2" INTERNATIONAL NORTH-AMERICAN CONFERENCE
ON INTELLIGENT GAMES AND SIMULATION

GAMEON-NA 2006

EDITED BY

Perry McDowell

SEPTEMBER 19-20, 2006

NAVAL POSTGRADUATE SCHOOL
MONTEREY, USA

A Publication of EUROSIS-ETI

Printed in Ghent, Belgium

Original cover art produced by David Levy, Ubisoft, Montreal, Canada

2"P |nternational North-American Conference
on
Intelligent Games and Simulation

MONTEREY, USA
SEPTEMBER 19-20, 2006

Organised by
ETI
Sponsored by
EUROSIS

Co-Sponsored by
Ghent University
GR@M
UBISOFT
Larian Studios

GAME-PIPE

Hosted by

Naval Postgraduate School

Monterey, USA

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

EDITOR

General Conference Chair
Perry L. McDowell
Naval Postgraduate School
700 Dyer Road
Monterey, USA

PROGRAMME COMMITTEE

Physics and Simulation

Graphics Simulation and Techniques

Pieter Jorissen, Universiteit Hasselt, Diepenbeek, Belgium
Joern Loviscach, Hochschule Bremen, Bremen, Germany
lan Marshall, Coventry University, Coventry, United Kingdom
Marco Roccetti, University of Bologna, Bologna, Italy

Facial, Avatar, NPC, 3D in Game Animation

Marco Gillies, University College London, London, United Kingdom
Yoshihiro Okada, Kyushu University, Kasuga, Fukuoka, Japan
Paolo Remagnino, Kingston University, Kingston Upon Thames, United Kingdom
Marcos Rodrigues, Sheffield Hallam University, Sheffield, United Kingdom
Leon Rothkrantz, TU Delft, Delft, The Netherlands
Joao Manuel Tavares, FEUP, Porto, Portugal
Ruck Thawonmas, Ritsumeikan University, Kusatsu, Shiga, Japan

Artificial Intelligence

Artificial Intelligence and Simulation Tools for Game Design

Stephane Assadourian, UBISOFT, Montreal, Canada
Michael Buro, University of Alberta, Edmonton, Canada
Stefano Cacciaguera, University of Bologna, Bologna, Italy
Abdennour EI-Rhalibi, Liverpool John Moores University, Liverpool, United Kingdom
Alice Leung, BBN Technologies, Cambridge, USA
Peter Kiefer, Otto-Friedrich-Universitaet Bamberg, Bamberg, Germany
Carsten Magerkurth, AMBIENTE, Darmstadt, Germany
Sebastian Matyas, Otto-Friedrich-Universitaet Bamberg, Bamberg, Germany
Gregory Paull, The MOVES Institute, Naval Postgraduate School, Monterey, USA
Francisco Perreira, University of Coimbra, Coimbra, Portugal
Oryal Tanir, Bell Canada, Montreal, Canada
Hans Vangheluwe, McGill University, Montreal, Canada

Learning & Adaptation

Christian Bauckage, Deutsche Telekom, Berlin, Germany
Christos Bouras, University of Patras, Patras, Greece
Chris Darken, The MOVES Institute, Naval Postgraduate School, Monterey, USA
Maja Pivec FH JOANNEUM, University of Applied Sciences, Graz, Austria
Christian Thurau, Universitaet Bielefeld, Bielefeld, Germany

PROGRAMME COMMITTEE

Intelligent/Knowledgeable Agents

Nick Hawes, University of Birmingham, United Kingdom
Scott Neal Reilly, Charles River Analytics, Cambridge, USA
Marco Remondino, University of Turin, Turin, Italy

Collaboration & Multi-agent Systems

Pascal Estrallier, Universite de La Rochelle, La Rochelle, France
Nicholas Graham, Queen's University, Kingston, Canada

Opponent Modelling

Ingo Steinhauser, Binary lllusions, Braunschweig, Germany

Rendering Techniques

Volker Paelke, Universitaet Hannover, Hannover, Germany
Michael Haller, Upper Austria University of Applied Sciences, Hagenberg, Austria

Voice Interaction
Oliver Lemon, Edinburgh University, Edinburgh, United Kingdom
Bill Swartout, USC, Marina del Rey, USA
Artistic input to game and character design
Olli Leino, University of Lapland, Rovaniemi, Finland

Storytelling and Natural Language Processing

R. Michael Young, Liquid Narrative Group, North Carolina State University, Raleigh, USA
Clark Verbrugge, McGill University, Montreal, Canada

Security Issues in Online Gaming

Robert Askwith, Liverpool John Moore University, Liverpool, United Kingdom
Fredrick Japhet Mtenzi, School of Computing, Dublin, Ireland

Applications

Wargaming Aerospace Simulations, Board Games etc....

Peter Cowling, Bradford University, Bradford, United Kingdom
Erol Gelenbe, Imperial College London, United Kingdom
Tony Manninen, University of Oulu, Oulu, Finland

MMOG's

Michael J. Katchabaw, The University of Western Ontario, London, Canada
Mike Zyda, USC Viterbi School of Engineering, Marina del Rey, USA

Games Applications in Education, Government, Health, Corporate,
First Responders and Science

Russell Shilling, Office of Naval Research, Arlington VA, USA
Leon Smalov, Coventry University, Coventry, United Kingdom

© 2006 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Simulation Society. Permission is
granted to photocopy portions of the publication for personal use and for the use of students providing credit is given to
the conference and publication. Permission does not extend to other types of reproduction or to copying for
incorporation into commercial advertising nor for any other profit-making purpose. Other publications are encouraged
to include 300- to 500-word abstracts or excerpts from any paper contained in this book, provided credits are given to
the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be used
in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in these Proceedings have been peer reviewed

EUROSIS-ETI Publications are I1SI-Thomson and INSPEC referenced

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Ghent University,
Faculty of Engineering, Dept. of Industrial Management, Technologiepark 903, Campus Ardoyen, B-9052 Ghent-

Zwijnaarde, Belgium.

EUROSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400
Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium
Final Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium

EUROSIS-ETI Publication

ISBN: 90-77381-29-5

\

GAME’ON-NA
2006

Vil

Preface

Welcome to Game-On 'NA 2006, the second North American sister event of the
well-established European Game-On conference series on Al and simulation in
computer games. The Naval Postgraduate School in Monterey is the setting for
this year’s event and as the birthplace of the highly succesful game America’s
Army it presents itself as an appropriate venue for game designers from all over
the world.

Just like last year game Al and content-generation are the main focus of the
event with design coming in as the second most important factor in game
development.

As well as the peer-reviewed papers, Game-On 'NA 2006 features an invited talk
by Madjid Merabti and Abdennour El Rhalibi of Liverpool John Moores University,
United Kingdom entitled: “Security Challenges in Networked Games”. A
presentation which points to where some gaming environments will be going in
the near future and the challenges the programmers will face in order to
safeguard the online gamers.

Game-On 'NA 2006 is of course, also about making contacts in the computer
game research community. Several social events are planned, including, a
conference dinner and a tour of NPS’s games design group. We hope you find
your time at this Game-On 'NA productive and enjoyable and you will also enjoy
the natural beauty of Monterey and its surroundings

Perry McDowell

Executive Director Delta 3D Game Engine
Naval Postgraduate School

Monterey, USA

CONTENTS

=Y - o - IX
Scientific Programme ... s 1
N UL 3 o T] T 75

INVITED PAPER

Security Challenges in Networked Games
Madjid Merabti and Abdennour EI-RNaliDIceueeeiiiiiiiimmmeiiiinccceenes s 5

GAME Al

Web Services for Game Al: The ZOCALO Architecture
Thomas M. Vernieri and R. Michael YOUNgcciiviiiiiiiiiiiinsssssssssssssssssssssssnas 13

Core Cognitive Modeling in Avatar Design
= 1 LTS =] (=T T N 18

GAME DESIGN

Infinite Games Engine

(T Sl 0] 0= 23
Path Finding for Large Scale Multiplayer Computer Games

Marc Lanctot, Nicolas Ng Man Sun and Clark Verbrugge.......cccceeerrissssssnnennennns 26
Instrumentation of Video Game Software to Support Automated

Content Analyses

T. Bullen, M. Katchabaw and N. Dyer-Witheford........cccccccinmmmmninnnnnseeeneennn. 34

Design and Implementation of Optimistic Constructs for Latency
Masking in Online Video Games
Shayne Burgess and Michael Katchabawcccccorrceercrcccccceesessseeeeeeeeeeeeeeenns 39

EDUCATION AND ART IN GAMES

game @ VU - developing a masterclass for high-school students using
the Half-life 2 SDK
A. Eliens and S.V. BhiKNari€© ...t errr s e s s mn s 49

Xl

CONTENTS

Adapting a Commercial Role-Playing Game for Educational Computer
Game Production
M. Carbonaro, M. Cutumisu, H Duff, S. Gillis, C. Onuczko, J. Schaeffer,

A. Schumacher, J. Siegel, D. Szafron and K. Waughcccececiiiicciiccccccccnnnnnnnns 54
Odyssee — explorations in mixed reality theatre using DirectX 9

N 7= o 62
LATE PAPER

Model Based Design of GAME-AI
Alexandre Denault, Joerg Kienzle and Hans Vangheluwe........cccccceiiiciennnnnnn. 67

Xl

SCIENTIFIC
PROGRAMME

INVITED
PAPER

Security Challenges in Networked Games

Madjid Merabti, Abdennour El Rhalibi
School of Computing and Mathematical Sciences
Liverpool John Moores University
Byrom Street, L3 3AF, Liverpool, UK
Email: sumersbticdlimu.ac.ok ;s aclrhalibitobmuac uk

KEYWORDS
Network, Online Games, Security, QoS, DRM

ABSTRACT

We are witnessing the biggest revolution in games since the
introduction of home computers: online games. Many
companies now insist that every game they develop must
have an online component, including those developed for
consoles. The most ambitious online games are persistent
worlds, which immerse thousand of players in a single,
shared environment. Traditionally, game programmers have
faced well-known challenges, such as artificial intelligence,
physics, 3D accelerated graphics, and input devices. In the
development of online games, there is an entirely new set of
problems.

This paper looks at several of the issues, challenges and
solutions regarding the security aspect of online based games
and virtual worlds.

1. INTRODUCTION

Massively multiplayer online games (MMOGs) let thousands
of players (between 6,000 and 10,000, according to general
reports from game companies) simultancously interact in
persistent, online, multiplayer-only worlds. The most popular
examples [1][2][3] are Sony's EverQuest, CCP games’ Eve
Online, NC Soft's Lineage, and Blizzard's World of Warcraft
(see [4] for the analysis of subscription growth). The MMOG
sector generates the majority of online gaming revenue,
especially in the Asia/Pacific region, which has the largest
market worldwide. According to IDCs' Asia/Pacific Online
Gaming report, the market has grown over the past several
years, commanding US$1 billion in subscription revenue in
2004, and will more than double by 2009.

As online gaming becomes a billion dollar industry and game
companies are making revenue from subscription charges,
new problems emerge which need to be taken very seriously.
Online games containing graphical glitches, sound defects
and poor performance will not be very popular. However, an
online game with security flaws and mass-cheating will
simply fail.

Considering the differences between single-player games and
online games, we have the following features:

e A single game can last for years. When you leave the
game, information about the state of your session is
saved. New players can join the game at any time, and
old players can stop playing altogether.

e An online game runs simultancously on thousands of
machines. Typically, a central server complex accepts
connections and synchronizes communication with client
processes running on players' machines. A planet-wide
network - the Internet - carries data between the clients

and the server (in large-scale games, it is impractical for
clients to send all data directly to other clients).

In one- or two-person games, cheating is a minor issue, since
it only affects one or two people at a time. However, a single
cheater in an online game can affect thousands of people and
have lasting implications as highlighted in [5]. A recent
massive virtual fraud occurred in a hugely popular online
game as presented in an article in the Guardian-Technology
(31 August 2006) [5].

This recent case [5] highlights the importance of security in
the design of online games. Security is critical because
MMOGs are just as vulnerable to hackers as any other
Internet services [6]. Fortunately, industry-standard firewall
and intrusion-detection technologies can reduce the effects of
most attacks. In-game (application-level) cheating and attacks
on content protocols (the players' command formats and their
contents) are troubling issues. In addition fake and illegal
protocols affect QoS and the games' fairness. Some of the
most common security problems come from users running
illegal plug-ins or cheat programs such as artificial
intelligence robot programs (Bots), to play MMOGs for casy
money or experience points. This is both unfair to other
gamers and degrades QoS for vendors, who must do more
server-side checks to prevent cheating. However,
counterattacking these programs is not a simple task, given
that attackers have the client program, and can thus access the
execution code and restore and analyze the protocol's format.
Widespread abuse has become such a significant nuisance
that vendors cannot simply ignore them because MMOG
players are likely to quit rather than continue with an unfair
or vulnerable MMOG service.

Many of the security issucs related to online gaming [7] arc
shared with other network applications, however online
gaming has a unique set of problems that need to be dealt
with. The aim of creating a secure game is not only to ensure
customers credit card numbers are protected, but also to
ensure that all players receive a fair and entertaining
experience.

The rest of this paper looks at some of the security related
issues in online games. In Section 2 we briefly discuss the
architectures of networked games, in section 3 we present the
security issues in networked games, in section 4 we discuss
some solutions of security, in section 5 we present a
framework for developing MMOG while providing security,
and in section 6 the conclusion is presented.

2. NETWORKED GAMES ARCHITECTURES

Most persistent worlds share the same basic architectural
features [15][16]. To play the game, a user cither installs
client software from a CD-ROM or downloads it from the
Internct. The client software contains code that
communicates with the game server using a custom protocol
designed for the particular game. Large static data, such as
graphic files, sounds, music, and level layout are typically
part of the initial installation onto the client.

The peer-to-peer approach used for most LAN-based games
does not scale well to large-scale persistent worlds [8][12]
[17][25]. When the game lasts longer than a single session, it
becomes difficult to deal with players dropping in and out of
the game arbitrarily. Performance also becomes a problem,
since the amount of game state increases linearly with the
number of players, while the amount of network bandwidth
remains constant [17]. A simple networked game, such as a
shooter, has very little game state - perhaps as little as the
coordinates of all the players and monsters, their weapons,
and their ammo. This allows each game client to know the
entire game state, and makes it possible to transfer to
everyone else all the game states changes made by one client.

To solve the problems of a large-scale game [17], on the
other hand, one or more game servers are set up in a central
location to keep track of the game state. Each of the game
clients communicates its changes exclusively to a game
server, which communicates those changes only to the clients
that need to receive them. For example, if one user moves his
or her character, the server only needs to tell other clients in
the user's vicinity. This reduces the bandwidth use of the
game to an amount that will not overload users' modem-
based connections.

Some virtual worlds last many years after their initial creation.

This is one of the benefits of creating a persistent world
instead of a transient game. To extend the life of a persistent
world, developers often grow the game over time, by adding
more arcas to the world and new features to the game play.
To support this, the client softwarc must have a way to
upgrade itsclf, preferably without any user intervention. This
is one of the most important parts of the initial release of any
persistent world, because although the world may initially be
quite primitive, it has the potential to be improved
dramatically over time.

Besides the game servers, there are likely other processes
required to make the whole system work in a commercial
environment. User account information might be stored in an
external database, dynamic game updates might use FTP
servers, and automatic mailings could require an SMTP
server. These processes could run on the same machine as the
game, but for performance reasons, they usually run on
separate machines.

3. ISSUES IN NETWORKED GAMES

Security is not just a theoretical problem [11][14], as recent
events in some popular games show. It appears that Blizzard's
Battle.net service contains some major security flaws at the
outset. As any experienced Diablo player on Battle.net will

tell you, people have found ways to gather incredibly
powerful equipment without earning it. Someone even went
so far as to hack the game so that characters in a multiplayer
game can be stolen right over the network. In Quake, hackers
have created automated programs called bots that can
automatically destroy opponents. These are free game
networks; imagine the amount of effort hackers would exert
to attack a pay-by-the-hour system, or if someone offered
money as a prize in an unregulated Quake tournament.

Of all the issues the online-game developer must be
concerned with, security might initially seem like a trivial
problem. However, it is central to keeping a system running.
A design error in the communication scheme or graphics
engine might lead to suboptimal performance, whereas a
design error in the game's security is the first step to failure.
In a scenario where customers pay for continued access to the
game, letting hackers run free is a sure way to lose a large
part of a paying customer base [11][14].

In this section, we identify areas where security has
historically been a problem, and where a client/server system
[8] is typically weakest. Figure 1 shows several ways a
hacker can attack a game system. We also suggest defensive
mechanisms for the most common attacks, and we describe
what can happen when hackers get through [13].

{ Internet
o -
i L
{ o
k. , :
“ L
R -
- S
- Packet
: Sniffing ifying Client
: Data in Memory:
: Giher ports H
g On server i
| H Changing
on corporate network 1 P DataFiles
% Spoofing Hacking
Physical attack/theft Client
of Server Executabie

Figure 1: Some Typical Attacks in Online Games

3.1 Piracy

This has traditionally been the most important aspect of
security in computer games. There are many different
technologies that provide copy protection, but nearly all of
them can be overcome. However, piracy is not so relevant to
online games, as the game companies make money from
subscriptions. Money can be made from selling boxed-
versions of online games by giving added-value content such
as manuals, maps, and the box itself. In addition to piracy,
copy protection also has an important role to play in
preventing client code from being altered [10].

3.2 Modifying Client Infrastructure

Many online games store game logic and player data on the
server, and store graphics and sound on the client [9]. This
makes it difficult for hackers to cheat by altering statistics
such as health or ammunition; however it gives them full
ability to change the graphics in a game. For many gamers,
the ability to make modifications (known as mods) to games

is almost as important as playing the game itself. However,
imagine if one player modifies the game so that he can see
through walls, and plays against somebody who cannot. A
simple solution to this problem is by ensuring all players are
using the same modifications [9].

Nevertheless, as we will see many security failures rely on an
attacker using altered client code in one manner or another.
The application of techniques aimed at content protection
such as TCP [9] or DRM trust mechanisms [10] may help to
mitigate against this.

3.3 Packet Tampering

There are many programs available that let users examine,
modify, send or block packets that are being transmitted to
and from their computer 12]. This causes several problems
for online games such as blocking packets that may have a
negative effect on a player, or replaying packets that shoot an
enemy player, even though you have no ammunition left.
Such situations can be avoided by keeping important
variables on the server, and by encrypting packets. Even
encrypted packets can be repeated though; therefore a
sequence number system should be used so that the server
can verify the packets.

A further help is to minimise the data that the client has to
receive through the use of Area of Interest Management
(AoIM) [8][16][19]. AoIM algorithms limit network traffic in
a virtual world to only what is necessary for each player. In a
large virtual world, there could be thousands of players, with
millions of variables that arc constantly changing. If the
client were to be kept updated with all variables, it could
easily use up more bandwidth than available, causing
network congestion and increasing latency. To put it very
simply, AoIM solves this problem by dividing the world into
different geographical zones, and then only sending data
regarding the zone that is directly related to each player.

3.4 Social Abuse

Players in virtual worlds can have a lot of freedom to do as
they please. This could include running around causing
sexual and racial abuse. Such abuse reduces and spoils the
fun and can damage the popularity of the game and break the
law. There are two ways around this problem; first of all by
allowing other players to report such abuse. This requires
adequate logging facilities so any allegations can be proved
and then the offending player can be dealt with accordingly.
Another solution to limit the damage in the first place is to
give players the option of censorship. This relies on
intelligent game software detecting offensive behaviour and
hiding it from players who wish to be protected. Another
form of social abuse could be using a game for commercial or
advertising purposes, or tricking people into giving out credit
card numbers ctc. This can be prevented again by reporting
such abuse, and by educating users.

3.5 Attacking Accounts

Since a password is the key to accessing account information
and the player’s character, it is important that the same
password protection techniques are used as in other sensitive
applications [9]. These can include encryption when
transmitting sensitive data, and educating players not to use
obvious passwords or inadvertently giving them out. In some
situations, server authentication may also be necessary to

ensure hackers have not setup bogus servers that can be used
to collect a user’s password.

3.6 Denying Service to Players

Such attacks can be used to reduce the responsiveness of
other players [9]. This is hard to avoid when using a peer-to-
peer topology, however in client-server based games, simply
not distributing other players IP addresses will avoid this
problem. Attacks on game servers are also possible. This is
unlikely to give any specific player an advantage, but it is
likely to make the game unplayable for everybody. Using
server software that drops non-game packets will help to
reduce the effects of such attacks.

3.7 Internal Abuse

This could be ecither accidental or deliberate. System
administrators responsible for the virtual world are probably
enthusiastic players in the game itself [9]. But can they be
trusted not to abuse their god-like position? Or perhaps a
system administrator decides to make a few changes to the
game world without fully considering possible implications.
Therefore powers should be restricted where possible,
monitoring is necessary, and procedures must be set in place
and followed.

3.8 Backup

Due to the complexity and nature of virtual worlds, it is
essential to keep several versions of backups from different
time periods. For example, if a serious bug is found after
many players have taken advantage of it, this could cause a
major unbalance in the economics of the world. It is often
better to restore the game from a time before the bug was
taken advantage of, than letting play carry on as is — even if it
means losing several days worth of play. Most players would
prefer this than having to start again from scratch.

3.9 Cheat Detection

By logging access to game servers, recording important
events (e.g. player advancement), and keeping track of key
quantities such as the number of rare items in the game, game
administrators can identify or verify where cheating is taking
place [9].

3.10 Disconnecting

A player may disconnect from a game seconds before being
killed, perhaps then reconnecting with another character and
finishing off the battle. Although two can play at that, nobody
will die, the game becomes boring and good players will stop
playing. This can be solved by game design, for example by
making a character go into an auto-pilot mode for a period of
time after disconnection.

3.11 Corrective Measures

Games should include a comprehensive list of terms and
conditions that will allow termination of players who break
the rules [11][14]. However, it is essential mistakes are not
made, as one wrongly excluded player could cause trouble.
Also, it could be difficult to stop banned users from signing
up again, especially from free systems that do not require
credit cards numbers.

4. SOLUTIONS TO SECURITY IN NETWORKED
GAMES

There are two main security goals in online games:

1. Protecting sensitive information, such as players'
credit card numbers.

2. Providing a level playing field, so that it is as
difficult as possible to cheat.

Protecting sensitive information is mostly a matter of
configuring the server complex correctly. Each machine
connected with the game, such as any web, FTP, or database
server, needs to be secured. All game servers should be
behind a firewall that only allows data through the ports that
the game needs to operate. Finally, the server complex should
be located in a locked area, since physical access to the
machines circumvents all other security precautions.

As you can tell from our previous discussion on issues, some
amount of internal security is also necessary to prevent
employees outside the development staff from damaging the
game or leaking information. In general, administrative
powers should be given out strictly to those staff members
who require those powers to do their jobs. Limit serious
power, especially the ability to change account information,
to a few trusted, on-site individuals.

4.1 Detecting Cheating

A good first step in blocking cheaters is to set up the system
to detect cheating automatically. The system should record all
player logins and logouts, as well as important game events
such as player advancement. Keep track of key quantities in
the game, such as the total amount of money and numbers of
rare items in existence. If you can review these statistics
regularly, you can tell when there is a major problem, such as
the appearance of multiple copies of items that are supposed
to be unique, or the overnight doubling of the money supply.

Also, talk to the players occasionally. They probably have
more experience actually playing the game than cven the
game designers do, and they are anxious to ensure that other
players do not have an advantage over them. Consider
creating an e-mail account specifically for players to report
instances of cheating.

4.2 Vulnerabilities in Online Game

The consequences of a security hole in an online game can be
serious. A malicious player might use a security hole to cheat
or to compromise the integrity of the game. Letting hackers
run free is a sure way to lose a large part of a paying
customer base, so the game design should address this
problem from the beginning. There are three places in the
game that are vulnerable to attack: the data files, the
client/server protocol, and the client executable itself.

A simple approach to securing data files on client machines is
to encrypt them. Since there is a performance penalty at run
time for decrypting files, however, only those files that
contain important information need encryption. There is
probably little or no harm in letting a player examine and
modify music, sound, and graphic files for examples, whereas
access to levels or speech files might give someone a
substantial advantage.

Encryption is not always enough, though. Merely renaming
or copying one data file over another might allow someone to
fool the client into thinking that a player is in a location other
than where the server places the player; this could have
conscquences ranging from odd player behaviour on other
people's machines to granting the player access to otherwise
restricted areas. One solution is to move the role of verifying
use of the correct file from the client to the server, and
ensuring the entirety of the data is correct, not just the file
name. When the client loads a file, it can perform a checksum
of the file and send the checksum to the server (given that the
file is encrypted, the checksum can be quite simple and
inexpensive to calculate). If the server finds that the
checksum does not match its expectations, it concludes that
the player has cheated, and ecither logs this information or
takes immediate corrective action. Note that it's not enough
for the server to simply ask the client to deal with the
problem, since a malicious user might also block such a
message.

In fact, there are many possible attacks on the client/server
protocol. It is fairly easy for a hacker to use a packet sniffer,
which is a program that displays all data transferred over the
network (many such commercial programs are readily
available). Armed with a sniffer, a hacker might try to reverse
engineer the client/server protocol with the view to changing
packets as the client sends them. Encrypting the protocol
effectively solves this particular problem, but there are others.
Even when packets are encrypted, a hacker can capture an
outgoing packet and resend it, possibly hundreds of times (an
attack called "replaying packets"). If the packet is a request to
fire a spaceship's lasers for example, replaying packets could
give someone a significant advantage by making the ship's
lasers fire rapidly.

A good way to prevent packet replay is to assign each packet
a sequence number, which changes from one packet to the
next. If the server receives a packet with the wrong sequence
number, it knows that the sender is cheating. The sequence
number should be more than just an integer that increments
with each message; that scheme is easy for a hacker to
replicate. Instead, the sequence number could be a mix of
anything that acts as a state variable for the protocol. For
example, it could be the total number of bytes that have been
sent since the client started. It is also important that the
sequence number is made inseparable from the packet by
encrypting it with the rest of the data, otherwise an attacker
could simply modify the sequence number before replaying
the packet again.

Something else a cheater might do is use a packet sniffer
simply to block certain messages from reaching the client or
the server. Assume for argument's sake that the player's
health value is stored on the client, and that messages that
inflict damage are blocked from reaching the client. The
player blocking damage messages would become
invulnerable. By storing all important data on the server, it's
possible to prevent message blocking from giving anyone an
advantage. However, message blocking attacks can be subtle,
and each protocol message needs to be examined to see what
would happen if someone blocked it.

The client executable resides on the player's machine, and
thus is vulnerable to tampering. Worse, the client possesses
important information when it runs, including the contents of
data files, which must be decrypted as they are loaded. A
cheater might use a debugger to view memory while the
client is running, or even modify the executable to disable
other security checks. Digital Rights Management [10] offers
promising techniques to prevent such attacks, but these
remain difficult to implement well and any user sophisticated
enough to modify the executable may be able to get around
any attempts to prevent tampering. One way to contain the
damage is to limit the client's knowledge of the game as
much as possible. After all, a hacker can only learn as much
as the client knows. By storing data on the server, a network
roundtrip is required to retricve it, which hurts performance
and complicates the code. Data security is a balancing act
between performance concerns and the danger that players
may find a way to learn all of the information in the client.

4.3 Dealing with Detected Security Problems

What should the server do when it detects a sccurity
problem? One answer is to immediately disconnect or
possibly suspend the offender's account. Suspension might be
too severe - even one misdirected account suspension is a
serious customer relations problem. On the other hand,
simply disconnecting an account has the disadvantage of
letting the hacker know that his or her attempt has failed. A
more subtle approach is simply to log the security breach, and
periodically review the security log. This approach
discourages casual hacking at the cost of letting a few
security violators through for a short time. It is best suited for
less severe security breaches, where this cost is acceptable.

For more severe security problems, it is necessary to be harsh
in removing violators from the system. Although the number
of people with the technical knowledge to hack your system
is probably small, there are many more that are ready to use
other people's hacks. In a commercial system, the terms of
service should disallow tampering with the system, so that
you can disconnect serious cheaters instantly.

5. MMOG FRAMEWORK FOR DEVELOPMENT AND
SECURITY IN NETWORKED GAMES

It is probably impossible to make a perfectly secure online
game; however it is certainly possible and desirable to reduce
and limit misuse, allowing customers a good experience in a
virtual world. Good design and programming, increased user
awareness, ongoing maintenance and supervision will help to
achieve this. This could be aided by providing a suitable
MMOG Framework [20][21] for the development and
Security in form of a middleware [23][24].

Current MMOG technologies [21][22][25] focus on
providing a scalable, reliable, fault-tolerant, low-cost, load-
balancing, single-sign-on, secure framework for building
seamless virtual worlds — no shards (i.e. identical copies of
online games on different server clusters), specific servers, or
zones, so that all players essentially exist in the same game
world. However, only a few new MMOGs have been based
on such frameworks, and fewer are currently in operation.
For this reason, rather than developing solutions themselves,

game vendors who are unfamiliar with distributed
technologies would benefit from easy-to-use MMOG
middleware that addresses QoS and helps provide code that's
casy to develop and maintain. A MMOG platform should
satisfy four essential "case of" requirements [24], in addition
to the aforementioned security needs [9].

5.1 Ease of Development

The MMOG platform should:

provide easier and faster ways to develop content,

hide the underlying network programming from the
content programmer (which simplifies actual game
programming), and

. provide an API that's simple and flexible enough to let
developers focus on content and presentation.

. Interface definition language-based programming
paradigms with automatic code-generation
mechanisms would be a good choice to satisfy these
requirements.

5.2 Ease of Operation

Most MMOG vendors frequently update their game content
because doing so provides a better, more attractive service.
The middleware platform's architecture should provide both
servers and clients with straightforward ways to deploy
content, especially in collocation environments, in which all
content must be updated remotely.

5.3 Ease of Maintenance

Placing a MMOG online is only the beginning of the service
challenge: easy maintenance and monitoring are subsequent
requirements that vendors must pay attention to, to support
and retain customers at low cost. For example, to ensure
fairness in the virtual world, a tracker program that could
automatically report uncommon changes in players' states
would benefit game vendors.

5.4 Ease of Change

Many popular games encounter security problems on one
hand and service issues (such as server overload) on the other.
Making changes to the content protocol to fix bugs or update
content is common, but cven if no new content is added,
changing protocols can make hacking them more difficult. A
MMOG middleware should make it easy for vendors to make
changes to content protocol.

5.5 Performance and Load Balancing

Building a seamless game world requires a tight, dynamic
collaboration between cell servers. Game-interaction
processing — boundary updates and user-state migration, for
example — is spread across a network of server farms. Most
current models are built on shards, but a middleware that can
support a scamless game world is very important for next-
generation MMOGs to help maintain QoS whenever the
number of online players increases. It also facilitates
scalability by allowing vendors to add more servers to a
cluster. Given that the geography of player states is essential
in an online world, a good dynamic load-balancing scheme is
also desirable.

5.6 Security Support

To address security and content-updating issues, the
framework should model the content-oriented protocols as
scts of message fields; It will embed a code-generator engine
which randomly shuffles the fields, therefore increasing
protection against hacking message-oriented protocols and
faking messages. Although this will not provide total
protection from hacking, it makes attacks more difficult.
Moreover, including both messaging protocol and encryption
algorithms, such as Secure Sockets Layer (SSL), can help
prevent attacks.

The frameworks we have developed for security and privacy
in [26][27], and for DRM in [10] are very good solution to
support the solving of security issues in online games.

6. CONCLUSION

A fact of life in the security business is that no defence is
foolproof. Given enough time and resources, an attacker can
always defeat any security scheme. A hacker can disassemble
and rewrite part of your client and dedicated hardware can
break your encryption scheme. Our job is to make cheating
prohibitively expensive, so that potential attackers have little
desire to try. One has to judge for yourself how secure is
secure enough, taking into account what is at stake if
someone breaks through.

Security is a serious concern in all online games, but
especially in persistent worlds. A single security hole can
make your customers leave the game. As more games move
to the Internet, we will hear about security more often, since
players will break through the weak protection in most games.
With proper planning and an appropriate MMOG Framework,
however, we can alleviate the problem.

REFERENCES

[11 Sony Online Entertainment INC., The EverQuest II homepage;
http://everquest2.station.sony.com/

[2] Electronic Arts, UltimaOnline; http://www.uo.com

[3] Blizzard Entertainment, The World of Warcraft homepage;

http://www.worldofwarcraft.com/

[5] Guardian Unlimited — Technology “Should virtual criminals have their
real-life collars felt?”, August 31, 2006.
bitn/frechnolopyvenardinn conk/weekiviatony/D, 1RO LIRS, 60 luml

[6] Jeff Yan, Brian Randell, “A Systematic Classification of Cheating in
Online Games”, NetGames 2005, IBM TJ Watson Research Center, NY,
October 10 - 11, 2005.

[7] Madjid Merabti, Paul Fergus, Omar Abuelma’atti, Heather Yu, and
Charlie Judice, “Managing Distributed Networked Appliances in Home
Networks”, submitted in July 2006 to The Proceedings of the IEEE.

[8] Abdennour El Rhalibi and Madjid Merabti, “Agents Based Modeling for
a Peer-to-Peer MMOG Architecture”. ACM Computer in Entertainment
Journal. April 2005, Edited by Newton Lee — Editor-in-Chief of ACM CiE.

10

[9] S. Pearson, B. Balacheff, L. Chen, D. Plaquin, and G. Proudler, Trusted
Computing Platforms: TCPA Technology In Context: Prentice Hall PTR,
2003.

[10] M. Merabti and D. Llewellyn-Jones, "Digital Rights Management in
Ubiquitous Computing," I[EEE Multimedia, vol. 13(2), pp. 32-42, April-June
2006]

[11] Becker, David, ZDNet Article, “Cheaters take profits out of online
gaming”, June 2002: fitip://zdnet comeony 2 100 1184033884 b

[12] “Internet Security Systems, Packet Sniffing”
http://www.iss.net/security_center/advice/Underground/Hacking/Methods/Te

chnical/Packet_sniffing/default.htm
[13] Nathaniel Baughman, Brian Neil Levine, “Cheat-Proof Playout for

Centralized and Distributed Online Games”, 2001
http://citeseer.nj.nec.com/baughman0 1 cheatproof.html
[14] Wired, Blizzard of Cheaters Banned:

http://www.wired.com/news/games/0,2101,55092,00.html

[15] Coulouris, G., J. Dollimore, and T. Kindberg, Distributed System:
Concepts and Design, Addison-Wesley, England, 2001.

[16] J. Smed, T. Kaukorante and H. Hakonen, “Aspects of Networking in
Multiplayer Computer Games”, International Conference on Development of
Computer Games in the 21st Century, Hong Kong SAR, China, November
2001.

[17] A.B. Bomdi, “Characteristics of Scalability and Their Impact on
Performance”, Proceedings of the second international workshop on
Software and performance, ACM Press, Ottawa Canada, 2000, pp. 195 - 203.

[18] T. Limura, H. Hazeyama and Y. Kadobayshi, “Zoned Federation of
Games Servers: a Peer-to-Peer Approch to Scalable Multi-player Online
Games” SIGCOMM’04, ACM Press, August 2004.

[19] L. Aarhus, K. Holmqvist and M. Kirkengen, “Generalized Two-Tier
Relevance Filtering of Computer Game Update Events”, Proceedings of the
first workshop on Network and system support for games, ACM Press, April
2002, pp. 10-13.

[20] C. Diot and L. Gautier, “A Distributed Architecture for Multiplayer
Interactive Applications on the Internet”, IEEE Networks magazine, IEEE,
July/August 1999, pp. 6-15.

[21] M. Mauve, S. Fischer, and J. Widmer, "A Generic Proxy System for
Networked Computer Games," Proc. st Workshop Network and System
Support for Games (NetGames 2002), ACM Press, 2002, pp. 25-28.

[22] D. Bauer, S. Rooney, and P. Scotton, "Network Infrastructure for
Massively Distributed Games," Proc. 1st Workshop Network and System
Support for Games (NetGames 2002), ACM Press, 2002, pp. 364

[23] A.T. Campbell, G. Coulson, and M.E. Kounavis, "Managing
Complexity: Middleware Explained," IT Professional, vol. 1, no. 5, 1999, pp.
22-28.

[24] K. Geihs, "Middleware Challenges Ahead," Computer, vol. 34, no. 6,
2001, pp. 24-31.

[25] B. Knutsson et al., "Peer-to-Peer Support for Massively Multiplayer
Games," Proc. Infocom, vol. 1, IEEE Press, 2004, pp. 96-107.

[26] David Llewellyn-Jones, Madjid Merabti, Qi Shi, Bob Askwith “An
Extensible Framework for Practical Secure Component Composition in a
Ubiquitous Computing Environment”. ITCC (1) 2004: 112-117.

[27] Bob Askwith, Madjid Merabti, Qi Shi “MNPA: a mobile network
privacy architecture”. Computer Communications 23(18): 1777-1788 (2000)

GAME
Al

12

WEB SERVICES FOR INTERACTIVE NARRATIVE: THE ZOCALO
ARCHITECTURE

Thomas M. Vernieri
Blackbaud, Inc.
2000 Daniel Island Drive
Charleston, SC, 29492-7541
tommy.vernieri@gmail.com

KEYWORDS
Computer games, Artificial Intelligence, planning, web
services, interactive narrative.

ABSTRACT

Artificial intelligence planning has traditionally been
realized in applications that are tightly bound to planning
systems, making their use in game engines computationally
expensive and impractical. In this paper, we describe Zocalo,
a Web service that exposes and augments a planning system
for use by game engine clients. Among other game-related
applications, Zocalo provides functionality needed to
generate narrative-based story lines within games at run-
time. In addition to benefiting games that need to execute
planning tasks, Zocalo gives game developers the option to
be involved in the planning process directly.

INTRODUCTION

As the graphics capabilities of computer game engines
approach photo-realistic levels, the wuse of artificial
intelligence (Al) to enable new forms of gameplay will
increasingly become a central distinguishing factor between
titles. The demand for new types of interaction within game
worlds will require the transfer of techniques used by
academic Al researchers into the context of commercial
computer game engines. Game developers are faced with a
dilemma, however, when seeking to integrate a range of
intelligent techniques into commercial computer game
designs: the computational requirements of typical Al
algorithms place untenable demands on the resources
available to user machines running game engine code.

One new form of gameplay currently being explored by
researchers in intelligent entertainment is that of interactive
narrative (Cavazza, Charles and Mead, 2004; Louchart and
Aylett, 2005; Mateas and Stern, 2005; Young, 2005), where
a game’s storyline is generated automatically and adapted in
response to the user’s actions at run-time. Many approaches
to story generation use plan-based models where stories are
composed by Al planning systems and translated into game-
specific code for execution. The high computational cost of
generative planning systems, however, places an
unacceptable load on the CPU of a user’s machine that is
also managing all other game-related computation. In this
paper, we describe Zocalo (Vernieri, 2006), a service-
oriented architecture (SOA) for creating interactive
narratives within existing commercial computer games; in
this architecture, plan generation is performed by Web

13

R. Michael Young

Department of Computer Science
North Carolina State University

Raleigh, NC, 27695-8206
young@csc.ncsu.edu

services running on processors distinct from the game
engine.

A Zocalo is a town square or plaza typically found in
Mexican cities, often serving as a meeting place or
centralized location for civic functions. The Zdcalo system
provides a service-oriented architecture in which collections
of game Al services are assembled and accessed by a range
of game clients. Game engines that use Zocalo include in
their code a lightweight client module responsible for
communicating with Zdécalo’s planning Web service. This
service-oriented approach has a significant advantage over a
design requiring that a planning system be built into a game
engine. Zdcalo client games off-load the often-substantial
computational cost of a planning system to a server rather
than consuming computational resources on its own
processor. In addition, applications that include a Zdcalo
client can discover a planning service at runtime, allowing
them to select a server that can provide them with the lowest
computational load, highest processor speed or lowest usage
rates.

Zocalo’s planning service, named Fletcher, also gives the
developer substantial flexibility when it comes to controlling
and gathering information about how the problem of
generating a story is solved. When constructing a plan in
response to a request for a storyline, Fletcher uses an
underlying model of planning as search through a space of
plans. The messages that a client can send to Fletcher control
how the search space of the planning problem is explored.
During the development of a game designers can interact
directly with Fletcher servers to build and test game world
specifications, requesting detailed information about the
characteristics of the search spaces for given story contexts.
Fletcher’s accessibility allows game designers to configure
their games precisely when determining trade offs between a
number of plan construction features.

Zocalo’s flexibility provides different clients with distinct
methods for accessing its services. For example, a game
using Zdcalo may access Fletcher in a manner similar to the
way that conventional planning systems are accessed — by
requesting that Fletcher construct a solution plan for a
narrative storyline planning problem. Additionally, games
and other tools used by game developers may call upon more
of Fletcher’s functionality to control the planning process to
a fine degree, for instance, by requesting incremental
planning efforts or by parceling out elements of a large
planning problem to separate Fletcher services. Further, a
game may expose aspects of the communication between
server and client to its user via a graphical user interface and
allow the user to provide recommendations about the types
of stories she prefers. We are exploring the use of this

Bl Urrsst Townameant Ssrvsr

Tdastistor

Litk DANLY

Egscution

Rlansger

fdimmei Dondrolisr

Marative
Blgnnaer

ok Flanne
Tagat

T

Figure 1. The Mimesis component-based architecture.

approach (Thomas and Young, 2006a; Thomas and Young
2006b) with existing techniques for advisable planning
(Myers 1996).

RELATED WORK

Zdbcalo builds on work related to architectures for interactive
narrative, planning and Web services as they relate to plan
generation algorithms.

Plan-space Planning

To generate narrative plans, Zocalo currently uses a
hierarchal causal link planner named Crossbow, a C#
implementation of the Longbow planning system (Young et
al., 1994) used in Mimesis; Crossbow uses refinement search
(Kambhampati et al., 1995) as a model of the planning
process, a general characterization of planning as search
through a space of plans. This type of planning algorithm has
been shown to construct plans that have many of the
characteristics of stories (Christian and Young 2004). This
quality makes Crossbow a effective choice as a planner for
story-based games.

Crossbow’s planning algorithm combines partial-order,
causal link representations (e.g., that of UCPOP (Penberthy
and Weld, 1994)) with hierarchical planning approaches
(e.g., (Sacerdotti, 1977)). Details of the plan representation
and the algorithm used to construct plans are beyond the
scope of this paper; specifics can be found in (Young, et al,,
1994). Several details, however, are significant for
understanding a game’s interaction with Zdcalo. Crossbow
(and thus Zocalo) represents all actions available in a given
planning world as schematized operators stored in an
operator library referred to as a domain. A plan is a set of
steps — action instances instantiated from operator schemas —
along with structures representing constraints over those
steps.

Zocalo’s plan construction process involves search through a
graph in which nodes represent (possibly partial) plans and
arcs from one node to another indicate that the plan
associated with the second node is a refinement of the plan
associated with the first. Crossbow expands a plan search
graph using best-first search guided by a heuristic evaluation
function that ranks nodes in the graph according to problem-
specific features. A planning context is a triple consisting of
a domain library describing all actions available in a game
world, a heuristic search function, and a plan space graph.
Planning in Crossbow consistes of a) using the heuristic
search function to rank all the plans associated with the

14

nodes on the fringe of the plan space, b) selecting the most
promising node from the fringe, and c¢) using the domain
library to create all the plan’s refinements, then adding those
refinements to the plan space graph, creating a new planning
context.

Planning is typically initiated by creating a planning context
containing a graph with a single node whose plan has only
two steps: an initial step encoding the current state of the
game world and a terminal step encoding the goal state of
the desired story. Planning can also be initiated in Corssbow
by seeding the initial plan with desired steps and structures.
This approach is useful, for instance, when a partial
description of the desired storyline is already known.

Planning Web Services

Several other research projects have provided Web-based
access to planning systems. A recent implementation of the
O-Plan planner provides a Web-based interface accessible
through CGI scripts (Tate and Dalton, 1993). At the time the
interface was designed, no clear Web services standards had
been established. Using CGI scripts increased the planner’s
accessibility, allowing clients to invoke it over the Web
rather than as a local application. However, beyond the
benefit of remote invocation, the use of CGI as a
programmatic interface did not increase O-Plan’s
accessibility for remote client applications.

Today, Web services such as those in Zdcalo are often
described by machine-readable documents that specify their
inputs, outputs and wusage. These machine-readable
documents are generally expressed using the Web Services
Description Language (WSDL) and the Simple Object
Access Protocol (SOAP). In contrast, O-Plan specifications
are provided through human-readable documentation.
Developers of applications accessing services described in a
WSDL document can use third-party tools to aid in the task
of writing a client; developers of O-Plan client applications
must build their interface to the planner by hand based on
specifications provided by user manuals that describe the
CGl interface.

Tsoumakas, et al. describe HAP-WS, a Web service that
wraps around the HAP planning system (Tsoumakas, et al.,
2005). In an approach similar to the one we use in the
design of Fletcher, HAP-WS provides a WSDL service
description for the Web service, which receives and responds
to messages using SOAP. Since HAP-WS uses these two
standards, developers can make use of existing developer
tools to generate client code and client applications can
easily discover the service at runtime.

Domain
Developer

Sockets
Or A
EM running within Vs
ame engine _ :

the g

Game Execution
Engine Manager

Fletcher

(Partial-order
Planning)

Crossbow
(running within
Fletcher)

Additional
Services |

Figure 2. The Zocalo service-oriented architecture.

Unlike the planning Web service in Zdcalo, however, HAP-
WS is a relatively simple service that accepts only one
command: a request for a single solution to a planning
problem. While there are scenarios where this amount of
functionality is sufficient for applications, there are a number
of use cases where applications could benefit from a
planning Web service with a wider range of features. In the
remainder of the paper, we describe Zdcalo’s design and
functionality and demonstrate how games can benefit from
its feature set.

A SERVICE-ORIENTED ARCHITECTURE FOR
INTERACTIVE NARRATIVE

Zocalo

To generate novel storylines for games, Zdcalo relies upon
three central components:

* Web services available on the Internet that compute
story plans and perform additional plan-based
analysis.

* An execution manager that initiates requests for
story plans from the web services, then uses the
output of services to schedule and manage the
plans’ execution within a game.

* An execution environment running within a game
engine, responsible for translating the execution
manager’s declarative representation of a plan’s
steps into function calls specific to the game engine,
running the methods used to implement plan steps
and reporting back to the execution manager on the
success or failure the methods’ execution.

The overall Zocalo architecture is show in Figure 2. Much
of the game-side functionality found in Zoécalo (e.g., the
translation of declarative action models into game-specific
code) was developed in our previous work on the Mimesis
system; however, Zocalo’s service-oriented nature makes

15

our current approach more extendable and easier to integrate
across disparate platforms and environments.

The Game Engine’s Execution Environment

Each game engine that makes use of Zocalo is extended with
a lightweight process called the execution environment,
which acts as a virtual machine in which actions taken from
a story plan are executed within the game world. For each
action in the game world, a game developer defines an
action class, a class definition that specifies the behavior of
an action operator represented within the story planners.
Methods within each action class perform checks for the
action’s applicability to the current game state, run the code
responsible for the state change associated with the action,
and then verify that the action has updated the game state as
expected. When each action halts its execution, it notifies
the execution manager of its successful (or unsuccessful)
completion.

When the user of the game attempts to perform an action, the
game routes the action through the execution manager and
its execution environment. The game only alters its world
state after receiving confirmation from the execution
manager that the action has been incorporated into the story.
This keeps the execution manager informed of the exact state
of the game world, allowing it to perform its functions
properly. The execution manager uses an approach called
mediation (Riedl, et al., 2003; Harris and Young, 2004) to
ensure that the action being executed by a user in the game
world (or an acceptable substitute) can be consitently
integrated into the story plan.

The Execution Manager

The execution manager plays the role of an intermediary
between the game engine’s execution environment and the
Web services needed to construct story plans. The typical
model of usage for an execution manager has two phases,
depicted in Figure 3. First, as a game begins, the execution
manager locates a Fletcher Web service and issues a request
for a story plan, providing the planning service with

User

Figure 3. The process of gameplay.

Game

Execution Manager

Requesting a Story Plan

" Requests a story ™ Creates an %\\5
yﬂ"’” v i .
Starts the game }MM N sxecution DAG
5, : 5’?% {using ti’s;* wmgid }w“ (requests a plan x}
... Stete and goals) from Fletcher) y
Executing 2 Story Plan
- Observes \14 I Exgcutes actions ™) Sends pending)
(changes in the e R {updates the ﬁkm steps from the
A game world / world state} A . execution DAG e
] 1
¢ HNotifies EM of \"\k‘ Updates pending “
< sucoessiul ,;wv steps in the ,1
N exgcution / execution DAG M/;
5
o, o =3 e ™,
P equests
{ ;kttemgts t;, >——>< addition of the :}
... PETiUTM an acdon . .. action to the story v

* adescription of the game’s current world state

* the operator library of actions available in the game

* a specification of the preferences for the types of
story plans it is requesting (in the form of the
identification of a heuristic search function for the
planning service)

* aspecification of the end or goal state of the story.

Upon receiving a plan specification from the web service the
execution manager reorganizes the plan data as a directed
acyclic graph (DAG) with nodes representing the steps of the
plan and edges representing the ordering restrictions among
those steps. A step is called pending if there are no other
steps that must execute before it.

After the setup phase has completed, the execution manager
sends commands to the execution environment instructing it
to execute the plan’s actions in the game world. As these
steps are executed in the game, the execution environment
notifies the execution manager of their completion and in
turn the execution manager updates its DAG of steps. In
updating the DAG steps that have yet to execute may
become pending; the actions corresponding to these steps are
sent to the execution environment for execution. This phase
then repeats until the entire story has been executed.

The Fletcher Web Service

In order to obtain a story for the game, the execution
manager communicates with Fletcher, a Web service that
exposes and extends the functionality of the Crossbow
planner. In the scenario described in the previous subsection,
the execution manager only uses a minimal amount of
Fletcher’s functionality. The full feature set is used at during
the game design process by game developers and story
experts. People filling these roles collaborate to develop
operator libraries, heuristic search functions and world state
specifications used as starting points and ending points for
stories. The task of developing these artifacts is facilitated by

16

the large degree of control that Fletcher allows over the
planning process. Fletcher’s service-oriented nature allows it
to take advantage of server-side computational resources
while facilitating direct access by game client execution
managers as well as stand-alone tools used by the game’s
developers.

When a Zocalo game requests a story at run-time, the game
provides Fletcher with an operator library, a heuristic search
function, and a description of the desired world state at the
beginning and end of the story. These three inputs are
generally developed iteratively by the designers before the
game is released. This is done by incrementally adding and
editing operators, tuning the heuristic function and building
ending world states (or goals) that correspond to the
conclusions of episodes or the end state of a game level.
Changes to these inputs affect the plans that Crossbow
generates and the order in which the space of possible plans
is searched.

The functions provided by Fletcher support an interactive
approach to development. An editing tool named Bowman
allows developers to interact with Fletcher ouside the context
of a particular game engine. Designers using Bowman
specify planning contexts via a drag-and-drop GUI, connect
the planning contexts to a Fletcher server and explore a 2D
graphical representation of the space of plans considerd by
the service for any given planning problem.

Any Fletcher client, whether a game engine or a
development tool like Bowman, connects to the Fletcher
server by specifying a planning context: a library of actions
available in a game, the current and goal states of the game
world and an initial plan for Fletcher to flesh out. Typically,
this initial plan is empty, though clients may provide a
partially specified plan in cases where certain actions or
story sequences are a required element of any story Fletcher
is to provide.

After a planning context is established, a Fletcher client
instruct Fletcher to expand the plan space rooted at the initial
plan. This can be done a single plan node at a time, allowing
a developer to see the details of the planning process and

understand how their inputs affect the generated plans.
Exploration of the plan space can be directed by the client-
provided heuristic search function or by direct input from the
client. By exploring alternate paths through a plan space, a
developer can gain an understanding of the behavior of his or
her heuristic search function adjust its definition accordingly.
While a piecewise exploration of the plan space is usedful
for detailed development, a more common usage scenario is
for a client to instruct Fletcher to generate plans
autonomously until it finds a complete plan, one with no
causal flaws. A game client’s execution manager uses this
feature of Fletcher when a game requests a story. In domains
where the planning problem may be very large, a client may
instruct Fletcher to search for a plan only for a limited
amount of time or to halt its search after a finite number of
plans have been explored. By using Fletcher in this way,
developers can bound the search process, determining what
type of plans Fletcher is constructing without having to wait
for a complete plan to be produced.

At any point after Fletcher generates a partial or complete
plan, the client may request an XML document containing a
representation of the plan. If the plan is complete it may be
stored by the client and used for execution later.
Alternatively, the client could modify the plan’s structure
and return it to Fletcher, requesting that the new plan serve
as the initial plan of a new planning context. Fletcher is also
able to send a client a document describing the plan space it
is currently exploring; this document contains unique
identifiers for plans organized into a graph showing how the
plans were generated. Clients can make use of the identifiers
from this plan space document to request the documents
representing the plan space’s constituent plans.

CONCLUSIONS

We have presented Web services as a method for delivering
planning services to game clients. Including a Fletcher client
in applications allows developers to benefit from Al
planning without attaching a full planner implementation to
their applications. This ease of use combined with the broad
range of functionality that Fletcher provides makes planning
more practical for game developers than it has been in the
past.

ACKNOWLEDGMENTS

This work has been supported by National Science
Foundation CAREER award 0092586. Thanks go to James
Nichaus and Jim Thomas for helpful discussion on the
design of Fletcher and to David Burke and Brian Shiver for
their work on Crossbow. Special thanks go to Justin Harris
for his insight on the workings of Fletcher and Crossbow,
and for his efforts developing and extending the Crossbow
implementation.

REFERENCES
Cavazza, M., Fred Charles, Steven J. Mead: Interactive storytelling:

from Al experiment to new media. International Conference on
Entertainment Computing, 2003

17

Christian, D. B. and R. Michael Young, Comparing Cognitive and
Computational Models of Narrative Structure, in AAAIL 2004

Harris, J. and Young, R. M., Proactive Mediation in Plan-Based
Narrative Environments, in The Proceedings of the
International Conference on Intelligent Virtual Agents, Kos,
Greece, 2005.

Kambhampati, S., C.A. Knoblock, and Q. Yang, “Planning as
Refinement Search: A Unified Framework for Evaluating
Design Tradeoffs in Partial-Order Planning,” Artificial
Intelligence (special issue on Planning and Scheduling), vol. 76,
nos. 1-2, July 1995, pp. 167-238.

Louchart, S. & Aylett, R.S., Narrative Theory and Emergent
Interactive Narrative. International Journal of Continuing
Engineering Education and Life-long Learning, special issue on
narrative in education. Vol 14 no 6 pp506-518, 2005.

Mateas, M. and Stern, A., Structuring Content in the Facade
Interactive Drama Architectur, in AIIDE 2005, Marina del Rey,
June, 2005.

Myers, K.L., Advisable Planning Systems, in Advanced Planning
Technology, A. Tate, ed., AAAI Press, 1996.

Penberthy, J. and D. Weld. UCPOP: A Sound, Complete, Partial
Order Planner for ADL, in Proceedings of the Third
International Conference on Principles of Knowledge
Representation and Reasoning (KR'92), Morgan Kaufmann,
1992, pp. 103-114.

Riedl, M. O., CJ. Saretto and R. Michael Young, Managing
interaction between users and agents in a multiagent storytelling
environment, in AAMAS, June, 2003.

Sacerdoti, E., D., A Structure for Plans
Elsevier/North-Holland, Amsterdam, 1977.

Tate, A., and J. Dalton, O-Plan: a Common Lisp Planning Web
Service, in Proceedings of the International Lisp Conference
2003 (ILC 2003).

Thomas, J. and Young, R. M., Elicitation and Application of
Narrative Constraints Through Mixed-Initiative Planning, in the
ICAPS Workshop on Preferences and Soft Constraints in
Planning, 2006.

Thomas, J. and Young, R. M., Author in the Loop: Using Mixed-
Initiative Planning to Improve Interactive Narrative, in the
ICAPS Workshop on Al Planning for Computer Games and
Synthetic Characters, 2006.

Tsoumakas, G., Meditskos, G., Vrakas, D., Bassiliades, N.,
Vlahavas, 1., Web Services for Adaptive Planning, in
Proceedings of the Sixteenth Annual European Conference on
Attificial Intelligence (ECAI’04), Workshop on Planning and
Scheduling, Frontiers in Artificial Intelligence and
Applications, vol. 117, IOS Press, 2005.

Vernieri, T., A Web Services Approach to Generating and Using
Plans in Configurable Execution Environments. Masters'
Thesis, North Carolina State University, 2006

Young, R. M., M.E. Pollack, and J.D. Moore, Decomposition and
Causality in Partial-Order Planning, in Proceedings of the
Second International Conference on Artificial Intelligence
Planning Systems (AIPS-94), AAAI Press, 1994, pp. 188-194.

Young, R. M., Cognitive and Computational Models in Interactive
Narratives, in Cognitive Systems: Human Cognitive Models in
Systems Design, Chris Forsythe, Michael L. Bernard &
Timothy E. Goldsmith, editors, Lawrence Erlbaum. 2005.

and Behavior,

BIOGRAPHY

THOMAS VERNIERI holds both a bachelor’s degree
(2003) and a Master’s degree (2006) in Computer Science
from North Carolina State University. Tommy now works at
Blackbaud, Inc., in Charleston, SC.

R. MICHAEL YOUNG lives with his wife and son in
Raleigh, NC, where he is an associate professor in Computer
Science at North Carolina State University.

CORE COGNITIVE MODELING IN AVATAR DESIGN

James Peterson
Department of Mathematical Sciences
Clemson University, Clemson, USA
e-mail: petersj@clemson.edu

KEYWORDS
Cognitive Processing, Abstract Neurons

ABSTRACT

In this paper, we outline software based architectures
and algorithms for a basic model of cognitive processing
amenable for use as a plugin in simulations requiring
reasonable avatar interaction and development. To this
end, we sketch a model of bioinformation processing
based on abstract neuron models which are carefully
designed to be reasonably plastic at software levels. We
also briefly indicate how building blocks for this system
can be incorporated into a typical 6 DOF virtual world
system such as Crystal Space.

Introduction

We have developed a model of bioinformation process-
ing (1) which consists of three critical components:
first, a model of dendritic and soma processing; second,
a detailed algorithm which determines what voltage is
presented to the axon hillock of the neuron based upon
the information contained in the inputs and third; a
suite of mechanisms which determine the shape of the
resulting action potential which the neuron emits. In
this paper, we discuss how these ideas can be embed-
ded into a 6 DOF virtual world simulation which can
be implemented in Crystal Space (3), an open source
gaming tool.

(to, Vo) start
(t1,V1) maximum
& = (t2, V2) return to reference (1)
(t3, V3) minimum
(g9,t4,Vy) sigmoid tail

The individual neural objects in our cognitive model are
based on abstractions of neuron output. A low dimen-
sional biologically based feature vector (BFV) can be
abstracted from a typical action potential form by not-
ing that the typical excitable neuron response exhibits
a combination of cap-like shapes. From this, we can
construct the low dimensional feature vector of Equa-
tion 1 where the tail of the action potential has the

18

form V(t) = V3 + (V4 — V3) tanh(g(t — ¢3)). The fea-
ture vector thus stores many of the important features
of the action potential in a low dimensional form. For
example, the interval [tg,¢;] is the duration of the rise
phase and the height of the pulse, V7, is an important
indicator of excitation.

Cellular Computations:

The generic model of excitable nerve cell processing
consists of a dendrite and soma processing with po-
tential calls to the genome to modify the structure of
the dendrite and soma. The output of the neuron is
attached to the axon as a BFV wvector. The dendrite
system has electronic length 4 with dendrite ports la-
beled as Pp. Each accepts excitatory and inhibitory
inputs. The soma has length 7 (0 is the axon hillock
location) and contains 7 ports labeled Pg. At the soma
ports sodium and potassium ion flow can be modified by
direct means to alter the BFV parameters and neuro-
transmitters can bind to alter the BFV. Full discussions
that detail how information is processed using these
ports is available in (1).

A collection of neurons interact in the following way: a
given neuron receives inputs from other neurons, pre-
neurons, at the ports on its dendrite. Thus, pre-neurons
can supply input at electronic positions w = 0 to w =
4. These inputs generate a induced voltage via many
possible mechanisms or they alter the structure of the
dendrite cable itself by the transcription of proteins.
The strength of the connection between a pre neuron
and a post neuron it sends a signal to, is variable and
is known to be strengthened or diminished by activity
levels. We denote the connection by Wy, e—post-

The generation of an typical action potential from an
excitable cell is governed by a family of nonlinear ordi-
nary differential equations known as Hodgkin - Huxley
models given by Equation 4.

v

mgr = In— 91 n*(V,, — Ex)

_QANjgwmgh(Vm7 (Vin — Ena)
—91.(Vin — EL). (4)

where the terms m, h and n are all functions of V,,, and
t. The voltage that is delivered to the axon hillock of
the soma corresponds to the current Ig. If this cur-
rent delivers charged ions at a sufficient rate, the gates
which control the passage of sodium and potassium ions
in and out of the soma permit the generation of a volt-
age pulse which corresponds to a BF'V. The sodium ion
flow is modeled by n* term while the potassium flow is
determined by the m>h occurring in Equation 4. The
details of this modeling is not germane to our discus-

sion here (again, see (1)), but the parameters M % and

gMaz determine maximum ion flow rates for the potas-
sium and sodium ion, respectively. All other ions that
pass in and out of the soma membrane are collected
into the leakage current term I, which will not concern
us here. As careful analysis using detailed knowledge
of the Hodgkin - Huxley model allows us to derive sen-
sitivity equations to tells us how changes in g and
gala® drive changes in the parameters of the BFV vec-
tor. Neurotransmitters can also change the way ports
allow passage of sodium and potassium ions by altering
gMaz and gAle® which provides potential BEV modu-
lation. The voltages coming into soma’s dendrites from
pre-neuron connections generate input voltages to the
soma as well. The total soma derived input voltage
takes dendritic and soma port information, nonlinearly
summed and scaled, to generate the voltage arriving at
the axon hillock. If this incoming voltage exceeds the
neuron’s threshold, a BFV vector is emitted with the
parameters of this BFV altered due to the discussion

outlined above.
Simple Cognitive Models

A simple brain model consists of a block of sensory fil-
ters which interact with as a dynamical system with
processing core which provides modulation. The mod-
ulated sensory percepts from different modalities are
then fused in higher level processing modules. These
modules then provide outputs which can be used for
decision tasks. Here, the sensory blocks correspond to
various types of cortex, the modulatory core is the tha-
lamic system and sensor fusion occurs in a model of as-
sociative cortex. We will base the cortical modules on
isocortex architectures built from the canonical OCOS
(On Center Off Surround) and FFP (Folded Feedback
Pathway) circuit blocks discussed in (2). The FFP and
OCOS cortical circuits can be combined into a multi-
column model to build cortical modules.

The Abstract Neuron Implementation:

The DENDRITE object, is a cable which has electronic
length Length, Lp, with a synapse at integral values

19

along the cable. Hence, there is a synapse at positions
0 to L — 1. The synapses are modeled as PORT ob-
jects and will be discussed later. Each DENDRITE
object also has an associated conductance, Gp, which
is used to control the setting of attenuation parameter
&. The cell body of the abstract neuron becomes the
SOMA object. We construct the object using a cable of
PORT object of length Lg and conductance Gg. The
conductances Gp and Gg then enable us to compute &
as before. The NUCLEUS object then is essentially a
PORT object plus a data structure which serves as the
abstract genome. The details of the NUCLEUS object
are not important at this stage. For now, just note that
the NUCLEUS object consists of a PORT of length Ly
and a genome data structure of length L.

The AXON object is our output object. It carries the
biological feature vector associated with our abstract
neuron. The PORT object is a very simple data struc-
ture which holds an integer which tells us what type of
ligand or neurotransmitter is binding to our synapse
and two numbers which are the scalar input to the
synapse and the output of the synapse. The NUCLEUS
object is modeled as a membrane having a finite num-
ber of gates PortLength, Ly, all of which are PORT
objects. Hence, different ligands can bind to these en-
try points into the nucleus. With the building blocks
in place, we can design the abstract neuron object,
ANEURON, as follows: it consists of a DENDRITE,
SOMA and AXON as well as other attributes such as
a delay parameter and input and output values.

Embedding Abstract Neurons In Networks:

To use the abstract neurons within neural architec-
tures, we need to know which neurons it sends infor-
mation to and which neurons it collects information
from. Hence, we want to embed these neurons into a
simple directed graph structure. We do this by creat-
ing the child chainANEURON from the parent ANEU-
RON. The design for a class, CHAINANEURON which
handles chained abstract neurons then has a straight-
forward structure. This allows us to design graphs
of computational nodes using the cortical circuits of
(Raizada and Grossberg (2) 2003) to model a corti-
cal column object CorticalColumn. We can then build
a simple cortical model that consists of three cortical
stack columns. We define the inherited class in Listing
1. The CorticalStack constructor also calls a method
which connects various neurons of the three columns.

Listing 1: A Simple Three Column Cortical Stack
class CorticalStack public CHAINANEURON
{

public:

CorticalStack (STRING& stack ,

STRING& columnl ,
STRING& column?2 ,
STRING& column3) ;
“CorticalStack ();
CorticalStack& ConnectColumns ();
private:
CorticalColumn
CorticalColumn
CorticalColumn

xCl1;
xC2;
xC3;
IS

The next step is to build a simple cognitive architecture
that consists of three cortical blocks (visual, auditory
and associative cortex), and a thalamic core. We will
skip the details of the thalamic core object, THALA-
MUS, in this paper.

Implementing A Simple Brain Architecture:

Our brain architecture consists of three cortical mod-
ules (Auditory, Visual and Associative) and a thala-
mic core. We build a new child of CHAINANEURON
which will be our desired model. We implement the
class in Listing 2. Each module possesses its own inter-
nal connection strategy along with global connection
rules that tell us how the local models interact. The
brain link file is shown on the right side of the listing.
Details of the brain constructor are also shown on the
right side, where the method ConnectModules connects
neurons of the three cortical models and the thalamic
core appropriately.

Listing 2: The Brain Class
public CHAINANEURON

class DBrain
{
public:
Brain (STRING& brain ,
STRING& stackl ,STRING& VCI,
STRING& VC2,STRING& VC3,
STRING& stack2 ,STRING& ACI,
STRING& AC2,STRING& AC3,
STRING& stack3 ,STRING& Assocl ,
STRING& Assoc2 ,STRING& Assoc3 ,
STRING& Th);
"Brain ();
Brain& ConnectModules ();
Brain& CollectInformation ();
Brain& train ();
Brain& position ();

private:
CorticalStack *VisualCortex;
CorticalStack xAuditoryCortex;
CorticalStack xAssociativeCortex;
THALAMUS *Thalamus ;

b

20

The ideas we have laid out to build a small brain model
potentially capable of cognitive decisions need to be
tested thoroughly. We have been developing a testbed
for this purpose using the virtual world of Crystal Space
(3) although there is much work to be done. We note
there is an Adversary class in this code for flying sphere
avatars. Adversary motion and behavior is controlled
by the Adversary ThinkAndMove agent. It is clear that
behavioral code for the Adversary class can be altered
to add a brain class CollectInformation agent to take
data from the Adversaries environment and feed it to
the sensory cortex inputs of the brain object. Note af-
ter data is collected and passed to the brain object,
that data can then be used to retrain the cognitive
model using traditional Hebbian update laws. Then
a brain— >position() agent generates the motor move-
ments we want the Adversary object to make.

Conclusions:

A preliminary software architecture for cognitive mod-
els has been introduced in this paper. It has been de-
signed by using the details of real bioinformation pro-
cessing to motivate all the interacting components of
the model. We have also discussed a plan for an inter-
active environment to allow us to test these architec-
tures within a sophisticated virtual world environment.
We note several interesting points. The brain architec-
ture we construct is highly modular and is controlled
via configuration files. Each module can be optimized
locally (that is internally) separate from the global con-
nective strategies. The really interesting question is
how small a cognitive model can be and still be of use
in the avatar simulations.

REFERENCES

[1] J. Peterson. A Primer on Cognitive Modeling.
www.ces.clemson.edu/~petersj/Books/Cognition.pdf,
2005.

[2] R. Raizada and S. Grossberg. Towards a Theory of
the Laminar Architecture of Cerebral Cortex: Com-
putational Clues from the Visual System. Cerebral
Cortex, pages 100 — 113, 2003.

[3] J. Tybergheim. Crystal Space 3D Game Develop-
ment Kit. www.sourceforge.net, 2003.

GAME
DESIGN

22

Infinite Games Engine

Patrick Hofmann
Institute for Software Technology
Graz University of Technology
Inffeldgasse 16b/2
A-8010 Graz, Austria
Email: patrick.hofmann@student.tugraz.at

KEYWORDS
mobile phone board games,
language, multi player games

game definition script

ABSTRACT

The Infinite Games Engine is a framework which facilitates
creating board games for mobile phones by offering an easy
script language. It also gives the possibility of extending
rules, players and rendering functionalities. After an
introduction into the basics of board games, a simple
example of programming a script is provided. Thereafter
this article explains the architecture of the whole
framework. Along the way networking, rendering and user
interactions are described. In the end a short view into the
future of the Infinite Games Engine concerning artificial
intelligence will be given.

INTRODUCTION

We focus and explore the possibilities of brain-games that
may be played with a friend or against an artificial
opponent through the interface provided in current high-
level mobile phones. The concept is based on the idea of
“Zillion of Games” of zillionsofgames.com. The goal of the
Infinite Games Engine is to establish a standard for board
games on mobile phones by offering this open source
framework under the GNU General Public License (GPL).
The Infinite Games Engine runs on J2ME with MIDP 2.0
(Topley 2002) since this Java framework is already
installed on almost every mobile phone. The file- and
communication server is a Tomcat server using a MySQL
database.

ARCHITECTURE

The framework can be separated into several modules:
scripting, networking, graphics, engine core and the user
interface.

Abstraction Of A Board Game

Each board game can be described by a number of
positions, game tokens (like chess pieces), players (sides)
and game rules. To exemplify this, the simple game
“Noughts and Crosses” (also called “TicTacToe”) is
defined through a matrix of 3x3 positions. The fields could
be named from “Left-Top” to “Right-Bottom” - so every

23

position is unique and may be processed separately.
Furthermore each game needs tokens. ‘“Noughts and
Crosses” needs two kinds of tokens — noughts for the one
side, crosses for the other. The tokens of both sides behave
equally — thus only one type of token is needed. The
behaviour of the token is that it can only be put on the
board if there is not already a token on that position.
Additional rules concern the termination of a game. For
example in “Noughts and Crosses” such a rule describes
that a player wins if he or she manages to put his or her
tokens in a line of three.

All this information must be predefined in a script. The
Infinite Games Engine uses LISP (McCarthy 1960) for two
reasons. Firstly, it is a common script language which is
quite casy to learn; secondly, "Zillion of Games" uses the
same language and has a lot of games already implemented
in it. The Infinite Games Engine is planned to be fully
compatible with games programmed for this desktop
engine.

THE SCRIPT LANGUAGE

The following script example shows how a game can be
formally defined:

(game
(title “Noughts And Crosses”)
(players Nought Cross)
(board
(image “/background.png”)
(positions
(Left-Top 1 120 20)
[...]
)
)
(board-setup
(Nought (GamePiece off 5))
(Cross (GamePiece off 5))
; each player has 5 tokens that initially are off-board.
)
(piece
(name GamePiece)
(image Nought "/TTTO.png"
Cross "/TTTX.png")
(drops ((verify empty?) add))

(win-condition (Nought Cross)
(or

(and
(absolute-config GamePiece Left-Top)
(absolute-config GamePiece Middle-Top)
(absolute-config GamePicce Right-Top)

[.]
)
)
)

All positions are enumerated in the “positions” element. A
big game like chess can have a lot of possible positions
therefore a simple script element named “grid” exists which
creates a matrix of positions. This element is optional and
may be used instead or additionally to the “positions”
element. The following example creates an 8x8 matrix,
cach field being 19x19 pixels large:

(grid
(start-rectangle 1 1 20 20)
(dimensions
("a/b/c/dle/tig/m" (20 0))
("8/7/6/5/4/3/2/1" (0 20))
)
)

The drop rule belonging to the token is defined in “drops”
nested into the “piece” element. There could also be a
“move” element which describes the movement behaviour
of a piece, but since this token is not able to move, this
element was skipped. The “move” command works similar
to the “drop” command but instead of adding a new token
on the board, the element “add” moves the current element
to the specified position. Furthermore there is an “add-
partial” element, which works exactly like “add” but does
not finish the current players turn. This is necessary for
possible complex moves like in checkers. The “piece”
element also defines the representation of a token that
belongs to a player.

Finally the termination rule is called after each move- or
drop action. The example shows that either player can win
with tokens placed on the three fields Left-Top, Middle-
Top and Right-Top, ¢.g., the top row of the game.

Recursive Rule Processing

Since there are two kinds of rules, each type of rule has a
separate interface. On the one hand a piece- (or token-) rule
influences the game state while on the other hand a
termination rule influences the game flow.

Starting with the piece rules the game state is passed
recursively through all implemented rule objects. A piece
rule may decide to change the game state and continue
passing it on or stop further processing by returning an exit-
result value. Thus rules can be implemented and combined
— even conditions follow this principle although they offer
an additional interface to complete their functionality.
Conditions need to know about the current game state even
if they hardly ever change it. Their main goal is to give
meta-information about the game like the “(verify

24

empty?)”-combination.

A drop rule uses a position to check whether putting a token
on a specified position is legal and changes the game state
in this case.

A move rule needs two positions — a source field from
which an existing token moves and a destination field to
which a token should move.

A termination rule always consists of a condition. In
contrast to piece rules, termination rules never change the
state of a game. Furthermore there are three predefined
termination rules: a win, a loss, and a draw condition, of
which at least a win or a loss condition must be defined.

IMPLEMENTATION OF PLAYERS

Each player gains access to the game state through a board
class. At the beginning of a game a new board which
contains the game state and all rules is created. Thereafter
the players join the board. All players implement an
interface called “BoardStakeholder” from the package
“infinite.core.board”. A board stakeholder is informed
every time the game state changes — thus, a player is
notified whenever an action is done. This is mainly relevant
for network games and artificial opponents which have to
work with the new information. Figure 1 shows several
human players connected via the Internet to the Infinite
Games Engine server, which uses ai-players to simulate
more clients to play against.

Figure 1: Human Clients Linked to the Infinite Games Engine
Server with Al-Client

ONLINE CAPABILITIES

The Infinite Games Engine offers both a client and a server
framework to use and extend upon.

The Client

New scripts with images can be downloaded from the
Internet to the Infinite Games Engine server and to some
Infinite Games Engine clients. The client interprets the
game description and allows the human owner of the client
to play either with another human player on the same
phone, or a human player on a different phone linked via a
network like the Internet or Bluetooth. Using the network

interface there is already an online player integrated in the
Infinite Games Engine. This player implements a HTTP-
based protocol which allows sending and receiving actions
over the Internet.

The Server

The Infinite Games Engine is developed in Java, for this
reason taking a Java-based server is obvious. The server is
programmed for Tomcat using a MySQL-database
(Seeboerger-Weichselbaum 2004). Thus it is able to use the
same engine-dependent packages as the client. The usage of
a standard web server has some advantages:

The majority of features is already implemented like access
to a database, socket-connections and a big part of client
communication. This topic is described in detail by Carol
Hammer in (Hammer 2004).

The server receives all actions done by URL and responds
in the usual way of a web server — creating a site.
Unfortunately a web server is unable to notify a client about
changed data. Thus, the client queries the server from time
to time for a changed game state. Since the server needs to
handle more than one game at a time, there is an
initialization phase which assigns every client a personal 1D
and a session ID. Each client needs to know both of these
IDs to play a game — this is also a kind of security against
hackers.

VISUALIZATION

When a user downloads a game package from the internet,
the containing images and positions could be meant for a
desktop system. For this reason the Infinite Games Engine
supports two modes to display games: On the one hand
there is a full screen mode. In this mode the whole game
fits into the display of the mobile phone. Therefore it is
necessary to recalculate the positions of the game and resize
the given images. On the other hand there is a scroll mode.
This mode represents the game in original size and offers a
vertical and a horizontal scroll bar to navigate through the
game. In case the user downloads a game package
programmed for “Zillion of Games”, the images are in bmp
format (Windows Bitmap) and have to be converted to the
J2ME standard format png (Portable Network Graphics).

The representation of a game on a mobile phone display is
totally separated from the remaining code. It is located in
the already mentioned module graphics. The main class in
this module is the “Renderer”, which only uses the game
state and the definition of the game to display a game. Each
time a specified image is needed, it is reloaded by the so
called “NetworkedImageCache”. The cache does not only
save images for faster usage but it also stores them into the
RMS (Record Store Management System) of the mobile
phone.

For current features the renderer is completely
implemented. If for any reason an extension has to be
made, the draw function of the renderer itself would be the
entry point for a programmer.

25

THE USER INTERFACE

Although it is recommended to use a mobile phone with
touch screen functionality, it is possible to use a joystick or
even the number keys to operate with a cursor instead.
Jakob Nielsen tells in “Designing Web Usability” about the
necessity of getting back to the main menu at every page of
the web site (Nielsen 2001). This fact is also relevant for
mobile applications, as people tend to try out every button
and want to get back right after.

The Infinite Games Engine fulfils this principle at every
point of the application.

A player may drop a piece on a field by shortly tipping on
the according position (on the touch screen) and may move
it (if allowed), if the user drags a token from one position to
another. Each time the player has to choose a token, a list
with all available tokens appears near the relevant field.

FUTURE OF THE INFINITE GAMES ENGINE

We plan to implement a general artificial player (as in the
original zillions engine) that can connect to a server, read
an arbitrary game description script and immediately start
to play against other players to whom it is introduced
through the server. The same player could also run on the
mobile phone client to allow non network type of game
playing on a local phone against a local ai-player on one’s
phone. Another idea is to create a chatting feature for
network games through which users can talk with each
other. Finally a build-in integration of a Bluetooth player is
planned.

REFERENCES

Gamma E.; Helm R.; Johnson R.; and Vlissides J. 1995. Design
Pattern — Elements of Reusable Object-Oriented Software
Addison-Wesley, ISBN 0-201-63361-2.

Hammer C. 2002. J2ME Games with MIDP2 Apress, ISBN 1-
59059-382-0.

McCarthy J. 1960. Recursive Functions of Symbolic Expressions
and Their Computation by Machine, Part 1. Massachusetts
Institute of Technology, Cambridge.

Nielsen J. 2001. Designing Web Usability Markt + Technik
Verlag, ISBN 3-8272-6206-2, Munich, Germany.

Seeboerger-Weichselbaum M. 2004. JavaServerPages Markt +
Technik Verlag, ISBN 3-8272-6463-4, Munich, Germany.

Topley K. 2002. J2ME IN A NUTSHELL O'Reilly Media, ISBN
059600253X, United States of America.

AUTHOR BIOGRAPHY

PATRICK HOFMANN was born in Vienna, Austria and
studies Software Development and Knowledge
Management in Graz. He has been working at Yourbox
since 2003 where he programs Java based games for mobile
phones.

PATH-FINDING FOR LARGE SCALE MULTIPLAYER COMPUTER GAMES

Marc Lanctot

Nicolas Ng Man Sun

Clark Verbrugge
School of Computer Science
McGill University, Montréal, Canada, H3A 2A7

marc.lanctot@mail.mcgill.ca

KEYWORDS
Computer Games, Path-finding, Caching, Multiplayer

ABSTRACT

Path-finding consumes a significant amount of resources,
especially in movement-intensive games such as (mas-
sively) multiplayer games. We investigate several path-
finding techniques, and explore the impact on perfor-
mance of workloads derived from real player movements
in a multiplayer game. We find that a map-conforming,
hierarchical path-finding strategy performs best, and in
combination with caching optimizations can greatly re-
duce path-finding cost. Performance is dominated pri-
marily by algorithm, and only to a lesser degree by
workload variation. Understanding the real impact of
path-finding techniques allows for refined testing and
optimization of game design.

INTRODUCTION

Current, state-of-the-art approaches to path-finding in
computer games incorporate multiple, hierarchical lev-
els of searching and exploit a wide variety of searching
heuristics. Our interest stems from a need to find good
path-finding performance in the context of a research-
based (massively) multiplayer environment. Large mul-
tiplayer games impose a general need to scale operations,
whether computations are done on multiplayer servers
or intelligent clients that manage multiple game entities,
and so consideration of how well path-finding computa-
tions can be combined or reused is important. Other
genre-specific properties may also affect performance of
the system. These include the relatively large distances
travelled (less dense points of interest), the presence
of varying density of map obstacles, and the frequent
use of teams, and thus the occasional use of strategized
and collective movement. Understanding the influence
of genre-specific properties of game workloads may also
be important to efficient algorithm and design choices.

We investigate the performance of several path-finding
implementation designs within the Mammoth multi-
player game research infrastructure. Using a selection
of workloads from random data to player movement
traces from a non-trivial multiplayer game we analyze

nngman@cs.mcgill.ca

26

clump@cs.mcgill.ca

the performance of different design and optimization
choices in path-finding implementation. Our data shows
the impressive effect of hierarchical approaches, partic-
ularly when underlying map data informs the hierar-
chy design, but also the great amount of opportunity
for cache-based optimizations that exploit repetition in
game player actions. Workload choice affects perfor-
mance, but is generally overwhelmed by the algorithm
performance.

Contributions of this work include:

e An experimental study of four path-finding ap-
proaches under different caching assumptions in a
research multiplayer game framework.

e Our data and experimentation is based on analysis
of real player movement data from a non-trivial mul-
tiplayer, team-based game.

e We provide an experimental comparison between
three different forms of path-finding workload.

Below we present related work, followed by a descrip-
tion of our basic implementation environment and move-
ment models. We then present our test methodology,
the kinds of data we gathered under what scenarios.
Discussion of the data is followed by conclusions and a
description of further work.

RELATED WORK

Path-finding in computer games is commonly ap-
proached as a graph search problem. The world is de-
composed, abstracted as a graph model, and searched,
typically using some variant of IDA* (9), based on the
well-known A* (5) algorithm. Underlying world decom-
positions can have a significant impact on performance.
Common approaches include those based on uniformly
shaped grids, such as square or hexagonal tilings (17),
as well as the use of quadtrees (3; 4) or variable shaped
tiles (12) for adaptivity to more arbitrary terrain bound-
aries. Properties of the decomposition, its regularity,
convexity, or Voronoi guarantees, as well as geometric
computations, such as visibility graphs, or even heuris-
tic roadmap information (7) can then be used to improve
search efficiency.

Hierarchical path-finding incorporates multiple graph or
search-space decompositions of different granularity as

Figure 1: A screenshot of the Mammoth client.

a way of reducing search cost, perhaps with some loss
of optimality. Hierarchical information has been used
to improve A* heuristics (6), and proposed in terms
of using more abstract, meta-information already avail-
able in a map, such as doors, rooms, floors, depart-
ments (10). Less domain-specific are graph reduction
techniques based on recursively combining nodes into
clusters to form a hierarchical structure (16). Our ap-
proach here is most closely based on the HPA* multi-
level hierarchical design, where node clustering further
considers the presence of collision-free paths between
nodes (2).

Path-finding can also be based on the physics of dynamic
character interaction. In strategies based on potential
fields (8) or more complex steering behaviours (15; 1) a
character’s path is determined by its reaction to its envi-
ronment. This reactive approach can be combined with
search-based models to improve heuristic choices dur-
ing searching (14). There are many possible heuristics
to exploit; in our implementations we use a “diagonal
distance” metric to approximate the cost of unknown
movement (13).

IMPLEMENTATION ENVIRONMENT
Environment

The environment used for implementation was Mam-
moth (11): a Java-based 2D overhead-view multi-player
game and research framework. The main goal of the on-
going Mammoth project is to provide a common plat-
form to facilitate the implementation of research exper-
iments. A screenshot is shown in Figure 1.

Mammoth allows human players to connect to and im-
merse themselves into a fairly large and intricate virtual
environment (the world). Within the Mammoth world
players can explore the physical setting (the map) and
interact with world objects: static objects (walls, trees)
and dynamic objects (items, other players). All objects
are represented as polygons. The world is partitioned

27

Figure 2: A wireframe view of the Mammoth map. The
color of each rectangle indicates its type: white for a simple
texture/image, red for a static object, blue for a player, and
green for an item.

into irregularly-shaped regions called zones. Physically,
each zone corresponds to a collection of world objects.
Virtually, each zone determines the objects that clients
must be aware of given the player’s current location;
a typical zone in Mammoth would be a room within
a building. Zones are connected via transition gates:
physical entities which act as the entry and exit points
between zones.

The coordinate system used in the Mammoth map is
(z,y) € [0,30] x [0,30] C R?; the origin (z,y) = (0,0)
is graphically placed at the bottom-left of the space.
Each world object has a position: a pair of real values
(z and y), a zone ID, and a stairlevel corresponding
to its distance in discrete levels relative to the ground
(stairlevel 0). Figure 2 gives a visualization of the map.

Movement and Pathfinding

Player movement in Mammoth can be effected in one
of two main fashions: a basic movement scheme where
the player has fine-grained control, and a more complex
system based on algorithmic path-finding. The former
allows for complete and highly-intentional control, and
is the main method used for movement in our initial
game implementation. This basic movement model is
performed by the player selecting a destination point
on the map through a mouse click. The player then
moves in a straight-line path towards their destination,
stopping when they reach their destination or become
blocked by an obstacle. Collision detection is performed
by checking if the player’s new position leads to an over-
lap between the player’s shape and an obstacle’s shape.

(@ (b)

Figure 3: Variable grid level

Maximal control is allowed by letting a player set a new
destination at any time along its currently-planned path,
in which case the player immediately starts moving to-
wards the new destination instead.

The implementation of the path-finding algorithm is
based on the classic A* algorithm (5). Our design op-
erates on 2 levels, following the general ideas of a hi-
erarchical path-finding system as outlined by Botea et
al. (2).

At the lower or “grid” level, the game world is effec-
tively discretized into a small grid. This is performed
using the concept of a “ghost player.” The ghost player
is a special entity maintained by Mammoth’s physics
engine: it abides by the same physical rules as any reg-
ular player except that it is invisible and only exists
temporarily. The A* algorithm searches the world by
moving the ghost player around in discrete steps. This
method has a few advantages over a regular grid parti-
tioning approach: 1) extra memory is only required for
the region that is currently being explored and not for
the entire map, 2) dynamic map changes are easily ac-
commodated, and 3) the granularity of the steps with
which the ghost player moves can be adjusted to accom-
modate the density of objects within a zone or to more
closely mesh with the boundaries of non-axis-aligned ob-
stacles, as shown in Figure 3.

Since our map is set in a urban environment, the pres-
ence of rooms with doorways or staircases provides a
natural way to decompose the world at a higher level.
We analyze the transition gates already present in the
Mammoth map and use that information to derive a
connectivity graph where each node is a zone and tran-
sition gates establish edges between them. This ap-
proach is particular well-suited for our work since our
lower grid-based level is never explicitly generated or
kept for the entire map, and thus cannot be the basis
for a higher level abstraction as is done in other hierar-
chical pathfinding approaches.

Pathfinding at the zone-level occurs by first connect-
ing the start position waypoints or transition gates to
the zone-level graph, searching the graph using the A*
algorithm, and finally connecting the path to the final
destination point.

28

Figure 4: An example path calculation. Dotted curves rep-
resent grid-level paths.

The following example is illustrated in Figure 4. Sup-
pose player P at position A, in zone Z1, wants to travel
to position B, in zone Zi». The zone-level path is
found to be (Z1, Zg, Z11, Z12). Then, individual grid-
level paths are gradually resolved between the source,
transition gates, and destination.

As an acceleration technique, once a player leaves a zone,
that zone is marked as blocked and will not be searched
while refining the path to the next waypoint. This helps
to further trim down the number of unnecessary nodes
that A* has to explore before finding a path.

In most games, and especially in a multiplayer envi-
ronment, players tend to traverse paths that have been
previously traversed. Caching is thus expected to have
a large impact on performance. We used 2 main types
of data caching:

e Path caching at the grid level. Our approach works
in the following way: for each point on a computed
path, we only store the next point on the way to the
destination point. For example, to go from point P,
to P5, we only need to know at P; that our next
move should be Ps, then at Py move to P3, and so
on. A further improvement is done by abstracting ev-
ery position at the grid-level to a larger grid so that
several grid-level positions will actually map to the
same cache node. The combination of these 2 tech-
niques can help to reduce memory requirement and
at the same time increase cache hit ratio compared
to a more brute-force approach of storing complete
paths at each point. Figure 5 illustrates how the grid
path cache helps A* in practice.

e Collision caching. Every move made at the grid level
requires checking for collision. Querying the Mam-
moth architecture for this is expensive. By caching
this information for the static environment, we ex-
pect to see a significant saving in time.

(a) (b}

Figure 5: a) Exhaustive A* search without path cache b)
Once cached, searching for a path between the same points
is much more focused.

Figure 6: An example path found in our simulations show-
ing a) the zone-level path generated and b) the actual path
taken by the player

We used existing, pre-defined zones to build an abstract,
high-level connectivity graph. This has the disadvantage
that since the outside area in our map was mainly repre-
sented as one large zone only the lower-level, grid-based
pathfinding is used for a large part of the map. We
have thus also investigated the use of a roadmap plan-
ner based on actual player movement, as sampled from
real gameplay in our environment. Roadmap connectiv-
ity is built by performing visibility checks between the
most commonly-occurring sample points. The roadmap
is attached to exit waypoints of all buildings, integrat-
ing with the existing hierarchial approach and serving
as a middle layer between the zone-level and grid-level.
Figure 6 shows the hierarchy at work.

A final variation in hierarchy is to build a more balanced
upper-level decomposition that has some relation to ex-
pected player movement. Based on the interest points
gathered during the course of our workload generation
(see next Section) we thus construct a Voronoi diagram,

29

and use the computed regions for our “Voronoi zoning”
scheme. Actual waypoints for these zones are computed
from the midpoints of the edges in the corresponding
Delaunay triangulation, and are intended to represent
locations where players may enter /exit popular regions.

METHODOLOGY

We conducted several experiments under different move-
ment model assumptions, and investigated the perfor-
mance as it varied due to different workloads. Three
basic workloads are used during our simulations, two of
which are based on points automatically recorded from
real player movements. In the first set, interest points
are chosen from a uniform distribution of map coordi-
nates; this represents data easy to acquire/generate, but
quite artificial, and thus potentially inaccurate. The
other two sets of interest points are from actual game-
play: Operation: Orbius was organized to collect data
from players during several multi-player gaming ses-
sions, and is discussed in detail below. Omne data set
is from an abstract model of Orbius game-play, where
interest points are mainly defined from a relatively small
list of the most travelled locations over a series of games.
The third set represents the actual paths of players
in the game, constructed from the Orbius game move-
ments.

Measurements

We use several metrics to evaluate the quality of the
different pathfinding techniques.

e total time taken: a quick measure of performance.

e total distance traveled: a measure of path optimality.
The grid based approach should always return the
shortest path because it computes globally optimal
solutions, while greater use of the hierarchy should
imply less optimal paths. It is interesting to compare
the penalty in path optimality against the gain in
time.

e number of nodes explored: a measure of the effi-
ciency of the algorithm. Fewer nodes usually im-
plies smaller total time and smaller memory usage as
well. We expect collision caching to improve the to-
tal time without actually changing number of nodes
explored, while path caching should do the same but
by reducing the number of nodes explored. A more
accurate heuristic should further reduce the number
of explored nodes; a high-level abstraction that accu-
rately captures the topology of the map should help
make the low-level search more efficient.

e average delays before the player starts moving: mea-
sures how responsive the game is after the player
issues a pathfinding query. This can help evaluate
player satisfaction.

Figure 7: A screenshot of two adversaries tickling each
other, several orbs lying on the ground, and a red team’s
base during Operation: Orbius

Orbius

Orbius is a Mammoth sub-game: a goal-oriented game
played within the Mammoth world with other partic-
ipating players. Orbius is a team-based subgame in
which players collude in attempt to win before every
other team. The game is designed to reflect the gen-
erally understood behaviour of larger-scale multiplayer
games: players are grouped (teams), map exploration
is critical, both constrained (city, interior) and uncon-
strained (outdoor) movement areas are present, and dif-
ferent map locations have different levels of interest to
players. A screenshot of Orbius is presented in Figure 7.
Twenty-four (24) game players participated in the Op-
eration: Orbius event. In total, 5 games sessions were
played, each having 6 teams of 4 players. Teams were
not, changed between games to encourage natural strat-
egy development between players. Two types of data
were logged during the game-playing: a player’s set des-
tination action, and a player’s actual move update at
each time step. For each action, the game server logged
the current time, the action type, the player ID, the
player’s new position in the case of a move update or the
player’s current position and selected destination other-
wise.

Orbius-Based Data

Interest points chosen randomly on the Mammoth map
may or may not correspond with map locations actu-
ally visited by real players. Actual game behaviour may
in general bias movement, and thus performance. To
consider this bias in our workload we not, only analyze
random-generated path data, but also data derived from
a model of player movement, and data from a set of ac-
tual player paths.

Our movement model is intended to reflect common
player movements, and so we determined which map
areas were most frequently traversed. The game space

30

is discretized (as for grid-level pathfinding), and an in-
terest grade representing the total number of times that
each grid cell was occupied during gameplay was calcu-
lated. To further generalize the data interest maps are
then passed through a series of transformations: blur-
ring, localization, and average composition. After each
transformation, the interest grade values are normal-
ized.

e Blurring simultaneously sets each interest grade to
the average of its immediate cell neighborhood, in-
cluding diagonal neighbours.

e Localization simultaneously sets each interest grade
to itself plus the sum of “neighboring influences”.
Here, a “neighboring influence” is the interest grade
of a nearby grid cell weighted inversely by the dis-
tance between the two cells, up to a maximum con-
sidered distance.

e Averaging allows us to combine experimental data
from different runs. For each grid cell in our final
output grid its interest grade is the average of the
interest grades from the corresponding grid cells of
the original game runs.

The highest-valued interest points indicate the most of-
ten travelled areas, and form the basis of our modeling
workload (and our Voronoi zoning) approach. The top
points are selected considering a minimum spread dis-
tance between interest points; these then form the set
of possible start/end path destinations during random
path generation.

Paths actually derived from the Orbius data are our
most closely representative movement data. For this the
paths were derived in the following manner. For each
player we find the mean () and standard deviation (o)
of the intervals between that player’s successive move
updates. Intervals (At) which are sufficiently above the
expected value (At > T') are considered “stop points”;
two successive start /end position pairs represent a path
taken by the player. The threshold value is arbitraily
chosen to be T' = p+ ko, with £ = 1 in our experiments.
The connected update segments are then used to build
our third workload path data set.

EXPERIMENTAL ANALYSIS

To measure performance, we used a modified (isolated)
version of the Mammoth stand-alone client. A single
player was setup and had to move to 100 destination
points using different pathfinding algorithms and under
different cache parameters.

A summary of the data gathered from Operation: Or-
bius is given in Table 1. During the first and second
games, most players were still getting familiar with the
game. Therefore to avoid biased results only runs 3-5
are used for analyses. Figure 8 shows several interest

Run | At (sec) MV SD

1 899 98619 | 10970

2 903 | 202563 | 32526

3 740 | 146142 | 34878

4 894 | 124613 | 54414

5 798 | 175435 | 60024
Average 849 | 149474 | 38562

Table 1: Summary of the collected movement data. Listed
are the run number, elapsed time, number of movement up-
dates (MD), and the number of set destination actions (SD).

c) d)

Figure 8: The interest map a) generated from the fourth run
b) obtained by the average composition of all usable runs c)
processed average composition including interest points, d)
processed average composition with Delaunay triangulation
of interest points

maps and the derived interest points from some of the
movement, data.

Path-finding Results

Three forms of path workload were considered. RAN-
DOM: a basic workload derived from randomly chosen
start and end destinations, MODELED: a workload based
on paths chosen from random Orbius points of inter-
est (shown in Figure 9), and EXTRACTED: a workload
consisting of paths extracted from the individual player
movements in Orbius. These inputs provide a set of
workloads intended to be progressive in accuracy, and
difficulty of acquisition. Cache sizes were set to 1Meg,
and did not fill up in our tests—this data represents the
results of an ideal cache environment, with no collisions.

31

Figure 9: Sample of the destination points used for perfor-
mance tests.

Test Nodes/ | Dist Total Speed Delay
Search Time | units/ms ms

S7Z 240 2088 | 517.3s 0.4 1469
SZ+4-CC 241 2088 | 221.3s 0.94 628
SZ+CC+PC 230 2102 | 212.2s 0.99 602
SZ+4-CC 195 2143 | 150.2s 1.42 424
+sPC

GR 2031 2076 | 1585.7s 0.13 15857
GR+CC 2146 2053 | 660.3s 0.31 6603
GR+CC+PC| 1979 2062 | 618.3s 0.33 6183
GR+CC 1753 2069 | 482.4s 0.42 4824
+sPC

RD 197 2114 | 936.4s 0.22 931
RD+CC 185 2130 | 489.2s 0.43 486
VZ 332 2317 2195s 0.1 2469
VZ+CC 332 2317 | 749.5s 0.3 843
VZ4+CC+PC| 230 2399 | 559.3s 0.42 591

Table 2: RANDOM: Benchmark data with random start and
destination points. The leftmost column gives the experi-
mental environment. Other columns include average num-
ber of nodes per search, total distance of computed paths
in game units, total time, distance searched per time unit
(speed), and average delay for a path calculation.

All tests were performed on an 8-way Xeon MP 2.7GHz,
8Gig of RAM, using Sun JDK-1.5.0_.03 under Gentoo.
Tables 2, 3, and 4 show a breakdown of the test results
for our three path-finding implementations based on
static zoning (SZ), no hierarchy (GR), use of roadmap
(RD), and Voronoi zoning (VZ), either alone or in com-
bination with collision caching (CC), path caching (PC),
or saturated path caching (sPC). The latter adds the
presumption of a partially-filled cache at the start of
testing.

Under all workloads a single level A* approach, as
observed by using only the grid level (GR), performs
much slower than static zoning or roadmap approaches.

Test Nodes/ | Dist Total Speed Delay
Search Time | units/ms ms
SZ 213 2057 | 490.7s 0.41 1268
SZ+CC 213 2058 | 201.8s 1.01 521
SZ+CC+PC 173 2074 | 159.9s 1.29 403
SZ+CC 138 2114 | 95.2s 2.21 234
+sPC
GR 1758 2019 | 1338.9s 0.15 13389
GR+CC 1778 2018 | 463.7s 0.43 4637
GR+CC+PC| 1262 2041 | 313.3s 0.65 3133
GR+CC 963 2060 | 191.7s 1.07 1917
+sPC
RD 108 2162 | 451.7s 0.47 442
RC+CC 98 2162 | 215.2s 1 211
VZ 587 2182 | 3940.6s 0.05 4663
VZ+CC 587 2181 | 1244.1s 0.17 1472
VZ4+CC+PC| 443 2286 | 978.4s 0.23 1108

Table 3: MoDELED: Benchmark data with start and des-
tination points selected from Orbius data (outside points),
along with some random interior points.

Test Nodes/ | Dist Total Speed Delay
Search Time | units/ms ms
SZ, 386 2052 | 966.8s 0.21 2222
SZ+CC 503 2051 | 551.3s 0.37 1388
SZ+CC+PC 534 2052 | 595.9s 0.34 1475
SZ+CC+ 273 2052 | 203.9s 1 635
sPC
GR 1527 2050 | 1598.5s 0.12 11841
GR+CC 1887 2062 | 768.4s 0.26 5528
GR4+CC+PC| 1267 2053 | 437.7s 0.46 3647
GR+CC+ 932 2063 | 292.4s 0.7 2249
sPC
RD 186 2050 | 1064.1s 0.19 1019
RD+CC 196 2065 | 547.3s 0.37 526
VZ 599 2052 | 3901.4s 0.05 4763

VZ7+4-CC 461 2053 | 930.2s 0.22 1177

VZ+CC+PC 588 2066 | 1298.5s 0.15 1603

Table 4: EXTRACTED: Data when paths are extracted from
the Orbius movement data.

Caching improves overall time to closer to that of
static zoning, although respouse time remains objec-
tively quite high—far more nodes are searched for a
single-level path-finding approach. The GR approach
usually returns the shortest paths. The improvement in
path quality (distance) over the other approaches is not
large, however, and the difference between GR and the
best variation of SZ is quite marginal in all situations.

The Voronoi zoning scheme performed the slowest. This
is perhaps largely due to the difference in terrain con-
formance between the Voronoi and static zoning models:
static zones respect building and other boundaries, while
Voronoi zones largely ignore the structure of the under-
lying map. A given Voronoi zone may actually contain
a maze of obstacles making navigation through it very
expensive or perhaps even impossible. A greater empha-

32

sis on connectivity, including precalculation of efficient
cross-zone paths, as well as use of a constrained Voronoi
diagram, better respecting map obstacles would greatly
improve performance.

The effects of the collision cache (CC) are visible in
all three sets of experiments. We observe significant
speedups, with total time reducing by a factor of 1.8
to 4.2, depending on the type of path-finding approach
used and workload applied. The specific magnitude of
this reduction does of course strongly depend on the cost
of collision detection, but mirrors the expected density
of collisions the different algorithms would encounter.
Roadmaps by nature avoid collisions due to being based
on actually travelled routes, and thus benefit the least.
Voronoi makes the most use of the CC; collisions are
more frequent, again due to the relative lack of map
conformance in the zones.

The benefits of the path cache (PC) are also noticeable,
if less drastic. Path caching reduces the number of nodes
expanded by A*, and this translates into a further 1.0
to 1.5 factor reduction in total time. To get a better
appreciation of the path cache under long-term usage,
we performed a further experiment where the cache was
partially preloaded with values from random pathfind-
ing queries (sPC). When there is existing data to exploit
performance is even more improved, a factor of 1.4 to
2.4 over plain collision caching.

Without path caching the roadmap extension to the hi-
erarchical approach yields the best overall results, at
a potential small cost to path optimality as observed
by the increase in total distance travelled. With path
caching static zoning shows significant further improve-
ments under all workloads, more so if the path cache is
primed or already partially-filled.

Workload Differences

The effect of different workloads can be seen in the three
data Tables. In a general sense actual player movements
seem to be more complex and less predictable (ie less
cache-able) than more artificial data. The node searches
in the EXTRACTED data set are much larger than in
MODELED or RANDOM, and this results in larger total
times as well. This can have a noticeable impact; in the
case of EXTRACTED path caching overhead is sufficient
to cause a reduction in performance when introduced
naively in the SZ and VZ cases. Once the cache is more
filled cache hits more than balance out the overhead.

Performance of the caching and of the individual algo-
rithms, except Voronoi, is overall best on the MODELED
data. This reflects the nature of the generated work-
load. Only 30 source and destination points are used
for the paths based on the MODELED data, whereas
EXTRACTED paths are based on a much larger set of
player coordinates, and RANDOM paths are drawn from
any map point. A smaller, more controlled and well-
balanced sample space has a better chance of permitting

cache hits in our caches, and the underlying machine’s
as well.

Interestingly, the impact of the hierarchy is greater on
RANDOM data, with progressively less relative impact on
the MODELED and EXTRACTED sets. This also mirrors
the structure of the input data. Random data points
are well-distributed, and thus make good use of the hi-
erarchy; SZ is over 3 times faster than GR. Orbius inter-
est points are also reasonably well-spaced on the map,
but many are outside in the single large outdoor zone,
and the hierarchical gain is reduced to between 2.0 and
2.7 depending on cache choices. Extracted paths cor-
respond to the actual game-play of Orbius, and so are
primarily outside, reducing the gain to between 1.4 and
1.7.

CONCLUSIONS & FUTURE WORK

Workload experiments show the difference in scale and
variation an algorithm may experience. Here, surpris-
ingly, while there are significant differences a random-
ized model is reasonably accurate, at least when consid-
ering the relative performance of algorithms. For path-
finding the workload choice is not a dominant one, and
algorithm design is much more important. Hierarchi-
cal implementations are unsurprisingly best, but only
if reasonably well tailored to the underlying map, and
with some dependence on the choice of measurement
workload.

We have attempted to incorporate genre or game-
specific behaviour into understanding the behaviour
of different path-finding approaches. There are many
other game and path-finding aspects worth considering.
Larger and different kinds of maps, different games, and
so forth would be interesting to pursue. We are inter-
ested in the effect of dynamic collisions, re-pathing and
collision avoidance on path-finding efficiency. Adapting
algorithm usage to high level changes in game strategy,
game “phases,” may also help improve and further scale
performance.

ACKNOWLEDGMENTS

This research has been supported by the National Sci-
ence and Engineering Research Council of Canada.

REFERENCES

[1] O. B. Bayazit, J-M Lien, and N. M. Amato. Roadmap-
based flocking for complex environments. In The Pa-
cific Conference on Computer Graphics and App. (PG),
pages 104-113, Oct 2002.

[2] A. Botea, M. Muller, and J. Schaeffer. Near optimal hi-
erarchical path-finding. Journal of Game Development,
1:7-28, 2004.

[3] D. Z. Chen, R. J. Szczerba, and J. J. Urhan Jr. Plan-
ning conditional shortest paths through an unknown en-

33

[4]

[5]

(6]

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

vironment: a framed-quadtree approach. In IEEE/RJS
International Conference on Intelligent Robots and Sys-
tems (IROS 95), volume 3, pages 33-38, Aug 1995.

I. L. Davis. Warp speed: Path planning for star trek ar-
mada. In AAAT 2000 Spring Symposium on Interactive
Entertainment and Al pages 18-21, March 2000.

P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis
for the heuristic determination of minimum cost paths.
IEEFE Transactions on Systems Science and Cybernetics
SSC4 (2), pages 100-107, 1968.

R. C. Holte, M. B. Perez, R. M. Zimmer, and A. J.
MacDonald. Hierarchical A*: Searching abstraction hi-
crarchies efficiently. In The Thirteenth National Con-
ference on Artificial Intelligence (AAAI-96), pages 530
535, 1996.

L. E. Kavraki, P. Svestka, J. C. Latombe, and
M. H.Overmars. Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces. [IEEE
Transactions on Robotics € Automation, pages 566
580, June 1996.

O. Khatib. Real-time obstacle avoidance for manipu-
lators and mobile robots. In IEEE International Con-
ference on Robotics and Automation, volume 2, pages
500-505, 1985.

R. Korf. Depth-first iterative deepening: An optimal
admissible tree search. In Artificial Intelligence, pages
97-109, 1985.

D. Maio and S. Rizzi. A hybrid approach to path plan-
ning in autonomous agents. In Second International
Conference on Expert Systems for Development, pages
222-227,1994.

McGill University. Mammoth: The massively multi-
player prototype. http://mammoth.cs.mcgill.ca, Aug
2005.

C. Niederberger, D. Radovic, and M. Gross. Generic
path planning for real-time applications. In Computer
Graphics International (CGI'04), pages 299-306, 2004.

Amit Patel. Amit’s thoughts on path-finding
and A-star. http://theory.stanford.edu/~amitp/
GameProgramming/, 2003.

D. C. Pottinger. Terrain analysis in realtime strat-
egy games. In Computer Game Developers Conference,
2000.

C. Reynolds. Steering behaviors for autonomous charac-
ters. In Computer Game Developers Conference, pages
763-782, 1999.

N. Sturtevant and M. Buro. Partial pathfinding us-
ing map abstraction and refinement. In The Twentieth
National Conference on Artificial Intelligence and the
Seventeenth Innovative Applications of Artificial Intel-
ligence Conference, 2005.

Peter Yap. Grid-based path-finding. In Al ’02: Pro-
ceedings of the 15th Conference of the Canadian Society
for Computational Studies of Intelligence on Advances
in Artificial Intelligence, pages 44-55. Springer-Verlag,
2002.

INSTRUMENTATION OF VIDEO GAME SOFTWARE TO SUPPORT
AUTOMATED CONTENT ANALYSES

T. Bullen and M. Katchabaw
Department of Computer Science
The University of Western Ontario
London, Ontario, Canada
N6A 5B7
tbullen@uwo.ca, katchab@csd.uwo.ca

KEYWORDS

Content analysis, automated content analysis, software
instrumentation, Unreal Engine.

ABSTRACT

Content analysis of video games is an important process
that supports many business, policy, social, and scholarly
activities related to the games industry. Unfortunately,
collecting the large quantity of data and statistics required
for content analyses tends to be an incredibly arduous task.
Supports are clearly necessary to facilitate content analysis
procedures for video games.

This paper introduces an approach to automating content
analyses for video games through the use of software
instrumentation. By properly instrumenting video game
software, content analysis procedures can be either partially
or fully automated, depending on the game in question.
This paper discusses our overall approach to
instrumentation and automation, as well as our experiences
to date in instrumenting Epic’s Unreal Engine, providing
sample results from early experiments conducted to date.
Results have been quite positive, demonstrating great
promise for continued work in this area.

INTRODUCTION

Content analyses of video games involve coding,
enumerating, and statistically analyzing various elements
and characteristics of games, including violence, offensive
language, sexual activity, gender and racial inclusiveness,
and so on. While content analysis has limitations, as
demonstrated in (Holsti 1969; Newman 2004), it is
invaluable in providing a quantitative assessment of games
to complement more qualitative analyses, as recently
suggested in (Bogost, 2000). As such, content analysis is
an important tool to scholars of game studies and other
media issues; policy makers dealing with issues of
regulation, ratings and censorship; psychologists dealing
with media effects; developers and publishers producing
games; and parents, educators and game players using these
games.

Unfortunately, problems arise when one applies
traditional content analysis procedures, for example from
television or film, to video games. These procedures are

34

N. Dyer-Witheford
Faculty of Information and Media Studics
The University of Western Ontario
London, Ontario, Canada
N6A 5B7
ncdyerwi@uwo.ca

manual and tend to be time consuming and labour-
intensive, resulting in problems such as either limited play-
time, sometimes just the first level (Heintz-Knowles et al.
2001) or first few minutes (Brand and Knight 2003), or,
alternatively, playing very few games to have time for more
thorough examinations (Grimes 2003). Traditional
analyses often do not consider the effects of player
interactivity and non-linearity in games, which can limit
their accuracy unless these issues are explored more fully.
These issues are further compounded by the rapid rate at
which games are released and the medium evolves; it
becomes quite difficult to conduct thorough analyses of a
reasonable portion of games with the limited time and
resources typically available for doing so. A solution to
these problems is clearly needed.

This paper introduces the concept of automating content
analysis of video games. This approach addresses the
above problems by taking advantage of the fact that, unlike
other forms of media, video games are ultimately software
executing on a computing device. Content analysis can be
partially automated by having other software on the
computing device monitor game execution and collect and
report the data traditionally collected using manual
procedures. Full automation may also be possible in some
cases by having software take the role of the player and
generate gameplay experiences without human
intervention. In providing these supports, automation
effectively reduces the time, labour, and resources required
to conduct a thorough content analysis. This allows longer
and more representative analyses of more games, and
allows analyses to be conducted more frequently.
Automation also permits broader studies of interactive and
non-linear play, with the potential for more data to be
collected than through manual processes alone.

To automate content analysis, our current work uses a
framework of instrumentation to augment games in a
minimally invasive fashion to collect the necessary data and
exert control over the game to conduct a thorough analysis.
As proof of concept, we have used our framework to
instrument Epic’s Unreal Engine (Epic Games 2005), a
popular engine used in the development of numerous
games. Through instrumenting the engine, we are able to
automate the content analysis of any game developed for
the engine. In particular, this paper presents experiences
from content analysis experiments conducted on Unreal
Tournament 2004 (Digital Extremes 2004).

The remainder of this paper is organized as follows. We
begin with a discussion of our approach to instrumentation
and automation for content analyses. We then describe our
implementation and proof of concept work with Epic’s
Unreal Engine. We then discuss our experiences in
conducting simple content analysis experiments on Unreal
Tournament 2004. Finally, we conclude this paper with a
summary and a discussion of directions for future work.

INSTRUMENTATION FOR CONTENT ANALYSES

Software instrumentation is a concept new to video
games, but has been used for several years in other types of
software to enable the collection of data and the exertion of
control over the software. The basic premise is to embed
additional code into the execution stream of an application
to enable these data collection and control activities. The
approach taken in this work is derived from our earlier
work in the area (Katchabaw et al. 1999) with updates as
necessary to support the needs of video game software.

Instrumentation Architecture
The instrumentation architecture used in our current work

is depicted in Figure 1, and discussed in detail in the
remainder of this section.

Coordinator

ame
Object 1

Game Application
Code

Game
Object 3

Figure 1. Instrumentation for Content Analysis

Game Application Code

Game application code refers to the original source code
from the game that is being instrumented. It is composed
of a collection of objects that work together to deliver the
functionality of the game. By gathering data and statistics
from the appropriate game objects at the right times, we can
conduct an effective quantitative content analysis of the
game as it is being played.

Sensors
Sensors are instrumentation components that are used to
collect, maintain, and (perhaps) process information to be

35

used in content analyses. Sensors interface with objects in
the game application code through probes that are inserted
into the game. Such probes are typically macros, function
calls, or method invocations that are placed in the execution
stream of an object’s source code during development, or
are event listeners listening for events emitted by the object
as its code executes. Sensors typically reside in the same
address space as the game application code, perhaps
executing in separate threads. Depending on the game and
how it is constructed, however, sensors could theoretically
exist in separate processes.

Sensors can be used to collect a wide variety of
measurements useful to a content analysis. This includes
instances of violence (type of violence, source and target of
violence, result of violence), offensive language (what was
said, source and target of the language), character
demographics (race, age, gender), and so on. Sensors can
also collect a variety of game and game world information,
including the game being played, the type of game, the
level of the game, the time played, and so on.

For flexibility, sensors can also have their behaviours
tuned, in some cases at run time. This includes whether
they are active or not, what data is being collected, how
data is processed, how data is being reported, and so on.

Coordinator

The coordinator is an instrumentation component that is
responsible for directing the content analysis activities
occurring within a game. This includes initializing and
configuring sensors, processing reports of collected data
and statistics from sensors, and handling clean-up activitics
when the game terminates. The coordinator is also the
point of contact for tuning behaviour of sensors and other
aspects of content analysis at run-time. Like sensors, the
coordinator also typically resides in the same address space
as the game application code, but could be located in a
separate process, depending on the game in question.

Instrumentation Operation

When a game instrumented for content analysis is
launched, one of its initialization activities before play
commences is to create a coordinator to initialize the
instrumentation. This, in turn, creates the required sensors,
and configures them to collect data as required for the
content analysis in question.

As the game executes, probes for the sensors will gather
the information needed as they are either invoked in the
execution stream of the corresponding game objects, or in
response to events generated by the game objects,
depending on the structuring of the game application code
in question. This information is accumulated and processed
by the sensors and cither reported to the coordinator as it is
collected or stored for further processing and reporting in
the future. Any such reports received by the coordinator
are logged to a file, or presented or recorded as deemed
necessary by whoever is conducting the content analysis.

When the game is completed, or is otherwise terminated,
the coordinator flushes out any pending reports and

deactivates and destroys all sensors. At this point the
coordinator itself shuts down, and the game terminates.

PROTOTYPE IMPLEMENTATION

As a proof of concept, we have used our instrumentation
framework to instrument Epic’s Unreal Engine (Epic
Games 2005) to cnable content analyses. We chose to
instrument an engine because engine-level instrumentation
enables us to conduct content analyses of all games built on
top of that engine without requiring instrumentation on a
game-by-game basis. The Unreal Engine is also a popular
engine among developers and hobbyists, providing a good
collection of games for study in the future.

Since we were targeting the Unreal Engine in this work,
our instrumentation was developed using UnrealScript.
While a C or C++ instrumentation library is preferable to
provide support across a varicty of games and game
engines, most game engines used in industry do not provide
code-level access to their engines or only do so in a cost-
prohibitive fashion, including the Unreal Engine.
UnrealScript fortunately provided all the access that was
required for our content analysis instrumentation.

Adding our instrumentation for content analysis to the
Unreal Engine was fairly straightforward, as shown in
Figure 2. Each Unreal game type has a Game Info object
that defines the game in question. Among other things, this
object contains a collection of game rules defining various
aspects of how the game is played, and a collection of
mutators. Mutators, in essence, allow modifications to a
game and gameplay while keeping the core elements and
game rules intact.

Game Info

Game Rules

]
Game
Object

Mutators

Figure 2. Instrumenting Epic’s Unreal Engine

Our instrumentation is loaded into a game in the form of a
special content analysis mutator. This mutator contains the
instrumentation coordinator, as described in the previous
section. When loaded, the coordinator in this mutator
spawns an appropriate collection of sensors to gather the
information required for content analysis. Each sensor is
contained within a game rule that is appended to the list of
game rules contained within the Game Info object by the
instrumentation coordinator. In doing so, the sensors arc

36

able to access the stream of events generated by the various
game objects in the game, and extract the required
information to conduct the content analysis.

For example, supposc we were to conduct a content
analysis on a game and were interested in tracking the
deaths that occurred within the game. When the content
analysis mutator is loaded, the coordinator contained within
the mutator creates a new game rule containing a sensor
capable of measuring and tracking deaths in the game. This
rule is then appended to the list of rules for the game. As
the game executes, the sensor in the game rule waits for
events indicating that a death has occurred within the game.
When a death occurs, the sensor obscrves the event and
updates its internal statistics, perhaps by pulling additional
information in from other objects in the process.

Data collected by sensors can either be reported as it is
collected, or in the form of summaries reported when the
game is completed or terminated. The method used
depends on the needs of the particular content analysis
taking place. Unfortunately, the Unreal Engine does not
provide a fully functional file access mechanism at the
UnrealScript level. However, the Unreal Engine does
provide several logging capabilities which are quite
sufficient for generating reports of game activities for
content analysis.

The Unreal Engine allows mutators to be selected,
configured, and loaded by the user at run-time, which is a
very useful feature. This allows content analysis to be
enabled and disabled dynamically at run-time, and allows
the user to tailor and fine tune various elements of the
content analysis easily. For example, the user can choose
which types of data to collect and not collect, and can tailor
various elements of the collection and reporting processes.

To date, sensors have been implemented to collect a
variety of information required for a thorough content
analysis. This includes death of game characters, use of
offensive language, gender and racial diversity in
characters, and a variety of game details such as time
played and so on. Sensors to collect other information are
currently under development.

EXPERIENCES AND DISCUSSION

In this section, we describe our initial experiences in
using our Unreal-based prototype system for simple content
analysis experiments, and discuss observations made in
conducting these analyses.

Experiences with Unreal Tournament 2004

To validate our prototype implementation, we needed an
Unreal-based game that would use our instrumented Unreal
Engine as its foundation. For our purposes, we used Unreal
Tournament 2004 (Digital Extremes 2004), as it is one of
the most popular Unreal-based games, and it was readily
available at our disposal. Unreal Tournament 2004 is a
first-person shooter game that supports a wide variety of

different game types and sets of game rules, individual and
team-based games, and single player, multiplayer, and
spectator modes of play. (In spectator mode, games can be
played with no human players, and the game’s display is
used to observe the game’s progress.) Consequently, there
are many gameplay options provided within this game.

The test system used for experimentation was a dual-core
3.0GHz Pentium D system, with 2GB RAM, a 250GB hard
drive, and an ATI X1800 graphics accelerator card. The
operating system in this case was Microsoft Windows XP
SP2. As such, the test system exceeded the recommended
system requirements for Unreal Tournament 2004.

With this experimental environment, we conducted
several content analysis experiments using a variety of
game configurations. This included the following:

Standard deathmatch (single player and spectator)
Team deathmatch (single player and spectator)
Onslaught (single player and spectator)

Capture the flag (single player and spectator)

The standard deathmatch game is an individual game,
while the other modes were all team based games, with
artificial intelligence-controlled non-player characters
filling the rosters of teams. Levels played were chosen
randomly, and team size and other characteristics as
appropriate were set at the levels’ default values.

Summary results from one experiment are provided in
Figure 3, showing that the content analysis instrumentation
works as expected, collecting all of the required data. As a
result, the instrumentation appeared to be quite effective in
facilitating quantitative content analysis procedures.
Furthermore, this instrumentation was able to provide all
required data and statistics with minimal additional work
required by the user. (All that was necessary was to
activate the content analysis mutator on its first use, and to
collect reports from the generated log file upon completion
of the game. After activating the content analysis mutator,
it remains active for every game until it is deactivated.)

Further Discussion

Our initial testing and experimentation with our content
analysis instrumentation yielded several interesting
observations worthy of further discussion and examination.

Quality of Data

While conducting experimentation with our content
analysis instrumentation, we felt it important to verify the
accuracy of collected data with more traditional manual
procedures using a human observer watching gameplay
sessions. In doing so, it was found that the statistics
computed by the instrumentation matched those computed
using the manual procedures.

Interestingly enough, the statistics computed by the
instrumentation appeared to be more complete and more
accurate as the pace of the game and positioning of in-game
cameras at times made manual procedures error-prone and
frustrating. Instrumentation was also able to capture both

37

Level Name: Rrajigar
Game Type: DeathMatch
Total Players: 14

Al Players: 13

Human Players: 1
Spectators: 0

Male Players: 13

Female Players: 1

Level Loaded: 0:26:45
Game Finished: 0:30:29
Gameplay Elapsed (Seconds): 240.88
Al Dialog: 28

Human Dialog: 27

Total Deaths: 47

Total Suicides: 1

Total Kills: 46

Total Al Deaths: 46

Total Human Deaths: 1

Total Deaths Caused By Als: 22
Total Deaths Caused By Humans: 25
Total Female Deaths: 12

Total Male Deaths: 35

Total Deaths Caused By Females: 6
Total Deaths Caused By Males: 41

Player Deaths: 1

Player Suicides: 0

Player Killed: 1

Deaths Caused By Player: 25
Player Killed By Al: 1

Player Killed By Human: 0

Player Killed By Male: 1

Player Killed By Female: 0

Al Deaths Caused By Player: 25
Human Deaths Caused By Player: 0
Female Deaths Caused By Player: 7
Male Deaths Caused By Player: 18
Deaths Witnessed By Player: 29

Figure 3. Sample Summary of Content Analysis Data from
an Unreal Tournament 2004 Game

on-screen and off-screen activities, and distinguish between
the two, which is difficult, if not impossible, to accomplish
using manual procedures alone.

Quantity of Data

Another observation deals with the quantity of data
collected and how this data is reported. Increasing the
amount of data available to a content analysis has the
potential to increase its accuracy and the amount of insight
that can be obtained from the analysis. Our content
analysis instrumentation was found to be able to generate
reports with considerable detail, and the elimination of
manual collection procedures allows data to be collected
from more gameplay sessions than previously possible.

Unfortunately, increasing the quantity of data handled by
instrumentation has the potential to increase processing and
storage requirements, as this data must be collected, stored,
and reported for use in content analysis. As a result, there
is a risk of negative impacts on the performance of the
game if the quantity of data collected is too high, or if it is
reported so frequently that it interrupts the flow of the
game. While we could measure no change in performance
during our experimentation, this could be an issue in some
content analyses. For example, in our experiments, we
tracked violence in terms of character deaths. Instead of
this, suppose violence was tracked in terms of the number
of shots fired by weapons in the game or the number of
shots hitting a character. This would result in a much
higher quantity of data being collected, stored, and reported
at a faster rate, and this could have an impact on the
performance of the game.

Consequently, one must be careful in tuning the quantity
of data collected for a content analysis. This issue requires
further study.

Partial versus Fully Automated Content Analyses

Another interesting observation came when comparing
partially automated content analyses to fully automated
analyses. A partially automated analysis requires a human
player to drive the game while the cmbedded
instrumentation handles the data collection and reporting
activities, whereas a fully automated analysis requires no
human player, with the game essentially driving itself using
artificial intelligence-controlled non-player characters.

Since Unreal Tournament 2004 supports a spectator mode
in its game sessions, it is possible to conduct a fully
automated content analysis on the game, simply by having
artificial intelligence-controlled non-player characters play
the game by themselves. Unfortunately, these games can
take significantly longer than games involving human
players, as the non-player characters tend to be less
effective at achieving victory than human players. Also,
since the skill level of non-player characters are more
balanced, the kills in a game can be more evenly distributed
in the absence of a dominant human player, requiring more
kills in total to end a game. For example, consider the
standard deathmatch game whose summary is shown in
Figure 3. The human player clearly dominated this game,
scoring more than half the total kills in the entire game, and
quickly bringing the game to an end in reaching the kill
limit set as a victory condition. When played in spectator
mode with the same number of non-player characters in the
same level, the game took nearly three times as long to
complete on average, and the average number of kills per
non-player character was over sixteen times higher. With
the human player no longer dominating, the game results
were substantially different.

This indicates that the nature of data collected during a
partially automated content analysis might differ
significantly from a fully automated analysis. Since a
partially automated analysis involving a human player is
likely a more accurate reflection of an actual gameplay
experience than a fully automated analysis, this raises
questions about the suitability and wvalidity of fully

38

automated analyses. However, since a fully automated
analysis removes the need for human interaction with the
game, this kind of analysis is still attractive as it is less
resource intensive, allows data to be collected from more
game scssions, and removes bias and unwanted effects
introduced by the human players of the game.
Consequently, this issue also requires further study.

CONCLUSIONS AND FUTURE WORK

Content analysis plays several important roles to the
video games industry, but is unfortunately an arduous task
to complete in an accurate and thorough fashion. The
content analysis instrumentation introduced in this paper
has the potential to greatly facilitate content analyses of
video games through partially or fully automating the
process. A prototype implementation of this
instrumentation in Epic’s Unreal Engine has been
demonstrated through experimentation with Unreal
Tournament 2004 to effectively assist in content analyses,
and shows great promise for the future.

There are many possible directions for future work in this
area. Based on the success of initial content analysis
experimentation, more thorough and detailed analyses
should now be conducted on Unreal Tournament 2004,
combining quantitative data collected through our
instrumented engine with more qualitative observations.
Experiments should also be expanded to include more
Unreal-based games, as well other game engines, to provide
further validation of our instrumentation. As mentioned in
the previous section, further study is required into tuning
content analysis instrumentation to maximize the quality,
accuracy, and thoroughness of results, while at the same
time minimizing the impact on game performance.
Additional testing and experimentation is also required to
study the advantages and disadvantages of partially
automated analyses compared to fully automated analyses.

REFERENCES

Bogost 1. 2006. Unit Operations: An Approach to Videogame
Criticism. Cambridge, Mass.: MIT Press.

Brand J. and K. Knight. 2003. “The Diverse Worlds of Computer
Games: A Content Analysis of Spaces, Populations, Styles and
Narratives.” In the Proceedings of DiGRA 2003: Level Up.
Utrecht: University of Utrecht. (November).

Digital Extremes. 2004. Unreal Tournament 2004 — Editor’s
Choice. (August).

Epic Games. 2005. Unreal Engine 2, v. 3369. (December).

Grimes S. 2003. “You Shoot Like a Girl: The Female Protagonist
in Action-Adventure Games.” In the Proceedings of DiGRA
2003: Level Up. Utrecht: University of Utrecht. (November).

Heintz-Knowles K., J. Henderson, C. Glaubke, P. Miller, M.
Parker, and E. Espejo. 2001. Fair Play: Violence, Gender and
Race in Video Games. Oakland, California: Children Now.
(December).

Holsti O. 1969. Content Analysis for the Social Sciences and
Humanities. Reading: Addison-Wesley.

Katchabaw M., S. Howard, H. Lutfiyya, A. Marshall, M. Bauer.
1999. Making Distributed Applications Manageable Through
Instrumentation. Journal of Systems and Software, 45 (1999).

Newman J. 2004. Videogames. New York: Routledge.

DESIGN AND IMPLEMENTATION OF OPTIMISTIC CONSTRUCTS
FOR LATENCY MASKING IN ONLINE VIDEO GAMES

Shayne Burgess and Michael Katchabaw
Department of Computer Science
The University of Western Ontario
London, Ontario, Canada
N6A 5B7
sburges3@uwo.ca, katchab@csd.uwo.ca

KEYWORDS

Latency reduction, latency masking, optimistic execution,
software design patterns for games.

ABSTRACT

To achieve interactive experiences comparable to offline
games, online video games played over the Internet must be
able to deal with performance issues caused by the
connection or infrastructure of the underlying network. A
particularly difficult issue faced by developers of online
games is that of latency. In many cases, the latency
encountered forces gameplay to be very frustrating and
breaks immersion for the player, providing an
unsatisfactory experience overall.

Instead of directly attempting to reduce or eliminate
latency from our networks, our approach has been to reduce
or climinate the effects of latency. Our earlier work in this
area introduced a framework based on the concept of
optimistic execution. In this paper, we discuss the design
and implementation of reusable software components based
on this framework that are capable of supporting optimistic
execution in a wide variety of online video games. This
paper also reports on experiences in using these
components in the development of a simple trading game to
validate their suitability for use in games. These
experiences have been quit positive, and demonstrate great
promise for future work in this area.

INTRODUCTION

It has recently been projected that video games will see
the fastest growth amongst all entertainment markets
(PricewaterhouseCoopers LLP 2006). In particular, online
video games played over the Internet have been singled out
to be among the fastest growing segments within the video
game industry (PricewaterhouseCoopers LLP 2006), with
44% of frequent game players playing games online
(Entertainment Software Association 2006). As a result,
the delivery of high quality experiences to game players
will increasingly depend on the ability of game developers
to make online games that can cope with the uncertainties
and adversities in network performance that frequently
occur over the public Internet (Carlson et al. 2003). This,
unfortunately, is an exceedingly difficult task.

39

A particularly challenging problem is that of network
latency (Blow 2004). Latency (also commonly referred to
as lag) is a time delay that occurs in passing messages
through a network. While steps can be taken to reduce
latency, it can never be completely eliminated, as a message
will always take a non-zero amount of time to propagate
through a network. When the network is heavily used to
the point of congestion, a frequent occurrence on the
Internet (Carlson et al. 2003), latency increases and
becomes unpredictable. This can cause disruptions to the
flow of an online game, leading to anything from minor
annoyance to a totally unplayable experience. Latency has
also been experimentally shown to impair player
experiences and affect the outcomes in multiplayer games
(Armitage 2001), which is highly undesirable.

To address the problem of latency in online video games,
many solutions have been proposed. Unfortunately, none
of these solutions provide a comprehensive approach that is
applicable across all of the wide variety of gameplay
elements found in modern video games. While motion and
weapons usage can be handled, this is simply not sufficient
and rather limiting to the gameplay experiences that can be
provided to the player. Furthermore, some of these
approaches tend to either induce confusing gameplay or
introduce potential inconsistencies or time paradoxes that
can break immersion in the game quite easily (Blow 2004).
Consequently, a more general, flexible, and robust solution
to latency issues is necessary for online video games.

To fill this need, our earlier work introduced New HOPE
(Hanna and Katchabaw 2005; Shelley and Katchabaw
2005), a framework for optimistic execution specifically
targeted at online video games. The basic premise behind
optimistic execution in this case is to allow certain game
activities to occur without checking with other parts of the
game first, provided that the outcomes of the activities are
predictable and recoverable, in case predictions turn out to
be incorrect once synchronization occurs. Optimistic
execution of such activities occurs in parallel with
confirmation of their outcomes, allowing the latency of
synchronization to be effectively masked from the player.

Unfortunately, while this earlier work presented a
framework for optimism, it did not provide reusable
software components that could be used by developers in
building their own games that supported optimistic

execution. Instead, developers had to follow the framework
and build everything themselves, as it was not originally
thought that general purpose optimistic constructs were
feasible (Hanna and Katchabaw 2005).

Our current work remedies this situation through the
introduction of reusable software components to provide
the necessary supports for optimistic execution for latency
masking. This was made possible through the design and
refinement of new software patterns for optimism, based on
our earlier work from (Hanna and Katchabaw 2005; Shelley
and Katchabaw 2005), and their implementation as a
collection of NET managed objects. To validate the
cffectiveness of these new patterns and software
components, and to demonstrate their usefulness, we have
developed a simple trading game, Space Traders, as a proof
of concept.

The remainder of this paper is structured as follows. We
begin by discussing related work in this area, providing a
brief overview and analysis of each approach and
technique. We then describe the pattern-based design of
our new optimistic constructs and their implementation as
reusable software components. We then present our proof
of concept trading game, and discuss our experiences in
using our software components in its construction. Finally,
we conclude this paper with a summary and a discussion of
directions for future work.

RELATED WORK

Our approach to optimistic execution is an evolution of
the first HOPE (Hopefully Optimistic Programming
Environment) project (Cowan 1995), originally designed
for non real-time applications. HOPE made exclusive use
of rollback to recover from situations in which incorrect
optimistic predictions were made. Unfortunately, the
exclusive use of rollback makes HOPE not suitable for
networked multiplayer games. A total rollback of activity
would effectively undo player actions and reactions, in
essence moving the game backwards in time, which is
highly undesirable in general. Game progression, simply
put, must always go forward in time.

Dead reckoning, discussed in (Aronson 1997), is a classic
method that can be used for predicting and extrapolating the
behaviour of entities in a game world based on algorithms
and models of movement and physics in the game. The
work in (Bernier 2001) discusses similar prediction
techniques, specifically applied to the game Half-Life.
With accurate prediction, such methods can be quite
effective. When predictions are found to deviate from
reality, corrections are made that may cause a snap in
player position, as the old, incorrect position is updated
with the newly corrected position. This can cause serious
and noticeable problems, particularly in action-oriented
games (Pantel and Wolf 2002b). Smoothing algorithms can
be used to minimize this snapping effect, at the cost of
delayed synchronization of game states.

There have been many extensions to dead reckoning and
client-side prediction techniques. The work in (Aggarwal

40

et al. 2004) and (Mauve 2000) is aimed at improving
accuracy in predictions, but does so at the cost of requiring
global synchronization or increased message traffic and
complexity. Context based reckoning, introduced in
(Schirra 2001), is a method in which natural language is
used to convey game activity instead of numeric and
geometric data traditionally used. This requires special
techniques to both identify and encode game events, and
other techniques to decode them for use. Context based
reckoning shows promise, but is complex and potentially
unreliable, particularly if errors occur in the encoding or
decoding phases.

Presentation delay (Pantel and Wolf 2002a) is a technique
in which processing and presentation of game events in
local and remote entities are synchronized. This requires
that local events are delayed. While this can remove
inconsistency problems, a scrious issue introduced by
latency in games, this comes at the cost of additional
delays; experimental results presented in (Pantel and Wolf
2002a) and further examined in (Pantcl and Wolf 2002b)
indicate that this approach can produce unacceptable results
in time sensitive action-oriented games.

Local perception filters were used in (Smed et al. 2004)
as a technique for implementing “bullet time” in
multiplayer games. These filters can also be used in a
game for masking latency by allowing temporal distortions
in the rendered view of the game. In essence, different
parts of the game world are allowed to be rendered at
different times, depending on the proximity and possibility
of interaction between the various entities in the world.
While showing improvements in certain gameplay
scenarios, local perception filters require that exact
communication delays are known, and exhibit disruptions
in the game when sudden changes to the game world occur
(such as when one player in a multiplayer game exits the
world).

Server-side techniques for masking latency can be found
in (Fraser 2000) and (Bernier 2001) for Unreal Tournament
and Half-Life respectively. This approach to latency
compensation can be thought of as a step back in time.
Suppose a player invokes some action and this event is
forwarded to a game server for processing. The server
computes latency, and deduces the time at which this action
was invoked. The server then moves the state of the game
world back to this time to determine the effects of the
action, applies the action, and moves the state back to its
current condition. While this technique can be effective, it
does introduce other paradoxes into the game world that
can be difficult to handle and produce their own problems,
as discussed in (Fraser 2000) in detail.

While several potential solutions to the problem of
latency in networked multiplayer games have been
proposed, each has its own drawbacks and limitations. In
particular, these approaches tend to focus on movement and
shooting aspects of first person shooters, and other similar
games. Some solve certain latency-related problems, but
do so at the risk of introducing new problems,

inconsistencies or paradoxes at the same time. Our
approach differs in that it is a more general and flexible
solution, capable of supporting more varied gameplay. In
following our approach, developers are forced into dealing
with the issues introduced while masking latency, and are
given appropriate tools to be able to address and resolve
these issues in a manner acceptable to the players of the
game. This is discussed further later in this paper.

OPTIMISTIC CONSTRUCTS FOR ONLINE VIDEO
GAMES

In this section, we discuss the design and implementation
of our optimistic constructs to mask latency in online video
games. These constructs are derived from our earlier work
in (Hanna and Katchabaw 2005; Shelley and Katchabaw
2005), which has been refined to provide components that
are reusable in wide variety of games and gameplay
mechanics, and that can be easily implemented as a
portable class library to assist developers in creating online
games supporting optimistic execution.

Pattern-Based Design of Optimistic Constructs

Our earlier work in (Shelley and Katchabaw 2005)
introduced an overall framework for optimistic execution in
games, loosely based on the concept of software patterns
(Gamma et al. 1995), but lacking much of the rigor and
detail traditionally used in such patterns. While this was
consistent with other software patterns developed for games
(Bjork and Holopainen 2005), it only provided the main
concepts behind optimistic execution. This allowed
developers to create online games that made use of
optimistic execution, but only in an ad-hoc fashion, treating
each game as a separate application of the framework
pattern, effectively starting from scratch each time.

To rectify this situation, a thorough and detailed set of
software patterns were developed to provide a set of
optimistic constructs for online video games. In doing so,
we were able to provide a set of reusable software
components for optimistic execution in online games that
are capable of effectively masking latency encountered
during execution.

Figure 1 depicts the main elements of our new design.
This includes the following optimistic constructs: actions,
recovery modules, padding modules, synchronization
modules, and decision modules. These key elements are
discussed briefly in the remainder of this section. For full
details of the software patterns in the standard format
traditionally used by software patterns (Gamma et al.
1995), the reader is urged to consult (Burgess 2006).

Actions

For the purposes of our work, a video game is driven by a
series of actions. These can be generated by player
characters, for example moving, shooting, and interacting
with objects or other characters; by non player characters,
in exhibiting similar behaviours to player characters; or by
other elements in the game world, handling non-character
driven activities. The results of actions change the state of

41

the game world and its inhabitants and consequently must
be propagated to all players of the game as necessary to
ensure that everyone has a consistent view of the game.
Otherwise, the inconsistencies in the game can lead to
player frustration, a loss of player immersion, and an
overall negative gameplay experience. Actions can be
handled and processed within a game in one of two ways,
optimistically or cautiously.

If the results of an action are reasonably predictable, and
can be recovered from if necessary, optimistic execution is
the best approach. In this case, the predicted results of the
action are assumed to be true, and execution proceeds based
on this assumption while verification of the results proceeds
in the background. Since we are concerned with online
games, this verification process will likely entail network
communication and remote computation of some kind to
yield the actual results of the action. If the assumption is
later found to be correct, execution can continue, and the
latency of verifying the results of the action is effectively
hidden, since the game did not have to pause and wait
during this process. However, if the assumption is found to
be incorrect, the execution of the game since the
assumption was also incorrect, and the game will need to
execute a recovery to bring all parts of the game back into
an acceptable and consistent state. If recoveries are needed
only rarely and do not disrupt the flow or immersion of the
game, this approach can be quite cffective in masking
latency.

If the results of an action cannot be reasonably predicted,
or cannot be recovered from easily, it is better to process
the action in a cautious fashion, instead of proceeding
optimistically. This requires that the results of the action
are verified before the game proceeds with execution,
which makes latency in the required network
communication and remote computation potentially visible
to the player. However, this may be necessary to prevent
excessive recoverics or to avoid situations from which
recoveries are not possible, as these conditions could very
well be worse to the player than a more cautious execution.

The Recovery Module

Recoveries are used to bring a game back into an
acceptable state following the denial of an optimistic
assumption. If a recovery is not carried out, the various
elements of the game will not be in agreement over the
outcome of the action that was processed optimistically,
and the resulting inconsistencies could have a very serious
impact on the game as a whole.

Since multiple recoveries from a denied optimistic
assumption may be possible, a recovery selection procedure
must be followed to determine the best recovery to handle
the current situation. The selection of recovery method can
depend upon many factors. These include the original
action executed, the optimistic execution that was carried
out afterwards, as well as a variety of game and action
specific factors.

After the execution of this recovery, the game is allowed
to proceed from this corrected state.

HIEES N RecoveryModule HUBES N Recovery
e e ey ECOVERIES T RECOVRLY L
! :gzjdﬁfc;ﬁyery(m recovery | Recovery) intiate()
Action eoover()
-gxecutionType © ExecutionType
-assumption : Object
-aolual | Object
-rpcoveryModule | RecoveryMorude PaddingModut
-paddingModule | PaddingModule usesy CongToty “usesy Padding
-syncModule : SyneModule L -paddings tPadding |
-tdecisionModule « DecisionModule +AddPadding() intiate()
-optimismThreshold : Threshold +Pad(}
-padding Threshold : Threshold
~syncThreshold | Threshold
+AddRecoveryModule()
+AddPaddingModule(}
+AddSyncModule!} SyncModule cenumerationn
+AddDecisionModute() -actions : Action SyncType
*Re@var{} «uses? | yme - int KUSESH SN =
ingg}(} mmmmmm -synctype: Synctype L YBEFORE = 1
el side) - +AddACtion(in action - Action) +CONCURRENT = 2
+SetAssumption{in value : Object) +SetTimelin tinjg : integer) +AFTER = 3
+SetActualiin value | Object) jgetsymﬂype{m syncType : SyncType)
+SetOptimism Threshold{in t Threshold) ynel)
+SetPaddingThreshold{in t : Threshold)
+SetSyncThreshold{in t : Threshold}
E
| 3 HUSESH DecisionModule CLUSBSH
: : -comparer | Compare Compare
H . s T
: “pCompars(} : ComparisonType
§ +Decide() : Boolean +Compare(in v1 : Object, in v2 ; Object)
: +Decide(} : Object uSEsy
H
§ HUSESH E wUBEEN ‘E
e e S 5 ;
: v i
- senumerations
wenumerations ComparisonT
ExecutionType +LEBS$:§AN —- Dype
+OPTIMISTIC = 0 VEQUAL=1
TCAUTIOUS = 1 +GREATERTHAN = 2
Figure 1: Optimistic Constructs for Online Video Games
The Padding Module (Multiple methods of padding should be provided to handle

Padding is used to add some form of distraction clement
to the game to either mask a cautious execution or reduce
the amount of optimistic execution that occurs. Padding
can be as simple as an animation played to consume a small
amount of game time, or can be considerably more
complex, depending on the game in question. Padding can
be used in a wide variety of situations, but is particularly
useful when the recoverability or predictability of an action
is below a threshold of comfort and still somewhat
questionable as a result.

Before employing padding, a decision process must be
followed to determine whether or not padding is
appropriate in the current situation within the game. After
reaching a decision that padding is necessary, it must also
be determined which methods of padding are appropriate in
this situation so that one can be selected accordingly.

42

different situations, and to allow for variety in the handling
of the same situation multiple times to avoid unwanted and
noticeable repetition.) The padding is then executed, and
optimistic or cautious processing continues upon the
completion of the padding. Either way, the distraction
element in the padding effectively masks the latency of
result computation and communication that is occurring in
parallel.

It is important to note that padding may consume either a
part or all of the time that could have been spent executing
optimistically or pausing cautiously, depending on the
situation and the padding involved. (It is not a good idea
for padding to take longer than this, however, as this could
slow the pace of the game unnecessarily, be disruptive, and
lead to player frustration.) Furthermore, by employing
padding, recovery from optimistic execution is lessened if

the original assumption was incorrect, because the amount
of execution was itself lessened.

The Synchronization Module

The synchronization module is wused to provide
synchronization primitives for optimism. Synchronization
constraints can be added to an action to force execution to
wait before or after the action for the results of another
action or set of actions to be confirmed. This can be used
to prevent further optimistic execution from proceeding if
that execution would be difficult to recover from. Time
delays can also be used in this process if necessary. It is
important to note that recovery would still be necessary
upon denial for any optimistic execution up until this point,
however.

For example, suppose the player picks up an object and
then attempts to use it. If the action of picking up the
object was executed optimistically, the act of using the
object likely needs to be synchronized to prevent the use of
an object that was not actually picked up, in case the
optimistic assumption was later denied. Otherwise, this
could introduce problematic inconsistencies and paradoxes
into the game.

The Decision Module

This module is used to facilitate various decisions
governing the optimistic execution of a particular action.
This includes decisions on whether to execute
optimistically or cautiously, whether to employ padding or
not, and whether to force synchronization or not.
(Decisions as to which recovery to use when recovery is
necessary, or which padding to use when padding is
necessary, are up to those modules to make.)

This decision making processes will weigh several game
and action specific factors against one another and derive
measures of recoverability and predictability; these
measures are then compared against thresholds to determine
how execution should proceed. Players should be given
input over the setting of these thresholds to tune gameplay
to their own preferences and tolerances, although the game
should have some input as well, according to observed
latency in the network. By allowing a choice between
optimistic and cautious execution at run-time, finer control
over optimism can be achieved, and a better play
experience can be provided to the player. (As warranted,
static decisions can be embedded for performance reasons,
to avoid overhead in the decision processes when optimism
clearly should or should not be used.)

Implementation of Optimistic Constructs

The optimistic constructs described above were
implemented so that they could be reused in a wide variety
of games without having to re-implement the constructs
each time. The implementation was programmed in C#
using .NET managed objects. While this means that these
optimistic constructs can be used in any .NET-aware game
regardless of the language used in creating the game, this
does hamper their use in games that are not .NET-aware,
without the use of some kind of software wrapper. Given

43

the increase in use of .NET among developers, this is not
likely to be an issue.

Most of the optimistic constructs discussed in the
previous section can be used and reused with no
modifications required, although since the implementation
is object-oriented, it is possible to specialize these
constructs if needed for particular games. Only three of the
constructs depicted in Figure 1 must contain game-specific
operations that cannot be carried out in a simple and
generic fashion. To handle these cases, our implementation
relies on a number of abstract classes that have to be
implemented before the constructs can be used. (This is a
common feature of many design patterns, and allows them
to be both reusable and flexible (Gamma ct al. 1995).)
These abstract classes define the Recovery, Padding, and
Compare constructs.

Recoveries and padding, by their very nature, are game-
specific and must be created by the game’s developers. To
do so, developers derive new classes containing
implementation details specific to their games from the
abstract classes provided by our class library. When a
recovery or padding is required, the appropriate initiation
method is invoked by the recovery or padding module
respectively, causing the game-specific code to be
executed. This game specific code could then do whatever
is necessary to either carry out a recovery or perform a
padding operation within the game. In this way, the generic
optimistic constructs provided by our class library can still
support optimistic handling of actions in a game-specific
fashion.

Compare constructs are used to evaluate and compare
various Threshold objects used by the Decision Module in
making its decisions; these constructs can also be game-
specific. Consequently, developers will need to provide
appropriate comparison classes for game-specific
situations, again derived from the abstract classes provided
by our class library. Our class library also provides
concrete comparison constructs for common types used in
comparisons, to ease development.

Once the required recovery, padding, and comparison
elements are implemented and provided, they seamlessly
integrate and work with the other optimistic constructs in
our class library.

PROOF OF CONCEPT: SPACE TRADERS

As proof of concept, the Space Traders game was
developed using the optimistic constructs described in the
previous section.

Overview of Space Traders

Space Traders is a simple trading game in which the
players travel the universe, visiting plancts to buy and sell
resources to accumulate as much wealth as possible in the
process. Each planet that the players travel to in the game

has set prices for the various resources and set quantities of
cach that the players can purchase. The prices of these
resources change as they are purchased by the players
visiting the planet. Traveling from planet to planet also
costs fuel which players must purchase as necessary. This
game was developed using Microsoft’s Visual Studio .NET,
and programmed in C#.

el Bequired:

00
]

Wler
e

Wood | Spice
154 416
B HUE
1517 38 8
B3 5iie 2/18
205 185 %in

Clohes
g
4
1817
510
192

Fusl Foog

520

Slesl
2014 55
Hig &3 2%

176 1942
7 48
12010 £i2

Walus

TN

Dueniity. n ad

Figure 3: Screenshot of Space Traders Server

Space Traders uses a client-server architecture;
screenshots from both the client and server are shown in
Figure 2 and Figure 3 respectively. The TCP transport
protocol is used for communication between the client and
the server. The server is responsible for maintaining the
game’s state and updating it according to player input data
received from the clients. This includes calculating new
price and resource availability, depending on the buying
and selling patterns of the players in the game. (In essence,

44

the more abundant a resource is, the lower its price will be,
and the scarcer a resource is, the higher its price will be.)
This updated game state is then sent back to the clients. At
the clients, updated game states related to the last player
input are rendered to the display as they are received.

Optimistic Execution in Space Traders

In Space Traders, each player has three main actions they
can choose from: traveling from one planet to another,
buying resources at their current location, or selling
resources at their current location. As the player carries out
these actions, they obtain feedback on their outcomes. (As
mentioned earlier, clients also periodically receive updates
on resource prices and availability when changes occur at
their current location.)

The travel action is always carried out in a cautious
fashion as the client requires a listing of resource prices and
availability at its new location before proceeding. Because
of the nature of this information, there are simply no
reasonable optimistic assumptions that can be made for this
action. Buy and sell actions, however, can be made
optimistically, under the assumption that the resource price
and availability information that the client has is still
current and up-to-date. This may or may not be a good
assumption for the client to make, as it turns out.

The fluctuations in resource prices and availability
represent a potential source of inconsistencies in the game.
When making a transaction to buy or sell a particular
resource, it is in fact quite possible for both its price and
availability to change between the last update in
information received by the player’s client and the initiation
of the transaction, meaning that the player is conducting
business with an out-of-date view of the game world. This
is particularly the case when several players are visiting the
same world, conducting transactions at the same time, as
the handling of these transactions will cause such changes
to occur. If any buy or sell actions are carried out with
incorrect resource prices or availability, the optimistic
execution of these actions would be incorrect as well.

A decision module is used to make an initial decision
about using optimism. If the results of a transaction arc
predictable, because there are few other traders on the
planet to influence the price and availability of resources,
then transactions will proceed optimistically. Otherwise,
they will be carried out cautiously. (With too many traders
on the same planet, the possibility for resource price and
availability changes becomes unacceptably high and too
many incorrect optimistic assumptions will require
recoveries of some kind to correct.)

If an assumption about the results of a transaction is
incorrect, a recovery process is initiated to correct the
situation in a fashion consistent with the rest of the game.
For example, suppose a poorly-timed change in price

caused a player to overpay for a resource in a transaction.
Suppose that the last update from the server to Player 1°s
client prices the resource water at $10 a unit, with 3 units
available for purchase, as shown in Figure 2. Now suppose
that while Player 1 is making a purchase decision, Player 2
sells an additional 6 units of water on the same planet,
causing the price of water to drop to $5 a unit. If Player 1
decides to purchase what they believe is all the water on the
planet before receiving an updated resource list, Player 1°s
client will mistakenly approve a purchase of 3 units of
water at $10 a unit, instead of the $5 a unit it actually cost.
Since the buy action executed by Player 1 is optimistic, the
player’s client will process the transaction and believe the
player has less money than they actually do because it is
unaware of the inconsistency between its resource list and
the actual list for the planet stored at the server. When the
optimistic execution of this buy action is found to be
incorrect, a recovery is taken to give the player their money
back and correct the mistaken optimistic assumption. This
can be done through a simple message, such as the one
depicted in Figure 4.

You discovered an abandoned spaceship filled with gold.

Figure 4: Screenshot of a Recovery Message in Space
Traders

By having several possible messages to account for
incorrect resource price and availability assumptions during
buy and sell actions, several different recoveries are
possible. Naturally, seeing these messages pop up too
frequently for recovery purposes will begin to adversely
affect the player’s overall experience in the game. This is
why decisions to proceed optimistically should be made
carcfully depending on the likelihood of success of the
actions in question.

Padding and synchronization elements are also used
where appropriate within the game. For example, several
passing messages were developed as options for display
when a buy or sell action had to be processed cautiously
instead of optimistically, due to the number of other players
on the same planet at the same time. By the time the user
reads the message and clicks the “OK” button to dismiss
the message, it is likely that sufficient time has lapsed to
cover the cautious execution of the action with the server,
and the latency of communication is still effectively hidden.

All optimistic execution described above is accomplished
using the reusable optimistic constructs described in the
previous section. No programming was required to support
this optimistic execution, except for providing appropriate
recovery, padding, and comparison mechanisms, and to link
the optimistic constructs into the rest of the game’s code.

Experiences with using our optimistic constructs in
developing Space Traders were quite positive. The

45

constructs provided an excellent framework for building
optimism into the game, greatly facilitating and easing the
development process. Once complete, the optimistic
execution within the game worked as expected, masking the
latency of communication between clients and the server.
Initial experimentation has indicated that latencies up to
200ms can be hidden through the above use of optimistic
constructs, with little or no perceptible impact on gameplay.
More thorough and rigorous experimentation with a broader
player base is currently under way to further investigate the
latency masking capabilities of our optimistic constructs.

Based on these results, it is expected that other developers
can usc these optimistic constructs to add optimistic
execution to online video games successfully and casily.
Consequently, these constructs could prove quite useful to
reducing the effects of latency in games.

CONCLUSIONS AND FUTURE WORK

Latency is a challenging problem to the development and
success of online video games. Our current work is aimed
at reducing or eliminating the effects of latency to produce
more enjoyable gaming experiences for players. Through
the optimistic constructs designed and implemented in this
work, an important and powerful tool is given to game
developers to integrate optimistic execution into their own
games. Our own experiences in using these constructs in
the development of a simple trading game, Space Traders,
have shown their usefulness, and demonstrate great promise
for the future.

There are many possible directions for future work in this
area. These include the following:

o Further experimentation with our optimistic constructs
is clearly necessary. We need to fully investigate the
latency reduction benefits of optimism in a variety of
online games under a variety of network conditions, and
learn how to further tune the factors influencing
optimism decisions to improve performance.

e Further study is also required into the use of both nested
optimistic assumptions and feedback to tunc the
decision processes used within the optimistic constructs,
as discussed in (Shelley and Katchabaw 2005). Neither
of these elements was used in the development of the
initial prototype of Space Traders, and so
implementation and experimentation efforts are
currently under way.

e Many of approaches to latency compensation discussed
earlier, including dead reckoning and so on, have
predictive elements that, in the end, make them similar
to the constructs used in optimistic execution that have
been discussed in this paper. Consequently, in the
future, we plan to use the optimistic constructs
introduced in this paper to re-implement these
approaches within this framework. Not only will this
provide further validation of this work, but it will also
demonstrate its power and flexibility.

REFERENCES

Aggarwal S., H. Banavar, A. Khandelwal, S. Mukherjee,
and S. Rangarajan. 2004. “Accuracy in Dead-
Reckoning Based Distributed Multi-Player Games”.
Proceedings of ACM SIGCOMM 2004 Workshops on
NetGames '04: Network and System Support for
Games. Portland, Oregon. (August).

Armitage G. 2001. “Sensitivity of Quake3 Players to
Network Latency”. Presented at the SIGCOMM
Internet Measurement Workshop. San Francisco,
California. (November).

Aronson J. 1997. “Dead Reckoning: Latency Hiding for
Networked Games.” Appeared in Gamasutra.
Available online from Gamasutra’s website at
hitp://www.gamasutra.com/features/19970919/aronson
_01.htm. (September).

Bernier Y. 2001. “Latency Compensating Methods in

Client/Server In-game Protocol Design and
Optimization.” Presented at the 2001 Game
Developers Conference. San Francisco, California.
(March).

Bjork S. and J. Holopainen. 2005.
Design. Charles River Media.
Blow J. 2004. “Miscellaneous Rants”. Appeared in Game

Developer Magazine. (May).

Burgess S. 2006. Patterns for Optimism for Reducing the
Effects of Latency in Networked Multiplayer Games.
Undergraduate Thesis, Department of Computer
Science, The University of Western Ontario. (March).

Carlson R., T. Dunigan, R. Hobby, H. Newman, J. Streck,
and M. Vouk. 2003. “Strategics & Issues: Mcasuring
End-to-End Internet Performance”. Appeared in
Network Magazine. (April).

Cowan C. 1995. “A Programming Model for Optimism”.
PhD Thesis. Department of Computer Science, The
University of Western Ontario. (February).

Entertainment Software Association. 2006. Essential Facts
about the Computer and Video Game Industry.
Entertainment Software Association Research Report.
(April).

Fraser J. 2000. “Zeroping Frequently Asked Questions”.
Accessible online at: http://zeroping. home.att.net.
(April).

Gamma E., R. Helm, R. Johnson, and J Vlissides. 1995.
Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley.

Hanna R. and M. Katchabaw. 2005. “Bringing New
HOPE to Networked Games: Using Optimistic
Execution to Improve Quality of Service”. [In the
Proceedings of the DIGRA 2005 Conference.
Vancouver, Canada. (June).

Pantel L. and L. Wolf. 2002a. “On the Impact of Delay on
Real-Time Multiplayer Games”. Proceedings of the
12th International Workshop on Network and
Operating Systems Support for Digital Audio and
Video. Miami, Florida. (May).

Pantel L. and L. Wolf. 2002b. “On the Suitability of Dead
Reckoning Schemes for Games”. Proceedings of the
First Workshop on Network and System Support for
Games. Bruanschweig, Germany. (April).

Patterns in Game

46

Mauve M. 2000. “How to Keep a Dead Man from
Shooting”. Lecture Notes in Computer Science; Vol.
1905. Proceedings of the 7th International Workshop
on Interactive Distributed Multimedia Systems and
Telecommunication Services. Enschede, Netherlands.
(October).

PricewaterhouseCoopers LLP. 2006. Global Entertainment
and Media Outlook: 2006-2010. PWC Report.

Schirra J. 2001 “Content-Based Reckoning for Internet
Games”. Proceedings of the Second International
Conference on Intelligent Games and Simulation
(GAME-ON 2001). London, England. (November).

Shelley G. and M. Katchabaw. 2005. “Patterns of
Optimism for Reducing the Effects of Latency in
Networked Multiplayer Games”. In the Proceedings of
the FuturePlay 2005 Conference. East Lansing,
Michigan. (October).

Smed J., H. Niinisalo, and H. Hakonen. 2004. “Realizing
Bullet Time Effect in Multiplayer Games with Local
Perception Filters”. Proceedings of ACM SIGCOMM
2004 Workshops on NetGames '04: Network and
System Support for Games. Portland, Oregon,
(August).

EDUCATION
AND ART
IN
GAMES

48

GAME @ VU - DEVELOPING A MASTERCLASS FOR HIGH-SCHOOL
STUDENTS USING THE HALF-LIFE 2 SDK

A. Eliéns,
S.V. Bhikharie,

Intelligent Multimedia Group,
Department of Computer Science
Faculty of Sciences, Vrije Universiteit
De Boelelaan 1081, 1081 HV Amsterdam,
Netherlands
E-mail: eliens@cs.vu.nl

KEYWORDS
game development, Half-life 2 SDK, education.

ABSTRACT

In this paper, we will describe our experiences with
developing a masterclass game development for 14-16 year
old high-school students at the Vrije Universiteit,
Amsterdam. For the masterclass, we developed a game using
the Half-Life 2 SDK, called VU-Life 2, for which we
created a realistic level covering part of the faculties
premisses, as well as a simple assignment (of a non-violent
nature) that the high school students had to complete before
developing their own (variation on a) game level. Our
experiences indicate that the moderately complex task of
developing a game level using the Half-Life 2 SDK is
feasible, provided that the instructions and assignments are
sufficiently well-focused.

INTRODUCTION

In june 2005 we started with the development of a game,
nicknamed VU-Life 2, using the Half-Life 2 SDK. We
acquired a Cybercafe license for Half-Life 2, with 15 seats,
because we would like to gain experience with using a state-
of-the-art game engine, and we were impressed by the
graphic capabilities of the Half-Life 2 Source game engine.

After some first explorations, we set ourselves the goal:

e to develop a game that could be used for promoting
our institute, and

e to prepare a masterclass game development for
high-school students.

Our first ideas concerning a game included a game in which
the subject chases a target, a game where the subject has to
escape, and an adventure game. In the end we decided for a
less ambitious target, namely to develop a game which gives
the subject information about our institute, by exploring a
realistic game environment, representing part of our faculty.
As an incentive, a simple puzzle was included which gives
the subject information on how to obtain a 'hidden treasure’,
to be found in a specific location in the game environment.
See the next section for more information on this.

49

With only about eight months time, we decided to do a
feasibility study first, to gain experience with the Half-Life 2
SDK technology, and to determine whether our requirements
for the game and the masterclass could be met.

For the VU-Life 2 game, we can summarize our
requirements as follows:

e the game must provide information about the
faculty of sciences of the VU,

e the game environment must be realistic and
sufficiently complex, and

e the interaction must be of a non-aggressive, non-
violent, nature.

The last requirement has to do with the fact that the VU is by
its origin a Christian university, so that any agressive or
violent interaction could hardly be considered to be an
appropriate theme for a promotional game.

For the masterclass, we stated the following requirements:

e it must be suitable for beginners, in particular high
school students,

e it must explain basic texture manipulation, and

e offer templates for modifying a game level, and
finally

e there must be a simple (easy to understand) manual.

The format for a masterclass for high-school students at our
institute is three times two hours of instruction. The goal is
to attract (more) students for the exact sciences. However, if
the masterclass would be too complex, we would run the risk
to chase potential students away, which would be highly
counter-productive.

In this paper we will report our experiences in developing
the VU-Life 2 game and the associated masterclass. The
online information for the masterclass, including all
documentation can be found at:
www.cs.vu.nl/~eliens/masterclass.

The structure of this paper is as follows. We will first give
an impression of the VU-Life 2 game by presenting a typical

usage scenario. In the sections that follow, we will discuss
the technical issues encountered in developing the VU-Life
2 game, and the assignments for the masterclass. Then, we
will moreover describe the documentation we developed for
the masterclass, and discuss the lessons we learned, in
particular our experiences in presenting the masterclass to
high-school students. Finally, we will draw our conclusions
by giving a summary of our efforts and indicating our plans
for the future.

Figure 1: Opening Screen VU Life 2

For a general overview of the issues in game development
and design, see (Juul, 2003) and (Sherrod, 2006).

VU-LIFE 2 - THE GAME

To give an impression of the game and how we used the
Source game engine and the associated Half-Life 2 SDK,
let's start with a typical game scenario, illustrated with a
walkthrough.

Figure 2: Lecture Room

When starting VU-Life 2, fig. 1, the player is positioned
somewhere in the game environment, such as a lecture room,
fig. 2. In the front left corner of the lecture room, middle
right of fig. 2, there is a place marked as an information spot.
The information spot corresponds with one of the nine
squares in the top right of the screen. The player is expected
to detect this correspondence by exploring the game
environment. The nine squares together form a puzzle,
indicating, when all squares are filled, where the hidden
treasure can be found. In other words, when the player visits

50

all the nine information spots contained in the game
environment, the player has solved the puzzle and may
proceed to obtain the hidden treasure.

To visit all the information spots, the player has to explore
the game environment, including another lecture room, the
student administration office, fig. 3, and the student dining
room. While exploring the game environment, the player
may read information about the curriculum, meet other
students, and encounter potentially dangerous individuals.
As illustrated in figs. 2-3, the puzzle squares will gradually
become filled, and when complete, the combined puzzle
squares will indicate the location of the hidden treasure,
which is the 7th row of chairs of the other lecture room.

Figure 3: Student Office

Despite the fact that we intended to create a non-violent
game, we must admit that the hidden treasure actually
consists of obtaining the power to use weapons. From our
observations, and this was exactly what motivated us to
include this feature, the use of weapons proved to be a most
enjoyable aspect for the high school students playing the
VU-Life 2 game, in particular when allowed to play in
multi-user mode.

USING THE HALF-LIFE 2 SDK — TECHNICAL
ISSUES

The VU-Life 2 team had no prior experience with the Half-
Life 2 Source SDK. Therefore we started by exploring three
aspects of the Source SDK: level design with the Hammer
editor, making game modifications, and importing (custom)
models into Half-Life 2. During the exploration of these
aspects we came across various technical issues, which we
will discuss below.

Level design

First, we made various smaller levels. Each level was
compiled and tested seperately so that it worked fine as a
standalone level. The idea was to combine them, that is to
create one large world containing the smaller levels.
However, the initial coupling caused several compiling

errors. After analyzing the errors, some important restrictons
for building (large) levels became clear.

In the second part of the level compilation process called
VVIS, a visibility tree of the level is made. This tree is used
to tell the renderer what to draw from a given (player)
viewpoint in the level. The amount of used brushes (the
default shapes for creating a level) determine the size of the
visibility tree. The bigger the tree, the longer VVIS will take
to build the visibility tree at compile time and the more work
the renderer has to determine what to draw at runtime.
Therefore, the standard brushes should only be used for
basic level structure. All other brushes that do not contribute
to defining the basic level structure should be tied to so-
called func_detail entities. This makes VVIS ignore them so
that they do not contribute to the visibility tree, thus saving
compiling and rendering time.

In addition, there is a (hardcoded) maximum to the number
of vertices/faces you can use for a level. Each brush-based
entity contributes to the number of vertices used. It is
possible, however, to reduce the number of vertices used by
converting brush-based objects to entities. This is done
outside of the Hammer level editor with the use of 3D
modelling software and the appropriate conversion tools.

With the above mentioned restrictions in mind we were able
to create a relatively large level that more or less realistically
represents the faculty of exact sciences of the VU campus.
The key locations are, as partially illustrated in figs. 2-3, the
restaurant, lecture room S111, fig. 2, lecture room KC159,
the student office, fig 3, and the multimedia room S353 (not
shown).

To give an impression of the overall size of the VU.vimf
game level, as map information we obtained 6464 solids,
41725 faces, 849 point entities, 1363 solid entitics, and 129
unique textures, requiring in total a texture memory of
67918851 bytes (66.33 MB).

Game modifications

Since a multi-user environment was required,. we chose to
modify the Half-Life 2 Deathmatch source code. The biggest
challenge for modifying the code was finding out how to
implement the features for VU-Life 2. To this end, relevant
code fragments were carefully studied in order to find out
how the code is structured and works. Furthermore, by
experimenting, it was possible to get the features working.
Below is a list of features for the VU-Life 2 Mod.

e Player properties -- Players start out immortal,
meaning that they cannot "die" while exploring the
world. Furthermore, continuous sprinting is
enabled, which allows the player to walk around
faster.

e Puzzle HUD -- When the player starts out, the
puzzle HUD is the only HUD element displayed.

e Puzzle setter -- Allows puzzle parts to be displayed
on the puzzle HUD.

e Weapon enabler -- Allows weapons to be
enabled/disabled for the player. Enabling the
weapons also enables damage, and switches from
the puzzle HUD to the default Half-Life 2 HUD,
which displays weapon and damage information
along with a crosshair.

Importing models

Getting a model into the Half-Life 2 environment requires
two steps:

e The model must be exported to the custom Valve
format smd

e The model must be compiled from smd to mdl
format

The first step required finding the correct plugin that allowed
a conversion to the smd format. The second step required
using Valve tool studiomdl and defining a qc file, which is
used to specify properties for the compiled model. The
default Valve tool studiomdl.exe proved to be difficult to
work with, because it requires a lot of parameters have to be
set. By using the StudioMDL 2.0 GUI, compiling the smd
file was very easy. It sets the appropriate parameters,
allowing the user to focus on the compiling of the model.

THE MASTERCLASS — INSTRUCTION AND
ASSIGNMENTS

The masterclass consisted of three sessions, two hours each.
In the first session, the (high school) students were given an
overview and general instructions on how to accomplish the
assignments, and were then set to play the VU-Life 2 game.

Figure 4: Masterclass Room

The assignments, as already indicated in the introduction,
were:

1. to modify an existing game level by applying
different textures, see fig. 4,

2. to create objects within an existing game level, and

3. (for advanced students only) to create a new level.

More complex assignments, such as creading a Mod, were
considered to be outside of the scope of this masterclass.

The overview and instructions given in the first session
included:

e anoverview of the history of games,

e a general introduction on modelling characters and
objects,

e the use of the Hammer editor, and finally,
e an explanation of the assignments.

The history of games encompassed historic landmarks such
as Pong, Tetris and The Sims, as well as a brief discussion of
current games like Worlds of Warcraft, and Half-Life 2.

In the introduction on modelling an overview was given of
the major tools, like Maya and 3DSMax, as well as a brief
explanation of notions such as vectors, polygons, textures,
lights, and skeleton-based animation.

Both the explanation of the use of the Hammer editor and
the assigments were explicitly meant as a preparation for
session two, in which the students started working on their
assignments.

Figure 5: Texture Conversion Tool

In addition to the oral overview and instructions, the
students were given a manual, that was made available in
paper as well as online, to prepare themselves for the
assignments. The homework for the second session was to
make pictures suitable for the application as textures in the
masterclass room, which is depicted in figs. 4 and 7.

To allow the students to easily apply their textures, a texture
conversion tool, fig. 5, was offered, that converts and image
file into a texture for a particular location in the game level
based on keywords, e.g. mc_floor for the texture on the floor
of the multimedia room. Alternatively the students could use
the VTF-Edit tool, fig. 6, and apply the texture using the
Hammer editor, figs. 7 and 8.

52

Lroate Yuf File

I Heloo

I Tansucent
[Eewitomers Map Sanpation | Weex Dol
I Netw
I HoUscs

Figure 6: VTF-Edit Tool

The introduction on how to use the Hammer editor covered
the basic tools, including the

e block tool -- for creating simple objects,
e selection tool -- to select objects for texturing,

e entity tool -- to select dynamic or interactive
objects, and the

e fexture tool -- to apply textures to an object;

as well as how to compile a level into a map ready for play,
including an explanation of the BSP (world), VIS
(visibility), and RAD (radiosity) components.

Figure 7: Masterclass Room in Hammer Editor

The students were explicitly told that the assignments did
not involve any programming, creating game Al, or
modelling. (To learn these aspects of game development,
they were simply adviced to sign up for our curriculum.)
Instead, we told them, use your phantasy and be creative!

Figure 8: Changing The Camera

LESSONS LEARNED

In the second session, the high school students started
working with great fervour.. Somewhat surprisingly, all
students worked directly from the (paper) manual, rather
than consulting the online documentation, or the help
function with the tool.

In retrospect, what appeared to be the main difficulty in
developing the masterclass was to create challenging
assignments for every skill level. In our case, the basic skill
level (modifying textures of a template level) allowed the
high school students to start immediately. By having
optional advanced assignments like creating your own
objects, you can keep all students interested, since there are
assignments to match the various skill levels.

Competition

To stimulate the participants in their creativity, we awarded
the best result, according to our judgement, with a VU-Life
2 T-shirt and a CD with Half-Life 2. The results varied from
a music chamber, a space environment, a Matrix inspired
room, and a messy study room. We awarded the Matrix
room, fig. 9, with the first prize, since it looked, although not
very original, the most coherent.

CONCLUSIONS

In this paper, we reported our experiences in developing a
moderately complex game environment and associated
masterclass for highschool students, illustrating the effort
needed to develop such an application in an educational
setting, indicating technical constraints as well as the
documentation requirements that must be met. Somewhat
surprisingly, our target audience preferred a step-by-step
approach, using the paper manual, over the use of the online
material and help on a by-need basis. Finding a suitable
range of assignments, sufficiently variable in difficulty,
however, will remain a challenge for future efforts.

53

ACKNOWLEDGEMENTS

We gratefully acknowledge the contribution of the following
people to the development of the VU-Life 2 game and the
masterclass game development: Anthony Agustin
(developer), Kin Hung Cheng (developer), Niels Rietkerk
(documentation writer), Steve Stomp (character modeller),
and Mikhail Zouskov (technical support).

REFERENCES

Juul J. 2005. “Half-real -- Video Games between Real Rules and
Fictional Worlds”. MIT Press.

Sherrod A. 2006. “Ultimate Game Programming with DirectX”.
Charles River Media.

Figure 9: First Prize Design

AUTHOR BIOGRAPHY

ANTON ELIENS studied art, psychology, philosophy, and
computer science. He is lecturer at the Vrije Universiteit
Amsterdam, where he teaches multimedia courses. He is also
coordinator of the Master Multimedia for Computer Science.
He has written books on distributed logic programming and
object oriented software engineering.

WINOE BHIKHARIE is master student Computer
Science/Multimedia at the Vrije Universiteit. His master
thesis is about the development of games using the Source
Half-Life 2 SDK. Winoe Bhikharie has been involved in
many of the promotional activities for the Vrije Universiteit,
and has taken up the role of manager in the VU-Life 2
project.

Adapting a Commercial Role-Playing Game for Educational Computer Game
Production

M. Carbonaro®, M. Cutumisu®, H Duff®, S. Gillis®, C. Onuczko®, J. Schacffer®, A. Schumacher®, J. Siegel®, D. Szafron®, and
K. Waugh®
*Faculty of Education, University of Alberta, Edmonton, AB, Canada T6G 2G5
bDepartment of Computing Science, University of Alberta, Edmonton, AB, Canada T6G 2ES8
‘Edmonton Catholic Schools, 9807 — 106 Street, Edmonton, AB, Canada TSK 1C2
*fmike.carbonaro, hduff}? @ualberta.ca, b’°{meric, sgillis, onuczko, jonathan, schumach, siegel, duane, waugh}@cs.ualberta.ca

KEYWORDS
Generative design patterns, scripting languages, code
generation, computer games, educational games.

ABSTRACT

Educational games have long been used in the classroom to
add an immersive aspect to the curriculum. While the
technology has a cadre of strong advocates, formal reviews
have yielded mixed results. Two widely reported problems
with educational games are poor production quality and
monotonous game-play. On the other hand, commercial non-
educational games exhibit both high production standards
(good artwork, animation, and sound) and diversity of game-
play experience. Recently, educators have started to use
commercial games in the classroom to overcome these
obstacles. However, the use of these games is often limited
since it is usually difficult to adapt them from their
entertainment role. We describe how a commercial computer
role-playing game (Neverwinter Nights) can be adapted by
non-programmers, to produce a more enriching educational
game-playing experience. This adaptation can be done by
individual educators, groups of educators or by commercial
enterprises. In addition, by using our approach, students can
further adapt or augment the games they are playing to gain
additional and deeper insights into the models and
underlying abstractions of the subject domain they are
learning about. This approach can be applied across a wide
range of topics such as monetary systems in economics, the
geography of a region, the culture of a population, or the
sociology of a group or of interacting groups.

EDUCATIONAL COMPUTER GAMES

Educators arc awarc of the motivational power of
simulation-based gaming and have diligently sought ways to
exploit that power (Bowman, 1982; Malone & Lepper, 1987;
Cordova & Lepper, 1996). Advocates of this approach have
been captivated by the potential of creating immersive
experiences (Stadsklev, 1974; Greenblat & Duke, 1975; Gee,
2003). The intent was to have students become existential
player/participants operating within a virtual world with
goals, resources and potential behaviors shaped by both the
underlying model and the players’ experience and choices
(Colella, Klopfer & Resnick, 2001; Collins & Ferguson,
1993; Rieber, 1996).

Contemporary exponents of educational gaming/simulations
have drawn their inspiration from modern video games (Gee,
2003). Like earlier proponents, they have been captivated by
the ability of well designed gaming simulations to induce the
immersive, "in-the-groove" experience that Csikszentmihalyi

54

(1991) described as "flow." They contend that the
scaffolded learning principles employed in modern video
games create the potential for participant experiences that are
personally meaningful, socially rich, essentially experiential
and highly epistemological (Bos, 2001; Gee, 2003;
Halverson, 2003). Furthermore the design principles of
successful video games provide a partial glimpse into
possible future educational environments that incorporate
what is commonly referred to as “just in time /need to know”
learning (Prensky, 2001; Gee, 2005).

Unfortunately, educational game producers have not had
much success at producing the compelling, immersive
environments of successful commercial games (Gee, 2003).
“Most look like infomercials, showing low quality, poor
editing, and low production costs.” (Squire & Jenkins, 2003,
pll). Even relatively well received educational games such
as Reader Rabbit, The Magic School Bus, Math Blaster, and
States and Traits are little more than “electronic flashcards”
that simply combine monotonous repetition with visual
animations (Card, 1995; Squire & Jenkins, n.d.; Squire &
Jenkins, 2003).

Approaches to educational gaming/simulation can range
from the instructivist in which students learn through playing
games (Kafai, 1995) to the experimentalist in which students
learn through exploring micro-worlds (Ricber, 1992, 1996)
to the constructionist where students learn by building games
(Papert & Harel, 1991). Advocates of the latter approach
have been in the minority but the potential power of the
game-building technologies and their potential as an
alternative form of learning or expression is drawing
increasing attention from the educational gaming community
(Kafai, 2001; Robertson & Good, 2005). We have done
some preliminary work with all three of these modes, with
most of efforts focused on constructionist approaches
(Carbonaro et al., 2005; Szafron et al., 2005). In this paper,
we show how our constructivist approach can be adapted to
create instructivist classroom materials.

On the instructivist side, there are three basic approaches.
First, simply use games that were created as educational
games such as Reader Rabbit etc. and incur all of the
problems manifested in this approach. Second, use
commercial games, such as Civilization III (a historical
simulation game) (Squire, 2005). However, it can be difficult
for the educator to align a commercial game with specific
educational topics or goals. Third, adapt a commercial game
to meet specific educational goals. This is the approach we
describe in this paper. We describe how the same game-
building tools we put into the hands of students can be used
by educators to easily adapt commercial CPRGs to create
instructivist classroom materials in the form of educational
computer games.

COMPUTER ROLE-PLAYING GAMES

Popular computer role-playing games are available in many
forms as single-player (Oblivion, SIMS'), small-scale
networked multiplayer (Neverwinter Nights, Dungeon Siege)
or massively multiplayer online (World of Warcraft,
Everquest, GuildWars). In each of these cases, the computer
role-playing game has high production values and richness
of interaction that can hold the interest of millions of game-
players around the world. One of the goals of our research is
to leverage the quality and popularity of role-playing games
into better games for educational use in the classroom.

A CRPG typically contains a game engine that renders the
graphical objects and characters, and manages sound and
motion. A single game engine is re-used across multiple
game adventures and enhanced for future games. The game
engine typically dispatches game events to scripts that
support interactions between the player character (PC) and
game objects. These interactions vary for each game
adventure and programmers must write the scripts that
control them. For example, when the PC opens a specific
chest in an adventure, a script can cause the doors of the
enclosing room to lock and some creatures to be spawned.

A set of computer aided design (CAD) tools is created and
used by authors, artists, musicians, voice actors and other
skilled craftspeople to create content such as backgrounds,
models, textures, creatures, props, sounds, and music that are
shared across game adventures. Adventure designers also use
these tools to create individual adventures, calling on
programmers to script the interactions. Two examples of
such tools are the Aurora Toolset for Neverwinter Nights
(BioWare Corp. 2006) and The Elder Scrolls Construction
Set (TES) for Oblivion (Bethesda Softworks, 2006).

USING A COMPUTER ROLE-PLAYING
GAME TO STUDY A CLASSROOM TOPIC

Recently, educators have begun to use the CAD tools
available with CRPGs to construct custom educational
software that combines the high-production values and
richness of interaction of a commercial computer game with
their specific educational goals. We briefly describe three
educational games that have been built using the
Neverwinter Nights (NWN) game.

Revolution (http://educationarcade.org/revolution) is a multi-
player game, created at MIT that places students in
Williamsburg in 1775 on the eve of the American
Revolution (Squire & Jenkins, 2003). It allows the player to
experience the event by role-playing a character with a
particular gender, class and political view. The educational
goal is to aid in the understanding of American history.

The Aurora Toolset has also been used to construct a
“Journalism” game (Paul, Hansen & Taylor, 2005) for
College Journalism students. The protagonist is a rookie
reporter working for the Gazette in a small American city
called Harperville. The journalist searches for clues to a train

' Although the SIMS was not originally regarded as a role-playing
game, newer versions allow the player to identify more closely with
a character in the game and experience a more personal and direct
interaction with the other characters that more closely resembles a
role-playing game.

55

derailment by investigating multiple sources. The
educational goal is to teach journalism students to expand
the list of potential sources they use when developing a

story.

As a third example of using NWN to construct an
educational game, a multidisciplinary group of rescarchers
from geography, psychology, and computer science at
Carleton University developed a prototype NWN module set
in the Antarctic (Woods et al., 2005). The goal of this game
is informal learning about scientific process, global warming
and the Antarctic environment.

In this paper we present an economics game as an example.
The game contains a series of commerce models that can be
discovered and explored by the player. The fixed price
commerce model is the simplest model in the game. In this
model, each item has a fixed price and the item is both
bought and sold for the same price by all merchants. Players
learn that different items have different prices, but no profit
is made by buying and selling items. Players quickly learn
this model by buying and selling items.

In the second model, called the mark up model, each
merchant has a selling percentage for all items sold and a
buying percentage for all items bought. These percentages
are the same for all items sold by a given merchant, but vary
from merchant to merchant. For example, the base price for
the book titled “The Adventures of Sherlock Holmes” is 40.
The store “Wexman Supplies” has a selling percentage of
100% and a buying percentage of 30% so he sells a copy of
“Holmes” for 40 and buys a copy for 12. However, the store
“Langston Store” has a selling percentage of 130% and a
buying percentage of 45% so he sells a copy of this book for
52 and buys a copy for 18. Players are not told the buying
and selling percentages or cven that they are in play. Instead
they learn the model experientially and can even discover the
fact that cach merchant has a fixed but different selling and
buying percentage. While exploring this model in the game,
students also can discover that there are situations that can be
exploited. For example, “Discount Bob” has a selling
percentage of 80% and a buying percentage of 20%, whereas
“Exclusive Sal” has a selling percentage of 150% and a
buying percentage of 85%. A player can buy from Bob and
sell to Sal to make a profit. As we know, this is an
unsustainable model and it motivates the third model in the
game — the supply and demand model.

In the supply and demand model, the item prices are
dynamic. Each time a copy of an item is bought from a
merchant, the price goes up by a certain percentage and each
time a copy is sold to a merchant, the price goes down by a
percentage. There are actually two supply and demand
models, a local one and a global one and both are in the
game. In the local model, buying from a merchant only
affects the prices for that merchant. In the global model, it
affects the prices for all merchants. The global model
represents a situation where merchants closely monitor the
pricing of other merchants. Again, students discover these
models as they explore in the game environment.

USING EXISTING TOOLS TO ADAPT A
CRPG FOR CLASSROOM STUDY

CRPG authors use sophisticated tools to create story content
for game adventures. The same tools can be used to create
educational games. The Aurora Toolset is the principal tool
used to create adventures for the Neverwinter Nights (NWN)
game. An author begins by using Aurora to create one or
more areas by selecting tiles from pre-built tile-sets. The
author then wuses Aurora to place physical objects
(placeables, items, and doors) and creatures from libraries at
specific locations in the area and to customize them. The
author can create interactive conversations and attach them
to specific creatures using Aurora. The author can also select

sound effects and music from libraries and can place them at
locations in the area so that when the PC triggers them, the
appropriate sounds are played.

For example, to create the economics game, the author first
creates a town arca that has several shops where merchants
buy and sell items. The interior of cach shop is a scparate
arca. Figure | shows a store named “wexmansupplics” in a
shop area. It shows how the selling percentage (labeled Sell
Mark Up) and the buying percentage (labeled Buy Mark
Down) are sct. It also shows how the inventory of this shop
is selected. The author has indicated the price of the selected
item and the cffect of applying the selling and buying
percentages to a book with base price 40.

Thue b ark et

Ye Dide Book Shopps

Creatures

Dioors

- Encounters

Items

Mercharts
- langstonstore

Plat lterm
Tutorial

The &dventures of Sherlock Holme

Hew

Ophicn

A Chrigtrnas Carol

Mizcellanaous

Infinite

Tutorial

Selected Item: The &dventures of Sherlock

Store zells for:
Store buys faor:

VAdvanced§ Restrictions | Comi

o ——
exman Supplies

exmanzupplies

Halmes

SellMark Up

Buy Mark Dawn

Figure 1 A Shop Area with Merchant Inventory

THE CHALLENGE OF SCRIPTING

Sometimes an educator can easily adapt a commercial game
for a specific educational goal by using the toolset supplied
with the game. For example, the fixed price model for our
economics game can be incorporated into NWN simply by
setting the selling and buying percentages to 100 for each
merchant that adopts the model. The mark up model can be
incorporated by setting different selling and buying
percentages for cach merchant. However, there comes a
point where more extensive adaptation must be done to
accommodate the goals of the educational game. For
example, there is no easy way to incorporate the supply and
demand model into NWN without writing scripts.

Unfortunately, it is difficult for non-programmers to write
and attach scripts. For example, Figure 2 shows part of the

56

script written to implement the supply and demand model in
the economics game. The scripting in this example consists
of 66 lines of NWScript code to implement the model and
23 lines of code for each item that is bought and sold using
the supply and demand model. As well as writing the script,
the author must figure out that this script must be attached to
the “OnAcquireltem” cvent of the Module object. In
addition, two other scripts whose sizes are greater than 50
lines each must be written and attached to conversation
nodes in the game to intercept a normal mark up transaction
and initiate a supply and demand transaction so that the
player can discover that this model is in play and learn how
it works, as shown in Figure 3. Unfortunately, this need for
scripts to achieve more complex educational goals has
precluded most educators from adapting CRPG games to
educational computer games.

B H

5 egex

Filter

sorpteases | " .
W ‘ariables
15 SE_ Lo DoPriceldjustment ok aramw 1, int paraw 2, o ‘
1 S] J P _ts BE P e Constants Templates
17 chject Storage = param 3; ActionForceFollowOb]
15 t item = param 1; 7§ fhctionForceMoveToLoc
19 © pc = param_4; AetionForceMoveTodbh) ™
20 ng conversation = param 5 AotionGiveItem
z1 buy = param Z; ActionInteractChiject
2z int adj_percent = GetLocallnt (item, "ADJ PERCENT™): ActionJuwpToLocation
23 AetionJupToChject
24 cfzjzct merchant = GetLocalObject (pc, "PC _LAST 3ZPORE WITHY, ActionLockObject
23 AetionMovelwayFromlo
26 . adjustment = GetLocalInt (storage, ”Asjjust,menc_Forv" + Aot ionMove buayFrombh
a7 (adjustment ar o ActionMoveToLocation
28 adjustment = i ActionMoveToChject
=] H AetionOpenDoor
30 AetionPauseConversat
31 (GetIsChjectValid (merchant) £& adjustment !'= LN { ActionPickUpItem
3z AssignCommand (merchant, ActionItartConversationipe, com AhetionPlayinimation
33 } ActionPutDownItem
34 1 if (GetIzsChjectValid(merchant) &£& adjustment == 1{) AetionPandomialk
35 i (buy) { ActionRest
36 adjustment = adjustment + adj_ percent; AetionResumeConversa
37 i Action3it
38 el { Aetion3peakitring
39 adjustwent = adjustment - adj_percent; ActionSpeak3tringBys
40 }
41 Setlocallnt (storage, "Adjustment For ™ + GetTag(item), ¢ ActionTakeItem
42 i AotionUnequipItem
4303 ¥ {iActionUnlockChject
5 i 2 ActionUseFeat =
th - thiz will 2w by =
ia Ilank, nhe o wred o own disfog Fhie will e goecd

b

%

ActionStartConversation(:

want o init A £
oObjectToConverseWith,

i

A

o sDialogResRef="", int bPriv

¥

Compiler Help

ookmatks | Search Results |

Exit

Figure 2 Part of the Script for the Supply and Demand Model

Figure 3 A Mark Up Model Dialog

57

SCRIPTEASE: A SOLUTION TO THE
MANUAL SCRIPTING PROBLEM

The Economics game described in this paper primarily uses
conversations with merchants to teach its topic. However,
NWN is a fully immersive interactive game in which the PC
explores the world and interacts with objects when the player
clicks on them or chooses interaction options from context-
sensitive pop-up menus. Scripts can be configured for over a
hundred interactive events including when a door is
unlocked or opened, when an item is acquired, when a prop
(placeable) is used or destroyed, when a container is
disturbed, when a point in a conversation is reached etc. This
wide variety of interaction modes can support a broad range
of ecducational topics including economics, geography,
history, culture, languages, ecology, sociology and
psychology, since the game world simulates the interaction
of the PC and the environment with such high fidelity.

We have created a tool called ScriptEase
(http://www.cs.ualberta.ca/~script) that can be used by game
authors to generate scripts for NWN game stories
(McNaughton et al., 2004b). This tool allows an author to
select patterns and adapt them to tell a particular game story.
A pattern encapsulates a commonly occurring idiom in a
CRPG adventure. One common example is to create a
situation in which the doors lock and a creature is spawned
whenever the PC removes a jewel from a particular chest. A
second example is a guard that patrols near a guarded chest,
occasionally checking to see whether the guarded item is still
in the chest, sitting on a bench to rest every once in a while,
and challenging or attacking the PC if the PC gets too close
to the chest. A third common example is a dialogue in which
a non-player character (NPC) greets the PC in a particular
manner during their first conversation, but remembers the
PC and greets the PC differently during subsequent
conversations. A fourth example is a quest to retrieve an
item and take it back to the quest giver. Since each of these
patterns occurs frequently across CRPG adventures, it is
useful to identify these patterns and re-use any investment
that is made to help support the scripting necessary to realize
them in a game adventure. ScriptEase allows an author to
identify such patterns in a catalog, create instances of them
while creating an adventure, adapt them to the context of the
adventure and then automatically generate the appropriate
scripting code that implements them.

We have identified four kinds of patterns that occur often in
CRPGs: encounter patterns (McNaughton et al., 2004a)
behavior patterns (Cutumisu et al., 2006), dialog patterns and
plot patterns. The four examples listed in the previous
paragraph are respective examples of each of these kinds of
patterns. An encounter pattern describes an interaction
between the PC and game objects — e.g. the consequences of
removing a jewel from a chest. A behavior pattern describes
the behavior of an NPC — e.g. a guard. A dialogue pattern is
a template for a common idiom of conversation — e.g. a
progressive dialog. A plot pattern describes a frequently
occurring quest — e.g. retrieve an item. We have developed a
mature pattern catalog for encounter patterns containing
more than 60 patterns (Onuczko et al., 2005) and a
preliminary catalog for bchavior patterns containing 9
patterns (Cutumisu et al.,, 2006). We are currently
developing pattern catalogs for dialogue and plot patterns.

58

Although we have previously used ScriptEase to enable
student authors to author interactive stories as an educational
experience, this is the first time we have tried to use
ScriptEase in the context of creating custom educational
games to be played by students in the classroom.

To create a prototype of the economics game, we used the
Aurora Toolset to create an area containing a market and to
create individual stores and merchants. We specified selling
and buying percentages for these merchants and filled the
inventories with items. We then used ScriptEase to create
some patterns that support the supply and demand economic
model. Figure 4 shows some instances of these patterns.

i ———

e Ddit Buelid Tools Help

¢ [GarelniN08Econ-SE mod {9
i - opien st 5
vargation - apen store (Langsion's Stored

oy - gy adjusiment

£ ion -~ sell adjusiment

%2, include & Chirisima ol in price adjustmenta
ao et nchude Pride and Prajudioe in prics gdivstments
s b dnvhide Th Sdventune of Shadack Hoimes i o
@ $¢ Inpluge Th

Huy

O Sebet e PBlusgeind |

0 Tag 10 Resfef

e APy

) Module Bluspri
4 = {reature Hams

[

b

st Carol
de and Frajudice
The Adeaniirss ol Shetlnnk Halmes
The Tates of Terror and Wystery
The Woodlanders
e {2t g
CrafingTradesiill Matada
Gams -

G Beavest O Bandern Lo Hnclude Self
sy Croature L Setect a PO

The Budventir ox of Sherleck Hobnes o

QO Lanel

Figure 4 ScriptEase Pattern Instances for the Economics
Game

Four patterns are necessary to support this model. The first
pattern is a Conversation — open store pattern, which has two
options: a store and a conversation node of the owner of the
storc. When this conversation node is reached a store
inventory window is opened that allows the player to select
items for the PC to purchase. The second conversation node
in Figure 5 launches the store and Figure 6 shows the
inventory window for the store and the inventory window for
the PC. An instance of the Conversation — open store pattern
generates the scripting code that opens the inventory
windows when the player selects this conversation node. The
PC can then purchase items by dragging them from the store
inventory to the PC inventory. In Figure 6, the PC has
bought one book (title not shown) and is about to buy a
second book, whose title is “A Christmas Carol”. The code
for supporting dragging from the storc window to the PC
inventory window is built-in to NWN and does not have to
be generated by ScriptEase.

Figure 5 A Merchant Dialog where the Script for the Conversation Node Selected Will Open Inventory Windows

Figure 6 Inventory Windows the PC can Use to Purchase Items From a Store

59

The second pattern is Conversation — buy adjustment, which
has three options that are all conversation nodes — the first
node of a conversation that indicates that the item being
bought is subject to the supply and demand model (the first
statement shown in Figure 3), along with the two
conversation nodes where the PC agrees to the purchase or
declines the purchase (shown as 1. and 2. in Figure 3). The
third pattern is similar and is used for selling. The fourth
pattern is an Item bought/sold - price adjustment pattern
whose four options are the item, the percentage to adjust the
price when each new copy is bought or sold, and the two
conversation files that contain the conversations for
adjusting the price up or down when it is bought or sold. An
instance of this pattern generates a script that is fired when
an item is acquired (after it has been dragged from the store
inventory to the PC inventory) and this script opens the
conversation dialog shown in Figure 3 to describe the
adjusted price.

Finally, we created multiple instances of these patterns and
adapted them for the game by setting the options. For the
screenshot shown in Figure 4, there are two open store
instances, one for each store, one buy adjustment pattern
instance and one sell adjustment pattern instance that are
shared by all merchants, and one Iltem bought/sold - price
adjustment instance for cach item that is subject to the
supply and demand model. The instance for “The
Adventures of Sherlock Holmes” item is highlighted along
with the dialog box that the author uses to pick this item.

When the author selects Save and Compile from the
ScriptEase File menu, all of the NWScript code required to
implement this game is generated and stored in the module
file. The game is now ready to play in NWN.

USING SCRIPTEASE IN THE CLASSROOM

Although the economics game described in this paper was
not created by an educator with no programming skills, it
could have been. To support this statement, we briefly
describe how ScriptEase has been used by high school
students with no programming skills to create interactive
stories using patterns that are no less complex than the four
patterns used in the economics game.

We conducted a pilot and several studies in which grade 10
high school English classes used the Aurora Toolset and
ScriptEase to author interactive stories in the NWN game
world. The specific goals of these studies are not germane to
this paper. Each class was introduced to the concept of an
interactive story and given the assignment to author an
interactive short story that could be “played” in NWN. In
each case study, the high school student authors took part in
a two-day workshop conducted at the University of Alberta.
The workshop consisted of two tutorials (total time 6 hours),
along with some limited time (2 hours) to start their
interactive short story. The first tutorial showed them how to
play a NWN game story (Szafron et al., 2005). The second
and third tutorials described in that paper show how to
construct an interactive story for NWN using the Aurora
Toolset and ScriptEase. These two tutorials were actually
combined into a single tutorial after the pilot and before the
studies. We learned from the pilot that students would prefer
to learn how to create some game objects with the Toolset,

60

and immediately how to add interactivity to those objects
using ScriptEase, rather than learning first about how to
create all of the static objects with the Toolset and then
learning how to make them interactive using ScriptEase.

Students worked under the supervision of their teacher and
some of the ScriptEase researchers who were familiar with
both the tools and tutorials so they could answer student
questions. At the end of the workshop, the students returned
to their high school classrooms to spend 4 more hours to
complete their stories.

Although the educational goals and lessons of these case
studies are not relevant to this paper, the fact that the high
school students succeeded in using ScriptEase patterns is
important since it illustrates that individuals without
programming skills can use patterns to create an educational
game adventure. Figure 7 shows the number of pattern
instances used by students in two different case studies.

30.0%
25.0%
20.0%
15.0%
10.0%

5.0%

0.0% -+

0 1-2 34 5-6 7-8 9-10 11-12 13-14 15-16
Number of Pattern Instances

HHA #HB

Figure 7 The Number of ScriptEase Pattern Instances Used
by Students from Two High School Classes

There were 27 students in the class designated HA and 23
students in the class designated HB. For example, 26%
(7/27) of the HA authors created 1 or 2 pattern instances and
7% (2/27) of HA authors created 11 orl2 pattern instances.
The major difference in the two classes is that HA was a
regular high-school English class and class HB was an
International Baccalaureate (IB) English class. Although the
students from the IB class used more pattern instances, both
classes succeeded.

CONCLUSION

We have shown how educators can create immersive
educational games with high production values and engaging
storylines by adapting commercial CRPGs. Specifically, we
showed how educators can use ScriptEase to overcome the
most difficult obstacle that stands in their way — the need for
manual scripting. Although we are not the first researchers to
suggest the adaptation of commercial games to educational
games, we have shown how ScriptEase can provide a useful
mechanism for quickly and practically developing games
with specific educational goals, such as monetary models.

ACKNOWLEDGEMENT

This research was supported by grants from the (Canadian)
Institute for Robotics and Intelligent Systems (IRIS), the
Natural Sciences and Engincering Research Council of
Canada (NSERC), Alberta's Informatics Circle of Research
Excellence (iICORE), and BioWare Corp. We especially
thank our many friends at BioWare for their feedback,
support and encouragement, with special thanks to Mark
Brockington. We would also like to thank previous
ScriptEase project members who have left the group: James
Redford — BioWare, Dominique Parker - Electronic Arts,
Matthew McNaughton — Carnegie Mellon and Thomas Roy
— University of Alberta.

REFERENCES

Bethesda Softworks (2006). The Elder Scrolls IV: Oblivion.
http://www.elderscrolls.com/games/oblivion_overview.htm.

BioWare Corp. (2006). Neverwinter Nights.
http://nwn.bioware.com.

Bos, N. D. (2001). What Do Game Designers Know About
Scaffolding? Borrowing SimCity Design Principles for
Education, Technical Report for the CILT PlaySpace working
group. Retrieved Oct 28, 2005, http://www-
personal.si.umich.edu/~serp/work/SimCity.pdf.

Bowman, R. (1982). A Pac-Man Theory of Motivation. Tactical
Implications for Classroom Instruction. Educational
Technology, 22(9), 14-17.

Carbonaro, M., Cutumisu, M., McNaughton, M., Onuczko, C., Roy,
T., Schaeffer, J., Szafron, D., Gillis, S., & Kratchmer, S.
(2005). Interactive Story Writing in the Classroom: Using
Computer Games. Proceedings: International Digital Games
Research Association: Changing Views: Worlds in Play (pp.
323-338). Vancouver, Canada: Digital Games Research
Association.

Card, O. S. (1995). What are Computers Doing at School. Windows
Sources (July 1995).

Colella, V., Klopfer, E., & Resnick, M. (2001). Adventures in
Modeling: Exploring Complex, Dynamic Systems with
StarLogo. New York: Teachers College Press.

Collins, A., & Ferguson, W. (1993). Epistemic Forms and
Epistemic Games: Structures and Strategies to Guide Inquiry.
Educational Psychologist, 28(1), 25-42.

Cordova, D. I. & Lepper, M. R. (1993). Intrinsic Motivation and the
Process of Learning: Beneficial Effects of Contextualization,
Personalization, and Choice. Journal of Educational
Psychology. 88 (4) 715-730.

Csikszentmihalyi, M. (1991). Flow: The Psychology of Optimal
Experience. New York: Harper-Collins.

Cutumisu, M., Szafron, D., Schaeffer, J., McNaughton, M., Roy, T.,
Onuczko, C., & Carbonaro, M. (2006). Generating Ambient
Behaviors in Computer Role-Playing Games. To appear in
IEEE Intelligent Systems, ms. 16.

Gee, J. P. (2003). What Video Games Have to Teach Us about
Learning and Literacy. New York: Palgrave.

Gee, J. P. (2005). DiGRA Keynote talk: On-line at
www.sfu.ca/lidc/broadcast/archive/digra/.

Greenblat, C., & Duke, R. (1975). Simulation Gaming: Rationale,
Design, and Application. New York: Wiley & Sons.

Halverson, R. (2003). Systems of Practice: How Leaders Use
Artifacts to Create Professional Community in Schools.
Education Policy Analysis Archives, 11 (37).

61

Kafai, Y. B. (1995). Minds in Play: Computer Game Design as a
Context for Children's Learning. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Kafai, Y. B. (2001). The Educational Potential of Electronic
Games: From Games-to-Teach to Games-to-Learn. On-line at
http://culturalpolicy.uchicago.edu/conf2001/papers/kafai.html.

Malone, T. W., & Lepper, M. R. (1987). Making Learning Fun: A
Taxonomy of Intrinsic Motivations for Learning. In R. E. Snow
& M. J. Farr (Eds.). Aptitude, learning and instruction. Volume
3: Cognitive and Affective Process Analyses (pp. 223-253).
Hillsdale, NJ: Erlbaum.

McNaughton, M., Cutumisu, M., Szafron, D., Schaefter, J.,
Redford, J., & Parker, D. (2004a). ScriptEase: Generative
Design Patterns for Computer Role-Playing Games.
Proceedings: 19th International Conference on Automated
Software Engineering (pp. 88-99). Linz, Austria, September.

McNaughton, M., Schaefter, J., Szafron, D., Parker, D., & Redford,
J. (2004Db). Code Generation for AI Scripting in Computer
Role-Playing Games. Proceedings: Challenges in Game Al
Workshop at AAAI-04 (pp. 129-133). San Jose, USA, July.

Onuczko, C., Cutumisu, M., Szafron, D., Schaeffer, J.,
McNaughton, M., Roy, T., Waugh, K., Carbonaro, M., &
Siegel, J. (2005). A Pattern Catalog For Computer Role Playing
Games. GameOn North America (pp. 33-38). Montreal,
Canada.

Papert, S., & Harel, I. (1991). Situating Constructionism. In Papert,
S. & Harel, 1. (Eds.), Constructionism. Norwood, NJ: Ablex
Publishing Corporation.

Paul, N., Hansen, K., & Taylor, M. (2005). Modding' Education:
Engaging Today's Learners. International digital media and
arts journal, 2(1), Spring.

Prensky, M. (2001). Digital Game-Based Learning. New York:
McGraw-Hill.

Rieber, L. P. (1992). Computer-based Microworlds: A Bridge
Between Constructivism and Direct Instruction. Educational
Technology Research and Development, 40(1), 93-106.

Rieber, L. P. (1996). Seriously Considering Play: Designing
Interactive Learning Environments Based on the Blending of
Microworlds, Simulations, and Games. Educational
Technology Research and Development, 44(2), 43-58.

Robertson, J., & Good, J. (2005). Story Creation in Virtual Game
Worlds. Communications of the ACM, 48(1), 61-65.

Squire, K., (2005). Changing the Game: What Happens When
Video Games Enter the Classroom? Innovate, Journal of Online
Education, 1(6), August/September.

Squire, K., & Jenkins H. (n.d.) Games-to-Teach Project Year End
Report, submitted to the iCampus Committee. (Cambridge:
Self-published).

Squire, K., & Jenkins H. (2003). Harnessing the Power of Games in
Education. InSight, Volume 3.

Stadsklev, R. (1974). Handbook of Simulation Gaming in Social
Education: Part I: Textbook. Institute for Higher Education
Research Services, University of Alabama.

Szafron, D., Carbonaro, M., Cutumisu, M., Gillis, S., McNaughton,
M., Onuczko, C., Roy T., & Schaeffer, J. (2005). Writing
Interactive Stories in the Classroom. Interactive Multimedia
Electronic Journal of Computer-Enhanced Learning (IMEJ),
7(1), May.

Woods, B., Whitworth, E., Hadziomerovic, A., Fiset, J., Dormann,
C., Caquard, S., Hayes, A., & Biddle, R. (2005). Repurposing a
Computer Role Playing Game for Engaging Learning. In
Kommers, P., & Richards, G. (Eds.), Proceedings of World
Conference on Educational Multimedia, Hypermedia and
Telecommunications (pp. 4430-4435). Chesapeake, VA:
AACE.

ODYSSEE — EXPLORATIONS IN MIXED REALITY THEATRE USING DIRECTX9

A. Eliéns
Intelligent Multimedia Group,
Department of Computer Science
Vrije Universiteit
De Boelelaan 1081, 1081 HV Amsterdam,
Netherlands
E-mail: eliens@cs.vu.nl

KEYWORDS
mixed reality theatre, multimedia applications, DirectX9.

ABSTRACT

In this paper we will discuss our experiences in developing a
mixed reality application for a theatre production of the
Odyssee. The Odyssee is a wellknown account of the travels
of Ulysse leaving Troje, in 24 episodes ending in his return
to Ithaca and his reunion with Penelope. The actual theatre
production, which is performed in temporarily empty office
buildings, takes 12 parts which are played in 12 successive
rooms through which the audience, subdivided in small
groups, is guided one room after another for about five
minutes per room. The initial idea was to have a large
number of see-through goggles and augment the actual
performance with additional information using text and
images. In the course of the project, however, we had to
scale down our ambitions, and we ended up using simple
LCD-projection goggles with a low-resolution camera, for
which we developed a mixed reality application, on the
DirectX platform, using video capture projection in 3D with
text and images. What we will describe here covers our final
application, the criteria and guidelines we used in our
production, as well as what may in retrospect be
characterized as our explorations of DirectX.

INTRODUCTION

In june 2003, our group was asked to advise on the use of
VR in a theatre production of the Odyssee. Lacking
experience in this field, we accepted the invitation to
participate with some reluctance, since at the time we didn't
have any clue what the VR for the theatre production should
look like. Nevertheless, we took the invitation as a challenge
and started looking for appropriate hardware, bothering
collegues for information on mixed reality art productions,
and downloading code to explore software technologies.
Many hurdles ware to be taken. We had to deal with
organizational issues, such as finding the money for
financing the actual production (which proved to be quite a
hurdle), finding the right people (students, in our case) to
select material and contribute to the code; aesthetic issues, in
particular to determine which approach to take to reach at an
effective solution; and not in the least technical issues, to
realize the production on a sufficiently efficient low-cost
platform.

62

In this short paper, we will first briefly describe the Odyssee
theatre production. Then we will report on how we arrived at
our present mixed reality solution. And, after a brief
characterization of our platform of choice, we will look at
our mixed reality solution in somewhat more (technical)
detail. We finish with recapitulating the lessons we learned
from our explorations in mixed reality theatre, and a brief
discussion of the further development and implementation of
our system.

BACKGROUND - THE ODYSSEE THEATRE
PRODUCTION

The Odyssee. theatre production was initiated by Ground
Control (www.ground-control.org), as a successor of
previously succesful theatrical spectacles, including an open
air performance of Faust. In effect, two performances of the
Odyssee were planned, an out-door (external) version,
involving real ships at the shore of a lake, and an in-door
(internal) version, to be played in temporarily empty office
buildings. The in-door version is meant to give a more
psychological rendering of the Odyssee, see (Entanaclaz,
2003), where the travels of Ulysses are experienced by the
audience as a confrontation with themselves. Our
contribution was asked for the in-door version, to enhance
the experience of the audience with additional VR.

The Odyssee is a wellknown account of the travels of
Ulysses leaving Troje, in 24 episodes ending in his return to
Ithaca and his reunion with Penelope. The actual theatre
production takes 12 parts which are played in 12 successive
rooms through which the audience, subdivided in small
groups, is guided one room after another for about five
minutes per room. Our initial idea was to add information in
the form of text and images, to direct the interpretation of the
audience towards a particular perspective. In that beginning
stage, somewhat optimistically, we planned to offer multiple
perspectives to each participant, in an individualized
manner, dependent on the actual focus of attention of the
individual participant.

INITIAL IDEAS — VR AND AUGMENTED REALITY

Our first problem was to find suitable hardware, that is see-
through goggles. Searching the Internet gave us the name of
a relatively nearby company, Cyber Mind NL
(www.cybermind.nl) , that specialized in entertainment VR
solutions. Both price-wise and in terms of functionality

semi-transparent see-through glasses appeared to be no
option, so instead we chose for simple LCD-projection
goggles with a (head-mounted) low-resolution camera. This
solution also meant that we did not need expensive head
orientation tracking equipment, since we could, in principle,
determine focus using captured image analysis solutions
such as provided by the AR Toolkit
(www.hitl.washington.edu/artoolkit). Moreover, captured
video feed ensured the continuity and reactiveness needed
for a true (first-person perspective) VR experience.

Augmented or mixed reality is an interesting area of research
with many potential applications, see (Grau, 2003).
However, in the course of the project we dropped our
ambition to develop personalized presentations using image
analysis, since we felt that the technology for doing this in a
mixed reality theatre setting was simply not ripe, and instead
we concentrated on using the captured video feed as the
driver for text and image presentation. In addition, we
developed image manipulation techniques to transform the
(projection of the) captured video, to obtain more implicit
effects, as to avoid the explicit semantic overload resulting
from the exclusive use of text and images.

TECHNOLOGICAL CONSTRAINTS — THE
DIRECTX9 PLATFORM

After a few experiments with the AR Toolkit, it soon
appeared that the frame rate would not be sufficient, on the
type of machines our budget would allow for. Moreover,
reading the AR Toolkit mailing list, marker tracking in a
theatrical context seemed to be more or less unfeasible. So,
we shifted focus to the DirectX SDK 9, both for video
capture and projection in 3D. The DirectX9 toolkit is a
surprisingly functional, and very rich technology for
multimedia applications, supporting streamed video,
including live capture, 3D object rendering and precise
synchronisation between multimedia content-related events,
Adams (2003). At that time, and still at the time of writing,
our own intelligent multimedia technology was no option,
since it does not allow for using live video capture and is
also lacking in down-to-the-millisecond synchronisation.

After exploring texture mapping images copied from the
incoming captured video stream, we decided to use the
VMR-9 video mixing renderer introduced in DirectX 9, that
allows for allocating 3D objects as its rendering surface, thus
avoiding the overhead of explicit copies taken from a video
processing stream running in a separate thread. Although
flexible and efficient, DirectX is a low-level toolkit, which
means that we had to create our own facilities for processing
a scenegraph, world and viewpoint transformations, and,
even more importantly, structuring our mixed reality
presentations in time.

STRUCTURING TIME — MAINTAINING ‘SEE
THROUGH’ AESTHETICS

One of the problems we encountered in discussing what we
conveniently may call the VR with the producer of the
Odyssee theatre performance was the high expectancy

people have of VR, no doubt inspired by movies as the
Matrix and the like. In mixed reality applications,
manipulating persons, warps in space, and basically any
intensive image analysis or image manipulation is simply not
possible in real time. Moreover, there is a disturbing
tendency with the layman to strive for semantic overload by
overlaying the scene with multiple images and lines of text,
thus obscuring the reality captured by the camera and
literally blocking the participants view and awareness of the
scene. Basically, as a guideline, we tend to strive for 70%
visibility of the scene, 20% image or projection
transformations and only 10% of information in the form of
text and images.

The total duration of our presentation is only 2 minutes, or
118 seconds to be precise. We made a subdivision in 4
scenes, with transitions inbetween, hierarchically ordered in
a tree-like structure. Initially, we abstracted from the actual
duration, by taking only the fraction of the time passed (in
relation to the total duration) as an indication for which
scene to display. However, when the development reached
its final stages, we introduced actual durations that allowed
us to time the sequence of scenes to the tenth of a second. In
addition, we used multiple layers of presentation, roughly
subdivided in background captured image, the transformed
captured image projected on 3D objects, and, finally,
pictures and text. These layers are rendered on top of
cachother, triggered in a time-based fashion, semi-
independent of one another. The frame rate varies between
20 and 30, dependent on the number of images
simultaneously used for texturing. Our final mixed reality
theatre application may be considered a prototype, awaiting
to be put to the test by a larger audience.

LESSONS LEARNED — OUR EXPLORATIONS
REVISITED

Altogether, the development of the mixed reality theatre
application has been quite an experience, in multiple ways.
Not in the least it has been (and still is) a challenge to
explain the possibilities of mixed reality applications to the
layman, that do not take the abstractions we use in our daily
academic life for granted.

Reinventing the wheel is not as simple as it seems.
Nevertheless, developing scenegraph processing facilities
and the appropriate timing mechanisms for controlling the
mixed reality presentation was, apart from being a rekindling
of basic skills, a learnful experience.

In our project, the major obstacle became the hardware,
since our approach required one PC and goggle set per
visitor. Also, providing multiple visitors with a goggle
became a problem, due to the wiring.

TECHNICAL ISSUES - PROGRAMMING THE
PRESENTATION SYSTEM

In the course of time, I continued working on the system and
it has been used for parties as well as for enlivening my

lectures. It actually does include many of the features of a VJ
system, and is currently named ViP (www.virtualpoetry.tv).
The major challenge, when I started development, was Lo
find an effective way to map live video from a low/medium
resolution camera as textures onto 3D geometry. [started
with looking at the ARToolkit but I was at the time not
satisfied with its frame rate. Then, after some first
explorations, I discovered that mapping video on 3D was a
new (to some extent still experimental) built-in feature of the
DirectX 9 SDK, in the form of the VMR9 (video mixing
renderer) filter.

The Video Mixing Renderer filter

The VMR filter is a compound class that handles
connections, mixing, compositing, as well as
synchronization and presentation in an integrated fashion,
Pesce (2003). Before discussing the VMR in more detail,
let's look first at how a single media stream is processed by
the filter graph. Basically, the process consists of the phases
of parsing, decoding and rendering. For each of these
phases, dependent on respectively the source, format and
display requirements, a different filter may be used.
Synchronization can be either determined by the renderer, by
pulling new frames in, or by the parser, as in the case of live
capture, by pushing data on the stream, possibly causing the
loss of data when decoding cannot keep up with the
incoming stream.

The VMR was originally introduced to allow for mixing
multiple video streams, and allowed for user-defined
compositor and allocator/presenter components. Before the
VMRY, images could be obtained from the video stream by
intercepting this stream and copying frames to a texture
surface. The VMRO, however, renders the frames directly on
Direct3D surfaces, with (obviously) less overhead. Although
the VMR9 supports multiple video pins, for combining
multiple video streams, it does not allow for independent
search or access to these streams. To do this you must
deploy multiple video mixing renderers that are connected to
a common allocator/presenter component.

When using the VMRO with Direct3D, the rendering of 3D
scenes is driven by the rate at which the video frames are
processed.

The ViP system

In developing the ViP system, I proceeded from the
requirement to project live video capture in 3D space. As
noted previously, this means that incoming video drives the
rendering of 3D scenes and that, hence, capture speed
determines the rendering frame rate.

I started with adapting the simple allocator/presenter
example from the DirectX 9 SDK, and developed a scene
management system that could handle incoming textures
from the video stream. Inherited by all classes is the scene
class interface, which allows for (one-time) initialization,
time-dependent compositing, restoring device settings and
rendering textures. The scene graph itself was constructed as
a tree, using both arrays of (sub) scenes as well as a
dictionary for named scenes, which is traversed each time a
video texture comes in.

64

Later on, I adapted the GamePlayer which uses multiple
video mixing renderers, and then the need arose (o use a
different way of indexing and accessing the textures from
the video stream(s).

Adopting the scene class as the unifying interface for all 3D
objects and compound scenes proved to be a convenient way
to control the complexity of the ViP application. However,
for manipulating the textures and allocating shader effects to
scenes, [needed a global data structure (dictionaries) to
access these items by name, whenever needed. As a final
remark, which is actually more concerned with the software
engineering of such systems than its functionality per se, to
be able to deal with the multiple variant libraries that existed
in the various releases of DirectX 9, it was needed to
develop the ViP library and its components as a collection of
DLLs, to avoid the name and linking clashes that would
otherwise occur.

CONCLUSIONS

‘We have described, in a somewhat anecdotical fashion, our
experiences in developing a mixed reality application for the
Odyssee theatre production, to enhance the participants
experience of the performance. Our explorations involved,
among others, to deal with expectancies of VR, aesthetic
issues, not to mention production schedules, cooperation,
financial issues, but above all it meant setting the first steps
in developing technology for mixed reality theatre. Most
important, however, is that our explorations show the
richness of the DirectX toolkit, not only for games but also
for realtime multimedia presentations.

ACKNOWLEDGEMENTS

We thank Bart Gloudemans and Rutger van Dijk (both
students at the Vrije Universiteit) for their practical work on
the project, as well as their general contribution to the final
contents of the work. Furthermore, we are grateful to Johan
Hoorn and Bert Barten for engaging us in the Odyssee
theatre project.

REFERENCES

Adams J. 2003. “Advanced Animation with DirectX”. Premier
Press.

Entabaclaz A.. 2003. “Les metamorphoses d'Ulysse -- reecritures
de '0Odyssee”. Editions Flammarion, Paris.

Grau O.. 2003. “Virtual Art -- From Illusion to Immersion”. MIT
Press.

Pesce M. 2003. “Programming Microsoft DirectShow for digital
video and television”. Microsoft Press.

AUTHOR BIOGRAPHY

ANTON ELIENS studied art, psychology, philosophy, and
computer science. He is lecturer at the Vrije Universiteit
Amsterdam, where he teaches multimedia courses. He is also
coordinator of the Master Multimedia for Computer Science.
He has written books on distributed logic programming and
object oriented software engineering.

LATE
PAPER

66

Model-Based Design of Game Al

Alexandre Denault, Jorg Kienzle and Hans Vangheluwe
School of Computer Science, McGill University
Montréal, Canada, H3A 2A7
email: {adenau,joerg,hv} @cs.mcgill.ca

KEYWORDS
Modern Computer Games, Model Compilers, Rhapsody
Statecharts, Game Al

ABSTRACT

The complexity of modern computer games has in-
creased drastically over the last decades. The need
for sophisticated game Al, in particular for Non-Player
Characters (NPCs) grows with the demand for realis-
tic games. Writing meaningful, consistent, modular,
re-useable and efficient Al code is not straightforward.
In this article, we suggest to model rather than to code
game Al. A variant of Rhapsody Statecharts is proposed
as an appropriate modelling formalism. The Tank Wars
game by Electronic Arts (EA) is introduced to demon-
strate our approach in a concrete setting. By modelling a
simple Al, it is demonstrated how the modularity of the
Rhapsody Statecharts formalism leads quite naturally to
layered modelling of game Al. Finally, our Statechart
compiler is used to synthesize efficient C++ code for
use in the Tank Wars main game loop.

STATECHARTS

Statecharts were introduced by David Harel in 1987
[Har87] as a formalism for visual modelling of the be-
haviour of reactive systems. A full definition of the
STATEMATE semantics of Statecharts was only pub-
lished in 1996 [HN96]. More recently, with the intro-
duction of UML 2.0, the Rhapsody semantics as de-
scribed in [HKO04] is more tuned to the modelling of
software systems. In this article, we will use a sub-set
of the Rhapsody Statecharts semantics.

At the heart of the Statechart formalism is the notion of
discrete states and the transition between. Statecharts
are a discrete-event formalism which means it takes a
timed sequence of discrete events as inputs and pro-
duces a timed sequence of discrete as output. Internally,
the system transitions between discrete states due to ei-
ther external or internal events. This leads to a piecewise
constant state trajectory inside the system as illustrated
in Figure 1. In Figure 2, a simple model is shown with
two states start and end. The small arrow pointing
to start denotes that state as the default initial state.
If the system is in state start and it receives event,

input
event segment °

time

system
state trajectory

time

output ° °
event segment :
o

time

Figure 1: Discrete-Event In/State/Out Trajectories

action on entry:
action on exit:

event[guard]/action

action on entry:
action on exit:

Figure 2: Statechart Basic Transition

and condition guard evaluates to true, the transi-
tion to state end is taken and the side-effect action
is executed. Additionally, entry/exit actions
are executed whenever a state is entered/exited. All of
the parts of event [guard] /action are optional.
The special event after (At) indicates that a transi-
tion will be taken autonomously after At time units (un-
less interrupted earlier). Statecharts add hierarchy to the
above basic notion of state automata. Figure 3 shows a
composite state s1 with several nested states. Initially,
the system will start in nested state s11 as at the top
level, s1 is the default state and within s1, s11 is the
default state. To understand the nesting, when in a state
such as s11, upon arrival of an event such as £, an out-
going transition is looked which is triggered by event
£. This lookup is performed traversing all nested states,
from the inside outwards. The first matching transition
is taken. This approach keeps the semantics determinis-
tic despite the seemingly conflicting £ trigger on transi-
tions to both s13 and s2. When in state s12, there is

67

sl

action on entry:

action on entry: . "
action on exit:

action on exit:

action on entry:
action on exit:

action on entry:
action on exit:

Figure 3: Hierarchy in Statecharts

C1 C2
size: integer 1 1 [value: integer
myC2
incr_size() set_value(integer)
accept events: Incr accept events:
Set, Reset
et value(0)
p

/ Start

Resetfset value(0)

Figure 4: Modelling Structure and Behaviour

no conflict and event £ will take the system to state s2.
When in state g2, event e will take the system to state
s1. As the latter is a composite state, the system will
transition (after executing s1’s entry action) to the s11,
the default state of s1. In addition to hierarchy, State-
charts add orthogonal components and broadcast com-
munication to state automata. In our implementation
these features will not be used. The most interesting fea-
ture of Rhapsody statecharts is that it allows for a com-
bined description of structure and behaviour of objects.
This is achieved by adding Statechart behaviour descrip-
tions to UML Class Diagrams as shown in Figure ref-
fig:classdiagram. The behaviour of individual objects
(class instances) is described by the class’ statechart.
For conceptual clarity we require that methods in a class
will only have local effects. They can only change the
object’s attributes. All external effects must be mod-
elled in the Statechart. This allows for a clean sepa-
ration of externally visible, reactive, timed behaviour
from internal (computation) details. Objects commu-
nicate by means of a GEN action which sends an event
to a target object as shown in Figure reffig:classdiagram
(myC2->GEN (Set (size=2))). Events can be han-

68

def process (EventQueue) :
while EventQueue not empty:
evt = EventQueue.pop ()
if CurrentState reacts to evt:
t = transition reacting to evt
whose guard evaluates to True
compute states that will be
exited and entered
as a result of taking t
next = last state to be entered
perform exit actions, trigger
and enter actions

set CurrentState = next

def processAll (self):
for obj,evtQ in self.objectQueues.items () :
o.process (evtQ)

Figure 5: Processing Concurrent Objects

deled asynchronously or synchronously (in which case
they are similar to remote method calls). We will mostly
use asynchronous message passing. To support concur-
rency between objects, our Statechart compiler will give
cach object an event queue. All object queues will be
processed fairly as shown in the pseudo-code in Fig-
ure reffig:alg.

MODELLING GAME Al
Tank Wars

In 2005, Electronic Arts announced the EA Tank Wars
competition !, in which computer science students com-
pete against each other by writing artificial intelligence
(AI) components that control the movements of a tank.
In Tank Wars, two tanks, both controlled by an Al, fight
a one-on-one battle in a 100 by 100 meter world. Each
tank has a set of environment sensors, that sense infor-
mation about the tank’s remaining life points and fuel,
its position, the direction in which it is facing, it’s front
radar information (what objects — walls or enemy — are
located within 40 meters in front of the tank), if a tank is
hit and from where the shot was fired, and if the tank is
standing on top of a fuel or health station. In addition, a
tank has a rotating turret with a direction and a second,
more powerful radar, mounted on the turret, that detects
obstacles at distances up to 60 meters (see Figure 6).
The Tank Wars simulation is time-sliced (as opposed to
discrete-event). Every time slice, the Al component of
a tank is given the current state of the world as seen by
the tank sensors. The Al then has to decide whether to
change the speed of the tank, whether to turn, whether to
turn the turret, whether to fire and how far, and whether
to refuel or repair, if possible. Each turn lasts 50 mil-
liseconds — if the Al does not make a decision when the
time limit elapsed, the tank will not move during this
time slice.

'www.info.ea.com/company/company_tw.php

Front Radar

Range 40 meters

—=3m—

SI213W 0Z UIPIM

—— 5 meters —

Figure 6: Tank Input

Time-slicing vs. Continuous Time

As mentioned above, the simulation in Tank Wars is
built on a time-sliced architecture. Every 50ms, the new
state of the environment is sent to the AI component.
Statecharts on the other hand are purely event-based. At
the modeling level, as well as when the model is simu-
lated, time is continuous, i.e. infinite time precision is
available. There is no time-slicing: a transition that is la-
beled with a time delay such as after (t) means that
the transition should fire exactly after the time interval
t has elapsed, t being a real number. Continuous time
is most general, and is most appropriate at this level of
abstraction for several reasons:

o Modeling freedom: The modeler is not unnecessar-
ily constrained or encumbered with implementa-
tion issues, but can focus on the logic of the model.

e Symbolic analysis: Using timed logic it is possible
to analyze the model to prove properties.

e Simulation: Simulation can be done with infinite
accuracy (accuracy of real numbers on a computer)
in simulation environments such as SMV (refer-
ence).

e Reuse: Continuous time is the most general for-
malism, and can therefore be used in any simula-
tion environment.

When a model is used in a specific environment, ac-
tual code has to be synthesized, i.e. the continuous time
model has to be mapped to the time model used in the
target simulation. In games that are event-based such
a mapping is straightforward. This is however not the
case for Tank Wars, in which an approximation has to
take place: the synthesized code can execute at most
once every time-slice. Fortunately, if the time slice is
small enough compared to the dynamics of the system
to be modeled (such as the motion of a tank), the ap-
proximation is acceptable and the resulting simulation
close to equivant to a continuous time simulation.

FrontRadarBehavior

[JrayWithEnemyl/enemyFoundFront

FrontRadar
Tays[20] .—>‘ NoEnemy]

void setRayData(d)
boolean rayWithEnemy()

[_LE" myﬂgmg]

[arayWithEnemy)/enemyLostFront

boolean enemyFront()
boolean enemyRight()
boolean enemyLeft()
boolean wallFront()
boolean wallRight()
boolean wallLefti

[IrayWithWall)/wallFoundFront

o~

[2rayWithWall]/wallLostFront

==

Figure 8: Input Event Generation

Bridging the Time-Sliced — Event-Driven Gap

In order to use event-based reasoning in a time sliced
environment, a bridge between the two worlds has to be
built. In a previous section, we described the semantics
of Rhapsody Statecharts where each object’s behavior is
described in a separate Statechart. We exploit the mod-
ularization capability offered by object-orientation and
define objects that encapsulate the perceived state of the
world. One object is defined for each sensor. At ev-
ery time slice, the Tank Wars framework calls the C++
function static voidAI (constTankAIInput
in, TankAIInstructions & out) of the Al ob-
ject. The in parameter contains a struct that describes
the state of all environment sensors. The function pro-
ceeds by storing the new sensor states in the appropriate
objects (see Figure 7).

The mapping from time-sliced to event-based simula-
tion is done at the level of the sensor objects. If a signif-
icant change occurred in the environment, then the sen-
sor should generate a corresponding event. What kind
of changes are significant and should therefore be sig-
nalled with an event depends entirely on the Al. A sim-
ple Al might only react to coarse grained environment
changes, whereas a more complex Al might want to re-
act to each slightest change.

The idea is illustrated in this paragraph using the
FrontRadar object. The class definition is given in
the left hand side of Figure 8. The actual radar informa-
tion obtained at each time slice is very accurate. In fact,
each radar sends out 20 rays, which reflect when they
hit an obstacle. During each turn, the reflection data of
every ray is made available to the Al, and the Al stores
the complete ray data in the front radar object by calling
setRayData () as shown in Figure 7.

Important events for a simple Al are the sighting of an
enemy or a wall, or the fact that an enemy or wall is
no longer on the radar. The creation of these events is
illustrated in the FrontRadarBehavior Statechart
in Figure 8. Whenever event handling takes place (we
chose in our implementation to process events at every
time slice), the rayWithEnemy condition is evaluated
by calling the corresponding function provided by the

69

[__; Tank Wars LI\ LAl LI\ : FrontRadar Qgr_o_und&ns_er lﬁg;cmzsu%
i Al(.) i i i |
' setRayData(d) : i i
1 1 1
1 setGround(t) i i
i i i
1]]
H 1 T setPosition(p) _ |
: i ' 'w
1] 1
1 1 1 i
1 | 1 I
1 1 1 1
1] 1]
1] 1]
1 1 1 1
< | 1 1

Figure 7: Converting Time Sliced Execution to Events

Seeking

VIS _WALL _UNKNCWN

Searching

Turning
Figure 10: Conservative Tank Behaviour

class, and if the condition evaluates to true, then the
transition fires and a corresponding event is generated.
The events from the sensors are then broadcast to other
statecharts at higher levels of abstraction. Sophisti-
cated Als might have analyzer objects, for instance ob-
jects that keep track of the wall configuration in the
world, or objects that track the enemy. These ob-
jects react to sensor events and update their state. In
case an important situation is detected, for instance
tankEnteredDeadEnd, an appropriate event is cre-
ated and broadcast.

At the topmost level of abstraction is the object that
defines the high-level strategy of the tank. This ob-
ject might define different modes or priorities, for in-
stance following the enemy, or looking for fuel. Modes
changes or other high-level command events such as
fleeFromEnemy are sent on to coordinator and plan-
ner objects that take care of the detailed execution of
these high-level commands. Finally, actuator objects
update their state when receiving low-level events such
as advanceFullSpeed. After all events have been
processed, the state in the actuator objects is copied into
the out struct of the AT function and returned to the
Tank Wars simulation.

The event propagation through the different levels of ab-
straction is illustrated in Figure 9.

MODELLING TANK WARS

In the sequel, we show a few small parts of our simple
Tank Wars Al model. Figure 10 shows the Statechart
for the main tank behaviour modelled in our AToM? vi-

70

UPDATE fiswallet}
archingForwall

WallLeft

UPDATE [isWallnihown]

WallUnknown UPDATE [isWallFrort]

w%\

,ﬁ!nmgm

UPDATE [isWallFight]

Figure 11: Wall Detection

DATE [iuellevel <= 75.0

DATE [fuell.evel <= 50.0

TE [fuelLevel <= 25.0

Fuel50

Fuel100 Fuel75 Fuel25

Figure 12: Fuel Level Monitoring

sual modelling environment [dLVA0O4]. Note that de-
fault states are denoted in green. The tank is highly
conservative and toggles between searching and rest-
ing (stopped) mode. This strategy conserves fuel and
turns out to pay off. The autonomous behaviour gets
interrupted when a wall is encountered in which case
the tank turns. Figure 11 shows wall detection at work.
Figure 12 demonstrates how the different fuel levels are
dealth with by means of different modes. Similarly, Fig-
ure 13 shows how overal tank health is monitored. It
also shows how the tank is ultimately destroyed when
the health becomes negative. It will be clear from the

TE fhealth = (50,25(

H%I?hl’: %‘IZS
DATE [heatth = [75.50(UPDATE [health = [25,0(

Figure 13: Tank Health Monitoring

MonitoringHealth

Health100 Health50

UPDATE | health <=0

Destroyed

Time-sliced

Input Sensor Objects

FrontRadar

Enemy
Tracker

Al Behavior

Corrdinator /

Planner Obijects Actuator Objects

Output

Movement

World
Mapper

TankEngine

I
I
I
I
I
I
|
I
Planner :
I
I

— >
x~—

Tank-Turret
Coordinator

OO

Time-sliced

x—

Figure 9: Event Propagation
(NSERC) Discovery Grant.
REFERENCES

Figure 14: Wall Encounter Execution Trace

above that judicious use of state nesting combined with
concurrent objects allows for concise and easy to under-
stand models.

We have compiled the above models into C++ code with
our Statechart compiler. After inserting this code into
the Tank Wars game, realistic behaviour is observed as
shown in Figure 14. The figure shows a trace of a sce-
nario where a tank encounters a wall and turns.

ACKNOWLEDGEMENTS

Huining Feng built the DChart visual modelling envi-
ronment, simulator and compiler [Fen04]. David Meu-
nier re-used the visual modelling environment and built
the first prototype of our Rhapsody Statecharts com-
piler (generating Python code). Both of these efforts
formed the basis for the work described in this paper.
Jorg Kienzle and Hans Vangheluwe greatfully acknowl-
edge partial support for this work through their National
Sciences and Engineering Research Council of Canada

[dLVAO4] Juan de Lara,

[Fen04]

[Har87]

[HKO04]

[HNO6]

71

Hans Vangheluwe, and

Manuel Alfonseca. Meta-modelling
and graph grammars for multi-
paradigm modelling in AToM?3. Soft-

ware and Systems Modeling (SoSyM),
3(3):194-209, August 2004. DOI:
10.1007/810270-003-0047-5.

Thomas Huining Feng. DCharts, a formal-
ism for modeling and simulation based de-
sign of reactive software systems. M.Sc.
dissertation, School of Computer Science,
McGill University, February 2004.

David Harel. Statecharts: A visual formal-
ism for complex systems. Science of Com-
puter Programming, 8:231 — 274, 1987.

David Harel and Hillel Kugler. The rhap-
sody semantics of statecharts (or, on the ex-
ecutable core of the uml). LNCS, 3147:325
— 354, 2004.

David Harel and Amnon Naamad. The
statemate semantics of statecharts. ACM

Transactions on Software Engineering and
Methodology, 5(4):293-333, October 1996.

72

AUTHOR
LISTING

74

Bhikharie S.V. 49
Bullen T. e 34
Burgess S....iiieeeeeeenen. 39
Carbonaro M. ...eeueveennnns 54
Cutumisu M. .cooveerereennns 54
Denault A...eeeeeeirenirennnes 67
DUFf H. coreeeeieemceeeeceeeeane 54
Dyer-Witheford N. 34
Eliens A. oeeeeieeeeeeceeeene 49/62
El-Rhalibi A. ..coveeeeeeeee. 5
GilliS S. weeerreeerecrereeseees 54
Hofmann P.erveerneene. 23
Katchabaw M.ee.... 34/39
Kienzle J..coeeeeeenirennnes 67
Lanctot Ma.eveeeveenirennnes 26

AUTHOR LISTING

75

Merabti M. ..coveevreeeeeeenee. 5

(0310074 (o J OF I 54
Peterson J. coueeveeeirennnee. 18
Schaeffer J. vouueeverrenrerees 54
Schumacher A.............. 54
Siegel J.oiinrrrnins 54
SUNN.N.M. oo 26
Szafron D. ooveevveeeeeeeee. 54
Vangheluwe H.............. 67
Verbrugge C...ceveeeeeee. 26
Vernieri T.M.covveeeirennnes 13
Waugh K....oooeiiiiinneees 54
Young R.M. ..cccmeerinnnee 13

	first pages
	book

