3"Y ASIAN CONFERENCE
ON

INTELLIGENT GAMES AND SIMULATION

GAME-ON’ASIA 2011

3"Y ASIAN SIMULATION

TECHNOLOGY CONFERENCE

ASTEC’2011

EDITED BY

Chek Tien Tan

MARCH 1-3, 2011
Digipen Institute of Technology

SINGAPORE

A Publication of EUROSIS-ETI

Bulletstorm Picture copyright UBISOFT Corporation
Assassin’s Creed Il Picture copyright UBISOFT Corporation

39 Asian Conference
on

Intelligent Games and Simulation

3 Asian Simulation

Technology Conference

SINGAPORE
MARCH 1 - 3, 2011

Organised by
ETI
Sponsored by
EUROSIS
Digipen
Co-Sponsored by
Ghent University

University of Skovde

The Higher Technological Institute

Hosted by
Digipen Institute of Technology

Singapore

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

GAMEON-ASIA EDITORS

General Conference Chair
Chek Tien Tan, Digipen Research Centre, Singapore

General Program Chair

Donny Soh, Institute for Infocomm Research, Agency for Science,
Technology and Research (A*STAR)

Past Conference Chair

Weniji Mao, Chinese Academy of Sciences, Institute of Automation, Beijing, China

INTERNATIONAL PROGRAMME COMMITTEE

Christian Bauckhage, University of Bonn, Bonn, Germany
Christos Bouras, University of Patras, Patras, Greece
Selmer Bringsjord, Rensselaer Al & Reasoning, Troy, USA
Tony Brooks, Aalborg University Esbjerg, Esbjerg, Denmark
Cedric Buche, CERV, Plouzane, France
Stefano Cacciaguera, INGV, Bologna, Italy
Martin Fredriksson, BTH, Ronneby, Sweden
Anders Hast, University of Gavle, Gavle, Sweden
Chris Joslin, Carleton University, Ottawa, Canada
Pieter Jorissen, Karel de Grote Hogeschool, Hoboken, Belgium
Michael J. Katchabaw, The University of Western Ontario, Ondon, Canada
Wim Lamotte, Hasselt University, Diepenbeek, Belgium
Joern Loviscach, Fachhochschule Bielefeld, Bielefeld, Germany
Lachlan M. MacKinnon, University of Abertay, Dundee, United Kingdom
lan Marshall, Coventry University, Coventry, United Kingdom
Sebastian Matyas, University of Bamberg, Bamberg, Germany
Zhigeng Pan, Zhejiang University, China
lan Parberry, University of North Texas, Denton, USA
Borut Pfeifer, Sony Online Entertainment, San Diego, USA
Marco Remondino, University of Turin, Turin, ltaly
Marco Roccetti, University of Bologna, Bologna, Italy
Marcos A Rodrigues, Sheffield Hallam University, Sheffield, United Kingdom
Jean-Christophe Routier, University of Lille, Lille, France
Russell Shilling, Office of Naval Research, Arlington, USA
Ben St.Johns, Siemens, Munich, Germany
Shea Street, Tantrum Games, Merrillville, USA
Krzysztof Skrzypczyk, Silesian Technical University, Gliwice, Poland
Stephen Tang, School of Arts and Science, Selangor, Malaysia
Hiroyuki Tarumi, Kagawa University, Kawaga, Japan
Joao Tavares, University of Porto, Porto, Portugal
Andy Thomason, Sony R&D, United Kingdom
Amund Tveit, NTNU, Trondheim, Sweden
Jos Uiterwijk, University of Maastricht, Maastricht, The Netherlands
Richard Wages, Nomadslab, Cologne, Germany
Tina Wilson, Open University, Milton Keynes, United Kingdom
Kevin Wong, Murdoch University, Rockingham, Australia

ASTEC EDITORS
General Conference Chair

Chek Tien Tan, Digipen Research Centre, Singapore

General Program Chair

Donny Soh, Institute for Infocomm Research, Agency for Science,
Technology and Research (A*STAR)

Past Conference Chair
Wenji Mao, Chinese Academy of Sciences, Institute of Automation, Beijing, China

INTERNATIONAL PROGRAMME COMMITTEE
Simulation Methodology

Hamid Demmou, LAAS/CNRS, Toulouse Cedex France
Helge Hagenauer, Universitaet Salzburg, Salzburg, Austria
David Hill, Universite Blaise Pascal, Aubiere, France
Vladimir Janousek, Brno University of Technology, Brno, Czech Republic
Xiaolin Hu, Georgia State University, Atlanta, USA

Panajotis T. Katsaros, Aristotle University Thessaloniki, Thessaloniki, Greece
Henrikas Pranevicius, Kaunas University of Technology, Kaunas, Lithuania
Damien Trentesaux, LAMIH/SP, le mont Houy, Valenciennes cedex, France

Simulation Tools

Xiaochen Li, Institute of Automation, Chinese Academy of Sciences, China
Renate Sitte, Griffith University, Gold Coast, Australia
Alfonso Urquia, UNED, Madrid, Spain

Agent Based Simulation

Marina Bagic, University of Zagreb, Zagreb, Croatia
Andre Campos, Natal RN, Brazil
Joel Colloc, Universite Lumiere Lyon 2, Lyon, France
Jacinto Davila, Universidad de Los Andes. Merida. Venezuela
Julie Dugdale, Institut IMAG, Grenoble Cedex, France
Alfredo Garro, Universita' della Calabria, Arcavacata di Rende, (CS)ltaly
Weniji Mao, Chinese Academy of Sciences, Beijing, P.R. China
Juan Merelo, Telefonica, Spain
Lars Moench, FernUniversitaet in Hagen, Hagen, Germany
Andreea Monnat, University of Luxembourg, Luxembourg
Michael J. North, Argonne National Laboratory, Argonne, USA
Eugenio Oliveira, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
Isabel Praca, Instituto Superior de Engenharia do Porto, Porto, Portugal
Maria Joao Viamonte, Instituto Superior de Engenharia do Porto, Porto, Portugal
Bejrouz Zarei, Management College of Tehran University, Tehran, Iran

Aerospace Simulation

Nima Amanifard, University of Guilan, Rasht, Iran
Ernst Kesseler, NLR, Amsterdam, The Netherlands
Zdravko Terze, University of Zagreb, Zagreb, Croatia
Kai Virtanen, Helsinki University of Technology, HUT, Finland

Engineering Simulation

Chrissanthi Angeli, Technological Education Institute of Piraeus, Athens, Greece
Jacques Andre Astolfi, Brest Armess, France
Josko Dvornik, University of Split, Croatia
Rene Heinzl, TU Wien, Vienna, Austria
Feliz Teixeira, University of Porto, Porto, Portugal
Morched Zeghal, National Research Council Canada, Ottawa, Canada

INTERNATIONAL PROGRAMME COMMITTEE

Simulation in Transport

Martin Adelantado, ONERA-CT/DPRS/SAE, Toulouse cedex, France
Ingmar Andreasson, KTH Vehicle Dynamics, Stockholm, Sweden
Abs Dumbuya, TRL Limited, Wokingham, United Kingdom
Rahila Yazdani, Carrickfergus, Co Antrim, United Kingdom

Robotics Simulation

Lyuba Alboul, Sheffield Hallam University, Sheffield, United Kingdom
Jorge M. Barreto, Campeche, Florianopolis, SC, Brazil
Nihat Inanc, Yuzuncu Yil University, Van, Turkey
Andres Kecskemethy, University Duisburg-Essen, Duisburg, Germany
Martin Mellado, Polytechnic University of Valencia (UPV), Valencia, Spain
Bogdan Raducanu, Campus UAB, Bellaterra (Barcelona), Spain
Ewald von Puttkamer, Kaiserslautern, Germany

Simulation in Manufacturing

Haslina Arshad, Universiti Kebangsaan Malaysia, Selangor, Malaysia
Alexander Felfernig, University of Klagensfurt, Klagensfurt, Austria
Michel Gourgand, Universite Blaise Pascal - Clermont Ferrand Il, Aubiere, France
Peter Lawrence, Australian Catholic University, Fitzroy, Australia
Tina Lee, National Institute of Standards and Technology
J. Macedo, Universite du Quebec a Montreal, Montreal, Canada
Claude Martinez, IUT de Nantes, Carquefou, France
Habtom Mebrahtu, Anglia Ruskin University, Chelmsford, United Kingdom
Henri Pierreval, IFMA, Aubiere Cedex, France
Mehmet Savsar, College of Engineering & Petroleum, Kuwait University
Renate Sitte, Griffith University, Gold Coast Mail Centre, Australia

Simulation in Electronics

Mohsen Bahrami, Amirkabir Univ.of Technology, Tehran, Iran
Clemens Heitzinger, Purdue University, West Lafayette, USA
Javier Marin, Universidad de Malaga, Malaga, Spain
Maurizio Palesi, University of Catania, Catania, Italy

Simulation in Telecommunications

Alexandre Caminada, Universite de Technologie de Belfort, Belfort Cedex, France
Domenico Giunta, European Space Agency, Noordwijk, The Netherlands
Celso Massaki Hirata, CTA-ITA-IEC, S.J.Campos - SP - Brazil
Andreas Mueller, Institute of Mechatronics, Chemnitz, Germany

Automotive Simulation

Reza Azedegan, Urmia, Iran
Ignacio Garcia Fernandez, Universidad de Valencia, Valencia, Spain
Aziz Naamane, LSIS-EPUM, Marseille, France
Guodong Shao, NIST, Gaithersburg, USA

Graphics Simulation

Carlos Luiz N. dos Santos, UFRJ/COPPE/PEC/LAMCE, RJ-Brazil
Anders Hast, University of Gavle, Gavle, Sweden
Sudhir Mudur, Concordia University, Montreal, Canada
Daniela M. Romano, University of Sheffield, Sheffield, United Kingdom
Alfonso Urquia, ETSI UNED, Madrid, Spain

Ecological Sustainable Development
Philippe Geril, ETI Bvba, Ostend, Belgium

\

GAME ON’ASIA
2011

ASTEC’2011

© 2011 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Simulation Society. Permission is
granted to photocopy portions of the publication for personal use and for the use of students providing credit is given
to the conference and publication. Permission does not extend to other types of reproduction or to copying for
incorporation into commercial advertising nor for any other profit-making purpose. Other publications are encouraged
to include 300- to 500-word abstracts or excerpts from any paper contained in this book, provided credits are given to
the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be
used in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in these Proceedings have been peer reviewed
EUROSIS-ETI Publications are Thomson-Reuters and INSPEC referenced

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Greenbridge NV,
Wetenschapspark 1, Plassendale 1, B-8400 Ostend, Belgium.

EUROSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400
Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium
Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium

EUROSIS-ETI Publication

ISBN: 978-9077381-60-1
EAN: 978-9077381-60-1

Vi

Preface

Welcome to the third joint conference consisting of the annual Asian Conference
on Simulation and Al in Games (GAMEON-ASIA), and the annual Asian
Simulation Technology Conference (ASTEC). The aim of this joint conference is
to consolidate work in the technical aspects of games and simulations with
special focuses in artificial intelligence, physics and graphics.

As a collective effort, annual GAMEON conferences have been held
internationally in various parts of the world, which includes countries in Europe,
North-America, the Middle-east and Asia. GAMEON conferences represent a
prominent avenue for academics and practitioners alike to present novel
research work in the video games domain. ASTEC on the other hand provides a
similar avenue but focuses on work in the industrial simulations domain.

This year, GAMEON-ASIA 2011 brings several cutting-edge research papers in
game artificial intelligence, computer graphics, game methodology and game
design. ASTEC 2011 also presents to you papers from the management and
security domains. As usual, all accepted papers have undergone rigorous
reviews from the International Program Committee. Also include in our program
are several invited talks from both academia and the games industry. With their
expertise in computer game development, computer vision and computer
graphics, we believe that much insightful knowledge could be gained to aid your
game and simulation projects.

On behalf of the entire organizing committee, we wish to thank every contributing
author for their effort in their preparations to submit their work in this conference.
Our heartfelt thanks also goes to all the members of the International Program
Committee for their precious time devoted to the review process. We also wish to
thank all the program chairs, session chairs, presenters and attendees. Special
mention goes to the Executive Editor, Philippe Geril, who has always given his
utmost effort in making sure every detail falls into place. Last but not least, our
gratitude goes to the European Multidisciplinary Society for Modelling and
Simulation Technology (EUROSIS), for making this conference possible.

Lastly, we wish all of you a fruitful conference and an enjoyable stay in the
unique city of Singapore. Again, we thank you for your valuable time in
supporting and participating in this conference.

Chek Tien Tan
GAMEON-ASIA 2011 General Conference Chair
and ASTEC 2011 General Conference Chair

Preface. ... IX
Scientific Programme. ... 1
XU Lo gl =3 1 4V 77

INVITED SPEECH

Real Time Rendering of Amorphous Effects
Golam Ashraf and KOh KOK WENQ ...cceieeeeemmnciiiiiirressesnssssssssesssssnssssssssssessssnnnnns 5

GAME METHODOLOGY AND DESIGN

Augmented Reality Games; a Review

Chek Tien Tan and DONNY SON......cccciieieeemmncriesserrensnssssssssssesssssnnssssssssssssssnnnnns 17
The 6-11 Framework: a new Methodology for Game Analysis and Design
(0 =T (o TN 91| 25
Work with Mii: Immersing the Body in the Wii Fit Program

Maria Emilynda Jeddahlyn Pia V BEN0SaAceuciiieemmcirrrmmnssseremnsssssssmssnssssnmssnens 30
GAME Al

A Model for Visitor Circulation Simulation in Second Life
Kingkarn Sookhanaphibarn, Ruck Thawonmas, Frank Rinaldo and
(NE=To [E= N1 F=To | U= a =1 el I o F= 110 =1 o o 1 35

Improved Pareto Optimum passing using varied Kicking Speed in

Soccer Games
Nattawit Tanjapatkul and Vishnu Kotrajarascccceeeeerremmsssrrrsmsssssrssmssssssssnnssnees 38

STRATEGY GAMING

Difficulty balancing in Real-Time Strategy Gaming Session using
Resource Production Adjustment

Piyapoj Kasempakdeepong and Vishnu Kotrajarascccccceveeeeeecsreremmnsssesssnsnnens 47

Strategies to solve a 4x4x3 domineering Game
N T =1 i = o 16T =T [0 52

Xl

CONTENTS

CONTENTS

GRAPHICS

Real-Time Object-Space Edge Detection using OpenCL
Dwight HOUSE @nd Xin Li.eeuueeeeees s 63

Enhanced Cellular Automata for Image Noise Removal

Abdel latif Abu Dalhoum, Ibrahim Al Dhamari, Alfonso Ortega and
ManUuEl AlfONSECA ..cvveeneiiiriieeieereincee e rren e e s e e e e s snns e e s s nns s s e smns s ennmnssssrnnnnsnnens 69

X1

SCIENTIFIC
PROGRAMME

INVITED
PRESENTATION

REAL TIME RENDERING OF AMORPHOUS EFFECTS
Golam Ashraf and Koh Kok Weng
Department of Computer Science
National University of Singapore
13 Computing Drive, Coomputing 1, Singapore
E-mail: gashraf@nus.edu.sg

KEYWORDS
Natural Phenomena, Amorphous Phenomena, Dust, Smoke,
Fire, Real time Rendering, GPU Acceleration, Perlin Noise

ABSTRACT

We present a simple generic method for rendering
amorphous effects like smoke, dust and fire in real time, by
combining surface-shaded procedural primitives, fractal
noise, texture manipulation and meta-particle systems. The
framework allows seamless transition from one type of effect
to another, and requires simple high-level primitive creation
and management. This method also achieves attractive
transformations of arbitrary solid objects into dust, smoke or
fire. We demonstrate several applications of our procedural
amorphous effects that strike a good performance-quality
compromise compared to volume rendering and billboard
techniques. Our system runs on commodity graphics cards
supporting Shader Model 3.0 at 60-120 fps. The reasonable
visual quality and economical performance make this
framework attractive for next generation games and
interactive media.

1. INTRODUCTION

Amorphous special effects like smoke, dust and fire are
common immersion elements in current games and animated
features. Crumbling ruins, blazing tanks or shady opium
dens are just not complete without these amorphous effects.
Two techniques are widely used to model these phenomena:
volumetric models and overlapped billboards. Volumetric
models capture fine details of lighting and shape but are
usually too expensive for real time applications. Overlapped
billboards yield real-time performance, but have severe view
angle limitations due to their flat structure.

In this paper, we explore a viable third alternative, namely,
overlapped surface-shaded procedural 3D primitives. Using
meta-particle systems to manage a bunch of procedural
geometry, as opposed to micro-managing huge numbers of
particles, we prove that it is possible to create an illusion of
irregular volume with animated local features. Though this
idea has been around for over two decades, it has not been
utilized in a generic amorphous effects framework. Unlike
existing work in procedural shading, we retain a high level
of user-control over the general appearance of the
phenomena, through procedural texture manipulation, and
parameterized geometry distortion. These two techniques
dramatically extend the expressiveness of our procedural
shading framework, especially when we compare it with
existing billboard systems. All three effects in Fig. 1 were
created with the same shader code, and slightly different
rules governing the meta-particle systems comprising only
10-25 low-resolution poly-spheres.

Our interest here is not to model physically correct
simulation. Instead we want to capture essential properties of
amorphous phenomena that make the visual representation
believable enough. These shape, color and animation
properties can be expressed as raw textures, procedural
functions, and animated parameters that drive a common
underlying shading network. Our goal is to produce models
that take up minimum CPU resources, render fast and yet
look good in 3D virtual worlds. The proposed framework
naturally supports GPU acceleration, and performs in real
time on current commodity graphics cards at 60-1201fps.

We believe this work will be valuable to special effects
developers for games and interactive media, since it is much
more economical than volumetric modeling, yields better
expressiveness than billboards, and is easy to
control/implement. As shown in Fig. 1, it is possible to
recreate believable effects quite easily from a single doctored
input image.

Figure 1. Real time dust, smoke and fire effects in 3D, created by modulating input textures (images on the left of arrows) with
fractal noise before shading 10~25 overlapped spheres controlled by meta-particle systems

By sampling colors from real footage or procedural
functions, it is possible to arrange a collage of expressive
patterns into an input color texture, and then define temporal
parameters that appropriately sample from this texture
during the lifetime of the shaded 3D surface. The 3D surface
can be a procedural primitive (e.g. sphere, cylinder, etc.)
under the control of a meta-particle system. It could also be
any other arbitrary shape (e.g. avatars, buildings, etc.) that is
semantically remapped to the input texture space. Either
way, it is easy to achieve transitions between solid and
amorphous state, as well as change state between different
amorphous forms. Furthermore, by combining the referenced
color with multi-resolution noise, a large variety of results
can be obtained from the same input texture. Lastly, the
implemented framework incorporates a post processing
layer, where image filters and color transforms can be
applied to achieve the desirable final effect.

2. PREVIOUS WORK

Fluid modeling techniques can be broadly classified under
two main categories, namely dynamics-based and
ontogenetic-based approaches. We discuss trends in both
these classes, as well as relevant work in hardware shading,
before summarizing our contribution.

Dynamics-based approaches focus on accurate computation
of low level particle physics and optical properties of fluids.
Fluid animation using Navier Stokes Equation [Fay 1994;
Foster and Metaxas 1996] and volumetric rendering [Blinn
1982; Antoine 2004] are popular examples from this class of
methods. Apart from the computation intensiveness, a large
number of particles are usually needed to represent small
volumes, and thus often prove too heavy for real time
application. Besides this, a third issue of
control/predictability of simulation has challenged
researchers. All three issues; i.e. memory, computation speed
and control; are being incrementally alleviated. Jos Stam
[1999] improved time step limitations in earlier techniques
via a viscous flow algorithm where fluids are assumed to be
incompressible and energy conserving. By adapting his
algorithm to the GPU, [NVIDIA 2005] has opened up
physics based simulation to a whole world of 2D interactive
applications. However, 3D fluid flow continues to be too
expensive for real-time applications. Klinger et. al [2006]
report about 60~800 seconds of simulation and re-meshing
time per frame of detailed interaction between fluids and
obstacles, while McNamara et al. [2006] report about
95MB~600MB of memory usage per frame for 3D grids
ranging from 30~50 units in each dimension. The final issue
of simulation control by artists has been addressed
eloquently by McNamara et al. [2006] by allowing a set of
keyframes guide the simulation result, with performance
speedup of several orders of magnitude. Better optimization
techniques (e.g. adjoint method for more efficient gradient
computation [McNamara et al. 2006]) and dimension
reduction [Treuille et al. 2006] seem to be key directions
forward.

Ontogenetic approaches place more attention on achieving
visually convincing approximations, with economical
memory and compute requirements. [Gardener 1985]

proposed a fractal surface shading technique to achieve
fuzzy edges for clouds. Ashraf and Wong [1999] created a
believable pseudo-dynamics dust model for offline
rendering, using a combination of Gardner’s fractal shading
and overlapped spheres. Our work is inspired by their
approach, except that we choose procedural texture
manipulation instead of procedural texture generation, in
order to afford more user control over the final appearance.
Furthermore, we achieve real time rendering with GPU
accelerated geometry and pixel manipulations. Harris and
Lastra [2001] achieved reasonable quality in real-time cloud
rendering. They wused light scattering pixel shading
techniques, to render large superimposed billboards to form
an illusion of clouds. Even though the visual appearance of
billboard systems is good, the intra-particle animations are
often static due to coarse texture mapping. Chen and Jim
[1999] implemented a dense particle system for real-time
dust generated by moving vehicles, but their method has the
same limitations as the earlier discussed dynamics methods.

Rapid advances in programmable graphics hardware have
encouraged significant acceleration of important rendering
functions. Perlin’s Noise [1985] function has been adapted
for use in hardware shaders [Hart 2001; NVIDIA 2005].
Zdrojewska [2001] implemented turbulence enhanced fog in
real-time. We draw inspiration from their noise
superimposition technique, and adapt the idea to enhance
color variation for the amorphous primitive surfaces.

We can draw a few conclusions from the existing state of the
art. There is a lot of attention to amorphous phenomena
models in the dynamics-based community. In comparison,
there is hardly enough exploration in procedural models for
such phenomena. Dynamics methods are still unsuitable for
interactive applications. Thus, for example, the area of 3D
amorphous phenomena is fairly undeveloped in games. We
believe that almost all the animation, modeling and
rendering features can be approximated ontogenetically. Our
goal in this paper is to overcome the first two hurdles of real-
time ontogenetic rendering: a) to make a bunch of
overlapped primitives appear like an irregular volume that
gradually diffuses away; b) to abstract parameters that
capture important properties of amorphous phenomena.

We first cover a four-stage process, describing how we
generate fractal alpha textures, and combine them with an
input color texture to surface-shade overlapped 3D
primitives. We then illustrate local-feature animation using
texture and geometry distortion functions. We end the
technical description with post-processing and effects
compositing. After this we describe how to develop
applications based on our rendering framework, covering
important shader semantics, and examples on how to create
specific kinds of amorphous special effects. Lastly we
present performance statistics and wrap up with a qualitative
analysis of our contributions.

3. IMPLEMENTATION

Let us describe the overall 4-stage render workflow as
shown in Fig. 2. During the first stage we precompute a large
matrix of Perlin’s turbulence values [Perlin89]. We store the

values in two textures, one coarse-grain and the other fine-
grain. Next during the texture preparation stage, a unique
alpha texture is generated every timeframe by blending the
precomputed coarse and fine grain noise textures. The
drawing stage deforms the geometry representing amorphous
volumes, and colors them with reference to the input color
texture multiplied by the computed alpha texture. During the
last stage, the drawn image is post-processed (e.g. blurring,
color correction, etc.) and blended into the frame-buffer. In
practice, the last 3 stages are separated for efficiency. If we
need to render a cluster of surfaces with nearly the same
properties, we could just reuse the blended noise texture
from the texture preparation stage. Similarly, we could
service the post-processing stage after all the amorphous
surfaces in the view frustum have been rasterized and
colored into a temporary buffer.

[== = =

a texture preparation

Texture
Preparation

Geometry deformation
and coloring shader

U i i WS S e i i i

Post-processing

Smoothing and
Blending shader

Figure 2: Amorphous Phenomena Rendering Overview

3.1 Noise Accumulation (Precomputation)

This stage serves to prepare a hardware friendly array of pre-
computed noise values, and a convenient storage is a 2D
texture. This is done before the starting of the rendering loop
as a pre-computation step. We prepare 2 noise textures,
using HLSL’s noise intrinsic [MICROSOFT 2005], for the
coarse and fine grain details for subsequent alpha
modulation. The noise intrinsic is an implementation of
Perlin’s Noise, and runs on the CPU [MICROSOFT 2005].
As shown in the equations below, the procedure involves
accumulating 256 iterations of a noise relation function into
a color value for each of the Red, Green, Blue and Alpha
channels, resulting in results similar to that in Fig. 3.

S ‘Noise(ni[texx +0,zex, + 0])‘
color,,, = 2 -
£ i
S ‘N oisen,[tex, + L tex, + 1])‘
color,,,, = 2
green £ l
S ’N oisen,[tex, +2,tex, + 2])‘
color,,, = 2 -
£ i

S, ‘Noise(ni[texx +3,tex, + 3])‘

color,,,, = 2 1
=

In the equations above, fex represents the pixel-coordinate of
the computed noise texture. For generation of coarse-grain
and fine-grain detail, 7 is 2 and /5 respectively. S is set to

be 256.

Figure 3: Coarse (1) = 2) and Fine Grain (7) = 15) Noise

The resolution of these noise maps are set to be 1024 X 1024
to reduce chances of texture repetition during shading.

3.2 Alpha Texture Preparation

In this stage, we need to prepare an alpha texture map to
generate a distribution pattern for the shaded surface. Every
pixel on this animated alpha texture is computed in a
hardware pixel shader, as shown below.

First, we will need to determine the coordinates to sample to
sample from the two noise textures. We choose a periodic
function to inject subtle variation in sampling, and hence the
alpha pattern itself, as follows:

te, = cos(time x speed)
100

tc, = sin(time x speed)
100

where, fc is the texture coordinate offset.

The two pixels, P and P° are then sampled from the fine-
grain and coarse-grain noise textures respectively. The
variable ex, once again denotes the coordinates of the alpha
image that is being computed.

P’ = FineT. exture(tex,, + ic)

P¢ = CoarseTexture(tex,, + ic)

The raw alpha value «,,, is calculated as function of

difference between the alpha channel of the coarse and fine
noise pixels, and a sinusoidal offset driven by rgb values in
the coarse noise pixel.

2
¢ = (2?"(1’)) +tex, +ftex, +time

3
¢, = (EPC(I')) +fex, —fex,, + time

o = sin(Speedx ¢,)

1

10
cos(Speedx ¢, x0.75)
w, =
10
&, =2 (P’ @) -P@ o +0,
asmooth = SmOOthl‘)(araw)

The raw alpha value is smoothed with a 2D Gaussian filter
(see Appendix for details) before being stored in the alpha
texture. Fig. 4 illustrates a time sequence of smoothed alpha
textures generated by these calculations.

. »

PR J 2 ¥ 5 , 4 3

Figure 4: Animated Sequence of Alpha Textures
We believe that these noise-based alpha generation equations
are an important contribution to the state of the art, as they
facilitate a viable alternative to procedural fractal shading,
championed by various existing ontogenetic shading
frameworks [Gardner, 1985; Ebert et al. 1998; Ashraf and
Wong, 1998]. It allows smooth modulation and animation of
an input texture without noticeable aliasing or repetition. Fig.
5 illustrates this contribution as significantly different local
features are achieved for a dust volume comprising 10
spheres, without distorting the geometry too much.

Figure 5: Alpha Textures achieving different local features
3.3 Geometry Deformation and Coloring

3.3.1 Vertex displacement

Local geometric distortions can be implemented on the CPU
or the programmable vertex shader, following any periodic
or force feedback based functions. As long as the vertices are
well mapped into some kind of continuous logical space, a
moderately scaled periodic distortion function should not
yield any significant artifacts. The resulting distortion offset
is added along the local vertex normals and tangents, so that
results are invariant to object rotation. As a self-regulating
measure against discernibly sharp edges, we scale down the
alpha wvalue proportionately to vertex displacement
magnitude. Fig. 6 demonstrates how dramatic fire shapes are

generated from a set of 25 low resolution poly-spheres,
undergoing vertex distortion guided by 5 separate particle
systems.

Figure 6: Local vertex distortion with alpha regulation

Regular primitives are generally quite easy to map. For
arbitrary polygons, we re-map the vertices to a unit sphere,
to extract the parameter driving the distortion function. Fig.
7 shows how different arbitrary geometry is shaded without
any discontinuities.

Figure 7: Smooth mapping for arbitrary geometry

We have extended the above idea to animated characters, as
shown in Fig. 8. Using the same basic idea for smooth
distortion and coloring, our framework takes over
immediately after the hardware smooth skinning stage. It is
easy to achieve simple transitions from one form to another,
by blending between the input color textures. We are eager
to extend these exciting results with simplified fluid
dynamics in the near future.

Figure 8: Smooth mapping for skinned characters

3.3.2 Texture Coordinate Manipulation

Animating vertex texture coordinates can create interesting
sliding effects. Also, scaling of texture coordinates can yield
different levels of granularity [Gardner 1985]. An example
equation that combines both these factors is shown below:

fo(w)
£0)

where uv’ are the new texture coordinates, and f>(u) and f3(u)
are some arbitrary mapping of model texture coordinates.

uv'=uv + f,(textureScale,time) x [

3.3.3 Lighting
We use per-vertex lighting with the Gouraud shading model,
in favor of the more accurate (and expensive) per-pixel

Phong Shading model. Given our framework’s expressive
per-pixel color generation, we do not lose out much with
interpolated light intensities. The lighting equation is slightly
modified, so that the specular component of the shading is
treated as residuals, which is useful when rendering dust and
fire. Currently we do not add fog to enclosed volumes, but
this could be aided with fast depth intersection accumulation.

3.3.4 Rasterization

Dust geometry is first drawn into an off-screen buffer with
depth checking enabled to prevent overwriting occluding
geometry. However, during the final alpha-blending with the
frame-buffer, depth writing is disabled. The pixel shader
simply combines the alpha value from the alpha texture
computed in Sec. 3.2, and the rgb color value from the input
color texture, using the vertex texture coordinates passed in
by the rasterizer, in the following equations:

argba = alp hatex(vtexcnord)
crgba = COIO}" tex(vtaxcourd)

_ [€6 X colorIntensity
p rgha —

a, x alphaMultplier

The output pixel p,q, is written out to an off-screen buffer
for subsequent post processing before final blending with the
frame-buffer.

3.4 Post Processing
The contents of the off-screen buffer are smoothed (see
Appendix) and color corrected based on the desired blurring
and glow parameters, as shown below:

blurAmt = ‘ buffer(x,y)|| +1

blurred(x,y) = (smoothﬂ(bujj‘er))(x,y)

blurAmt
detailsAmt x buffer(x,y),,, +
col,, = (1= detailsAmt) x blurred(x,y) +
glowAmt x blurred(x,y),
col

rgb

blurred(x,y),

PP(X,Y) e = [

The processed pixel pp(x,y) is then alpha-blended into the
frame-buffer as follows:
pp(x,y) x pp(x,y),
frame(x,y)'= +
Jrame(x,y) x (1= pp(x,y),)

4. Framework Application

Having presented the main technical ideas, we now discuss
pertinent application issues like important shader parameters
and a couple of possible modeling and animation scenarios
to drive our ontogenetic rendering framework.

The designer needs to specify rules for generating the
particle system, and the seed and rate of various animated
parameters. Example rules could be conditions for placement
of meta-particle (or 3D primitive) emitters; or shape
transforms in the event of collisions, etc. Example
parameters can be geometric attributes (e.g. affine transform

and type of a primitive); or local shape, color and texture
properties expressed via shader parameters.

We now explain some particle systems details implemented.
Each emitter has an age scalar, a position vector, a velocity
vector, and a spray direction vector. The life scalar grows
with the application’s time tick, and the emitter produces
primitives if the [life scalar is within its predetermined
lifetime. The emission direction is affected by, but not equal
to the spray direction. The variance is scaled by the emitter’s
spread property.

‘ﬁ— -
Figure 9: Unified shading parameters for different
amorphous phenomena

Each meta-particle has a position, direction, rotation, and
size. In turn, it also has a p_age scalar and p lifetime. As
p_age grows closer to its p lifetime, the rendering
parameters, alpha and density, in the shader are changed to

visually reflect its current age. All primitives are drawn
using hardware instancing techniques [Microsoft 2005] to
make rendering more efficient.

4.1 Shader Parameters

Fig. 9 demonstrates variations of a common set of
parameters to achieve reasonably realistic results for three
common amorphous phenomena, namely dust, fire and
smoke. Each volume is made of typically 10~25 poly-
spheres. Here is a description of important shader parameters
and an example range of values that we cater for.

sizeMultiplier {0.0...3.0}: Controls the relative size of each
dust primitive sent to this shader.

density {0.0...1.0}: Controls surface opacity. A density of
0.0 will cause the primitive to be invisible.

alphaMultiplier {0.0...1.0}: Global effect transparency.
Used during scene blends.

displacement {0.0...6.0}: Affects how much a vertex can be
displaced from its original position.

speed {0.0...10.0}: Scales internal animation time with
respect to global time.

blurWidth {0.0...10.0}: Scales Gaussian blurring

colorIntensity {0.0...1.0}: Scales brightness of all rendered
effect pixels.

glowAmt {0.0...1.0}: Scales brightness of blurred pixels.

detailsAmt {0.0...1.0}: Scales contribution from original
un-blurred pixel.

distanceFromCoreMultiplier {1.0...8.0}: Scales vertex
displacement to the transparency of the vertex. The bigger
the number, the more transparent a vertex gets when it
moves further away from the object center.

textureRepeat {1.0...8.0}: Controls the number of times the
texture is wrapped around each dust primitive. The bigger
this parameter is, the more times the texture is wrapped.

specModifier {0.0...1.0}: Specular scale. Affects shininess.

4.2 Trailing Dust/Smoke

This effect can model smoke trailing off a flying missile, or
the dust raised from a speeding vehicle. To achieve such
effects, we can use a single emitter with its spray direction
opposing its velocity. Other parameters like lifetime, growth,
etc. can be varied according to the desired end result. Fig. 10
shows a trail of sphere particles drawn with the shader
configured to look like dust.

10

Figure 10: A spray emitting dust primitives

4.3 Amorphous Emission Shaped by Solid Geometry

This effect can model dust and smoke generated from
collapsing buildings, game creatures morphing into dust and
smoke after taking a hit, or objects engulfed in flames.

An object is often described as an array of polygons, which
in turn are made up of vertices. We sample this array of
vertices at discrete intervals. At the position of each sampled
vertex, we attach an emitter to its position. The velocity of
each emitter can then be affected by a gravity parameter, so
that the amorphous volume created can then appear more
realistic. The emitters can also be activated at different times
for some time and before dying off. This can achieve more
interesting non-uniform transition into amorphous volumes,
as illustrated in Fig. 11.

58.50 Tps (800x600), XBREGBBS (D24X8)
HAL {mixed wp}: Inno3D GeFerce 6800 GT

B vetone
B coras

Figure 11: Particle emitters (red) activated at regular time
intervals

5 PERFORMANCE ANALYSIS

We present three sets of render performance specifications,
typically important to game and interactive media
developers: a) number of meta-particles; b) number of
emitters; c¢) screen resolution. We implemented our
framework in DirectX9.0c using HLSL and C++, on an Intel
Pentium4 3.06 GHZ with 1GB RAM, and an NVidia
GeForce 6600 graphics card with 128MB DDR3 VRAM.

5.1 Impact of geometry

If we assume 15fps as the benchmark for real-time
performance, each frame can take at most 66.67 milliseconds
to render. Spheres of 10 latitudes and 10 longitudes were
used; i.e. each sphere had 118 triangles. Care was taken to
ensure that all the spheres were in the view frustum without
any visibility culling.

Table 1: Number of spheres vs. rendering time

Number of spheres | Rendering time (ms)

1 5.12

5 5.85

10 6.95
30 10.87
50 14.29
100 25.00
200 43.48
300 68.97
500 98.04
1000 208.33

We can see from Table 1 that the rendering time is
somewhat linearly related to the number of spheres. We
could have at least 200 to 300 low-poly effect-primitives on
screen at one time while still meeting the real-time
requirement. Most of the figures presented here use less than
30 spheres, so it affords the user at least 10 such effects at a
time, without any special optimization.

5.2 Impact of number of emitters

We used spray emitters that produced dust spheres at random
intervals. On an average, each emitter produced 10 dust
primitives every 3 seconds., as shown in Table 2.

Table 2: Number of emitters vs. rendering time

Number of Rendering time

emitters (ms)
1 7.33

5 11.11

10 17.64

15 23.81

20 28.41
25 31.25
30 33.20

35 38.46

40 43.48
50 55.56

We observed that the rendering time here is also somewhat
linearly proportional to the number of emitters used. It goes
on to show that simple particle systems scale well. Our
rendering system could accommodate a maximum of 50
emitters on screen at one time before falling short of the
66.67ms benchmark.

5.3 Impact of Screen Resolution

Since the proposed framework relies heavily on the
rasterization and pixel shading pipeline of the GPU, we need
to investigate how the screen resolution impacts rendering
speed. We conducted this test with an average of 80 spheres
(each with 118 triangles) on screen at any one time, as
shown in Table 3. We realized that beyond 640x480, the
screen resolution significantly contributes to the rendering
time. This is probably due to the fill-rate limitations of the
GPU. We lose performance by about 30% at the highest
resolution.

11

Table 3: Screen resolution vs. rendering time

Rendering time (ms)
per Frame Average
try 1 try 2 try 3
200X200 9.091 8.13 9.44
320X240 9.62 9.18 8.27
640X480 13.16 15.39 17.24
800X600 14.93 15.15 21.74
1024X768 18.87 20.41 17.55
1280X1024 21.28 25.00 26.32

In summary, our system yields reasonable performance on a
modestly configured system. Since we use GPU
acceleration, we can expect this performance to roughly
double with each new generation of graphics cards. Since the
performance is fairly predicable, with no hidden bottlenecks,
etc., it affords developers a rough idea of design complexity,
pretty much at the drawing board.

6. DISCUSSION AND FUTURE WORK

We have proposed a real-time rendering framework that can
support ontogenetic modeling and animation of amorphous
phenomena. Before we list our contributions, it is important
to understand why our work is useful, and what gaps it has
addressed.

Dynamics amorphous phenomena models generate great
realism, but are hard to develop and control, and require
massive computation and storage resources. They have not
been yet able to provide answers for games and interactive
media. Ontogenetic models seem to have more promise.

We have not proposed a dust model that works very well in
racing dirt tracks. Neither is it a fire model that recreates
great explosions from aerial bombs. Such models are
probably generated and redeveloped many times over in
production houses, where the target is to produce a
compelling shot, or sequence, aided with very custom
parameters and routines. This greatly reduces the cross-
applicability of these models.

None of the elements that we use in this paper are entirely
new. Procedural shaders, fractals, texture manipulation,
overlapped primitives, particle systems... they are all well
known, and individually well applied. It is the generality of
ontogenetic modeling that is missing. Perhaps, it stems from
a lack of belief in the possibility of simple and intuitive
things solving challenging problems. Perhaps, it is hard to
find commonalities between a dirt track and urban mayhem.

What we have done, is we have taken a small step to address
this gap. We have demonstrated three different amorphous
phenomena, namely: dust, smoke and fire, using the same
primitives, same particle systems and the same shader code.
We believe that this building block approach... reusing
blocks interchangeably through a common set of strong
semantic parameters... will truly encourage effects pipeline
cross-applicability.

Let us now examine our tangible contributions. We have
demonstrated a number of procedural texture and geometry
manipulation techniques that can produce believable
animation of local features in an amorphous volume.
Paradoxically, this volume is an illusion. It is actually a set
of procedurally shaded surfaces, rendered in a fraction of the
time taken for true volumes. For the first time, we have
demonstrated that overlapped primitives can be made to look
like metaballs [Blinn, 1985] in real time. Users/designers can
retain more control over the final appearance of the effect,
by exercising their choice in color/pattern selection and
semantic layout of the local features in the input texture. We
used only one color texture for each effect, and easily
doctored them via Photoshop’s editing tools and filters. This
contribution allows a more data driven flavor to special
effects modeling, as opposed to procedure driven.

Our approach does have its limitations. When viewing the
overlapped primitives at close proximity, or at high
sharpness, the illusion of volume sometimes breaks down.
An adaptive blurring scheme can help alleviate this
somewhat. Also, the overall render quality still loses out to
volume visualization. But we are comparing results
generated in milliseconds (see Sec. 5) vs. in days
[McNamara et al. 2004].

By creating images like Fig. 6 & 9, we hope to be able to
excite more examination into high level ontogenetic
animation and modeling. For example, how could we reuse
the meta-particle render primitives for broad-phase collision
detection and see the response in real time? This kind of
serious work is being done in dynamics simulation [Treuille
et al. 2006; Klinger et al. 2006], so we have reasons to be
optimistic about ontogenetic modeling as well. The overall
shape and animation of the simulated volume is quite
dependent on the type of overlapped primitives. We hope to
study different kinds of primitive modeling possibilities to
address this aspect. We also hope to add dynamics attributes
to the ontogenetic amorphous model. In particular, we are
interested to extend the animated character application in
Sec. 3.3.1 with some form of simplified dynamics. The
shape emitter application in Sec. 4.3 could also be hooked up
with fluid dynamics using the Lattice Boltzmann method
[Chen and Doolean, 1998], and the calculation could also be
accelerated on the GPU [Li et al. 2004]. In summary, we are
pleased with the results of our generic real-time amorphous
effects rendering framework, and excited about related
ontogenetic modeling and animation research to follow.

REFERENCES

ASHRAF G. AND WONG K. C. 1999. Dust and Water
Splashing Models for Hopping Figures. Journal of
Visualization and Computer Animation, 10:4, pp. 193-213

BAKER D. AND BOYD C. 2001. Volumetric Rendering in
Realtime. www.gamasutra.com

BLINN J. F. 1982. A Generalization of Algebraic Surface
Drawing, ACM Transactions on Graphics 1(3), pp. 235-256.

12

CHEN J. X. AND FU X. AND WEGMAN E. J. 1999. Real-
Time Simulation of Dust Behaviors Generated by. a Fast
Traveling Vehicle, ACM Transactions on Modeling and
Computer Simulation, 9:2, pp 81-104

CHEN S. AND DOOLEAN G. D. 1998. Lattice Boltzmann
method for fluid flows. Annu. Rev. Fluid Mech., 30:329-364.

EBERT D. S. AND MUSGRAVE K. AND PEACHEY D.
AND PERLIN K. AND WORLEY S. 1998. Texturing and
Modeling: A Procedural Approach, 2™ edition, ISBN 0-12-
228730-4

FAY J. A.
Press.

1994. Introduction to Fluid Mechanics. MIT

FOSTER N. AND METAXAS D. 1996. Realistic Animation
of Liquids, Graphics Interface "96, pp 204-212

FORSYTH D. A. AND PONCE J. 2003. Computer Vision:
A Modern Approach, Prentice Hall.

GARDNER G. Y. 1985. Proceedings of the 12" Annual
Conference on Computer Graphics and interactive
techniques, pp. 297 — 304

HART J. C. 2001. Perlin Noise Pixel Shaders, Eurographics
Workshop on Graphics Hardware, pp.87-94.

HARRIS M. J. AND LASTRA A. 2001. Real Time Cloud
Rendering, Furographics 2001, pp. 76-84.

KLINGNER B.M. AND FELDMAN B.A..AND
CHENTANEZ N.AND O'BRIEN J.F. 2006. Fluid
Animation with Dynamic Meshes,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>