5" INTERNATIONAL NORTH-AMERICAN CONFERENCE

ON
INTELLIGENT GAMES AND SIMULATION

GAMEON-NA 2009

EDITED BY

Joseph Saur
And

Margaret Loper

AUGUST 26-28, 2009

GEORGIA TECH
ATLANTA, USA

A Publication of EUROSIS-ETI

Printed in Ghent, Belgium

Cover art:

Divinity Il - Ego Draconis © 2009 dtp entertainment AG and Larian Studios. All rights reserved. Developed by
Larian Studios

All company names, brand names, trademarks and logos are the property of their respective owners.

5™ International North-American Conference
on

Intelligent Games and Simulation

ATLANTA, USA

AUGUST 26-28, 2009

Organized by
ETI
Sponsored by
EUROSIS

Co-Sponsored by

Ghent University GR@M
UBISOFT Larian Studios
GAME-PIPE The MOVES Institute
Modelbenders HI-Rez Studios
Hosted by

Georgia Tech

Atlanta, USA

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

EDITORS

Conference Chair
Joseph Saur, Georgia Tech, Atlanta, USA

Program Chair
Margaret Loper, Georgia Tech, Atlanta, USA

PROGRAMME COMMITTEE

Game Development Methodology
Track Chair: Licinio Roque, University of Coimbra, Coimbra, Portugal
Esteban Walter Gonzalez Clua, Universidade Federal Fluminense, Brasil
Gabriele D'Angelo, University of Bologna, Bologna, Italy
Oscar Mealha, University of Aveiro, Portugal
Jari Multisilta, University of Tampere, Finland
Ana Veloso, University of Aveiro, Portugal

Physics and Simulation

Graphics Simulation and Techniques
Stefano Ferretti, University of Bologna, Bologna, Italy
Yan Luo, National Institute of Standards and Technology, USA
Joerg Kienzle, McGill University, Montreal, Canada
lan Marshall, Coventry University, Coventry, United Kingdom
Marco Roccetti, University of Bologna, Bologna, Italy

Facial, Avatar, NPC, 3D in Game Animation
Marco Gillies, Goldsmiths University of London, London, United Kingdom
Yoshihiro Okada, Kyushu University, Kasuga, Fukuoka, Japan
Paolo Remagnino, Kingston University, Kingston Upon Thames, United Kingdom
Marcos Rodrigues, Sheffield Hallam University, Sheffield, United Kingdom
Joao Manuel Tavares, FEUP, Porto, Portugal

Rendering Techniques
Joern Loviscach, Fachhochschule Bielefeld, Bielefeld, Germany

PROGRAMME COMMITTEE

Artificial Intelligence

Artificial Intelligence and Simulation Tools for Game Design
Mokhtar Beldjehem, Ecole Polytechnique de Montreal, Montreal, Canada
Penny de Byl, Breda University of Applied Sciences, Breda, The Netherlands
Antonio J. Fernandez, Universidad de Malaga, Malaga, Spain
Gregory Paull, The MOVES Institute, Naval Postgraduate School, Monterey, USA
Oryal Tanir, Bell Canada, Montreal, Canada
Christian Thurau, Fraunhofer Institute, Schloss Birlinghoven, Germany

Learning & Adaptation
Christian Bauckage, Franhofer IAIS, Sankt Augustin, Germany
Christos Bouras, University of Patras, Patras, Greece
Adriano Joaquim de Oliveira Cruz, Univ. Federal de Rio de Janeiro, Rio de Janeiro, Brazil
Vinicius Fernandes dos Santos, Univ. Federal de Rio de Janeiro, Rio de Janeiro, Brazil
Andrzej Dzielinski, Warsaw University of Technology, Warsaw, Poland

Intelligent/Knowledgeable Agents
Nick Hawes, University of Birmingham, United Kingdom
Weniji Mao, Chinese Academy of Sciences, Beijing, P. R. China .
Scott Neal Reilly, Charles River Analytics, Cambridge, USA
Marco Remondino, University of Turin, Turin, Italy

Collaboration & Multi-agent Systems
Sophie Chabridon, Groupe des Ecoles de Telecommunications, Paris, France

Opponent Modelling

Ingo Steinhauser, Binary lllusions, Braunschweig, Germany

Peripheral

Psychology and Affective Computing
Bill Swartout, USC, Marina del Rey, USA

Artistic input to game and character design
Anton Eliens, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
Richard Wages, Nomads Lab, Koln, Germany

Storytelling and Natural Language Processing
Ali Arya, Carleton University, Ottawa, Canada
Jenny Brusk, Gotland University College, Gotland, Sweden
R. Michael Young, Liquid Narrative Group, North Carolina State University, Raleigh, USA
Clark Verbrugge, McGill University, Montreal, Canada

Modelling of Virtual Words
Rafael Bidarra, Delft University of Technology, Delft, The Netherlands
Ruck Thawonmas, Ritsumeikan University, Kusatsu, Shiga, Japan

PROGRAMME COMMITTEE

Online Gaming and Security Issues in Online Gaming
Pal Halvorsen, University of Oslo, Oslo, Norway
Andreas Petlund, University of Oslo, Oslo, Norway
Jouni Smed, University of Turku, Turku, Finland
Knut-Helge Vik, University of Oslo, Oslo, Norway

MMOG's
Chris Joslin, Carleton University, Ottawa, Canada
Michael J. Katchabaw, The University of Western Ontario, London, Canada
Alice Leung, BBN Technologies, Cambridge, USA
Mike Zyda, USC Viterbi School of Engineering, Marina del Rey, USA

Serious Gaming

Wargaming Aerospace Simulations, Board Games etc....
Roberto Beauclair, Institute for Pure and Applied Maths., Rio de Janiero, Brazil
Erol Gelenbe, Imperial College London, United Kingdom
Henry Lowood, Stanford University Libraries, Stanford, USA
Jaap van den Herik, Tilburg University, Tilburg, The Netherlands

Games for training
Michael J. Katchabaw, The University of Western Ontario, London, Canada
Gustavo Lyrio, IMPA, Rio de Janeiro, Brazil
Tony Manninen, University of Oulu, Oulu, Finland
Jens Mueller-Iden, Universitaet Muenster, Muenster, Germany
Maja Pivec, FH JOANNEUM, University of Applied Sciences, Graz, Austria
Martina Wilson, The Open University, Milton Keynes, United Kingdom

Games Applications in Education, Government, Health, Corporate, First Responders and Science
Paul Pivec, RaDiCAL
Daniela M. Romano, University of Sheffield, Sheffield, United Kingdom
Russell Shilling, Office of Naval Research, Arlington VA, USA

Games Interfaces - Playing outside the Box

Games Console Design
Chris Joslin, Carleton University, Ottawa, Canada
Anthony Whitehead, Carleton University, Ottawa, Canada

Mobile Gaming
Stefano Cacciaguera, University of Bologna, Bologna, Italy
Sebastian Matyas, Otto-Friedrich-UniversitAat Bamberg, Bamberg, Germany

Perceptual User Interfaces for Games

Tony Brooks, Aalborg University Esbjerg, Esbjerg, Denmark
Lachlan M. MacKinnon, University of Abertay, Dundee, United Kingdom

VI

GAME’ON-NA
2009

© 2009 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Simulation Society. Permission is
granted to photocopy portions of the publication for personal use and for the use of students providing credit is given to
the conference and publication. Permission does not extend to other types of reproduction or to copying for
incorporation into commercial advertising nor for any other profit-making purpose. Other publications are encouraged
to include 300- to 500-word abstracts or excerpts from any paper contained in this book, provided credits are given to
the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be used
in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in these Proceedings have been peer reviewed

EUROSIS-ETI Publications are 1SI-Thomson and INSPEC referenced

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Greenbridge NV,
Wetenschapspark 1, Plassendale 1, B-8400 Ostend Belgium

EUROSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400

Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium
Final Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium

EUROSIS-ETI Publication

ISBN: 978-90-77381-49-6
EAN: 978-90-77381-49-6

VI

Preface

On behalf of Georgia Tech, the Georgia Tech Research Institute (of which | am a
member), and the greater Georgia Tech gaming community, I'd like to welcome
you to GAMEON-North America 2009, and to the fair city of Atlanta.

Over the past few years, the simulation and gaming industries have grown to
include not just commercial video games, but flight simulators for training,
imbedded team training environments, medical trainers. Each segment of this
very large mix of hardwares and softwares has its own language, its own
technologies, and its own (often very different) economic drivers. The value of
conferences like this allow us, the ones who build the systems, lies in their ability
to allow us to exchange thoughts and ideas, experiences and concerns, stories of
what has worked in one venue (and which might be potentially migrated to
another), and what has not. | know | look forward to listening to your
presentations, and encourage the exchange of ideas over the next few days.

As well as the peer-reviewed papers, Game-On 'NA 2009 features a number of
invited talks highlighting research done at Georgia Tech in the field of computer
gaming. They are in order of presentation; “Adaptive Digital Media: Improvisation
and Motivation” by Brian Magerko; “Handheld AR Games” by Blair Mcintyre;
“‘Research with a player-run virtual university in There.com” by Celia Pearce; and
“The Role of Al, Storytelling, and Creativity in Entertainment” by Mark Riedl.

To finish of the research theme we will visit the Games Labs at Georgia Tech and
Hi-Rez Studios.

Again, welcome to Atlanta, y’all!

Joseph Saur and Margaret Loper
Conference Chairs

Georgia Tech

Atlanta, USA

Preface ... e IX
Scientific Programme ... 1
AUthOr LiSting......cccciiiiiiieeeeeeerrr s 77
GAME Al

Virtual World Creation and Visualization by Knowledge Based Modeling
Jaime Zaragoza, Alma Verdnica Martinez, Félix Ramos,
Mario Siller and Véronique Gaildrat.....cccucceeeemmermnnsnsssnrssr s sssssssenssens 5

BOT Building Strategies related to Educational Methodology

Clinton Rogers, Daniel Avila and Iren Valova........ccccccererssssmmmsmsmmmeeeeemmeemeseeenne 10
MODELLING AND GAMES DESIGN

A Proposition of Particle Systems-Based Technique for automated Terrain
Surface Modeling

Korneliusz Warszawski and SIawomir NiKi€leeeeeeeemrmmmmmmmmmmmmmmmmeneeeennns 17
Creation of Virtual Worlds through Knowledge-Assisted Declarative
Modeling

Jaime Zaragoza, Véronique Gaildrat and Félix Ramos......cccccccmmeeeeemmrenennenennns 20

Towards automated Feature Selection in Real-Time Strategy Games
Kurt Weissgerber, Brett Borghetti, Gary Lamont and Michael Mendenhall....... 25

Machinations: Elemental Feedback Structure for Game Design
B [1S Lo = 1t 33
BOARD GAMES

On feature discovery process in board games
Rafal Lopatka and Vasik RajliChccuueiiiicincemmmeiiiscscsseees s sssssssse s ssmsssseenas 43

Fractal Territory Game
Siao-Fan Siao, Luo-Wei Lee and Wen-Kai Tai..ccccceeeierrmiiremnisreenssremssrrenssennes 51

Xl

CONTENTS

CONTENTS

SERIOUS GAMING

LIFESIM: Software for Health Science
Charles C Earl, Daniel Fu, Isobel Contento, Pam Koch, Ana Islas,
Erin Hoffman and Angela Calabrese Barton......cccucccevrmeerrisssssssssesssnsssssssssssenns 59

Real-Time Warfare Simulation goes Web 2.0
Gustavo Henrique Soares de Oliveira Lyrio and
Roberto de Beauclair SEIXasuuuiiiiiiiiiniiinisssssssssssssssssssssssssssssssssssssssennsnsssssssnnn 64

Increasing P2P Gameplay Performance Utilizing I3P
Jeremy Kackley, Jean Gourd and Matthew Gambrellccceviviiiiicicissssnnnnnnnes 68

Xl

SCIENTIFIC
PROGRAMME

GAME
Al

VIRTUAL WORLD CREATION AND VISUALIZATION BY
KNOWLEDGE-BASED MODELING

Jaime Zaragoza, Alma Verdnica Martinez, Félix Ramos, Mario Siller, and Véronique Gaildrat
Centro de Investigacion y de Estudios Avanzados, Unidad Guadalajara, México
Institut de Recherche en Informatique de Toulouse, France
email: {jzaragoz, vmartine, framos, msiller}@gdl .cinvestav.mx, veronique.gaildrat@irit.fr

KEYWORDS
Game Design, Game Engine Design, Game Environment
Creation, Knowledge Bases, Distributed Systems

ABSTRACT

Virtual worlds can be used in a variety of areas, from
entertainment to education, allowing us to see and inter-
act virtual creatures and environments. The construc-
tion and correct visualization these worlds is a time and
resource consuming task, which requires expertise in the
modeling of 3D models and render engines. In this pa-
per, we propose a method for creating and distributing
the visual output of virtual environments, useful for any
kind of simulations by means of knowledge assisted mod-
eling.

INTRODUCTION

Nowadays computational technology allows creating
rich, complex, and detailed simulations of Virtual En-
vironments (VE). These virtual worlds can be used for
severals propouses, from entertainment, such as movies
or video games, to teaching, in the form of virtual
trips or training sessions. The creatoin of these virtual
worlds, where users interact with the entities dwelling
inside these worlds, is a task which requires a multi-
disciplinary staff, from computer engineers, who design
software that runs the simulations of the virtual environ-
ments, to artists, who create individual elements that
appear in those environments. In addition, the whole
process can take several hours or even years to be com-
pleted.

Several researches have proposed different methods to
ease the task of creating virtual worlds, with the aim
of obtaining visualizations that satisfy the user require-
ments, leaving the task of generating the models to
graphic designers. Another method to create virtal
worlds is declarative modeling (Gaildrat 2007). This
is a process where users just describe the properties for
the virtual world and the entities, and then let the mod-
cler find the appropriate elements to be presented and
their corresponding behaviors. The model is a coherent
representation of the environment necessary to create
a graphic representation of the virtual world. If such

representation is in 3D, it is easier for final users to un-
derstand the events that occur in the environment.

RELATED WORK

Currently, there are not researches that deal with both
the generation of the environment and the work of co-
herent distribution of the visualization. This lead us to
present some related work in the creation of virtual envi-
ronment models, as well as researches oriented towards
the evolution of the visualization for the environment.
Some researches deal directly with the generation of any
kind of virtual environments, using a variety of inputs,
from everyday language to specialized haptic hardware.
The first project is the WordsEye, a text-to-scene con-
version system, developed by Bob Coyne and Richard
Asproad at the AT&T laboratories which allows any
user to generate a 3D scene, from a description written
on natural language, using part-of-speech taggers and a
statistical analyzesr to parse the entry, and then depic-
tors (low level graphic representation) to compose the
scene (Coyne and Sproat 2001). The second project is
DEMZ2ONS, a High Level Declarative Modeler for 3D
Graphic Applications, designed by Ghassan Kwaiter,
Véronique Gaildrat and René Caubet. It allows the user
to easily construct 3D scenes in natural way and with
a high level of abstraction. Composed by two parts: a
modal interface and 3D scene modeler (Kwaiter et al.
1997). The last work is called CAPS or Constraint-
based Automatic Placement System, developed by Ken
Xu, Kame Stewart and Eugene Fiume (Xu 2002). It
makes possible the modeling of big and complex sce-
narios, using a set of intuitive positioning restrictions
that allow the manipulation of several objects simulta-
neously, while pseudo-physics are used to assure that
the positioning is physically stable.

In the literature available for each of these projects, we
found that none of them allow the user to make fur-
ther modifications beyond reorganizing the scebe lay-
out, and none of these researches include methods for
self-evolution or simulations over the 3D environment.
The input language, in most of them, uses specialized
hardware or data, and, in the specific case of Word-
sEyes, it does not allow to include new concepts, due
to its web-based nature. Also the distribution of the

visualization load is not approached. All of them make
a local and centralized generation of the visual output.
Some of these researches use web-based 3D standards,
such as VRML97, while others process a render of a
static shot of the scenario, limiting the type of environ-
ments, as well as the possibility of generating changes
that look natural, avoiding a better evolution for the
environment.

Recently, several approaches have been presented for
supporting distributed rendering in cluster systems
(Gonzélez Morcillo et al. 2007). This kind of researches
are not useful for us, because the output of the render-
ing process is an image, and there is a server in charge
of composing the final image. In (Rangel-Kuoppa et al.
2003) is proposed a 3D rendering system that distributes
rendering tasks across a multi-agent platform. The main
idea of this system is the rendering of 3D individual
objects in different computers. Thus, the agent, that
generates the 3D visualization, takes and merges the
information from the different buffers to produce a cen-
tralized visualization of the whole 3D Virtual Environ-
ment. In (Karonis Nicholas et al. 2003) is implemented
a remote rendering system using a collaborative com-
ponent and a high-resolution remote rendering compo-
nent. But, this system is for near-real time viewing and
later use; and the rendering task is distributed inside
one cluster only. A system for distributed rendering
of large and detailed virtual worlds was described in
Chaudhuri et al. (2008). This system is a client-server
implementation, where the processing of virtual worlds
is distributed among the available servers. This system
can be used for generating virtual worlds with fine detail
at planetary scales. The capacity of the server limits the
number of clients in the system.

VIRTUAL ENVIRONMENT MODELING

We use declarative modeling to create virtual environ-
ments. This methodology has three phases: the first
one, Description, involves the user providing settings,
entities and properties to be used to generate a model,
as well as certain restrictions to be solved or satis-
fied. In this phase is defined the interaction language.
We defined a language oriented towards composing de-
scriptions of VEs, calle VEDEL (Zaragoza Rios 2006).
VEDEL allows to compose and edit descriptions of VEs,
directing the user’s attention to entities and their prop-
erties, providing a structured method for the composi-
tion itself.

The second phase in declarative modeling is Generation,
where the models are composed, validated and then pre-
sented. This phase solves the assignation of the proper-
ties stated by the user, as well as any kind of conflict that
may appear during the generation. This can be achieved
by different methods for solving constrained problems,
being the Constrain Satisfaction Problem solving the
most well-know. We focused on integrating knowledge

exploitation on the solution of CSPs, as well as into the
whole generation process, making these two tasks more
casy and transparent, as well as solving implicit mean-
ings for some concepts.

Finally, the Insight phase allows the user to decide which
of the proposed solutions is the best one, or to make
modifications over the proposed layout, in a way that
the solution matches with the user’s ideal.

Using this methodology we designed a modeler, which
also implements the concept of knowledge exploitation,
in the form of a knowledge base, an ontology, which
helps in the model creation process by solving term am-
biguity and concept value transforming.

VIRTUAL ENVIRONMENT EDITOR

The first part of our proposal corresponds to a Virtual
Environment Editor (VEE) module, which take the task
of receiving a user’s input written in VEDEL definition,
and then providing a solution for the user’s statements.
The input is received by a lexical-syntactic parser, which
transforms the VEDEL entry into a data structure, or-
ganized according to the syntax rules for VEDEL, with
entity type as the upper branches, and their properties
as the lower leafs. The parsed entry is used then by a
model creator to generate the model. The process be-
gins with a zero-state model, which is a basic skeleton
created with default values for the environment and enti-
ties, extracted from the knowledge base by an inference
Sfunction, which makes accesses and queries the knowl-
edge base, as well as making the necessary data type
conversions between the data obtained and the mod-
eler’s needs, which are updated in the model with the
values provided by the user for each of the entities’ prop-
erties. The converted values are set to each entity in the
model, with the exception of position and orientation,
afterwards the model is sent to the CSP solving algo-
rithm to set the layout and solve any spatial conflict
that may arise.

The CSP solving algorithm works in two steps: first,
it sets all the position values for each request made in
the description. The corresponding values are computed
using the knowledge base to obtain the ranges for the
petition. The first entities to be assigned are those set
to a specific place in relation with the environment or
any landmark (a specially delimited area in the envi-
ronment), such as south or center. These entities are
called pivots, and are used to set the remaining of the
entities’ positions, using the ranges from the knowledge
base and the values from the pivot entities to set their
appropiate positions and orientations.

The next step is to find any possible conflict and then
solving it. This is conducted through the CSP, which
is defined as a tuple CSP =< V,D,C >, composed
by a set of variables V' = {X;,Xo,...X,}, where
X1, Xs,... X, belong to the set of entities in the en-
vironment, and X, = {Position, Orientation, Scale}
VX, € V. The domains for cach v; € V are D(X;(P)) =

[—o0,00), D(X:(0) = [0.2x]. Finally D(X,(S)) =
[0,0], and the set of constraints is formed by the fol-
lowing equations:

(21 —22)" + (1 —y2)* + (21 —22)° = (r1—72) >=1t1 (1)

() ()men o
() @) ()

Equation 2 is used to solve collisions. Thresholds 1,
t> and t3 are set in the knowledge base, therefore, the
strictness of the verification can be modified. This val-
idation is carried out using collision marks, which are
set for each entity. These marks consists of spheres that
cover the entity’s volume, and are retrieved along with
the properties for the entity. The marks in an entity are
tested against the marks wich belong to others entities,
and if there are no collisions, that is, the result from
equation 1 is bigger or equal to threshold ¢, for all the
collision marks in all the entities, the collision validation
has been passed.

If there is a collision, the CSP finds a new position for
conflicting entities, and then, proceeds to verify the new
position. This is carried out using equations 2 and 3, in
combination with a series of characteristic points defined
for each entity. As well as the collision marks, the values
for equation 2 are stored in the knowledge base, and
retrieved all the entity’s properties.

The test for a position in which an entity makes refer-
ence to another is carried out using the characteristic
points to evaluate function 2. If at least a number n
(n = 1 by default) of characteristic points passes the
test, this is, the result of equation 2 is less or equal to
threshold t9, the validation test has been passed and
the position is valid. Equation 3 is used for absolute
positioning in landmarks or the environment itself, or
in specially cases such as: over, inside, and against.
i.e., where the entities touch each other or are contained
inside another. The validation is carried out similiar as
equation 2. Any non-complying test leads to further
modifications in the position of entities.

The CSP can perform verifications for local minimums
or maximums, so finding a solution can be assured. It
also records entity’s past positions, in order to locate
clusters of invalid or conflicting positions, and find an-
other solution away from the cluster. Other conflict
solving procedures are: the complete arrangement of the
entities in the environment, and rotating conflicting or
referenced elements. If the positioning tests are passed,
the model is tagged as valid, and send to the final mod-
ule in the modeler, the output generator. This module
works over the Model-View Controller outline, sending
any valid model obtained by the model creator, which is
transformed by the MVC into a suitable output for the
visualization and animation process, which is described
in the following sections.

VIRTUAL ENVIRONMENT VISUALIZATION

This section describes the creation and visualization of
the evolution in the virtual environment. The descrip-
tion used in the creation is received from the VEE, this
is interpreted to identify the entities by the virtual en-
vironment. We considered a human avatar, which is the
most complex entity, because, it can perform different
animations that include all the parts of the avatar. we
make use of skeletal animation based in H-anim (Group
2009). The purpose is to facilitate real-time manage-
ment of each part of avatar’s skeleton. We generated
a real-time distributed visualization of 3D VEs using
computational grids and peer-to-peer apporaches. Our
architecture has the following components:

e Public knowledge base (KB): It’s a set of ontologies
based on OWL (Web Ontology Language) with in-
formation of VE (3D scenarios, avatars and 3D ob-
jects).

e Coordinator nodes: These are special users that
manage the consistency of VE.

e User nodes: They are external entities that can per-
form actions into the VEs.

Figure 1 shows that our architecture is divided into dif-
ferent layers, in order to identify and reduce the depen-
dence of upper and lower layers. The local processing
layer is necessary to update the local interface and to
maintain a minimum consistency into the VE. That is
to say, when a user requests to execute an action, this is
evaluated to verify its consistency. For example, all af-
fected entities must exist and the actions must be valid
in the entity before applying changes in their state.
When a user wants to perform an action (animation)
on an avatar, it automatically generates a request. This
request has the following elements: the required avatar,
the action to perform, and the time stamp that indicates
the order in which actions must be performed. For each
avatar is managed a queue of requests. Once the ac-
tions have been ordered by the time stamp, these will
be executed in a process based on a dynamic time slot
(TS). In this slot are placed all the actions that can be
executed in 60 milliseconds. The time is based in con-
tinuous movements (Maiche Marini 2002), for obtaining
a real-time visualization.

Using a TS, it is possible to locally manage the work-
load. The TS is handled taking into account an in-
crement in local time that increases or decreases the
amount of actions to be executed in a process, generat-
ing a new state of the VE. Each process returns a result
that is sent to the user.

VIRTUAL ENVIRONMENT DISTRIBUTION

One of the main challenges in a shared VE is to effi-
ciently send update messages in a correct way to provide
scalability, minimized the delivery delay, and to obtain

Local processityy M+ Yimsiag dhe vedstonaf Y5~ Lot provissing

Checking Chesking
consistency consisteney
T J— »

vi | ther
EI g

Lipdating Distridbusion Lipddasing Dinrifa

Figure 1: Architecture Peer-To-Peer

a better reliability of the VE. The update message has
as a result, a change of state in a virtual entity (avatar
or 3D object). In our implementation, in order to carry
out the distribution of messages among users, we take
into account the following aspects: the organization of
the nodes, the type of communication channel, and the
involved communication protocols (see figure 2). These
factors affect the delivery time of packages which is very
important to ensure a real-time visualization of VEs. To
identify the area of interest each avatar belongs, we con-
sider two aspects: the vision area of the avatars and the
constraints of vision of the VE. Constraints of vision of
VE are given by the objects that restrict the range of
vision of the avatars.

When several user exist in the VE, is necessary to check
the consistency among all involved users. To do this,
consistency messages are generated. These messages
contain a description of the area of interest to which
the user belongs. Consistency messages are distributed
by the layer distribution of updates. This layer also is
responsible for selecting a reliable means to deliver them
to a responsible coordinator of an area of interest. All
the coordinators assigned to an area of interest are in
charge of arrangements for setting the correct state of
the VE.

The use of areas of interest avoids sending and process-
ing messages where the avatars can not perceive notori-
ous changes or other avatars into the VE. Thus, having
identified the areas of interest, it is necessary to choose a
coordinator node for each area of interest. This choice is
done taking into account the average distance between
all nodes, and also considering the available bandwidth,
in order to reduce the delay in message delivery and min-
imize loss of them. In a reliable connexion is possible to
know the TTL field. This field contains the number of
jumps needed for a packet to reach its destination. We
define distance as the number of jumps that a packet
has done.

Figure 2 also shows the computation of the average dis-

Figure 2: Choice of coordinator

tance between all nodes in an area of interest. For exam-
ple, node 3 has the shortest distance to all other nodes,
so it is taken as the coordinator node.

The new state of VE is computed by taking into account
two major agreements: the first one, among all involved
users in an area of interest and its coordinator (new
state of the area of interest) and the second one, among
all involved coordinators in the VE (final state of VE).
If the coordinator detects different times, an agreement
is made between the nodes for establishing the correct
time in the VE.

If a coordinator has a work overload, a new coordinator
is selected. In this way, there may be more than one
coordinator per area of interest. This ensures that each
coordinator manages a balanced amount of users. Our
proposal uses only a coordinator node to verify the con-
sistency between users. If at any time the coordinator
is not available, the nodes in the area of interest are
capable to select a new coordinator among them.

RESULTS AND CONCLUSIONS

To our knowledge, htere are not current projects that
offer the possibility of creating virtual scenarios that
can also be used to run a simulation, or to let the vir-
tual world to evolve by itself. We also propose a simple
method for input the settings, entities and properties to
be represented, without the need of special hardware,
but adaptable enough to be extended to other input
methods. Also, this method provides a structured for-
mat, to allow the user to focus in the content rather
than the format of the description. Finally, the system
is accessible enough to let users to adding new content,
as well as modifying the constraints that will dictate the
direction of the search for solutions.

We design our modeler to be extensible enough, by using
the knowledge base, which allos changing the modeling
process, as well as the results obtained. The outputs
are also fully adaptable, thanks to the use of the MVC
component.

On the downside, there must be an experienced user,

which will provide the first entities and environments,
and the knowledge to process the users’ requests for such
elements. Also, the visualization will depend on the
underlaying architecture and its rendering engine.

The graphical representation and evolution of the VE
is based on a P2P architecture. The saturation in the
client is inherently avoided due to the P2P communi-
cation scheme, and the overload of management of the
coordinator. Thus, a P2P scheme is a convenient ar-
chitecture to provide a better scalability for large scale
VEs. The animation of the virtual entities is not based
on pre-designed animations. The nodes are grouping in
different interest arcas, this minimizes the amount of
messages in the network. The messages from VE are
classified into subsets, a node receives messages from
just one subset therefore this reduces the overload in
each node.

We present as example the creation of two VEs: figure
3 (left) is the VE of a Maya game called "ULLAMA”.
The second example is a life simulation, figure 3, right,
in which the user describes the environment to be repre-
sented and its inhabitants. The system, then, simulates
everyday-life events.

Figure 3: Examples of VEs: Maya Game Ullama and
House environment

Acknowlegments

This research is partially supported by CoECyT-
Jal Project No. 2008-05-97094, whilst authors J.A.
Zaragoza and A.V. Martinez are supported by CONA-
CYT grants 190965 and 47605.

REFERENCES

Chaudhuri S.; Horn D.; Hanrahan P.; and Koltun V.,
2008. Distributed Rendering of Virtual Worlds. In
Technical Report CSTR 2008-02. Computer Science
Department, Stanford University.

Coyne B. and Sproat R., 2001. WordsEye: An Au-
tomatic Text-to-Scene Conversion System. In SIG-
GRAPH °01: Proceedings of the 28th annual con-
ference on Computer graphics and interactive tech-
niques. AT&T Labs Research, 487-496.

Gaildrat V., 2007. Declarative Modelling of Virtual En-
vironment, Overview of issues and applications. In

International Conference on Computer Graphics and
Artificial Intelligence (3IA), Athénes, Gréce. Labora-
toire XLIM - Université de Limoges, vol. 10, 5-15.

Gonzalez Morcillo C.; Weiss G.; Vallejo Fernandez D.;
Jiménez Linares L.; and Ferndndez Sorribes J.A.,
2007. 3D Distributed Rendering and Optimization us-
ing Free Software. FLOSS International Conference.

Group H.A.W., 2009. H-Anim. http://www.h-anim.
org/. Last visited 2009.

Karonis Nicholas T.; Papka Michael E.; Binns J.; Bres-
nahan J.; Insley Joseph A.; Jones D.; and Link Joseph
M., 2003. High-Resolution Remote Rendering of Large
Datasets in a Collaborative FEnvironment. Fulure
Gener Comput Syst, 19, no. 6, 909-917. ISSN 0167-
739X.

Kwaiter G.; Gaildrat V.; and Caubet R., 1997.
DEM? ONS: A High Level Declarative Modeler for 3D
Graphics Applications. In Proceedings of the Inter-
national Conference on Imaging Science Systems and
Technology, CISST’97. 149-154.

Maiche Marini A., 2002. Tiempo de reaccion al inicio
del movimiento: Un Estudio sobre la Percepcion de
Velocidad. PhD perception, communication and time,
Department of Educational Psychology, Universidad
Autonoma de Barcelona, Barcelona.

Rangel-Kuoppa R.; Avilés-Cruz C.; and Mould D., 2003.
Distributed 3D Rendering System in a Multi-agent
Platform. In ENC ’03: Proceedings of the 4th Mexican
International Conference on Computer Science. IEEE
Computer Society, Washington, DC, USA. ISBN 0-
7695-1915-6, 168.

Xu K., 2002. Constraint-based automatic placement for
scene composition. In In Graphics Interface. 25-34.

Zaragoza Rios J.A., 2006. Representation and FEz-
ploitation of Knowledge for the Description Phase in
Declarative Modeling of Virtual Environments. Mas-
ter’s thesis, Centro de Investigacién y de Estudio
Avanzados del Intituto Politécnico Nacional, Unidad
Guadalajara, Guadalajara, México.

BOT BUILDING STRATEGIES RELATED TO EDUCATIONAL METHODOLOGY

Clinton Rogers
Daniel Avila
Iren Valova
Department of Computer and Information Science
University of Massachusctts
285 Old Westport Rd., North Dartmouth,
MA 02747
E-mail: ivalova@umassd.cdu

ABSTRACT

A popular place to employ artificial intelligence (Al) is the
video game industry. The success of a game relies on its
ability to challenge the player at a tolerable level, so
naturally Al agents offer players the ability to choose the
difficulty of the opponent they wish to play against. In
addition, Al agents offer extended gameplay options for
games that arec normally multi-player only. These are only a
few of the recasons why students engaged in game design
must become aware of good Al algorithms and frameworks
to employ in video games. The framework reported in this
paper provides a basis to explore many different aspects of
game Al and offers an opportunity for the students to
develop measures for testing the overall effectiveness of
introducing game bots.

INTRODUCTION

The video game industry is one of the most successful
forms of entertainment on the market. Artificial intelligence
plays a significant role in the growth of the gaming industry,
and the growth of game content in general. The main reason
for this comes from the need to offer controlled difficultly
and competition in games. Duc to the high demand for
powerful, flexible Al in games, the need for generic Al
frameworks is clearly manifested. In order to successfully
create Al frameworks in video games, onec must draw from
many different fields in addition to thorough understanding
of the game itself. Behaviors that are natural for humans,
such as senses and reasoning, are not present in machines,
and must therefore, be implemented. To simulate an
intelligent human opponent in a video game requires a solid
architecture that draws from the fundamentals of many
different fields, including robotics and psychology, in
addition to many of the common Al algorithms in existence.
The game bot framework developed for this project is
related closely to robotics paradigms, and draws from many
different AT algorithms to create a power decision making
structure.

The game bot framework must overcome similar
challenges that the robots of today face. One such challenge
is an cffective haptic system. Sense of touch is very
important in the human decision making process (especially
in reactive behaviors). Therefore, game bots should employ
an event driven system to simulate the reactive behavior of
humans. Another challenge to overcome is simulating vision

10

system. Sight is the primary sense of recognition in video
games, as all games are displayed on a screen. Therefore, it
is important to employ a vision system that is capable of
simulating human vision to make realistic game bots. The
third challenge that game bots share with robots is path-
planning. Game environments can be even more complex
than some recal world environments, so having the ability to
logically navigate the terrain is one of the most important
behaviors to simulating a human opponent in a game. These
three challenges, when successfully dealt with, provide the
game bot with the information needed to develop a powerful
decision making process.

It is important to establish a decision making process. Here
are ten common methods, and three other less common, that
arc used to create a decision making process in game bots
(Yildirim & Stene 2008): decisions trees, finite state
machines, command hierarchies, manager task assignments,
path finding/planning (c.g. A*), terrain analysis influence
mapping, formations, flocking, emergent behavior, artificial
neural networks (less common), genetic algorithms (less
common), fuzzy logic (less common).

Of the thirteen listed, this project implements the
following: finitc statc machines, path finding/terrain
analysis, formations, flocking, and emergent behavior
(reactive paradigm, described in later section).

INTRODUCTION OF THE GAME

The game that is hosting the game bots in our framework
is Hyperion Wars, a game developed in C# utilizing XNA.
Players pilot a space ship with the main goal to survive
while defeating other opponents.

The game play is defined as a third person shooter, and
offers the ability to freely travel the 3D world presented
where there is no gravity. The environments arc built from
rectangular prisms, with the base building block being a
cube. Each cube face, known as a Plane, has a flag that
cnables collision with environment objects. Several different
weapons and items exists as power ups, which give the
player special abilities when acquired through collision.

The game follows the client server model, where one
person (does not have to be a player) hosts the server and the
clients who are playing against each other connect to this
server to play. Players can move forward, backward, left,
and right. Additionally, the players can change the pitch of
the ship and roll their ship. Players start with onc weapon,
but can obtain up to four different kinds. The only way to

identify enemies is visual as there are no means to track
players through the game HUD.

There are two reasons for choosing this game for our
rescarch. First, the framework in which Hyperion Wars was
developed in is one of the few which ports to a game console
(the Xbox 360). Secondly, Hyperion Wars is the optimal
choice for game bots due to its lack of single player content.
Several benefits are unveiled when introducing game bots to
a multiplayer only game, such as offering a place for
introductory players to start, allowing for filler positions in
games that arc not full, and giving players a rcason to
continue playing the game cven if there is no onc online.
These benefits allow game design students to accurately
develop game bot level difficulties. Additionally, game
design students gain the means to develop quantitative
measures to determine how much a game has improved with
the introduction of game bots (e.g. surveys).

TERMINOLOGY

Game bot or bot, by the definition as used in this paper, is
a non-player character that functions autonomously in place
of a real player. Other pseudonyms that might be familiar
include game agent and NPC (Yildirim & Stene 2008).
Specifically, the game bots described henceforth are strictly
opponents, they do not fall under the category of neutral or
cooperative. Bots described in this paper will preserve
fairness to the player by limiting the bot to exactly the
resources a player has.

Quaternion: game bot positions are represented using two
structures, the Vector3 for the X, y, and z of a point in the
world, and the Quaternion for rotation in the world. Both of
these structures are built into the XNA framework, making
them ideal choices for our project. Quaternions are a rotation
about a point, and have their own X, y, z, and rotation value
w. The main reason for choosing quaternions is the ability to
use spherical linear interpolation to produce smooth rotation
animations, which is used in several of the bot behaviors
(Shoemake 1985). Additionally, quaternions require less
memory to maintain when compared to matrices, and XNA
supports more operations with quaternions (Shoemake
1985).

Ray Shooting: specialized form of vision, in which a ray is
shot out from a point in a direction with the intent of
determining an intersection between the ray and objects
[Aronov et al. 2008]. The first object the ray intersects
becomes the visible object. For the game bots, our primary
targets of intersection are be walls and players.

Game Tick: or tick, by the definition as used in this paper,
is an iteration of the gamec loop inside the game code
structurc. Considering that a game is constantly running in a
loop, then every one complete pass made through this loop is
a game tick. For example, a game bot checks its status every
game tick to see if it needs to do something new or different
from what it is doing.

Position Polling: is used as a form of vision for the game
bots. Each game bot will measure its distance from each
opponent, and if the opponent is close enough, then they are
visible to the game bot.

Field of Vision: what a player or bot can see. Field of
vision is the most important piece of information for

11

determining course of action because it is the only
information that can be used to seek players.

METHODOLOGY

Rescarch in the ficld of AT robotics has led to the creation
of three distinct paradigms to implement a robot:
hierarchical, reactive, and hybrid. Since the aim of a game
bot is closely associated with that of a robot, these
paradigms are considered as means of implementation of our
Al bots.

Sense
A

Planner i Act

Figure 1 Hicrarchical paradigm for bot development

The first paradigm, hierarchical, emphasizes a three stage
process before the robot can do anything (Fig.1). The first
state is to sense, which, to the bot, is the equivalent of data
analysis of what it can “see” and what it “knows” about
itself. The second stage is to plan, to decide what it wants to
do based on what it sensed. The last state is to act, in which
the plan that was created in stage 2 is enacted.

Act

A 4

l Sense i‘:{

Figure 2 Reactive paradigm for bot modeling

Behavior

The second paradigm, reactive, operates in a two stage
process, i.c. sense then act (Fig.2). For cach sensed value,
an action is assigned, similar to instincts in an animal. When
a cockroach, for example, senses light, it immediately runs
away from it. Modeling these instinctive behaviors offers
two benefits: the ability to run scveral behaviors
concurrently, and the ability to use an event driven system to
cfficiently model bot behavior.

Planner |

' Sense =< » Act

Behavior

Figure 3 Hybrid paradigm for bot modeling

The final paradigm, the hybrid paradigm, is a combination
of the previous two where there is a list of instinctual
behaviors just like the reactive, but there is a planner running
in parallel to plan out particular tasks (Fig.3). Since the

planner is running parallel to the behaviors, the bot would be
able to constantly make changes based on the developments
in the game world immediately. For this reason, the hybrid
paradigm is used in the implementation of the bots for this
project.

Four behaviors define the actions a game bot will take in
this game: Roam, Chase, Attack, and Boid/Flock.

The default behavior exhibited by the game bots is Roam.
Roaming entails the bot fully navigating the environment
that it exists in, with the intent of attacking players it sees
along the way. Bots in Hyperion Wars cannot usc traditional
scarch algorithms such as like A* to find players, because
the only means of detecting enemies is though a Field of
Vision (FOV) (Rasmussen 2008). Therefore, a different
approach to Roam is taken, called Informed Random Roam
(IRR). A game bot using IRR will navigate the world by
randomly picking destinations based on its current position.
Additionally, while the game bot is still in the Roam state, it
will scarch for opponents using its FOV.

The second behavior, Chase, uses a two-fold process.
First, the bot must gain sight of the player, and secondly, it
will attempt to follow the player. Maintaining the state
Chase requires two conditions to be met. Once the bot has
established visual contact of an opponent, the bot must
maintain at least the correct distance to remain in the Chase
statc. Should the bot losc sight of its opponent, it will
attempt to rcgain sight by investigating the most recent
places the enemy occupied. If the bot does not re-establish
visual contact with the opponent, the bot returns to the Roam
(default) behavior. Fig.4 shows one way a bot could catch up
to an opponent, by interpolating between points occupied by
the enemy. The trade-off to having this degree of error, is
that the bot can end up running into walls (Fig.4). It should
be mentioned that methodologics that would allow the bot to
follow a player no matter what (sccing through walls for
example) would not preserve fairness to the player, as
previously described, and thus are not considered.

% - Queued Points

- Piayer Trajectory

Wd_=9 ", Degree of Error
Colfision - Bot Trajectory

Figure 4 Chasing behavior of the bot

Attack is the follow-up state to Chase, in which the bot
begins using whatever means available to damage the
opponent it was previously Chasing. The transition from
Chase to Attack occurs when the distance between the bot
and the pursued is relatively small. Limiting the distance
gives opponents who arc not watching their backs less of a
chance to counter attack and escape, while increasing the
accuracy of each attack the bot uses. The methodology used

12

for this paper is virtually identical to the Chase, with one
added rule: if the bot is within a certain distance of the
player, it may begin shooting. The distance between the bot
and the player is calculated between the players (xXp Yp» Zp)s
and bots (Xp, Yp, Zp) positions. Distance d is then calculated
by the basic vector formula: sqrt((xpxb)2+ (ypyb)2+
(zpzb)z). The bot then uses the following predicate to
determine if it may attack: If 4 is less than some
predetermined distance, then the bot may shoot.

‘ Attack

| ‘ Follow the

The closest player is not within distance "d" closest player}

The closest player is within distance "d"

Mo players are visible

Roam
Atieast one player is visible

Figure 5 Association of states with behaviors

The concept of Boids (flocking or packs) is borrowed from
nature where certain birds, fish, reptiles and mammals stay
together in groups and move in group patterns (Chen, et al
2008). Boid bots move in packs, and their behaviors are
coordinated through a leader bot. Leaders are determined by
a command value and are established during group
formation. Leaders follow the specification of our normal
bots, and the rest of the bots in the pack will behave in a
dronc fashion, cssentially imitating the leader. If the leader
bot is defeated before the rest of the pack, one of the drone
bots is promoted to leader and the pack reassembles around
the new leader.

l Attack :

| 51 Followthe

closest player
gt

The closest player is within distance "g"

3

The closest player is not within distance "d"

N players are visible

At least one player is visible

§ Baoid Drone "G-“‘

Figure 6 Boid state machine associations

Has the highest command ranking

These four behaviors are accessed through a state machine.
The simple state machine controls which behaviors are
employed and when. Fig.5 illustrates how each state is
associated with a behavior, and how one state transitions to

another. The boid state machine is identical to the simple
state machine, but the behaviors change depending on
whether the bot is a leader or drone, as shown in Fig. 6.

The information from the environment that drives the state
machines is obtained through FOV.

Three methods to implement FOV are considered. The
first is Position Polling, where the bot calculates the vector
distance between the bot and all the players in the game.
Based on this vector distance, only players that are within a
certain distance parameter are then “visible” to the player.
Given that there are ‘p’ players on the screen, it takes ‘p’
steps per game tick to calculate the vector distance from
each player, essentially resulting in asymptotic complexity
of O(p); or linear computational complexity.

The second method considered is bounding volumes.
Bounding volumes can be viewed as invisible sphere (box,
or another shape depending on the method used) that
surrounds the object. A collision occurs when the Bounding
Volume of one object is intersecting with the Bounding
Volume of another object. The asymptotic complexity of
collision detection using a convex bounding volume in the
best case is O(nlog n), making it impractical when compared
with Position Polling (Liu et al 2008).

In addition, typical collision detection methods employ
Position Polling while detection is occurring, so extra
computational time is required for recalculating the position
of the Bounding Volume every game tick while using an
algorithm similar to Position Polling (de Pascal 2006). For
these reasons, the Bounding Volumes method is dismissed
as a potential vision implementation.

The last method considered is that of Ray Shooting. Ray
shooting is the concept of shooting invisible lasers in a
certain field of vision. If any of them intersect with a player,
the player is secen. As soon as the ray hits anything (wall,
another bot, player, ctc.), the ray terminates, and cffectively
prevents “seeing through walls” that the other two methods
exhibited. Due to the computational complexity of the game
environment, many interscction tests would have to be
performed, and therefore it is a concern that the game bots
would significantly decrease performance as more of them
are introduced. For that reason, this method is not utilized.

Though Position Polling suffers from the possibility of
seeing players through walls when the vision distance is too
large, it offers the best real-time complexity for the purpose
of building a game bot. Furthermore, it is possible to limit
the “seeing through walls” by taking into consideration only
the players in front of the bot, and making sure the bot is
facing an open space when possible. Position Polling can be
optimized to check a percentage of the opponents rather than
the whole list. Since game ticks are quick (in some cases 30-
60 per second), we can analyze a small amount of players
rather than the whole list to lighten the load on the
processing, without affecting the believability of the bots.
Another benefit to Position Polling is memory consumption.
One float is required per calculation to determine whether or
not a bot is within range, making this algorithm efficient
memory-wise. The final benefit is that once a game bot locks
on a target, the algorithm can ignore all other enemies and
continue to measure the distance for only its target. Since
bots will be doing other things once they have noticed an
enemy (like determining when to attack), reducing the
amount of operations during game ticks is essential to fluid

13

game play.
IMPLEMENTATION

The game bots implement Roam using IRR to navigate
their way through the environment. Two approaches are
considered in creating IRR: roaming by following a
predetermined course (waypoints), and roaming by detecting
the environment in real time. The resulting navigation
system combines the two approaches, and the result is the
Modified Waypoint System (MWS).

MWS is a navigation system in which the game bot creates
waypoints in real-time, based on the center of nearby cubes
(Hyperion Wars maps are made of cubes), and randomly
picks onc as its destination. When the game bot enters the
Roam state, the first action for the game bot is to find and set
the closet calculated center of all the cubes as its destination.
This operation only happens whenever the bot transitions
into the Roam state. Once the game bot has cstablished its
cube destination, it travels to that destination, incrementing
its position each game tick and undergoes spherical linear
interpolation cach game tick until the game bot is facing its
destination (Shoemake 1985). Once the game bot reaches the
destination, it calculates the center of all nearby cubes,
excluding the previously occupied cube, and continues
moving through the environment. By excluding the previous
cube in our destination calculation, game bots avoid getting
stuck at the end of hallways, or backtracking to a position
they just came from, and are therefore less likely to
investigate cubes they have just recently visited.

The MWS offers several benefits over the traditional
waypoint system. Game bots can adapt and roam any map
they are placed in completely, and the paths they will follow
will be similar to the behavior of a human player searching
for enemies. The memory required to maintain the Roam
behavior is independent of the size of the map, making it
ideal for large maps. Calculating destinations is efficient and
doces not require searching, increasing the cfficiency of the
program. Lastly, the MWS introduces a great foundation for
new game design students to expand and learn from, such as
optimizing waypoint calculation or introducing optimized
roaming strategies (in other words, not random).

Chase and Attack are identically implemented, except for
the projectiles generated during the Attack state. Position
Polling is used to determine how close opponents are, and if
they fall with the correct distance, the bot will cither Chase
or Attack the opponent. In order to escape, the player must
move out of the bots vision for several game ticks
(depending on how long the bot has been tracking the
opponent). Attack will revert to Chase and Chase will revert
to Roam if the opponent can maintain a position outside of
the predefined range.

Boid bots arc an extension of the Simple bot. Boid bots
have two special properties, that allow them fly in a pack,
the offset and leader property. Whenever a flock is formed,
one bot is assumed the leader and all others hold a reference
to the leader. Flocks consist of two types of bots, the leader
bot and flock bots. Leader bots follow the same specification
as our simple bots; they roam the map looking for
opponents, and will follow or engage encmics that move
within a certain distance from the game bot. Flock bots
position themselves at an offset from the leader, and will

mimic all movement behaviors exhibited by the leader bot.
Should a leader bot die before the pack is defeated, one of
the flock bots will assume the role of the leader, and the
group will reorganize as if it had just been formed. Flock
bots will not pursuc an enemy unless the leader bot does, but
they will attack an enemy that gets close enough to them. An
illustration of the game bot is provided in Fig.7.

CONCLUSION

This project features successful implementation of Finite
State Machines, Path finding/Terrain Analysis (Way-Points),
and Emergent behaviors Al methods in the creation of the
game bot decision making process. Future users of the
framework have a powerful tool that can be expanded upon
to include new behaviors in addition to the already existing
ones. Game design instructors can utilize the framework as
powerful tool to introduce Al to prospective game
developers, who can then casily expand upon the current
implementation to learn how to develop effective decision
making architectures.

In addition to creating powerful decision making
architecture, the bots exhibit real-time navigation system that
is not subject to the environment it is introduced into. Using
the waypoint and vision system, game bots implemented
with this framework arc capable of gathering the necessary
information to traverse 3D environments and combat
players. Additionally, the algorithms that determine

navigation are interchangeable, allowing for optimization
depending on the environment.

By using the hybrid paradigm as a bascline for bot
construction, we arc able to crcate a flexible game bot
framework, which could easily be adapted and extended.
Specifically, by building the bot with the intention of having
a planner, we left room for the introduction of Al methods,
such as genetic algorithms.

The ultimate goal of this project was to develop a
framework for developing game Al. By developing a generic
framework, we can cvaluate the various implementations of
traditional AT algorithms, robotic Al algorithms, and game
specific Al algorithms through analytical case studies, and

14

develop measures that can be used as standards for creating
acceptable Al in video games.

REFERENCES

Amov, B., deBerg, M., and Gray, C. (2008). Ray shooting and
intersection searching amidst fat convex polyhedra in 3-space.
Computational Geometry: Theory and Applications 41:68-76.

Chen, Y.W., Kobayashi, K., Kawabayashi, H., Huang, X. (2008).
Proceedings of the 12th international conference on
Knowledge-Based Intelligent Information and Engineering
Systems, 141-148.

Deep Blue (1997). http://www.research.ibm.com/deepblue/

de Pascale, M., Prattichizzo, D. (2006). A Framework for Bounded-
Time Collision Detection in Haptic Interactions, VRST, 305-
311.

Gibb, J. (2006). Backgammon Info, http://ezinearticles.com/

Liu, R., Zhang, H., Busby, J. (2008). Convex Hull Covering of
Polygonal Scenes for Accurate Collision Detection in Games,
Graphics Interface Conference, 203-210.

Medler, B. (2008). Views from Atop the Fence: Neutrality in
Games, ACM SIGGRAPH symposium on Video games, 81-88.

Medler, B. (2008) Using conflict theory to model complex societal
interactions, Conference on Future Play: Research, Play, Share.

Rasmussen, R. (2008). A Game Theory Approach to High-Level
Strategic Planning in First Person Shooters, Interactive
Entertainment.

Shoemake, K. (1985). Animating Rotation with Quaternion Curves,
ACM SIGGRAPH, 245-254.

Yildirim, S., Stene, S. B. (2008). A survey on the need and use of

Al in game agents, SpringSim ’08: Proceedings of the 2008 Spring

simulation multiconference, 124-131.

AUTHOR BIOGRAPHIES

CLINTON ROGERS is in his second year of pursuing
Masters degree in Computer Science with University of
Massachusetts Dartmouth. He graduated Summa Cum Laude
with BS in Computer Science and is now following up on
his education. His interests are in the area of robotics,
human-computer interaction and intelligent learning
systems.

DANIEL AVILA is currently pursuing BS degree in
Computer Science with University of Massachusetts
Dartmouth. While still at a junior level of his studies, he is
involved in research on gaming, learning systems and neural
networks. He is currently working on a novel clustering
algorithm and exploring unsupervised learning algorithms
for neural networks.

IREN VALOVA is currently an Associate Professor with
the Computer Science Department, University of
Massachusetts Dartmouth. She has extensive experience in
the field of neural networks, learning algorithms, data
mining and brain functionality modeling. Her research on
learning systems led to work on gaming and bots. She is
very active in pursuing development of game design
education methodologies. Currently, she is involved in the
design of interdisciplinary minor on game development
following increasing student demand. Dr. Valova has
authored more than 100 refereed publications in journals and
conferences.

MODELLING
AND
GAMES
DESIGN

16

A PROPOSITION OF PARTICLE SYSTEM-BASED TECHNIQUE
FOR AUTOMATED TERRAIN SURFACE MODELING

Korneliusz Warszawski
Faculty of Electrical Engineering,
Computer Science and Telecommunications
University of Zielona Gora
ul. Podgorna 50
65-246 Zielona Gora, Poland
E-mail: k.warszawski@weit.uz.zgora.pl

KEYWORDS
Terrain modeling, Particle systems, Virtual environments.

ABSTRACT

Automated methods for landscape modeling are the useful and
time-efficient alternatives for manual terrain formation done by
developers and virtual world builders. Considering efficient
terrain generation we can use any combination of fractal-based
algorithms, i.e., midpoint displacement, fault formation, iterated
function systems. We can also use particle systems, presented in
this article. We show an idea of a particle system that can be
used in terrain modeling. We explain the system, its parameters
and their influence on the final product, the virtual terrain.

INTRODUCTION

To achievement the realistic structure of landscape in open
world games it is necessary for developers, artists and level
designers to spend a lot of time manually forming polygon-nets.
Alternatively, appealing visual level of terrain models can be
obtained much faster by automated techniques. Several
applications of procedural techniques have been used in
edutainment systems with elements of virtual reality for military
and civilian training simulations and as an element of
environment modeling in cinematography and modern game
development (Rickel and Johnson 1999; Bonk 2005).

Using particle systems in terrain surface modeling may become
an efficient alternative for currently used methods. In addition,
the proposed technique makes possible generation of complex
height-field data, similar to mountains or island-like forms
(Warszawski et al. 2008; Warszawski 2009).

RELATED WORKS

Particle systems were originally developed for computer
graphics (Reeves 1983) as a fast method for real-time modeling
of objects with irregular, dynamically changing and
impossibly/hard to define surfaces like clouds, fire or explosion.
It can be also used for modeling of vegetation like grass or
cereals (Reeves and Blau 1985; Lander 1998). A proposition of
parallel implementation was forwarded by (Sims 1990) and

Slawomir Nikiel
Institute of Control
and Computation Engineering
University of Zielona Gora
ul. Podgorna 50
65-246 Zielona Gora, Poland
E-mail: s.nikiel@issi.uz.zgora.pl

adopted by (McAllister 2000) and (Kolb et al. 2004) for their
descriptions of particle systems.

The foundations of mostly generation techniques of terrain
modeling are based on self-similarity fractal methods. The most
traditional approach uses Madelbrot’s Midpoint Displacement
Method (MDM) and was thoroughly described by (Foumier et
al. 1982). An opening height-field grid for the MDM algorithm
has 2x2 resolution and in recursive subdivisions, the method
increases its size. The landscape precision increases by
calculation of height values of newly generated height-field
nodes as averaged height of the neighbor points displaced by
arandom offset. Subdivision part of the algorithm attained
several modifications except classical Square Subdivision.
Mandelbrot and Musgrave proposed Hexagon Subdivision and
Miller presents both Diamond-Square and Square-Square
subdivisions algorithms. All proposed modifications give
an alternative models for selection of neighbor points, but the
idea of algorithm remains unchanged (Musgrave et al. 1989;
Koh and Hearn 1992; Sala et al. 2002).

The technique for simulating of desert structures effected by
wind and sand motions was described by (Benes and Roa 2004).
The method used particles related to some amount of sand
reloated by wind (saltation), rolled down the hill (creep) and
moved indefinitely (suspension). Considering the saltation
process, if one hill is reduced then the other one must be
improved by the material transported between them. The creep
process is similar to particle deposition and is used to smoothen
the terrain.

Another different approach to terrain modelling uses Genetic
Terrain Programming (Frade et al. 2009). The method primitives
generated over height-field are: semisphere, step (fault), spectral
synthesis, gaussian bell, plane or uniform random values.
Starting population is chosen randomly from this primitives.
In the reproduction phase, creation of new indiduals follows
from one (mutation) or two (crossover and mutation) parents
chosen from existing population. Authors noticed that the
performance of their method can compete with those of classical
methods only for low resolution heigh-fields.

TERRAIN REPRESENTATION

The data structure of memory stored landscape is a modified
multilayered height-field organized as a two-dimensional array.

17

Each cell stores two pieces of information of a coordination
point defined by rows and columns of the array. The first
property is its altitude and the second is its vulnerability to the
erosion process.
Information about topology and geological infrastructure can be
imported from real data, but the terrain representation enables
fast hardness map generation with help of one of classic height-
field modeling technique, i.e., midpoint displacement, fault
formation.
Unlike (Benes and Forsbach 2001) representation we treat the
hardness property as a product of all elements that have
influence for terrain materials at a given coordinates. When the
hardness map is generated, the next step is to normalize all
hardness values with (1) common normalization equation to the
interval [0.0; 1.0].

H = (h — min) / (max — min) D
Where (H) is a normalized value, (h) is the initial non-
normalized data, (min) and (max) are respectively the minimal
and maximal values of the entire unnormalized hardness map.
After normalization process we define the class of hardness for
a current terrain layer. To do that, we limit all hardness values to
the total number of materials which can exist simultancously.
Afterwards, we recalculate all values using the following
equation.

C=|H*k])

Where (C) is a calculated hardness, (H) is an initial normalized
hardness value and (k) is the total number of materials which we
called the class of the hardness map.

Figures 1: Sample of hardness map
(a) 3rd class, (b) 5th class

THE PARTICLE SYSTEM

The system we propose, is similar to the classical approach
(Reeves 1983) that uses emitters to distribute the particles and to
control their quality in a virtual environment. In our simulation
we select main attributes for the emitter as: its position and
orientation and size of the emission window, that determine
the area where a new particle can be inserted into the system
environment. The second element of our particle system is
a collection of parameterized particles. Each particle has defined
size, current position, directional and rotation angles, linear and
rotation velocities.

18

TERRAIN MODELING

When data structure and particle system are defined, we can
used them to model landscapes. We start with proper
initialization of the entire system. At the beginning we must set
the position for the emitter (or a set of the emitters). For a single
emitter it is best to set its position over and in some distance to
the central point of the multilayered height-field data. Next, it is
important to set the size of the emission window. In general the
whole height-field can be effected by algorithm with wide
emission window. After setting up the emitters we choose
parameters for particles in a collection, i.e., size of the particle
define power of its influence for terrain modifications. Range of
particle displacement (v) in virtual space is it velocity. Direction
of that displacement is based on both spherical angles (a) and

(2

Xi+] = X; 0 * sin(a) * sin(p)
Yirt = yi tv * cos(B)
Zis1 = 7; 0 * sin(a) * cos(P)

3)

When particle in its journey (3) from emitter window collides
with the terrain surface it sets the central point of altitude
modification on the related height-field. In that point, all
modifications have maximal strength and are getting weaker
with increasing distance from the collision point. When
modification factor is assigned the negative value it means that
the collided particle has no effect on the calculated point of the
height-field. The modification factor is calculated by (4)
equation for all height-field cells inside circle defined by the
collision point and the size of the particle.

Ay, = 02 = (i = %)+ (21— 7)) “
Where (Ayy,) is modification factor of height value at
calculating coordinate, (A) is the radius of the influence zone
(size) of a current particle, (x,, Z,) are coordinates of collision
point, (X;, z;) are currently calculated coordinate.

The size of the particle (A) can be also treated as a surface
regularity factor. With increasing this value the target landscape
will be more regular.

(a)

(b)

Figures 2: Regularit factor of the surface
(a) particle size at 10, (b) particle size at 15

The final step is to apply the modification factor and hardness
value to the height-field. The result (5) as the altitude value is
the product of these values.

Y, = Yoo T (Hy, * Ay, (5)

Where (y*xaz) is the modified height value, (y,,) is the height
value before modification, (H,,) is the hardness value and
(Ayy) is the modification factor.

Figures 3: Example of generated mountains
THE ISLAND MODIFICATION

To adapt the technique to model island-like structures it is
important to restrict the area of height-field that can be enabled
for modifications. We can do this by limiting the size of
emission window. If the size becomes smaller less height-field
cells can be modified by downfall of the particles. For our
simulation we calculate that the size of emission window cannot
exceeded 1/3 of the height-field area.

Figures 4: Example f generated island

CONCLUSIONS

The overall performance of the presented technique is almost
independent from the height-field resolution. It depends mostly
on the number of used particles (in a collection) and decreases
proportional to their number.

50 frmis]

40

30

20

10

0 rimiber of partiches
0 200 400 600 800 1000
Figures 5: Average performance graph calculated for height-
field resolutions: 80x60, 160x120, 320x240 and 640x480

The method is open for parameterization, thus making it
possible to adaptation to the satisfactory level of the modeling
terrain surface characteristics.

19

Further research will be focused on the refinement of the
particle-based algorithm to achieve the most realistic and fully
automated method for non-spherical topology landscape
modeling, like caves, canyons or cliffs.

REFERENCES

Benes, B. and R. Forsbach. 2001. “Layered data representation for
visual simulation of terrain erosion.” In Proceedings of the 2001
Spring Conference on Computer Graphics, 80-85.

Benes, B. and T. Roa. 2004. “Simulating desert scenery.” In
Proceedings of the 2004 WSCG International Conference in
Central Europe on Computer Graphics, Visualization and
Computer Vision, 17-22.

Bonk, C.J. and V.P. Dennen. 2005. “Massive multiplayer online
gaming: A research framework for military training and education.”
Technical Report for Office of the Under Secretary of Defense for
Personnel and Readiness.

Fournier, A., D. Fussell, and L. Carpenter. 1982. "Computer
rendering of stochastic models." Communications of the ACM,
Vol.25, No.6 (Jun), 371-384.

Frade, M., F.F. de Vega and C. Cotta. 2009. “Breeding terrains with
genetic terrain programming: The evolution of terrain generators.”
International Journal of Computer Games Technology, Vol.2009.

Koh, E-K. and D.D. Hearn. 1992. “Fast generation and surface
structuring methods for terrain and other natural phenomena.”
Computer Graphics Forum, Vol.11, No.3, 169-180.

Kolb, A., L. Latta, and C. Rezk-Salama. 2004. “Hardware-based
simulation and collision detection for large particle systems.” In
Proceedings of the 2004 ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, 123-131.

Lander, J. 1998. “The ocean spray in your face.” Game Developer
Magazine, No.6 (Jun), 13-19.

McAllister, D.K. 2000. “The design of an API for particle systems.”
Technical Report, Department of Computer Science, University of
North Carolina at Chapel Hill.

Musgrave, F.K.,, C.E. Kolb, and R.S. Mace. “The synthesis and
rendering of eroded fractal terrains.” ACM SIGGRAPH Computer
Graphics, Vol.23, No.3, 41-50.

Reeves W.T. 1983. “Particle Systems - A technique for modelling
aclass of fuzzy objects.” Computer Graphics, Vol.17, No.3,
359-375.

Reeves W.T., R. Blau. 1985. “Approximate and probabilistic
algorithms for shading and rendering structured particle
systems.” ACM SIGGRAPH Computer Graphics, Vol.19, No.3,
313-322.

Rickel, J. and W.L. Johnson. 1999, “Virtual humans for team training
in virtual reality.” In Proceedings of the 1999 World Conference on
Al in Education, 578-585.

Sala, N., S. Metzeltin, and M. Sala. 2002. “Applications of
mathematics in the real world: Territory and landscape.” In
Proceedings of the 2002 International Conference the Humanistic
Renaissance in Mathematics Education, 326-333.

Sims, K. 1990. “Particle animation and rendering using data parallel
computation.” In Proceedings of the 1990 annual Conference on
Computer Graphics and Interactive Techniques, 405-413.

Warszawski, K., S. Nikiel, and T. Zawadzki. 2008. “Particle system for
generation of terrain structures.” Przeglad Telekomunikacyjny
i Wiadomosci Telekomunikacyjne, No.6 (Jun), 860-862.

Warszawski, K. 2009. “Ground from smoke: Using particle systems for
terrain modeling in C#.” Game Developer Magazine, Vol.16, No.3
(Mar), 15-21.

CREATION OF VIRTUAL WORLDS THROUGH KNOWLEDGE-ASSISTED
MODELING

Jaime Zaragoza, Véronique Gaildrat, and Félix Ramos
Centro de Investigacion y de Estudios Avanzados, Unidad Guadalajara, México
Institut de Recherche en Informatique de Toulouse, France
email: {jzaragoz, framos}@gdl.cinvestav.mx, veronique.gaildrat@irit.fr

KEYWORDS
Game Design, Game Environment Creation, Knowledge
Bases, Distributed Systems

ABSTRACT

The creation of virtual worlds is a complex task. Even
experienced user may find difficult to create virtual rep-
resentations for different needs (simulation of the real
world, recreations of ancient worlds, fantasy worlds,
teaching, etc). Through declarative modeling, an user
can create a virtual scenario by simply stating some
properties for the environment and the entities. In
this paper, we present a novel approach for declarative
modeling, whose main contribution is to use knowledge
about the entities that conform the environment, in or-
der to assist the creation and validation of the virtual
world. This knowledge includes the necessary data to re-
duce in great measure the amount of processing needed
to create the environment and the knowledge needed
to allow the evolution of the environment in a dynamic
scene. The main difference with other research is that
the virtual world can be either static or dynamic, in the
sense that the world can evolve.

INTRODUCTION

Virtual Reality has been used as a method for simu-
lating entities in the real world in different fields of
human expertise, such as medicine, construction, en-
tertainment, and many others. This technology allows
creating almost any kind of scenario or world, where a
dynamic scene can be perfomed. Different approaches
have been proposed to design and animate such virtual
worlds. However, most of the time, these worlds are cre-
ated by a full multidisciplinary staff composed of many
artists, modelers and engineers, taking from a few weeks
to years to complete a successful visualization of the de-
sired environment. Even more, specialized tools are re-
quiered, therefore the team needs special training and
many practice hours to create an outcome of professional
quality.

The problem can be split in two subproblems. The first
one lies in creating the environment; the second one is
describing the scene, that is how characters must evolve

20

in the environment. In this paper we deal with the cre-
ation of the environment. The second subproblem was
already tackled by us in (Ramos et al. 2002).

A method, which permits the creation of virtual sce-
narios, both simple and complex, is currently a topic
of research. Declarative Modeling is one approach to
reach this objective. In this research, Declarative Mod-
cling must be understood as a methodology that creates
a virtual scenario by means of declaring how we expect
entities in the scenario must be arranged. A system
based on Declarative Modeling must take as input this
description and find at least one solution which satisfies
the user requirements.

We propose the using knowledge about properties, ob-
jects and other entities requested by users to help the
validation process of possible solutions found by the
modeling system, resulting in a model is useful for man-
age all kind of animations required by the evolution of
a scene. This research is part of the GeDa-3D project
(Hugo et al. 2004), a distributed multi-agent architec-
ture for 3D. GeDA-3D objective is to offer a complete
tool to any unexperienced users.

DECLARATIVE MODELING

Declarative modeling is a recursive process which finds a
solution to the model properties stated by the user. Ap-
plied to the creation of a scenario, the declarative mod-
cling is a continuous process in which feedback coming
from previously obtained solutions is used recursively,
until the user is satisfied with the outcome solution.
The method is composed by three phases (Gaildrat
2007): Description, where the system receives the user’s
statements, written in a custom-tailored definition lan-
guage for the modeling application; Generation, where
the model is created using different methods to assure
semantic consistency, the logic, and the positioning of
the entities. One of the most common methods is solv-
ing a Constraint Satisfaction Problem or CSP.

We can define a Constraint Satisfaction Problem as a set
of variables X = {X;,Xs,...X,,}, a domain D which
indicates the possible values for each variable, and a
set of constraints C' = {C,Cs,...C,} which specifies
a subset of variables and the possible values for each of
these variables. When each variable has been assigned

Lexical-Syntactic
Parser

Input: VEDEL [o5

Inference
Function

Knowiedge
Base

CSP Algorithm

Qutput
Generation

wxreguested futputs>

] Duiputs I

Figure 1: Modeler Architecture.

with a value from its domain, such that no constraint is
violated, a solution has been found. For a given CSP,
several solutions can exist, thus the CSP algorithm can
provide several solutions (Russell and Norvig 2003).
Finally, the Insight phase involves presenting to the user
solutions obtained, where the model can be modified.

A VIRTUAL ENVIRONMENT MODELER
BASED ON KNOWLEDGE EXPLOITATION

The user expresses what should be placed in the vir-
tual scenario, thus the system has the indications of the
characteristics and positions of each element, which can
be applied within certain fuzzy thresholds. For exam-
ple, “right” will be always a specific area defined in
relation to a referenced entity, whitout taking in con-
sideration its orientation, size or position; and can be
defined within a data structure that provides the param-
eters for obtaining such area. Such data structure can
come in the form of a database. However, the necessary
information should be provided with the inclusion of
the relations between the concepts in evaluation, a more
suitable solution is the knowledge bases. A knowledge
base not only contains information of the concepts for
any given domain, but also the relations between these
concepts. It permits deriving new knowledge from data
already present, expanding the scope of the knowledge
base. The action of extrapolating new information from
current knowledge is called inference, and it is a use-
ful characteristic for validating concepts and properties,
since the user can begin stating simple characteristics,
which can be combined to infer complex knowledge.
With this idea, we design a declarative modeler aimed
create virtual worlds from simple text descriptions, us-
ing knowledge base exploitation as the base of the mod-
cling process. The modeler is composed by five mod-
ules, Lexical-Syntactic Parser, Model Creator, Inference
Function, CSP Algorithm and Output Generator (figure
1).

The Lexical-Syntactic Parser receives the description
written in a custom-defined language called VEDEL or

21

Virtual Environment Description Language (Zaragoza-
Rios 2006). VEDEL is like natural language, completely
oriented to lead the description process, proving a struc-
ture to organize the idea for describing virtual worlds.
VEDEL creates scenarios incrementally, by just adding
objects or modification in specific sections, in order to
extend the description. Some examples are presented in
the Current Work section.

The Lexical-Syntactic Parser is basically a state ma-
chine, which extracts tokens from the description, and
uses them to form a hierarchical data structure repre-
senting the information stated in the description. The
hierarchy is organized with entity types as the upper
branches, and the properties as their leaves. This mod-
ule only verifies the correct composition of the descrip-
tion, and searches for non-valid characters, leaving se-
mantics validation for the Model Creation module.
The Model Creator receives a parsed entry from the
Lexical-Syntactic Parser, and proceeds to create a
model, working in incremental steps, starting with a ba-
sic model with default values assigned to elements of the
virtual environment, and then assigning the values re-
quested by the user. The model creation finishes when
all properties have been assign and these properties do
not violate constraints.

First, the modeler obtains information about the en-
vironment. Any request for information is handled
through the Inference Function component, which ac-
cesses directly to the knowledge base. The inference
function obtains information, formats the data for the
modeling tasks and validates requests made in the de-
scription.

The information gathered from the knowledge base
about the environment is used to construct virtual
world’s rules and assign data type values to its proper-
ties. If the environment has some special constructions
or elements, the modeler creates the necessary entries
in the model to satisfy these indications. Landmarks
such as walls, doors, specific areas or furniture in the
environment, are all created this way. Landmarks cor-
respond to implicit information about the environment
and have not explicit visual representations, the second
sort of descriptions corresponds to objects that must be
instantiated, placed, and represented as individual ele-
ments in the environment.

Once the environment has been set, the modeler contin-
ues with the entities that will dwell the scenario. Each
of these entities is created using basic representations in-
stantiated with default values from the knowledge base.
Such representations are called avatars. Each request
is validated first through the avatar, to verify wheter
the entity can represent the property requested. Then,
the Inference Function validates the values to be as-
signed are correct, or correspond to the property in ques-
tion. Any necessary conversion is carried out through
the knowledge base.

Once all entities have been created and their properties

instantiated with the values specified in the description,
the modeler proceeds to position all of them in the cor-
rect location, according to the description statements.
Entities are first placed using a default position stored
in the knowledge base. Parameters corresponding to the
position concept are obtained from the knowledge base,
and then instantiated with entities’ values. The refer-
enced entity can be any other entity in the environment,
the environment itself, or a landmark. Concept param-
eters can be defined with fuzzy parameters, achieving
certain randomness to allow the generation of different
models through the process.

After every entity has been positioned, the modeler
sends the model’s current state to the CSP component.
This component validates that there are no collisions
between entities and that the position of each of them
corresponds to the statements in the description. To
accomplish these tasks, each entity has a series of colli-
sion tags, as well as characteristic point marks. These
specialized tags are stored in the knowledge base, and
are instantiated when the entity is created. When the
modeler changes the entity’s position, these tags are also
updated.

The collision tags are defined as a series of spheres that
wrap the entity’s geometry (figure 2), and are used as
the primary constraint to be satisfied by the CSP Algo-
rithm. To carry out the collision verification process, the
system first verifies if the Euclidean distance between
any given pair of entities is smaller than the longest di-
agonal corresponding to a box formed by the entities’ di-
mensions. If true, the distance equation for two spheres
is evaluated for all the possible pairs of collision tags be-
tween the two entities in conflict. This must be satisfied
for any pair of collision tags corresponding to different
entities, Ch = (x1,y1,21,71) and Cy = (22,y2, 22,72),
the following relations must be kept:

(1—m2)% + (1 —y2)° + (21— 22)> — (11 —12) >=1 (1)

If some pair fails this evaluation, that is, the result of the
evaluation is less than a threshold (t € R, 1 >t > 0) set
by the system administrator, a collision is detected and
the model must be modified. Some considerations are
verified prior to any change: If an entity is a “pivot” (it
is fixed to an absolute position, i.e. north or east), the
size of the entities, and the relationships between them.
First, the relations between elements is explored, since
some possible positioning concepts require that two el-
ements come in contact, such as “against”, “inside”
or “over”, thereby in these cases the collision will be
dismissed and other validations will take place. Other-
wise, if an entity in conflict makes reference to another,
this must be moved first. If the model configuration
cannot be validated, the referenced entity will be then
moved. Otherwise, if both entities make reference to a
third one, the CSP Algorithm relocates both entities in

22

Figure 2: Collision tags examples.

a new valid position, making use of a technique similar
to one the used with L-Systems (Prusinkiewicz and Lin-
denmayer 1990). Finally the size is considered to decide
which entity should be moved first. Smaller entities have
a better chance to be moved into a valid position than
large elements, therefore the system will firsly move the
smaller entities in conflict. Pivot entities are moved at
last, and only if the current model requires such changes
to obtain a solution.

Collision verification is conducted until no more con-
flicts are found. If the current model falls into a local
minimum, or cannot find a solution, the system restores
a partial previous solution, in which less conflicts were
found; then it proceeds to create new solutions. If the
restored solution is the initial model sent by the Model
Creator, the system verifies wheather any possible en-
tity has been repositioned, and restarts. If there are no
more entities to move, the system informs that cannot
find a solution.

Once it was verified that there are no collisions among
entities, positioning validation is carried out, using char-
acteristic points marks, which indicate the most promi-
nent points in the entity’s geometry. Positioning vali-
dation is conducted over all entities, in order to assure
that the current position satisfy description statements.
In order to successfully locate an entity, the following
validation must be satisfied: at least one of its charac-
teristic points must be located inside the volume of an
cllipsoid or a paraboloid, instantiated with the param-
cters corresponding to the referenced entity’s data, and
the concept values. That is, for any given entity, at least
one of its characteristic point (G; = (x,y, 2)) is in the
surface or inside a validation volume E = (dz,dy,dz),
for ellipsoids (3), or P = (p,q), for a paraboloid (2),
instantiated with the values from the referenced entity.
We can represent this as:

() (7) =0
(e)+ (@) (&) s

The parameters for both equations are stored in the

(2)
3)

Figure 3: Characteristic points and positioning volumes
examples.

knowledge base, either as part of the positioning con-
cept, or as information for the entity in reference, which
can also include the quantity or the list of character-
istic points that need to be inside the volume in order
to validate the position. Relative positions are always
validated through paraboloid volumes, for which the pa-
rameters p and ¢ correspond to the referenced entity’s
size values, and z is a value set by the system adminis-
trator.

Spatial relations such as “against”, “inside” or
“over”, are validated using ellipsoidal volumes, which
as only one parameter smaller than 1, and located over
the entity’s surfaces. For positions that require a vol-
ume inside an entity, or a location in a given area such
as landmarks, the ellipsoidal volume is instantiated with
the entity or landmark values.

If the positioning validation for an entity fails, a new
position for this entity is computed. Before the new
position is set, the system queries a list of previous po-
sitions for that particular entity. If the neighborhood
of these previous positions forms a cluster, then a new
position outside that cluster is set, and the validation is
carried out again. If the new position is not valid, or it
cannot be set outside the cluster, the system cannot find
a new position for the entity and returns to a previous
model state. As with collision verification, if the previ-
ous model is the starting set, the description requested
cannot be solved.

Each entity in the model stores the list of elements which
share some relation. In that way, each entity can follow
the movements done in the model, and modify its own
parameters by consequence

Once each entity has passed both validations, the model
is sent to the final component, the Output Generator.
This component uses a Model-View Controller (MVC)
method to generate the necessary output data structures
and files, then the underlying architecture can perform
the actions necessary to create the visualization of the
virtual environment, and conduct the process that will
activate the simulation. This output employs templates
that receive the model’s data structure, and through the
MVC are instantiated with the values obtained through
the modeling process. This method allows the easy mod-
ification of the output parameters, to permit users to
add or modify the information sent to the underlying
architecture, which can be also a 3D viewer. The out-
puts and their types, are set in the knowledge base.

23

CURRENT WORK

We have developed a prototype of the modeler in the
Java language, to allow multi-platform capabilities. The
knowledge base has been defined using the Protégé
framework, and was created using the OWL Standard
(McGuinness and van Harmelen 2004), selected due to
its extensibility over the Internet. Next, we present some
examples obtained using the lastest build of the mod-
eler, which uses the X3D standard and a X3D-compliant
viewer.

Figures 4 and 5 show some examples obtained using the
current modeler and its X3D output.

CONCLUSIONS

We can make reference to three researches that deal with
declarative modeling of virtual scenarios: WordsEyes,
citepref: COYNEO1, developed at the AT&T Laborato-
ries, is the closest project to ours. It is an automatic
text-to-scene converter, which works with part-of-the-
speech markers and statistical analyzers. The system
is web-based, so the user just has to enter to project’s
website, write a short description, and submit it to ob-
tain a static visualization of the created scenario. The
second related research is project DEM2ONS (Le Roux
et al. 2000), which is a multimodal system composed by
a modal interface and a 3D modeler. It allows simple in-
teractions, that is, the modification of the non-dynamic
elements presented in the scenario. Finally, CAPS (Xu
2002) is a constraint-based system, oriented to solve the
placement of objects inside a scenario. It uses pseudo-
physics and a specialized input language to position up

[ENV]
LivingRoom.
[/ENV]
[ACTOR]
ManSuit John.
YoungWoman Sarah.
[/ACTOR]
[OBJECT]
[/0BJECT]

Figure 4: VEE Example 1.

[ENV]

house.

[/ENV]

[ACTOR]

Knight, anywhere Kitchen.
YoungWoman, anywhere Garden.
woman, anywhere Livingroom
[/ACTOR]

[0OBJECT]

Chair, front womanO.

Puff, front bedO.

[/0BJECT]

Figure 5: VEE Example 2.

to hundreds of elements in a scenario. To our knowledge,
these researches do not provide further methods to al-
low scenario self-evolution, nor provide any information
that allow to simulate a scene on the model.

In this article, we describe our novel approach for declar-
ative modeling using knowledge bases to assist the pro-
cess of model generation. We have implemented a pro-
totype to test our proposal. So far, we have created dif-
ferent scenarios with low generation times using several
objects. Also we have shown how easy is the modifica-
tion of parameters and concepts, achieving significantly
differences between solutions obtained through several
iterations of the modeler. The result shows the trans-
parency in the modeling process. We use the GeDA-3D
architecture to represent a dynamic scene, whose sce-
nario was created using our declarative modeling. Such
dynamic properties are not present in any of the refer-
enced researches.

The main drawback of this research is that knowledge
bases must contain all concepts, as well as a 3D object
database. However once this has been fulfilled the cre-
ation of 3D scenarios is available to final users, achieving
the main objective of this research.

Future work includes the development of a user-friendly
tool to manage knowledge and the 3D object database
extension, as well as dealing with specific cases that may
need special modeling methods.

24

Acknowledgments

This research is partially supported by CoECyT-Jal
project No. 2008-05-97094. The authors would also
like to thank the National Council on Science and Tech-
nology, CONACyT, for providing the PhD Scholarship
number 1910965.

REFERENCES

Gaildrat V., 2007. Declarative Modelling of Virtual En-
vironment, QOverview of issues and applications. In
International Conference on Computer Graphics and
Artificial Intelligence (3IA), Athénes, Gréce. Labora-
toire XLIM - Université de Limoges, vol. 10, 5-15.

Hugo P.; Zuniga F.; and Ramos F., 2004. A Plat-
form to Design and Run Dynamic Virtual Environ-
ment. International Conference on Cyber Worlds,
Tokyo Japan, 18 20.

Le Roux O.; Gaildrat V.; and Caubet R., 2000. De-
sign of a new constraints solvers for 3D declarative
modeling. In International Conference on Compuler
Graphics and Artificial Intelligence (3IA), Limoges,
03/05/200-04,/05/200. 75-87.

McGuinness D.L. and van Harmelen F., 2004. OWL
Web Ontology Language Qverview. W3c rec-
ommendation, World Wide Web Consortium.
Http://www.w3.org/TR/2004/REC-owl-features-
20040210/.

Prusinkiewicz P. and Lindenmayer A., 1990. The algo-
rithmic beauty of plants. Springer-Verlag New York,
Inc.

Ramos F.; Zuaniga F.; and Piza H.I., 2002. A 3D-
Space Platform for Distributed Applications Manage-
ment. International Symposium and School on Ad-
vanced Distributed Systems 2002 Guadalajara, Jal,
Méwxico.

Russell S.J. and Norvig P., 2003. Artificial Intelligence:
A Modern Approach. Pearson Education.

Xu K., 2002. Constraint-based automatic placement for
scene composition. In In Graphics Interface. 25-34.

Zaragoza-Rios J.A., 2006. Representation and Fux-
ploitation of Knowledge for the Description Phase in
Declarative Modeling of Virtual Environments. Mas-
ter’s thesis, Centro de Investigacién y de Estudio
Avanzados del Instituto Politécnico Nacional, Unidad
Guadalajara, Guadalajara, México.

TOWARDS AUTOMATED FEATURE SELECTION IN REAL-TIME STRATEGY
GAMES

Kurt Weissgerber, Brett Borghetti, Gary Lamont, Michael Mendenhall

Air Force Institute of Technology™*
Graduate School of Engineering
2950 Hobson Way
Wright Patterson AFB, OH 45433-7765, USA

kurt.weissgerber; brett.borghetti; gary.lamont; michael.mendenhall@afit.edu

July 30, 2009

KEYWORDS
Real-time Strategy, Feature Selection, Classification,
Clustering, Optimization

ABSTRACT

Since the underlying goal of an Artificial Intelligence
agent in a real time strategy game (RTS) is to defeat
the enemy, the correctness of any state representation
can be determined by the agent’s ability to quickly and
correctly evaluate the likelihood the agent will win us-
ing that representation. Feature selection methods are
techniques for finding the important parameters in a
representation. We present two feature selection meth-
ods for representing a state in a RT'S and show how they
can generate classification models highly predictive of
whether the agent will win or lose, long before the game
is over.

INTRODUCTION

When designing an artificial intelligence player (agent)
for a real time strategy game (RTS), one of the design
decisions is how to internally represent the state of
the game. State representation is important because
it informs the decision-making process of the agent.
In an on-line decision-making setting, the size of the
state space should be reasonable so that an agent can
make a search through state-action pairs to find one
with a high expected value (where the value of a state
is a function of the likelihood of winning from that
state). Armed with this capability, the agent can take
the action and then repeat the process, hopefully until
it wins the game.

While keeping the state representation small is im-

*The views expressed in this article are those of the author and
do not reflect the official policy or position of the United States
Air Force, Department of Defense, or the U.S. Government.

25

portant for computational tractability, the abstract
representation must express information highly corre-
lated to value in the real state. In other words, if a state
representation is useful, the expected value calculation
for a representation of a state should closely match the
value of the real state in the game.

A common method of representing a state in a com-
putationally tractable way while maintaining a good
approximation of the original reward value is feature
selection. In feature selection, the goal is to find a
good subset of key parameters that represent a larger
set of parameters (i.e. the state of the game) so that
the subset can be used to enable tractable computations.

This work explores feature selection in the RTS domain.
Our goal is to develop a computational method for
finding a subset of features which can be used to predict
the agent’s expected reward with high probability. We
use two approaches to search through feature space,
one deterministic (depth-first search with backtracking)
and one stochastic (simulated annealing).

The next section discusses related work in state rep-
resentation and feature selection. We then present a
mathematical formulation of the feature selection prob-
lem for the RTS domain and describe the details of the
two search methods used. Our data collection descrip-
tion and method of testing are followed by results of
experiments. Finally, we conclude and discuss areas of
future work, and explain how this research could be ap-
plied to an RTS agent.

RELATED WORK

Current Artificial Intelligence (AI) approaches vary in
how they define a state. The Case Based Reasoning
approach in (Ontanon et al. 2007) uses a vector of
thirty-five features to define a state. Then, the case in

their database which closely matches the current state
is selected for execution. Because each case is used
to decide an entire strategy, many actions could be
taken based on one state, which reduces the required
computation time of the agent.

Dynamic scripting (Spronck et al. 2006) reasons over
the values of rules and inserts new actions into an Al
script at each turn. This was initially implemented
in a role-playing game, then extended to an RTS
architecture by (IKok 2008). One of the identified
problems is the agent is not allowed to have knowledge
of the environment when determining its current
state; instead, it is limited to knowing the rule values.
Kok believes giving the agent some knowledge of the
environment would be useful.

Much research has been done in the areas of fea-
ture selection and classification. Omne taxonomy is
given in (Jain et al. 1999), another in (Dash and Liu.
1997). Many researchers approach the feature selec-
tion/classification topic as two separate problems: first,
choose the correct features, then determine how to clas-
sify using them. We believe an embedded approach as
outlined in (Blum and Langley 1997), where feature se-
lection/classification is done simultaneously, will be bet-
ter for our problem.

PROBLEM DESCRIPTION

In the RTS domain there are a large number of features
available to any agent. We need to determine which
of these features are “important.” For a feature to be
considered important, its value at some time should
be indicative of the result of the game. For example,
one feature in the game could be the amount of money
possessed by a player. If the amount of money a player
has is important, then a state where we observed a high
value for this feature (much higher than the opponents)
would cause us to predict the player would win. If this
relationship is true for a high percentage of the samples
observed then this is an important feature. However, if
high values for this feature are observed in both winning
and losing game outcomes then it is not an important
feature and should not be used in a state representation.

The previous discussion is a simple example; in reality,
the game outcome is dependent on a large number of
features, but there should be some features which do
not significantly affect the outcome. Our goal is to
find a subset of all the features available to an agent
whose values are highly predictive of game outcome.
To determine whether a feature is important, we build
classification models based on a subset and use them to
classify states as winning or losing.

In our experiment, the agent had perfect information

26

about the entire game state. Features were the differ-
ence between the value of the agent’s feature and the
opponent’s feature: if an agent has six infantry troops
and his opponent has four, the value of the “infantry
troop” feature is two.

The first part of the problem is to choose the correct
features. The second part is to determine the combina-
tion of values for these features which lead to winning
or losing states. Say we pick three features: infantry
units, tanks and jet fighters. If we have a state where
the value of this triple is (6, 4, 2), then we can say the
agent is in a good position to win, he outnumbers the
opponent in every unit category. However, if the value
is (6, 2, -5) the prediction becomes harder. Perhaps
tanks are unable to attack planes, and planes are
slightly more powerful than infantry units.

If we pick a subset of five features and restrict the
values to integers in the interval [-10, 10], then there
are 21° = 4,084,101 possible combinations. Predicting
a value for each one of these combinations is computa-
tionally expensive and unnecessary, most of these states
are close enough together they will result in the same
outcome. Therefore, to find appropriate combinations
we pick some of the state samples as representative
of winning/losing states. Outcome predictions are
assigned to samples based on their proximity to one of
the chosen samples; if closer to a winning sample then
predict a win; closer to a losing sample, predict a loss.
We refer to the chosen samples as “centers” for the rest
of this paper.

In most feature selection/classification problems, the
two problems are solved individually. First, a set of
features is chosen, then a set of centers. We believe the
optimum feature set is determined by the optimum cen-
ter set and vice versa. As a result, the problems should
be solved at the same time, as a single optimization
problem. Once we pick a feature, we also pick centers
which best generalize the feature.

This optimization problem is, formally, given a data
matrix X of dimensions |N| x |M]|, where N is the set
of features and M is the set of samples (each sample is
labeled as winning or losing), output a set of features
n C N and centers m C M, where m will contain |m|/2
winning centers and |m|/2 losing centers (a winning
and losing center associated with each feature). The
classification model defined by n and m will take some
sample =, where x contains only the features in n, and
determine to which of the centers in m it is closest. The
classifier is a zero/one prediction function f(x), where
its output is zero if it finds x is closer to a losing center
and one if it is closer to a winning center. For ease
of notation, f*(x) will be used to refer to the actual
winning/losing value of sample x.

The optimization problem is to maximize the function:
L fx) = f*(x)

X
G(X) = X gle) = {o ozt

The value G(X)/|X| would be the prediction accuracy
of the classifier. A solution to this problem can be
thought of as a binary string of length |N| + |M].
The first |N| bits represent the features; if there is
a one in a feature’s position, then that feature is in
the solution. A zero means it is not. Similarly, the
last |M]| bits represent the samples; a one means the
corresponding sample is a center, a zero means it is not.
A visualization of this idea is in Figure 1.

(1)

Fy F, Fu (&} G Cu

Figure 1: Solution format.
center

F,, is a feature, C), is a

All the possible solutions to this problem are
O2IN x 2IMI) it is NP-Complete. Like all prob-
lems in NP-Space, the optimal solution can not be
found due to computational complexity. Instead, we
can either reduce the complexity of the problem by
abstracting away some of the details to obtain an
approximate solution, or we can pursue a stochastic
algorithm which finds a solution to the original problem
which is not guaranteed optimal.

We develop an instance of each method and then com-
pare the results found.

Deterministic Search

In a deterministic solution, we search the entire solution
space of the problem to find the optimal answer. There
are many algorithms to do so, including Breadth First
Search, Depth First Search, Best First SearchCormen
et al. (2001).

As already discussed, the possible solutions of this
problem are of size O(2IN1 x 2MI If we limit the
size of n and m the solution space is reduced to
O(IN|"l x |M|l™l). Additionally, if we pair every
feature with a winning and losing sample, so when
we choose a feature we also choose the winning/losing
centers which best take advantage of this feature, we
force the relationship |m| = 2 x |n|. We pass the number
of features to put in a solution, |n|, to the search as a
parameter k. This further reduces the solution space to
O(N*), which is deterministically computable when N
and k are small.

27

To link features with samples, we computed a Bhat-
tacharyya coefficient (BC) (Thacker et al. 1998) for
cach feature to determine how well it separated the
two classes of data (winning/losing). The BC is a
heuristic for determining whether the game will be won
or lost using only a single feature. We pick the centers
corresponding with the features as the median sample
of the respective distribution.

The BC is calculated by taking a histogram of all the
data, and then determining the probability of a sample
falling in a bin for both classes. The two probabilities
for each bin are multiplied together and summed over
the entire histogram. Formally, this is:

I
BC =Y P(W;) x P(L;) (2)
i=1
I is the number of bins in the histogram, W; is the set
of winning samples, L; is the set of losing samples and
P() is the probability of the samples being in the bin.
Figure 2 is a visualization of this idea.

Bhattacharyya Example

=L osing Samples
e Winning Samples|
i

0o 2
F. Value

) ™ ,

Figure 2: A visualization of the Bhattacharyya coeffi-
cient (BC) on feature F;. The two curves are distribu-
tions over the winning and losing samples. The BC is
a number between one and zero, expressing the amount
of “overlap” of the two distributions; zero represents no
overlap, while one represents complete overlap. On this
graph, it is the space bounded by both curves. To pair
a feature with a winning and losing center, we take the
sample at the median of the respective distributions,
symbolized by the lines W; and L;. We have expressed
the win/loss samples for feature F; as gaussian distribu-
tions, but the BC works for any type of distribution.

In any search, we need to define some general con-
structs. First, our goal is to construct a full solution
which maximizes our objective function (the “fitness”
of a solution). At each level, we add a triple (one
feature and two centers) to a partial solution. We have
a possible solution when our partial solution contains
k triples, we test its fitness with equation 1 and save
it if better than the best solution found so far. We
terminate when we have explored all possible solutions.

Since k is determined by the user, we can use a Depth
First Search with Backtracking (DFS-BT) (Lewis and
Denenberg 1991) to generate and test all the possible
solutions. The DFS-BT is more memory-efficient than
a Breadth First or Best First Search because it only has
to maintain its current level of the search tree and the
best solution found so far. Computing the value of the
objective function takes time O(k? x |M]): we select
each sample in X and test its distance to every center
in m, based on all the features in n. We compute this
for each solution. A DFS of this solution space takes
time O(|N|¥): we construct each solution in at most k
steps, which is a constant in this problem. Therefore,
the entire search runs in O(k? x |N|¥ x |M]). In this
domain, we can compute this for values k¥ < 4 in a
reasonable amount of time. A sample search tree is
shown in Figure 3.

1
i,

Figure 3: A Depth First Search Tree. At each level, a
new feature/center triple is added to the solution (T7).
The search continues to level k.

The BC is a heuristic in the search. We order the
feature/center triples based on this heuristic and allow
the search to greedily pick some number [of these
features, and then do a DFS-BT to pick the next k — [
features. This allows us to search to a lower depth in
the solution tree. Figure 4 shows the potential gain
from this modification. The complexity of the problem
changes to O(k% x |[N|¥=! x |M|) and the new limitation
of our search is k <[+ 4.

We vary the values of [and k and determine the best
classification models. A complete list of the parameter
combinations tested are in Table 1.

Stochastic Search

As an alternative to reducing the solution space, we
also use a stochastic local search algorithm, simulated

28

Search Depth
(without greedy start})

Search Depth /
(with greedy start} /

Figure 4: The increased space searchable when a greedy
search portion is included

k|1 2 3 4 5 6 7 8
[110]10.1]10.2]0.3(1.4]2.5]3.6]4.7

Table 1: Parameter combinations tested for determinis-
tic search. Step-size for [, the number of levels to do a
greedy search, was 1. The remainder of the levels are
filled out by DFS-BT (DFS-BT done for the last k — [
levels).

annealing (SA), to solve the problem (de Castro 2006).
Simulated annealing is used as a representative of all
stochastic algorithms. Instead of adding to a partial
solution at each step SA searches the solution space.
At each step, a new solution in the neighborhood
of the current solution is generated and its fitness is
compared to the current solution. If the new fitness is
better, the new solution is accepted and the process
repeats. SA also allows for solutions with lower fitness
values to be accepted with some probability P based
on a user defined initial temperature Ty and cooling
parameter «; the temperature at step ¢ is a function
of the initial temperature and the cooling parameter.
At the beginning of the search the temperature is
high so the probability of accepting a solution with a
lower fitness is higher. As the search progresses, the
temperature falls and more and more frequently only
higher fitness solutions are accepted. This is a method
of dealing with the exploration vs. exploitation problem
of any search. SA is biased towards exploration at the
beginning, then leads to exploitation at the end. The
algorithm terminates when the temperature approaches
7Ze10.

In our SA implementation, a solution is represented just
as in the problem description, visualized in Figure 1.
The initial solution is randomly generated. At each
step, we swap out a feature and a winning and losing
sample, an explanation of this swap is in Figure 5. The

solution at each iteration differs by at most one feature
and two centers from the solution at the iteration
before. Like in the deterministic search, we force
[n| = 2 x |m|, but we do not pair features with samples.
This allows us to possibly find better samples to use as
centers based on our feature choices.

s B,

x=0110 | 10010110

z,=0101 | 10100101

1001 | 01101001

Z,

Figure 5: Proximity in solution space. s is a general
solution, the first |[N| numbers are features, the next
| M| are samples. x is a possible solution, there are four
features and eight samples in this example. The first
four samples are winning, the last four are losing. z; is
a possible nearby solution, one sample and two centers
have been swapped. zs is not a nearby solution, two
samples and four centers have been swapped out.

Temperature was decayed using a geometric regression,
where T;,1 = T; X a. The initial solution was randomly
chosen from all possible solutions. Since SA is stochastic
we ran the SA 100 times for each set of parameter values
and took the best solution found. A complete list of the
parameter combinations tested are in Table 2.

|n| To @
2.8 100 0.5
5| 25..175 0.5

5 100 | 0.2..0.9

Table 2: Parameter combinations tested during SA.
Step-size for |n| was 1, Ty was 25, « was 0.1

DATA

We implemented our algorithms on data from a RTS
platform called Bos Wars (Beerten et al. 2008). Bos
Wars is an open source RTS developed as a no-cost
alternative to commercial RTS games. It has a “dy-
namic, rate-based economy”, making it somewhat

29

different than most other RTS games. Energy(money)
and magma(fuel) are consumed at a rate based on the
number of units/buildings a player owns. As the size
of the player’s army increases, more resources must be
allocated to sustaining infrastructure. Additionally,
Bos Wars has no “tech-tree”, so all unit and building
types can be created at the beginning of any game.

There are three scripted Als packaged with the devel-
opment version of the game, blitz, tankrush and rush.
Blitz creates as many buildings/units as possible in the
hopes of overwhelming the opponent. Tankrush tries
to create tanks as quickly as possible, using a strong
unit to beat the weaker units normally created at the
beginning of a game. Rush creates as many units as
quickly as it can and attacks as soon as possible in
order to catch the enemy off guard.

There are eight maps packaged with the game. In
most maps starting conditions for both players are
similar. Each player has the same amount and access
to resources and starts with the same number and type
of units. We used three different two-player maps:
two had similar starting conditions, one had a line of
cannons (defensive buildings) for one player.

Additionally, there are three different difficulty levels
for the game: FEasy, Normal and Hard. Changing
the difficulty level allows the Al to execute its script
faster, so it progresses farther in its strategy in a given
time period during a Hard game than a Normal game,
Normal progresses further than Easy.

To collect data, we modified the source code so it
would take a snapshot of the game at intervals of five
seconds and output the feature values to a text file.
Each snapshot consists of 30 different statistics!. We
also created delta values for all the features based on
the snapshot taken 25 seconds before, so there were 60
features to choose from.

Altogether, we ran 81 games. For the three maps, we
ran three runs for each combination of Al (tankrush v
rush, tankrush v blitz, rush v blitz) at each difficulty
level, so every map has 27 game traces.

We assumed win/loss prediction is easier the closer one
gets to the end of the game. We examined game states
in the third quarter, the ones starting after 50% of
the game had elapsed and before 75% of the game had

Energy Rate; Magma Rate; Stored Energy; Stored Magma;
Energy Capacity; Magma Capacity; Unit Limit; Building Limit;
Total Units; Total Buildings; Total Razings; Total Kills; Engi-
neers; Assault Units; Grenadiers; Bazoo; Dorcoz; Medics; Rocket
Tanks; Tanks; Harvesters; Training Camps; Vehicle Factories;
Gun Turrets; Big Gun Turrets; Cameras; Vaults; Magma Pumps;
Power Plants; Nuclear Power Plants

elapsed. Our shortest game was about ten minutes long,
while the longest was more than forty minutes. Predic-
tions ranged from samples 2.5 minutes from the end of
the game to 20 minutes from the end of the game.

METHOD

Our goal was to test the quality of the solutions found
using the two different search methods. Our initial data
set had 60 features and 4500 samples. To ensure an
unbiased performance comparison between the two, we
split our samples into two portions. The first portion,
the Training Set, was used to train the algorithms.
It contained two thirds of the data. The second
portion, the Testing Set, was used to test the five best
classification models generated by each algorithm.

To prevent bias of the algorithms to a particular data
set, we used K-fold cross validation to determine the
best classification models, where K = 3. We used 2/3
of the Training Set data to train the model, then used
the 1/3 of the Training Set held out to pick the best
model for comparison with the other algorithm. The
partitions of the sets were chosen randomly from the
Training Set, so the BC values for the features were
not the same over all the sets. As a result, the models
generated by the deterministic search were different in
each fold.

Finally, we took the top ten classification models (top
five from each algorithm), evaluated their performance
on the Testing Set, and compared the results.

RESULTS

For the deterministic search, here are the features se-
lected by the top five performing classifiers on the Train-
ing Set, along with the accuracies on the training data
(based on their specific set):

e One: Gun Turrets; Change in Total Buildings; Ve-
hicle Factories; Change in Tanks; Total Razings? -
91.0%

e Two: Power Plants; Change in Total Buildings;
Change in Tanks; Total Razings - 90.5%

e Three: Gun Turrets; Vehicle Factories; Change in
Tanks; Total Razings - 90.0%

e Four: Assault Troops; Energy Capacity; Vehicle
Factories; Total Razings - 89.7%

e Five: Vehicle Factories; Change in Tanks; Total
Razings - 89.6%

20pponent’s buildings destroyed

For the stochastic search, the features selected by the
top five performing classifiers and their accuracies on
the training data (based on their specific set) were:

e One: Magma Rate; Total Kills; Total Units; Engi-
neers; Change in Gun Turrets - 86.6%

e Two: Change in Medics; Magma Rate; Change in
Tanks; Assault Troops; Change in Power Plants -
85.8%

e Three: Change in Gun Turrets; Magma Rate; As-
sault Units; Big Gun Turrets; Change in Total
Units - 82.1%

e Four: Grenadiers; Change in Harvesters; Assault
Troops; Change in Big Gun Turrets; Nuclear Power
Plants; Magma Capacity; Change in Magma Ca-
pacity - 81.7%

e Five: Magma Capacity; Big Gun Turrets; Change
in Total Razings; Change in Building Limit;
Change in Power Plants - 81.7%

The parameter values and accuracy on the Testing Set
for the deterministic search are in Table 3. The stochas-
tic values and accuracy are in Table 4.

Set |n| | { k| accuracy
Two 410 4 93.6
One 5111 5 92.5
Four 4 10 4 92.1
Three | 5 [1 4 90.4
Five 310 3 89.0

Table 3: Top five results from deterministic algorithm.
Ordered based on the classification model performance
on the Testing Set; the accuracy shown is for the Testing
Set. A greedy search was conducted to level [, then a
DFS to level k. The number of features in the solution
is |n| = k.

Set |n| | To « | accuracy
One 5 | 100 0.6 88.7
Four 7 1100 0.5 87.1
Two 5 [125 0.5 86.9
Three | 5 | 100 0.8 82.9
Five 51 7 0.5 80.0

Table 4: Top five results from stochastic algorithm. Or-
dered based on the classification model performance on
the Testing Set; the accuracy shown is for the Testing
Set. |n| is the number of features in the solution, Ty is
the initial temperature and « is the cooling parameter.

Additionally, we wanted to look at the effectiveness of
our center selections. For each center, we determined
how many samples it was closest to and how many of
these samples it correctly classified. These results are in
Tables 5 - 8.

Center | Right Wrong Total | % Correct
Wi 33 3 36 91.7
W2 141 12 153 92.2
W3 169 50 219 77.2
W4 42 2 44 95.5

L1 531 5 536 99.1
1.2 55 22 T 714
L3 251 0 251 100
L4 147 0 147 100
Total 1369 94 1463 93.6

Table 5: Center accuracy for DFS Two

Center | Right Wrong Total | % Correct
W1 107 22 129 82.9
W2 68 11 79 86.1
W3 130 47 177 73.4
W4 45 7 52 86.5
W5 11 4 15 73.3
L1 0 0 0 n/a
1.2 62 19 79 76.5
L3 673 0 673 100
L4 109 0 109 100
L5 148 0 148 100

Total 1353 110 1463 92.5

Table 6: Center accuracy for DFS One

Center | Right Wrong Total | % Correct
Wi 136 95 231 58.9
W2 46 0 46 100
W3 83 0 83 100
W4 53 0 53 100
W5 28 11 39 71.8
L1 183 0 183 100
1.2 136 0 136 100
L3 86 31 117 73.5
14 452 0 452 100
L5 95 28 123 77.2

Total 1298 165 1463 88.7

Table 7: Center accuracy for SA One

CONCLUSION

In all but one case, the deterministic search attained
accuracies > 90%. The stochastic search attained

31

Center | Right Wrong Total | % Correct
W1 28 0 28 100
W2 76 83 159 47.8
W3 28 0 28 100
W4 79 0 79 100
W5 133 0 133 100
W6 14 0 14 100
W7 11 0 11 100
L1 233 70 303 76.9
L2 274 1 275 99.6
L3 27 0 27 100
L4 102 35 137 74.5
L5 61 0 61 100
L6 118 0 118 100
L7 90 0 90 100

Total 1274 189 1463 87.1

Table 8: Center accuracy for SA Four

accuracies > 85%, except for one case. These are high
accuracies, it is possible to generate good classification
models using the search techniques outlined above.

The BC heuristic used in the greedy jump start of the
deterministic search was ineffective. Three of the top
five solutions did not use the greedy portion of the
search; the two that did used only the first feature.
However, using BC as a pairing mechanism to create
feature/center triples was effective as demonstrated by
the high center accuracies.

The features selected by all the deterministic solutions
were similar and the features selected by all the
stochastic solutions were also similar. However, there
was little overlap between the two sets. The stochastic
solutions did have lower accuracies, but does a better
job of exploring the solution space because it is less
restricted. The stochastic algorithm can choose any
samples to serve as centers, while the deterministic
algorithm is limited to those determined by the BC
heuristic.

The center accuracies show both algorithms’ ability
to find good centers based on the features selected.
There was only one center (in DFS One) which was
completely unused; this shows potential overlap in the
centers chosen for some of the features using the BC
heuristic. However, all the other choices show good
variation across the data; almost all were closer to more
than twenty-five samples. There were some centers with
poor classification accuracy; this may reflect overlap in
the data samples.

Overall, the two search algorithms perform well. Both
appear to be promising methods for feature selection,

but the computation complexity of the deterministic so-
lution makes it less attractive than increasing the effec-
tiveness of the stochastic solution. Complete stats on
computation time are not presented here, however, 100
iterations of the SA algorithm with eight features in the
solution took 3 minutes, while a DFS to a depth of four
took > 1 hour.

FUTURE WORK

A better heuristic is needed to jump start the deter-
ministic solution. This would increase the value of
the greedy search portion, and would lead to solutions
containing more features. Additionally, instead of
restricting features to one set of centers, allowing for
more freedom in center choice could lead to better
solutions.

The choice of a center in the stochastic solution should
be used to decrease the number of centers which can
be chosen from the samples. As in the deterministic
solution, the feature selected should inform the choice
of centers and vice versa. We should also look at the
other features which are in the solution and think about
their values in any selected center.

Additionally, instead of randomly choosing a fea-
ture/centers to swap out of the stochastic solution at
cach step, we should choose based on some value added
aspect. If features and centers which did not signifi-
cantly contribute to the solution’s fitness are swapped
out first, this should lead to better solutions.

Finally, our goal is to apply the generated solution
(classification model) to an RTS agent. The method in
this paper finds points which represent winning/losing
middle game states (centers). The features selected can
be used to reduce the actions considered by an agent;
only actions which can affect important feature values
should be taken.

For example, if the classification model generated
contains the infantry unit feature and the agent is at
a state where this feature value is closer to a losing
center then it should take actions to increase the value
of this feature. It could build more infantry units
or the infrastructure to produce them, destroy the
enemy’s infantry units/infrastructure, build defensive
emplacements which are effective against infantry
attacks, etc. With a reduced set of possible actions,
along with known good states, this problem becomes
tractable.

The end goal of our research is to generate such an agent.

32

REFERENCES

Beerten F.; Salmon J.; Taulelle L.; Loeffler F.; Mistry
N.; and Penfold T., 2008. Bos Wars. Open Source
Software. URL http://www.boswars.org/.

Blum A.L. and Langley P., 1997. Selection of rele-
vant features and examples in machine learning. Ar-
tificial Intelligence, Volume 97, no. 1-2, pp 245-
271. ISSN 0004-3702. doi:http://dx.doi.org/10.1016/
S0004-3702(97)00063-5.

Cormen T.; Leiserson C.; Rivest R.; and Stein C., 2001.
Introduction to Algorithms. The MIT Press.

Dash M. and Liu. H., 1997. Feature Selection for Clas-
sification. Intelligent Data Analysis 1, Volume 2, pp
131-156.

de Castro L.N., 2006. Fundamentals of Natural Com-
puting. Chapman and Hall/CRC.

Jain A.; Murty M.; and Flynn P., 1999. Data Clustering:
A Review. ACM Computing Surveys, Volume 31, no.
3, pp 264-322.

Kok E., 2008. Adaptive Reinforcement Learning Agents
in RTS Games. Master’s thesis, University Utrecht,
The Netherlands.

Lewis H.R. and Denenberg L., 1991. Data Structures &
Their Algorithms. Addison-Wesley.

Ontanon S.; Mishra K.; Sugandh N.; and Ram A.,
2007. Case-based Planning and Ezecution for Real-
time Strateqy Games. In ICCBR ’07: Proceedings of
the 7th International Conference on Case-Based Rea-
soning. pp 164-178.

Spronck P.; Ponsen M.; Sprinkhuizen-Kuyper I.; and
Postma E., 2006. Adaptive Game Al with Dynamic
Scripting. Machine Learning, Volume 63, pp 217-248.

Thacker N.A.; Aherne F.J.; and Rockett P.1., 1998. The
Bhattacharyya Metric as an Absolute Similarity Mea-
sure for Frequency Coded Data. Kybernetika, Volume
34, no. 4, pp 363-368.

MACHINATIONS: ELEMENTAL FEEDBACK STRUCTURES FOR GAME DESIGN

Joris Dormans
Hogeschool van Amsterdam
Weesperzijde 190
1097DZ Amsterdam, The Netherlands
E-mail: j.dormans@hva.nl

KEYWORDS
Game design, game structure, feedback loops, design patterns.

ABSTRACT

This paper presents a structural model that can describe the
gameplay mechanisms found in the great majority of games.
In particular, different types of feedback loops are suggested
as the elemental structural patterns that give rise to interesting
gameplay. Any formal method of describing games must be
able to express feedback loops and their relations to be of any
use in designing games. Using a formal notation based on
Petri nets and the concept of internal game economies,
different types of feedback loops are investigated and
discussed.

INTRODUCTION

There are many ways to look at games. They are entertainment
devices geared towards pleasurable interaction on onc hand,
and they are cultural media contributing to and reflecting on
contemporary culture on the other. At the same time, games
consist of complex rule systems that model fictional
environments and facilitate player agency in those
environments. This allows us to approach games in many
different ways. Without suggesting that one approach is better
than the other, this paper treats games as complex state
machines: interactive devices that can be in many different
states, and which current state affects the transition to a new
state. In particular, this paper focuses on the role feedback
loops play in games and sets out to identify the most clemental
types of feedback that can occur in games.

It is an approach that focuses on game systems and neglects
players. This is a move that can and has been critiqued:
without players games would be, quite literary, meaningless.
The formal rule systems of games are subject to constant
change and reinterpretation. A formal approach always runs
the risk of turning a blind eye towards this dynamic and
important dimension of games (see Malaby 2007). However, a
game designer first and foremost builds games systems. It this
system that codifies the player’s possible interaction and
generates individual game experiences. The aim of this paper
is to understand the elemental structures that contribute to
quality gameplay and that ultimately facilitates the expressive
and dynamic nature of games.

This is a structural approach to game systems; it focuses on
the structure of game systems and patterns that might be found

33

in these structures. It is not what I call a formal approach, as it
lacks the mathematical rigor required to deserve such label.
Yet, in it intents to do exactly what many other would loosely
call a formal approach: to provide a common, abstract and
precise language that can be wused to increase our
understanding of games. It is not the first attempt in this
respect. The call for such a formal or structural language has
been expressed before with mixed results (LeBlanc 1999,
Church 1999, Kreimeier 2002, Griinvogel 2005, Koster 2005,
Bura 2006). To date, none of these have been so successful
that they have become an industry or academic standard. I feel
that is largely due to the fact that they tend either to be too
mathematical for the diverse population of game designers and
scholars, or were not explored or presented with enough detail.
Most importantly, for a framework like this to be of any
success, it requires the designers to make an investment by
learning the paradigm. Only an obvious return justifies this
investment: using the framework should improve design and
speed up the design process.

Many of the concepts proposed in these works have found
their way into the approach presented in this paper. But I also
drew inspiration from fields as diverse as linguistics,
semiotics, the science of complexity and modern control
theory. This paper expands the ideas presented in an earlier
paper (Dormans 2008) which used a similar approach based
on UML diagrams. The response on that work, as well as my
work with students and my own experience as a game
designer, inspired me to focus more closcly on feedback
patterns in games and their relation with the flow of the game,
which I understand here as a particular progression through
different game states that is the result of playing a game.

When one sets out to model anything as complex as games,
the problem always is that a model can never do justice to the
true complexity of that what it one tries to model. This is true
for most models, and the best models succeed in stripping
down the complexity of the original by leaving out, or
abstracting away, many important details. This is certainly the
case with the models I present here. However, any model is a
tool that can help us understand and work with complex
systems. The model presented in this paper certainly is such a
tool. To be able to use the model to the best effect
understanding the concepts that informed the creation of the
model is required. As any model, this model only facilitates
understanding; it never is a substitute for it.

This paper starts by investigating games as state machines in
the first two sections. It discusses state machine diagrams and

Petri nets as possible methods for modeling games. In the next
two sections it explores the important structural notion of
feedback loops and devise a diagram language based on Petri
nets to express feedback structures in games. An example of
how understanding of a game’s feedback structure can be
utilized to improve its design is next. Finally, a small number
of elemental feedback patterns that can be found in many
games are presented.

I am not the first author to build a set of game design patterns.
Staffan Bjork and Jussi Holopainen (2005) do exactly that.
Their collection of over two-hundred patterns has a broader
scope than what I present here, but describe games mostly
from the outside. In contrast, this approach trics to construct
game design patterns inside-out. It takes theoretical concepts
concerning statc machines as its starting point, and trics to
identify patterns in the structure of games from there.

The notation for feedback structures developed in this paper is
adapted from the interactive diagrams that were developed for
my research into feedback structures. These diagrams, an
online tool to create these diagrams as well as an extended list
and more thorough description of the patterns presented here
can be found on the website that accompanies this paper:
www.jorisdormans.nl/machinations/wiki.

GAMES AS STATE MACHINES

A game can be understood as a state machine: there is an
initial state or condition and actions of the player (and often
the game, too) can bring about new states until an end state is
reached (Griinvogel 2005). In the case of many single-player
video games ecither the player wins or the game ends
prematurely. The game’s state usually reflects the player’s
location, the location of other players, allies and enemies, and
the current distribution of vital game resources. From a
game’s state the player progress towards a goal can be read.
State machines can be diagrammed. In these diagrams circles
represent states and arrows represent transitions between
states. Often these transitions are marked with labels that
indicate what brings the transition about. For example, figure
1 represents a state machine of a fairly straightforward and
relatively simple, generic adventure game.

puilt lever (¢}

Figure 1: Adventure game state machine

Many things have been omitted from this diagram. For
example, the way the player moves through the world has
been left out, which is no trivial aspect in an action adventure
game with a strong emphasis on exploring (as is the case with
most Legend of Zelda games). Still, we can casily abstract it
away from this diagram as movement does not seem to bring
any relevant changes to the game state (other than the
requirement of being in a certain location to be able to execute
a particular action).

34

The question is whether or not a formal representation of a
game is of any use. Looking at the diagram this game does not
look complex at all. The possible sct of different trajectories
trough the state machine is very limited. The only possibilitics
arc ‘abcde’ and ‘abdce’. This game is a machine that cannot
produce any other result. It is, to use Jesper Juul’s categories,
a game of progression, and not a game of emergence (Juul
2005). To be fair, most adventure games have much larger set
of states and player actions that trigger state transitions. There
might be side quests for the player to follow, or even optional
paths that lack the symmetry of the two branches in figure 1.
A game like this might grow in complexity very fast (see for
example figure 2), but still the possible trajectories remains
ultimately finite. Yet this is what a lot of games have done in
the past.

Figure 2: A more complex game state machine, but one that
still produces a finite set of possibilities

To really change the character of the output of the machine, a
structural change needs to be made to the set up of the game.
One possibility is to create recursion in the diagram.
Recursion simply means that a transition takes you back to a
previous state, allowing you to loop through the diagram in
different and more varied ways. Chomsky has shown that
including recursion in a state machine the set of possible
results quickly becomes infinite (1957: 18-25). For example
we could make the supply of keys and locked doors in our
previous game endless allowing the player to loop back
indefinitely (see figure 3). The possible set of results is now
{abcde, abdce, ababede, ababdce, abababede, abababdce, ...,
ctc.}.

Figure 3: an adventure game with recursion

Of course, this has little meaning in the context of the game,
unless the number of keys the player collected somehow
affects his chance of defeating the end boss. In the later case
we might want to consider creating different states for each
number of keys the player has collected but this would create
an infinite number of states, which is impossible to diagram.
In a real implementation of a game, the number of keys would
be stored in a variable, but state machine diagrams have no
method of representing variables. This is problematic as the
statc of many games is best expressed using variables like
these.

Consider the board game Risk. In this game the state of the
game can be expressed by each individual player’s current

possession of lands, armies and cards. The number of different
distribution of lands, armies and cards over different players
is, for all practical means, too large to be diagrammed in a
uscful manner using classic state machine diagrams. Even if,
we abstract away the location of countries on the board and
reduce the state to the number of lands, armies, and cards in
the player’s possession, the number of possibilities is still too
large for a classic state machine diagram. It is impossible to
model such a game using a classical state machine diagram;
games might be state machines, they are rarely finite.

A DIFFERENT LOOK AT GAME STATES

Game states arc usually much better expressed using a mix of
variables and states. Not only allows such a mixture to model
the large number of states encountered in most games, it also
shifts attention towards the transitions between the states,
which corresponds to user actions. If we take Risk again as our
example we can construct a diagram for this game with only
four states and seven transitions (figure 4) in which each
transition affects the number of lands, armies and cards.

win game (f}

win batile (d}

play cards (c]\ /\\

C()atmk(a) ()
mutbw

lose game (g}

Figure 4: a state diagram for Risk

The diagram shows a lot of recursion, and as a result an
infinite number of different paths through the state machine
are possible. A diagram that focuses on transitions is clearly
more capable to capture the nature of games and the varied
sessions of play. However, the diagram omits important rules
and mechanics. For example, in Risk you can only play cards
if you have a valid set of three, the number of armies you gain
from a building action depends on the number of lands you
control, and the chances of reaching victory in a battle is
affected by the number of armies you have. It is possible to
write down these rules in or next to the diagram, although this
will do little to make the diagram more accessible to most
game designers.

Petri nets are an alternative modeling technique suited for
game machines (¢/. Bura 2006). Petri nets work with a system
of nodes and transitions. A particular type of nodes: places,
can hold a number of tokens. In a Petri-net a place can never
be connected directly to another place, instead a place must be
connected to a transition, and a transition must be connected to
a place. In a classic Petri net places are represented as empty
circles, transitions are represented as squares and tokens are
represented as solid circles. In a Petri-net tokens flow from
place to place; the distribution of tokens over spaces
represents the current state of the Petri net (see figure 5). This
way the number of states a Petri net can express is infinitely
larger than non-looping, finite state machine diagrams. Petri
nets put much more focus on the transitions and have a natural

35

way of representing integer values through the distribution of
tokens over the places in the network. However, Petri nets can
be somewhat difficult to read, as the transitions arc often
identified using names and arc defined with formal
mathematical definitions.

A U U
@) O] ©-1 O
O e ® @@

Figure 5: Four iterations of the same Petri net showing
movement of tokens through the network

9
]
|

GAME ECONOMY

One way to enhance the readability of Petri nets is to reduce
the number of possible transitions to a small set of basic
operations that still allows us to represent game mechanics.
Although this would still entail an abstraction of a game’s true
logic, I argue it is possible to come up with a set that is able to
express a game’s characteristic flow, and therefore can be
used to create a useful model for the game. This set is based
on the idea that all games can be understood in terms of their
internal cconomy.

According to literature, most, if not all, games have an internal
economy and this economy plays a vital role in its emergent
behavior (Adams & Rollings 2007). A game's economic
system is dominated by the flow of resources. In games
resources can be anything: from money and property in
Monopoly, via ammo and health in first person shooters, to
experience points and equipment in role playing games. Even
more abstract aspects of games, such as player skill level and
strategic position can be modeled through the use of resources.
Once we have identified a game’s most important resources
we can look at how these resources are produced, consumed
and how they interact. In the case of Risk, we might think of
lands, armies and cards as resources, where both lands and
cards can be used to produce armies, and armies can be risked
to gain lands and cards.

Adams and Rollings identify four basic economic functions
for games: sources, drains, converters and traders (ibid.: 331-
340). Sources create resources, drains destroy resources.
Converters replace one type of resource for another, where as
traders allow the exchange of resources between players or
game clements. These economic functions set up a network of
cconomic transactions that determine the flow of a game. |
found that, together with a concept for pools, or places where
resources can gather, these economic functions are indeed the
essential operations that can represent most game mechanics.
Of these structures, sources and drains are the most elemental.
It can be casily shown that a converter can be constructed
from a combination of a source and a drain, whereas a trader
can be created from a set of interlinked pools. Figure 6
explains the diagrammatic language | use to express these
elements. This language is loosely based on Petri nets. It
incorporates the ideas of places and tokens. It specifies a

number of base transitions that represent the eclementary
operations required to build an internal economy. In addition,
special links represent communication of a pool’s status.
These can affect the settings of a particular operation. A
special set of indicators can be used to mark different types of
unpredictability (see feedback signatures below).

* Arrow to indicate flow of resources.
The star indicates a player action.

A pool with two resources.

Arrow to indicate communication
of state.

Source: produces resources. .)
Duplication: resources will be

duglicated and send allong all
outgoing conrections.

-

n Chance gate: token passesifa

certain chanee factor is beaten.
‘n' represents the difficulty.

a Skill gate: token passes if a certain
—»@—» the player is skillad encugh.
'n' represents the difficulty.

: Multiplayer gate: represents

Drain: destroys rescurces.

Converter: replaces resources
with a new type of resource.

Trader: resources are
exchanged.

W AF<>®

actions directed against the player
performed by others players.

Examples:
n n
The player can spend The number of resources or The number of resources an

resources to improve the
cutput of a source.

the pool negatively impacts
the autput of a source.

the left pool determinas sels
the resources on th right peol.

Figure 6: ‘Game economy’ diagrams

Figure 7 is a diagram of the internal economy of Risk. As you
can see in this diagram, unlike Petri nets, it is possible to
directly connect multiple transitions. The different colors
denote different mechanics are structural features of the game.
The black elements and connections represent Risk’s main
mechanic of risking armies in battle to gain land. The light
green connections and elements in the middle of the diagram
indicate the building mechanism which in turn takes the
number of lands as an input. The dark grey elements on the
bottom indicate the bonus armies gained from -capturing
continents. The dark grey elements on the top represent the
card mechanism in risk: a successful attack will get the player
a card. Particular sets of three card will get the player more
armies as well. The random knot indicates that this mechanism
is subject to the randomness generated by the drawing of a
card. The light grey elements on the top and the right indicate
the effects generated through multiplayer dynamics: loss of
armies and lands, which is informed by the number of lands
and continents the player has, (for reasons of clarity a similar
connections from armies to the multiplayer dynamic
mechanism is omitted). In the game of Risk the main resources
are easily identifiable: armies, lands and cards are represented
by actual playing pieces, positions on the board and playing
cards. However, sometimes resources can be more abstract. To
stay with the example of Risk, strategic positions can be seen
as another resource in the game, as can be player skill. In a
games like Go, Chess or Checkers, strategic position is often
more advantageous than the number of playing pieces under
your control. Likewise, in a platform game, the avatar’s
altitude can be vital resource in reaching the end of a level or

36

gaining advantage over his enemies. The use of abstract
resources can be vital in understanding a game. In Boulder
Dash, for example, a level’s relative instability is an important
factor. One might say that the player is constantly converting
movement and collected diamonds into more instability.
Should the instability exceed the player’s skill level, he loses.
Abstract resources can be modeled just like other resources.
To give an example, jumping in a platform game can act like a
source of the abstract resource altitude. While at other
moments in the game, altitude might be converted into victory
points or spent to reduce risk of difficult actions.

Opponent
“e., adlions

=" Cantinents

Cantinent
Bonug

Figure 7: A diagram for Risk
FEEDBACK

Just as recursion is an important structural characteristic of
state machines that increases the number of sequences a state
machine can produce, feedback is an equivalent structural
characteristic of a game’s economy. Here feedback has
nothing to do with giving the player information about the
game or it state, rather feedback is understood in its original
meaning, where the output of a process feeds back into the
same process often strengthening the process further. A classic
example of feedback in games can be found in Monopoly
where money is spend to buy property which in turn generates
more money, with which the player can buy more property,
etcetera. The concept of feedback comes from classic control
theory and has been introduced to the game design community
by Marc LeBlanc (1999).

As is the case in classic control theory (DiStefano III, et. al.
1967, Andrei 2005), Marc LeBlanc distinguishes between two
types of feedback: positive and negative feedback. Positive
fecdback strengthens itself and destabilizes a system. Positive
feedback occurs whenever a small deviation will create a
stronger deviation, which creates a stronger deviation in turn,
as is the case with the Monopoly example above. Positive
feedback can be applied to positive game effects but also to
negative game effects, as is the case with loosing pieces in
Chess, which increases the chances of loosing more piece,
etcetera. LeBlanc suggests that positive feedback drives the
game to a conclusion and magnifies early successes (LeBlanc
1999, see also Salen & Zimmerman 2003: 224-225). Negative
feedback is the opposite of positive feedback. It stabilizes a
game by diminishing differences between players, by applying
a penalty to the player who has done something that takes him
closer to his goal and winning the game, or by giving

advantages to the trailing players. LeBlanc points out that in
most multiplayer games that allow direct interaction some sort
of negative feedback is already in place, as most sensible
players will target the leader more than any other player. As
one might expect negative feedback can prolong a game and
magnifies late successes (ibid.).

Control theory, in almost all cases, strives for negative
feedback while avoiding positive feedback, as it aims to create
stable systems. A large part of control theory concerns itself
with determining and optimizing the stability of the system.
For games the situation is, of course, very different. Positive
feedback loops are much more frequent in games because, in
general, designers understand that players do not want to play
a game that drags on forever. Yet, negative feedback is also
wanted, as most games with only positive feedback will seem
too random to many players as they will unable to catch the
player who took an early lead. Monopoly is a good example of
this effect as an early, lucky break is an accurate prediction of
who will win in the end. And despite the lack of negative
feedback the game still seems to drag on forever.

Marc LeBlanc observations have been picked up by influential
game designers and theorists. It features prominently in the
work of Katie Salen and Eric Zimmerman (2003), Ernest
Adams and Andrew Rollings (2007), and Tracey Fullerton
(2008). They usc it as a promising, analytical lens for game
design. In an carlier paper I have discussed feedback in
relation to emergence in games (Dormans 2008) following
suggestions by Jochen Fromm (2005) who states that true
emergence can only occur in systems with multiple feedback
loops. From these discussions it becomes clear that feedback
goes a long way in explaining the flow of a game; many
games can be characterized by the particular set up of
feedback loops. But, to my knowledge, none of these
discussions have attempted to expand on LeBlanc’s original
idea. So far, no-onc looked beyond positive and negative
feedback in any detail or tried to identify the most clemental
patterns of feedback in games. This is what I intend to do here.

FEEDBACK SIGNATURES

The beauty of the diagrams I propose is that they are very
effective in capturing feedback loops. Feedback is realized by
a closed flow of resources and/or state connections. In figure
7, there are four feedback loops clearly visible. The first
feedback loop involves the capture of lands and the positive
effect this has on the number of armies you can build, with
which you can capture more lands. In the diagram the loop is
closed by green building mechanism. The second feedback
loop involves the cards (the red mechanic), which are
rewarded for winning lands, and which can be converted into
more armies once a set of three cards is collected. The third
feedback loop is formed by the blue mechanics representing
the capture of continents. Finally the purple, multiplayer
dynamic mechanism constitute the fourth feedback loop.

The first three feedback loops are positive: more lands or
cards will lead to more armies which will lead to more lands
and cards. Yet they are not the same. The feedback of cards is

37

much slower that the feedback of lands, but at the same time
the feedback of the cards is also much stronger. Feedback
from the capturing continents opcrates fast and strongly. These
arc important characteristics of the feedback loops that have a
big impact on the dynamics of the game. Players are more
willing to risk an attack when it is likely that the next card
they will get completes a valuable set: it does not improve
their chances of winning a battle but it will increase the reward
if they do. Likewise the chance of capturing a continent can
inspire a player to take more risk than he should. Only
identifying all feedback loops as positive is not enough to
explain these gameplay effects.

Table 1 lists seven characteristics that are used to describe the
signaturc of a feedback loop. At a first glance some of these
characteristics scem overlapping, but they are not: It is casy to
confuse positive feedback with constructive feedback and
negative feedback with destructive feedback. However,
positive destructive feedback exists as is the case with loosing
pieces in a game of Chess. Likewise, the board game Power
Grid employs a mechanism in which the game leaders have to
invest more resources to build up and fuel their network of
power plants: negative constructive feedback.

Table 1: Characteristics of feedback

Characte- | Value Description

ristic

Type Positive Enhances differences, destabilizes
the game.

Negative Dampens differences,
stabilzes/balances a game.

Effect Constructive | Operates on a game effect that
helps you win.

Destructive | Operates on a game effect that will
make you loose.

Return High The net gain is high.

Low The net gain is low.

Insufficient | The gain does not outweigh the
investment (net gain is negative).

Investment | High Many resources must be invested
before the feedback is activated.

Low Few resources must be invested
before the feedback is activated.

Speed Fast The effects of the feedback are fast
or immediate.

Slow The effects of the feedback take
time or several iteration to activate
or kick in.

Range Short The feedback operates directly
over a few steps.

Long The feedback operates indirectly
over many steps.

Durability | None The feedback works only once.

Limited The feedback works only over a
short period of time.

Extended The feedback works over a long
period.

Permanent The effects are permanent.

The strength of a feedback loop is an informal indication of its
impact on the game. Strength cannot be attributes to a single

characteristic; it is the result of several. For example,
permanent feedback with a little return can have a strong
cffect on the game.

In many games the characteristics of feedback are affected by
outside factors such as chance, skill and social interaction (see
Table 2). Feedback in a multiplayer game that allows direct
player interaction like Risk can change over time. As LeBlanc
already pointed out, it often is negative feedback as players act
stronger, or even conspire against, the leader. At the same
time, it can also be positive as in certain circumstances it can
be beneficial to pray on the weaker player. In other cases
random chance can affect the nature of the feedback as is the
case in many board games that involve dice.

Table 2: Determinability

Given a certain game state, the feedback will
always act the same.

The feedback depends on random factors. The
randomness can affect the feedback’s speed
and/or return, or the possibility of feedback
occurring at all. Or the return might be
infrequent. Random feedback is difficult for
the player to assess, and increases the chance
of deadlocks.

The type, strength, and/or game effect of the
feedback are affected by the direct interaction
between players.

The type, strength, and/or game effect of the
feedback are affected by the strategic
interaction between players.

The type, strength, and/or game effect of the
feedback are affected by the player’s manual
skill in executing the action.

Deterministic

Random

Multiplayer
dynamics

Meta-dynamics

Player skill

The skill of player in performing a particular task can also be a
decisive factor in the nature of feedback, as is the case for
many computer games. For example, in a shooter game there
often exists a feedback loop between the ammunition a player
invests to defeat opponents and the ammunition these
opponents drop when they are killed. The player’s skill is an
important factor in this feedback as a skillful player will waste
less ammunition; his investment is lower than that of a less
skillful player. Here player skill is a factor on the operational
or tactical level of the game. Games of chance, tactical skill,
or games that involve only deterministic feedback, a whole set
of strategic skills can be quite decisive for the outcome.
However, that is a result of a players understanding of game’s
feedback structures as a whole, and as such it is not an element
that can or needs to be modeled within the structure.

Games that feature only deterministic feedback, can still show
surprising emergent behavior and unexpected outcomes. In
fact, it is my conviction that a well-designed game is build on
only a handful feedback loops and relies on chance,
multiplayer dynamic, and skill only when it needs to and
refrains from using randomness as an casy source of
uncertainty.

Combining the characteristics of feedback with its
determinability it is possible to describe a signature for each

38

feedback loop and a feedback profile for different games.
While a profile like this can be very helpful in identifying the
nature of feedback in a game, it does little to reveal the
interaction between different feedback loops. This is where
diagrams, such as figure 7, excel. Many of the characteristics
of feedback loops described above can be read from the
diagrams. The effect of the feedback is directly related to the
constructive or destructive nature of the feedback loop,
whereas return and investment depends on the number of
resources involved. Range can be read from the number of
clements involved in the feedback loop, speed from the
number of iterations required to activate the feedback. Slightly
more difficult to read are the return and the type of feedback,
but this is possible, too. In the diagram for Risk I have already
included a symbol to mark chance factors; this is extended
with symbol for multiplayer dynamics, meta-dynamics and
player skill (see table 2). The type of feedback (positive or
negative) is perhaps the most difficult to read from a static
representation, and requires careful inspection of the diagram,
but this is possible, too. The plus symbols in the diagrams in
the paper do not indicate positive feedback, only that there is
positive correlation between the number of resources in the
pool and the value it is affecting, which can induce negative or
positive feedback.

FEEDBACK ANALYSIS

An analysis of a game’s feedback loops can be used to identify
structural strengths and flaws in its design. To create
interesting and varied gameplay feedback is an important tool,
and most successful games incorporate one or several
feedback loops. Structural flaws, or ‘bad smells’ in analogy to
software engineering, are constructions that are best avoided.
If we take Risk again as our example, we can identify one of
its problems from play experience: building as often as you
can is an effective, almost dominant, strategy. In fact, the
game has a rule that disallows players to build for more than
three turns in a row to counter this strategy. Inspection of the
feedback structure of the game suggests another way of
resolving the problem. Attacking feeds into a triple positive
feedback structure (lands, cards and continents), which is a
strength of it its design, but apparently the feedback is not
effective enough. Adjusting the feedback of lands will help
only a little as building is part of the same feedback loop and
will probably strengthen the unwanted behavior. Either the
feedback through cards or the feedback through continents
needs to be improved. The card feedback loop involves two
random factors: success of attack and the blind draw of the
card itself. This makes the feedback unpredictable and very
hard for the player to assess. In general, involving too much
randomness in the same loop is best avoided, especially when
this randomness affects different steps in the loop. It is very
hard to balance and predict the feedback of such a loop, so
reducing the randomness, for example by allowing the winner
a pick of three open cards, will help a lot.

Alternatively the feedback through the capture of continents
can be improved. The problem with this feedback is that is
strong, permanent, direct and fast: it is very obvious and will
inspire strong reaction by opposing players, in other words it

acts as a red flag. Combined with a relative high investment, it
is a difficult strategy, but one that is very rewarding if it
succeeds. The strength and the obviousness of the feedback
which invites a strong ncgative feedback create a feedback
loop that is too crude: it is cither on and going strong or it is
off. Either the player succeeds in taking and keeping a
continent and has a very good shot at winning, or players
quickly take the continent away from the player. By making
the feedback less strong, and perhaps increase the number of
continents (or rather regions) for players to conquer, a far
more subtle feedback loop is created that will pay-out more
often without unbalancing the game too much.

ELEMENTAL FEEDBACK PATTERNS

Looking at feedback structures in games, many recurrent
patterns emerge. Below is a short list of patterns with some
examples. Some patterns are diagrammed as well, although
often there are multiple ways to implement the pattern. These
descriptions are informal, they are presented here as a sample
of what feedback patterns can be found in games. Extended
descriptions that follow more closely the format for design
patterns used in software engineering (Gamma et. al. 1995),
and game design pattern libraries inspired by those patterns
(Kreimeier 2002, Bjork and Holopainen 2005), including
interactive diagrams and multiple sample implementations can
be found on the website that accompanies this research.

Dynamic Engine — A resource called energy is produced by a
source and can be spent to improve its flow. This constitutes
constructive permanent positive feedback (see figure 8).
Settlers of Catan at its heart has a dynamic engine that is
affected by some randomness: randomly selected tiles produce
resources for players that have villages and cities next to the
tile. Building villages improves the chances of player to get
resources, while upgrading villages to cities increase the
resource output of a tile when they are selected.

Source Fool
Ensrgy

Figure 8: Dynamic Engine (left) and Converter Engine (right)

Converter Engine — If a player can change one type of
resource (energy) into another (fuel) and than change it back
into energy to generate a surplus of energy the game includes
a converter engine (see figure 8). Power Grid is an example of
a converter engine. In this game players spend money to buy
fuel and burn fuel to make money. The surplus is used to
invest in better power plants, among other things. The risk of
feedback engines is the chance of deadlock, if both resources
dries up the engine dies out and cannot be revived. Consider
combining a feedback engine with a weak static engine to
prevent deadlocks (as is the case in Power Grid). A converter
engine offers more opportunities to create positive feedback

39

and is therefore well suited as part of the engine building; a
higher level pattern in which players compete to build efficient
cconomic engines. Most real-time strategy games follow a
complex engine building pattern with destructive feedback
between the players, not unlike Risk (¢f. Salen & Zimmerman
2003: 222).

Playing Style Reinforcement — Slow, positive, constructive
feedback on player’s actions that also have another game
effect causes the player’s avatar or units to develop over time.
As the actions themselves feed back into this mechanism the
avatar or units specialize over time, getting better in a
particular task. As long as there are multiple viable strategies
and specializations, the player’s avatar or the units will, over
time, reflect the player’s preferences and playing style, often
this mechanic employs experience points as a resource (scc
figure 9). Playing Style Reinforcement is a common pattern
that can be encountered in most games that include ‘role-
playing elements’.

N =
T e s

) Ve Experience%\, e :
1 B '1'// Painta \y" 1
[1

. s %
‘/ Y il . l'l\“ i

!
!
o, o 1
_— : ,
Action Points "0ON B !

Figure 9: Playing Style Reinforcement

Action &

Escalating Complications— The basis of many action games
is confronting the player with a task that keeps growing more
difficult as the player’s actions to complete a goal also applies
feedback to the skill needed to complete the task, reducing the
cffectiveness of the skill (see figure 10). A classic example
can be found in Space Invaders where destroying an alien
makes the others move slightly faster, increasing the difficulty
of destroying the remaining aliens.

) / \:
1 /
+1 Progress +1
. e i ‘j 7N e Task
ok Task S —H | }Lﬂ,_jf_&_m* 7
"x\\ A i) £+1 N

Dt Complexity
Targslz Goal .? !

@r— A

I Flayer &ction

Figure 10: Escalating Complications (left) and Escalating
Complexity (right)

Escalating Complexity — Another basic set-up for action
games is introducing a system in which the positive feedback
to the game complexity is automatic and steady, while the
player actions work to reduce complexity. As the game
progresses complexity will be created increasingly faster (see
figure 10). This way, skilled players can manage the difficulty
longer than players with less skill. Games like this remain
balanced for a while and then quickly spin out of control.
Tetris is an ecxcellent example of this pattern. When the

positive feedback mechanism is unsteady or unpredictable, the
pace of the game can vary a lot.

CONCLUSION

There are some limitations to the use of these diagrams. The
idea of internal economy is suited better to some games. In
particular, it works very well for board games. In games where
economy is more abstract these diagram can be difficult to
abstract, and many games can be diagrammed in multiple
ways depending on the analyst’s focus. Still, feedback loops
can go a long way in explaining the flow of a game. Gameplay
can be related to more characteristics of feedback loops than
positive and negative feedback only. In addition, the delicate
interaction between multiple feedback loops must be taken
into account to get a complete picture of the dynamics of
games as (infinite) state machines. The list of feedback
patterns presented in this paper, and on the accompanying
website is neither definitive nor complete. For now, my
research into feedback structures is still ongoing. Currently,
patterns are still being harvested from analysis of existing
games, games under production, and by exploring theoretical
possibilities suggested by the framework. Future effort is
aimed at collecting more patterns and establishing methods
and practices for using the patterns to improve the design
process of new games. To this end I will be looking at
correlating particular game design patterns with specific game
design goals in order to provide more grip on the clusive
nature of gameplay and its (serious) application.

It is important to note that although examples were illustrated
in both words and diagrams, there are many different ways of
implementing these patterns. A pattern description is not a
prescription of a particular implementation. These patterns
have many different ways in which they can be combined, and
each individual game provides its own particular opportunities
for interesting combinations. Although, I would personally
lean towards the simplest possible implementation, as it is
usually my objective to create complex, rather than
complicated, games. It is best to consider this framework as a
set of building blocks (pools, resources and economic
functions) that can be used to build an infinite number of
different structures some of which are recurrent patterns that
can be used to analyze existing games and explore new
concepts.

ACKNOWLEDGEMENTS

I would like to thank Stéphane Bura for being a great
inspiration for the work presented here. Not only did he urge
me to cxplore the diagrams I developed further using an
interactive tool, his work, comments, and our discussions set
me on the right track to discover some of the key concepts
presented here. Furthermore I would like to thank Jacob
Brunekreef for reading and commenting on a previous draft of
this paper. Finally, I am grateful to the Hogeschool van
Amsterdam for supporting my PhD research and allowing me
to test this work with game design students.

40

REFERENCES

Adams, Ernest, & Rollings, Andrew. (2007). Fundamentals of Game
Design. Upper Saddle River: Pearson Education, Inc.

Andrei, Neculai (2005) “Modern Control Theory: A historical
perspective”. Retrieved May 24, 2009, from
http://prodlogsys.ici.ro/camo/neculai/history.pdf

Bjork, S. & Holopainen, J. (2005) Patterns in Game Design. Boston:
Charles River Media.

Bura, Stéphane (2006) “A Game Grammar”. Retrieved May 24,
2009, from http://www.stephancbura.com/diagrams/

Church, Doug (1999) "Formal Abstract Design Tools" on Gamasutra.
Retrieved May 24, 2009, from
http://www.gamasutra.com/features/19990716/design_tools 01.
htm

Chomsky, Noam (1957) Syntactic Structures. The Hague, Mouton
Publishers.

DiStefano 111, Joseph J., Stubberud. Allen R. & Williams, Ivan J.
(1967) Theory and Problems of Feedback and Control Systems.
New York, McGraw-Hill.

Dormans, Joris (2008) “Visualizing Game Mechanics and Emergent
Gameplay”. Paper presented at the Meaningful Play Conference,
East Lansing, Michigan. Retrieved May 24, 2009, from
http://www.meaningfulplay.msu.edu/program.php?presentation
=40&type=paper

Fromm, Jochen. (2005) Types and Forms of Emergence. Retrieved
September 8, 2008, from http://arxiv.org/abs/nlin. AO/0506028

Fullerton, Tracy (2008) Game Design Workshop: A Playcentric
Approach to Creating Innovative Games, 2" Edition. Morgan
Kaufman.

Gamma, Erich, Helm, Richard, Johnson, Ralph & Vlissides, John
(1995) Design Patterns: Elements of Reusable Object-Oriented
Software. Boston, Addison Wesley.

Griinvogel, Stefan M. (2005) “Formal Models and Game Design”.
On GameStudies.org. Retrieved May 25, 2009, from
http://gamestudies.org/0501/gruenvogel/

Juul, Jesper. (2005) Half-Real, Video Games between Real Rules and
Fictional Worlds. Cambridge: The MIT Press.

Koster, Raph (2005) “A Grammar of Gameplay: game atoms: can
games be diagrammed?” Presentation at the Game Developers
Congres 2005. Retrieved September 8, 2008, from
http://www.theoryoffun.com/grammar/gdc2005.htm

Kreimeier, Bernd (2002) “The Case For Game Design Patterns”.
Paper on Gamasutra. Retrieved May 25, 2009 from
http://www.gamasutra.com/features/20020313/kreimeier_01.ht
m

LeBlanc, Marc (1999) “Formal Design Tools: Feedback Systems and
the Dramatic Structure of Completion”, presentation at the
Game Developers Conference. Retrieved May 24, 2009, from
http://algorithmancy.8kindsoffun.com/cgdc99.ppt.

Malaby, Thomas M. (2007) “Beyond Play: A New Approach to
Games”. Games and Culture 2007. No 2, 95-113.

Salen, Katie.& Zimmerman, Eric. (2003) Rules of Play: Game
Design Fundamentals. Cambridge: The MIT Press.

AUTHOR BIBLIOGRAPHY

JORIS DORMANS is a lecturer, PhD student, and game
designer based in Amsterdam, Netherlands. He has a Masters
Degree in cultural studies but does not shun programming in
C++ or teaching Action Script. His research papers and game
related projects can be found online: www.jorisdormans.nl.

BOARD
GAMES

42

On feature discovery process in board games

Rafal Lopatka
Institute of Control and Industrial Electronics
Warsaw University of Technology
email: lopatkar@isep.pw.edu.pl

Vasik Rajlich
Computer chess software developer
2007, 2008, 2009 World Computer Chess Champion®
www.rybkachess.com
email: vrajlich@gmail.com

KEYWORDS
Two person zero-sum perfect information games, com-
puter game playing, feature discovery, chess-like games

ABSTRACT

In this paper we focus on application of statistics and
basic probabilistic notion of Hellinger distance - a proba-
bilistic measure of distance between two probability dis-
tributions - to a feature discovery process in context of
two person zero-sum perfect information board games,
in particular chess. A hypothesis aimed at short cutting
feature discovery process is proposed and the result of
its statistical verification is given. With the hypothesis
proposed and it’s practical implementation in the do-
main of chess we want to emphasize that statistics can
be a meaningful approach to a feature discovery solu-
tion.

INTRODUCTION

Playing games by computer programs has become a
very important subfield of artificial intelligence. Nowa-
days, it is hard to find a board game having no soft-
ware implementation. Along with simply a great inter-
est in the gaming field, observations lead to a number
of paradigms, concepts and heuristics being developed.
Following Pell (1993) we distinguish three main classes
of approaches to a computer game-playing: knowledge
engineering, database enumeration and machine learn-
ing. Each of the classes is characterized in short below.

e Knowledge engineering covers doubtless the most
popular approach to a computer game playing, i.e.
the game tree search technique and all it’s modifica-
tions. Within this technique an evaluation function
is applied to the leaves of a game tree which is con-
structed in order to make a decision on the optimal

*for championship tournament reports, results and other de-
tails on Rybka chess engine see www.rybkachess.com

43

move. A knowledge-based search is another tech-
nique inside the knowledge engineering class. It is
similar to the game tree search technique, but it
differs is the way the optimal decision is sought, i.e.
by reaching some intermediate subgoals, counter to
game tree search where an ultimate goal is the sub-
ject of interest.

e Database enumeration is simply about gathering
data on particular positions and best actions to
take in context of a game. This is least ambitious
technique among of all enumerated here, but very
efficient on the other hand.

e Machine learning class of approaches is linked with
two subclasses: learning from experts and unsuper-
vised learning. The first of subclasses relies on some
domain expert (human or computer agent) which is
provider of the domain knowledge, the second one
relies on self-play with no external support of a do-
main expert.

Our attention is focused on the knowledge engineering
class of approaches, the game tree search technique in
particular. One of the main practical problems in de-
velopment of an expert system within that technique
is representation of a domain specific knowledge. In
most cases of a two person zero-sum perfect informa-
tion games some form of an evaluation function is em-
ployed. The evaluation function must be able to as-
sess a single state of the game (chess board, for exam-
ple). With a domain specific knowledge incorporated
inside the evaluation function the expert system is able
to rank available options and make optimal decision in
the sense of possessed evaluation function. The last few
decades have shown that an evaluation function for the
game tree search technique can be constructed in vari-
ous forms and knowledge can be cumulated inside the
evaluation functions themselves and in many ways. For
example, neural networks have been successfully applied
by Thrun (1995), Gherrity (1993), Baxter et al. (2000),
Fogel et al. (2004) to learn evaluation functions for chess

and other domains. In Gherrity (1993) a set of general
features applicable to many board games is used with a
neural network trained to approximate position scores.
The system is general in its application area, but the
learning process advances slowly. The opposite takes
place in Baxter et al. (2000) where many hundreds of
features combined with a neural network allow to ob-
tain a significant progress in playing strength of the sys-
tem in a relatively very short time. A somewhat dif-
ferent solution from neural networks has been described
in Fawcett (1993) with the system able to produce fea-
tures from some basic domain specification is presented.
The system named Zenith implemented in Prolog stores
both, knowledge and generated domain features in the
form of rules and clauses. That type of knowledge rep-
resentation is very convenient for a human to read and
analyse. See Bratko (2000) for a simple Prolog example
of chess endgame knowledge database including some
strictly defined rules and Morales (1994) for a more so-
phisticated set of rules induced within the rule induc-
tion framework. Evaluation functions based on features
of that type are much easier to explore than neural net-
works. Zenith proved its efficiency with respect to two
domains: the game of Othello and with the telecom-
munication networks. In Pell (1993) a new paradigm
of learning is proposed, however, some elements of this
paradigm are common with the concepts above, i.e. gen-
eration of evaluation function and the game tree search.
The generation process is based (like in Fawcett (1993))
on subject domain specification.

Common among the systems mentioned above is the
usage of features which allow to abstract chess (or any
other subject domain) into the space of attributes easy
to learn for the neural network or any other evaluation
function approximator. Features are one of the most es-
sential components of the computer game-playing sys-
tem within a knowledge engineering approach. In our
paper we intend to point to a different approach, a sta-
tistical based approach, to a feature discovery problem.

PRELIMINARIES AND ASSUMPTIONS

Throughout the paper we discuss the feature discov-
ery problem in context of symmetric chess-like class of
games with the game of chess as its representative mem-
ber.

Symmetric chess-like games

An extensive definition of the symmetric chess-like
games is given in Pell (1993). Here we restrict ourselves
to adopt a short definition covering the main properties
of these types of games and an illustrative example.

Definition 1 A game is called a symmetric chess-like
game (an SCL game) if

44

) / ;,
7/ 7/ //

//f/‘%/
. % '

abcdefh

Table 1: Chess boards illustrating the definition of a
SCL game. Left board is white to move, right one is
black to move.

o it is possible to present the entire set of rules for a
given game from the perspective of one player only,

e cxists some board symmetry S(-) such that for any
board position p the relation p = C(S(p)) holds,
where C(+) is a transformation interchanging own-
ership of the pieces and move turn.

Example 1 Consider chess positions shown in the table
1. In light of the definition 1 both positions are identical
since in chess rules of the game are the same for both
players and the symmetry transformation S is reflection
with respect to the axis between 4th and 5th rank of the
board. After application of the reflection to an arbitrary
position of the presented boards in the table 1, chang-
ing colors of all pieces and changing side to move one
obtains the other board.

Different from traditional chess examples of SCL games
might be: Giveaway Chess, Shogi, Chinese Chess,
Checkers, Tic Tac Toe, Go-Moku. In general, Pell
(1993) shows that every finite two player perfect infor-
mation game G has its equivalent in an SCL games class
Gscr1,, where game equivalence means G and Gg¢, have
the same game trees and adjective finite means in the
course of play only finite number of positions is visited.

The Hellinger distance

Let P and Q denote two probability measures on a mea-
surable space) with o-algebra F. Let A be a measure
on (2, F) such that P and Q are absolutely continuous
with respect to A, with corresponding density functions
p and ¢ (for example, A can be taken to be (P + Q)/2
or can be the Lebesgue measure).

Definition 2 The Hellinger distance between P and Q
on a continuous measurable space (0, F) is defined as
Basseville (1989), Birge (1985), Gibbs and Su (2002)

LEE)]

- [/(f \/')dA]

H(P,Q) :=

The square roots of densities /p and /g belong to the
Hilbert space of square integrable functions L? Pollard
(2003). This definition does not depend on the choice
of the measure A Gibbs and Su (2002), Pollard (2003).
Hellinger distance can be used to estimate the distances
between two probability measures independent of the
parameters Sengar et al. (2008).

For a countable space 2, measures P and Q on (§2, F) are
N - tuples (p1,p2,...,pn) and (g1, 4¢2,...,qN), TESpec-
tively, satisfying following conditions: p; > 0, ¢; > 0,
Yupi=land > . q =1

Definition 3 The Hellinger distance between measures
P and Q on a discrete measurable space (Q,F) is de-
fined as Fannes and Spincemaille (2001), Gibbs and Su
(2002), Salkind (2007), Sengar et al. (2008)

LN 1/2
H(P,Q) := l§ Z (Vi — @)Z] (2)

In some papers (Gibbs and Su (2002), Salkind (2007),
Zolotarev (1984)) the factor of 3 in definitions 1 and 2
is omitted. We consider definition containing this fac-
tor, as it normalizes the range of values taken by the
distance. Some sources Borovkov (1998), Diaconis and
Zabell (1982) define the Hellinger distance as the square
of H. Defined by formulas (1) and (2), the Hellinger
distance is a metric, while H? is not a metric, since it
doesn’t satisfy the triangle inequality.

Regardless of the fact that throughout the paper we
utilize discrete Hellinger distance defined by formula
(2), any other distance measure is applicable instead of
Hellinger distance if it takes values from some bounded
interval which can be normalized to the interval [0,1].
Within such normalized intervals specification of signif-
icantly different distributions is obvious, counter to the
all unbounded distance measures. However, application
of unbounded distance measures is possible in the pro-
cedures specified below for the price of lower quality of
separation.

PROBLEM STATEMENT

The feature discovery problem discussed in this paper is
stated as follows.

Given an initial class K of objects and its distribution
pK, which characterizes a certain random process asso-
ciated with each element of this class, the goal is to pro-
pose two sets L, M C K different (suggestive) enough in
some aspect to enable at least a single feature discovery.

For many years, clustering tasks of this kind have been
solved using various methods, taking advantage of the
features of objects from the set K. After specification
of the value of all features, the set K is usually divided
in accordance with the calculations performed using the

45

values ascribed to individual features. In this manner,
we obtain the criteria of assignment of elements of the
set K to each of the classes L and M.

The main problem with solving the above stated prob-
lem is hidden at the stage the feature’s determination
from objects from the set K is made. Depending upon
the complexity of the problem, for which clustering of
the set K is conducted, the task of specification of the
features of elements of this set may turn out either to
be trivial or very complex. It is necessary to keep in
mind that the set of features assigned to the elements of
the set K cannot be a free one, it must ensure sufficient
separation of the two new classes L and M. The fact
that not every set of features is appropriate to obtain
a successful solution of the clustering task, makes it all
the more difficult.

When the problem is complex, specification of the fea-
tures of positions by a person, who has limited experi-
ence in a given field, to which the elements of the set
K belong, often becomes too difficult, making it nec-
essary to seek for the assistance of an expert. Experts
often refuse to participate in undertakings of this kind
as they are burdensome. An additional reason, which is
quite significant, is that a decisive majority of experts
in fields characterized by a great degree of complexity
of the problem are often unable to formulate precisely
the reasons, for which they believe a given feature to
be significant, when it is successfully identified. It can
be seen very well in the case of chess. We often hear
that a given position on the chessboard is good or bad,
but the justification of such statement can be the so-
called ”presentiment” or ”intuition”, and in the best
case, these statements are characterized by a low level
of precision. Unfortunately, none of these concepts and
statements can be effectively applied to solve the prob-
lem of clustering.

We will show below that the Hellinger distance (as a
representative member of the entire class of probabilis-
tic distance measures), apart from its other applications,
can be useful during the clustering process, where set
K can be described using distribution in accordance
with the classical probability theory. It makes our work
substantially easier, taking into account the fact that
it is a simpler task to specify the features of two ex-
emplary sets, which are different, than to create the
features without having a warranty that they are suf-
ficiently good to provide a division of elements from the
set K into classes L and M.

GAME TREE SEARCH AS A RANDOM PRO-
CESS

In Baum and Smith (1997) an interesting probability
based approach to a game tree search has been proposed.

The authors suggest to model errors of some evaluation
function used for scoring leaf nodes of the search tree in
the form of distribution. The evaluation function error
distribution (which has to be created empirically) tells
us how likely a score of the given node can change by
some given value after deeper search. To shortly illus-
trate the concept consider the real world example given
in figure 1 and a few remarks on it that follow:

1. For KRNPkr class of chess positions Rybka’s eval-
uation function does very well. For some given po-
sition taken out of this class its initial assessment
has a nearly 75% probability to remain the same
after deeper search and only 2.3% probability that
deeper search makes the initial assessment worse.

2. Although Rybka does very well for this class of posi-
tions, there is still something to improve. It is ecasy
to see that for relative error value of 500 there exist
some spike in the subject distribution. This fact im-
plies there is some subclass of KRNPkr class which
could be assessed more accurately and, delving fur-
ther, if such a subclass exists then it is likely that
some property makes its elements (positions) dif-
ferent from the rest of the KRNPkr class members.
With distribution we are able to identify very eas-
ily both sets without the necessity of knowing the
difference between them. The difference is to be
identified next, by examination of both sets lead-
ing in this way to a discovery of some new feature.
This is a very primitive outline of the solutions we
present in the further part of the paper.

Since the game tree search procedures like alpha - beta
and its variations are deterministic an important ques-
tion is still to be answered: is the game tree search pro-
cess really random? We think it is due to two main
reasons besides theoretical justification such as given in
Baum and Smith (1997):

e Result of the game tree search in a real world chess
engine depends much on hash contents, i.e. depends
on recently performed searches by the engine. In
practice two computers of the same hardware con-
figuration can produce different scores for the same
position after performing search with identical pa-
rameters.

e Both, hardware and software configuration of the
computer running the engine affect the game tree
search process. It is easy to imagine that the chess
engine coexists with some other process consuming
considerable computer resources much.

Further throughout the paper we assume that the ran-
dom process is a game tree search process. On the other
hand, to maintain the general context of the proposed
solutions we continue using the term 'random process’
to prevent ourselves from excluding any other random

46

l—ﬂ
200 400 600 800 1000

Relative assessment error [centipawn]

T
—400 —200 0

[I I 1T T T T T I I T T
O O W O O W O W O O O O
WV M~ © ©10 10 <f o O A N~
(%] Anqeqoag

Figure 1: Distribution of assessment errors for the class
KRNPkr (white: king + rook + knight + pawn vs black:
king 4 rook). The distribution is constructed with 2000
samples produced by Rybka 2.2n2 chess engine.

processes which could set the ground for making distri-
butions.

SOLUTION

We propose two solutions to the problem with a short
discussion of their applicability. Both solutions accord-
ing to a review paper by Kotsiantis et al. (2006) fall
into a ’feature construction’ category, although there is
a little difference which makes our approach unique. We
don’t build our features on the basis of the features al-
ready discovered directly. Instead, in our approach, an
evaluation function’s properties manifested via assess-
ment error distributions are exploited to produce good
training data for feature discovery (construction).

Generating training data with Hellinger distance

Let us start with the following definition.

Definition 4 We will refer to sets M and L, for which
the conditions specified below are met, as different sets
within the set K in the context of Hellinger distance

. MCMCK,LCLCK.
2. H(pk, pr) < o, H(pg, pyp) = 5.
3 a<f.

ghz@ Pt pyp are distributions associated with sets
L,MCK.

A short remark is necessary with regard to the man-
ner of construction of sets L and M in accordance with
requirement 2 of definition 4. For the fixed values of
«a, 3 in compliance with requirement 3, the process of
construction of both sets takes place in accordance with
the following procedure.

Procedure 1 Creation of the set X different from the
given set K in context of the Hellinger distance.

1. Set the desired cardinality v of the set X = 0.

2. Draw element k € K and we perform the corre-
sponding random experiment for it.

3. If H(pxuk, pr) < o (H(pxuk, pr) = B). we add
element k to set X. Otherwise, go back to step 2.

4. If | X| <, then go to step 2.

5. Set X is the sought set.

In fact the procedure 1 would be solution to the problem
formulated in previous section if the Hellinger distance
can be proved to be successful in generation of sets con-
taining objects of different properties. To examine if
the Hellinger distance has such a property and due to a
statistical nature of the process associated with consid-
ered domain objects a statistical test is used in order to
verify the hypothesis below.

The experiment, which is to show the usability of
Hellinger distance for the clustering process, is con-
ducted as follows

Procedure 2 Let us have
e set K and distribution px assigned to it,

o a random process associated with the elements of
set K,

o any clustering method based upon the features of the
elements of the clustered set.

1. Using procedure 1 we establish sets L and M for the
specified values of o, B, o < 3 and cardinalities of
both sets.

2. We conduct the clustering of set L U M using any
method taking advantage of the features of elements
belonging to set L U M.

3. We summarize the results obtained by checking
whether the selected classical method allowed for
differentiation of at least one cluster containing
only (or mostly) the elements of set L or set M.

47

The existence of at least one such cluster can be treated
as a confirmation of the hypothesis that the Hellinger
distance may successfully suggest to the person compar-
ing the elements of sets L and M a criterion of division
without the necessity of a priori identification of any
features. Formally the successful experiment is defined
as follows.

Definition 5 A single experiment, which constitutes a
statistical test, will be considered to be successfully com-
pleted, if among the clusters received using the classical
clustering method, we obtain a single cluster (or more),
containing most of the positions from one of the sets L,
M. In this case, “most” means the ratio of the number
of elements originating from the two sets being 2 to 1
or greater, assuming that the number of elements of the
dominant set in the cluster is not lesser than 10% of the
cardinality of this set.

Having established the criterion of success or failure of
a single experiment in this manner, we can commence
the statistical test x2. It is assumed that the cardinality
of both sets L and M is 50. The values of parameters o
and [varied in order to obtain the results for the widest
possible spectrum of cases. For clustering using the fea-
tures of positions from sets L and M, we will use two
algorithms: K-means and fuzzy K-means. More than
ten experiments conducted first suggested the following
hypothesis:

With probability of 75%, the Hellinger distance allows
for the suggestion sets M ¢ M C K, L C L C K such
that at least one subset of set L and M exists, allowing
for identification of a condition making it possible to
divide the set K into two parts.

In other words, the hypothesis says that it is reasonable
(with the probability of 3/4) to apply the Hellinger dis-
tance to produce two suggestive sets and analyze their
content to discover some feature making them different.
Application of Hellinger distance for the generation of
such sets makes the discovery more likely than exploring
entire class K.

The calculations conducted for all 126 attempts (a sin-
gle attempt is described by the definition 5) performed
within the framework of the x2 test confirmed the hy-
pothesis in 96%. In most applications of statistics for
technical purposes, exceeding of the threshold of 95% in
the x? test is considered to be a sufficiently good result.

Generating training data with threshold

The process described below to identify chess features is
similar to what is used in a commercial chess program
Rybka. The process is less strict than the solution pre-
sented so far since it is heavily based on the domain’s
expert knowledge and sometimes even intuition.

Procedure 3 On a reqular basis, the following basic
steps are carried out:

1. Start with some large group of positions, and assign
to each position some type of automatically gener-
ated score. Mainly it is the difference in score cal-
culated for two presumed depths.

2. Identify those positions in this group which have
anomalous scores (i.e. the positions having score
changed above some initially fized threshold after
deeper search,).

3. Browse the anomalous position group and try to
identify chess features which appear to be overrep-
resented in this group.

4. Confirm that the proposed features do in fact corre-
late with the generated scores.

5. Apply the extracted features to Rybka and confirm
that program performance is improved.

In theory, it is possible to skip steps 1-4 of the procedure
3 and devise chess features based purely on domain’s
expert understanding of the problem (and sometimes
in practice this will do), but quite often the ability to
browse groups of anomalous positions is a very useful
source of ideas. The ability to confirm the speculated
correlations is also a useful form of feedback.

It is interesting to consider the main differences between
currently considered process and the process explained
previously. During Rybka development process it is de-
sired to have a sample of positions to browse which are
as anomalous as possible, and no attention is focused on
the control group. The approach previously presented
differs from the currently described version in two ways:

e two groups (anomalous and control) are maintained
at all times,

e the anomalous group is "mixed” - it contains many
normal (non-anomalous) positions and only differs
from the control group in the aggregate statistical
sense.

At first glance, having a mixed anomalous group would
seem to be counterproductive. From a domain expert
point of view, only the anomalous positions are interest-
ing. Non-anomalous positions in the anomalous group
only serve as noise and make the feature extraction more
difficult. The two approaches can be reconciled by the
realization that the human domain expert has an in-
tuitive, finely calibrated sense of the "normal” for his
domain and can function quite well in the absence of
strictly correct control information. The chess master
doesn’t need to see normal chess positions to identify
unusual features in anomalous ones. Likewise, a medi-
cal doctor does not require a normal healthy patient in
order to diagnose the sick one.

48

Discussion

The two methods for feature discovery described in this
paper are essentially equivalent, if we consider that hu-
mans with strong domain expertise can neglect control
data and simply focus directly on the anomalies. It is
also possible to point out some more similarities. Both
methods utilize evaluation function error distributions.
The method based on the Hellineger distance does it
explicitly while the threshold based method makes it
implicitly. Collecting positions with the score change
above some fixed threshold is equivalent to drawing po-
sitions from some evaluation function error distribution
(which in case of the procedure 3 is unknown and there
is no need to have it). Both methods relay on domain
expert knowledge, but in the case of the Hellinger dis-
tance based method it is possible to eliminate an expert
assistance in order to discover features. Some initial ex-
periments with CN2 rule induction algorithm Clark and
Niblett (1989) confirmed it is possible to discover sound
features with this method having no support from a do-
main expert. The subject domain was king vs king and
pawn chess endgame. The CN2 algorithm has been run
on the training data obtained according to the procedure
1 and produced rules which could be transformed into
a feature satisfying criterion stated in definition 5 (the
feature discovered was relative position of the pawn with
respect to its enemy king measured in ranks). This fact
can not be easily skipped since it makes the Hellinger
distance method a promising option for the research of
an autonomous learning system. Its advantage with re-
spect to a threshold based method is generation of two
sets having at least one property making both sets differ-
ent. Counter to a human expert, in a machine learning
framework a single set for identification of new features
is not enough. For the enablement of an autonomous
system to discovering features and exploring the subject
domain automatically two sets are necessary to make
system aware what is normal and what is abnormal.

REAL WORLD APPLICATION AND EXPER-
IMENTS

The technique described with procedure 3 has been suc-
cessfully applied for feature discovery in a chess pro-
gram Rybka and has proved to be effective. Features
generated in this manner (after refinement by a domain
expert) allowed to obtain an expert system playing at
master level. Here are some facts:

e FEach feature gives an average raise of playing
strength of the program by 0.5 Elo rating point.

e Not every feature discovered is finally incorporated
into evaluation function. The ratio of rejected
to accepted features is about 1:1. For example,
Rybka undervalues the bishop pair in open posi-
tions. Browsing positions obtained according to the

procedure 3 shows this pretty clearly. Several for-
mulations of this have been tried, all without suc-
cess.

e The total number of features doubles every 2 or 3
years.

e Sometimes to discover a good feature just one po-
sition is enough. Typically browsing 50 — 100 posi-
tions is the case.

The Hellinger distance based method has been success-
fully verified on some chess endgames, and one of those
experiments is described below.

Example 2 In this example, on the basis of procedure
2, we will conduct an experiment confirming the effec-
tiveness of Hellinger distance as a tool supporting the
work of expert in the clustering process. Set K will be
the set of all chess positions type KRNPkrnp. Distribution
pK s established experimentally, the random process as-
sociated with each position is based upon specification of
the difference in assessment of the position while search-
ing it to the depth of 10 and 15 plies. To wverify the
quality of the division suggested by Hellinger distance,
we will use the EM clustering method (expectation maz-
imization). Acting in accordance with procedure 2, we
obtain:

1. It is assumed that a« = 0.2, 8 = 0.9 and the
cardinalities of both sets is v = 50. We obtain
sets L and M of position type KRNPkrnp such that

H(pk,pr) < 0.2, H(pk, p3r) = 0.9.

2. As a result of clustering performed for set L U M,
we obtain 10 clusters. The elements of one of these
clusters have been presented in table 2.

3. In order to answer the question whether the
Hellinger distance has turned out to be an efficient
tool supporting the expert in the clustering process,
let us take into account the following facts:

e In set L, consisting of 50 elements, 20 have at
least one pawn in front of the promotion line
(line 2 for black pieces and line 7 for white
pieces). Even a novice player will easily notice
that a good feature differentiating the positions
belonging to class K is having at least one
pawn of any color before promotion line.

e In the entire set LUM, there are 28 elements
characterized by this feature.

e Among the 10 clusters obtained as a result of
application of algorithm EM, one is worth not-
ing, for which all elements (presented in ta-
ble 2) are characterized by the feature specified
above.

49

/
////

s

" an

)
0., ////

%%%'E

/
é{/g///
8 2.
%//%//%///

a b c d e f g h

Table 2: Omne of the clusters obtained using the EM
method. In each position, the move is to be made by
white pieces. A typical feature of these positions is the
presence of at least one pawn in front of the promotion
line.

Thus we can conclude that the experiment was suc-
cessful. On the basis of the set L it is possible to
capture one of the features, which may serve as a
basis for division of set K into two classes L and
M, and clustering conducted using one of the clas-
sical methods confirmed the appropriateness of this
choice, identifying the cluster presented in table 2.
In this cluster, 8 out of 10 positions belong to set
L.

SUMMARY

In this paper we have presented two similar approaches
to a feature discovery problem in board games with sort
discussion of their main properties. Both methods can
be beneficial for practitioners aiming at the creation of
the game playing software. Selection of the method for a
real world application depends on quality of the domain
expert. For highly skilled experts the method based on
procedure 3 is recommended. It is general and relies
entirely on an expert’s knowledge. The chess program
Rybka is an example of its efficiency. On the other hand,
the feature discovery method based on the Hellinger dis-
tance can be an attractive option for those who cannot
cooperate well with a trained and experienced expert. It
is much more labor-intensive solution than the threshold
based method, but greatly relaxes demands in context
of an expert’s skills and proficiency.

REFERENCES

Basseville M., 1989. Distance Measures for Signal Pro-
cessing and Pattern Recognition. Signal Processing,
18, no. 4, 349-369.

Baum E.B. and Smith W.D., 1997. A Bayesian Ap-
proach to Relevance in Game Playing. NEC Research
Institute, 4 Independence Way Princeton NJ 08540.

Baxter J.; Tridgell A.; and Weaver L., 2000. Learning
to Play Chess Using Temporal Differences. Machine
Learning, 40, no. 3, 243-263. URL citeseer.ist.
psu.edu/baxterOOlearning.html.

Birge L., 1985. Non-Asymptotic Minimax Risk for
Hellinger Balls. Probability and Mathematical Statis-
tics, 5, no. 1, 21-29.

Borovkov A.A., 1998. Mathematical Statistics. Gordon

and Breach Science Publishers.

Bratko 1., 2000. Prolog Programming for Artificial In-
telligence. Addison Wesley. ISBN 0201403757.

Clark P. and Niblett T., 1989. The CN2 Induction Al-
gorithm. In Machine Learning. 261-283.

Diaconis P. and Zabell S.L., 1982. Updating Subjective
Probability. Journal of the American Statistical Asso-
ciation, 77, no. 380, 822-830.

50

Fannes M. and Spincemaille P., 2001. The Mutual
Affinity of Random Measures. eprint arXiv:math-
ph/0112034v1.

Fawcett T.E., 1993. Feature discovery for problem solv-
ing systems. Ph.D. thesis, Amherst, MA, USA.

Fogel D.B.; Hays T.J.; Hahn S.L.; and Quon J., 2004. A
self-learning evolutionary chess program. Proceeding
of the IEEE, 92, no. 12, 1947 -1954.

Gherrity M., 1993. A game-learning machine. Ph.D.
thesis, La Jolla, CA, USA. URL citeseer.ist.psu.
edu/47161.html.

Gibbs A.L. and Su F.E., 2002. On Choosing and Bound-
ing Probability Metrics. International Statistical Re-
view, 70, no. 3, 419-435.

Kotsiantis S.B.; Kanellopoulos D.; and Pintelas P.E.,
2006. Data Preprocessing for Supervised Leaning. In-
ternational Journal of Computer Science, 1, no. 2,
111-117.

Morales E.M., 1994. Learning Patterns for Play-
ing Strategies. ~ URL http://w3.mor.itesm.mx/
~emorales/Papers/icca.ps.

Pell B., 1993. Strategy Generation and Evaluation for
Meta-Game Playing. URL citeseer.ist.psu.edu/
pell93strategy.html.

Pollard D., 2003. Asymptopia. book in progress. URL
www.stat.yale.edu/~pollard.

Salkind N., 2007. Encyclopedia of Measurement and
Statistics. Thousend Oaks (CA): Sage.

Sengar H.; Wang H.; Wijesekera D.; and Jajodia S.,
2008. Detecting VoIP Floods Using the Hellinger Dis-
tance. IEEE Transactions on Parallel and Distributed
Systems, 19, no. 6, 794-805.

Thrun S., 1995. Learning To Play the Game of Chess. In
Advances in Neural Information Processing Systems
7. The MIT Press, 1069-1076.

Zolotarev V.M., 1984. Probability Metrics. Theory of
Probability and its Applications, 28, no. 2, 278-302.

FRACTAL TERRITORY GAME

Siao-Fan Siao, Lo-Wei Lee and Wen-Kai Tai
Department of Computer Science and Information Engineering
National Dong Hwa University
1, Sec. 2, Da Hsueh Rd., Shou-Feng,Hualien, 974,
Taiwan, Republic of China.
E-mail: {windiscovery|roywfsh}@gmail.com, wktai@mail.ndhu.edu.tw

KEYWORDS
Fractal, Board Game, Fractal Territory Game, Abstract
Board Game

ABSTRACT

We devise a novel abstract board game, fractal territory
game, using the concept of subdivision from fractal board
game. In our game, two players place a game piece by turns
in each round to occupy square territories. As all the four
vertices of a square territory are occupied, players can get
the scores based on the number of vertices they have
occupied respectively. During a game, the player with
disadvantage is allowed to subdivide the game board in a
way that the subdivision of the quadtree does. The game
ends if one of the termination conditions is satisfied. The
continuity of lines is utilized to provide the infinite recursive
subdivision for generating the sub-boards. The subdivision
mechanism is used to balance the dominance of the leading
player so that there arc opportunities for players with
disadvantages to catch up, thus provides more cnjoyable
gameplay. Also, we formulate the score calculation to allow
electronic implementation.

INTRODUCTION

The concept of fractal has been widely applied. In Fractal
board games (Browne 2006), the authors proved that fractal
will increase the complexity of a game and further applied
the concept of fractal on board games. Due to the fact that
fractal needs infinite recursive subdivision, a continuous
space is required to implement the concept. However, since a
board must be discrete, it is impossible to implement a
genuine frac-tal game. In Fractal board games, the authors
applied the fractal concept on the Potential Y (Browne 2003)
to devise an imaginary game called ‘Fractal Py.” In ‘Fractal
Py,” the author used a continuous board to provide the space
for the infinite recursive subdivision required. Though a
board can be subdi-vided into infinite parts theoretically,
points arc used in prac-tice to quantify the arca during the
process of implementation; hence the limited levels of
subdivision. Furthermore, if ‘Fractal Py’ is implemented on
the infinite level, the scores of players in infinite sub-games
must be calculated; though ‘Fractal Py’ can be assigned to a
specific level of subdivision, how to determine the number
of levels and the size of a board can be very challenging: the
complexity of a game will become very low if the number of
levels is set to a small value; on the other hand, if the number
of levels is set too large, it is too compli-cate for players to

51

determine their moves. To determine a fa-vorable level of
subdivision is a dilemma.
In this paper, we devise a fractal-oriented territory-
occupation game, called Territory Game (TG). In the
beginning, the black player and white player will place a
game piece at a vertex on the square board in turn. After four
vertices of the square are occupied, the scores, for the black
and white players respec-tively, will be calculated according
to the number of their game picces placed. It is clear that TG
will results in a draw no matter how players place the game
pieces. To im-prove the gameplay, we extend TG into
Fractal Territory Game (FTG). In FTG, we recursively
subdivide the board into sub-boards; when players place
game picces on the board, the game picces are also placed on
the corresponding sub-boards. This changes the fairness of
game and increase the complexity. In FTG, the player with
lower score is permitted to subdivide the board, and
dominates the game. This not only remedied that leading
players in traditional abstract board games will dominate
until the game is over but also makes the game more
interesting. Also, since the timing of subdivision is
determined by players, they can decide the size of the board
and level of subdivision.
We conclude the contributions of this paper as follows:
® A novel abstract board game is devised, utilizing the
continuity of lines to provide infinite recursive subdivi-
sion for sub-boards generation.
® A mechanism to balance the dominance of players in
the abstract board game so that there are opportunities
for players with disadvantages to catch up, increasing
the gameplay.
® Formulation of the score calculation enables the elec-
tronic implementation of a fractal game.
Due to the infinite recursive subdivision, we cannot prove
the fairness of the proposed game yet. To visualize the whole
game scenario is another challenge, since the limited
resolution of monitor is no match with the growing size of
the board.
In the following, we present related work of fractal games in
section 2. Section 3 describes the rules and scores calculation
of the proposed game in detail. Section 4 discusses the pros
and cons of applying subdivision on abstract board games,
and whether the fairness will alter or not after applying
fractal on games. Finally, we conclude this paper and point
out possible future work in section 5.

RELATED WORK

The proposed game FTG is a kind of abstract strategy games
in board game categories. The following paragraphs will

introduce: (1) the classifications of board games according to
the chance elements, (2) the definitions and pros and cons of
abstract strategy games, (3) the dcfinitions and the
characteristics of fractal-like games, and (4) the fractal game
which currently is not implemented yet in practice, fractal Py
(Browne).

Board game

Board games are the games that can be played on desks or
any kind of flat planes. Board games can be classified
according to chance elements.

Chance clements are uncertain events in games. They can be
classified into two categories: the outcome uncertainty and
the state uncertainty.

The outcome uncertainty is to embed the possibility elements
in games, which makes players unable to predict the results
accurately. The results of throwing a dice and the results of
randomly delivering cards arc two demonstrations of the out-
come uncertainty. Games with the outcome uncertainty arc
called stochastic games. For example, in Monopoly, players
cannot predict the outcomes of throwing a dice accurately. In
this kind of games, luck usually plays an important role in
increasing entertainments. On the contrary, the games
without chance eclements of the outcome uncertainty are
called deter-ministic games. For example, Chess, Five in a
row, Xiangqi, GO, Hex and Contract Bridge arc all
deterministic games.

The state uncertainty arises from the reason that players do
not know their opponents’ information, such as the locations
and cards held in hands of their opponents’. Due to the lack
of information, players have to make guesses or estimations.
The games with the state uncertainty arc called partial
information games. For example, in Contract Bridge, players
do not know exactly what cards their opponents may have.
They have to bid and analyze to determine their strategy.
This kind of games usually requires players to adopt certain
strategies, to perform estimation and make inference. In the
contrast, the games without the state uncertainty are called
full information games. Chess, Five in a row, Xiangqi, Go,
Hex, Monopoly, and Backgammon are some examples.

Abstract strategy game

Abstract strategy games arc the games without chance cle-
ments, with full information and certainty. Their rules arc
usually simple, and the outcomes are purcly depending on
players’ intelligence instead of luck. A good abstract strategy
game is an attractive competition of logic and intelligence,
since the players have to do their best to compete throughout
the game. The players usually have same advantages on the
game board in the beginning. Once a player begins to domi-
nate, this advantage often lasts to the end of the game,
leaving subordinate players little chance. Due to this fact,
player who starts to take the lead and makes no mistake in
the rest of the game shall triumph.

We propose a mechanism of game boards subdivision to
casc disadvantages of subordinate players, sparing them
chances to reverse the situations. Furthermore, players can
decide the appearance of boards, make the game more
enjoyable.

There is another characteristic of abstract strategy games: the
playing-first player has advantage usually. Take GO as an

52

example, the mechanism called “Komi” is applied (extra
points are added to the score of the playing-second player.)
to balance the vantage. In FTG, allowing the score-losing
players to subdivide the board is also to make equal between
players.

Fractal-like game

A fractal-like game is the game in which players play on
each level of sub-boards subdivided by fractal rules
according to the same rules of the original game.
Furthermore, after recur-sive subdivision, each level of sub-
boards has self-similarity (Weisstein 1999). When playing
fractal-like games, players will place their game pieces both
on the original game board and on the corresponding
recursively subdivided sub-boards. Therefore, after placing
game pieces, the players must consid-er their next moves on
the original board and on every addi-tional recursively
subdivided sub-board simultancously. This increases both
the difficulty and the complexity of games. However, since
fractal games require infinite subdivision, and fractal-like
games are processing on discrete space of boards, the boards
can only be subdivided to a certain degree. For example, Hex
games (Meyers) are proceeding on every sub-board, thus
players will place game picces on the original board and on
cach level of sub-boards at the same time. As a result,
players may not form their tactics merely on the first level of
sub-boards, which greatly increases the complexity of
games.

Fractal Py

In the field of fractal board games, fractal Py has not been
implemented yet. Fractal Py is an extension from the game
called Poten-tial Y with the subdivision to any level.
Potential Y is a kind of transformation from the connection
game “Y”. Fractal Py uses area to provide infinite recursive
subdivision. Although any number of levels can be assigned
in fractal Py, the level of recursive subdivision and the size
of boards must be deter-mined in the beginning of the game.
However, if the level of recursive subdivision is set too
small, the complexity of games will become low. On the
other hand, it will be extremely dif-ficult for players to
devise fine strategies if the level is set too large. In FTG, the
players can dynamically determine the fa-vorable level of
recursive subdivision and the size of boards.

FRACTAL TERRITORY GAME

In the following, we will introduce the rules of FTG. Next,
we will explain the scoring formula of FTG in detail, for the
score computation of each sub-board subdivided during the
game.

Game rule

Players
The black player and the white player, using black game
pieces and white game pieces respectively.

Rules
L In the beginning of a game, players of both sides have

to set the target score and the gap score.

II. In each round, players of both sides take turns to place
a game piece of their own color at an unoccupied
vertex (cross-point of the board lines).

III. When the four vertices of a square are all occupied by
game picces, the players of both sides can calculate
their scores according to the number of their game
pieces on the vertices. In addition, the initial game
board and every subdivided square sub-board must be
taken into consideration when players are calculating
their scores.

IV. During the game, the player with lower score can
choose to subdivide the game board in beginning of his
turn.

V. (Termination conditions) The game will be terminated
when:

A. All vertices of the game board are occupied with
game pieces, or

B. Any player reaches the target score, or

C. The difference of scores between the players of
both sides is larger than or equal to the gap score.

Game board

Initially, the game board is 3x3, i.c. there are 3x3 vertices. In
the first level, there is one 3x3 board, and in the sccond
level, there are four 2x2 boards (2x2 cells), as shown in
Figure 5. The board will dynamically change according to
whether players subdivide the cells or not. Figure 5(b)
demonstrates the level of the game board using the quadtree
structure.

Board subdivision
Subdividing one cell generates four (2x2) next level cells
(smaller squares), as shown in Figure 6.

Winning condition
When one of the termination conditions of the game is
satisfied, the player with higher scores is the winner.

ik

Figure 5: (a) The game board is 3x3 initially. (b) The level
demonstration of the initial game board by using the
quadtree structure: the root level (first level) is the 3x3 board
and four 2x2 boards (quadrants) are in the second level.

53

,«f“

an
g

Figure 6: Subdivide a cell to generate four smaller square
cells (sub-boards).

o

e eus e

e

o 0 @

Figure 7: In the beginning of the game, the game board is
3x3. The numbers represent the ordering to place the game
pieces; When the white player is in his 8" turn, he subdivides
the cell at upper left corner.

Samples of playing

In Figure 7, the players take turns to place game pieces.
When the white player (2nd-playing) is in his 8" turn, he
must perform subdivision (the cell on the upper left corner is
subdivided,) and then place his game picce. After the black
player (first-playing) finished his 13™ turn, all vertices on the
game board arc occupied with game pieces. Obviously, the
game terminates because one of the termination conditions is
satisfied. In the end, there is a tie for the players of both
sides (black 18 — white 18.) Figure 8 demonstrates the game
board after the game is terminated by using quadtree
structure. We can calculate the scores of both players on the
square of cach node in the quadtree according to Rule I11.

Score calculation

After the vertices of a square are all occupied, the players of
both sides can get scores according to the numbers of their
game picces on the vertices. The scores of both players must
be calculated on each subdivided square. We conclude
several formulas to facilitate the score calculation of the
board.

Figure 8: In the sample of playing, we use the quadtree
structure to describe the game board. The scores of both

players will be calculated on the square of each node in the
quadtree.

We can represent the game board by the quadtree structure.
Let the board size be (n+1)x(n+1), and the root level (first
level) be 0 and h=log, n is the height of the quadtree. We
have the following formulas to calculate the scores for both
players:

SumOfScore(c)

n n
_ Z 2 S(i,) M
i=0 j=0
x Color(i, j, ¢)
ScoreOfPiece(i,)
h

= Z Sindex(i,J, D))
1=0
X Window(i, j, 1)

Suani0= 3 3"][Tl 060 2+ o -6)
)
x 2]

1, white

Piecelil[jl ={ —1, black)
0, otherwise

Color(i, j, c)

= {1' if Piece[i][j] is equal to c (6)

o, otherwise

In equation (5), Piece[i][j] stands for the game picces of both
players on the game board. In equation (2), ScorcOfPicce(i,))
represents the earned scores of Piece[i][j] on each level when
a game piece is placed on Piece[i][j]. In equation (2), “I”
stands for the level of the quadtree. ¢ represents the colors of
both players: “1” stands for the white; “-1” stands for the
black. In equation (4), Sjnex(i, j, 1) denotes if the four vertices
of a square are all occupied by game pieces. In equation (3),
Window(i, j, 1) denotes the group of levels of sub-boards
where the game picce of Piece[i][j] belong. In equation (1),
SumOfScore(c) denotes the summation of the scores, for
each player, that every game piece can earn.

Let us take an example to explain the formulas of score
calculation. Figure 9 stands for the game process. In Figure
9, the numbers of game picces denote the ordering to place
these game pieces. The numbers in the left and the top sides
of the figure are used to mark the coordinates of a game
board. The number in the top-right corner of a game piece
denotes the score that the game piece currently earns.
Additionally, the game board has been subdivided into three
levels; there are total: one 5x5 board, four 3x3 boards (bold-
lined), and 16 2x2 boards (thin-lined). For example, after the
game picce was placed by the white player in his first turn
(Piece[0][2]), according to Window(i, j, 1), we can determine
that the game piece locates both in the 2x2 (thin-lined) board
and in the 3x3 (bold-lined) board. From the 2x2 board, the
game piece earns:
[1X1Xx0x0[+[0x1x0x0[+|(—1)x1x1x1]|+[]0 X
(-Dxo0x1]=1

54

and from the 3x3 board, the game piece earns:
[1X(—1)Xx0X0]+|[(-1)x1x0x0|+]|(-1)x1x1x
(DD X (1) x (-1) x 1| = 2

Hence, the position, Piece[0][2], can carn three points in
total.

Figure 9: An example of score calculation for all game
pieces on the 5x5 board.

N

®© 000

0

S

~
z

7,
@ C©
EY]

.. !“
=0 ~
2 L

000
ON- N -
O8O
Ay
©

O,

P
-1
]

Figure 10: Advantage of Board Subdivision. (a) The playing-
first player (black) is temporarily with advantage at his 7"
turn (black 6 — white 2). (b) The game is a draw (black 18 —
white 18), after one subdivision taken by the playing-second
player (white) at his 8™ turn. (c) An alternative play which
shows the result (black 25 — white 27) after twice
subdivision by the playing-second player (whitc) at his 8™
and 12" turns respectively.

DISCUSSION
We discuss about (1) the benefits of using board subdivision,
(2) an alternative way to play fractal games, and (3) the

enjoyableness and the fairness of games.

Advantage of board subdivision

After subdivided, several sub-boards (cells) will be
generated. By the rules, placing a game piece on the board
means placing game pieces on all the corresponding sub-
boards. Hence, players may take the chance of board
subdivisions to make their own game picces occupy more
vertices on the sub-boards. That is, the players have to keep
all the sub-boards in mind when placing their game picces.
This increases the interest and complexity of the game.

For FTG, the player with lower scorc has the right to
subdivide the boards. The player’s game pieces on the board
may occupy the territory of both original board and the sub-
boards. This provides the player with disadvantage a chance
to tic or cven lead the game, which increases the
enjoyableness of the game.

As Figure 10(a) shows, both players are doing their best
from 1% to 6" turns in order to win the right to subdivide the
game board. However, in the 7" turn, wherever the playing-
first player places his game piece, his scores will be higher,
leaving his opponent chance to subdivide the board. In
Figure 10(b) , the playing-seccond player chooses to
subdivide the squarc at the upper left corner because he has
two game pieces in the square territory and his opponent has
only one game piece there. The playing-first player then
picks the unoccupied vertex, where he can get the highest
scores at the time, to place his game picce, while the rest of
the unoccupied vertices earn the same scores. Finally, after
the playing-first player finishes his 13" turn, there is no
unoccupied vertex left, hence, the end of the game. This
results in a draw (black 18 — white 18.) In Figure 10(c), we
demonstrates an alternative play which the playing-second
player subdivides the square at the upper left corner in 8™
turn, and subdivides the square in the lower left corner in
12" turn. From the 8" turn to the 18" turn, both of the
players adopt the best strategics to play the game. After the
playing-second player finishes 18" turn, there is no
unoccupied vertex left, hence the the playing-second player
wins (black 25 — white 27.)

Gameplay

The termination condition B (when any player’s scores reach
the target scores) and C (when the difference between two
players’ scores reaches the gap scores) provide players more
possibilities to think about different winning strategies,
which further enhance the gameplay. Of course, players can
make an agreement to change the game rule about the chance
of game board subdivision such as throwing a dice or
drawing a card. FTG will then transform into a stochastic
game, providing alternative ways to play.

Fairness

Herik et al. provided a definition for the fairness of a game:
if a game is a draw game and the possibilitics for two players
to make mistakes are equal, it is a fair game (Herik et al.
2002). However, it is difficult to mathematically examine if
the possibilities for two players to make mistakes are equal;
this is due to the fact that whenever a new strategy is created,
the calculation of the possibilities of making mistakes will be
different, which will further influence the fairness. Hence, it
is difficult to mathematically prove the fairness. On the
contrary, it is much easier and plausible for us to prove the

55

unfairness. According to the definitions of the fairness and

unfairness of Connect6 by Wu et al. (Wu et al. 2005):

® Definite unfairness: A game is definitely unfair if it has
been proved that one player wins the game definitely.
For example, Go-Moku is unfair because the playing-
first player definitely wins.

® Monotonic unfairness: A game is monotonically unfair
if it has been proved that one player does not win the
game, but it has not been proved for the other player.
For example, for Connect(k,p,p) or Connect(m,n,k,p,p),
White side cannot win, based on the so-called strategy-
stealing argument. Thus, Connect(6,1,1),
Connect(7,1,1) and Connect(6,2,2) are all
monotonically unfair, since Black side has not been
proved to win or tie in these games.

® Empirical unfairness: A game is empirically unfair if
most players, in particular professionals, have claimed
that the game favours some player. For example, Go-
Moku is empirically unfair, since most professionals
claimed that playing-first player would win.

® Potential fairness: A game is considered potentially fair
if it has not yet been shown or claimed to be definitely
unfair, monotonically unfair, or empirically unfair.

According to the definition of the potential fairness, if a

game is potentially fair currently, does not mean that the

game will be potentially fair in the future. Nevertheless, the

longer a game can remain potentially fair, the higher

possibility that it becomes a fair game. Since FTG has yet

been proved as definite unfairness, monotonic unfairness, or

empirical unfairness, FTG currently remains as a potentially

fair game based on the above reasons.

CONCLUSION

We have introduced a fractal board game which players can
dynamically make decisions to subdivide the game board so
that the leading player is replaceable improving the
complexity and enjoyableness of the game.

In the future, we will prove the fairness of FTG. We would
design an online version of FTG, which allows more players
to play via the internet. Data can be collected then, to see if
FTG is empirically unfair. Also, we may apply Strategy-
Stealing argument to prove if the monotonic unfairness
exists in this game. After the game board keeps being
subdivided, it may grow larger and larger. To visualize the
complete game board is another problem to solve.

REFERENCES

Browne, C. 2006. “Fractal board games”, Computers & Graphics,
Vol. 30, Issue 1, 126-133.

Browne, C. “Py: Potential Y”,
http://members.optusnet.conaw/cvbernite/py/py-1.hitm

Weisstein, E. 1999. “Concise encyclopedia of mathematics”. Boca
Raton: CRC Press.

Meyers, S. “Quadrant Hex”,
http://home.fuse.net/swmeyers/quadrant.htm

Herik, H. J. van den; J.W.H.M. Uiterwijk; and J.V. Rijswijck. 2002.
“Games solved: Now and in the future.” Artificial Intelligence,
Vol. 134,277-311.

Wu, [-C.; D.-Y. Huang; and H.-C. Chang. 2005. “Connect6”, ICGA
Journal, Vol. 28, No. 4, 234-241.

56

SERIOUS
GAMING

58

LIFESIM: SOFTWARE FOR HEALTH SCIENCE

Charles C Earl and Danicl Fu
Stottler Henke Associates, Inc.
Suite 360, 951 Mariners Island Blvd
San Matco, CA 94404
E-mail: {carl,fu}@stottlerhenke.com

Ana Islas
E-mail: ana.islas@gmail.com

Isobel Contento and Pam Koch
Health and Behavioral Studies
Teachers College, Columbia University
525 West 120th Street, New York, NY 10027

E-mail: {contento,pkoch}@exchange.tc.columbia.cdu

Erin Hoffman

E-mail: erin.n.hoffman@gmail.com

Angela Calabrese Barton
College of Education
Michigan State University
Erickson Hall, East Lansing, M1 48824
E-mail: acb@msu.cdu

KEYWORDS
Serious Gaming, Al, Design, Mcthodology

ABSTRACT

Stottler Henke Associates, in collaboration with Teachers
College Columbia University, is building an instructional
software game called LifeSim that provides middle school
students motivations, skills and sense of personal agency
about health and nutritional science nceded to make healthy
dict choices in their day to day life. The software is being
developed from the content and activities of a middle school
science module, Choice, Control & Change (C3) that is part
of the Linking Food and the Environment (LiFE) Curriculum
Series. The LifeSim uses aspects of social gaming such as
avatar role-playing, chat interactions, minigames, and a
badge reward system. In particular, LifeSim makes extensive
usc of intelligent agents that adapt the play to the experience,
skill, and cating behaviors of the player. This paper discusscs
the design of LifeSim and methodology that will be used to
test it. (The project described was supported by Award
Number R44RR019780 from the National Center For
Research Resources. The content is solely the responsibility
of the authors and does not necessarily represent the official
views of the National Center For Research Resources or the
National Institutes of Health.)

GOALS AND BACKGROUND OF LIFESIM

Our main goal is to equip students with the knowledge,
motivation, skills and competence or sense of personal
agency about health and nutrition that will enable them to
make healthy diet and exercise choices in an environment
where the choices arc complex. We ecmploy a computer
game format to achieve this. The need for this software is
crecated by the widespread and mature use of gaming
technologics for educational purposes on the one hand and
the need for instruction that specifically addresses the
growing crisis in child nutrition on the other (Ogden et al.
2008).

The Health Crisis

59

Although the rates of childhood overweight and obesity
scemed to have platecaued in recent years, the overall
prevalence remains at an all time high, at 31.9% (Ogden ct
al. 2008). The link between obesity and other serious health
problems such as stroke, heart discase, many forms of
cancer, and depression has been established. These
developments are linked in part to dramatic changes in the
food and activity environment: the increase in serving sizes,
the presence of soft drinks in schools, the prevalence of
scedentary lifestyles. Although environmental changes are
definitely called for, educational interventions remain a
crucial part of the solution. If children can acquire the
knowledge, motivation, skills and sense of personal agency
needed to make healthy choices for food and activity
regardless of the environment, they stand to improve their
short and long-term quality of life.

The LiFE Curriculum

The Linking Food and the Environment (LiFE) Curriculum
Series, developed at Teachers College Columbia University
is an inquiry-based science and nutrition education program
for 5™ 7" grades that provides a nceded holistic
understanding of food, nutrition and the environment. The
LiFE Curriculum Series has been developed through Science
Education Partnership Awards (SEPA), a program of the
National Center for Research Resources of the NIH. LifeSim
is being developed from the content and activities of the
Choice, Control & Change (C3) module of the LiFE
Curriculum Series. The process of developing C3 used a
systematic theory-based procedural model for designing
nutrition education interventions (Contento 2007). The
question students study throughout the C3 module is: How
can we use scientific evidence to help us make healthy food
and activity choices? C3 is divided into five units, cach with
its own driving question. UNIT 1: QUESTIONING OUR
CHOICES introduces the curriculum by having the students
really think about what choices they have pertaining to what
they cat and how active they are. UNIT 2: BODIES IN
MOTION introduces key concepts about the body and
energy and cxplores the question: How can we make sure
that we get the right amount of energy to help our bodies
do what we want them to do? UNIT 3: MOVING
TOWARD HEALTH teaches students to examine their own
cating and activity behaviors as they study the question:

How can we use personal data to help us make healthful
food and activity choices? UNIT 4: BODY SCIENCE gives
students a deeper understanding of the science behind the C3
goals as they investigate the question: Why are healthful
food and activity choices important for our bodies? UNIT
5: MAINTAINING COMPETENCE provides students with
the understandings and skills to maintain a healthy lifestyle
as they explore the question: How can I maintain my skills
as a competent eater and mover? The interactions of the
LifeSim game arc structured to teach the knowledge and
skills present in these units.

PRIOR WORK IN GAMES FOR HEALTH

There have been several efforts to develop games that teach
nutrition or promotc health. Most of these cfforts have
involved the development of games using the role-playing
and adventure game motifs. Squire’s Quest! (SQ) (Cullen et
al. 2005), developed by the Children’s Nutrition Research
Center of Houston’s Baylor College of Medicine, is an
adventure game set in a medicval kingdom. The player’s
goal is to help defeat creatures who are destroying the
kingdom’s fruit and vegetable crops. To do this they must
prepare healthy meals for the king and queen, set and meet
personal goals to cat more fruit, juices, and vegetables (FJV)
at home and school, answer questions about the nutritional
content of various food, and battle vegetable-destroying
adversarics. Intervention group students on average
increased their consumption of FJV by 1 per day.

Escapec from Diab (Thompson ct al. 2007) was also
developed by Children’s Nutrition Research Center with
software development done principally by Archlmage.
Escape from Diab focuses on a bchavioral objective of
getting the player to set and achicve goals related to diet (e.g.
consume 3-5 servings of fruit per day) and exercise (c.g. 60
minutes of physical activity per day). The player finds
themsclves in a world in which the children are permitted to
cat junk food all day and exercise is discouraged. The player
has to alter behavior of other characters in Diab by leading
by example by adopting dict and exercise goals. The player
leads a group of other children in an escape from Diab.
While Escape from Diab provides support for encouraging
players to increase consumption of healthy foods and
amount of exercise; support for decreasing unhealthy
behaviors, such as the amount of sweetened beverages
consumed, is not explicitly present. In LifeSim, we have
incorporated goals aimed at decreasing consumption of
foods known to adversely impact health. While Escape from
Diab is adaptive in the sense that dict and exercise goals are
tailored to the seclf-reported behavior and profile of the
student; there is no notion of a student behavioral model
which could be used to further customize instruction.
LifeSim uses existing Stottler Henke Associates artificial
intelligence technology to both model the student’s attitude
and knowledge statec and to adapt the activities presented to
the student.

Hungry Red Planet (HRP) is another role-playing game
which provides a comprehensive and scientifically accurate
computer based learning environment for nutrition
cducation. Children (ages ninc and above) make menu
choices for a simulated colony on Mars. An cvaluation

60

showed significant improvement in the students’ ability to
usc food labels and the Food Pyramid.

The motif of virtual companion management and role-
playing we believe opens up prospect for interaction which
can cxtend the strengths of successful games for health, and
also provide an experience that is engaging and exciting in
its own right.

Multiplayer interaction will allow us to leverage this finding.
For example, students could add restaurants to a shared
section of the game world, and win points on the basis of: 1)
how the meals impact the health of their peers creatures; 2)
how their peers evaluate those menus in terms of health and
taste.

LifeSim draws upon scveral modes of interaction that have
cnabled success in the HRP and SQ games, as well as feature
that have not been heretofore examined in the context of
health promoting games. These are: 1) support for
interactions that mirror those of the real world (e.g. guiding
the player on how to ask for more fruits as a lunch snack); 2)
deriving the content and activities in the game from an
existing, successful curriculum; and 3) correlating game
reward structures and activitics with the adoption of healthy
behaviors. To implement this system, we will use virtual
companion care as our central game motif, while drawing
upon world-building motifs and multiple-player interaction.

LIFESIM DESIGN

We adopt the game motif of virtual companion care,
involving a sct of virtual creatures that perform tasks and
complete adventures. Specifically, the story thread is that the
player has been sclected to be the camp counselor for
creatures that exist in a faraway world.

There are four reasons behind the selection of this motif.
First, findings from a preliminary investigation indicated that
players were interested in having characters—pcople or
“creatures” that they could identify with; and students and
teachers reported that it would be useful to be able to shift
between both individual and “city-level” view of the game.
Because maintaining the health and happiness of the virtual
creatures is a central goal of the game, the C3 content is
relevant to success and can be explored in depth as the
player progresses though the game. Second, monitoring the
health of creaturcs is one central aspect of the game, thus
integrating the C3 skill of personal diet monitoring could be
reinforced. Students must be aware of both the health of the
creatures that they manage, as well as that of the others at the
camp. Third, the motif of virtual companion carc is
tremendously popular with students close in age to our target
group as cvidenced by sales of similar games to this age
group (c.g. Animal Crossing) and in the popularity of social
games such as NecoPets. We develop wrinkles upon this
theme (e.g., the player is a camp counsclor for creatures in
age and behavior mirroring that of slightly younger humans)
that are specifically tied to the mostly 5™—7" graders that
we are targeting.

The creatures that attend the camp are designed to be in the
8-10 year old age range (younger than the students that will
be involved in the study and our target audience) and exhibit
the behaviors of human children in that age range. Although
the physical appearance of the creatures is ‘“vagucly
humanoid”, their physiology generally mirrors that of
humans, including some of the dict related discases that can

befall them. Effects of dict upon health manifest faster in the
creatures than in humans.

The creature campers are not passive beings. For example,
the player can suggest what they should cat at the camp
cafeteria, but must have an appreciation of their taste
preferences and cating habits to make inroads in their
behavior. Merely determining a balanced diet is not
enough—the player has to confront one of the central themes
of C3 notion of dict change.

The types of food available to the creatures closely resemble
those available on Earth both in appearance and nutritional
content. The character that the player assumes in the game is
that of a 13 year old (towards the higher end of the age range
of our target audience). Thus, role-playing the character
comes with an appeal of “coolness”. There are multiple goals
that the player pursues during the game. They have to keep
the “creaturc campers” that arc in their group healthy and
happy; there are a number of activitics in which the student’s
“campers” can compete with other creatures in the camp;
and the player can solve puzzles involving topics related to
C3 curriculum and thus accumulate points. Points allow the
player to accumulate “virtual money” that allows them to
buy things for their campers, and cventually allows them to
add progressively more interesting things to the world.
Hand-in-hand with points is the notion of “creaturc
admiration”: the more the students are liked and respected by
the creatures, more creature campers will join their groups.
Having more campers in one’s group cnables a player to
undertake more projects. Improving the health and
admiration of the campers also allows the player to advance
in responsibilities. The goal of the game is to progress to the
title of Camp Sensei—a title bestowed upon the most expert
of the camp counselors.

Winning challenges allows the creatures to get points and
gives the player more “world money” for getting items for
the creature. The healthier and happier the creature is, the
more likely it is to do better in challenges. As the creaturcs
become content, the “fame” of the student increcases, thercby
drawing other creatures to be part of the group.

The player begins with resources to purchase food for their
creature campers. However, the player has to find the
balance between the physiological preferences of the
creature, their existing eating habits and the nutritional value
of the food that is available. Reflecting real world choices,
the player initially has to purchase and recommend to the
creature what to cat. That is the creature camp cafeteria and
adjoining restaurants and snack shops offer a variety of food
options that the creature campers must negotiate if they are
to be healthy enough to participate in the various camp
activities. As the player acquires more points, they are able
to use their resources to construct places in the world. For
example, build a gym for the creature and its friends to work
out, or start a single restaurant for the creatures.

One issuc that the game must address is linking the behavior,
physiology, and health of creatures to the student
understands of their own health and the impact of diet upon
it. There are four ways in which we address this. First, the
game will make the point that “your creaturec needs YOU to
be healthy in order to be healthy.” Students will be asked
about the food they would have sclected, will be given health
goals as takeaways that they can work on offline (e.g. drink
at least five cups of water today). Second, discussion
materials will be developed for teachers that draw

61

connections between the health and behavior of the creature
and the player. These will be presented by and discussed
with the teacher at least twice during the course of four
bascline sessions in the school. Third, the game will include
puzzles related to C3 curriculum—for ecxample energy
balance—that the student will have to take to win additional
resources and get items for their creaturc. Finally, there will
be parent-student activitics during the course of the
formative and summative cvaluations of LifeSim. Pre-
activities for these will require parent and student to bring in
a favorite recipe and food log for the previous day to the
scssion.

LIFESIM ARCHITECTURE

There are three software products created by Stottler Henke
for simulation and scrious games (SimVentive (Fu and
Ludwig 2007), SimBionic (Fu and Houlette 2002)) and
intelligent training system (FlexiTrainer (Ramachandran et
al. 2004)) development. These tools will be leveraged for
LifeSim. SimVentive is a comprchensive software toolkit
that gives simulation and scrious games designers the means
to create training scenarios and to define the behavior of
characters and objects that populate those scenarios. Using a
visual approach, SimVentive supports the rapid development
of user interfaces, game objects, and behavior to create
realistic single-player and multi-player training systems. It
explicitly includes three different authoring modes which
cnable developers to create a serious game from scratch
while still providing a way for instructors and subject matter
experts to customize a deployed game. Authoring assistants
check scenarios for errors and provide wizards to help with
authoring tasks. SimVentive also encourages the reuse of
game content with tools for building and managing librarics
of scenario modules.

SimVentive incorporates its carlier predecessor, SimBionic,
for supplying game behavior logic. SimBionic is a behavior
authoring tool which enables an instructor or tactical expert
to create entity behavior using a graphical "drag and drop"
interface to quickly build complex behavior. Once behaviors
have been created, they can be casily modified and re-used
for other scenarios. SimBionic behaviors are implemented
as Behavior Transition Networks comprised of states and
transitions. SimBionic extends the usual notion of finite
statc machines by making it possible for states to refer to
other Behavior Transition Networks hicrarchically, to define
modular behaviors that can be combined powerfully.
SimBionic softwarc also provides four ecxtensions that
increase the power and expressiveness of the basic engine:
global and local wvariables interrupt transitions,
“blackboards” for sharing knowledge among Bchavior
Transition Networks, and polymorphic indexing for run-time
sclection of behaviors.

FlexiTrainer (Ramachandran et al. 2004) is our student
modeling and instructional behavior toolkit. It provides
significant flexibility in Intelligent Tutoring System (ITS)
development. Each agent responds to a sct of instructional
goals when some pre-conditions are met. The instructional
planner coordinates these agents, sclecting the optimal agent
to satisfy a goal based on the pre-conditions, the tutor’s state,
and the student’s state.

We intend to leverage these three core tools to build
LifeSim. Each is composed of an authoring tool plus a

deployable “engine” to make LifeSim operational. There are
three types of applications arcas: student, instructor, and
developer.

Student Applications: These are versions of the already-
existing SimVentive player which will be adapted to run
inside of a social network platform — we are currently using
the Ning platform, but other systems such as Facebook could
be supported. This system loads scenario files from the
Backend and cnables students to play the LifeSim game and
later upload their results to the Backend for teacher viewing.
This application interprets creaturc data, and ecnables
students to interact with each other. Interactions include
minigames, adding material to the creature’s world, and
visiting the creatures of other players.

Teacher Applications: We anticipate the usc of
applications for customization and student performance
review. It will cnable the teacher to customize simple
clements of scenarios.

Developer Applications: The primary development
applications are our three core tools plus art asset and media
generation tools such as Photoshop or Maya.

Student Applications Backend

Class Content

oo stugent
tudent
(\ "j) y Model)
e
p \ \
(Assessrnen Ma
, Dat . Dat

LifeSim
Single Player|

LifeSim
Multiplayer

Teacher Applications

Class Editor
& Viewer

SimVentive:
Edit

Developer Applications Game Content

et SRR | T
SimVentive: Lo FlexiTrainer
Build + Forge | | SimBionic enavior Agent
9 —
Creatur
, I
Autnory FlexiTrai
uthoring lexiTrainer — Ontols
Tools niotogy
Figure 1: LifeSim Architecture
EVALUATING LIFESIM

We will conduct the evaluation of the LifeSim software in
three steps. In the first step, an initial software prototype will
be developed. A pilot study with two classes will be
conducted following the release of this version. This will
include qualitative data including observations,
questionnaires, class discussion, and interviews with
participating teachers and students. The aim of this pilot is to
improve the structure and flow of the game. Based upon the
feedback and cxperiences of this initial pilot, a second
release of the LifeSim software will be developed. In the
sccond step, Release 2 of the LifeSim software will be
formatively cvaluated involving 10 classes. A mixture of
process and outcome measurements will be used in this step,
including focus group discussions, surveys, and interviews.

Pilot, LIFESim Release 1

We will recruit two classes to take part in this step of the
cvaluation. In this step, and in steps 2 and 3, to have the
students play the game in a controlled condition, where we

62

can assurc complete exposure to all phases of the game, we
will have students play the game as an entire class, with cach
student having a computer with the game. In all steps of the
evaluation, a member of the LifeSim team will be in the
classroom to answer questions and to solve any software
issues. This person will allow the student to move through
the game at their own pace; while also encouraging students
to complete all aspects of the game.

In this step of the evaluation, we will collect three sources of
data. First, while the classes arc playing the game, we will
have three observers in the classroom who will take detailed
ficld notes on how the students are interacting with the
game, what cxcites the students, what challenges the students
have, conversations between the observers and students and
conversations between students. Second, we will have
questionnaires for both the students and the teachers with
written questions that detail what they like about the game
and why; how they seem the game relating to their own food
and activity choices, and their ability to navigate our current
food and activity environment; and suggestions for how to
improve the game. We will also have a full class discussion
to have the students sharc more on the above categories.
Finally, we will interview the teachers and a subsct of
students to get more detailed information on the above
topics. The students who will be interviewed will be pre-
sclected so that the observers can pay carcful attention to
these students as they play the game to ask detailed questions
about the student’s experience with the game. We will code
these data on emerging themes, develop summary reports on
what we have learned, and review these data in order for the
game developers and content experts to revise the game
based on what was learned in this pilot.

We are currently developing a preliminary release of
LifeSim that will be evaluated with a small group of 10
students to inform the pilot study. This preliminary release is
being constructed with the Metaplace social gaming platform
and will be evaluated August 18 and 19.

Formative Evaluation

This step of the evaluation will include a process instrument
that will be completed by all students in 10 classes after they
complete the LifeSim game which will ask the students
multiple-choice and open-ended questions about what they
liked, what they would change, what was casy or
challenging, and how they felt the game related to their own
food and activity choices. Additionally, the students will
complete a pre and post questionnaire that was developed to
cvaluate the impact of C3 on students. This questionnaire
includes questions on conceptual understanding. This
instrument collects data in several areas. First, students’
conceptual understandings on the scientific evidence for why
to make healthful food choices, skills on how to make
healthy food choices, and ability to cvaluate their diet to
determine if it is meeting the C3 behavioral goals. The
survey will also measure students’ skills on how to plan for
and implement small gradual changes that will lead to
maintenance of more healthful habits.

The survey will evaluate mediators of behavior change
including beliefs, perceived benefits, perceived barriers, self-
cfficacy, and competence in navigating today’s physical
activity and food environment. Third, we want to determine
if LifeSim has any positive impact on the student’s cating

behavior—in particular do the students’ dicts move toward
meeting the C3 behavioral goals.

The data from the process and outcome cvaluations will be
analyzed to enable us to prepare Release 3 of LifeSim for the
outcome cvaluation and to modify the evaluation instrument
for the summative evaluation. We will analyze the process
evaluation, summarize the comments from the users and
refine the LifeSim game based on the comments. We will
also usc T-test analysis to compare the pre and post surveys
for statistical changes. We will use these data to determine of
the game needs to be modified to make is stronger in
cnabling the students to transfer what they learn in the game
to their personal choices. We will also modify the student
outcome instrument based on what we learn from the data
analysis.

Summative Evaluation

The main goal of this third step of the cvaluation is to
conduct a summative evaluation to determine how LiFESim
impacts students, using a pre-post, intervention-control
design. The students in both intervention and control groups
will complete the final student outcome instrument
developed in step 2 pre and post. The intervention group will
receive the LiFESim game. The control group will play
another computer game such as a math game or a game on
another health topic. After completing the game (7-10
cpisodes), students will complete the post-survey. We will
usc ANCOVA to compare the post-test between the
intervention and comparison groups with the pre-test scores
as co-variants.

The sample size was calculated based upon analysis of the
C3 student outcome cvaluation data. Because the C3 data
suggests that the curriculum was particularly effective in
reducing consumption of high fat high sugar foods, we have
chosen these behaviors for the basis of our sample size
calculations. C3 resulted in a reduction of .9 day per week in
sweetened beverage consumption with meals and .4 with
snacks, and .6 days per weck reduction in consumption of
packaged snacks. We estimate that in order to be able to
detect a .5 day per week average reduction in these behaviors
with the LIFESim game, we need a sample of 407 to achieve
90% power and a sample size of 304 to achicve 80% power.
We also estimated, based on our previous work, that we
would have 20 students in each class with complete data, or
nonparticipation/dropout rate of 25% of cach class. Thus, our
summative cvaluation will have 20 intervention and 20
control classes. We anticipate approximately five classes
from each school, and thus about four schools in each
condition. We will recruit cight total schools with our
Teachers College partners in association with the Middle
School Science Coordinator for the New York City
Department of Education. We will place the schools into
four pairs matched on overall academic performance
(standardized literacy and math test scores), percentage of
students who qualify for free or reduced lunch, ethnicity, and
general school tone. One school from cach pair will be
randomly assigned to intervention and the other school to
control condition. These It anticipated that the students will
be about 50% cach of boys and girls, and predominantly
African-American and Latino.

Statistical design for the analysis is an ANCOVA model.
The analysis will be performed as the post-test data with

63

regression adjustment for covariates measured at baseline,
thereby including time-related information without modeling
time explicitly in the analysis. Covariates are added to the
model to reduce confounding, to improve the precision of the
estimate of the intervention effect. This analysis will allow
us to detect how the LiFESim game impacted students when
compared to the control students. The primary hypothesis of
the study is that there will be differences between the
intervention group and the control group in terms of the
targeted behaviors. We also hypothesize that LIFESim will
also impact the mediating variables of conceptual
understandings—scientific evidence for why to make
healthful choices, beliefs, self-cfficacy, competence in
navigating today’s physical activity and food environment
and behavioral intention. In addition to statistical testing of
hypotheses, we will estimate intervention effect sizes in
terms of absolute differences and ratios with appropriate
confidence intervals. We will also examine correlation
between mediating variables and behaviors.

REFERENCES

Contento IR. Nutrition education: Linking research, theory, and
practice. Sudbury, MA: Jones and Bartlett Publishers, Inc.;
2007.

Cullen KW, Watson K, Baranowski T, Baranowski JH, Zakeri I.
Squire’s Quest: Intervention changes occurred at lunch and
snack meals. Appetite. 2005, 45(2): 148-51.

Fu, D, and R Houlette. 2002. Putting Al in Entertainment: An Al
Authoring Tool for Simulation and Games. IEEE Intelligent
Systems.

Fu, D, and J Ludwig. 2007. “Game Al Solutions for Serious
Games,” 1/ITSEC Conference Tutorial.

Cynthia L. Ogden, PhD; Margaret D. Carroll, MSPH; Katherine M.
Flegal, PhD High Body Mass Index for Age Among US
Children and Adolescents, 2003-2006 JAMA.
2008;299(20):2401-2405..

Ramachandran, S, E Remolina, and D Fu. 2004. FlexiTrainer: A
Visual Authoring Framework for Case-based Intelligent
Tutoring Systems. In Proceedings of the Seventh International
Conference on Intelligent Tutoring, 848-850.

Thompson, D.J., Baranowski, T., Buday, R., Baranowski, J.,
Juliano, M., Frazior, M., Wilsdon, J., Jago, R. 2007. In pursuit
of change: Youth response to intensive goal setting embedded
in a serious video game. Journal of Diabetes Science and
Technology. 1(6):907-917.

BIOGRAPHY

CHARLES EARL was born in Atlanta, Georgia and
received his doctoral degree in Computer Science from the
University of Chicago in 1998. Charles is currently a project
manager at Stottler Henke Associates.

REAL-TIME WARFARE SIMULATION GOES WEB 2.0

Gustavo Henrique Soares de Oliveira Lyrio
Roberto de Beauclair Seixas

Institute of Pure and Applied Mathematics — IMPA
Estrada Dona Castorina 110, Rio de Janeiro, RJ, Brasil 22460-320
e-mail: glyrio,rbs@impa.br

Computer Graphics Technology Group — TECGRAF
Pontifcia Universidade Catlica do Rio de Janeiro — PUC-Rio
Rua Marqus de So Vicente 255, Rio de Janeiro, RJ, Brasil 22453-900
e-mail: glyrio,rbs@tecgraf.puc-rio.br

KEYWORDS
War gaming, serious gaming, real time tactics, WEB 2.0

ABSTRACT

This work presents the authors’ experience in the pro-
cess of developing a massive real time multi-player for
military tactical online training simulations, and how
some web 2.0 applications provide helpful tools to over-
take common problems found during this process.

INTRODUCTION

As long as organized conflicts are known in the history
of humanity, there are also war gaming. These games
were used for training or entertainment.

Although as popular as table-top games, it has taken
to tactical war games a little longer to be available for
computers. Its large number of units and the advanced
set of rules demanded processing power beyond the
capabilities of hardware available at the moment.
Also, the most established set of rules were made for
turn-based war games so, it took a while to translate
these rules in real time and also to release the first
real-time tactics (RTT) (Adams 2007) computer game.

Real-time tactics is a sub-genre of tactical war games.
Tt is differentiated from real-time strategy (the most
popular) due to the lack of resource micro-management
and base building, the greater importance of individual
units (Adams 2007) and the focus on battlefield tactics.

With the evolution of the hardware resources and the
popularization of the Internet, war games became avail-
able in online paradigm, where a player create a server
game with its own world and other few players connect
to this server and play together. It didn’t take too
much time to the players to demand a unique persistent

64

world, where all the players could play together. The
Massive Multi-player Online games (MMO) were born.

About ten years ago, a new way to use the internet
was arising. Called “Web 2.0”, this second generation
of web applications facilitates communication, secure
information sharing, interoperability and collaboration
on the World Wide Web.

In the last twelve years, we have been working with
the Brazilian Marine Corps, in the development of
their training system. In the beginning, the goal was
to simulate an Amphibian Assault Operation. With
the expansion of the system to cover other Brazilian
Marines’ operations, like riverine operations, amphibian
incursions and peace operations (military operations
other then war), came the demand for new technologies
to provide more details.

Then, it came the idea of joining the concepts and
technology used among Web 2.0, MMO and tactical
war games to develop a Massive Multi-player Online
Real Time Tactics (MMORTT) training tool adding
the necessary portion of reality to reach the training
goals.

The goal of this paper is to present the adversities found
in development of a MMORTT military training system
and to show how some Web 2.0 applications could take
part in this system providing useful solutions.

COMMON ADVERSITIES
VELOPMENT PROCESS

FOUND IN DE-

During the development process three major adversities
where identified: real terrain and 3D units modeling, de-
velopment of a specific communication system and keep
track of units actions.

3D Real world and units modeling

Differently from an entertainment game, the user will
be expecting a real world. The training should be done
in some place that really exists in a known region of our
world. Otherwise the system will lack of reality. That
is a huge problem to developers because the system will
demand 3D modeling of all the training regions with
its characteristics (mountains, rivers, lagoons, swamps
and vegetation, for instance).

Real terrain demands real edification, bridges, and
roads, which will be another problem. Again the de-
signers will have a lot of work to do. Also you will need
units that user can identify as real military units.

¢ What we have learned: Real world means real
terrain, real scructures and real units 3D modeling;

Communication system

An additional problem arises from the fact that you are
training a group of persons together, not entertaining
isolated players. Since the results will be evaluated at
a team level those persons, of course, need to interact
with it each other. In the real world it would be done by
radio communication, with a lot of features like static,
interference and electronic warfare, so we need to simu-
late a radio communication system.

e What we have learned: Real world also means
real communications with all real features and real
problems;

Units line of actions tracking

The last problem, which we have discovered with some
field experience, is that after the training is done, a
debriefing is made and the users has to discuss about
the actions each one took during the game. If it was a
long game (more that one day, for instance), the large
amount of information and the high level of interaction
between users, makes it hard to determine why a specific
action has been taken in a specific moment. It would be
easier if each users had something like a journal to write
down, and explain their line of actions. Such procedure
is know on ships as the captain’s diary.

e What we have learned: Discuss the game result
is more important then the game itself;

WEB 2.0 SOLUTIONS

In the previous session we identified three major prob-
lems in the process of developing a MMORTT for mili-
tary training. We next present three solutions provided
by Web 2.0 applications that will make the developer’s
life easy when dealing with these problems.

65

Terrain and 3D unit 3D modeling with Google
Earth API

The google earth API was chosen to handle this issue
due to the fact that it alone, handles all the 3D
rendering, dismissing all the design work.

In the middle of 2008 the Google company has made
available for developers an API for including Google
Earth system inside a web page. The benefits from
this API are notorious. The developer uses javascript
to gain control of the Google Earth plugin and its
capability to display a 3D model of the whole world
with no cost. Also it is possible to personalize the
system with images, 3D models and XML/KML files.

Google has also provided Google SketchUp, a 3D
software tool that enables to draw and place models
in real world coordinates using Google Earth API.
Users are encouraged to make their models available in
Google Earth Warehouse, madding huge the probability
to someone already has modeled that bridge in your
terrain or even that military unit you need.

Below we will show some of the benefits that Google
Earth API can bring to the development process of a
MMORTT.

Aerial Reconnaissance

Aerial reconnaissance is a system where the user fly
through a real terrain and try to detect the positioning
of enemy forces. This task showed to be complex due
to the necessity of builds a 3D model of every area of
training and of each military unit. Terrain modeling can
be a real headache when working with huge terrains. It
demands a modeling team with designers and develop-
ers. Rendering algorithms with culling, LOD and other
techniques. Would not be amazing if all that could come
ready to use in a single API? Well, it became possible
with Google Earth. The Figure 1 shows the reconnais-
sance system developed using a raster image of a UH
helicopter cockpit (with transparent glass) above the
Google Earth API. It took about 30 minutes to develop
such application.

3D Visualization

The Brazilian Marines instructors complained about
the difficulty to understand the line of sight and
communication obstructions using a 2D map. They
requested a way to really see the game instead of
little marks on a map. In addition, a 3D view always
makes a game more impressive. Again the same
problems discussed above in the Aerial Reconnaissance
session came back. Fortunately Google API has re-
solved it for us providing a tool called Google SketchUp.

Google SketchUp is a tool that allows its users to create

Figure 1: The aerial reconnaissance system using Google
Earth API to display an raster image with transparent
helicopter cockpit above the Google Earth terrain

3D models and made it available on the Internet. This
models are fully supported by the Google Earth API
(Figure 2).

3D visualization showing some Google
SketchUp models (downloaded) placed over a real ter-
rain (Grand Canyon). The terrain model is provided by
Google Earth API

Figure 2:

Communications using Team Speak SDK

Our simulation communications are done with three
real radios installed on each simulation room: one
for tactical issues, one for logistic requests and one
for request fire support. Although the system con-
siders electronic warfare in unit-unit and units-user
communications, the communication between two
users is done directly by those radios and doesn’t
pass through the system. The idea is to replace those
radios by software using TeamSpeak server and devel-
oping an interference module bringing the effects of
electronic warfare to the user-user communications also.

TeamSpeak is a software that enables people to speak

66

with each other over the Internet. It consists of both
client and server versions. The server acts as a host to
multiple client connections, capable of handling literally
thousands of simultaneous users. A relevant feature the
TeamSpeak present is the ability to create channels. A
channel works exactly as a radio channel does. One user
creates a channel and may turn it public or protect it
with a password. Other users connected on the server
may then connect to this channel (providing the pass-
word if it has one). TeamSpeak became popular with
the Counter-Strike game as a “radio” system used by
the players to manage their teams. Another possible
solution is to use Skype.

Unit journals through Twitter or Blog

Tracking a combat unit progression over the simulation
is important to allow the instructor to make a debriefing
and points out to the players which actions went wrong,
what should be improved or even to show a great
maneuver. However, it has been a hard task. The
system needs to be able to store each action taken by
each unit. This kind of storage demands a lot of work
to detach what was the action line of a particular unit.

Twitter is a free social networking and micro-blogging
service that enables its users to send and read other
users’ text-based posts of up to 140 characters, which
makes it fast to read. The posts are known as tweets
and are displayed on the user’s profile page and de-
livered to other users who have subscribed to them
(known as followers). Users can send and receive
tweets via the Twitter website, Short Message Service
(SMS) or external applications.

A proposal to solve our problem is to generate a twitter
account for each unit, where the unit by itself, through
the twitter API, informs which actions were taken in a
scenario when looking for a goal.

For a debriefing process instructors can subscribe as fol-
lowers of any unit and follow the unit progression with
the 3D visualization tool, and consulting the unit tweets
to determine why an unexpected action was taken. This
process increases the capability of identifying wrong ac-
tions taken by the officers or even registering outstand-
ing unexpected maneuvers that should be shared and
discussed with other officers.

Recognized potential in Web 2.0 tools

The United States Army and Air Force saw potential in
Twitter and other Web 2.0 tools. Recently, the news has
reported that these tools have been used by the military
to communicate with people that uses the Internet as
alternative source of information to the press media in
Afghanistan. One of the goals is to oppose the Taliban

advertising.
RESULTS

Using the Google Earth API we were able to develop
a 3D visualization and a 3D aerial reconnaissance
tool, solving problems that have persisted in the
project for many years with no more than 150 lines
of codes each. In addition, the visual including 3D
models, water movement and sun light effects caused
a good impression to the users. The integration
with the whole system was also easy, since it was
only necessary to call a new function that builds an
html page with Google Earth Javascript inside. The
whole development process took no more than one hour.

The process of developing radio communication by soft-
ware using TeamSpeak was slightly more complicated
due to the necessity of acquiring data for each type
of radio used by the Brazilian Marine Corps and to
implement interference and electronic warfare over the
TeamSpeak SDK. The idea was also well received by
the officers and is currently in a process of evaluation
and homologation.

Using T'witter as a track tool for the units was praised by
the instructors as an alternative to an email system that
has been font of problems and missed units’ information
for a long time. The tool is also in evaluation. As occurs
with the radios, replacing something that has been used
by twelve years requires some time to settle down as the
new way to do the job.

DISCUSSION

Unfortunately Google Earth API still presents some
issues that prevents its use in a training application.
The first one is the lack of a Google Earth plugin for
Linux. The Brazilian Marine Corps is on a process of
free software adoption and would be bad to demand
lots of Windows or Mac licenses to support the system.
Other issue that demands attention is the time that
Google Earth spends to render. In a commercial game
it would be not acceptable to wait the rendering process
looking the world slowly appear in front of your eyes.
Additionally, there are some flickering problems during
the render process. An example is when the camera
gets a huge height related to the ground.

However, no one can deny that Google Earth API has a
promising future. Google Team is working hard to solve
these issues and to implement new features to keep
the API up to date with the Google Earth software
version. The last huge improvement was the ability to
go “underwater” available from version 5. This feature
inspired us to start working in the 3D representations
of submarines and combat divers.

67

After all, we must consider that Google Earth API is
just a one year old API and the contributions that it has
made are huge. We believe that in a few years Google
Earth API will be “the direction” to follow when doing
real terrain rendering.

REFERENCES

Adams D., 2007. The State of the RTS.
Graham P., 2006. Web 2.0.

Montenegro R.S.R.S.A., 2009. Objects Visualization
in Digital Terrains Using Adaptive View-Dependent
Techniques.

O’Reilly T., 2006. What is Web 2.0.

O’Reilly T., 2007. Web 2.0 Compact Definition: Trying
Again.

Seixas G.L.R., 2004. Riverine Operations: Modeling and
Simulation.

T. B., 2003. Strateqy Game Programming With Directx
9.0. Wordware Publishing, Inc.

BIOGRAPHY

Roberto de Beauclair Seixas works with Research and
Development at Institute of Pure and Applied Mathe-
matics - IMPA, as member of the Vision and Computer
Graphics Laboratory - Visgraf. He got his Ph.D. degree
in Computer Science at Pontifical Catholic University
of Rio de Janeiro - PUC-Rio, where he works with
the Computer Graphics Technology Group - TecGraf.
His research interests include Scientific Visualization,
Computer Graphics, High Performance Computing,
GIS, Simulation Systems and Warfare Training Games.
Currently he is the advisor of the Warfare Games
Center of the Brazilian Navy Marines Corps.

Gustavo Henrique Soares de Oliveria Lyrio works
with the Computer Graphics Technology Group -
TecGraf. He got his B.Sc. in Computer Engineering
at Pontifical Catholic University of Rio de Janeiro -
PUC-Rio. His interests include Computer Graphics and
Warfare Training Games. Currently he is developer of
Warfare Games Center of the Brazilian Navy Marines
Corps.

Increasing P2P Gameplay Performance Utilizing [3P

Jeremy Kackley
School of Computing
University of Southern Mississippi
Hattiesburg, MS

Jean Gourd
Dept. of Computer Science
Louisiana Tech University =~ Amaze Entertainment
Ruston, LA

Matthew Gambrell
Programmer

Austin, TX

{jeremy.kackley, jean.gourd, mgambrell } @gmail.com

Abstract

I3P (Intelligent Peer-to-Peer Protocol) is a peer-to-peer
(P2P) protocol developed to assist in the development
of low-latency online multiplayer games by providing a
minimal but sufficient set of tools appropriate to the
task and amenable to study. In this paper, we review the
protocol and discuss its utilization in a sample game. We
extend our previous work in I3P [16] and provide further
analysis, particularly regarding its impact on latency.

1 Introduction

Multiplayer online games (MOGs) are a relatively new
but rapidly growing field of entertainment. Peer-to-peer
(P2P) networking is also relatively new yet is becom-
ing extremely prevalent. We aim to apply some of the
methodologies of P2P networking [18] to the existing
infrastructure on which MOGs are built; by this we
mean doing such things as pushing tasks currently per-
formed by centralized servers or nodes—which often act
as points of failure-in clusters onto the actual players’
machines. There are obvious benefits to this such as de-
creased setup and operational costs. Furthermore, P2P
based networks avoid a single point of failure and scale
extremely well [20]; such approaches can often result in
less server load and lower latencies. Typically, the more
peers involved, the more likely it is that a good connec-
tion can be made; the less the server is asked to perform,
the more users can be supported.

In order to push operations onto peers in a MOG sys-
tem one has to first partition the player base into sub-
groups. The reason for this is that every player in the
entire game “world” will not be interacting simultane-
ously; thus, it makes sense to partition them into groups
either spatially or associatively. These various partitions
can then be handled by subservers, or in our case, by
a combination of subservers and peers. This has been
covered in other works [3, 4, 9, 15, 17, 21].

Once partitioned, tasks that can be pushed onto
clients must be identified. Typical tasks that need to
be performed include authentication, communication of

68

perceptive data, validation of received messages, and
maintenance and updating of each client’s state by the
server. These tasks could be subdivided further, but
this gives a rough overview of the kinds of operations
that continuously occur.

We ultimately decided to push onto the peers the
tasks that involve the communication of perceptive data
and the validation of received messages. These two
steps consist of the clients communicating intent to a
server after which the server communicates results to
the clients. It seems obvious that the clients could com-
municate amongst themselves and determine their own
state, only occasionally communicating that state back
to the server. There is a great deal of detail that one can
go into when discussing this concept [11], but it relies on
one underlying principle: one needs a very reliable way
for peers to communicate with each other. With that
in mind, we further realize that the more information
that is transmitted, the more likely it is for some of that
information to be dropped.

This paper is structured as follows: in section 2, we re-
view 13P. We introduce its integration in a simple MOG
in section 3 and further discuss optimization techniques.
We discuss performance results in section 4 and con-
clude, identifying potential future work, in section 5.

2 Intelligent P2P Protocol (I3P)

I3P aims to greedily use all available bandwith to ensure
connectivity and reliability, minimizing latency at the
cost of bandwidth [16]. It is designed with efficiency in
mind, allowing peers to communicate with each other
in an economical manner and internally managing non-
receipt of transmissions. The core idea of the protocol
is that each peer will maintain an idea of what it thinks
each other peer in its peer group knows about and will
automatically forward messages to peers it thinks have
fallen behind. It does this by maintaining a matrix of
numbers indicating the last message received by each
peer from every other peer.

By recruiting each peer to forward messages to all
the others, the key notion is for each peer to keep track

of which messages all the others have received. This
will enable the peer to preemptively update the others
with messages it believes them to be missing. Under
some circumstances, the need for protocol negotiation
will therefore be reduced, thus improving latency. I3P
can reliably broadcast a player’s intentions to a group
of peers with whom s/he is communicating.

Logically, the communicated matrix of numbers cor-
responds to several update messages, which is defined as
a message sent by peer A to peer B that informs B that
A has received all the messages up to a given number,
N, from another given peer, C. In this sense, the up-
date message is sent in a matrix syntactically indicating
the latest message peer A has received from each peer
in the network.

Suppose there are two signals which peer Z can trans-
mit:

1. Send message M from queue X to peer Y
2. Send “Z has received X up to N” to peer Y

The first signal merely conveys a sequence-numbered
user message, which may either have originated on peer
Z or on another peer (and is being forwarded by peer
Z).

The second signal is a means of indicating which mes-
sages peer Z has received. After receiving this signal,
peer Y would no longer need to preserve messages N or
older from peer X on peer Z’s behalf. Once peer Y no
longer needs to preserve a message from X for anyone
else, it is safe to discard it.

These two signals are all the tools we need for the
protocol. Crafting the optimal signal to send at any
given point in time remains the challenge. Optimization
is also necessary to meet our design goals, as the most
unintelligent choices, such as sending the same signal
repeatedly, will result in a broken protocol.

The reader can refer to our previous work for a more
in depth explanation of this protocol, several illustra-
tive examples, as well as a mathematical analysis of its
performance and its use in a simulation [16].

3 1I3P in a MOG Setting

In our previous work [16], we simulated the protocol
in order to produce initial results and provide a rudi-
mentary performance analysis of I3P. This yielded some
interesting data, but we felt we needed a more realis-
tic test. Thus, we extended our previous work by im-
plementing the protocol as part of a multiplayer game
built on the XNA Framework [10] in order to measure
the performance of the protocol in a real environment.
The rest of this paper deals with the details of this im-
plementation and the results of that testing.

The completeness of the I3P implementation was con-
firmed by its integration into a four-player game—which

" Ready [doesrt do arpthing vetl] igaurd
fkackley

mgambrell
baboon
chimpanzee
orangutan
lerrur
gibbon
howiler
garilla

<jgound> are pou guys ready to plap?
<mganbrell> { was bon ready!
<jkackley> what? did somebody say something? D

Figure 1: Initial game state illustrating numerous net-
worked players

Figure 2: Attempting to cooperatively place the char-
acter’s feet on top of the well roof

we call Monster Fishing—that requires the players to ma-
neuver a cursor onto a target. The simple communica-
tion needs of four closely-interacting players resemble
the needs of a small group in a MOG setting. Figures 1
through 3 illustrate the game, where the combined ef-
forts of the players are used to guide the character’s feet
directly on the top of the roof of the well. The cur-
sor is the average of each player’s input. Each player’s
contribution to the motion of the cursor is random and
confusing. A player cannot easily play his part with-
out discerning the response of the cursor to his controls;
but each player is trying to discern this simultaneously.
Success in this game requires a degree of emergent com-
prehension of the other players’ minds—such emergence
is impossible if the latencies between players are too
great. Therefore, the low latency features of I3P are
indeed helpful.

69

Figure 3: A successful use of combined efforts

In the game, each client uses I3P to broadcast status
updates to its peers. The player’s individual cursor po-
sition is constantly relayed, as well as a flag indicating
whether the client thinks the cursor position is in the
winning area. When a client believes that the cursor
has been in the winning area for eight seconds, it claims
that a win has occurred. This message is broadcast via
I3P as well; whenever a client discovers that a peer has
won, it puts itself into the win state.

Bootstrapping a peer’s participation in I3P requires
some out-of-band signaling. The new peer needs to dis-
cover which sequence number for each peer to advertise
its awareness of. In the game, clients broadcast out-of-
band to a set list of IP addresses in order to establish
their presence in the game. Once this is satisfactorily ar-
ranged, the new peer may send update messages to the
peer group so that the other peers can begin to integrate
the new peer into their broadcasts. I3P subsequently
takes care of the rest.

3.1 Network Coding

Network coding (see [13] for a complete review) can be
applied to improve efficiency under many conditions. If
sources A and B are each trying to send a message to
sinks 1 and 2, we may encounter a situation where we
can regard peer X in the middle as wanting to behave
as a router and finding that it has to decide which sink
to relay messages to. In two units of time the peer could
send A, B to sink 1; or it could send A, B to sink 2; or it
could send A to sinks 1 and 2. In all of these cases, X has
been unable to completely relay all the information at its
disposal. However, network coding could be employed
to send A + B to each sink, also costing two time units.

If each sink had already received messages A and B,
then the relayed A 4+ B transmission would be superflu-
ous under any circumstances. If a sink failed to receive
either A or B, then the receipt of A + B would permit
the inference of whichever message had been lost. This

70

would seem a straightforward improvement. But, if a
certain sink had not yet directly received any messages,
then its receipt of a relayed A+ B will be a disappoint-
ment since it represents entirely neither A nor B. Sup-
pose, after receiving A+ B at time ¢ = 0, that the sink in
question is then destined to receive the direct transmis-
sions of A at t = 1, followed by B at t = 2. The network
coding would increase the effective latency of A (which
might have been relayed instead of A + B) from 0 to
1, while decreasing the effective latency of B from 2 to
1 by making it available before the direct transmission
of B is even received. Thus all information is received
at t = 1, versus t = 2 without network coding. If B
had been chosen for relay then we would end up with
all information received at ¢t = 1.

Under these conditions, network coding would im-
prove the total latency while leveling it out a bit, which
may or may not be desirable. On the other hand,
in a catastrophic situation where, for example, all di-
rect messages are lost, the sink would have been better
off had it been relayed something useful. Determining
where network coding is advantageous requires detailed
analysis of its impact on latency.

4 Results

We ran several instances of the Monster Fishing game
as earlier described in order to test I3P and have ob-
tained interesting performance results. The first test
case-which we simply call game 1-is illustrated in Ta-
ble 1. Given this simple network of four players, we
immediately notice that no packet loss occurred. This
makes sense, as we had a rather small test case and all
clients possessed high-bandwidth Internet connections.
On average, 41.79% of all received packages were relayed
by other peers as defined in the I3P protocol. The aver-
age latency—defined as the average time difference of the
receipt of a sequence and when it was first relayed by
another peer-was calculated to be approximately 0.018
seconds.

A second instance of the game—played at a different
time when the Internet is typically busy-yielded quite
different results as illustrated in Table 2. In this case,
client jkackley had a particularly horrible satellite con-
nection and consequently only received a small fraction
of the total packets. Client jgourd experienced packet
loss, but the use of I3P suggests that every one of the
sequences received via a relay was useful. On average,
21.38% of sequences received were via some relay, and
the average latency for all clients was approximately
0.157 seconds.

Table 1: I3P performance results in game 1

Packets Relayed/

User Packets Received ~ Average Latency (s) Packets Lost
baboon 125/312 0.0311342592592593 0
jegourd 150/334 0.0325 0
jkackley 247/416 0.0 0
mgambrell 71/311 0.0101232394366197 0
Averages 41.79% 0.01843937467396975 0

Table 2: I3P performance results in game 2

Packets Relayed/
User Packets Received ~ Average Latency (s) Packets Lost
baboon 5/2839 0.43125 0
jegourd 121/2726 0.0100694444444444 31
jkackley 21/26 0.0 0
mgambrell 4/2624 0.1875 0
Averages 21.38% 0.1572048611111111 7.75

5 Conclusion and Future Direc-
tions

The major premise of this protocol relies on an algo-
rithm for signal selection. While we briefly discussed
some of the caveats of signal selection in our previous
work [16], we have not as yet formulated any substan-
tial algorithms for signal selection and plan to explore
this in future work. Our signal selection and concatena-
tion algorithms are primitive in their current forms. An
obvious next step is to develop solid, parameterizable
algorithms and derive optimal values. The simplicity of
the core signals will aid in modeling and simulation.

A parallel effort in developing a more intricate state
definition, with more record-keeping and performance
variables, will provide a toolbox upon which the algo-
rithms can be built. This could even facilitate the real-
time selection of entirely different, simpler algorithms,
each optimized for different situations, which would be
activated as the situation demanded.

Although we have provided a start with the integra-
tion of I3P into a rather simple MOG, we must continue
to develop the setup and maintenance procedures neces-
sary for making I3P more useful in games. Particularly,
newly-entering peers will confuse everyone else by their
sudden appearance unless an additional mechanism is
added to prepare existing peers for the discontinuity.
We are investigating several techniques as introduced

71

in [1, 2, 6, 19, 23, 24, 25]. Furthermore, we plan to
implement I3P as the protocol in other MOGs to pro-
duce comparative results in addition to more exhaus-
tively comparing I3P to existing P2P protocols.

Implementing network coding, as discussed in sec-
tion 3.1, as part of I3P may yield interesting results, par-
ticularly with respect to optimistic performance and in-
creased protocol efficiency. Investigating potential ben-
efits of such techniques and integrating them is left for
future work.

Lastly, I3P was originally designed as a result of
the exploration of ways in which groups of peers could
continuously communicate intention and maintain state
among themselves; we found the existing protocols to be
lacking in this respect. Now that we have developed the
protocol into a functional state, it would benefit us to
revisit the original problem: how do we take the tasks
performed by subservers in a MOG setting and allow
peers to perform these tasks? This would yield insight
into the true effectiveness of this protocol and might
even lead to further refinements of it, as well as poten-
tially leading to a framework for moving these tasks onto
sets of peers.

References

[1] Ailixier Aikebaier, Naohiro Hayashibara, Tomoya
Enokido, and Makoto Takizawa. A distributed co-

[10]

ordination protocol for a heterogeneous group of
peer processes. aina, 0:565-572, 2007.

S. Alda. Component-based self-adaptability in
peer-to-peer architectures. In ICSE °04: Proceed-
ings of the 26th International Conference on Soft-
ware Engineering, pages 33—-35, Washington, DC,
USA, 2004. IEEE Computer Society.

Michele Amoretti, Francesco Zanichelli, and Gianni
Conte. Performance evaluation of advanced rout-
ing algorithms for unstructured peer-to-peer net-
works. In valuetools '06: Proceedings of the 1st in-
ternational conference on Performance evaluation
methodolgies and tools, page 50, New York, NY,
USA, 2006. ACM Press.

S. Caltagirone, M. Keys, B. Schlief, and M. J. Will-
shire. Architecture for a massively multiplayer on-
line role playing game engine. Journal of Comput-
ing Sciences in Colleges, 18(2):105-116, 2002.

Chris Chambers, Wu chang Feng, and Wu chi Feng.
Towards public server mmos. In NetGames ’06:
Proceedings of 5th ACM SIGCOMM workshop on
Network and system support for games, page 3, New
York, NY, USA, 2006. ACM Press.

Alvin Chen and Richard R. Muntz. Peer cluster-
ing: a hybrid approach to distributed virtual en-
vironments. In NetGames ’06: Proceedings of 5th
ACM SIGCOMM workshop on Network and system
support for games, page 11, New York, NY, USA,
2006. ACM Press.

J. Chen, B. Wu, M. Delap, B. Knutsson, H. Lu, and
C. Amza. Locality aware dynamic load manage-
ment for massively multiplayer games. In PPoPP
'05: Proceedings of the tenth ACM SIGPLAN sym-
posium on Principles and practice of parallel pro-
gramming, pages 289-300, New York, NY, USA,
2005. ACM Press.

Kuan-Ta Chen, Chun-Ying Huang, Polly Huang,
and Chin-Laung Lei. An empirical evaluation of
tep performance in online games. In ACE “06: Pro-
ceedings of the 2006 ACM SIGCHI international
conference on Advances in computer entertainment
technology, page 5, New York, NY, USA, 2006.
ACM Press.

Kuan-Ta Chen and Chin-Laung Lei. Network game
design: hints and implications of player interaction.
In NetGames ’06: Proceedings of 5th ACM SIG-
COMM workshop on Network and system support
for games, page 17, New York, NY, USA, 2006.
ACM Press.

Microsoft Corporation. Xna framework, 2007.
http://msdn2.microsoft.com.

72

[11]

13

15

[18]

Keiichi Endo, Minoru Kawahara, and Yutaka Taka-
hashi. A proposal of encoded computations for dis-
tributed massively multiplayer online services. In
ACE ’006: Proceedings of the 2006 ACM SIGCHI
international conference on Advances in computer
entertainment technology, page 72, New York, NY,
USA, 2006. ACM Press.

W-C Feng, F. Chang, W. Feng, and J. Walpole.
Provisioning on-line games: a traffic analysis of a
busy counter-strike server. In IMW ’02: Proceed-
ings of the 2nd ACM SIGCOMM Workshop on In-
ternet measurment, pages 151156, New York, NY,
USA, 2002. ACM Press.

Christina Fragouli, Jean-Yves Le Boudec, and Jorg
Widmer. Network coding: an instant primer.
SIGCOMM Comput. Commun. Rev., 36(1):63-68,
2006.

Tobias Fritsch, Benjamin Voigt, and Jochen
Schiller. Distribution of online hardcore player be-
havior: (how hardcore are you?). In NetGames '06:
Proceedings of 5th ACM SIGCOMM workshop on
Network and system support for games, page 16,
New York, NY, USA, 2006. ACM Press.

Thorsten Hampel, Thomas Bopp, and Robert
Hinn. A peer-to-peer architecture for massive mul-
tiplayer online games. In NetGames 06: Proceed-
ings of 5th ACM SIGCOMM workshop on Network
and system support for games, page 48, New York,
NY, USA, 2006. ACM Press.

J. Kackley, M. Gambrell, and J. Gourd. I3p: A pro-
tocol for increasing reliability and responsiveness
in massively multiplayer games. Journal of Ad-
vanced Computational Intelligence and Intelligent
Informatics, 12(2):142-149, 2008.

J. Kim, J. Choi, D. Chang, T. Kwon, Y. Choi, and
E. Yuk. Traffic characteristics of a massively multi-
player online role playing game. In NetGames "05:
Proceedings of jth ACM SIGCOMM workshop on
Network and system support for games, pages 1-8,
New York, NY, USA, 2005. ACM Press.

Thomas Moscibroda, Stefan Schmid, and Roger
Wattenhofer. On the topologies formed by selfish
peers. In PODC ’06: Proceedings of the twenty-
fifth annual ACM symposium on Principles of dis-
tributed computing, pages 133-142, New York, NY,
USA, 2006. ACM Press.

Yoshio Nakajima, Kenichi Watanabe, Naohiro
Hayashibara, Makoto Takizawa, Tomoya Enokido,
and S. Misbah Deen. Satisfiability and trustworthi-
ness of peers in peer-to-peer overlay networks. ares,
0:42-49, 2006.

[20] X. Ren, K. Li, R. Li, and L. Yang. An improved
trust model in p2p. In 2006 IEEE Asia-Pacific
Conference on Services Computing (APSCC’06),
pages 76-81, Los Alamitos, CA, USA, 2006. IEEE
Computer Society.

[21] Abdennour EI Rhalibi and Madjid Merabti.
Agents-based modeling for a peer-to-peer mmog ar-
chitecture. Comput. Entertain., 3(2):3-3, 2005.

[22] Abdennour El Rhalibi, Madjid Merabti, and
Yuanyuan Shen. Aoim in peer-to-peer multiplayer
online games. In ACE ’06: Proceedings of the
2006 ACM SIGCHI international conference on
Advances in computer entertainment technology,
page 71, New York, NY, USA, 2006. ACM Press.

[23] Jiuyang Tang, Weiming Zhang, Weidong Xiao,
Daquan Tang, and Junfeng Song. Self-organizing
service-oriented peer communities. aict-iciw, 0:99,
2006.

[24] Kenichi Watanabe, Yoshio Nakajima, Naohiro
Hayashibara, Tomoya Enokido, and Makoto Tak-
izawa. Confidence-based trustworthiness of ac-
quaintance peers in peer-to-peer overlay networks.
icdesw, 0:30, 2007.

[25] Kenichi Watanabe, Yoshio Nakajima, Naohiro
Hayashibara, Tomoya Enokido, Makoto Takizawa,
and S. Misbah Deen. Trustworthiness of peers

based on access control in peer-to-peer overlay net-
works. icdesw, 0:74, 2006.

JEREMY KACKLEY is a doctoral candidate at the
University of Southern Mississippi in Hattiesburg, MS.
His primary areas of research include intelligent agents,
distributed computing, and software engineering.

73

74

AUTHOR
LISTING

76

AVIla D. o 10
Barton A.C...oceerrenrirren. 59
Borghetti B.cccevveeeens 25
Contento |..ueeveereerereennnns 59

de Beauclair Seixas R.. 64
de Oliveira Lyrio G.H.S. 64

Dormans J. .cceereeirennnes 33
Earl C.C..correereeireirenanes 59
FUD e 59
Gaildrat V. wueeeeereeereennns 5/20
Gambrell M...coveevereennnns 68
GOoUrd J.eeeeeeeceereeereenns 68
Hoffman E. ...ceeereuirennnen 59
ISIAS A.cerreireireerenerenns 59
Kackley J. ..oooveccceceennn. 68
KOCh P ririireireirennees 59

AUTHOR LISTING

77

Lamont G...oveeeeeeerenneee. 25
Lee L-W. e 51
Lopatka R. ..ccevvrvereeecnnnes 43
Martinez AV...ccceverernneen 5
Mendenhall M.......c.coeee. 25
Nikiel S. cvereeeeeecrereeeens 17
Rajlich V. ccooceeeerricccinnns 43
RamMoSs F..oecvvreireeireenes 5/20
Rogers C. .oooirerriiciinnns 10
Sia0 S.-F. e 51
Siller M. oieeceveeceereeeeees 5
Tai W.-K. weeeireeierenneeees 51
AVZ= 110177 T I, 10
Warszawski K. ..coeeeveennns 17
Weissgerber K.............. 25
Zaragoza J.eeeeeeeennnns 5120

