12™ INTERNATIONAL CONFERENCE
ON

INTELLIGENT GAMES AND SIMULATION

GAME-ONg 2011

EDITED BY

Colm O’Riordan
Sam Redfern
Valerie Butler

Fergal Costello

AUGUST 22-24, 2011
NUI

Galway
IRELAND

A Publication of EUROSIS-ETI

Cover art: Divinity Il — The Dragon Knight Saga ©2010 Larian Studios and Focus Home Interactive.
Published by Focus Home Interactive under license from Larian Studios. Divinity Il, The Dragon
Knight Saga, Larian Studios and their respective logos are trademarks or registered trademarks of
Larian Studios, Focus, Focus Home Interactive and their respective logos are trademarks or
registered trademarks of Focus Home Interactive. All rights reserved. All other names, trademarks
and logos are property of their respective owners.

Monkey Tales © 2010 Larian Studios. All rights reserved. Developed by Larian Studios. All company
names, brand names, trademarks and logos are the property of their respective owners

12™ International Conference
on

Intelligent Games and Simulation

GALWAY, IRELAND
AUGUST 22 - 24, 2011

Organised by
ETI
Sponsored by
EUROSIS

Co-Sponsored by

Binary lllusions
BITE
Delft University of Technology
Ghent University
Higher Technological Institute
National University of Ireland
Larian Studios

University of Skévde

Hosted by

National University of Ireland

Galway, Ireland

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

EDITORS

General Conference Chair
Colm O'Riordan
National University of Ireland, Galway, Ireland

General Program Chair
Sam Redfern
National University of Ireland, Galway, Ireland

Local Programme Committee

Colm O'Riordan, National University of Ireland, Galway, Ireland
Sam Redfern, National University of Ireland, Galway, Ireland
Fergal Costello, National University of Ireland, Galway, Ireland
Valerie Butler, National University of Ireland, Galway, Ireland

INTERNATIONAL PROGRAMME COMMITTEE

Game Development Methodology

Oscar Mealha, University of Aveiro, Portugal
Esteban Clua, Universidade Federal Fluminense, Brasil

Physics and Simulation

Graphics Simulation and Techniques
lan Marshall, Coventry University, Coventry, United Kingdom

Facial, Avatar, NPC, 3D in Game Animation
Yoshihiro Okada, Kyushu University, Kasuga, Fukuoka, Japan
Marcos Rodrigues, Sheffield Hallam University, Sheffield, United Kingdom
Joao Manuel Tavares, FEUP, Porto, Portugal

Rendering Techniques
Joern Loviscach, Hochschule Bremen, Bremen, Germany

Artificial Intelligence

Artificial Intelligence and Simulation Tools for Game Design
Stephane Assadourian, UBISOFT, Montreal, Canada
Daryl Charles, University of Ulster, Northern Ireland, United Kingdom
Flavio Soares Correa da Silva, USP, Sao Paulo, Brazil
Patrick Dickinson, Lincoln University, Lincoln, United Kingdom
Antonio J. Fernandez, Universidad de Malaga, Malaga, Spain
Marc-Philippe Huget, University of Savoie, Le-Bourget-du-Lac, France
Joseph Kehoe, Institute of Technology Carlow, Carlow, Ireland
Sandy Louchart. Herriot-Watt University, Edinburgh, United Kingdom
Tshilidzi Marwala, University of Witwatersrand, Johannesburg, South-Africa
David Moffat, Glasgow Caledonian University, Glasgow, United Kingdom
Gregory Paull, Total Immersion Software, Alameda, CA, USA
Sam Redfern, National University of Ireland, Galway, Ireland
Oryal Tanir, Bell Canada, Montreal, Canada
Christian Thurau, Universitaet Bielefeld, Bielefeld, Germany
Miguel Tsai, Ling Tung University, Taichung, Taiwan
lan Watson, University of Auckland, Auckland, New Zealand

v

INTERNATIONAL PROGRAMME COMMITTEE

Learning & Adaptation
Christian Bauckage, University of Bonn, Sankt Augustin, Germany
Christos Bouras, University of Patras, Patras, Greece
Adriano Joaquim de Oliveira Cruz, Univ. Federal de Rio de Janeiro, Rio de Janeiro, Brazil
Chris Darken, The MOVES Institute, Naval Postgraduate School, Monterey, USA
Andrzej Dzielinski, Warsaw University of Technology, Warsaw, Poland
Maja Pivec, FH JOANNEUM, University of Applied Sciences, Graz, Austria
Tina Wilson, The Open University, Milton Keynes, United Kingdom

Intelligent/Knowledgeable Agents
Nick Hawes, University of Birmingham, United Kingdom
Wenji Mao, Chinese Academy of Sciences, Beijing, China P.R.
Marco Remondino, University of Turin, Turin, ltaly

Collaboration & Multi-agent Systems
Victor Bassilious, University of Abertay, Dundee, United Kingdom
Sophie Chabridon, Groupe des Ecoles de Telecommunications, Paris, France

Opponent Modelling
Pieter Spronck, University of Maastricht, Maastricht, The Netherlands
Ingo Steinhauser, Binary lllusions, Braunschweig, Germany
Andrew Ware, University of Glamorgan, Pontypridd, United Kingdom

Peripheral

Psychology, Affective Computing and Emotional Gaming

Myriam Abramson, US Naval Research Laboratory, USA

Gianna Cassidy, eMotion-Lab, Glasgow, United Kingdom
David Farrell, eMotion-Lab, Glasgow, United Kingdom

Eva Hudlicka, Psychometrix Associates, Blacksburg, USA
Romana Khan, eMotion-Lab, Glasgow, United Kingdom

Brian McDonald, eMotion-Lab, Glasgow, United Kingdom

David Moffat, eMotion-Lab, Glasgow Caledonian University, United Kingdom
Jon Sykes, eMotion-Lab, Glasgow Caledonian University, United Kingdom

Thomas Welsh, eMotion-Lab, Glasgow, United Kingdom

Artistic input to game and character design

Anton Eliens, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Olli Leino, IT-University of Copenhagen, Copenhagen, Denmark
Sean Pickersgill, University of South Australia, Adelaide, Australia
Richard Wages, Nomads Lab, Koln, Germany

Storytelling and Natural Language Processing

Jenny Brusk, Gotland University College, Gotland, Sweden
Ruck Thawonmas, Ritsumeikan University, Kusatsu, Shiga, Japan
Clark Verbrugge, McGill University, Montreal, Canada

Online Gaming and Security Issues in Online Gaming

Marco Furini, University of Modena and Reggio Emiliano, Modena, Italy
Pal Halvorsen, University of Oslo, Oslo, Norway
Fredrick Japhet Mtenzi, School of Computing, Dublin, Ireland
Andreas Petlund, University of Oslo, Oslo, Norway
Jouni Smed, University of Turku, Turku, Finland
Knut-Helge Vik, University of Oslo, Oslo, Norway

INTERNATIONAL PROGRAMME COMMITTEE

MMOG's

Michael J. Katchabaw, The University of Western Ontario, London, Canada
Jens Mueller-Iden, University of Munster, Munster, Germany
Alice Leung, BBN Technologies, Cambridge, USA
Mike Zyda, USC Viterbi School of Engineering, Marina del Rey, USA

Serious Gaming

Wargaming Aerospace Simulations, Board Games etc....
Roberto Beauclair, Institute for Pure and Applied Maths., Rio de Janeiro, Brazil
Tony Manninen, Ludocraft Ltd., Oulu, Finland
Jaap van den Herik, Tilburg University, Tilburg, The Netherlands

Games for training
Michael J. Katchabaw, The University of Western Ontario, London, Canada
Jens Mueller-Iden, Universitaet Muenster, Muenster, Germany
Roger Smith, US Army, Orlando, USA

Games Applications in Education, Government, Health, Corporate, First Responders and Science
Russell Shilling, Office of Naval Research, Arlington VA, USA

Games Interfaces - Playing outside the Box

Games Console Design
Chris Joslin, Carleton University, Ottawa, Canada

\

GAME-ON,
2011

© 2011 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Multidisciplinary Society for
Modelling and Simulation Technology. Permission is granted to photocopy portions of the publication for personal use
and for the use of students providing credit is given to the conference and publication. Permission does not extend to
other types of reproduction or to copying for incorporation into commercial advertising nor for any other profit-making
purpose. Other publications are encouraged to include 300- to 500-word abstracts or excerpts from any paper
contained in this book, provided credits are given to the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be
used in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in these Proceedings have been peer reviewed
EUROSIS-ETI Publications are ISI-Thomson and INSPEC referenced
A CIP Catalogue record for this book is available from the Royal Library of Belgium under nr.12620

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Greenbridge NV,
Wetenschapspark 1, Plassendale 1, B-8400 Ostend, Belgium.

EUROSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400
Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium
Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium
Cover Pictures by Larian Studios, Ghent, Belgium

GAMEONg is a registered trademark of the European Technology Institute under nr: 1061384-761314

EUROSIS-ETI Publication

ISBN: 978-9077381-64-9
EAN: 978-9077381-64-9

Vi

PREFACE

Dear participants,

On behalf of all the people and institutions that made this conference possible,
| wish to welcome you all here to NUI, Galway, Ireland for the 12th edition of
the Annual Conference on Simulation and Al in Games. (GAMEONg2011)

In addition to the interesting and varied submitted papers, we are very grateful
to our two invited keynote speakers - Andre Gagalowicz and Nathan Griffiths
for their talks on 3D face tracking and trust In multi-agent systems.

| wish to thank everyone who has contributed his or her time and effort in
organising this conference. This includes all the authors who prepared and
submitted papers and the international Programme Committee members who
were involved in the review process.

| wish to also acknowledge the huge effort and contributions of Philippe Geril
who is responsible for organising this conference this year and over the past
couple of years.

Furthermore, | would like to express my gratitude to our industry visitors for
dedicating their time and for sharing their expertise.

| wish to also acknowledge our sponsors for supporting the conference. |
would like to thank the Discipline of Information Technology and the University
Millennium Fund for financial support.

Finally, | hope you enjoy your stay here in Galway.

Colm O’Riordan

General Conference Chair GAMEON’2011
National University of Ireland
Galway, Ireland

CONTENTS

Preface. ... IX
Scientific Programme. ... 1
XU Lo gl =3 1 4V 95

GAME DESIGN

Presence in Computer Games: Design Requirements
Barbaros Bostan and Sertac Ogutcccoiimeeeeeeriisiierreseessssss s s e s s esssssssssssssseeees 5

A Concurrency Model for Game Scripting
Joseph Kehoe and JOSEPh MOITiS...cuiiieemeenccisirrsrrssemnnnsssssssessssesnsssssssssssssssnnnnes 10

Incorporating Reinforcement Learning into the Creation of Human-Like
Autonomous Agents in First Person Shooter Games
Frank G. Glavin and Michael G. Maddenuuueeeeeemeemmmmeememessnmesnnsssssssssssssnsnnnns 16

Player-Traced Empirical Cost Surfaces for A* Pathfinding
SamM Redfern ... ———————— 22

Racing Game Atrtificial Intelligence using Evolutionary Artificial Neural

Networks
C Siheyl Ozveren, Victor Bassilious and Hamid Homatashcceeeeceeiieinneeeee. 28

STRATEGY GAMING

Genetic Programming and Common Pool Resource Problems with
Uncertainty

Alan Cunningham and Colm O’Riordanceeeeeeeeccciisesrseeeessssss s s e e e e eesmmnsssnnes 39

Evolution and Analysis of Strategies for Mancala Games
Damien Jordan and Colm O'RIOFA@Nccceceeeennnn e 44

Historical Accuracy in Grand Strategy Games: A Case Study of

Supreme Ruler: Cold War

B. Srivastava, M. Katchabaw and G. GECZYcceerrrrrrreemmmncrccsseereeenmmnssseseeens 50
SERIOUS GAMING AND TRAINING

Non Verbal Communication Assisted Serious Gaming Applications
Alan Murphy and Sam Redfern ... 63

Xl

CONTENTS

Experimental Assessment of an Emotion Tracking Software Agent (ETA)
for assisting Communicative Interactions of Multitasking Users in
Groupware

Paul Smith and Sam Redfern...... s 67

A Game System Approach for Training and Evaluation: Two Sides of

the Same Coin

Claudio Coreixas de Moraes, Daniel de Vasconcelos Campos

Roberto de Beauclair Seixas and Michael Aaron Dayeeeeeeeeeeemmmmessesnneennnns 73

MOBILE GAMING

GPS Guided and Touch Screen Navigable 3D Reconstruction of an
Ancient Environment on iPhone and iPad

Gavin Duffy, Daniel Heffernan, Eoghan Quigley, Paul Smith

and Heather KiNgcciiieiiiiiecesecisssssssssssssssssss s s s s sssnssssssssssesssssnnsssssssssssssssnnnnns 83

Open Device Control: Human Interface Device Framework for Video

Games
Kosuke Kaneko, Yoshihiro Okada and Hiroyuki Matsuguma........ceeeeeeeccininennns 88

X1

SCIENTIFIC
PROGRAMME

GAME
DESIGN

PRESENCE IN COMPUTER GAMES: DESIGN REQUIREMENTS

Barbaros Bostan
Yeditepe University

Kayisdagi Cad. 26 Agustos Campus

Atasehir, Istanbul / Turkey, 34755
E-mail: bbostan@yeditepe.edu.tr

INTRODUCTION

Presence or the sense of 'being there' is an important and
critical concept of computer gaming which relies on several
factors. When we look at presence from a bottom-up
approach to define its components, it is important to identify
the design requirements for virtual environments and their
effects on presence (Bostan, 2009). It is also imperative to
define how much each requirement correlates with presence
and how designers should address these. This study aims to
solve these issues by using a presence questionnaire based
on virtual environment design requirements defined by
Stuart (2001).

Data collected from a survey study on a computer role
playing game (RPG), which 1is available for 3663
participants, is used to identify the relationship between
these design requirements and presence. Among the selected
requirements; sociability, veridicality, autonomy and physics
of the virtual world have the highest correlations with
presence respectively; and interactivity is a separately
analyzed requirement that has special focus on it. Results of
the study indicated that, storyline, NPC (non-player
character) characteristics and communication with these
virtual characters are the most important factors that
influence interactivity.

PRESENCE AND DESIGN REQUIREMENTS

Presence, which is defined as the subjective experience of
being there, is a construct with various dimensions. In order
to define the determinants of presence, Insko (2003) defined
three categories of methods commonly used for measuring
presence: Subjective measures, behavioral measures and
physiological measures. Subjective measures rely on user
responses obtained from questionnaires. Various conceptual
studies on the nature of presence have been conducted by
researchers (Sheridan, 1992; Held & Durlach, 1992) and
several of them have used questionnaires to shed light on
the dimensions of presence. Lombard & Ditton (1997)
defined six interrelated but distinct dimensions of presence:
Social richness, realism, transportation, immersion, social
actor within medium and medium as social actor. Witmer &
Singer (1998) presented 4 factors that contributed to a sense
of presence: Control factors, sensory factors, distraction
factors and realism factors. Regenbrecht (1998) defined a 3-
factor solution for presence: Spatial presence, involvement
and realness. Lessiter (2001) extracted 4 factors that
influence presence: Physical presence, engagement,
naturalness and negative effects.

Sertac Ogut
Marmara University
Faculty of Communication, Nisantasi
Campus
Sisli, Istanbul / Turkey, 34365
E-mail: sertacogut@marun.edu.tr

These studies focus on the hypothesized factors that
influence presence in virtual environments. Virtual
environment design, however, relies on several
requirements. When we look at presence from a
requirements perspective, it is important to identify the
design requirements for virtual environments and their
effect on presence. This study aims to solve these issues by
using a presence questionnaire based on virtual environment
design requirements defined by Stuart (2001). Participants
of this study are computer game players. According to
Steinkuehler (2006), computer games are a productive
context for research about cognition and culture in a world
that is increasingly globalized and networked. According to
Ondrejka (2006), since computer game players spend
significant portions of their lives immersed within virtual
worlds, computer games provide virtually limitless
opportunities for research and study. The computer game
selected for this study is a role playing game (RPG).

A RPG is an interactive story where the game player
controls an avatar called a player character (PC). The
ancestors of RPGs are MUDs, which are text based fantasy
worlds that were very popular in the past. Over time, MUDs
evolved into standalone RPGs and MMORPGs. Since
Towell & Towell (1997) stated that research on MUDs may
be helpful in understanding the contribution to presence by
social interaction in other virtual environments, studies on
RPGs may also provide new insights on the concept of
presence. Supported by the story, settings and combat
systems of tabletop role-playing games, computer RPGs
provide interesting interactivity and openness opportunities
to players. Selected RPG, Elder Scrolls IV: Oblivion, is an
outstanding game of the genre, combining real world
physics with 1500 Al supported virtual characters that have
a 24- hour schedule of their own.

Stuart (2001) defined 22 functional requirements for
designing virtual environments. All these requirements are
of varying degree of importance depending upon the
application in question. Stuart’s framework is applicable to
virtual environments and computer games since it explains
important parameters for virtual environment design, but it
fails to cover some important characteristics of virtual
environments which require special attention and further
explanation.

The three I’s of virtual reality defined by Heim (1998):
Information Density, Interactivity and Immersion, are
crucial parameters for virtual environment designers.
Information intensity, similar to the requirement of

resolution in Stuart’s framework, represents the level of
detail resulting from the continuous information transfer
from the virtual world.

Interactivity is defined by Rafaeli (1988) as an underdefined
concept that has little consensus on its meaning, but
researchers stated that interaction and interactivity have an
important role in creating a sense of presence (Zahorik &
Jenison, 1998 ; Sheridan 1992). According to Laurel (1993),
interactivity is characterized with three variables: frequency,
range and significance of interactions. According to Friedl
(2003), interactivity in computer games has three
dimensions: player-to-player, player-to-computer and
player-to-game interactions. Player-to-player interaction is
unique for multiplayer games.

Immersion is defined by Slater & Wilbur (1997) as a VR
system's ability to deliver a surrounding environment,
capable of shutting down the sensations from the real world.
According to Ermi & Méyrd (2005), immersion in computer
games has three dimensions. Sensory immersion is related
to audiovisual properties of the virtual world, challenge-
based immersion is related with mental skills such as
strategic thinking or logical problem solving, and
imaginative immersion is related with the storyline and
virtual characters. Comments of a 48 year old gamer
obtained by this study can better emphasize the degree of
mental immersion experienced by an Oblivion fan: “ / suffer
from an immune disease that causes a considerable amount
of pain. In the evenings after work, I use Oblivion to detach
my mind from the pain and in turn do not require
medication while immersed in the game environment.”

Since the requirements defined by Stuart do not need to be
addressed in every application and system, they are
classified into two groups: General requirements and special
requirements. General requirements are mandatory for every
virtual environment and special requirements are optional
considerations for the designer. Requirements of Stuart’s
framework are given below. Only those with an asterisk are
taken into consideration for this study. Discussing the
specifics of each variable is beyond the scope of this article,
but those interested in them can consult (Bostan, 2009) who
discussed these requirements in relation to presence.

Table 1: Design Requirements of Stuart (2001)

General requirements Special Requirements

Interactivity * Responsiveness
Sociability * Stability
Veridicality * Robustness
Presence * Registration
Resolution * Calibration and
Representation of User * Customization
Navigation Techniques * Reconfigurability

Physics of the Virtual World * Degree of Virtuality

Viewpoint Connectivity *
Autonomy * I/O Bandwidth
Locus of Control * Safety and Hygiene

Multisensory Requirements Choice of Representation

RESEARCH FINDINGS

The presence questionnaire developed for this study consists
of 10 questions, one of which measures presence as the core
concept of this research and the other 9 questions are used
to measure the relevancy of selected application
requirements with presence. According to Slater (1999), in
order to study the factors that influence presence and their
relationships with it, presence questionnaires shall include a
direct question about presence. Otherwise, questions will
give no information about the influence of variables on
presence.

The questionnaire, which uses a 5-point likert scale, was
posted on the Web. Messages about this study were posted
on 13 forums and administrators of various Oblivion fan
sites are contacted via e-mail. Several websites announced
the questionnaire in their websites, requesting their visitors
to participate in this study. The questionnaire was online for
23 days, after which it gets a total of 8065 views and 258
posts in 13 forums. At the end of 23 days, data are available
for 3663 participants. Web server statistics show that 6256
people visited the web page of the questionnaire, indicating
a 58% response rate.

Table 2: Forum Statistics

Forum Website Views | Posts
Official Forums 4981 118
Cyrodiil Forums 337 19
Planet Elder Scrolls 962 43
Elder Scrolls (co.uk) 58 3
Dark Brotherhood 313 32
FileFront 221 4
Oblivion Files 72 3
Rough Guide to Cyrodiil 78 4
Elderscrolls Oblivion 242 9
Canadian Ice 153 9
Blood and Shadows 93 4
Gaming Source 305 4
RPGDot 250 6
TOTAL | 8065 |258

Demographic Variables

When we take a look at the demographic variables, we see
that approximately 5% of the respondents is female, 95%
male. The mean age was 24.2, ranging from 10 to 71 years.
19.5% of the respondents are married, 80.5% single.
Education levels are, 32.2% high school or below, 31.8%
some college or vocational school, 24.3% bachelors degree
and 11.7% with a graduate degree.

One-way ANOVA test performed on demographic variables
show that age and educational level differences between
groups of participants are significant in terms of presence.
Levene’s test is used as a post-hoc test to validate the
assumption of homogenity of variances between groups.
This assumption is not violated since Levene’s test is

insignificant for age (p=.227) and education level (p=.544).
ANOVA is significant for age (p<.001) and education levels
(p<.001), showing that degree of presence decreases as age
and education levels increase.

When we analyze correlations, significant Pearson
correlation coefficient (r= -.064, p (two-tailed)<.001) shows
that there is a significant negative relationship between age
and presence. Nonparametric correlation tests, Spearman
correlation (rs = -.104, p (two tailed) < .001) and Kendall’s
tau (t = -.078, p (two tailed) <.001), are also significant. So,
presence decreases with age. Chi-square test between
presence and education level is also significant (p<.001)
indicating that presence decreases with education level.

Correlation of Design Requirements

In order to define the relationships between the design
requirements and presence, parametric and non-parametric
correlations of these variables are calculated. Pearson
correlation is a parametric statistic with an underlying
assumption of normality. When linear correlations are not
strong enough, non-parametric correlations give more
meaningful but less powerful results. Given below is the
correlation table showing that, 8 of the 9 requirements are
significantly correlated with presence, confirming their
relationships. Among these, sociability, autonomy,
veridicality and physics of the virtual world, are the most
influencing requirements respectively.

Table 3: Correlation of Design Requirements with Presence

Table 4: User Defined Determinants of Interactivity

19,8% NPC Communication

19,3% NPC Characteristics

19,1% Storyline

13% Artificial Intelligence

12,6% Physics of the VE

9,6% Object Design

9,1% Small Scale Connectivity
7,7% Nature Design
7% World Design

6,4% Guilds & Factions

5,7% No Level Scaling

4,6% Autonomy

4,3% No Large Scale Connectivity

4,3% Destructible Environments

4% User Interface & Navigation Design
3,8% 3D Animations

3,7% Large Scale Connectivity

3,2% Companionship

3,2% Combat Design

2,3% Responsiveness
2,3% Reputation
2% World Economy

Design Pearson | Kendall’s | Spearman’
Requirement (r) tau (1) s rho (ry)
Sociability 466 ** 385 ** 457 **
Veridicality 348 ** .289 ** 344 **
Autonomy 294 ** 240 ** 286 **
Physics of the 226 ** .188 ** 222 **
Virtual World

Representation of 140 ** .108 ** 125 **
the User

Connectivity 123 ** .095 ** 116 **
Resolution 065 ** .066 ** 077 **
Navigation 053 ** .044 ** .053 **
Techniques

Locus of Control

** p (two tailed) < .001
Determinants of Interactivity

In this study, interactivity is not a direct question and is
assumed to be a complex combination of the design
requirements defined by Stuart (2001). In order to define the
determinants of interactivity, a comment box is included in
the questionnaire, which is not compulsory for respondents.
Users were requested to identify the factors that will make
this virtual environment more interactive. 942 respondents
leave their comments willingly. User defined factors are
subject to a frequency analysis and the results are given
below.

According to users, three most important factors for
increasing interactivity are: NPC communication, NPC
characteristics and storyline. NPC communication consists
of facial expressions, non-verbal and verbal communication
with the NPCs. These three user defined elements of
communication are also components of the ‘Rich Interaction
Model” for virtual environments defined by Manninen
(2003). According to user comments, designers should also
implement more voice actors for the NPCs and avoid
repetitive dialogue options. Given below is a gamer
comment on voice acting, showing us the complexity of
NPC communication.

“One of the most immersion-breaking parts of Oblivion was
the terrible voice acting. Unlike Morrowind, many voice
actors were re-used across races (Orcs and Nords, for
instance), and voice actors that I came to strongly associate
with certain races were reused improperly or not at all--for
instance, the old Orc voice entirely disappeared, as far as [
can hear, replaced very obviously with the Nord voice
actor. Also, the performance given by the new voice actors
was, I felt, not up to the level of that of the performances
they gave for Morrowind. The delta between the old and
new voices, both in usage and in quality of acting, was so
extremely jarring--especially with the massively increased
amount of voice in the game--that nearly every NPC to
whom 1 talk breaks my immersion to some degree.”

NPC characteristics primarily consists of depth and
personality in non-player characters (NPCs). Synthetic
characters must be responsive to their physical interactions
with the environment, their aims, their knowledge of the
virtual world, their personality and their interactions with

human players (Magerko et al., 2004). According to player
comments, designers should create NPCs from all ages and
goal-driven non-player characters. Given below is one of the
many gamer criticisms obtained by this study on character
personality and autonomy in Oblivion:

“The key failing: Context sensitivity. NPCs, superficially,
act in lifelike manners. However, they methods of reacting
to the environments are limited to direct interaction with
objects they are programmed to interact with; they sit on
Sfurniture, sleep in beds, eat food, and talk with other NPCs
or the player. This seems realistic, until more exotic
situations are presented, these behaviors are not changed
whatsoever by numerous factors that would impact the
behavior of real people, such as weather, crime, etc. As an
example, when nearby an open Oblivion gate, one would
reasonably expect nearby people to be responding to it,
possibly with emotions such as panic, fear, or perhaps even
curiosity. The game's NPCs have no different reactions.
Likewise, NPCs are not reactive to the events that take
place around them; major game-related events, such as the
completion of a quest, may alter what dialogue they have
available, but their behavior is unaffected. As an example,
if the player enters a busy city street, and one NPC
suddenly attacks the player, the NPCs may respond to the
attack by aiding the player, but after the battle has
concluded, the NPC's behavior, and even dialogue, is not
affected. This would appear to be a keystone in the elements
of Artificial Intelligence that is lacking in the game of
Oblivion, that would've added the realism level sufficient to
truly make the NPCs seem as lifelike characters, rather
than as flat ‘simulation bots.””

User defined components of storyline are meaningful play
and user freedom of choice. Storyline is closely related to
the description of plot given by Slater and Wilbur (1997)
and freedom in the users’ actions within a virtual
environment is also highlighted by Mantovani & Riva
(1999). According to Salen & Zimmerman (2004), user
freedom of choice is an important requirement of game
design and meaningful play is the relationship between
player’s actions and system outcome. Users also commented
that they would like to see non-linear quests, consequences
for their actions and moral choices in the gaming
environment. Comments of gamers obtained by this study
shed light on different dimensions of freedom. Given below
is an example comment:

“I feel that in Oblivion's current form it offers much
freedom of action (e.g. you may approach a problem as you
wish, by using stealth magic or diplomacy) but not much
freedom of morality and few consequences for moral
choices. I would like oblivion and games in general to make
me care and understand how I alter the world and why I
should be careful about my morality.”

CONCLUSION

The extent of this paper is to indicate a number of variables
that need to be considered in order to maximize presence in

virtual environments, especially in computer games. This
study does not claim to have identified all of the design
requirements that affect presence but it addresses how
certain requirements shall be addressed by designers.
Research findings show that sociability has the highest
correlation with presence. Computer games, regardless of
their multiplayer capabilities, should be capable of creating
social virtual environments. Since Heeter (1992) defined
sociability as one of the three dimensions of presence, game
designers should support social virtual characters that build
communities and groups. Oblivion is a single player
computer game and sociability primarily consists of PC-
NPC interactions. Players commented that sociable non-
player characters shall have entertaining and non-repetitive
dialogue options, believable behaviors, and near-realistic 3D
appearance and animations. Players also indicated that
guilds, NPC companions and character reputation are
important social characteristics.

The virtual environment, with its physical appearance and
object behaviors, should accurately represent the real world
we are living in. Thus, veridicality is the consistency of
information with the objective world and is one of the
hypothesized realism factors that contribute to a sense of
presence (Witmer & Singer, 1998). In this sense, players
indicated that object design, world design, nature design
and destructible environments are important characteristics
of veridicality. According to Sutcliffe (2003), user
interaction with the virtual world objects should conform to
the laws of physics that constrain real-world interaction, yet
players commented that real-world physics enhances the
sense of presence experienced but without touch and force
feedback, too much realism in world physics breaks the
sense of presence.

Autonomy is the third best requirement correlating with
presence. To sustain the feeling of presence in a virtual
world, virtual agents should be able to make autonomous
decisions independent of other entities in the environment
and behave like real persons (Aylett & Luck, 2000).
Designers should implement autonomy with caution,
bearing in mind that autonomous characters are more life-
like if their behaviors are consistent and sociable. Players
commented that, NPCs of Oblivion who have a 24 hour
schedule of their own, are less life-like than the NPCs who
stand around in Morrowind: the predecessor of Oblivion.

Connectivity is the opportunity to share the virtual world
together by connecting multiple computers via a network,
usually either a LAN or the Internet. User defined
interactivity requirements indicate an important difference
in terms of connectivity. According to user comments, local
area network (LAN) multiplayer capabilities and massive
multiplayer capabilities are two different predictors of
presence. Frequency analysis shows that, 4.3% does not
want massive multiplayer capabilities, 3.7% wants massive
multiplayer capabilities and 9.1% wants LAN multiplayer
capabilities. This study used large scale connectivity as an
independent variable but user comments indicated that large
scale connectivity is not a good predictor of presence.

REFERENCES

Aylett, R., & Luck, M. 2000. “Applying artificial intelligence to
virtual reality: Intelligent virtual environments”. Applied
Artificial Intelligence, 14 (1), 3-32.

Bostan, B. 2009. “Requirements Analysis of Presence: Insights
from a RPG Game.” ACM Computers in Entertainment 7, No.1
(March).

Ermi, L., & Miyrd, F. 2005. “Fundamental Components of the
Gameplay Experience: Analysing Immersion”. Paper presented
at DIGRA 2005: Changing Views: Worlds in Play, Vancouver,
Canada.

Friedl, M. 2003. Online game interactivity theory. Hingham, MA :
Charles River Media.

Heeter, C. 1992. “Being there: The subjective experience of
presence”. Presence: Teleoperators and Virtual Environments,
1(2), 262-271.

Heim, M. 1998. Virtual Realism. New York: Oxford.

Held, R. & Durlach, N. 1992. “Telepresence”. Presence:
Teleoperators and Virtual Environments, 1(1), 109-112.

Insko, B. E. 2003. “Measuring presence: Subjective, behavioral
and physiological methods”. In Being There: Concepts, effects
and measurement of user presence in synthetic environments,
Riva, G., Davide, F., & Usselsteijn, W. A. (Eds.), Amsterdam:
los Press.

Laurel, B. 1993. Computers as theatre. Addison-Wesley
Publishing Company, Reading, MA.

Lessiter, J., Freeman, J., Keogh, E., & Davidoff, J. 2001. “A cross-
media presence questionnaire: The ITC-Sense of presence
inventory”. Presence: Teleoperators ~ and Virtual
Environments, 10 (3), 282-297

Lombard, M., & Ditton, T. 1997. “At the heart of it all: The
concept of presence”. Journal of Computer Mediated
Communication, 3 (2).

Magerko, B., Laird, J.E., Assanie, M., Kerfoot, A., & Stokes, D.
2004. “Al Characters and Directors for Interactive Computer
Games”. In Proceedings of the 2004 Innovative Applications of
Artificial Intelligence Conference, San Jose, CA. AAAI Press.

Manninen, T. 2003. “Interaction manifestations in multi-player
games”. In Being There: Concepts, effects and measurement of
user presence in synthetic environments, Riva, G., Davide, F.,
& Usselsteijn, W. A. (Eds.),. Amsterdam: los Press.

Mantovani, G., & Riva, G. 1999. “Real presence: How different
ontologies generate different criteria for presence,
telepresence, and virtual presence”. Presence: Teleoperators &
Virtual Environments, 8 (5), 540- 550.

Ondrejka, C. 2006. “Finding common ground in new worlds”.
Games and Culture, 1(1), 111-115.

Rafaeli, S. 1988. “Interactivity: From new media to
communication”. In Sage Annual Review of Communication
Research: Advancing Communication Science, R. P. Hawkins,
J. M. Wiemann, & S. Pingree (Eds.), 16, 110-134. Beverly
Hills: Sage.

Regenbrecht, H., Schubert, T., & Friedmann, F. 1998. “Measuring
the sense of presence and its relations to fear of heights in
virtual environments”. [International Journal of Human-
Computer Interaction, 10 (3), 233-249.

Salen, K. & Zimmerman, E. 2003. Rules of Play : Game Design
Fundamentals. Cambridge, MA: The MIT Press.

Sheridan, T.B., 1992. “Musings on telepresence and virtual
presence”. Presence: Teleoperators and Virtual Environments,
1(1), 120-26.

Slater, M. 1999. “Measuring presence: A response to Witmer and
Singer questionnaire”. Presence: Teleoperators and Virtual
Environments, 8 (5), 560-566.

Slater, M., & Wilbur, S. 1997. “A framework for immersive
virtual environments (FIVE): Speculations on the role of

presence in virtual environments”. Presence: Teleoperators
and Virtual Environments, 6 (6), 603-616.

Steinkuehler, C. A. 2006. “Why Game (Culture) Studies Now?”.
Games and Culture, 1(1), 97-102.

Stuart, R. 2001. The design of virtual environments. Ft. Lee, NJ:
Barricade Boks.

Sutcliffe, A. 2003. Multimedia and virtual reality: Designing
multisensory user interfaces. Mahwah, NJ.: Lawrence Erlbaum
Associates.

Towell, J., & Towell, E. 1997. “Presence in text-based networked
virtual environments or ‘MUDS’”. Presence: Teleoperators
and Virtual Environments, 6 (5), 590-595.

Witmer, B. G., & Singer, M. J. 1998. “Measuring presence in
virtual environments: A presence questionnaire”. Presence:
Teleoperators and Virtual Environments, 7 (3), 225-240.

Zahorik, P., & Jenison, R.L. 1998. “Presence as being-in-the-
world”. Presence: Teleoperators and Virtual Environments, 7
(1), 78-89.

AUTHOR BIOGRAPHIES

Barbaros BOSTAN is an Assistant Professor at Yeditepe
University, Information Systems and Technologies
Department. Bostan earned a BS at Electronics and
Communication Engineering at Istanbul Technical
University, an MBA from Yeditepe University, a Ph.D.
degree at Informatics Department of Marmara University.
Bostan has teaching experience in the areas of computer
networks, virtual reality systems and interactive web
technologies. His research areas include interactivity,
presence, computer games, RPGs, virtual environments,
multiplayer virtual worlds and interactive storytelling.

Sertac OGUT is an instructor and a designer. He teaches
Visual Communication and Interaction Design courses at
the Communications Faculty of Marmara University
Istanbul/TURKEY. He earned his BA on Communicative
Informatics at the Marmara University. Ogut completed his
MA study at the Yeditepe University in Visual
Communication Design. He had his PhD degree at the
Informatics Department of Marmara University. Ogut
focuses on Interaction Design, New Media Studies and 3D
Animation. Besides his academic carrier, he is working on
several web-based game projects as an consultant.

A CONCURRENCY MODEL FOR GAME SCRIPTING

Joseph Kehoe
Institute of Technology, Carlow
email: joseph.kehoe@ITCarlow.ie

KEYWORDS
Concurrency, Games, Scripting

ABSTRACT

In this paper we outline a new model of concurrency
that is specifically designed for the specialized domain
of game scripting. Scripting is used extensively in game
development both for the implementation of AI based
behaviors and for providing game players with the abil-
ity to customize commercial games. Scripting languages
have not, as yet, benefited from the move to multicore
architectures. We discuss the properties unique to game
scripting that any proposed model must satisfy. Then
we propose a model of concurrency particular to games
that addresses these issues while allowing game scripting
languages to fully utilize multicore processors. The next
steps in developing this model further are discussed.

INTRODUCTION

Game scripting is an integral part of computer game
development. Scripting is essential for two reasons, the
nature of the game development process and the type of
game developers who write game behaviors.

The game development process is an iterative one. This
is particularly true for entity behavior design and im-
plementation. Entities in games are any objects that
can interact with their surroundings and the player of
the game. They range from pretty trivial items such
as doors to non player characters that can form their
own plans. Game entity behaviors can really only be
properly assessed by actually playing the game with the
entity behaviors in situ. This leads to the employment
of rapid design-implement-playtest iterations. For this
to be a viable process each iteration needs to be as short
as possible. It can take many iterations before a behav-
ior becomes acceptable within a particular game. These
rapid iterations presume the use of a scripting language.
Scripting languages are high level languages that allow
for rapid implementation (or prototyping) of behaviors.
As these languages are almost always interpreted rather
than compiled they can be rapidly deployed, usually
without requiring a recompilation of the surrounding
game framework.

The second aspect of the development process that is
applicable here is the programming ability of game de-

Joseph Morris
Dublin City University

email: joseph.morris@computing.dcu.ie

10

signers. Behavior design is the domain of game designers
in that they know best what behaviors are suitable for
each game scenario. Game designers, however, are not
game programmers. They do not have the full range
of programming skills that are available to professional
programmers.

Forcing game designers to pass their behavior designs
onto professional programmers for implementation is
not a viable option. It would tie up an expensive pro-
fessional programmer who could be employed on other
parts of the game while also slowing down the design-
implement-playtest cycle by an unacceptable amount of
time. Ideally, the game designer herself, as the per-
son who fully understands the required behavior, should
be able to implement the behaviors directly. To make
this possible a simple high level scripting language is
required.

Processor power (and speed) has been increasing at an
almost constant rate, following Moore’s law, since the
introduction of the integrated circuit. Future increases
in speed will be through the use of multicore processors,
(Blake et al. (2009)). More speed will mean more cores
on each processor. Processors which used to contain
a single complex core will now be replaced by proces-
sors containing many cores (J. Held and Koehl (2006),
Borkar et al. (2006)).

The only way for software to take advantage of these
new architectures is by simultaneously using as many
of the cores as possible. In other words software must
switch from being sequential to concurrent. Unfortu-
nately, writing concurrent code is more difficult than
writing sequential code, particularly when using pro-
gramming languages designed mainly for sequential pro-
gramming. New techniques for designing, writing and
testing concurrent software are needed and new pro-
gramming languages may also be required.

Our model of concurrency is specific to scripting in the
game development process. Scripting in games poses
some unique challenges. We have two competing issues.
Firstly, games are real time systems with hard time con-
straints. This implies the use of a low level language
where developers have complete control over hardware
resources. Secondly, and in opposition to this, it in-
volves the use of a high level scripting language that
will hide the details of the hardware from the program-
mer. Real time programming is a specialist skill that is
acquired by highly competent programmers only after

many years experience while scripting in games must be
open to non professional programmers.

Game developers are willing to accept the usage of
scripting languages in the development of games for the
reasons given in the previous subsections. Using con-
currency to help improve the efficiency of scripting lan-
guages is one way of tackling this issue.

Overview of paper

In the next section we give an overview of the model
we propose. We look at key features of this model of
concurrency and show how it fulfills the expectations
set out in the previous section. We follow by reviewing
related work in concurrency and game scripting. Finally
we finish with our conclusions and list further work that
needs to be completed.

PROPOSED CONCURRENCY MODEL

A game is a simulation that consists of a set of entities
interacting with each other in some world. Each entity
has its own state and a set of behaviors that determines
how it responds to various stimuli. The game world
that is being simulated has rules (gravity for example)
that determine how certain types of interaction between
entities take place. These world rules can be encoded in
the entities themselves. The global state of the game is
given by the sum of the states of all the entities that it
contains.

Games proceed in a stepwise manner as a sequence of
discrete moments in time. Each step represents a tick
of the clock, or one particular moment in time, and a
sequence of steps represents the passing of some dura-
tion of time. The step frequency can vary, with the
frequency representing the granularity of the represen-
tation of time in the game. Step frequency is ultimately
determined by hardware factors such as processor speed.
At each step the entities update their state based on the
events or stimuli that were generated during the previ-
ous step. Overall entity behavior through the lifetime of
a game comprises the sequence of step behaviors made
during that game. A play-through of a game is a finite
sequence of these steps.

In the next sections we will look at the basic structural
components of the model and how they fit together.
These components are: entities, messages, steps and
constraints.

Entities

The entity is the basic building block of game simu-
lations. Games consist of many different entities that
interact with each other under some game defined rules.
These rules may include, for example, physics based in-
teraction such as gravity and elasticity. Entities range
from the simple, like a bullet or item of furniture, to

11

the more complex such as a non player character (NPC)
that has its own beliefs, desires, intentions and plans of
action.

In general, although entity types are varied we can
assume that they have some common attributes such
as geographical position in the game world, an associ-
ated model (a visual 3-D representation of the item)
and boundary dimensions (used for collision detection).
More complex games will also model mass, elasticity
and internal structure (a skeleton) for each entity as
well. Everything can be defined in terms of individual
entities and their rules of interaction. In our model only
entities exist in games.

Game design consists of (among other things not rele-
vant here such as ensuring game playability) identifying
all the entities that make up a game, deciding which of
their properties are relevant to the game and how they
are allowed to interact.

Every entity runs in its own thread. Concurrency is lim-
ited only by the number of entities in the game. Games
are simulations designed to be fun to play. Given the
nature of games it is unlikely that there will be only a
few entities in a game. Since the identification of entities
within a game is already part of game design this ap-
proach does not add any extra overhead to game design.
It is a natural way to identify concurrency and brings
identification of concurrency easily within the remit of
the game designer at no extra cost.

Every entity is composed of four components: state,
interface, constraints and message queue.

State is a non-empty set of named attributes. Each at-
tribute will have an associated value. A non-empty sub-
set of these attributes will be immutable. Immutable
attributes are given values when the entity is created
and these values remain unchanged until the entity is
destroyed. Each attribute is also labelled as either vis-
ible or hidden. The full set of named attributes with
associated labels belonging to an entity is called the en-
tity state. The particular value of a state is determined
by the values assigned to each attribute in the state.
Each entity contains at least one attribute as part of its
state. This is the ID attribute which uniquely identifies
the entity. This is both immutable and visible. The
value of the ID attribute is generated automatically on
entity creation and guaranteed to be unique for each
entity.

Entities know a non empty subset of the state belonging
to every other entity. This subset will contain all the at-
tributes that are labelled visible. If an entity knows the
attribute of another entity then it is allowed to read the
value contained by that attribute but it cannot write
to a attribute belonging to the state of any other en-
tity. Changes to an entity attribute value can only occur
through the entity interface.

Every entity has a defined set of message signatures.
Each message in this set represents the response of the
entity to a specific type of stimulus. Each stimulus event

triggers a specific message for each entity affected by
that stimulus. An entity can only respond to a stimulus
if that stimulus generates a message matching the signa-
ture of a message defined in its interface. The signature
of a message is determined by a message name and a
sequence of attributes.

Each signature must be unique within an interface. The
sequence of attributes is non empty and will include at
least the sender attribute. For any message instance
the value of this attribute will match the value of the
ID attribute of the entity that generated the message.
The set of message signatures is known as the interface.
Entities know the full interface of every other entity. An
entity is allowed send a message to any entity if it knows
the value of that entities ID attribute.

The set of local constraints determines the set of accept-
able combinations of values that the attributes belong-
ing to the entity state can hold.

The constraint set may also determine allowable com-
binations of values that different entities can simultane-
ously hold. That is, the allowable values of an entity
state can be determined by the values of other entity
states. For example, it may be the case that two enti-
ties cannot occupy the same position in space simulta-
neously.

The message queue contains the full set of outstand-
ing messages that the entity has to respond to during
the current step. This queue will contain all messages
generated for the entity during the previous step. Mes-
sages are processed by each entity in the order in which
they appear in the message queue. Each entity message
queue can only hold messages that match message sig-
natures defined in that entities interface. When an en-
tity is destroyed its associated message queue and any
remaining messages in that queue are also destroyed.

Messages

A message consists of a name, a receiver ID and a col-
lection of attributes and the values of those attributes.
A message generated (or sent) during one step will al-
ways be received during the next step. This guarantee
that all messages are processed during the succeeding
step means that, as a consequence, we cannot fix an up-
per limit on step duration in advance without limiting
the number of messages allowed to be generated in each
step. As the number of messages increases step duration
will also increase. A fixed step duration would be an ad-
vantage for any real time system but it has a number of
associated costs.

Most importantly by fixing step duration we would lose
computational determinism. Different processors are
able to accomplish different amounts of work in the same
duration. The overall result of any step would then be-
come dependent on the processor speed. We maintain
that determinism is more important than fixed step du-
ration.

12

Determinism gives us independence from the underly-
ing processor executing the scripts. This greatly sim-
plifies the testing and debugging of scripts. If testing
and debugging depended on the processor used it would
become beyond the capabilities of many scripters and re-
duce the possibility of using the model in the high level
prototyping and rapid iterative development cycles used
in game development. Since we can decouple the step
rate from the frame rate any increase in step duration
can be handled in a graceful manner by the game engine.
The value of the Receiver ID is used to determine who
the receiver of the message should be. Each entity has
an associated message queue and messages are put in
the queue belonging to the entity whose ID attribute
value matches that of the receiver ID in the message.
Messages are processed in the order that they appear in
the message queue.

A message is acceptable only if it fulfills two conditions
Firstly, the receiver ID value matches the ID attribute
value of an existing entity and secondly that the mes-
sage name and attribute collection matches a message
signature defined in the interface of the entity whose ID
matches that of the receiver ID.

All unacceptable messages are discarded. Only accept-
able messages appear in message queues. In response to
a message an entity can do any or all of the following:

1. Send messages to other entities if it knows the val-
ues of those entities ID attribute;

2. Create one or more new entities;

3. Update any of its own mutable attributes provided
that these updates do not violate any of the con-
straints in its constraint set;

4. Destroy itself.
Steps

A complete computation consists of a sequence of two or
more steps where the first step is the initialization step,
the last step the shutdown step and all other steps are
intermediate steps. During the initialization step two
processes occur: entities are created and initial Messages
are generated. The final step consists of two parts: the
remaining messages are discarded and finally all entities
are destroyed.

For every intermediate step all acceptable messages that
were generated during the previous step are processed.
All acceptable messages generated during the previous
step will be present in the appropriate message queues
at the start of the current step.

Entity state is updated instantaneously and simultane-
ously at the end of each step. State update is defined
as the sequential composition of the messages contained
in the message queue, in order, modified by a conflict
resolution algorithm.

Any messages generated during this process are deliv-
ered instantaneously at step end. Delivered messages
are put in the message queue belonging to the entity
whose ID value matches that of the receiver ID value in
the message.

The order that messages are placed in the message queue
is defined by the message sorting algorithm. The mes-
sage sorting algorithm can be any algorithm that guar-
antees:

1. Messages generated by a single entity for the same
receiver are placed in the message queue in the same
order that they were generated in;

2. The final order of the message queue is determin-
istic. That is, for any given set of messages their
ordering is unique and will always be the same re-
gardless of how many times the ordering algorithm
is applied.

The default sorting algorithm orders message queues by
using the message Sender ID attribute as the primary
key and message generation order as the secondary key.
This ensures that both conditions hold. Any other al-
gorithm that fulfills our two guarantees is acceptable.
The message sorting has an associated cost. Between
steps sorting will have to be carried out. This overhead
is justifiable because the algorithm ensures determinism
in script execution.

Determinism is important because it isolates the script
and the scripter from the underlying processor archi-
tecture. As we have already stated this makes testing
and debugging feasible in the rapid development cycles
used in game development and also in the prototyping
environment of casual and hobbyist game development.

Conflict Resolution

That conflicts can arise between different entities is a
recognized problem in games. Entities exist in a com-
mon world. In this world rules will exist that govern how
these entities can interact with each other. Attempts to
perform certain actions will bring entities into conflict
with these rules. There are three possible approaches to
conflict resolution:

1. Put onus on scripters;

2. Handle constraints using other parts of the game
engine;

3. Let scripting system handle constraints automati-
cally.

The first option is, in many ways, the simplest. The
scripter should ensure that any code they write does
the proper error checking. This has the advantage that
it can be the most efficient technique. Scripters will
know when run time checks are required and when they

13

are not. Although this is a common approach it has the
disadvantage of putting the burden on the individual
scripter. Under our model there is the extra complica-
tion that entities can only see the state of other entities
as they were at the start of the step making it difficult
to check for conflicts with other entities during a step.

The second option is suitable when the constraints log-
ically fall within the remit of some other specialized
subsystem. This is the case when the constraints be-
tween entities are real world constraints. In this case
the game physics engine can handle the constraints very
efficiently.

The final option covers cases where the first two options
are judged unsuitable. We use a predefined conflict res-
olution algorithm to determine how conflicts are dealt
with. The conflict resolution algorithm is any well de-
fined algorithm that ensures that state update does not
violate any constraints defined in the entities constraint
set. Constraints can be divided into two different types:
internal and external constraints. Internal constraints
are constraints that exist only within a particular entity.
External constraints are constraints that hold between
two or more different entities.

Internal, or local, constraints are the easier to deal with
than external constraints. They are, by definition, inter-
nal stand-alone constraints and so each entity can deal
with them independently of any other entity. Internal
constraints are state invariants that must hold through-
out the entity lifecycle. These constraints are defined at
entity creation and can be checked after each message
is processed. If a conflict is detected the algorithm can
take the appropriate corrective action.

The default algorithm simply discards any messages
that cause conflicts during message composition. Other
algorithms may be employed that take different error
correction measures.

External conflicts can only be detected once the step
is completed. This is because we cannot tell the final
state of each entity until the end of the step. Once all
entities have completed their state update the value of
each entity state needs to be checked for conflict with
every other entity. Once a conflict is found between two
or more entities a state rollback, of some predetermined
kind, of one or more of these entities will be required.
After rollback of an entity state we may have to recheck
the new value of the state against the global constraints.
This has the potential to be more costly than internal
constraint checking as one state rollback can raise more
new conflicts.

We do not feel that external constraints will be common
or form an essential part of any game script. Firstly,
most external constraints will be handled independently
by the physics engine. Secondly, remaining external con-
straints can be encoded as one or more equivalent inter-
nal constraints. For these reasons we do not have a sep-
arate default algorithm to handle external constraints.

RELATED WORK
BSP - Bulk Synchronous Processing

BSP has been proposed as a bridging model for gen-
eral purpose parallel computation by Valiant (1990). A
BSP computation consists of a sequence of super-steps.
In a super-step each component (a processor or core)
is allocated a task consisting of a combination of local
computation and, message transmission and reception
from other components. After L time units have passed
a check is made to see if the super-step has completed.
If it has, then the next super-step is started. Otherwise
the next L units are allocated to completing the current
super-step.

In simple terms, at each step a set of local computations
is undertaken concurrently. According to Skillicorn and
Talia (1998), the aims of BSP are to make it simple
to write concurrent code, be independent of target ar-
chitectures and make performance of a program on a
given architecture predictable. BSP allows you to put
an upper time bound on a computation for a particular
architecture. This makes the performance more pre-
dictable. In addition, deadlock using BSP is impossible.
BSP is also easier to debug in that computations can be
rearranged inside a superstep without affecting the out-
come. BSP has been successfully integrated in scripting
languages in the past by, for example, Hinsen (2007).

COOP - Concurrent Object Oriented Processing

Three types of concurrent object model have been iden-
tified: Orthogonal, Homogeneous and Heterogeneous
(Papathomas (1995)).

The Orthogonal model views the object model and the
concurrency model as two separate independent sys-
tems. In this case, locks are used to resolve any issues
raised by concurrency. The orthogonal approach does
not gain us any ground as it still retains explicit locking
and all the problems that this implies (Sutter and Larus
(2005)).

In the Homogeneous approach all objects are active 0b-
jects. An active object is an object that runs inside
its own thread. It represents a merging of process and
object (Briot et al. (1998), Hernandez et al. (1994)).
The internal state of an active object is private to that
object. Any interaction that must take place between
objects must take place via message passing. Gener-
ally, messages are asynchronous but there is variation
between explicit or implicit acceptance of messages by
objects.

The heterogeneous model contains both the active ob-
jects of the homogeneous approach and the passive ob-
jects of the orthogonal model. The most popular form of
concurrent object oriented programming model is based
on active objects.

Actor models of concurrency are closely based on active

14

objects. An Actor is an active object that can send finite
set of messages to other actors, create a finite set of new
actors and define how it will behave in relation to the
next incoming message. - Corréa (2009)

Network Scripting Language

The Network Scripting Language described in Russell
et al. (2008) (NSL) is designed for distributed games de-
velopment. It runs across remote processors rather than
multiple cores and gives some assurances of determinism
and consistency maintenance between the various pro-
cessors during game execution.

NSL uses active objects and a frame based approach
similar to the approach advocated here. Because this
language is designed for multiple distributed processors
each processor will have its own copy of the state of the
objects in the other processors. If there are n processors
then there will be n copies of the overall state.

This approach, out of the three mentioned, is the most
similar to our approach but the programming language
is more complex. It is tightly coupled to the frame rate
with a step being run exactly once for every frame but
gives no guarantees as to when messages will be deliv-
ered.

CONCLUSION

We have outlined a model of concurrency developed
specifically for games development, specifically game
scripting. Game scripting is undertaken by game design-
ers who are not professional programmers and therefore
do not have an in-depth understanding of concurrency.
As the game entity behaviors they develop have to be
play tested to ensure they are appropriate they must use
many rapid design-implement-playtest iterations during
development. To enable them to make use of concur-
rency we developed a model that is easy to use, removes
as much of the burden from the designer as possible and
can be implemented in any standard game scripting lan-
guage.

Further Work

Some work remains to be done on developing algorithms
that can be used by the conflict resolver. Although a
simple conflict resolution algorithm has been proposed
it may be the case that different games will need to use
different or more sophisticated conflict resolving algo-
rithms.

We intend to produce a working implementation of our
model. This implementation will demonstrate the via-
bility of this approach. It will be incorporated into an
existing game scripting language to show how it fits into
already existing development tools and practices in the
games industry. This will also serve to show how trans-
parent this model is to game scripters in practice. As

well as demonstrating how simple the model is to use it
will also show how easy it is to incorporate into existing
game scripting languages.

Biography

Joseph Kehoe is a lecturer in Computing in the In-
stitute of Technology Carlow. He has previously been
director of the BSc in Games Development and is cur-
rently Director of the BSc in Software Development.

REFERENCES

G. Blake, R. Dreslinski, and T. Mudge. A survey of multicore
processors. Signal Processing Magazine, IEEFE, 26(6):26 —
37, november 2009. ISSN 1053-5888. doi: 10.1109/MSP.
2009.934110.

S. Borkar, H. Mulder, P. Dubey, S. Pawlowski, K. Kahn,
J. Rattner, and D. Kuck. Platform 2015: Intel processor
and platform evolution for the next decade. 2006.

J.-P. Briot, R. Guerraoui, and K.-P. Lohr. Concur-
rency and distribution in object-oriented programming.
ACM Comput. Surv., 30(3):291-329, 1998. ISSN 0360-
0300. doi: http://doi.acm.org.remote.library.dcu.ie/10.
1145/292469.292470.

F. Corréa. Actors in a new ”highly parallel” world.
In WUP °09: Proceedings of the Warm Up Work-
shop for ACM/IEEE ICSE 2010, pages 21-24, New
York, NY, USA, 2009. ACM. ISBN 978-1-60558-565-
9. doi: http://doi.acm.org.remote.library.dcu.ie/10.1145/
1527033.1527041.

J. Hernandez, P. de Miguel, M. Barrena, J. Martinez,
A. Polo, and M. Nieto. Parallel and distributed program-
ming with an actor-based language. In Parallel and Dis-
tributed Processing, 1994. Proceedings. Second Euromicro
Workshop on, pages 420 —427, 26-28 1994.

K. Hinsen. Parallel scripting with python. Computing in

Science and Engineering, 9(6):82-89, 2007.

J. B. J. Held and S. Koehl. From a few cores to many: A
tera scale computing research review. Intel White Paper,
2006.

M. Papathomas. Concurrency in object-oriented program-
ming languages. In O. Nierstrasz and D. Tsichritzis, edi-
tors, Object-Oriented Software Composition, pages 31-68.
Prentice Hall, 1995.

G. Russell, A. F. Donaldson, and P. Sheppard. Tackling
online game development problems with a novel network
scripting language. In NetGames ’08: Proceedings of the
Tth ACM SIGCOMM Workshop on Network and System
Support for Games, pages 85-90, New York, NY, USA,
2008. ACM. ISBN 978-1-60558-132-3. doi: http://doi.
acm.org.remote.library.dcu.ie/10.1145/1517494.1517512.

D. B. Skillicorn and D. Talia. Models and languages for
parallel computation. ACM Comput. Surv., 30(2):123-
169, 1998. ISSN 0360-0300. doi: http://doi.acm.org/10.
1145/280277.280278.

15

H. Sutter and J. Larus. Software and the concurrency
revolution. Queue, 3(7):54-62, 2005. ISSN 1542-
7730. doi: http://doi.acm.org.remote.library.dcu.ie/10.
1145/1095408.1095421.

L. G. Valiant. A bridging model for parallel computa-
tion. Commun. ACM, 33(8):103-111, 1990. ISSN 0001-
0782. doi: http://doi.acm.org.remote.library.dcu.ie/10.
1145/79173.79181.

Incorporating Reinforcement Learning into the Creation of Human-Like
Autonomous Agents in First Person Shooter Games

Frank G. Glavin and Michael G. Madden

College of Engineering and Informatics
National University of Ireland Galway

frank.glavin@nuigalway.ie, michael.maddenC@nuigalway.ie

KEYWORDS
Reinforcement Learning, First Person Shooter Games,
Sarsa, Human-Like, Unreal Tournament 2004, Pogamut

ABSTRACT

As graphics in modern computer games move closer
to photorealism, the emphasis for game developers is
switching towards improving the in-game Artificial In-
telligence (AI). Traditional scripting and rule-based sys-
tems are being replaced by more intelligent and immer-
sive approaches. The goal of Al in computer games is
to create intelligent autonomous agents that mimic hu-
man behaviour as closely as possible, in order to create a
challenging yet enjoyable experience for human players.
This paper describes the application of Reinforcement
Learning (RL), an approach inspired by how humans
learn, to the creation of intelligent “bots” in a First
Person Shooter (FPS) game.

INTRODUCTION
Artificial Intelligence in Computer Games

The task of designing and implementing an agent in
a game that appears to be both intelligent and make
human-like decisions is certainly a difficult one. A
variety of techniques have been proposed in order to
emulate human intelligence in computer games. Some
of these techniques, as detailed in Westra (2007), will
now be briefly described.

Hard coding is the most basic way of implement-
ing Al. A simple example would be to have a list of
conditional checks that have corresponding behaviours
associated with them. If an agent in a FPS game, for
instance, has very little health left, it should concen-
trate on finding “power ups”! as opposed to engaging
in combat with other players. Hard coding gives the
programmer full low level control of the agent. Scripting
involves a further abstraction of hard-coded behaviours
which are grouped into specific tasks. Scripted actions

In-game items that increase player health.

16

can often become predictable and human players can
exploit this weakness.

A Finite State Machine (FSM) is usually combined with
the aforementioned techniques to create representations
of different scenarios. The other techniques can then be
used to make scenario specific choices. A finite series
of states exist and transitions between these states are
predefined. Some states cannot transition to others and
the transitions are initiated by either the internal state
of the agent or by a trigger from the environment.

Fuzzy set theory involves the use of fuzzy sets
whose elements have degrees of membership as opposed
to being assessed in binary terms. Fuzzy logic involves
the use of logical expressions for describing the mem-
bership in fuzzy sets (Russell and Norvig 2010). Fuzzy
logic is used when we would like to know the degree
of membership of an element as opposed to whether
its membership is true or false. For this reason, truth
values of between 0 and 1 are calculated. It can be
very complicated to manually produce fuzzy logic for
the complex interactions of all the values that make up
a computer game agent.

First Person Shooter (FPS) Games

FPS games take place in a fast-paced, three dimen-
sional environment in which the world is seen from the
first person perspective of the player. The most basic
game types are Death Match or Team Death Match in
which the objective is to kill the opposing players us-
ing either the weapons that the player spawns with, or
ones that are picked up from the environment. As the
names suggest, these game types involve either working
alone against all other players or forming part of a team
and fighting against another team. A large variety of
objective-based games also exist such as Domination?®
and Capture the Flag3. The team players and oppo-
sition players can be made up of human players over a
network, programmed bot players, or a mixture of both.

2Players gain control of Domination locations.
3Players capture flags and return them to their base.

RELATED RESEARCH

McPartland and Gallagher (2011) applied the tabu-
lar Sarsa()) (Sutton and Barto 1998) reinforcement
learning algorithm to a purpose-built first person
shooter game. The algorithm was used to learn
the controllers of navigation, item collection and
combat individually. The experimentation involved
three different setups of the RL algorithm, namely,
HierarchicalRL, RuleBasedRL and RL. The results
showed that reinforcement learning could be success-
fully applied to a simplified purpose-built FPS game.
While the results are promising, they do not address
the challenges evident in 3D commercial games with
complex environments and, unlike our work, do not in-
volve playing against human opposition to train the bot.

Smith et al. (2007) developed an algorithm called
RETALIATE (REinforced TActic Learning In Agent-
Team Environments) for Unreal Tournament*. The
authors used an RL algorithm called Q-learning
(Watkins and Dayan 1992) for learning winning poli-
cies in the Domination game type. That work was
concerned with co-ordinating the team behaviour, as
opposed to learning behaviours of the individual play-
ers, which is the focus of our work in this paper. They
carried out experiments against three different teams
with varying strategies. The results showed that the
algorithm adapted well to the changing environments.
Auslander et al. (2008) developed an agent called
CBRetaliate in Unreal Tournament. This work aimed
to enhance the use of the RETALIATE algorithm by
introducing the use of Case-Based Reasoning (CBR).
The results showed that the use of CBR could speed up
the adaption process of the RL algorithm.

Di Wang et al. (2009) proposed the use of FAL-
CON (Tan 2004) for developing a computer-controlled
agent in Unreal Tournament 2004. The authors built
two FALCON networks, one for weapon selection and
one for behaviour selection. The bot learned by using
cognitive nodes which could be translated into rules
by associating a state and a particular action with an
estimated reward. The bots created these rules in real
time. The bot was tested by entering it into a 2K
Bot Prize competition in which bots compete in order
to convince human judges that they are human by
engaging in human-like behaviour. While the proposed
bot did not win the competition, it did receive the
highest game score and managed to fool some of the
human judges.

4http://www.unrealtournament2003. com/ut2004/

17

GAME AND DEVELOPMENT SOFTWARE
Unreal Tournament 2004

Unreal Tournament 2004 is a commercial first person
shooter game that was developed by Epic Games and
Digital Extremes. This multiplayer game allows play-
ers to compete with other human players and/or com-
puter controlled bots. The game is built upon the Un-
real Engine which has an open scripting language called
UnrealScript. The availability of UnrealScript, for sim-
ple high-level programming of the game, has lead to a
dedicated following of software modifiers (modders) and
new content developers. Almost everything, excluding
the graphical and physics part of the engine, can be
modified by the user.

Pogamut 3

Pogamut 3° is an open-source platform toolkit for cre-
ating virtual agents in the 3D environment of Unreal
Tournament 2004. It makes use of UnrealScript for de-
veloping external control mechanisms for the game. The
main objective of Pogamut 3 is to simplify the coding
of actions taken in the environment, such as path find-
ing, by providing a modular development platform. The
toolkit integrates the Unreal Tournament 2004 game,
GameBots2004 (Kaminka et al. 2002), the GaviaLib li-
brary (Pogamut Project Core), the Pogamut agent and
the NetBeans IDES. A detailed technical description can
be found in Gemrot et al. (2009).

REINFORCEMENT LEARNING

Reinforcement learning (Sutton and Barto 1998) is a
branch of Artificial Intelligence in which a learner, often
called an agent, interacts with an environment in order
to achieve an explicit goal. The agent receives feedback
for its actions in the form of numerical rewards. The
agent learns from its interactions with the environment
and aims to maximize the reward values that it receives
over time. The agent must make a trade-off between ez-
ploring novel actions and ezploiting the knowledge from
earlier exploration.

The Suitability of Reinforcement Learning

For a human, learning to effectively play a first person
shooter game is a difficult task that takes time and pa-
tience. In order to develop useful strategies and tactics,
the player must observe his or her success by monitoring
the outcomes of their individual actions. Over time,
they build up a knowledgebase of information which
helps guide them towards winning behaviours.

Shttp://diana.ms.mff.cuni.cz/main/tiki-index.php
Shttp://www.netbeans.org

In order to create human-like artificial opponents,
we believe that bots should learn in a manner that
closely mirrors how humans do. They should receive
positive feedback for actions that increase their chances
of winning the game and negative feedback for actions
that contribute to losing the game. In this way, the
bot receives valuable information from its experiences
playing against human players. This information can
then be used to improve its decision making in the
future. We hypothesize that this process will lead
to the creation of challenging, realistic opponents as
opposed to ones that are predictable and either too
strong or too weak.

Sarsa Algorithm

The Sarsa algorithm (Rummery and Niranjan 1994)
is an on-policy temporal-difference (TD) control algo-
rithm. TD methods learn directly from raw experience
without any model of the environment’s dynamics.
Being an on-policy method, it continually estimates
state-action values (Q-values) for a specific behaviour
policy m while, at the same time, changing = toward
greediness with respect to the Q-values. The algorithm,
as described in Sutton and Barto (1998), is shown below.

Algorithm 1 Sarsa, an on-policy TD control algorithm.

Initialise Q(s, a) arbitrarily
repeat
Initialise s
Choose a from s using policy derived from @
repeat
Take action a, observe r, s’
Choose a’ and s’ using policy derived from @
Q(s, a) <
Qs a) + o [r +Q(s) @) — Q(s, a)]
s< s’ a<=a’;
until (steps of single episode have finished)
until (all episodes have finished)

IMPLEMENTATION

In order to embed the Sarsa algorithm into the logic of
the bot, we had to design appropriate states, actions
and rewards. Owur initial implementation places an
emphasis on simplicity. The state, action, and reward
representations that we use are described in the subsec-
tions that follow.

For the experiments reported in this paper, we use Sarsa
algorithm settings of @« = 0.2 and v = 0.8. « is the step-
size parameter, which influences the rate of learning. ~

18

cannotSeePlayer '

&

canSeePlayer

Figure 1: A graphical representation of the state space

is the discount rate, which determines the present value
of future rewards. In our implementation, an episode
consists of one single lifetime of the bot. The episode
ends when the bot is killed. These episodes consist of
several steps in which an action is taken and a reward
and new state are observed. The Q-values are updated
during each step.

States

There are 50 states in which the bot can be in at any
given time. These states depend on whether or not the
bot can see an opposing player, the bot’s current am-
munition level and the bot’s current health. The levels
of health and ammunition have both been discretized to
include 5 levels for each. The values are calculated by
checking what range they currently lie in. For example,
if the bot has health greater than or equal to 100 it will
return 0, if it has health in the range of 80 to 99 it will
return 1, and so on. A 3D representation of the state
space is shown in Figure 1.

Actions

There are eight actions available to the bot. These are
listed and described in Table 1 below. The bot’s logic
method is called four times a second. The Sarsa algo-
rithm is implemented in this logic method; therefore,
actions are selected and evaluated in real-time, with Q-
values being updated simultaneously. Actions such as
jump and dodge must be allowed to complete once they
are started, as a result of the Pogamut logic syncing
mechanism. This prevents the bot, for example, from
starting a jump and then cutting it short and immedi-
ately performing the next selected action. When the bot
is looking for a player or a pick up item, it moves to the
nearest available NavPoint” until an opposing player or
an item is in view. The bot is also designed to only shoot
its weapon when it can see an opponent, to eliminate
pointless random shooting. Every gun in the game has
two different shooting modes; primary and secondary.

"Each map is made up of a series of NavPoints in which the
bot can use for movement.

Action The bot will:
lookForPlayer move through the map stop-
ping when it sees a player.
lookForPickup search for and move to the
nearest visible item.
shootPrimary shoot at any visible player in
primary mode.
shootSecondary shoot at any visible player in
secondary mode.
dodge perform a dodging maneuver
in a random direction.
Jump perform a jump to a random
height.
change Weapon change its weapon to another
from the inventory.
goToLastSeenPlayer | go to the location of the last
visible player.

Table 1: Actions that are available to the bot.

Status Reward:
seeOpposingPlayer +10
hasJustKilledOpposingPlayer | +10000
isCausingDamage 41000
hasDamageBonus 4100
isHealthy +10
hasCollected PickUp +50
1sNotHealthy -10
isColliding -10
hasJustDied -1000
isBeingDamaged -200

Table 2: Rewards received depending on current status.

Rewards

In Reinforcement Learning in general, the design of the
rewards is an important aspect which contributes to the
success of the learner. In our current implementation,
the reward signal is calculated by carrying out a series
of checks to see what the current status of the bot is.
For instance, the bot receives positive reward points for
seeing the opposing player, causing damage, killing, and
so on, whereas is receives negative reward points for be-
ing damaged, having low health, dying, and so on. The
overall reward signal is a summation of the positive and
negative reward points at any given time. A summary
of the reward point system is shown in Table 2. The
rewards are designed to reinforce the use of actions that
result in the opposing player being damaged or killed.

EARLY EXPERIMENTATION

The following section describes some of the experiments
that we have carried out in the current early stages of
this research. We also go on to discuss some of the

19

Figure 2: The Training Day map.

challenges and issues which have been raised during this
time.

Experiment Details

All of the experiments consisted of 1 vs 1 death match
games. The sole objective of this game type is to kill
the opposing player using a variety of guns, some of
which can be picked up from the environment. These
games were played on the smallest map in the game,
called Training Day, which is designed for 2-3 players.
We believe that this is a good map to use as it removes
any large search times between players and encourages
almost constant combat. The layout of this map is
shown in Figure 2.

The first stage of the experimentation involved a human
playing against the reinforcement learning bot, which
will we call Sarsa-bot. Every time the Sarsa-bot died
(one episode) the current state of the Q-table was stored,
so that we could keep track of the learning that was oc-
curing as the Sarsa-bot was gaining experience. Sam-
pling from these human vs bot experiments, we took
the Q-tables from 0 to 140 episodes. The first of these
Q-tables corresponds to when the bot has no experience
at all whereas the last one corresponds to the bot’s Q-
table having played and died 140 times against a human
player. These Q-tables summarise all of the learning of
the Sarsa-bot, and any one of them can be loaded at the
beginning of games in order for the Sarsa-bot to start
the game with some experience. In order to identify if,
in fact, any learning was occurring, we play the Sarsa-
bot at different levels of experience (which we will call
XP8) against a fixed-strategy bot from the game. We
ran 5 games of 20 episodes with different levels of XP.
It is important to note that once we loaded the XP Q-
tables, we froze learning and did not allow the Sarsa-bot
to update the table during the game against the fixed
bot. The results are shown in the following section.

Results

The first measurement that we took from the games was
the total number of actions that the Sarsa-bot managed

81-XP corresponds to the experience gained after dying once

to take during the game. This was an accumulation of
all the steps taken for each episode of the game. These
results are shown in Figure 3. While we can notice an
increase in the total amount of steps during the games
which included XP, the results are not definitive and
could be caused by random elements of the game, the
small sized map and the possibility that the bots could
avoid each other by chance.

Game 5 {140-%P) 1228
Gams 4 (195-%P}

Garce 3 [70-%P] s per Game
Game 2 (35-XP)

1193

Game 1 (No-XP)

1409

Figure 3: Total actions taken during each game.

We also recorded the maximum number of actions
that the Sarsa-bot was able to take during one life
in the game. This essentially corresponds to the
maximum amount of time that the bot was able to
remain alive. These results are shown in Figure 4.
These results show a pattern in which the maximum
time alive is related to the amount of XP that the
bot has. This provides good evidence that the bot
is improving over time. Detailed examination of
performance traces shows that it acquires the ability to
look for a pick up (escaping the situation) when injured.

Game 5 {140-4P]

Game 4 {105-%P}

Game 3 {F0-XP)

Gare 2 (35-XP)

Game 1 {No-XP}

Figure 4: Maximum actions taken for one life.

We recorded the total reward received by the Sarsa-
bot during each game. This value is the total positive
rewards received minus the total negative rewards re-
ceived. These results are shown in Figure 5. The total
reward can be seen to be extremely negative for the bot
without any experience, as expected. The bots that had
XP all had positive total rewards for the game, albeit
in substantially varying degrees. This varies from game
to game based on how many times the Sarsa-bot actu-

20

ally managed to kill the opponent bot, since it receives
a very large reward for killing. As noted earlier, the Q-
tables in these experiments are frozen, so the Sarsa-bot
does not have the ability to alter its behaviour in these
games. The fact that all of the Sarsa-bots with some ex-
perience end up with positive total awards demonstrates
that learning is occurring. There are, however, some is-
sues of learning while playing against a human player as
we will discuss later.

Gamé S (140%P) © 390

Total Reward

10000 20000 30000 40000 50000

Figure 5: Total reward accumulated for each game.

The median reward per game is shown in Figure 6. The
values, which are all negative, are significantly reduced
when the Sarsa-bot has past experience. Once again,
this shows that learning is occurring. Given the element
of randomness associated with FPS games, we would not
expect these values to uniformly decrease as experience
in increased; in future work, we plan to have a much
larger number of rounds in each game, which we expect
will yield more uniformly progressing results.

Discussion

One challenging aspect of this work is in deciding how
best to evaluate the performance of the proposed bot.
Some issues arise when we begin to train the bot by play-
ing many games against a human player. The human
player for instance, can quickly became familiar with the
game controls and learn how to play well. This can lead
to instances in which the human player “goes easy” on
the bot in order to give it more of a chance when, in fact,
the bot is making poor decisions and inadvertently be-

MedianiReward

-1600 -13090 -1200 -1000 -800 -600 -400 -200 a

Figure 6: The median reward per life during each game.

ing rewarded for them. Also, if the human player takes
a ruthless approach then they can kill the bot several
consecutive times without giving it a chance to learn,
for example, that shooting a player on sight is a good
strategy. From our experiences we now believe that ex-
periments involving human opposition would need to be
both extensive and varied. Connecting the bot, as if
it was human, to an online network could be a useful
approach in which we plan to investigate. However, we
were successful in using a fixed-strategy bot as a bench-
mark against which to assess the learning progress of
the Sarsa-bot.

CONCLUSIONS

The results presented here are from initial experiments
that took place in order to validate the use of a
reinforcement learning algorithm into the logic of an
agent in a FPS game. These results have given rise to
very interesting questions about meaningful evaluation
procedures and complex implementation issues.

In conventional RL settings, the agent can choose a
single action in each state, which leads to a new state
and a possible reward. However, in the setting we
are considering, the bot must make decisions in real
time (at a rate of 4 timesteps per second) and when
it decides to perform an action, it may take several
timesteps to complete, such as performing a dodge or
a jump. While one action is underway, the bot can
decide to take another action, so that two actions may
continue at once. Therefore, when a reward is received,
it may not relate to the most recently taken action. For
example, if the bot accidently jumps off of a ledge, then
fires its gun in the next timestep, and subsequently dies
from the jump, it will incorrectly associate the negative
reward from dying with the action of firing the gun.

While we have been able to demonstrate some success
in designing a bot that can learn from experience as it
plays against a human, we believe that it will be nec-
essary to extend the standard reinforcement learning
framework to deal with the real-time, multiple-action,
complex-reward setting that is required for these games.
To the best of our knowledge, this has not already been
done. Such developments would also be of value to other
real-time scenarios in which reinforcement learning can
be applied.

FUTURE WORK

As well as extending the standard reinforcement learn-
ing framework to suit our needs, we also aim to define
improved methods for evaluating the behaviour of the
bot, and in particular for evaluating user enjoyment of
games played against the bot. One possibility that we
will consider is to carry out blind tests using a large va-

21

riety of human players with differing skill levels, using
Amazon’s Mechanical Turk?. Games would be set up
in which the human players would play against regular
bots, the Sarsa-bot and other human players without
knowing the true nature of their opponent. They could
then rate the experience of playing each of the games
and the results could be interpreted accordingly. Fu-
ture work will involve designing such experiments.

REFERENCES

Auslander B.; Lee-Urban S.; Hogg C.; and Munoz-Avila
H., 2008. Recognizing the enemy: Combining rein-
forcement learning with strateqy selection using case-
based reasoning. In Advances in CBR. Springer.

Di Wang B.S.; Tan A.H.; and Ng G.W., 2009. Creat-
ing human-like autonomous players in real-time first
person shooter computer games. In TAAT 09. 173-178.

Gemrot J.; Kadlec R.; Bida M.; Burkert O.; Pibil R.;
Havlicek J.; Zemcak L.; Simlovic J.; Vansa R.; Stolba
M.; Plch T.; and C. B., 2009. Pogamut 38 Can As-
sist Developers in Building AT (Not Only) for Their
Videogame Agents. In Agents for Games and Simula-
tions, LNCS. Springer, 1-15.

Kaminka G.A.; Veloso M.M.; Schaffer S.; Sollitto C.;
Adobbati R.; Marshall A.N.; Scholer A.; and Tejada
S., 2002. GameBots: a flexible test bed for multia-
gent team research. In Communications of the ACM.
vol. 45, 43-45.

McPartland M. and Gallagher M., 2011. Reinforcement
Learning in First Person Shooter Games. In IEEE
Tr. on CIG. vol. 3, 43-56.

Rummery G. and Niranjan M., 1994. On-line Q-learning
using connectionist systems. Technical Report, Cam-
bridge University.

Russell S. and Norvig P., 2010. Artificial Intelligence: A
Modern Approach (Third Ed.). Prentice-Hall, Upper
Saddle River, NJ.

Smith M.; Lee-Urban S.; and Munoz-Avila H., 2007.
RETALIATE: Learning winning policies in first-
person shooter games. In AAAI 07. vol. 22.

Sutton R.S. and Barto A.G., 1998. Reinforcement
Learning: An Introduction. MIT Press.

Tan A.h., 2004. FALCON: a fusion architecture for
learning, cognition, and navigation. In IEEE IJCNN.
3297-3302.

Watkins C.J.C.H. and Dayan P., 1992. @Q-learning. In
Machine Learning. Springer, vol. 8, 279-292.

Westra J., 2007. Evolutionary Neural Networks Applied
in First Person Shooters. Master’s Thesis, University
Utrecht.

9nttps://www.mturk. com/mturk/welcome

PLAYER-TRACED EMPIRICAL COST-SURFACES FOR A* PATHFINDING

Sam Redfern
National University of Ireland, Galway

Galway
Ireland

E-mail: sam.redfern@nuigalway.ie

KEYWORDS

A¥* Pathfinding, Player Modelling, Player Tracing
ABSTRACT

This paper discusses the use of empirical cost-surfaces
derived from substantial amounts of player-traced
movements in an online vehicular combat game, for the
purposes of improving A* pathfinding by Al vehicles. The
fundamental concept is that we derive navigational meshes
from human-player movements, with each node weighted by
frequency of use. Our goals include the improvement of path
travel times, aesthetic improvements, and the reduction of
damage sustained while travelling across the map.

The results presented include quantifiable timings and
observational characteristics. Quantifiable improvements
include both algorithmic efficiency and travel time
efficiency, while observations include the improved ability to
avoid risky terrain features as well as other subtle human-like
behaviours.

A best-performing non-linear cost function for the A*
algorithm, based on player data, is suggested. Continued and
future work on the Al in the game is discussed.

INTRODUCTION

This paper discusses the development of empirically-derived
(player-mimicking) cost surfaces for Al pathfinding in the
online vehicular combat game "Darkwind: War on Wheels".
This game has been developed by the author since 2005 and,
since it provides a substantial player-base and thousands of
live games per week, is an ideal test-bed for Al research
(Redfern 2007, 2010).

Although pathfinding in general, and the A* (“A Star”)
algorithm in particular, are well established techniques in
computer games, improvements continue to be proposed in
terms of aesthetics (Coleman 2009) — producing believable
'human-like' routes — and in experimental refinements for
complex environments (Hale et al. 2010). The pathfinding
requirements of typical open-terrain First Person Shooter
(FPS) and Real Time Strategy (RTS) games, are
fundamentally simpler than those of a vehicular combat game
with realistic physics, tyre and chassis degradation, and
collision damage models. In Darkwind, a car's momentum is
critically important to its tactical movement and performance
during combat; cars receive damage from poor driving and
poor surfaces; various surface characteristics exist (e.g. sand,

22

dirt, tarmac); and, effective routes across the terrain require
cover from enemy fire. Furthermore, it is often appropriate to
maintain a safe distance around dangerous obstacles such as
cliff edges rather than choose an absolute shortest route.

Our core hypotheses are that (i) there are a number of subtle
factors related to both effectiveness and aesthetic value,
which define optimal routes around the terrains, and that (ii)
it may not be feasible to deal with these factors
algorithmically. We aim to achieve efficient, believable
(‘human-like') routes which navigate terrain features and
surface types sensibly, are safe from collision damage and,
where possible, enemy fire. Since Darkwind is a well
established online multiplayer game, it provides substantial
amounts of empirical evidence about player-chosen routes.
This paper describes the use of this evidence to improve Al
pathfinding.

A* PATHFINDING

The A* algorithm was first proposed in 1968 (Hart et al.
1968) and has been the most widely used pathfinding
technique by games programmers, due to its effectiveness
and efficiency. Numerous introductory explanations are
available in the literature; a particularly good online
description, for example is (Lester 2005).

The fundamental operation of A* is to traverse a map by
exploring promising positions (nodes) beginning at a starting
location, with the goal of finding the best route to a target
location. Each node has four attributes other than its position
on the map:

» g is the cost of getting from the starting node to this
node
h is the estimated (heuristic) cost of getting from
this node to the target node. It is a best guess, since
the algorithm doesn't (yet) know the actual cost
fis the sum of g and 4, and is the algorithm's best
current estimate as to the total cost of travelling
from the starting location to the target location via
this node
parent is the identity of the node which connected to
this node along a potential solution path

The algorithm maintains two lists of nodes, the open list and
the closed list. The former consists of nodes to which the
algorithm has already found a route (i.e, one of its connected
neighbours has been evaluated or expanded) but which have
not themselves, yet, been expanded. The latter (closed) list
consists of nodes that have been expanded and which
therefore should not be revisited.

Progress is made by identifying the most promising node in
the open list (i.e., the one with the lowest f value) and
expanding it by adding each of its connected neighbours to
the open list, unless they are already closed. As nodes are
expanded, they are moved to the closed list. As nodes are
added to the open list, their f, g, / and parent values are
recorded. The g value of a node is, of course, equal to the g
value of its parent plus the cost of moving from the parent to
the node itself. If a node is already on the open list when it is
evaluated, its £, g, & and parent values are only updated if the
new f value is lower than the previously recorded one — this
means a better path to the node has been found than the
previous one.

The algorithm concludes when the target node is found, or
when the open list is empty — the latter case means that a path
does not exist from source to target, which is possible when
you consider that some positions on the map may be non-
traversable (e.g., mountains, lakes, walls, buildings).

There are various ways of calculating the cost of moving
from a node to a connected node — the simplest and most
common is to use Euclidean distance. It is also very common
to take into account factors such as terrain cover or elevation
changes. By applying a higher cost to difficult or steep
terrain, the algorithm will be encouraged to find cheaper
routes around these features rather than simply finding the
shortest path. The current paper is primarily concerned with
the identification of an appropriate mechanism for
calculating costs, based on recorded player behaviour.

The choice of heuristic function /(n), which estimates the 4
value for a node (the cost of getting from the node to the
target location), has a strong influence on the optimality and
accuracy of the identified solution. If () is always lower
than (or equal to) the cost of moving from a node to the
target, then A* is guaranteed to find a shortest path. The
lower A(n) is, the more nodes A* expands, making it slower.
If h(n) is sometimes greater than the cost of moving from # to
the goal, then A* is not guaranteed to find a shortest path, but
it can evaluate faster (Patel, 2011). In practice, therefore, it
may be possible to dynamically modify the heuristic function
in order to trade-off speed and accuracy as required during a
game, if this is appropriate to the game.

PREVIOUS WORK

In recent years, the research literature has increasingly
stressed the fact that game Al is not simply about winning the
game or discovering the most optimal solution, but more
critically is about making the game fun for the human player.
From a pathfinding perspective, this means avoiding
mechanical-looking routes in favour of believable, human-
like ones — straight lines look better and more plausible, for
example, than routes which zigzag and track around
obstacles (Coleman 2009). Rabin (2000) uses splines and
hierarchical approaches to introduce aesthetics into routes,
while Higgins (2002a) and others use a second pass through
a route in order to apply "aesthetic corrections". Coleman
(2007) proposes a metric based on second-order derivatives
and obstacle tracking in order to quantify the "beauty
intensity" of paths, and later refines this approach to include

23

fractal dimensions and rescaled range analysis (Coleman
2009).

John et al. (2008) propose a novel approach based on
probabilistic pathfinding to produce varied high-quality
routes and thereby improve game replayability — their
examples presented provide a convincing argument for this
approach in a team-based AI combat in a maze-like
environment.

Few previous papers have discussed the use of recorded
player behaviours in order to train Al systems — one
exception is a case-based reasoning system developed to
learn high-level strategies by mining recordings of expert
human players playing a real time strategy game (Ji-Lung and
Chuen-Tsai 2008). No previous work that we are aware of
has taken this approach for navigation purposes. However,
the increasing industry emphasis on logging player
interactions and movements for other purposes, such as
player category modelling and game personalization
(Thawonmas et al 2009; Oda et al. 2009) is expected to be
reflected in an increased research interest in this area. Online
games are particularly suited to this approach, since the
server can easily record data centrally, and since regular
updates to the game are a normal part of the lifecycle after
initial release: we can gather data over a period of time and
use this to incrementally improve the Al in the live game.

One technique of interest is the 'heatmap' which can be used
to visualise regular patterns of player behaviour over a
spatial domain (Youngblood et al. 2011). Related work also
includes the use of graph-based discovery algorithms to
perform supervised learning (Cook et al., 2007), and the
dynamic modification of navigation meshes based on the
experiences of Al agents in complex game worlds (Hale et
al., 2010).

EMPIRICAL COST SURFACES FROM PLAYER
TRACES

Since 2008 we have been recording player movements on the
game maps of Darkwind, and constructing A* nodes from
these. However, a voting system was not established until
June 2010: prior to this our data simply recorded where
player vehicles had ever safely travelled. We now have 12
months of voting data collected: each time a node is revisited
safely, a vote is accumulated for it. There are an average of
about 3000 combats played per week, and an average of
about 4 player-controlled vehicles per combat, spread across
about 40 game maps. Vehicles typically travel 1-2km during
a combat.

In order to ensure that we record only suitable votes, a 5-
second cache of recently visited nodes is stored for player
vehicles; if any damage is received due to collisions with
terrain or other static obstacles, the cache is emptied without
committing its data.

Figure 1 provides a visualisation of the A* vote nodes stored
in the region of a desert mountain in the game. Each blue
square represents a node, with both size and brightness
proportional to the relative number of votes accumulated at
that node. In this case, the cost of travelling to a node which

has accumulated x votes, from a previous node at distance d
metres, is taken to be ¢ / \/; .

Figure 1: A Visualisation of the A* layer—Traced (Vote)
Nodes Stored in the Region of a Desert Mountain in the
Game

ADDITIONAL MODIFICATIONS TO THE A*
ALGORITHM

Our implementation of the A* algorithm includes a number
of modifications to improve efficiency and suitability for our
requirements.

In order to provide rapid identification of the node closest to
a world co-ordinate, nodes are pre-sorted into a world
location-indexed hash table. This is implemented as a two-
dimensional array of pointers to nodes, with one dimension
indexed as a binned world x coordinate, and the other
dimension indexed as a binned world y coordinate.

Long distance searches are calculated using a pessimistic
(high) heuristic — speeding up the search substantially, while
accepting sub-optimal routes. Since the Al drivers typically
re-evaluate their paths every few seconds, a guaranteed
shortest route is not needed on long routes.

We also maintain a sorted shortlist of 'promising' open nodes
(i.e., those with the lowest f values), which allows rapid
identification of the next node to expand without the need to
maintain all open nodes in a sorted list. When the shortlist is
emptied, the entire open list is searched in order to refill it,
and if a newly opened node has a lower fvalue than the worst
of the 'promising' nodes, it is added to the 'promising' list.
This latter performance improvement is discussed in
(Higgins 2002b).

We also treat separately by direction the edge (connection)
between two nodes — since in rough terrain a path may be
popular in one direction but unpopular (or impossible) in the
other. In figure 1, for example, the nodes on the steep sides
of the mountain are effectively only connected in the
downwards direction.

EVALUATION OF PLAYER-TRACED VERSUS
ELEVATION-BASED COSTING

The most obvious, and often well-performing function for
algorithmically defining a cost-surface is the slope (local

24

change of elevation) of the terrain. For purposes of
comparison with our votes-based function, we therefore
computed costs at each node based on the average absolute
difference between that node's z position (i.e., on the world's
'up' axis), and the z position of its connected neighbours.
Figure 2 provides a visualisation of this scheme: the size of
the squares is inversely proportional to the node's cost.

Figure 2: A Visualisation of the A* Elevation-Based Nodes
Calculated Near the Same Desert Mountain

In many cases, the routes obtained when using elevation-
based costing appeared very similar to those taken by the
player-tracing approach. Although there were some
exceptions, the general rule upon running time-trials was that
the player-traced route was faster, on average by about 3%.

More importantly, however, the player-traced routes were
frequently safer: elevation-based costing tended to produce
routes closer to dangerous features such as cliff edges and
trees. In figure 3, the route taken by the elevation-based
approach was too close to the cliff, and the AI vehicle
tumbled over the edge; in figure 4, the route taken through
the garden caused a collision with both fencing and a tree,
leading to a poor travel time. In figure 5, the route taken
towards the town gates, while comparably fast, caused
damage to the vehicle as it collided with the terrain while
negotiating the small hills.

The game map illustrated in figure 4 consists of a ruined
town with a good, wide road through its centre. The
accumulation of votes indicates a very strong player
preference for driving along the centre of the road. Players
tend to drive fast on this road, and want to avoid collisions
with fences or trees if their car spins or loses control due to
weapons fire. This is a good example of subtle player
behaviour that would be very hard to produce with
algorithmic Al

In terms of aesthetics, sometimes the elevation-based routes
looked unnatural, especially on flat ground where features
such as pits were 'edge-hugged' rather than driven around in a
natural-looking way. It is probably also useful to note that,
due to the underlying physical simulation, vehicles in the
game are incapable of following zigzag paths due to their
momentum — therefore the unsmoothed appearance of the
routes illustrated in the images in this paper do not cause a
problem aesthetically in the live game: we had no need to
perform 'aesthetic improvement' calculations on them.

Route \

R (evation

Figure 3: Elevation (Red) and Player-Traced (Green) Routes Near a Cliff

Route

Figure 4: Elevation (Red) and Player-Traced (Green) Routes Around a Ruined House and Fenced Garden

S

Figure 5: An Elevation (Red) Route Compared with Two Player-Traced (Green and White) Routes Which Use Different Non-
Linear g (Cost) Functions

25

We frequently found the player-tracing costing approach to
be more computationally efficient than the elevation
approach, since it may direct the search far more tightly,
expanding less nodes. This is clearly because the elevation
approach often produces numerous almost-identically-
scoring nodes close together. From a number of randomly-
chosen tests across several maps, the performance benefit
versus elevation-based costing ranged from zero (on hilly
maps) to several hundred percent (on flat maps).

DEFINING THE A* PARAMETERS

We experimented with a variety of g cost functions, which is
used to define the cost of travelling to a node based on the
number of votes it has received. On safe, wide roads, it was
found that a function which discriminated weakly between
low amounts and high amounts of votes was more effective:
for example in figure 5, the function g=d/ x0'25 produced
a quicker (to travel) route than our generally best-performing
function g=d / x0'5 by about 4% - weak discrimination
has a tendency to choose a shorter path towards the inside
edge of corners. However, there is clearly a trade-off
between speed and safety, and on routes such as the
mountain in figure 1, the function g=d / x0'25 performed

poorly due to routing the car over rough terrain too close to
the base of the mountain, and losing momentum: in this case,

g=d/ xO‘S was quicker to travel by about 11%.

We found, again with some exceptions, that functions which
discriminated very strongly between low amounts and high
amounts of votes, such as g=d [x or g=d/ x2 , tended
to produce erratic behaviours as the Al focused too strongly
on finding 'popular' nodes, to the detriment of the overall
route. This is clearly a complex situation, where factors such
as the absolute number of votes cast on the map and the
frequency with which games have been played on the current
section of the map will have an effect. The general rule over
50 randomly-chosen test routes on various maps was that
g=d/ xO‘S performed the best, on average, in terms of
travel time, safety, and aesthetic value.

In order ensure an optimal path, we generally use a highly
optimistic heuristic: we calculate # = d * b, where d is the
Euclidean distance from the node to the target location and b
is the cost attributed to the best-scoring node on the map. As
mentioned previously, we do however vary this dynamically:
a more pessimistic heuristic is used for long paths, in order to
speed up the search process by expanding fewer nodes far
away from the target location. To achieve this, we simply
raise d to the power of 1.5 if it is larger than SOm.

CONCLUSIONS AND FUTURE WORK

We have described a novel use of player-traced navigation
information as part of a voting system to inform cost-surfaces
in Al A*-based navigation in a vehicular combat game with
accurate physics. Experimental tests have validated the
superiority of this approach over a cost-surface
implementation based on local elevation changes.

26

We have also observed subtle behaviours in the player-traced
approach, for example the avoidance of cliff edges and the
preference for wide, flat routes rather than narrow gaps
between terrain features. While we acknowledge that
algorithmic terrain analysis could (with effort) provide some
of these behaviours, our contention is that every subtlety of
effective terrain navigation in this specific game has already
been taken into account implicitly in the player traces.

This paper describes what is essentially a work in progress;
although results are very promising and indeed Darkwind
players report that they have witnessed a substantial
improvement in Al navigational behaviour since the new cost
function was implemented, we still have more work to do.

We intend to work on algorithmic terrain analysis, in order to
produce comparable behaviours to those witnessed by the
player-tracing Al. This will allow for more challenging (and
therefore meaningful) comparisons between player-traced
navigation behaviour and purely algorithmic Al It will also,
we hope, provide some useful algorithms of interest to Al
navigation systems which cannot benefit from the wealth of
player data that Darkwind has available — for example,
offline single-player games and games with player-produced
maps.

This paper has focused purely on the low-level navigational
pathfinding task of the game AI — little has been said about
the higher-level decision making which decides what the
actual target locations for travel should be. The current
situation in Darkwind is that a mixture of algorithmic Al
techniques are used by a finite-state machine to, ultimately,
produce these target locations. These techniques include
simple terrain analysis (e.g. looking for 'sniper' points), group
behaviours (such as re-grouping when separated, or
scattering when receiving heavy ballistic damage), and
outflanking behaviours which identify and respond to a 'gun
line' by approaching enemies from the side. The latter tactic
is in direct response to a favourite player technique in
Darkwind by which a number of heavy vehicles form a static
line and ambush the AI vehicles at choke points in the
terrain. These techniques work reasonably in many cases, but
there is generally a lack of high-level strategy or group co-
ordination. The ability to navigate well across the terrain is
not much use if you don't know where you want to go in the
first place!

Generally, higher-level decision making needs to be
improved in Darkwind, with influence maps (Tozour 2001) a
likely candidate to supplement or replace the current rules-
based Al. We have recently started gathering data for 'danger’
influence maps, by logging the source and target positions of
all successful gunfire attempts, along with the type of weapon
and gunnery skill of the game character firing the weapon.
Not only will this provide the data needed for 'danger'
influence maps, but will also allow us to investigate our
belief that gunfire avoidance is one of the subtle behaviours
embedded in the player-traced data described in this paper.
Additionally, we intend to experiment with an interesting
approach to combining line-of-sight 'threats' into influence
maps and thereby directly informing the cost function in A*
path finding, as described in (van der Sterren 2002).

REFERENCES

Coleman, R. 2007. "Operationally Aesthetic Pathfinding". In
Proceedings of the International Conference on Artificial
Intelligence, 159-163.

Coleman, R. 2009. "Long Memory of Pathfinding Aesthetics".
International Journal of Computer Games Technology 2009, 9
pages.

Cook, D.J; L.B. Holder, and G.M. Youngblood, 2007. "Graph-
Based Analysis of Human Transfer Learning Using a Game
Testbed". IEEE Transactions on Knowledge and Data
Engineering, 19(11), 1465-1478.

Hale, D.H; G.M. Youngblood and N.S. Ketkar, 2010. "Using
Intelligent Agents to Build Navigation Meshes". In
Proceedings FLAIRS Conference 2010.

Hart, P.E.; N.J. Nilsson and B Raphael. 1968. "A Formal Basis for
the Heuristic Determination of Minimum Cost Paths". IEEE
Transactions on Systems Science and Cybernetics 4(2), 100—
107.

Higgins, D. 2002a. "Pathfinding Design Architecture". In A/ Game
Programming Wisdom, S. Rabin (ed.), 133-145. Charles River
Media.

Higgins, D. 2002b. "How to Achieve Lightning-Fast A*". In A/
Game Programming Wisdom, S. Rabin (ed.), 114-121. Charles
River Media.

Ji-Lung, H. and S. Chuen-Tsai. 2008. “Building a player strategy
model by analyzing replays of real-time strategy games”. /[EEE
World Congress on Computational Intelligence, 3106-3111.

John, T.C.H; E.C. Prakash and N.S. Chaudhari, 2008. "Strategic
Team Al Path Plans: Probabilistic Pathfinding". International
Journal of Computer Games Technology 2008, 6 pages.

Lester, P. 2005. “A* Pathfinding for Beginners”. Retrieved 17"
June 2011,
http://www.policyalmanac.org/games/aStarTutorial. htm

Oda, J; R. Thawonmas and Chan, K-T. 2009. “Comparison of User
Trajectories Based on Coordinate Data and State Transitions”.
Proc. Fifth Int. Conf. On Intelligent Information Hiding and
Multimedia Signal Processing, 1134-1137.

Patel, A. 2011. "Heuristics". Retrieved 13" June 2011,
http://theory.stanford.edu/~amitp/GameProgramming/Heuristics
-html

Rabin, S. 2000. "Aesthetic Optimizations". In Al Game
Programming Gems, M. DeLoura (ed.), 264-271. Charles River
Media.

Redfern, S. 2007. "Psychic Software and Darkwind: War on
Wheels." New Age Gamer Magazine 10(6), 32-35.

Redfern, S. 2010. "Evolving Racetrack Knowledge in a Racing
Game". In Proceedings AICS 2010, 220-229.

Thawonmas, R.; J. Oda and K-T. Chen. 2009. “Analysis of User
Trajectories Based on Data Distribution and State Transition: a
Case Study with a Massively Multiplayer Online Game Angel
Love Online”. Proc. GAME-ON2009, 56-60.

Tozour, P. 2001. “Influence Mapping” In Game Programming
Gems 2, M. DeLoura (ed.), 287-297. Charles River Media.

van der Sterren, W. 2002. “Tactical Path-Finding with A*”. In
Game Programming Gems 3, D. Treglia (ed.), 294-306. Charles
River Media.

Youngblood, G.M.; F.W.P. Heckel; D.H. Hale, and P.N. Dixit,
2011. "Embedding Information into Game Worlds to Improve
Interactive Intelligence". In Artificial Intelligence for Computer
Games, P.A. Gonzélez-Calero and M.A. Gémez-Martin (eds.),
31-53. Springer, New York.

27

BIOGRAPHY

SAM REDFERN attended the National University of
Ireland, Galway, where he studied for a B.A. in English and
Archaeology (1992), followed by an M.Sc. (1994) and Ph.D.
(1998) in Information Technology. He has worked as a
lecturer in Galway since 1996, and has published in the areas
of digital image processing, various types of A.IL, graphics,
collaborative virtual environments and serious games. He has
been an independent game developer in his spare time since
1984, with games published on the BBC Micro, Amiga, PC,
Mac, iPhone and Android.

RACING GAME ARTIFICIAL INTELLIGENCE USING EVOLUTIONARY
ARTIFICIAL NEURAL NETWORKS

C Siitheyl Ozveren
University of Abertay, Dundee, UK
c.s.ozveren@abertay.ac.uk

KEYWORDS
ANN, EANN, NEAT, rtNEAT, HyperNEAT, Al Agent,
ML, Racing Game Simulator, Neuro-Evolution

ABSTRACT

This paper investigates the viability of using an
Evolutionary Artificial Neural Network (EANN) approach
as an alternative to standard Artificial Intelligence
techniques used in a racing game. Use of Neuro-Evolution
of Augmenting Topologies (NEAT) algorithms is compared
to a standard Al technique which employs steering
behaviours and a finite state machine to navigate an Al-
driver agent around a circuit. We present a comparison
between the NEAT algorithm and the standard Al
technique described. Our initial literature review of the
different available EANN approaches and the reasons for
the choice of the NEAT algorithmic approach for our
investigations is followed by the description of the
implementation of our modified NEAT algorithm based
EANN Al-driver agent and the racing simulation used for
testing. Finally comparison of the results achieved with the
implemented NEAT algorithm and the standard Al
technique is followed by our conclusion on the comparative
effectiveness of the NEAT and standard Al-driver agents
and how our reported results can be further improved by
future studies

INTRODUCTION

This paper focuses on developing a racing game Artificial
Intelligence (AI) that uses an Evolutionary Artificial Neural
Network (EANN) to train a racing game driver Al. This is
then compared to a standard technique used in racing games
to see how efficient, competent and viable EANN technique
is from a game developer’s perspective.

Throughout the history of video games Artificial
Intelligence (AI) has played an important part in their
success as evidenced from early games such as Space
Invaders [Taito, 1978] and Pac-Man [Namco, 1980].
Although the AI was simplistic still the games were
compelling, addictive and a huge success earning large
amounts of revenue [Kendall, 2008; Goldberg].

Presently increasing emphasis is given to the creation of
better (more advanced) Al. Games developers have been
looking for new techniques to implement from academic Al
research to improve the Al of their game agents [Rabin
2006], partly in response to the game playing public
wanting more sophistication within the games they play
[Baekkelund 2006, p. 78]. Focusing on learning algorithms

Victor Bassilious
University of Abertay, Dundee, UK
v.bassilious@abertay.ac.uk

28

Hamid Homatash
Outplay Entertainment, Dundee, UK
hamidhomatash@gmail.com

Machine Learning (ML) is seen as one of the ways forward.
There is currently much research going into ML algorithms
to see how they can be implemented to produce Al agents
that can adapt to their environments, while remaining
challenging opponents to the player [Rabin, 2004, p. xii]
yet producing challenging, varied and fun game play.

One genre of commercial video games that has successfully
used ML techniques is the racing genre. A good example of
this is Colin McRae Rally 2.0, which successfully used
Artificial Neural Networks (ANN) to help Al agents learn
to drive around a circuit in an offline supervised process
[Hannan, 2001]. A criticism often cited against current
racing games is that their difficulty level is often too high or
low for the player of the game and has sometimes caused
games to be patched after it has been released to fix this
problem [Erickson, 2008]. Instead of fixing this problem
after a game’s release a ML technique could be used to
dynamically adjust the difficulty level of the Al agent to
meet the player’s demands while allowing the outcome of
races to be closer between the player and computer
controlled opponents creating more tension and hence more
fun.

Even though the racing game genre has quite successfully
used ML techniques in the past, not many different self
learning techniques have been explored [Woodcock, 2007].
On top of this there does not seem to be a great deal of
research into racing game Al that learns. This is evident
when compared to how much research and literature is
focussed on ML methods in other game genres such as the
real-time strategy genre [Lucas, 2003]. There is however a
lot of research from academia in computational intelligence
techniques on ML about racing robots and vehicle control.
A lot of this research is dedicated to improving vehicle
control using Evolutionary Artificial Neural Networks
(EANN) [Togelius, 2006].

An EANN is an evolutionary algorithm that operates on its
contained ANNs to produce a solution to a modelled
problem [Dewri, 2003]. The algorithm uses some
mechanisms inspired by biological evolution such as
reproduction (crossover), mutation and natural selection
[Buckland, 2002, p. 96-116]. In the context of ANNs an
evolutionary algorithm can be used to mate different ANNs
that contain different connection weights and or different
topologies to create new and different ANNs [Dewri,
2003]. By combining both ANNs and evolutionary
algorithms together, an EANN is produced.

EANNSs are an unsupervised ML technique that are good in

learning to control vehicles even when the exact physics

model used by the vehicles is not known or very complex,

such as in simulating radio controlled cars [Togelius, 2006]

and racing cars [Loiacono, 2008]. They can also avoid

some of the problems that supervised ML techniques have.

For example, in Colin McRae Rally 2.0 an ANN was used

to make the Al learn the optimal racing line for the physics

model used. The problem with using a standard ANN is that
as it is a supervised learning technique an external teacher
must train the ANN to actually drive a racing car. This is
usually achieved through the play testers of the game by
driving around every racing circuit many times. The data
collected by this process is then supplied to the ANN to
make it learn; this is a very time consuming process
[Schwab 2000, p. 460]. To avoid this problem an
unsupervised learning technique such as an EANN can be
used which means that the Al will “learn” how to race
around a circuit automatically without any external input
outside of the simulation which also have been shown to be
capable of producing complex Al behaviours by utilising
this self learning approach [Parker, 2007]. An advantage of
using such an EANN-AI is that a racing driver could
dynamically modify its driving ability according to how the
human opponent is doing, or to any other external race
conditions. However it is not worth developing an EANN if
it cannot at least compete with the traditional racing game

Al techniques within its ability to race. This is because an

EANN could then not compete against a good human

opponent, which would render the application of this

technique useless. In our investigations we have tried to
answer the following questions:

1. How computationally efficient is the EANN Al
compared to standard racing game Al techniques?

2. How effective is the EANN Al at racing around a
circuit compared to standard racing game Al
techniques?

3. How effective will the EANN Al be able to race across
multiple circuits? Therefore how good is its ability to
generalise?

We believe that the answers to the above questions will

allow games developers to make an informed choice about

whether or not to try and implement an EANN in a racing
game Al; for the desired benefits an EANN can provide
over conventional racing game Al.

EVOLUTIONARY ARTIFICIAL NEURAL

NETWORK ALGORITHMS

A number of EANN algorithms were considered when

deciding what particular algorithm was best suited to the

task of evolving an Al controller to race around a circuit.

The key qualities to be considered that the algorithm must

meet were:

1. How easy does the algorithm generalise?

2. How long does the algorithm take to evolve a
competent solution?

3. How computationally efficient is it?

4. How difficult or easy is it to implement?

29

Although there are numerous EANN algorithms, also
referred to as Neuro-Evolution (NE) algorithms there are
only a few main NE algorithms that would be suitable for
the task of learning to drive. The NE algorithms we
considered in some detail were:
1. Conventional Neuro-Evolution (CNE) [Floreano, 2008]
2. Cooperative Synapse Neuro-Evolution (CoSyNE)
[Gomez, 2006]
3. Neuro-Evolution of Augmenting Topologies (NEAT)
The main benefit of NEAT over other NE algorithms is that
NEAT evolves the topology of the ANNs to yield an
optimal topology [Gomez, 2008; Stanley, 2005]. This is
highly beneficial as investigating through trial and error to
find the best topology takes a considerable amount of time
and might not be even possible depending on how complex
the problem is [Dewri, 2003]. NEAT should also produce
the minimal topology needed in order to solve the problem
at hand, which means an evolved solution should be as
computationally efficient as the problem allows.

Variants of NEAT

There are two other variations of the NEAT algorithm
called Hypercube NEAT (HyperNEAT) and Real-time
NEAT (rtNEAT). HyperNEAT allows efficient
computation on thousands of neurons at once [Gauci,
2008]. This is not appropriate for this project as there are
not a large amount of inputs into the ANNs. rtNEAT on the
other hand would be directly applicable to this project since
it is essentially the same NEAT algorithm as above, but it
operates in real time. In other words, the evolution process
continues as the actual game is played. However, there are
two main issues with this. The first is that it requires the
algorithm to evolve during actual races and not just at the
end of these races. This means that the game design
becomes a lot more complex in order to incorporate the
algorithm, especially if the program has not been designed
with this in mind [Vanik, 2006]. The second issue which is
more serious is that tNEAT has a patent pending. This
means that in order to use the algorithm for commercial use
a license to use it must be purchased, which may lead to
undesirable financial pressures.

Standard Racing AI Techniques

Standard racing Al techniques usually comprise of two
main components for racing around a circuit. These are a
way for switching between driving states such as a finite
state machine, and a steering behaviour for guiding the car
around the circuit. A popular technique used to control a
computer controlled racing car is to represent the circuit’s
best racing line as a curve and have a steering behaviour to
follow the racing line [Charles, 2003]. This is usually
combined with a finite state machine or rules based system
in order to switch between different steering algorithms for
different behaviours, such as aggressive, pacifistic and
recovery driving [Azdima, 2001]. There are also variations
of this technique that do not use an optimal racing line.
These usually use the centre of the circuit and the curvature
of the circuit at the current point to compute where the Al
should drive to [Azdima, 2001]. This has the advantage that

no racing line information needs to be specified, but it
usually means that the optimal racing line is not represented
correctly. This can lead to an Al that is not as proficient at
driving as the technique that specifies a predefined racing
line.

Summary of Techniques

We have concluded from our literature review that the
EANN algorithm is most applicable to use in a racing game
Al is NEAT since the NEAT algorithm evolves the
topology of the contained ANNSs and not just the connection
weights. This means that a considerable amount of time
will be saved from a trial and error approach to finding the
best ANN topology. Although the NEAT algorithm is not
the quickest at evolving, it should still be fast enough for
this project. Therefore the chosen EANN algorithm to use
will be NEAT.

As for the comparison technique a standard finite state
machine combined with a set of steering behaviours that
does not use a predefined racing line will be used for
comparison. The reason why the technique will not use a
predetermined racing line is based on the decision of the
testing application that is used (see Testing Application).
This testing application comes with a standard racing Al
driver that does not use a predetermined racing line. Also
this choice was made to ensure a fair comparison between
the two algorithms since the NEAT algorithm will not have
any information relating to a specific racing line either.

METHODOLOGY

In this section a detailed description of the particular
choices for the game engine used are described, and why
the project was developed in this way. After the taken
approach has been discussed, an in depth look of how the
NEAT algorithm was created and what parameters were
used for evolution are described. Finally the choice of
statistical data to collect is reasoned.

Testing Application

In our investigations we have used an open source racing
game engine called The Open Source Racing Game
Simulator (TORCS) [TORCS, 2001], to evaluate the Al
techniques. This had numerous advantages, the main one
being that the overall game itself is very close to being a
commercial quality game. TORCS features multiple circuits
and racing cars, along with a complicated physics model
that could be found in most commercial racing games.
Therefore this is a highly accurate way of comparing both
techniques in commercial quality like game without
actually testing it in one.

Another advantage that using TORCS had was that it
shortened development time considerably, while still
allowing full access to the source code for modification.
The shortened development time was due to two main
factors. The first factor was that the actual game had been
built and therefore no development time was needed to
further develop the internal game engine. The second factor
was that the standard AI technique used is one of the
standard Al drivers that come with the TORCS. Therefore
the standard Al technique did not need to be created either,

30

allowing more time to be focused on creation of the NEAT
algorithm.

Quite a few development problems led to seeking a better
implementation of TORCS. Fortunately a better
implementation has been created by Daniele Loiacono of
Politecnico di Milano, which was used in the WCCI 2008
competition [Loiacono, 2008]. This enhanced version
features a client server model which abstracts the Al driver
modules, detailed documentation, and also features a lot
more car sensors than in the original version of TORCS.
Although this version does not fix the majority of problems
with TORCS the server client model implementation just
avoids them. This decreased development time significantly
and also provided a debugged version of the framework.

Implementation of NEAT

The created NEAT algorithm was based on Matt
Buckland’s implementation instead of the original
implementation by Kenneth O. Stanley. This was because
there is a detailed description of how to create NEAT in
Mat Buckland’s book “Al Techniques For Game
Programming”. Also the differences between the two
implementations ~ were negligible, therefore the
implementation with the most documentation was chosen.

Evolution Parameters

A list of evolution parameters used throughout evolution of
the NEAT algorithm is listed in Table 1. For the sake of
brevity, a description of what each parameter actually does
is also listed. The values chosen for each parameter were
decided by a mixture of trial and error, and default values
that are used in Mat Buckland’s implementation of NEAT.
Recurrent neurons were allowed as it has been shown that
they can help to solve difficult problems more easily, hence
speeding up evolution [Stanley, 2002].

Parameter Value|Description

iPopSize 100 |The size of the population.

NumTicks 100 The time allowed in seponds for an Al
driver to race on a circuit.

. . Number of attempts to add a link.

g‘fsnAddL“ﬂ“ M€ 5 ISometimes it is difficult to find a link to

P members with different topologies.

Controls the percentage of the best]

dSurvivalRate 0.2 |[species members from which to spawn a
new member.

NumGensAllowe Number of generations that are allgwed

20 [for a species to exist when there is no

dNolmprovement . .
improvement in the fitness score.

iMaxPermittedNe The maximum number of neurons that

1000 o

urons can exist in an ANN.

dChanceAddLink | 0.07 |Chance a link is added during mutation.

dChanceAddNode | 0.04 |Chance node is added during mutation.

dChanceAddRecur The chance that a recurrent link is added

. 0.07 . .

rentLink during mutation.

dMutationRate 0.04 The chanf:e that mutation can happen on
a population member.

dMaxWeightPertu 05 The maximum amount a network

rbation "~ |weight can be perturbed.

dProbabilityWeigh The probability that a network weight

0.1
tReplaced can be completely replaced.

dActivationMutati
onRate

The probability that the sigmoid

0.1 S .
activation response will be mutated.

dMaxActivationPe
rturbation

The maximum amount that the

0.1 activation response can be perturbed by.

The percentage of different genes
species are allowed before being
classified as a different species.

dCompatibility Thr

eshold 0.26

Number of generations until a species is|

i0OldAgeThreshold| 50 classified as old.

dOldAgePenalty 0.7 The . o.ld age penalty fitness score
multiplier constant.

dYoungFitnessBo 13 The young fitness bonus score

nus "~ |multiplier constant.

. Number of generations for the bonus

1YoungBonusAge 10 [fitness score to apply to a newly created

Threshhold . PPy Y
species.

dCrossoverRate 07 How many of the population will
crossover with each other.

iMaxNumberOfSp 0 The maximum number of species to

ccies exist at once. 0 signifies no limit.

iMaxGenerations | 200 The number of generations to evolve

for.

Table 1: Evolution Parameters

Inputs and Outputs of NEAT

The inputs into the ANNs of NEAT are listed in Table 2.
All of the hidden and output neurons use the sigmoid
function while the input neurons were linear. The sigmoid
function was used instead of the hyperbolic tangent
function. This is because the sigmoid function works more
consistently for greater variety of applications, even though
the hyperbolic tangent function may help to accelerate
evolution [Bourg, 2004].

TORCS offers more possible inputs than the ones used but
it has been shown that a good racing ability could be
achieved with fewer inputs [Simmerson, 2008]. In fact
fewer inputs are used than in Matt Simmerson’s experiment
in the WCCI 2008 competition. In his experiment he
supplied 19 car sensors although only 5 were actually used.
Therefore only 13 car sensors were supplied in this
experiment as it was proven NEAT does not require them
all, but the opportunity was still there if it required more
than 5. Fewer inputs are also used than in Matt
Simmerson’s experiment because inputs for gear changing
were omitted. This ensures that NEAT is only concerned
with steering, acceleration and braking. The gear changing
policy used is from the standard AI. This makes the
comparison between the different techniques fairer as only
their steering and acceleration behaviours are compared. In
total there were 21 inputs and only 2 outputs, these are
listed in Tables 2 and 3 respectively.

Parameter |Quantity |Description
Speed 1 The current speed of the car.
Lateral The current lateral speed of the car.
1 Therefore this is a measure of how much the

Speed L

car is sliding.

How fast the wheels of the car are currently
Wheel L S .

. spinning. This is used to detect if the car
Spin 4 . . .
Sensors may be. start}ng to slide when used in

conjunction with the lateral speed.

31

Sensors that are used to detect the edges of]
the circuit within a 100m radius. The 13
sensors sample the space in front of the car
every 15 degrees, spanning clockwise from
90 degrees to -90 degrees with respect to the
car axis.

Circuit

Sensors 13

Table 2: Inputs into NEAT

All of the inputs were scaled into the range of 0 to 1. The
inputs were scaled to prevent large input signals such as the
speed, overwhelming the smaller input signals [Simmerson,
2008]. A similar concept was used on the two output
parameters. Since the useful working range for the sigmoid
function is 0.1 to 0.9 [Bourg 2004, p. 279], the outputs are
scaled linearly from 0.1 to 0.9; to -1.0 to 1.0 to represent
minimum and maximum output for steering and
acceleration. If the outputs had not been scaled then it
would have taken a longer time for the evolutionary process
to approach the minimum and maximum values. Also since
the sigmoid function asymptotes at 0 and 1, a minimum
value of 0 and a maximum value of 1 can never be reached
without scaling of the outputs [Bourg 2004, p. 279].

Parameter Description

Acceleration Controls the ac.celerat.ion of the car. -1 denotes
maximum braking while 1 denotes full throttle.
Controls the steering of the car. -1 determines

Steering full steering to the right while 1 is full steering
to the left.

Table 3: Outputs from NEAT

Fitness Function

The fitness function (Figure 1) was designed to make small
changes in fitness values corresponding to small changes in
phenotype. It was designed in this way to avoid the fitness
landscape being too noisy, which increases the chance of
the NEAT algorithm getting stuck in local maxima
[Thomas, 2006].

Fitness = Distance + Constant - (Damage*5) - (TimeOffCircuit)?

Figure 1: Fitness Function

The “Constant” value was set at 5000 making most fitness
evaluations a positive value. The “Damage” was multiplied
by 5 to enforce the notion that colliding with barriers during
a race is undesirable. The same principle applies to the
“TimeOffCircuit” value. This was cubed to not punish
drivers that left the circuit for small periods of time (under a
second for instance), but to severely punish drivers that left
the circuit for larger periods of time as this is undesirable.
There are no speed variables in this equation because to
achieve an increase in distance the racing Al must have
been travelling faster. Therefore there is no need to over
complicate the fitness function with any speed variables.
Evaluation of the current member is aborted if the damage
was greater than 200 or the TimeOffCircuit was greater
than 15 seconds. This stopped unnecessary evaluation of a
poor performing member of the population resulting in less
time evaluating a generation.

Additions to NEAT

The NEAT algorithm was extended to have a saving feature
that allows a whole generation to be saved to disk and
loaded back into the program. There are two reasons behind
this. The first and the most obvious reason is that there
needs to be some way to save the best member of the
population, in order to actually use that member in a proper
race. The easiest method to do that was to save that member
to disk and then load that member for the appropriate race.
The second reason is that evolving a generation can take a
substantial amount of time and sometimes this evolution
needs to be interrupted. For example, evolution needs to be
interrupted to see how well visually the best member of a
population is doing in the current generation. This was
achieved by creating a system that automatically saves out
every member of each generation that is evolved.

There are a number of advantages to this. It protects against
losing all of the evolution data if something were to go
wrong with the test application as the last saved generation
state could be used to continue evolution. Another benefit is
that any previous generation state can be loaded in and
tested visually to actually see how a particular Al may have
evolved. One of the most important benefits is that all of
the statistical data of the generation is saved out along with
the generation state. This means data such as fitness
evaluation for a member of the population for any
generation can be viewed to graph how effective the
evolution process is going.

Statistical Collection of Data

The statistical data collected from the race to compare the
algorithms are: computation time, lap times, total race time,
damage received, maximum speed reached, average speed
reached and the time off the circuit. Most of these statistics
are obvious why they are required to compare the two
techniques, but two are not. The reason why time off the
circuit was needed was in order to see whether the drivers
were cutting corners and if so, by how much. A good
driving style does not require cutting corners therefore this
is a measure of how the algorithm behaves. A similar
principle applies to the damage received. The more damage
the car has taken the worse the driving ability of the Al
technique. For convenience TORCS was modified to output
the extra comparison data in the statistical xml files it
produces at the end of every race.

RESULTS

Test Conditions

The NEAT algorithm was evolved on two circuits. The first
evolution was an initial test to see that it was operating
correctly. This test was only allowed to evolve for 50
generations with a population size of 50 on a simple oval
shaped circuit; A-Speedway. The simulation time allowed
was equivalent to 60 seconds of real time; approximately
two laps on A-Speedway. The second circuit that NEAT
was evolved on was the circuit CG3; a complex circuit with
many different types of corner. In this test, evolution
occurred for 200 generations with a population size of 100.
The simulation time allowed was equivalent to 100 seconds

32

of real time, approximately just over one lap on CG3. The
best member from this test was then tested on two other
circuits. This was to see how well the NEAT algorithm
would generalise and compare to the standard Al algorithm.

Results for Circuit A-Speedway

Results from the preliminary test show that the NEAT
algorithm out performs the standard based Al, Table 4. It is
more than 2 seconds quicker due to reaching a higher
average and maximum speed, and it does not manage to
take any damage. Also visually the NEAT algorithm takes a
much improved racing line than the standard based Al
using much more of the road surface to create a more
smooth racing line. The only downside from these results is
that the NEAT based algorithm is approximately 2.6 times
slower to compute than the standard based Al.

NEAT | Std. Al
Average Lap Time (Seconds) 26.19 | 28.69
Average Speed (km/h) 262.62 | 239.95
Maximum Speed (km/h) 272.32 | 264.6
Average Damage per Lap (%) 0 0.04
Time-off Circuit per Lap (Seconds) 0 0
Computation Time (Clock Ticks per Second) | 140465 | 53406
Table 4: Table of Results for Circuit A-Speedway

NEAT | Std. Al
Average Lap Time (Seconds) 77.40 | 64.52
Average Speed (km/h) 132.21 | 158.80
Maximum Speed (km/h) 169.31 | 228.9
Average Damage per Lap (%) 0.09 | 0.072
Time-off Circuit per Lap (Seconds) 2.44 0
Computation Time (Clock Ticks per Second) | 110213 | 22786

Table 5: Table of Results for Circuit CG3

Fitness Scores for Circuit A-Speedway

10000

w 8000
it

& 6000
4

‘é 4000

Y- 2000

0

1 11 21 31 41
Generation Number
Best Fitness Score
— Average Fitness Score

Figure 2: Graph of Evolved Fitness Scores for Circuit
A-Speedway.

NEAT | Std. AI
Average Lap Time (Seconds) 179.05 | 132.26
Average Speed (km/h) 129.35| 17347
Maximum Speed (km/h) 170.70 | 282.46
Average Damage per Lap (%) 6.03 0
Time-off Circuit per Lap (Seconds) 0 0
Computation Time (Clock Ticks per Second) |141104| 28904

Table 6: Table of Results for Circuit Alpinel

In total the NEAT algorithm took approximately 3.7 hours
to evolve in this test. Figure 2 shows the fitness scores
produced from the NEAT algorithm per generation. From
this graph it is evident that the NEAT algorithm quickly
learns a solution to its problem. By the 10th generation it
has very good driving ability as confirmed by the fitness
score produced, which has been verified visually too. This
shows that the NEAT algorithm produced an exceptional
driver very quickly for this circuit. This is understandable
because the circuit is a very simple search domain, which
does not need any advanced behaviours. Another point is
that the driver is over specialised to this circuit and
therefore fails to complete a lap on any other circuit that is
not a left-handed oval.

Results for Circuit CG3

The results from this test show that the NEAT algorithm
does not compare favourably to the standard Al technique.
It is on average about 13 seconds slower than the standard
Al per lap. This is mainly due to the algorithm not evolving
the behaviour to accelerate rapidly in fast sections of the
circuit. For example, on the home straight it does not
achieve a maximum speed of greater than 170km/h. The
standard Al easily demonstrates that it is possible to reach
speeds of 225km/h and above. The low maximum speed is
probably due to the cautious behaviour that has been
evolved where it uses the left side of the circuit as a guide.
This is how the NEAT driver is able to follow the circuit by
using the left edge of the circuit as a guide. This suggests
that the NEAT algorithm is stuck in local maxima and
cannot evolve an optimal solution to the problem. Therefore
the fitness function may need to be adjusted to counteract
this problem. Another explanation could be that given the
inputs into the NEAT algorithm that this is close to an
optimal solution. Therefore extra inputs may need to be
provided to give the algorithm a more complete view of the
racing environment to produce better results.

Another area where the NEAT Al does not fair favourably
to the standard Al is in its computation time. It is over 4.8
times slower to compute than the standard Al, Table 5. This
is due to the fact that the evolved ANN is more complex
than in the previous test. This is understandable as the
circuit CG3 is a more complex domain than the previous
oval shaped circuit.

In total it took approximately 37 hours for the evolution of
200 generations with a population size of 100. This is a
substantial amount of time and the graph in Figure 3 shows
that it may have been unnecessary to evolve for 200
generations. This was because by generation 60 the NEAT
algorithm had already evolved a competent driver that
could complete a lap of the circuit within 81 seconds. This
is only 4 seconds difference from the best population
member, though its driving behaviour is not as refined.

Results for Circuits Alpinel and Streetl

As expected from the previous result the NEAT algorithm
is a lot slower than the standard AI, on average
approximately 47 seconds slower on the Alpinel circuit,
Table 6. It is expected that the NEAT algorithm would be

33

slower as it had not been trained on this circuit, however
the difference is significant. Another interesting race
observation was that since there were no extremely long
straights on the circuit CG3, it does not exhibit accelerating
behaviour as fast as possible. This is evident because when
approaching speeds of 170km/h (the maximum speed
obtained on the circuit CG3), the NEAT based driver does
not accelerate any further.

There are no results for the circuit Streetl for the NEAT
algorithm. This is because there is an extremely tight corner
in one part of the circuit which follows on from a high
speed straight. Since the NEAT algorithm had never come
across this type of situation before it does not react in time
and veers off the circuit and into a wall. The impact leaves
the car against the wall with the front of the car facing the
wall and is unable to recover. Hence no results are
produced.

Fitness Scores for Circuit CG3
10000
8000
&
S 6000 -
a)
;:-j 4000 -
[,
2000
1 31 61 91 121 151 181
Generation Number
Best Fitness Score
Average Fitness Score

Figure 3: Graph of Evolved Fitness Scores for Circuit CG3.

Discussion of Results

Overall the results show that the NEAT based Al is not as
competent a driver as the standard Al except in the first
test. In the first test the NEAT algorithm excelled in such a
simple search domain and produced a driver that was
exceptional. The racing line that it followed was perfect for
an oval shaped circuit and it achieved a higher average
speed, maximum speed and quicker lap times than the
standard Al driver. The only negative aspect was that the
NEAT based Al was 2.6 times more computational
expensive than the standard Al

However, even though the NEAT driver had performed
well in the first test, it only performed moderately well in
the second. The reason for this was that the search domain
that the NEAT algorithm had to find a solution was more
complex. The circuit CG3 contained many different types
of corners and as such the NEAT algorithm did not perform
as well. The standard Al outperformed the NEAT based Al
in every area. The most notable concern was that the NEAT
algorithm was now more than 4.8 times more
computationally expensive to evaluate than the standard Al

This was due to the increased neurons that were added
during “complexification” of the topology of the ANNs of
the NEAT algorithm. The increase neurons mean more
calculations are performed and as a result the Al driver
became more computation expensive to evaluate.

The final test showed how well the NEAT algorithm could
generalise. From being evolved on a completely different
type of circuit the NEAT algorithm managed to generalise
quite well. Its cautious driving style suited driving on
circuits it had no knowledge of. However, it performed very
badly compared to the standard Al technique, which is
somewhat to be expected. The NEAT algorithm had to
apply knowledge of driving from one domain into a
different domain. Hence, why it performed poorly against
the standard AI?

From the tests some interesting observations were made
about the NEAT based Al driver. The first observation is
that the NEAT AI driver has learnt to drive by following
the left edge of the circuit. This is similar to path following
steering behaviours that use the walls as guide in order to
navigate [Reynolds, 1999]. This would seem to suggest that
since there was no racing line to guide the NEAT driver, it
used the only type of data that was similar to a racing line,
and that was its position in relation to the centre of the
circuit. Why it chose to follow the left edge of the circuit
instead of the right edge is unknown. However, this is
probably due to the first corner in the CG3 circuit being a
right handed bend in which a racing driver would normally
approach it from the left hand side. Therefore in early
stages of evolution, this property may have been learnt and
retained throughout successive generations.

Another interesting observation which is easily
recognisable from the results obtained on the circuit Streetl
(Table 7), is that the Al has no ability to recover itself from
a crash. This is because the fitness function is geared
towards avoiding a crash and therefore does not learn the
behaviour needed to recover from a crash. This poses a
problem which needs to be solved in order for an EANN Al
driver to be a viable alternative to standard racing Al. There
are two possible ways to solve this problem. One way is to
use a finite state machine to check to see if the AI has
crashed and use some sort recovery driving algorithm. Or
the second method would be to create test cases in which
the Al will crash and then let the NEAT algorithm learn to
recover from such a situation. This would have to be done
separately from the main evolution, as a different fitness
function would have to be used in order to get correct
behaviour.

One more interesting visual observation made about the
NEAT based driver was that it was able to successfully
slide around corners without losing control of the car. This
is a significant observation as it is a complex behaviour.
This is because it is producing enough steering force to
maintain the slide, but not enough to lose control. It also
means that the NEAT algorithm was able to learn how to
use the lateral speed and wheel spin sensors inputs
combined with the normal driving inputs to produce a
complex behaviour.

34

CONCLUSION

The results point to two main conclusions. The first
conclusion is that the NEAT algorithm can learn to navigate
a circuit quite well and even race around a simple circuit
such as A-Speedway better than the standard AI. The
second conclusion is that on complex circuits it takes a lot
longer to evolve a generic behaviour, and that this is not as
good as the standard Al technique.

From the analysis of the results it is quite clear that an
EANN is not more effective at racing a computer controlled
car around a circuit. There are three main reasons for this.
First and the most important reason is that the EANN Al
produced worse behaviour than the standard Al controller.
For example, the EANN Al was not as quick around the
circuits as the standard Al and it did not learn to take a
racing line as good as the standard Al technique. There
were also behaviours that the EANN failed to learn such as
accelerating as quickly as possible in straight sections of the
circuit, and being able to take very sharp corners
effectively. These effects were probably due to the EANN
being stuck in local maxima within the fitness landscape.
The second reason why the EANN is less effective than
standard Al techniques is that it is more computationally
expensive at runtime. This is exemplified when the EANN
was evolved on a more complex circuit and had to learn
more complex behaviour. It is nearly 5 times more
expensive to compute than the standard Al technique. This
computation cost could even go higher if the EANN were
to learn more complex behaviour, as the number of neurons
increase in the ANN, hence more calculation is required.
This would mean that if a racing game had many computer
controlled drivers, then an EANN is not an appropriate
choice, as too much computation would be devoted to the
Al drivers.

Finally, the EANN AI did not generalise very well. It was
competent enough to drive around most circuits, but slowly,
and in some circuits failed to complete a lap. This meant
that compared to the standard Al, the EANN Al was not
very effective.

Although this research shows EANN presently not as good
as the standard Al techniques, however they do have many
advantages. For example, they can learn complex
behaviours with relatively few inputs as demonstrated by
the sliding behaviour learnt by the NEAT algorithm. On top
of this they can offer real time learning to make game play
more varied and dynamic. This is their major advantage
over traditional standard Al techniques. Finally, as
demonstrated, an EANN can be more effective at racing
around a circuit as demonstrated by the results for the
circuit A-Speedway. Therefore they merit further
investigative effort, which we will detail in the final
section, in the search for a better Al technique than the
standard Al techniques used in current racing games.

FUTURE WORK

To improve upon the results obtained from this project a
number of possible future studies could be undertaken. The
main problem that the NEAT algorithm had was that the
produced driving style was cautious and slow. This was

probably due NEAT fitness function stuck in local maxima
and not finding the global maximum. Thus the effect of
different fitness functions, evolution, mutation parameters
and strategies could be looked at to see how they will affect
the evolved driving behaviours of the NEAT algorithm.
Although this project used the NEAT algorithm as the
EANN many others exist with their own characteristics.
Different EANN algorithms may produce better results than
what has been achieved by NEAT algorithm. Specifically
the CoSyNE or rtNEAT algorithms could be investigated to
see whether it can outperform the NEAT algorithm.
Another problem that the NEAT algorithm had was that it
was general enough to race on most other circuits but was
not able to race on them well. A possible way to improve
this would be to train the NEAT algorithm on multiple
circuits, with different types of straights and corners to
ensure that the NEAT algorithm encounters all of the
different possible types of circuits. This would be a lengthy
evolution process and require radical restructuring of the
TORCS game engine. However, this could be the only way
to find out whether a fully trained EANN algorithm could
be general enough to race on any circuit proficiently.

In this section we have detailed a few investigations, but
there are many others that could be carried out. We believe
that our results are promising enough for us and other
researchers to continue further studies to find out if it is
possible to create an EANN that can be more effective than
the currently used standard racing game Al

REFERENCES

Azdima, J. 2001. “Al Madness: Using Al to Bring Open-City
Racing to Life.” [Online] Gamasutra.

Baekkelund C. 2006. “Academic Al Research and Relations with
the Games Industry.” Al Game Programming Wisdom 3,
Boston: Charles River Media. pp. 77-88.

Bourg, D.M. and Seemann, G. 2004. “Al for Game Developers.”
Sebastopol: O'Reilly Media.

Buckland, M. 2002. “Al Techniques for Game Programming.”
Ohio: Premier Press.

Charles, D. 2003. “Enhancing Gameplay: Challenges for Artificial
Intelligence in Digital Games.” Proceedings of the 1st World
Conference on Digital Games.

Dewri, R. 2003. “Evolutionary Neural Design
Methodologies.” [Online] http://ai-
depot.com/articles/evolutionary-neural-networks-design-
methodologies/ [Accessed 12 December 2008].

Erickson, K. 2008. “Midnight Club LA Gets Al Patch.” [Online]
PS3 Informer, http://www.ps3informer.com/playstation-
3/news/midnight-club-la-gets-ai-patch-009576.php [Accessed
23 April 2009]

Floreano, D. et al, 2008. “Neuroevolution: from architectures to
learning” Evolutionary Intelligence vol 1, issue 1, pp. 47-62
[Online] http://dx.doi.org/10.1007/s12065-007-0002-4

Gauci, J and Stanley, K.O. 2008. “A Case Study on the Critical
Role of Geometric Regularity in Machine Learning.”
Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence (AAAI-2008). California: AAAI Press.

Gomez, F. and Schmidhuber, J. and and Miikkulainen, R. 2006.
“Efficient Non-Linear Control through Neuroevolution.”
Proceedings of the European Conference on Machine
Learning.

Networks:

35

Gomez, F. and Schmidhuber, J. and and Miikkulainen, R. 2008.
“Accelerated Neural Evolution through Cooperatively
Coevolved Synapses” Journal of Machine Learning Research 9

Goldberg, M. [No Date]. “Pacman: The Phenomenon - Part 1”
[Online]
http://classicgaming.gamespy.com/View.php?view=Articles.De
tail&id=249 [Accessed 14 May 2009].

Hannan, Jeff, 2001. [Online] “generation5
http://www.generationS.org/content/2001/hannan.asp
[Accessed 23 October 2008].

Kendall, N. 2008. “Invade and conquer: Space Invaders thirty
years on.” [Online] Times Online.
http://technology.timesonline.co.uk/tol/news/tech_and web/ga
dgets_and_gaming/article4254644.ece [Accessed 14 May
2009].

Loiacono D et al. 2008. “The WCCI 2008 Simulated Car Racing
Competition.” IEEE Congress on Evolutionary Computation,
and Computational Intelligence and Games Symposium.

Lucas, S.M. and Kendall, G. 2003. “Evolutionary Computation
and Games.” IEEE Computational Intelligence Magazine.

Namco. 1980. Pacman. [Arcade Machine]. Midway and Namco.

Parker, M. and Parker G.B. 2007. “The evolution of Multi-Layer
Neural Networks for the Control of Xpilot Agents.”

Rabin, S. 2006. “Preface. In: Al Game Programming Wisdom 3.”
US: Charles River Media. pp. ix-Xii.

Reynolds, C.W. 1999. “Steering Behaviors For Autonomous
Characters.” The proceedings of the Game Developers
Conference 1999. California. pp. 763-782.

Schwab, B. 2004. “Al Game Engine Programming.” Boston:
Charles River Media.

Simmerson, M. 2008. “Car Racing Competition at WCCI2008.”
[Online] http://www.scribd.com/doc/3450373/Car-Racing-
Competition-at-WCCI2008-Matt-

Simmerson#document metadata [Accessed on 15 December
2008].

Stanley, K.O. and Miikkulainen, R 2002. “Evolving Neural<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>