

16TH INTERNATIONAL CONFERENCE

ON

INTELLIGENT GAMES AND SIMULATION

GAME-ON® 2015

EDITED BY

Sander Bakkes

and

Frank Nack

December 2-4, 2015

University of Amsterdam

Amsterdam

THE NETHERLANDS

A Publication of EUROSIS-ETI

I

IVXLCDM

Cover Art: © 2015 Larian Studios and Focus Home Interactive. DIVINITY: ORIGINAL SIN ENHANCED EDITION is

developed by Larian Studios and published by Focus Home Interactive. DIVINITY: ORIGINAL SIN ENHANCED

EDITION and its logo are trademarks or registered trademarks of Larian Studios. All other trademarks or registered

trademarks belong to their respective owners. All rights reserved.

II

16TH International Conference

on

Intelligent Games and Simulation

AMSTERDAM, THE NETHERLANDS

DECEMBER 2 - 4, 2015

Organised by

ETI

Sponsored by

EUROSIS

Co-Sponsored by

Binary Illusions

Ghent University

Larian Studios

University of Skövde

University of Amsterdam

Amsterdam, The Netherlands

III

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

EDITOR

General Conference Chair
Sander Bakkes

Universiteit van Amsterdam, The Netherlands

Local Programme Committee
Frank Nack, Universiteit van Amsterdam, The Netherlands

Anja van der Hulst, TNO, The Netherlands,

Anton Eliëns, Vrije Universiteit Amsterdam, The Netherlands

Pieter Spronck, Tilburg University, Tilburg, The Netherlands

INTERNATIONAL PROGRAMME COMMITTEE

Game Development Methodology

Óscar Mealha, University of Aveiro, Portugal
Esteban Clua, Universidade Federal Fluminense, Brasil

Physics and Simulation

Graphics Simulation and Techniques
Ian Marshall, Coventry University, Coventry, United Kingdom

Marco Roccetti, University of Bologna, Bologna, Italy

Facial, Avatar, NPC, 3D in Game Animation
Yoshihiro Okada, Kyushu University, Kasuga, Fukuoka, Japan

Marcos Rodrigues, Sheffield Hallam University, Sheffield, United Kingdom
Joao Manuel Tavares, FEUP, Porto, Portugal

Rendering Techniques
Joern Loviscach, Hochschule Bremen, Bremen, Germany

Artificial Intelligence

Artificial Intelligence and Simulation Tools for Game Design
Stephane Assadourian, UBISOFT, Montreal, Canada

Flavio Soares Correa da Silva, USP, Sao Paulo, Brazil
Antonio J. Fernandez, Universidad de Malaga, Malaga, Spain

Marc-Philippe Huget, University of Savoie, Le-Bourget-du-Lac, France
Joseph Kehoe, Institute of Technology Carlow, Carlow, Ireland

David Moffat, Glasgow Caledonian University, Glasgow, United Kingdom
Sam Redfern, National University of Ireland, Galway, Ireland

Miguel Tsai, Ling Tung University, Taichung, Taiwan

Learning & Adaptation
Christian Bauckage, University of Bonn, Sankt Augustin, Germany

Christos Bouras, University of Patras, Patras, Greece
Adriano Joaquim de Oliveira Cruz, Univ. Federal de Rio de Janeiro, Rio de Janeiro, Brazil

Andrzej Dzielinski, Warsaw University of Technology, Warsaw, Poland
Maja Pivec, FH JOANNEUM, University of Applied Sciences, Graz, Austria

IV

INTERNATIONAL PROGRAMME COMMITTEE

Intelligent/Knowledgeable Agents
Nick Hawes, University of Birmingham, United Kingdom

Wenji Mao, Chinese Academy of Sciences, Beijing, China P.R.

Collaboration & Multi-agent Systems
Sophie Chabridon, Groupe des Ecoles de Telecommunications, Paris, France

Opponent Modelling
Pieter Spronck, University of Maastricht, Maastricht, The Netherlands

Ingo Steinhauser, Binary Illusions, Braunschweig, Germany

Peripheral

Psychology, Affective Computing and Emotional Gaming

Myriam Abramson, US Naval Research Laboratory, USA
Eva Hudlicka, Psychometrix Associates, Blacksburg, USA

Artistic input to game and character design

Anton Eliens, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Richard Wages, Nomads Lab, Koln, Germany

Storytelling and Natural Language Processing

Jenny Brusk, Gotland University College, Gotland, Sweden
Ruck Thawonmas, Ritsumeikan University, Kusatsu, Shiga, Japan

Clark Verbrugge, McGill University, Montreal, Canada

Online Gaming and Security Issues in Online Gaming

Marco Furini, University of Modena and Reggio Emiliano, Modena, Italy
Pal Halvorsen, University of Oslo, Oslo, Norway

Andreas Petlund, University of Oslo, Oslo, Norway
Jouni Smed, University of Turku, Turku, Finland
Knut-Helge Vik, University of Oslo, Oslo, Norway

MMOG's

Michael J. Katchabaw, The University of Western Ontario, London, Canada
Jens Mueller-Iden, University of Munster, Munster, Germany

Serious Gaming

Wargaming Aerospace Simulations, Board Games etc....
Roberto Beauclair, Institute for Pure and Applied Maths., Rio de Janeiro, Brazil

Joseph M. Saur, Georgia Tech Research Institute, Atlanta, USA
Jaap van den Herik, Tilburg University, Tilburg, The Netherlands

Games for training
Michael J. Katchabaw, The University of Western Ontario, London, Canada

Jens Mueller-Iden, Universitaet Muenster, Muenster, Germany

V

INTERNATIONAL PROGRAMME COMMITTEE

Games Applications in Education, Government, Health, Corporate, First Responders and Science
Laura Lima, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil

Russell Shilling, Office of Naval Research, Arlington VA, USA

Games Interfaces - Playing outside the Box

Games Console Design
Chris Joslin, Carleton University, Ottawa, Canada

VI

GAME ON®

2015

VII

© 2015 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).

Statements are not necessarily representative of nor endorsed by the European Multidisciplinary Society for

Modelling and Simulation Technology. Permission is granted to photocopy portions of the publication for personal use

and for the use of students providing credit is given to the conference and publication. Permission does not extend to

other types of reproduction or to copying for incorporation into commercial advertising nor for any other profit-making

purpose. Other publications are encouraged to include 300- to 500-word abstracts or excerpts from any paper

contained in this book, provided credits are given to the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be

used in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in these Proceedings have been peer reviewed

EUROSIS-ETI Publications are ISI-Thomson and IET referenced

GAMEON proceedings are indexed on SCOPUS and Elsevier Engineering Village

A CIP Catalogue record for this book is available from the Royal Library of Belgium under nr.12620

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Greenbridge
Science Park, Ghent University, Ostend Campus, Wetenschapspark 1, Plassendale 1, B-8400 Ostend, Belgium.

EUROSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400

Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium

Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium

Cover Pictures by Larian Studios, Ghent, Belgium

GAMEON® is a registered trademark of the European Technology Institute under nr: 1061384-761314

EUROSIS-ETI Publication

ISBN: 978-9077381-91-5
EAN: 978-9077381-91-5

VIII

Preface

Dear Participants,

It gives me the greatest pleasure to welcome you to the interdisciplinary Game
Studies programme at the University of Amsterdam, and to the 16th edition of
GAMEON, which we are hosting between 2nd and 4th of December 2015.

We are most pleased to host you, dear conference participants, and learning from
your specific approach to game research, were it focused on game design,
education, training and simulation, artificial intelligence, or procedural and online
gaming.

Moreover, we are exited to host two excellent keynote speakers, namely Prof.
Georgios Yannakis – who will talk on affective computing and player experience
modelling in relation to (automated) game design, and Dr. Anja van der Hulst – who
will talk on serious gaming for tactical and strategic decision making. Also, we are
happy that the programme is supplemented with workshops that will be provided by
renowned game scholars Prof. dr. Anton Eliëns and Dr. Pieter Spronck.

Finally, we are exited to host the co-alligned Game Studies Symposium on Friday

afternoon, which will host keynote speaker Prof. Georgios Yannakis, and which will
further explore the topic of affective game experiences.

I would like to express my gratitude to all those who have contributed to this event:
firstly to those who have submitted papers, and will present them over the next
couple of days and; of course, to Philippe Geril who is the driving force behind
GAMEON; and to the programme committe who have reviewed papers, and
contributed to organising this event.

I hope that you will have a great time in the city of Amsterdam, and will find the
conference interesting and inspiring.

Amsterdam, December 2015

Sander Bakkes
GAMEON’2015 General Conference Chair

IX

X

XI

XII

SCIENTIFIC
PROGRAMME

1

0123456789

2

GAME
DESIGN

3

4

INTERACTIVITY IN COMPUTER GAMES

Barbaros Bostan

Department of Information Systems

Yeditepe University

Inonu Mah. Kayisdagi Cad

34755 Atasehir/Istanbul

Turkey

E-mail: bbostan@yeditepe.edu.tr

Gokhan Sahin

Department of Information Systems

Yeditepe University

Inonu Mah. Kayisdagi Cad

34755 Atasehir/Istanbul

Turkey

E-mail: sahin@yeditepe.edu.tr

Mehmet Can Uney

Department of Game Design

Bahcesehir University

Kemeralti Caddesi

Karaoglan Sokagi No: 24/a

Turkey

E-mail: mehmetcan@gmail.com

KEYWORDS

Interactivity, interaction, computer games

ABSTRACT

In this paper we attempt to clarify the popular term

‘interactivity’ within the context of computer games by

classifying it into three categories: personal interactivity,

social interactivity and environmental interactivity. Each

category of interactivity contains five subcategories and

success stories from popular computer games are given for

each section to highlight the depth and quality of interaction

the selected games provide.

INTRODUCTION

Interactivity is a popular catchword and selling strategy for

new media but everyone has their own idea about what

interactivity is. Is it simply a computer system that responds

to user’s actions? Is it the ability of the user to control and

modify messages? And what is so interactive about

computer games? According to Lievrouw and Livingstone

(2002) interactivity is not unique to new media but is

generally considered to be a central characteristic of it.

Researchers often focus on the ambiguity of the concept,

conceptualization difficulties, and overuse of the term,

because various fields defined interactivity from different

perspectives and associated it with different terms:

synchronicity, control, rapidity and speed, participation,

choice variety, directionality, hypertextuality,

connectedness, experience and responsiveness (Rafaeli and

Ariel, 2007).

Lievrouw & Livingstone (2002) defined three forms of

interactions for emerging communication systems: user-to-

user interactivity, user-to-documents interactivity and user-

to-system interactivity. According to the level of receiver

control on the messages (low and high) and the direction of

communication (one-way and two-way), user-to-user

interactions are classified into four groups: monologue,

feedback, responsive dialogue and mutual discourse. Based

upon the level of receiver control on the messages (low and

high) and the nature of the audience (active and passive),

user-to-documents interactions are classified into four

groups: packaged content, content-on-demand, content

exchange and co-created content. According to the center of

control (human and computer) and the nature of the

interface (apparent and transparent), user-to-system

interactions are classified into four groups: computer-based

interaction, human-based interaction, adaptive interaction

and flow. An ideal interactive system, according to these

models, takes the form of mutual discourse, co-created

content and flow.

User-to-user interaction, which is mediated through one or

more of the five senses, primarily composes of verbal and

non-verbal communication forms such as gestures, poses,

facial expressions, etc. From a computer gaming

perspective, it takes two different forms: player-to-player

interactions experienced in multi-player environments and

the information exchange between the player and a synthetic

agent or a non-player character (NPC). Player-to-player

interactions, which enable communicators to have more

control over their experience beyond the constraints of time

and geography, can be classified as mutual discourse where

the sender and receiver roles become nearly

indistinguishable. On the other hand, player-to-NPC

interactions in computer games can take different forms

such as monologue, feedback or responsive dialogue. The

interaction level depends on the believability and the AI

capabilities of the agent. Although it may seem strange at

first, players may attribute human characteristics to virtual

agents. The more believable and realistic these characters

and their behaviors are, the more human-like the

communication process becomes.

In terms of user-to-content interactivity, traditional

computer games are usually shipped to online or brick and

mortar stores in the form of packaged content. Online

gaming platforms like Games for Windows or Xbox Live

provide content-on-demand, allowing users to purchase

games or game add-ons, to gain and keep track of their

achievements (gamerscore) in order to display their progress

and prowess to the community. Content exchange can be

experienced in computer games that provide special tools or

scripting languages to their players. Players can use these

tools or scripting languages to modify the existing game or

to create new chunks of content, both of which are usually

shared on community websites. Modifications change the

gameplay process by altering the game mechanics, the

virtual environment, the appearance and behavior of 3D

5

objects and virtual characters. And finally, interactive

storytelling refers to gaming environments where real-time

feedback collected from the players is used by the game

engine to continuously modify the content as it is being

delivered. Although the player is passively providing a

feedback of his/her preferences and play style while actively

playing the game, these systems can be classified as being

closest to co-created content.

The study of user-to-system interactivity or Human-

Computer Interaction (HCI), which aims to improve the

interactions between users and computers, is not only

concerned with hardware and software but is also the

intersection of several fields of study such as psychology,

sociology, cognitive science, human factors, interface

design, etc. Today’s computer games can be classified as

computer-based interaction where the player makes his/her

selections from the presented information. The interfaces

used to interact with a computer game (personal computers,

gaming consoles, gamepads, etc.) are usually not

transparent but apparent. Interface transparency can be

experienced in immersive 3D environments where head-

mounted displays, sensing gloves or other specialized

equipment are used to block the sensations from the real

world and to help the user focus on the sensations of the

virtual. But it can also argued that, regardless of the

transparency of the interface, our minds won't really want to

do the work of separating media from reality if the media

image is pleasant or motivating at a deep psychological

level (Castranova, 2007). This is a reasonable explanation

since some players loose themselves in the gaming

environment and experience the flow state described as

activities that provide a sense of discovery, a creative feeling

of transporting the person into a new reality or previously

undreamed-of states of consciousness (Csikszentmihalyi,

1990).

Sellers (2006) brought a brand new perspective to our

notion of interactivity by defining four different levels of it

that lead from perceptual, cognitive and psychosocial

processes. Perceptual and physical interactivity comprises of

the reactions humans give to physical stimuli, especially to

bright colors, flashes, moving images, rhythmic or explosive

sounds, and to specific proportions in form and color. Game

players are also attracted by these pleasurable stimuli and

they seek variety in these sensuous impressions. Short‐term

cognitive interactivity incorporates tasks that involve short-

term memory and emotional focus. They combine together

to form longer-term goals where planning and strategy

come into play to define long‐term cognitive interactivity. In

this regard, computer gaming can be defined as a series of

short-term cognitive interactions to reach a longer-term

cognitive goal: the completion of the game or the mission of

the protagonist. In a computer game, micro choices are

moment-to-moment choices of a player; the way these

micro-choices fuse as a long-term strategy defines the macro

level of a choice (Salen and Zimmerman, 2003). And social

interactivity is both an internal and an interpersonal process

that becomes more important if players have persistent

identities and are able to affect the game state together.

INTERACTIVITY IN COMPUTER GAMES

In a gaming environment, although it is being

overshadowed by the attributes of the technology or

characteristics of the medium, interactivity is a product of

the computer mediated communication process and an

outcome of player actions. According to Rafaeli (1988),

interactivity is an under-defined concept that has little

consensus on its meaning but it is not located in the features

of the medium or user perceptions but in the relatedness of

transmitted messages with previous exchanges of

information where sender and receiver roles become

interchangeable. In this sense, messages transmitted by a

computer game are related with the previous exchanges of

information or the former actions of the player. The

complexity of this relatedness varies from simply keeping

track of game scores to interactive storytelling systems that

analyze player actions throughout the game for a

customized experience. Our first definition based on Rafaeli

(1988) is:

Game playing is a retrospective experience where the

player’s previous actions or choices have an impact on

his/her future.

Figure 1: Interactivity model adapted from Rafaeli (1988)

Reactive communication occurs when the game is

responding to every message or input send by the player but

the system is not keeping track of the history of messages

and simply reacting to the last message or input provided by

the player. Interactive communication occurs when the

game records the history of player actions or choices and

responds to the player based on this knowledge.

According to Steuer (1992), interactivity in virtual

environments is composed of three elements: speed,

mapping and range. Speed is the response time of the

virtual world; range represents the number of attributes that

can be manipulated by the user; and mapping is a function

of the types of controllers used to interact with the mediated

environment. Computer games aim to provide instant

feedback to player actions but the response time usually

depends on the configuration of the personal computer if it

is a PC game and on the bandwidth of player’s Internet

6

connection if it is an online game. The mapping or the

controllers used to interact with the game ranges from

standard keyboard or mouse for PC games and gamepads for

consoles to specialized input devices such as joysticks,

racing wheels or wireless remote pistols. It should be noted

that speed and mapping are constant variables for console

players. The range of attributes that can be manipulated by

the player greatly varies, from the movement/rotation of

simple objects in a Tetris game to massive multi-player

gaming environments with thousands of objects and players

to interact with. Speed and mapping are the technological

variables of interactivity here but range is the key towards a

meaningful definition of interaction in computer games.

Our second assumption based on Steuer (1992) is:

The range of variables that can be manipulated and

customized by the user determine the depth of interaction.

Every player interacts with something in a computer game

but what is the range of variables that can be manipulated

by the player? How do we classify these interactions?

Personal Interactivity

Computer games aim of creating artificial sensory

information similar to the stimuli human senses detect and

interpret in the real world so that the player will have a

sense of being physically in a virtual world. This is personal

or physical interaction, or the interaction with the second

self. The player needs an avatar or a physical representation

in the virtual world which is usually the protagonist of a

story. This character or entity may have gestures, facial

expressions and movements which can be classified as

kinesics, which is body motion communication. He/she will

have dialogue options and/or voice as a means of verbal

communication. He/she will also have various equipment

(clothing, armor, weapons, etc.) and abilities (skills, spells,

feats, etc.) to play the game. Therefore, physical interaction

can be analyzed in five sections: avatar, kinesics, verbal

communication, equipment and abilities. Schultze and

Leahy (2009) also defined the technological features of the

second self as a body, possessions, animations, a profile, a

camera and modes of communication. Given below are

examples from popular computer games that offer rich

interaction opportunities for personal interactivity.

Avatar: The Elder Scrolls series offered extensive

customization options for the representation of your

character. Besides common changes such as skin tone, hair

color, hair model, eye color, etc. you can also adjust your

character's brow, chin, cheekbone, nose, jaw and mouth

with various sliders. There are hundreds of forum posts and

YouTube videos on how to make your character look like

celebrities. The Dragon Age series also provide similar

customization options when you create your character.

Kinesics: The Witcher Wild Hunt used a motion capture

studio, with the help of master swordsman Maciej

Kwiatkowski, to practice and capture the protagonist’s

movements and all of the other combat animations for the

game. Even the sex scenes in the game are constructed from

over 16 hours of motion capture data. Realistic kinesics

make the protagonist of the game more believable for the

player.

Verbal Communication: The Baldur’s Gate series offered

well written dialogue options for the characters that

captivate the player. The player can also select his/her

character’s voice from a preset of voices. Voice acting for

the protagonist of the game is a major issue in game design

because he/she will be the voice of the player in the virtual

world.

Equipment: The Diablo series offered hundreds of different

equipment throughout each game but with the material

salvaging and item crafting options there are virtually an

infinite number of items that the player can use. The

legendary loot is the most captivating feature of the game.

Similarly, the Kingdoms of Amalur: The Reckoning offer

blacksmithing and sagecrafting skills for item

customization. Sagecrafting skill allows the player to craft

gems from shards found throughout Amalur, socket them

into equipment, and combine lower quality shards into

higher quality shards.

Abilities: Games based on the famous Advanced Dungeons

& Dragons tabletop role-playing game (RPG) offer a

complex and rules heavy system with different classes that

come with specific abilities, skills, feats and spells but the

player can also customize his/her own class. Baldur’s Gate

and Icewind Dale series are the most prominent examples.

Social Interactivity

The player is rarely alone in the virtual world and he/she

constantly interacts with other characters whether they are

artificial or real. Some of the artificial characters simply

populate the environment but others are merchants or key

characters of the story. There are also support characters

called henchmen that travel with the player and help

him/her. Characters, artificial or real, also build factions or

guilds in the game where they gather, share information and

resources, help eachother. And of course there are enemies

scattered across the virtual world which oppose the player.

Bartle (2004) also classified the inhabitants of the virtual

world as characters, non-player characters and monsters. He

also identified the roles of non-player characters as: to buy,

sell, and make stuff; to provide services; to guard places; to

get killed for loot; to dispense quests, to supply background

information, and to do stuff for players. Given below are

examples from popular computer games that offer rich

interaction opportunities for social interactivity.

Non-Player Characters (NPCs): The Mass Effect series have

various NPCs, each with a personality of his/her own.

Players are inclined to form an emotional bond with these

characters who fight side by side with him/her. This

emotional bond, or the empathy between players and

characters, creates a more powerful narrative effect

7

(Freeman, 2004). Online tribute videos dedicated to various

NPCs are indicators of this emotional bond.

Guilds/Factions: Guilds in the World of Warcraft offer many

benefits including free items, opportunities for groups,

access to trade skill masters, quest items, and greatly

enhances the gameplay experience. Players can meet

friends, share adventures, and find people to protect

themselves. There are also guilds in single player games.

For example, The Elder Scrolls IV: Oblivion was the Elder

Scrolls title to employ the conventional four factions, which

were called "Guilds". These factions included the Thieves

Guild, the Mages Guild, the Fighters Guild, and the Dark

Brotherhood.

Henchmen: Henchmen of the Guild Wars are computer-

controlled adventurers who are always ready to travel with

the player. Their skills, attributes, and levels will change as

the player progresses. They count as party members and

thus, claim their share of the party's loot and experience.

Other Players: The MapleStory is a free-to-play massively

multiplayer online role-playing game where players can

interact with others in many ways, such as through chatting,

trading and playing minigames. Throughout the first six

years eight million accounts have been registered and more

than twenty million characters were created.

Enemies: The Nemesis system of the Shadows of Mordor

provides randomly named enemies in Sauron's Army that

are generated uniquely with each play of the game. Each

enemy has their own personality and will rise or fall within

their social structure as the game progresses. They are

affected by the player's actions and they remember the

player if they have encountered him/her before.

Environmental Interactivity

The player does not only interacts with virtual or real

characters but also effects his/her environment. The virtual

world consists of objects ranging from a spoon to a

skyscraper that can be manipulated or effected by the user.

There are movable objects, destructible objects, constructive

objects and upgradable objects in a virtual environment. The

interactions with these objects conform to the laws of

physics defined by the designers. The environment may also

interact with itself regardless of player actions but may

affect the player’s gameplaying experience. Given below are

examples from popular computer games that offer rich

interaction opportunities for these categories.

World Physics: The Star Wars: The Force Unleashed series

used the Digital Molecular Matter engine for realistic object

and environment behavior, Euphoria Engine for intelligent

characters responses to physics, and Havok engine for rag-

doll physics and collision detection. The result is a delicate

balance between realistic and entertaining physics. The

physics engine also affects the manipulation of virtual

objects, such as moving or destroying them.

Movable Objects: The Wizard character of the action

adventure game Trine 2 can magically move many things

with his Levitation ability and conjure a plank or a floating

platform into the world. Conjured boxes can be used for

weight or for jumping on. By placing a plank on top of a

box, one can levitate the box when standing on top to reach

places one could not originally. Moving objects can be used

for solving puzzles, protecting characters and/or defeating

enemies.

Destructible Objects: Red Faction series are first-person

shooters where all environments are fully destructible which

means that every single building or structure in the game

can be destroyed. Destroying objects is not only a visual

effect but an integral part of the gameplay, meaning that the

player could use explosives to dig holes through cave walls

or blow holes in walls.

Constructive Objects: Gameplay of Minecraft involves

players interacting with the game world by placing and

breaking various types of blocks in a 3D environment. Other

activities in the game include exploration, resource

gathering, crafting, and combat.

Upgradable Objects: Sid Meier's Colonization is a a turn-

based strategy game themed on the early European

colonization of the New World. When the player founds a

colony it already has the most basic structures, but

improving them and constructing new ones can greatly

further the player’s cause in the New World. For example, a

fort is a substantial improvement over the stockade and a

fortress is an upgraded fort or an armory can be upgraded

into a magazine and a maganize can then be upgraded into

an arsenal.

CONCLUSION

Interactivity in computer games is defined by the number of

possible actions at a given time and the number of variables

that can be manipulated by the user but these actions or

manipulations are related with eachother and earlier player

choices. The realism, playability, and believability of these

player actions/manipulations determine the depth of

interaction. It should be noted that the player should also

feel himself/herself in the world mediated by the computer

and should believe that he/she exists there (presence) and

the player should also feel a sense of control over the events

thinking that he/she can affect the virtual world. So, our

definition of interaction in computer games is:

Interactivity is the extent to which a player can modify

his/her second self, the characters and the objects that

constitute the virtual world in a retrospective way so that

the past interactions/choices will affect his/her future.

8

Figure 2: Interactivity in (single-player) computer games

It is important to note that the three interaction dimensions

mentioned in this study are not necessarily correlated in the

characterization of interactivity. They can be considered as

independent dimensions/vectors that may or may not be

applied to a computer game. The popular mobile game

Candy Crush does not provide any form of personal or

social interactivity but focuses on environmental

interactivity. In this regard, role playing games require

special attention because all three forms of interactivity are

provided with correlations between them. Your

actions/choices as the protagonist of the game affect the

society, the environment and your second self.

The interactive nature of computer games has been a cliché

among researchers but there is a need for classification of

player interactions in computer games. What do the players

interact with? How do they interact? What is the range of

variables that can be manipulated by the player? In this

paper, we attempt to answer these questions by defining

three categories of player interactions: personal interaction,

social interaction and environmental interaction. Five

subcategories for each further explained the nature of

‘interactivity’ with examples from popular computer games

that offer rich interaction opportunities.

REFERENCES

Bartle, R. A. (2004). Designing Virtual Worlds. Berkeley, CA:

New Riders.

Castranova, E. (2007). Exodus to the Virtual World: How online

fun is changing reality. New York: Palgrave Macmillan.

Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal

Experience. Harper Perennial.

Freeman, D. (2004) Creating Emotion in Games: the Craft and Art

of Emotioneering. Berkeley, CA: New Riders.

Lievrouw, L. and Livingstone, S. (Eds.). (2002). Handbook of New

Media: Social Shaping and Social Consequences. London:

Sage.

Rafaeli, S. (1988). Interactivity: From New Media to

Communication, in: Hawkins, R.P., Wiemann, J.M., and

Pingree, S. (Eds.) Advancing Communication Science:

Merging Mass and Interpersonal Processes. Newbury Park,

CA: Sage, pp.110-134.

Rafaeli, S. and Ariel, Y. (2007). Assessing Interactivity in

Computer-Mediated Research, in: Joinson, A.N., McKenna,

K.Y.A., Postmes, T., and Rieps U.D. (Eds.). The Oxford

Handbook of Internet Psychology. Oxford University Press,

pp. 71-88.

Salen, K. and Zimmerman, E. (2003). Rules of Play: Game Design

Fundamentals, Cambridge, MA: The MIT Press.

Schultze, U. and Leahy, M.M. (2009). The Avatar-Self

Relationship: Enacting Presence in Second Life. International

Conference on Information Systems Phoenix, AZ: Association

of Information Systems

Sellers, M. (2006). Designing the experience of interactive play,

in: Vorderer, P., Bryant, J. (Eds.). Playing video games:

Motives, responses, and consequences. Mahwah, NJ:

Lawrence Erlbaum, pp. 9-22.

Steuer, J. (1992). Defining virtual reality: Dimensions determining

telepresence. Journal of Communication 42 (4), 73-93.

9

Comparative Analysis on Game Design Pattern Collections

Tapani N. Liukkonen, Olli I. Heimo

and Tuomas Mäkilä

Jouni Smed

Technology Research Center Department of Information

Technology

University of Turku University of Turku

20014 Turun yliopisto 20014 Turun yliopisto

Finland Finland

Email: {taneli, olli.heimo,

tusuma}@utu.fi

Email: jouni.smed@utu.fi

KEYWORDS

Game design patterns.

ABSTRACT

Varying methods to support the game design process exist.

Researchers of game design have worked on formalizing the

experience-based craft by creating game design patterns.

However, these patterns are incompatible in their creation,

presentation, and usage. They also have strayed away from

their original roots. In this paper, we suggest a taxonomy of

game design patterns based on their usage during the game

design and implementation. Our proposal is based on the

literature research on the history of the game design patterns,

and analysis of the existing game design patterns and

collections of them.

INTRODUCTION

Gaming industry has become one of the largest branches of

the entertainment industry, sales worth being over 15 billion

dollars in the USA alone during year 2014 (ESA, 2015).

Budgets for the large game productions regularly go over

100 million dollars, which makes their production a high-risk

endeavor. In the market, the shelf time of a game is short and

competition for sales is fierce. During this time, the game

competes with experiences aimed to generate gratification in

players. These experiences are created by the video game

designer.

The art of video game design is a young discipline which has

drawn many of its tools from the related fields that are also

partly participating in the design and implementation process

of the game artifact, e.g. graphical artists with their tools and

background knowledge of their craft. Many of the other

disciplines participating in this creative process have more

formal and mature means of relaying their ideas from person

and group to another, e.g. programmers have derived their

design tools and methods from the applicable domains of

software engineering.

The game designer is responsible for creating the overall

structure of the game, planning the player’s progression

through the game, activities available during the game, and

the experience the player has during the gameplay.

Designers’ means to achieve these goals are the rules,

mechanics, and story. (Smith, 2012) For game designers,

movie industry and other entertainment branches have been

the source of common tools such as storyboards and scripts,

but the tools used in these other branches have been

developed for creating passive forms of media. Games are

inherently interactive, and thus require elements that the

passive media like movies do not offer.

Alongside the growth and maturation of the gaming industry,

also the path to become a game designer has been under a

change. Schools and institutions on different levels of the

education system offer courses and diploma studies for

aspiring game designers. Traditionally, game designers

learned their craft through personal experience (playing

games and analyzing existing games) and experimentation

(designing games).

These changes are also reflected on the published game

design related literature. In 1984, book by Chris Crawford

started the still on-going trend of the game design literature

which concentrates on sharing of the wisdom of the experts

in the form of experiences, guidelines and taxonomies (e.g.

Rollings & Morris, 2003; Rollings & Adams, 2003;

Zimmerman & Salen, 2004; Barwood & Falstein, 2006;

Schell, 2008). Crawford’s book also serves as an example of

game design knowledge moving to more formal direction

from the roots of self-learning and expertise gained in

practice. A decade after Crawford, Costikyan (1994; updated

2002) started work on shared vocabulary for game designers

as he saw this as a basic requirement for the analysis and

understanding what kind of game design choices work and

makes games interesting.

The developmental branch for the game design patterns was

started by Kreimeier (2002a), and Björk and Holopainen

(2002). Game design patterns are game design tools, but they

can also be used as tool for communication between different

parties, documentation of the game design, and as a source

for automatic code generation from the pattern model in

some cases.

In this paper we continue from the work of Almeida et al.

(2013), who reviewed systematically the tools and methods

developed for game design, by expanding the branch

10

containing the game design patterns. In the next section we

shortly describe the method used to find the key literature

and how the material was analyzed. The following section

represents the birth and history of game design patterns.

After that, we present the current state of the field in a form

of a simplified taxonomy and describe its contents to the

readers. Then, in the final section we discuss the

shortcomings, strengths, and future directions of game design

patterns. We conclude the paper with a call for the game

design pattern language, which could unify the field, further

advancing its maturation as a usable design tool.

METHODOLOGY

Methodology behind this work is a literature review in the

form of a systematic mapping of the literature (Grant et al.,

2009). The systematic mapping was done by searching

databases (e.g. ACM, IEEE, and Web of Science) with the

search string “game design pattern”. Literature was also

searched from game industry sites (e.g. Gamasutra), industry

events (e.g. Game Developers Conference) and from known

game-related academic conferences (e.g. GameOn,

International Workshop on Games and Software Engineering

(GAS) at International Conference on Software Engineering

(ICSE), and Foundations of Digital Games).

From these sources the relevant articles were identified,

based on their content. Content of the articles had to describe

game design patterns, either relating to general gameplay or

some specific are of game design. The results were further

complemented by following the references in these papers.

Also, a freeform search were conducted on the popular web

search engine Google and its academic counterpart Google

Scholar to find out about other potential sources, especially

from the practical side of the game design world. This left us

with 52 relevant sources for the game design patterns.

The collected material was then analyzed by going through

their content. From the content their references to earlier

work done on the field was noted with their stated goals and

the discipline from where the work originated from. This

information was then synthesized to the historical timeline

and family tree of game design patterns, and the game design

patterns presented in these studies were categorized based on

their descriptions and features to form our simplified

taxonomy of game design patterns. Other observations

relevant to the history, evolution and creation of the game

design patters done during this process are stated at the

relevants parts of this paper.

BIRTH AND EVOLUTION OF GAME DESIGN

PATTERNS

The idea of design patterns came to light in the year 1977

when Alexander et al. published their series of books

concerning the architectural design. Especially the volume

called A Pattern Language: Towns, Buildings, Construction

(Alexander et al., 1977) which described 253 “good design

practices” that conveyed the common wisdom gathered from

the field of architecture has been influential also on other

domains. Design patterns were applied on software

engineering by Beck and Cunningham (1987), but were

popularized on the 1990s when Gamma et al. published their

influential Design Patterns: Elements of Reusable Object-

Oriented Software (1994). Since then design patterns have

been applied on a diverse set of aspects in the field of

software engineering. These uses range from general

software design to games (e.g. Chowdhury and Katchabaw,

2012).

Video game design is a relatively young discipline, and its

methods and tools have been drawing influence from other

similar fields such as books, movies, and web design. Since

the field started to become more formalized, and recognized

its own need for maturation, the tools and methods have been

surveyed several times (e.g. Kreimeier, 2003; Lindley, 2007;

Neil, 2012; Almeida, 2013).

The maturation itself begun by the call for shared and critical

language by Costikyan in 1994 (1994; updated 2002).

Church (1999) continued this by calling for “Formal

Abstract Design Tools”. Taxonomies (e.g. Lindley, 2003),

game design patterns (e.g. Kreimeier, 2002), frameworks

(e.g. LeBlanc, 2004) and ontologies (e.g. Zagal, 2005) soon

followed this call. This development has also led to several

taxonomies and models which represent different aspects of

game design.

One of these is Lindley & Sennersten’s (2007) meta-model

describing and interrelating different approaches and

methodologies for game design. This meta-model has five

levels on which different design methodologies are placed

depending on their maturity level. Meta-model is presented

on the following Figure 1.

Figure 1. Game Design Meta-Model

On the lowest level of this model are the game design

practices based on Implicit Design. At this level the game

designs are based on the experience of the designers, which

is cumulated from past experiences and from bits of

knowledge shared by the peers (e.g. Crawford, 1984). On the

second level, the experience is shared in the forms of

guidelines, checklists and rules. These collections of

knowledge are called Design Cookbooks and they are the

simplest form of organization for the cumulative knowledge

11

present on the craft. (e.g. “The 400 rules project” by Falstein

& Barwood, 2002)

Third level includes ontologies, taxonomies and game design

patterns which describe game elements and design concepts

used in games in a structured manner. But they do not

explain why specific design choices are made. This is a

requirement for the fourth level, where design tools have to

be able to explain why the design choices were made and

how effective they might be compared to other choices. The

fifth stage is meant for design tools and ideas that potentially

allow the designers to create experimental and unique games

exploring the nature of games as a medium (Lindley &

Sennersten, 2007). In this paper, we concentrate on the third

level, and especially on the game design patterns.

In 2002 Bernd Kreimeier called for more formal design

methods, namely game design patterns, at the Game

Developer Conference 2002 roundtable event in March 2002

(2002a) and in a Gamasutra article on the same month

(2002b). These patterns have their roots in Alexander et al.'s

(1977) architectural design patterns, and Kreimeier called his

patterns “Alexandrian patterns”, which were noted to be

“simple collections of reusable solutions to solve recurring

problems”.

He defined game design patterns as follows: “In a nutshell,

patterns are simply conventions for describing and

documenting recurring design decisions within a given

context, be it game design or software engineering”. He also

classified his patterns as content patterns, differentiating

them from the software engineering patterns which are used

to describe the structure of the software, not the content.

Simultaneously and independently to the work of Kreimeier,

Björk and Holopainen (2002) had started their work on game

design patterns, and held the first workshop on them at

Computer Games & Digital Cultures 2002 conference in the

beginning of June 2002 (personal correspondence with

Holopainen, 27.8.2015). To Björk and Holopainen the

patterns were “commonly recurring parts of the design of a

game that concern gameplay” (2004).

As a historical side note, the first identified usage of

Kreimeier’s pattern style was Ekström (2002) who used them

to sketch out multiplayer design patterns for his personal

massively multiplayer online game (MMOG) -project. This

project has been dormant since 2002.

Kreimeier, Holopainen, and Björk combined their efforts,

and held a game design pattern lecture at the GDC 2003

(Kreimeier et al., 2003). Since this, Kreimeier has been

concentrating on other topics related to his work as a

programmer and software engineer in game industry. From

these early steps the work continued, and new authors

diversified game design patterns from general gameplay

patterns to new directions. This development will be

described in the following chapter where different game

design pattern collections are presented and classified.

TAXONOMY OF GAME DESIGN PATTERNS

We group the separate game design pattern collections to

three main groups, based on the analysis of their descriptions

and where they fit on the simplified model of game design

process. In this paper, the game design process has been

simplified to three aspects, Guidelines for Intent which sets

the limits and goals of the game development process which

steers the Guidelines for Design. Guidelines for Design, in

turn, provides the groundwork for the activities and

experiences offered to the player. Guidelines for

Implementation contains the game design patterns that have

the closest resemblance to the Alexandrian patters as they

describe the audiovisual and concrete story related assets

(e.g. level design, dialogues, and non-player characters) that

converts the design to artefact.

These three aspects are not separate from each other, instead

they influence each other during the game design and

implementation further complicating the overall process. In

the following chapters we keep them separate from each

other to simplify the taxonomy.

Guidelines for Intent

These patterns act as guides for the design work and steer the

decisions specific to certain types of games and goals that the

game design process has.

Patterns belonging to the groups Design Intent and Dark

Patterns (Zagal et al., 2013) have many common features.

Both contain intents that game developers want to achieve

with the game, be it motivating them in learning a new skill

(Kiili, 2010; Kelle, 2012; Dormann et al., 2013), use serious

games for education (Plass & Homer, 2009; Hyunh-Kim-

Bang et al., 2010; Plass et al., 2010; Ibrahim et al., 2011), or

change their behavior in some way (Holopainen & Björk,

2008; Lewis et al., 2012; Lewis, 2013; Ašeriškis &

Damaševičius, 2014). Patterns belonging to the Dark Patterns

are considered to be ethically problematic. They are defined

by Zagal et al. (2013) to be “a pattern used intentionally by

a game creator to cause negative experiences for players

which are against their best interest and likely to happen

without their consent.” Also, game project might have

Economical patterns (Zagal et al., 2013) to guide the

economic aspects of game design.

Guidelines for Design

Game Type specific patterns are mostly relevant with some

types of games, which has led to the development of highly

specialized genre-specific patterns. Representative of these

are the patterns for stealth games (Hu, 2014) that concentrate

solely on the aspects of how to create games to use stealth as

a game mechanic. Cermak-Sassenrath has been working on

patterns that are derived from popular games from the 1980's

(Cermak-Sassenrath 2012a, 2012b, 2012c). Also, some

platform specific patterns have been developed, e.g. for

mobile games (Davidsson et al., 2004).

12

Another interesting group of specialized patterns are for role

playing games (RPGs) by Kirk et al. (2006). As the name

states, these patterns describe how to create RPG type of

games. Their roots are in the board games, but are applicable

also to the computer RPGs. Interesting aspect of these

patterns is that they do not share the otherwise common roots

to Kreimeier, Björk and Holopainen. Instead they are derived

straight from the works of Gamma et al. (1994), as their main

creator Kirk has background in programming and software

engineering.

Game(Play) design patterns were originally described to be

collections of shared design vocabulary. Aim of the shared

vocabulary is to enable the designers to communicate

efficiently with each other and document their experience in

written format for other game designers. Patterns also make it

possible to analyze existing games using this same

vocabulary, even if games were not designed by using them.

(Kreimeier, 2002a; Björk et al., 2003)

Kreimeier created the first published patterns on 2002

(2002a). In this seminal work he describes seven patterns

concerning general game design, e.g. Predictable

Consequences. Björk et al. published their work shortly after

Kreimeier (2003), in which they state that they had so far

found over 200 game design patterns. Currently this game

design pattern wiki contains 536 patterns and their

descriptions (Björk, 2015).

Guidelines for Implementation

Patterns in this group are essentially level design patterns. In

this group the patterns range from the scale of the individual

objects sized from small rock to massive open worlds (Level

Design Patterns, 2015).

Environment patterns are closest to the original

Alexandrian patterns as they concern the architectural

features of the game’s graphical visualization of its world

(Hullett et al., 2010; Dahlskog et al., 2012; Dahlskog et al.,

2015). There are also sub patterns that aim to guide the

player’s movement (Milam et al., 2010; Lannigan, 2014)

and/or attention (Milam et al., 2012) to certain directions on

the game world with these features.

Patterns for Assets are about creating the artefacts that are

part of the game world that make the game world and story

more life-like, e.g. sounds (Alves & Roque, 2010; Sound

Design in Games, 2010), or artefacts that the player can use

e.g. weapons (Giusti et al., 2012), and potentially other

objects like vehicles (Level Design Patterns, 2015).

Interaction patterns differ from other two subgroups in the

sense that they are guidelines to design and implement non-

audiovisual elements of the game world that the players

experience. These patterns are applicable to quests (Smith et

al., 2011), conflicts (Lankoski and & Björk, 2007; Lankoski

and & Björk, 2008), dialogue (Brusk & Björk, 2009), NPCs

(Lankoski & Björk, 2007; Rivera et al., 2012), behavior

(Pellens et al., 2008), social networks in the game (Lankoski

and & Björk, 2007), social interaction between player and

NPCs or other players (Bergström et al., 2010; Reichart &

Bruegge, 2014; Reichart & Bruegge, 2015),

cooperation/collaboration (Rocha et al., 2008; Seif El-Nasr et

al., 2010; Reuter et al., 2014) and AIs (Treanor et al., 2015).

Simplified Taxonomy of Game Design Patterns

In this simplified taxonomy, patterns in higher level are

grouped according to their role in the game design and

implementation process. Inside this broad grouping, there are

seven subgroups, based on the aspects of the game design

they are related to. This categorization is visualized in Figure

2.

Figure 2: Categorization of game design pattern collections

Game(Play) Design pattern group, which originally started

the development of these patterns is the most difficult to

break in to smaller groups. Even the original authors have

adopted different classifications for the patterns depending

on their usage cases (more on these at Björk (2015).

DISCUSSION

In this part we discuss some problems related to the game

design patterns that were identified during the search and

analysis phase. These problems relate to the fragmentation of

the patterns, their current usage, and their maturity in general.

It is cumbersome to go to more detailed level and to properly

form subgroups for all the available individual game design

patterns from different game design pattern collections. The

reason for this is that the authors of these collections do refer

to each other’s work but create their own separate collections

which use their own conventions to describe patterns. This

creates a highly fragmented field, leading to overlapping

patterns, incompatible naming and, more importantly,

incompatible pattern templates and creation styles – (ranging

from Alexander et al.’s (1977) notation to Kreimeier

(2002a), or Björk & Holopainen (2003), UML based

(Ašeriškis & Damaševičius, 2014), or some modified form of

Alexander et al. (Björk & Holopainen, 2003) or Björk &

Holopainen (Hu, 2014)).

Game design patterns have been criticized notably by Folmer

(2006), McGee (2007) and Dormans (2013). All of these

authors have critiqued game design patterns for including the

term “pattern”, but deviating from the Alexander et al.'s

(1977) and Gamma et al.'s (1994) problem - solution pairing

13

principle, in which the pattern is known solution to a known

problem. For this reason, Folmer compares the game design

patterns to heuristics, and Dormans to design vocabularies

and taxonomies. In the words of McGee, “This expands the

original Alexander usage from just problem-solution pairs to

include patterns that are less precise or that support creative

experimentation”. In defense of patterns supporting creative

experimentation, Alexandrian patterns were not meant to be

strict rules, instead they are guidelines to be used when

designers encounter a problem.

As a reaction to respond to this criticism, game design

pattern creators could look back into the software design

patterns where their own roots are. Research of the software

design patterns include specific section devoted to the pattern

writing and creation (which was noted by Reichart &

Bruegge, 2015), e.g. Meszaros & Doble (1998) and

Wellhausen & Fießer (2011).

To properly address these problems, game design patterns

community should move towards the creation of game design

pattern language. Some parts of it have already done it, the

most comprehensive of them being the sound design for

games (Alves & Roque, 2010). In a smaller scale, Cerman-

Sassenrath (2012b) has done the same with “old school

action games”. In this move, the previous work done by the

software design patterns community could be a helpful

source. Another example is also the unification attempt

started by Zavcer et al. (2014) in the field of patterns for

serious games design.

In the issue of maturity, a game design pattern language and

unified creation templates for the patterns could be a

beginning for the move towards the fourth level of the

Lindley & Sennersten’s (2007) maturity model, Theoretically

Motivated Design. Game pattern language would make it

easier to create comprehensive theoretical background and

tests for the effectivity of the existing patterns. In this sense,

Milam & Seif El-Nasr (2010) and Milam et al. (2012) have

already begun this work by testing the effectivity of their

patterns.

CONCLUSION

In this paper, we looked at the development history of the

game design patterns and their current state. Our

methodology was the analysis of the material found on the

systematic mapping of the literature. We observed how game

design patterns originated from software design patterns, and

diversified to cover various aspects of the overall game

design.

Also, we observed how this diversification also led to a

fragmentation as authors on the different subfields modified

the pattern templates to their own needs and created patterns

that unnecessarily replicate patterns from other pattern

collections and are incompatible with them.

Based on our analysis of the game design patterns and game

design pattern collections, we recognized the need for

unification of game design patterns. Specifically this field of

research and practice as whole could benefit from a common

unified game design patterns language to amend the

problems created by the current state of fragmentation.

From the material we constructed the simplified taxonomy of

game design patterns. On the top level, this taxonomy

categorizes the patterns based on their role on the game

design process. These top level categories are Guidelines for

Intent, Guidelines for Design and Guidelines for

Implementation.

Inside these levels, the patterns are categorized based on

which aspect of the game design they influence during the

game design process. In the Guidelines for Intent, Design

Intent, Economical and Dark patterns steer the game design

to specific use when the game is created with other motives

than pure entertainment.

Guidelines for Design contains the main patterns used in the

game design process. Game(Play) Design patterns describe

the core mechanics, and goals of the game, while Game Type

specific patterns are used to supplement them when game

designers’ goals is to make a game for specific genre.

Patterns belonging to the Guidelines for Implementation are

used when game designers are creating the content for the

game world. The audiovisual and story related elements are

created with the of the Environment, Interaction and Assets

patterns. From the material we constructed the simplified

taxonomy of game design patterns. On the top level, this

taxonomy categorizes the patterns based on their role on the

game design process. Inside this level, the patterns are

categorized based on which aspect of the game design they

influence during the game design process.

The future work on this matter requires more concentration

on assorting the second level pattern taxonomy to more fine

graded groups. Currently some of these groups contain

diverse assortment of patterns, which might benefit from

clearer categorization.

ACKNOWLEDGEMENT

This article was done as a part of the Gamified Solutions in

Healthcare research project. The project is conducted by

University of Turku and Turku University of Applied

Sciences together with partners Puuha Group, GoodLife

Technology, City of Turku and Attendo. The project is

funded by Tekes – the Finnish Funding Agency for

Innovation.

REFERENCES

Alexander, C., Ishikawa, S. and Silverstein, M. (1977). A Pattern

Language: Towns, Buildings, Construction. Vol. 2. Oxford

University Press, 1977.

Almeida, M.S.O. and Silva, F.S.C. (2013). A Systematic Review of

Game Design Methods and Tools. Lecture Notes in Computer

Science 8215. Springer, Berlin and Heidelberg, pp.17-29, 2013,

http://dx.doi.org/10.1007/978-3-642-41106-9_3

14

Beck, K. and Cunningham, W. (1987). Using Pattern Languages for

Object-Oriented Programs. Technical Report CR-87-43, Tektronix,

Inc., September 17, 1987. Presented at the OOPSLA'87 workshop

on Specification and Design for Object-Oriented Programming.

Björk, S. and Holopainen, J. (2002). Computer Game Design

Patterns. One-day workshop Computer Games & Digital Cultures

2002 conference, Tampere, Finland.

Björk, S., & Holopainen, J. (2004). Patterns in game design (game

development series). 1. ed., Charles River Media, December 2004.

Chowdhury, M. I., & Katchabaw, M. (2012). Improving software

quality through design patterns: a case study of adaptive games and

auto dynamic difficulty. In the Proceedings of the GAMEON’2012,

Eds. Antonio J.Fernandez-Leiva, Carlos Cotta Porras and Raul Lara

Cabrera. November 14-16, 2012, University of Malaga, Malaga,

Spain. ISBN 978-90-77381-74-8.

Church, D. (1999). Formal Abstract Design Tools. Gamasutra (July

1999), http://www.gamasutra.com/view/feature/3357/formal

abstract design tools.php

Costikyan, G. (1994). I have no words and I must design. nteractive

Fantasy# 2. British roleplaying journal.

Costikyan, G. (2002). I have no words & I must design: Toward a

critical vocabulary for games. In F. Mdiyrd (Ed.), Proceedings of

the Computer Games and Digital Cultures Conference (pp. 9-33).

Tampere, Finland: Tampere University Press.

Crawford, C. (1982). The art of computer game design. Vancouver,

WA: Washington State University. Available at

http://www.vancouver.wsu.edu/fac/peabody/game-

book/Coverpage.html

Dormans, J. (2013). Making design patterns work. In Proceedings

of the Second Workshop on Design Patterns in Games, DPG ’13, in

association with Foundations of Digital Games, FDG’13, Chania,

Greece, 2013.

ESA (2015). Essential Facts about the Computer and Video Game

Industry. Report, available at: http://www.theesa.com/wp-

content/uploads/2015/04/ESA-Essential-Facts-2015.pdf

Falstein, N., Barwood, H. (2002). More of the 400: Discovering

Design Rules. Presentation at GDC 2002, available at

http://www.gdconf.com/archives/2002/hal_barwood.ppt

Gamma, E., Vlissides, J., Johnson, R., and Helm, R. (1994). Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley.

Grant, M. J., & Booth, A. (2009). A typology of reviews: an

analysis of 14 review types and associated methodologies. Health

Information & Libraries Journal, Vol. 26, Iss. 2, pp. 91-108.

Hunicke, R., LeBlanc, M., and Zubek, R. (2004). MDA: A formal

approach to game design and game research. In: Proceedings of the

AAAI 2004 Workshop on Challenges.

Kreimeier, B. (2002a). The Case for Game Design Patterns.

Gamasutra.com, March 13, 2002. Available at:

http://www.gamasutra.com/view/feature/132649/the_case_for_gam

e_design_patterns.php

Kreimeier, B. (2002b). Content Patterns in Game Design. GDC

2002, March 19-23, Roundtable. Available at:

http://www.onearrow.org/game/pattern/

Kreimeier, B. (2003). Game Design Methods: A 2003 Survey.

Gamasutra, 2003. Available at:

http://www.gamasutra.com/view/feature/131301/game_design_met

hods_a_2003_survey.php?print=1

Kreimeier, B.; Holopainen, J. and Björk S. (2003). Game Design

Patterns. Lecture Notes from GDC 2003 (March 6).

Lindley, C. A. (2003). Game Taxonomies: A High Level

Framework for Game Analysis and Design. Gamasutra. Available

at: http://www.gamasutra.com/features/20031003/lindley_01.shtml

Lindley, C.A., and Sennersten, C.C. (2007). An Innovation-

Oriented Game Design Meta-Model Integrating Industry, Research

and Artistic Design Practices. In O. Leino, H. Wirman & A.

Fernandez (Eds.), Extending Experiences. Structures, Analysis and

Design of Computer Game Player Experiences (pp. 250-271).

Rovaniemi, Finland: Lapland University Press.

Neil, K. (2012). Game Design Tools: Time to Evaluate.

Proceedings of DiGRA Nordic 2012 Conference: Local and Global

Games in Culture and Society (2012).

Meszaros, G., and Doble, J. (1998). A pattern language for pattern

writing. In R. C. Martin, D. Riehl, & F. Buschmann (Eds.), Pattern

languages of program design, Vol. 3, pp. 529–574. Reading, MA:

Addison-Wesley.

Rollings, A., & Morris, D. (2003). Game architecture and design: a

new edition. New Riders.

Rollings, A., & Adams, E. (2003). Andrew Rollings and Ernest

Adams on game design. New Riders.

Salen, K., & Zimmerman, E. (2004). Rules of play: Game design

fundamentals. MIT press.

Schell, J. (2008). The Art of Game Design: A book of lenses. CRC

Press.

Smith, G. (2012). Expressive Design Tools: Procedural Content

Generation for Game Designers (Ph.D. thesis). University of

California, Santa Cruz.

Zagal, J., Mateas, M., Fernandez-Vara, C., Hochhalter, B., and

Lichti, N. (2005). Towards an Ontological Language for Game

Analysis. Proceedings of the DiGRA 2005 Conference: Changing

Views - Worlds in Play, Vancouver, BC, Canada.

Zavcer, G., Mayr, S., and Petta, P. (2014). Design Pattern Canvas:

Towards Co-Creation of Unified Serious Game Design Patterns. In

6th International Conference on Games and Virtual Worlds for

Serious Applications (VS-GAMES), 2014, 9-12 Sept. 2014.

Wellhausen, T., & Fießer, A. (2011). How to write a pattern.

European Conference on Pattern Languages of Programs, EuroPloP

'11.

15

Pattern references

Alves, V., & Roque, L. (2010). A pattern language for sound design

in games. In Proceedings of the 5th Audio Mostly Conference: A

Conference on Interaction with Sound (p. 12). ACM.

Ašeriškis, D., & Damaševičius, R. (2014). Gamification Patterns for

Gamification Applications. Procedia Computer Science, 39, 83-90.

Bergström, K., Björk, S., & Lundgren, S. (2010). Exploring

aesthetical gameplay design patterns: camaraderie in four games. In

Proceedings of the 14th International Academic MindTrek

Conference: Envisioning Future Media Environments (pp. 17-24).

ACM.

Björk, S. (2015). Gameplay design patterns collection, available at

http://129.16.157.67:1337/mediawiki-

1.22.0/index.php/Category:Patterns . Checked at 15.2015.

Björk, S. and Holopainen, J. (2005). Games and Design Patterns. In

The Game Design Reader: A Rules of Play Anthology, Salen, K. &

Zimmerman, E. (Eds). ISBN 0-262-19536-4. MIT Press.

Björk, S. and Holopainen, J. (2004) Patterns in Game Design.

Charles River Media. ISBN 1-58450-354-8.

Björk, S., Lundgren, S. and Holopainen, J. (2003) Game Design

Patterns. In Copier, M. & Raessens, J. (Eds.) (2003) Level Up -

Proceedings of Digital Games Research Conference 2003, Utrecht,

The Netherlands, 4-6 November 2003.

Brusk, J. and Björk, S. (2009). Gameplay Design Patterns for Game

Dialogues. Paper presentation at DiGRA 2009: Breaking New

Ground: Innovation in Games, Play, Practice and Theory. London,

UK.

Cermak-Sassenrath, D. (2012a). Experiences with design patterns

for old school action games. In Proceedings of the 8th Australasian

Conference on Interactive Entertainment: Playing the System (p.

14). ACM.

Cermak-Sassenrath, D. (2012b). A Design Pattern Language for

Old school Action Games. In Proceedings of The 2nd International

Conference on DESIGN AND MODELING IN SCIENCE,

EDUCATION, AND TECHNOLOGY: DeMset 2012. (pp. 194-9)

Cermak-Sassenrath, D. (2012c). Designing Games with Patterns.

In: Colab Journal: Creative Technologies. Vol. 3, special issue on

interactivity, 2012.

Dahlskog, S. and Togelius, J. (2012). Patterns and procedural

content generation: revisiting Mario in world 1 level 1. In

Workshop Proceedings of the 7th International Conference on the

Foundations of Digital Games.

Dahlskog, S., Togelius, J., & Björk, S. (2015). Patterns, dungeons

and generators. In Proceedings of the 10th Conference on the

Foundations of Digital Games

Davidsson, O., Peitz, J., & Björk, S. (2004). Game design patterns

for mobile games. Project report to Nokia Research Center,

Finland.

Dormann, C., Whitson, J. R., & Neuvians, M. (2013). Once More

with Feeling Game Design Patterns for Learning in the Affective

Domain. Games and Culture, 1555412013496892.

Ekström, Olkof (2002). Multiplayer Design Patterns. Available at

https://www.abc.se/~m10383/Haven/General/Multiplayer_Design_

Patterns.html

Folmer, E. (2006). Usability patterns in games. Future Play.

Giusti, R., Hullett, K., & Whitehead, J. (2012). Weapon design

patterns in shooter games. In Proceedings of the First Workshop on

Design Patterns in Games (p. 3). ACM.

Holopainen, J. & Björk, S. (2008). Gameplay Design Patterns for

Motivation. Paper presentation at ISAGA 2008, Kaunas, Lithuania.

Hu, M. (2014). Game Design Patterns for Designing Stealth

Computer Games.

Hullett, K., & Whitehead, J. (2010). Design patterns in FPS levels.

In proceedings of the Fifth International Conference on the

Foundations of Digital Games (pp. 78-85). ACM.

Huynh-Kim-Bang, B., Wisdom, J., & Labat, J. M. (2010). Design

patterns in serious games: A blue print for combining fun and

learning. Project SE-SG, available at http://seriousgames. lip6.

fr/DesignPatterns.

Ibrahim, A., Vela, F. G., Sánchez, J. L. G., & Zea, N. P. (2011).

Playability design pattern in educational video game. In

Proceedings of the 5th European Conference on Games Based

Learning (pp. 282-290). Academic Conferences Limited.

Kelle, S. (2012). Game design patterns for learning. Shaker Verlag,

Aachen.

Kiili, K. (2010). Call for learning-game design patterns. Chapter in

a book Educational Games: Design, Learning, and Applications, pp.

299-311. Editors: Frej Edvardsen and Halsten Kulle. Nova

Publishers, 2010. ISBN: 978-1-60876-692-5

Kirk III, W. J., Cantrell, M. R., & Holmes, M. (2006). Design

Patterns of Successful Role-Playing Games.

Kreimeier, B. (2002a). The Case for Game Design Patterns.

Gamasutra.com, March 13, 2002. Available at:

http://www.gamasutra.com/view/feature/132649/the_case_for_gam

e_design_patterns.php

Lankoski, P., & Björk, S. (2007). Gameplay Design Patterns for

Believable Non-Player Characters. Paper presentation at DiGRA

2007, Tokyo, Japan.

Lankoski, P., & Björk, S. (2007). Gameplay Design Patterns for

Social Networks and Conflicts. Paper Presentation at Computer

Game Design and Technology Workshop, John Moores University,

Liverpool.

Lankoski, P., & Björk, S. (2008). Character-Driven Game Design:

Characters, Conflicts, and Gameplay. Paper presentation at GDTW,

Sixth International Conference in Game Design and Technology,

2008.

Lannigan, R. (2014). Developing Player Movement Design Patterns

in Multiplayer Video Games. In the Proceedings of the

GAMEON'2014, Ed. Patrick Dickinson. September 9 - 11, 2014,

University of Lincoln, Lincoln, United Kingdom. ISBN 978-90-

77381-85-4.

16

Level Design Patterns (2015). Available at:

https://ldp.soe.ucsc.edu/doku.php?id=start

Lewis, C., Wardrip-Fruin, N. and Whitehead, J. (2012).

Motivational game design patterns of 'ville games. In Proceedings

of the International Conference on the Foundations of Digital

Games (FDG '12). ACM, New York, NY, USA, pp. 172-179.

DOI=10.1145/2282338.2282373. Available at:

http://doi.acm.org/10.1145/2282338.2282373

Lewis, Chris. (2013). Motivational Design Patterns. UC Santa

Cruz: Computer Science. Doctoral thesis, retrieved from:

http://escholarship.org/uc/item/30j4200s

McGee, K. (2007). Patterns and computer game design innovation.

In IE '07: Proceedings of the 4th Australasian conference on

Interactive entertainment. Melbourne, Australia, RMIT University,

2007, pp. 1-8.

Milam, D. and Seif El-Nasr, M. (2010). Design Patterns to Guide

Player Movement in 3D Games. Proceedings of the 5th ACM

SIGGRAPH Symposium on Video Games, 2010.

Milam, D., Bartram, L., & El-Nasr, M. S. (2012). Design patterns

of focused attention. In Proceedings of the First Workshop on

Design Patterns in Games (p. 5).

Pellens, B., De Troyer, O., & Kleinermann, F. (2008). CoDePA: A

conceptual design pattern approach to model behavior for X3D

worlds. In Proceedings of the 13th International Symposium on 3D

Web Technology

Plass, J. L., & Homer, B. D. (2009). Educational game design

pattern candidates. Journal of Research in Science Teaching, Vol.

44, Iss. 1, pp. 133-153.

Plass, J. L., Homer, B., & Perlin, K. (2010). Research on design

patterns for effective educational games. In Game Developers

Conference 2010.

Reichart, B., & Bruegge, B. (2014). Social interaction patterns for

learning in serious games. In Proceedings of the 19th European

Conference on Pattern Languages of Programs (p. 22). ACM.

Reichart, B., & Bruegge, B. (2015). Serious Game Patterns for

Social Interactions. In Proceedings of the IADIS Multiconference

on Computer Science and Information Systems (MCCSIS) 2015,

Game and Entertainment Technologies 2015, Eds. Katherine

Blashki and Yingcai Xiao. July 21 - 24, Las Palmas de Gran

Canaria, Spain. ISBN: 978-989-8533-38-8.

Reuter, C., Wendel, V., Göbel, S., and Steinmetz, R. (2014). Game

Design Patterns for Collaborative Player Interactions. DiGRA,

2014.

Rivera, G., Hullett, K., & Whitehead, J. (2012). Enemy NPC design

patterns in shooter games. In Proceedings of the First Workshop on

Design Patterns in Games (p. 6). ACM.

Rocha, J. B., Mascarenhas, S., & Prada, R. (2008). Game

mechanics for cooperative games. ZON Digital Games 2008, pp.

72-80.

Seif El-Nasr, M., Aghabeigi, B., Milam, D., Erfani, M., Lameman,

B., Maygoli, H., & Mah, S. (2010). Understanding and evaluating

cooperative games. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (pp. 253-262). ACM.

Smith, G., Anderson, R., Kopleck, B., Lindblad, Z., Scott, L.,

Wardell, A., Whitehead, J., & Mateas, M. (2011). Situating quests:

Design patterns for quest and level design in role-playing games. In

Interactive Storytelling (pp. 326-329). Springer Berlin Heidelberg.

Sound Design in Games (2010). Website. Audio Mostly 2011

Conference, September 7-9, 2011. Available at:

http://www.soundingames.com/index.php?title=Main_Page

Treanor, M., Zook, A., Eladhari, M. P., Togelius, J., Smith, G.,

Cook, M., Thompson, T., Magerko, B., Levine, J., & Smith, A.

(2015). AI-Based Game Design Patterns. In 10th International

Conference on the Foundations of Digital Games, 2015.

Zagal, J.P., Björk, S. and Lewis, C. (2013). Dark Patterns in the

Design of Games. Foundations of Digital Games 2013, May 14-17,

2013, Crete, Greece.

17

TRANSLATING A MODERN FILM AND TV SCREENING ROOM TO AN INTEGRATED
GAME ENGINE PRODUCTION ENVIRONMENT

Oliver Engels and Robert Grigg
International Game Architecture and Design (IGAD)

NHTV Breda University of Applied Sciences
4800 DX Breda, The Netherlands

E-mail: 120010@nhtv.nl

KEYWORDS
Screening Room, Methodology, Game Engine, Tools, Qual-
ity Assurance

ABSTRACT

This research paper presents a Screening Room tool, inspired
from the Film and TV industry, that is then applied to the
game industry. The work involved the creation and develop-
ment of several in-game prototypes of a Screening Room tool
within the game engine Unity 5. The iterative development
involved usability testing and benchmarking against an ex-
ample of current game development quality assurance pro-
cesses that use BugZilla. The prototype resulting from the
third iteration was then tested within a commercial games
company CodeGlue and it was found that an overall time
saving of approximately 500% was made whilst usability be-
ing arguably better for bug finding staff whilst similar to
more complex for the bug fixing staff.

INTRODUCTION

This paper explores the research question of: Would the fea-
tures and functionality of a Film and TV Screening Room
(SR) tool be beneficial for the game production process if ap-
plied to a modern game engine and its pipeline?
The art pipeline within game development sometimes rely
on software used in the Film and TV industry; the software
is called Screening Room (SR) or Reviewing Room (RV). A
SR can handle tasks such as the review, feedback, and pos-
sible version selection of certain assets. Such SR tools in-
clude TACTIC (Technology Southpaw, 2005), Shotgun Soft-
ware (Autodesk, 2013), FTrack (FTrack Inc, 2015), and At-
lassian Software (Atlassian Pty Ltd, 2015) amongst others.
This paper explores whether a number of features from SR
type tools could be better utilized in a game development
pipeline.
To research this question the following two hypotheses are
established:
H1. Hypothesis One: Integrating a film-style Screening
Room into a modern game engine improves productivity in a
game production pipeline.
H2. Hypothesis Two: The use of a game engine integrated

Screening Room tool is easier to use over existing methods
and tools that it replaces.
A Proof of Concept will be generated in Unity 5 (Unity Tech-
nology, 2015) engine as this engine currently holds 45%1 of
the market share. Also a large number of testers are used to
Unity 5 (ibid.), setting the focus more on the tool than on the
engine. As for the scope of this research, this paper and ex-
periment will focus on the Quality Assurance (QA) processes
within the game development pipeline.

SCREENING ROOM (SR)

Figure 1: SR - Shotgun Software Screening Room (Autodesk,
2013).

Within the industry there is no real difference between a SR
or a RV. Shotgun Software (Autodesk, 2013) uses the name
SR for their tool while other software uses the naming of RV
for their tools. The rooms allow users to view, compare, and
select various assets. These assets can be selected to become
part of the final p roduct. N ext t o t his, i t a lso a llows users
to generate annotations on the assets to quickly spot prob-
lems within a given scene or particular asset (see Figure 1).
This feedback will then be sent to the user responsible for the
asset to quickly notify and solve a given problem. This ap-
proach makes it possible for each team member to make an-
notations and review each others work. Usually this is done

1This number from the current Unity 5 website:
https://unity3d.com/public-relations (Accessed: January, 2015).

18

through a specific department that would give feedback on
shots and cuts from a movie while also handling feedback
from clients or publishers (Dunlop, 2014). The use of a SR
aims to increase product quality by making the production
pipeline more efficient through improvement of ease-of-use,
enhancing communication throughout the production team
and with associated stakeholders.
In addition, if just before a major release a problem is found
within a newer version of the asset, the development team
has the tools to quickly switch to an older version if that
fixes the problem. Shotgun Software (Autodesk, 2013) also
makes it possible for development teams to view, compare,
and choose a different versions of the product through a side-
by-side comparison.

SCREENING ROOM TODAY

Currently SR tools are used within the production pipeline of
professional teams around the world to produce their prod-
ucts. Shotgun Software uses an app called Revolver2 to re-
view, annotate, and compare different cuts and/or screens
from a movie directly from their desktop.
Today, Shotgun Software (ibid.) is arguably the leading pack-
age for Film and Games. Within the Games industry Elec-
tronic Arts (Arts, 1982), Blizzard (Blizzard, 1994), and Mi-
crosoft Games Studios (Microsoft, 2002) use this tool to
streamline their production pipeline. This SR technology,
however, is not utilized across all assets of the Games De-
velopment pipeline. Currently the game industry uses Shot-
gun Software (Autodesk, 2013) to publish, review, and com-
ment on each other’s work. It helps artists to focus on the
art instead of the management part of process. Models are
automatically placed in the right map, together with the tex-
tures, animation, and other elements connected to the asset.
Artists can view the levels in which assets are placed and will
be notified by activities within Shotgun. Next to this Shot-
gun can open all popular tools that are used within the art
pipeline, including but not limited to: Adobe Photoshop (Sys-
tems, 2014), Autodesk Maya (Autodesk, 2015b), Autodesk
3ds Max (Autodesk, 2015a) and Houdini (Software, 2015)
making Shotgun a very powerful tool for the games industry.

QA PIPELINE PROCESS

R. Dunlop describes QA as ”The publish time process
through which you technically check assets to ensure their
integrity and suitability for further progression through the
pipeline.” (Dunlop, 2014). The QA process can occur both
internally and externally. In-house QA processes are often
inter-departmental where the development team sends the
build of the game to the QA department. This department
then checks the game for problems and documents the prob-
lems in a log reporting program. Examples of these programs
include: Bugzilla (Contributors, 1998), Mantis (Contribu-

2Shotgun Software has partnered with Tweak RV to integrate their soft-
ware with Shotgun’s Software. The result is a standalone tool that is con-
nected to the Shotgun framework.

Figure 2: QA - Problem Life-Cycle and decision process.

tors, 2002), or Request Tracker (Vincent, 1995) which are
open-source and Atlassian Jira (Atlassian Pty Ltd, 2015) or
YouTrack (JetBrains, 2014) which are commercial products.
The second quality check is sometimes done by the manu-
facturer of the platform/marketplace within the final develop-
ment phase of the product. The manufacturer wants to ensure
quality to prevent it from reflecting badly on their hardware
platform 3 (Dunlop, 2014).
Each bug report needs to be written down in a manner de-
cided by the company. Some of these reports include de-
tails such as: priority, severity, department, status, hardware,
summary, and a screenshot which often includes an annota-
tion drawn over the screenshot. The priority of a problem
is set by combinations of these components. Sometimes the
QA staff need to play the same part of the level multiple times
to detect the Severity of a bug. This then changes the priority
of the bug. A game breaking bug can still have a low priority
if the reproduction rate of the bug is very low.
Sometimes a whole department is dedicated to the finding of
and registering of problems. Game-play needs to be recorded
to show the problem manifests itself. Screenshots are gener-
ated and drawn upon to give the Developer more information
and locations need to be registered to indicate the position
of the problem. The more data the Developer has the easier
the problem can be found and resolved. All this informa-
tion, however, needs to be gathered and correctly registered.
If not the gathered information would be useless. Managing

3They test on more aspects within their tests, including but not limiting
to Game Stoppers, Overall durability/runtime testing, Button Assignment,
and other regulations.

19

this amount of data and the setup for all the recorded bugs is
a large and important undertaking.

EXPERIMENT

Given the results from the survey of current SR tools within
the industry a Proof of Concept will be constructed for this
experiment using the Unity 5 (Unity Technology, 2015) en-
gine and editor as the environment. Because of time con-
straints this experiment will focus on the QA process within
the game development pipeline. A benchmark will be cre-
ated using existing traditional game development QA tool
BugZilla (Contributors, 1998) in order to perform usability
tests for the developed tool against this.

Figure 3: Proof of Concept - Level test issues highlighted to
guide experiment participant.

The tests will be performed by letting participants use the
tool and perform tasks that required the use of various fea-
tures available within the tool. The participants will be asked
to fill out a survey to collect more data in regard to user expe-
rience. To keep the tests as accurate as possible each partic-
ipant will be given the same set of problems. The problems
will be highlighted so that they can be quickly spotted by
test participants so that the focus is more on the tool than the
game problem (see Figure 3).
Each user test will be allowed to verbally convey and point
out potential problems4. The final t est w ill b e d one i n the
same manner within a professional game company called
Codeglue (De jong and Sibrandi, 2000), located in the heart
of Rotterdam, The Netherlands.

RESULTS

In regards to hypothesis H1 it was found to be supported with
data showing a time saving of 46% over that of traditional
tool use. Within the bug fixing part of the tool, the difference
is immense with it being over 500%. If we take a closer look
at these results we immediately see that the tool has gained
a higher score than the original software. Users are more

4This type of testing is also called the RITE Method, Rapid Iterative
Testing and Evaluation. It was defined by Michael Medlock, Dennis Wixon,
Bill Fulton, Mark Terrano and Ramon Romero (Medlock et al., 2005).

Figure 4: Bug fixing: Usability comparison of SR Tool
pro-totypes and BugZilla.

Figure 5: Bug finding: Usability comparison of SR Tool pro-
totypes and BugZilla.

motivated to perform a given task which would benefit the
project as well.

In regards to hypothesis H2 it was found to be neither com-
pletely supported or otherwise. Users rated the tool on the
same level as the old bug tracking software. The learning
curve for bug trackers was a significant amount lower than
that of the bug fixers. T his i s d ue t o t he b ug t rackers be-
ing mostly working inside the game world, while bug fixers
worked mostly within the more complicated tool interface.

When we look at Figure 6 we see that the time spent do-
ing certain tasks was much higher in bug fixing than in bug
tracking. The score for the SR engine tool was 1.83 higher
than traditional tools, within the bug tracking part it was
even higher with a score difference of 3.43. In Figure 4 the
score difference between traditional tools and the SR engine
tool are not that significant. Nevertheless, participants where
quicker with fixing a problem than with registering one.

20

Figure 6: Unity 5 SR Tool - Shows time spent doing the tasks.

DISCUSSION

SR Tool - Prototype 1.

The first SR Tool prototype included the base functionality
of the tool. Within this version there was only the possibility
for the user to generate a marker within the game world and
specify a comment, priority, type and name for that annota-
tion. The bug fixer was able to look through all previously
recorded bugs with the use of a ToDo list, visualize the bugs
inside of the game engine and with the press of one button
move to the location of the bug.
Participants found that the registering and finding o f bugs
worked exceptionally well. The user could focus on the task
at hand which was the fixing o f t he p roblem. T he partici-
pants also found that the learning curve was comparable to
the BugZilla (Contributors, 1998) tool.
The SR Tool allowed users to focus on the bug itself instead
of looking around the game world to find the location of the
bug, which is common in traditional bug tracking software.
Within BugZilla (ibid.) participants would have to read the
entire documentation of a given bug to understand a problem
properly. The SR Tool allowed a user to understand a prob-
lem immediately as it is visually recorded. Most of the time
the title of a bug report and the location it referred to proved
to be sufficient in conveying the problem.
All participants felt displeased about filling in the bug report
form both within BugZilla (ibid.) and the SR Tool prototype.
When given the bug report of the participants to the Devel-
oper, they would find that bug reports from BugZilla (ibid.)
were rather difficult to solve compared to the SR Tool. For-
getting to add a visual reference to the bug report in BugZilla
(ibid.) could turn into a problematic situation when the de-
scription itself is not properly specified. Although t his be-
havior is discouraged, if a poorly written bug report were to
be added to the SR Tool, the results would be far less prob-
lematic. Another improvement that comes with the SR Tool
is that the time necessary to fill out a bug report is consider-
ably less as it is no longer necessary to specify exact locations

and visual references.

SR Tool - Prototype 2.

The second prototype of the SR Tool included a new set of
features. Some of these changes included, but were not lim-
ited to: Only showing bugs that are visible within the game
world itself, adding a timestamp to each bug placement, and
the option to filter bugs by different categories. The interface
was recreated to make it more understandable. Participants
were given the option to disable all irrelevant information
through various drop-down menus.
During a second test it became apparent that users preferred
a filter option for the ToDo list as well. Not having the ability
to edit an existing marker was also regarded to be an issue.
An additional remark was the possibility to select multiple
objects and attach them to an annotation. It was suggested
to generate a sphere that would indicate the radius of the an-
notation, making it possible to select all assets within that
radius. From this the fixer had an accurate selection of pos-
sible objects that could have caused the problem.

Figure 7: Unity 5 SR Tool (Prototype 3) - Shows the
place-ment of an annotation.

Figure 8: Unity 5 SR Tool (Prototype 3) - Shows the
record-ing of an annotated problem.

21

Prototype 3: Codeglue.

The third prototype included considerable changes compared
to the first two prototypes. The user interface was revised
once more, an option was provided to edit existing annota-
tions, the file manager was improved upon, an option for se-
lecting multiple annotations was created, and the option for
re-positioning or relocating an object to a selected annota-
tion was added. The final version of the SR Tool prototype
can be seen in Figures 7 and 8.
Figure 5 clearly shows that the quality in bug reporting be-
comes lower as more features are added to the SR Tool. Fig-
ure 6 provides a similar result where more time is taken to
document a bug once the software becomes more complex.
The main concern with these results is that this version made
it difficult for users to separate the bug-fixing section from
the bug-tracking section. The control-scheme for this tool
was also different from the engines native control scheme
which should have been avoided. The same widget should
be used to move, scale, and rotate the objects within the tool
as participants did not want to learn a new set of controls.

CONCLUSION

The research in this paper has shown that there is a real de-
mand for an in engine SR tool. Some of the functionality
would be better suited outside the engine, however, most of
it can be added inside. Generating annotations within a game
world gives Developers instant access to the location of the
error as well additional features which can be added to the
annotation. Compared to BugZilla (Contributors, 1998) the
Unity 5 (Unity Technology, 2015) version of the tool already
was graded 1.5 higher for bug fixing and 3 higher for bug
tracking.
SR tools like Shotgun Software (Autodesk, 2013) and FTrack
(FTrack Inc, 2015) are perfect to optimize the development
pipeline of the Art department within game development.
A different type of tool, however, is needed to Fix Game-
play Issues, In-game Problem Reporting, In-game Problem
Finding, Client Feedback, and Saving time registering in
engine problems amongst others. Generating annotations
and adding a number of different assets to these annotations
within a game engine already resolved a large portion of
these problems.
Research has also shown that the tool is not only beneficial
for big companies but also for small Indie game companies
that want a tool to indicate problems for later fixing. Indie
game developers have said that they were going to use the
SR Tool to generate their problem lists instead of writing it
down on paper. Indie game developers also saw no need to
fill in the large number of options in traditional bug reporting
software, they simply want to place an annotation, connect
objects, write a simple annotations and go on with develop-
ment. When the time comes they can look through the an-
notations and instantly see what the issue was on that given
location.

REFERENCES

Autodesk (2014). “Autodesk to Acquire Shotgun Questions
and Answers”. In: Autodesk to Acquire Shotgun - Ques-
tions and Answers, p. 7.

Dunlop, Renee (2014). Production Pipeline Fundamentals
for Film and Games. Ed. by Renee Dunlop. 1st ed.
Burlington: Taylor & Francis. ISBN: 9780415812290.

Highsmith, Jim and Alistair Cockburn (2001). “Development
: The Business of Innovation”. In: Science 34.9, pp. 120–
123. URL: http://ieeexplore.ieee.org/xpls/abs\
_all.jsp?arnumber=947100.

Ilopis, Noel (2004). “Optimizing the Content Pipeline”. In:
Game Developer Magazine, April 2004 April, pp. 36 –
44. URL: http://www.convexhull.com/articles/
gdmag_content_pipeline.pdf.

Medlock, Michael C. et al. (2005). “The rapid iterative test
and evaluation method: Better products in less time”. In:
Cost-Justifying Usability, pp. 489–517. DOI: 10.1016/
B978-012095811-5/50017-1.

WEB REFERENCES

Arts, Electronic (1982). Electronic Arts (EA). URL: http:
//www.ea.com/.

Atlassian Pty Ltd (2015). Atlassian. URL: https://www.
atlassian.com/.

Autodesk (2013). Shotgun Software, Inc. URL: https://
www.shotgunsoftware.com/.

– (2015a). Autodesk 3ds Max. URL: http : / / www .

autodesk.com/products/3ds-max/overview.
– (2015b). Autodesk Maya. URL: http://www.autodesk.
com/products/maya/overview.

Blizzard, Activision (1994). Blizzard Entertainment. URL:
http://eu.blizzard.com/en-gb/.

Contributors (2002). Mantis. URL: http : / / www .

mantisbt.org/.
Contributors, Ndividual bugzilla.org (1998). Buzilla.org.

URL: https://www.bugzilla.org/.
De jong, Peter and Maurice Sibrandi (2000). Codeglue. Rot-

terdam. URL: http://codeglue.tumblr.com/.
FTrack Inc (2015). FTrack Inc. Stockholm, Sweden. URL:
https://www.ftrack.com/.

JetBrains (2014). YouTrack. URL: https : / / www .

jetbrains.com/youtrack/.
Microsoft (2002). Microsoft Game Studios. URL: http://
www.microsoftstudios.com/.

Software, Side Effects (2015). Houdini. URL: http://www.
sidefx.com/.

Systems, Adobe (2014). Adobe Photoshop. URL: http://
www.adobe.com/products/photoshop.html.

Technology Southpaw (2005). Southpaw Technology TAC-
TIC. URL: http://www.southpawtech.com/.

Unity Technology (2015). Unity 5. URL: https : / /

unity3d.com.
Vincent, Jesse (1995). Request Tracker. URL: https : / /
www.bestpractical.com/rt/.

22

INTERACTIVE
EDUCATIONAL

GAME
DESIGN

23

24

SERIOUS GAME CREATION IN TEACHING CONTENT

Merikki Lappi and Esa Lappi

Paivola School of Mathematics

Päivölän opisto

Päivöläntie 52

37770 Tarttila

Finland

E-mail: merikki.lappi@paivola.fi

KEYWORDS

Serious gaming, educational gaming, game creation,

modeling, cooperative learning, inquiry-based learning.

ABSTRACT

In Päivölä School of Mathematics a group of high school

students learned modeling and subject matter considering a

developing country, or a collapsed state, by creating an

educational serious game. The students played the game as

decision makers, with a variety of parameters and analyses

the results. The original idea was given to the students by the

international data farming community before the academic

year 2013-14 and the result was a Humanitarian Assistance

and Global warming -simulator. Over the following years

different students have continued the work with a variety of

smaller models including one with a historical topic.

The serious gaming project was conducted in cooperation

with the international data farming community, and the

results were published in Scythe – Proceedings and Bulletin

of the International Data Farming Community, Issues 15-17.

Three student groups were awarded in the Finnish Contest

for Young Scientist, two in 2014 and one in 2015.

All sub-projects could be used for at least rapid scenario

prototyping and the students learned causalities while

creating models to a developing country game. As a result,

we have continued to use serious game creation as a teaching

method for talented young students.

SERIOUS GAMING PROJECT AS A TEACHING

METHOD

The game building as teaching method can be used as a tool

to apply inquire-based approaches to learning. This project

combined all three genres of inquiry-based learning: project-

based, problem-based and learning through design. (Barron

and Darling-Hammond 2010) The pedagogical framework of

this project is 21
st
 century competences (Dumont and

Instance 2010) and CSSC learning (de Corte 2010). The

students construct their knowledge from a variety of sources

when acquiring information on the chosen topic. They are

self-regulated, to some extent, because they are able to

choose their role in the process. The problem is real and all

the factors are tied to reality and the project is highly

collaborative.

To build a serious game and a simulation requires modelling

and simulation skills. Our choice of theoretical framework

and method of simulation in these games was data farming

(Horne 1999, Horne 2010 and Horne et al. 2014). Data

farming incorporates modelling and simulation, high

performance computing, and design of experiments. It is

applicable to examining questions with a large number of

alternative scenarios. The process for modeling and

simulation is relatively straight forward making it suitable

for teaching purposes. (Figure1)

Figure 1. Data farming loop of loops from Horne et al. 2014.

In the Gameon 2013 an ongoing serious gaming project was

presented, in which game creation was to be used in

teaching. (Lappi 2013). Game development has been widely

used in teaching software engineering and mathematics; see

e.g. Cagiltay 2007, but we have not succeeded in finding

teaching experiments of creating game programs as a method

for teaching subjects that are not related to programming.

FIRST SET OF MODELS - THE HUMANITARIAN

ASSISTANCE AND GLOBAL WARMING -

SIMULATOR

The game creation project started in June 2013 during the

What if –workshop 26 in Washington, when the idea of

model was presented by Ted Meyer and Rachael Jonassen in

form of a board game. We saw the game as an opportunity to

develop a serious game project to teach students the

phenomena and problematics around a collapsed state. From

a brain storming session with a variety of possible sub-

models (Meyer T. et al. 2013) the students chose the models

they wanted to create with some guidance as to which ones

were the most important.

The original plan was presented in Gameon 2013 and is

visualized in figure 2. During the GAMEON 2013 the

serious gaming project had just started. The connection

25

between a humanitarian simulation model and the subject

matter included in the Finnish curriculum was established

and reported. The first steps in modeling had been taken and

the first encouraging results were available.

The learning objectives were modeling and the structures

and functioning of a community in a humanitarian assistance

situation in relation to natural phenomena such as the

weather. Even though each group or pair of students focused

on one aspect, the interaction between phenomena was

illustrated in the parameter exchange between the

subprojects as well as during all the presentations and

briefings during the process. The learning results per se were

never measured but the feed-back from the students gave

indication of a much deeper insight and closer connection to

the target country.

Figure 2: The model structure according to the original plan

in October 2013 (Lappi & Lappi, Gameon 2013)

The results of the serious game creation projects were

published in Scythe, Proceedings and Bulletin of the

International Data Farming Community (Lappi et al. 2014,

Lappi et al. 2015a and Lappi et al. 2015b). The papers

concentrated mainly on the simulation game model and use

of model, not on the serious game creation as teaching

method, which is discussed in this paper.

The students taking part in this project were Finnish senior

secondary school students who study in Päivölä School of

Mathematics, a boarding school for mathematically talented

students. It is a two year program, where senior secondary

school studies are accelerated from three years to two years.

The program is also enriched with more mathematics and

computer science than is customary in a Finnish senior

secondary education. An important part of the studies is

involvement in a science project or several and introduction

to academic writing in both Finnish and English. The Päivölä

study program is described by (Hornyák 2011) and a short

presentation of teaching computing science in Päivölä was

published in ESTA 2009. (Lappi 2009).

In this gaming project several school subjects were included.

The students were expected to learn content in fields

previously unfamiliar to them. The content was, however,

relevant to the senior secondary school curriculum. (Finnish

National Board of Education 2003). The students deepened

their knowledge in geophysics and geography, Finnish

history, social studies, mathematical modeling and software

engineering. They learned paper writing, English language

and teamwork.

The serious gaming project was open to Päivölä alumni who

contributed with their own interests but even with

programming skills helping those less advanced in

programming.

The groups decided to work on the models for population,

logistics, local economy, world trade, food production,

weather and climate. The game map – the game engine –

was to be made by one team and later on the design of

experiments was later made a subproject of its own.

During the project, the student teams developed their

projects and communicated with the other teams. After

research on the subject matter they built a network of the

models. The structure evolved to interaction design as shown

in figure 3 (from Lappi et al. 2014a).

Figure 3. Game Simulation interactions as the project was

finished. Picture from Scythe 15.

The students played the game as decision makers with a

variety of parameters and analyze the results.

The project took half a year with an intensity that

corresponds to approximately one month of full time

research. All the steps of scientific work were taken:

choosing a topic, learning about methodology, planning the

research, programming the model, testing, presenting the

work and the results for others and writing a paper in Finnish

and in English.

The research seminar was held in presence of many former

students of Paivola School some of whom are PhDs in the

field and they gave constructive feedback.

POPULATION
MODEL

CLIMATE
MODEL

GAME
MAP

LOCAL
ECONOMY

MODEL

LOGISTIC
MODEL

WORLD
TRADE
MODEL

WEATHER
MODEL

FOOD
PRODUCTION

MODEL

26

The timeline of the first serious gaming project is presented

in table 1.

Table 1: Timeline of the student game creation project

 Timeline

 Students Teachers

June 2013 Planning of the

serious gaming

process during

What if workshop

26

October

2013

Choosing the topic,

literature studies,

project planning

Introduction to

modeling and

scientific writing

November

2013

Model development.

Seminar on the

preliminary models

Arranging the

seminar, helping

with model

building and

literature search

December

2013

Coding each sub

model / game engine

Discussions,

problem solving,

moral support

January

2014

Merging the models

to the game engine,

design on the

experiments, taking

part in a what if

workshop 27

(Helsinki, separate

venue Päivölä)

Taking part in the

workshop, helping

with the problems

in writing the

papers within the

dead-line.

February

2014

Dead-line of the

paper for the Finnish

Contest for Young

Scientists.

March 2014 Writing the English

version for the

Scythe

Assisting with the

final versions and

writing the project

presentation for

Scythe. Submitting

the papers.

Even though the subject matter expertise gained by an

individual student for his/her own project was from a

relatively narrow field, the communication within the project

and the seminars forced them to communicate and consider

the other students’ topics.

As a teaching method one advantage is that for evaluation

purposes the models show whether the students have

understood the subject matter. The model – however

simplified – shows the causalities between the different

factors and any misunderstandings are usually obvious and

are removed from the final model. The models show that the

students learned to understand concepts of cause and effect

and get insight to the conditions of living for people in a

different time or place. Part of the serious gaming project

was the data farming workshop. There have been 29 data

farming workshops since 1999 under different names.

During the workshops data farmers gather together to study

real world problems with data farming methods and also

improve the methods. Usually work shop teams publish their

work in Scythe, Proceedings and Bulletin of the International

Data Farming Community. Päivölä students were welcome

to join with their own teams.

As a result the following student papers were published in

Scythe 15 January 2014 Workshop 27.

3A Imberg, Juhani & Toivanen, Pihla: Game engine of the

HAGW-simulator.

3B Kauppila, Mirjam: Design of data farming experiment

used in the HAGW-simulator.

3C Jantunen, Jonna & Niemi, Esa: Water model of the

HAGW-simulator

3D Pouru, Asser & Nurro, Niko & Palmu, Allan: Logistics

and transport of the HAGW-simulator.

3E Ahlskog Nicklas & Ijäs, Matias & Vilppula, Riku: Power

production model of the HAGW-simulator

3F Hirvola, Tatu & Voutilainen, Kaisa: Crime in

HAGWsimulator.

3G Hannikainen, Jaakko & Räty Roosa & Shakespeare

Cliona: Agriculture model of the HAGW-simulator.

3H Ijas, Juuso & Pöyri, Saku: Trade and humanitarian

assistance.

3I Tofferi, Julia: Weather model of the HAGWsimulator

3J Lunnikivi, Henri (Päivölä Alumni; Tampere University of

Technology): Population model.

One example of interactions that are simplified by choices

explained in the report of the crime model is presented in

figure 4.

Figure 4: Crime model interactions (Hirvola and Voutilainen

2014)

27

The interaction between the different models lead to natural

cooperation between the students especially in this first set

even though the crime model and the global economy model

were not connected to the game engine but functioned as

stand-alone models.

As we live in boarding school with the students, we were

able to observe the students and get feedback during this first

project. This informal information supported our view that

serious game creation can be a useful teaching method. Thus

we decided to continue the project the following year.

THE SECOND SET OF MODELS

In school year 2014-2015 the yearly science project was not

one large project but the students chose their individual

topics. Serious gaming was one option, and three of the

topics were linked to game creation.

Table 2: Timeline of the student game creation projects school year 2014-2015

 Timeline

 Students Teachers

October

2014

Start of work, literature
studies, project planning,

What if workshop in

Jefferson US with a
separate venue in Päivölä

Finland. Both first and

second year students
participate.

Lessons of modelling
and scientific writing in

general. What if

workshop in Jefferson
with two teachers in the

US and one in Finland

November

2014

Model structure
development. Seminar

Arranging the Päivölä
student seminar,

supporting model
building and literature

search

December

2014

Coding sub models for

new topics

Discussion and

feedback.

January

2015

Reporting the projects,

writing the paper for
Finnish Contest for Young

Scientists.

Supporting the writing

process.

February

2015

 Planning for the What if

workshop in Finland

March 2015 The what if workshop.

Main topic model
development and learning

simulation

Student first year students

Present project in

workshop, giving the
research questions

April 2015 writing the texts in English
for scythe

help with academic
writing, comment the

texts

The second set of models produced the following papers for

Scythe 16 (Workshop 28 Jefferson, Maryland, USA &

Päivölä Finland):

Team 4A: Lunnikivi, Vivian & Tuukkanen, Aaro &

Häihälä, Eero & Virtanen, Maisa: Crime Simulator

Team 4B: Herring, Jan-Kristian & Qianyue Jin: Great

Famine Simulator

Team 4C: Hokkanen, Joel & Mustonen, Vili & Alvinen,

Markus & Kääriäinen, Kaisla: Recycling Simulator

THE THIRD SET OF MODELS

What if workshop 29 was held in Riihimäki, Finland and

fourteen first year students in five different projects took part

in the workshop in our own venue in Päivölä. Two of the

projects were building on the first set of models and three

were entirely new models about health care issues. The one

week long workshop resulted in five papers. All of the

participants were first year students.

Papers in Scythe 17 (Workshop 29 Finland)

Team 3A1Allred, Samuel& Karppila Hannes Malaria in

Finland

3A2: Tenhunen, Anssi. Thomasson Janica & Moilanen,

Henrik. Using Datafarming to Determine the Most Effective

Combination of Malaria Prevention Methods

3B: Häihälä, Eero. Kääriäinen, Kaisla. Virtanen, Maisa &

Klemola, Julius Effects of Infrastructure Optimization in the

Trade of Sub-Saharan Africa

3C: Hämäläinen, Aleksanteri. Huuskonen, Petteri &

Virtanen, Lauri. Modelling Placement of Health Care

Facilities

3D: Valkama, Eero& Kumpulainen, Iiro Water Storage for

Agriculture - Model

3E: Ikäheimonen, Siiri. Kotimäki, Julia & Salonen, Anniina.

What MMR Vaccination Rate Is Needed to Stop an Out

bursting Measles Epidemic?

DISCUSSION

The student projects achieved their goals, but the games

were too difficult to play if the player was not familiar with

the code. That means that the games are not yet usable in

teaching other students about the content matter. Because it

would be motivating to create games that are useful even

after the paper is published, a development phase in our

serious gaming projects would be to make the models more

transparent and easier to use.

The serious game creation as teaching method is extremely

time consuming. Only the added benefits of learning

modelling and academic writing both in English and in the

students’ mother tongue – in this case Finnish - make it

possible to use this method in teaching.

With just a few case studies no statistical conclusions can be

drawn, but we consider the method successful in our

multidisciplinary boarding school environment. However,

there are challenges in using the method in other

environments. We estimate the methodology to be too heavy

for every day teaching in normal student groups. No single

28

subject has enough time in the Finnish Curriculum for this

type of multidisciplinary method. Furthermore the student

groups that took part in the projects consisted of talented

students, who all had experience in computing science.

More scaffolding would have made the project faster and

easier but possibly also less realistic considering the goals in

learning how to do research. Not only the pretty parts but

also the frustrating side of it. The group work means that the

students can use their strengths – and avoid some parts of the

process, if they so desire. This meant that not everyone was

or was expected to be a very adept programmer.

One measure of success is the Finnish Contest for Young

Scientist, where three groups were awarded, two in 2014 and

one in 2015 (www.tukoke.fi) and the authors of this paper

were given a teachers’ award in 2015.

REFERENCES

Barron B. & Darling-Hammond L. 2010 Prospects and challenges

for inquiry-based approaches to learning. In Dumont, H. Istans,

D. Benavides, F. (Eds) The Nature of Learning. Centre of

Educational Research. OECD. 199-226

Cagiltay N. E. 2007 “Teaching software engineering by means of

computer-game development: Challenges and opportunities”

British Journal of Educational Technology Volume 38, Issue 3,

405–415.

de Corte, E. 2010 Historical development in the understanding of

learning. In Dumont, H. Istans, D. Benavides, F. (Eds) The

Nature of Learning. Centre of Educational Research. OECD.

35-68

Dumont H. & Instance D. 2010 Analyzing and designing learning

environments for the 21st century. In Dumont, H. Istans, D.

Benavides, F. (Eds) The Nature of Learning. Centre of

Educational Research. OECD. 19-34

Hirvola T. and Voutilainen K. 2014 Crime Model for the

“Humanitarian Assistance and Global Warming” Simulator. In.

Horne G. & Mayer T (Eds.) Scythe, Proceedings and Bulletin of

the International Data Farming Community, Issue 15

Workshop 27

Horne, G. 1999 Maneuver Warfare Distillations: Essence Not

Verisimilitude. In Proceedings of the 1999 Winter Simulation

Conference

Horne, G. 2010. Summary of Data Farming. in Proceedings 4th

International Sandis Workshop. Ed. Hämäläinen, J. Defence

Forces Technical Research Centre Publications 23. 8-9

Horne G et. al. 2014 STO-TR-MSG-088 - Data Farming in Support

of NATO. Final Report of Task Group MSG-088Nato >Science

and Technology Organisation.

Hornyák B. 2011. “The mathematics programme of the Päivölä

School” In International Horizons of Talent Support, I J.G.

Gyori (Ed.) Hungary, 58-68

Lappi, M. 2009. “Cooperation Between a school with High Ability

Students and a Technology Company.” (Presentation) In

Proceedings of 7th International Conference on Education and

Information Systems, Technologies and Applications. Orlando.

http://www.iiis.org/CDs2009/CD2009SCI/EISTA2009/PapersP

df/E720SE.pdf

Lappi M et al 2014 Developing a Data Farmable Humanitarian

Assistance and Global Warming Simulator In. Horne G. &

Mayer T (Eds.) Scythe, Proceedings and Bulletin of the

International Data Farming Community, Issue 15 Workshop 27
http://download.meyercraft.net/Scythe15-IWW27-V2o.pdf

Lappi, M. Lappi, E. & Hjorth, J (2015a): Applying Data Farming

Process to Decentralized Project Work In Horne G. & Mayer T

(Eds.) Scythe, Proceedings and Bulletin of the International

Data Farming Community, Issue 16, Workshop 28
http://download.meyercraft.net/Scythe16-IDFW28-V2.pdf

Lappi, M. & Lappi E. (2015b) Using Data Farming for

Humanitarian Assistance and Global Warming. In Horne G. &

Mayer T (Eds.) Scythe, Proceedings and Bulletin of the

International Data Farming Community, Issue 17, Workshop

29 http://download.meyercraft.net/Scythe17-IDFW29-Full-

Good.pdf

Meyer, T. Lappi, M. Bouchard, A. Lee, C. Abdi, A. G. Ansardi, K.

Estes, J. Faulkenberry, C. Jonassen, R. & Tolone, B. Climate

Change and Humanitarian Assistance: challenges and

complications. In Horne G. & Mayer T (Eds.) Scythe,

Proceedings and Bulletin of the International Data Farming

Community, Issue 14, Workshop 26.

http://download.meyercraft.net/Scythe14-Workshop26-V1.pdf

Finnish National Board of Education. National Core Curriculum

for General Upper Secondary Schools. Regulation 33/011/2003

WEB REFERENCES

www.tukoke.fi (web pages of the Finnish Contest for Young

Scientists)

AUTHOR BIOGRAPHY

MERIKKI LAPPI was born in 1970. She studied first

Geophysics in Helsinki University and got her B.A in Nordic

languages 2004. She has been working in the Geophysics

department of Helsinki University during the years 1990 and

1991, worked as part time simulation assistant in a fire

protection engineering company Turvallisuusarviointi TA

Oy from 1993 to 1997. She has been working as full time

teacher in upper secondary school level first in Maunulan

yhteiskoulu (junior and upper secondary school) 1996-1997

and in Päivölän kansanopiston matematiikkalinja (Päivölä

school of mathematics) and Valkeakoski Upper secondary

school since 1997. She has been the leader of mathematics

program since 1999. Merikki Lappi was given Nokia

educational award year 2002, Academy of Finland teachers’

award of Science competition Viksu 2005, and Technology

Industries of Finland Centennial Foundation award for

successful mathematics teachers 2007 and Vaisala sponsored

teachers’ award of Finnish Contest for Young Scientists

2015.

29

XIMPEL IN EDUCATION - INSPIRING CREATIVITY THROUGH
STORYTELLING AND GAMEPLAY

S.V. Bhikharie and A. Eliëns
Business Web & Media

Department of Computer Science
Faculty of Sciences, VU University

De Boelelaan 1081
1081 HV Amsterdam

The Netherlands
E-mail: svbhikha@few.vu.nl & eliens@cs.vu.nl

KEYWORDS
ximpel, education, interactive video

ABSTRACT

The XIMPEL framework has been successfully applied in
multiple educational settings (university courses, workshops
for high school students and educators) to enable users to
create interactive media productions. In three steps (define a
story graph, prepare media items and configure the XIMPEL
playlist and application) users are guided in creating their
productions. By providing thematical constraints users are
challenged to find a personal approach towards the creation
of their production, using storytelling and/or gameplay as a
practical means to apply a theme into their work. When
comparing XIMPEL to (commercial) game engines for usage
within education, the biggest strengths of XIMPEL are the
relative ease of use and fast prototyping capabilities, while
maintaining rich interaction possibilities. Guided by ongoing
technological advances, a HTML5 based version of XIMPEL
is in active development, with the intention of making the
framework even more accessible for both desktop and mobile
platforms along with more users, targeting increasingly
educational applications as developed for our courses in
serious games.

INTRODUCTION

Since its inception in 2007, the XIMPEL framework for
interactive media has been applied in multiple educational
settings, namely in workshops and university courses. The
workshops are given within the time span of 2 hours in which
the participants create a short interactive video using the
XIMPEL player. The participants for these workshops have
varied from high school students and university students to
educators and colleagues at conferences.

The university courses where XIMPEL is used are currently
given at VU University Amsterdam and University of
Twente. These courses are 4 or 8 weeks long and students
have multiple deliverables they must present to their fellow
students, including an interactive media production using the
XIMPEL framework. For both workshops and university

courses, we have defined guidelines in the form of three steps
to help users create their XIMPEL productions:

1. Define a story graph
2. Prepare media items
3. Configure the XIMPEL playlist and application

structure The structure of this paper is as follows. We will
first discuss the three steps that guide users in creating a
XIMPEL application. We will then explain how thematical
constraints can help shape a narrative structure, followed by
a comparison of XIMPEL with game engines to point out its
strenghts, closing off with future research and development.

DEFINING A STORY GRAPH

A story graph is a directed graph that specifies the
navigational structure for a story. If a node in a graph has
two or more branches, it is a choice within the story. In the
context of an interactive production, these choices form the
basic building blocks.

By adding branches to a story graph, the number of nodes
grows exponentially. To reduce the number of nodes, it can
be useful to have multiple nodes leading to the same node.

Figure 1: Story graph with multiple branching choices

30

Cycles within a graph can be useful if you want to enforce a
certain choice: you will keep looping (within a select number
of nodes) until you make a choice that leads you out of the
cycle, forcing the player to explore its possibilities in order
to advance.

End nodes (nodes without outgoing branches) can be used to
give closure to a certain set of made choices. Due to its non-
linear nature, a graph can contain more than one end node,
which can increase the replay value and in turn increase the
player’s involvement.

PREPARING MEDIA ITEMS

When preparing media items for usage within a XIMPEL
production, the Internet provides a vast amount of content,
which can be found and/or edited with relative ease. At the
other end of the spectrum, creating your own content is a
viable option as well. Whether this is done with a high end
video camera, video capturing software/hardware or the
built-in camera of a smart phone, the advantage is that the
user has more control over the produced output. Either way,
the nodes defined in the story graph act as a rough checklist
for the media items that will need to be produced.

The XIMPEL player has built-in support for three media
types: picture, video and YouTube. The picture type is a
static image, with support for jpeg and (transparent) png
files. The video type supports h264 mp4 (recommended) and
flv (legacy) videos. It should be noted that the picture and
video media types can be used for both offline and online
XIMPEL applications. As a rule of thumb for online usage, it
is recommended to keep the file sizes for these media types
as small as possible, since this content will need to be
downloaded progressively through your web browser.

When using larger video files, the YouTube type is a suitable
alternative for using videos within XIMPEL. These videos
are remotely hosted on the YouTube servers and directly
streamed into the XIMPEL player.

Apart from the built-in media types, it is also possible to add
custom media types, like audio, geographical maps or even

minigames. This requires some additional work in the form
of programming an extension for the XIMPEL player, but
there are no further restrictions on how a media type should
look or behave, greatly increasing the expressivity and
possible interactions.

CONFIGURING THE PLAYLIST AND APPLICATION

To get started with the XIMPEL playlist, a package
containing the XIMPEL application must first be
downloaded from the XIMPEL download section1. This
package is available as a basic and advanced version. With
the basic package, the user can immediately get started with
creating a playlist with an already compiled application. The
advanced package contains a library and source code for the
XIMPEL application and allows for customizations and
extensions.

The playlist is specified as an XML file that is loaded by the
XIMPEL player. Using the story graph as blueprint, the basic
structure can be created. In figure 3 a basic playlist with three
subjects is displayed.

1http://ximpel.net/downloads/

Figure 2: Custom XIMPEL media type using Bing Maps

Figure 3: XIMPEL playlist where the first subject is linked to
the other subjects using overlays

31

Subjects are the main building blocks within a playlist and
contain a list of one or more media items. They can be linked
with overlays, which are visual cues that are placed on top of
a media type. When you click on an overlay, the associated
subject is loaded.

Overlays can have different shapes (rectangular or elliptical)
and can be filled with either a (transparent) color or an image
as background, in combination with a snippet of text. The
XIMPEL documentation section2 provides a more exhaustive
list of options for building overlays and playlists.

Apart from the playlist, the application itself can also be
configured using a configuration XML file. Some of the
options include changing the title, authors and splash image
for the application, allowing users to give a finishing touch to
their XIMPEL application.

THEMATICAL CONSTRAINTS

Even when presented with the functional means to create a
XIMPEL application, users must first be challenged and
subsequently inspired before they are able to tell their
(interactive) story. By providing thematical constraints, the
users are forced to think about what story they want to tell.

Some examples of themes we have used in the past are a
guided tour through the university, a tour of Amsterdam,
environmental issues, ethical frameworks, mathematical
games and dealing with feedback. Although we do not
strictly enforce the themes, most users tend to choose the
themes as a starting point and give these themes their own
spin, often resulting in surprising, funny, endearing and even
serious results.

By systematically applying (thematical) constraints in a
narrative and providing a proper feedback loop, the
interaction can be greatly improved by creating an engaging,
game-like experience. In the case of an ethical framework as
constraint, as described in Bhikharie & Eliens (2013), the
player is confronted with and recognizes moral dilemmas
through the narrative and must actively engage them by
making choices and seeing the consequences of these
choices, which is discussed in Sicart (2013).

2http://www.ximpel.net/documentation

COMPARISON WITH GAME ENGINES

XIMPEL goes hand in hand with the term poor man's
immersion, meaning that it makes use of immersive realism
of videos and images as a poor man's substitute for
interactive 3D immersion, as can be experienced in for
example games and virtual reality applications. We coined
this term in reference to the climate game described in Eliens
et al. (2007).

The trade-off being made is directly related to the cost of
development. A 3D game engine like Unity or Valve's
Source requires a relatively big investment in time and
knowledge to get started, let alone to create a world
populated with 3D models and program the necessary game
logic and behaviours.

From our own experiences in developing a masterclass game
development for high school students using the Source
engine, as described in Eliens & Bhikharie (2006), we have
seen that to make a 3D engine accessible for users with no
prior experience, a decent amount of preparation is required.

In our case, we made a modified non-violent version of the
Half-Life 2 multiplayer mode, together with a partial virtual
recreation of the VU University as an introductory
playground to get acquainted with the 3D game world and
engine. We furthermore prepared a template level with the
level editor of the Source SDK (Hammer), along with
instructions how to get started with simple level editing and
creating custom textures for surfaces.

Although the students were able to produce their own levels
with relative ease and the produced work was certainly
visually creative, it was limited in its interaction, only
allowing you to walk around.

With XIMPEL we wanted to create a media framework that
is easy to use and allows to quickly create a working
prototype, while still allowing rich interaction.

By using the XML standard as foundation for the playlist, we
specified a human-readable format that can be easily
understood and authored, without the need for complex tools.
Furthermore, since the playlist is the minimal amount of
input needed to create a XIMPEL application, getting an
application up and running can be accomplished in a matter
of minutes.

Using a story graph as a blueprint for interaction, the
application can reach its full potential by transforming the
graph into a full-flegded XIMPEL playlist. By using custom
media types and applying thematical constraints, it is
possible to further enrich the interactions.

FUTURE RESEARCH AND DEVELOPMENT

When we started with the development of the XIMPEL
framework in 2007, we chose for the Adobe Flex SDK as our
main implementation platform, allowing us to
programmatically create Flash SWF files with built-in

Figure 4: Rendered output of the first subject of the playlist
with two rectangular semi-transparent overlays

32

support for the (then popular) FLV and MP4 video formats
with no extra cost and enabling usage of XIMPEL
applications both offline and online, giving us a user base of
everyone who uses a desktop computer with a Flash Player
plugin enabled web browser. Over the years, powerful
mobile devices like smart phones and tablets have become
more prominent. Since these platforms lack support for the
Flash Player, we felt the need to look at potential alternative
technologies that allows us to deploy the XIMPEL
framework onto these platforms as well, in addition to the
current Adobe Flex implementation.

The most effective technology available that caters to both
desktop and mobile devices is HTML5 (in combination with
JavaScript). Over the years, HTML5 has matured in both its
specifications and browser implementations. Especially
mobile devices have adopted it as one of their default
technologies for their browsers, independent of the software
stack (Android, iOS, Windows etc.) that it might run. By
developing a HTML5 based version of XIMPEL, we have
the potential to reach everyone using a modern and up-to-
date web browser, independent of their mobile or desktop
platform.

Furthermore, a HTML5 based XIMPEL offers possibilities
to directly connect with JavaScript based applications and
APIs, allowing for new interaction possibilities. These
developments also lead us to target increasingly educational
applications as developed for our courses in serious games.

REFERENCES

Eliens A. and Bhikharie S.V. (2006), Game @ VU – developing a
masterclass for high-school students using the Half-life 2 SDK,
In Proc. GAME-ON NA 2006, Monterey, USA.

Eliens A., van de Watering M., Huurdeman H., Bhikharie S.V.,
Lemmers H., Vellinga P. (2007), Clima Futura @ VU –
communicating (unconvenient) science, In Proc. GAME-ON
07, Bologna, Italy.

Eliëns A., Huurdeman H., van de Watering M., Bhikharie S.V.
(2008), XIMPEL Interactive Video -- between narrative(s) and
game play, In Proc. GAME-ON 08, Valencia, Spain

Eliens A (2012), Serious games in a social context, In Proc.
GAMEON'2012, Malaga, Spain

Bhikharie S.V. & Eliens A. (2013), XIMPEL for Ethical
Frameworks, In Proc. GAMEON'2013, Brussels, Belgium

Sicart M. (2013), Beyond Choices: The Design of Ethical
Gameplay, MIT Press, Cambridge, Massachusetts

33

SOME REFLECTIONS ON BOLOGNESE FOOD:

A DIGITAL PERSPECTIVE, WITH A LOT OF FUN

Marco Roccetti Silvia Colombini Marco Zanichelli

Department of Computer Science and Engineering

Alma Mater Studiorum - University of Bologna

Mura A. Zamboni,7 – 40127 Bologna, Italy

E-mail: {marco.roccetti}@unibo.it

KEYWORDS

Bolognese Food, Well-being, Gastronomic Heritage,

Interaction design, Gaming, Human Computer Interaction

ABSTRACT

In this short paper we describe a study of interaction design

developed to celebrate the excellence of the Bolognese

gastronomic heritage that has culminated with the release of

the “Manifattura del Gusto” (The Manufacturing of Taste).

The “Manifattura del Gusto” is comprised of three different

multimedia interactive exhbits that narrate the history of

three different world-famous Bolognese food delicacies,

respectively: tortellino, tagliatella and mortadella. These

three exhibits are permanently installed at the Bologna City

Museum, based in the Pepoli Palace, in Bologna, Italy. From

a technical viewpoint, gaming and interaction techniques,
textile sensors, holograms, motion sensing devices, Arduino

controllers and even stretching cloth fabrics have been all

put to good use to offer to visitors the possibilities of

understanding that tacit knowledge which is always hidden

behind the process of preparation and production of a

delicious food.

INTRODUCTION, MOTIVATIONS AND CONCEPT

From the kitchens of the city of Bologna in Italy, the

masterpieces of the Bolognese gastronomy (tortellino,

tagliatella and mortadella) have arrived onto the tables of

every home all over the western world, often influencing the

culinary habits of places and people living thousands of

miles far from Bologna. Tortellino, tagliatella and

mortadella, indeed, all belong to a centuries-old Bolognese

gastronomic heritage, that directly links to its delicious land
products and to the specific ability of the Bolognese people

to prepare a delicacy to eat. In particular, the Bolognese

tortellino is a small, belly-button-shaped dumpling,

traditionally prepared in chicken broth. The tagliatella (or

better tajadela, in our Bolognese slang) is a long and flat

ribbon, made with egg pasta (similar in shape to the

fettuccina romana), and served with a classic Bolognese

meat sauce. Finally, the mortadella is a typical Bolognese

sausage, made of finely hashed pork meat and flavoured with

spices, including black pepper, for example. This is not the

full story as the techniques of preparation and conservation

of these delicious foods have evolved and grown into an

important food production industry, making the region where
Bologna is placed one of the most relevant industrial district

for food preparation and conservation in the world. To

summarize the current sentiment on how this kind of food is

perceived in Bologna, it is enough to remind that it is

essentially a mix of human ingenuity, technology innovation

and business skills; with a bit of emotions, too - everyone

should always have in mind, in fact, that tortellino, tagliatella

and mortadella are both a delicacy to consume but also a

cultural pastime worth preserving (Rosner, Roccetti and

Marfia, 2014).

Along this line of sense, we have been struggling from years
with the problem of how to communicate using computer

technologies the great amount of tacit knowledge which is

behind the typical dishes of our city and how to demonstrate

that all these delicacies inform of the uniqueness of our

territory, as well as of the soul and spirit of generations of

family members in Bologna, who have preserved and passed

on these pieces of tradition (Osterlund et al., 2015; Roccetti,

Marfia and Zanichelli, 2010). With this in view, we have

conceived, developed and then installed at the Bologna City

Museum, based in the ancient Pepoli Palace, in Bologna,

Italy, three different interactive multimedia exhibits that
narrate a story made of memory, hospitality, gratification,

love and creativity, as each of those emotional ingredients is

comprised in the recipes of those dishes and is able to

transform each meal into a kind of “pleasant ritual”. We do

not have to forget, in fact, that like the Proust's madeleine, a

taste of certain dishes has the power to bring us back to the

time we lost, where each dish holds and passes on traditions

that tell the world the history and the process of civilization

experienced by many individuals, or even by an entire

people (Salomoni et al., 2015). With this in mind, a common

goal of our artefacts has been that to try to recreate

suggestions that could transform a museal experience into
the digital opportunity of feeling as if we were all together;

all guests eating while sitting at the same table, in peace and

joy.

On this view, the three interactive exhibits have been

arranged along a path where, in turn, the concepts of: i) the

tradition behind a given dish preparation, ii) the joy of eating

34

together, and iii) the life cycle of the food production process

were illustrated through the use of three different interactive

machines. The remainder of this paper proceeds as follows.

The next Section describes and illustrates the three different

exhbits we designed and developed to honour the Bolognese

food, while the Conclusion Section terminates this short

paper.

INTERACTIVE MULTIMEDIA EXHIBITS

While the correct degree of pervasiveness of digital

technologies in cultural practices is still a matter of study and

controversy, it is somewhat unconfutable now that the use of

computer technologies applied to cultural venues should be

in some sense ludic, able to provide fun and also a mild form

of entertainment to visitors. We have already shared in a

previous paper our vision of technology in these terms, as an

additional intermediary; as the lens, indeed, through which

people can enjoy not only a memory preservation

experience, but also be subjected to a pleasant condition
where great stories become more comprehensible and

understood, or even reveal unexpected information that only

the eyes of a digital system are able to make explicit

(Roccetti et al., 2014; Roccetti et al., 2013). Along this line

and within the context of a more general project termed “La

Manifattura del Gusto” (The Manufacturing of taste), we

developed three different interactive multimedia exhibits,

termed: Tortellino Memories, Symposium Tajadela and

Mortadella Machine with the explicit aim of addressing the

prominent issues of tradition (Tortellino Memories),

conviviality (Symposium Tajadela) and food production and
preparation ability (Mortadella Machine). We illustrate and

discuss each of them below, in isolation. Before this, it is

important to mention that each multimedia exhibit we

developed is equipped with a user interface based on a table

cloth fabric. This particular choice in the design of the

interaction was adopted based on the consideration that a

growing number of people is rediscovering, or newly

embracing, the joy of having a family-style meal, where the

table is well laid with all its traditional decorations.

Tortellino Memories

The narrative path we developed begins with the stories of

the three selected foods: tortellino, tagliatella and mortadella,

respectively. To this aim, we designed and built a large and

transparent totem incorporating a monitor (Figure 1), where

the essence of the stories of each dish is evoked, using the

computerized graphical style of the title sequences inspired

to the world-famous American graphic designer, Saul Bass

(Figure 2; Bass, 1959). Under the monitor, three panels

clothed with fabrics resembling a cloth table (and enriched

with specific textile sensors) can be touched on by the visitor

to activate the storytelling (Figure 3).

Symposium Tajdela

This exhbit allows visitors to enjoy the experience of sitting

at a table for having a meal, while joining a special guest.

This is made with a table, incorporating a monitor where our

three different dishes are served (in a digital form). While a

dish is served, a special guest comes on stage under the form

of a hologram appearing in front of the diner. Again the three

different holograms can be activated by touching on special

buttons, clothed with fabrics resembling a cloth table (and

enriched with specific textile sensors). This exhibit is shown

in Figure 4, while an example of interaction is provided in

Figure 5.

Figure 1. Tortellino Memories: the exhibit at the museum

Figure 2. Example of the adopted graphical style

35

Figure 2. Tortellino Memories: interaction

Mortadella Machine 

In this case, the exhibit we designed aims at presenting
tangible histories of the production of the Bolognese food,

under the form of a memory game. In particular, we built a

huge and square box representing a hypothetical food

production machinery (Figure 6). The special and magical

feature of this machinery is that it is equipped with a front

panel, made again of a cloth fabric, whose characteristic is

that it can be stretched and almost penetrated (Figure 7).

Behind this panel (and inside the machinery), we have set a

Kinect device, a projector, a tailor-made vending machine

and an Arduino controller. The flow of our memory game is

as follows. Upon activation of the Mortadella machine, the

six different and subsequent steps of the production process
of the mortadella are shown, as projected over six different

spots of the stretching panel. Then the machinery turns off

and simply asks the visitor to touch (or better penetrate, like

in Figure 7) the panel, repeating the same sequence of steps

through which the mortadella is prepared. Obviously, with

each new game match, a player is presented with a different

positioning over the panel of the six different steps for the

preparation of the mortadella and with a limited amount of

time to complete the game (e.g., 30 seconds). Only if the

visitor wins (i.e., s/he perfectly retraces the steps, identifying

each correct position over the panel, within the time
deadline), then the machinery dispenses a museum gadget to

the lucky winner. Currently, the dispensed gadged is a

museum pocketbook shaped like a mortadella slice.

Figure 4. Symposium Tajadela: the exhibit at the museum

Figure 5. Symposium Tajadela: interaction

36

Figure 6. Mortadella Machine: the exhibit at the museum

Figure 7. Mortadella machine: interaction with the

stretching fabric

CONCLUSIONS

We here described three interactive multimedia exhibits that

provide honour to the food prepared in the city of Bologna,

allowing people to have also fun while interacting. It is our

persuasion that projects like ours may highlight new

opportunities for sustaining that special and usually tacit

knowledge which is behind the preparation of a dish and

whose tradition we might want to preserve. Hopefully, this

kind of initiatives, supported by a delicate form of digital

entertainment technologies, may reveal more about the

history and collective memory of a gastronomic cultural

practice than would a classic cooking lesson alone.

REFERENCES

Bass, S. 1959. “Creativity in visual communication”. Creativity,
New York: Hastings House, 121-142.

Osterlund, C.; Bjorn, P.; Dourish, P.; Harper, R. and Rosner, D. K.
2015. “Sociomateriality and design ”. In Proc. the ACM
Conference on Computer Supported Cooperative Work, CSCW.

Ferretti, S. and Roccetti, M. 2005. “Fast delivery of game events
with an optimistic synchronization mechanism in massive
multiplayer online games”. In Proc. ACM International
Conference Proceeding Series 265, 405-412

Roccetti, M.; Marfia, G.; Roversi Monaco, F.; Varni, A. and
Zanichelli, M. 2014. “Telling the story: An interactive
multimedia exhibit narrating the 900 years of the Alma Mater”.
In Proceedings of 20th European Concurrent Engineering

Conference 2014, ECEC 2014 - 10th Future Business
Technology Conference, FUBUTEC 2014.

Roccetti, M.; Marfia, G. and Bertuccioli, C. 2014. “Day and night
at the museum: Intangible computer interfaces for public
exhibitions. Multimedia Tools and Applications, 63(3), 1131-
1157.

Roccetti, M.; Marfia, G.; Varni, A. and Zanichelli, M. 2013. “How
to Outreach the External World from a Museum: The Case of

the Marsili's Spirit App”. In Proc. Lecture Notes of the Institute
for Computer Sciences, Social-Informatics and
Telecommunications Engineering, LNICST.

Roccetti, M.; Marfia, G. and Zanichelli, M. 2010. “The art and craft
of making the Tortellino: playing with a digital gesture
recognizer for preparing pasta culinary recipes”. Computers in
Entertainment, 8(4), ACM.

Rosner, D. K.; Roccetti, M. and Marfia, G. 2014. “The Digitization

of Cultural Practices”. Communications of the ACM, 57(6), 82-
87, ACM.

Salomoni, P.; Prandi, C.; Roccetti, M.; Nisi, V. and Nunes, J. N..
2015. “Crowdsourcing Urban Accessibility: Some Preliminary
Experiences with Results”. In Proc. 2015 CHItaly, 11th Edition
of the Biannual Conference of the Italian SIGCHI Chapter,
Rome, ACM SIGCHI.

ACKNOWLEDGEMENTS

We are indebted towards those who allowed us to develop

and install our exhibits. We wish to thank: prof. F. A.

Roversi Monaco for hosting our artefacts at his museum,

prof. A. Varni for being our historical consultant, and finally

Loop Multimedia for its essential support.

BIOGRAPHIES

M. ROCCETTI is a Professor of Computer Science at the

University of Bologna. His most recent research has focused

on the goal of combining modern computer techniques and

technologies with cultural practices.

S. COLOMBINI since many decades has gained an

international experience as a senior copywriter, serving for

many international advertising agencies, including TBWA,

LINTAS and BBDO.

M. ZANICHELLI is an interaction designer and a senior art
director with an international and broad professional

experience. He has served for many international advertising

agencies, including Leo Burnett.

37

38

VIRTUAL
GAMING

TRAINING
ENVIRONMENTS

39

40

VIRTUAL REALITY SITUATIONAL LANGUAGE TRAINER FOR SECOND

LANGUAGE: DESIGN & EVALUATION

KEYWORDS

L2, education, VR, gamification, UX, learning

environment

ABSTRACT

Use of virtual learning environments has been studied

for years, but no common guidelines for evaluating

them for education exist. The Developing Virtual
Learning for Finnish project proposed a set of such

guidelines in context of teaching a second language to

immigrants. To aid the definition work and test the

guidelines, a demonstrative application was created with

focus on introducing the students to everyday situations

and to the use of spoken language. The main objective

of the game design was to create a friendly and

comfortable environment, where the users would feel

safe to experiment with the new language. To evaluate

both the game and the initial guidelines, user experience

research was conducted on actual immigrants learning

Finnish as a second language. According to the
questionnaire results, the game fulfilled the primary

objectives and the evaluation criteria provided an

insight into the usefulness of the game for learning.

INTRODUCTION

The Developing Virtual Learning for Finnish project set

to develop guidelines for evaluating virtual learning

experiences. In order to define and test guidelines, a

demonstrative application was developed. The aim of

the application was to study how to simulate simple real
world situations in a virtual setting in order to let the

students learning Finnish as second language on the

levels A2 to B1 of the Common European Framework

of Reference for Languages (CEFR) to improve their

ability to cope with the lingual challenges of daily life.

Afterwards user testing was conducted to evaluate what

the members of the target audience thought about such

an approach to learning.

The background chapter summarizes the educational

context and goals of the application and discloses

contemporary approaches to evaluating gamified

learning experiences. The chapter on game

implementation describes how the application was

developed and why certain design approaches were

selected. Chapters Research Method and User

Experience Testing Results outline the testing

procedures and the results, while the final chapter

summarizes the key points found in the study and based

on them presents views on the future development of

virtual reality based learning of a second language.

BACKGROUND

The use of virtual worlds as part of teaching has been

both researched and practiced for several years. One of

the common approaches is to use open virtual worlds,

such as Second Life, to encourage cooperation and

communication between learners and teachers from

different parts of the real world. (Lappalainen, 2015, p.

42) However, virtual worlds offer another approach:

simulation of real world situations in a safe and private

environment. The students can comfortably experiment
with different approaches to the same situation without

the fear of being judged for mistakes. This encourages

the learning of new language skills and promotes the

culture around the language itself. (Kiili, 2004)

Second Language Pedagogy

In this study the focus was on immigrant students

learning Finnish as second language. More advanced

learners were excluded due to previous studies showing

that they would not benefit as much. (Lehtonen et al.,
2015, p. 26). For the students in the focus group it is

vital to lower the barrier and get initial encouragement

for using the language more in their everyday lives, as it

is the only way to get comfortable with it in spoken

situations and enhance the rate and success of learning.

Traditional methods of teaching a second language are

mostly centered on the official written form. This leaves

the learners in the blind with casual everyday

encounters, where they either do not understand the

spoken language used by the natives or use expressions

that generate other than desired reaction. Neither tend

Timo Korkalainen, Juho Pääkylä,

Tapani N. Liukkonen, Lauri Järvenpää

and Tuomas Mäkilä

Yrjö Lappalainen Heli Kamppari

Technology Research Center

University of Turku
University of Tampere

School of Information Sciences

Tampere Research Center for

Information and Media

Brahea Centre

University of Turku

20014 Turun yliopisto

33014 Tampereen yliopisto 20014 Turun yliopisto Finland
Finland Finland Email: {ttkork, jujapa, taneli,

lauri.jarvenpaa, tusuma}@utu.fi

Email: yrjo.lappalainen@uta.fi Email: helkam@utu.fi

41

the traditional classroom methods to provide a

comfortable approach to learn the customs of behavior

in the natural face to face encounters. Such moments

can cause stress and embarrassment both before and

after the situation and thus greatly affect the student’s

motivation and commitment towards the learning

process. (Jauregi, 2012; Canto, 2013)

Virtual reality allows simulating real world situations
with no other real human being involved than the

players themselves. As all the virtual characters’

reactions are controlled programmatically, they express

only the emotions desired and never get frustrated no

matter how many wrong answers the learner gives.

Virtual conversations also make it possible to create

interactive characters that comply with the requirements

of pedagogical objectives.

Game Design

Designing and creating game is a multidisciplinary task,
especially when games are combined with pedagogical

goals. It is not enough to just entertain the users, but to

also educate them in a way that can be measured

according to the standards employed in the traditional

ways of teaching. For some students, the interactive

nature of games that encourages experimenting with

causation, can even be the most effective way of

learning. (Gee, 2008; Viinikkala et al., 2014)

While the game still has to entertain enough to keep the

players immersed in the story, the students have to
recognize the progress they are making with the actual

subject of learning. The games also should not present

different story paths just to keep the students playing

longer, but also to concretize how the different ways of

behavior are responded in real life. Thus all aspects of

the game should be pre-evaluated on both how they

affect the quality of the game experience and how they

can advance the learning process. (Ondrejka, 2008)

Vital to educational games is the attitude the players

form towards the experience: if they play reluctantly
and just because it is part of the classroom work, the

learning results suffer. In contrast, when the learning is

almost a side effect to the gaming and the players enjoy

the experience, they both learn more and the memory

trace becomes more profound. (Luckin & Fraser, 2011)

Thus the game design needs to be balanced between

providing enough pedagogical context and an

experience that is memorable by itself.

In order to immerse the player into the virtual world, no

additional visual avatar was added to represent the

player. Instead the game is viewed from the direct first
person perspective of the player. Thus the students are

encouraged to feel like being in the situation

themselves, and not just controlling an artificial person.

User Experience Research with Educational Games

Many of the traditional software user experience testing

methods are also suited for evaluating games. User

testing methods can be divided into two categories: 1)

attitudinal, for measuring the subjects’ attitude towards

the application and 2) behavioral, for measuring how

the application is used. While many techniques exist for

behavioral usability testing, attitudinal testing is mostly

conducted using questionnaire methods. (Pagulayan et

al., 2007, p. 21 - 27)

In the context of educational games with a specific
target group, it is natural to focus the user testing on the

same audience. Thus the need for large random sample

testing is minimal and results are achieved with a

smaller number of selected test subjects. In educational

games the emphasis in user testing is also more on

whether the players learned the required information,

not necessarily on fine tuning the gaming experience. It

is also important to measure the attitudinal aspects as

they too affect the learning results.

GAME IMPLEMENTATION

The primary objective of the game design was to create

an environment, where the players would feel safe and

comfortable, allowing them to focus on the content and

forget any of the fears the real world situations impose.

The game was chosen to use the classical adventure

game mechanics with focus on the use of the Finnish

language in interactions with the virtual characters. To

make the story believable and yet interesting, much

emphasis was placed on the authenticity and natural feel

of the dialogue. This was also done to ensure that

everything the players would learn was accurate and
usable in the verbal encounters in the real world.

Story

The story of the game is set inside a restaurant car of a

train. The story was written by pedagogy professionals

with the help of the game designers and developers. The

writers struggled at first with the interactive nature of

video games, but after every iteration of the prototype

their understanding on the medium grew. An important

role in improving the scriptwriting process and allowing
easy iteration, was the use of the articy:draft 2 (Nevigo,

2015), an application designed for writing interactive

game scripts. It allowed the writers to visualize the flow

of the script in a more comprehensible format, as seen

in Figure 1.

Figure 1: Game Script Visualization (3D Suomi, 2015)

42

It also supports testing out the discussions in the tool

itself and thus eased the process of learning to write

interactive game scripts.

A challenge in the script writing was to find the balance

between making the dialogue and the player’s options

both understandable and challenging enough at the same

time. Both extremes, too easy or complex dialogue,

would cause learner to lose interest. If the players would
not understand what to do next, they would again lose

interest.

Art Design

In order to help create the wanted safe and comfortable

environment, the art design of the game was simple and

cartoon like. For example, the restaurant car presented

in Figure 2, was closely modelled after the design of a

real restaurant car used in Finland.

Figure 2: Restaurant car and conductor in 3D Suomi

(3D Suomi, 2015)

Model of the car was simplified, but yet giving clear

cues of aspects relating closely to real life elements. All

the materials were using bright and friendly colors. This

was done to clearly distance the surroundings from the

real world. The cartoon like style was continued in the

characters which were caricaturized versions of people
with different backgrounds. The simple style also

helped to keep the players’ focus in the important parts

of the scene that related to the story.

By design the game environment provides a limited

number of objects and persons to interact with and the

discussions have a limited number of paths to follow.

Additionally the cartoon like style was used to convey

neutral visual message to the players with varying

cultural backgrounds. The visual style also helped in

allocating resources effectively and in improving the

cost-effectiveness.

The audio design for the application continued the same

simplified style: only quiet yet constant rattling of the

train wheels and rain pouring down outside were used to

create an atmosphere that would still be enough to

distance the player from their actual environment. The

studio recorded dialogue was made loud enough to be

clearly heard over the ambient sounds. The different

dialects gave the characters a personal touch, as none of

them would use quite the same type of language.

Technology

Modern game development tools allow fast prototyping

and creation of complex virtual reality experiences with
less focus on the technology, but on the content itself.

The demonstrative game for the project was developed

using the cross-platform game engine Unity 4 (Unity

Technologies, 2015). The engine was chosen due to it

providing necessary features for the project and the

developers having prior experience in using Unity in

mixed reality applications in the context of learning

environments.

An important tool for the development was the plug-in

Dialogue System (Pixel Crushers, 2015) for Unity 4.

This plug-in has an option to directly import dialogue
from articy:draft (Nevigo, 2015), the script writing tool

used in the project. This made it easy for the developers

to import any changes in the dialogue into the game

without additional work, allowing fast iteration.

While the combination of tools used are not the only

option, a readily available development platform is a

requirement for cost-effective development of

educational games. Many modern game engines, such

as the Unreal Engine 4 (Epic Games, 2015), are

available for productions where the focus must be on
the content and not in the technology.

RESEARCH METHOD

As the goal of the project was to define guidelines for

evaluating virtual learning experiences, it was seen

necessary to form and test some of the proposed

guidelines by practically designing, developing and

finally conducting user experience testing on a real

working demonstrative product. After development and

initial testing, a large scale user experience testing was
conducted in several of the partner institutions.

Study Setup

User experience testing for the application was

conducted in a classroom setting with multiple subjects

testing the game on different desktop computers at the

same time. Few subjects also tested in pairs in order to

find out what kind of a difference that would make to

the experience. A teacher was available in the classroom

at all times for help, in case someone had technical

difficulties. The subjects began the test with the game
already running in its initial state and left it running

once completed. The subjects were reminded that the

test was anonymous and that the testing was about the

game and how well it suited the educational purposes,

not about their personal performance or knowledge.

43

Questionnaires

After completing the game the subjects were presented

with a questionnaire of 60 questions formed roughly on

the basis of the Game Experience Questionnaire (GEQ)

(IJsselsteijn, 2007) and System Usability Scale

questionnaire (SUS) (Brooke, 1996). The main

questionnaire was in Finnish, but additionally the

questions and options for answering were available in
several languages to make sure all subjects understood

everything. Additionally some of the subjects were

interviewed after the questionnaire.

The answer options were based on agreeing or

disagreeing on a scale from 1 to 7, where 1 was total

disagreement and 7 total agreement.

Participants

Altogether 147 completed questionnaires were collected

and analyzed. Of all the respondents 58.3% were
women and 41.7% men, the majority (53.1%) being

from 25 to 34 years old of age. Most (54.4%) of the

subjects had some form of a degree and already used

Finnish (74.0%) on a daily basis on some level, with

English being the second most used language (49.3%).

The most common reasons for immigration were family

(57.1%) and education (16.3%) related ones.

Almost all of all the respondents (80 % of 112 answers)

have been assessed by their teachers on levels either

A2.2 or B1.1, which are the median scores in the 9 step
scale of the Finnish version (National Board of

Education) of the 6 step scale of CEFR - and also form

the main focus group of our user experience testing.

Most of the subjects used information technology on a

daily basis (6.06), but on the contrary most had not

much experience in playing video games (3.46).

USER EXPERIENCE TESTING RESULTS

According to the user experience testing the
demonstrative application performed well in general and

was especially thanked by the subjects for presenting

the everyday situations in an approachable manner. The

possibility of comparing the spoken dialogue to the

written subtitles was also well received and was seen as

one of the key points of the experience. In the

interviews one of the subjects especially noted that “my

listening skills in Finnish need a lot of work, but my

reading comprehension is better, so having the text of

the spoken conversation shown on the screen while I

could listen to the conversation was very helpful to me”.

The goal of comfortable and safe experience seems to

have been achieved as the majority of the subjects

(average agreement 5.14, on scale from 1 to 7) reported

feeling happy after playing the game. Many also felt the

experience had given them courage to act in real life

situations (5.10) and especially felt it had been helpful

in practicing to understand spoken language (6.17).

The visual style of the game was one of the most

dividing topics and while the answers were diverse,

most would have opted for a more realistic approach for

the characters (4.42). While one of the interviewed

subjects called the visuals “primitive”, other told that

“they looked funny and made me smile”. Still, most had

felt the game was immersive (4.96), and especially that

the virtual characters’ dialogue had seemed authentic

(5.67).

When asked what they would want to see added to the

game, the most common answer among the subjects was

“more content”: a longer story, more characters and

more things to do. Also, more freedom to choose what

to do and in which order, was among the more common

answers.

The questionnaire reveals that the game performed well

technically and was easy to use (5.42). However, the

game also wasn’t seen very challenging (3.65) and most

didn’t need help in understanding the language used in
the game (2.94). The game mostly seen as a refreshing

approach to language education and thought to be a fun

way to learn Finnish (5.89).

CONCLUSIONS

The aim of the demonstrative virtual language learning

game experience developed within the project was to

help in defining the guidelines for evaluating virtual

learning environments. The initial questionnaire used to

evaluate the application worked well and gave a clear
indication that such experiences are effective method

for both learning especially spoken second language and

getting the students accustomed to everyday situations

in the new culture.

Especially the design decisions aimed for creating a safe

and friendly virtual environment for the students seems

to have succeeded according to the results of the user

testing. However, the game was possibly made too easy

for the target audience, as it did not provide much

challenge for most of the test subjects. This could be
solved by having more content and by making the

players face increasingly challenging situations as they

progress in the game.

As many of the players reported to have been immersed

in the game, even as it was played using a traditional

desktop computer, it appears the decisions not to

visualize the player’s character and not to mimic

photorealism, were correct. However, employing writers

experienced in creating interactive content would likely

have produced a more compelling story.

Virtual learning applications can be developed with

limited resources while still allowing an experience that

is both good enough for its purpose and most likely

feasible commercially. An interesting development for

the field is the advancement of affordable virtual reality

headsets that allow even more immersive learning

experiences than contemporary desktop computers.

44

Another game changing advancement in virtual learning

technology will be the introduction of robust enough

speech recognition algorithms that can accurately

recognize even non-native speakers. This way the

clumsy text based interface can be replaced with all

audio user interaction methods that both support

learning objectives and allow even higher levels of

immersion. While some such applications exist already,

like the Danish Simulator platform (Dansksimulatoren,
2015), it will take time before such tools are widely

available for little spoken languages like Finnish.

ACKNOWLEDGEMENTS

This article was done as a part of the Developing Virtual

Learning for Finnish project funded by European Social

Fund. The project was conducted as collaboration

between University of Turku's Technology Research

Center and Brahea Centre, University of Tampere's

School of Information Sciences, Tampere Adult

Education Centre, and University of Jyväskylä's
Language Centre, together with partners Axxell Ltd.,

Heuristica Ltd., PragmatIQ Ltd. and Ubiikki Ltd. We

thank the VR-Group Ltd for the train car references and

likeness.

REFERENCES

Canto, S., Jauregi, K. & van den Bergh, H. (2013). Integrating
cross-cultural interaction through video-communication and
virtual worlds in foreign language teaching programs: is there
an added value? ReCALL: The Journal of EUROCALL, Vol.
25, Iss. 1, pp. 105–121.

Brooke, J. (1996). SUS: a ‘quick and dirty’ usability scale. In
P. W. Jordan, B. Thomas, B. A. Weerdmeester, & A. L.
McClelland (Eds.), Usability Evaluation in Industry. London:
Taylor and Francis.

Gee, J. P. (2008). “Learning and Games." The Ecology of
Games: Connecting Youth, Games, and Learning. Edited by
Katie Salen. The John D. and Catherine T. MacArthur

Foundation Series on Digital Media and Learning. Cambridge,
MA: The MIT Press, 2008, pp. 21–40.

IJsselsteijn, W.A., de Kort, Y.A.W., Poels, K., Jurgelionis, A.,
and Belotti, F. (2007). Characterising and Measuring User
Experiences, ACE 2007 International Conference on
Advances in Computer Entertainment Technology, Workshop
'Methods for Evaluating Games - How to measure Usability
and User Experience in Games' (Salzburg, Austria, 13-15 June

2007).

Jauregi, K., de Graaff, R., van den Bergh, H. & Kriz, M.
(2012). Native non-native speaker interactions through video-
web communication, a clue for enhancing motivation.
Computer Assisted Language Learning Journal, Vol. 25, Iss.
1, pp. 1–19.

Kiili, K. (2005). Digital game-based learning: Towards an
experiential gaming model, The Internet and Higher
Education, Vo. 8, Iss. 1, 1st Quarter 2005, pp. 13-24, ISSN
1096-7516

Lappalainen, Y. (2015). Avoimien virtuaaliympäristöjen
opetuskäytön mahdollisuuksia. In Y. Lappalainen, M.
Poikolainen & H. Trapp H. (Ed.) Tila haltuun! Suosituksia

virtuaalisen suomen opiskelun toteuttamiseen. Turun
yliopiston Brahea-keskuksen julkaisuja 6. University of
Turku, Turku, Finland.

Lehtonen, T., Lakkala, M., Eloranta, J. & Rasila, M. (2015).
Pedagoginen perusta kielenoppimisessa. In Y. Lappalainen,
M. Poikolainen & H. Trapp H. (Ed.) Tila haltuun! Suosituksia
virtuaalisen suomen opiskelun toteuttamiseen. Turun
yliopiston Brahea-keskuksen julkaisuja 6. University of
Turku, Turku, Finland.

Luckin, R. and Fraser, D. S., (2011). Limitless or pointless?
An evaluation of augmented reality technology in the school
and home. International Journal of Technology Enhanced
Learning, Vol. 3, Iss. 5 (August 2011), pp. 510-524.

Ondrejka, C. (2008). Education Unleashed: Participatory
Culture, Education, and Innovation in Second Life. The
Ecology of Games: Connecting Youth, Games, and Learning.

Edited by Katie Salen. The John D. and Catherine T.
MacArthur Foundation Series on Digital Media and Learning.
Cambridge, MA: The MIT Press, 2008. pp. 229–252.

Pagulayan, R., Keeker, K., Fuller, T., Wixon, D., Romero, R.
& Gunn, D. (2007). User-centered Design in Games, Human-
Computer Interaction Handbook. 2nd Edition

Pöyhönen, S., Tarnanen, M., Vehviläinen, E., Virtanen, A. &
Pihlaja, L. 2010. Osallisena Suomessa: kehittämissuunnitelma
maahanmuuttajien kotoutumisen edistämiseksi. University of
Jyväskylä, Jyväskylä. Finland

Storhammar, M.-T. (1993). Ulkomaalaisopettajien
opetuspuheen piirteitä. In L. Löfman, L. Kurki-Suonio, S.
Pellinen & J. Lehtonen (Ed.) The competent intercultural
communicator. AFinLA Yearbook 1993, pp. 79–97. Available

at http://www.afinla.fi/sites/afinla.fi/files/1993Storhammar.pdf

Viinikkala, L., Leskinen, O.-P., Heimo, O., Korkalainen, T.,
Mäkilä, T., Helle, S., Pönni, V., Arimaa, J.-P., Saukko, F.,
Pääkylä, J., Jokela, S. & Lehtonen, T. (2014). The
Luostarinmäki Adventure – An Augmented Reality Game in
an Open Air Museum. NODEM 2014 – Engaging Spaces –
Interpretation, Design and Digital Strategies.

WEB REFERENCES

Dansksimulatoren (2015). Dansksimulatoren. Available at
http://www.dansksimulatoren.dk/

Epic Games (2015). Unreal Engine 4. Available at
https://www.unrealengine.com/what-is-unreal-engine-4

National Board of Education (2015). Kielitaidon tasojen
kuvausasteikko. Available at
http://www.edu.fi/download/119698_taitotasot.pdf

Nevigo (2015). articy:draft 2. Available at
http://www.nevigo.com/en/articydraft/overview/

Pixel Crushers (2015). Dialogue System. Available
at: http://www.pixelcrushers.com/dialogue-system/

Unity Technologies (2015). Unity. Available at
https://unity3d.com/

45

Evaluation of a Virtual Training Environment for Aggression De-escalation

Tibor Bosse1, Charlotte Gerritsen2, and Jeroen de Man1

1Department of Computer Science 2Netherlands Institute for the Study of

VU University Amsterdam Crime and Law Enforcement

Amsterdam, the Netherlands Amsterdam, the Netherlands

t.bosse@vu.nl, j.de.man@vu.nl cgerritsen@nscr.nl

KEYWORDS

simulation-based training, aggression de-escalation, dialogue

system, evaluation.

ABSTRACT

Public transport employees are confronted with aggressive

behavior on a regular basis. As such encounters can have

serious consequences, employees need to be well prepared,

so that they know how to deal with incidents of aggression.

The current paper describes an ongoing endeavor that is

aimed at the development and evaluation of a simulation-

based training environment for public transport employees,

by which they can practice their verbal aggression de-

escalation skills during face-to-face conversations. A

prototype of the training environment is presented, as well as

an experiment to evaluate the environment in several steps.

The results indicate that the prototype is evaluated positively

with respect to user satisfaction, whereas there is room for

improvement with respect to learning effectiveness.

INTRODUCTION

People working in the public sector often have to deal with

aggressive behavior. According to a national safety investi-

gation in the Netherlands in 2011, almost 60% of the

employees is confronted with unwanted behavior on a daily

basis (Abraham et al., 2011). This behavior can include

verbal or physical aggressive behavior, but also sexual

assault or discrimination.

The municipal public transport operator in Amsterdam

(GVB) is one of the organizations of which the employees

have to face aggressive behavior on a regular basis. In 2014,

the GVB reported 443 incidents of aggressive behavior

against employees (GVB, 2012). Only a small part of this

number relates to physical incidents, but verbal forms of

aggression can be perceived as unwanted as well. Typical

examples of incidents are situations where travelers insult a

bus driver, or intimidate a tram conductor to get a free ride.

Such confrontations may have a range of serious conse-

quences for employees, including reduced work pleasure,

decreased work performance, sick leave, various mental

health symptoms and even post-traumatic stress disorder

(PTSD).

To better prepare them for these incidents, companies like

the GVB offer their employees resilience training. Such

training is typically performed in a group setting based on

role-play, where employees learn to communicate with

aggressive clients in a de-escalating manner. Although this

form of training has shown to be successful, it is quite

expensive with respect to both money and time.

Furthermore, the training is not always easy to control or

repeat systematically.

As a complementary approach, we propose the use of

simulation-based training of aggression de-escalation. This is

in line with a number of recent initiatives that show

promising results regarding the possibility to train social and

communicative skills based on simulated environments

involving virtual humans (Bruijnes et al., 2015; Hays et al.,

2012; Kim et al., 2009; Vaassen and Wauters, 2012). The

main idea of the current system is that public transport

employees can practice their aggression de-escalation skills

by engaging in conversations with aggressive virtual

travelers. By designing the scenarios in such a way that the

virtual characters calm down if they are being approached

correctly, but become more aggressive if they are being

treated inappropriately, trainees will receive immediate

feedback on their performance. By using such a system,

employees have the ability to practice their aggression de-

escalation skills in a cost-effective, personalized and

systematic manner.

In this paper, a prototype of such a training environment is

presented, which has been developed in collaboration with

the public transport company GVB. In addition, an

experiment is described that has been performed to evaluate

different aspects of the training environment.

LEARNING GOALS

To design an effective training tool, a first question to be

asked is what should be the learning goals of the system. For

the current context, these learning goals are similar to the

ones used in the real world training of the public transport

company, and are related to the development of emotional

intelligence: employees should be able to recognize the

emotional state of the (virtual) conversation partner, and

choose the communication style that suits this emotional

state.

More specifically, when it comes to aggressive behavior, it is

important that employees learn to recognize the nature of the

aggression. Here, two main categories can be distinguished:

aggression can be either emotional (or reactive) or

instrumental (or proactive) (Dodge, 1990). One of the key

46

differences between these two types is the absence or

presence of anger (Miller and Lyna, 2006).

In case of emotional aggression, the aggressive behavior

typically is caused by an angry reaction to a negative event

that frustrates a person’s desires, cf. the frustration-

aggression hypothesis (Berkowitz, 1978). Such a person is

likely to be angry with respect to whatever stopped him from

achieving his goal. By a carry-over effect, the anger can be

transferred to new situations as well (Angie et al., 2011).

Examples in the public transport domain are people getting

angry because the tram is late while they have to attend an

important meeting, or because they want to enter the tram

while carrying food or drinks that are not allowed. When

dealing with an emotional aggressor, supportive behavior

from the de-escalator is required, for example by ignoring

the conflict-seeking behavior, calmly making contact with

the aggressor, actively listening to what he has to say,

showing empathy, and suggesting solutions to his problems.

In contrast, in case of instrumental aggression, the aggressive

behavior is only used ‘instrumentally’, to achieve a certain

predetermined goal. Such behavior is not a direct response to

a negative event and is less strongly related to heavy

emotions. A well-known example of this type of aggression

in the domain of public transport involves someone who

wants to travel without paying for his ticket. This type of

aggression often starts with an attempt to persuade the

conversation partner, e.g. “Oh, I forgot my wallet, can I just

come along for two stops?” or “Hi honey, I don’t have to pay

for a short ride, do I?”. Often, in case the employee does not

give the aggressor what he wants, the aggressive behavior

will reveal itself through more threatening remarks like “I

know where you live”, “I will be back tomorrow with my

friends”, or “I will be waiting for you at the end of your

shift”.

A possible basis for this behavior can be found in the social

learning theory, which states that if a person has used

aggression to achieve a goal in the past, and if this behavior

was successful, then by operant conditioning (s)he will be

likely to follow the same behavioral pattern in the future. So,

the behavior is learned through positive reinforcement

(Bandura, 1963). Hence, to de-escalate instrumental

aggressive behavior, a directive type of intervention is

assumed to be most effective. It is necessary to show the

aggressor that there is a limit to how far he can pursue his

aggressive behavior, and to make him aware of the

consequences of this behavior.

To conclude, the presented training environment will be

centered around two main learning goals, namely 1)

recognizing the type of aggression of the conversation

partner (i.e., emotional or instrumental), and 2) selecting the

appropriate communication style towards the conversation

partner (i.e., supportive or directive).

To assess the type of aggression, employees need to

carefully observe the verbal and non-verbal behavior of the

aggressive individual. In general, reactive aggressors will

show more arousal (e.g., flushed face, emotional speech)

than proactive aggressors. Also, the context should be taken

into account (e.g., someone who just finds out that he lost his

ticket will be more emotional that someone who knew this

all along, and just tries to intimidate the tram driver to ride

for free).

TRAINING ENVIRONMENT

In Bosse et al. (2014), a global overview is presented of the

simulation-based training environment that is being

developed within the current project. The environment

consists of two main components, namely a virtual reality

environment and a training agent. The virtual reality

environment has the form of a 3D graphical environment

that simulates a particular context in the real world (e.g., the

interior of a tram including travelers),1 with which the user

can interact based on a dialogue system. The training agent

is an intelligent virtual tutor that monitors the behavior of the

trainee and generates personalized support. Two types of

support are used, namely run-time modifications of the

scenario to adjust its difficulty level to the trainee’s

performance (scaffolding) (Bosse et al., 2015), and

personalized feedback on the trainee’s performance in terms

of after-session hints (Bosse and Provoost, 2015). To

evaluate the overall training environment in a systematic

manner, the current paper focuses exclusively on the virtual

reality component (and the underlying dialogue system);

evaluation of the training agent is left for future research.

The virtual reality environment is based on the InterACT

software,2 developed by the company IC3D Media.3

InterACT is a software platform that has been specifically

designed for simulation-based training of interpersonal

skills. Unlike most existing software, it focuses on smaller

situations, with high realism and detailed interactions with

virtual characters. True-to-life animations and photo-realistic

characters are used to immerse the player in the game. An

example screenshot of a training scenario for the public

transport domain is shown in Figure 1. In this example, the

user plays the role of a tram conductor that has the task of

calming down an aggressive virtual traveler.

To enable users to engage in a conversation with an

emotional conversational agent (ECA), a dialogue system

based on conversation trees is used. The system assumes that

a dialogue consists of a sequence of spoken sentences that

follow a turn-taking protocol. That is, first the ECA says

something (e.g. “I forgot my public transport card. You

probably don’t mind if I ride for free?”). After that, the user

can respond, followed by a response from the ECA, and so

on. In InterACT, these dialogues are represented by

conversation trees, where vertices are either atomic ECA

behaviours or decision nodes (enabling the user to determine

a response), and the edges are transitions between nodes.

1 Although the focus of this paper is on public transport, in

principle the approach can be applied to any domain involving

aggressive behavior in face-to-face conversations.
2 http://www.interact-training.nl/.
3 http://ic3dmedia.com/.

47

Figure 1: Example screenshot of a training scenario

The atomic ECA behaviors consist of pre-generated

fragments of speech, synchronised with facial expressions

and possibly extended with gestures. Scenario developers

can generate their own fragments using a motion sensing

input device such as the Microsoft Kinect camera and a

commercial software package FaceShift.4 As the recorded

fragments are independent from a particular avatar, they can

be projected on arbitrary characters.

Each decision node is implemented as a multiple choice

menu. Via such a menu, the user has the ability to choose

between multiple sentences. Hence, the emphasis of the

current system is on the verbal aspects of aggression de-

escalation. In the system used for the current study, three

options are available with every decision node. These

options have been created in such a way that one of them is

clearly supportive, another one is clearly directive, and the

third option is neutral. Here, the supportive and directive

option relate to the communication styles explained earlier.

Figure 1 illustrates how these three options can be

instantiated in terms of concrete sentences (in this case:

A=neutral, B=directive, C=supportive).

For the current evaluation study, a number of scenarios have

been developed, in collaboration with (and approved by)

domain experts of the public transport company. To be

precise, the scenarios address 9 different situations in which

a conflict may arise, such as ‘traveler is not allowed to take

hot coffee on board’ and ‘tram arrives 10 minutes late’.

Moreover, for each scenario three variants have been

written: two variants in which the virtual character shows

emotional aggression, and one in which it shows

instrumental aggression.

The contents of the scenarios (i.e., the conversation

fragments) have been recorded with the help of professional

trainers of the public transport company. Each of the 9x3

scenarios has been recorded with a female trainer and with a

male trainer, with a specific focus on showing emotional

4 http://www.faceshift.com/.

behaviors. Hence, in total a set of 54 scenarios (9x3x2) has

been created. The scenarios have been set up in such a way

that if the user takes the appropriate communication style,

the character calms down and conflict is resolved; however,

if the user takes an inappropriate communication style, the

situation will escalate. On average, a scenario lasts about 3 to

4 interactions (i.e., both the user and the virtual character

speak 3-4 sentences before the scenario ends).

METHOD

This section describes the experiment that was conducted to

investigate the impact of the virtual training environment on

the user experience as well as the performance of potential

end-users from the public transport domain.

Participants

Initially, 30 people were selected to participate in the

experiment. All participants were employees of the public

transport company (in particular: professional tram

conductors and tram drivers). Among these participants,

initially 15 were allocated to the training group and 15 to the

control group, based on their availability. However, after this

allocation had been made, 6 participants withdrew from the

study. This resulted in a training group of 14 participants and

a control group of 10 participants. Within the training group,

8 participants were male and 6 were female. The average age

in this group was 42,7 (σ = 13.1). Within the control group, 5

participants were male and 5 were female. The average age

in this group was 48,3 (σ = 9.9).

Experimental Design and Procedure

For the experiment, a pre-test post-test design has been used,

where the pre-test and the post-test were separated by a

period of 4 weeks. At the start of the pre-test, all participants

(in both groups) filled out an informed consent form and

48

provided their personal data. This, as well as all other data

gathered in this experiment, was collected anonymously.

After that, they made the pre-test, which had the form of a

written exam that had been developed in advance by

instructors of the public transport company. The exam was

composed of 7 multiple choice questions with 4 options each

and 5 open questions, which were designed to be

representative for the learning goals of the training

environment. All closed questions consisted of a particular

context description, similar (but not identical) to the ones

used in the virtual training (e.g., “a traveler enters the tram

and shouts to you that he refuses to pay for his ticket because

your tram is much too late”), followed by four alternative

responses of which the participant should select the most

appropriate one. The open questions were more general, but

also related to the learning goals (e.g., “how can you

recognize emotional aggression of a traveler?”).The post-test

was also made by all participants. This test also had the form

of a written exam; it had the exact same structure as the pre-

test, only the contents of the scenarios and questions were

slightly modified to prevent a learning effect (e.g., by

changing some properties of the main character, or by

rephrasing the multiple choice answers).

In the period between the pre-test and the post-test, the

training group performed 4 training sessions, in which they

worked with the software for about 30 minutes. More details

about these sessions is provided in the next sub-section. The

control group did not participate in these training sessions.5

After the last training session, the participants in the training

group filled out a usability questionnaire. This questionnaire

consisted of 13 statements about which the participants had

to express their opinion on a 5-point Likert scale. The

questionnaire was inspired by Witmer and Singer (1998),

and included statements about issues such as user

experience, presence, and perceived effectiveness. In the

end, the statements were grouped into 4 categories, namely

content, interaction, emotional, and effect, to obtain an

average score on these aspects. The content category

contained statements about the perceived realism of the

scenarios and the characters (e.g., ‘the virtual characters

showed believable behavior’). The interaction category

contained statements about how natural it was to interact

with the characters (e.g., ‘I felt that my answers had an

influence in the behavior of the virtual characters’). The

emotional category addressed the perceived sense of

presence of the participants (e.g., ‘during training I felt

engaged in the scenarios’). Finally, the effect category

contained statements asking the participants for their opinion

about the effectiveness of the training (e.g., ‘I think this type

of training is a useful addition to real world training’).

Training Sessions

All training sessions were executed in a computer room at

the public transport company. At the start of a session,

participants received a document with instructions about

how to work with the training software. They were instructed

to solve each virtual scenario to the best of their ability by

5 Note, however, that the participants in both groups did continue

their regular work activities in the meantime.

identifying the type of aggression they observed during the

conversation and by selecting the appropriate response in the

multiple choice menu. After having read the instructions,

they could start the training software.

Upon launching the software, the start menu shown in Figure

2 was displayed. In the upper part of the menu, participants

had to input their personal ID and gender. Below that, they

could select which scenarios they wanted to run. As can be

seen, there were 4 training sessions (corresponding the 4

weeks of the training), each of which consisted of 10

scenarios. The sets of scenarios were chosen in such a way

that they were representative for the types of incidents

encountered on the job (for instance, they contained more

male aggressors than female aggressors, and more cases of

emotional aggression than instrumental aggression). All 40

scenarios were slightly different from each other; hence, no

scenario was presented more than once. The order in which

the scenarios were offered was determined randomly.

Figure 2: Start menu of the training software (in Dutch)

At the end of each scenario, participants had to indicate

whether they thought the aggressive behavior shown by the

virtual character was emotional or instrumental. All choices

they made in the multiple choice menu were logged, as well

as the time it took them to play a scenario.

Variables

The variables that were measured during the study were

selected in such a way that they could roughly be related to

the training evaluation model by Kirkpatrick (1994). This

model distinguishes four levels on which training programs

can be evaluated, namely satisfaction (‘did the participants

enjoy/appreciate the training?’), learning (‘was there an

increase in knowledge/skills during training?’), impact (‘did

the participants change their behavior on the job as a result

of the training?’), and results (‘did the training positively

affect the organization?’). In the current study, the emphasis

is on the first two levels (satisfaction and learning), where

the evaluation of learning can be further divided into two

sub-questions, namely ‘did the participants’ performance

within the training environment improve over time?’ and

‘did the training result in an increased performance in a

different environment that involves the same skills?’. Below,

49

we will refer to these two aspects of learning by learning

during training and transfer of learning, respectively.

Based on this categorization, we can relate the different

levels of evaluation to measurable variables in the following

way. To evaluate satisfaction, the results of the usability

questionnaires filled out by the training group (i.e., the

answers given to the Likert questions) were analyzed.

To evaluate learning during training, the behavior of the

participants of the training group during the training sessions

was analyzed. In particular, we measured their performance

in terms of identification (i.e., how well are they able to

recognize the type of aggression of the virtual characters?)

and response (i.e., how well are they able to provide the

appropriate responses to the aggressive behavior). As both

measures were applied to emotional as well as instrumental

aggression separately, this resulted in 4 scores (2x2) to

evaluate learning during training. By observing the change

of these scores over the four weeks of the experiment, we

could evaluate whether the participants improved over time.

To evaluate transfer of learning, the written exams made

during the pre- and post-test were used. Here, by comparing

the scores for the pre-test with the scores for the post-test (in

a within-subjects analysis), we could investigate whether the

participants’ knowledge had improved. Additionally, by

comparing the improvement of the training group to that of

the control group (in a between-subjects analysis), we could

investigate whether the training had an added value over the

regular work activities. In this analysis, the independent

variable was the condition (i.e., training or no training), and

the dependent variable was the change in score between the

pre- and post-test. The scores for the pre- and post-tests were

obtained by having an instructor of the public transport

company grade all exams.

Finally, note that besides for evaluation, the performance of

the participants in the different tests (the pen-and-paper

exams and the simulation-based training) could be used for

assessment purposes as well. That is, by observing the

behavior of their employees during the study, the public

transport company could gain more insight in how they act

in various situations that are representative for real world

incidents.

RESULTS

In the following sections, the results obtained during this

evaluation study are presented as described above. That is,

the first part shows the satisfaction of the participants using

the training software, while the section thereafter present

their learning during training. The final section shows the

results on the pen-and-paper exams with regard to the

transfer of learning.

Satisfaction

The experimental group completed a questionnaire asking

about their opinion on the training sessions. The answers to

these questions are grouped in four categories as explained

above; interaction, content, emotional and effect. The scores

(on a scale from -2 up to 2) are shown in Figure 3.

The first category, content, contained questions regarding the

scenarios and virtual characters. With an average score of

0.5 the results were mainly positive, however there were

critical remarks as can be seen by the rather larger standard

deviation of 0.66. Similar results are found for the second

category, interaction, and are, with an average score of 0.4

and a standard deviation of 0.71, again mainly positive with

some negatives.The worst results are found on the category

asking about the emotional aspects of the training. This

entailed questions about their personal involvement in the

scenario or whether they got frightened by the aggression of

the virtual characters. With an average score of -0.3 the

results do not look promising, however again the standard

deviation is rather large (0.73) indicating some positive

results as well.The last category contained questions to their

personal belief whether such a training has an effect. For

example, if they think they improved in their interaction with

travelers or if they believe such a training is useful addition

to the current role-play scenarios. Overall, responses to these

questions were positive (average 0.7), with almost no nega-

tive scores across the participants (standard deviation 0.52).

Figure 3: Average scores on satisfaction

Learning during Training

The experimental group underwent 4 weekly training

sessions, each of which consisted of 10 scenarios. For each

scenario they had to identify the type of aggression as well

as respond correctly to de-escalate the situation. Figure 4

shows both the percentage of correctly identified aggression

types as well as the correct responses split into instrumental

(i) and emotional (e) aggression per week. Higher scores are

better, where scores of 0.5 for identification and 0.34 for

response would be expected with random answers.

Firstly, none of the measurements show an increase over

time, indicating there is no real increase in performance over

these 4 weeks. But, when taken a closer look, it can be seen

that participants were able to identify emotional aggression

correctly approximately half the time and subsequently

responded well half of the time. However, instrumental

aggression was identified correctly more often, while the

response on these situations was the worst of all. This is

confirmed by paired t-tests as well; the difference between

the identification of and response to instrumental aggression

is significant (t(46) = 7.37, p < 0.001), while for emotional

aggression this is not the case (t(46) = 1.45, p = 0.153).

Furthermore, instrumental aggression was identified

-1,5

-1

-0,5

0

0,5

1

1,5

Content Interaction Emotional Effect

50

correctly more often (t(46) = 5.87, p < 0.001), while the

response to emotional aggression was significantly better

(t(46) = 3.45, p = 0.001).

Figure 4: Average scores for learning during training

Transfer of Learning

The results of the pen-and-paper tests of both the

experimental and control group are shown in Figure 5. The

total score is subdivided in a score for the open questions

(blue color, max. 10 points) and multiple choice questions

(red color, max. 7 points). The error bars represent the

standard deviation of the total score.

It can be seen that both groups performed better on the post-

test as confirmed by a t-test with t(23) = 2.64, p = 0.014 for

the experimental group and t(18) = 3.31, p = 0.004 for the

control group. On closer examination, it turns out that there

is no significant change in the score on the multiple choice

questions, but the higher scores are due to better answers on

the open questions. The important question is whether the

experimental group experienced a greater increase than the

control group, which unfortunately does not show in this

data (t(21) = 0.06, p = 0.950).

Figure 5: Average results for transfer of learning

DISCUSSION

Firstly, did the virtual training help improve the participants

in the experimental group more than those that did not use

the training? Unfortunately not, but nevertheless this

research helps us in understanding why. Considering the

difference between the pre- and post-test, the improvement

in both groups was mainly due to a better score on the open

questions. As they did the same tests, this improvement

could be due to the second test being a bit easier, in which

case there would be no ‘real’ improvement in either group.

Another potential explanation could be that merely being

part of the experiment already made the participants reflect

on the topic of aggression de-escalation during the 4 weeks

of the experiment (even if not all of them participated in the

training sessions). This might explain why both groups

obtained a better score in the open questions.

On the other hand, participants did not seem capable of

translating this increased understanding of aggression de-

escalation (as measured with the open questions) to correct

decisions on how to act in concrete situations (as measured

with the closed questions). This is in line with the results

retrieved from the training sessions, which did not show any

improvement in performance during the scenarios.

Then, what do these results learn us? Throughout the

training, participants identified instrumental aggression quite

well, but did not respond accordingly. As the correct

response for instrumental aggression is very direct, it might

be that they preferred a more ‘polite’ or ‘friendly’ answer.

Another explanation for the lack of improvement might be

that each of the participants already has a set way of

responding and has difficulty in changing this ‘default’

approach. This option is backed by the data as well; by

looking at the scores of those participants with more than 2

years of experience in comparison with the others, there is

no difference in test scores as well (pre-test t(20) = -0.72, p

= 0.480; post-test t(20) = -1.09, p = 0.288).

From this, the conclusion might be drawn that on your own,

it is difficult to learn correct responses for the different types

of aggression. Then, it would be important to provide timely

feedback such that a trainee understands the mistake and is

able to improve on it. Providing such feedback was not yet

implemented in this training software, but is being developed

(Bosse and Provoost, 2014).

It should be considered as well that there might be a more

fundamental problem, such as a flaw in the pedagogical

approach or simply a lack of motivation from the

participants. However, from the subjective evaluation, it is

clear that participants do see the usefulness of such a training

and already experience a belief of improvement due to it.

Nonetheless, it is important to consider methods to improve

the emotional involvement of trainees during the various

scenarios as this was shown to be insufficient and could

potentially affect the learning as well. Improvements can be

made by for example changing from a standard desktop

screen to a head-mounted display or increasing the intensity

of the aggression shown by the virtual agents. All in all, we

believe the potential of such a virtual training is supported by

these results.

0

0,2

0,4

0,6

0,8

1

Week 1 Week 2 Week 3 Week 4

Identification (i) Response (i)

Identification (e) Response (e)

Experimental group Control group

0

2

4

6

8

10

12

14 1 1 2 2

Pre-test open Pre-test m.c.

Post-test open Post-test m.c.

51

CONCLUSION

The current paper introduced a prototype of a simulation-

based training environment that enables public transport

employees to practice their verbal aggression de-escalation

skills during face-to-face conversations. The design of the

system is centered around two learning goals, namely the

ability to recognize the type of aggression (emotional or

instrumental) and the ability to select the most appropriate

communication style for the observed aggression type

(supportive or directive).

The prototype was evaluated by means of an experiment in

which 24 employees of the public transport company of

Amsterdam participated. The results indicate that with

respect to user satisfaction, participants were moderately

positive about the content of the virtual scenarios and the

mechanisms to interact with the characters. Also, they were

very positive about the potential of the system as an effective

learning tool. The only category for which their opinion was

below neutral involved their perceived sense of (emotional)

engagement and presence.

Regarding the performance during training, no significant

improvement was found, which might be explained by the

fact that this particular task is difficult to learn without

specific feedback. In line with these results, also no transfer

of learning was found to a similar task on paper (in

particular, to the closed questions, where participants had to

indicate how they would behave in fictional scenarios). In

contrast, participants in the training group did show an

improved performance regarding the open questions of this

paper task, but this improvement was not significantly larger

than that of the control group.

Finally, an interesting side effect was that the training

environment also proved useful as an assessment tool. For

instance, it allowed us to conclude that the current group of

participants is significantly better in identifying proactive

aggression than reactive aggression, but at the same time has

significantly more difficulties in dealing with proactive

aggression than with reactive aggression.

Inspired by the current findings, our future research will

concentrate on two main aspects. First, we will try to

incorporate additional elements in the training with the aim

to enhance users’ emotional engagement and presence.

Examples of such elements are more extreme aggressive

behavior of the virtual characters (e.g., louder voice volume,

more threatening facial expressions and utterances), the use

of immersive technology like head-mounted displays, and

the use of mechanisms to introduce a ‘simulated threat’, e.g.,

based on air blast devices or electric surges. Secondly, we

will integrate our previously developed modules for learner

feedback (Bosse and Provoost, 2014) within the system, to

explore whether this has a positive impact on learning

effectiveness.

ACKNOWLEDGEMENTS

This research was supported by funding from the National

Initiative Brain and Cognition, coordinated by the Nether-

lands Organization for Scientific Research (NWO), under

grant agreement No. 056-25-013. The authors wish to thank

Maria ter Beek, Ernst van der Horst, Aly Lubberink, Jermai-

ne Ravenberg, Caroline de Ridder, Petra ter Weeme, and all

participants in the study for their contribution to the project.

REFERENCES

Abraham, M., Flight, S., and Roorda, W. 2011. “Agressie en

geweld tegen werknemers met een publieke taak”. Research for

the program ‘Veilige Publieke Taak 2007 - 2009 – 2011’.

Amsterdam: DSP.

Angie, A.D., Connelly, S., Waples, E.P., and Kligyte, V. 2011.

“The influence of discrete emotions on judgment and decision-

making: A meta-analytic review”. Cognition & Emotion, 25(8),

1393-1422.

Bandura, A. 1963. “Social learning and personality development”.

New York: Holt, Rinehart, and Winston.

Berkowitz, L. (1978). “Whatever Happened to the Frustration-

Aggression Hypothesis?” American Behavioral Scientist, 21,

691-708.

Bosse, T., Gerritsen, C., and Man, J. de. 2014. “Agent-Based

Simulation as a Tool for the Design of a Virtual Training

Environment”. In: Proceedings of the 14th International

Conference on Intelligent Agent Technology, IAT'14. IEEE

Computer Society Press, pp. 40-47.

Bosse, T., Gerritsen, C., Man, J. de., and Tolmeijer, S. 2015.

“Adaptive Training for Aggression De-escalation”. In: C.J.

Headleand et al. (eds.), Proceedings of ALIA 2014, CCIS 519,

Springer Verlag, pp. 80-93.

Bosse, T. and Provoost, S. 2014. “Towards Aggression De-

escalation Training with Virtual Agents: A Computational

Model”. In: Proceedings of the 6th International Conference on

Human-Computer Interaction, HCI’14. Springer Verlag, pp.

375-387.

Bosse, T. and Provoost, S. 2015. “Integrating Conversation Trees

and Cognitive Models within an ECA for Aggression De-

escalation Training”. In: Proceedings of PRIMA 2015, Springer

Verlag, in press.

Bruijnes, M., Linssen, J.M., op den Akker, H.J.A., Theune, M.,

Wapperom, S., Broekema, C., and Heylen, D.K.J. 2015. “Social

Behaviour in Police Interviews: Relating Data to Theories”. In:

Conflict and Multimodal Communication, Springer Verlag, pp.

317-347.

Dodge, K.A. 1990. “The structure and function of reactive and

proactive aggression”. In D. Pepler and H. Rubin, (eds.), The

development and treatment of childhood aggression (pp. 201-

218). Hillsdale, NJ: Erlbaum.

GVB Amsterdam. 2012. “Incidenten overzicht 2002 tot heden”.

Technical Report.

Hays, M., Campbell, J., Trimmer, M., Poore, J., Webb, A., Stark,

C., and King, T. 2012. “Can Role-Play with Virtual Humans

Teach Interpersonal Skills?”. In Interservice/Industry Training,

Simulation and Education Conference (I/ITSEC).

Kim, J., Hill, R.W., Durlach, P., Lane, H.C., Forbell, E., Core, C.,

Marsella, S. Pynadath, D. and Hart, J. 2009. “BiLAT: A game-

based environment for practicing negotiation in a cultural

context”. International Journal of Artificial Intelligence in

Education, vol. 19, issue 3, pp. 289-308.

Kirkpatrick, D.L. and Kirkpatrick, J.D. 1994. “Evaluating Training

Programs”. Berrett-Koehler Publishers.

Miller, J.D. and Lyna, D.R. 2006. “Reactive and proactive

aggression: Similarities and differences”. Personality and

Individual Differences, 41(8), 1469-1480.

Vaassen, F. and Wauters, J. 2012. “deLearyous: Training

interpersonal communication skills using unconstrained text

input”. In: Proceedings of ECGBL. pp. 505–513.

Witmer, B.G. and Singer, M.J. 1998. “Measuring presence in

virtual environments: a presence questionnaire”. Presence:

Teleoperators and Virtual Environments 7, pp. 225-240.

52

GAME
AI

53

54

STARCRAFT II BUILD ITEM SELECTION WITH SEMANTIC NETS

Andreas Stiegler Keshav Dahal

Stuttgart Media University University of the West of Scotland

Nobelstraße 10 Paisley Campus

70569 Stuttgart, Germany PA1 2BE Paisley, Scotland

E-mail: stiegler@hdm-stuttgart.de E-mail: keshav.dahal@uws.ac.uk

Johannes Maucher Daniel Livingstone

Stuttgart Media University Glasgow School of Art

Nobelstraße 10 Digital Design Studio

70569 Stuttgart, Germany G3 6RQ Glasgow, Scotland

E-mail: maucher@hdm-stuttgart.de E-mail: d.livingstone@gsa.ac.uk

KEYWORDS

RTS, Reasoning, Semantic Structures, StarCraft II

ABSTRACT

We are proposing to express both the dynamic world state

and domain knowledge in a single semantic net for a player-

level AI playing the RTS game StarCraft II. The AI uses a

utility system and queries on the semantic net to solve high-

level planning problems. We explain the different

components of the AI and illustrate the reasoning process

through the example of selecting which unit to produce,

given a specific game state. To do this, we introduce

counters-relations, mapping a typical RTS game mechanic on

relations in semantic structures, incorporating data derived

from test games and tailored scenarios to measure how well

unit classes counter each other. Finally, we discuss the issue

of precise Micro-Management, which is not yet covered fully

by the presented approach for a player-level AI. We give an

outlook on related reasoning systems for squads and

individual units and how they could interact with the

semantics-based planner.

INTRODUCTION

The Real-Time Strategy games are an interesting application

for game-AI research offering rich challenges to both human

and AI players was proposed by Buro (Buro 2003; Buro 2004)

and later on revisited by many researchers, such as

(Yannakakis 2012). They usually require significant strategic

and tactical planning as well as multi-tasking. There are many

Real-Time Strategy games each with their individual problems

and game mechanics. Some focus on building and

maintaining complex economies, while others skip any kind of

economy altogether and instead focus on tactical unit control

in combat.

Among them, we chose StarCraft II as a platform for various

reasons. StarCraft II is tailored towards eSport (Browder 2011)

and offers a competitive setting and unit balancing. Our

research targets cooperation between human and AI players

in StarCraft II. In this scenario, players have to agree on the

overall strategy (often called a “Build”), as well as tactical

parameters like attack directions and special weapon timings

(for example when to use Nuclear Weapons). Defining a

strategy typically happens outside of an actual game round

(the “Meta Game”), where communication can also be

important (Rabin 1994).

We chose StarCraft II as a platform for our experiment due to

its focus on eSport. The game design of StarCraft II avoids

dominant strategies. If such a strategy would exist, chances

are that the AI and the human player would just follow such a

dominant strategy leading to “accidental cooperation”

without any communication or agreement at all.

Further, StarCraft II is a typical example of the Real-Time

Strategy genre and includes most of the typical challenges: a

simple economy, complex tactical relations between multiple

unit types, a technology tree to advance in and micro-

management during battle. Its predecessor, StarCraft, is also a

commonly used platform for AI research in Strategy games,

including fields such as unit-oriented reasoning via

approaches like goal-driven autonomy (Weber 2010),

micromanagement of individual units (Synnaeve 2011),

pathfinding aside from the famous A* (Hagelbäck 2012),

exploration (Togelius 2010) and high-level planning (Churchill

2011). While different in some details, StarCraft II shares

many similarities to StarCraft.

Being an adversarial game, one way to measure the

performance of an AI in StarCraft II is to measure its

capability to win the game through the means of the game

mechanics. Yet, when interacting with a human player in a

cooperative scenario, it also becomes important how effective

and enjoyable cooperation with the AI is. This is similar to

the “play to win or play to be fun” (Yildirim 2008; Laird 2001)

problem in game AI, where “artificial stupidity” (Lidén 2003)

becomes an important factor to be entertaining and believable

(McGee 2010). We chose the competitive performance of AI-

Human teams as a metric for evaluation, excluding the aspect

of enjoyable communication for now.

We will present a bot that uses semantic nets as its key data

structure to represent domain knowledge and memory. We

will illustrate the reasoning process by demonstrating how

the bot solves a high-level-planning problem: To decide

which unit to build. For this task, counters are a core concept

in RTS games.

55

BOT ARCHITECTURE

The Bot’s architecture consists of 5 core pieces: The

Perception Layer, the Static and Dynamic Knowledge Base,

the Reasoning System and a Communication Interface.

Figures 1: Architecture Overview. Feeding commands into

StarCraft II uses the same interface that human players would

interact with through the GUI.

The Perception Layer is an abstraction of the StarCraft II API

gathering information and forwarding events to the other AI

layers. The Perception Layer only forwards information that a

human player would be able to perceive in a given situation,

too. It preserves fog-of-war, for example.

Both knowledge bases form a connected semantic net, which

serves as the key data structure for the bot’s reasoning. The

Static Knowledge is given at game start and represents

domain knowledge of the game, such as the starting health

and damage values of different unit classes. The Static

Knowledge Base never changes during a game round. The

Dynamic Knowledge, in contrast, is allocated by the bot at

runtime and stores information on the current gameplay

situation, such as the current health of a specific unit. The

Dynamic Knowledge spans relations towards the Static

Knowledge base. A specific unit in play, for example, is

represented in Dynamic Knowledge but will have “is-a”

relations towards Static Knowledge nodes, such as the unit

class to which the unit belongs to. More information on the

structure of the Knowledge Bases can be found in (Stiegler

2013a; Stiegler 2014) In a typical game round of StarCraft II,

the semantic structures peak at ~500 nodes with ~4500

relations, of which ~65% consist of nodes and relations from

the Static Knowledge Base, with the rest being dynamically

allocated through the AI in the Dynamic Knowledge Base.

The Communication Interface in a separate module offering

an interface towards the human ally. It connects to the

Knowledge Bases, as collaborative strategies can change

aspects of the game mechanics. If both allies, for example,

agree to split air and ground defense between them, then this

has to be represented in the Dynamic Knowledge Base by

altering relations. The Communication Interface also

connects to the Reasoning System, as communication is

bidirectional, meaning that the AI can initiate communication

with the human on its own or perform counter offers. It can

be argued that communication is an integral part of a

cooperative RTS and as such, the Communication Interface

should have been wired in more deeply. We chose its rather

lose connection to the remaining architecture layers, as we

expect it will undergo the most development and changes in

the future. Currently, it only supports simple symbolic

communication, but utilizing a more complex NLP solution

seems very attractive, as all of the bot’s knowledge is already

based on semantic structures, a common knowledge

representation for NLP systems (Waltz 2014). More

information on the current version of the Communication

Interface can be found in (Stiegler 2013b).

At the core of the bot is the Reasoning System. The

Reasoning System consists of a collection of algorithms and

callbacks, working on the two knowledge bases. It is a utility

system selecting from the whole action space in given

intervals. Each utility function is composed of operations on

the semantic structure. These operations are described

through semantic structures themselves, which are again part

of the Static Knowledge Base, allowing the bot to switch

between different sets of utility functions at runtime.

Further, the Reasoning System periodically calls refinement

operations on the Dynamic Knowledge Base. As the game

continues, the Dynamic Knowledge Base tends to become

vast and fragmented, leading to perceivable time lags in AI

reasoning or greatly reduced performance. Some of the

refinement operations try to clean the Dynamic Knowledge

Base up, for example by truncating relations from dead unit

nodes or by abstracting squads of units into squad nodes.

Other refinement operations are just functions on the

semantic structure altering parameters of the reasoning

system, such as switching between utility functions or

modifying dynamic knowledge to compensate for

uncertainty, such as the army predictors trying to predict

what the opponent’s army is composed of based on past

observations (Stiegler 2014).

Most of the processing time of the reasoning system (>70%

in average) is spent in search and inference operations on the

semantic structure, whereas the actual action selection is just

a simple utility system. Goals are implicitly encoded into the

Static Knowledge Base. The Reasoning System is designed

more like a search engine, inspired by Orkin (Orkin 2012). In

this paper, we will describe how basic reasoning tasks, such

as selecting which unit to build, are covered by a semantic

structure.

SEMANTIC UNDERSTANDING OF GAME MECHANICS

The Dynamic and Static Knowledge Bases are interlinked

semantic nets, where the Dynamic Knowledge Base can

contain relations to nodes of the Static Knowledge Base. The

dynamic and static nature of the semantic net is transparent,

meaning that at any point of time during a game session, the

Reasoning System refers to the Knowledge Bases as just a

single semantic net, with no obvious boundaries between the

two categories. The structure of the semantic net is a simple

one, just consisting of nodes, relations and attributes of

relations. An example of a Space Marine unit instance linking

to the respective nodes describing it is shown in Figure 2.

56

Figures 2: Semantic structure excerpt illustrating the links between the Dynamic and

Static Knowledge base for a Space Marine unit. Weapons, damage, abilities, movement etc are not shown.

Key idea behind this approach is to store as much

information about the domain - in case of an RTS about the

game mechanics - in a data structure accessible to the

Reasoning Systems. Our hypothesis is, that this will allow an

AI to better react on dynamic changes to game mechanics,

such as a cooperative scenario, where one player decides to

take care of anti air units, largely altering the game mechanics

for the remaining player, as they no longer have to care about

this aspect of the build. To pursue this goal, we avoid

hardcoding values into the scripts that the Reasoning System

utilizes, but instead replace them with queries on the semantic

structure. Further, we expect that having a semantic

representation of the game state from an AIs perspective will

help it forming statements in bidirectional communication

with human allies.

REASONING SYSTEM

At its heart, the Reasoning System deployed in the prototype

is a simple utility system, where each utility function is a

chain of operations on the semantic structure. In StarCraft II,

a dominant aspect of the gameplay is about countering

enemy units. A counter to a unit is either explicit through

game mechanics, such as the flamethrower of an Hellion

dealing bonus damage against light units such as infantry.

Further, counters can also be implicit, for example a Siege

Tank having superior range and a blast radius, rendering it

effective against groups of smaller units, such as infantry

squads. Obviously, counters also depend on the resource

costs of the respective units, as an AI will wants to use as

few resources as possible to destroy the most hostile units.

To select units to build, the Reasoning System runs over the

units expected to be in the hostile army. These consist of

directly observed units as well as opponent modelling

predicting which units might be fielded by opponents,

depending on past observation. For opponent modelling,

army predictors are used as described in (Stiegler 2014).

The utility of building a specific unit class then becomes the

sum of all hostile units, weighted by their respective counter

strength. Figure 3 shows an excerpt of the semantic structure

with the basic nodes and relations relevant for counter-based

unit selections. Player 1 controls one Hellion, whereas Player

2 controls two Space Marines. To decide which unit to build

next, the Reasoning System of Player 1 would iterate over all

available unit class nodes (such as the node labeled Hellion),

for which research requirements are met. Research

requirements are expressed with similar requires relations, not

shown in Figure 3 for the sake of simplicity. For each unit

class node, the Reasoning System will check if there is a path

to unit nodes owned by hostile players that include counters

relations. In this case, it would find that there are two such

relations, one for the path from Hellion to Unit_017 and one

for the path from Hellion to Unit_018. The final utility of

building a Hellion would be 2*4.41=8.82. Note that, although

the semantic net forms a directed graph, this path-finding

operation interprets each relation as bidirectional. For

pathfinding, a simple implementation of A* is used, close to

the implementation in (Millington 2012). This exploits that

both Static and Dynamic Knowledge are expressed in one

single, coherent data structure, as a path can be found just

through domain knowledge (for example that a Hellion is_a

Unit), or through world state nodes (for example that

producing a Hellion requires a certain Factory unit instance

to be present).

The A* is slightly modified, allowing it to pass which

relations are allowed to be used in order to find a path. In this

example, only is_a and counters relations were allowed. If no

counters relation, but a path to the opponent units is found,

the utility per unit value defaults to 1.0, in all other cases, the

utility per unit becomes 0. Utility scores are not normalized,

so an arbitrary high value could be achieved. Yet, the action

space of the AI is split into categories, so that build actions

don’t have to directly compete with other actions, such as

attack or defense goals.

As units have different construction costs, their utility has to

be normalized in regard to the effort to produce them. The

implementation normalizes all utilities in respect to Minerals

cost of 100. As Hellions cost just 100 Minerals, their utility

stays at 2*4.41 * (100/100)=8.82, while the utility of building a

Space Marine with a Minerals cost of 50 would become

2*1.0*(100/50)=4.0. The second resource used in StarCraft II,

Vespene Gas, is mapped on minerals, where the mapping

factor depends on the current gathering rate, the current

stock and the chosen overall strategy.

57

Figures 3: Semantic structure excerpt illustrating simple counter relations.

COUNTERS RELATIONS

The above example used an implicit counter, as Hellions deal

bonus damage against Space Marines. Yet, many counters

are more complex. A sniper unit like a Ghost, for example, has

very high counter values for units which have less health

than one sniper shot deals damage. If so, a unit can be killed

with a single shot, preventing the enemy from firing back.

This renders a Ghost more effective against units with low

base health or wounded units. Such a situation can also be

expressed in semantic structures, for example by spanning a

counters relation between the Ghost unit class node and a

specific unit node, such as Unit_017 in the above example,

instead of counters relations between unit classes. As each

unit node encodes its own health value through a relation,

these special cases can be resolved and respective relations

can be added in a graph refinement step. Similar relations can

be constructed for units that are grouped closely and splash

damage dealt by siege weaponry such as Siege Tanks.

More complex unit interactions, like special abilities, require

further constraints. The Banshee bomber, for example, can

cloak itself, rendering it invisible unless an opponent fields a

Detector. As invisible units cannot be shot at, this becomes a

very powerful counter to many unit classes and situations.

These more complex interactions are currently encoded by

additional, tailored attributes to counter relations, but might

be replaced by an extended version of the semantic structure,

introducing new families of nodes dealing with timing. Note

that typically, special abilities closely link to

micromanagement, while still having a large impact on high-

level strategies.

An important aspect of counters relations is their strength

attribute. They are derived from a series of test games, in

which predefined groups of units march at each other,

utilizing different formations and unit states, such as research

abilities or energy levels. Each test run records how much

damage a specific unit inflicted per hostile unit class during

its lifetime. Hostile units spawn as long as the test unit is still

alive. A counters-value of 2.0 expresses that a unit kills (or

deals damage equal to the health of) two of the countering

units before it dies. These tests are automated and run 100

times per formation, setup and unit type and the arithmetic

average of each combat result is used. Figure 4 shows some

counters-values for units countering the Space Marine,

resulting from a test run of 6300 tests. Note that the Space

Marine countering itself is not exactly 1.0. This happens due

to different positioning and the built-in pathfinding of

StarCraft II, sometimes allowing a Space Marine to fire an

extra volley at an enemy without being shot at. A threshold is

introduced to avoid adding counters relations with values

close to 1.0, unnecessarily enlarging the semantic net. The

current threshold is 0.1.

Source Target Counters

Value

Comment

Space

Marine

Space

Marine

1.01

Reaper Space

Marine

1.72

Marauder Space

Marine

3.90

Ghost Space

Marine

2.88 (no snipe)

Ghost Space

Marine

41.62 (with snipe)

Hellion Space

Marine

4.41 (no upgrade)

Hellion Space

Marine

5.70 (with upgrade)

Hellbat Space

Marine

5.11

Figure 4: Some exemplare Counters values as derived from the

automated test scenario.

58

DISCUSSION AND OUTLOOK

We have illustrated how semantic structures can be used to

express domain knowledge (Static Knowledge) and the

current game state (Dynamic Knowledge) with a coherent

data structure. Further, we described how a simple reasoning

algorithm, such as a utility system, can be combined with

queries on the semantic structure to access the knowledge

bases and do a complex decision, such as deciding which

unit to build for a given game state.

While the current algorithm can select which units to build

and similar high-level planning actions such as selecting an

expansion, there are still many open questions in regard to

Micro Management. Current plans are to adopt Goal Driven

Autonomy (Weber 2010) for squads and single units. In the

long run, our hypothesis is that Micro Management could

also be covered by a vastly extended version of the Dynamic

Knowledge Base and queries on the semantic structures

originating from a simple decis ion algorithm such as a utility

system for each single unit. Yet, such a semantic structures

would grow significantly, a first experiment using hierarchical

state machines for squads showed relation counts to be

around 15 times higher if spatial relations, such as distance

and formations are encoded. As the complexity of the

operations on the semantic structure, such as the utility

function described above, scales with relation counts, the

computational effort for the AI would skyrocket, in particular

as a lot more of these operations would be called if each

single unit would deploy such a reasoning system. This

might limit our approach to high-level planning, whereas

Micro Management is better served with other algorithms.

The time it takes to construct the respective units, although

important for gameplay, is not taken into account for

calculating the utility of training a unit. We plan to cover this

in a future development iteration by extending the utility

system with a temporal planner.

REFERENCES

Browder, D. 2011. "The Game Design of STARCRAFT II:

Designing an E-Sport". Talk at Game Developers Conference,

http://www.gdcvault.com/play/1014488/The-Game-Design-of-

STARCRAFT, accessed September 15th 2015.

Buro, M. and Furtak, T. 2003. “RTS games as test-bed for real-time

AI research”. In Proceedings of the 7th Joint Conference on

Information Science (JCIS 2003), 481-484.

Buro, M. 2004. “Call for AI Research in RTS Games”. In AAAI

Workshop on Challenges in Game AI, 139-141.

Churchill D. and Buro M. 2011. “Build order optimization in

StarCraft”. In Proceedings of AIIDE, 14-19.

Hagelbäck, J. 2012. “Potential-field based navigation in starcraft”. In

Computational Intelligence and Games (CIG), 2012. 388-393.

Laird, J. E. and Duchi, J. C. 2001. “Creating human-like synthetic

characters with multiple skill levels: a case study using the Soar

Quakebot”. Ann Arbor, 1001.

Lidén, L. 2002. “Artificial Stupidity: The Art of Intentional

Mistakes”. In Rabin, S. (ed.) AI Game Programming Wisdom,

41-48.

McGee, K. and Abraham, A. T. 2010. “Real-time team-mate AI in

games: A definition, survey, & critique”. In proceedings of the

Fifth International Conference on the Foundations of Digital

Games, 124-131.

Millington, I. and Funge, J. 2012. “Artificial intelligence for games”.

215ff.

Orkin, J. 2012. "Data-Driven Digital Actors," Keynote at

Conference on Computational Intelligence and Games (CIG),

2012.

Rabin, M. 1994. “A model of pre-game communication”. In Journal

of Economic Theory, 63(2), 370-391.

Synnaeve, G. and Bessiere, P. 2011. “A Bayesian model for RTS

units control applied to StarCraft”. In Computational

Intelligence and Games (CIG), 190-196.

Yildirim, S. and Stene, S. B. 2008. “A survey on the need and use of

AI in game agents”. In Proceedings of the 2008 Spring

simulation multiconference, 124-131.

Stiegler, A. and Livingstone, D. J. 2013. “AI and human player

cooperation in RTS games”. In Proceedings of the 8th

International Conference on the Foundations of Digital Games,

449-450.

Stiegler, A. and Livingstone, D. J. 2013. “Cooperative AI in Real-

Time Strategy Games”. In Proceedings of the GameOn

Conference 2013, 45-51.

Stiegler, A. and Livingstone, D. J. 2014. “Semantic Structures for

RTS Army Prediction”. In Proceedings of the GameOn

Conference 2014, 65-69.

Togelius, J.; Preuss, M.; Beume, N.; Wessing, S.; Hagelback, J.; and

Yannakakis, G. 2010. “Multiobjective exploration of the

StarCraft map space”. In IEEE Symposium on Computational

Intelligence and Games, 265-272.

Waltz, D. L. 2014. “Semantic Structures (RLE Linguistics B:

Grammar): Advances in Natural Language Processing (Vol. 23)”.

Routledge.

Weber, B.G.; Mateas, M.; and Jhala, A. 2010. “Applying goal-

driven autonomy to StarCraft”. In Proceedings of the Sixth

Conference on Artificial Intelligence and Interactive Digital

Entertainment.

Yannakakis, G. N. 2012. “Game AI revisited”. In Proceedings of the

9th conference on Computing Frontiers, 285-292.

59

DEVELOPING TRAINABLE BOTS FOR A MOBILE GAME OF TENNIS

Maxim Mozgovoy1, Akane Yamada1, and Iskander Umarov2

1The University of Aizu 2TruSoft Int’l, Inc.

Tsuruga, Ikki-machi, Aizuwakamatsu 204 37th Ave. N #133
Fukushima, 965-8580 Japan St. Petersburg, FL 33704 USA

{mozgovoy, m5191102}@u-aizu.ac.jp umarov@trusoft.com

KEYWORDS

Case-based reasoning, learning by observation, behavior
capture.

ABSTRACT

While behavior patterns of AI-controlled videogame charac-
ters are typically designed manually, self-learning AI systems
possess unique attractive features. They can be used to create
distinct character personalities of different skill levels, and
“train your own character” can be a major user-end feature of
a game. In this paper we present our attempt to develop a
self-learning AI system for a mobile game of tennis. We
show that our AI agents can learn behavior patterns from
user actions, and play accordingly in similar game situations,
exhibiting playing skills comparable to skills of a trainer.

INTRODUCTION

According to the report by International Data Corporation,
online multiplayer games already surpassed single-player
games in terms of consumer spending and player commit-
ment (Ward 2015). The competition among such games is
high, so game designers have to introduce innovative game-
play elements to stay on the market.

Typically, in online multiplayer games people compete both
with other people, and with AI-controlled bots, so the quality
of AI system has a significant impact on the overall success
of a product. For our ongoing project of an online mobile
tennis game, we decided to concentrate the effors on the AI
system that implements the elements, suggested in (Umarov
and Mozgovoy 2014):

1. Complex, non-repetitive behavior of AI bots.
2. Distinct personalities of AI bots, exhibiting a vari-

ety of skill levels and playing styles.
3. “Train your own character” mode as an element

of gameplay.

To achieve these goals, we employ a learning by observa-
tion-based approach to AI design, outlined in (Mozgovoy
and Umarov 2011). As a result, we are planning to obtain AI
agents that can learn from human players, and exhibit hu-
man-like behavior, comparable in terms of style and skill
level to behavior of their trainers. Our current system shows

promising results, and is already able to learn from human
actions and play accordingly.

TENNIS GAME ENGINE

The game of tennis relies on a custom-designed game engine,
developed with Unity3D (see Figure 1).

Figures 1: Tennis Game Engine

Each player in the game can perform actions of two types:
run to the specified location and shoot the ball into the speci-
fied point on the court. The game physics is accurate (Lopu-
khov 2015), so, for example, if a player tries to send the ball
coming at a high speed to a nearby point on the opponent’s

side of a court, a backspin shot will be performed, so the ball
will fly high over the net. Since we want to favor tactical
gameplay rather than arcade, the game engine will automati-
cally steer the players towards optimal ball receiving points.
Thus, a player only has to care about own character location
while the ball is moving towards the opponent, and about the
best target for the next shot.

AI DESIGN PRINCIPLES

The AI subsystem can operate in two distinct modes. In
learning mode, it observes the actions of the specified player,
and stores them in its knowledgebase. In acting mode, the AI
subsystem uses its knowledgebase to retrieve the most suita-
ble action for a given game world state upon request from the
game engine.

60

AI knowledgebase is represented with a set of three graphs,
where individual vertices correspond to different game situa-
tions, and edges correspond to player actions. The difference
between the graphs is in the list of attributes used to identify
a single game situation. In other words, each graph describes
desired agent behavior in form of a finite state machine at
more or less accurate levels of abstraction. Our current sys-
tem setup is described in Table 1.

In learning mode, each player action triggers insertion of a
new (Game situation, action) pair into each of three graphs.
If a game situation with the same attributes already exists in a
certain graph, the action will be connected to the existing
game situation node.

Table 1: Attributes of a Game Situation

Graph Attributes
most
accurate
(level 0)

Game state (serve / hit / receive / etc.)
Player position*
Ball target point*

Player’s intended shot target*
Player movement destination point*

Opponent position*
Opponent intended shot target*

Ball position*
average
accuracy
(level 1)

Game state (serve / hit / receive / etc.)
Player position*
Ball target point*

Player movement destination point*

Opponent position*
Opponent intended shot target*

Ball position**
least
accurate
(level 2)

Game state (serve / hit / receive / etc.)
Player position**
Ball target point**

Opponent position**
* (x, y); inside a 10×10 grid
** (x, y); inside a 5×5 grid

Table 2: Sequence of Knowledgebase Queries

Query Graph
level

Require
action

adjacency

Extended range
search on attributes

1 0 Yes —
2 0 No —
3 1 Yes —
4 1 No —
6 2 Yes —
7 2 Yes Player, opponent,

and ball coordinates
8 2 No —
9 2 No Player, opponent,

and ball coordinates

In acting mode, the AI subsystem performs a number of que-
ries to the graphs in order to find the best possible action in

the given game situation. We start with the most strict query
to find a perfect match for the given game situation in the
most accurate graph, and if no relevant actions are found, we
relax search conditions.

Currently there are three ways to relax a query: a) search in a
graph of a higher abstraction level; b) instead of a perfect
match require a match within a given value range — this is
helpful for numerical attributes, such as player coordinates;
c) do not require that two subsequent actions are also adja-
cent in the game graph (and thus do not follow the same
game strategy). We cannot rely on assumption that AI always
finds a perfect match in the knowledgebase for any possible
game situation, so certain capabilities for approximate search
are necessary.

A fragment of an actual level 0 graph of a trained agent is
shown in Figure 2. The sequence of search actions we cur-
rently use in acting mode is provided in Table 2.

Figure 2: A Fragment of a Game Graph
(Visualized with AT&T GraphViz)

EXPERIMENTAL SETUP

One of the goals of fine-tuning graph attributes and query
conditions is to improve the overall playing experience for
the users. In particular, we believe that the AI system should
exhibit satisfactory behavior after 6-10 minutes of observa-
tions. Our experiments show that in average a player per-
forms approximately 100 actions per minute (auto-steering
movements, performed by the game engine, are also classi-
fied as actions), so a typical training session includes 600-
1000 actions.

As a preliminary test of our system, we ran several game
sessions between three players, as described in Table 3. An
individual match ends when seven points are scored by either
party. Obviously, the most skillful player is C, and the key
component of his playing style is a winning strategic place-
ment of a game character.

61

Next, we tested how the obtained AI agents play against each
other by playing three matches for each pair of opponents. In
all experiments the agents showed performance comparable
to their trainers: A beats B with a score ranging from 7:0 to
7:3, and C beats A with the same outcome. Furthermore, C
was able to beat B with a score 7:1 in all three test matches.
This outcome is expected, since A is more skilled than B, but
our training data did not contain games between B and C.
While these results cannot yet prove that the obtained agents
actually preserve acting style of human players, they show
that the relative skill level of the opponents was preserved.

Table 3: Game Sessions

Session Duration, sec Players Outcome
1 56 A vs. B 7:0
2 66 A vs. B 7:1
3 80 A vs. B 7:2
4 81 A vs. B 7:2
5 83 A vs. B 7:2
6 57 A vs. C 2:7
7 53 A vs. C 0:7
8 47 A vs. C 0:7

CONCLUSION

Game AI is a special topic for academic research, since com-
puter games set such unusual requirements for AI systems as

human-likeness, unpredictability, skill level adjustments, and
fun, a core of any entertainment. Self-learning AI systems
have a potential to address these challenges, since they can
directly learn from human opponents, and thus exhibit dis-
tinct human-like behaviors of different skill levels. Surveys
show that gamers actually prefer such AI opponents (Soni
and Hingston 2008).

In this paper, we briefly discussed our work-in-progress AI
systems for the game of tennis. While our AI did not reach a
production-quality stage yet, it demonstrated the ability to
learn and repeat behavioral patterns of human players

REFERENCES

Lopukhov, A. 2015. “Realistic Ball Motion Model for a Tennis
Videogame”. Proceedings of International Workshop on Appli-
cations in Information Technology (IWAIT), pp. 81-83.

Mozgovoy, M. and Umarov, I. 2011. “Behavior Capture with Act-

ing Graph: a Knowledgebase for a Game AI System.” Lecture
Notes in Computer Science, vol. 7108, pp. 68-77.

Soni, B. and Hingston, P. 2008. “Bots Trained to Play Like a Hu-
man are More Fun”. Proceedings of IEEE International Joint
Conference on Neural Networks, pp. 363-369.

Umarov, I. and Mozgovoy, M. 2014. “Creating Believable and
Effective AI Agents for Games and Simulations: Reviews and
Case Study”. Contemporary Advancements in Information
Technology Development in Dynamic Environments, pp. 33-57.

Ward, L. 2015. “Gaming Spotlight, 1H15: How Online Multiplayer
Is a Game Changer.” Document #256831, International Data
Corporation.

62

A SIMPLE HYBRID ALGORITHM FOR IMPROVING TEAM SPORT AI

David King

David Edwards
University of Abertay, Dundee

40 Bell Street, Dundee, United Kingdom, DD1 1HG
Email: d.king@abertay.ac.uk

KEYWORDS

Adaptive AI, Fuzzy Logic, N-gram prediction, Team Sports
Games.

ABSTRACT

 In the very popular genre of team sports games defeating

the opposing AI is the main focus of the gameplay

experience. However the overall quality of these games is

significantly damaged because, in a lot of cases, the

opposition is prone to mistakes or vulnerable to exploitation.

This paper introduces an AI system which overcomes this

failing through the addition of simple adaptive learning and

prediction algorithms to a basic ice hockey defence. The
paper shows that improvements can be made to the gameplay

experience without overly increasing the implementation

complexity of the system or negatively affecting its

performance. The created defensive system detects patterns

in the offensive tactics used against it and changes elements

of its reaction accordingly; effectively adapting to attempted

exploitation of repeated tactics. This is achieved using a

fuzzy inference system that tracks player movement, which

greatly improves variation of defender positioning, alongside

an N-gram pattern recognition-based algorithm that predicts

the next action of the attacking player. Analysis of
implementation complexity and execution overhead shows

that these techniques are not prohibitively expensive in either

respect, and are therefore appropriate for use in games.

INTRODUCTION

 Artificial intelligence (AI) and video games have always

been intrinsically linked. From providing very basic control

of enemy characters in the early days of arcade games (the

classic example being the ghosts in Pac-Man (Namco 1980),

to the creation of complex systems that model the behaviour

of realistic human characters in more recent titles.
 As the games industry has grown over the years, so too

have players’ expectations of the perceived level of

intelligence and realism exhibited by the enemies they now

face. Some in the industry have gone as far as saying that

“high-quality game AI has become an important selling point

of computer games in recent years” (Tan, Tan and Tay

2011). Conversely, publishing a game that features obviously

bad or broken AI is now a sure-fire way to draw harsh

criticism from both consumers and the media.

 Whereas some effort has been taken to address the

imbalance between graphic fidelity and NPC ‘intelligence’ in
RPG and the like, the same effort does not appear to have

been taken when designing team sport games. It is still the

case that once the player has established a specific strategy

to defeat the opposition, this tactic will always work and the

opposition are unable to learn or adapt to counter these

moves. This significantly limits the replayability and shelf
life of the game.

 There are many existing AI algorithms capable of

incorporating an element of learning/prediction that would

be appropriate (Millington 2006). However, the method does

not necessarily need to be complex. Decision trees and FSM-

based systems form effective frameworks that can be

adapted and augmented in various ways to exhibit the

desired characteristics. The key issue then is selecting the

techniques that are most appropriate in terms of code and

implementation complexity; while also achieving the desired

adaptive effect in the given situation.

ADAPTIVE AI

 The goal of this project was to create a defensive system

that would detect the use of repeated tactics, and react to this

attempted exploitation in a behavioural way. For this

purpose, adaptive AI can be defined as any algorithm which

takes relevant data from the player’s actions and changes the

behaviour of the AI system in an appropriate way. In this

game-specific context there is no definite solution due to the

constantly changing nature of the desired gameplay; the goal

is to simply improve the AI system in a way that allows it to
be less rigid.

METHODOLOGY

 The first step of developing the simple, adaptive AI was to

build a basic ice hockey defence simulation. This system acts

as a framework upon which the desired features are

implemented separately to allow for comparison of results. It

also enables access to necessary input data for the desired

algorithms as well as application of their outputs to the

defending agents. All adaptive functionality is built on top of

this baseline application. Additionally, all data acquisition
and processing will occur during execution (online adaption)

so that the performance of each algorithm can be analysed.

The ice hockey game was built using the Unity3D engine

(Unity Technologies 2013).

 A decision tree was implemented for the base framework

as there is only really one state that the defenders can be in;

defending. This ensures that the decision tree is kept fairly

short and easy to visualise and maintain. A FSM would make

more sense in a full hockey simulation where both teams can

take possession of the puck, and where players can be on the

ice or sitting on the bench.
 A basic ice hockey defence was designed and

implemented. It features two defending players whose

movement and actions are controlled by a decision tree. Two

63

attacking players have also been created, and can either be
controlled directly by the player or via a choice of three

scripted offensive plays that have been created to control

them automatically. When the attacking player who

possesses the puck enters the defensive zone (he must be the

first attacking player to do so, otherwise it would be called

offside), the decision tree was activated.

 Trigger boxes are used to detect when the attacking players

have entered the defensive end. A vector is drawn from the

puck carrier to the goal and this vector is used to position

one of the defending players between him and the net. If a

second attacker (a passing target for the puck carrier) is also

detected, a vector is drawn between the two attackers and
used to position one of the defenders between them. These

processes can be seen in Figure 1.

Figure 1: Detection Zones and Position Vectors in Created

Application.

 The leaves of the decision tree are “block goal” and “take

action”, which represent actions that the defending players

can take. It is at these stages of the defensive process that the

adaptive functionality is implemented.

Defender Positioning

 The first adaptive aspect of the AI is in the positioning of

the defender who challenges the puck carrier. A crucial
element of this positioning is how far away from the puck

carrier the defender will stay. This “offset” is a scalar value

that is applied to the position vector of the defending player

to move them closer to or further away from the puck carrier.

This value is determined by a Fuzzy Inference System (FIS).

 There are two inputs to the FIS. The first is the magnitude

of the vector drawn from the puck carrier to the goal (scaled

to between 0 and 1) i.e. the current distance from the net.

Logically the closer an attacker is to the goal, the more likely

they are to shoot. The second input is the “event heat” of the

current detection zone (the shaded square area in Figure 1).
The event heat is measured separately for each zone, again as

a value between 0 and 1. Every time a shot or pass occurs in

a zone, a weighted value is added to that zone’s heat and

another value subtracted from that of other zones (the exact

values for which have been reached through an iterative

process of trial and error). In this way, repeated actions in the

same zone raise its heat very quickly, and the heat of other

zones will reduce more slowly. This allows the system to

adapt very quickly to repetition, while maintaining some

memory of previous choices.

Fuzzy Inference System

 The initial rule-base for the FIS took the inputs detailed

above and combined them as shown in Table 1, the outputs

relating to the amount of offset. The rules were initially set

up symmetrically, balanced equally between both inputs and

the outputs.

Table 1: Initial Rules of the FIS

Event Heat

Distance

Low Medium High

High Low Low Medium

Medium Low Medium High

Low Medium High High

 Though this seemed like a sensible approach, when applied

to the simulation the resulting behaviour appeared rather

unresponsive. The puck carrier was allowed far too much

space when near the goal and in high-scoring zones that were
not very close the net. To balance the defence in a more

aggressive way, the rules of the system were changed to

those in Table 2.

Table 2: Final Rules of the FIS.

Event Heat

Distance

Low Medium High

High Low Low Low

Medium Low Medium Medium

Low Low Medium High

 As shown, when the distance to the goal is low and the

event heat of the current zone is high, the offset output by the

system is low. However, the offset should also be low

whenever the event heat is high or the distance is low.

 The fuzzy set for the input ‘Distance’ is shown in Figure 2.

The fuzzy set for ‘Event Heat’ is the same. The domain of
each membership function was reached through

experimentation both in MATLAB (MathWorks 2014) and

using the application. Triangular shapes were chosen for the

sake of simplicity; ensuring that fuzzifying the input values

was as efficient as possible. The output fuzzy set ‘Offset’

(Figure 3) also has triangular membership functions. In

addition to this, they do not overlap to simplify the

defuzzification process.

 The FIS uses the centroid method of defuzzification to

generate a crisp numerical value from the fuzzy output that is

calculated. Though far from the simplest method of
defuzzification, the centroid method is one that gives the

most variation of output values (Nurcahyo, Shamsuddin and

Alias 2003). Since lack of variation is generally the problem

with crisp rule-based implementations, it made sense to

select the centroid method for this reason

Figure 2: Input Fuzzy Set ‘Distance’

64

Figure 3: Output Fuzzy Set ‘Offset’

Due to the shape of the membership functions, the

implemented defuzzification gives an output offset value that

is between 0.09 and 0.92. This value is then applied to the

defender’s offset vector via scalar multiplication, allowing

for the gap between the two players to adapt to the given

inputs.

Action Prediction

 Defender positioning is only one component of an adaptive

defence. The defender also has to decide whether the
attacker is going to shoot or pass and act accordingly. The

defensive end has been split in to 9 detection zones, shown

in Figure 4. More than one detection zone can be active at

any given time. During play each detection zone stores the

number of shots and passes that have occurred and then

stores the previous ten events as an ordered string of Char

objects.

Figure 4: Detection Zones in the Defensive End.

N-gram Pattern Recognition

 The action prediction implemented in the application is a

3-gram string-matching algorithm (Muise. et al. 2009). A
shot is stored as an ‘S’, and a pass as a ‘P’. An example

event history from the completed application is shown in

Figure 5. When an event is likely to occur (event heat > 0.5),

the history of the current zone will be analysed. In this 3-

gram method, the algorithm takes the last 2 events (P and S,

in this case) and searches the history for instances of this

pattern. The event that follows this pattern most often

(another pass, in the above case) is then chosen to be the next

predicted action. However, if the previous two actions have

not occurred in that order before, the algorithm will be

unable to

Figure 5: Event History of the Current Active Zone.

predict what the next action will be. For this reason, a final
piece of work was carried out in this area.

Probability and N-gram Combination

 A combined action prediction system was created. It

simply carries out the previously described n-gram string-

matching, and if no event can be predicted by that method,

reverts to a probabilistic approach. When the event heat of

the current active area is above 0.5, the total number of

passes and shots for that area is compared, and the one with

the larger volume is predicted to be the next action chosen by

the player. If they are equal, the defence will play safe and
predict a shot.

EVALUATION

Defender Positioning

 Presented below are the graphed results of the FIS

controller compared to a simple Crisp Rule Based System

using the same rule base. One run with no event heat present

(Figure 6), one with medium event heat present in the first

zone (Figure 7) and a final run with high event heat in zone 1
(Figure 8) have been simulated. It should be noted that the

sudden drops shown at the start of the second and third

graphs are due to the puck carrier first entering the defensive

zone.

 As expected, the output from the crisp rule-based system is

distinctly rigid and unvaried. The FIS offset values show a

much greater degree of variance, resulting in a greater range

of output values. Both systems seem to react to the

combination of inputs in similar ways, suggesting that they

both allow for a similar degree of adaption; though this is to

be expected since they make use of the same rule set.

Action Prediction

 Each of the three methods of action prediction

(probabilistic, pattern recognition and combination) have

been presented with a set of defined historical data. Table 3,

shows the action predicted by each when exposed to the

given string of event history. ‘S’ denotes a shot, ‘P’ a pass

and an ‘E’ signifies that no action could be predicted.

Though the pattern recognition method could handle this in a

number of ways (default to predicting a shot, carry out

previous chosen action, choose one at random, etc.), this

65

 Figure 6: Results with no Event Heat and Decreasing

Distance

 Figure 7: Results with Medium Event Heat in the First Zone

 Figure 8: Results with High Event Heat in Zone 1

Table 3: Predicted Actions When Exposed to Historical Data

History Desc. Prob. Pattern Comb.

SSSSSSSSSS 10 S S S S

SSSSSSSPPP 7S, 3P S P P

SPSPSPSPSP 5S, 5P S S S

SSPSSPSSPS 7S, 3P S S S

PSSSPSPSPS 6S, 4P S P P

PPSPPSPPSS 6P, 4S P E P

SSSSSSSSSP 9S, 1P S E S

would not be a meaningful prediction and therefore has not

been implemented for these results.

Complexity

 The complexity of each adaptive algorithm is displayed in

Table 4. For comparison, the basic decision tree-based

defence logic is included at the top.

Table 4: Complexity of Implemented Techniques

Technique Lines of code CPU time (ms)

Decision tree

defence

281 between 0.02 and

0.05

NC - Crisp rule-

based

99 0.01

NC - FIS 438 0.01

AP - Probability 4 0.01

AP - Pattern

Recog.

85 0.03

AP - Combination 89 0.03

DISCUSSION

 The main issue with evaluating gameplay systems such as
those created is that there is often no real scientific way of

measuring success in this context. While it is easy to test

whether the defender is close to the puck carrier when they

should be, it is much harder to say how effective a prediction

algorithm is when the next action the player will take cannot

be known. For this reason, there is bound to be an inherent

level of subjectivity in any analysis of most created game AI

systems. That said, much effort has been made to avoid bias

both in the implementation of each algorithm and now in

their discussion.

 The overall results of the project (in terms of what has
been created) are generally positive. Multiple methods of

creating each desired feature have been researched, designed,

implemented and tested. A robust application has been

created, which showcases different adaptive AI algorithms in

a relevant team sports context.

 As shown in the graphs for Defender Positioning, there is a

clear difference in the amount of output variation given by

the FIS in comparison with a Crisp Rule-Based System. The

FIS produces a greater array of different offset values than

the crisp rule base does, and covers a wider range of the

given domain. Though the range of values given by the rule-
based system is somewhat due to implementation choice,

there is no way around the lack of variation that results from

using such a system. For this reason, if variation in terms of

resulting values is desired when implementing a numerical

control system of this kind, the FIS is clearly the better

choice. The increased variation given by the FIS will make it

appear to react in a more natural, realistic way.

 Another thing worth noting is that the created system is far

too precise in nature, even with the stated increase in

variation provided by the FIS. In a sport as fast-paced as ice

hockey, it is entirely unnatural for defending players to

always be exactly in the right position. For this reason, it
would be a good idea to add some kind of constrained

random adjustment to the blocking defender’s position

vector. This would serve to ensure that some shots would

actually make it past them.

 As for the Action Prediction the purely probabilistic

method has the distinct advantage of always being able to

return a meaningful prediction, as long as at least one event

has occurred in the current zone. This means that it is rapid

to detect when an action is being repeated. It does not need

to wait for sufficient history data to analyse properly. The n-

gram method relies on sufficient history data being present

66

for it to find any form of pattern. When repetition cannot be
found, the purely pattern-based prediction is unable to give a

relevant output. While this can easily be fixed by having it

default to predicting a shot, it is still a definite weakness of

the approach. However, combining the two techniques so

that probability is used when a pattern cannot be found

results in a very robust system that has the strengths of both

approaches, with no obvious drawbacks.

Complexity

 As Table 4 shows, the crisp rule-based system required

only 99 lines of code to implement, whereas the FIS resulted
in over 400. While neither system has been compressed

aggressively in terms of code (readability and clarity to a

new observer have been emphasised during development),

this is a marked increase in implementation complexity and

therefore time. The fact that the FIS is substantially longer

than the entire baseline decision tree defence logic suggests

that it may only be worth implementing if numerical

variation is highly important in the game situation. If not, a

simple rule-based approach may be entirely appropriate.

 However, as evidenced in Table 4, there is no marked

increase in performance overhead when a FIS is used instead
of a crisp rule set. This is due to the fact that both systems

essentially boil down to a set of logical AND operations;

with the FIS requiring simple and efficient calculations on

either side of these rules. There are no expensive memory

operations, so performance overhead is minimal and not of

concern for current generation hardware.

 Unsurprisingly, the probabilistic action prediction is

incredibly easy to implement. A simple comparison of two

numbers has almost no implementation cost at all, as shown

in Table 4. Though somewhat more complex in concept, the

created n-gram prediction only seems costly to implement

due to its comparison with the probability approach (85 lines
of code vs 4). In context, even the combination of both to

create a fairly robust and effective system is far less costly

than the original decision tree-based defender control.

 Performance-wise, there is a small but noticeable increase

in the CPU time used by the pattern recognition. However,

the resultant CPU usage is still incredibly small and most

definitely not an issue on any form of modern processor.

Future Work

 While it is clear that an adaptive system has been created
that functions correctly, there has been no evaluation of

whether players would actually enjoy tackling it. The next

step in developing such a system would therefore be to carry

out some form of survey-based analysis of whether the

average player feels the created system is fair, balanced and

actually effective at what it aims to do.

 In order to carry out the above evaluation, it would be a

good idea to extend the created application into a fully-

fledged team-based ice hockey simulation. This would

involve making minor changes to how the defence currently

functions, as well as implementing some form of attacking

AI as well. It is likely that this would be a significant
undertaking, but one that is entirely necessary to fully

evaluate the performance of the defensive system in a proper
context.

 A logical extension would be to try to port the created

adaptive system to other, similar team sport games. Though

the gameplay mechanics of other sports like football and

basketball are very different, the core concepts of defending

(effective positioning, shot blocking) are completely

transferable. In this way the AI performance of not just ice

hockey, but all similar team sports games could be improved

to provide a better experience for the paying customer.

CONCLUSIONS

 In conclusion, the development of this project has shown

that intelligent and believable behaviour can be modelled

with a combination of fairly simplistic techniques. With

graphical improvements in games becoming less and less

noticeable with each new generation of hardware, it would

seem then that creating better and more engaging game AI is

of the utmost importance. There is clearly room for

improvement in the games industry’s approach to AI

development as a whole; this project alone demonstrates that

existing rigid systems can be improved without massive

costs in development or impacts to performance.

REFERENCES

Millington, I. 2006. Artificial Intelligence for Games. Morgan

Kaufmann, San Francisco, C.A.
Muise, C. et al. 2009. “Exploiting N-gram analysis to predict

operator sequences.” In: Proceedings of the Nineteenth
International Conference on Automated Planning and
Scheduling.

Namco Pac-Man. 1980. [arcade]. Arcade. Namco.
Nurcahyo, G. Shamsuddin, S. and Alias, R. 2003. “Selection of

Defuzzification Method to Obtain Crisp Value for rRpresenting
Uncertain Data in a Modified Sweep Algorithm.” Journal of
Computer Science & Technology. 3(2). 22-28.

Tan, C., Tan, K. and Tay, A. 2011. “Dynamic Game Difficulty
Scaling Using Adaptive Behavior-based AI.” IEEE
Transactions on Computational Intelligence and AI in Games.
3(4), 289-301.

WEB REFERENCES

MathWorks. 2014. What is Sugeno-type fuzzy inference? [online].

Available from: http://www.mathworks.co.uk/help/fuzzy/what-
is-sugeno-type-fuzzy-inference.html [Accessed 30 April 2014].

Unity Technologies. 2013. Unity. [software]. Version 4.3.2.
Available online, from:
https://unity3d.com/unity/download/archive

BIOGRAPHIES

DAVID KING is a lecturer in Maths and Artificial

Intelligence at Abertay University teaching on the Computer

Games Technology and Computer Games Application

Development Programmes.

DAVID EDWARDS Graduated with First Class Honours in

Computer Games Technology from Abertay University in

2014 and is now a programmer for Gameplay, AI & User

Experience.

67

68

INTELLIGENT
AGENTS

69

70

PROPOSING AN INTELLIGENT AGENT FOR THE FOUR-SIDED DOMINOES

GAME USING THE EXPECTIMINIMAX ALGORITHM

Endrews Silva

Marly Costa

Nirvana Antonio

Cicero Costa Filho

Technological and Information Center

Federal University of Amazonas
Av. General Rodrigo Otavio Jordão Ramos, 3000

Aleixo, Manaus, AM, Brazil. 69077-000

E-mail: cffcfilho@gmail.com

KEYWORDS

Four-sided Dominoes Game; Imperfect Information; Non-

Deterministic; Expectiminimax.

ABSTRACT

This paper presents an intelligent agent to play the four-sided
dominoes game, typically played in Amazonas state, Brazil.

In this work, a version of the double-6 dominoes game is

used, played by four players, forming two pairs. This game

is of imperfect information and is non-deterministic, if we

consider having pieces for any valid side as a chance event.

The proposed agent is based on the expectiminimax

technique. The methodology used for finding the best choice

includes a depth-limited search with phase-related search,

and a chance model based on the hidden pieces. We propose

and test four strategies with different depths in the phases of

the match, and tested each one against a pair playing with a

basic strategy and a best strategy obtained by a genetic
algorithm. In 10 simulations of 5,000 matches, the best

strategy of this study obtained 72.04% of wins against a

basic strategy and 58.34 % against the best strategy obtained

by a genetic algorithm.

INTRODUCTION

The game of dominoes is comprised of rectangular
“stones” divided into two halves. Each half has engraved dots,

representing numbers, varying between 0 and N. Depending

on N value, there are different versions of the game of

dominoes. In Brazil, the most popular version of dominoes

has two ends and N=6, resulting in 28 stones. Therefore, the
stone with high numeration has six dots engraved on each half.

Dominoes is a non-deterministic game of imperfect

information. This study uses probabilistic inferences to

choose the best move. The need for probabilistic inference

makes the task of developing an intelligent agent for

dominoes games a complex one and suggests using the

expectiminimax algorithm to determine the best move,
(Michie, 1966) over the minimax (Neumann and Morgenstern

1944). Adding chance nodes that correspond to probabilistic

events in the tree search implies an increase in its complexity

by a factor multiplier O (), where b is the number of chance
events in each move and d is the search depth used to explore of

the entire tree.

According to Russel and Norvig (2003), game trees are

very complex, preventing the minimax and the

expectiminimax algorithms from exploring the maximum

depth of the game search tree (from the root node to the leaf

nodes), when looking for the best move; therefore, some
authors suggest dividing the game into phases and

proceeding with a search into each phase. This technique is

called a phase-related search (Smed and Hakonen 2006).

This study aims to develop an intelligent agent for the

four-sided dominoes game and has the following secondary

objectives:

 Proposing an intelligent agent for choosing the

best move in a four-sided dominoes game using

the expectiminimax algorithm;

 Using the phase-related search technique to

explore the search tree of the four-sided dominoes

game and evaluate the effect of changing the
search depth in each phase over the number of

wins of the expectiminimax algorithm;

 Proposing a probabilistic modeling of the chance

events for the four-sided dominoes game.

.
RELATED WORKS

In the literature, some authors propose intelligent agents for

the two-sided dominoes game. Developed for the 2-sided

dominoes game, a study by Garza (2006) compares the

performance of six game strategies against the basic strategy.
The author proposes a static evaluation function with some

terms. Each term incorporates the objectives of one strategy;

nevertheless, the author provides few details about each term

of the evaluation function. The strategies proposed in the study

are not effective when tested against the basic strategy. The

best result is 54% of wins of the selfish strategy against the

basic strategy.

The study of Cruz et al. (2013) also addresses the two-

sided dominoes game, obtaining better results than Garza

(2006). The authors propose an evaluation function that

incorporates a probabilistic calculus, where a Boltzmann
exploration is employed, with the temperature of the

Boltzmann equation related to the number of stones in the

table. Of the four strategies proposed by the authors, one that

aims to block the adversary’s game obtains the best result:

65% of wins against the basic strategy.

71

Concerning the four-sided dominoes game, the study of

Antonio et al. (2013) describes a detailed evaluation function

for choosing the best move. The evaluation function terms

represent two types of information. One term refers to the

number of points obtained by a player’s move. The other terms

refers to the game state, based on the stones already placed on

the game table. A different coefficient precedes each term and

determines its relevance. A genetic algorithm optimizes the
value of these coefficients in order to obtain a maximum number
of wins. The authors propose different evaluation functions
differing from one another by the number of terms and obtaining
the best results, 69.18% of wins against the basic strategy, with

a maximum number of terms of the evaluation function.

DOMINOES

The dominoes game version of this study comprises 28

stones. People in Amazonas state, in northern Brazil, usually

play this game. The rules of this game are listed below. In

addition, detailed rules can be seen at http://4-always.
blogspot.com.br/2009/03/manaus-terra-do-domino.html. These
rules assume two pairs playing the game:

1. Initially, each player receives seven stones. Partners

of the same pair place one in front of the other.

Figure 1 illustrates the four ends of a dominoes

game and the player’s positions on the table. Player

 is partners with player , and players and

are opponents;

2. A game match is comprised of several rounds. The
objective of each player pair is to place all the

stones in their hand onto the table;

3. In the first round of the game, the player with the

double-six stone, 6-6, places it on the table. The

following moves occur counterclockwise. Each

player tries to connect a stone to one of the ends of

a stone on the table with the same number of dots.

4. From the second round onwards the player who

ends the previous round starts the second round

with any double-N stone;

5. Each pair scores a single count. A match ends when

one of the pairs reaches a count of 200 points at the
end of a round;

6. In a move, a player can add 5, 10, …50 points to

the count of its pair. This sequence shows the ways

of accumulating points:

- P1: After a player’s turn, if the sum of the dots in

all four game ends is a multiple of 5, the player

adds this multiple to the count of its pair. Figure 1

illustrates a situation where a player adds 10 points

to the count of their pair;

- P2: When a player does not have stones to add to

any of the four game ends, the adversary pair adds
20 points to its count. Figure 2 illustrates a game

situation where the player shown does not have

stones to move in any game end;

- P3: When a player, before moving a stone,

declares that no players will move any stone after

their move, and this actually occurs, they add 50

points to the count of their pair. This move is

traditionally called a “rooster”;

- P4: In the end of a round, if a player finishes the

round with a double-N stone, they add 20 points to

the count of their pair;

- P5: If a player finishes a round, the sum of dots in

the stones owned by the adversary pair is rounded

down to the nearest multiple of 5 and added to his

pair count. Traditionally players call these points

“garage”. Figure 3 shows, a hypothetical scenario

with the stones held by the adversary pair, when a

round finishes. As there are 14 dots, the garage is

10 (the result of rounding down 14 to 10, the

nearest multiple of 5).

Figure 1: Example of a game situation where, after a player

takes a turn, 10 points are added to the count of their pair.

Figure 2: Example of a game situation showing stones in the
hand of a player, when there are no stones to add to any of

the ends of the game.

Figure 3: Example of a garage totaling 10 points.

METHODOLOGY

The depth search algorithm used in this study for the four-
sided dominoes game uses a limited expectiminimax search. In

this study, each search depth depends on the game phase. This

study proposes dividing the dominoes game into three phases.

In each phase, the search depth assumes a constant value.

The expectiminimax tree search for the four-sided
dominoes game has three types of nodes: MAX, MIN and

CHANCE. Figure 4 shows an example of a search tree with a

depth of 2. A MAX node corresponds to one of the pair of

players who uses the expectiminimax algorithm.

72

Figure 4: Search tree for the four-sided dominoes game with a depth of 2. , , and represent the

probabilities of player “MAX” or “MIN” adding a stone to a game end 0, 1, 2 and 3. represents the probability of

players “MAX” or “MIN” having no stone to add to any end of the game.

In Figure 4, the upper triangle corresponds to a MAX

player. A MIN node corresponds to one of the players of the
adversary pair (the pair that does not use the expectiminimax

algorithm). In Figure 4 the inverted triangles represent the

MIN player. The circles represent a CHANCE node; A

CHANCE node has several possible moves that are
represented by probabilities: – add a stone in to a game

end 0; - add a stone in to a game end 1; - add a
stone in to a game end 2; - move a stone in the game end
3; – have no stone to add to any end of the game.
Algorithm 1 shows the expectiminimax algorithm used for

exploring this tree in the four-sided dominoes game.

Algorithm 1: expectiminimax algorithm for the four-sided

dominoes game.

Function Expectiminimax (node, depth, State)

1) IF depth=0

2) return ExpectPairScore–OpponentPairScore

3) ELSE IF node is MIN node

4) BestScore + ∞

5) FOR EACH possible action

6) Score=Expectiminimax(Chance,depth-1)

7) BestScore min(BestScore,Score)

8) Undo move

9) ElSE IF node is Max node

10) BestScore - ∞

11) FOR EACH possible action

12) Score=Expectiminimax(Chance,depth-1)

13) BestScore max(BestScore,Score)

14) Undo move

15)ElSE node is a CHANCE event

16) BestScore 0

17) FOR EACH available end of the table

18) Score=Expectiminimax(Child,depth-1)

19) BestScore BestScore+(Prob(i)*Score
20) Return Bestscore

As in the original expectiminimax algorithm, the one just

shown for the four-sided dominoes game is a recursive

procedure that uses two auxiliary procedures: the move

generator and the static evaluation. The expectiminimax

algorithm must be provided with three parameters: an

identification of the player who will take a turn (node), the
depth search (depth) and the current configuration of the game
(state).

Complexity of four-sided dominoes game tree

The number of leaf nodes usually measures the complexity
of a game tree. For an imperfect information game, this
number depends on the ramification factor of the tree (number
of possible moves available for each player), the search depth
and the number of options of a CHANCE node. For the four-
sided dominoes game, the ramification factor does not present

a linear behavior, as in chess and Stratego games, because its

calculation depends on the number of stones owned by the

players. It is possible to fix an upper limit to the ramification

factor, considering the following worst-case scenario: in the

second move of the game, the player who performs this

move owns all stones with numeration equal to six in one of
the sides (. This corresponds to a maximum value of the

ramification factor, which is equal to six. Figure 5 shows these

six possible moves.

Figure 5: Maximum value for the ramification factor: a

hypothetical situation where, in the second move of the

game, the player who performs the move owns all stones

with numeration

As stated before, the number of options of CHANCE

nodes is equal to 5. Figure 6 shows these options. The last

parameter needed to calculate the four-sided dominoes game

73

tree complexity is the search depth. This depth is equal to the

maximum number of rounds of the game, which is 25.

According to Hauk (2004), equation (1) calculates the

game tree complexity, C.

Figure 6: Ramification factor for the CHANCE nodes.

C (1)

Where:

RF – Ramification factor of a MAX or MIN node - 6;

CN – Number of options of a CHANCE node -5;
p – Search depth -25.

Using the values previously determined results for

complexity C:

This is the maximum number of leaves that can exist in

the dominoes game tree. For comparison, Table 1 shows the
game complexity of some other games (ARTS, 2010). As

shown, the four-sided dominoes game complexity is only

greater than the game Connect-Four.

Table 1: Game tree complexity of some games (ARTS,

2010).

Game

Game tree complexity

Trail

Connect-Four

Othello

Chess

Chinese Checkers

Stratego

Go

Probabilistic modeling of CHANCE nodes

According to Walpole et al. (2011), if a sample space has

N elements, with each one with the same probability, they all

have the same probability 1/N, and the probability of an

event A, with p elements, is given by equation (2).

(2)

Calculating the probabilities , , associated

with a CHANCE node requires a different calculation for the

pair that uses the expectiminimax algorithm and for the

adversary pair.

For the MAX node (a player of the pair who uses the

expectiminimax algorithm), the calculus is very simple. As
the stones are known by the algorithm, or
 For MIN node (a player of the adversary pair); nevertheless,
the calculus is more complex and is explained in the sequence.

First, calculating the denominator of equation (2), N is

explained. In this study, the stones not known by MAX are
named hidden stones. comprises the set of hidden stones.

The number of elements of is . The sample space is

formed by all hidden stone permutations: . Each

permutation is an element of the sample space.

Second, calculating the numerator of equation (2), n is

explained. The numeration of the game end i is . The

maximum number of stones with , t owned by MIN

player is given by equation (3).

 (3)

Where:

 - number of stones owned by player MIN.

– number of stones with numeration in one of

the sides. .

The number n in this study is calculated as a sum of
terms, where . represents the number of elements

of the sample space where player MIN owns k stones with

numeration in one of the sides. As shown below, for

exemplifying how is determined, this study assumes that:

 – MAX player;

 – MIN player;

 – partner;

 - partner;

 , , } (7 stones);

 ;

Stones with numeration , (
 3);

3 stones of held by (=3);

2 stones of held by (=2);

2 stones of held by (=2)

As
 3 and =3, from equation (3), t=3. So, for

calculating n we must add three terms: , and . Figure
7 shows some elements of the sample space with 1, 2 and 3

stones with numeration owned by . Before showing

the expressions for , and , the following definitions

are provided:

 (4)

 , ... (5)

Where:

 k .

74

(a) (b)

(c)

Figure 7: Elements of sample space: (a) examples of

elements with 1 stone with numeration owned by ;
(b) examples of elements with 2 stones with numeration

 owned by ; (c) examples of elements with 3 stones

with numeration owned by .

This study calculates , and using the following

equations:

 (6)

 (7)

 (8)

Where:

 Number of arrangements of j elements in groups

of k elements.

 Number of combinations of j elements in groups

of k elements.

In a general way:

 (10)

For the game situation assumed in this study, and using

equations (6), (7) and (8), the calculus of , , , n and

 results: ,

 and
 n= + + . The value

of n=7!=5040 and

Game strategies

The depth search of the expectiminimax algorithm is

limited according to the number of phases into which a game

round is divided. In this study the four-sided dominoes round

is divided into three phases: initial, middle, and final.

Aiming to define the size of each phase, this study

conducts the following experiment: 5,000 matches between

pairs using the basic strategy, resulting in 10,282 rounds. In
each round, the number of moves was measured. Figure 8

shows the results of this experiment.

Figure 8: Number of rounds versus number of moves/round

in an experiment with 5,000 matches (10282 rounds).

In Figure 8 the vertical axis represents the number of

rounds, while the horizontal axis represents the number of

moves/round. Point 1, for example, shows that only 3 rounds

finished with 18 moves, while point 8 shows that 4,103

rounds finished with 25 moves.

Briesemeister (2009) estimated the number of

moves/round of the game OnTop, simulating 1,400 matches.

A mean value of 31.36 moves is reported.
The mean value of moves of a game can be calculated

using equation (11).

 (11)

Where:

 – quantity of moves/round;

 – number of rounds with moves in the experiment.

Applying the point values of Figure 8 in equation (11)
results in a mean value of moves of 24.03. Therefore, there

are approximately 24 moves/round. This study calculates the

number of moves in each phase of the four-sided dominoes

game dividing this value by 3, as shown in Table 2.

This study tests different search depths in each phase of a

round and proposes four strategies, depending on values of

these depths. Table 3 shows these strategies.

The first and second strategies use low values for depth

search in the first and middle phases, while the third and

fourth strategies use higher values for depth searches in these
two phases. In all strategies, the depth search of the last phase
was fixed in a maximum value of 9. For depth searches above

10, this study verifies that the expectiminimax algorithm the

algorithm gets stuck in recursion.

75

Table 2: Phases for a match round of the four-sided

dominoes game proposed in this study.

Match phase Round

Initial 1

Middle 9 16

Final >16

Table 3: Strategies defined for the four-sided dominoes

game, varying the search depth in each round.

Strategies for

expectiminimax

agent

Depth search in round phase

Initial Middle Final

First 5 8 9

Second 8 5 9

Third 9 9 9

Fourth 10 10 9

RESULTS AND DISCUSSION

All the experiments were done on a laptop with an Intel

Core i5 @ 2.5 GHz processor, with a Windows operating

system 8.1. The simulations used the Eclipe IDE. This study

divides the results into four groups.

The first group of results, with the aim of evaluating the

number of wins of the expectiminimax algorithm against the
basic strategy, proposes two simple experiments. These

experiments change the depth search of initial and middle

phase, while fixing the depth search of final phase. Both

experiments performed 5,000 matches.

In the first experiment, the depth search of the initial and

final phases were fixed at 5 and 9, respectively, and the

length of middle phase ranged from 1 to 7. Figure 9 shows

the number of wins of the pair that uses the expectiminimax

algorithm (vertical axis) based on depth search of the middle

phase (horizontal axis). The best result for the pair that uses

the expectiminimax algorithm is 2985 wins. This occurs for a
depth search of 7 in the middle phase.

In the second experiment, the depth search of the middle

and final phases were fixed at 5 and 9, respectively, and the

depth search of the initial phase ranged from 4 to 7. Figure

10 shows the number of wins for the pair that used the

expectiminimax algorithm (vertical axis) based on depth

search of the initial phase (horizontal axis). The best result

for the pair that used the expectiminimax algorithm was

2,985 wins. This occurs for a depth search of 7 in the initial

phase.

These two experiments suggest that the number of wins
of a pair that uses the expectiminimax algorithm against a

basic strategy is proportional to the depth search of the initial

and middle phases.

Figure 9: Number of wins for a pair using the expectiminimax

algorithm against a basic strategy, with the following phase search
depths: initial = 5; middle = 4, .., 7; final = 9.

Figure 10: Number of wins for a pair using the expectiminimax

algorithm against a basic strategy, with the following phase search
depths: initial = 4…7; middle = 5; final = 9.

The second group of results evaluates the performance of

the strategies defined in Table 3 against a basic strategy and

against the best strategy defined by Antonio et al. (2013),

hereafter-called strategy GA. Each test uses 10 simulations

with 5,000 matches. The mean number of wins with the
corresponding standard deviation are registered. This study

proposes using the t-Student hypothesis test to evaluate the

statistical significance of the results. The value of each t-

Student test, T, is compared with a critical value . The null
hypothesis, wins, is rejected if T ≥ or T ≤ .
A significance level of 99% is employed, with 9 freedom

degrees. This result in a critical value . Table 4

shows the results obtained in this step.
According to Table 4, all the strategies defined previously

in this study obtained statistically significant results against

the basic strategy, with mean victory values above 2,500. The

fourth strategy obtained the largest number of wins and the
lowest standard deviation, followed by strategy 3. Only

strategies 3 and 4 obtained statistically significant results

against the GA strategy. Again, the fourth strategy achieved
the highest number of wins and the lowest standard deviation,

followed by strategy 3.

In the third group of results, the aim is to evaluate the
performance of each strategy playing against the other. Table

5 shows the results. Each test uses 10 simulations with 5000

matches, and the mean number of wins with the

corresponding standard deviation are registered. Strategy 4

obtained statistically significant results against the other

strategies. Perhaps, one possible reason is that this strategy

uses deeper searches than other strategies in all four-sided

dominoes game phases defined in Table 2.

Strategy 3 presents statistically significant results when

playing against strategies 1 and 2. Strategy 2 provided a

76

statistically significant result only against strategy 1.

Strategy 1 did not obtain statistically significant results

against other strategies. Perhaps, the possible reason is that

this strategy uses shallower searches than other strategies in

all four-sided dominoes game phases defined in Table 2.

Table 4: Performance of each strategy defined in this study

against the basic strategy and against the GA strategy

(Antonio et al., 2013): mean number of wins in 10
simulations with 5,000 matches.

Table 5: Performance of each strategy defined in this study

playing against the other: mean number of wins in 10

simulations with 5,000 matches.

In the fourth group of results, the aim is to evaluate the

best performance (maximum number of wins) of each

strategy defined in this study against the basic strategy and

against the GA strategy. A total of 10 simulations with 5,000

matches were conducted and the maximum number of wins

was registered. Table 6 presents the results. The statistical

significance of results were evaluated using a Chi-square

test, with a significance level of 99% and with 1 degree of

freedom, resulting in a critical value of 10.83 (.

Table 6: Performance of each strategy defined in this study

against the basic strategy and against the GA strategy

(Antonio et al., 2013): maximum number of wins in 10

simulations of 5,000 matches.

Table 6 shows that all strategies achieved statistically

significant results against the basic strategy. The best result

is 72.04% of wins. This result is higher than the one obtained
by Antonio et al. (2013), which was 69.18%. Only strategies

3 and 4 defined in this study achieved statistically significant

values against the best results presented by Antonio et al.

(2013).

CONCLUSION

This study presents an intelligent agent for the four-sided

dominoes game based on the expectiminimax algorithm. The

study evaluates four different strategies. These strategies

differ from one another by the depth search in each phase of

a round.
The aim of defining strategies with different depth

searches in each phase of a round evaluated its effect on the

number of wins of a playing pair. Two strategies are defined

with a shallow search depth in initial and middle round

phases, while the other two are defined with a high search

depth in initial and middle round phases.

The best results in terms of the maximum number of

wins in 5,000 matches is 72.04%. These values are higher

than those obtained by Antonio et al. (2013), 69.18%, for the

four-sided dominoes game and higher than those obtained by

Cruz et al. (2013), 65%, for the 2- sided dominoes game.
An important contribution of this study is the

probabilistic modeling of the chance events of the four-sided

dominoes game. Differing from backgammon, the calculated

probability for a chance event changes with each round,

because its value depends on the stones placed on the table.

For future works, we propose reducing the number of

visited nodes in the tree search of the expectiminimax

algorithm and improving the decision process of choosing

the best move, through the following actions:

1) Employ the Star1 and Star2 algorithms, (Schadd et al.

2009) for minimizing the number of nodes of the search
tree;

2) Employ evaluation functions that incorporate the

current game state to decide the best move;

3) Employ different strategies for the adversary pair, to

evaluate the robustness of the expectiminimax method

proposed in this study.

Strategies

Number of

wins f
 = 2500

 σ T

First x Basic 3116.1 8.53 228

Second x Basic 3225.6 7.23 317

Third x Basic 3535.6 7.12 460

Fourth x Basic 3597.1 5.36 647

First x Ga 2331.6 5.21 -102.19

Second x Ga 2375.8 5.35 -73.41

Third x Ga 2795.1 5.92 157.76

Fourth x Ga 2909.3 5.08 254.87

Strategies

Number of

wins f

 = 2500

 σ T

First x Second 2378.6 5.58 -68.78
First x Third 2324.8 6.39 -86.69
First x Fourth 1952.2 7.24 -239.31
Second x First 2589.1 8.77 32.11
Second x Third 2383.8 8.22 -44.72
Second x Fourth 2101.8 8.93 -141.02

Third x First 2629.5 9.59 42.68
Third x Second 2591.8 7.18 40.45
Third x Fourth 2323.1 10.25 -54.60
Fourth x First 3017.7 8.45 193.82

Fourth x Second 2864.6 7.07 162.98
Fourth x Third 2645.6 5.87 78.40

Strategies Number of wins (chi-square)

Pair 1 x Pair 2 Pair 1 Pair 2 Pair 1 x Pair 2

First x Basic 3127 1873 314.50

Second x Basic 3235 1765 432.18

Third x Basic 3543 1457 870.28

Fourth x Basic 3602 1398 971.52

First x GA 2342 2658 19.97

Second x GA 2381 2619 11.33

Third x GA 2805 2195 74.42

Fourth x GA 2917 2083 139.11

77

ACKNOWLEDGEMENT

Part of the results presented in this paper were obtained

through the project for research and human resources

qualification, at the undergraduate and graduate level, in the

areas of industrial automation, mobile software and Digital

TV devices, sponsored by Samsung Eletronica da Amazonia

Ltda, under the terms of Brazilian Federal Law number

8.387/91. We like to thank AcademicEnglishSolutions.com

for revising the text

REFERENCES

Antonio, N.S.; Costa Filho, C.F.F.; Costa, M.G.F. 2013.
"Optimization of an Evaluation Function of the Four-Sided

Dominos Game Using a Genetic Algorithm," Computational
Intelligence and AI in Games, IEEE Transactions on , vol.5,
no.1, pp.33,43.

Arts, A. F. C. 2010. Competitive Play in Stratego. 56 p. M.Sc.
thesis (Degree of Master of Science of Artificial Intelligence) -
Faculty of Humanities and Sciences of Maastricht University,
Maastricht, The Netherlands.

Briesemeister, R. 2009. Analysis and Implementation of the Game

OnTop. 74 p. M.Sc. thesis (Degree of Master of Science of
Artificial Intelligence) - Maastricht University, Dept. of
Knowledge Engineering, Maastricht, Netherlands.

Cruz, A.R da .; Guimaraes, F.G.; Takahashi, R.H.C. 2013.
Comparing Strategies to Play a 2-Sided Dominoes Game. In:
Computational Intelligence and 11th Brazilian Congress on
Computational Intelligence (BRICS-CCI & CBIC), 2013
BRICS Congress on , p.310-316, 8-11.

Garza, A. G. de S. 2006. Evaluating Individual Player Strategies in

a Collaborative Incomplete-Information Agent-Based Game
Playing Environment. In: Symposium on Computational
Intelligence and Games, p. 211-216.

Hauk, T. 2004. Search in trees with chance nodes. 85 p. M.Sc.
thesis (Degree of Master of Science) - Computing science
department, university of Alberta, Edmonton, Canada.

Myers, M.M. 2014. Outperforming Game Theoretic Play with
Opponent Modeling in Two Player Dominoes. 88 p. M.Sc.

thesis (Degree of Master of Science in Electrical Engineering) -
Air Force Institute of Technology University, Ohio, United
states.

Michie, D. 1966. Game-playing and game-learning automata. In: L.
Fox (ed.), Advances in: Programming and Non-Numerical
Computation. p. 183-200.

Neumann, J. V.; Morgenstern, O. 1944. Theory of Games and
Economic Behavior. Princeton University Press.

Ruseel, S. and Norvig, P. 2003. Artificial Intelligence: A Modern
Approach 2/e. Englewood Cliffs, NJ, USA: Prentice Hall. .

Schadd, M.P.D.; Winands, M.H.M.; Uiterwijk J.W.H.M. 2009.
"CHANCEPROBCUT: Forward pruning in chance nodes". In
: Computational Intelligence and Games, 2009. CIG 2009.
IEEE Symposium, pp.178, 185.

Smed, J. and Hakonen, H. 2006. Algorithms And Networking for
Computer Games, UK, Chichester: John Wiley & Sons.

Walpole, R. E.; Myers, R. H,; Myers, S. L.; YE, K E. 2011.

Probability and Statistics for Engineers and Scientists. 9th
Edition, Pearson.

AUTHOR BIOGRAPHY

ENDREWS SZNYDER SOUZA DA SILVA studied

electrical engineering at University of Amazonas Manaus,
Amazonas, Brazil, and obtained his degrees in 2013. After

graduating, he moved in 2013 to Technological and Information
Center of Amazonas Federal University, Manaus, Brazil.

78

Aggressive versus Loud Virtual Agents

Investigating the influence of sound on the stress response in the use of virtual agents

Charlotte Gerritsen1, and Willeke van Vught2

1 Netherlands Institute for the Study

of Crime and Law Enforcement

2 Department of Computer Science

VU University Amsterdam

Amsterdam, the Netherlands Amsterdam, the Netherlands

CGerritsen@nscr.nl willekevanvught@hotmail.com

KEYWORDS

Serious Gaming; Simulation-based Training; Stress

Response; Physiological Measurements; Experiments.

ABSTRACT

People can learn how to deal with negative situations by

using serious games containing negative virtual characters,

such as angry passengers in a public transport training

scenario or hostile suspects in a police training scenario.

Unfortunately little research has examined the effects of

negative agents on the user. In this paper, an experiment is

presented in which the effects of a visible and/or audible

virtual agent are compared to the results of the use of a

visible and/or audible virtual agent that is loud. During the
experiment, heart rate and skin conductance level were

measured and a questionnaire was used to measure the

participants‟ subjective experience. The results indicate that

a visible angry agent casuses a significantly higher level of

arousal than a loud virtual agent.

INTRODUCTION

The use of intelligent virtual agents (IVAs) becomes more

common in serious games such as virtual education, training

and therapy (Rickel, 2001; Rizza et al, 2008). The interaction

between human and IVAs has been the topic of many

studies, but these studies most often focus on a positive
attitude of the virtual agent. For example, Rickel (2001) uses

animated agents as guides, mentors or teammates. These

agents have a positive attitude towards the user and their

goal is to educate the user.

However, the influence of negative stimuli from a virtual

agent on the behaviour of the user has had little to no

attention in literature. A negative agent can be helpful in

serious games with the goal of teaching users to deal with

negative situations and can be applied in various domains

such as anti-bullying education or virtual training of
aggression de-escalation. There seems to be a need for

research into the effects of negative virtual agents on

humans.

The VU University Amsterdam and the Netherlands Institute

for the Study of Crime and Law Enforcement (NSCR)

partnered up in the Simulation-based Training of Resilience

in Emergencies and Stressful Situations (STRESS) project

(stress.few.vu.nl). In this project the main goal is to develop

a serious game that is able to analyse the decision making
process and the causes of incorrect decisions under stressful

circumstances. The focus is on the development of an

electronic training environment for people with a public

safety task. In this project, the influence from the negative

virtual agent is important for the training environment. The

users of the system are confronted with a virtual customer

that is not satisfied and behaves aggressively towards the

user. The users must learn to identify the behaviour and the

appropriate way of dealing with that specific type of

behaviour. To have a successful training environment it is

important that the scenarios ressemble real-world settings.

The situation should evoke a similar mental and physical
reaction as it would in real life. To accomplish this, one of

our research goals is to develop a negative virtual agent that

evokes a similar response to a real life angry customer

would.

In earlier work, we compared individuals‟ stress response

when confronted with an aggressive virtual agent with the

stress response evoked by an aggressive real person

(Blankendaal et al., 2015). We found that in both conditions

a substantial stress response was triggered, but some

questions remained. In particular, it was not clear whether
the stress response triggered in the virtual condition was

caused by the virtual agent‟s aggressive behaviour or simply

by the fact that agent raised its voice. This is a relevant

question, since in reality people can also be scared by

aggressive behaviour if the volume of the aggressor‟s voice

is low. To address this question, the current work aims to

investigate the difference in impact between an aggressive

and a loud voice of a virtual agent.

This paper is organised as follows. First, the background of

the current study is explained. Second, some background

information in measuring and evoking stress is provided.
Third, a description of the experiment and the analysis of the

results are presented. Finally, this paper is concluded with a

discussion of the findings from this study.

BACKGROUND

In our previous research (Blankendaal et al., 2015), we

investigated the effect of an IVA with a negative attitude on

a user. In that study, a comparison was made between an

aggressive virtual agent and an aggressive real person.

During the experiment, participants were read a story either

by an actress or by an IVA (made to ressemble the actress)

79

on a computer screen. At a fixed moment in the story, the

actress/IVA would get angry at the participant. She would

claim that the person was not listening to the story and

behaved rudely. During the experiment the listener‟s EDA

(electrodermal activity or skin conductance) and heart rate

were measured in order to register the physiological

response. Once the experiment had ended, participants filled

out a 10-point likert scale questionnaire to share their

subjective experience.

The main conclusions were that both the aggressive actress

and the aggressive agent evoked a significant stress response

in the participant. However, the impact of the human

aggression was larger than the virtual aggression.

The question remained as to whether or not the participant

had a reaction to the aggression or to the sudden increase in

volume of the voice during the aggressive episode. To test

this, an additional experiment has been designed, presented

in this paper, whereby the difference in response to a visible

and/or audible aggressive virtual agent is compared to the
response to a visible and /or audible virtual agent that only

increases the volume of her voice.

MEASURING AND EVOKING STRESS

To determine whether the participant reacted to the

aggression or to the change in volume, we measured the

stress response. In this case the term stress response refers to

the so-called fight-or-flight response (also known as acute

stress). This response is evoked when a participant

experiences arousal, such as from a threatening stimulus.

According to Prendinger et al. (2006), EDA is a good

indicator for measuring arousal during an interaction

between real humans and virtual agents. EDA measures

change in exocrine sweat which is related to the sympathetic

side of the autonomic nervous system (Figner and Murphy,

2011). Since arousal means activity of the sympathetic nerve

system, EDA is often used for these measurements and is

acknowledged as a good indicator of the overall level of

arousal (Figner and Murphy, 2011). Heart rate is also

considered a good indicator for the level of arousal because
cardiovasculair activity is also influenced by the sympathetic

nervous system.

In the current experiment, the potential arousal is caused by

aggression portrayed by the virtual agent or by the change in

volume of the voice. The main focus of this research is to

examine participants‟ the reactions to these changes. The

effect of emotions on physical and mental state has been

examined in previous studies. Kleyweg (2012) discusses in

his article on emotion theories that a sudden loud sound can

cause a physical change that could be interpreted as fear

(Kleyweg, 2012). According to Kleyweg (2012), this
reaction should be considered a reflex. The changes inside

the body do occur but disappear so fast that you do not

actually experience the emotion. This could be true in our

experiment. According to this theory, a physical change

would be visible on the results of the physiological

measurements, however the participant would not experience

this emotion. To test this, the answers from the questionnaire

are used.

In the experiment we distinguish four conditions. In

condition A the virtual agent expresses anger by means of

changed facial expression, altered volume of the voice and

the use of „angry‟ words. Condition B is almost identical to

condition A but the participant cannot see the face of the

agent. In condition C only the volume of the voice is altered;

the participant can see the agent but her facial expression

remains the same. Condition D is almost identical to

condition C but the participant can only hear the agent.

In two of the four conditions the agent is not visible to the

participant. This could make it more complicated to

recognize emotion. Wallbott and Scherer (1989) investigated

the influence of signals and channels on recognizing

emotions (Wallbott and Scherer, 1989). They concluded that

emotions are recognized relatively well when a video

recording is used (62% are correctly recognized) and less

well when only audio is used (47% are correctly recognized).

This indicates that emotions in conditions A and C would be

better recognized than emotions in conditions B and D. The

questionnaires will be used to see whether or not the
emotions were correctly recognized.

EXPERIMENT

The main question in the experiment is whether a visible

and/or audible angry virtual agent causes a different physical
and mental state than a visible and/or audible virtual agent

who only raises her voice.

The answer to this question helps us to determine if IVAs are

suitable for use in applications containing negative emotions.

The settings of our previous experiment (Blankendaal et al,

2015) have been kept equal to make the results comparable.

Participants

Thirty-eight people participated in the experiment. All

participants were students of the VU University Amsterdam
and between 19 and 27 years old. These students were

randomly divided over four different conditions:

- Condition A: 5 male and 5 female

- Condition B: 4 male and 5 female

- Condition C: 5 male and 5 female

- Condition D: 5 male and 4 female

Experimental Design

We used a virtual agent for the experiment. This agent was
designed with Faceshift motion detection technology

(www.faceshift.com), which is able to transfer the mimicry

from a real human being to a virtual agent. The virtual agent

told a story about the PC revolution (Hasselt et al, 2003).

This story was read by the student who conducted the

experiment and was recorded with a Microsoft Xbox 360

Kinect camera. The recorded clips were transferred to a

virtual 3D character. To give the agent a humanlike

appearance an agent was selected from

http://www.rocketbox-libraries.com/. We choose a caucasion

female between the age of 20-30 (see Figure 1) because this

agent resembles the bachelor student and was congruent with
her voice.

80

Fig. 1. Screenshot of the virtual agent used in the experiment.

The participants were divided into four conditions. In all

conditions the first 7.35 minutes are the same, whereby the

story is told by the agent without any exaggerated emotions.

After these 7.35 minutes, two different situations can be

distinguished:

1) The virtual agent gets mad at the participant. The

facial expression of the agent is clearly angry, she

raises her voice and says (freely translated from
Dutch) “Just listen to me!! Can‟t you behave

normally?! You can at least pretend that you are

listenening or is that too hard, just focusing is not

too much to ask is it?! This is ridiculous!! Were

you raised by animals? Just look at yourself, you

should be ashamed!”

2) The virtual agent raises the volume of her voice but

continues telling the story. Her facial expression is

the same as during the first 7.35 minutes.

As mentioned previously, the experiment contained four

conditions:

Condition A

the virtual agent is visible and gets angry after 7.35 minutes

Condition B

the virtual agent is not visible and gets angry after 7.35

minutes

Condition C
the virtual agent is visible and only raises the volume of her

voice after 7.35 minutes

Condition D

the virtual agent is not visible and only raises the volume of

her voice after 7.35 minutes

The experiment has a between-group design. The groups in

condition A and C each comprise 10 participants and the

groups in conditions B and D each comprise 9 participants.

The independent variable is the experimental condition (A,

B, C or D) and the dependent variables are EDA in micro
siemens, heart rate per minute and the answers to the

questionnaire.

Procedure

Prior to conducting the experiment, participants signed an

informed consent form in which the experiment was

described. However, the participants were told that they were

participating in an experiment about attention and memory,

since it was important that they did not know the exact topic

of the experiment beforehand and did not expect the outburst

of the agent.

Participants were told that they would listen to a story told

by a virtual agent that was able to display emotions and that

she may or may not be visible to them. Further, they were

told that the agent was able to adapt her behaviour to the

behaviour of the listener. We wanted them to believe that she

was really angry at them and that it was not prefixed.

The participants were attached to a heart rate and an EDA

measuring device and were told to sit in front of the

computer screen and not to move because this would

interfere with our measurements.

They could start the story by pressing the space bar. After

the film started, the participants listened to the first five

minutes of the story. Nothing strange happened. After these

five minutes, they saw a black screen that stated that the

connection was lost and that the story would continue in 30

seconds. A timer counted down from 30 to 0 and a new

fragment was started. From this time point the measuring

device started recording. The virtual agent continued for 2.35

minutes. At this time point the agent would get angry in

condition A and B and in condition C and D she would raise
her voice and continue telling the story. After 27 seconds in

condition A and B and after 32 seconds in condition C and D

a black screen appeared again with the message „connection

lost‟. This lasted for 30 seconds and then the experiment

ended.

Afterwards the participants filled out a 5-points likert scale

questionnaire. The questionnaire had the following

statements:

1) I listened carefully when the story was read;
2) I had the feeling the avatar was angry;

3) I believed the experiment was about attention and

memory;

4) The avatar scared me when she was angry;

5) I felt personally addressed by her anger;

6) Her anger was believable;

7) The change in volume scared me;

8) I felt personally addressed by the avatar;

9) I believed the avatar was interactive and could react

to my behaviour.

They could choose from the following options: totally
disagree, disagree, neutral, agree, totally agree. Afterwards

the participants had a conversation with the bachelor student

that conducted the experiment so that they could explain

their answers.

81

RESULTS

The results of the skin conductance (EDA, in micro siemens)

and heart rate (per minute) measurements are shown in

Figure 2 and 3.

Fig. 2. EDA during the experiment, averaged over all participants per

condition.

Fig. 3. Heart rate during the experiment averaged over all participants per

condition.

Paired samples t-tests were conducted for each condition

with the averages per condition as variables to test whether

the stress response per condition was significant. Further, a

one way ANOVA, with a posthoc test between groups with a

Bonferroni correction method, was conducted.

The one way ANOVA was used to test the differences

between the groups. First, the difference between groups

before the outburst was tested to set a base for the EDA and
heart rate, as the virtual agents acted the same in all four

conditions. Second, the means after the outburst were

compared between groups to see if the responses of the

groups differ. The groups in each condition are exposed to

different situations during the outburst. Finally, the means

before and after the outburst are compared per group to test

whether there is a significant difference in the stress

response between groups. Only the 25 seconds before the

outburst and the 25 seconds after the outburst have been used

because the outburst itself lasts for approximately 25 seconds

and we wanted to use comparable time frames.

EDA

The paired samples t-test showed that the reaction from the

participant to the outburst is significant for conditions A, B

and D: p = 0.002, p =0.002 and p = 0.037, respectively. Only

the reaction of the group in condition C is not significant (p

= 0.253).

In the 25 seconds before the outburst, no significant

difference between the groups is found using the one way

ANOVA (p (A,C) = 0.16) and for all other groups (p > 0.90).

In the 25 seconds after the outburst there is a significant

difference between the groups in condition A and C (p <

0.05). No significant differences between the other groups
has been found.

When comparing the stress response (average mean before

and after the outburst per group) only a significant difference

is found between conditions A and C (p < 0.05).

Finally, we tested whether there was a significant difference

between the conditions when we used the „connection lost‟

moment instead of the outburst. A paired samples t-test per

condition was performed. There is a significant difference

between EDA before and after the connection lost moment

in condition C (p<0.05). In the other conditions no (extra)
arousal was caused by the connection lost moment. After the

connection lost moment, no significant differences between

the conditions have been found.

Heart rate

The results of the heart rate measurements have been

compared by using a paired sample t-test per group to test

the difference between the average mean before and after the

outburst of the virtual agent. Only the reaction in condition

A is significant (p<0.01). Further, all heart rate levels seem
to drop after the outburst. However, in conditions B, C and D

this change is not significant.

Figure 3 depicts the mean heart rate per group. The ANOVA

test over the 25 seconds before and after the outburst

concludes that the changes are not significant.

Questionnaire

As mentioned earlier, the participants all filled out a

questionnaire (5 points likert scale).

The answers are depicted in Figures 4 and 5. These answers

have been analysed with an ANOVA with Bonferroni

correction. A significant difference has been found in

question 2 (“I had the feeling the avatar was angry”) between

conditions A and C (p<0.01) and between conditions B and

C (p<0.05). No significant differences were found between

the answers to the other questions.

Question 1 and 3 are more general questions and are not

dependent on the different conditions. As can be seen in the

graph (Figure 4), the answers to these questions are very
similar across the groups. The answers to question 7 (“the

change in volume scared me”) show that participants in all

conditions were scared by the sudden increase in volume.

The participants felt somewhat personally addressed by the

avatar (question 8) and did not really believe that the avatar

was interactive (question 9).

Heart rate

before

before

after

82

Figure 5 shows the results for questions 4, 5 and 6. These

questions were only answered if the participant answered

question 2 (“I had the feeling that the avatar was angry”)

confirmatively. The results shown are the results of the

participants that actually answered these questions (nA=10,

nB=8, nC=4 en nD=7). Interestingly, all participants in

condition A, and 8 out of 9 participants in condition B,

recognized the anger. While no anger was portrayed in

conditions C and D, 4 out of 10 and 7 out of 9, respectively,
did recognize it as such. No significant differences were

found. In question 4 (“The avatar scared me when she was

angry“), a difference can be seen between the conditions

with a visible agent (condition A and C) and the conditions

without a visible agent (conditions B and D). The group in

condition D felt more personally addressed than the other

groups (question 5), and a difference can be found in

question 6 (“her anger was believable”) between the groups

that dealt with an angry avatar compared to the groups

dealing with the avatar that raised her volume.

Fig. 4. Results from the questionnaire, filled out by all participants.

Fig. 5. Results from question 4, 5 and 6 (nA=10, nB=8, nC=4 en nD=7).

DISCUSSION

The results of the questionaire deomonstrate a significant

difference in the experience of anger (question 2) between

groups A and C. The participants in condition A clearly

perceived the virtual agent as being angry while the

participants in condition C perceived the agent as not being

angry. Given that we wanted to test the physiological
response to both situations it is important that both situations

could be clearly distinguished.

The objective results show no distiction between the

different groups before the outburst. A difference between

group A and C can be seen in the graph but this is caused by

an outlier in each group. After the outburst, there is a

significant difference between the EDA of group A and C.

This leads to the conclusion that the angry agent gave a

stronger physiological response than the loud agent.

When the averaged means of both groups before and after

were compared, we again found a significant difference. The
behaviour of the angry agent lead to a higher stress response

than the behaviour of the loud agent.

CONCLUSION

The main goal of the research presented in this paper is to

see whether or not a visible and/or audible angry virtual

agent causes a different physical and mental state than a

visible and/or audible virtual agent that raises the volume of

her voice. To test this, participants watched and/or listened

to a virtual agent who was telling a story. In the middle of

the story she would either get angry or raise her voice.

From the results we can conclude that the anger by the

virtual agent can result in a stress response. This response

was not caused only by the increase in volume. There is a

significant difference is the EDA response between

participants is condition A (see and hear angry agent) and

condition C (see and hear agent that raises her voice). This

difference is only visible in the results after the outburst. No

significant difference between the groups was found before

the outburst.

The level of stress response in the condition with a visible

angry agent is high, while the stress response is lacking in

the condition with a visible loud agent. The visibility of the

emotions seems to be important for recognition. The

significant difference found between condition A and C is

missing in the audio conditions (B and D).

The fact that anger from a virtual agent causes a stress

response indicates that emotions displayed by an agent can

have an impact on people interacting with that agent. This is

an indicator that IVAs can also be useful for serious games
that focus on dealing with negative emotions, such as virtual

training environments. In our previous research

(Blankendaal et al., 2015), we concluded that an angry

virtual agent is almost as scary as an angry human being.

Extending this, we have have now found evidence that angry

virtual agents are perceived as being more stressful than loud

virtual agents.

ACKNOWLEDGEMENTS

This research was supported by funding from the National

Initiative Brain and Cognition, coordinated by the
Netherlands Organization for Scientific Research (NWO),

under grant agreement No. 056-25-013.

The authors wish to thank Tibor Bosse, Jeroen de Man and

Marco Otte for many fruitful discussions and their

(technical) support during the project. Further, we would like

to thank all students who participated in the experiments.

83

REFERENCES

Blankendaal, R., Bosse, T., Gerritsen, C., de Jong, T., & de Man, T.
(2015). Are Aggressive Agents as Scary as Aggressive
Humans? In Proceedings of the 2015 International Conference

on Autonomous Agents and Multiagent Systems, ACM Digital
Library, pp. 553-561.

Bosse, T. & Provoost, S. (2014). Towards Aggression De-
escalation Training with Virtual Agents: A Computational
Model. In Proceedings of the 16th Int. Conference on Human-
Computer Interaction, HCI‟14. Lecture Notes in Computer
Science, Springer Verlag, pp. 375-387.

Cannon,W. (1932). Wisdom of the Body. United States: W.W.
Norton & company

Chida, Y. & Hamer, M. (2008). Chronic psychosocial factors and
acute physiological responses to laboratoryinduced stress in
healthy populations: a quantitative review of 30 years of
investigation. Psychological Bulletin, 134(6), pp 829-885.

Figner, B., & Murphy, R. O. (2011). Using skin conductance in
judgment and decision making research. In Schulte-
Mecklenbeck, M., Kuehberger, A. & Ranyard R. (Eds.), A
handbook of process tracing methods for decision research (pp.

163-184). New York, NY: Psychology Press
Hasselt, L., Amsenga, J., & Meel A. (2003). De PC revolutie.

VPRO.

Kleyweg, R. (2012). Emotietheorieen: Cognitief, noncognitief of
beide? Erasmus Student Journal of Philosophy, 3, pp 46-57.

Prendinger, H., Becker, C., & Ishizuka, M. (2006). A study in

users‟ physiological response to an empathic interface agent.
International Journal of Humanoid Robotics, 03(3), pp. 371-
391.

Rickel, J. (2001). Intelligent Virtual Agents for Education and
Training: Opportunities and Challenges. In de Antonio, A.,
Aylett, R. & Ballin D. (eds.), Intelligent Virtual Agents, Lecture
Notes in Computer Science, Springer Verlag, Vol. 2190, pp.
15-22.

Rizza, R., Reger, G., Gahm, G., Difede, J., & Rothbaum, B.O.
(2008). Virtual Reality Exposure Therapy for Combat-Related
PTSD. In Shiromani, P., Keane, T., & LeDoux, J. (eds.), Post-
Traumatic Stress Disorder: Basic Science and Clinical Practice,
Springer Verlag, pp. 375-399.

Wallbott, H.G. & Scherer, K.R. (1989). Cues and Channels in
Emotion Recognition. Journal of Personality and Social
Psychology, 51(4), pp 690-699.

Zoll, C., Enz, S., Schaub, H., Aylett, R., & Paiva, A. (2006).
Fighting Bullying with the Help of Autonomous Agents in a
Virtual School Environment. In Proceedings of the 7th
International Conference on Cognitive Modelling (ECCM).

http://www.faceshift.com
http://www.rocketbox-libraries.com/
http://stress.few.vu.nl

84

PROCEDURAL
PROGRAMMING

85

86

Procedural generation of collaborative puzzle-platform game levels

Benjamin van Arkel, Daniël Karavolos, and Anders Bouwer
Amsterdam University of Applied Sciences

Wibautstraat 2-4
1091 GM Amsterdam

The Netherlands

KEYWORDS

Game Design, Procedural Content Generation, Level
Generation, Generative Grammars, Automated Game
Design, Game Mechanics for Two-Player Collaboration

ABSTRACT

This paper addresses the procedural generation of lev-
els for collaborative puzzle-platform games. To address
this issue, we distinguish types of multiplayer interac-
tion, focusing on two-player collaboration, and identify
relevant game mechanics for a puzzle-platform game,
addressing player movement, interaction with moving
game objects, and physical interaction involving both
players. These are further formalized as game design
patterns. To test the feasibility of the approach, a level
generator has been implemented based on a rule-based
approach, using the existing tool called Ludoscope and
a prototype game developed in the Unity game engine.
The level generation procedure results in over 3.7 million
possible playable level variations that can be generated
automatically. Each of these levels encourages or even
requires both players to engage in collaborative game-
play.

1. INTRODUCTION

Procedural content generation (PCG) is the algorith-
mic creation of content for games, such as assets, levels,
worlds, and even whole games. PCG has been part of
published computer games since the eighties. Prominent
examples include Rogue, Diablo, and Minecraft, among
others. Recently, PCG is receiving increasingly more
academic attention (Togelius et al. 2011, Hendrikx et al.
2013, Shaker et al. 2014). PCG has been used for various
reasons, including working around memory constraints
in past decades when hardware was less powerful, in-
creasing replayability by generating variation, making
the game development process more efficient, exploring
- and perhaps enlarging - the game design space, and
formalizing the rules of game design.

Research on the application of PCG for platform games
has focused on creating levels for the game Super Mario
Bros (Shaker et al. 2011), with its typical obstacles, en-
emies, and straight levels. However, little work has been

carried out on generating platformer levels for multiple
players.

In this paper, we explore the potential of PCG to gen-
erate levels for puzzle-platform games that involve two-
player interaction, in particular, collaboration. We will
define game design patterns, which we will then trans-
late to level segments which create gameplay situations
featuring certain game mechanics. Similar to Dahlskog
and Togelius (2013), we will let a generator combine
these level segments to create a level. However, we will
use generative grammars to generate the levels instead
of evolutionary algorithms.

In section 2, we consider related work on procedural
level generation. Section 3 identifies game mechanics
that specifically address collaboration, and in section 4,
we describe relevant game design patterns for these.
Section 5 gives an overview of the implementation of
the whole generation process. Section 6 offers several
points for discussion and in section 7, we present our
conclusions and ideas for future work.

2. RELATED WORK

Although many approaches to procedural level gen-
eration are tied to specific games, e.g. (Shaker et al.
2011, Smith et al. 2011, Shaker et al. 2013, Ferreira
and Toledo 2014), there are some tools available that
are more general in their approach. For example,
LudoScope (Dormans 2011; 2012, Dormans and Leijnen
2013), is a tool that allows the transformation of
design concepts about missions and space to concrete
game levels for playable games, automatically, or semi-
automatically in interaction with a human designer
(Karavolos et al. 2015). It is based on the principles of
model driven engineering and generative grammars. In
order to generate levels for a specific game, the designer
makes a model of the generation process, breaking
it down into steps (modules) that can be executed
separately. We will use this tool to generate the levels
for our puzzle-platformer prototype.

There are several ways to characterize multiplayer
games. Zagal et al. (2006) distinguish three different
types of multiplayer games, based on the interaction
between players: competition, cooperation and collabo-

87

ration. Competitive games require a player to confront
other players in the game. In such games, players have
opposing goals. In cooperative games, opportunities ex-
ist for players to work together, from which both players
could benefit. However, “a cooperative game does not
always guarantee that cooperating players will benefit
equally or even benefit at all” (Zagal et al. 2006; p. 2).
Collaborative games differ from cooperative games in
that the players have the same goal, and they share
the rewards or penalties of their decisions, whereas
in cooperative games players may have different goals,
and achieve these goals independently from each other.
So,“the challenge for players in a collaborative game is
working together to maximize the team’s utility”(Zagal
et al. 2006; p. 3), while in cooperative games players
only have to consider their own utility. Considering
non-competitive multiplayer games, generating levels for
collaboration is the more challenging type, because the
forced mutual benefits of the cooperation puts an extra
constraint on the design space.
The generation process is based on the idea of generat-
ing a path within a space and subsequently filling this
with rooms containing more concrete gameplay sections.
This method partially draws inspiration from methods
used for level generation in the game Spelunky (Kazemi
n.d.), and Karavolos et al. (2015). Design choices like
using numbers to define certain types of rooms is some-
thing that we have applied to our project as well. How-
ever, while Spelunky does not pay much attention to
the layout of the individual rooms (entrances and exits
being the only important element), we want our level
generator to generate levels with a set path in mind
that we want the players to follow.

3. GAME MECHANICS FOR COLLABORA-
TIVE PLATFORMERS

A platform game requires the players to be able to jump,
so they can traverse platforms. To create a puzzle-
platformer, this requirement must be paired with a cer-
tain mechanic that creates interactive puzzles that the
players can solve. For basic gameplay, the players must
be able to run, jump and interact with objects in the
game space in different ways, e.g. activating a lever to
move platforms or being able to pick up a player or ob-
ject to change the required jump height or width. Other
typical means to challenge the player’s skills and add
variation to the gameplay are the addition of enemies
and dangerous obstacles.
The prototype in this paper incorporates additional
objects that affect player movement, i.e. trampolines,
moving platforms and grabbable elevators. These
objects affect the pacing of the game, and serve to
make the platforming aspect of the gameplay more
interesting for the players. The prototype also contains
a typical implementation of puzzle mechanics, players
will be required to work together to solve lock-and-

key puzzles. However, the lock-and-key mechanism is
implemented as a gate that is opened by pressing a lever.

Most of these game elements require only one player to
achieve their effect on the gameplay. The collaborative
mechanics involve the lock-and-key mechanism and
using each other’s head as a platform to reach a higher
place within the level, and will be described by the
patterns in the next section.

4. GAME DESIGN PATTERNS

There have been several attemps to formalize game de-
sign ideas into patterns. Some of these patterns focus on
gameplay sections of a level (Reuter et al. 2014, Hullett
and Whitehead 2010), others focus on game mechanics
(Rocha et al. 2008, Seif El-Nasr et al. 2010). Dahlskog
and Togelius (2012) even extract patterns in the form
of level segments from handcrafted game levels in order
to generate levels with the same style.
The design patterns in this study are defined manually,
and inspired by the templates of Reuter et al. (2014)
and Hullett and Whitehead (2010). However, they are
related to the other patterns as well. For example, the
upsy-daisy and the timed lever/gate pattern are a type
of ‘Shared Puzzles’ as defined by Seif El-Nasr et al.
(2010).

Defining game design patterns and their instantions as
level segments allows us to view the level as a sequence of
patterns, or combinations of patterns. Then, the gen-
erator can combine these patterns in order to design
gameplay situations. Because of space constraints, we
will only describe the collaborative patterns we found.
For each pattern we give a description of what the pat-
tern entails, as well as possible affordances for the pat-
tern and the resulting consequences for the player ex-
perience. Listed below are three of these game design
patterns:

• The Upsy-Daisy
Description: An obstacle that requires two players
to time their jumps together to get onto a platform.
After this, the player can push an object down
to the other player so they can both get up and
proceed further through the level (See figure 1).
Affordances:
- Obstacles near the platform that needs to be
reached.
- Distance of platform above the ground.
Consequences: Causes a sharp increase in challenge
and coordination for the players. Both players
must time their jumps together so that one of the
players can use the other player’s head to get high
enough to reach the platform.

88

Figure 1: An example of the upsy-daisy pattern.

Figure 2: An example of the lever-and-gate pattern.

• Timed Lever-and-Gate
Description: A lever that, when pulled, opens the
related gate and starts a timer. When the timer
runs out, the lever is reset and the gate closes (As
seen in figure 2).
Affordances:
- Amount of time before lever resets
- Number of obstacles between the lever and the
gate
Consequences: An increase in challenge and coor-
dination because of the fact that the players must
communicate about which player will go through
the gate and which is going to pull the lever.

• Common Enemy
Description: An enemy that cannot be destroyed
if the player confronts it alone, since the sides that
are facing the player are invulnerable (See figure 3).
Affordances:
- Number of enemies placed
- Amount of health of the enemy
- Damage done when hit by the enemy
- Speed of the enemy.
Consequences: Confronting a common enemy offers

Figure 3: An example of the common enemy.

a greater challenge than a regular enemy, as it re-
quires more skill to draw the enemy to one player,
while the other player hits its blind spot. This also
results in a greater sense of competence when the
players manage to defeat the enemy. Furthermore,
this pattern demands coordination between the two
players, since they will need to communicate which
player lures the enemy and which one attacks it.

5. THE LEVEL GENERATION PROCESS

The level generation process is based on a sequence of
generative grammars. Each grammar receives input,
performs its transformations and sends the output to
the next grammar, until the level is finished. The first
input is a 6x3 grid of tiles, which are all of the type
undefined, except for the leftmost column, which are of
the type ‘start’. These tiles define the possible positions
of the level segment with the initial spawn location of
the player. The first grammar transforms two of the
three tiles into an undefined tile and transforms one of
the tiles adjacent to the remaining tile into an ‘end’ tile.
The next steps of the process, which will be described in
more detail in the following subsections, are as follows:

• Path Generation

• Define Level Segments

• Apply Design Patterns

• Final Adjustments.

Path Generation

The path of the level is generated by moving the ‘end’
tile around in the grid. The path is generated in two
passes. First from left to right, then from right to left.
We split this process into two steps, because grammars
are context-free systems. By marking the orientation
of each new tile that is generated we add context to
a context-free system and can guarantee a connecting
path.

89

Figure 4: During the first pass, the generator creates
a path from the left column to the right column. This
path is marked, so the grammar will not attach level
segments to these segments during the second pass. The
abbreviation for each tile signifies the orientation that
the tile will have. 1H stands for a horizontal segment
and 1V a vertical one. A tile such as LCD stands for
Left-Corner-Down, meaning the player would enter the
segment from the left side of the tile and move through a
corner, exiting on the right. UCR stands for Up-Corner-
Right, DCR for Down-Corner-Right, et cetera.

Figure 5: During the second pass, a path to the left is
generated. In contrast to the first pass, the length varies
due to stochastic rules. Note that the highlighted tile
has two variables assigned to it. The “path=” variable
annotates the direction that the player will be going
when entering the segment. The variable “finalpath=”
is assigned to the tile which is generated during an it-
eration, this allows the following iteration to recognize
where the path left off.

Define Level Segments

After the generation of the path is completed, each tile
is expanded into a 20x20 tile “segment”. These seg-
ments depict the first step in visualizing what the final
level will look like. Each level segment has several tem-
plates, which are chosen on the basis of what the seg-
ment has been marked as in the previous step. While
generating these segments, some might contain encoun-
ters. Encounters are the term used to describe instances
of design patterns within the level generation process.

Apply Design Patterns

Applying the design patterns to our level generation pro-
cess is done through the use of what we call encounters.
Encounters are used to apply instances of design pat-
terns within the level generator, as shown in figure 6.
The larger level segments contain locations for encoun-
ters. These encounters are smaller level segments which
contain challenges involving certain mechanics. To cre-
ate an added layer of depth to the generation of the de-
sign patterns, it is also possible for an encounter to con-
tain other encounters. So a movement-based jump en-
counter could contain smaller danger encounters within
it. Thus, the generator can create level segments that
pose both a movement-based challenge, as well as a
danger-based challenge.

Figure 6: The grammar expands the level into 20x20
segments and gives a first impression on how the final
level will be shaped. Note the blue-colored encounters,
indicating that these will be translated to specific game-
play situations.

Final Adjustments

The level generator proceeds with doing small adjust-
ments regarding object rotation and removing any vari-
ables that are not necessary for the parser. Variables
that are used by the lever-and-gate mechanisms, how-
ever, are left in the model, since these are important
for the parser to identify which gate is linked to which
lever. This results in the final level representation (as
shown in figure 7), which can be exported as a text file
and read by the parser.

Parsing in Unity

To test the playability of the levels that are generated,
we have created a prototype in the Unity3D engine that
utilizes all of the mechanics described in section 3. This
prototype contains a parser that is able to read the text
file from Ludoscope and puts every tile into a 2D ar-
ray. Tiles are placed accordingly through the use of a
switch-case programming statement, allowing the parser
to instantiate game objects based on the associated tile.

90

Figure 7: Final level representation, ready for parsing.

Figure 8: A parsed level within the Unity prototype.

6. DISCUSSION

A good level generator should increase replayability, and
be efficient in terms of development costs, i.e. creating
the generator should outweigh the cost of handcrafting
the levels. Both of these characteristics depend on the
variation of the possible levels that can be generated.
The generation process described in this paper allows
for a lot of variation with a limited set of handcrafted
rules. To calculate the minimum number of different
levels that could be generated, we compose an equation
which takes the number of variations of the shortest path
possible, from left to right with one corner segment (as
seen in figure 9). The variables within this equation are
dictated by the the possible variations for each segment.
For this path, it means that the startSegment only has
four different possible variations, straightSegment has
six (but is executed four times) and finally the corner
and endSegment both have three possible variations. So,
the designer has to design sixteen level segments.

We can calculate a minimum number of possible level
variations with the equations below. We divide the
equation in two parts so we can present the difference in
possibilities when encounters are included to the equa-
tion. The equation below shows the possible variations

when excluding encounters from the generation process:

excludingEncounters =

startSegment× straightSegment4

×cornerSegment× endSegment =

4 × 64 × 3 × 3 = 46, 656

Note that the result produced by this equation is exclud-
ing the generation of encounters entirely. If we multiply
this answer with the number of encounters in just the
straightSegment, which has three different variations of
encounters and is applied four times within the level,
this amount increases significantly. The following equa-
tion shows the possible variations when including en-
counters found in horizontal segments:

includingEncounters =

excludingEncounters× encounters4 =

46, 656 × 34 = 3, 779, 136

These calculations show that for the smallest possible
level, we can have over approximately 3.7 million
different versions when including the encounters. It
is important to note that differences in the levels are
much more subtle when including encounters in the
calculation as this can be as simple as one platform
being moved a few tiles. When excluding these encoun-
ters from the calculation, the variation is much more
prominent within the level, as it involves changing the
layout of at least one segment of the level.

Figure 9: The shortest possible path that can be gener-
ated. See the caption of figure 5 for an explanation of
the abbreviations.

The approach described in this paper allows game de-
signers to generate a multitude of levels containing col-
laborative gameplay based on just a dozen handcrafted
level segments. Advantages of our approach are the fact
that it is rule-based in a way that allows intuitive inspec-
tion by human game designers, that it is generic enough
to be applied to different games, and that it can, in prin-
ciple, be applied in a mixed-initiative setting (Karavolos
et al. 2015).

91

In our system, collaboration is enforced by requiring en-
counters for collaboration in specific parts of the level,
e.g. in the patterns for the corners. However, the ap-
proach taken in this project is very modular, with forms
of local collaboration designed especially for small seg-
ments within a level. Except for those areas of the
level, there might not be interaction between the play-
ers. Collaboration could of course also occur outside of
the collaboration segments, and even outside the game.
More varied and meaningful ways to control and guaran-
tee collaboration could include adding more cooperative
game mechanics, such as the ones described in (Rocha
et al. 2008) or adding more types of design patterns,
such as the ones in (Seif El-Nasr et al. 2010). Perhaps
this creates enough variation to compose a level com-
pletely of collaborative patterns. To find out to what
extent people actually like or prefer these different kinds
of pattern-based levels it is necessary to study how play-
ers actually play the game, and where, how, and how
much they collaborate.
While designers will need to spend time designing their
grammars for the level generator, this can be worth the
effort when compared to the amount of time saved when
the generator is functioning properly. A functional gen-
erator can create levels in a matter of seconds and even
then can be tweaked, should the designer feel the need
to do so. Furthermore, spending time on finding out
how all of these grammars and mechanics are going to
interact with each other gives the designer an idea on
whether or not some mechanics will fit the game as they
are meant to. Finally, any system created by the de-
signer can also be applied to other future projects that
contain similar mechanics and/or gameplay, as opposed
to games which have a level generator centred around
its core mechanics.
Although we have chosen to implement this method
of level design to the specfic genre of puzzle-platform
games, we believe the approach can be useful for other
genres as well. For example, in the shooter genre, a
similar method could be used to create levels containing
areas fit for different styles of combat. In the rogue-
like genre, it could be used to generate dungeons, using
encounters to generate various kinds of rooms.

7. CONCLUSIONS

In this paper we have shown how design patterns can
be used to generate levels for collaborative puzzle-
platformers. We have used a method that is based
on generative grammars to create a path in space, and
transform this path into level segments with variable ele-
ments. These variable elements can be transformed into
instances of game design patterns. We have identified
several game design patterns that incorporate collab-
oration between players, including the upsy-daisy, the
timed lever-and-gate and the common enemy patterns.
The variation in the levels this generator can create

derives from the combination of variable path length,
number of possible level segments, and the number of
encounters that each template can contain.

Limitations of the approach were discussed, as well as
possible directions for further work, which include more
systematic ways to control and enforce levels of collab-
oration between players, study empirically how players
actually collaborate within and around the game, giving
the designer more control over the generation process in
a mixed-initiative setting, and the application to other
genres of games.

ACKNOWLEDGEMENTS

This research was financially supported by the Dutch
Stichting Innovatie Associatie (SIA), in the context of
the RAAK research project ’Automated Game Design’.

REFERENCES

Dahlskog S. and Togelius J., 2012. Patterns and pro-
cedural content generation: revisiting Mario in world
1 level 1. In Proceedings of the First Workshop on
Design Patterns in Games. ACM, 1.

Dahlskog S. and Togelius J., 2013. Patterns as objec-
tives for level generation. In Proceedings of the Second
Workshop on Design Patterns in Games. ACM.

Dormans J., 2011. Level design as model transformation:
A strategy for automated content generation. In Pro-
ceedings of the 2nd International Workshop on Pro-
cedural Content Generation in Games. ACM, 2.

Dormans J., 2012. Engineering emergence: Applied the-
ory for game design. Ph.D. thesis, University of Am-
sterdam.

Dormans J. and Leijnen S., 2013. Combinatorial and
Exploratory Creativity in Procedural Content Genera-
tion. In Proceedings of the 4th International Workshop
on Procedural Content Generation in Games.

Ferreira L. and Toledo C., 2014. A search-based approach
for generating Angry Birds levels. In Computational
Intelligence and Games (CIG), 2014 IEEE Confer-
ence on. IEEE, 1–8.

Hendrikx M.; Meijer S.; Van Der Velden J.; and Iosup
A., 2013. Procedural content generation for games: A
survey. ACM Transactions on Multimedia Comput-
ing, Communications, and Applications (TOMM), 9,
no. 1, 1.

Hullett K. and Whitehead J., 2010. Design patterns
in FPS levels. In proceedings of the Fifth Inter-
national Conference on the Foundations of Digital
Games. ACM, 78–85.

92

Karavolos D.; Bouwer A.; and Bidarra R., 2015. Mixed-
Initiative Design of Game Levels: Integrating Mission
and Space into Level Generation. In Proceedings of the
10th International Conference on the Foundations of
Digital Games.

Kazemi D., n.d. Spelunky Generator Lessons.
http://tinysubversions.com/spelunkyGen. URL
tinysubversions.com/spelunkyGen.

Reuter C.; Wendel V.; Göbel S.; and Steinmetz R., 2014.
Game Design Patterns for Collaborative Player Inter-
actions. DiGRA 2014.

Rocha J.B.; Mascarenhas S.; and Prada R., 2008. Game
mechanics for cooperative games. ZON Digital Games
2008, 72–80.

Seif El-Nasr M.; Aghabeigi B.; Milam D.; Erfani M.;
Lameman B.; Maygoli H.; and Mah S., 2010. Under-
standing and evaluating cooperative games. In Pro-
ceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems. ACM, 253–262.

Shaker N.; Shaker M.; and Togelius J., 2013. Ropos-
sum: An Authoring Tool for Designing, Optimizing
and Solving Cut the Rope Levels. In Conference on
Artificial Intelligence and Interactive Digital Enter-
tainment.

Shaker N.; Togelius J.; and Nelson M.J., 2014. Proce-
dural Content Generation in Games: A Textbook and
an Overview of Current Research. Procedural Content
Generation in Games: A Textbook and an Overview
of Current Research.

Shaker N.; Togelius J.; Yannakakis G.N.; Weber B.;
Shimizu T.; Hashiyama T.; Sorenson N.; Pasquier
P.; Mawhorter P.; Takahashi G.; et al., 2011. The
2010 Mario AI championship: Level generation track.
Computational Intelligence and AI in Games, IEEE
Transactions on, 3, no. 4, 332–347.

Smith G.; Whitehead J.; and Mateas M., 2011. Tanagra:
Reactive Planning and Constraint Solving for Mixed-
Initiative Level Design. IEEE Transactions on Com-
putational Intelligence and AI in Games, 3, no. 3,
201–215.

Togelius J.; Yannakakis G.N.; Stanley K.O.; and
Browne C., 2011. Search-based procedural content gen-
eration: A taxonomy and survey. Computational In-
telligence and AI in Games, IEEE Transactions on,
3, no. 3, 172–186.

Zagal J.P.; Rick J.; and Hsi I., 2006. Collaborative
games: Lessons learned from board games. Simula-
tion and Gaming, 37, no. 1, 24–40.

AUTHOR BIOGRAPHIES

BENJAMIN VAN ARKEL completed his BSc
degree in Game Design at the Amsterdam University of
Applied Sciences in 2015, on the topic of this paper. In
the past, he has worked on visualizing motion capture
data of soccer players for Dutch soccer club Ajax. His
research interests currently involve procedural content
generation and modular level design, subjects that
he hopes to apply during his future career as game
developer.
benjamin.v.arkel@hotmail.com

DANIËL KARAVOLOS is a researcher at the
Amsterdam University of Applied Sciences, and teaches
various courses at the Game Development department.
He graduated from the University of Amsterdam with
a Masters degree in Artificial Intelligence in 2013. His
main research interests are computational intelligence,
intelligent agents, procedural content generation, and
automated game design.
k.d.karavolos@gmail.com

ANDERS BOUWER is a researcher and lecturer
at the Amsterdam University of Applied Sciences. He
studied Artificial Intelligence at the VU Amsterdam and
the University of Edinburgh, and has a PhD from the
University of Amsterdam since 2005. His research inter-
ests include interactive learning environments, music in-
teraction & cognition, multimodal mobile systems, and
automated game design.
a.j.bouwer@hva.nl

93

HOW TO USE COMBINATORIAL OPTIMIZATION PROBLEMS (TRAVELING
SALESMAN PROBLEM) FOR PROCEDURAL LANDSCAPE GENERATION

Alan Ehreta, Peter Jamiesona, and Lindsay Graceb
aMiami University and bAmerican University

email: jamiespa@miamioh.edu

KEYWORDS

Landscape Generation, Traveling Salesman Problem

ABSTRACT

In this paper, we examine how the traveling salesman
problem (a combinatorial optimization problem) can be
used to create virtual landscapes. For this work, we
show how the entire search space of ten city TSP in-
stances can be organized into virtual landscapes, and il-
lustrate how by changing the TSP instance problem we
can control some properties of these landscapes. We pro-
vide three different methodologies for producing land-
scapes and show results for TSP problem instances. Our
results show that our one of our methodologies gener-
ates the best aesthetically looking results and can be
controlled by the problem.

1. INTRODUCTION

In this work, we demonstrate how combinatorial opti-
mization problems can be used to create procedural vir-
tual landscapes. The point of this work is to show the
optimization space (mapped into 3D) to algorithm de-
signers to help them get a general feel for what their
problem search space looks like. A secondary benefit of
our approach is that using combinatorial optimization
problems gives us some control over landscape gener-
ation for small scale problems. Thirdly, this control of
landscape generation can be compressed and distributed
in a multi-player game environment by transmitting the
problem instance, and thus, this is a form of compres-
sion for landscapes noting that you can also send the
initial random seed for a noise generator such as Perlin
noise (Perlin 2002).

In this paper we will describe our methodology for creat-
ing these landscapes from the traveling salesman prob-
lems (TSPs) that are small enough for us to compute
all solutions. Our methodology uses the Steinhaus-
Johnson-Trotter algorithm (Surhone et al. 2010) to
progress through the solution space, but because of the
relationship between neighboring solutions, we use var-
ious schemes to create more realistic landscapes. With
three methodologies, we show how different problem in-
stances (where cities are placed) of the TSP can be used
to create different looking landscapes as defined by what

they look like and their respective distributions.

2. BACKGROUND

In this section, we will review research in procedu-
ral landscape generation for virtual worlds (including
games), describe what combinatorial optimization prob-
lems are and why they are relevant, and describe the
TSP.

2.1 PROCEDURAL LANDSCAPE GENERA-

TION

The video game “No Man’s Sky” to be released in 2015
boasts that it contains a massive procedurally generated
universe. Procedural generation allows designers to cre-
ate worlds without the need to build the details. One
question we have is can this computation used to create
these worlds also be leveraged for other valuable com-
putation? Therefore, this work is a derivative from our
harnessing computation (Jamieson et al. 2012) work.

For a high-level survey of papers on landscape genera-
tion for virtual worlds and games, Carli provides a thor-
ough review on the subject that includes how to create
landscapes as well as other procedural places such as
cities (Carli et al. 2011). An earlier and slightly more
comprehensive review is done by Haggstrom (Häggström
2006) where they examine procedural generation from
landscape all the way to plants and life. Two other ma-
jor surveys of this area include Cruz (Cruz 2015) where
how a full virtual-space can be created using a combi-
nation of methods is studied and Togeliu et. al. look
at search space based procedural generation (Togelius
et al. 2011).

In most procedural landscape generation, the key step
is the function generating randomness. As mentioned
earlier, Perlin noise (Perlin 2002) is a type of noise that
has gradients that when looked at from a the perspective
of a birds-eye looks very similar to mountain regions.
Many researchers have looked at variations on noise to
create various different visual effects.

2.2 COMBINATORIAL OPTIMIZATION

Our work focuses on creating hill- and mountain-based
terrain using the solution space to what are called com-

94

binatorial optimization problems. These types of prob-
lems are characterized based on they are problems that
have a finite set of unique objects that need to be ar-
ranged, visited, or used in some way such that, in many
cases, the best solution is not feasible to compute as the
number of objects grows.

These problems tend to be described by graphs as in the
field of graph theory. However, engineers and scientists
solve many real-world optimization problems as mod-
eled by graphs and framed as combinatorial optimiza-
tion problems. For example, the creation and manufac-
turing of modern day microchips requires a number of
combinatorial optimization problems to be reasonably
(heuristically) solved; for example, the FPGA place-
ment problem is one small example of many (Jamieson
2010). Another real-world example is the scheduling
problem where a solution for a schedule of individuals,
machines, or deliveries can be created given constraints;
a small example of this is the job-shop scheduling prob-
lem (Menćıa et al. 2014).

2.2.1 TRAVELING SALESMAN PROBLEM

We have chosen the TSP as our combinatorial optimiza-
tion problem. Traditionally, problems like these quickly
become intractable to optimally solve as the number
of objects factorially increases the number of solutions.
Meta-heuristic algorithms are used to find reasonable so-
lutions to these problems and are classified as nature in-
spired versus non-nature inspired (Blum and Roli 2003).

Imagine 4 cities in the set {[A]mstersdam, [T]oronto,
[C]incinatti, and [L]ondon}. A tour of these cities in-
cludes the two solutions A,T,L,C and A,L,T,C. For these
examples, the second tour results in a shorter distance
traveled. For this problem, we define distance traveled
as the cost function - the cost for a given solution - in
this case, distance traveled. The goal of an algorithmic
solution for the TSP is to find the minimum cost, and as
the number of cities grows this becomes computationally
in-feasible.

3. METHODOLOGY

In this work, we use the search space of a TSP problem
instance as the noise generation function for generating
a landscape. For example, our above TSP with four
cities has 24 solutions each of which has a cost (total
Cartesian distance). Using these 24 costs as a parameter
for elevation, we can create a landscape.

To create a 2D landscape there are some additional chal-
lenges. First, what are the x and y coordinates for each
cost function z noting that each solution must have a
unique x and y coordinate, and related to this, how do
we generate every point in the permutation space? Sec-
ondly, will this noise generated by a TSP instance and
some manipulation look like a landscape?

3.1 GENERATING PERMUTATION POINTS

To traverse the entire search space for tractable TSP
problems, we use the Steinhaus-Johnson-Trotter algo-
rithm (Surhone et al. 2010). This algorithm picks ob-
jects from the problem in a similar fashion to gray code
for binary systems. Given each solution instance we cal-
culate the cost function to get the value for the z-axis.
We describe three methods to place solutions in the next
section.

3.2 2D PLACEMENT METHODS

Our three different methods to determine the x and y
coordinates are called striation, merge, and gradient.
For each method we show the pseudo-code noting that
the input TSPcosts is an array consisting of all cost
function values traversed using the Steinhaus-Johnson-
Trotter algorithm.

Algorithm 1 Striation algorithm

1: procedure Striation(TSPcosts, Out)
2: 2Dmat = 2DSquare(TSPcosts)
3: while square = nextSquare(2Dmat,100,100) do
4: Rotate square random angle (-90 to 90)
5: end while

6: Out = Gausian filter 2Dmat: 40x40, sigma=300
7: end procedure

The algorithm 1 we call striation since it constructs the
2D map line by line from the Steinhaus-Johnson-Trotter
algorithm, which seems to result in striations. We per-
form some small transformations by rotating groups of
100x100 pixel buckets. The Gaussian filter is used to
smooth out the features after we have done our slight
transformation.

Algorithm 2 Merge algorithm

1: procedure Merge(TSPcosts, Out)
2: 2Dmat = 2DSquare(TSPcosts)
3: while square = nextSquare(2Dmat,100,100) do
4: Place square randomly in g1
5: Place square randomly in g2
6: end while

7: Out = Poisson image edit (g1, g2)
8: end procedure

The second algorithm 2, called merge, differs from the
first algorithm by creating two 2D spaces and using the
Poisson image edit (Pérez et al. 2003) to merge the two.
The goal is to have less regularity in the landscape that
we tend to have in our first algorithm (Algorithm 1).
The third algorithm 3, called gradient, tries to manip-
ulate square regions. This methodology generates some
of the best landscapes. Also, note that there is an edge
function defined in this methodology. The reason for

95

Figure 1: Random Results: (a) the city map (b) the result distribution (c) striation (d) merge (e) gradient

Algorithm 3 Gradient algorithm

1: procedure Gradient(TSPcosts, Out)
2: 2Dmatrix = 2DSquare(TSPcosts)
3: r1 and r2 = set of rectangular matrix, side length

ratio 10:1 row:col from 2Dmatrix
4: z1 and z2 = zero matrix the same size as square
5: while t doraversing square regions
6: z1[random column]=random rectangle r1s;
7: z2[random column]=random rectangle r2s;
8: rotate z1 and z2 by a random angle
9: g1 = g1+z1;

10: g2 = g2+z2;
11: end while

12: edges = sine waves for each of the 4 edges
13: Out = combine edges, g1, and g2
14: end procedure

this is that in future work, we want to use larger TSP
instances, but this means that it is impossible to calcu-
late all the possible solutions ahead of time and a con-
tinuous process is needed. In this approach we create
smaller regions and plan to stitch them together mean-
ing we need a common border. Joining boundaries can
be challenging, so for now, our approach is to make the
edges of a square tile common by making the edges a
common function. This allows us to stitch tiles together
seamlessly.

4. RESULTS

In this section, we show how different 10 city TSPs
problem instances result in varying results for proce-
dural landscape generation. The first set of results we
show are a random TSP instance to provide a com-

parison point to our other results. In some cases
we show the distribution of cost function calculations
as these differences result in varying results. Using
the free tool Terragen 3 http://planetside.co.uk/

terragen-3-free-download from Planetside Software
we import our data to create virtual landscapes, which
we also show in these results.

4.1 RANDOM

For the random TSP problem instance, ten cities are
randomly assigned to an 8 by 8 grid as shown in Figure
1 (a). To the left, in Figure 1 (b) we show the distribu-
tion of cost functions based on all possible cost function
scores noting that the optimal solution sits near 20. Fi-
nally, Figure 1 (c), (d), and (e) represent the landscapes
generated in Terragen 3 for each of our methodologies
in the previous section - striation, merge, and gradient.

Note the similarities between Figure 1 (c) and (d) in this
case, which both result in what we might describe as a
relatively flat bumpy hill range. The stark difference
in Figure 1 (e) is due to the gradient of values, which
results in a smoother overall look and more variety be-
tween the peeks and valleys.

4.2 TWO CLUSTERS

The two cluster TSP instance creates two separated
groupings of cities in the upper left and lower right cor-
ners of the map as shown in Figure 2 (a). This means
that any city paths (beyond two such paths) that cross
this separation will add significant distance to the re-
spective cost function, and there should be distinct good
and bad solutions in this search space. This is demon-
strated in the distribution in Figure 2 (b) where we can

96

Figure 2: Results: (a) the city map (b) the result distribution (c) striation (d) merge (e) gradient

see what we might call a comb like function or in sig-
nals and systems the pulse response as seen in frequency
domain.

This results in a very repetitive landscape for the stria-
tion method as seen in Figure 2 (c). Figure 2 (d) shows
the merge method, which still has the bumpy character-
istics, but looks better than random. Finally, Figure 2
(e) results in a much more mountainous landscape com-
pared to the football TSP instance and similar to the
random results. This is because there are more bad so-
lutions and excellent solutions and this creates clearer
peaks and valleys.

4.3 THREE CLUSTERS

Creating three clusters instead of the previous two
changes the results slightly and the arrangement of cities
can be seen in Figure 3 (a). The distribution (Figure 3
(b)) has a similar look to the one in Figure 2 (b), but
the creation of three clusters has changed the charac-
teristics of this new distribution slightly. For example,
there are two bumps from 35 to the left for the optimal
values that do not have any symmetrical bumps on the
right hand side of the distribution curve. Additionally,
the gradient of values is less distinct as compared to the
two cluster TSP problem instance.

Figure 3 (c) landscape remains characteristically bumpy
and Figure 3 (d) has a look similar to it’s predecessors.
Figure 3 (e) is also similar to Figure 2 (e) except the
severity of the peek to valley change seems to be less in
the three cluster TSP problem. This is, likely, the case
because the distribution of cost functions has a more
continuous distribution of values.

4.6 DISCUSSION

There are two key observations that we have drawn from
these results. Firstly, a TSP problem instance that re-
sults in a normal-like distribution has a slight impact
on the generated landscape depending on characteris-
tics of the curve, but those variations are very small.
When a problem instance is created, such as the two
cluster and three cluster, the distribution and result-
ing landscapes are significantly different to the normal
curve (as expected), and it appears that based on the
number of clusters, we can create different landscapes.
Unfortunately, as this approach needs to fully traverse
the entire search space, it is not computationally feasi-
ble to try larger cluster sets, and we, currently, can not
explore how a larger number of groupings (greater than
3), with different distances between groupings impacts
our generated landscapes.
The second observation we make is that the nature of the
TSP solution space as traversed by Steinhaus-Johnson-
Trotter algorithm results in regularities that do not look
good in terms of landscape generation.

5. CONCLUSION AND FUTURE WORK

This paper shows how combinatorial optimization prob-
lem search spaces can be manipulated and used to pro-
cedurally generate virtual landscapes. The reason we
demonstrate the viability of this approach is that the
search space values can be of interest to algorithmic de-
signers, and the landscapes generated can be controlled
by manipulating the TSP problem instance resulting in
a slight compression advantage.
In this paper, we focused on showing how the TSP can
be used to create virtual landscapes. We provided three

97

Figure 3: Results: (a) the city map (b) the result distribution (c) striation (d) merge (e) gradient

different methodologies for how to take the TSP cost
function values (our z values) and then how to map these
into unique x and y coordinates to create a landscape.
We then showed how different TSP problem instances
resulted in different landscapes. Of the three methods
presented in this paper, our gradient approach creates
the aesthetically best looking landscapes without the
characteristic bumpy look that both the striation and
merge methods tend to produce.

For future work, our focus is on using larger TSPs that
can not be computationally solved (beyond 11 cities).
We have already suggested in our description of the
gradient method, how we plan to deal with stitching
together tiles of landscape. This stitching itself, can
be improved from using simple trigonometric functions,
but our larger focus is on how can we create larger land-
scapes from large TSP problems, and also provide al-
gorithmic benefits to engineers and algorithm design-
ers. Our first approach into this domain will be to use
meta-heuristic algorithms, such as genetic algorithms
and simulated annealing algorithms, to find local op-
timal points, and then use these points as seed points
for a region/tile in which the additional points will only
differ by only one or two objects. That will create re-
gions in which the designer sees similar or neighboring
solutions.

REFERENCES

Blum C. and Roli A., 2003. Metaheuristics in combi-
natorial optimization: Overview and conceptual com-
parison. ACM Comput Surv, 35, 268–308. URL
http://doi.acm.org/10.1145/937503.937505.

Carli D.M.D.; Bevilacqua F.; Pozzer C.T.; and DOr-
nellas M.C., 2011. A survey of procedural content
generation techniques suitable to game development.

In Games and Digital Entertainment (SBGAMES),
2011 Brazilian Symposium on. IEEE, 26–35.

Cruz L.M.V., 2015. High-Level Techniques for Land-
scape Creation. Ph.D. thesis.

Häggström H., 2006. Real-time generation and render-
ing of realistic landscapes. Ph.D. thesis.

Jamieson P., 2010. Revisiting Genetic Algo-
rithms for the FPGA Placement Problem. In
GEM. 16–22. URL http://www.users.muohio.edu/

jamiespa/html_papers/gem_10.pdf.
Jamieson P.; Grace L.; and Hall J., 2012. Research
Directions for Pushing Harnessing Human Compu-
tation to Mainstream Video Games. In Meaning-
ful Play. URL http://www.users.muohio.edu/

jamiespa/html_papers/meaning_12.pdf.
Menćıa R.; Sierra M.R.; Menćıa C.; and Varela R., 2014.
A genetic algorithm for job-shop scheduling with op-
erators enhanced by weak lamarckian evolution and
search space narrowing. Natural Computing, 13, no. 2,
179–192.

Pérez P.; Gangnet M.; and Blake A., 2003. Poisson
image editing. In ACM Transactions on Graphics
(TOG). ACM, vol. 22, 313–318.

Perlin K., 2002. Improving noise. In ACM Transactions
on Graphics (TOG). ACM, vol. 21, 681–682.

Surhone L.M.; Tennoe M.T.; and Henssonow S.F.,
2010. Steinhaus-Johnson-Trotter algorithm. Be-
tascript Publishing.

Togelius J.; Yannakakis G.N.; Stanley K.O.; and
Browne C., 2011. Search-based procedural content gen-
eration: A taxonomy and survey. Computational In-
telligence and AI in Games, IEEE Transactions on,
3, no. 3, 172–186.

98

ONLINE
GAMING

99

100

A SERVER-SIDE FRAMEWORK FOR THE EXECUTION OF
PROCEDURALLY GENERATED QUESTS IN AN MMORPG

Jonathon Doran Ian Parberry
Dept. of Computer Science and Information Systems Dept. of Computer Science and Engineering

Bradley University University of North Texas
jhdoran@bradley.edu ian@unt.edu

KEYWORDS
MMO, procedural content generation

ABSTRACT

We describe a framework for executing procedurally gener-
ated quests implemented in the MMORPG Everquest using
the Open Source EQEmu Everquest server. Quests play out
at run-time using a collection of triggers, which consist of
a testable game state condition and a script that is to be run
when the condition is satisfied. We describe the interface
between the quest generator and the server which enables
the seamless integration of the procedurally generated quests
within the existing server architecture. To demonstrate how
this process takes place in real time, we analyze a nontriv-
ial procedurally generated quest and describe the key server-
controlled actions that derive from it.

INTRODUCTION

Massively Multiplayer Online Role Playing Games (com-
monly abbreviated MMORPG) pose a significant challenge
for procedural content generation. Of the content which
might be procedurally generated, the quest is perhaps the
most difficult. Quests are tasks assigned to players in the
game, combining narrative elements and problem solving
with combat and survival in a hostile world. Creating these
quests requires the creation of in-game agents, items, and di-
alog. A quest generator must inform the game engine about
which tasks need to be performed by both the player and
the engine, what the criteria for success is, and when events
should occur.
Our quest generator is novel in that it has been integrated
into an actual AAA MMO, rather than generating quests for
a standalone single-user game. This is the market we feel
is most in need of large volumes of content. While we be-
lieve that our generator would generate content suitable for
any MMO, we selected Everquest as our target demonstra-
tion system. The presence of an open-source server emulator
(EQEmu) was a significant factor in selecting this game. We
will examine the steps needed to support Everquest, with the
understanding that other games could be supported with dif-
ferent post-processing.
Procedural quest generators place a number of requirements
on a game server. These can arise from the need to have
the generator run with little or no human intervention, the

need to introduce new quests into a world without break-
ing any existing functionality, and the need to remove quests
without negative consequences. We demonstrate the design
and implementation of a procedural quest generator for the
MMORPG Everquest using an Open Source emulated server
and an Everquest client released by Sony Online Entertain-
ment via Steam in 2010 (See Figure 1). We believe that our
framework is general enough to be adaptable to other server
architectures provided certain requirements are met.
The remainder of this paper is divided into six sections. In
the section “RELATED WORK” we consider related work.
In the section “QUEST GENERATION” we briefly describe
the procedural quest generator. In the section “SERVER RE-
QUIREMENTS” we discuss the specific requirements that
the Everquest server imposes on the execution of procedu-
rally generated quests at run-time. In the section “THE
SERVER INTERFACE” we describe the interface between
the quest generator and the Everquest server. In the sec-
tion “THE QUEST & TRIGGER MANAGERS” we show
how we were able to meet the server’s requirements and
control quest execution. In the section “AN EXAMPLE
QUEST” we analyze a sample procedurally generated quest
and describe how the server is able to make the quest play
out in real time.

RELATED WORK

MMORPGs are persistent interactive worlds shared by many
players. Players face many challenges in these games, among
them are structured activities known as quests. Quests con-
sist of objectives, tasks, and success or failure conditions
(Ashmore and Nitsche, 2007; Doran and Parberry, 2011).
Dickey notes that players strategize, collaborate, and plan
their solutions to these challenges as a major form of game-
play (Dickey, 2007). Rewards from quests are often the pri-
mary motivation for players to engage in gameplay, and in
these cases a compelling story is not required. Quests can
play a significant role in content delivery by providing narra-
tive and guiding player involvement in the world ((Grey and
Bryson, 2011; Joslin et al., 2006; Smith et al., 2011; Tomai
et al., 2012a). Quests can be used to relate epic stories (Bate-
man and Boon, 2005). One of our long-term goals is to de-
termine if improved storylines can result in players focusing
as much on the storyline as the reward.
There is no intrinsic meaning for quests, only potential mean-

101

ing (Tronstad, 2002–2003), which means that discovery of
this meaning is a task for the player. Tronstad also notes that
as quests are a search for meaning, once solved they can-
not be performed again, since we only have one opportunity
to experience a quest for the first time. To maintain a body
of novel content, one must constantly introduce new content
into the game. Procedural quest generation is a logical solu-
tion, if the generators are capable of providing the meaning
of which Tronstad speaks (Ashmore and Nitsche, 2007; Ky-
bartas, 2013; Reed et al., 2011; Sullivan et al., 2011; Tomai
et al., 2012b; Zook et al., 2012).
Aarseth’s analysis of the quests in Everquest has sug-
gested that the player’s task is finding “one acceptable
path” (Aarseth, 2004), which is evidence that player agency
is limited(Wardrip-Fruin et al., 2009). We can posit that the
introduction of additional paths would be of great benefit to
playability.
The reduction of resource requirements is important for ar-
chitectures which need to scale, such as those found in
MMORPGs. In the study of computer networks we have
seen how explicit notification of relevant events can reduce
unwanted traffic, leading to less resources needed to process
this traffic (Smed et al., 2002). The reduction of traffic in net-
works is an appropriate model for reducing event handling
in a game. In both situations we consider solicited versus
unsolicited event notification and handling. This publish-
er/subscriber pattern was also discussed in terms of clien-
t/server communications (Caltagirone et al., 2002). We have
adopted this technique by requiring quests to subscribe to
certain types of events at appropriate points during their exe-
cution.

QUEST GENERATION

We generate quests using a technique previously described
by the authors (Doran and Parberry, 2011), starting with an
NPC and selecting a strategy template appropriate for its mo-
tivation. These templates are part of a plan library, and can
to be expanded to the desired level of complexity. Complica-
tions and follow-on quests can be added to a template, caus-
ing more strategies to be used. These new strategies can also
be expanded as needed.
The generator was modified slightly to assign a number
of points to strategies representing their difficulty, and ran-
domly dividing these points among new strategies during the
expansion process. If we view the set of strategies used as a
graph, we see a tree structure growing from the original root
goal. Points over a minimum value are allocated randomly to
leaves, which then add child nodes that become new leaves.
Points are consumed by each of the strategy templates, so the
initial point total limits the size of the generated tree.
This differs from planning algorithms, as we start with a vi-
able solution in the form of a trivial goal, and add additional
subgoals while preserving the overall strategy; thereby by
adding obstacles to the path the player must take to satisfy the
original goal. This might be done by making a needed asset
hard to obtain, relying on knowledge that is not obvious or

Figure 1: A screen shot of the Everquest client

commonly known. This process will continue as long as nec-
essary to consume the points allocated to the new branches.
Planning algorithms, on the other hand, start with an initial
state and a goal and attempt to generate a graph that connects
the initial state to the goal state. There is no guarantee that a
viable solution exists, and computationally expensive search
techniques must be employed to find any solution. Unlike
planning solutions, our approach builds solutions in constant
time.
If quest generation fails, which might be due to requiring
more points for a branch than are available or exhausting
available world assets, the quest generator employs back-
tracking over a finite set to attempt an alternate solution. In
practice we found that the limiting factor in creating large
quests is the size of the world knowledge base. For example,
a small, finite set of world locations is inadequate unless the
generator can reuse locations, but it is preferable to avoid this
reuse to help keep quests believable while preserving variety.
Novelty in procedurally generated content is a very impor-
tant quality, as it creates the variety of content which players
desire (Doran and Parberry, 2010). This variety is obtained
by changing the subquests (or nodes) created, and the details
of each node, such as assets and dialog. By changing the dis-
tribution of points among quest nodes, we permit different
tree topologies to be created and change the difficulty of the
subquests generated with each node. Asset selection (such
as NPCs and items) can also have a significant impact on
the structure and appearance of a quest. NPCs in particular
have motivations which limit the types of subquests possible
from the node referencing the NPC. In general, the number
of unique combinations of assets and nodes increases signif-
icantly with the number of points allocated.

SERVER REQUIREMENTS

Our preliminary work on quest generation dealt with the gen-
eration of quests in isolation (Doran and Parberry, 2011).
Interfacing a quest generator to a large, commercial quality
MMORPG game engine is a complex task that taxes our ab-
stractions to the limit.
We selected the game Everquest for this purpose because the
client could easily be purchased, and there is an available

102

Figure 2: The EQEmu zone server responds to game events
by having an event handler send a notification to a script

handler, which selects, initializes, and runs a script

open-source server emulator EQEmu.
An EQEmu quest is implemented as a set of Perl or Lua
scripts associated with the corresponding game assets. Each
script may declare a handler for any of the supported events
and, by interacting with server objects, change the state of
the world. To simplify quest management, we enforced the
requirement that each quest be implemented with a single
script that can be added or removed from the server without
impacting any other quests.
The run-time support for the quests created by our gener-
ator makes use of information stored in a database. Each
quest is represented by a single file containing the informa-
tion needed to create the script and perform the necessary
database updates. We chose to implement this file as an
XML document. A quest can therefore be shared with an-
other server by sharing the XML file created by our genera-
tor.
The run-time support for quests will require information on
game events as they occur. The exact events, and the data
associated with them, will of course be different from game
to game. In general an event will correspond to some state
change in the world, for example, this could be a non-player
character (NPC) entering or leaving the world, an item be-
ing acquired, or the player visiting some location. The run-
time support for quests created by our generator requires cus-
tom event handling. The previous EQEmu server generated
events by sending an enumeration and several parameters to
script parsers, which then created an appropriate initial state
for a event handler script and then called one of the scripts
associated with an asset (see Figure 2).
This sequence of actions requires that the code that notifies
the system of an event must know the type of asset that will
handle the event; additionally, any optional parameters must
be passed to the script parsers. The resulting event handling
code is spread over several classes, and knowledge of how a
given event is to be be handled is required of the code that
raises the event. Our approach is similar, but stores all infor-
mation associated with an event into an Event object which
is passed to the Trigger Manager. This simplifies the script
interface, and provides a general event interface which can
easily be extended if new events are desired.

Figure 3: We modify the EQEmu zone server so that our
quest handler has the first opportunity to respond to game

events

Figure 4: Getting the quest from the quest generator to the
quest database

Events are represented in EQEmu by discrete objects that are
wholly self-contained. Each event is passed into common
event handling code which determines the proper event han-
dler and makes the necessary calls to process it. The system
can support as many custom event handlers as necessary. Our
run-time is given the first chance to handle each event, and
in the case of failure, the event will be passed back to the
legacy asset scripts (see Figure 3). Multiple quest systems
can coexist at run-time without risk of interference.

THE SERVER INTERFACE

As described above, our quest generator produces a single
XML document for each quest, which must then be loaded
onto a game server. We implemented a Java quest im-
porter (see Figure 4) that processes these XML documents
and, based on the information inside, either adds or removes
a quest from the server. This application creates the run-
time scripts based on the XML elements and updates the
game server database. These operations are obviously game-
dependent, but the principle is common to all MMORPG
engines: The quest generator must communicate quests to
the server using some combination of flat files or databases.
Our XML format can in principle be easily extended to other
forms of data storage used by a game. Notice that although
the generator supplies the structure of the quest, some input
is required from a human designer to customize things such
as NPC dialog and the names of NPCs and items.
For convenience we define a structure called a trigger, which

103

consists of a test to be applied against the game state and a
script to be executed if the test succeeds (see Figure 6, bot-
tom left). For example, the test could specify player arrival
at a certain location, and the script could result in an NPC at
that location giving an important object to the player. While
in principle the firing condition may be an arbitrary Boolean
formula involving any number of game state variables, cer-
tain triggers are more common (see Table 1). The null trig-
ger, which fires immediately upon creation, is a useful way
to compose a sequence of actions.

<?xml version=”1.0” encoding=”utf−8”?>
<quest>
< title lang=”en”>graph 0</title>
<id>5a729d34−30c3−11e4−a10d−001d7d0a5e7c</id>

<node>
<name>Root</name>
<task>gather parts for a Simple Pauldron</task>

<assets>
<item>
<id>\$item 3</id>
...

</item>
...

</assets>

< triggers>
<match>
<id>hail 1</id>
<zone>394</zone>
<sequence>0</sequence>
<regex lang=‘‘en’’>\bhail\b</regex>
<Perl> ... </Perl>
<task>speak with Blacksmith Jones</task>
<repeatable>

</match>
...

</ triggers>
...

</node>
...

</quest>

Figure 5: Structure of a quest file

Figure 5 shows the structure of the XML file produced by
the generator. Each quest is given a title, which is used by
the importer to display a list of quests. A globally unique
identifier (GUID) is assigned by the generator, to establish
a unique namespace for names and IDs. When a quest is
loaded onto a server, it is assigned a locally unique identifier
(such as a counter incremented for each unique quest loaded),
and the GUID and title are associated with this identifier.
All database modifications are logged with the correspond-
ing quest identifier, allowing the importer to later remove the
quest.

Type Firing Condition
null immediately
item item is created
converse player conversation matches regular expression
give player gives an item to an NPC
proximity player enters a certain area
acquire item enters player’s inventory
subquest subquest completes

Table 1: Some common trigger types and their firing
conditions

Figure 6: A Quest Graph node (top left), a trigger (bottom
left), and a quest graph (right)

Our generator represents quests as graphs, which structure
can be seen within the XML document. The Quest Graph
consists of a set of nodes with triggers that correspond to
graph edges (see Figure 6, right). Each node is assigned a
name and an optional task text. The task text can be used
within a game to identify quest steps, as we do with Ev-
erquest’s quest journal (see Figure 7). Each node contains
a set of assets that need to be created at runtime, and a set
of triggers (see Figure 6, top left). The first use of an asset
causes an asset record to be written, and further use of the
asset can be performed by reference to the asset id. Game-
specific properties are included in this asset record, but we
assume that in general any game will assign some set of
properties to any object in the world. Our importer creates
database entries for quest-specific assets, introducing them
into the game and allowing characters to interact with them.
If a quest is later removed, the database entries for interme-
diate (non-reward) items are also removed and these items
disappear from the world.
We can consider each quest to be a finite state machine in
which the triggers are the events that can change its state.
For example, trigger hail 1 has the type “match” which re-
quires player speech to match a regular expression given in
the trigger. In Figure 5 we see a trigger which requires the
word “hail” to be spoken by the player before the quest will
advance. This is a typical trigger word used in Everquest.
The Perl element contains functions written by the genera-
tor that will be executed if the regular expression is matched,
possibly providing a spoken response or other NPC action.
This combination of an arbitrary set of triggers and a very
capable scripting language can allow any event which might
occur in a game to be paired with any server-side responses

104

Figure 7: A screen shot of the Everquest journal

that might be required. All game-specific logic is contained
in the meta-rules in the quest generator, which are separate
from the general rules which might apply to any game.
Each trigger is assigned a sequence number that indicates
the order in which triggers are required to fire. It is possi-
ble to have several triggers with the same sequence number,
and therefore able to be performed at the same point in time.
That is, triggers are partially ordered and allow the player to
choose which parts of the quest they will work on next. In
the section ‘̀THE QUEST & TRIGGER MANAGERS” we
will show how these sequence numbers are used at run-time.
Triggers may be marked as repeatable and/or optional, allow-
ing different combinations of trigger firings to be specified
by the generator. Repeatable triggers are needed at points
where the player may restart the quest following a failure
to complete a later quest stage. For example, a repeatable
trigger can be used to permit the initial conversation with an
NPC to be repeated if the player fails to advance beyond the
first checkpoint. Without checkpoints (and the corresponding
rollback logic), the player is committed to either complete
the next quest stage or fail the quest. Optional triggers are for
events that might occur and necessitate a response, but which
are not required to successfully complete the quest. Node, as-
set, and trigger data are stored in a database for our Everquest
server to access. The Perl functions are collected into a single
Perl script, which exists in a quest-specific namespace. This
means that function names only need to be quest-unique,
simplifying the process of working with multiple generated
quests.

THE QUEST & TRIGGER MANAGERS

Although the emulated Everquest server was initially capable
of processing events and performing quests, it was not able to
work with quests produced by our generator. Modifications
were made to the server to allow it to execute the procedu-
rally generated quests loaded by the process described in the
section “THE SERVER INTERFACE”. We created a quest
manager which provides an interface to scripts, and manages
client state, timers, and registrations of world entities that
need to be notified when global events (not associated with

Figure 8: The quest manager manages all of the things
associated with a quest, including client state, triggers,
graph nodes, timers, and world entities such as places,

agents, and assets

any client) occur (see Figure 8). For example, NPCs that
move along a route of waypoints need an event to be gen-
erated when a waypoint is reached. This event triggers the
manager to assign the NPC the next waypoint in the route.
The quest manager also has the ability to checkpoint and roll-
back quest state in the event that part of a quest needs to be
repeated. For example, if a player obtains an item needed
to complete a quest and then manages to somehow lose it,
the quest state is rolled back to the point prior to the player
obtaining the item. The quest manager keeps track of modifi-
cations to the local world state, so that these can be removed
when the quest advances or the player leaves the zone. One
of the local modifications supported is selective visibility,
which makes assets only visible to players associated with
the quest. Association means that the player has the quest,
and is at the proper point in the quest to see the asset, or that
the player is grouped with someone meeting those require-
ments. This allows groups of players to cooperate on quests
without affecting other players. The quest manager was im-
plemented as a singleton pattern, and therefore exists in its
own globally accessible namespace.
Cache managers were created for nodes and triggers that are
active in the world. An active node or trigger is one with
at least one player at the corresponding graph node, or wait-
ing to complete the trigger. This optimization allows events
to be screened against active objects rather than all objects
associated with a quest.
The trigger manager handles all events generated by the
game server, and attempts to match them with active trig-
gers (see Figure 9). The match occurs when the event meets
all of the firing requirements, and there is at least one player
with the trigger active. Upon detecting a match, the trigger
is said to fire and the trigger-specific script is executed. The
trigger may or may not complete as a result of this firing.
Some triggers require multiple firings before they complete,
such as one might find when a player is asked to collect sev-
eral objects in a set. Each collection advances the state of

105

Figure 9: When notified of an event by the EQEmu event
handler, the trigger manager determines which triggers
should fire by testing them against the game state, then

executes their scripts

the trigger, until the terminal state is reached and the trigger
completes. Upon completion the node associated with the
trigger is notified, and the trigger is deactivated. If there are
no outstanding triggers required by this node, the node can
then complete and advance the quest state to the node at the
next sequence. When the terminal node in the graph com-
pletes, the quest ends. It is assumed that the terminal node
takes care of any rewards associated with the quest.

AN EXAMPLE QUEST

The capabilities of this system can be seen by viewing a sam-
ple quest generated by our generator and playable in-game in
Everquest. The overall structure of the nodes in the quest is
shown in Figure 10, where the quest starts at the Root node,
and the player is required to complete subquests represented
by other graph nodes either as prerequisites or postrequisites.
Triggers are not shown in this graph, but may be inferred. For
example, if a node requires the player to acquire some item,
the corresponding trigger would watch for this item to enter
the player’s inventory. In this example quest, all nodes repre-
sent follow-on quests to be completed as part of, or after the
preceding node. The quest starts with the character Black-
smith Jones asking the player to gather materials and make a
piece of armor. This requires the player to obtain metal pan-
els and a venom sac from a poisonous snake. These ingredi-
ents are determined randomly, and the recipe is only usable
by the player performing the quest. The player is directed
to see Councilmember Ithakis for the metal panels, and the
Councilmember offers to give the player the panels in return
for a favor. The Councilmember wants the players to locate a
lucerne leaf (another ingredient which could be used to make
armor), and suggests that the player ask Farmer Jones for
help. The farmer is happy to give the player a leaf, which is
then turned over to the Councilmember. The players are then
asked to deliver a message to a character named Nech Ilya,
saying that Councilmember Ithakis has the lucerne he needs.
After this is completed, the player receives the metal plates.

Figure 10: The structure of a sample quest

Blacksmith Jones suggests greenscale vipers might be a good
source of venom sacs, and the players must find some of
these snakes in the world and kill them until they find one
with a rare intact venom sac. With this item, they are able to
create the custom armor piece for the Blacksmith, and earn
their reward.
Generation of this quest requires the selection of appropriate
tasks each NPC would like performed, and the creation of
custom items for the quest. Special metal plates and venom
sacs are only available to the player running the quest, or any
character in the same group or raiding party as the player
running the quest. Custom character dialog is created for
each participating character, as well as control records which
bring the items and characters into the world at the appropri-
ate time.
The quest plays out as follows:

1. When the player enters the Crescent Reach zone, a
converse trigger is created, requiring the player to hail
Blacksmith Jones.

2. The player hails Blackmith Jones, activating the con-
verse trigger.

3. Blacksmith Jones asks the player to help gather materi-
als for a piece of armor that he is making.

4. Several subquest triggers are activated, causing null
triggers at the start of each subquest to fire.

(a) The null triggers deliver instructions for each sub-
quest.

106

5. Blacksmith Jones suggests that the player ask a Coun-
cilmember for help getting metal panels.

(a) An item trigger is created and activated requiring
6 metal panels.

6. Councilmember Ithakis demands that the player run an
errand (perform a subquest) in return for the metal.

(a) A subquest trigger is created and activated.

7. Councilmember Ithakis asks the player to bring him a
lucerne leaf, which is used as an armor temper.

(a) A null trigger activates and fires, causing the coun-
cil member to ask for a lucerne leaf.

8. Councilmember Ithakis directs the player to Farmer
Joen, who gives the player the leaf.

(a) A collection subquest is activated, which activates
another null trigger which in turn directs the player
to Farmer Joen.

(b) A converse trigger is activated, looking for the
player to mention “need” to Farmer Joen.

(c) When the player says the magic word, the con-
verse trigger fires causing Farmer Joen to give the
player a leaf.

(d) A give trigger activates, requiring the player to de-
liver the leaf to Councilmember Ithakis.

9. Councilmember Ithakis asks the player to tell an NPC
named Nech Ilya about finding lucerne leaves.

(a) Councilmember Ithakis demands that the player
inform Nech Ilya that he (Councilmember Ithakis)
now has a lucerne leaf.

(b) A subquest trigger activates, which in turn acti-
vates a proximity trigger around the area where
Nech Ilya will appear.

10. The player must find Nech Ilya, and speak with him.

(a) When the player enters the area covered by the
proximity trigger, it fires

(b) A signal is scheduled which will spawn Nech Ilya.
(c) Another signal is scheduled, which will periodi-

cally print a random tracking message and then
reschedule itself.

(d) Eventually Nech Ilya spawns, and all of the signals
are canceled.

(e) A converse trigger is activated.
(f) When the player hails Nech Ilya, the converse trig-

ger fires. Nech Ilya thanks the player, and the sub-
quest completes.

11. The next time the player meets him, Councilmember
Ithakis gives them the metal panels.

(a) A null trigger fires, causing Councilmember
Ithakis to deliver the message.

12. Blacksmith Jones suggests that the player hunt green-
scale vipers to obtain a venom sac.

(a) A null trigger fires, causing Blacksmith Jones to
deliver the message.

(b) An acquire trigger is activated, waiting for 1 snake
venom sack to enter the player’s inventory.

13. The player must locate these snakes and begin killing
them. The snakes will rarely have an intact venom sac
once killed.

(a) When a venom sac enters the inventory, the ac-
quire trigger fires and the subquest completes.

14. The player delivers the materials to Blacksmith Jones,
who makes the armor piece.

15. Blacksmith Jones gives the new armor piece to the
player, and asks that they deliver it to an NPC named
Akins.

(a) A give trigger activates, waiting for the player to
give Akins the armor piece.

16. The player finds Akins and gives him the armor.

(a) When the player gives Akins the armor, the give
trigger completes, and the subquest completes.

17. Upon returning to Blacksmith Jones, the quest com-
pletes and the Blacksmith rewards the player.

CONCLUSION AND FUTURE WORK

We have demonstrated how procedurally generated quests
can be integrated into Everquest. This work was done in sup-
port of our earlier quest generation research, as it establishes
some of our earlier claims of generality. This is the first case
we are aware of where procedural quest generation was ap-
plied to a AAA MMORPG. We believe that most if not all
MMORPGs require this level of quests. Our generator cre-
ates quests that are playable within an existing game, requir-
ing only that the quest is imported into the game server. In
its current state, the framework requires some input from a
human designer in the form of character names and dialog,
which suggests that we explore dialog generation techniques.
The current generator creates boilerplate names and dialog,
but this is the bare minimum needed for the quest to func-
tion. At the same time we observe that while a narrative can
be written to explain the quest graph, we suspect that players
might prefer a more traditional story arc.
We would very much like to provide evaluation of this sys-
tem in future work, after we have resolved several technical
issues with measurement.

REFERENCES

Aarseth E., 2004. Quest Games As Post-Narrative Discourse.
Narrative Across Media: The Languages of Storytelling,
361–376.

Ashmore C. and Nitsche M., 2007. The Quest in a Gener-
ated World. In Proc. 2007 Digital Games Research As-
soc.(DiGRA) Conference: Situated Play. 503–509.

107

Bateman C. and Boon R., 2005. 21st Century Game Design
(Game Development Series). Charles River Media, Inc.,
Rockland, MA, USA. ISBN 1584504293.

Caltagirone S.; Keys M.; Schlief B.; and Willshire M.J.,
2002. Architecture for a Massively Multiplayer Online
Role Playing Game Engine. Journal of Computing Sci-
ences in Colleges, 18, no. 2, 105–116.

Dickey M.D., 2007. Game Design and Learning: A Con-
jectural Analysis of How Massively Multiple Online Role-
playing Games (MMORPGs) Foster Intrinsic Motivation.
Educational Technology Research and Development, 55,
no. 3, 253–273.

Doran J. and Parberry I., 2010. Controlled procedural ter-
rain generation using software agents. IEEE Transactions
on Computational Intelligence and AI in Games, 2, no. 2,
111–119.

Doran J. and Parberry I., 2011. A Prototype Quest Genera-
tor Based on a Structural Analysis of Quests from Four
MMORPGs. In Proceedings of the 2nd International
Workshop on Procedural Content Generation in Games.
ACM, 1–8.

Grey J. and Bryson J.J., 2011. Procedural Quests: A Focus
for Agent Interaction in Role-Playing Games. In Proceed-
ings of the AISB 2011 Symposium: AI & Games. Univer-
sity of Bath, 3–10.

Joslin S.; Brown R.; and Drennan P., 2006. Modelling Quest
Data for Game Designers. In Proceedings of the 2006
International Conference on Game Research and Devel-
opment. Murdoch University, 184–190.

Kybartas B., 2013. Design and Analysis of ReGEN. Ph.D.
thesis, McGill University.

Reed A.A.; Samuel B.; Sullivan A.; Grant R.; Grow A.;
Lazaro J.; Mahal J.; Kurniawan S.; Walker M.A.; and
Wardrip-Fruin N., 2011. A Step Towards the Future of
Role-Playing Games: The SpyFeet Mobile RPG Project.

In Proceedings of the Seventh Artificial Intelligence and
Interactive Digital Entertainment Conference.

Smed J.; Kaukoranta T.; and Hakonen H., 2002. Aspects of
Networking in Multiplayer Computer Games. Electronic
Library, The, 20, no. 2, 87–97.

Smith G.; Anderson R.; Kopleck B.; Lindblad Z.; Scott L.;
Wardell A.; Whitehead J.; and Mateas M., 2011. Situating
Quests: Design Patterns for Quest and Level Design in
Role-Playing Games. In Interactive Storytelling, Springer.
326–329.

Sullivan A.; Mateas M.; and Wardrip-Fruin N., 2011. Making
Quests Playable: Choices, CRPGs, and the Grail Frame-
work. Leonardo Electronic Almanac.

Tomai E.; Salazar R.; and Salinas D., 2012a. A MMORPG
Prototype for Investigating Adaptive Quest Narratives and
Player Behavior. In Proceedings of the International Con-
ference on the Foundations of Digital Games. ACM.

Tomai E.; Salazar R.; and Salinas D., 2012b. Adaptive
Quests for Dynamic World Change in MMORPGs. In Pro-
ceedings of the International Conference on the Founda-
tions of Digital Games. ACM, 286–287.

Tronstad R., 2002–2003. A Matter of Insignificance: The
MUD Puzzle Quest as Seductive Discourse. CyberText
Yearbook.

Wardrip-Fruin N.; Mateas M.; Dow S.; and Sali S., 2009.
Agency Reconsidered. Breaking New Ground: Innovation
in Games, Play, Practice and Theory Proceedings of Di-
GRA 2009.

Zook A.; Lee-Urban S.; Riedl M.O.; Holden H.K.; Sottilare
R.A.; and Brawner K.W., 2012. Automated Scenario Gen-
eration: Toward Tailored and Optimized Military Training
in Virtual Environments. In Proceedings of the Interna-
tional Conference on the Foundations of Digital Games.
ACM, 164–171.

108

ONLINE SKILL LEVEL CLASSIFICATION OF REAL-TIME STRATEGY GAME PLAYERS

Jason M. Blackford and Gary B. Lamont
Department of Electrical and Computer Engineering

Air Force Institute of Technology
2950 Hobson Way

Dayton, OH 45433, USA
email: gary.lamont@afit.edu

KEYWORDS
Player Model, Skill Level, Real-Time Strategy

ABSTRACT

This paper introduces a novel approach for measuring a real-
time strategy (RTS) game player’s skill level while the game
is played. The method scores a player based on the time dis-
tance between strategic decisions made by the player during
a single game session. The results of this work demonstrate
that skilled players score within a specific range regardless of
the strategy executed. Our approach can classify a player as
skilled or unskilled for the StarCraft: Brood War game and
the Spring Engine Balanced Annihilation game.

INTRODUCTION

Our investigation addresses the question of how to measure
a real-time strategy (RTS) game player’s skill level in exe-
cuting a known strategy while the game is played. We ad-
dress player modeling and two approaches for building RTS
game player models. Finally, we introduce our strategy exe-
cution skill level metric Distance Between Decisions (DBD),
and empirically demonstrate the potential of our metric to be
used for measuring a player’s skill level in the RTS games
StarCraft: Brood War and Balanced Annihilation.

Background

In an RTS game, players execute a strategy to advance the
skills and technology of their cities and armies in order to
defeat their opponent. These strategic skill and technology
advancements are defined in the technology tree of an RTS
game. A technology tree is a large tree graph that encom-
passes all the strategic paths a player can traverse to defeat an
opponent. Execution of a strategy in an RTS game is a plan-
ning problem consisting of two components: goal-ordering
and build order execution (Blackford and Lamont 2014).

One way to view strategy execution is as a set of goals to be
accomplished. A goal can be to collect a finite amount of
resources (e.g. wood, gas, gold, etc) or to build a new build-
ing, military upgrades, or produce an attack wave. Good
goal-ordering means laying out a plan of execution that

takes into consideration resource allocations, dependencies
between goals, and the total time to execute the strategy. For
more on the importance of goal-ordering in RTS games refer
to (Blackford and Lamont 2014).

As for speed of execution of a strategy, a player’s build orders
will determine how quickly the player reaches their goals. A
build order is an ordered sequence of actions or decisions a
player makes to execute their chosen strategy (Kovarsky and
Buro 2006). To ensure skilled or near-optimal player perfor-
mance, measured in resource allocations and time to reach
a goal, good build orders must be executed by the player.
We contend that the ability of a player to execute good goal-
ordering and good build orders can be used to measure a
player’s skill level.

PLAYER MODELING

This section provides a brief description of player model-
ing and an overview of two approaches for building a player
model in RTS games. Both approaches provide insight on
how to begin creating a player model through the use of
player logs and generating player features for classification.
These discussions define the foundation of our approach.

A player model is an abstraction of a player defined in terms
of their actions taken during gameplay. Player models allow
game designers to determine a player’s play style and make
enhancements to the game state based on the identified play
style (Drachen et al. 2009)(Weber et al. 2011). In an RTS
game, a play style is defined differently from a first-person
shooter (FPS). In an FPS, understanding a players play-style
may simply come down to aggressive or defensive as ob-
served in research conducted on Tomb Raider: Underworld
by (Drachen et al. 2009). However, in an RTS game, a play
style can reasonably be considered the type of strategy the
player is executing. For RTS games, there are generally a
small set of strategies a player can select. Each has a set of
key actions that make the strategy unique from other strate-
gies. For example, (Weber and Mateas 2009) identify six
strategies in the StarCraft: Brood War game. A player can-
not engage in an RTS game without choosing a strategy even
if the strategy is a bad one.

109

Supervised Learning

The first RTS player modeling technique to be examined
is a machine learning approach introduced by (Weber and
Mateas 2009) for determining a player’s strategy in an RTS
game. The premise of (Weber and Mateas 2009) is to en-
code a player’s RTS play style information, collected in logs
during gameplay, into feature vectors, and then to use super-
vised learning algorithms to classify the feature vectors with
respect to predefined strategies or labels. The importance of
the feature vectors must be stated clearly. The vectors en-
code information on the player’s path in the technology tree.
A player’s path is dictated by their strategy. Weber demon-
strates successfully the ability of supervised learning algo-
rithms to classify player strategies. The learning algorithms
identify the player strategy as the feature vector is recreated
over time simulating real-time, in-game classification of a
player.

Support Vector Machine

Introduced by (Avontuur 2012) is the use of an opti-
mized support vector machine (SVM) to classify player
skill level against the StarCraft: Brood War player rank-
ings. Avontuur uses 44 features derived from player
log data to classify player skill level. These features
include player actions, resources and timing information.

Avontuur groups all RTS player features for classification
into several categories including: visuospatial attention and
motor skills, economy, technology, and strategy. The visu-
ospatial attention and motor skills category encapsulates the
assumption that an expert player makes faster decisions than
a non-expert player. A measure of this feature is the actions
per minute (APM) or number of mouseclicks a player exe-
cutes. The next feature category is economy which encodes
the effectiveness of the player to gain resources needed to
advance in the technology tree as well as support defensive
and offensive operations. The technology category is focused
on capturing the total number of upgrades the player com-
mits, research advancements the player engages, and their
level within the technology tree. The final category is strat-
egy which encompasses the types of units and buildings the
player creates as well as supplies used and gained. Avontuur
demonstrates limited success in performing offline skill level
classification using these feature categories and an SVM.

METHODOLOGY

Several assumptions are made for our approach. First, for
any RTS game there is a finite set of known strategies players
can choose to execute. Secondly, as discussed in (Avontuur
2012), skilled RTS players exemplify motor and visuospa-
tial skills that exceed those of other skill levels, implying
the ability to make faster strategic decisions. Lastly, given
that executing a strategy skillfully entails good goal-ordering
and good build orders, then it is reasonable to assume that a

player’s skill level can be measured to some degree by their
ability to execute a strategy. From these assumptions we con-
jecture that by knowing a player’s strategy and the timing of
the strategic decisions to execute this strategy, a player’s abil-
ity to execute the strategy can be estimated.

Actions Per Minute vs Strategic Decisions

For computing our metric, we utilize player log data that is
captured during a single game session. The log data is used
to build feature vectors that we apply our metric to in order
to estimate player skill. The feature vector of each player
includes strategic decisions only. We define strategic deci-
sions as actions executed by the player that exist within the
player’s technology tree (e.g. unit type creation, upgrade,
etc) and are determined by a specific RTS game strategy and
it’s goals. Our definition of strategic decisions is what dis-
tinguishes our approach from measuring actions per minute
(APM). Actions per minute includes actions like clicking on
units and giving commands - these are not strategic decisions
but tactical decisions. We do not include in our computation
every action or mouseclick a player executes. The feature
vectors capture strategic decisions such as the construction of
a first, second or third factory for the StarCraft Terran race or
strategic upgrades to troops. These strategic decisions can be
used to classify a player’s strategy as demonstrated in (Weber
and Mateas 2009) whereas APM cannot.

Distance Between Strategic Decisions

There are two types of DBD metrics: arithmetic DBD (1) and
geometric DBD (2). The E represents the length of the orig-
inal player vector or the number of strategic decisions defin-
ing the feature vector; N is the number of features equal to
zero or the total number of strategic decisions that were not
made by the player. The values Di+1 and Di are the times-
tamps for the completion of an action i+1 which occurs after
an action i. Timestamps are recorded as gamecycles which
are computed by the frames per second times the number of
seconds that have elapsed. When using geometric DBD (2)
feature values of zero must be removed from the product.

(
∑E

i=1(Di+1 −Di)) + (ε ∗N)

(E −N)
(1)

E−N

√√√√(
E∏
i=1

(Di+1 −Di)) ∗ (ε ∗N) (2)

Averaging features with a value of zero will drive the average
down, thereby making an unskilled player appear skilled for
being indecisive. To remove this issue, a penalty of ε game
cycles for each zero, or non-decision, present in a player’s
vector is added. In addition, rather than divide by E for
computing the average, only the total number of decisions
the player actually makes, E − N , is used. The arithmetic
DBD (1) provides a single value or score that shows which

110

player executed the strategy more quickly throughout a sin-
gle game session when compared to another player’s DBD
score. On the other hand, the geometric DBD (2) provides
a single value that captures the time consistency between
strategic decisions in a players strategy execution. Given two
players executing the same strategy, the player with the lower
DBD scores is the more skilled player in executing the strat-
egy.

EXPERIMENTATION

For experimentation we examined data from two RTS games
including StarCraft: Brood War and Balanced Annihilation.
We chose StarCraft: Brood War because of the numerous
player data sets readily available and the results of (Weber
and Mateas 2009) strategy classification investigation. Bal-
anced Annihilation was used because it was apart of a larger
investigation that defined and solved the RTS game multi-
objective build-order problem discussed in (Blackford 2014).

StarCraft: Brood War Data Set

The RTS player game data used for experimentation is the
same data used in (Weber and Mateas 2009). The data con-
sists entirely of expert StarCraft: Brood War (SC1) player
vectors. We limited experimentation to a single game race,
the Terran race, and three of the six strategies for the Terran
race as discussed in (Weber and Mateas 2009). The three
strategies are commonly referred to as Bio, Fast Drop Ship,
and Two Factory. The data includes 740 expert player vec-
tors executing Bio, 66 expert player vectors executing Drop
Ship, and 18 experts executing Two Factory for the Terran
race versus the Zerg race. Each player vector is a feature
vector that includes 50 strategic decisions a player can make
in a single game session. In addition to the expert data cap-
tured by (Weber and Mateas 2009), we generated five begin-
ner player vectors by playing the SC1 game as Terran vs Zerg
executing the Bio strategy. These five vectors are the un-
skilled class. We utilized the SC1 analysis tool LordMartin
Replay Browser (LMRB) to build our feature vectors from
the recorded player log data.

Balanced Annihilation Data Set

For experimentation with the Balanced Annihilation (BA)
game we used two agents. Agent LJD is a BA multi-scale AI
developed at the Air Force Institute of Technology (AFIT)
for the Spring Engine by (Trapani 2012). We consider agent
LJD to behave at an expert level with respect to strategy ex-
ecution because the agent’s strategy manager is scripted by
an expert player. Agent BOO (Build Order Optimization)
is a modified version of agent LJD. Agent BOO utilizes a
multi-objective genetic algorithm (MOEA), case-base rea-
soning (CBR), and a simulator as a strategic planning tool
to discover and execute build orders (Blackford and Lam-
ont 2014) and (Blackford 2014). We collected player data
for agents LJD and BOO by having them execute the same

strategies on the same maps against a non-existent opponent.
The strategies executed are defined by (Trapani 2012) and
include Tank Rush, Expansion, and Turtle.

RESULTS

Applying DBD to the SC1 data set reveals that expert players
score within a specific DBD range regardless of the strategy
they execute. With respect to BA, the DBD metric is able
to identify the more skilled player when the same strategy is
executed.

StarCraft: Brood War

The arithmetic and geometric DBD results of Fig. 1 and Fig.
2 include an ε of 1000 game cycles. A penalty of 1000 game
cycles is close to the average window between strategic de-
cisions. At 25 FPS 1000 game cycles is 40 seconds between
strategic decisions. In addition, it empirically provides the
best separation between the skilled and unskilled data as de-
picted in the histograms in Fig. 1. Depicted in Fig. 1 is a set
of known expert SC1 players in blue and a set of unskilled
SC1 players in red. By including penalty cycles, the separa-
tion of the data is very clear. This small example validates
the utility of a penalty.

Figure 1: The top histogram demonstrates the separation
without a penalty. The histogram on the bottom applies the

penalty.

111

In Fig. 2 are the histograms that depict the distribution of ex-
pert players after the arithmetic DBD skill level metric (1) is
applied to the player vectors. Observe that the means of the
three strategies are within the range of 1466 to 1572 game-
cycles with a standard deviation between 250 and 308 game-
cycles.

Figure 2: These histograms depict the distribution of the
arithmetic DBD metric for expert players of StarCraft:

Brood War.

From Fig. 3 it is clear that experts across the three strate-
gies operate within a distinct geometric DBD range between
1.75 to 1.8. Notice that the arithmetic means of the geometric
DBD for the expert strategies are all close to 1.8 and the cor-
rected sample standard deviations are close to 0.2. This data

reveals a consistency in expert strategy execution regardless
of the strategy being executed.

Figure 3: These histograms depict the distribution of the
geometric DBD metric for expert players of StarCraft:

Brood War.

Balanced Annihilation

The penalty, ε, is set to 1000 cycles. Charted in Fig. 4 is the
build order timeline of the agents. The timeline displays the
goals and goal-ordering of the Tank Rush strategy for each
agent. The associated dark and light arrows with each goal
relate to the timing of a build order executed by the agents.
The images on the arrows depict the unit that was produced
by the agent at a time given by the timestamps above each

112

6.7 34.0 57.1 101.718.9 45.9 71.4

6.9 32.7 58.5 97.919.2 43.7 86.5

Goal 2

(Attack Wave 1)

112.7 136.4 160.1

121.5 140.2 157.4

Goal 3

(Attack Wave 2)

183.3 210.8 238.2

183.1 207.0 227.5

Goal 4

(Attack Wave 3)

266.4 294.7 322.5

258.6 292.3 303.2

102

98

160

157

238

228

323

303

Goal 1

(Economy Setup)

Tank Rush Strategy

+1 +3

Metal
Extractor

Solar
Panel

Vehicle
Plant

Stumpy
Tank

Figure 4: Build Orders for the Tank Rush Strategy.

image. The overall time to complete a goal is captured at
the head of the arrows. The agent that reached the goal the
fastest has a star next to their arrow. The arrows only iden-
tify the strategic decisions that define the Tank Rush strategy.
Additional actions that are not strategic decisions are identi-
fied with a dashed box and are excluded from the DBD com-
putation. If an agent produced more buildings or units than
another agent while executing the same strategy, a + symbol
and numeric quantity to the right of a unit is presented next
to the agent’s name at the top. From Fig.4, it is clear that
agent BOO executes the strategy faster than agent LJD.

Table 1 depicts strategic goals for each strategy and the time
in seconds when the agents reached the goal. The bolded
timestamps in the table identify which agent reached the goal
first. In Table 1, the arithmetic DBD values for the Tank Rush
strategy agree with the conclusion that agent BOO completes
the overall strategy execution faster than agent LJD. The
geometric DBD also supports that agent BOO has a tighter
timing consistency in executing the Tank Rush strategy.
For the Expansion strategy, agent BOO has a lower arith-
metic DBD score but a higher geometric score. The lower
arithmetic DBD reflects the fact that agent BOO consis-
tently outperformed agent LJD in achieving five of the six
Expansion goals first. The reason for the higher geometric
DBD score is that agent BOO created seven additional units
not defined by the strategy as strategic decisions. These
additional actions introduced delay time between strategic
decisions and are reflected in the geometric score. Since
agent LJD only executed the necessary strategic decisions
dictated by the strategy, it has a lower geometric score. This

is also true for the Turtle strategy where agent BOO created
eight additional units more than the strategy required.

Table 1: DBD Scores. Goal(G); Turtle (TR); Expansion
(Ex); Turtle (Tu); DBD is Arithmetic/Geometric

Agent Strat. G1 G2 G3 G4 G5 G6 A/Geo DBD
LJD TR 102 160 238 323 - - 18.71/1.12
BOO TR 98 157 228 303 - - 15.69/0.94
LJD Ex 219 429 573 643 724 839 12.9/0.98
BOO Ex 173 356 519 611 706 848 12.8/0.99
LJD Tu 120 267 434 559 622 865 13.73/0.978
BOO Tu 119 231 428 546 618 834 13.02/0.985

CONCLUSION

We have provided interesting scoring metrics for estimating
player skill level for RTS games including StarCraft: Brood
War and Balanced Annihilation. The DBD metric can be uti-
lized to estimate a player’s ability to execute a known strat-
egy. In the future, we intend to explore the use of a larger
data set containing a variety of skill levels with the objective
of determining DBD thresholds between the skill levels and
classifying a player in real-time.

REFERENCES

Avontuur T., 2012. Modeling player skill in Starcraft II. Mas-
ter’s thesis, Tilburg University.

Blackford J., 2014. Online Build-Order Optimization for
Real-Time Strategy Agents Using Multi-Objective Evolu-
tionary Algorithms. Master’s thesis, Air Force Institute of
Technology.

Blackford J. and Lamont G., 2014. ”The Real-Time Strat-
egy Game Multi-Objective Build Order Problem”. In 10th
AAAI Conference on Artificial Intelligence and Interactive
Digital Entertainment. 105–111.

Drachen A.; Canossa A.; and Yannakakis G.N., 2009.
”Player modeling using self-organization in Tomb Raider:
Underworld”. 2009 IEEE Symposium on Computational
Intelligence and Games, 1–8.

Kovarsky A. and Buro M., 2006. ”A First Look at Build-
Order Optimization in Real-Time Strategy Games”. In
Proceedings of the GameOn Conference. 18–22.

Trapani L.D., 2012. A Real-time Strategy Agent Framework
and Strategy Classifier for Computer Generated Forces.
Master’s thesis, Air Force Institute of Technology.

Weber B. and Mateas M., 2009. ”A data mining approach to
strategy prediction”. 2009 IEEE Symposium on Computa-
tional Intelligence and Games, 140–147.

Weber B.; Mateas M.; and Jhala A., 2011. ”Using Data Min-
ing to Model Player Experience”. In Proceedings of the
FDG Workshop on Evaluating Player Experience, 2011.

113

114

AUTHOR
LISTING

115

116

117

