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Preface

Welcome to Game-On 'NA 2005, the North American premiere of the well-established
European Game-On conference series on Al and simulation in computer games.
Montreal is a highly appropriate location to start off Game-On 'NA. With several
universities, the presence of many key computer game companies, and of course
Montreal's creative "“bouillon de culture," the environment clearly reflects the growing
importance of computer games, now a major part of our social and economic
environment.

Academic interest in computer games has been growing for some time. Creating and
managing large, increasingly complex game projects poses many practical and research
challenges. Academic contributions have a lot to offer in this area where pragmatic
approaches have been "‘de rigeur" for many years. The works presented here covers a
wide variety of efforts to both improve specific parts or aspects of game design or
implementation, and to define game problems and the associated game research issues.

Core game concerns, such as game Al and content-generation are continuing problems
for industry. Several papers and more than half of the invited talks focus on these issues,
and provide research and results based on Bayesian learning [Bauckhage et al.], realistic
NPC reactions and behaviour [Gruenwoldt et al.], and the design of a high-level pattern
catalog for game scripting [Onuczko et al.]. Other papers concentrate on building a basic
research infrastructure for analysis and exploration. These include environments for
examining automatic game difficulty adjustment [Bailey and Katchabaw], real-time
strategy game design [Buro and Furtak], massively-multiplayer game research
[["Mammoth" workshop], and the design and verification of computer narratives [Pickett
et al.]. Automatic generation of game physics from Modelica models [Vangheluwe and
Kienzle] demonstrates the introduction of techniques used in real-time simulation of
mechatronic systems. Student sessions further provide a field study of the use of games
in military training [McDonough and Strom], and an analysis of the concept of
immersion in games [Arsenault].

As well as peer-reviewed papers, Game-On 'NA 2005 features a number of invited talks
by both academic and industry leaders. Paul Kruszewski from BioGraphics Technologies
and Gregory Paull from Secret Level give industry viewpoints on crowd simulation and
cover-finding strategy Al respectively, Duane Szafron from the University of Alberta's
GAMES group discusses behaviour patterns, and Nicholas Graham from Queen's
University gives some insights into issues in teaching game development at the university
level.

Game-On 'NA 2005 is also about making contacts in the computer game research
community. Several social events are planned, including an opening party, a conference
dinner, and a tour of Ubisoft's Montreal studios. We hope you find your time at this first
Game-On 'NA productive and enjoyable.

Hans Vangheluwe and Clark Verbrugge
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Is Bayesian Imitation Learning the Route to Believable Gamebots?

Christian Thurau, Tobias Paczian
Applied Computer Science
Bielefeld University
P.O. Box 100131, 33501 Bielefeld, Germany
{cthurau,tpaczian } @techfak.uni-bielefeld.de

ABSTRACT

As it strives to imitate observably successful actions, imi-
tation learning allows for a quick acquisition of proven be-
haviors. Recent work from psychology and robotics sug-
gests that Bayesian probability theory provides a mathemat-
ical framework for imitation learning. In this paper, we in-
vestigate the use of Bayesian imitation learning in realizing
more life-like computer game characters. Following our gen-
eral strategy of analyzing the network traffic of multi-player
online games, we will present experiments in automatic im-
itation of behaviors contained in human generated data. Our
results show that the Bayesian framework indeed leads to
game agent behavior that appears very much human-like.

Introduction

Statistical machine learning is gaining more and more atten-
tion as a means of enhancing game Al. While the majority of
contributions considers supervised learning or reinforcement
learning, the paradigm of imitation learning has drawn lit-
tle attention so far. However, learning through imitation is a
powerful mechanism for the acquisition of behaviors. Since
it avoids tedious and futile trial and error strategies and does
not require labeled training data, imitation might be a short
cut on the route to more engaging artificial game agents.

In a recent contribution, Rao, Shon & Meltzoff (2004) in-
troduced a Bayesian model of imitation learning for appli-
cations in robotics. Based on experiments in developmen-
tal psychology, their probabilistic framework models four
stages of imitative abilities that were observed in infant be-
havior. Since a basic understanding of these stages helps
grasping the approach discussed below, we shall summarize
them briefly: By means of postnatal body babbling infants
acquire a model of their body. They learn which muscular
actions lead to what kind of limb configurations and thus ac-
quire a vocabulary of useful motor primitives. This enables
the imitation of body movements where infants map observed
actions onto their own body. At the age of several weeks, for
instance, they can mimic facial expressions they have never
seen before. In a third stage, infants start imitating actions on
physical objects such as toys which are external to their body.
By the time they are 1.5 years old, infants are experienced

Christian Bauckhage
Centre for Vision Research
York University
4700 Keele St, Toronto, ON, M3J 1P3, Canada
bauckhag@cs.yorku.ca

in interacting with other humans. Consequently, they can ac-
quire models of agents with intentions. Forward models alow
them to infer the goals of an agent even if they only observe
unsuccessful demonstrations; inverse models are used to se-
lect motor commands that will achieve undemonstrated but
inferred goals.

In this paper, we will describe how similar mechanisms
embedded in a Bayesian framework can produce more life-
like computer game agents (henceforth called gamebots).
Using the game QUAKE II® as a platform for our research,
we investigate behavior acquisition from imitating how hu-
man players steer their avatars through 3D game worlds (of-
ten called maps). Since QUAKE II® represents the arguably
most popular genre of First-Person-Shooter games, a player’s
overall goal is to score as many points as possible by shoot-
ing enemy players. Situation dependent behaviors and sub-
goals arise from the current game context. Factors that in-
fluence context dependent behavior are the internal state of
a player’s character, the behavior of opponents, as well as
various items placed all over the map. Low avatar energy,
for instance, might be compensated by picking up armor or
health packages.

Within the limits imposed by the game physics, games like
QUAKE II® allow for all kinds of movements, strategies and
cunning. As this kind of intelligent gameplay requires some
sort of cognitive capabilities, it comes with little surprise that
gamebots which would behave truly human-like are still not
available. In the next section, we will discuss this prob-
lem in more depth and shall roughly survey related work.
Afterwards, we will discuss our approach to Baysian imita-
tion learning of human-like behavior. As we shall see, our
contribution is fourfold: (i) we apply concepts from the the-
ory of edge reinforced random walks to impose an adequate
topology on the space of internal states of game agents; (ii)
we make use of clustering methods from statistical machine
learning to acquire a vocabulary of action primitives for game
agents; (iii) we extend the model of Rao et al. (2004) in order
to guarantee the temporal coherency of the actions selected
for game characters; (iv) we integrate these three techniques
within a Bayesian learning framework. In the fourth section,
we will present and discuss first experimental results which
underline that this framework indeed provides an auspicious
avenue to believable gamebots. Finally, a conclusion will
close this contribution.



Related Work

It is a widely accepted notion these days that life-like behav-
ing gamebots are the next big step towards ever more exciting
game experience. This holds even in the age of online gam-
ing where human players engage each other in virtual battle
over the Internet. The nature of popular genres such as mas-
sively multiplayer online role playing games (MMORPGs)
simply calls for non-player characters to set forth the action.

However, when it comes to gamebot control, the gaming
industry still mostly relies on seasoned deliberative Al tech-
niques like finite state machines or the A* algorithm. While
A*-search was introduced almost four decades ago (Hart,
Nilsson & Raphael 1968), output generating finite state ma-
chines date back even further (Mealy 1955, Moore 1956). Of
course, the problem with these techniques is not their matu-
rity but rather their lack of life-likeness. Once human play-
ers get used to a game, common gamebots are perceived to
miss the element of surprise human opponents would pro-
vide; they appear to behave ’dumb’ (Cass 2002).

The picture could be different, if gamebots were to learn
from experienced human players. Work in this direction was
first reported by Sklar, Blair, Funes & Pollack (1999) who
collected the key-strokes of people playing Tron in order to
train neural network based game agents. Neural networks
also proved to perform satisfiable in First-Person-Shooter
games. Trained on the data contained in the network traf-
fic of multiplayer games, neural architectures learned differ-
ent aspects of engaging gameplay. They were shown to re-
produce convincing reactive behavior (Bauckhage, Thurau &
Sagerer 2003, Thurau, Bauckhage & Sagerer 2003) as well
as factical decisions such as context aware weapon selection
(Bauckhage & Thurau 2004).

Other machine learning techniques have been applied
as well: Spronck, Sprinkhuizen-Kuyper & Postma (2003)
incorporate reinforcement learning into rule selection for
agent behavior in a role playing game and Le Hy, Arri-
gioni, Bessi¢re & Lebeltel (2004) describe action selection
for a commercial game using Baysian networks which were
trained by means of human generated input.

Next, we will present a different approach which under-
lines that —given suitably preprocessed data— even simple
Bayesian statistics provides a powerful tool for game Al pro-
gramming.

Bayesian Imitation Learning

In earlier work (Thurau, Bauckhage & Sagerer 2004), we re-
alized movement behaviors for QUAKE II® gamebots using
a straightforward, probabilistic model P(a;|s;). The values
of the random variable s; are given by vectors that encode
the state of an agent and its surroundings at time 7. The
values of the random variable a, denote the most appropri-
ate (re)action. The discrete sets of possible state vectors
S = {s1,82,...,su} and action vectors A = {aj,a,...,ap}
result from clustering the data contained in recordings of

Figure 1: If applied to data representing the paths a player
did run during a match, Neural Gas clustering will result in
a structured set of waypoints which captures the topology of
the corresponding map.

matches played by human players. Although goal orienta-
tion was not explicitly modeled in this approach, it yielded
movement sequences that human players identified as goal
driven behavior. Still, the movements lacked strategic so-
phistication and were convincing only in certain constrained
situations.

The Bayesian model of imitation learning proposed by
Rao et al. (2004) also accounts for goals and subgoals. Con-
sequently it can be expected to avoid the shortcomings of our
initial attempts on probabilistic behavior modeling. Within
this Bayesian framework, the probability for the execution of
an action a; at time step ¢ depends on the current state s;, the
next desired state (or subgoal) s, and the overall goal state
s¢. Using Bayes’ theorem, it amounts to

P(ar = ajls; = si, 5141 =8j,8¢ = )
1

= E P(SH_] =sj|s, =S, a; = a,-) P(a, = al-|s, = Si,Sg = Sk)

where the normalization constant C results from marginaliz-
ing over all possible actions:

C=P(S,+1 =sj|s, =S8i,Sg =Sk)

= ZP(s,H =Sj|ss =S8i,ar = am)P(a; = am|s; = S;,55 = Sg)-
m



Figure 2: Didactic example of a state transition graph.

In order to obtain reasonable probabilities for the selection
of an action a;, the desired subgoal 5,11 and the global goal
s need to be known. Note, however, that in the game domain
winning the game is the only true global goal. Also note that
interpreting successive states as subgoals does not alter the
model but eliminates the need of mining for subgoals in the
training data. Indeed, experienced human players act rea-
sonable and with implicit subgoals in mind. Therefore, rea-
sonable goal states will emerge from clustering the network
traffic of recorded matches and automatically provide a game
agent with suitable choices!.

A Structured State Space

State vectors s; should contain a problem specific descrip-
tion of a gamebot’s internal state and the surrounding game-
world. For instance, if imitation learning is applied to sim-
ple classical maze problems (i.e. finding goal directed paths
in a maze world), recording a player’s position vectors p; =
[%,V:,2:)T st =11, ... ,tena provides all necessary information.

In order to derive a discrete approximation of the state
space, we cluster the state vectors recorded from the network
traffic using Neural Gas clustering, a technique introduced
by Martinetz, Berkovich & Schulten (1993). Since we may
expect to find certain topologies within the state space (see
Fig. 1), Neural Gas clustering is well suited for our problem
because it is known to yield superior results in recovering
topological structures of a dataset.

Knowledge of state space structure may facilitate comput-
ing some of the probabilities required in the Bayesian frame-
work. In order to provide the resulting discrete state space
with a useful structure, we therefore compute a state transi-
tion graph. In this graph, a directed edge between two state
prototypes indicates a possible state transition. Moreover,
edges are labeled with transition counts (see Fig. 2). As the
idea for the transition graph was inspired by the theory of
edge reinforced random walks known from statistics (Diaco-
nis 1988), we use the term weights when referring to state
transition counts. Formally, the transition graph is thus given
as atriple G = (V,E,w) where V = {sy,s2,...,Sp | is a set of
vertices, E CV x V is a set of directed edges and w: E — R

I'The resulting (sub)goals are of course highly player and playing style
dependent.

is a function assigning weights to the edges. Edges are drawn
based on state transitions observed in the training data; i.e.
we have

(S,‘,Sj) € E < 5,841 8 =8i N Spt1 =Ss; €))

Transition counts are recovered from traversal frequencies
in the training data; the weight w of an edge (s;,s;) corre-
sponds to the number of times a human players was observed
to move from state space position s; to position s;.

Given this weighting scheme, suitable upcoming
(sub)goals for Bayesian behavior synthesis can be de-
termined either from a roulette wheel or a maximum
a-posteriori selection over the state transition probabilities

W(S,', Sj)

B ka(siask)

Imposing a discrete state space structure like this provides
certain advantages over an unstructured collection of proto-
types. For instance, limiting the choice for a successor to
those states that are connected to the current state consider-
ably lowers the computation time but still allows for a re-
construction of all observed state sequences”. What is left is
determining an adequate discrete set of motor or movement
primitives a, to generate an action dependent forward model

P(stt15r,ar)-

2

P(si41 =sj|sy =)

Finding Movement Primitives

From the point of view of a gamebot, the only way to traverse
the state transition graph lies in choosing appropriate actions.
For instance, if the next desired state would correspond to a
position direct in front of the gamebot, it simply had to move
forward in order to reach that state.

The set of available actions is given by movement primi-
tives, prototypical actions, which are extracted from recorded
matches. For the experiments, presented below, a movement
primitive is a 5 dimensional vector

yaw angle

pith angle
a = | forward velocity
sideward velocity
upward velocity

Prototypic movement primitives result form applying -
means clustering to the given movements of human players.
We found a number of k € [150,...,200] movement primi-
tives sufficient for synthesizing smooth looking motions.

In the context of Bayesian behavior learning, we are inter-
ested in the effects of movement primitives on state transi-
tions. This will provide a forward model for choosing move-
ments in order to reach specific subgoal states. However,

2QObviously, some state transitions might become impossible for the
game agent just because no human player was observed performing the state
traversal. However, this is what human-like behavior is all about.



not all actions are reasonable in any game context. Some-
times, an otherwise frequently used movement could lead
into a wall or down a ledge. The forward model for action
selection thus will have to depend on the current state.

Following the proposal of Rao et al. (2004), we apply the
mechanism of body-babbling to estimate a forward model
P(st11|ar,s:). Again, we make use of the widely available
demo data.

Synthesizing Action Sequences

Human players control their avatars using mouse and key-
board. This implicitly limits their choice of actions. In
QUAKE II®, for example, instant turns are impossible for
a human player. As the input modalities thus constrain the
sequencing of actions and as differences between movement
primitives which are generated using mouse and keyboard
are rather small, motions of human controlled avatars usu-
ally appear to be smooth.

In order to recreate such natural motions, we introduce
conditional probabilities P(as|a;—;) for the execution of
movement primitives at time . Again, these can be learned
from observing human players. Since the action vector that
was executed last can be seen as part of the world state vec-
tor, we extend the model of Rao et al. (2004) by introducing
a,—1 into the equations. Assuming independence of a;_1, s;
and s, (after all, physical limitations should not affect envi-
ronmental conditions), this results in the following model:

P(a; = aj|s; = 8;,5¢ = Sp, a1 = aj)
_ l P(a, = a,-|s, = Sl',Sg = sk)P(a, = a,-|at_1 = aj)
C P(at = aj)

where the normalization constant C has to be adapted to the
new variables a,_1:

C =P(SH_1 = sj|s, = Si,Sg = Sk)

:ZP(SZ-H = Sj|St =S8;,ar = am)

m

P(a; = ap|s; = si,5, = Sg,ar—1 = a;)
:2P<St+1 = Sj|St = 8;,ar = am)

m

P(ar = ap|s; = s;,5¢ = sg)P(ar = apla;_| = a;)

P(at = ai)

Finally, given a current game state and a desired goal state,
the conditional probability for the execution of a movement
primitive a; can be written as follows:

P(a;y =ay|s; = 8;,8/11 =S;j,8¢ = Sg, a1 = a)
1
:E P(Sﬂ,.l = Sj|St =8;,q; = aj)
P(a; = ay|sy = Si,85¢ = sp)P(a; = ajla;— = aj)
P(a, = al‘)

Next, we will present experiments which indicate that this
Bayesian scheme for goal oriented action selection indeed
results in gamebot behavior that appears to be human-like.
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Figure 3: Schematic representation of an extended simple
maze task. Two points in the waypoint map that results from
clustering recorded player movements correspond to the lo-
cations of desirable items on the map. In the our experi-
mental setting, a subgoal of the game agent is to increase its
amour value. It therefore has to devise a path trough the ab-
stract higher dimensional state space that accords with a path
through the 3D waypoint map leading to the armor item.

Experiments

In order to test the Bayesian framework and its usefulness
for the game domain, we carried out a series of experiments
in motion planning. The basis of all experiments was of
course formed by recordings of data generated by human
players. The experimental goal was to reproduced all ob-
servable movement behaviors.

Maze Problem

The first experiment basically tested the functionality of the
approach. Several examples of a goal directed movement se-
quence were recorded; in each sequence the player’s motion
ended at the same map position. Due to the simplicity of
the task, the state vectors we considered here only contained
observed player positions x, y, z.

After connecting the agent to a game server, it was sup-
posed to reproduce human-like movements by selecting sub-
goals based on the probabilities encoded in a graph model
learned from the training data.

Since the agent traverses a discrete lattice of prototypical
positions, the number of clustered state prototypes plays a
pivotal role. Our experiments revealed that smaller maps
require between 50 and 100 prototypes to allow for colli-
sion free navigation. Given this, the Baysian approach per-
formed as expected and believable human-like movements
were recreated.

Extended Maze Problem

Our second experiment considered an extended maze prob-
lem; Fig. 3 sketches its setting. The training data we con-
sidered here displayed several instances of a human player
first picking up goal-item 1 (an armor) and then continuing
to goal-item 2 (a better weapon).

The state space dimensionality was extended to account
for the player’s inventory. The additional dimensions encode



Figure 4: Screenshots showing an artificial player solving an item pickup task and visualization of the corresponding transitions
in state space. The screenshots display the agent’s actions in the game world; the plot in the lower right corner shows what is
going on in a subspace of the state space considered in this experiment: the X and Y axes denote the gamebot’s (x,y) positions,
while the Z axis represents inventory item information. Movements in the 3D gameworld and resulting changes of the agent’s
internal state correspond to movements between nodes of the state graph. First, in (1), the agent is seen moving along the graph
closer to a node whose (x,y) coordinates coincide with a goal item. In (2), the agent is strafing around the corner of a transparent
wall. Finally, as seen in screenshot (3), it reaches the item and continues its way to the next item. The item pickup in (3)
considerably increases the inventory value for this item and thus results in a "jump’ along the Z axis of the subspace shown here.
Although, in visualizations like this, such state space discontinuities appear random to the human eye, they are not. In fact, the
screenshots in this figure show but a part of a longer sequence of actions. At the beginning of this sequence, the agent determined
its next suitable subgoal represented by a state s, ; and the item pickup in this figure is actually a planned action to reach this
graph node s, 1.

information about the internal armor value and the weapon
currently hold.

continuing to the final destination (note that state space paths
must not be confused with paths in the 3D gameworld). Fig-
ure 4 shows an example of a trained gamebot trying to ac-

Given state graphs computed under these conditions, we complish this task and a three dimensional projection of the

expect to observe state sequences which reflect the order of
the item pickups. In order to reach a state with higher ar-
mor values, the agent has to obtain the armor item. Since in
the demo data the armor pickup precedes the weapon pickup,
states of higher armor value must lie on the way through state
space that leads to the overall goal state. On the map, the
agent therefor has to visit the location of the armor prior to

corresponding state graph transitions.

Again, the number of state prototypes is crucial. Using
a 5 dimensional state space and a mid-sized game-map, we
found a number of 150-200 prototypes sufficient for our pur-
pose. All in all, the observed behaviors were imitated very
convincingly (see the examples of state space trajectories in
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Figure 5: Examples of synthesized movements (plotted in state space coordinates). Again, the X and Y axes correspond to x
and y positions of the agent whereas the Z axis denotes inventory armor values (left figure) and inventory rail gun values (right
figure). The blue dots correspond to sequences of state vectors generated by human player while ’solving’ the task of item cycling
considered in our second experiment. Red circles indicate state prototypes reached by the artificial player.

Fig. 5). The agent managed to reach both goals in the pre-
defined order. Additionally, the movements appeared to be
smooth and showed characteristics mostly seen in human
players. For instance, the agent “slides™ around corners thus
preserving observed player habits.

Discussion

Generating action primitives by means of training data clus-
tering and estimating the consequences of their execution in
terms of state space transitions can effectively reproduce var-
ious sorts of movement behavior observed in humans. This
even holds for more complex movements such as swimming
or the famous rocket-jump?® (like simple movements, these
activities are as good as any other action and might be neces-
sary to achieve certain goals). The convincing reproduction
of single complex movements already leads to a very life-
like appearance, because such movements naturally appear
as if generated by human players. However, in conjunction
with probabilistic action selection based on goal states this
impression is further strengthened: longer sequences of in-
dividual human-like movements resulting from the Bayesian
approach convey a strong impression of intelligently planned
and purposeful behavior.

Of course, the number of state prototypes necessary to
produce smooth, humanlike movements is map- and task-
dependent. While for the simple maze problem a set of 50 to
100 state vectors was sufficient to create convincing behavior
(trials with a lesser number failed to do so; adding more pro-
totypes did not further improve the appearance of the move-
ments), solving the extended maze problem required 150 to
200 state vectors. This raises the question, if the presented

3 An expert player’s move, where a rocket is fired on the ground while
the player jumps. It results in a much higher altitudes than reachable by
ordinary jump movements.

approach will scale to more complex behaviors and more de-
manding contexts? Up to a certain level of complexity it is
in fact reasonable to assume it will: even if the dimension of
state space increases, the state transition graph ensures that
action selection will be based upon local evidence. The graph
structure ensures that, even if there is a growing number of
states, not all of them will have to be considered in the nec-
essary computations. As this locality constraint is thus desir-
able, future work should further explore techniques for man-
ifold learning and state space structuring. For a full blown
state space dimensionality (which is inevitable for a full fea-
tured artificial game agent), however, a single state transition
graph graph might not be sufficient any more. Especially
the interplay of strategic, tactical and reactive behavior may
not be sufficiently captured by means of a monolithic graph.
A separation into several graphs each targeting the emulation
of different behaviors may overcome this problem. However,
while the approach presented in this paper is solely based on
automatic data analysis and learning, a technique combining
several state spaces will surely require expert knowledge to
be introduced into the model selection mechanism. Again,
this remains as a topic for further research.

Now, if state space manifold identification appears to be
the predominant factor for a satisfying performance of our
framework, then why, after all, consider Bayesian imitation
learning? The answer is clear: without identifying a vocabu-
lary of action primitives and recovering probabilities for their
use in different contexts, traversing the state graph would re-
duce to a deterministic process similar to the ones produced
by finite state machine. State transition based on Bayesian
probability theory introduce flexibility and surprise. Com-
pared to the usual Baysian techniques found in game Al pro-
gramming, however, imitation learning as presented here has
two noticeable advantages: first, incorporating (sub)goals



into the process of action selection produces unpredictable
short term but nevertheless goal driven long term behavior.
Second, where common Baysian approaches to game Al rely
on preprogrammed sets of behaviors whose a-priori proba-
bilities are predetermined by programmers, clustering of net-
work data provides a natural set of action primitives. Given
these, body babbling, i.e. a training phase of random invo-
cation of these actions in different states to learn about their
effects, provides suitable estimates for the priors in life-like
behavior generation.

Conclusion

Imitation learning is a powerful yet so far underexploited
mechanism for behavior acquisition for game agents. In this
paper, we applied a Bayesian formulation of imitation learn-
ing to game Al programming.

By means of the example of the game QUAKE 1I®, we
could show that artificial players can convincingly imitate
human movement behavior. Our results are based on a state
and (sub)goal dependent model. Useful state sequences are
synthesized using a transition graph that structures a code-
book of state vectors extracted from the network traffic of the
game. Incorporating temporal context into the probabilistic
action selection mechanism leads to especially smooth and
realistic movements.

Given these results, it seems that imitation provides an
auspicious approach to game Al programming. Currently,
we are extending the technique presented in this paper to
more complex behaviors. Although the focus of the pre-
sented paper is on the reproduction of strategical, i.e. state
dependent, item pickups, first experiments applying the pre-
sented approach to more tactical (movements relative to an
enemy player) and reactive (close combat and shooting) be-
haviors are work in progress. As first results are encourag-
ing, Bayesian imitation learning in conjunction with learned
movement primitives may indeed be the route to believable,
life-like gamebots.
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ABSTRACT

Realistic and reactive non player characters that respond
appropriately to activity in their game world would be
welcomed by game developers and players alike.
Unfortunately, despite significant progress made by in this
area of research, this goal has still yet to be fully achieved.

In this paper, we present a new Realistic Reaction
System, based on our previous work in this area, which
provides reactive artificial intelligence through the use of
an underlying relationship system that binds together
players, non player characters, and objects in the game
world. Through proper maintenance, manipulation, and
querying of the relationship system, we can effectively and
efficiently augment the decision processes used in artificial
intelligence controllers in games to provide a richer and
more immersive experience to players.

INTRODUCTION

Game developers have long sought to have meaningful
and logical interactions between human players and non
player characters driven by their games’ artificial
intelligence. Unfortunately, except for restricted
circumstances, typically violent confrontations, this has not
materialized successfully, leaving the players feeling
isolated or disconnected from the world in which they are
playing (Laramée 2002).

A key element to overcoming this problem is the
development of artificial intelligence capable of
dynamically reacting to players and player actions in
reasonable and realistic fashions. Doing so would require a
sense of relationship or social network binding the
characters and objects in the game world to one another, a
sentiment expressed in (Lawson 2003) and elsewhere.
Without this, developers have to rely upon static or scripted
methods of implementing behaviours and events to mimic
realistic character reactions, which is ultimately quite
limiting.

Work in developing reputation systems for games has
drawn some attention recently in an attempt to address this
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problem. For instance, the games Ultima Online (Grond
and Hanson 1998) and Neverwinter Nights (Brockington
2003) provide reputation systems, but do so with some
restrictions and drawbacks; for example, in Ultima Online,
reputation changes have unrealistic immediate global
effects, regardless of who witnessed the actions
precipitating the changes. The work in (Alt and King 2002)
shows promise, but requires more flexibility and generality;
for example, it supports only a limited relationship set, does
not track relationships between non player characters, and
has not been applied to game world objects and complex
group situations.

In (Gruenwoldt 2005), we introduced a Realistic Reaction
System (RRS) for modern video games to overcome these
issues. This system models and maintains the relationships
between players, non player characters, and objects in the
game world over time dynamically, and provides methods
by which characters can query the relationship network to
formulate appropriate reactions in behaviour, dialogue, and
so on. While this served as an important first step in
providing reactive characters in games, more work was
needed to fully address the problem at hand.

Our current work builds upon this previous work from
(Gruenwoldt 2005) to provide a complete and integrated
solution to the above problems. In particular, in this paper,
we focus on the logic and mechanisms required to link the
relationship system from our previous work with artificial
intelligence controllers to create reactive non player
characters. Doing so effectively poses significant
challenges, as a well populated world with a rich collection
of relationship types can produce a relationship network
large enough to overwhelm both artificial intelligence
programmers and scarce game resources at runtime. This
was learned first hand in integrating our previous work into
the action/adventure/role-playing game Neomancer
(Danton 2004; Katchabaw 2005) that we are currently co-
developing. Consequently, mechanisms must be in place to
help manage, filter, and aggregate relationship information
appropriately according to the needs of the game in
question.

This paper presents a new extended architecture for RRS
for creating reactive non player character artificial
intelligence, and discusses our work in implementing and
using it to date. We begin with a brief overview of
relationships and augmenting artificial intelligence
controllers with this information. Following this, we
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Figure 1: Example Relationship Network from Neomancer

provide architectural details of our new approach, and
outline its implementation using Epic’s Unreal Engine
(Epic Games 2004). We then discuss our experiences with
using this new system both in the context of an Unreal
game mod (Castaneda 2005), and our Neomancer project
(Danton 2004; Katchabaw 2005), currently under
development. We finally conclude the paper with a
summary, and a discussion of directions for future work in
this area.

RELATIONSHIP MODELING AND USE IN GAME
ARTIFICIAL INTELLIGENCE

Before examining the details of the newly extended RRS,
we first provide background on modeling and manipulating
relationship data for use in games, and how we can
augment artificial intelligence controllers using this
information.

Relationships for Games

A relationship network models all of the relationships
between all of the characters, groups of characters, and
objects of interest in the game world. One can envision this
network as a graph-like structure, with the characters,
groups, and objects as nodes in the graph, and the various
relationships that exist between them as edges (directed or
undirected, depending on the relationship). An example of
this kind of relationship network from the Neomancer game
project (Danton 2004; Katchabaw 2005) is presented in
Figure 1.

There are numerous possible types of relationships that
exist between entities in the relationship network. Each of
these types can have subtypes, and so on, resulting in a
hierarchical tree of relationship types. For example, main
types of relationships can include: emotional, familial,
business, leadership, ownership, membership, and so on. If
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we were to expand the membership branch, for example,
there exist relationships to denote belonging to groups in
the game, such as ethnicity, social caste, profession,
community residence, and so on. This hierarchy can be
easily expanded with additional types and sub-types as
necessary.

Furthermore, each relationship has several attributes.
These attributes include origin, history, regularity, strength,
polarity, and validity. Relationship-specific attributes can
also be assigned where appropriate.

Relationships can be affected in numerous ways. The
most direct method is by filtered and processed game
events. In other words, when one entity in the game world
observes the actions of another, those actions can directly
impact the relationships between those two entities, and the
appropriate relationships must be added, updated, or
removed. Relationships are also affected by game events
indirectly, by their propagation through the relationship
network. Depending on the nature of the event and how it
affects entities in the network directly, the event can be felt
by other related entities. Time also affects relationships.
Given enough time, relationships drift towards a neutral
state, in the absence of events or interactions that would
otherwise act to strengthen them.

Augmenting Artificial Intelligence Controllers with
Relationship Data

We now examine how to examine how to augment
artificial intelligence controller using relationship data from
a relationship network. Since scripting, state machines, and
rule-based systems are the most widely used techniques in
implementing game artificial intelligence (Champandard
2004), and scripting tends to be too static to be truly
reactive, we will focus our attention on these last two
techniques in this paper.



Generally, an artificial intelligence controller can be
augmented to use relationship data in its decision process
by querying the relationship network and using this data as
additional game state to regulate state transitions or rule
firings. In a state machine, this will require additional
specialized transitions and/or specialized states; in a rule-
based system, this will require additional rules with
specialized firing conditions.

Care must be taken in using this relationship data,
however. Using raw relationship information will result in
an explosive increase in the size and complexity of state
machines or rule systems using it, because the number of
possible relationships and relationship attribute values
could be quite large. This would make programming
artificial intelligence for games quite difficult and tedious.
If relationship information, however, was filtered and
aggregated, much of this complexity can be removed,
resulting in state machines and rule systems that are more
manageable and easy to use.

Augmenting State Machines with Relationship Data
Consider, for example, the fragment of a state machine

shown in Figure 2 for a guard in the guards group depicted
in the relationship network in Figure 1.

Standing Player Seen
Guard ”

Figure 2: State Machine Fragment without Relationship
Data

When the player is observed, this event causes the guard
to switch to an attacking state to attack the player,
regardless of the player’s prior activities or relationship to
the guard in question. While this reaction might appear
realistic if the player’s behaviour warranted an attack, it
would appear oddly out of place if not. Such out of place

behaviour can break the player out of immersion, and have
a detrimental effect on the player’s enjoyment of the game
(Bates 2004; Rouse 2004).

Now consider the state machine fragment that is shown in
Figure 3, based on the previous state machine. In this case,
the relationship data between the player and guard in
question has been distilled and aggregated for simplicity
into one of three possibilities, negative, positive, and
neutral, resulting in three possible transitions from a new
state in the machine. (This new state can be avoided if an
extended state machine is used that can have transitions
triggered by multiple events or pieces of state information.)
This allows player behaviour to influence the relationship
with the guard, and the guard’s reaction to the player as a
result.

Suppose that guards in the guards group that was shown
in Figure 1 are friends with the waitress that is the focal
point of that relationship network. If the player hurts the
waitress, the guards would have a negative view of the
player and react with hostility towards the player. If the
player, on the other hand, was helpful to the waitress, the
guards would have a positive view of the player and help
the player in return. With no prior contact with the
waitress, the guards would have a neutral view of the
player, and act accordingly.

Consequently, using relationship data, we can now have
artificial intelligence that reacts in a realistic fashion
determined by player behaviour. This results in a better
overall experience to the player, as the player is left with
the impression that his or her actions actually have an
impact on the game world and its inhabitants (Bates 2004;
Rouse 2004).

Augmenting Rule-Based Systems with
Relationship Data

In this section, we examine augmenting rule-based
systems with relationship data, much like state machines
were in the previous section. Using the situation calculus
notation of (Russell and Norvig 2003), we can express the
original state machine fragment given in Figure 2 using a

Standing Player Seen

Guard

\ 4

Relation
Check

Neutral

\ 4

Posi [/ i Va

Figure 3: State Machine Fragment with Relationship Data Considered
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rule system quite easily. Note that for simplicity, we are
omitting effect axioms from the rule systems given in this
paper. In the end, we are left with the rule system
presented in Figure 4.

StandingGuard(Guard,s) A
SeesEntity(Guard, Player)

= Poss(Attacks(Guard, Player),s) (1)

Figure 4. Rule System Fragment without Relationship Data

The rule system in Figure 4 consists of one very simple
rule. In essence, this rule states that if the guard is standing
guard in a given situation and sees the player, then it
becomes possible for the guard to attack the player from
that situation. This is a fairly direct translation of the state
machine from Figure 2.

Adding distilled and aggregated relationship data to the
rule system in Figure 4 is quite straightforward. Following
the example in the previous section, we augment this rule
system with negative, positive, and neutral relationship
data, resulting in a system with more specialized rules, as
shown below in Figure 5.

StandingGuard(Guard,s) A

SeesEntity(Guard, Player) A

RelationshipAggregate(Guard, Player,Negative)
= Poss(Attacks(Guard, Player),s) (1)

StandingGuard(Guard,s) A

SeesEntity(Guard, Player) A

RelationshipAggregate(Guard, Player,Neutral)
= Poss(Warns(Guard, Player),s) )

StandingGuard(Guard,s) A

SeesEntity(Guard, Player) A

RelationshipAggregate(Guard, Player, Positive)
= Poss(LetsPass(Guard, Player),s) (3)

Figure 5: Rule System Fragment with Relationship Data
Considered

With three possible aggregated relationship states, the
rule system in Figure 5 now must have three rules, each
with a specialized firing condition corresponding to one of
the possible states. Rule 1 is fired from a situation in which
the guard is standing guard, sees the player, and has a
negative relationship with the player. In this case, it is now
possible for the guard to attack the player. Rule 2 is fired
from similar circumstances, except that the guard has a
neutral relationship with the player. In this case, the player
is only given a warning. Lastly, Rule 3 is fired when the
guard has a positive relationship with the player, and lets
the player pass as a result. With these three rules in place,
the artificial intelligence can be more reactive to player
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behaviour and produce results that are more in line with
player expectations.

More Advanced Use of Relationship Data

As can be seen from the examples in previous sections,
augmenting state machines and rule-based systems with
relationship data is not difficult when aggregated
relationship data is used. If raw data were to be used
instead, however, both techniques could become
significantly more complex, as discussed earlier.

That said, the use of raw relationship data can result in
more advanced artificial intelligence controllers for non
player characters that are able to fine tune their response to
particular situations using more specific relationship data.
This would result in even more realistic reactions and a
better overall player experience.

Continuing the previous examples, if the player has a
lucrative financial arrangement with the guard in question,
the guard may still let the player pass, even if the guard has
an overall negative or neutral opinion of the player. If we
were to add this logic to the rule system from Figure 5, we
can do so by adding the new specialized rules in Figure 6.
(Other specialized rules may need to be added or used to
replace existing rules for completeness, but the rules
provided in Figure 6 suitably illustrate what would be
required.)

StandingGuard(Guard,s) A

SeesEntity(Guard, Player) A
RelationshipAggregate(Guard, Player,Negative) A
RelationshipExists(Guard, Player, Financial) A
FinancialRelationshipValue(Guard, Player,High)

= Poss(LetsPass(Guard, Player),s)  (4)

StandingGuard(Guard,s) A

SeesEntity(Guard, Player) A

RelationshipAggregate(Guard, Player, Neutral) A

RelationshipExists(Guard, Player, Financial) A

FinancialRelationshipValue(Guard, Player,High)
= Poss(LetsPass(Guard, Player),s) 4)

Figure 6: New Rule System Fragment with More Advanced
Relationship-Based Decisions

Naturally, similar extensions can be made to state
machines, such as the one shown in Figure 3, to capture
such behaviour as well. This will again result in additional
states and/or transitions, but would result in a more
sophisticated and realistic controller.

In the end, we have the ability to construct both simple
and specialized artificial intelligence controllers using
relationship data as shown in the examples given above.
This allows us to trade off complexity for expressiveness
when required to suit the needs of the game in question.



Input Events

Artificial Intelligence Controller

Personality and Mood Filters

Relationship Manager

Relationship System

Output Actions

Figure 7: Reactive Artificial Intelligence Architecture

ARCHITECTING REACTIVE ARTIFICIAL
INTELLIGENCE

To create reactive non player character artificial
intelligence, we have developed the new architecture for
RRS shown in Figure 7. The various elements of this
architecture will be discussed in detail in the subsections
below.

Relationship System

The relationship system is used to maintain and provide
access to the relationship network constructed in the game.
It provides raw access to this relationship data to the
relationship manager, which can then provide a more
specialized interface to simplify data access. For details on
the internal design of the relationship system and its
relationships and relationship network, the reader is urged
to consult (Gruenwoldt 2005) for more information.

Relationship Manager

A relationship manager provides an interface to
relationship data from the relationship system to one or
more non player characters in a game. Typically, a
relationship manager provides filtered or aggregated access
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to this data to simplify accessing and dealing with
relationships in the artificial intelligence controllers of the
corresponding characters. For example, the augmented
artificial intelligence controller logic that was presented
earlier in this paper made use of relationship data
aggregated into three possible values: positive, neutral, and
negative. If the controllers had to make use of raw
relationship data, they would be orders of magnitude more
complex to deal with the large number of possible
relationships and relationship attributes as was discussed.
This was learned first hand in directly using relationship
data from the first prototype of RRS from our previous
work (Gruenwoldt 2005) in constructing new artificial
intelligence controllers; as the relationship system grew
more robust and more expressive, the controllers grew in
complexity quickly to the point where they became
exceedingly difficult to program.

Depending on the needs of the game and its non player
characters, relationship managers can aggregate data in a
number of ways. A manager can provide a single
relationship measure, or multiple relationship measures,
and these measures can of a variety of types. For example,
instead of providing positive, neutral, or negative values to
the controllers presented earlier in this paper, a relationship
manager could provide a numeric hostility score with



different values resulting in different transitions or rule
firings. While providing a filtered or aggregated view of
relationship data, a relationship manager must also still
provide access to raw relationship data to allow the
construction of more robust artificial intelligence
controllers able to respond to more specific situations, as
discussed in the previous section.

No constraints are imposed on how filtering and
aggregating are to take place in this architecture; the
selection of algorithms and heuristics is up to the
implementer, as this process can be game specific.
Filtering and aggregating in a relationship manager can
occur when relationship changes are submitted to the
relationship system, to have this data pre-computed for
when queries are made, or in an on demand basis, when
queries for data are actually received. Which of these
approaches performs better likely depends on the game in
question and the mix of relationship changes versus
queries; fortunately, since this process is encapsulated
within each relationship manager, a relationship manager
can tune its own behaviour at run-time to provide the best
overall results and performance without affecting the rest of
the system.

In the end, we take an object-oriented approach to
relationship managers, providing a base framework from
which game-specific managers can be derived. In fact,
game-specific managers can be further derived to allow
variations from one class of non player characters to
another, or even to the point of having specific managers
for specific characters within the game, if required. This
allows for a great deal of flexibility in filtering and
aggregating data for use in a game.

Artificial Intelligence Controller

The artificial intelligence controller provides the core
decision making functionality for a particular non player
character in the game, accepting input events and
formulating appropriate actions in return. As discussed
earlier in this paper, in a gaming environment, this module
will likely be driven by a state machine or rule-based
system of some kind. For more details on controller design
and implementation, (Champandard 2004) serves as a good
reference.

Personality and Mood Filters

Personality and mood filters are used to provide further
customization and specialization to artificial intelligence
controllers to allow for more varied non player characters.
These filters work by modifying the way input events are
processed into relationship changes or by modifying results
from relationship queries before they are processed by the
controllers.  This lets different characters record and
retrieve relationship data differently, allowing different
behaviours even when the characters are driven by
fundamentally the same controller. This also allows
character behaviour to be tuned over time as their
personality develops throughout the game, or as their
moods shift. As necessary, however, these filters can also
be bypassed by the artificial intelligence controller, to

15

provide direct contact with the relationship manager for the
character.

Different personality traits can be parameterized and used
in these filters, such as intelligence, aggressiveness,
attentiveness, disposition, prejudices, and so on. For
example, a character that is generally pessimistic could
have its relationship changes adjusted more negatively than
a character would have otherwise. Different moods and
emotional states can also be used in filters for similar
effects. For example, a character that is in an exceptionally
good mood at a given time could have results of its
relationship queries modified in a positive fashion, causing
it to act better towards other characters it might not have
otherwise.

IMPLEMENTATION AND EXPERIENCE

A prototype of the new RRS architecture from the
previous section has been developed for Epic’s Unreal
Engine (Epic Games 2004) in UnrealScript. UnrealScript
has many of the features of a traditional object-oriented
language, providing excellent support for extensibility for
the future. Games built on the Unreal Engine can take
advantage of this system by either extending a new game
type and new pawn and controller classes, or by embedding
the appropriate hooks into existing game code. In addition,
our earlier work with the Unreal Engine provided additional
console commands to support manipulation of relationships
manually from within the game (Gruenwoldt 2005). This
allows game developers and designers to add relationship
information during production from within the game itself,
allowing easy debugging and initialization of content.

Artificial intelligence controllers in the Unreal Engine are
in essence state machines, allowing them to be augmented
with relationship data as described earlier in this paper.
Using the existing relationship system, relationships, and
relationship network from (Gruenwoldt 2005) as a
foundation, a new relationship manager was derived from
its base class to aggregate this relationship data together
using a collection of simple heuristics. A small number of
personality and mood filters were also developed to provide
more varied tuning of relationship changes and query
responses. As simple examples, optimistic and pessimistic
filters were implemented to adjust the positivity and
negativity of relationship changes respectively when
required within a game.

After development, initial validation of the new RRS took
the form of individual test cases. More extensive validation
took the form of modifying the existing LawDogs game
modification to Unreal Tournament 2003/2004 (Castaneda
2005). LawDogs was chosen primarily because its setting
included a bar scene, which follows in line closely to the
relationship network example presented in Figure 1, and
introduced originally in (Danton 2004). LawDogs also had
reasonably simple gameplay with straightforward and
traditional artificial intelligence, making it a suitable first
deployment for our work. Our experience with LawDogs
demonstrated that the non player characters in the game
were able to react according to player interactions quite
well.



Based on this success, we are currently augmenting the
artificial intelligence developed for the Neomancer project
(Danton 2004; Katchabaw 2005), an action/adventure/role-
playing game being co-developed by the University of
Western Ontario and Seneca College. It features richer
characters and gameplay than LawDogs, and is better suited
towards larger scale deployment and testing of our current
work.

We have encountered similar success with test non player
characters in Neomancer using the new RRS, and are
currently expanding use of the system as the artificial
intelligence controllers and characters in the game continue
to be developed, refined, and enhanced. (The Neomancer
project is expected to take up to three years to complete,
and we have only completed the initial year of the project.)
A screenshot of a test character in the Neomancer world is
shown in Figure 8.

CONCLUDING REMARKS

By capturing game relationships and facilitating more
appropriate character responses through linking relationship
data to artificial intelligence controllers for non player
characters, our new Realistic Reaction System can provide
more immersive and compelling gameplay in modern video
games efficiently and effectively. In the end, non player
characters will be able to react to player behaviour in a
more realistic fashion, leading to a better overall gameplay
experience for the player.

Figure 8: Screenshot from Neomancer with Test Character
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Experimentation with an Unreal-based implementation of
this system to date has proven successful, both in small and
mid-size deployments of the system. Larger scale
deployment in a commercial-grade game is currently
underway and progress to date has been excellent. This
new Realistic Reaction System demonstrates great promise
for future development efforts.

In the future, there are many possible directions for
research to take. This includes the following:

e We plan to complete our current development and
deployments efforts with Neomancer and port the new
RRS to other games and platforms for further research
and development.

e To meet stringent performance constraints we further
plan to investigate techniques to optimize RRS and
minimize run-time overhead in manipulating and
querying relationships in the system. While we have
found that proper filtering and aggregation in relation
managers can greatly improve performance, additional
performance improvements would always be quite
beneficial.

e Finally, we also intend to extend our library of
relationships, relationship managers, and personality
and mood filters to allow RRS to support a wider
variety of artificial intelligence behaviours in games
by default.
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ABSTRACT

Providing gameplay that is satisfying to a broad player
audience is an appealing goal to game developers.
Considering the wide range of player skill, emotional
motivators, and tolerance for frustration, it is simply
impossible for developers to deliver a game with an
appropriate level of challenge and difficulty to satisfy all
players using conventional techniques. Auto-dynamic
difficulty, however, is a technique for adjusting gameplay
to better suit player needs and expectations that holds
promise to overcome this problem.

This paper presents an experimental testbed to enable
auto-dynamic difficulty adjustment in games. Not only
does this testbed environment provide facilities for
conducting user studies to investigate the factors involved
in auto-dynamic difficulty, but this testbed also provides
support for developers to build new algorithms and
technologies that use auto-dynamic difficulty adjustment to
improve gameplay. Initial experiences in using this auto-
dynamic difficulty testbed have been quite promising, and
have demonstrated its suitability for the task at hand.

INTRODUCTION

The goal of producing a game is to provide many things
to players, including entertainment, challenge, and an
experience of altered state. Ultimately, however, a game
must be fun. One major source of polarization among
players on this issue is the level of difficulty in a game.
There is a great degree of variation in players with respect
to skill levels, reflex speeds, hand-eye coordination,
tolerance for frustration, and motivations.

In (Csikszentmihalyi 1996), the concept of “flow” is used
to refer to an individual’s “optimal experience”. In a state
of flow, the individual experiences intrinsic enjoyment
from undertaking a task that feels almost effortless and
natural, while also causing the individual to feel focussed
and challenged. One facet of flow is that there is a balance
between the challenge presented by the task and the
increasing skill of the individual, as discussed in (Falstein
2004). This closely resembles the concept of a zone of
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proximal development as discussed in (Woolfolk et al.
2003), in which a balance between skill and challenge is
needed in educational settings in order for learning to take
place. This zone of proximal development was found to be
different for each student, and that tasks considered easy by
some may be too difficult for others. Assigning difficulty
levels in games must address this problem so as to hit the
“optimal experience” for as many players as possible, each
of which may have very different zones of proximal
development. These issues are important because, as noted
in (Miller 2004) and (Rouse 2004), a game must balance
challenging and frustrating the player to provide the best
overall level of satisfaction and enjoyment.

Several approaches have been used in the past to attempt
to provide appropriate difficulty levels in a variety of
different ways, such as having a single static difficulty level
(chosen either by the designer or through play-testing of the
target audience), having several different static difficulty
levels to choose from at the start of the game, or providing
cheat-codes. However, each method has its drawbacks and
limitations, and ultimately cannot provide an appropriate
difficulty level to all players, particularly as their skills
improve as they play and learn. In the end, this can
drastically limit the success of a game.

Auto-dynamic difficulty refers to the ability of a game to
automatically adapt the difficulty level of gameplay to
match the skills and tolerances of a player. If done
properly, this can provide a satisfying experience to a wider
variety of players. The concept of auto-dynamic difficulty
is not new; it has been used in early arcade games such as
Xevious to more recent titles such as Max Payne (Miller
2004). Typically, however, this technique is used in an ad
hoc and unrepeatable fashion, applied to a particular game
or gameplay element within a game. Often, there is little
regard or understanding for the various factors that
influence player experience and how these factors interact
with one another; as long as the current game is improved,
that is all that matters.

In this paper, we discuss the development of an
experimental testbed to facilitate the development of auto-
dynamic difficulty enabling technologies for games. This
testbed serves two key purposes. The first is to support
experimentation to better understand what shapes player
experience and how gameplay and difficulty can be altered
to produce the best experience possible. The second is to



serve as a vehicle for testing new algorithms and
methodologies for supporting auto-dynamic difficulty
developed as part of this work. The goal is that this work
will provide both a better understanding of how to create
more enjoyable and satisfying gameplay experiences for a
wider range of players, and that it will deliver enabling
technologies to make use of this new understanding in a
wide variety of games and gameplay scenarios.

The remainder of this paper is organized as follows. We
begin in the next section with a background discussion of
auto-dynamic difficulty adjustment, describing what
adjustments are possible, and the deciding factors in
determining when and how such adjustments should be
made. We then present the architecture and implementation
of our auto-dynamic difficulty experimental testbed
environment. We then provide a brief discussion of our
experiences to date in using this experimental testbed.
Finally, we conclude this paper with a summary and
discussion of potential future work in this area.

AUTO-DYNAMIC DIFFICULTY ADJUSTMENT

Before discussing our experimental testbed environment,
it is first important to further explore the key issues behind
auto-dynamic difficulty adjustment. Of critical importance
is to recognize what adjustments can and should be made,
as well as when and how to make these adjustments. Any
adjustments must be made with care in such a way that they
enhance the satisfaction and enjoyability of the game,
without disrupting the game in a negative fashion. (For
example, changes that are too abrupt could disrupt the
immersion of the player, causing a negative effect on the
overall experience.)

What to Adjust

Designed properly, a good portion of a game’s gameplay
elements can have difficulty that is adjustable dynamically
(Bailey 2005). This includes the following:

Player character attributes. The attributes of the player’s
character can be tuned according to the desired level of
difficulty in a game. As examples, to make a game easier,
the player could be made stronger, move faster, jump
higher and farther, have more health, have better armour,
attack with more damage, attack more frequently, and so
on. To make a game harder, these attributed can be
adjusted in the opposite directions.

Non-player character attributes. Likewise, the attributes
of non-player characters controlled by the game’s artificial
intelligence can change. Not only does this include the
attributes affecting the actions they take as above, but this
also includes the decision making processes used. To make
a game less difficult, non-player characters can make
poorer decisions, provided that these decisions do not make
the characters appear artificially stupid. As examples, path-
finding can be adjusted to make the player harder to find,
aiming can be adjusted so that attacks are less successful,
and so on. Similarly, steps can be taken to make better
decisions that make the game more difficult.
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Game world and level attributes. Various elements of
how the game world and its levels are designed can affect
game difficulty, including both the structure of the levels,
and their contents (Bates 2004). With advancements in
game engine technologies, it is now possible to do this
dynamically from within the game. Adjusting level
structure depends heavily on the gameplay occurring within
the gameplay. For example, in a platformer-genre game
involving a lot of jumping puzzles, level geometry can be
adjusted dynamically to make gaps smaller or larger to
make the game easier or more difficult. In a shooter game,
as another example, the amount of cover can be adjusted
appropriately to make the game easier or more difficult as
well. Level contents can also be tuned dynamically to
adjust difficulty. By adding or removing items such as
ammunition, health upgrades, and so on, a game can be
made easier or more difficult. Varying the quantity and
spawning locations of enemy non-player characters can also
affect difficulty.

Puzzle and obstacle attributes. As discussed in (Bates
2004), there are several ways of adjusting the level of
difficulty provided by puzzles and obstacles within a game.
Fortunately, many of these techniques can be applied
dynamically. While it might not always be possible to
dynamically adjust the attributes of the current puzzle or
obstacle faced by the player (for consistency and other
reasons), it might be possible to instead adjust the difficulty
in puzzles faced in the future. For example, if a player is
finding one type of puzzle to be difficult to solve, in the
future, the solution to that same type of puzzle can be
placed closer to the puzzle itself, making it inherently easier
to solve (Bates 2004).

As discussed in (Miller 2004), most earlier attempts at
auto-dynamic difficulty focussed on a restricted subset of
gameplay, typically in the adjustment of player or non-
player character attributes. With this rationale applied
throughout the game, as discussed above, it is possible to
create a better overall player experience.

When and How to Adjust

To determine when to adjust game difficulty and how to
do so, data must be collected on players and their
progression through the game. To provide the best level of
challenge, we must have a measure of the current skill level
of the player, as well as their success and failure rates at the
various elements of gameplay encountered to date in the
game. Since different players will tolerate and accept
different levels of challenge at different times, we must also
have a sense of the player’s general type, motivations,
frustration tolerance, and emotional state.

Measuring a player’s level of skill in a game, as well as
their success and failure rates, is inherently tied to the
particular game or game genre. Typically, however, there
are multiple metrics that are applicable and can be
measured from within the game itself. For example, in a
platformer game with a sequence of jumping puzzles, the
number of attempts before success and time to completion
could be useful metrics. In a shooter game, the percentage



of enemies eliminated per level, the amount of damage
taken per level, and time to completion could be useful
metrics. One must give careful thought to the metrics
selected, however, as they could indicate unanticipated
styles of play or other player activity, and not the skill of
the player. For example, tracking the number of game
saves and loads might be problematic. One might think that
a high frequency of saves and loads is indicative of an
unskilled player, but this pattern of activity could also be
encountered by a player playing the game during short
coffee breaks (Bailey 2005). Counting the number of
player character deaths might also be misleading, as an
unskilled player could get frustrated after a single death and
quit the game with a relatively low death count only to
return later. So, while there might be multiple methods of
tracking player progression through a game, care and
thought must be put into the process.

Determining a player’s type and internal factors is more
difficult to do within a game, but not impossible. For
example, (Sykes and Brown 2003) found that the pressure
of button and key presses correlated strongly to frustration
and difficulty levels within a game. The work in (IP and
Adams 2002) examined ways of quantitatively measuring
levels of “core” and “casual” in a given player. As
discussed in (Bailey 2005), elements of player types
identified in (Bartle 1996) and (Lazzaro 2004) could be
identified by tracking player movement and progress
through a game. For example, the explorer type identified
in (Bartle 1996) could be detected by observing players
lingering in areas of the game world for extended periods of
time without paying attention to game goals, while the
achiever type could be detected by observing a linear and
timely progression through game goals. As pointed out in
(Bailey 2005), however, there are ultimately some internal
factors that are not easily measurable from within a game
world, and we must rely upon external studies and
experimentation to calibrate the game and assist in
correlating observed player behaviour and emotion state.

Using measurements of player skill, as well as success
and failure rates, it is not hard to determine when a player is
encountering difficulty with a certain element of gameplay.
While these measurements are important, we must be
careful to also take into consideration player type and
internal factors; otherwise, we again fall into a “one-size-
fits-all” mentality that does not produce appealing results to
a broad audience. It is also important to consider the
impact of characteristics of the gameplay on the motivation
of the player, including whether the necessity of the
gameplay element, the rewards for success, the
consequences of failure, and so on (Bailey 2005).

In the end, it is possible to develop rudimentary rules to
guide when difficulty adjustments should be made and how,
based on this information. For example, if a player is
encountering a challenging task, but is exhibiting
characteristics of the achiever type, then difficulty should
not be adjusted as this player type is more likely to enjoy
the challenge than not (Bartle 1996). However, to assist in
the formulation and validation of these rules and decision
models, experimentation is necessary. A thorough
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investigation in this area is clearly warranted. This reality,
in part, motivated developing the experimental testbed
discussed in this paper.

AUTO-DYNAMIC DIFFICULTY EXPERIMENTAL
TESTBED

To facilitate the study of auto-dynamic difficulty, our
current work focuses on the construction of an experimental
testbed that will enable experimentation with players and
development of new technologies to better tune game
difficulty automatically to meet their needs. This testbed is
depicted in Figure 1, and discussed in more detail in the
sections below.

Gameplay

Gameplay
Scenario

Gameplay

Scenario Scenario

Game Engine Core

Figure 1: Auto-Dynamic Difficulty Experimental Testbed
Architecture

Game Engine Core

The game engine core is used to provide all of the
fundamental technologies required to drive a game or
gameplay scenario. This includes graphics, audio,
animation, artificial intelligence, networking, physics, and
so on. One could then layer new gameplay logic and
content on top of this engine to have a complete game,
without the burden of developing all of the underlying
technologies. This saves considerable development time in
building the testbed, and also allows the use of
professional-grade tools to produce a gameplay experience
of very high quality.

At the core of our testbed is Epic’s Unreal engine (Epic
Games 2004). The Unreal engine is a modern, state-of-the-
art game engine that can be used to support a wide variety
of game genres and gameplay elements. It also supports
rendering in both first and third person views, which makes
it easier to support more varied gameplay. = The Unreal
engine itself is written in C and C++, but provides a flexible
object-oriented scripting language, UnrealScript, to make it
easy to extend the engine and deliver new functionality.
Since this engine is based on leading edge technologies and
still in use commercially today, there are no concerns of
confounding that could have arisen from using older,



obsolete technologies. (For example, in such a case, one
would have to determine if a player had an unsatisfactory
experience because of game difficulty or because the
game’s graphics were not up to the standards set by modern
games.) In the end, the Unreal engine was a natural choice
of foundation on which to build our testbed.

Monitoring, Analysis, and Control

Monitoring, analysis, and control services are used in the
testbed to support both auto-dynamic difficulty
experimentation and software developed to implement new
auto-dynamic difficulty algorithms and methodologies.
These services are used by gameplay scenarios, and directly
make use of the game engine core.

To conduct experimentation within a particular gameplay
scenario, the experimental environment must monitor and
collect the appropriate player and progression data, as
discussed in the previous section. The analysis service is
used to provide support in the aggregation and correlation
of data collected through monitoring. The control service is
used to manipulate the experiment in the gameplay
scenario, including starting, suspending, resuming, and
halting a particular experiment. It is important to note that
some aspects of monitoring, analysis, and control may need
to be completed offline outside of the testbed software.
(For example, augmenting recorded data with audio and
video recordings, as well as surveys and interviews
currently must be done offline. In the future, it is hoped to
add these elements to the testbed software as well for a
more integrated solution. Analyses of these elements
would still likely require manual intervention, however.)

To support new auto-dynamic difficulty algorithms and
methodologies, the monitoring service still collects player
and progression data as before. The analysis service in this
case is now focussed more on analysing this data to
formulate decisions on when and how to adjust game
difficulty using rules and decision models formulated based
on experience and experimentation conducted using the
testbed. The control service in this case still manipulates
the gameplay scenario, but is focussed this time on the
relevant attributes of the player character, non-player
characters, the game world, or game puzzles and obstacles
to adjust the game’s difficulty according to the decisions
developed by the analysis service.

In our testbed, the monitoring, analysis, and control
services are written in UnrealScript. All three services are
integrated into a single new Unreal game type derived from
the base Unreal game type class. This new game type
provides instrumentation suitable for embedding in
gameplay scenarios to enable monitoring, analysis, and
control activities. This facilitates the development of new
gameplay scenarios and entire games using these auto-
dynamic difficulty services, as these new games would
simply need to derive their own game type from this new
type, instead of the base class.

At present, rudimentary monitoring, analysis, and control
services are provided; more sophisticated facilities are
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currently under development. Currently, the monitoring
service can collect time to completion, success and failure
rates, and other metrics, the analysis service can support
simple correlations and decision rules, and the control
service can control experiment operation, and tune certain
player and non-player character attributes, as well as
selected game world attributes.

Gameplay Scenarios

Gameplay scenarios are used to contain playable elements
of games and game content. These can range in scale from
mini-games depicting as few as one game activity for the
player, all the way up to complete entire games.

In the current version of the testbed, we have
implemented a variety of mini-game gameplay scenarios
using UnrealScript and UnrealEd (Busby et al. 2005).
These include two jumping mini-games (one with fatal
consequences, the other with no failure consequences), a
timed maze navigation mini-game, a turret mini-game
requiring the player to navigate a short hallway lined with
automated, indestructible gun turrets, and a fighting mini-
game requiring the player to make their way through a
room full of heavily armed enemy non-player characters. A
screenshot from one of these scenarios is given below in
Figure 2. Recognizing the limitations of experimenting with
mini-games, as discussed in the next section, we are also
building the Neomancer project (Katchabaw 2005) based
on our new game type, to provide a complete
action/adventure/role-playing  game  experience for
experimentation and development activities.

Figure 2: Screenshot from Turret Hallway Mini-Game

EXPERIENCES AND DISCUSSION

Initial user studies and testing using the auto-dynamic
difficulty experimental testbed were conducted with a small
number of family members and co-workers of researchers
at Western. Results of this early experimentation have been
rather positive, indicating that the testbed is suitable for the
task at hand. While the initial version of the testbed can
only monitor a small number of player and progression
metrics, analyse through simple correlations and a restricted
rule set, and control through only simple operations, we
have been able to gather interesting results from
experimentation and implement several auto-dynamic



difficulty algorithms. It is clear, however, that more
thorough experimentation using a large study group is
necessary, both to better understand the interplay of the
factors involved in auto-dynamic difficulty, and to develop
better algorithms and technologies for games (Bailey 2005).

During initial experimentation using the mini-game game
scenarios, it also became apparent that mini-games on their
own might not be sufficient for investigating auto-dynamic
difficulty fully. Mini-games, by their very nature, do not
have a broader story, context, or reward system, which was
found to produce a different emotional state in the player
than playing a full game. Repetition of mini-games was
also found to grow tedious, resulting in a negative
impression of the mini-game independent of its challenge
or difficulty. Consequently, it is necessary to have a
complete gaming experience to fully explore auto-dynamic
difficulty. Fortunately, through our development efforts in
the Neomancer project (Katchabaw 2005), we have access
to a commercial scale action/adventure/role-playing game
that will fill this need nicely.

Game performance is a crucial factor to game players and
game developers alike. Consequently, it is critical to ensure
that there be minimal overhead imposed by auto-dynamic
difficulty on the game as it plays. During initial
experimentation, frame rate tests were conducted using the
Unreal engine’s own frame rate monitors, with and without
the use of auto-dynamic difficulty and the instrumentation
required for monitoring and control. This testing found that
there was no measurable difference between frame rates
delivered with and without auto-dynamic difficulty in
place, and so performance was deemed acceptable.

The approach to auto-dynamic difficulty currently taken
in this work is reactive. In other words, once measurements
indicate that a game is too easy or too difficult for the
player, gameplay can be adjusted to produce a more
favourable experience. Unfortunately, a reactive approach
means that a player must encounter such problems before
any corrective actions are taken, and that the player could
lose patience with the game before auto-dynamic difficulty
has a chance to become active. It was found during initial
experimentation that some mini-game scenarios could be
made so easy or so difficult that the player is turned off
almost instantaneously, sharply reducing the benefits of
reactive auto-dynamic difficulty in these extreme situations.
Proactive auto-dynamic difficulty, on the other hand,
attempts to adjust game difficulty before a player
encounters the above problems through an analysis of non-
critical gameplay tasks. Doing so, however, would likely
require calibration through more user studies to develop an
appropriate predictive model, and introduces other
problems if predictions are inaccurate. It would seem,
however, that investigating proactive adjustments, perhaps
in conjunction with reactive techniques, would be a
worthwhile endeavour.

CONCLUDING REMARKS

Delivering satisfying gameplay experiences to a variety
of players is a challenging task. To do so, gameplay
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difficulty must be tuned to suit player needs, as in auto-
dynamic difficulty.  Our current work is aimed at
addressing this, by providing an experimental environment
for studying this problem and assisting in the formulation of
acceptable solutions. Initial experience through using this
auto-dynamic difficulty experimental testbed has been quite
positive, showing much promise for the future.

In the future, there are many interesting avenues for
continuing research to take. We plan to refine the
monitoring, analysis, and control capabilities of the testbed,
to enable more thorough user studies. Using this enhanced
testbed, we intend to expand experimentation to include a
larger, more diverse player population. Based on the results
of this experimentation, we will develop additional rules
and decisions models for use in the testbed’s analysis
service to better support a wider variety of auto-dynamic
difficulty algorithms. At the same time, we will continue
work on the Neomancer project to provide a full length,
feature rich gameplay scenario for studies with the testbed.
Finally, we plan to continue investigating other open
research issues in auto-dynamic difficulty adjustment,
including reactive versus proactive techniques.
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ABSTRACT

Complex computer game narratives can suffer from logical
consistency and playability problems if not carefully con-
structed, and current, state of the art design tools do little to
help analysis or ensure good narrative properties. A formally-
grounded system that allows for relatively easy design and
analysis is therefore desireable. We present a language and
an environment for expressing game narratives based on a
structured form of Petri Net, the Narrative Flow Graph. Our
“(P)NFG” system provides a simple, high level view of nar-
rative programming that maps onto a low level representa-
tion suitable for expressing and analysing game properties.
The (P)NFG framework is demonstrated experimentally by
modelling narratives based on non-trivial interactive fiction
games, and integrates with the NuSMV model checker. Our
system provides a necessary component for systematic anal-
ysis of computer game narratives, and lays the foundation for
all-around improvements to game quality.

INTRODUCTION

A large number of computer games have strong narrative
components. Most notably this includes adventure and role-
playing games, but many first person shooters and 3D games
also depend on a narrative backbone structure. Unfortunately,
as many gamers are aware, complex narratives often contain
either outright flaws or more subtly undesireable game prop-
erties [Adams, 2005]. Plot holes, non-sequiturs and narrative
dead-ends are not uncommon, and difficult to avoid com-
pletely when developing a large game. A formal narrative
analysis system that can help to determine these problems
and otherwise analyse narratives is clearly desireable.

We initially draw on inferactive fiction (IF) as a source of
well-defined, complex narratives; IF is one of the oldest com-
puter game genres, and provides for interactive storytelling
at the most basic, fundamental level: in its most common
form, the player enters text commands and receives text mes-
sages as output [Montfort, 2003]. This setting allows us to
focus on “pure” narrative issues, and to separate out user in-
terface and real time, non-deterministic gameplay concerns;
it also means we are able to specify complete representations
of many games.

We use the Narrative Flow Graph (NFG) as a formal
structure for representing IF games [Verbrugge, 2002], and
provide a new interactive NFG interpreter that allows for ac-
tual IF gameplay. NFGs are themselves a class of 1-safe
Petri Nets (PNs), and thus we can exploit a wealth of avail-
able analysis research. At runtime, we feed this low level

game format to the NuSMYV formal model checking software
[Cimatti et al., 2002] to determine game properties.

NFGs are appropriate for formal analysis, but a higher
level expression is required for complex game design. We
thus introduce the Programmable NFG (PNFG) language that
accepts a high level game specification. Our language al-
lows for easy expression of game narratives, and we have
been able to produce faithful implementations of real, com-
plex IF games relatively quickly, including the complete Scott
Adams game, The Count [Adams, 1981]. We have also de-
rived IF representations for the two initial chapters of Refurn
to Zork [Barnett, 1993], a graphical point-and-click adven-
ture. The PNFG compiler produces NFGs from these narra-
tives, and we are thus able to analyse non-trivial benchmarks.
Although we find that narrative complexity soon limits the
analysis available, this is early work and a good baseline sys-
tem for future experimentation.

Together the NFG interpreter and PNFG compiler form
the (P)NFG system, and our software is freely available under
the terms of the LGPL; the authors welcome feedback, bug
reports, and source code contributions.

Contributions

Specific contributions of this work include:

e A new and formally-backed language for narrative speci-
fication. We give precise rules and structure for compila-
tion of high level narrative source code to a corresponding
low level representation that allows for narrative analysis.

e A Petri Net-based, interactive narrative interpreter and
runtime system that integrates with the NuSMV model
checker. This permits finding paths to winning and losing
states, and verifying other game properties.

e Experimental data on the representation and analysis of
small, medium-sized, and large actual interactive fiction
narratives. Real data on non-trivial game narrative struc-
ture is of great benefit to further analysis.

In the next section, we discuss related work on narrative anal-
ysis. Subsequently, we provide a definition of our NFG for-
malism, slightly extended to allow for external input and out-
put. We then give an overview of our software framework,
and in the following two sections provide full details on the
NFG interpreter and the intricacies of formal verification, and
describe the PNFG compiler and its code generation strate-
gies. Afterwards we present implementations of several nar-
ratives, and provide experimental results obtained using var-
ious size and complexity metrics and from our attempts at
verification. Finally, we conclude and discuss future work.
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RELATED WORK

Flaws in narrative construction and the corresponding need
for better processes have been identified in all manner of
commercial and non-commercial games [Adams, 2005]. Di-
rected acyclic graph (DAG) representations of plotlines have
been proposed as a solution to these problems several times,
onr.a.i-f [Arnold et al., 1995], by an online IF magazine
[Forman, 1997], and by the Oz group [Mateas, 1997]. IFM,
the Interactive Fiction Mapper [Hutchings, 2004], is a tool
that facilitates map generation and plot DAG creation by end
users, and includes a solver that derives a walkthrough from
task dependencies. However, DAGs most often cannot pro-
vide a complete representation as they cannot model arbitrary
cycles or resource consumption.

Higher level narrative development frameworks have been
explored [Brooks, 1996, Charles et al., 2002, Young, 2005],
and there has also been considerable work on using logic
for modelling and analysis. The language & provides a thor-
ough logic-based approach to describing narratives using ac-
tions [Kakas and Miller, 1997], and narratives have also been
studied as pure logic programs [Reiter, 2000]. Constraint
logic programming can be used to analyse and detect flaws
in story chronologies [Burg et al., 2000], and causal normal-
isation has been examined as a mechanism for ensuring con-
sistency in games [Eladhari, 2002].

As a general rule of thumb, all of the interesting ques-
tions about the behaviour of 1-safe Petri Nets are PSPACE-
hard [Esparza, 1998]. In order to limit the practical com-
plexity of PN analysis we use the symbolic model verifier
NuSMYV [Cimatti et al., 2002], which supports a Binary De-
cision Diagram (BDD)-based backend [Bryant, 1992]. BDDs
help to collapse the state space, making feasibile the de-
termination of properties such as reachability for larger
problem instances. NuSMV has been used to model PNs
in the past [Bobbio and Horvith, 2001], techniques for en-
coding PNs efficiently using BDDs have been reported
[Pastor et al., 2001], and recently it was suggested that clever
application of brute force algorithms can be just as if not more
efficient [Ciardo, 2004].

The PNFG language we will describe allows for high-
level narrative descriptions to be compiled for use by our
PN-based NFG interpreter. Previous work in other do-
mains has also yielded methods for translation of languages
to a PN model: a formal PN semantics has been de-
fined for the Programmable Logic Controller (PLC) instruc-
tion list [Heiner and Menzel, 1998], and SynchNet compiles
distributed object coordination specifications down to PNs
[Ziaei and Agha, 2003].

This paper builds on our own previous theoretical work
defining the Narrative Flow Graph (NFG) as a formal
structure for computer narratives [Verbrugge, 2002]. Oth-
ers have also sought to represent computer narratives us-
ing Petri Nets [Natkin and Vega, 2004], introducing several
higher level control flow constructs. That work is extended
in [Vega et al., 2004] to model spatiotemporal relationships
in narratives using connections that replace edges dynam-
ically based on transition firing patterns. Coloured PNs
have also been used to model narratives in multi-agent in-
teraction scenarios, as demonstrated through an implemen-
tation of the card trading game Pit [Purvis, 2004]. Finally,
although not considered in the specific context of com-
puter narratives, closely related work has seen PNs used to
model relationships between tasks in workflow management
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[van der Aalst, 2002] and to provide a verifiable mechanism
for browsing hypertext [Stotts and Furuta, 1989].

Interactive fiction authoring kits themselves have been
a favourite of hobbyist programmers and many systems
are available. Inform [Nelson, 2001] is one of the most
popular, along with TADS [Roberts, 2005, Eve, 2005], Hugo
[Tessman, 2004], ALAN [Nilsson and Forslund, 2005],
ADRIFT [Wild, 2003], and Quest [Warren, 2004]. AIFT
is a new Prolog-based toolkit [Merritt, 2004] inspired by
previous work in using IF to teach Prolog [Merritt, 1996],
and bears relation to our work in that its rule-based syntax is
also amenable to formal verification.

FORMALISM

Narrative Flow Graphs (NFGs) are a class of 1-safe Peri
Nets (PNs) that specify some simple abbreviations and ad-
ditional markings to enforce the narrative flow, and back-
wards translation is straightforward. For the original Nar-
rative Flow Graph (NFG) formalism and its derivation from
1-safe Petri Nets (PNs) and directed hypergraphs, refer to
[Verbrugge, 2002]. Here we introduce a slightly revised but
equivalent definition of an NFG in order to build our execu-
tion model.

Definition 1 A Narrative Flow Graph (NFG) is a 6-tuple:
(S, T, M, a,w,l), where S is a set of unconnected places and
T is a set of transitions such that each t = (Ss, S, Sq) € T
is connected to S C S source places, S. C S context places,
and Sy C S destination places. M is the set of markings or
reachable states where each m € M is a unique distribution
of tokens over S, one per place s. a is an identified axiom
place that connects to transitions Tipiia1 C T via source
edges a—T;niiqr only, and w and | are identified win and
lose places that connect to transitions Ttine; € T via des-
tination edges T'finq—(w|l) only. The graph is initialized
to an axiom state or marking my by filling the axiom place
with a token. Transitions are enabled when all connected
s € (Ss US,) for a given t contain tokens, and can thus
fire, emptying each s € S and filling each s € Sy; tokens
are not removed from any s € S.. Firing is mutually exclu-
sive: although multiple transitions may be enabled, only one
fires at a time. The narrative thus flows from m, to either
the winning state m., or the losing state my, via the firing of
transitions, and through some intermediate set of markings
Mi c (M \ {maymlam’w})‘

Although NFGs as defined allow for the full semantics of
goal-oriented storytelling, the details of interactivity are un-
clear. We now extend the original definition to include input
and output connections to transitions, for use in real computer
narratives or games.

Definition 2 An Interactive NFG (NFG’) is an 8-tuple:
(S, T,M,a,w,l,1,0), where S, T,M,a,w,l are defined as
before, and I and O are sets of input commands and out-
put messages respectively, such that each © € I is attached
to a single transition t € T and each o € O is attached
to any number of transitions t € T. An internal transition
t; € Tinternal has zero input commands and can fire as soon
as enabled, and an action transition ¢, € T, ctions has one
or more equivalent input commands, and fires iff the system
receives a matching input string and there is no enabled t;.
Both internal and action transitions may optionally have an
output message o attached.



Thus in an NFG’, the narrative flows from axiom to win
or lose states as before, but now alternates between waiting
for input commands and firing series of transitions based on
those commands. Output messages may be produced for the
initial command or for any transition that fires as a result, as
well as for the transitions that occur between m,, and the first
idle state, i.e. during the narrative’s prologue. We now rede-
fine NFG to NFG’.

Previously, we also discussed several properties of narra-
tives that can be analysed given the formal structure of an
NFG. Among them are 1) winnability and losability at a given
state, or the reachability of m,, and m;; 2) the distance be-
tween two markings, or the shortest path between them; 3)
the separation between two markings, or the longest acyclic
path between them; 4) pointlessness, the separation between
unwinnability and actually losing; and 5) progress, the dis-
tance between the current marking and m,,. In light of Defi-
nition 2, we now redefine these terms to exclude internal tran-
sitions. In this initial attempt at verification we concern our-
selves only with winnability and losability and the paths to
these goals.

SYSTEM OVERVIEW

PNFG compiler

IF game

NFG interpreter
narrative

Figure 1: System overview.

* nfg | | playable

In Figure 1, an overview of the (P)NFG system can seen.
Source narratives in .pnfg format are fed to the PNFG com-
piler and can be used to produce various outputs, including a
graphical map of game locations and their connectivity, and
low level .nfg source files. Generated or handwritten .nfg
files are then passed to the NFG interpreter which parses the
.nfg file and creates a dynamic NFG initialized to the ax-
iom state, and then accepts commands from the player until
either the winning or losing state is reached, thus forming a
playable IF game. The player can also query the interpreter
as to the possibility of winning or losing, which causes the
interpreter to construct a model of the NFG for the NuSMV
model checker. NuSMYV in turn depends on a Binary Deci-
sion Diagram (BDD) solver backend to find reachability, and
ultimately a response is produced for the player.

NFG INTERPRETER

"hang cloak on hook"

player wearing cloak player in cloakroom

source
context
—— destination

cloak on hook increment score

A\
"You take off the velvet cloak and
hang it on the small brass hook."

Figure 2: Example NFG transition.

An example NFG transition is shown in Figure 2. The player
is wearing the cloak (source connection) and is in the cloak-

room (context connection). The transition is enabled, since
there are tokens in all source and context places. If the
player inputs the command, “hang cloak on hook,” the tran-
sition will fire. This removes the token from “player wearing
cloak,” keeps the token in “player in cloakroom,” and creates
new tokens for the “cloak on hook” and “increment score”
destination places. Additionally, it causes the message, “You
take off the velvet cloak and hang it on the small brass hook,”
to be printed. This is an action transition, as it requires user
input to fire. The “increment score” place connects to a sepa-
rate internal transition that fires as soon as enabled and with-
out any user input.

transition {

sources = player wearing cloak;

contexts = player in cloakroom;

dests = cloak on _hook, increment_ score;
inputs = "hang cloak on hook";

output = "You take off the velvet cloak and

hang it on the small brass hook.";

Figure 3: Example NFG source code.

The .nfg source code for this transition is shown in Figure
3. The game specification is simple and consists of one ax-
iom state, one win state, an optional lose state, and a series
of transitions. Transitions are nameless, and new places are
defined by using a symbol for the first time. A transition may
or may not contain sources, contexts, destinations, inputs, or
an output, and invalid combinations are weeded at runtime;
for example, a transition with no sources or contexts must
specify at least one input, for otherwise it would continually
fire.

main() {
build AST from .nfg input file;
build NFG from AST;
initialize NFG to axiom state;
while (!won && !lost) {
while (some t; € Tipternal €nabled) {
fire t;;
1
wait for user input;
switch (input) {
case "query win":

ask NuSMV to find winning state;

case "query lose":
ask NuSMV to find losing state;

case "query moves":
print each enabled tq, € Tgctions:

case (some enabled tg, € Tyctions) :
fire tq;

default:
"Sorry, try something else.";

Figure 4: NFG interpreter main().

Pseudocode for the NFG interpreter main () is shown in Fig-
ure 4. The game input file is parsed and an abstract syntax
tree (AST) constructed. A traversal over the AST is used to
build the NFG, and it is initialized to its axiom state. Then an

25



event loop is entered, which iterates until either the game is
won or lost. Inside the loop, first all enabled ¢; € T} ternai
are fired, and this continues until an idle state is reached;
the firing of one internal transition will commonly lead to
the enabling of another. Once idle, a prompt is displayed,
and the player can input a command. Entering “query win”
will build a model for NuSMV with the invariant specifica-
tion being that a winning state is not reachable; if NuSMV
can find a counterexample it prints a trace, and a sequence
of firing action transitions is extracted. The corresponding
input commands are enumerated, thus presenting the player
with a minimal winning solution. If no counterexample ex-
ists, the player is informed that winning is impossible. Sim-
ilarly, “query lose” will either produce a losing solution, or
inform the player that losing is impossible. Entering “query
moves” does not invoke the verifier, and simply prints out
input strings for each enabled ¢, € Tjcti0ns. If the player
does not enter a query but an actual command, it is matched
against an enabled ¢, if possible and the transition is fired,
otherwise a default “unrecognized command” error message
is printed.

The key cost in creating the model for NuSMYV, and in-
deed for any BDD-based verifier, is the number of boolean
variables. Naively, places require one boolean each, but
we use a token-based encoding in which we identify mul-
tiple disjoint S,,yte € S where each S,y ¢e, has a max-
imum of one token. Thus the cost for a S, te; bDecOmes
[logs(|Smutez| + 1)] or [logs|Smutez|] BDD booleans, de-
pending on whether or not the set can have zero tokens. This
token-based encoding becomes tedious and error-prone to do
manually for large models, and we exploit the high level in-
formation available in the PNFG compiler to derive it auto-
matically.

PNFG LANGUAGE AND COMPILER

For complex narratives, directly programming NFGs is im-
practical. The low level nature of NFGs can result in a large,
intricate graph structure, and there is often significant code
redundancy that becomes tiresome to manage, e.g. allowing
multiple objects to be picked up and dropped in multiple lo-
cations. The size and unstructured complexity of the NFG
graph can also be a challenge for efficient narrative analysis,
and in general benefits from a higher level organisation.

The Programmable NFG (PNFG) format is a high level
language designed to allow for easy narrative expression
while maintaining a direct, efficient, and structured transla-
tion to an underlying NFG. Its syntax is close to those of
standard IF toolkits, albeit with less features. A basic PNFG
program structures the narrative into object and room decla-
rations forming the core game data, and various action decla-
rations implementing the game logic. Objects and rooms can
contain state, counter, and timer variables, and action execu-
tions themselves are composed of sequences of commands
that test, set, and act on game data. Below we discuss how
data components are formed and mapped onto NFG struc-
tures, followed by the execution semantics and syntax.

Game Data

The PNFG language provides a simple, static structure for
narrative game data. Concepts we now present, such as ob-
jects, rooms, state and counters are core to interactive fiction
and, as we will show later, accommodate even quite complex
game narratives.
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Objects & Rooms

In a typical narrative game the player interacts with numer-
ous game objects. An example PNFG declaration of a game
object is given in Figure 5. This declaration results in a single
in-game object referred to at runtime and compile-time by the
name, “cloak.”

object cloak { }

Figure 5: A simple object declaration.

A further basic IF design idiom is provided by room declara-
tions, and an example is shown in Figure 6. In a typical nar-
rative, rooms are the different, discrete locations where the
player and other objects can be located. In practice, rooms
are merely objects that also act as containers for other ob-
jects, and in fact a player with an inventory is also modeled
by a room declaration.

A strict containment hierarchy is implied by the use of
rooms. An object may only be in one room at a time, and
must also must be contained in some room. A special, prede-
fined of fscreen room with no parent container operates as
a base case and initial location for all game objects.

In order to model object containment, two NFG nodes are
generated for each object in each possible location. For an
object A and room B a node meaning “A is in B” and a node
“Aisnotin B” are created. Use of these nodes is subject to the
strict containment property, and all transformations guarantee
that when the node for “A is in B” is active all other nodes “A
in C”, “A in D” and so on are inactive. This allows us to
specify an Sy, e, for each (object, room) pair containing the
“object in room” and “object not in room” nodes.

Alternatively, at the expense of extra transitions, we can
generate NFGs without these “not nodes”, and then use the
strict containment hierarchy to identify much larger S, zes’s
such that the cost of each game object is [log,|R|] instead of
| R| boolean variables, where R is the set of rooms.

States

Rooms and objects already provide for a simple form of inter-
action in moving objects from one place to another, and test-
ing for containment. Stafe declarations within rooms and ob-
jects enable the user to define other, observable binary prop-
erties. Figure 6 shows a declaration for a closet which may
or may not be lit, and which may or may not be locked.

room closet {
state {lit,locked}

Figure 6: A room with 2 declared binary states.

In the NFG output graph, each state variable (for each defin-
ing object) is translated to two nodes, one for each possible
value (true or false) that each state variable can have. For
Figure 6, four nodes would be generated, -closet.1lit,
+closet.lit, -closet.locked, and +closet.locked.
Pairs of nodes for a particular object and state, like the con-
tainment relation, maintain a mutual exclusion property and
guarantee that exactly one will be active at any one time.

Special state nodes are used to represent winning and los-
ing a game. The built-in object game has states win and
lose, with the true (+) value of each of those states corre-
sponding to the required NFG win and lose nodes.



Counters and Timers

Counters are used to represent countable properties of rooms
or objects, and an example is shown in Figure 7. Counters
behave as state variables that can be set, incremented, and
decremented to any value in a defined range, and which can
also be tested against an arbitrary constant.

room you {
counter {lives 0 3}

Figure 7: A counter definition for the inclusive range 0..3.

In principle, a finite bounded counter can be implemented us-
ing just object state declarations and operations. In our cur-
rent NFG output, we eliminate the “not nodes” needed in such
a solution by generating simple unary counters with a single
state node for each potential counter value. More efficient bi-
nary counter representations and operations are intended for
future work; however, as far as verification is concerned, here
the cost of a counter is [log, |C|] rather than |C| boolean vari-
ables, where C is the set of mutually exclusive counter places.

Counters require programmer code to modify their value.
Timers are merely special counters which get automatically
incremented after every user action is executed.

Execution and Actions

Execution of basic interactive fiction or turn-based adventure
narratives consists of first an initialisation or prologue, and
then a cycle of listening and responding to user commands,
and executing any automatic, internal actions, followed by a
finalisation or epilogue [Montfort, 2003]. An equivalent NFG
structure is produced by the PNFG compiler, and is shown in

Figure 8.

Thread 1 Thread 2 Timers

5

game.lose

Figure 8: The general NFG structure for a PNFG program. The
entry points for the main phases of execution are initialisation, user
commands, user threads, timers, and finalisation.

A start node is the only initially active node; it leads to a
series of initialisation activities, terminating at the main idle
node. At this point user input is processed, activating one of
the corresponding stream of actions. This will either termi-
nate in a game win or loss, or eventually pass control to both
internal and user-defined threads, or automatically executed
sequences of instructions. Threads pass control from one to
the other, and a special system thread is used to perform auto-
matic timer updates. Finally, control returns to the idle node
for another round of user input.

Actual actions consist of sequences of PNFG statements
following a conventional procedural language structure. Fig-
ure 9 shows a code fragment for a “take all” command in
one of the example narratives, The Count. Sets of rooms and

game items are first defined; the room containing the player
(you) is then determined, and all game items are considered.
If an item is in the same room as you, then if you are not
overloaded it is moved into you (your inventory), and the
number of items you are carrying is increased by one. If you
have reached full carrying capacity, a message to that effect
is emitted instead of taking the object.

01 (you,take,all) {

02 places = {hall, kitchen, bedroom, ...}
03 stuff = {sheet, pillow, stake, ...}

04 places $p;

05 if ($p contains you) {

06 for (stuff $s) {

07 if ($p contains $s) {

08 if (you.overloaded) {

09 "You are carrying too much.";
10 } else {

11 move $s from $p to you;

12 you.carried++;

13 -?you.empty;

14 if (you.carried==7) {

+you.overloaded;

15
16 v}y } } )

Figure 9: A sequence of PNFG statements corresponding to a “take
all” command. Statements are referred to by number in the text.

Individual actions are sequenced in the NFG using a series
of context nodes, schematically shown in Figure 10. Each
action requires a unique context node as input, and must pro-
duce a unique context node on output. Context node activa-
tion defines and follows the runtime control flow, and is used
to provide the PNFG execution semantics that is not other-
wise guaranteed by the underlying NFGs or Petri Nets. Note
that context edges between nodes and transitions are differ-
ent: they indicate that the token is not to be removed when
the transition fires.

Conditions for statement 1

Execute statement 1 ‘

Conditions as a result of statement 1

Conditions for statement 2

Execute statement 2 ':

M
Conditions as a result of statement 2

Figure 10: NFG structure for a sequence of statements.

Statements

Basic PNFG statements are designed to allow easy narra-
tive game expression while ensuring a well-defined, feasible
translation to NFGs. Figure 9 illustrates the most fundamen-
tal operations, which are surprisingly few. Below we briefly
describe each along with its translation to NFGs.

e QOutput. Standard text output is performed by declaring a
constant string, as shown in statement 09. The NFG for-
mulation then consists of a single edge from input to out-
put contexts, annotated to inform the NFG interpreter to
emit the specified string. These strings are sent verbatim
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to the console, although they could also provide canonical
input to a more sophisticated output layer.

Move. Basic object movement is shown in statement 11.
Here one of the game items in the stuff set declaration,
identified by the variable $s and found to be in the same
room ($p) as you, is moved from $p to you. NFG code
for a move operation is shown schematically in Figure 11,
and consists of toggling the active object-location nodes
appropriately.

>

Figure 11: NFG structure for statement, “move x fromy to z”.

e Set. There are several ways to change state variables. In
statement 15 the you.overloaded state is set to true;
this is a blind operation that assumes the state is now false,
and will cause control flow to stall if not. If the current
state is uncertain, a safe set operation changes the state
variable if it is not in the desired state already; an exam-
ple safely setting you.empty to false is shown in state-
ment 13. A toggle operation flips the state; these three
variations are shown as NFG schemata in Figure 12.

Counters. Operations on counters include increment-
ing and decrementing by a constant value; statement 12
shows a simple increment-by-1 of a counter, and state-
ment 14 shows the use of counters in conditional tests. A
schematic unary NFG representation for a counter update
is shown in Figure 13. In general, addition or subtrac-
tion of a constant ¢ from a counter that can assume r val-
ues generates 7 transitions, each trying to shift the active
value node by c. End nodes must contend with potential
over/underflow; here the decrement operator becomes the
identity operator at the minimum counter value. More ef-
ficient math operations are left to future work.

&

{..

enters only one side, and merges with the other side to
form a common output context.

Figure 14: NFG structure for a statement, “if (x contains y)

.} else {...}”. Negative containment tests (“x !contains

y”’) and positive/negative state tests are structurally identical.

o Variables & Sets.

Most operations accept object/room
specifiers to be sets as well as specific objects; this re-
duces PNFG source code redundancy. For example, state-
ment 02 declares a set called places consisting of the
hall, kitchen, bedroom and so on. Statement 04 then
declares an element of that set, abstractly represented as
$p. This variable will induce replication of statements us-
ing $p; the if-statement of line 05, for instance, represents
a collection of conditional tests and bodies, one for each
object in the places set. The NFG schema for variable
usage is shown in Figure 15. The code of lines 0616 is
replicated with the tests, each replica having $p bound to
a distinct specific room. This can be optimised to elim-
inate redundancy by redirecting control flow to common
subnet structures if replicas contain sequences of identical

actions.

Context
Out
False

Figure 15: Using variables. NFG structure for a statement, “if

($x contains y)

9

where “$x” is an element of the set

“{a,b}”. Branch bodies and the following merge are not shown.

e For. A further use of sets is demonstrated on line 06. In

contrast to an if-statement, which executes just one in-
stance of its body even in the presence of set variables, a

Figure 13: NFG structure for a counter decrement statement, ; ct val ;
» for-statement executes its body for all possible instantia-

“you.lives--". { g S101€ 11

tions of the set variable. A for-statement is trivially ex-
pressed as a sequence of body executions, each with the
set variable substituted by a different set element.

e [f. Conditional tests are allowed on containment, state and
counter/timer values. Statement 05 for instance branches
on whether the player is contained in any of the rooms
in the places set. The NFG schema for simple if-
statements is shown in Figure 14. Note that if-statements
introduce distinct subsequences of statements on both the
true and false branches; control flow (context activation)

Actions and Threads
Commands and statements as described above can be exe-
cuted during initialisation, as a response to user input, or due
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b) Safe set : +?x.y
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c) Toggle: ~x.y

Figure 12: NFG structure for the 3 main variations of the set statement. Similar operations are defined for -x.y and -?x, y.

to automatic processes called threads. Figure 8 shows the
general relationship between these three structures; here we
describe how user actions and threads are defined.

User commands are specified assuming a simplified,
canonical language as input. Actions are prefaced by either
a (subject,verb) or (subject,verb,object) declaration; when in-
put matching the user command declaration is received, the
corresponding sequence of PNFG commands is executed.
Currently the subject is always assumed to be “you” and
ignored during NFG generation. A further syntactic conve-
nience is provided by allowing action declarations to be de-
fined within a room declaration as opposed to globally: this
causes the action to be enabled only if the subject is in the en-
closing room. Using this feature it is easy to encode the game
map through room specific movement commands, as shown
in Figure 16.

room lighthousefront {
(you,go,north) {
"You are now on the mountain pass.";
move you from lighthousefront to
mountainpass;

(you,go,east) {
"You are now behind the lighthouse.";
move you from lighthousefront to
lighthouseback;

}

Figure 16: Room-specific actions. These actions shadow global
actions with the same user command specification, while the subject
(you) is in the declared room.
thread (bomb.active) {
if (bomb.ticksLeft==0) {
"bang!";
+game. lose;

bomb.ticksLeft--;
}

Figure 17: A conditional thread declaration. This thread only exe-
cutes when the state bomb. active is true.

Threads are meant to automate actions that must be done each
turn; these would otherwise have to be executed explicitly
and redundantly at the end of each action. In the PNFG lan-
guage threads can either execute unconditionally, or can be
predicated on a conditional test, and thus act as “triggered”
events. A thread modeling a timer countdown is shown in
Figure 17.

In the following section we describe our experience in
implementing and analysing several interactive fiction narra-
tives expressed in our system.

EXPERIMENTAL RESULTS

Experimentation with our system at this point is largely
focused on ensuring reasonable expressiveness, although
we also present some preliminary work on automatic ver-
ification. =~ We have selected one simple narrative, two
medium-sized story chapters, and one complete and rel-
atively large narrative for our investigations. Below we
briefly present basic narrative properties and discuss rele-
vant expression and verification concerns. Maps were gen-
erated by using the PNFG compiler to find actions that
move you between rooms, and laid out using the tool dot
[Gansner and North, 1999].

1) Cloak of Darkness (CoD), is a tiny game that was origi-
nally designed to demonstrate the syntax of various IF toolk-
its to new authors [Firth, 1999]. At the same time it pro-
vides a simple sanity check for the most ubiquitous features
of IF. While there are only three rooms and three game ob-
jects, it includes basic object and room interaction, multiple
commands, non-local effects, object state, and (small, finite)
counting; an overview map of the game is shown in Figure
18. Expression in our system is straightforward, and data on
three variations of it are given in columns 1-3 of Table 1.

Figure 18: Map for Cloak of Darkness.

In Cloak of Darkness, the player moves between the foyer,
cloakroom, and bar by issuing standard movement com-
mands such as “go east” and “go south”. The player starts off
wearing a cloak, and as long as it is worn, the bar is obscured
by darkness; the player can hang up his cloak on the brass
hook in the cloakroom to bring light to the bar and score one
point. If the player attempts any non-movement action or an
invalid movement action whilst in the darkened bar, a warn-
ing message is printed and a counter is incremented. Once
the player has lit the bar, it is possible to read a message in
the dust on the floor. If the counter has been incremented past
some predefined limit, it reads, “You have lost!”, otherwise it
reads, “You have won!” and the player’s score goes up by
another point. In either case the game ends immediately.

We first implemented Cloak of Darkness as an NFG, and
in the absence of a parser mapped multiple variations of a
command to a single action transition. We chained sequences
of output messages and internal transitions together by hav-
ing a destination of the first transition be a source of the sec-
ond, much as context nodes order statements in NFGs gen-
erated by the PNFG compiler. We found it was necessary to
duplicate a fair amount of code, and that accounting for all
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possibilities was error-prone. Even after extensive playtest-
ing, NuSMV was still able to detect a subtle flaw in our im-
plementation: the player could win simply by entering “read
message” twice in the foyer at the beginning of the game.
The advantage of writing IF at such a low level is that the
author has direct control over the evolution of the game state;
however, it is somewhat like writing in an assembly language
and this soons becomes tedious. These usability factors moti-
vated us to develop the higher-level PNFG representation. In
Table 1, “CoD (full)” is more robust and “CoD (tiny)” is very
minimal, retaining only the essential semantics.

Table 1: Basic data on example narratives. The number of BDD
booleans is > [log, |Smutex(2)[], or the sum of the logarithms of
disjoint place sets that maintain a mutual exclusion property, such
that there is a maximum of one token in the set at any time. The cost
of verification derives from the number of BDD booleans and tran-
sitions. All . pnfg narratives were compiled without “not nodes”.

property CoD | CoD [ CoD |RTZ-1|RTZ-1|RTZ-2 | Count | Count
(tiny) | (full) [ (full) | (tiny) | (full) | (full) | (tiny) | (full)
source .afg | .nfg [.pnfg| .pnfg | .pnfg | .pnfg | .pnfg | .pnfg
rooms 3 3 4 8 10 21 4 22
objects 3 3 1 7 19 36 3 29
PNFG lines - — | 544 | 347 | 596 | 1133 | 244 | 2162
places 21 | 69 [ 303 | 366 | 1275 | 1876 | 272 |15378
transitions 45 | 167 | 462 | 850 | 3341 [ 8030 | 459 |82371
BDD booleans|| 21 | 69 | 27 42 98 117 30 | 212
verifiable yes | yes | yes | yes no no yes no
steps to win 5 6 6 5 6 22 5 180

The PNFG version is structured somewhat differently
from the hand coded NFG versions. Here only the cloak is
defined as a PNFG object, and the other two immobile objects
are encoded through state variables and messages. An extra
room is also used to encode the player’s inventory (“you”).
The resulting NFG is about three to four times as large as
the hand coded version, illustrating the relative cost of a high
level structure and our current, quite naive code generation
strategies. However, due to high level knowledge about mu-
tually exclusive places, we were actually able to generate a
more efficient model for verification that used fewer boolean
variables.

inside

Figure 19: Map for Return to Zork, chapter 1.

2) Return to Zork (RTZ) [Barnett, 1993] is a large and com-
plex graphical adventure, set in the same world as its pio-
neering IF ancestor Zork [Lebling et al., 1979]. We chose to
translate this game to PNFG source code for two reasons.
First, we wanted to demonstrate the ability of our system to
model narratives that are not strictly text-based, and second,
the representation of RTZ is greatly aided by the fact that it
can be divided into specific chapters [Spear, 1994].

In columns 4-6 of Table 1 we show data on the first two
chapters of RTZ, and in Figures 19 and 20 we show the cor-
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Figure 20: Map for Return to Zork, chapter 2.

responding maps. We also include a tiny variant of Chapter
1 that lacks many interactions, but that will verify due to the
fewer BDD booleans and transitions. The full versions of
the chapters still exceed the current capacity of our analyser;
however, chapter sizes are in general within an order of mag-
nitude of the size of a small, analysable narrative like CoD.
A chapter-based division may thus be sufficient, as well as
perhaps necessary for practical narrative analysis.

dumbjwaiter aqtup  winqow /climb iqnb_/window

Figure 21: Map for the full version of The Count. Not shown is that

the sleep command, as well as an automatic timeout at nightfall
will return you to the bed from any room.

.windowbox

3) The Count [Adams, 1981] is one of the original Scott
Adams adventure games, a great source of classic IF narra-
tives. This game is smaller than the sum of the RTZ chapters,
but at least as complex in terms of narrative structure. Here
we have implemented both a partial test of the initial 4 game
rooms and 3 objects (column 7), and the full version with 22
rooms and 29 objects, which includes multiple timers, coun-
ters, and user threads (column 8). The map for the full ver-
sion is shown in Figure 21. The minimal solution depth for
the full version is 1-2 orders of magnitude longer than those
of our other narratives, giving a further indication of relative
complexity.

The Count possesses a number of properties of interest to
verification. At several points progress can become pointless,
owing to loss of an essential item (e.g., the stake, cigarette)
or expiration of different time limits. There are also a num-
ber of subtle story logic flaws, such as a locked closet that
can be used to prevents the antagonist’s access to some ob-
jects (the stake) but not others (the sheet). The latter problem
is highly game specific, but in general, custom verification
queries could be used within our system to check important
aspects of narrative consistency.



As a complete and non-trivial game The Count provides a
good benchmark goal for our system. At this stage it is much
too large to analyse formally; however it gives a good indica-
tion as to the scale of a realistic problem space. Segmenting
the narrative into separately analyseable portions may reduce
the complexity, and an automatic system for doing so is part
of our future work.

CONCLUSIONS & FUTURE WORK

The complexity of the structures generated for our larger nar-
ratives implies a need to significantly improve the process of
verification. Use of chapters and other narrative decompo-
sitions can certainly help, as seen for Refurn to Zork, and
exploring different verification strategies and Petri Net en-
codings can greatly affect the analysis cost. For example, the
elimination of “not nodes” from our original design reduced
the number of BDD booleans required for The Count from
890 to 212, although the number of transitions roughly dou-
bled. Another strategy that appears quite promising is iden-
tification of individual puzzles, or groups of strongly related
tasks and state variables, followed by construction of more
modular, hierarchical Petri Net models.

An advantage of our system is that we can exploit the high-
level PNFG structure during verification, and in general the
complete PNFG—NFG—NuSMV path provides many op-
portunities for optimisation. It will also be interesting to anal-
yse other properties besides winnability and losability, such
as pointlessness, and to be able to provide the player with
answers to questions such as, “How do I get this door un-
locked?”

As far as usability of the system is concerned, we have not
conducted any kind of user study outside of our own narra-
tive development. Our system is a prototype design, and does
not support many advanced programming features provided
by other IF toolkits, such as object orientation, inline VM
assembly, and animated graphics, or their robust standard li-
braries that enable parser customization, multiple world mod-
els, and NPC interaction. However, in terms of the features
that (P)NFG does currently support, we find it to be compa-
rably usable.

Furthermore, interoperability with other IF toolkits is an
important goal. In this study we have translated narratives
by hand to get them into our input format; a direct, auto-
matic translation of game specifications, however, would al-
low us to more efficiently examine a much larger body of
works [Kinder et al., 2005]. Of course, the complex syntax
and details of different language specifications make this a
non-trivial technical challenge.

Our system is playable as interactive fiction, but quite min-
imal. Adding natural language processing, a staple of most
IF environments, would certainly make game play more true
to the genre. This would be conceptually straightforward to
add as a component that generates and reacts to our canonical
input and output. Arbitrary forms of I/O could be connected
similarly, allowing many multimedia effects, and expansion
into other turn-based genres.

Narratives are a basic and ubiquitous component of com-
puter games, and writing complex and error-free computer
narratives is a difficult task that affects many genres, not only
interactive fiction. Modern games are large, intricate soft-
ware programs, and formal approaches and analyses stand to
benefit both developers and players. The (P)NFG language,
compiler, and runtime system provides a formal structure for

narrative analysis, and helps move the burden of narrative de-
bugging away from the play tester and into software tools.
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ABSTRACT

The current state-of-the-art in computer games is to
manually script individual game objects to provide desired
interactions for each game adventure. Our research has
shown that a small set of parameterized patterns (commonly
occurring scenarios) characterize most of the interactions
used in game adventures. They can be used to specify and
even generate the necessary scripts. A game adventure can
be created at a higher level of abstraction so that team
communication and coding errors are reduced. The cost of
creating a pattern can be amortized over all of the times the
pattern is used, within a single adventure, across a series of
game adventures and across games of the same genre. We
use the computer role-playing game (CRPG) genre as an
exemplar and present a pattern catalog that supports most
scenarios that arise in this genre. This pattern catalog has
been used to generate ALL of the scripts for three classes of
objects (placeables, doors and triggers) in BioWare Corp.’s
popular Neverwinter Nights CRPG campaign adventure.

MANUAL SCRIPTING

A computer game typically contains a game engine that
renders the graphical objects and characters, and manages
sound and motion. A programming team writes a game
engine that can be re-used across multiple game adventures
and enhanced for future games. They also produce a set of
computer aided design (CAD) tools that are used by a team
of writers, artists, musicians, voice actors and other skilled
craftspeople to create content such as backgrounds, models,
textures, creatures, props, sounds, and music that are shared
across game adventures. Adventure (story) designers also
use these tools to create individual adventures. For example,
Figure 1 shows BioWare’s (http://www.bioware.com/)
Aurora Toolset that is used to create game adventures for
Neverwinter Nights (NWN) (http:/nwn.bioware.com/).

A game engine typically dispatches game events to scripts
that support interactions between the player character (PC)
and game objects. These interactions vary for each game
adventure and programmers must write the scripts that
control them. For example, an adventure designer may want
the PC to agree to complete a quest before allowing the PC
to enter a castle. To ensure that the quest is accepted, a heat
source is placed close to the castle door that prevents the PC
from getting close enough to the door to use it. The designer
provides a non-player character (NPC) with a cloak of fire
resistance that will be given to the PC after the PC has
agreed to undertake the quest
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Figure 1: The Aurora Toolset CAD Tool for NWN
Adventure Designers

void main () {
object Enterer;
object Cloak;
object FireCenter;
location jumperLocation;
vector jumperPosition;
float jumperFacing;
object jumperArea;
vector targetPosition;
vector heading;

Enterer = GetEnteringObject();
Cloak = GetObjectByTag("CloakofFireResistance");
if ( ! GetItemInSlot (INVENTORY SLOT CLOAK, Enterer)
== Cloak) {
ApplyEffectToObject (DURATION TYPE INSTANT,
EffectVisualEffect(VFXilMPiFLAMEis), Enterer);
FireCenter = GetObjectByTag("firecenter");
jumperLocation = GetLocation (Enterer);
jumperPosition = GetPositionFromLocation
(jumperLocation) ;
jumperArea =
GetAreaFromLocation (jumperLocation) ;
jumperFacing = GetFacingFromLocation
(jumperLocation) ;
targetPosition = GetPositionFromLocation
(GetLocation (FireCenter));
heading = Vector (targetPosition.x -
jumperPosition.x, targetPosition.y -
jumperPosition.y, targetPosition.z —
jumperPosition.z);
heading = VectorNormalize (heading) ;

jumperPosition = jumperPosition - 2.5*heading;
jumperLocation = Location(jumperArea,
jumperPosition, jumperFacing);
AssignCommand (Enterer, JumpToLocation (
jumperLocation)) ;
FloatingTextStringOnCreature
("The heat is too strong.", Enterer, FALSE);

Figure 2: An NWScript Script for a Barrier

The adventure designer may ask a programmer to implement
this scenario as scripts attached to game objects. One of
these scripts prevents the PC from getting to the door unless
the PC is wearing the cloak. The other script gives the cloak




to the PC, after the PC agrees to undertake the quest. Figure
2 shows the script that prevents the PC from getting near the
door, written in NWScript, the NWN scripting language.
This script is long and complex, containing local variables,
literal tags (representing objects created by the designer
using the Aurora Toolset), conditional expressions and many
function calls to the NWScript library. A professional game
designer without extensive programming experience could
not write this script.

Computer games typically have thousands of game objects
that must be scripted. There are four serious disadvantages to
scripting these objects manually: 1) poor script tracking, 2)
simplistic scripts that take too long to write, 3) scripting
errors and 4) team communication problems.

Manually written scripts are hard to track. The large number
of game objects makes it difficult to organize and track
objects during adventure development. Organizing and
tracking scripts is even more difficult since most scripts
involve interactions between several objects. A change to an
object or a script often results in unexpected negative
consequences.

Most scripts provide only simplistic game behaviors. Since a
large number of objects require scripts, all but the most
important objects must have very simple scripts. Unless an
object is on the critical path of the main plot line, it usually
has a single trivial script. This makes the game repetitive and
predictable, and therefore boring. More interesting
interactions are desirable, but are not cost effective to write
because of the large time investment needed. Even scripting
simple behaviors consumes foo much programmer time,
which could be better spent on developing better game
engines and additional tools for the game designers.

Many common scripting errors are difficult to detect without
manually playing through all of the game scenarios and
trying all of the different combinations of user choices. For
example, scripts are often created using cut-and-paste
techniques and it is not uncommon for the programmer to
cut-and-paste scripts without making all the changes needed
for the new context. There are so many game objects and
scripts that it has become standard practice to use object
numbers or script numbers as part of their names. An off-by-
one error in a name often results in a legal script that
performs incorrectly.

Many designers are unable to write scripts themselves and
must rely on programmers. Delegating the scripting to a
programmer can lead to inconsistencies between the game
designer’s intent and the programmer’s scripts due to
communication errors.

At least professional adventure designers have access to
programmers who can write scripts for them. Recently, there
has been a trend to create computer games where amateur
designers can create adventures and post them online for
others to play. For example, NWN has an active adventure
designer community. Thousands of players contribute
adventure modules of their own creation. Contributed
modules can be freely downloaded from the Neverwinter
Nights Vault web site (http:/nwvault.ign.com). The most
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popular of the 4,100 community-created modules at this site
has been downloaded over 252,000 times (as of May 2005),
and the tenth-most, 88,000 times. Most of these community
designers are non-programmers, so they cannot write the
scripts themselves. Instead, they try to copy existing scripts
from other adventures and paste them into their own
adventures. This does not work very well, since the copied
scripts usually have many adventure-dependent literal tags
and other context dependent code. Therefore, the adventure
designers turn to the community for help by posting to one
of the NWN scripting forums. There have been about
150,000 scripting-related postings to the BioWare forums
(http://nwn.bioware.com/forums/viewforum.html?forum=47)
(as of May 2005). Unfortunately, the help they receive from
these forums is often not very useful (Carbonaro et al 2005).

FROM SCRIPTING TO PATTERNS

Our approach to solving these problems is to provide an
alternative to manual scripting, based on a higher-level
abstraction than scripting code. Our first goal was to identify
a set of patterns that describe all of the object interactions
that commonly occur in CRPGs. A pattern is a familiar
commonly occurring scenario or idiom in an adventure of
the appropriate genre. An example of a pattern in the CRPG
genre is a secret door that appears when a protagonist gets
close enough to it and notices it. Our second goal was to
build a tool that uses this set of patterns to generate the
scripting code automatically.

Our work is inspired by the use of design patterns to describe
object collaborations (Gamma et al. 1994) in general purpose
programs. A design pattern specifies the solution to a
software design problem at a higher level of abstraction than
a program that implements the design. For example, recall
the scenario from the previous section. It required two
scripts. One script was used to prevent the PC from getting
close to the door. The other script allowed an NPC to give a
protective cloak to the PC after a conversation had taken
place. We provide the game designer with a set of re-usable
patterns that can be used to specify such scripts at a higher
level of abstraction. The adventure designer would still use
two scenes, the conversation and the encounter near the
door. We provide two general patterns that can be adapted
for these scenes and for many other scenes as well.

In this example, the game designer uses two patterns,
Trigger enter/exit — barrier and Conversation when/what.
The first pattern prevents a PC from entering or exiting a
trigger region and the second pattern controls whether a
particular conversation point can be reached and makes
something happen if it is reached. Patterns support adventure
design at a higher level of abstraction. For example, the first
pattern applies whenever the designer wants to prevent the
PC from getting into or out of a region. It is not restricted to
being near a door or due to a heat source. Patterns reduce
and clarify design team communication, since low-level
details do not obscure the designer intent. Designers and
programmers can quickly grasp the meaning of a barrier
pattern. Patterns foster re-use across scenarios in the design
of a particular adventure, across the design of multiple
adventures for a single game and even across games of the
same genre.



A traditional software design pattern is generic. It provides a
set of solutions to a general design problem (Gamma et al.
1994). The pattern must be adapted to a specific context
during application design. The designer refines the design
solution family to a single solution in the context of the
application.

Our CRPG patterns are also generic. Each pattern must be
adapted to a specific scenario by the adventure designer. For
example, the Trigger enter/exit — barrier has several options,
including a trigger, a distance and a visual effect. The trigger
is a polygonal region that the designer paints into the
adventure using a computer-aided design tool. When a
character in the game steps into or out of the region, the
game engine generates an onEnfer or onExit trigger event
respectively and the appropriate script attached to the trigger
object is executed. The trigger option of the barrier defines
the region that a creature cannot enter or exit. The distance
option defines the distance that the creature trying to cross
the barrier will bounce back from the barrier. The visual
effect option defines the visual effect that will occur when
the creature tries to cross the barrier. These options are
“hard-wired” into the script that appears in Figure 2, but not
into the pattern. Using a pattern is much more generic and
safer than cutting and pasting and changing these “hard-
wired” values. Setting options is only the simplest form of
seven kinds of adaptation that can be used to adapt CRPG
patterns. These other forms of adaptation differentiate a
pattern from a simple function call and are discussed in the
next section. The important idea is that each pattern defines a
generic family of solutions that must be adapted to the
particular context of a game adventure, analogously to the
way traditional software design patterns must be specialized
to the context of an application.

A traditional software design pattern is descriptive (Gamma
et al. 1994). Each pattern provides a design lexicon,
describes a set of solution structures and describes the
reasoning behind the solutions. A programmer selects an
appropriate descriptive design pattern, adapts it to the
application program and manually translates it to code.
Experienced programmers who have implemented the same
design pattern in other contexts can usually perform
adaptation and coding more quickly than novice
programmers, where unfamiliar or ambiguous natural
language pattern documentation can lead to slow progress
and coding errors. Our CRPG patterns can be used
descriptively so that the adventure designer can
communicate adventure designs more concisely and
accurately to a programmer who can implement these
descriptive patterns by writing scripting code. However,
there is another kind of design pattern.

A generative design pattern (GDP) (Budinsky et al. 1996)
(Florijn et al. 1997) (MacDonald et al. 2002) has all of the
characteristics of a descriptive pattern. In addition, it
generates application code automatically so that a
programmer does not have to manually translate the pattern
to code. Novice and experienced designers can use GDPs to
speedup code production and reduce coding errors. Recently,
we have used GDPs in computer games for the first time
(McNaughton et al. 2003). If GDPs are used, then the
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adventure designer gains one more advantage from using
patterns rather than manual scripting. GDPs allow a game
designer to generate scripting code automatically without
any need for programmer intervention. This eliminates any
chance of communication error between the adventure
designer and the programmer.

The pattern catalog presented in this paper is supported as a
generative pattern catalog in a tool called ScriptEase
(http://www.cs.ualberta.ca/~script/scripteasenwn.html) that
automatically generates scripting code for NWN. An
adventure designer can also use this pattern catalog to create
descriptive design patterns for any CRPG. In this case, each
pattern serves as a template for the explicit specification of a
scenario that can be implemented by a script programmer. A
pattern catalog is not a static entity. It is meant to evolve by
expanding (and contracting) as appropriate to satisfy the
needs of adventure designers. Therefore, ScriptEase also
includes a pattern design tool, which allows adventure
designers to modify existing patterns and to create new ones.

PATTERN ADAPTATION

To understand pattern adaptation, it is necessary to
understand the component parts of a pattern (McNaughton et
al. 2004b). Each pattern contains one or more event-driven
scenarios called situations. Each situation (icon S) contains
the event (icon V) that activates it and a set of definitions
(icon D), conditions (icon C) and actions (icon A). For
example, Figure 3 shows the components of the Trigger
enter/exit — barrier pattern.

The first situation has been opened to show its components,
but the other three are closed (for brevity). There are no
conditions in this pattern. The first action (jumps towards
with effect) is an example of an action encounter, which is a
re-usable action that contains other actions. It has four
options, Jumper — bound to Enterer, Target — bound fo The
Center, Distance — bound to Negative Bounce Distance, and
Impact Effect — bound to Touch Effect.

To use a pattern, a designer creates an instance of the pattern
and adapts it for a specific scenario. The simplest form of
adaptation is to set the pattern options as described
previously. However, setting options provides only limited
abstraction, equivalent to setting function parameters and is
not sufficient for the kinds of adaptation needed to support
CRPG patterns. Other forms of adaptation include adding or
removing components. Table 1 lists the various kinds of
adaptation in increasing order of complexity.

Table 1: Kinds of Pattern Adaptation in Increasing Order of
Complexity

Setting options

Removing situations

Removing actions and definitions
Removing conditions

Adding actions and definitions
Adding conditions

Adding situations
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Figure 3: The Trigger enter/exit - barrier Pattern

To use this pattern for the scenario described in the previous

section, the designer adapts the instance by:

1. setting the options to the appropriate objects and values:
The Trigger — a region near the door (“Firetrigger”), The
Center — a waypoint near the center of the trigger
(“firecenter”), Touch Effect — A flame visual effect
(VFX_IMP_FLAME S), Destroy Effect — not used,
Bounce Distance — 2.5, Caption — “The heat is too
strong.",

2. removing the unwanted scenarios: Try fo exit trigger,
Destroy barrier on entry and Destroy Barrier on exit,
and

3. adding a definition and a condition so that the barrier
will not work on a creature that is wearing the cloak.

After adapting this instance, it looks like the pattern in
Figure 4. This instance can serve as a specification for a
programmer. Alternately, if the adventure designer is
designing for NWN, then ScriptEase can be used to generate
the scripting code automatically.
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Figure 4: An Adapted Instance of the Trigger enter/exit -
barrier Pattern

THE PATTERN CATALOG

We have identified four kinds of patterns that are necessary
to generate all of the scripts found in CRPGs: encounter,
dialogue, behavior, and plot. In total our pattern catalog has
60 patterns, consisting of 56 encounter patterns, 1 dialogue
pattern and 3 behavior patterns. We are actively engaged in
adding more patterns, especially dialogue, behavior and plot
patterns. Our pattern catalog is available online at
http://www.cs.ualberta.ca/~script/patterncatalog/.

An encounter pattern is used to script an interaction between
the PC and an inanimate game object. It is useful to divide
inanimate objects into groups that can be interacted with in
different ways. Three examples of inanimate object groups
are: placeables, doors and ftriggers. A placeable is an
inanimate object that can be placed anywhere in the story
world. Examples include chests, statues, chairs, tables,
levers, and piles of rubble. A placeable is considered a
container if it can hold items. A door can only be placed at
the entrance to a structure or between two rooms in a
structure. A frigger is a region of space that generates an
event when a character enters or exits its perimeter. The
Trigger enter/exit — barrier pattern described earlier is an
example of an encounter pattern. The pattern catalog
contains 28 placeable, 15 door and 13 trigger encounter
patterns, for a total of 56 encounter patterns.

A dialogue pattern is used to control conversations. A tree is
a common model for conversations in an interactive
adventure. At alternate levels in the tree, either the game
player selects a conversation node from those available for
the PC, or a script selects a conversation node for the NPC.
Figure 5 shows an example NWN conversation tree in
ScriptEase, for the scenario described previously. Nodes
marked [OWNER] (red) are for the NPC and the other nodes
(blue) are for the PC.
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Figure 5: A NWN Conversation Tree in ScriptEase

There are actually two kinds of scripts that can be attached to
a conversation node. A when script evaluates a Boolean that
indicates whether the node should appear in the conversation
or not. A what script provides actions that are taken if the
conversation node is reached. Our pattern catalog currently
contains a single generic dialogue pattern. The Conversation
when/what pattern allows the adventure designer to generate
when and what scripts for a conversation node. The sample
scenario described earlier can be created using an instance of
this pattern. Figure 6 shows the instance of this pattern that is
attached to the conversation node “[OWNER] — Thank you
<FirstName>. Take this Cloak ...”. This pattern instance
transfers the cloak from the NPC to the PC and fires a visual
effect. In general, this pattern has two situations: When
displayed and What actions. The designer has deleted the
first situation during adaptation, since this node should
always be displayed if its parent node in the tree is displayed.
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Figure 6 An Adapted Instance of the Conversation
when/what Dialogue Pattern that uses the What actions
Situation

Figure 7 shows an example of using this pattern to control
whether a conversation node appears in a conversation or
not. The adventure designer would like the first [OWNER]
node in Figure 5 to appear only if the PC has completed the
quest, and the second [OWNER] node to appear only if the
PC has accepted the quest, but not yet completed it. Notice
from Figure 6 that the PC is given a plot token called
Almuric Quest Given after agreeing to complete the quest.
This plot token can be used in a Conversation what/when
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pattern to hide the second [OWNER] node until the PC has
obtained the plot token. Figure 7 shows an adapted instance
of the Conversation what/when pattern that achieves this
objective.
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Figure 7: An Adapted Instance of the Conversation
what/when pattern Dialogue Pattern that uses the When
displayed Situation

A different instance of this pattern is used to hide the first
[OWNER] node until the PC returns with the head of the
evil-doer. This pattern is not split into two separate patterns
since there are often times when a conversation node is both
guarded by a “when” and requires “what” actions. This
single dialogue pattern in our pattern catalog can be used to
control all conversations on a node-by-node basis. We are
currently developing other dialogue patterns that can be used
at a higher level of abstraction to model frequently occurring
conversation patterns consisting of many nodes.

A story designer can use a behavior pattern to specify the
actions of an NPC. For example, the adventure designer may
want an NPC to stay near an object and to start a dialogue
whenever the PC gets close to that object. Our pattern
catalog has a pattern called Creature heartbeat — (PC near
object) show dialogue that supports this behavior. There are
three behavior patterns in our catalog at the current time and
we are actively adding more behavior patterns.

A plot pattern guides the player character (PC) through the
story. For example, in CRPGs it is common to give the
player quests. The player advances through the quest in a
series of states: unassigned, assigned, resolved and closed. A
common way to have the player participate in a quest is
through a dialogue with a non-player character (NPC), which
consists of a series of conversations. The dialogue pattern
Simple verbal quest specifies which conversation is used for
each of the various states of the quest. This pattern depends
on other patterns to set a plot token which causes the quest
state to change. External patterns are used to provide
flexibility since a quest can involve solving a riddle posed by
a different NPC, defeating a creature, opening a door,
obtaining a specific item, etc. We are currently building a
basic set of plot patterns to add to our catalog. Although
there are currently no plot patterns in our catalog, many are
under development. In the meantime, we have introduced the
concept of a plot token as illustrated in the previous example.



EVALUATION OF THE PATTERN CATALOG

In a previous paper (McNaughton et al. 2004a), we described
how we used encounter patterns to generate all of the
scripting code attached to placeable objects in the NWN
official campaign story. In that experiment, we replaced 497
calls to 182 different scripts comprising 1925 non-comment
lines of hand-written code by pattern-generated code using
431 instances of 23 different encounter patterns and our 1
dialogue pattern.

To ensure that our pattern catalog could be used by non-
programmers, we invited a high school English class to use
the Aurora Toolset, our pattern catalog and ScriptEase, to
write short stories as adventures in NWN. The students
succeeded in using our patterns to generate interesting stories
(Szafron et al. 2005) that play as NWN adventures.

Besides NWN, we have identified patterns in two other
CRPGs, Fable (http://www.fablegame.com) by Lionhead
Studios and The Elder Scrolls 1II: Morrowind
(http://www.morrowind.com) by Bethesda Softworks. For
example, Placeable use — toggle door can be found in Fable
where there are four rocks and a door. The player must hit
the rocks in the correct order to open the door. Currently, the
PC must attack the rocks, but it makes more sense to
restructure the puzzle so that the PC is required to touch the
rocks rather than hit them. In Morrowind, this pattern is used
to open a door when the PC uses a lever. The pattern Door
click — show monologue can be observed in several areas of
Fable that involve the use of riddles. Throughout the game
there are several doors called Demon Doors, which require
the player to solve a riddle to open them. When the user
clicks on the door, the door speaks a monologue giving the
user the riddle that must be solved. This pattern is used in
Morrowind near the beginning of the game. When the user
clicks on a door, the PC is told to look in a nearby barrel for
a ring. The pattern Trigger enter — spawn creature near
object is used in Fable for an ambush. The player at one
point in the game is asked to escort a person to a nearby
farm. When the person being escorted enters a trigger, an
enemy is spawned nearby to attack the person. In Morrowind
this pattern is used to spawn a person high above the player
that falls to his death, due to the misuse of a jumping potion.

CONCLUSION

In this paper, we have presented a pattern catalog for
CRPGs. This catalog contains 60 patterns that can be used
by adventure designers to effectively communicate their
stories to programmers who must write the scripts to make
these adventures come alive. These patterns can also be used
to automatically generate scripts for adventure designers
working with the NWN system.
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ABSTRACT

The genre of real-time strategy (RTS) video games is very
popular and poses numerous challenges to Al researchers
who want to create systems that play autonomously or aid
human players. One obstacle for Al progress in this area
is closed commercial software which restricts game access
to inflexible graphical user interfaces. In this article we de-
scribe the current state of the free RTS game engine ORTS
which allows users to define RTS games in form of scripts
and to connect arbitrary game client software — ranging
from 3d GUIs to distributed Al systems. This flexibility
opens up new avenues for RTS game competitions and Al
research, of which some are discussed here as well.

BACKGROUND

Real-time strategy (RTS) games such as Starcraft™ and Age
of Empires™ are fast-paced war simulations which have be-
come quite popular in recent years. Constructing Al sys-
tems that play these games well is challenging because of
incomplete information, real-time aspects, and the require-
ment of long-range planning. Many commercial RTS games
feature Al scripts that can win against novice players by be-
ing favored in various ways. Examples range from giving Al
components access to normally hidden information (such as
opponents’ unit locations), over executing actions faster, to
increasing the influx of resources. While this approach may
result in challenging single-player missions for beginners, it
is not applicable in fair competitions. Furthermore, it does
not tackle the real Al issues such as reasoning, abstract plan-
ning, learning, and opponent-modeling. Machines are still
inferior to humans in these areas, which is obvious when
watching machines play each other repeatedly.

To improve the performance of RTS game Al we made
the case for studying real-time Al problems in the context of
RTS games in (Buro 2002; Buro & Furtak 2003; Buro 2004;
Buro & Furtak 2004). There we also described the design ra-
tionales and components of the free RTS game engine ORTS
(Open Real-Time Strategy). Table 1 summarizes the ma-
jor differences between ORTS and current commercial RTS
games.

Commercial RTS games software is closed and not ex-
pandable. This prevents researchers and hobbyists from tai-
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Commercial

Feature RTS Games ORTS
Cost ~US$ 55 US$0
. free software
License closed software (GPL)
Game Specification fixed user-definable

Network Mode peer-to-peer server-client
Prone to Map-
Revealing Hacks yes no
Communication .

Protocol veiled open
Network Data Rate low low to medium
Unit Control high—le\{el, low-level,

sequential parallel
Game Interface fixed GUI user-definable

Table 1: How ORTS relates to commercial RTS games

loring RTS games to their needs and from connecting re-
mote Al modules in order to gauge their playing strength.
ORTS, by contrast, is a free software RTS game engine
which means that its source code and artwork are available
free of charge and users can specify their own RTS games.

Furthermore, commercial RTS games as well as the free
RTS game engine (Stratagus 2005) utilize peer-to-peer as
opposed to server-client technology to reduce network traf-
fic. In peer-to-peer mode the complete game state is main-
tained on each player’s computer — by means of broadcasting
all player actions — and the software just hides the invisible
part of the game state from the players. By tampering with
the client software it is possible to reveal the entire state and
thereby gain an unfair advantage. So-called map-revealing
hacks are wide-spread and pose a serious problem for on-
line tournaments. We feel that this is unacceptable for play-
ing fair games on the internet. Therefore, we implemented a
server-client architecture in ORTS. The entire game state is
maintained in the server which repeatedly sends out individ-
ual player views, receives player actions, and executes them.
(Buro 2002) claims that the resulting system is “client-hack-
free” in the sense that client software changes will not bene-
fit attackers. Of course, a truly fair setup also requires trusted
servers and trusted communication.

Another advantage of open server-client game architec-
tures is that users can connect whatever client software they
like. This openness leads to new and interesting possibil-
ities ranging from fair on-line tournaments of autonomous



Al players to gauge their playing strength to hybrid systems
in which human players use sophisticated GUIs which let
them delegate laborious or repetitive tasks to Al helper mod-
ules. Examples include smart group pathfinding, computing
efficient build orders, and small-group combat tactics.

One downside of the server-client operation compared
to peer-to-peer implementations is increased network data
rates, especially for the server which uploads views to the
clients. In ORTS the data requirements are lowered by send-
ing out compressed incremental view updates (Buro 2002),
which is sufficient to play games with 1000 visible moving
objects at a data rate of 2.5 KB per game tick.

The ORTS source code is mainly written in C++ with the
exception of game specifications and GUI customization for
which we developed a simple scripting language. Scripting
allows us 1) to change settings without triggering compila-
tion and 2) to use the same executables for different game
types. The C++ code uses the following libraries which are
available for many systems: SDL, SDL_net, Qt, OpenGL,
GLUT, and GLEW. ORTS is being developed under Linux
and Cygwin using gcc, but it now also natively builds un-
der Windows and Mac OS X. In addition to the C++ source
code, a sample game is provided in the distribution including
game specification scripts, a set of 3d models, and user inter-
face customization scripts for the GUIL. ORTS software, art-
work, and documentation can be downloaded from (ORTS
2005)

In the following sections we give a high-level overview
of the major ORTS components with emphasis on the latest
developments and scripting. We conclude the paper with a
brief discussion of the project’s future.

SERVER

The ORTS server is responsible for simulating unit actions
and determining what each player is allowed to know about
the current state of the world.

Every cycle players can send an action for each unit they
control. The server applies these actions in a random or-
der, removing any units that have died. Then the posi-
tions of moving objects are updated and colliding objects
are stopped. Finally, the region visible to each player is com-
puted and any changed or newly visible tiles are sent along
with visible units.

To simplify the description of the world, the terrain is tile-
based. Each corner of a tile may be set to an integer height,
allowing tiles to be sloped in various ways. Boundaries are
automatically generated where two adjacent tiles do not line
up or are different types e.g. a land tile next to a water tile.
To help make the terrain less blocky we support half-tiles,
where a tile is split along the diagonal into two different
types and/or the heights on one side of the diagonal do not
line up with the heights on the other. The two sides of half-
tiles are independent of each other with regard to computing
vision; a unit on the lower half may not be able to see a
unit on the higher half of the same tile. The default terrain
generation produces cliff tiles to ease the transition between
different height levels, but this is not required.
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Motion

Objects are simple geometric shapes — mobile units are usu-
ally circles, buildings are rectangles, and boundaries are line
segments. Although object positions are restricted to a fixed
grid, collisions for moving objects are computed exactly at a
higher resolution, so fast-moving objects won’t pass through
each other.

Which units can collide with each other is determined by
a collision bitmask for each object, set by default to the ob-
ject’s z-category (on land, flying, underwater, etc.). Excep-
tions to this may be specified in another bitmask, so that spe-
cial objects can pass through each other without needlessly
complicating the default collision rules.

Vision

Visibility is computed in terms of which tiles can be seen
from the center of the tile an object is on. If the center of
the tile can be seen then that tile is entirely visible and any
objects that intersect the tile can be seen. If only a portion
of the tile is visible, say a corner or a side, then the type of
tile is known but not any units on that tile.

Local visibility for each tile and for the entire map is
stored as a bitmap. At the expense of caching the bitmap for
each tile after the initial computation, determining visible
tiles is quickly done via boolean operations on the bitmaps.
A separate visibility computation is performed for cloaked
units and the detector units that can see them.

SCRIPTING

The scripting engine performs the interesting game-specific
logic and allows for flexible game definitions and client in-
terfaces. High performance tasks common across a large
number of possible RTS games such as accurate unit motion
and unit vision in the presence of terrain are handled sepa-
rately by the server. Everything else, such as weapons and
special abilities, is scripted as part of the game definition.

The scripting language was designed to provide a con-
venient way to define unit types and actions. Unit defini-
tions are given in the form of blueprints which list named
(usually) integer attributes and actions. The blueprints use a
loose multiple inheritance system, allowing them to be com-
bined and nested. New unit types can easily be constructed
from functional components. In the client the object cre-
ation system is used to create GUI widgets such as buttons
and status windows.

When the client receives the game description, which in-
cludes unit blueprints, it can locally extend those blueprints
by adding extra attributes, sub-objects, or actions. The client
can use this functionality to write wrappers for complex ac-
tions, add simple background Al, or add event handlers for
when an attribute changes. By adding a 3d model sub-object
the client specifies how an object will be represented in the
world and allows for context sensitive animations.

The client extends the scripting language functionality by
registering special functions that allow access to OpenGL
commands for drawing bitmaps and then simply calling



blueprint marine
# include a set of common attributes and default values
is generic_unit

# create a sub-object of type "kevlar" named "armor"
class kevlar armor

# the rifle sub-object has already been defined and
# has a "shoot" action defined
class rifle weapon

# make zcat constant and assign it the enum ON_LAND

setf zcat ON_LAND
setf max hp 100
set hp 100
setf sight 6
setf radius 5
set max speed 3

end

Figure 1: Marine blueprint

those functions within the script. Mouse and keyboard
events received by the client are transferred to the script
by calling the actions of a special root GUI object, passing
the event information as parameters. This object recursively
calls the interface actions of its children until it is handled.

Since the scripting language was designed to be able to
perform reasonably complicated game logic, eventually er-
rors will occur that cannot be simply debugged by inspec-
tion. At this point it becomes invaluable to have some way
for the script to write information to the console or to in-
spect the current state. As a compiler option the interpreter
can maintain a stack trace of the current execution with a
printout of line numbers and the statement being evaluated
at each step. This trace is automatically printed when a trap-
pable error occurs in the script, and can be printed manually
from inside a debugger such as gdb.

Because it is relatively trivial to extend the scripting lan-
guage by adding external C functions it is tempting to do
so whenever additional functionality is needed. This can
quickly lead to numerous special purpose functions and
bloated syntax. Consider the problem of implementing an
STL-like vector container. One option is to try to force the
language to do something it was never intended to, perhaps
by implementing a complicated linked list. Another is to add
a C function that returns a pointer to an actual STL vector,
with additional functions for adding to it, sorting, etc.

To help make the scripting language extensible, objects
in the script are all derived from a common base class, with
game objects being only one possible option. To address
the previous concern, wrappers have been written for STL
vectors and sets, allowing them to be created in the same
manner as classes described by blueprints. By modifying
the new objects’ incremental update functions the container
can be used as a sub-object within game units. The graph-
ical client uses derived classes for 3d models and particle
systems to attach these things to objects in the game.

Script actions take generic script variables as parameters,
which may be object pointers, integers, or something else.

blueprint missile

has
has
setf
setf
setf
set
setf
setf
setf

var
var
var
var

# se
var

core_attr

movement

shape CIRCLE
radius 3
max_speed 20
speed 0

zcat IN_AIR

targetable 0

invincible 1
hidden det_range 3
hidden blast_range 20
hidden min_ dmg 200
hidden max dmg 350

t the collision mask to ignore all other objects
collides 0

# this action takes one object as a parameter, no

# integer variables, and no hidden variables.

acti

on track_obj (targ;;) {

gob e;

int dmg, damage_type;

damage_type =

if
if

end
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this.damage_ type;

(targ.targetable < 1) break;

(distance (this, targ) <= this.det_range) {
"-1" -> not owned by any player
= create("explosion", -1);
x = this.x;
.y = this.y;
.zcat = targ.zcat;
.radius = this.blast_range;
EXPLOSIVE;

add the "boom" action to the action queue and

.damage_type =

execute it sometime in the current tick

O HF HF= 0 0 0 0 O 0 F*

.boom(;this.min_dmg, this.max dmg, 0;) in 0;

# mark the missile as dead - it can still act,

# but cannot queue any more actions, and will

# be deleted at the end of the current tick

kill (this) ;

else {

# move events are handled after script actions.
it walks/flies to
# the target location at its speed

targ.y);

# the object isn’t teleported,

move (this; targ.x,
# accelerate the missile - applies to above command
this.speed += 4;

if (this.speed > this.max_ speed)
this.speed = this.max speed;

# execute this action again in 1 tick

# without "in 1" action would be called immediately
this.track obj(targ;;) in 1;

Figure 2: Missile blueprint



When evaluating scripts in the client, actions that are part of
the original game description are not evaluated locally, but
are automatically placed in the outgoing action list to be sent
to the server.

The game simulation is tick-based, and a large num-
ber of object actions naturally depend on time constraints
e.g. weapon cool-down, construction times. To better sup-
port time in the scripts the language is able to specify that ac-
tions are to occur some number of ticks in the future. These
actions are stored in a priority queue until they need to be
evaluated. A small amount of bookkeeping is required to
ensure that dead objects still referenced by a pending ac-
tion are not deleted until they are no longer pointed to. A
dead object can no longer perform actions, but functions can
check if it is still alive.

CLIENT SOFTWARE

Unlike commercial RTS games, ORTS players can connect
whatever client software they like and can issue commands
to all of their units in each game tick (usually more than
8 times a second). Consequently, ORTS clients have much
more control over game objects which greatly impacts game
design. Consider default unit-behavior. In Starcraft™ for ex-
ample, tanks automatically fire on enemy units within range.
But very powerful spells like “lock-down” and “psionic
storm” have to be cast manually by the player, thus limiting
their effectiveness. In ORTS, all units can become so-called
auto-casters by letting client Al modules decide when and
where an object acts without having to wait for slow-paced
player instructions. Thus, the cost of ORTS game objects
has to be balanced in light of ubiquitous auto-casting.

The ORTS software currently provides basic client func-
tionality such as communication with the server, maintain-
ing the game state, a GUI, and some low-level Al mod-
ules, which are discussed below. The main focus of future
client software additions will be on making Al components
smarter to allow players to concentrate more on high-level
strategic decisions, and eventually let the Al play games au-
tonomously.

Maintaining the Game State

Because the ORTS server sends out incremental and com-
pressed view updates and receives compressed action se-
quences, it is helpful to encapsulate the game state and com-
munication in classes for everybody to use. Another ad-
vantage is that the communication protocol and compres-
sion can be changed without breaking client code. Server
and client share the same Game class. In clients, this class
represents the current game state in view of the player,
and provides access to tiles and visible game objects. The
Game class is part of GameStateModule, which communi-
cates with the server, updates the state, and informs regis-
tered users about server messages by invoking event han-
dlers. Each game object has an action member which can be
set either by Al modules or the GUI as a result of user ac-
tions. In each game tick, actions for all objects under player
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control are sent to the server by invoking a function in the
GameStateModule class.

Graphical User Interface

For interacting with human players and Al demonstration
purposes a graphical user interface is essential. We have im-
plemented a client component (class GfxModule) that uses
OpenGL to render arbitrary 3d views of the current game
state in a window together with a minimap, an information
panel, and action button panel (Fig. 3). Moreover, rectangu-
lar overlays can be created to display additional information
such as pathfinding results and influence maps. The widget
layout, keyboard command shortcuts, and actions attached
to buttons are scriptable. The graphics module communi-
cates with the server through GameStateModule.

Low-Level AI Components

The server does not provide any default high-level func-
tionality, so any tasks involving multiple low-level actions
must be coordinated by the client. Basic gameplay tasks
such as pathfinding, gathering resources, and automated de-
fenses are implemented client-side via pluggable C++ mod-
ules. These components communicate with the GUI and
with each other via a simple message passing system. When
a user sends a unit to a location a pathfinding event is gener-
ated. The pathfinding module then plans a route to the target
and babysits the unit, sending move commands for each leg
of the path. As the world is explored the pathfinding module
receives messages notifying it of new obstacles and units,
letting it update its map of the world. The resource gath-
ering module, once initiated by the client, works with the
pathfinding module. It broadcasts a pathfinding message to
send a unit to a given resource, receives confirmation of ar-
rival, and then orders the unit to start mining. Similarly for
returning resources to the base once collected.

Figure 3: GUI screenshot



ORTS.NET

A recent addition to ORTS is the ORTS.net internet game
service where players can meet and initiate ORTS games
by communicating through a generic game server (GGS).
ORTS.net is comprised of three programs:

netservice: ORTS.net game manager. Stores player data
such as buddy lists and ratings. Also maintains a list of
networkers, sets up games, and assigns networkers to host
them.

netclient: Graphical (Qt) front-end of the ORTS.net service
featuring log-on and chat dialogs and more. Communi-
cates with netservice and players via GGS.

networker: ORTS server controlled by netservice. It hosts
ORTS.net games and clients, such as ortsg, connect to it
directly.

Figure 4 shows how these programs are connected. Cen-
tral to ORTS.net is GGS, a message passing server which
can be downloaded from www. cs.ualberta.ca/~mburo.
GGS allows connected parties to exchange messages using
a simple text-based protocol. Before an ORTS game can be
initiated, netservice and one or more networkers have to be
connected to GGS. Networkers register themselves with net-
service to indicate that they are available for hosting ORTS
games. After players connect to GGS using netclient, they
can chat with each other and arrange ORTS games by send-
ing messages to netservice. When netservice creates a game
it selects an available networker and sends its IP address
to the netclients along with a one-time password. The net-
clients then launch ortsg which connects to the networker to
start the game. Finally, when the game is over, the networker
sends the result back to netservice, disconnects the clients,
and becomes available for hosting another game.

: .
(netchent A) (netchent B)

launch

GGS

Figure 4: ORTS.net network topology

OUTLOOK

With all major components now functional, the ORTS soft-
ware has reached the point where it can be used as plat-
form for real-time Al research, the development of new RTS
games, and on-line competitions.

ORTS can still be improved in various ways. For instance,
the game state currently cannot be saved, GUI customiza-
tion is incomplete, the graphics performance needs to be im-
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proved. Moreover, work on RTS game Al that is executed in
ORTS clients has just begun.

Currently our research group is looking at pathfinding,
small scale combat, optimizing build orders, and high-level
planning based on Monte Carlo simulations. We hope that
the availability of a (hack-) free RTS game engine sparks
more interest in RTS game Al and competition among re-
searchers, students, and hobbyists. (Molineaux 2005) re-
ports that work already has begun to interface ORTS with
(TIELT 2005), a testbed for integrating and evaluating learn-
ing techniques in real-time games.
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ABSTRACT

Due to declining budgets and decreases in ammunition
allowances, the opportunity for military units to conduct live
fire artillery training has been greatly reduced. The available
artillery simulations are either outdated, require specialize
operator support, or are not deployable. Forward Observer
PC Simulator (FOPCSim) was developed with open source
software, as a game based, call for fire virtual environment
that runs on a laptop. The system provides users with real-
time performance feedback based on the Marine Corps
Training and Readiness standards and was designed
according to a cognitive task analysis of the call for fire
procedures. Too many times simulators are fielded without
investigating how well they train a particular task. To
evaluate how well FOPCSim trains the call for fire
procedures, an experiment was conducted at The Basic
School in Quantico, Virginia. FOPCSim was used in place
of the current training simulator: Training Set, Fire
Observation (TSFO) to evaluate its training effectiveness.

INTRODUCTION

Before accepting a virtual environment trainer (VET) as a
suitable replacement or augmentation to live training, it
should be evaluated for its effectiveness. Major Walt Yates,
a recent graduate of the MOVES Institute at the Naval
Postgraduate School (NPS), looked at this question for a
marksmanship trainer that has been in use in the Marine
Corps for over ten years without being evaluated. Yates
states that, “Despite how commonly VETSs are used there are
many fielded VETs for which there has been no detailed
study conducted to validate the effectiveness of a VET. Such
studies are referred to as verification of skills acquisition (or
training transfer). A positive verification of skill acquisition
requires a quantified measure of improvement at task
performance (Fredriksen and White 1989). To justify the
expense of developing and fielding VETs they must be
verified to accomplish skill acquisition as well as
conventional methods of training or a reduced level of
effectiveness must be accepted as a trade-off for reduced
cost or increased safety.”(Yates 2004)

In September 2002, Lieutenant Colonel Dave Brannon and
Major Mike Villandre, graduates of the MOVES Institute at
the NPS, pursued the above questions concerning the task of
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calling for fire. They chose to develop a PC based call for
fire trainer called Forward Observer PC Simulator
(FOPCSim). The goal of their research was “focused on
development of a virtual environment in which a trained
forward observer could conduct a basic call for fire (CFF)
having to execute the same procedures as he would in the
real world.” (Brannon and Vilandre 2002). For our research
we chose to take the idea for the application they started and
continue to build on it. We rewrote the software using the
open source game engine Delta3D, added a more intuitive
interface based on the MCRP 3-11.1A Platoon
Commander’s Tactical Notebook CFF worksheet, and a
tutoring system that provides real-time performance
feedback.

To test its effectiveness, we chose to look at students
initially learning the forward observer skill of calling for
indirect fire. We conducted an experiment at The Basic
School (TBS) in Quantico, VA, where newly commissioned
lieutenants receive training in the skill set needed to be
platoon commanders in the Marine Corps. Our pre-test
hypothesis was that students who used FOPCSim under
instructor supervision for two hours and then were free to
use the simulator on their personal computers to practice
“Calling for Fire” would have more individual practical-
application time than the group which just received two
hours of group instruction using the traditional simulator
TSFO. This change would lead to better scores on the
supporting arms exam and better performance during the live
call for fire exercise.

METHOD
Participants

The participants were 250 predominantly male, Marine
Corps Lieutenants assigned to B Company attending the
Officer Basic Course, at TBS. The selection criteria for
the control group which consisted of 2/3 (166) of the
company and the experimental group 1/3 (84) of the
company was randomly selected based on which day of the
week the participants were scheduled for training. All
students were given a copy of FOPCSim: participants in the
experimental group were given the simulator after their
classroom training but before the final exam, and the control
group did not get a copy until they completed their final
exam.



Design and Materials

A posttest-only design was used to explore the effectiveness
of a freely available, game based trainer with a performance
feedback system versus a commercial, classroom-oriented,
instructor-driven simulator. The independent variable was
the type of simulation used: TSFO or FOPCSim. Because
the participants were formally tested on the call for fire
procedures, it was important that the control group and
experimental group received the same level of training.

The normal artillery training package consists of three
phases: 2.5 hours of classroom training, 5 hours of training
utilizing simulators, and a live fire artillery shoot. The
normal 5 hour block of simulation training includes a 1 hour
review of the call for fire procedures followed by 2 hours of
TSFO simulator and 2 hours of “lawn darts” pneumatic
mortar physical simulation.  The experimental group
received the exact same training as the control group except
that the 2 hour TSFO block was replaced by 2 hours of
FOPCSim training and the 1 hour review session was
conducted utilizing FOPCSim vice an overhead projector.
The 1 hour review session was conducted using FOPCSim to
help familiarize the students with the user interface while
reviewing the basic procedures. For the 2 hour TSFO block,
students are required to work up call for fire missions based
on what they see on a large screen in the front of the
classroom and one student per mission is called upon to read
back the mission. The instructor critiques the call for fire as
the participant conducts the mission. The benefit of this
method is the whole class hears the mission and instructor’s
critique of that mission; they therefore have the opportunity
to learn from the mistakes of others in the class. Because in
a 2 hour session only 5-7 students have the chance to be in
the “hot-seat”, it is hard to identify individual students that
are having problems. For the first hour of the 2 hour
FOPCSim block, the instructor picked students to perform
missions on the large screen similar to the TSFO block. For
the remaining hour each student had a chance to be in the
“hot-seat” and work up and input multiple missions into
their own virtual environment. The simulator scored each
mission and a feedback system critiqued the student’s
performance and gave individual feedback based on the
Marine Corps Training and Readiness Standards. This
allowed the participants that were proficient at the call for
fire procedures to complete many missions, while those
participants that were having problems with the procedure
could get individual help without hindering the rest of the
class.

RESULTS

The true test of how well someone can call for fire can only
be evaluated by measuring their performance on a live fire
mission.  Unfortunately, based on time and logistical
constraints the live fire missions for the students are not
graded events. Instead the students each get the opportunity
to conduct a live mission as part of a two person team. Until
the live fire mission becomes an evaluated event, there will
be no true test of the ability of students to call for fire or of
the training events that prepare them for that.
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Since the live fire test is not evaluated, the next best thing is
the written Supporting Arms Exam that all students take.
This test to evaluate their supporting arms exam knowledge
covers several areas not specifically associated with the Call
for Fire procedure such as the controlling of Close Air
Support (CAS). It includes both a multiple choice portion
that is computer-graded as well as a short answer/ fill in the
blank portion that is hand graded by the instructors. The
portions of the test that specifically covers the call for fire
procedures are the multiple choice section and a portion of
the hand-graded section.

Table 1 shows the comparison between the TSFO group
(Group A) and the FOPCSim group on the written
Supporting Arms Exam. For the statistical results we only
included those students for whom we had complete scoring
data and survey results. The group who used FOPCSim
scored significantly higher (p < .05) than the TSFO group.
This group was split evenly between those that did not use
FOPCSim after the two hour class (Group B: 30) and those
that did (Group C: 31). When looking at this data, some
would argue that of course the group who got to use
FOPCSim for more than two hours would do better because
“more is always better.” But in this case, we did not see this
result.

Table 1: Supporting Arms Exam Results

Std. |Std. Error
Group N Mean Deviation Mean
Overall |GroupB & C
Score JFOPCSim 161 85.3484 10.03880 1.28534
Group A
r'SFO 166 82.0959 9.96684 77358

When we further broke up the FOPCSim group into two
groups, we found that those who chose to use the simulation
more did not perform statistically better than the other two
groups, in fact there overall scores were lower than the
group that just used it in class (see Table 2 Overall Scores).
One explanation for this is those who felt comfortable with
the material felt that two hours was enough, whereas, those
individuals who did not, chose to use the simulation on their
own. If these, indeed, corresponded to those who were less
likely to do well on exam if they stopped after only 2 hours
use in class, then we would get the kind of results seen for
Overall Score in Table 2. Indeed, using the FOPCSim after
class didn't cause low scores, but a fear of low scores caused
some to use FOPCSim after class. Group C's scores might
indeed be higher than if they'd taken the test after only the 2
hour class, but if they started from a lower base (on average)
then they'd appear to do worse.

As part of the classroom training, the FOPCSim group
worked individually (or as a team depending on computer
availability) on four graded missions that were scored, and
the results were stored as a text file on the computer. We
took the results of these four missions and produced an
Average SimScore for each individual or team. We then
compared these scores to their results on the Supporting
Arms Exam. We did not expect to get a high correlation



Table 2: Overall Score by Group

Subgroup Overall

A [Mean 82.0959
N 166

Std. Dev. 9.96684

IB Mean 86.9111
IN 30

Std. Dev. 9.69603

Ic [Mean 83.8360
N 31

Std. Dev. 10.28932

Total Mean 82.9699
IN 227

Std. Dev. 10.06820

between these Simscores (r* = 0.245) and their Supporting
Arms Exam score since there were several weeks between
this training session and the actual exam. However what we
did see was how these SimScores could be used a predictor
for those who would not perform as well on the Supporting
Arms Exam. If we look at those who scored above an 85%
on their SimScore Average, we see they are very likely to
pass the Supporting Arms Exam (35 of 35). Whereas, if we
look at those who scored below an 85%, they have nearly a
20% (4 of 19) chance of failing. If an instructor is given this
knowledge prior to the exam he can focus his efforts on
those identified by their SimScore Average to prevent them
from failing exam.

Figure 1: SimScore Average vs. Overall Score

DISCUSSION

The results of our experiment show that FOPCSim performs
at least as well if not better than the existing system to train
entry level students to call for and adjust indirect fire based
on the results of the written Supporting Arms exam.
Unfortunately, until the live fire CFF is evaluated for
students at TBS, there can be no true test of how well
simulation helps users learn this specific task.
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The largest difference between the group that used the TSFO
and the group who used FOPCSim is the number of missions
that each got to perform in the virtual environment. For the
TSFO group, only 5-7 of the group of twenty performed a
mission in front of the group with instructor critique. In the
FOPCSim group each student got the opportunity to perform
several missions at their own pace during the two hour
period. Since their missions were evaluated by the built in
scoring system, they received feedback on each mission. In
addition, if they did not understand their errors, the
instructor was now free to give individuals help without
interrupting the whole class.

CONCLUSION

FOPCSim was not designed to be an all-in-one simulator to
train call for fire. There are several high-dollar simulators in
use throughout DOD that are more technologically
advanced, that cost much more to acquire and operate, and
are not deployable. These systems can be excellent assets to
the schoolhouses and units that can afford to acquire and
maintain them. Our goal is to complement these systems
with a low-cost, freely distributable, deployable system that
can be used by observers to practice the call for fire when
the real training is not possible. Based on the experiment we
conducted, we can say that FOPCSim performs at least as
well if not better than the current system used at TBS based
on the testing metric used at the school.
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ABSTRACT

This paper combines several empirical studies and some
theoretical research to shed some light on the dark,
undefined waters in which we plunge when we are
“immersed”. Immersion, across all media, comes in three
different types and in three different degrees, and can be
hindered by barriers, such as inaccessibility, or favored by
fuel, such as using one’s imagination. The resulting model of
immersion can be applied to experiences formed by any type
of media object, but is particularly relevant to video games.

INTRODUCTION

Immersion is one of those words we keep hearing when we
talk about video games. A problematic aspect of the term,
however, is that it can take on a variety of senses depending
on the author, text, and context. Consider, for example, the
following usages of the term:

- “The sound and lighting effects actually made me feel like
I was part of the scene.”

- “T am totally immersed in the story, I can’t wait to see what
is going to happen next.”

- “I have been playing for so long that I don’t even see the
game pieces anymore, only the patterns of play.”

Those three examples have something in common that we
can call immersion, using Janet Murray’s general definition
of “the sensation of being surrounded by a completely other
reality [...]that takes over all of our attention” [8]. Yet the
three examples cited above are all very unique experiences
that rely on different mechanisms. I will therefore build upon
the work done so far by other scholars and propose a
refinement and combination of multiple theories on
immersion in order to better understand this “excessively
vague, all-inclusive concept™[7].

THREE TYPES OF IMMERSION

Laura Ermi and Frans Méyrd have built a gameplay
experience model which they call the SCI-model[6]. This
model establishes three types of immersion: Sensory,
Challenge-based, and Imaginative. Their model seems
adequate enough to describe the experience of a player going
through a video game-playing session, so I will use it as the
main framework for studying the phenomenon.

Sensory immersion, as its name implies, attempts to focus
the senses: “Large screens close to [the] player’s face and
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powerful sounds easily overpower the sensory information
coming from the real world, and the player becomes entirely
focused on the game world and its stimuli. Challenge-based
immersion occurs “when one is able to achieve a satisfying
balance of challenges and abilities.” Finally, Imaginative
immersion is described as occurring when “one becomes
absorbed with the stories and the world, or begins to feel for
or identify with a game character.”

“For  example, multi-sensory  virtual reality
environments, [..] or just a simple screensaver, could
provide the purest form of sensory immersion, while the
experience of imaginative immersion would be most
prominent when one becomes absorbed into a good
novel. Movies would combine both of these. But
challenge-based immersion has an essential role in
digital games since the gameplay requires active
participation: players are constantly faced with both
mental and physical challenges that keep them playing.”

(6]

Fictional Immersion

The first of two amendments I would like to suggest is to
name Imaginative immersion “Fictional Immersion” instead.
The reason for this change is that we can be immersed in a
story without exercising our imagination. Cognitive
psychology and the reader-response school in film studies
and literary theory have shown that the consumption of a
media object is never completely passive; in fact, readers
and spectators are constantly mapping mental schemas and
building sense from what is presented to them, forming
hypotheses on the outcome of the plot, attributing motives
and backstories to characters, piecing together the physical
setting of the action, and likewise exercising their “active
creation of belief’[8] in order to enjoy immersion. [1, 2, 3]

However, to say that this is making usage of one’s
imagination is to render the concept of Imaginative
immersion “excessively vague and all-inclusive”, in
McMahan’s words, since we are constantly evaluating things
and situations according to mental schemas. By not taking
the criterion of fictionality into account, the concept of
immersion suddenly becomes so broad that it loses
relevance. To avoid this sort of theoretical dead-end, we
need to distinguish between “using one’s imagination” and
“immersion”. We can see the act of using our imagination as
a measure taken among others in order to accomplish
Fictional immersion. Besides, Ermi and Médyrd’s definition
of Imaginative immersion (“one becomes absorbed with the
stories and the world, or begins to feel for or identify with a
game character.”) implicitly relies on the concept of



fictionality. The best way to describe Fictional immersion is
to take the illusionist conception of realism that Marie-Laure
Ryan presents: it strives to make us feel that “there is more
to this [the fictional, represented] world than what the text
displays of it: a backside to objects, a mind to characters,
and time and space extending beyond the display.” [10,
p-158]. The term “Fictional immersion” is narrow enough to
prevent the pits of Imaginative immersion, yet broad enough
to include all forms of storytelling, like narration and
representation, found in video games.

Systemic Immersion

The second modification I propose to make to the SCI-
model concerns Challenge-based immersion. The argument
for this type of immersion is that video games require active
participation, and henceforth, are challenging. There are,
however, many ways to experience a form of challenge in
traditional, non-participatory media. The viewer of a
whodunit TV show, for instance, constantly forms
hypotheses and tries to interpret the clues so as to find the
culprit before the show gives it away. The learned cinephile
who watches a movie and notices the intricacies of lighting,
camera angles, and similar details of construction, is in a
state that is very similar to the chess master that sees the
patterns of pieces on the chess board. But where does it tie
in with the concept of immersion?

Taking Murray’s metaphorical definition and extracting its
fundamental idea, I believe we can define immersion as a
phenomenon that occurs when a layer of mediated data is
pasted upon the layer of unmediated data with such
vividness and extensiveness that it blocks the perception of
the latter. Immersion occurs when one gazes at a painting,
listens to music, is lost in a book or absorbed in a game of
chess, so much that he ceases to perceive the museum or the
sounds of the street, forgets the events happening in the real
world, and suspends his knowledge of its laws.

Systemic immersion occurs when one accepts that a system
(of rules, laws, etc.) governing a mediated object replaces
the system governing a similar facet of unmediated reality.
To think about the player’s avatar’s chances of survival in a
typical RPG in terms of Hit Points, Attack values and such
rather than torso and arm size, weight of the weapon, etc., is
to adopt the game’s system and reject the laws of real-world
physics (unless, of course, the game system does take into
account the arm size and weight of the weapon rather than
Hit Points and Attack values, in which case the reasoning is
reversed). Similarly, the learned cinephile that examines the
shots of a movie is attempting to schematize and decipher
how the mind of the director works. Learning a language is a
similar effort, as the expression “linguistic immersion”
asserts. As a non-native English speaker, for instance, I need
to immerse myself in the proper “English” mindset before
writing this article; however, once I am thinking in English,
I do not find it hard to write. Since one can be immersed in a
system without necessarily being challenged by it, the term
“Systemic immersion” seems more adapted to design this
experience.
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So far I have suggested a classification of different types of
immersion, which would transform the SCI-model to a SSF-
theory. Another issue has been raised by Elena Gorfinkel in
a conversation on immersion: “Immersion is not a property
of a game or media text but is an effect that a text
produces.”[11] It is crucial to remember that for a media
object to qualify as immersive, it does not have to be so at all
times and for everyone experiencing it. Indeed, as Ryan
notes in the form of the water metaphor, most objects
alternate between immersive and reflexive stances
throughout their course: “The ocean is an environment in
which we cannot breathe; to survive immersion, we must
take oxygen from the surface, stay in touch with reality.”
[10, p.97] These opinions join the body of work done by
multiple scholars who argue that immersion is also a matter
of degrees, and a matter of individual experiences. I will
now integrate this notion into the SSF-theory of immersion.

THREE DEGREES OF IMMERSION

Emily Brown and Paul Cairns’ study of immersion using
Grounded Theory[4] provides us with three degrees of
immersion: engagement, engrossment, and total immersion.
Each level can only be reached if certain barriers are
removed:

Engagement necessitates investment from the player (in
time, effort, and concentration) and accessibility (the game is
not of a type that the player avoids like the plague, features
responsive controls, etc.). It makes the player want to keep

playing.

Engrossment follows engagement, provided the game does
not suffer from bad construction (visuals, interesting tasks,
and plot are given as factors of construction). Once they
reach this stage, players become emotionally invested: “The
game becomes the most important part of the gamers’
attention and their emotions are directly affected by the
game.”

Total immersion is, according to Brown and Cairns, a
synonym of “presence”, and occurs when the player can
empathise with the game characters and feel the atmosphere
of the game. For an adequate atmosphere to exist, “The
game features must be relevant to the actions and location of
the game characters.” When players enter this stage, they are
cut off from reality and the game becomes the only thing
that affects them.

While good, this classification suffers from a confusion
among the types of immersion I have presented above. One
barrier given that prevents total immersion is an
impossibility for the player to identify with the game
characters. It is, however, entirely possible to experience
total sensory or systemic immersion while playing Doom, or
even Atari’s Battlezone, two games notorious for their
absence of plot and characters. Hence, total immersion is not
exclusive to story-oriented games. (see Ermi and Méyréd’s
measure of all three different types of immersion in a single
game session. [6]) The barriers to the last degree of
immersion need to be reconceptualized so as to apply to each
of the three types of immersion. This is, however, an



enterprise that far exceeds the scope of this paper, and is best
left for future work; furthermore, the barriers system is a
negatory tool: it tells us what can prevent immersion, but not
how to achieve it. I would like to pursue this exercise of
integration and study the elements that actively contribute to
immersion.

“GIMME FUEL, GIMME FIRE, GIMME THAT
WHICH I DESIRE” — Metallica, Fuel

Essentially, one can always reach the deepest level of
immersion as long as no barriers stand in the way. The
process is, however, much easier and quicker when fuel is
on hand. Fuel is any activity, or the positive qualities, both
in the player and the game, that contributes to make the
player advance through the degrees of immersion. These can
be either specific to a type of immersion or general. For
instance, Murray’s “active creation of belief” is fuel for
fictional immersion, and so is “using one’s imagination”.
“General fuel”, on the other hand, favors multiple types of
immersion.

Information Load, Expectation, and Coherence

David Nunez studied the question of whether or not the data
provided by an object needs to be sensory in order to
contribute to immersion. [9] He found that immersion is
hindered or favored by two things: expectation and
information load. The former’s link to immersion is that
“realism” is a recurring term among many scholars who seek
to understand how immersion can take place, and Nunez,
citing cognitive psychology studies, argues that expectation
is a better term to use: “we will perceive of something as
realistic if it is in line with our expectations of what one will
find in that particular setting.” As for information load,
“Whether a virtual environment is capable of matching the
user’s expectations seems to be a function of the amount of
information presented to the user.” The framerate or amount
of visual detail in Doom 3, the amount of diegetic
information such as books and dialogs in Morrowind, and
the high number of statistics, character classes and different
possible strategies in Final Fantasy Tactics, all are specific
fuel for the three types of immersion.

The information load, however, needs to be handled or
assimilated correctly by the user, whose capacity to do so
depends on his level of mastery of the channels through
which the information is transmitted. Just as the casual
movie-goer will probably lose interest if he watches a 3-hour
long characterless and plotless film on the aesthetics of
Deleuze versus Metz, the average 70-year old female would
likely not be able to digest Halo 2. Information load is fuel
as long as the user has a tank large enough to hold it.

A curious aspect of immersion has also been found by Kevin
Cheng and Paul Cairns[5]. Their study was based on the idea
that “One particular barrier to immersion was thought to be
caused when the different aspects of the game did not cohere
across different modalities.”, a result of Brown and Cairns’
2004 study cited above. They examined the experience of a
group of players that were playing a game programmed by
them to have the laws of physics of its world change and
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become incoherent at some point. The surprising result is
that “immersion overcame the deleterious usability elements.
Due to immersion, participants completely failed to notice
what had been determined to be modal incoherence — a
mismatch between graphical and behavioural realism
compared to what the participant expected.” This suggests
that as players become more immersed, their spectrum of
expectations also broadens, which means that immersion
could be viewed as a feedback loop: the more immersed one
is, the easier it is to become even more immersed.

CONCLUSION

This model of immersion, which started from the SCI-model
and evolved to integrate three types of immersion, three
degrees, and factors that positively and negatively influence
it, may not seem to accomplish much, but it is a solid
foundation. Future works on it can take on a variety of
forms, such as redefining the barriers to total immersion. I
am personally interested in expanding the types of
immersion to include subdivisions. Marie-Laure Ryan’s
temporal, spatial and emotional immersions seem like good
candidates for subcategories of Fictional immersion. In the
meantime, this paper has shed some light on the dark waters
of immersion.
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The demand for physically realistic computer games in-
creases as current hardware allows for real-time execu-
tion. Currently, writing physically correct and efficient code
is not straightforward. We demonstrate how the object-
oriented modelling language Modelica (www.modelica.org)
can be used for component-based modelling of complex
physical systems. The aggresive use of computer algebra
(in our pModelica compiler for example) guarantees effi-
cient, real-time code. The simple example we use con-
cers the cervical syndrome which some people suffer of.
Their neck is not sufficiently stiff to connect their heads
solidly with their upper torso. Therefore, if their upper
torso is exposed to vibrations, as when riding in a car,
these people may experience severe headaches. The figure
below shows a Modelica model of a sitting human body.
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To model the mechanical domain, the Modelica Standard Li-
brary (MSL) defines the following basic types.

type Length = Real(final quantity="Length",
final unit="m") ;
type Position = Length;

These are used to describe the dynamics of a rigid body. Note
how a Flange interface (not shown) groups both force and
position.

partial model Rigid
"Rigid connection of two translational 1D flanges"
Flange a flange_a " (left) driving flange";
Flange_ b flange b "(right) driven flange";
SIunits.Position s
"absolute position of flange of component";

parameter SIunits.Length L=1 "length of component”;

equation

flange a.s = s - L/2;
flange b.s s + L/2;
end Rigid;

The generic rigid body re-uses the rigid super-class to form a
sliding mass. Note that the SlidingMass equations are declar-
ative (computationally non-causal) ! Causality assignment is
performed by the Modelica compiler followed by numerical
code generation.

model SlidingMass "Sliding mass with inertia"
extends Interfaces.Rigid;
parameter SI.Mass m=1 "mass of the sliding mass";
SI.Velocity v "absolute velocity of component";
SI.Acceleration a "absolute acceleration";
equation
v = der(s);
a = der(v);
m*a = flange a.f + flange b.f;
end SlidingMass;

The diagram shown above is translated into the following
Modelica model by a visual modelling tool.

model CervicalSyndrome
Modelica.Mechanics.Translational.SpringDamper
Neck (s_rel0=0.1, d=0.8, c¢=0.3);
Modelica.Mechanics.Translational.SlidingMass
HeadM (m=1.2, L=0.2, s(start=2.4));

equation
connect (HeadGrav.flange b, HeadM.flange_ a);
connect (HeadM.flange b, Neck.flange a);

end CervicalSyndrome;

We modified the backend of our pModelica com-
piler to generate Java code to be plugged into the
Minueta framework developed by Alexandre De-
nault.  The resulting application is shown below.
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