincoln University, Lincoln, United Kingdom
Antonio J. Fernandez, Universidad de Malaga, Malaga, Spain
Marc-Philippe Huget, University of Savoie, Le-Bourget-du-Lac, France
Joseph Kehoe, Institute of Technology Carlow, Carlow, Ireland
Sandy Louchart. Herriot-Watt University, Edinburgh, United Kingdom
Tshilidzi Marwala, University of Witwatersrand, Johannesburg, South-Africa
David Moffat, Glasgow Caledonian University, Glasgow, United Kingdom
Gregory Paull, Total Immersion Software, Alameda, CA, USA
Sam Redfern, National University of Ireland, Galway, Ireland
Oryal Tanir, Bell Canada, Montreal, Canada
Christian Thurau, Universitaet Bielefeld, Bielefeld, Germany
Miguel Tsai, Ling Tung University, Taichung, Taiwan
lan Watson, University of Auckland, Auckland, New Zealand

v

INTERNATIONAL PROGRAMME COMMITTEE

Learning & Adaptation
Christian Bauckage, University of Bonn, Sankt Augustin, Germany
Christos Bouras, University of Patras, Patras, Greece
Adriano Joaquim de Oliveira Cruz, Univ. Federal de Rio de Janeiro, Rio de Janeiro, Brazil
Chris Darken, The MOVES Institute, Naval Postgraduate School, Monterey, USA
Andrzej Dzielinski, Warsaw University of Technology, Warsaw, Poland
Maja Pivec, FH JOANNEUM, University of Applied Sciences, Graz, Austria
Tina Wilson, The Open University, Milton Keynes, United Kingdom

Intelligent/Knowledgeable Agents
Nick Hawes, University of Birmingham, United Kingdom
Wenji Mao, Chinese Academy of Sciences, Beijing, China P.R.
Marco Remondino, University of Turin, Turin, ltaly

Collaboration & Multi-agent Systems
Victor Bassilious, University of Abertay, Dundee, United Kingdom
Sophie Chabridon, Groupe des Ecoles de Telecommunications, Paris, France

Opponent Modelling
Pieter Spronck, University of Maastricht, Maastricht, The Netherlands
Ingo Steinhauser, Binary lllusions, Braunschweig, Germany
Andrew Ware, University of Glamorgan, Pontypridd, United Kingdom

Peripheral

Psychology, Affective Computing and Emotional Gaming

Myriam Abramson, US Naval Research Laboratory, USA

Gianna Cassidy, eMotion-Lab, Glasgow, United Kingdom
David Farrell, eMotion-Lab, Glasgow, United Kingdom

Eva Hudlicka, Psychometrix Associates, Blacksburg, USA
Romana Khan, eMotion-Lab, Glasgow, United Kingdom

Brian McDonald, eMotion-Lab, Glasgow, United Kingdom

David Moffat, eMotion-Lab, Glasgow Caledonian University, United Kingdom
Jon Sykes, eMotion-Lab, Glasgow Caledonian University, United Kingdom

Thomas Welsh, eMotion-Lab, Glasgow, United Kingdom

Artistic input to game and character design

Anton Eliens, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Olli Leino, IT-University of Copenhagen, Copenhagen, Denmark
Sean Pickersgill, University of South Australia, Adelaide, Australia
Richard Wages, Nomads Lab, Koln, Germany

Storytelling and Natural Language Processing

Jenny Brusk, Gotland University College, Gotland, Sweden
Ruck Thawonmas, Ritsumeikan University, Kusatsu, Shiga, Japan
Clark Verbrugge, McGill University, Montreal, Canada

Online Gaming and Security Issues in Online Gaming

Marco Furini, University of Modena and Reggio Emiliano, Modena, Italy
Pal Halvorsen, University of Oslo, Oslo, Norway
Fredrick Japhet Mtenzi, School of Computing, Dublin, Ireland
Andreas Petlund, University of Oslo, Oslo, Norway
Jouni Smed, University of Turku, Turku, Finland
Knut-Helge Vik, University of Oslo, Oslo, Norway

INTERNATIONAL PROGRAMME COMMITTEE

MMOG's

Michael J. Katchabaw, The University of Western Ontario, London, Canada
Jens Mueller-Iden, University of Munster, Munster, Germany
Alice Leung, BBN Technologies, Cambridge, USA
Mike Zyda, USC Viterbi School of Engineering, Marina del Rey, USA

Serious Gaming

Wargaming Aerospace Simulations, Board Games etc....
Roberto Beauclair, Institute for Pure and Applied Maths., Rio de Janeiro, Brazil
Tony Manninen, Ludocraft Ltd., Oulu, Finland
Jaap van den Herik, Tilburg University, Tilburg, The Netherlands

Games for training
Michael J. Katchabaw, The University of Western Ontario, London, Canada
Jens Mueller-Iden, Universitaet Muenster, Muenster, Germany
Roger Smith, US Army, Orlando, USA

Games Applications in Education, Government, Health, Corporate, First Responders and Science
Russell Shilling, Office of Naval Research, Arlington VA, USA

Games Interfaces - Playing outside the Box

Games Console Design
Chris Joslin, Carleton University, Ottawa, Canada

\

GAME-ON,
2011

© 2011 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Multidisciplinary Society for
Modelling and Simulation Technology. Permission is granted to photocopy portions of the publication for personal use
and for the use of students providing credit is given to the conference and publication. Permission does not extend to
other types of reproduction or to copying for incorporation into commercial advertising nor for any other profit-making
purpose. Other publications are encouraged to include 300- to 500-word abstracts or excerpts from any paper
contained in this book, provided credits are given to the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be
used in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in these Proceedings have been peer reviewed
EUROSIS-ETI Publications are ISI-Thomson and INSPEC referenced
A CIP Catalogue record for this book is available from the Royal Library of Belgium under nr.12620

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Greenbridge NV,
Wetenschapspark 1, Plassendale 1, B-8400 Ostend, Belgium.

EUROSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400
Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium
Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium
Cover Pictures by Larian Studios, Ghent, Belgium

GAMEONg is a registered trademark of the European Technology Institute under nr: 1061384-761314

EUROSIS-ETI Publication

ISBN: 978-9077381-64-9
EAN: 978-9077381-64-9

Vi

PREFACE

Dear participants,

On behalf of all the people and institutions that made this conference possible,
| wish to welcome you all here to NUI, Galway, Ireland for the 12th edition of
the Annual Conference on Simulation and Al in Games. (GAMEONg2011)

In addition to the interesting and varied submitted papers, we are very grateful
to our two invited keynote speakers - Andre Gagalowicz and Nathan Griffiths
for their talks on 3D face tracking and trust In multi-agent systems.

| wish to thank everyone who has contributed his or her time and effort in
organising this conference. This includes all the authors who prepared and
submitted papers and the international Programme Committee members who
were involved in the review process.

| wish to also acknowledge the huge effort and contributions of Philippe Geril
who is responsible for organising this conference this year and over the past
couple of years.

Furthermore, | would like to express my gratitude to our industry visitors for
dedicating their time and for sharing their expertise.

| wish to also acknowledge our sponsors for supporting the conference. |
would like to thank the Discipline of Information Technology and the University
Millennium Fund for financial support.

Finally, | hope you enjoy your stay here in Galway.

Colm O’Riordan

General Conference Chair GAMEON’2011
National University of Ireland
Galway, Ireland

CONTENTS

Preface. ... IX
Scientific Programme. ... 1
XU Lo gl =3 1 4V 95

GAME DESIGN

Presence in Computer Games: Design Requirements
Barbaros Bostan and Sertac Ogutcccoiimeeeeeeriisiierreseessssss s s e s s esssssssssssssseeees 5

A Concurrency Model for Game Scripting
Joseph Kehoe and JOSEPh MOITiS...cuiiieemeenccisirrsrrssemnnnsssssssessssesnsssssssssssssssnnnnes 10

Incorporating Reinforcement Learning into the Creation of Human-Like
Autonomous Agents in First Person Shooter Games
Frank G. Glavin and Michael G. Maddenuuueeeeeemeemmmmeememessnmesnnsssssssssssssnsnnnns 16

Player-Traced Empirical Cost Surfaces for A* Pathfinding
SamM Redfern ... ———————— 22

Racing Game Atrtificial Intelligence using Evolutionary Artificial Neural

Networks
C Siheyl Ozveren, Victor Bassilious and Hamid Homatashcceeeeceeiieinneeeee. 28

STRATEGY GAMING

Genetic Programming and Common Pool Resource Problems with
Uncertainty

Alan Cunningham and Colm O’Riordanceeeeeeeeccciisesrseeeessssss s s e e e e eesmmnsssnnes 39

Evolution and Analysis of Strategies for Mancala Games
Damien Jordan and Colm O'RIOFA@Nccceceeeennnn e 44

Historical Accuracy in Grand Strategy Games: A Case Study of

Supreme Ruler: Cold War

B. Srivastava, M. Katchabaw and G. GECZYcceerrrrrrreemmmncrccsseereeenmmnssseseeens 50
SERIOUS GAMING AND TRAINING

Non Verbal Communication Assisted Serious Gaming Applications
Alan Murphy and Sam Redfern ... 63

Xl

CONTENTS

Experimental Assessment of an Emotion Tracking Software Agent (ETA)
for assisting Communicative Interactions of Multitasking Users in
Groupware

Paul Smith and Sam Redfern...... s 67

A Game System Approach for Training and Evaluation: Two Sides of

the Same Coin

Claudio Coreixas de Moraes, Daniel de Vasconcelos Campos

Roberto de Beauclair Seixas and Michael Aaron Dayeeeeeeeeeeemmmmessesnneennnns 73

MOBILE GAMING

GPS Guided and Touch Screen Navigable 3D Reconstruction of an
Ancient Environment on iPhone and iPad

Gavin Duffy, Daniel Heffernan, Eoghan Quigley, Paul Smith

and Heather KiNgcciiieiiiiiecesecisssssssssssssssssss s s s s sssnssssssssssesssssnnsssssssssssssssnnnnns 83

Open Device Control: Human Interface Device Framework for Video

Games
Kosuke Kaneko, Yoshihiro Okada and Hiroyuki Matsuguma........ceeeeeeeccininennns 88

X1

SCIENTIFIC
PROGRAMME

GAME
DESIGN

PRESENCE IN COMPUTER GAMES: DESIGN REQUIREMENTS

Barbaros Bostan
Yeditepe University

Kayisdagi Cad. 26 Agustos Campus

Atasehir, Istanbul / Turkey, 34755
E-mail: bbostan@yeditepe.edu.tr

INTRODUCTION

Presence or the sense of 'being there' is an important and
critical concept of computer gaming which relies on several
factors. When we look at presence from a bottom-up
approach to define its components, it is important to identify
the design requirements for virtual environments and their
effects on presence (Bostan, 2009). It is also imperative to
define how much each requirement correlates with presence
and how designers should address these. This study aims to
solve these issues by using a presence questionnaire based
on virtual environment design requirements defined by
Stuart (2001).

Data collected from a survey study on a computer role
playing game (RPG), which 1is available for 3663
participants, is used to identify the relationship between
these design requirements and presence. Among the selected
requirements; sociability, veridicality, autonomy and physics
of the virtual world have the highest correlations with
presence respectively; and interactivity is a separately
analyzed requirement that has special focus on it. Results of
the study indicated that, storyline, NPC (non-player
character) characteristics and communication with these
virtual characters are the most important factors that
influence interactivity.

PRESENCE AND DESIGN REQUIREMENTS

Presence, which is defined as the subjective experience of
being there, is a construct with various dimensions. In order
to define the determinants of presence, Insko (2003) defined
three categories of methods commonly used for measuring
presence: Subjective measures, behavioral measures and
physiological measures. Subjective measures rely on user
responses obtained from questionnaires. Various conceptual
studies on the nature of presence have been conducted by
researchers (Sheridan, 1992; Held & Durlach, 1992) and
several of them have used questionnaires to shed light on
the dimensions of presence. Lombard & Ditton (1997)
defined six interrelated but distinct dimensions of presence:
Social richness, realism, transportation, immersion, social
actor within medium and medium as social actor. Witmer &
Singer (1998) presented 4 factors that contributed to a sense
of presence: Control factors, sensory factors, distraction
factors and realism factors. Regenbrecht (1998) defined a 3-
factor solution for presence: Spatial presence, involvement
and realness. Lessiter (2001) extracted 4 factors that
influence presence: Physical presence, engagement,
naturalness and negative effects.

Sertac Ogut
Marmara University
Faculty of Communication, Nisantasi
Campus
Sisli, Istanbul / Turkey, 34365
E-mail: sertacogut@marun.edu.tr

These studies focus on the hypothesized factors that
influence presence in virtual environments. Virtual
environment design, however, relies on several
requirements. When we look at presence from a
requirements perspective, it is important to identify the
design requirements for virtual environments and their
effect on presence. This study aims to solve these issues by
using a presence questionnaire based on virtual environment
design requirements defined by Stuart (2001). Participants
of this study are computer game players. According to
Steinkuehler (2006), computer games are a productive
context for research about cognition and culture in a world
that is increasingly globalized and networked. According to
Ondrejka (2006), since computer game players spend
significant portions of their lives immersed within virtual
worlds, computer games provide virtually limitless
opportunities for research and study. The computer game
selected for this study is a role playing game (RPG).

A RPG is an interactive story where the game player
controls an avatar called a player character (PC). The
ancestors of RPGs are MUDs, which are text based fantasy
worlds that were very popular in the past. Over time, MUDs
evolved into standalone RPGs and MMORPGs. Since
Towell & Towell (1997) stated that research on MUDs may
be helpful in understanding the contribution to presence by
social interaction in other virtual environments, studies on
RPGs may also provide new insights on the concept of
presence. Supported by the story, settings and combat
systems of tabletop role-playing games, computer RPGs
provide interesting interactivity and openness opportunities
to players. Selected RPG, Elder Scrolls IV: Oblivion, is an
outstanding game of the genre, combining real world
physics with 1500 Al supported virtual characters that have
a 24- hour schedule of their own.

Stuart (2001) defined 22 functional requirements for
designing virtual environments. All these requirements are
of varying degree of importance depending upon the
application in question. Stuart’s framework is applicable to
virtual environments and computer games since it explains
important parameters for virtual environment design, but it
fails to cover some important characteristics of virtual
environments which require special attention and further
explanation.

The three I’s of virtual reality defined by Heim (1998):
Information Density, Interactivity and Immersion, are
crucial parameters for virtual environment designers.
Information intensity, similar to the requirement of

resolution in Stuart’s framework, represents the level of
detail resulting from the continuous information transfer
from the virtual world.

Interactivity is defined by Rafaeli (1988) as an underdefined
concept that has little consensus on its meaning, but
researchers stated that interaction and interactivity have an
important role in creating a sense of presence (Zahorik &
Jenison, 1998 ; Sheridan 1992). According to Laurel (1993),
interactivity is characterized with three variables: frequency,
range and significance of interactions. According to Friedl
(2003), interactivity in computer games has three
dimensions: player-to-player, player-to-computer and
player-to-game interactions. Player-to-player interaction is
unique for multiplayer games.

Immersion is defined by Slater & Wilbur (1997) as a VR
system's ability to deliver a surrounding environment,
capable of shutting down the sensations from the real world.
According to Ermi & Méyrd (2005), immersion in computer
games has three dimensions. Sensory immersion is related
to audiovisual properties of the virtual world, challenge-
based immersion is related with mental skills such as
strategic thinking or logical problem solving, and
imaginative immersion is related with the storyline and
virtual characters. Comments of a 48 year old gamer
obtained by this study can better emphasize the degree of
mental immersion experienced by an Oblivion fan: “ / suffer
from an immune disease that causes a considerable amount
of pain. In the evenings after work, I use Oblivion to detach
my mind from the pain and in turn do not require
medication while immersed in the game environment.”

Since the requirements defined by Stuart do not need to be
addressed in every application and system, they are
classified into two groups: General requirements and special
requirements. General requirements are mandatory for every
virtual environment and special requirements are optional
considerations for the designer. Requirements of Stuart’s
framework are given below. Only those with an asterisk are
taken into consideration for this study. Discussing the
specifics of each variable is beyond the scope of this article,
but those interested in them can consult (Bostan, 2009) who
discussed these requirements in relation to presence.

Table 1: Design Requirements of Stuart (2001)

General requirements Special Requirements

Interactivity * Responsiveness
Sociability * Stability
Veridicality * Robustness
Presence * Registration
Resolution * Calibration and
Representation of User * Customization
Navigation Techniques * Reconfigurability

Physics of the Virtual World * Degree of Virtuality

Viewpoint Connectivity *
Autonomy * I/O Bandwidth
Locus of Control * Safety and Hygiene

Multisensory Requirements Choice of Representation

RESEARCH FINDINGS

The presence questionnaire developed for this study consists
of 10 questions, one of which measures presence as the core
concept of this research and the other 9 questions are used
to measure the relevancy of selected application
requirements with presence. According to Slater (1999), in
order to study the factors that influence presence and their
relationships with it, presence questionnaires shall include a
direct question about presence. Otherwise, questions will
give no information about the influence of variables on
presence.

The questionnaire, which uses a 5-point likert scale, was
posted on the Web. Messages about this study were posted
on 13 forums and administrators of various Oblivion fan
sites are contacted via e-mail. Several websites announced
the questionnaire in their websites, requesting their visitors
to participate in this study. The questionnaire was online for
23 days, after which it gets a total of 8065 views and 258
posts in 13 forums. At the end of 23 days, data are available
for 3663 participants. Web server statistics show that 6256
people visited the web page of the questionnaire, indicating
a 58% response rate.

Table 2: Forum Statistics

Forum Website Views | Posts
Official Forums 4981 118
Cyrodiil Forums 337 19
Planet Elder Scrolls 962 43
Elder Scrolls (co.uk) 58 3
Dark Brotherhood 313 32
FileFront 221 4
Oblivion Files 72 3
Rough Guide to Cyrodiil 78 4
Elderscrolls Oblivion 242 9
Canadian Ice 153 9
Blood and Shadows 93 4
Gaming Source 305 4
RPGDot 250 6
TOTAL | 8065 |258

Demographic Variables

When we take a look at the demographic variables, we see
that approximately 5% of the respondents is female, 95%
male. The mean age was 24.2, ranging from 10 to 71 years.
19.5% of the respondents are married, 80.5% single.
Education levels are, 32.2% high school or below, 31.8%
some college or vocational school, 24.3% bachelors degree
and 11.7% with a graduate degree.

One-way ANOVA test performed on demographic variables
show that age and educational level differences between
groups of participants are significant in terms of presence.
Levene’s test is used as a post-hoc test to validate the
assumption of homogenity of variances between groups.
This assumption is not violated since Levene’s test is

insignificant for age (p=.227) and education level (p=.544).
ANOVA is significant for age (p<.001) and education levels
(p<.001), showing that degree of presence decreases as age
and education levels increase.

When we analyze correlations, significant Pearson
correlation coefficient (r= -.064, p (two-tailed)<.001) shows
that there is a significant negative relationship between age
and presence. Nonparametric correlation tests, Spearman
correlation (rs = -.104, p (two tailed) < .001) and Kendall’s
tau (t = -.078, p (two tailed) <.001), are also significant. So,
presence decreases with age. Chi-square test between
presence and education level is also significant (p<.001)
indicating that presence decreases with education level.

Correlation of Design Requirements

In order to define the relationships between the design
requirements and presence, parametric and non-parametric
correlations of these variables are calculated. Pearson
correlation is a parametric statistic with an underlying
assumption of normality. When linear correlations are not
strong enough, non-parametric correlations give more
meaningful but less powerful results. Given below is the
correlation table showing that, 8 of the 9 requirements are
significantly correlated with presence, confirming their
relationships. Among these, sociability, autonomy,
veridicality and physics of the virtual world, are the most
influencing requirements respectively.

Table 3: Correlation of Design Requirements with Presence

Table 4: User Defined Determinants of Interactivity

19,8% NPC Communication

19,3% NPC Characteristics

19,1% Storyline

13% Artificial Intelligence

12,6% Physics of the VE

9,6% Object Design

9,1% Small Scale Connectivity
7,7% Nature Design
7% World Design

6,4% Guilds & Factions

5,7% No Level Scaling

4,6% Autonomy

4,3% No Large Scale Connectivity

4,3% Destructible Environments

4% User Interface & Navigation Design
3,8% 3D Animations

3,7% Large Scale Connectivity

3,2% Companionship

3,2% Combat Design

2,3% Responsiveness
2,3% Reputation
2% World Economy

Design Pearson | Kendall’s | Spearman’
Requirement (r) tau (1) s rho (ry)
Sociability 466 ** 385 ** 457 **
Veridicality 348 ** .289 ** 344 **
Autonomy 294 ** 240 ** 286 **
Physics of the 226 ** .188 ** 222 **
Virtual World

Representation of 140 ** .108 ** 125 **
the User

Connectivity 123 ** .095 ** 116 **
Resolution 065 ** .066 ** 077 **
Navigation 053 ** .044 ** .053 **
Techniques

Locus of Control

** p (two tailed) < .001
Determinants of Interactivity

In this study, interactivity is not a direct question and is
assumed to be a complex combination of the design
requirements defined by Stuart (2001). In order to define the
determinants of interactivity, a comment box is included in
the questionnaire, which is not compulsory for respondents.
Users were requested to identify the factors that will make
this virtual environment more interactive. 942 respondents
leave their comments willingly. User defined factors are
subject to a frequency analysis and the results are given
below.

According to users, three most important factors for
increasing interactivity are: NPC communication, NPC
characteristics and storyline. NPC communication consists
of facial expressions, non-verbal and verbal communication
with the NPCs. These three user defined elements of
communication are also components of the ‘Rich Interaction
Model” for virtual environments defined by Manninen
(2003). According to user comments, designers should also
implement more voice actors for the NPCs and avoid
repetitive dialogue options. Given below is a gamer
comment on voice acting, showing us the complexity of
NPC communication.

“One of the most immersion-breaking parts of Oblivion was
the terrible voice acting. Unlike Morrowind, many voice
actors were re-used across races (Orcs and Nords, for
instance), and voice actors that I came to strongly associate
with certain races were reused improperly or not at all--for
instance, the old Orc voice entirely disappeared, as far as [
can hear, replaced very obviously with the Nord voice
actor. Also, the performance given by the new voice actors
was, I felt, not up to the level of that of the performances
they gave for Morrowind. The delta between the old and
new voices, both in usage and in quality of acting, was so
extremely jarring--especially with the massively increased
amount of voice in the game--that nearly every NPC to
whom 1 talk breaks my immersion to some degree.”

NPC characteristics primarily consists of depth and
personality in non-player characters (NPCs). Synthetic
characters must be responsive to their physical interactions
with the environment, their aims, their knowledge of the
virtual world, their personality and their interactions with

human players (Magerko et al., 2004). According to player
comments, designers should create NPCs from all ages and
goal-driven non-player characters. Given below is one of the
many gamer criticisms obtained by this study on character
personality and autonomy in Oblivion:

“The key failing: Context sensitivity. NPCs, superficially,
act in lifelike manners. However, they methods of reacting
to the environments are limited to direct interaction with
objects they are programmed to interact with; they sit on
Sfurniture, sleep in beds, eat food, and talk with other NPCs
or the player. This seems realistic, until more exotic
situations are presented, these behaviors are not changed
whatsoever by numerous factors that would impact the
behavior of real people, such as weather, crime, etc. As an
example, when nearby an open Oblivion gate, one would
reasonably expect nearby people to be responding to it,
possibly with emotions such as panic, fear, or perhaps even
curiosity. The game's NPCs have no different reactions.
Likewise, NPCs are not reactive to the events that take
place around them; major game-related events, such as the
completion of a quest, may alter what dialogue they have
available, but their behavior is unaffected. As an example,
if the player enters a busy city street, and one NPC
suddenly attacks the player, the NPCs may respond to the
attack by aiding the player, but after the battle has
concluded, the NPC's behavior, and even dialogue, is not
affected. This would appear to be a keystone in the elements
of Artificial Intelligence that is lacking in the game of
Oblivion, that would've added the realism level sufficient to
truly make the NPCs seem as lifelike characters, rather
than as flat ‘simulation bots.””

User defined components of storyline are meaningful play
and user freedom of choice. Storyline is closely related to
the description of plot given by Slater and Wilbur (1997)
and freedom in the users’ actions within a virtual
environment is also highlighted by Mantovani & Riva
(1999). According to Salen & Zimmerman (2004), user
freedom of choice is an important requirement of game
design and meaningful play is the relationship between
player’s actions and system outcome. Users also commented
that they would like to see non-linear quests, consequences
for their actions and moral choices in the gaming
environment. Comments of gamers obtained by this study
shed light on different dimensions of freedom. Given below
is an example comment:

“I feel that in Oblivion's current form it offers much
freedom of action (e.g. you may approach a problem as you
wish, by using stealth magic or diplomacy) but not much
freedom of morality and few consequences for moral
choices. I would like oblivion and games in general to make
me care and understand how I alter the world and why I
should be careful about my morality.”

CONCLUSION

The extent of this paper is to indicate a number of variables
that need to be considered in order to maximize presence in

virtual environments, especially in computer games. This
study does not claim to have identified all of the design
requirements that affect presence but it addresses how
certain requirements shall be addressed by designers.
Research findings show that sociability has the highest
correlation with presence. Computer games, regardless of
their multiplayer capabilities, should be capable of creating
social virtual environments. Since Heeter (1992) defined
sociability as one of the three dimensions of presence, game
designers should support social virtual characters that build
communities and groups. Oblivion is a single player
computer game and sociability primarily consists of PC-
NPC interactions. Players commented that sociable non-
player characters shall have entertaining and non-repetitive
dialogue options, believable behaviors, and near-realistic 3D
appearance and animations. Players also indicated that
guilds, NPC companions and character reputation are
important social characteristics.

The virtual environment, with its physical appearance and
object behaviors, should accurately represent the real world
we are living in. Thus, veridicality is the consistency of
information with the objective world and is one of the
hypothesized realism factors that contribute to a sense of
presence (Witmer & Singer, 1998). In this sense, players
indicated that object design, world design, nature design
and destructible environments are important characteristics
of veridicality. According to Sutcliffe (2003), user
interaction with the virtual world objects should conform to
the laws of physics that constrain real-world interaction, yet
players commented that real-world physics enhances the
sense of presence experienced but without touch and force
feedback, too much realism in world physics breaks the
sense of presence.

Autonomy is the third best requirement correlating with
presence. To sustain the feeling of presence in a virtual
world, virtual agents should be able to make autonomous
decisions independent of other entities in the environment
and behave like real persons (Aylett & Luck, 2000).
Designers should implement autonomy with caution,
bearing in mind that autonomous characters are more life-
like if their behaviors are consistent and sociable. Players
commented that, NPCs of Oblivion who have a 24 hour
schedule of their own, are less life-like than the NPCs who
stand around in Morrowind: the predecessor of Oblivion.

Connectivity is the opportunity to share the virtual world
together by connecting multiple computers via a network,
usually either a LAN or the Internet. User defined
interactivity requirements indicate an important difference
in terms of connectivity. According to user comments, local
area network (LAN) multiplayer capabilities and massive
multiplayer capabilities are two different predictors of
presence. Frequency analysis shows that, 4.3% does not
want massive multiplayer capabilities, 3.7% wants massive
multiplayer capabilities and 9.1% wants LAN multiplayer
capabilities. This study used large scale connectivity as an
independent variable but user comments indicated that large
scale connectivity is not a good predictor of presence.

REFERENCES

Aylett, R., & Luck, M. 2000. “Applying artificial intelligence to
virtual reality: Intelligent virtual environments”. Applied
Artificial Intelligence, 14 (1), 3-32.

Bostan, B. 2009. “Requirements Analysis of Presence: Insights
from a RPG Game.” ACM Computers in Entertainment 7, No.1
(March).

Ermi, L., & Miyrd, F. 2005. “Fundamental Components of the
Gameplay Experience: Analysing Immersion”. Paper presented
at DIGRA 2005: Changing Views: Worlds in Play, Vancouver,
Canada.

Friedl, M. 2003. Online game interactivity theory. Hingham, MA :
Charles River Media.

Heeter, C. 1992. “Being there: The subjective experience of
presence”. Presence: Teleoperators and Virtual Environments,
1(2), 262-271.

Heim, M. 1998. Virtual Realism. New York: Oxford.

Held, R. & Durlach, N. 1992. “Telepresence”. Presence:
Teleoperators and Virtual Environments, 1(1), 109-112.

Insko, B. E. 2003. “Measuring presence: Subjective, behavioral
and physiological methods”. In Being There: Concepts, effects
and measurement of user presence in synthetic environments,
Riva, G., Davide, F., & Usselsteijn, W. A. (Eds.), Amsterdam:
los Press.

Laurel, B. 1993. Computers as theatre. Addison-Wesley
Publishing Company, Reading, MA.

Lessiter, J., Freeman, J., Keogh, E., & Davidoff, J. 2001. “A cross-
media presence questionnaire: The ITC-Sense of presence
inventory”. Presence: Teleoperators ~ and Virtual
Environments, 10 (3), 282-297

Lombard, M., & Ditton, T. 1997. “At the heart of it all: The
concept of presence”. Journal of Computer Mediated
Communication, 3 (2).

Magerko, B., Laird, J.E., Assanie, M., Kerfoot, A., & Stokes, D.
2004. “Al Characters and Directors for Interactive Computer
Games”. In Proceedings of the 2004 Innovative Applications of
Artificial Intelligence Conference, San Jose, CA. AAAI Press.

Manninen, T. 2003. “Interaction manifestations in multi-player
games”. In Being There: Concepts, effects and measurement of
user presence in synthetic environments, Riva, G., Davide, F.,
& Usselsteijn, W. A. (Eds.),. Amsterdam: los Press.

Mantovani, G., & Riva, G. 1999. “Real presence: How different
ontologies generate different criteria for presence,
telepresence, and virtual presence”. Presence: Teleoperators &
Virtual Environments, 8 (5), 540- 550.

Ondrejka, C. 2006. “Finding common ground in new worlds”.
Games and Culture, 1(1), 111-115.

Rafaeli, S. 1988. “Interactivity: From new media to
communication”. In Sage Annual Review of Communication
Research: Advancing Communication Science, R. P. Hawkins,
J. M. Wiemann, & S. Pingree (Eds.), 16, 110-134. Beverly
Hills: Sage.

Regenbrecht, H., Schubert, T., & Friedmann, F. 1998. “Measuring
the sense of presence and its relations to fear of heights in
virtual environments”. [International Journal of Human-
Computer Interaction, 10 (3), 233-249.

Salen, K. & Zimmerman, E. 2003. Rules of Play : Game Design
Fundamentals. Cambridge, MA: The MIT Press.

Sheridan, T.B., 1992. “Musings on telepresence and virtual
presence”. Presence: Teleoperators and Virtual Environments,
1(1), 120-26.

Slater, M. 1999. “Measuring presence: A response to Witmer and
Singer questionnaire”. Presence: Teleoperators and Virtual
Environments, 8 (5), 560-566.

Slater, M., & Wilbur, S. 1997. “A framework for immersive
virtual environments (FIVE): Speculations on the role of

presence in virtual environments”. Presence: Teleoperators
and Virtual Environments, 6 (6), 603-616.

Steinkuehler, C. A. 2006. “Why Game (Culture) Studies Now?”.
Games and Culture, 1(1), 97-102.

Stuart, R. 2001. The design of virtual environments. Ft. Lee, NJ:
Barricade Boks.

Sutcliffe, A. 2003. Multimedia and virtual reality: Designing
multisensory user interfaces. Mahwah, NJ.: Lawrence Erlbaum
Associates.

Towell, J., & Towell, E. 1997. “Presence in text-based networked
virtual environments or ‘MUDS’”. Presence: Teleoperators
and Virtual Environments, 6 (5), 590-595.

Witmer, B. G., & Singer, M. J. 1998. “Measuring presence in
virtual environments: A presence questionnaire”. Presence:
Teleoperators and Virtual Environments, 7 (3), 225-240.

Zahorik, P., & Jenison, R.L. 1998. “Presence as being-in-the-
world”. Presence: Teleoperators and Virtual Environments, 7
(1), 78-89.

AUTHOR BIOGRAPHIES

Barbaros BOSTAN is an Assistant Professor at Yeditepe
University, Information Systems and Technologies
Department. Bostan earned a BS at Electronics and
Communication Engineering at Istanbul Technical
University, an MBA from Yeditepe University, a Ph.D.
degree at Informatics Department of Marmara University.
Bostan has teaching experience in the areas of computer
networks, virtual reality systems and interactive web
technologies. His research areas include interactivity,
presence, computer games, RPGs, virtual environments,
multiplayer virtual worlds and interactive storytelling.

Sertac OGUT is an instructor and a designer. He teaches
Visual Communication and Interaction Design courses at
the Communications Faculty of Marmara University
Istanbul/TURKEY. He earned his BA on Communicative
Informatics at the Marmara University. Ogut completed his
MA study at the Yeditepe University in Visual
Communication Design. He had his PhD degree at the
Informatics Department of Marmara University. Ogut
focuses on Interaction Design, New Media Studies and 3D
Animation. Besides his academic carrier, he is working on
several web-based game projects as an consultant.

A CONCURRENCY MODEL FOR GAME SCRIPTING

Joseph Kehoe
Institute of Technology, Carlow
email: joseph.kehoe@ITCarlow.ie

KEYWORDS
Concurrency, Games, Scripting

ABSTRACT

In this paper we outline a new model of concurrency
that is specifically designed for the specialized domain
of game scripting. Scripting is used extensively in game
development both for the implementation of AI based
behaviors and for providing game players with the abil-
ity to customize commercial games. Scripting languages
have not, as yet, benefited from the move to multicore
architectures. We discuss the properties unique to game
scripting that any proposed model must satisfy. Then
we propose a model of concurrency particular to games
that addresses these issues while allowing game scripting
languages to fully utilize multicore processors. The next
steps in developing this model further are discussed.

INTRODUCTION

Game scripting is an integral part of computer game
development. Scripting is essential for two reasons, the
nature of the game development process and the type of
game developers who write game behaviors.

The game development process is an iterative one. This
is particularly true for entity behavior design and im-
plementation. Entities in games are any objects that
can interact with their surroundings and the player of
the game. They range from pretty trivial items such
as doors to non player characters that can form their
own plans. Game entity behaviors can really only be
properly assessed by actually playing the game with the
entity behaviors in situ. This leads to the employment
of rapid design-implement-playtest iterations. For this
to be a viable process each iteration needs to be as short
as possible. It can take many iterations before a behav-
ior becomes acceptable within a particular game. These
rapid iterations presume the use of a scripting language.
Scripting languages are high level languages that allow
for rapid implementation (or prototyping) of behaviors.
As these languages are almost always interpreted rather
than compiled they can be rapidly deployed, usually
without requiring a recompilation of the surrounding
game framework.

The second aspect of the development process that is
applicable here is the programming ability of game de-

Joseph Morris
Dublin City University

email: joseph.morris@computing.dcu.ie

10

signers. Behavior design is the domain of game designers
in that they know best what behaviors are suitable for
each game scenario. Game designers, however, are not
game programmers. They do not have the full range
of programming skills that are available to professional
programmers.

Forcing game designers to pass their behavior designs
onto professional programmers for implementation is
not a viable option. It would tie up an expensive pro-
fessional programmer who could be employed on other
parts of the game while also slowing down the design-
implement-playtest cycle by an unacceptable amount of
time. Ideally, the game designer herself, as the per-
son who fully understands the required behavior, should
be able to implement the behaviors directly. To make
this possible a simple high level scripting language is
required.

Processor power (and speed) has been increasing at an
almost constant rate, following Moore’s law, since the
introduction of the integrated circuit. Future increases
in speed will be through the use of multicore processors,
(Blake et al. (2009)). More speed will mean more cores
on each processor. Processors which used to contain
a single complex core will now be replaced by proces-
sors containing many cores (J. Held and Koehl (2006),
Borkar et al. (2006)).

The only way for software to take advantage of these
new architectures is by simultaneously using as many
of the cores as possible. In other words software must
switch from being sequential to concurrent. Unfortu-
nately, writing concurrent code is more difficult than
writing sequential code, particularly when using pro-
gramming languages designed mainly for sequential pro-
gramming. New techniques for designing, writing and
testing concurrent software are needed and new pro-
gramming languages may also be required.

Our model of concurrency is specific to scripting in the
game development process. Scripting in games poses
some unique challenges. We have two competing issues.
Firstly, games are real time systems with hard time con-
straints. This implies the use of a low level language
where developers have complete control over hardware
resources. Secondly, and in opposition to this, it in-
volves the use of a high level scripting language that
will hide the details of the hardware from the program-
mer. Real time programming is a specialist skill that is
acquired by highly competent programmers only after

many years experience while scripting in games must be
open to non professional programmers.

Game developers are willing to accept the usage of
scripting languages in the development of games for the
reasons given in the previous subsections. Using con-
currency to help improve the efficiency of scripting lan-
guages is one way of tackling this issue.

Overview of paper

In the next section we give an overview of the model
we propose. We look at key features of this model of
concurrency and show how it fulfills the expectations
set out in the previous section. We follow by reviewing
related work in concurrency and game scripting. Finally
we finish with our conclusions and list further work that
needs to be completed.

PROPOSED CONCURRENCY MODEL

A game is a simulation that consists of a set of entities
interacting with each other in some world. Each entity
has its own state and a set of behaviors that determines
how it responds to various stimuli. The game world
that is being simulated has rules (gravity for example)
that determine how certain types of interaction between
entities take place. These world rules can be encoded in
the entities themselves. The global state of the game is
given by the sum of the states of all the entities that it
contains.

Games proceed in a stepwise manner as a sequence of
discrete moments in time. Each step represents a tick
of the clock, or one particular moment in time, and a
sequence of steps represents the passing of some dura-
tion of time. The step frequency can vary, with the
frequency representing the granularity of the represen-
tation of time in the game. Step frequency is ultimately
determined by hardware factors such as processor speed.
At each step the entities update their state based on the
events or stimuli that were generated during the previ-
ous step. Overall entity behavior through the lifetime of
a game comprises the sequence of step behaviors made
during that game. A play-through of a game is a finite
sequence of these steps.

In the next sections we will look at the basic structural
components of the model and how they fit together.
These components are: entities, messages, steps and
constraints.

Entities

The entity is the basic building block of game simu-
lations. Games consist of many different entities that
interact with each other under some game defined rules.
These rules may include, for example, physics based in-
teraction such as gravity and elasticity. Entities range
from the simple, like a bullet or item of furniture, to

11

the more complex such as a non player character (NPC)
that has its own beliefs, desires, intentions and plans of
action.

In general, although entity types are varied we can
assume that they have some common attributes such
as geographical position in the game world, an associ-
ated model (a visual 3-D representation of the item)
and boundary dimensions (used for collision detection).
More complex games will also model mass, elasticity
and internal structure (a skeleton) for each entity as
well. Everything can be defined in terms of individual
entities and their rules of interaction. In our model only
entities exist in games.

Game design consists of (among other things not rele-
vant here such as ensuring game playability) identifying
all the entities that make up a game, deciding which of
their properties are relevant to the game and how they
are allowed to interact.

Every entity runs in its own thread. Concurrency is lim-
ited only by the number of entities in the game. Games
are simulations designed to be fun to play. Given the
nature of games it is unlikely that there will be only a
few entities in a game. Since the identification of entities
within a game is already part of game design this ap-
proach does not add any extra overhead to game design.
It is a natural way to identify concurrency and brings
identification of concurrency easily within the remit of
the game designer at no extra cost.

Every entity is composed of four components: state,
interface, constraints and message queue.

State is a non-empty set of named attributes. Each at-
tribute will have an associated value. A non-empty sub-
set of these attributes will be immutable. Immutable
attributes are given values when the entity is created
and these values remain unchanged until the entity is
destroyed. Each attribute is also labelled as either vis-
ible or hidden. The full set of named attributes with
associated labels belonging to an entity is called the en-
tity state. The particular value of a state is determined
by the values assigned to each attribute in the state.
Each entity contains at least one attribute as part of its
state. This is the ID attribute which uniquely identifies
the entity. This is both immutable and visible. The
value of the ID attribute is generated automatically on
entity creation and guaranteed to be unique for each
entity.

Entities know a non empty subset of the state belonging
to every other entity. This subset will contain all the at-
tributes that are labelled visible. If an entity knows the
attribute of another entity then it is allowed to read the
value contained by that attribute but it cannot write
to a attribute belonging to the state of any other en-
tity. Changes to an entity attribute value can only occur
through the entity interface.

Every entity has a defined set of message signatures.
Each message in this set represents the response of the
entity to a specific type of stimulus. Each stimulus event

triggers a specific message for each entity affected by
that stimulus. An entity can only respond to a stimulus
if that stimulus generates a message matching the signa-
ture of a message defined in its interface. The signature
of a message is determined by a message name and a
sequence of attributes.

Each signature must be unique within an interface. The
sequence of attributes is non empty and will include at
least the sender attribute. For any message instance
the value of this attribute will match the value of the
ID attribute of the entity that generated the message.
The set of message signatures is known as the interface.
Entities know the full interface of every other entity. An
entity is allowed send a message to any entity if it knows
the value of that entities ID attribute.

The set of local constraints determines the set of accept-
able combinations of values that the attributes belong-
ing to the entity state can hold.

The constraint set may also determine allowable com-
binations of values that different entities can simultane-
ously hold. That is, the allowable values of an entity
state can be determined by the values of other entity
states. For example, it may be the case that two enti-
ties cannot occupy the same position in space simulta-
neously.

The message queue contains the full set of outstand-
ing messages that the entity has to respond to during
the current step. This queue will contain all messages
generated for the entity during the previous step. Mes-
sages are processed by each entity in the order in which
they appear in the message queue. Each entity message
queue can only hold messages that match message sig-
natures defined in that entities interface. When an en-
tity is destroyed its associated message queue and any
remaining messages in that queue are also destroyed.

Messages

A message consists of a name, a receiver ID and a col-
lection of attributes and the values of those attributes.
A message generated (or sent) during one step will al-
ways be received during the next step. This guarantee
that all messages are processed during the succeeding
step means that, as a consequence, we cannot fix an up-
per limit on step duration in advance without limiting
the number of messages allowed to be generated in each
step. As the number of messages increases step duration
will also increase. A fixed step duration would be an ad-
vantage for any real time system but it has a number of
associated costs.

Most importantly by fixing step duration we would lose
computational determinism. Different processors are
able to accomplish different amounts of work in the same
duration. The overall result of any step would then be-
come dependent on the processor speed. We maintain
that determinism is more important than fixed step du-
ration.

12

Determinism gives us independence from the underly-
ing processor executing the scripts. This greatly sim-
plifies the testing and debugging of scripts. If testing
and debugging depended on the processor used it would
become beyond the capabilities of many scripters and re-
duce the possibility of using the model in the high level
prototyping and rapid iterative development cycles used
in game development. Since we can decouple the step
rate from the frame rate any increase in step duration
can be handled in a graceful manner by the game engine.
The value of the Receiver ID is used to determine who
the receiver of the message should be. Each entity has
an associated message queue and messages are put in
the queue belonging to the entity whose ID attribute
value matches that of the receiver ID in the message.
Messages are processed in the order that they appear in
the message queue.

A message is acceptable only if it fulfills two conditions
Firstly, the receiver ID value matches the ID attribute
value of an existing entity and secondly that the mes-
sage name and attribute collection matches a message
signature defined in the interface of the entity whose ID
matches that of the receiver ID.

All unacceptable messages are discarded. Only accept-
able messages appear in message queues. In response to
a message an entity can do any or all of the following:

1. Send messages to other entities if it knows the val-
ues of those entities ID attribute;

2. Create one or more new entities;

3. Update any of its own mutable attributes provided
that these updates do not violate any of the con-
straints in its constraint set;

4. Destroy itself.
Steps

A complete computation consists of a sequence of two or
more steps where the first step is the initialization step,
the last step the shutdown step and all other steps are
intermediate steps. During the initialization step two
processes occur: entities are created and initial Messages
are generated. The final step consists of two parts: the
remaining messages are discarded and finally all entities
are destroyed.

For every intermediate step all acceptable messages that
were generated during the previous step are processed.
All acceptable messages generated during the previous
step will be present in the appropriate message queues
at the start of the current step.

Entity state is updated instantaneously and simultane-
ously at the end of each step. State update is defined
as the sequential composition of the messages contained
in the message queue, in order, modified by a conflict
resolution algorithm.

Any messages generated during this process are deliv-
ered instantaneously at step end. Delivered messages
are put in the message queue belonging to the entity
whose ID value matches that of the receiver ID value in
the message.

The order that messages are placed in the message queue
is defined by the message sorting algorithm. The mes-
sage sorting algorithm can be any algorithm that guar-
antees:

1. Messages generated by a single entity for the same
receiver are placed in the message queue in the same
order that they were generated in;

2. The final order of the message queue is determin-
istic. That is, for any given set of messages their
ordering is unique and will always be the same re-
gardless of how many times the ordering algorithm
is applied.

The default sorting algorithm orders message queues by
using the message Sender ID attribute as the primary
key and message generation order as the secondary key.
This ensures that both conditions hold. Any other al-
gorithm that fulfills our two guarantees is acceptable.
The message sorting has an associated cost. Between
steps sorting will have to be carried out. This overhead
is justifiable because the algorithm ensures determinism
in script execution.

Determinism is important because it isolates the script
and the scripter from the underlying processor archi-
tecture. As we have already stated this makes testing
and debugging feasible in the rapid development cycles
used in game development and also in the prototyping
environment of casual and hobbyist game development.

Conflict Resolution

That conflicts can arise between different entities is a
recognized problem in games. Entities exist in a com-
mon world. In this world rules will exist that govern how
these entities can interact with each other. Attempts to
perform certain actions will bring entities into conflict
with these rules. There are three possible approaches to
conflict resolution:

1. Put onus on scripters;

2. Handle constraints using other parts of the game
engine;

3. Let scripting system handle constraints automati-
cally.

The first option is, in many ways, the simplest. The
scripter should ensure that any code they write does
the proper error checking. This has the advantage that
it can be the most efficient technique. Scripters will
know when run time checks are required and when they

13

are not. Although this is a common approach it has the
disadvantage of putting the burden on the individual
scripter. Under our model there is the extra complica-
tion that entities can only see the state of other entities
as they were at the start of the step making it difficult
to check for conflicts with other entities during a step.

The second option is suitable when the constraints log-
ically fall within the remit of some other specialized
subsystem. This is the case when the constraints be-
tween entities are real world constraints. In this case
the game physics engine can handle the constraints very
efficiently.

The final option covers cases where the first two options
are judged unsuitable. We use a predefined conflict res-
olution algorithm to determine how conflicts are dealt
with. The conflict resolution algorithm is any well de-
fined algorithm that ensures that state update does not
violate any constraints defined in the entities constraint
set. Constraints can be divided into two different types:
internal and external constraints. Internal constraints
are constraints that exist only within a particular entity.
External constraints are constraints that hold between
two or more different entities.

Internal, or local, constraints are the easier to deal with
than external constraints. They are, by definition, inter-
nal stand-alone constraints and so each entity can deal
with them independently of any other entity. Internal
constraints are state invariants that must hold through-
out the entity lifecycle. These constraints are defined at
entity creation and can be checked after each message
is processed. If a conflict is detected the algorithm can
take the appropriate corrective action.

The default algorithm simply discards any messages
that cause conflicts during message composition. Other
algorithms may be employed that take different error
correction measures.

External conflicts can only be detected once the step
is completed. This is because we cannot tell the final
state of each entity until the end of the step. Once all
entities have completed their state update the value of
each entity state needs to be checked for conflict with
every other entity. Once a conflict is found between two
or more entities a state rollback, of some predetermined
kind, of one or more of these entities will be required.
After rollback of an entity state we may have to recheck
the new value of the state against the global constraints.
This has the potential to be more costly than internal
constraint checking as one state rollback can raise more
new conflicts.

We do not feel that external constraints will be common
or form an essential part of any game script. Firstly,
most external constraints will be handled independently
by the physics engine. Secondly, remaining external con-
straints can be encoded as one or more equivalent inter-
nal constraints. For these reasons we do not have a sep-
arate default algorithm to handle external constraints.

RELATED WORK
BSP - Bulk Synchronous Processing

BSP has been proposed as a bridging model for gen-
eral purpose parallel computation by Valiant (1990). A
BSP computation consists of a sequence of super-steps.
In a super-step each component (a processor or core)
is allocated a task consisting of a combination of local
computation and, message transmission and reception
from other components. After L time units have passed
a check is made to see if the super-step has completed.
If it has, then the next super-step is started. Otherwise
the next L units are allocated to completing the current
super-step.

In simple terms, at each step a set of local computations
is undertaken concurrently. According to Skillicorn and
Talia (1998), the aims of BSP are to make it simple
to write concurrent code, be independent of target ar-
chitectures and make performance of a program on a
given architecture predictable. BSP allows you to put
an upper time bound on a computation for a particular
architecture. This makes the performance more pre-
dictable. In addition, deadlock using BSP is impossible.
BSP is also easier to debug in that computations can be
rearranged inside a superstep without affecting the out-
come. BSP has been successfully integrated in scripting
languages in the past by, for example, Hinsen (2007).

COOP - Concurrent Object Oriented Processing

Three types of concurrent object model have been iden-
tified: Orthogonal, Homogeneous and Heterogeneous
(Papathomas (1995)).

The Orthogonal model views the object model and the
concurrency model as two separate independent sys-
tems. In this case, locks are used to resolve any issues
raised by concurrency. The orthogonal approach does
not gain us any ground as it still retains explicit locking
and all the problems that this implies (Sutter and Larus
(2005)).

In the Homogeneous approach all objects are active 0b-
jects. An active object is an object that runs inside
its own thread. It represents a merging of process and
object (Briot et al. (1998), Hernandez et al. (1994)).
The internal state of an active object is private to that
object. Any interaction that must take place between
objects must take place via message passing. Gener-
ally, messages are asynchronous but there is variation
between explicit or implicit acceptance of messages by
objects.

The heterogeneous model contains both the active ob-
jects of the homogeneous approach and the passive ob-
jects of the orthogonal model. The most popular form of
concurrent object oriented programming model is based
on active objects.

Actor models of concurrency are closely based on active

14

objects. An Actor is an active object that can send finite
set of messages to other actors, create a finite set of new
actors and define how it will behave in relation to the
next incoming message. - Corréa (2009)

Network Scripting Language

The Network Scripting Language described in Russell
et al. (2008) (NSL) is designed for distributed games de-
velopment. It runs across remote processors rather than
multiple cores and gives some assurances of determinism
and consistency maintenance between the various pro-
cessors during game execution.

NSL uses active objects and a frame based approach
similar to the approach advocated here. Because this
language is designed for multiple distributed processors
each processor will have its own copy of the state of the
objects in the other processors. If there are n processors
then there will be n copies of the overall state.

This approach, out of the three mentioned, is the most
similar to our approach but the programming language
is more complex. It is tightly coupled to the frame rate
with a step being run exactly once for every frame but
gives no guarantees as to when messages will be deliv-
ered.

CONCLUSION

We have outlined a model of concurrency developed
specifically for games development, specifically game
scripting. Game scripting is undertaken by game design-
ers who are not professional programmers and therefore
do not have an in-depth understanding of concurrency.
As the game entity behaviors they develop have to be
play tested to ensure they are appropriate they must use
many rapid design-implement-playtest iterations during
development. To enable them to make use of concur-
rency we developed a model that is easy to use, removes
as much of the burden from the designer as possible and
can be implemented in any standard game scripting lan-
guage.

Further Work

Some work remains to be done on developing algorithms
that can be used by the conflict resolver. Although a
simple conflict resolution algorithm has been proposed
it may be the case that different games will need to use
different or more sophisticated conflict resolving algo-
rithms.

We intend to produce a working implementation of our
model. This implementation will demonstrate the via-
bility of this approach. It will be incorporated into an
existing game scripting language to show how it fits into
already existing development tools and practices in the
games industry. This will also serve to show how trans-
parent this model is to game scripters in practice. As

well as demonstrating how simple the model is to use it
will also show how easy it is to incorporate into existing
game scripting languages.

Biography

Joseph Kehoe is a lecturer in Computing in the In-
stitute of Technology Carlow. He has previously been
director of the BSc in Games Development and is cur-
rently Director of the BSc in Software Development.

REFERENCES

G. Blake, R. Dreslinski, and T. Mudge. A survey of multicore
processors. Signal Processing Magazine, IEEFE, 26(6):26 —
37, november 2009. ISSN 1053-5888. doi: 10.1109/MSP.
2009.934110.

S. Borkar, H. Mulder, P. Dubey, S. Pawlowski, K. Kahn,
J. Rattner, and D. Kuck. Platform 2015: Intel processor
and platform evolution for the next decade. 2006.

J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concur-
rency and distribution in object-oriented programming.
ACM Comput. Surv., 30(3):291-329, 1998. ISSN 0360-
0300. doi: http://doi.acm.org.remote.library.dcu.ie/10.
1145/292469.292470.

F. Corréa. Actors in a new ”highly parallel” world.
In WUP °09: Proceedings of the Warm Up Work-
shop for ACM/IEEE ICSE 2010, pages 21-24, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-565-
9. doi: http://doi.acm.org.remote.library.dcu.ie/10.1145/
1527033.1527041.

J. Hernandez, P. de Miguel, M. Barrena, J. Martinez,
A. Polo, and M. Nieto. Parallel and distributed program-
ming with an actor-based language. In Parallel and Dis-
tributed Processing, 1994. Proceedings. Second Euromicro
Workshop on, pages 420 —427, 26-28 1994.

K. Hinsen. Parallel scripting with python. Computing in

Science and Engineering, 9(6):82-89, 2007.

J. B. J. Held and S. Koehl. From a few cores to many: A
tera scale computing research review. Intel White Paper,
2006.

M. Papathomas. Concurrency in object-oriented program-
ming languages. In O. Nierstrasz and D. Tsichritzis, edi-
tors, Object-Oriented Software Composition, pages 31-68.
Prentice Hall, 1995.

G. Russell, A. F. Donaldson, and P. Sheppard. Tackling
online game development problems with a novel network
scripting language. In NetGames ’08: Proceedings of the
Tth ACM SIGCOMM Workshop on Network and System
Support for Games, pages 85-90, New York, NY, USA,
2008. ACM. ISBN 978-1-60558-132-3. doi: http://doi.
acm.org.remote.library.dcu.ie/10.1145/1517494.1517512.

D. B. Skillicorn and D. Talia. Models and languages for
parallel computation. ACM Comput. Surv., 30(2):123-
169, 1998. ISSN 0360-0300. doi: http://doi.acm.org/10.
1145/280277.280278.

15

H. Sutter and J. Larus. Software and the concurrency
revolution. Queue, 3(7):54-62, 2005. ISSN 1542-
7730. doi: http://doi.acm.org.remote.library.dcu.ie/10.
1145/1095408.1095421.

L. G. Valiant. A bridging model for parallel computa-
tion. Commun. ACM, 33(8):103-111, 1990. ISSN 0001-
0782. doi: http://doi.acm.org.remote.library.dcu.ie/10.
1145/79173.79181.

Incorporating Reinforcement Learning into the Creation of Human-Like
Autonomous Agents in First Person Shooter Games

Frank G. Glavin and Michael G. Madden

College of Engineering and Informatics
National University of Ireland Galway

frank.glavin@nuigalway.ie, michael.maddenC@nuigalway.ie

KEYWORDS
Reinforcement Learning, First Person Shooter Games,
Sarsa, Human-Like, Unreal Tournament 2004, Pogamut

ABSTRACT

As graphics in modern computer games move closer
to photorealism, the emphasis for game developers is
switching towards improving the in-game Artificial In-
telligence (AI). Traditional scripting and rule-based sys-
tems are being replaced by more intelligent and immer-
sive approaches. The goal of Al in computer games is
to create intelligent autonomous agents that mimic hu-
man behaviour as closely as possible, in order to create a
challenging yet enjoyable experience for human players.
This paper describes the application of Reinforcement
Learning (RL), an approach inspired by how humans
learn, to the creation of intelligent “bots” in a First
Person Shooter (FPS) game.

INTRODUCTION
Artificial Intelligence in Computer Games

The task of designing and implementing an agent in
a game that appears to be both intelligent and make
human-like decisions is certainly a difficult one. A
variety of techniques have been proposed in order to
emulate human intelligence in computer games. Some
of these techniques, as detailed in Westra (2007), will
now be briefly described.

Hard coding is the most basic way of implement-
ing Al. A simple example would be to have a list of
conditional checks that have corresponding behaviours
associated with them. If an agent in a FPS game, for
instance, has very little health left, it should concen-
trate on finding “power ups”! as opposed to engaging
in combat with other players. Hard coding gives the
programmer full low level control of the agent. Scripting
involves a further abstraction of hard-coded behaviours
which are grouped into specific tasks. Scripted actions

In-game items that increase player health.

16

can often become predictable and human players can
exploit this weakness.

A Finite State Machine (FSM) is usually combined with
the aforementioned techniques to create representations
of different scenarios. The other techniques can then be
used to make scenario specific choices. A finite series
of states exist and transitions between these states are
predefined. Some states cannot transition to others and
the transitions are initiated by either the internal state
of the agent or by a trigger from the environment.

Fuzzy set theory involves the use of fuzzy sets
whose elements have degrees of membership as opposed
to being assessed in binary terms. Fuzzy logic involves
the use of logical expressions for describing the mem-
bership in fuzzy sets (Russell and Norvig 2010). Fuzzy
logic is used when we would like to know the degree
of membership of an element as opposed to whether
its membership is true or false. For this reason, truth
values of between 0 and 1 are calculated. It can be
very complicated to manually produce fuzzy logic for
the complex interactions of all the values that make up
a computer game agent.

First Person Shooter (FPS) Games

FPS games take place in a fast-paced, three dimen-
sional environment in which the world is seen from the
first person perspective of the player. The most basic
game types are Death Match or Team Death Match in
which the objective is to kill the opposing players us-
ing either the weapons that the player spawns with, or
ones that are picked up from the environment. As the
names suggest, these game types involve either working
alone against all other players or forming part of a team
and fighting against another team. A large variety of
objective-based games also exist such as Domination?®
and Capture the Flag3. The team players and oppo-
sition players can be made up of human players over a
network, programmed bot players, or a mixture of both.

2Players gain control of Domination locations.
3Players capture flags and return them to their base.

RELATED RESEARCH

McPartland and Gallagher (2011) applied the tabu-
lar Sarsa()) (Sutton and Barto 1998) reinforcement
learning algorithm to a purpose-built first person
shooter game. The algorithm was used to learn
the controllers of navigation, item collection and
combat individually. The experimentation involved
three different setups of the RL algorithm, namely,
HierarchicalRL, RuleBasedRL and RL. The results
showed that reinforcement learning could be success-
fully applied to a simplified purpose-built FPS game.
While the results are promising, they do not address
the challenges evident in 3D commercial games with
complex environments and, unlike our work, do not in-
volve playing against human opposition to train the bot.

Smith et al. (2007) developed an algorithm called
RETALIATE (REinforced TActic Learning In Agent-
Team Environments) for Unreal Tournament*. The
authors used an RL algorithm called Q-learning
(Watkins and Dayan 1992) for learning winning poli-
cies in the Domination game type. That work was
concerned with co-ordinating the team behaviour, as
opposed to learning behaviours of the individual play-
ers, which is the focus of our work in this paper. They
carried out experiments against three different teams
with varying strategies. The results showed that the
algorithm adapted well to the changing environments.
Auslander et al. (2008) developed an agent called
CBRetaliate in Unreal Tournament. This work aimed
to enhance the use of the RETALIATE algorithm by
introducing the use of Case-Based Reasoning (CBR).
The results showed that the use of CBR could speed up
the adaption process of the RL algorithm.

Di Wang et al. (2009) proposed the use of FAL-
CON (Tan 2004) for developing a computer-controlled
agent in Unreal Tournament 2004. The authors built
two FALCON networks, one for weapon selection and
one for behaviour selection. The bot learned by using
cognitive nodes which could be translated into rules
by associating a state and a particular action with an
estimated reward. The bots created these rules in real
time. The bot was <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>