6™ INTERNATIONAL NORTH-AMERICAN CONFERENCE

ON
INTELLIGENT GAMES AND SIMULATION

GAMEON-NA 2011

3" INTERNATIONAL NORTH AMERICAN SIMULATION
TECHNOLOGY CONFERENCE

NASTEC 2011

EDITED BY

Mei Si

SEPTEMBER 28-30, 2011

RENSSELAER POLYTECHNIC INSTITUTE
TROY, USA

A Publication of EUROSIS-ETI

Printed in Ghent, Belgium

Cover art:

DRAGON COMMANDER is © 2010-2011 Larian Studios. DRAGON COMMANDER and
DIVINITY are the trademarks of Larian Studios. All rights reserved.

6" International North-American Conference
on
Intelligent Games and Simulation

3" North American Simulation

Technology Conference

TROY, USA

SEPTEMBER 28-30, 2011

Organized by
ETI
Sponsored by
EUROSIS

Rensselaer Polytechnic Institute

Co-Sponsored by

Ghent University Larian Studios
UBISOFT GR@M
GAME-PIPE The MOVES Institute
Model Benders LLC Binary lllusions
University of Skovde BITE

Higher Technological Institute

Hosted by

Rensselaer Polytechnic Institute
Troy, USA

EXECUTIVE EDITOR

PHILIPPE GERIL
(BELGIUM)

EDITORS

Conference Chair
Mei Si, Rensselaer Polytechnic Institute, Troy, USA

Conference Co-Chair
Michael Lynch, Rensselaer Polytechnic Institute, Troy, USA

PROGRAMME COMMITTEE

Game Development Methodology
Track Chair: Licinio Roque, University of Coimbra, Coimbra, Portugal
Esteban Walter Gonzalez Clua, Universidade Federal Fluminense, Brasil
Gabriele D'Angelo, University of Bologna, Bologna, Italy
Oscar Mealha, University of Aveiro, Portugal
Jari Multisilta, University of Tampere, Finland
Ana Veloso, University of Aveiro, Portugal

Physics and Simulation

Graphics Simulation and Techniques
Stefano Ferretti, University of Bologna, Bologna, Italy
Yan Luo, National Institute of Standards and Technology, USA
lan Marshall, Coventry University, Coventry, United Kingdom

Facial, Avatar, NPC, 3D in Game Animation
Yoshihiro Okada, Kyushu University, Kasuga, Fukuoka, Japan
Joao Manuel Tavares, FEUP, Porto, Portugal

Rendering Techniques
Joern Loviscach, Fachhochschule Bielefeld, Bielefeld, Germany

Artificial Intelligence

Artificial Intelligence and Simulation Tools for Game Design
Antonio J. Fernandez, Universidad de Malaga, Malaga, Spain
Christian Thurau, Fraunhofer Institute, Schloss Birlinghoven, Germany

Learning & Adaptation
Christian Bauckage, Franhofer 1AIS, Sankt Augustin, Germany
Christos Bouras, University of Patras, Patras, Greece
Andrzej Dzielinski, Warsaw University of Technology, Warsaw, Poland

Intelligent/Knowledgeable Agents
Nick Hawes, University of Birmingham, United Kingdom
Wenji Mao, Chinese Academy of Sciences, Beijing, P. R. China

Collaboration & Multi-agent Systems
Sophie Chabridon, Groupe des Ecoles de Telecommunications, Paris, France

Opponent Modelling
Ingo Steinhauser, Binary lllusions, Braunschweig, Germany
\Y

PROGRAMME COMMITTEE

Peripheral

Psychology and Affective Computing
Bill Swartout, USC, Marina del Rey, USA

Artistic input to game and character design
Richard Wages, Nomads Lab, Koln, Germany

Storytelling and Natural Language Processing
Ali Arya, Carleton University, Ottawa, Canada
Jenny Brusk, Gotland University College, Gotland, Sweden
R. Michael Young, Liquid Narrative Group, North Carolina State University, Raleigh, USA
Clark Verbrugge, McGill University, Montreal, Canada

Modelling of Virtual Words
Ruck Thawonmas, Ritsumeikan University, Kusatsu, Shiga, Japan

Online Gaming and Security Issues in Online Gaming
Pal Halvorsen, University of Oslo, Oslo, Norway
Andreas Petlund, University of Oslo, Oslo, Norway
Jouni Smed, University of Turku, Turku, Finland
Knut-Helge Vik, University of Oslo, Oslo, Norway

MMOG's
Chris Joslin, Carleton University, Ottawa, Canada
Michael J. Katchabaw, The University of Western Ontario, London, Canada
Alice Leung, BBN Technologies, Cambridge, USA
Mike Zyda, USC Viterbi School of Engineering, Marina del Rey, USA

Serious Gaming

Wargaming Aerospace Simulations, Board Games etc....
Roberto Beauclair, Institute for Pure and Applied Maths., Rio de Janiero, Brazil
Henry Lowood, Stanford University Libraries, Stanford, USA
Jaap van den Herik, Tilburg University, Tilburg, The Netherlands

Games for training
Michael J. Katchabaw, The University of Western Ontario, London, Canada
Gustavo Lyrio, IMPA, Rio de Janeiro, Brazil
Tony Manninen, University of Oulu, Oulu, Finland
Martina Wilson, The Open University, Milton Keynes, United Kingdom

Games Applications in Education, Government, Health, Corporate, First Responders and Science
Paul Pivec, RaDiCAL
Daniela M. Romano, University of Sheffield, Sheffield, United Kingdom
Russell Shilling, Office of Naval Research, Arlington VA, USA

Games Interfaces - Playing outside the Box

Games Console Design
Chris Joslin, Carleton University, Ottawa, Canada
Anthony Whitehead, Carleton University, Ottawa, Canada

PROGRAMME COMMITTEE

Mobile Gaming
Stefano Cacciaguera, University of Bologna, Bologna, Italy
Sebastian Matyas, Otto-Friedrich-Universitaet Bamberg, Bamberg, Germany

Perceptual User Interfaces for Games
Tony Brooks, Aalborg University Esbjerg, Esbjerg, Denmark
Lachlan M. MacKinnon, University of Abertay, Dundee, United Kingdom

Gaming Robots
Leon Rothkrantz, Delft University of Technology, Delft, The Netherlands

NASTEC

Conference Chair
Mokhtar Beldjehem, St.Anne's University, Nova Scotia, Canada

Honorary Chairs

Lotfi A. Zadeh, Berkeley University, CA, USA
Ronald Yager, lona College, New Rochelle, USA
Madan M. Gupta, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Hojjat Adeli, The Ohio State University Columbus, OH, U.S.A.
I. Burhan Turksen, University of Toronto, Toronto, Canada

International Programme Committee

Ajith Abraham, Norwegian University of Science and Technology, Norway
Hojjat Adelli, Ohio State University,Columbus, OH, USA
Esma Aimeur, University of Montreal, Montreal, Canada
Troels Andreasen, Roskilde University,Roskilde, Denmark
Riad Assied, Petra University, Amman, Jordan
Bilal M. Ayyub, University of Maryland College Park, MD, USA
Mourad Badri, University of Quebec Trois-Rivieres, Canada
Linda Badri, University of Quebec Trois-Rivieres, Canada
Valentina Emilia Balas, Aurel Vlaicu University of Arad, Arad, Romania
Marek Balazinski, Ecole Polytechnique de Montreal, Montreal, Canada
lldar Batyrshin, Kazan State Technological University, Kazan(Tatarstan), Russia
Nabil Belacel, National Research Council, New Brunswick, Canada
Mohamed Bettaz, INI/MESRS, Algiers, Algeria
Prabir Bhattacharya, Concordia University, Montreal, Canada
Loredana Biacino, Universita degli Studi di Salerno, Salerno, Italy
Ranjit Biswas, Institute of Technology & Management, Gurgaon, India
Ulrich Bodenhofer, Johannes Kepler University, Linz, Austria
Piero P. Bonissone, General Electric, USA
Gloria Bordogna, Istito par le Technologie Informatche Multimediali, Milano, Italy
Patrick Bosc, ENSSAT, University of Rennes, France
Boubaker Boufama, University of Windsor, Windsor, Canada
Mounir Boukadoum, UQAM, Montreal, Canada
Ivan Bruha, McMaster University,Hamilton, Ont., Canada
Pascal Bruniaux, ENSAIT, Roubaix, France
Bill P. Buckles, University of North Texas, USA
Liberato Camilleri, University of Malta, Msida, Malta
Joao P. Carvalho,INESC-ID, Lisboa University,Lisboa, Portugal
Allaoua Chaoui, University of Constantine, Algeria
Guanrong (Ron) Chen, City University of Hong Kong, China
Agnieska Cichocka, Unvesity of Lodz, Poland
Alain Colmerauer, University of Aix-Marseille I, Marseille, France
Michel Dagenais, Ecole Polytechnique de Montreal, Montreal, Canada

\

PROGRAMME COMMITTEE

Mourad Debbabi, Concordia University, Montreal, Canada
Scot Dick, University of Alberta, Canada
Ibrahiem M. M. El Emary, King Abdulaziz University,Jeddah, Kingdom of Saudi Arabia
Talbi EI-Ghazali, Universite des Sciences et Technologies de Lille, Lille, France
Jinan Fiaidhi, Lakehead University, Canada
Christian Freksa, University of Bremen, Germany
Claude Frasson, Universite de Montreal, Montreal, Canada
Adam Galuska, Silesian University of Technology, Poland
Gabriel Gerard, Universite de Sherbrooke, Sherbrooke, Canada
Gianggiacomo Gerla, Universita degli Studi di Salerno, Salerno, Italy
Robert Godin, UQAM, Montreal, Canada
Peter Grogono, Concordia University, Montreal, Canada
Madan M. Gupta, University of Saskatchewan, Canada
Abdelwahab Hamou-Lhadj, Concordia University, Montreal, Canada
Sami Harari, University of Toulon and the Var, Toulon, France
Yutaka Hata, University of Hyogo, Japan
Eyke Haellermeier, Philipps-Universitaet Marburg, Marburg, Germany
Ahmed Ibrahim, RCC Intitute of Technology, Concord(Toronto), Canada
Enso lkonen, University of Oulu, Finland
Igbal H. Jebril, King Faisal University, Kingdom of Saudi Arabia
Yao JingTao University of Regina, Sask., Canada
Brigitte Jumard, University of Concordia, Montreal, Canada
Janusz Kacprzyk, SRI, Polish Academy of Sciences, Warsaw, Poland
Okyay Kaynak, Bogazici University, Bebek(Istanbul), Turkey
James M. Keller, University of Missouri, USA
Bettina Kemme, McGill University, Montreal, Canada
Etienne E. Kerre, Ghent University, Ghent, Belgium
Taghi M. Khoshgoftaar, Florida Atlantic University, USA
Frank Klawonn,University of Applied Sciences Braunschweig/Wolfenbuettel, Wolfenbuettel, Germany
Erich Peter Klement, Softwarepark Hagenberg, Hagenberg, Austria
Mario Koeppen, Kyushu Institute of Technology, Fukuoka, Japan
Amit Konar, Jadavpur University, Kolkata, India
Donald H. Kraft, Louisiana State University, USA
Vladik Kreinovich, The University of Texas at El Paso, El Paso, Texas, USA
H. K. Kwan, University of Windsor, Canada
Guy Lapalme, Universite de Montreal, Montreal, Canada
Frank L. Lewis, University of Texas at Arlington, Worth(TX), USA
Pawan Lingras, St. Mary University,Hamilton, NS, Canada
Hakim Lounis, UQAM, Montreal, Canada
Edwin Lughofer, Softwarepark Hagenberg, Hagenberg, Austria
Mourad Maouche, University of Philadelphia, Amman, Jordan
Trevor Martin, University of Bristol, United Kingdom
Alexander Mehler, University of Bielefeld, Germany
Jean Meunier, Universite de Montreal, Montreal, Canada
Ali Mili, New Jersey institute of technology, USA
Guy Mineau, Universite de Laval, Laval, Canada
Zelmat Mimoun, University of M'hamed Bougara - Boumerdas, Algeria
Gautam Mitra, Brunel University, UK
Malek Mouhoub, University of Regina, Sask., Canada
Sudhir P. Mudur, Concordia University, Montreal, Canada
Mike Nachtegael, Ghent University, Ghent, Belgium
Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil
Jian-Yun Nie, Universite de Montreal, Montreal, Canada
Abdellatif Obaid, UQAM, Montreal, Canada
Fakhreddine O. Kerray, University of Waterloo, Canada
Sankar Kumar Pal, Indian Statistical Institute, Kolkata, India
Costas P. Pappis, University of Piraeus, Piraeus, Greece
Gabriella Pasi, Istito par le Technologie Informatche Multimediali, Milano, Italy
Frederick E. Petry, Naval Research Laboratory, MS, USA
Helene Pigot, Universite de Sherbrooke, Sherbrooke, Canada
Bhanu Prasad, Florida A&M University, USA
Vi

PROGRAMME COMMITTEE

Witold Pedrycz, University of Edmonton, Edmonton, Alberta, Canada
James F. Peters Ill, University of Manitoba, Canada
Henri Prade, University of Paul Sabatier, Toulouse, France
Shahram Rahimi, Southern lllinois University,Carbondale, Il., USA
Djamal Rebaine, UQAC, Chicoutoumi, Canada
Marek Reformat, University of Edmonton, Edmonton, Alberta, Canada
Burghard B. Rieger, University of Trier, Trier, Germany
Stuart H. Rubin, Space and Naval Warfare Systems Center, USA
Daniel Rodriguez, University of Alcala, Madrid, Spain
Imre J. Rudas, Budapest Technical University, Budapest, Hungary
Houari Sahraoui, University of Montreal, Montreal, Canada
Aziz Salah, UQAM, Montreal, Canada
Johann Schumann, RIACS/NASA Ames, USA
Antoaneta Serguieva, Brunel University, West London, United Kingdom
Siti Mariyam Shamsuddin, Universiti Teknologi Malaysia, Malaysia
Pierre Siegel, University of Aix-Marseille |, Marseille, France
Constantinos I. Siettos, National Technical University of Athens, Athens, Greece
Nematollaah Shiri, Concordia University, Montreal, Canada
James F. Smith, Ill, Naval Research Laboratory, Washington, DC, USA
Roman Slowinski, Poznan University of Technology, Poznan, Poland
Mu-Chun Su, National Central University, Taiwan, China
Dutta Sumitra, INSEAD, Fontainebleu, France
M.N.S. Swamy, Concordia University, Montreal, Canada
Hideyuki Takagi, Kyushu University, Fukuoka, Japan
Hamid R. Tizhoosh, University of Waterloo, Canada
Jose A. B. Tome, INESC-ID, Lisboa University, Lisboa, Portugal
Enric Trillas, European Centre for Soft Computing, Mieres(Asturias), Spain
Edward Tsang, University of Essex, United Kingdom
Hans Vangheluwe, McGill University, Montreal, Canada
Athanasios Vasilakos, University of Western, Macedonia,Greece
Xizhao Wang, HeBei University, China
Ronald R. Yager, IONA College, New Rochelle, N.Y., USA
Takeshi Yamakawa, Kyushu Institute of Technology, Kyushu, Japan
Mustapha Yassine, National University of Amman, Amman, Jordan
Ting Yu, University of Sydney, Sydney, Australia
Nevin Vunka Jungum, University of Mauritius, Mauritius
Sahnoun Zaidi, Universite de Constantine, Algeria

Reality Mining and Surprise Modelling
Danny Van Welden, KBC, Brussels, Belgium

Industrial Simulation
Guodong Shao, NIST, Gaithersburg, USA

Ecological sustainable development and Innovative technologies for a bio-based economy
Philippe Geril, ETI Bvba, Ostend, Belgium

Vi

GAME’ON-NA
2011

NASTEC’2011

© 2011 EUROSIS-ETI

Responsibility for the accuracy of all statements in each peer-referenced paper rests solely with the author(s).
Statements are not necessarily representative of nor endorsed by the European Multidisciplinary Society for
Modelling and Simulation Technology. Permission is granted to photocopy portions of the publication for personal use
and for the use of students providing credit is given to the conference and publication. Permission does not extend to
other types of reproduction or to copying for incorporation into commercial advertising nor for any other profit-making
purpose. Other publications are encouraged to include 300- to 500-word abstracts or excerpts from any paper
contained in this book, provided credits are given to the author and the conference.

All author contact information provided in this Proceedings falls under the European Privacy Law and may not be
used in any form, written or electronic, without the written permission of the author and the publisher.

All articles published in these Proceedings have been peer reviewed
EUROSIS-ETI Publications are ISI-Thomson and INSPEC referenced
A CIP Catalogue record for this book is available from the Royal Library of Belgium under nr.12620

For permission to publish a complete paper write EUROSIS, c/o Philippe Geril, ETI Executive Director, Greenbridge NV,
Wetenschapspark 1, Plassendale 1, B-8400 Ostend, Belgium.

EUROSIS is a Division of ETI Bvba, The European Technology Institute, Torhoutsesteenweg 162, Box 4, B-8400
Ostend, Belgium

Printed in Belgium by Reproduct NV, Ghent, Belgium
Cover Design by Grafisch Bedrijf Lammaing, Ostend, Belgium
Cover Pictures by Larian Studios, Ghent, Belgium

EUROSIS-ETI Publication

ISBN: 978-9077381-65-6
EAN: 978-9077381-65-6

X

Preface

On behalf of the Rensselaer Polytechnic Institute | would like to welcome you to
GAMEON-North America 2011-NASTEC’2011, and to the fair city of Troy.

This year’s event, smaller in size than normal no doubt because of the present
economic climate, nevertheless succeeds in bringing together a number of
presentations covering such wide-ranging fields as Game Methodology and Al,
Game Graphics, Motion in Graphics, Serious Gaming and Industrial Simulation
offering the participants a broad overview of present-day gaming and simulation
research.

As well as the peer-reviewed papers, Game-On 'NA 2011-NASTEC’2011
features a number of invited talks highlighting research done in the field of
computer gaming. These talks are by Heidi Boisvert, Creative Director &
Founder, futurePerfect Lab and by David Thue of the University of Alberta,
Canada.

To finish of the research theme we will visit the Games Labs at Rensselaer
Polytechnic Institute.

Again, welcome to Troy and have a good conference.
Mei Si
Conference Chair

Rensselaer Polytechnic Institute
Troy, USA

Xl

Xl

CONTENTS

Preface ... e e s Xl
Scientific Programme ... 1
X W) Lo gl I T3 1 o ' R 75

GAME METHODOLOGY AND Al

Procedural Generation of Sokoban Levels
Joshua Taylor and 1an Parberry ... ciiieeecciiiremesnssrnmssssssssssssssssmssssssssnsssssnens 5

Deploying Fuzzy Logic in a Boxing Game
Hamid Reza Nasrinpour, Siavash Malektaji, Mahdi Aliyari Shoorehdeli
and Mohammad Teshnehlab ... s 13

GAME GRAPHICS

Fast Believable Real-Time Rendering of Burning Low Polygon Objects
in Video Games
Dhanyu Amarasinghe and [an Parberry ... ciieecciiireccsereeesssesseesss e remmnnes 21

Very Fast Real-Time Ocean Wave Foam Rendering Using Halftoning
Mary Yingst, Jennifer R.Alford and lan Parberry.....ccoeeeecccciieeeseeeessscseeneens 27

MOTION IN GAMING

Experimental Soccer Robot Identification Using Light-Emitting Diodes
Eliska Ochodkova, Tomas Kocyan, Vaclav Svaton and Jan Martinovi€............ 35

SERIOUS GAMING

Didactic Games System: Fifteen Years of Development in Military
Simulation

Gustavo Henrique Soares de Oliveira Lyrio

and Roberto de Beauclair SEiXas. ... 45

Evaluating Game Engines for Incorporation in Military Simulation

and Training

Jennifer L. Winner, Stephen F. Nelson, Rebecca L. Burditt

F= o 172 =T o 0 o o | N 52

An interactive Policy Simulator for Urban Dynamics
Terry Lyons and Jim DUgQan ...ccceeevrrrmmssssssssssssssssssssss s 57

XMl

CONTENTS

NASTEC

Optimization of Production Maintenance Policy based on the Production
Rate with a Discrete Event Simulation
Jérémie Schutz and Nidhal REZJ.....ciuueeemmmciiiiiiiirereeecceese e e e e s e e e

Y%

SCIENTIFIC
PROGRAMME

GAME
METHODOLOGY
AND
Al

PROCEDURAL GENERATION OF SOKOBAN LEVELS

Joshua Taylor and Ian Parberry
Dept. of Computer Science & Engineering
University of North Texas
Denton, TX, USA
Email: ian@unt .edu, JoshuaTaylor@my.unt.edu

KEYWORDS
Procedural generation, Sokoban, puzzle.

ABSTRACT

We describe an algorithm for the procedural generation of
levels for the popular Japanese puzzle game Sokoban. The
algorithm takes a few parameters and builds a random in-
stance of the puzzle that is guaranteed to be solvable. Al-
though our algorithm and its implementation runs in expo-
nential time, we present experimental evidence that it is suf-
ficiently fast for offline use on a current generation PC when
used to generate levels of size and complexity similar to those
human-designed levels currently available online.

INTRODUCTION

In puzzle games the level design can make the difference be-
tween a game that is trivially easy or completely impossible.
It is difficult to find the balance between the two, where the
levels are challenging but still solvable. Here we present an
algorithm that automates the generation of Sokoban puzzles
of a given difficulty.

Sokoban is a puzzle game played on a rectangular grid. The
goal is for the player’s avatar to push boxes onto marked
goal squares. The challenge comes from the placement of
the walls, goals and boxes and the restriction that the avatar
is only strong enough to push one block at a time and can-
not pull blocks at all. The simplest way of explaining it is
to show a picture, for example Figure 1, which shows a level
with a single box and a single goal. This figure and the other
screenshots in this paper are from JSoko (Damgaard et al.
2010).

Culberson has shown (Culberson 1998) that Sokoban is
PSPACE-complete, meaning that it is in a sense at least as
difficult as almost any one-player game. (Most games that
are hard in this sense are for two or more players.) This,
together with its simple rules, makes Sokoban a challeng-
ing candidate for procedural generation of puzzle instances.
Completely random Sokoban levels are extremely likely to
be unsolvable, or if they are solvable, then they are likely to
be very easy. Even hand-made levels suffer from this prob-
lem unless the person making the level is an experienced
Sokoban level designer.

Most other research done on Sokoban has been geared to-
wards solving existing Sokoban puzzles (Junghanns and
Schaeffer 1997, Botea et al. 2003). Some work has also
been done on estimating the difficulty of a given Sokoban
problem (Jarusek and Peldnek 2010a, Ashlock and Schon-
feld 2010). Relatively little research has been done on gen-
erating new Sokoban levels (Murase et al. 1996, Masaru
et al. 2003), although there are several existing generator pro-
grams (Miihendisi Accessed 2011). Additionally, there has
been some research on generating levels for other PSPACE-
complete puzzle games (Servais 2005).

The interested reader is invited to visit our Sokoban Gener-
ator webpage (Taylor and Parberry 2011) for supplementary
information. This includes some more detailed instructions
for the novice on how to play Sokoban, several hundred pro-
cedurally generated Sokoban levels, a link to an open source
Java implementation called JSoko on which to play-test those
levels, a short video showing JSoko’s solution to some of
our levels, some larger color images from this paper, and the
archived data from the experiments performed to generate the
performance data for the tables and figures that will appear
later in this paper.

OBJECTIVES

Any procedural generation system should satisfy several cri-
teria (Doran and Parberry 2010): novelty, structure, inter-
est, controllability and speed. Our Sokoban level generator
possesses these qualities as follows: Novelty: The genera-
tor produces a new and different puzzle on each run. Struc-
ture: The puzzles are nontrivial yet not impossible to solve,
without requiring verification of this by use of an automated
solver. Interest: Players should find the prospect of solving
the puzzles attractive. This is left for future work; Develop-
ment is currently underway. Controllability: Designers have
control over the size and difficulty of the generated levels.
Speed: The generator can run offline on a modest computer
and generate at least one challenging puzzle, or hundreds of
nontrivial puzzles per day.

Our primary aim is to generate reasonably difficult, but not
impossible, Sokoban levels. There are two reasons for this.
Firstly, these levels are the kind that are hard for a human
to make, at least without a lot of experience. Secondly, we
believe that in puzzle games, difficulty is related to interest.

(D @ 3)

Q) &) (6)

Figure 1: Solving a simple Sokoban level. The aim is to push the box to the square marked with the “X” at top left using the
yellow bulldozer. The white arrows indicate player actions. The six images show, from left to right, (1) the start configuration,
(2) push the box one place right, (3) reposition the player below the box, (4) push the box two places up, (5) reposition the player
to the right of the box, and (6) push the box two places to the left into the final configuration.

Interesting puzzles are neither too difficult nor too easy (at
least for most players), and yet it is these puzzles that are the
most difficult to generate.

METHOD

The idea of working backwards from the goal towards the
start is not new (Takes 2007), but previously it has only been
used to solve existing levels. Here we use that idea to gen-
erate new levels. Our algorithm consists of three high-level
steps, each of which will be described in more detail in its
own subsection below.

1. Build an empty room.
2. Place goals in the room.
3. Find the state farthest from the goal state.

EMPTY ROOMS

To build an empty room, we use a method somewhat similar
to that of (Murase et al. 1996). We begin by choosing a width
and height for the level. This is done by simply picking a ran-
dom number within a user-specified range. The level is then
partitioned into a grid of 3 x 3 blocks. Each block is then
filled in using a randomly chosen and randomly rotated or
flipped template. The templates consist of a 3 x 3 pattern of
walls and floors surrounded by a border of blanks, walls and
floors (see Figure 2). The borders cause neighboring tem-
plates to overlap. A non-blank tile must match any pattern it
overlaps, whether it is placed before or afterwards.

This overlap helps to create interesting levels by preventing
some bad configurations from being generated. For exam-
ple, the pattern consisting of a single wall in the middle sur-
rounded by a ring of floor will become a large dead-end un-
less there are at least two floor tiles adjacent to each other
and that pattern. Since the templates are randomly rotated
and flipped before being placed, this is very easy to enforce
by simply placing two adjacent floor tiles in the border of
that template and leaving the rest blank.

Figure 2: Templates used to design an empty room.

If the generator places blocks in such a way that it cannot fill
in one of the cells with any of the available templates, it will
discard that attempt and start over. The run time of this step
is very small compared to the rest of the algorithm, so even
throwing away several partial room shapes does not create
any noticeable loss of speed.

Finally, there are some post-processing checks to make sure
the level will work well with the remaining steps. Any level
that fails one or more of these tests is discarded.

e The level is checked for connectivity. There should be
one contiguous section of floor. There is one special

case here. The templates that allow the player to pass
through, but will not allow a box to pass, are checked
as if there was a wall tile separating the two sides. This
only affects this check, and that tile is counted as a floor
tile in all other cases.

e Any level that has a 4 x 3 or 3 x 4 (or larger) section
of open floor is discarded. By observation, such levels
tend to make levels with very bushy, but not very deep
state spaces. This makes it very hard to generate the
level, but not much harder to solve it.

o The level must have enough floor space for the planned
number of boxes, plus the player and at least one empty
space.

o If the level contains any floor tiles surrounded on three
sides by walls, it is discarded. This is a somewhat aes-
thetic choice, but such tiles are either obviously dead
space if there is no goal there, or an easy place to get
boxes out of the way otherwise, so we think it improves
the quality of the resulting levels somewhat.

PIACING GOALS

Goal placing is done by brute force, trying every possible
combination of goal positions. This is admittedly very inef-
ficient. Many human made levels place the goals in certain
patterns, such as a rectangle of contiguous goals, but by do-
ing a brute force search for the best places to put the goals,
some obvious patterns emerge.

One pattern that seems to hold for most, but not quite all, of
the levels generated so far is that the goals are touching either
a wall or another goal. Whether forcing this would provide
a significant speed-up, or a significant drop in the quality of
the resulting levels has not yet been investigated.

Our generator uses a timer that checks it has exceeded its
allotted time. If it has, it will terminate and return the best
result so far. To help ensure that that result is something
interesting, even if not the best, the positions for the goal
crates are checked in random order. This is done by creating
a shuffled list of the empty spaces on the board.

FARTHEST STATE

For each placement of the goals the system finds the farthest
state from that goal state, that is, the state with the longest
shortest path from itself back to the goal. Over all goal states,
the farthest farthest state is returned as the output of the gen-
erator. Thus, the distance from the goal state to the start state
is the metric by which we judge the resulting levels, as well
as influencing the algorithm used to search the state space.
The definition of distance is crucial. In Sokoban there are
four common distance metrics. The simplest is just the move
count, incremented every time the avatar moves. As a mea-
sure of the difference between states, this does not work very

well. Just making a large labyrinth with only one obvious so-
lution will still give a high distance, but will be fairly trivial
in the end.

The number of box pushes, incremented each time the avatar
moves into a square containing a box, is not much different
than the move count. A level that required the player to push
boxes down long hallways would give a high score, but again
would not be difficult, just tedious.

The box lines metric is more interesting. It counts how many
times the player pushes a box, but any number of pushes of
the same box in the same direction only count as a single box
line. From our observations, the number of box lines corre-
sponds fairly well with the difficulty of the resulting level.
We are currently using the box line metric in our generator.

The last metric is box changes. It counts how many times the
player stopped pushing one box, in any direction, and began
pushing another. This may be an even better measure of dif-
ficulty, and may improve the overall speed of the generator,
but it is more difficult to implement.

Any metric except for the move count allows us to abstract
out the avatar position. Instead of keeping up with which
square the avatar is in, we keep up with which group of con-
tiguous floor squares it could reach. This abstraction pro-
vides a significant decrease in the time it takes to generate
the set of further states.

All of this is done in reverse compared to how Sokoban is
played. The reason for this is to prevent the generator from
having to consider invalid moves. Any state reachable when
moving in reverse will be solvable when played normally.

Unfortunately, none of the usual search algorithms are suit-
able for this problem. The most obvious way to find the far-
thest state is to use a breadth-first search, returning the last
state found, but since moves in Sokoban are not reversible,
the only way to prevent repetitions is to store a list of all
visited nodes. For Sokoban, or any other PSPACE-complete
problem, this will quickly fill up the available memory. Iter-
ative deepening is unsuitable for similar reasons. Informed
searches, like A* or IDA*, are unsuitable because the target
is very vaguely defined, meaning we have no clear indication
when to stop the search. To get around these problems, we
use a form of iterative deepening twice, trading off the high
memory requirements for a somewhat slower algorithm.

proc Go(goal) =

startSet := MakeStartSet(goal);

resultSet := startSet;

depth := 1;

do
prevSet := resultSet;
resultSet := Try(startSet, resultSet, depth);
if resultSet = () then exit fi;
depth := depth + 1;

od;

Go := (prevSet, depth).

proc Try(startSet, prevResults, depth) =
resultSet := Expand(prevResults);
tempSet := startSet;
for i := 1 to depth do
resultSet := resultSet — tempSet;
tempSet := Expand(tempSet);
od;
Try := resultSet.

MakeStartSet takes the goal state and places the player into
each available contiguous floor area. Expand takes a set of
states and returns the set of states one step farther. What
those states are depends on which metric is being used, which
is why the choice of metric has such an impact on the running
time. Go is almost a standard iterative deepening algorithm.
It takes the goal, calls MakeStartSet to set things up and
then calls Try one depth at a time. What is different here is
the end condition. Go calls Try until it fails and then returns
the previous set of results. Try takes the starting set, the pre-
vious results and a target depth. It then calls Expand on the
previous results. Then it starts over expanding the start set,
subtracting that from the results. What is left after the target
depth has been reached is all of the nodes that can be reached
in depth steps, but no sooner.

GENERATING LEVEL SETS

Our generator returns the set of all levels that are as far from
the goal state as possible. This can be anywhere from one
to a few hundred levels, and some are obviously better than
others. We have an additional layer over the generator that
attempts to select a good level from those generated and then
collects the results of several runs into a level set. Addition-
ally, it makes an attempt to reject levels that are much too
easy, or are too similar to levels already in the level set. Fi-
nally, when the target number of levels has been reached, it
attempts to sort them by some measure of difficulty.

The questions of what is better and what is not good
enough both rely on the same, rather arbitrary, measure.
We take the candidate level and give it a score based on
a number of factors. To begin with, the score is 100 -
(pushes — number of sibling levels + 4 - lines — 12 -
boxes) + Random(0, 300), where pushes is the number
of box pushes in the solution, sibling levels is the number of
other levels the generator found at the same depth, lines is
the number of box lines in the solution, boxes is the number
of boxes in the level and Random is just a random number
between the given values. While this is, again, fairly arbi-
trary, the rationale is that both more pushes and more lines
make the level more difficult, while levels with many sib-
ling levels seem to be less interesting, just by observation.
The number of boxes is subtracted not because more boxes
makes the level less interesting, but because the number of
lines needs to exceed the number of boxes by a certain factor

for the level to have a better chance of being a good level.
The random factor is mainly there to break ties.

Some other checks are made after getting the base score. Any
trapped box is worth -100000 points, which is almost guar-
anteed to get the level rejected. Any box touching a wall
is worth -150 points, a box touching the player is worth 50
points, and a box touching another box is worth 30 points.
Finally, a goal area touching a goal area is worth 30 points.
These constants can be adjusted by the individual designer
to suit his or her intuition about features possessed by good
Sokoban levels. Any level with a final score of 0 or less is
rejected. The base score is quite a bit higher than the scores
for most of the various other checks though, so not many lev-
els are rejected at this point. This same score is then used to
choose the best level from those generated, assuming any are
left.

Once a level has passed all of the other tests, the program
checks to see whether or not it is too similar to another level
already in the set. Currently, this just removes the player and
checks for exact matches for all of its rotations and reflec-
tions. This still generates a few levels that a human would
consider too similar, so there is still more work to be done
here.

Assuming no other level is too similar, the level is added to
the set. When the set gets to target size, it is sorted by diffi-
culty and written to a file. The measure of difficulty we cur-
rently use is lines-log lines+log time —lines /pushes. This
is based on our observations that the number of box lines is
the most important factor. time is the time taken to gener-
ate that level, in seconds, and is mainly used as a tie breaker.
The lines/pushes factor is small correction that favors lev-
els with shorter box lines rather than long corridors.

EXPERIMENTAL RESULTS

We have implemented and tested our new algorithm for the
automatic generation of Sokoban levels. Figure 6 contains
some screenshots of sample levels generated. The reader is
invited to visit our Sokoban Generator webpage (Taylor and
Parberry 2011), where he or she can download some of our
level sets and try them out.

Our algorithm is certainly suitable for offline use in a level-a-
day style game. In practice it can generate several levels over
the course of a day depending on how much CPU power it
is given and how large the desired levels are. The theoretical
run time for the generation of one level is roughly

&\ 2
b :
)
where b is the number of boxes and s is the number of empty
spaces. This is feasible for a fairly small number of boxes
that might occur in practice. We have been able to generate

levels with 4 boxes within a 2 x 3 level outline within a few
hours.

Figure 3: Examples showing the relative sizes of 1 x 2,
2 x 2,2 x 3,and 3 x 3 Sokoban levels.

We ran experiments measuring the average run-time generat-
ing 10 random puzzles of each size 1 x 2,2 x 2,2 x 3, and
3 x 3. See Figure 3 for an indication of the relative sizes of
these levels. All of these results are from runs on an Intel i7
3.2 GHz quad-core processor with hyperthreading. Our sys-
tem is not written to make use of the extra cores, but we run
several independent copies of the code simultaneously, rely-
ing on the operating system to place each copy on a separate
processor core.

Tables 1 and 2 show in Column 3 the experimental running
time required to generate 2-box and 3-box puzzles respec-
tively, averaged over 10 samples for each entry. These data
are depicted pictorially in Figure 4 (top) with an exponential
trendline. Tables 1 and 2 also show in Column 2 the average
number of moves required to solve the generated puzzles us-
ing the autosolver in JSoko, set to “move optimal with best
pushes”. These data are depicted pictorially in Figure 5 (bot-
tom).

Table 3 shows in Column 3 the average experimental running
time for 2 x 2 puzzles (which have 36 cells). See the level at
top right of Figure 3 to get some idea of the size of the puz-
zle. These data are depicted pictorially in Figure 5 (top) with
an exponential trendline. Table 3 also shows in Column 2
the average number of moves required to solve the generated
puzzles using the autosolver in JSoko, set to “move optimal
with best pushes”. These data are depicted pictorially in Fig-
ure 4 (bottom).

Levels with a single box are generally uninteresting. Levels
with 2 boxes can be generated very quickly, usually within a
few seconds, but tend to be very easy. At 3 boxes the levels
start to get slightly more interesting, and can still be gener-
ated within a few minutes. Levels with 4 or more boxes can

| Size | Moves | Time |
1x2 26 < 1sec
2x2 48 1.9 sec
2x3 60 16 sec

3x3 73 128 sec

Table 1: Average runtime for the generation of 2-box puzzles
with the corresponding average number of moves needed to
solve them (averaged over 10 random samples each).

| Size | Moves | Time |

1x2 38 58 sec
2% 2 69 2.7 min
2x3 98 1.1hr
3x3 115 24.5 hr

Table 2: Average runtime for the generation of 3-box puzzles
with the corresponding average number of moves needed to
solve them (averaged over 10 random samples each).

105 1x2I 2x2 2x3 3x3
- +3 boxes
: | P
3 10% 4*2 boxes {R*=0.98
8 &,
(o]
5 10°
c
8 102 d
] ® [
£
|
1
2 3 4 5 6 7 8 9
Puzzle Area (Width x Height)
1x2 2x2 2x3 3x3
140 . X X
120 || *3boxes R?=0.9978
=2 boxes
g 100
)
‘g 80
I [——
[%] e
< o = 0555
S 40
20
0

2 3 4 5 6 7 8 9
Puzzle Area (Width x Height)

Figure 4: The average generation time in seconds for puzzles
with 2 and 3 boxes versus puzzle area (top) and the number
of moves needed to solve them (bottom).

| Boxes | Moves | Time |

2 48 1.9 sec
3 69 2.7 min
4 100 3.4 hr
5 109 26 hr

Table 3: The average experimental running time for the gen-
eration of 2 x 2 puzzles, with the corresponding average
number of moves needed to solve them. The averages were
computed over 10 random samples each.

120

100 =

'''''
o
,,,,,

R2=0.98] |

o]
o

e
o

o

,,,,,

N
o

Moves to Solve
D
o
%

N
o

o

2 3 4 5
Number of Boxes

106
10°

Lo R?=0.98|

10°
10?

Juny
o

Time to Generate (secs)

[y

2 3 4 5
Number of Boxes

Figure 5: The average number of moves (top) and the average
generation time in seconds (bottom) versus number of boxes
for the generation of 2 x 2 puzzles.

10

be very interesting, and difficult, but take substantially more
time to generate. Using the timer feature, we can force the
generator to return the best result after a given time period.
Using a time limit of 4 hours, we have generated levels with 5
and 6 boxes that appear interesting and difficult (for example
Figure 6 includes some 5-box puzzles).

Using just iterative deepening, the algorithm runs several
times faster, but uses much more memory. On some levels,
the program crashed after consuming over 1.5GB of memory.
Using our algorithm, the same levels never exceeded 40MB
of memory.

CONCLUSION AND FUTURE WORK

While we found the puzzles that we generated “interesting”,
we provide no justification for this claim in this paper, al-
though we do invite the reader to try for themselves by vis-
iting our Sokoban Generator webpage (Taylor and Parberry
2011). We plan to gather data from play-testing in the next
phase of this research, and we will report the results in a later
paper. Some research into what makes a level interesting and
what makes it difficult is needed, though some research on
these questions has already been done (Ashlock and Schon-
feld 2010, Jarusek and Pelanek 2010b).

REFERENCES

Ashlock D. and Schonfeld J., 2010. Evolution for automatic
assessment of the difficulty of Sokoban boards. In Proc.
IEEE Congress on Evolutionary Computation. 1-8.

Botea A.; Miiller M.; and Schaeffer J., 2003. Using Abstrac-
tion for Planning in Sokoban. In Computers and Games,
Springer Lecture Notes in Computer Science, vol. 2883.
360-375.

Culberson J., 1998. Sokoban is PSPACE-complete. In Proc.
International Conference on Fun with Algorithms. 65-76.

Damgaard B.; Marxen H.; and Meger M., 2010. JSoko.
URL http://sourceforge.net/projects/
jsokoapplet/.

Doran J. and Parberry 1., 2010. Controlled Procedural Ter-
rain Generation Using Software Agents. IEEE Transac-

tions on Computational Intelligence and Al in Games, 2,
no.?2, 111-119.

JaruSek P. and Peldnek R., 2010a. Difficulty Rating of
Sokoban Puzzle. In Proc. Fifth Starting Al Researchers’
Symposium.

JaruSek P. and Pelanek R., 2010b. Human Problem Solv-
ing: Sokoban Case Study. Tech. Rep. FIMU-RS-2010-
01, Faculty of Informatics, Masaryk Univ. Brno.

Junghanns A. and Schaeffer J., 1997. Sokoban: A Challeng-
ing Single-Agent Search Problem. In Proc. IJCAI Work-
shop on Using Games as an Experimental Testbed for Al
Research. 27-36.

Figure 6: Some levels of varying difficulty created by our generator.

11

Masaru O.; Tomoyumi K.; and Satoru K., 2003. A Method of
Automatic Creation of Goal-Area in Sokoban Maps. Joho
Shori Gakkai Shinpojiumu Ronbunshu, 67-74.

Miihendisi M., Accessed 2011. Sokoban Level Genera-
tors (Ato Z). URL http://www.erimsever.com/
sokoban7.htm.

Murase Y.; Matsubara H.; and Hiraga Y., 1996. Automatic
making of Sokoban problems. In PRICAI’96: Topics in Ar-
tificial Intelligence, Springer Lecture Notes in Computer
Science, vol. 1114. 592-600.

Servais F., 2005. Finding Hard Initial Configurations of Rush
Hour with Binary Decision Diagrams. M.Sc. Thesis, Univ.
libre de Bruxelles, Faculté des Sciences.

Takes F., 2007. Sokoban: Reversed Solving. Bachelor’s The-
sis, Leiden University.

Taylor J. and Parberry 1., 2011. Sokoban Generator.
URL http://larc.unt.edu/ian/research/
sokoban/.

BIOGRAPHY

JOSHUA TAYLOR is a PhD student in the Department
of Computer Science and Engineering at the University of

12

North Texas. His research interests include procedural con-
tent generation.

TAN PARBERRY was born in London, England and emi-
grated as a child with his parents to Brisbane, Australia. Af-
ter obtaining his undergraduate degree there from the Uni-
versity of Queensland he returned to England for a PhD from
the University of Warwick. He has worked in academia in
the US ever since. He is currently a full Professor in the De-
partment of Computer Science and Engineering at the Uni-
versity of North Texas where he recently stepped down from
a 2-year term as Interim Department Chair. A pioneer of the
academic study of game development since 1993, his under-
graduate game development program was ranked in the top
50 out of 500 in North America by The Princeton Review in
2010. He is on the Editorial Boards of the Journal of Game
Design and Development Education, IEEE Transactions on
Computational Intelligence and Al in Games, and Entertain-
ment Computing, and he serves as the Secretary of the So-
ciety for the Advancement of the Science of Digital Games,
which organizes the Annual Foundations of Digital Games
conference. He is the author of 6 books and over 80 articles
over 30 years’ experience in academic research and educa-
tion. His s-index is 18 and his Erdos number is 3. He can
be contacted at ian@unt . edu or on Facebook. His home
pageishttp://larc.unt.edu/ian.

DEPLOYING FUZZY LOGIC IN A BOXING GAME

Hamid Reza Nasrinpour, Siavash Malektaji, Mahdi Aliyari Shoorehdeli and Mohammad Teshnehlab
Department of Electrical and Computer Engineering
K. N. Toosi University of Technology
Seyedkhandan, Tehran, Iran
nasrinpour, siavashmalektaji@ee.kntu.ac.ir
m_aliyari, teshnehlab@eetd.kntu.ac.ir

KEYWORDS
Fuzzy Logic, Computer Game, Rule-Based System, Boxing

ABSTRACT

Nowadays computer games have become a billion dollar
industry. One of the important factors in success of a game is
its similarity to the real world. As a result, many Al
approaches have been exploited to make game characters
more believable and natural. One of these approaches which
has received great attention is Fuzzy Logic. In this paper a
Fuzzy Rule-Based System is employed in a fighting game to
reach higher levels of realism. Furthermore, behavior of two
fighter bots, one based on the proposed Fuzzy logic and the
other one based on a scripted Al, have been compared. It is
observed that the results of the proposed method have less
behavioral repetition than the scripted AI, which boosts
human players’ enjoyment during the game.

INTRODUCTION

The academic definition of Artificial Intelligence (Al) states
that Al is creating machines which can sensibly think and act
as humans (Russell and Norvig 1995). This classic Al is
usually concerned with the optimum solution to a problem
and discusses how this solution can be found. Game Al is a
code or technique which a computer uses to control Non-
Player Characters (NPCs). It does not care how a computer
makes a decision or thinks about the problem, it might use
either a decision tree or a huge database, the point is just its
reaction.

Game balance has been one of the considerable topics in
Game Al. If a computer opponent always just followed
similar patterns, or played too easily or strictly, the game
would be annoying. Furthermore, the aim is not to defeat
players, but rather to keep them amused. In fact, none of the
opponents should be unbeatable.

In Game Al, natural game laws should be followed and
cheating should be prevented as far as possible. Cheating Al
is a term which refers to a situation where the Al has more
information and advantages than the players. This is often
implemented in games to increase the abilities of a machine
and it might be acceptable if the player is not apprised of it.
Some examples of cheating Al can be found in (Scott 2002).
As a matter of fact, applying these cheats represents
weaknesses and limitations of Al against human knowledge.
Therefore it would be better to look for the methods which
represent human knowledge, like Fuzzy rule-based systems,
as they are a widespread form of Fuzzy logic (Zadeh 1965).
Fuzzy logic can easily rate any input based upon importance.
Additionally it is really suitable to do multiple operations at

13

once (Doss 2006). Human knowledge and the ways in which
humans think and infer can be directly put into a game by
Fuzzy rule-based systems. For instance, in a Fighting Game
(Rollings and Ernest 2006), a game developer can take
advantage of Fuzzy logic to reach higher levels of realism
and human-level Al in behavior of the opponent's character.
This makes the human players feel that they are playing
against another human, not an omniscient computer, which
knows about all of the angles and distances between itself
and its opponent and consequently, makes no mistake unless
it deliberately decides to make the game easier for the human
opponent.

In recent years, we have witnessed many applications of
Fuzzy techniques in the domain of games. The game
S.W.A.T. 2 has employed Fuzzy logic as an instance of action
games (Johnson and Wiles 2001). In the genre of Real Time
Strategy (RTS) games, Civilization: Call to Power uses
Fuzzy State Machines (FuSM) as well (Johnson and Wiles
2001). The great performance of Fuzzy methods in 2009
simulated car racing championship can be found in
(Loiacono et al. 2010). Another Fuzzy controller for a car
racing championship is discussed in (Perez et al. 2009), and
also a Fuzzy-based architecture has been tested in The Open
Car Racing Simulator (TORCS) in (Onieva et al. 2010).
There is a Fuzzy Q-learning method which has been
implemented in the game of Pac-Man (DeLooze and Viner
2009). An agent-based Fuzzy system has been applied in the
Battle City game into the bargain (Li et al. 2004).

In this paper, a method without cheating has been introduced
for applying Fuzzy logic in a fighting game. In order to
avoid cheating and make a natural and human-level Al, first
the game engine was implemented independently. Then the
game engine would give control of the characters to a human
player or an Al in the same way. Moreover, the rules which
the Fuzzy Al fires are the Fuzzy rules which can be followed
easily by a human and do not have any complicated
computational overhead.

BACKGROUND

Boxing is an old Atari 2600 video game released by
Activision group in 1980. Boxing shows a top-down view of
two boxers which can punch their opponent, as shown in
Figure 1. The choice between punching hands (right or left)
is made automatically and the human player just presses the
hit button. Two boxers are always in front of each other and
they can only move up, down, forward and backward. So
they cannot rotate. The game finishes after two minutes or
when one boxer knockouts the other one by giving him 100
punches.

Figure 1: Original Atari Boxing Game

Clever Boxer, discussed in this paper, is an extension of the
original Boxing game where boxers can rotate and go behind
the opponent and the punching hand selection is made
manually. So the human player must press the proper button.
The boxers can make fast movements in normal directions
(forward, backward, left and right) and if they try to punch
while moving fast, their punch on the opponent will be more
powerful. In addition, the boxer must have enough stamina
to punch or to move fast.

GAME ENGINE

The game engine has been designed based on physical rules
in order to be able to be implemented on boxer agent bots.
Hence the game could be considered as an agent-based
simulation software of a real boxer agent's behavior.

Design

This section covers some important rules of the game. The
boxer agent, whose behavior is implemented by a Finite
State Machine (FSM), has three different types of
commandable states which can directly be given by a human
or Al player, which are shown in Table 1. If a boxer is
commanded to punch, it will stand still and throw a punch.
But the commands of rotation and the commands of
direction can be given and run simultaneously. The act of
throwing a punch, implemented by a FSM, takes place in 4
states. In fact, in each state the hand of the boxer reaches out
slightly in a way that in the 4" state the hand is completely
stretched. When a punch hits the opponent, it will be
effective, if and only if the hand is in the 3™ or 4™ state.
Besides, the powers of punches in 3™ and 4" states are
different from each other.

There are some other states that are not directly
commandable and a boxer could be in. An expected state of
these non-commandable states is the Overshooting state in
which the boxer is punched in its back or stomach. The
human player or Al does not have any control over the boxer
in Overshooting states. The complete list of non-
commandable states with exact definitions, which implicitly
explain the rules of the game, is shown in Table 2.

14

Table 1: Commandable States of Boxer Agent

State Type State Name
1.Fix 6.GoingForwardFast
Direction 2 .GoingForward 7.Go@n ngckwardFast
States 3 .GO{ngB{:lckward 8 .GO}n gRightFast
4.GoingRight 9.GoingLeftFast
5.GoingLeft
Punching 1.PunchRight 3.NoPunching
States 2.PunchLeft
Rotation 1.RotateRight 3.NoRotation
States 2.RotateLeft

Table 2: Non-Commandable States of Boxer Agent

Name Description
The boxer is being hustled by the other one. It
BeingPushed happens when a boxer is moving faster than the
other one.
BoxerContact Two boxers have a collision with each other.

The boxer is punched in its eye, and then it

CircularOvershooting rotates up to 45 degrees while overshooting.

If the back of a boxer come into contact with

DoubleOvershooting the ring border while overshooting, it will be in
this state.

FastPunching The bf)xer punches while fast moving. This
punch is more powerful than a normal punch.

Overshooting The boxer is punched in its back or stomach and
the human player or Al cannot control it.

Punching The boxer punches while normal moving.

The boxer pushes its back toward the ring
border to go forward faster. If a boxer punches
in this state, it will go to the FastPunching state.

RingAccelaration

The body of the boxer has touched the ring

RingContact border

As it was mentioned earlier, a boxer will be unable to punch
or to move fast if its stamina is lower than a specific level.
Also it will not be able to punch if it receives too many
punches in its hand. In other words, every hand can endure
up to a specific number of hits; otherwise the hand will lose
its ability.

Implementation

The game framework, written in Microsoft Visual C#,
provides a control loop driven by an external timer to handle
animations and collisions. The framework also gives Al an
opportunity to perform its own processing, while human
players can asynchronously command their boxers.

If Al were reliant on the speed and precision of its punches
rather than its playing strategy, it could be seen as cheating
because it is impossible for a human player to replicate the
computer's effort as fast or as easily as the computer.
Therefore the game engine applies two different types of
delay to Al in order to make it use more realistic game
strategies and act like a human; one is the information delay,
which is the delay of receiving data of the environment and
the opponent's character from the game engine. The other
one is the delay in execution after which a command from
the Al is issued. The game engine informs Al of the nature
of these delays.

Al

Two different Als are implemented to control the boxer
during the game. One is based on scripted Al and the other

one is based on Fuzzy logic. In this section, these two
implementations are discussed.

Scripted Al

Scripting (Bourg and Seeman 2004) is currently the most
common means of control in Game Al. Most developers
resort to scripts to implement Game Al for complex games
where the number of choices at each turn varies from
hundreds to even thousands. Some advantages of scripting
are being understandable, easy to implement and easily
extendable (Tozour 2002).

In this method, some scripts have been written for different
situations which might happen during the game. For
instance, when a boxer is too close to the opponent in a way
that its punches are not effective, it pushes forward the
opponent in a fast movement, or when its hand does not have
enough stamina for punching, it keeps itself at a safe
distance from the opponent, where the opponent’s punches
would not be efficient and looks forward to the timeout.
Furthermore, some parameters have been defined based on
the Al character's and the opponent's health, stamina and
abilities of their hands. A selection of these parameters has
been used in some scripts. A simple example of the
parameters’ effects on the scripts is that the scripted Al will
play its conservative scripts if the Al boxer's health is less
than half of its opponent's health.

Fuzzy Rule-Based Al

Figure 2 provides an overview of the architecture of the
game engine and its relation to the Fuzzy rule-based Al It is
based on a classical three-layer hierarchy: perception, control
and actuation layer.

(- Hodith Y1 Perception |
e) Layer
3
- - !
Boxing | Control

{ Simulation) % Layer

H

§ a Ty
(s) [Actuation
Sy 3 Layer
Game Engine 3 Al

Figure 2: Overview of the system architecture

The perception layer, which receives the position, health,
stamina and hand abilities of two boxers from the game
engine, first of all, anticipates the current situation of the
boxers based on the information delay, the execution delay
and its own boxing ring simulator. After that, calculation of
the Fuzzy system inputs like Alpha, Distance and Danger is
performed.

Alpha as shown in Figure 3 represents the degree between
the perpendicular line to the body of the Al boxer, and the
link from the central point of a boxer to the other one.
Distance represents the space between the boxers. Since the

15

Al boxer tries to escape from the corners of the ring, the
danger of a position should be estimated independently of
the opponent's position. Hence Danger represents how
dangerous the current position of the Al boxer is.

In the control layer, first of all, by using a script, the Al
checks whether its boxer can throw a punch at the opponent
or it should change its position. If its punch does not hit the
opponent, the Al will call its Fuzzy system to navigate the
boxer toward the best position. The main idea of Fuzzy
system is dividing the problem into two sub-problems
including: 1) Finding the opponent and moving toward it. 2)
Adjusting the exact distance and angle for an efficient
punching to the opponent and evading the opponent’s
punches. Herein, a Fuzzy subsystem copes with each sub-
problem and a 3™ Fuzzy subsystem supervises the efficacy of
each of those two subsystems.

As a direct solution to the sub-problems mentioned above,
the Fuzzy system includes three Fuzzy subsystems: 1) Near
Fuzzy System, which specifies the importance of Distance,
the AI boxer's stamina and the distance of the Al boxer's
hand to its opponent and the opponent's hand to the Al
boxer. It is most effective when the AI boxer and its
opponent are close to each other; 2) Far Fuzzy System,
which specifies the importance of Distance, Alpha and
Danger. It is most effective when the Al boxer and its
opponent are far from each other; 3) Overall Fuzzy System
which specifies the importance of the Near Fuzzy System
verdict and the Far Fuzzy System verdict. It should be noted
that all three Fuzzy subsystems operate during the whole
decision making loops and all rules are evaluated in parallel.

Heolth SUEEEROEN
Stamine 4

Honds Lafto 28 Righy: 23

Figure 3: Displaying Alpha in a screenshot of the game

In all of the Fuzzy systems, Takagi-Sugeno Fuzzy model is
employed (Takagi and Sugeno 1985). Fuzzy system input
variables are codified by some simple membership functions
as shown in Figure 4 and output membership functions are
shaped with singletons. It is worthy to mention that the
membership functions were selected intuitively at the
beginning. Nevertheless after some preliminary experiments
during the game development, they were tuned for a
smoother game play.

Largs Mediom iadinm Large

Degree of Membershiop
&
T

IF (MyStamina = Low AND OppStamina = Low) THEN
(W_MyHandDist = 0.3*Attack/S AND W_OppHandDist
= 0.3*Flee/S AND W _Distance = -0.3*Flee/Attack AND
W_MyStamina = 1)

Far Fuzzy System rules are shown in Table 4, where columns
represent the variable Distance and rows represent the

variable Alpha.

Table 4: Far Fuzzy System Rules

Shaort

Degree of Membershiop

Distance

High

@ @ @
» o ® b
T T T

Degree of Membershiop
8
T

«Q

c i 20 30 4G 50 60 70 BC f=1e] 100

Stamina
High
rr W
=
g
=
5
E
=
=05
b
=
2
=
3
&
=
o T T T T 1
o 100 280 300 4c0 500
Danger

Figure 4: Fuzzy Membership Functions

Near Fuzzy System rules are shown in Table 3, where
columns represent the variable OppStamina and rows
represent the variable MyStamina.

Table 3: Near Fuzzy System Rules

istance
Short Long
Alpha

W_Distance = 0.1 W _Distance = 1
AND AND

Low W_Alpha =0 W_Alpha =0
AND AND
W _Danger =1 W _Danger =1

Medium W _Distance =0 AND W_Alpha =1 AND W_Danger = 0.7
Large W_Distance =0 AND W_Alpha =1 AND W_Danger =0

Finally, Overall Fuzzy System rules are as follows:

o IF (Distance = Short) THEN (W _NearFuzzySystem =
1 AND W_FarFuzzySystem = 0)

o IF (Distance = Long) THEN (W_NearFuzzySystem =
0 AND W_FarFuzzySystem = 1)

o IF (Danger = High) THEN (W_NearFuzzySystem = Q
AND W_FarFuzzySystem = 0.8)

o IF (Alpha = Large) THEN (W_NearFuzzySystem = 0
AND W _FarFuzzySystem = 0.7)

W _parameter denotes the weight and importance of the
parameter, where the parameter can be one of the variables
MyHandDist, OppHandDist, Distance, MyStamina, Alpha
and Danger; A negative value of W Distance states to
increase the distance and a positive value states to decrease
it. In addition, W _FarFuzzySystem and W_NearFuzzySystem
are the degrees of truth of the statements, inferred from the
outputs of Far Fuzzy System and Near Fuzzy System
respectively. This is how the Overall Fuzzy System affects
the whole decision making process. Flee and Attack, which
can be configured by user between 1 and 10, specify the
preference of the boxer for escaping or attacking. These two
parameters can be set to 5 for a typical boxer with normal
behavior. Some important notations are summarized in Table
5.

OppStamia
Low High
MyStamina Table 5: Nomenclature

W_MyHandDist = 0.3*Attack/5 W_MyHandDist = 0.3*5/Flee
AND AND Notation Short Definition
W_OppHandDist = 0.3*Flee/5 W_OppHandDist = 1 A [pha Degree between two boxers

Low ?V]jDDisrance = -0.3*Flee/Attack ?V]jDDisrance =-0.5*%Flee/5 Attack Tendency of Al boxer to attack
AND AND Danger Danger of being near of the ring border
W_MyStamina = 1 W_MyStamina = 1 Distance Distance between two boxers
Zﬁﬂgy HandDist =1 Z/NAI;Iy HandDist = Attack/s Flee Tendency of Al boxer to escape
W_OppHandDist = 0.3*Attack/5 | W_OppHandDist = Flee/5 MyHandDist Distance of Al boxer's hand to its opponent

High ?VNg.‘r o 0.5t Atacl'S ?VNg.‘r os MyStamina Al boxer's strength to continue fighting
A];JD” anee = Homanac A];JD” ance =" OppHandDist | Distance of the opponent's hand to Al boxer
W_MyStamina = 0 W_MyStamina = 0.3 OppStamina Opponent's strength to continue fighting

As an example in the case where both OppStamina and
MyStamina are low the following rule will be triggered.

16

Finally, in the actuation layer, if the previous layer demands
a punch, it will throw a punch based on the abilities of its

hands. Otherwise it should test all possible actions on its
own ring simulator during two clocks. Then a fitness factor
is calculated for each action based on the weighted
parameters, which have been produced by the Fuzzy system.
In fact, the differences in the values of the parameters (such
as AAlpha) during simulation are multiplied by their
corresponding W _parameter (like W_Alpha) and divided by
a normalizer coefficient. The sum of these resultant values
determines the fitness of each action. Additionally, in the
actuation layer, there are some tricks to avoid getting stuck
somewhere in the ring, or persisting in just punching in a
row. For instance, if the boxer retains its position near the
ring edges for a while, the Al ignores the current situation of
the game and moves on to increase its distance from the
sides of the ring.

RESULTS

The proposed Al system has been applied to the introduced
game engine. The performances of five Fuzzy systems with
different configurations were assessed against a scripted Al
and 10 simulations have been performed over each one.
Since there is no standard method for gaging the
‘believability’ of game bots (Gorman et al. 2006), only the
match results (wins and losses) are illustrated in Table 6.

Table 6: Game Results of the Fuzzy Al against the Scripted Al

Fuzzy AI Type Win Win Lost Lost
¥ yp (Knockout) | (Timeout) | (Knockout) | (Timeout)
Balanced o 5 o 5
(Flee=Attack=>5) 60% 10% 10% 20%
Defensive
(Flee =10, 0% 10% 60% 30%
Attack=1)
Offensive
(Flee =1, 80% 0% 20% 0%
Attack =10)
Fairly Defensive
(Flee =1, 60% 10% 20% 10%
Attack=13)
Fairly Offensive
(Flee =3, 70% 20% 10% 0%
Attack=17)

Based on the empirical perception about the Al agents, the
most significant difference between the playing methods of
the Fuzzy Al and the scripted Al is the diverse behavior of
the Fuzzy Al This matter becomes more obvious when two
scripted Als play against each other. In this case, it is seen
that many repetitive situations happen in each run of the
game. But when one player utilizes the Fuzzy Al the game
gets more unpredictable; In fact, the Fuzzy agent insists less
on a specific action and has better adaptation to the game.

CONCLUSIONS

By using a Fuzzy system, rules and membership functions
designed by a human expert, we can avoid cheating and just
follow the natural laws of the game. This could be very
useful for extending and making better games, i.e. when a
human finds a new rule which can be useful in a game, we
will be able to easily insert the new rule into the game as a
Fuzzy rule.

The main benefit of the Fuzzy logic approach to game
development is human-like behaviors, which guarantee

17

believable and natural behavior (not necessarily perfect) and
increase the satisfaction of human players. Another
advantage of using Fuzzy logic is that, unlike scripted Al, a
developer does not need to consider all possible situations in
a game. Furthermore, the idea of various Fuzzy subsystems
divides the state space of the problem, which makes the
scaling to more demanding settings easy and could be
efficiently exploited in other genres of games. As an
example, in RTS games as the most Al challenging type of
games, two simultaneous main concerns are consuming the
resources for building different structures and training the
army forces for attacking the opponent. To fulfill this
purpose, two Fuzzy systems can be used for handling these
two problems. In addition, a third Fuzzy system could be
used for determining the priority of each of those Fuzzy
systems, according to the current situation of the game.

Future enhancements are required to overcome the deliberate
delay, which is applied to the Al; a simple solution would be
using the probabilistic Bayesian methods in order to predict
the current situation of the opponent. Another possible
outcome of the Clever Boxer is a boxing trainer, just like a
human boxing coach; The Al system watches a boxing game
and then suggests how the player could improve its
performance based on its own Fuzzy human-like rules.

REFERENCES

Bourg D. M. and Seeman G. 2004. A/ for Game Developers.
O'Reilly, chap. 8.

DelLooze L. L. and Viner W. R. 2009. “Fuzzy Q-Learning in a
Nondeterministic Environment: Developing an Intelligent Ms.
Pac-Man Agent”. In [EEE Symposium on Computational
Intelligence and Games (CIG’09), pp. 162-169.

Doss P. 2006. “Atrtificial Intelligence in Computer Games”. Bowie
State University, M. Sci. Thesis.

Johnson D. and Wiles. J. 2001. “Computer Games with
Intelligence”. In Proceedings of the 10th IEEE Conference on
Fuzzy Systems (Dec. 2-5), vol. 3, pp. 1355- 1358.

Gorman B. et al. 2006. “Believability Testing and Bayesian
Imitation in Interactive Computer Games”. In Proceedings of
the 9th Int. Conf. on the Simulation of Adaptive Behavior
(S4B'06), Springer, vol. LNAI

Li Y. et al. 2004. “Fuzzy Logic in Agent-Based Game Design”. In
Proceedings of the Annual Meeting of the North American
Fuzzy Information Processing Society (NAFIPS '04), pp. 734-
739.

Loiacono D. et al. 2010. “The 2009 Simulated Car Racing
Championship”. In [EEE Transactions on Computational
Intelligence and Al in Games, vol. 2, no. 2, pp. 131-147.

Onieva E. et al. 2010. “Overtaking Opponents with Blocking
Strategies Using Fuzzy Logic”. In [EEE Conference on
Computational Intelligence and Games (CIG’10), pp123-130.

Perez D. et al. 2009. “Evolving a Fuzzy Controller for a Car Racing
Competition”. In [EEE Symposium on Computational
Intelligence and Games (CIG’09), pp. 263-270.

Rollings A. and Ernest A. 2006. Fundamentals of Game Design.
Prentice Hall, chap. 13.

Russell S. and Norvig P. 1995. Artificial Intelligence: A Modern
Approach. Prentice Hall.

Takagi T. and Sugeno M. 1985. “Fuzzy identification of systems
and its application to modeling and control”. In [EEE
transaction on systems, man and cybernetics, vol. 15, no. 1, pp.
116-132.

Tozour P. 2002. The Perils of Al Scripting. In Rabin S. A Game
Programming Wisdom, Charles River Media, pp. 541-547.

Zadeh L. 1965. “Fuzzy sets”. Inf. Control, vol. 8, pp. 338-353.

18

GAME
GRAPHICS

20

FAST, BELIEVABLE REAL-TIME RENDERING OF
BURNING LOW-POLYGON OBJECTS IN VIDEO GAMES

Dhanyu Amarasinghe and Ian Parberry
Department of Computer Science & Engineering
University of North Texas
Denton, TX, USA
Email: dhanyu@gmail.com, ian@Qunt .edu

KEYWORDS
Hardware acceleration, deformation, procedural content gen-
eration, low-polygon modeling, CUDA, GPU.

ABSTRACT

Deformation of the low-polygon models used in video games
is challenging since it is hard to maintain realism. We show
how real-time mesh refinement can be used for modeling the
deformation and consumption of low-polygon models under
combustion while generating procedural fire. Our focus is
on trading realism for computation speed so that processing
power is still available for other computational tasks. Our
method also allows for quick and easy LOD (level-of-detail)
rendering of burning objects. We have implemented and
tested our method on a relatively modest GPU (Graphics Pro-
cessing Unit) using NVIDIA’s CUDA (Compute Unified De-
vice Architecture). Our experiments suggest that our method
gives a believable rendering of the effects of fire while using
only a small fraction of CPU and GPU resources.

INTRODUCTION

Model deformation is an essential part of maintaining the re-
alism of physical objects in video games. While high quality
graphics is an inescapable necessity for the modern video
game, developers must choose detailed structure of game
models carefully due to the limitations of hardware resources
and processing power needed in real time rendering. One
of the key features of such detailed structure is a number of
polygons per model. Low-polygon models are typically used
as much as possible, with their deficits hidden by a choice of
pragmatic textures. As a tradeoff between quality and perfor-
mance, many game developers use extremely low-polygon
models for most of the flat surfaces in the game environment
such as doors, windows, and walls. Since deformation of
such low-polygon models while maintaining realism is quite
thorny, developers commonly resort to model swapping tech-
niques.

We consider real-time emulation of the deformation and con-
sumption of low-polygon models due to combustion. Fire
simulations may be used effectively to increase the reality
of visual effects in computer animations. Real-time triangle
subdivision is a useful technique, but complete subdivision of

21

Figure 1: Procedural triangulation of a burning door.

each and every model is not practical in real time. We extend
the method discussed in our prior work (Amarasinghe and
Parberry 2011b) to introduce a real-time refinement method
that can be used in deformation and real-time rendering of
burning low-polygon models while maintaining performance
and realism. Our aim is to increase believability by a large
amount while increasing computation load only minimally.

We are able to triangulate burning low-polygon objects on-
the-fly in response to real-time procedural fire in order to pro-
vide more detail where it is needed Figure 1 shows where
a simple 12-triangle door is triangulated near the source of
compbustion, and Figure 2 show a 12-triangle box at vari-
ous stages of burning. The interested reader can visit our fire
web page (Amarasinghe and Parberry 201 1a) for larger color
images and a video demonstration of a burning low-polygon
door as shown in Figure 1.

The remainder of this paper is divided into four main sec-
tions. The first section sets the context for this paper by de-
scribing prior work. The second section describes our trian-
gle subdivision algorithm. The third section shows that our
method is particularly suited to producing models at differ-
ent levels of detail for faster rendering. The fourth section
describes the results of some preliminary experiments with a
CUDA implementation of our algorithm.

Figure 2: The consumption of a low-polygon model and the spread of procedural fire.

PRIOR WORK

In (Amarasinghe and Parberry 2011b) we describe a tech-
nique for emulating the consumption and deformation of
high-polygon models due to fire. The obvious way to ex-
tend this technique to low-polygon models is to use real-time
mesh refinement, subdividing triangles only when necessary.

There is a great amount of prior work on subdivision sur-
face schemes for fast mesh refinement in real-time applica-
tions. The idea of using mesh refinement was used in (Wicke
et al. 2010) to capture detailed physical behavior in simulat-
ing fractures by subdividing mesh elements. The kind of pa-
rameterizations that are optimal for remeshing are discussed
in (Floater and Hormann 2005, Hormann et al. 2001). A
method for adaptive mesh refinement for an expanding heat
boundary is discussed in (Peyré and Cohen 2006). The pa-
pers (Guo et al. 2006), and (He et al. 2010) discuss paramet-
ric subdivision of mesh surfaces, while (Borouchaki et al.
2005) performs real time deformation by applying remesh-
ing to selective material. Useful information about surface
subdivision can be found from Kovacs and Mitchell’s crease
approximation method (Kovacs et al. 2009). The survey pa-
per (Alliez et al. 2008) on remeshing of surfaces is also quite
useful.

Relatively little work has been published about hardware as-
sisted implementation of subdivision schemes. Some use-
ful mesh refinement techniques using modern GPUs can be
found in (Borouchaki et al. 2005, Boubekeur and Schlick
2005). The so-called GAMeR technique from (Schive et al.
2010) uses the GPU for adaptive mesh refinement in as-
trophysics. Some useful techniques for subdivision us-
ing modern GPUs can be found in (Fan and Cheng 2009)
and (Settgast et al. 2004).

SUBDIVISION

Graphics Processing Units (GPUs) are no longer limited to
just scene rendering. Technology such as NVIDIA’s CUDA
(Compute Unified Device Architecture) provides a platform
for implementing general purpose computation on GPUs.
However, as mentioned in (Boubekeur and Schlick 2005),
there are limitations to data translation from CPU to GPU,
since current graphics hardware is unable to generate more
polygons than those sent through the graphics bus by the

22

Level 1 Level 5

Level 2

Level 3

Level 4

Figure 3: The Adaptive Refinement Pattern showing the level
subdivisions for a single triangle.

application running on the CPU. Consequently, we have
adapted their Generic Adaptive Mesh Refinement (GAMeR)
technique to procedurally create additional inner vertices on-
the-fly.

The remainder of this section is divided into three subsec-
tions. The first subsection discusses refinement patterns
and properties. The second subsection discusses the use of
barycentric points in relation to the heat boundary. The third
subsection brings these concepts together in our deformation
algorithm.

Refinement Patterns and Properties

Although our approach is valid for other polygonal shapes,
we only consider the case of triangular meshes, since that is
what is primarily used in video games. We pre-compute all
of the useful refinement configurations of a single triangle
using a technique called uniform decomposition, in which
the subdivision takes place in all of the cells recursively. We
use an isotropic template that divides each triangle into half
for five recursive levels in depth as illustrated in Figure 3.
This resulting Adaptive Refinement Pattern (ARP for short)
is stored once on the GPU as a vertex buffer object.

Recall that our objective is not to subdivide each and every
triangle in the object. Our aim is to subdivide only when nec-
essary, and prior to deformation. We declare some attributes

| Attribute | Values | Description |
id Integer Track siblings/parent
SetLevel 1,2,3,4,5 | Depth of the division
Siblings Integer Number of siblings
Parent Integer Parent id
Status —1,0,1,2 | Status of the triangle

Table 1: ARP attributes.

for each of the subdivided triangles in Table 1. One of the im-
portant attributes in this set is the szatus of the triangle. The
values -1, 0, 1, 2 represent the triangle’s status as inactive,
initial, active, and processed respectively. The renderer will
draw only the final ARP of active and processed triangles
generated by each coarse triangle.

After loading the ARP and its attributes to the vertex buffer,
we need to map ARP coordinates to the corresponding coarse
polygon using a displacement map similar to Figure 3. Un-
like (Boubekeur and Schlick 2005), we record the final co-
ordinate set into the GPU since we have yet to deform our
vertices prior to rendering. At this point we apply ARP to
the coarse polygon only if it is eligible to proceed to the next
level of subdivision. This eligibility depends upon the loca-
tion of the heat boundary relative to the triangle.

Barycentric Points & the Heat Boundary

The temperature of a burning object in the real world changes
over both time and space. Temperature increase due to com-
bustion influences the mechanical behavior of the object, and
the thermal conductivity of the object influences the thermal
response.

To speed up computation, we approximate the expansion
of the heat boundary by calculating it around a single
fixed point, following our heat boundary model described
in (Amarasinghe and Parberry 2011b). The approximated
heat boundary expansion is given by:

R* = |sin(7®/Ar) +sin(70) +

Y((x = 20)” + (y = 90)* + (2 = 20)°)],

where R = r 4+ Ar, the radius r incremented by Ar in each
At time period. The angle © is a random value that makes
the expanding heat boundary irregular in shape. The location
of the heat source is (o, yo, 20). However, the value of heat
index constant ¢ from (Amarasinghe and Parberry 2011b),
which is supposed to be a constant that depends only on the
size of the coarse triangles of the model, is no longer fixed.
Therefore, we let the designer set ¢ depending on how many
levels of subdivision are planned.

It remains to decide which coarse triangles are eligible for
subdivision. This has to be a function of the expanding heat
boundary. Furthermore, the subdivision has to take place
prior to the deformation process. Our solution is to send

23

a virtual heat wave through the model prior to the actual
heat boundary expansion. This creates an area in addition
to the three initial heat boundary areas described in Figure 3
of (Amarasinghe and Parberry 2010). Since the introduced
boundary expansion takes place prior to the three original
expanding boundaries (see Figure 4), we can proceed with
the subdivision of qualified triangles before the deformation
process begins.

Since we are using a single source heat boundary, temper-
ature at all points will depend on the distance from the
heat source at (g, Yo, 20). If this point is in the middle of
one of the coarse triangles, the triangle will not be eligible
for subdivision until the virtual heat boundary hits one of
its vertices. To avoid such issues we represent each trian-
gle using barycentric coordinates as follows. Suppose point
P = (z,y, 2) is given by:

A1T1 + o2 + Azxs
A1y1 + A2y2 + Asys
A1z1 + Aoz + A3zs,

z =

where \1,\2 and A3 are area parameters such that Ay + Ay +
Az = 1.

We need to calculate the barycentric coordinates for non-
eligible triangles only, where eligible triangles are those that
are close to the heat boundary. The following algorithm re-
turns t rue if coarse triangle 7' is eligible.

for each coarse triangle T’
if T is not eligible then get barycentric point set P

for each barycentric point set P
if P is inside the heat boundary
return true

Deformation

After applying ARP to the eligible triangle, we next apply
deformation techniques. Although our ARP arbitrarily con-
tains triangles of five levels in depth (see Figure 3), this num-
ber can be changed in the obvious fashion by the designer.
Deformation applies only to the final level (in our case, fifth
level) status active triangles. At this point, rendering all lev-
els of triangles in the ARP will be costly and wasteful. In-
stead, we choose which triangles to render using the ARP
attributes listed in Table 1.

The process can be described informally as follows. Initially,
the coarse triangles of the model are considered active (sta-
tus value 1) triangles, and all ARP triangles are initialized
as initial (status value 0) triangles. Each subdivided trian-
gle consists of three siblings and a parent. As our algorithm
proceeds, if one of the child triangles turns active, then the
parent will turn processed (status value 2) until all of its chil-
dren also become status active. Once its children have all
turned active, the parent triangle will change its status from

Barycentric Coordinate Points

Virtual Heat Wave Boundary \ :

Initial Heat Boundary Area

Combustion Ready Area

Deformation Area

Figure 4: Heat boundary areas and barycentric point sets.

if triangle has SetLevel 5 and Status 0
if triangle is inside the heat boundary
Status := 1
Status of all siblings := 1
Status of parent := 2

if SetLevel < 5 and Status > 0
if sibling’s Status > -1
sibling Status := 1
parent Status :=2

if all children have Status 1 and parent has Status 2
parent Status := -1

Figure 5: Algorithm for computing Status.

Figure 6: The refinement hierarchy and deformation applied
to a 12-triangle model of a box.

24

processed to inactive (from status value 2 to -1). See Figure 5
for the details.

In our high-polygon deformation algorithm (Amarasinghe
and Parberry 2011b) the displacement of each vertex depends
on the surrounding vertices. Therefore, to apply proper cal-
culation of deformation, we must let the subdivision proceed
a few steps further before applying deformation to the mesh.
By doing so, we are able to calculate the proper strength fac-
tors within the deforming triangles properly. Figure 6 illus-
trates the refinement hierarchy and deformation applied to a
low-polygon model of a box.

LEVEL OF DETAIL

In a game environment, objects located far from the viewer
need not be rendered in as much fine detail as those close
up. A significant speed-up can be obtained by having models
stored at various levels of detail (abbreviated LOD) ranging
from, for example, hundreds of triangles for objects in the
far distance to tens of thousands for close-up objects. These
variants of the model are usually created by the artist, al-
though procedural methods do exist.

Our algorithm allows us to implement LOD for burning ob-
jects by controlling the level of adaptive refinement of the
coarse mesh triangles. We calculate the distance between
object and the player in the CPU and pass it to the GPU as
a parameter. Level adjustment is decided and passed to the
appropriate ARP before rendering.

For a solid object the level of refinement is directly propor-
tional to the distance. However, surface removal and defor-
mation of a burning object makes it slightly more challenging
to maintain a smooth transition between level swaps. Define

Polygon Fully Our Speed-up
Count Subdivided | Method | Factor
10k 84fps 165fps 1.96
15k 76fps 159fps 2.09
20k 63fps 153fps 2.43
50k 48fps 60fps 1.25

Table 2: Frame rate of fully subdivided model versus our
approach.

the burn level of a model as the number of triangles of the
model that have been consumed by fire as in (Amarasinghe
and Parberry 2011b). We then use the following algorithm to
determine whether to render triangle 7": Show 7' if and only
if the number of children of 7" with higher burn level than T’
is > 2, and SetLevel > 5. Figure 7 shows our burning box at
different LODs.

EXPERIMENTS

The images of burning objects shown here and in (Amaras-
inghe and Parberry 2011a) are screenshots from a CUDA im-
plementation of our algorithm applied to a model with 12
triangles. The flames are generated using 2000 fire parti-
cles and 500 smoke particles. The advantage of such a sys-
tem is clear when comparing the resources required to de-
form a completely subdivided model versus deforming a low-
polygon model using our method. Table 2 shows the frame
rates of the animation when our algorithm is implemented in
CUDA on relatively modest hardware; An Intel®Core™?2
Duo CPU P8400 @ 2.26GHz processor with an NVidia
GeForce 9800 GTS graphics card. This performance will
of course be much better on the current generation of graph-
ics hardware, but that is not our aim. Our aim is to provide
detail sufficient to trigger willing suspension of disbelief at a
relatively low cost in computation load.

The outcome of these experiments shows that our method
results in doubling the frame rate. Therefore, we believe this
approach is a better alternative than subdividing the complete
model when it comes to deforming low-polygon models.

CONCLUSION AND FURTHER WORK

We have proposed a method for the real-time deformation
and consumption of a low-polygon model during combus-
tion by procedurally generated fire. By doing so, we have
extended our work in (Amarasinghe and Parberry 2011b) to
low-polygon models. We have performed simulation of real-
time deformation and consumption of any model regardless
of the size of the triangles. We have focused on the perfor-
mance with a reasonable amount of realism sufficient to trig-
ger willing suspense of disbelief in the game player. Our sim-
ulations have performed well on a model with low-polygon
count and large triangles. We intend to investigate the exten-
sion of our method to solid models, and to investgate a better

approximation to heat boundary expansion.
REFERENCES

Alliez P.; Ucelli G.; Gotsman C.; and Attene M., 2008. Re-
cent advances in remeshing of surfaces. Shape Analysis
and Structuring, 53-82.

Amarasinghe D. and Parberry 1., 2010. Towards Fast, Be-
lievable Real-time Rendering of Burning Objects in Video
Games. Tech. Rep. LARC-2010-04, Laboratory for
Recreational Computing, Dept. of Computer Science &
Engineering, Univ. of North Texas.

Amarasinghe D. and Parberry 1., 2011a. Fire Reloaded.
URL http://larc.unt.edu/ian/research/
fire2/.

Amarasinghe D. and Parberry 1., 2011b. Towards Fast, Be-
lievable Real-time Rendering of Burning Objects in Video
Games. In Proceedings of the 6th Annual International
Conference on the Foundations of Digital Games. 256—
258.

Borouchaki H.; Laug P.; Cherouat A.; and Saanouni K.,
2005. Adaptive remeshing in large plastic strain with dam-
age. International Journal for Numerical Methods in En-
gineering, 63, no. 1, 1-36.

Boubekeur T. and Schlick C., 2005. Generic mesh
refinement on GPU. In Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware. ACM, 99-104.

Fan F. and Cheng F., 2009. GPU Supported Patch-Based Tes-
sellation for Dual Subdivision. In 2009 Sixth International
Conference on Computer Graphics, Imaging and Visual-
ization. IEEE, 5-10.

Floater M. and Hormann K., 2005. Surface parameteriza-
tion: A tutorial and survey. Advances in Multiresolution
for Geometric Modelling, 157-186.

Guo X.; Li X.; Bao Y.; Gu X.; and Qin H., 2006. Mesh-
less thin-shell simulation based on global conformal pa-
rameterization. IEEE Transactions on Visualization and
Computer Graphics, 375-385.

He L.; Schaefer S.; and Hormann K., 2010. Parameterizing
subdivision surfaces. ACM Transactions on Graphics, 29,
no. 4, 1-6.

Hormann K.; Labsik U.; and Greiner G., 2001. Remesh-
ing triangulated surfaces with optimal parameterizations.
Computer-Aided Design, 33, no. 11, 779-788.

Kovacs D.; Mitchell J.; Drone S.; and Zorin D., 2009. Real-
time creased approximate subdivision surfaces. In Pro-
ceedings of the 2009 Symposium on Interactive 3D Graph-
ics and Games. ACM, 155-160.

25

Figure 7: Levels of detail for a burning object provided by our method.

Peyré G. and Cohen L., 2006. Geodesic remeshing using
front propagation. International Journal of Computer Vi-
sion, 69, no. 1, 145-156.

Schive H.; Tsai Y.; and Chiueh T., 2010. GAMER:
A graphic processing unit accelerated adaptive-mesh-
refinement code for astrophysics. The Astrophysical Jour-
nal Supplement Series, 186, 457.

Settgast V.; Miiller K.; Fiinfzig C.; and Fellner D., 2004.
Adaptive tesselation of subdivision surfaces. Computers
& Graphics, 28, no. 1, 73-78.

Wicke M.; Ritchie D.; Klingner B.; Burke S.; Shewchuk J.;
and O’Brien J., 2010. Dynamic local remeshing for elasto-
plastic simulation. ACM Transactions on Graphics, 29,
no. 4, 1-11.

BIOGRAPHY

DHANYU AMARASINGHE is a native of Sri Lanka.
He is currently a PhD student in the Department of
Computer Science and Engineering at the University of
North Texas. His research interests include graphics for
game development, particularly the real-time deforma-
tion and consumption of virtual objects by procedural fire.

26

He can be contacted at dhanyu@Rgmail.com. His home
page is http://dhanyu.com/.

TAN PARBERRY was born in London, England and emi-
grated as a child with his parents to Brisbane, Australia. Af-
ter obtaining his undergraduate degree there from the Uni-
versity of Queensland he returned to England for a PhD from
the University of Warwick. He has worked in academia in
the US ever since. He is currently a full Professor in the De-
partment of Computer Science and Engineering at the Uni-
versity of North Texas where he recently stepped down from
a 2-year term as Interim Department Chair. A pioneer of the
academic study of game development since 1993, his under-
graduate game development program was ranked in the top
50 out of 500 in North America by The Princeton Review in
2010. He is on the Editorial Boards of the Journal of Game
Design and Development Education, IEEE Transactions on
Computational Intelligence and Al in Games, and Entertain-
ment Computing, and he serves as the Secretary of the So-
ciety for the Advancement of the Science of Digital Games,
which organizes the Annual Foundations of Digital Games
conference. He is the author of 6 books and over 80 articles
over 30 years’ experience in academic research and educa-
tion. His h-index is 18 and his Erdés number is 3. He can
be contacted at ian@unt . edu or on Facebook. His home
pageishttp://larc.unt.edu/ian.

VERY FAST REAL-TIME OCEAN WAVE FOAM RENDERING USING HALFTONING

Mary Yingst
Dept. of Computer
Science & Engineering
University of North Texas
Denton, TX, USA
maryyingst@my.unt.edu

KEYWORDS

Physics and Simulation, Design

ABSTRACT

We introduce an efficient method for emulating sea foam
dissipation suitable for use in real-time interactive environ-
ments such as video games. By using a precomputed dither
array with controlled spectral characteristics adopted from
halftone research as a control mechanism in the pixel shader,
we can animate the appearance of foam bubbles popping in
a random manner while allowing them to clump naturally.

INTRODUCTION

Real-time animation and rendering of ocean waves is often
seen in video games, and adding foam to the waves lends
an added level of realism. We describe a fast and effective
method for rendering ocean wave foam by augmenting tradi-
tional texture based foam saturation methods with techniques
from halftoning.

Takahashi et al. (2003) and Thiirey et al. (2007) represent
foam as a particle system. Although this is visually pleasing,
it is computationally intensive. In large scale environments
such as the ocean it is more practical to use faster texture
based methods. Many methods of rendering foam rely on
applying a texture of foam to the water surface. These meth-
ods apply a texture using a foam saturation, or density value
to represent transparency of the texture which is applied to
a mesh representing the water’s surface (see, for example,
Jensen and Golias (2001), Jeschke et al. (2003), and Kry-
achko (2005)). Li et al. (2008) similarly apply a foam color
according to its density.

Real ocean foam consists of bubbles clumped together by
surface tension on the surface of the water. Foam does not
simply fade or become transparent as the bubbles dissipate.
Traditional methods of foam generation ignore the active na-
ture of foam density where bubbles pop over time. Since
surface bubbles are either present or not in an area of water,
this binary nature lends itself to the use of halftoning, a pro-

Jennifer R. Alford
Digital Teapot, Inc.
Fort Worth, TX, USA
gralford@acm.org

27

Ian Parberry
Dept. of Computer
Science & Engineering
University of North Texas
Denton, TX, USA
ianQunt.edu

cess used to reproduce images using patterns of black dots.
Our use of halftoning with a saturation function that changes
over time causes bubbles to appear to pop.

The remainder of this note is divided into five sections. First
we give a high-level overview of our approach. Then we
review in more depth our choice of foam saturation function,
our use of a halftoning mask generated using methods from
the halftoning literature, and how we apply that mask in a
pixel shader. Finally we conclude with a discussion of our
results.

OVERVIEW OF OUR APPROACH

To generate foam on the surface of the water using a foam
saturation function, we must create the water surface as a
mesh. Each location on the water’s surface has a calculable
saturation value using this function. The function must vary
over time for the foam to animate and become more and less
dense as waves pass and change. In figure 1 we see that
by applying halftoning methods to a saturation function, we
take an otherwise smooth area of the function and create the
randomness expected when foam generates and dissipates.

Figure 1: By replacing the application of a foam texture with
a white tone we see that applying our method creates ran-
domness on the right in the otherwise smooth saturation re-
sults pictured on the left.

Halftone masks, or dither arrays, are arrays of values that
have a one-to-one correspondence with pixels in an image,
or in our application, a texture. Each value of the halftone
mask is used as a threshold against the corresponding texture

pixel to produce a binary output image that indicates, at each
pixel position, whether the texture falls above or below the
threshold. This process is commonly referred to as thresh-
olding. Halftone masks are characterized by the binary pat-
tern that results when thresholded against a constant image,
or texture. Choosing threshold value values at each mask po-
sition is non-trivial. Ulichney (1987) provides a classic study
of mask design and describes widely used metrics, based on
the Fourier Transform, to characterize masks by their radi-
ally averaged power spectrum (RAPS), a measure of energy
at different frequency bands, and anisotropy, a measure of ra-
dial symmetry. While halftoning can be accomplished with
a variety of computational methods, we restrict ourselves to
the use of masks because, as point operations, they are com-
putationally efficient and naturally suited to pixel shader op-
erations.

We depart from the traditional use of halftoning in print-
ing and image display, which seeks to reduce visually ob-
jectionable noise in image reproduction, and instead we use
a halftone mask to add noise. We draw on recent work in
halftone mask design by observing that it is possible to de-
sign masks to produce lumping binary patterns which are
reminiscent of the clumping of sea foam. We also observe
that the binary nature of the threshold output is well-suited
to simulate foam bubble popping when the mask is fixed
per frame but the underlying image is not. In this work,
we present a novel way to use halftone masks in conjunc-
tion with a saturation function and a texture to simulate foam
and the popping behavior of foam. Further, we observe that
the difference between the threshold value and an image or
a texture provides a magnitude at each pixel position that we
use as a transparency value for additional realism.

We use halftone masks that have been generated using a sym-
metric Gaussian function to filter white noise as described
in Alford and Sheppard (2010). Gaussian filtering applies a
two-dimensional Gaussian function to an image. o is a value
in the Gaussian function that denotes the width of the curve in
the function; as o increases, the width of the curve increases.

We simulate the effect of foam bubbles popping by finding
the saturation of foam on the water’s surface and applying a
precomputed halftone mask to it. We use a modified version
of the vertex shader outlined in a paper by Van Drasek III
et al. (2010) to create parametric waves upon which to apply
our foam. The next two sections will describe the saturation
function and the halftone mask in more detail.

THE SATURATION FUNCTION

Kryachko (2005) uses the following foam saturation function
which is dependent on ocean height. Hj, is base height, H is
height, and Hmax is height where foam is maximum.

H— H,

J(@) = Hmax — Hy

28

Figure 2: Foam with Kryachko’s saturation function.

Although Kryachko’s function achieves somewhat attractive
results (see Figure 2 for example), the function results in
a symmetric foam distribution, whereas we wish to model
foam that is created by turbulence at the front of the wave
and fades away behind it. Knowing the target foam density
along the wave shape, we chose to apply e***(*) to the same
vector and frequency used to determine wave shape.

12

10

8 -

6

4

2 -

0 > I
2" -7-6-5-4-M) 12 3\4_5/6/ 7 8

Figure 3: e'2(*) sin(z)

We use the following formulae from Van Drasek III et al.
(2010) for the height y of the wave:

y = A((sin(f(z,2))+1)/2)%
0(@) = (T-k)21/Nagj + Ot
¢ = 2sm/),

and so we use 0(7) to also generate the periodic function.

F(@) =e tan((ff‘k)Qﬂ//\adj‘i“ﬁt))?

where 7 = (z, z) is position, k is the wave direction, s is
the speed of the wave, ¢ is time, K is wave slope, A is wave
amplitude, Aqq; is wavelength adjusted for ocean depth, and
A is original wavelength.

Since we are overlaying this function on the sine function
that determines wave shape, we need to modify the formula
slightly to align the foam with the waves. In Figure 3 we
see that e'*(#) is twice as frequent as sin(x), so we divide
O(x, z) by 2. Also to align the highest part of our function
with the front part of the sine wave we add 7/2. Our fi-
nal formula is as follows, and gives a attractive saturation of

foam starting at the wave front and fading behind it.

f(U) _ (e_ tan((ﬁ-k)w//\adj+¢>t/2)-~-7r/2))/C7

where C' is a user defined constant that governs the intensity
of the foam. (We use C' = 4 for convenience, but this value
may be tuned by the designer.)

Saturation is computed as follows. Adjwavelength, and
phaseC are calculated in the vertex shader and the values are
interpolated for use in the pixel shader.

float getmysaturation(float2
wavedirection, float2 xzposition ,
float Adjwavelength, float phaseC)

{
float result =
dot(wavedirection, xzposition)
*6.28f/Adjwavelength ;
result = result + phaseCxgTimeNow;
result = pow(2.718f,—1.0f=%
Ian((result/2. 00+ 1 0 f))/ 4. 0¢F:
return result;
}

To pass values from the vertex shader we simply define an
extra variable in the vertex output with a TEXCOORD se-
mantic. Then the vertex shader sets the required values as
follows:

struct VertexOutput

{
float4 impVars TEXCOORD4 ;

}

VertexOutput VS(...)

{
VertexOutput OUT = (VertexOutput)O0;
OUT.impVars|[l]=adjustedWavelength
OUT.impVars[0]=phaseConstant ;
OUT.impVars[2] = Po[O]; //xposition
OUT.impVars[3] = Po[2]; //zposition

}

float4 PS(VertexOutput IN) COLOR

float saturated=getmysaturation
(direction , float2 (IN.impVars[2],
IN.impVars[3]), IN.impVars[1],
IN.impVars [0]);

THE HALFTONE MASK

We use a halftone mask to threshold the saturation function
to create dissipation through bubble popping. As satura-
tion decreases over time at a specific location, the value will
approach and pass the threshold used in our mask. While
the saturation value is above the threshold, the foam will be

29

present, but as time passes and the value decreases, even-
tually the foam will pop and dissappear. Since bubbles in
foam clump, we must choose a halftone mask that produces
clumps in the resulting dot patterns. Clumpiness, or cluster-
ing, can be seen in how close together some of the foam is
while in other areas there are gaps.

Alford and Sheppard (2010) show a variety of halftone masks
created using radially symmetric Gaussian filters. We used
their masks created using filters having o ranging from 1.5
to 24 to produce the images in Figure 4 column 1. In Fig-
ure 4 we can see that the higher the o, the closer together
some of the dots are. By analyzing the RAPS we see that as
o increases, first oscillation is dampened in the high frequen-
cies, then the values of the high frequency region is greatly
reduced (Alford and Sheppard 2010). The results of this can
be seen in the increased clustering and clumping behavior of
the dot patterns. We found ¢ = 24 gives adequate visual
clusters of foam.

i

(a) o=1.5

P -

(c) o =24

Figure 4: Halftone masks created by Gaussian filters having
o ranging from 1.5 to 24, with corresponding RAPS (images
courtesy Alford and Sheppard (2010)).

APPLYING THE MASK

To create the halftoned saturation function h(u, v) where u, v
are texture coordinates and h(u, v) isa £1oat 4 RGBA color
value at that position, we first create a texture to contain the
mask information so that the data can be imported into the
pixel shader. Given a 512 x 512 halftone mask, a 512 x 512
pixel texture is generated. This texture, when tiled across the
surface of the water, has a corresponding u, v texture coor-
dinate for each ¥ = (z, z) position on the water. The mask
value m(u,v) can then be used to threshold the saturation
function f(z, z) as follows:
B, v) = {(0, 0,0,1) if f(z,2) < m(u,v)

if f(z,2) > m(u,v) M

(L1,1,1)

“5

Figure 5: Applying Equation 1 to the saturation function at
left gives the image at right.

We can then create a fading halftoned saturation function,
g(u,v), so the dots fade before they pop. We do this by
taking the difference between saturation and mask number.
Figure 1 shows the results of applying halftoning with fading
to the saturation function. For all g(u,v), a = 1.

clamp(f(z,2)/2 — m(u/v),0,1) *
h(u,v).rgb

g(u,v).rgb =
()
Finally we apply t(u,v), the foam texture to generate the

final halftoned, textured, and faded image j(u,v). For all
Jjlu,v), a0 = 1.

(0,0,0) if f(z,2) < m(u,v)
J(u,v).rgb = < g(u,v)* 3)
t(u,v).rgb if f(x,z) > m(u,v)

Given a sampler for the halftone mask texture, MaskSampler;
a sampler for the foam texture, SAMP_FoamTexture; and a
sampler for the water surface texture, SAMP_WaterTexture;
the following code finds the resulting color for the water’s
surface. The higher TEXscale or MASKscale is, the smaller
the tiled texture will appear. A value of 400 for MASKscale
gives suitably sized dots when using a 512 x 512 pixel mask.

30

Figure 6: Coastline image using our new halftoning method,
Equation 3.

// get water and foam texture color
float4 textureSamp = tex2D(
SAMP_WaterTexture ,
IN.TexCoordl *TEXscale);
float4 foamSamp = tex2D (
SAMP_FoamTexture ,
IN TexUondiadTbBExaale

// get the threshold from the mask

float masknumber=(tex2Dlod (
MaskSampler, float4 (IN.TexCoordl .xy
*MASKscale ,0,0))):

// threshold the saturation value
if (!((saturated)>(masknumber))){

foamSamp [0] = 0;
foamSamp[1] = 0;
foamSamp[2] = O0;
}
//find the value for fading the foam
float difference = clamp(saturated
— masknumber, 0 I8fF 3. 0%)

// get the final foam value
foamSamp = difference * foamSamp;

//add the value to the water

//and clamp to a valid color

float4 result =clamp ((textureSamp+
foamSamp) ,0,1);

resule[3] = 1.0fF;

texture

RESULTS

Figure 7(a) shows the traditional method of fading a foam
texture according to a saturation function, similar to Kry-
achko (2005). Figure 7(b) shows the saturation halftoned us-

ing Equation 1 and no other functions applied. This method
shows a realistic popping effect, but the foam is too harsh
and white. Figure 7(c) shows our halftoning method in com-
bination with a foam texture using Equation 3.

(a) Using a foam texture.

(b) Using a halftone mask to determine foam location.

(c) Using a halftone mask with a foam texture.

Figure 7: The results of using 3 different methods with the
same settings (heightmap, wave speed, direction, and ampli-
tude).

We performed some experiments to obtain a preliminary
benchmark for the extra computation load required by our
new halftoning technique (Figure 7(c)) to the traditional tex-
turing technique (Figure 7(a)). We ran both algorithms for
five minutes using NVidia Composer, using FRAPS to mea-
sure average frames-per-second. The scene rendered in all

| Graphics Card | Textured | Halftoned |
NVidia 8800 65.5fps 65.0fps
NVidia GeForce GT320m | 80.4fps 78.2fps
Intel HD Graphics 3000 85.0fps 84.5fps

Table 1: Comparison of rendering frame rates in frames per
second (fps).

31

Figure 8: Scene used for measuring frame rates.

experiments is shown in Figure 8. The results are shown in
Table 1. We conclude that the extra load on the video ap-
pears to be less that 3% higher than traditional texture-fading
techniques, which is negligible.

Still pictures such as shown in Figure 7 and Figure 8 do not
adequately capture the full effect of our algorithm. Figure 9
shows how foam bubbles fade and pop over time in the wake
of each wave. This can be seen to best advantage in an ani-
mation such as the one we have placed online at Yingst et al.
(2011).

Figure 9: Close up view of foam bubbles fading and popping
over time.

CONCLUSION AND FURTHER WORK

Not only does our halftoning technique achieve our goal of
simulating foam dissipation in a real-time environment, but
it also can be applied with little additional cost to traditional
texture based methods that obtain foam saturation at the wa-

ter’s surface. The saturation function used must vary over
time for the bubble popping effect to occur using the halfton-
ing method.

Our method currently produces pixelation at close range to
the camera. One method for remedying this would be a sec-
ond pass of a pixel shader to smooth the edges of the gener-
ated texture, which we leave as future work.

REFERENCES

Alford J.R. and Sheppard D.G., 2010. Approximating Pois-
son Disk Distributions by Means of a Stochastic Dither Ar-
ray. In EG UK Theory and Practice of Computer Graph-
ics.

Jensen L.S. and Golias R., 2001. Deep-Water Animation
and Rendering. URL www.gamasutra.com/gdce/
2001/ jensen/jensen_01.htm. Presented at Game
Developers Conference, Europe.

Jeschke S.; Birkholz H.; and Schmann H., 2003. A Proce-
dural Model for Interactive Animation of Breaking Ocean
Waves. In Proceedings of WSCG 2003. WSCG.

Kryachko Y., 2005. Using Vertex Texture Displacement for
Realistic Water Rendering. GPU Gems 2: Programming
Techniques for High-Performance Graphics and General-
Purpose Computation.

Li Y.; Jin Y.;; Yin Y.; and Shen H., 2008. Simulation of
shallow-water waves in coastal region for marine simu-
lator. In Proceedings of The 7th ACM SIGGRAPH Inter-
national Conference on Virtual-Reality Continuum and Its
Applications in Industry. ACM, 15:1-15:5.

Takahashi T.; Fujii H.; Kunimatsu A.; Hiwada K.; Saito T.;
Tanaka K.; and Ueki H., 2003. Realistic Animation of
Fluid with Splash and Foam. Computer Graphics Forum,
22, no. 3, 391-400.

Thiirey N.; Sadlo F.; Schirm S.; Miiller-Fischer M.; and
Gross M., 2007. Real-time simulations of bubbles and
Sfoam within a shallow water framework. In Proceedings
of the 2007 ACM SIGGRAPH Eurographics Symposium
on Computer Animation. Eurographics Association.

Ulichney R., 1987. Digital Halftoning. Cambridge, Mass:
The MIT Press.

Van Drasek III J.; Bookout D.; and Lake A., 2010. Real-
Time Parametric Shallow Wave Simulation. URL http:
//software.intel.com/sites/billboard/
article—archive/real-time-parametric/.

32

Yingst M.; Alford J.R.; and Parberry 1., 2011. Sea Foam.
URL http://larc.unt.edu/ian/research/
seafoam/.

BIOGRAPHY

MARY YINGST was born and raised in Texas. She received
her BS in computer science in 2007, and is a recent gradu-
ate of the University of North Texas, College of Engineering
with a MS in Computer Science. She has participated in the
game development program at UNT for several years, fos-
tering her research interests which include graphics for game
development and real-time simulation. Her Erdos number is
4. Her home page is http://maryingst.net.

JENNIFER (GINGER) ALFORD is Director of Computer
Sciences at Trinity Valley School and President of Digital
Teapot, Inc, (www.digitalteapot.org). She holds a PhD in
electrical and computer engineering from the University of
Iowa with a specialization in image processing and particu-
lar expertise in halftoning. Her 25 years experience in image
processing and computer graphics include industrial research
and software development, serving as an technical consultant
and expert witness for intellectual property attorneys, college
and graduate level teaching, and several academic publica-
tions. Dedicated to research and education, she has partnered
with the Laboratory for Recreational Computing at the Uni-
versity of North Texas as a Research Associate.

TAN PARBERRY was born in London, England and emi-
grated as a child with his parents to Brisbane, Australia. Af-
ter obtaining his undergraduate degree there from the Uni-
versity of Queensland he returned to England for a PhD from
the University of Warwick. He has worked in academia in
the US ever since. He is currently a full Professor in the De-
partment of Computer Science and Engineering at the Uni-
versity of North Texas where he recently stepped down from
a 2-year term as Interim Department Chair. A pioneer of the
academic study of game development since 1993, his under-
graduate game development program was ranked in the top
50 out of 500 in North America by The Princeton Review in
2010. He is on the Editorial Boards of the Journal of Game
Design and Development Education, IEEE Transactions on
Computational Intelligence and Al in Games, and Entertain-
ment Computing, and he serves as the Secretary of the So-
ciety for the Advancement of the Science of Digital Games,
which organizes the Annual Foundations of Digital Games
conference. He is the author of 6 books and over 80 articles
over 30 years’ experience in academic research and educa-
tion. His h-index is 18 and his Erdds number is 3. He can
be contacted at ian@unt . edu or on Facebook. His home
pageis http://larc.unt.edu/ian.

MOTION
IN
GAMING

34

Experimental Soccer Robot Identification Using Light-Emitting Diodes

Eliska Ochodkova, Tomés Kocyan, Véclav Svaton, Jan Martinovic
FEECS, VSB — Technical University of Ostrava
Czech Republic
E-mail: {eliska.ochodkova,tomas.kocyan,vaclav.svaton,jan.martinovic}@vsb.cz

KEYWORDS
Robot Soccer, LED Diodes, Vision System, Lego Robots

ABSTRACT

Image analysis is one of the key elements of the archi-
tecture of each robot soccer game. Today used camera
systems differ mainly in a number of used cameras, a
place of their location or method used in image analysis.
One thing that all these systems have in common is sen-
sitivity to light. When lighting conditions are changed,
they must often perform a new calibration of the vision
system, or it is necessary to use adaptive vision system
that performs the calibration automatically. This ar-
ticle presents a new method of marking robots based
on LED diodes and familiarization with the advantages
and disadvantages that this new marking bring so that
the system was the least dependent on the change of
lighting.

INTRODUCTION

In a game of robot soccer, one of the most important
aspects of game play is image analysis. Its task is
to detect current position of robots and the ball, to-
gether with providing as much additional information
as possible, for example the robot’s orientation or its
role in the game. Image analysis deals with the prob-
lem of identification of these key features on the game
field, which include the method of distinguishing the
opponent’s robots from your own, detecting the ball
or the game field itself. This article includes a brief
overview of nowadays used camera system types and
methods of robot marking, which are used in robot
soccer. Furthermore, an own robot marking concept
is introduced and the motivation leading to the cre-
ation of it is presented. Probably the best-known rep-
resentative of robot soccer is an international organi-
zation called Robocup (http://small-size.informatik.uni
bremen.de (2011)), which organisms robot soccer tour-
naments in several categories. For example, in the
SSL (Small Size League) category, there compete small,
square-shaped robots of maximum height of 15 cm.
colour segmentation, a method using a reference ta-
ble with colour codes, is used for their identification.
The colour code is simply a colourful piece of paper at-

35

tached to the top of the robot. It clearly determines
its team membership. Based on the order or the or-
ganization of colours, it is possible to determine the
robot’s orientation or position, or whether it is a goal-
keeper, a defender, or a forward. The game field it-
self is black, which helps the camera system to easily
detect the colour-marked robot and the ball, which is
orange. Until 2010, the teams in the Robocup SSL
category were allowed to set up their own camera sys-
tem (Zickler et al. (2009)). That brought many prob-
lems like time-consuming camera adjusting and their
calibration, while the single camera systems did not
vary at all. The executive commission therefore made
a decision about the use of common camera system
called SSL-Vision (http://code.google.com/p/ssl vision
(2011)). The image is scanned by one common cam-
era system, then processed by image server and the
data acquired are distributed to both competing teams.
The next big name in the field of robot soccer is FIRA
(The Federation of international Robot-soccer Associ-
ations, (http://www.fira.net (2011))). FIRA, as well
as Robocup, organizes soccer tournaments divided into
several categories, from which NaroSot resembles the
SSL category very much. Each competing team has its
own camera system above the game field. However the
camera system’s position is limited to the central or the
team’s own part of the game field. Still, this method
brings the same problems as in Robocup.

CAMERAS

Important aspects, when it comes to image analysis,
are the number and the location of cameras themselves,
which scan the game field. The output of each cam-
era is an image of the game field, which is also an input
into yet-mentioned image analysis. There are several op-
tions, how to place a camera or a group of them. A typ-
ical example (as in Robocup and FIRA competitions) is
a single camera placed above the field in the middle of it;
the image from it is distributed to both teams. Another
option is using one or more cameras that are attached
above the team’s own half. One of the less-used ways
is for example scanning from the side of the field, when
the problems with acquired image perspective have to
be solved and the height of scanned objects needs to
be taken into account. The methods listed above are
used with static camera systems, whose position does

not change during the game. However that is not a
condition in dynamic camera systems class when the
camera position can change during the game, but the
image analysis has to consider camera position and the
height of objects scanned, as in the case of dealing with
perspective. These types of camera systems are used
mainly with centralized control, when we get informa-
tion about location of all objects currently on the game
field. Based on the information, it is decided what each
robot is supposed to do. The other type of control, au-
tonomous control (Vctor M. Gmez and Matelln (2003)),
does not use a central camera system. Instead, a camera
is attached to each robot, which makes decisions on its
own based on the information provided by camera. Fur-
ther ahead, we will focus mainly on centralized control,
for which our concept is made.

LIGHT

What all of the methods mentioned have in common is
their sensitivity to light. The aim of image analysis is
to detect the robots, the ball, or the game field in ev-
ery image. These objects are coloured differently from
each other. Commonly used methods of image analysis
include colour segmentation (Gerd Mayer and Kraet-
zschmar (2004)), detection of so called blobs (Sridharan
and Stone (2005)) or image thresholding (Gregor Kla-
nar and Karba (2001)). As the rules of competitions like
Robocup or FIRA say very clearly what light conditions
should be on the game field (Anders J. Johannson and
Balkenius (2002)), most of the teams tend to use the
option of the initial calibration of their camera system
rather than creating more sophisticated adaptive system
(Wyeth and Brown (2000)). It is necessary to do an ini-
tial camera system calibration in order to get as accurate
colour detection as possible, too.. That is typically a
manual detection of game field borders and the primary
robots and ball colour setting. However, this approach
includes a clear disadvantage, as any change in light-
ning on the game field can lead to a lower quality image
acquired by camera and subsequently to a more diffi-
cult detection of individual objects on the game field.
In such a case, a new calibration has to be done or a
mentioned adaptive system has to be used. The adap-
tive system is much less dependent on light conditions
and colours quality, but is much more demanding on the
concept itself. The motivation to create a new system
of robot marking is the effort to make a system as inde-
pendent on the light conditions as possible, like adaptive
systems, but also preserving the simplicity of the system
concept, like currently used camera systems.

LEGO AND LED

The concept presented by us focuses on centralized robot
control, therefore including one central camera system.
Instead of standard square-shaped robots, this concept
uses LEGO MINDSTORMS NXT robots (LegoNXT
(2011)). These are, because of their simplicity, used

36

Height 160mm
Width 150mm
Lenght 200mm
Weight 800g
Wheels base 87mm
Wheel diameter kola | 56mm

Table 1: Robot Parameters

Figure 1: Resulting Robot Design

for example in Robocup competition category for chil-
dren from 7 to 14 years of age (Lund and Pagliarini
(2000)). There is a detailed description of our concept,
which uses mentioned Lego robots together with colour
marking method made of LED diodes, in the following
chapters.

ROBOT CONSTRUCTION AND ROBOT
AND FIELD MARKING

For the construction of the robot football (hockey, floor-
ball) player, we used LEGO MINDSTORMS NXT con-
struction set. The robot look is inspired by a basic tribot
model. It is a wheeled robot using two engines (A, Fig.
1), enabling so called differential driving. In order to
stay stable, the robot is equipped with a small wheel
on the back (B, Fig. 1), which rotates, based on the
movement direction. From the third engine, a robot’s
hand was made by using gears. It is attached on the
right side of the robot and it is possible to attach e.g.
a hockey stick to it (E, Fig. 1). A touch sensor detects
whether the hockey stick returned back to its place or
not (F, Fig. 1). The Table 1 includes the final robot
construction parameters.

The MLCad tool (http://mlcad.lm-software.com) was
used to create a virtual model of a robot player. This
tool enables model construction using three projections
and can display the model in 3D view. For watch-
ing the final model, a tool such as LDWiew (LDView
(2011)) can be used then. The way of driving a LEGO
NXT robot was realized using Microsoft Robotics Devel-
oper Studio (MRDS (2011)). Microsoft includes service

for controlling several typed of robots and construction
sets, as well as LEGO NXT, in the basic installation of
MRDS. The whole architecture of MRDS is based on
services. The basic idea is the change of robot control
subject to subject of orchestration of individual services
representing the control logic or robot’s hardware (sen-
sors, driving units). The communication between the
control unit NXT Brick (C, Fig. 1) and a PC is pos-
sible only with using Bluetooth in MRDS. The NXT
control unit includes a programme providing commu-
nication with a PC, on which a control application is
hosted. On the PC, the LEGO NXT Brick application
provides communication with the robot.

A coordinate system with a start in the middle of the
game field was used for calculations. In the calibration
part of the testing application it is, considering further
calculations used for example for elimination of the shift
caused by diodes placed on the top of the robot, neces-
sary to set game field corners.

ROBOT MARKING

The robot’s colour marking is used for its identification
on the game field. Each robot is labelled with a code
consisting of four positions. Each one of them can be
coloured differently from the others. A camera then de-
tects robot’s codes and positions. The first colour is a
reference colour; every robot on the field has the same.
This colour guarantees a correct detection of a scanned
robot’s code. This position is also used as a reference to
determine the position of a robot. Therefore, the use of
this colour is limited to the first position only. The last
colour defines team. The second and the third colour
define robot’s number in the team. An example: a code
is used, using three colours, one of them being the ref-
erence one. There are two colours left for team number
definition, and two possible locations, which is 22 = 4,
which means that a team can have only four members.
The player’s number is set binaurally; one colour is re-
garded as logical 1 and the other one as a logical 0. It
is also possible to raise the number of positions in the
code. That would increase the number of possible com-
binations. The Table 2 presents the meanings of each
code position.

Position | Meaning
reference colour
team player identity

1.
2.
3.
4. | team color

Table 2: Position Meaning

To identify a maximum of four players in a team on the
game field, a code using four positions and three colours,
for example red, blue and green, is necessary. If red is
chosen as a reference colour, blue is a logical 0 and green
logical 1 then the code “red, blue, green, blue” stands

37

Figure 2: LED Modules

for the first team’s player number one. Other possible
player markings are summarized in Tab. 3.

Team | Player | Colour code
1 0 RBBB
1 1 RBGB
1 2 RGBB
1 3 RGGB
2 0 RBBG
2 1 RBGG
2 2 RGBG
2 3 RGGG

Table 3: Possible Marking with Three Colours (RGB)

The system described above is realized using a module
containing of four multicoloured LED diodes (D, Fig.
1). The module is made by printed circuit, which is at-
tached to the top of a robot. The diodes are attached
to the module using a precise bar, in which are the
diodes inserted. That allows an easy change of defec-
tive LED diodes and a possibility to test different LED
diode types. The module is powered by two batteries,
which provide the module a voltage of approximately
3V, and is set with potentiometers enabling voltage reg-
ulation for each LED diode. The regulation of diode
voltage decrease causes the LED diode brightness reg-
ulation. To determine which colour on a LED diode to
light, the module is equipped with a small DIP switch.
Two versions of this module were, gradually, created for
testing. The first module was used only for testing ap-
propriate diodes. The second module can be equipped
with four tricoloured LED diodes. Larger printed circuit
and DIP switch were used due to an increased number of
LED diodes outputs and potentiometers were changed
for classic micro potentiometers (Fig. 2).

By using suitable types of LED diodes, it was discov-
ered that diodes that are the easiest to recognize are

pure or made from milk glass, and have brightness of
1 — 4 candela. The advantage of those LED diodes is
that their colours also respond to colour channels of the
RGB model and therefore simplifying the following im-
age analysis.

ROBOT IDENTIFICATION

The algorithm describing robots position on the game
field has to solve several problems, using our method
(marking robot with LED diodes and placing the cam-
eras on sides of the field (Fig. 3)):

1. Detecting LED diodes in a camera image.

2. Distance distortion elimination using projective
transformation.

3. Elimination of shift caused by positioning LED
diodes on the top of a robot.

4. Getting a correct rotation and an ID of a robot.

The next part of this article deals with finding a colour
code representing a robot in a camera image. During
solving this task various colour models (RGB, HSV)
and parameters setting options were tested. As emerged
from these tests, the HSV model should be used due to
a better colour specification in case of bad light con-
ditions. The algorithm for locating colour blobs repre-
senting a robot in the image consists of the following
steps:

1. Processed image loading.
Setting the search parameters.
Dividing on colour levels according to HSV model.

Creating a mask for Saturation(S) and Value(V).

oL w

Selection of potentials blobs based on their colour
tone.

6. Mask application on potential blobs.

7. Blob filtration based on parameters.

The parameters for search are defined by a group of al-
lowed colours and bordering the search area. This bor-
dering corresponds with the game field area. These pa-
rameters are obtained in the calibration part of the ap-
plication. The camera image is divided into colour lev-
els. That creates three images in grey shades. These are
single-channel representations of individual HSV model
components. Points belonging to each level then rep-
resent component values in the particular image point.
The next step is to create a mask consisting of Satura-
tion (S) and Value (V) layers. The mask represents a
group of points having required brightness and intensity
values. The method for creating the mask assigns value

38

1 to a point in case its value is higher than the border;
otherwise the point is given value 0. The mask can be
displayed as an image, which contains white spots where
S and V reach the value required. The rest of the image
is black.

Localization of points with appropriate value of colour
tone H is carried out in a similar way. The method
used assigns value 1 to every point in an interval given,
while value 0 is given to points outside the interval. The
final blob map for a certain colour is made using a logi-
cal sum of a mask and a layer acquired in the previous
step. In order to obtain colour blobs it is essential to
choose blobs, which might represent LED diodes. The
criteria are: size, position and shape. Thanks to this,
blobs too large, reflections, points outside the game field
and points not having the brightness required, will be
removed. Several variations of testing were used. After
testing various LED diodes and the camera, experiments
with colour code identification analysis took place, us-
ing static pictures and later video. These tests were
conducted in various light conditions and with varied
camera positions. In dark, the method is very success-
ful. In case of a high concentration of brightness in the
image, the algorithm may evaluate some other parts of a
robot as a LED diode representation. Robot consists of,
for example, white shiny components such as the control
unit, which could be identified as a LED diode. One of
the solutions was to cover these parts with paper.

The disadvantage is that the middle of the diode shines
with white light and the colour chosen is visible only on
the edges. This problem was the worst at blue colour.
Another problem is the relatively small size of the diodes
compared to the total camera image size. If the camera
captures the game field from a too sharp angle, some
parts of the robot can appear as diodes. This effect
happens the most to red colour, as red is the commonly
used colour for LEGO parts. During searching, the algo-
rithm tries to solve the problems described using diode
size and shape check. Besides that, a secondary filtra-
tion of points found, when points too far away from the
others are eliminated, takes place.

CAMERA POSITION AND GAME FIELD
SCANNING

As the game field is scanned by the camera sideways
and not from above (Fig. 3), the final image is affected
by projective transformation (the perspective). The ob-
jects farther from the camera then look closer to each
other, more than they actually are. That results in in-
accurate distance measuring and, therefore, inaccurate
setting of the robot’s position. That is why it is essential
to remove this effect.

For this reason it is, first of all, necessary to find out,
in which particular way the image is deformed by the
camera, and then describe this transformation, which
will convert the image into the form required. That

camera

robot

[

Figure 3: Camera Position

i

Figure 4: Pinhole Camera Model

is possible by creating a transformation matrix by us-
ing the knowledge of the position of four points in the
source (deformed) image and their corresponding posi-
tion in the target (non-deformed) image. In practice
that means creating the matrix, which is able to map
the coordinates from the deformed image to the real co-
ordinates of a field sized.

CAMERA MODEL

The relation between an object in the real world (3D
space) and its image acquired by the camera (2D space)
is described by the so called pinhole camera model. In
this case the camera is represented by a box, which has a
hole in one side. The objects are then projected through
this hole on the back side of the box (Fig. 4). In case of
the basic model, an ideal camera is used; the size of the
hole is modeled as a single point, which all light rays go
through.

In the real world, however, the model is more compli-
cated, because it is distorted not only by the camera
model, but it is influenced by the imperfections of the
lenses as well. This distortion is evident especially on
the edges of the image. Despite that, this model gives a
good idea of the work of the camera. From the figure 5,
it is clear that the image taken by the camera does not
provide completely accurate information about the real
object. This projection could be described as a projec-
tive transformation followed by a 180° rotation of the
object. The rotation itself is not important, as the cam-
era output is often turned back of the angle. As for
image analysis, it is important to consider the impact of
this projection on the image acquired.

39

o |

Figure 5: Geometric Interpretation of Pinhole Camera
Model

PROJECTIVE TRANSFORMATION

Projective transformation falls into a group of geomet-
rical image transformations (changing the shape or the
size of the object). This transformation keeps the linear-
ity of the structures transformed (lines transform into
lines), but what it does not keep is their parallel. This
effect is well noticeable in the Fig. 5, from which it is ev-
ident, that the ratio of the distances between the axis Z
and the points P1 and P2 was not preserved at all. Pro-
jective transformation is used especially in cases which,
in some way, relate to central projection. An example
of a practical task is a transformation, using which the
image should be deformed in such a way, that it would
seem that it is placed on a generally placed plane in
space, which we display by central projection. The sec-
ond typical use is the opposite of the method described
above; it is used for removing the deformation caused
by central projection. This deformation removal is ex-
actly what needs to be done in order to identify robots
on the field correctly. Since the correct size of the field
is known (130 x 150 c¢m), the deformed image from the
camera will be transformed in such a way that the co-
ordinates from the image are mapped on the particular
positions on the field. In order to create a transforma-
tion matrix, we have the following options: to run an
algorithm for finding a player’s identity and then trans-
form the acquired coordinates of the reference point, or,
on the contrary, to transform the entire source image
into the target image and then run the algorithm for
reading the player’s identification code reading.

HOMOGENOUS COORDINATES

Homogenous coordinates are used in the description
of projective transformations. This coordinate system
is used in projective geometry instead of the classical
Cartesian coordinate system. Its main advantage is the
ability to describe a point placed in the infinity using
finite coordinates. That represents a key advantage for
projective geometry, as it enables matrix operations,
which could not be performed with points in the infinity
otherwise. Homogenous coordinates describe a point in
an n—dimensional affine space as a direction in an affili-
ated (n+ 1)—dimensional vector space. As an example,

a two-dimensional affine space could be thought. The
homogenous coordinates of the point (z,y) belonging to
the space will be: wzx,wy,w. As w, any real number
can be chosen, but it must be different from zero. In a
homogenous coordinate system, a point is represented
by an infinite number of vectors belonging to an affil-
iated vector space. In practice, it is recommended to
choose w = 1 as the final triple is (z,y,1). A conversion
from homogenous to affine coordinates can be achieved
by the opposite process so that is by dividing individual
vector components by the last component.

ELIMINATION OF PROJECTIVE TRANSFORMA-
TION

To eliminate the distortion it is necessary to describe
a transformation, which can convert the image into the
required (non-distorted) form. It is realized through a
matrix, which can be created using the knowledge of
four points in the source image and their positions pro-
jected into the target image. The relation describing the
projective transformations of a point with affine coordi-
nates (z,y) is expressed in the following way:

® P11 P12 D13 x
Y | = | pa1 P22 Po3 Y
w P31 P32 D33 1

The relation shows that the homogenous coordi-
nates of the point after the transformation will be
(o(z,y),¥(x,y),w(x,y)). For their conversion to affine
coordinates, it stands

2 = SO(x, y)/w(xay)7
y' =(z,y)/w(@,y).

The projective transformation itself is described by
nine values pi1,..p33. To acquire them, the knowl-
edge of two fours of points mentioned above is needed.
Points in the input image can be named for example
Al AL, AL A) and the points in the output image could
be named Ai, As, A3, A4. In addition, it is essential
to establish the marking P, = (p11,p12,p13)7, P2 =
(p21,p22,p23)", P3 = (pa1,ps2,p33)” . Xi = (wi,9:,1)7.
Based on the relation defining projective transforma-
tion, we get

!l T
W;T; PlT
1,0 _)
’
w; Py

It is possible to derive w}, = P{ Xi from the third equa-
tion of the relation. After appointing to the first two
equations and an adjustment, we get

P,
P =0
Py

X7 o

' XT
0 X;T Y :|

_y{XT

As each one of the points contributes to the finding
of the transformation matrix with two equations, eight

40

camera
o,

Ny
R

T S

o

game field

Figure 6: Interaction Between Robot Height and Cam-
era Position

equations with nine unknowns are created. And since
the transformation matrix can be multiplied by any
number except zero without the change of the result,
the value of one of the elements can be set as any value
(for example 1). The difficulty of this solution is a sit-
uation, when the real value of this element equals zero.
In that case the equation system would be insoluble.

THE EFFECT OF ROBOT’S HEIGHT ON THE CAL-
CULATION OF ITS POSITION

Since the camera scanning the field can be placed on
one side of the field and the position is calculated from
positions of LED diodes found in the image, the physical
location of these diodes on the robot has to be taken into
consideration. In our case the module attending to LED
diodes is placed on the top of the robot (Fig. 1).

From the definition of the pinhole camera model, it is
evident that the height of a robot has a fundamental im-
pact on LED diodes projection in the image captured.
This situation is shown in the Fig. 6. In the image cap-
tured by the camera, the position of diodes seems to be
out of the game field, even though the robot is located
on its edge. If this problem stayed unsolved, the algo-
rithm would not be able to find the accurate position of
the robot. The accuracy of finding the position would
then depend on the physical location of the camera. If
the camera captured the image from above, the coor-
dinates acquired would be relatively accurate, though
the accuracy would decrease with bigger distance of the
robot from the camera. With camera placed as in the
Fig. 6, all of the positions would be set incorrectly.

In case of neglecting the effect described above, it would
be assumed that the LED diodes are located on a plane,
which is formed of the field. The solution to this problem
is to find a plane, which is parallel to the field, but also
shifted by the axis Z upwards by the value equal to the
height of the robot itself. This plane is shown in the
Fig. 7.

SOLUTION OPTIONS

One of the solutions proposed is to place lighthouses
(or other well-recognizable marking) on the edges of the
field in height which is equal to the height of the robot.

parallel plane

game field

Figure 7: Plane Containing LEDs

An advantage of such solution is its relative simplicity,
as it is sufficient to get the position of the lighthouses
in the image (using the algorithm for finding blobs) and
then to continue with the elimination of perspective pro-
jection. The disadvantage is, however, the necessity to
adjust the field every time, when the robot’s height is
changed. The second solution is to mark the corners of
the plane in the calibration part of the application. The
problem of this method is the difficult determination of
accurate positions of these points. Besides, it is a man-
ual process which requires a correct estimation of the
distances in the image and may, therefore, unnecessar-
ily bring a mistake to the transformation. Our solution
consists in marking the field corners manually in the cal-
ibration application. The plane containing LED diodes
is then automatically calculated. The manual corner
marking is much easier than estimating, how high should
be the diodes located. Moreover, no further game field
modification is needed.

IMPLEMENTED PROCESS OF FINDING THE
PLANE

The process implemented to our system could be sum-
marized in the following steps:

1. Detection of physical proportions of the field in the
real world, including its length, width, position,
goal size etc.

2. Detection of the robot’s height and therefore the
value of shift in the axis Z of a virtual plane with
LED diodes.

3. Acquiring coordinates of the corners of the game
field in the image using mouse click in the calibra-
tion part of the application.

4. Camera matrix calculation.

5. Calculation of coordinates of points bordering the
virtual plane with LED diodes.

The first step is acquiring the coordinates, which repre-
sent all the necessary points in the real world. In order
to acquire the coordinates of the virtual reality located
above the field, it is only necessary to add the robot’s

41

height to the Z coordinate of individual vertices. The
coordinate of game field corners is acquired using the
calibration part of the application. It is a manual part,
in which the user marks the corners in the camera im-
age by mouse clicking. The following matrix calculation
is described above. Using this matrix, it is possible to
determine where will be the points bounding the plane
with LED diodes. 3D coordinates of individual field cor-
ners and their 2D representation acquired from the user
in the calibration part serve as inputs. The last step
is multiplying the matrix with individual points located
above the corners of the game field. The result of this
multiplying is a representation of points in the image
set using homogenous coordinates. The coordinates ac-
quired this way are then used in the algorithm for find-
ing blobs in the image, where they serve as boundaries
of the area, in which should be the blobs searched for.
Among other things, they are used in the algorithm for
eliminating perspective projection.

DETERMINATION OF ROBOT’S CODE, POSITION
AND TURNING

After processing the image by individual algorithms, the
application gets a group of light points of various colours
and their position in relation to the field. The last step
which needs to be done is therefore reading the robot
code, thereby acquiring their positions on the field to-
gether with their turning direction. The target of this
algorithm is creating appropriate n—tuples, where n is
the number of diodes used to identify the robot. Af-
ter creating this n—tuple it is possible, thanks to the
knowledge of the meaning of individual diodes, to de-
rive its explicit identifier and turning. The group ac-
quired may also include points, which do not represent
diodes. These can be for example mistakes of the al-
gorithm for colourful blob finding in case of bad light
conditions. For this reason it is necessary to check also
the distance between points found and the mutual an-
gle, which the lines going through the pair of points and
the X axis hold. In case the diodes belong to a sin-
gle robot, the angles should not be very different. The
algorithm starts with a choice of one of the reference
points (reference diodes) and then looks for the nearest
non-reference point, which meets the distance require-
ment. After locating such points it continues to look for
the next non-reference point until the whole n—tuple is
found. It is also checked if the points found lie approx-
imately in a line. In case it is not managed to decode
that n—tuple successfully, looking for the next reference
point follows.

As the position of the robot itself, the centre of the
line segment found is chosen (Fig. 8). The orientation
is presented as the angle between a line (going through
the first ant the n—th point found) and the axis X, from
which 90° is subtracted.

Two robots on the game field are shown on Fig. 9.
The game field is not large enough for more then two

Figure 8: Resulting Robot Position and Rotation

Figure 9: Two Robots

players in each team. However, presented method does
not depend on the game field size or robots number but
on the quality of image analysis.

CONCLUSION

This article describes a new possible way of marking
robots in a robot soccer game. Our presented method
uses colored LED diodes for easier identification of
robots on the field and also includes a dynamic camera
system for image recognition. Because the camera is po-
sitioned on the side of the field instead of commonly used
central position above the field there is also introduced
the method used to remove distortion caused by pro-
jective transformations. By replacing traditional paper-
based labeling for light-emmiting diodes we can achieve
significantly better results in the detection of objects
during image analysis. Thanks to this light their iden-
tification in the acquired image is relatively easy even
though the game takes place in a room with not too
good lighting conditions. Their use brings completely
new possibilities for image analysis as well as for the
actual robot soccer game. For example if we use LED
diodes to mark both the robots and the field and also

42

found a way how to create a glowing ball it is not hard
to imagine a game taking place in total darkness. For
future work we want to use diodes not only for Lego
robots but also in Robocup SSL category so we could
create whole game based on this marking system using
LED diodes.

REFERENCES

Anders J. Johannson K.R.G. and Balkenius C., 2002.
Lighting of RoboCup Games. LUCS.

Gerd Mayer H.U. and Kraetzschmar G.K., 2004. Play-
ing Robot Soccer under Natural Light: A Case Study.
7th International Workshop on RoboCup 2003 (Robot
World Cup Soccer Games and Conferences), Lecture
Notes in Artificial Intelligence.

Gregor Klanar Omar Orqueda D.M. and Karba R.,
2001. Robust and efficient vision system for mobile
robots control - application to soccer robots. FElek-
trotehniki vestnik 68(5).

http://code.google.com/p/ssl vision, 2011. SSL-Vision
Developer Team: RoboCup Small Size League Shared
Vision System. Project Web Site.

http://small-size.informatik.uni ~ bremen.de, 2011.

RoboCup Small Size League: SSL Web Site.

http://www.fira.net, 2011. Federation of International
Robot-soccer Association: FIRA Web Site.

LDView, 2011. LDView. URL http://ldview.
sourceforge.net. (2011.07.13).

LegoNXT, 2011. LegoNXT. URL http://mindstorms.
lego.com. (2011.07.13).

Lund H.H. and Pagliarini L., 2000. RoboCup Jr. with
Lego Mindstorms. IEEE International Conference on
Robotics and Automation.

MRDS, 2011. MRDS. URL http://msdn.microsoft.
com/en-us/library/bb881626.aspx. (2011.07.13).

Sridharan M. and Stone P., 2005. Real-Time Vision on
a Mobile Robot Platform. IEEE/RSJ International
Conference on Intelligent Robots and Systems.

Vctor M. Gmez Jos M. Canas F.S.M. and Matelln
V., 2003. Vision-based schemas for an autonomous
robotic soccer player. IV Workshop de Agentes Fsicos
WAF-20085.

Wyeth G. and Brown B., 2000. Robust Adaptive Vision
for Robot Soccer. IEEFE International Conference on
Robotics and Automation.

Zickler S.; Laue T.; Birbach O.; Wongphati M.; and
Veloso M., 2009. SSL-Vision: The Shared Vision Sys-
tem for the RoboCup Small Size League. RoboCup
2009: Robot Soccer World Cup XIII.

SERIOUS
GAMING

44

DIDACTIC GAMES SYSTEM:
FIFTEEN YEARS OF DEVELOPMENT
IN MILITARY SIMULATION

Gustavo Henrique Soares de Oliveira Lyrio !
Roberto de Beauclair Seixas 2

'PUC-RioPontifical Catholic University
TECGRAF-Computer Graphics Technology Group
Rua Marqués de Sao Vicente 225, 22453-900 Rio de Janeiro, RJ, Brazil

2IMPA-National Institute for Pure and Applied Mathematics
Estrada Dona Castorina 110, 22460-320 Rio de Janeiro, RJ, Brazil

emails: glyrio@tecgraf.puc-rio.br
rbs@impa.br

KEYWORDS
Warfare Games, Military Modeling and Simulation,

ABSTRACT

This work has the goal of presenting the author’s ex-
perience through the last fifteen years developing mili-
tary simulation games for the Brazilian Marine Corps.
Starting from the birth of the idea of a didactic training
game, we pass through the problems found and the so-
lutions adopted to nowadays, where the system covers
all kinds of attributions that a Brazilian Marine officer
could receive.

INTRODUCTION

The history of war games are as old as the history of
organized conflicts. he first use of a war game as a
teaching tool is said to be a game developed by the
Prussian Guard artillery lieutenant George Heinrich
Rudolf Von Reisswitz and his father, Reisswitz Baron,
to teach Prussian Guard officers. (Wilbur 1995)

In Brazil, the first notice of wargamming came from a
small volume stored in Escola de Guerra Naval (“Naval
War School”) library called “Como jogar o Jogo de
Guerra Naval” (“How to play the Naval War Game”)
dated from 1915. Since that year, war gaming was a
reality to Brazilian Navy officers, first as sand boxes,
board games, and then maps and computers after 1985.

The Brazilian Marine Corps, which is a division of the
Brazilian Navy had foreseen the necessity of their own
didactic war game system in 1997. Then, a partnership
program was started with Tecgraf/PUC-Rio to its
development.

45

The next sessions will present the journey through this
years of civilian and military joint work, making a
overview of the system developed, the obstacles found
and the solutions adopted to make this partnership a
case of success through all this years.

THE CHALLENGE OF THE FIRST YEARS

It’s common sense that the first step is always the hard
one. That was truth in the case of the development of
a Didactic Game System that could achieve the goals
of the Brazilian Marine Corps. As said above, in 1997,
other systems that already use computer simulation
were running in the Brazilian Navy, but nothing like
the Marine Corps had expected. The system running
at the Naval War School was conceived (and still is)
to teach sea operations, which means flat surfaces, low
detailed maps and lots of simplifications.

Those simplifications could not be applied when taking
trainment of Marine officers in consideration. The mod-
eling should start by the most common operation, which
is also the most complex of all military maneuvers: Am-
phibious Operations. This kind of warfare means the use
of naval firepower, logistics and strategy to project mil-
itary power ashore and allow the landing of troops in a
non-contiguous enemy-held terrain.

The idea was that the new system should be able to
allow the training of Marine officers in Amphibious
Operations with low cost, avoiding the necessity of
sending troops to real terrain. With that in mind, the
system’s specifications became our first problem. The
request for development of the Marines’ new system
came with a lot of complex, yet relevant, demands like
3D real terrain, high detailed land with different kinds

of soil, vegetation, climatic and astronomic conditions
and everything that could affect a ground war theater.

In technical terms, the system demands are mainly a
high detailed GIS (Geographic Information System)
software with large real 3D terrain models (currently 21
layers of information). Everything should be persistent
and consistent with the way Brazilian Marines conduct
their operations making the system able to be compared
to real training. All that just in 1997!

When the first contact between the Brazilian Marine
Corps and Tecgraf/PUC-Rio was made, the idea was
evaluate if there were technology available in Brazil to
do something as huge as such system demanded. Then,
a PhD was requested to know the system specification
and to write a report either indicating which research
institution could perform such task or suggesting the
acquisition an existing foreigner system.

After 3 months, the first version of what would became
the Didactic Games System was born. The Marines
became satisfied with what they saw and decide to sign
the first partnership contract and proceed with the
development.

In this version (Figure 1) we presented some units po-
sitioned, using UTM (Universal Transverse Mercator)
coordinates, in a real terrain that were able to move,
see each other and interact thought mathematical mod-
els based on Lanchester equations to determine casual-
ties. This system of differential equations is based on the
principle of losses imposed to one force are proportional
to the number of elements in the other side.

—aY
d P
T o
by
dy = %
Y= "

Lanchester differential equations Where a and b are the
efficacy coefficients of the forces Y and X, respectively.

all weapons

>

i=1

ACP = (qty(i)cad(i)let(i))

Combat power equation where ¢ty is the amount of
weapons, cad is the cadence of the weapon and let is
the lethality of the weapon when using specific ammu-
nition.

The main drawback in using Lanchesters model is the

46

fact that the correct values of a and b depend on:
weapons characteristics, elements’ capacity of reaction
and on command and control. We choose to made our
engagement model determining how the accumulated
combat power (ACP) of each element will be calculated
which lead us to the previous equation.

The system was composed by four different components:
database, geoprocessing, engine and user interface. Af-
ter a few years using commercial softwares, was nec-
essary to reduce budget to spend more with hardware
update. The natural decision was to migrate to free
software. So we chose Linux as the operational system.

Figure 1: Screenshot displaying the first version of sys-
tem interface.

For the database, the first selection was Informix be-
cause at that time it was also free. The user interface
received a special treatment due to the fact the officers
that would use the system were not familiar with Linux.
So we agreed to make it for Windows but with the re-
striction that it had to be portable further.

Didactic Games System Architecture

Geoprocessing Database User Interface

engine

Figure 2: Schema illustrating the first system architec-
ture.

The work on the following years was something unex-
pected for both parts. The Marines start to teach us
how to be a Marine and, in return, we start to teach
then how to be software developers.

Figure 3: The goal of the project was to make everything
available to the officers inside the simulation.

SUCCESS BRINGS MORE WORK AND EX-
TRA RESPONSIBILITY

In 2002, with the system fully operative, the goal was
achieved. The Didactic Games System became reality
and it has been used even by the Brazilian Army in
joint exercises.

Later came the idea of extend it to cover other than
amphibious operations. The first change requested
was that the system should cover both Amphibious
and Riverine Operations. The choice for Riverine
operations prior to other Marines’ attributions was
due to the fact that a large part of Brazilian territory
borders is covered by the Amazon Basin, the world’s
largest river basin and also the world’s largest rain
forest and Pantanal(both riverine terrain), making it
a constant hideout for drug dialers and paramilitary
forces. Also the local population suffers from a lot of
necessities (like basic health service) due to difficult
access to this area by the Brazilian Government. All
that characteristics made the Riverine Operations the
second most common operation for Brazilian Marines,
and our second modeling goal.

Adapting the system to Riverine Operations was an
entirely new challenge. This because while the first
system had no predecessors in Brazil, in the case
of riverine operation simulation systems the authors
didn’t know about the public existence of such a system
anywhere in the World.

The responsibility increased because the partnership
has proved that if it was possible to build a system
to cover Amphibious Operations and to publish pa-
pers about the technology been used, it would be also
possible for us to extend it to cover Riverine Operations.

Research results achieved by the project until 2002 were
1 Phd thesis, 4 master dissertations and 8 published
papers.

47

The first and most radical change that we have made
in this phase of development was to change the engine
development language from INFORMIX-4GL to Lua.
This decision was taken due to the necessity of the
system to be portable, and INFORMIX-4GL had been
a language that came from the choice of a particular
database system. The choice for Lua was very natural
because we were already using it to build user inter-
faces. In addition, Lua’s fast curve of learning and
the fact that it was developed inside Tecgraf/PUC-Rio
helped us in the choice of the system development
language. So, we gained speed in new developers
training and in technology transference to the Marines.
Thus, we kept the entire system wrote in a sin-
gle language, reducing the specialization requirements
for new developers in order to be involved in the project.

That was a blessed decision because few months later
Informix was brought by IBM and we decided to change
the Didactic Games System database to PostgreSQL.
Following, PostgreSQL started to be part on all Linux
distributions providing kernel integration, which turned
the communications between the interface and engine
even faster. Also we detached the geoprocessing com-
ponent from the engine and moved it to pre-processing
phase, with that we made the engine, the database and
the user interface independent from each other.

Another change required was relative to the terrain.
In Riverine Operations terrain changes completely
when compared with Amphibious Operations. The
terrain may change even when comparing different
riverine terrains, like Amazon (mostly composed by
dense jungle and rivers) and Pantanal (a huge plain
of flooding areas), for instance. Besides the terrain
characteristics, it was necessary to improve the terrain
details due to the fact that in Riverine Operations the
troops are divided into small fractions. Add to that the
difficulty in obtaining detailed digital data of this kind
of region, such as satellite images.

The solution came in applying a quantization algorithm
to the satellite images to reduce the colors to the number
of different types of soil and vegetation needed in the
simulation.

Additional adaptations were made to turn the previous
version of the system capable of simulating a riverine
operation. It worth to mention here the modeling of
the local population. Its role is extremely important in
this kind of operation due to the fact that the guerrilla
soldiers usually are recruited in the local people,
making then look like, dress like and speak like local
people. The only difference between a local citizen and
a guerrilla soldier in this kind of area is the fact that the
soldier is carrying a weapon. The guerrilla knows and
makes use of it. They hide their weapons in the jungle,

ipo) GRUCON

Figure 4: The Riverine Operations interface showing en-
emy, friend and neutral elements spread over the Ama-
ZON.

in the boats, and try to look like innocent persons
walking side by side with the population. That fact
made the local population a must have characteristic in
riverine operations simulation.(Figure 4).

With the necessity of modeling the local population,
came the demand of some artificial intelligence to take
control of this new role (neutral). Until now the system
had two well defined sides (friend and enemy) each one
controlled by users. To accomplish that, we developed
an artificial intelligence library based on agents with
predefined behavior called MARE (Modeling Agents for
Real Environments) (Lyrio and Seixas 2007), whose ob-
jective is not only to take care of the local population
in Riverine Operations, but also to deal with the fact
that the Marines, at least in Brazil, are not prepared to
defend (Figure 5). In other words, the officers who took
the role of the enemy during the simulations wasted part
of their training time with a task that they usually were
not trained for.

It is important to notice that we had to develop a new
engagement model over the Lanchester equations in or-
der to adapt it to guerrilla and also to respect the re-
lationship between friend and enemy combat power of
10 to 1, adopted when taking non-conventional enemy
forces in consideration (to be consistent with doctrinal
rules). To achieve that we added a factor represent-
ing the number soldiers in the friend troop to the first
Lanchester equation that would represent the guerrilla
and leaved the second one unchanged to the conven-
tional force.

In 2004 we published a paper and delivered to the
Marines the first version of the Didactic Games Sys-
tem supporting Riverine Operations. (Lyrio and Seixas
2004)

jogo PRs Dificuidade

Xizsa8 I Bt 8, z00m | & zoomin | & zoomout|

iy
»
"
-
?

1GC1Pelin_Z
1Peiin_Z
2Pelin_Z
3Pelin_Z
apelini_z
sPelini_Z
AT271.Z
AT27.2.7
AT27.3.2
AT27.4 7
Bia0105in|_Z
ETPeiin_Z
PeICCIni_Z

coordenadas MACAE ALTE EM PAUSA 1a PIR 99/99/9999 9:99

Figure 5: Automatic defense interface using Brazilian
Navy graduations to define difficulty levels.

COVERING ALL THE DUTIES - INCURSION
AND OPERATIONS OTHER THAN WAR

After the success achieved with the Riverine Operations
simulator, we receive the request do extend the system
even further covering all the duties a marine officer
could receive. The goal was then to model Incursion
and Operations Other Than War (OOTW), which
means urban terrain operations.

In few words, Incursion is an operation where the
marines have to enter a hostile territory, do some
fast actions like hostages rescue or target elimination,
and leave. We can take as example the action in the
Japanese embassy hostage crisis in Lima, Peru.

By operations other than war we understand the
actions to keep or recover peace in a territory, in special
or critical moments. Again, as an example we can take
the actions recently made by the United Nations (UN)
in Haiti.

We put this two apparently different kinds of operation
in a single session due to the fact that their modeling
and the difficulties that we found were common in both
cases. The most important difficulty that appeared
during the process of adapting the system was to deal
with constructions.

In the previous operations a construction was not rele-
vant because the actions were all taken in countryside.
Now the constructions play a main role in the scenario.
For instance, lets take our first example and imagine

—aXY

dr = 7
—bX
=5
dy _ b
dx ~ aY
dy b

aY?(t) = 2bx(t) + M
or yet

M = ay? — 2bx

If M < 0 then the guerrilla wins. If M > 0 the marines
win. If M = 0 there is a tie between the opposite forces.
For usual values of a and b, one can conclude that:

y |2

z Vazx
or

y~ 10z

Modified Lanchester differential equations for guerrilla
and conventional forces respectively. Note the new fac-
tor X on the first equation.

that an embassy was taken by hostiles and the marines
need to rescue the people that were working there during
the attack. The whole action will occur in the embassy
neighborhood. The entire area is now extremely impor-
tant to the simulation as the officers need to decide how
to block streets, where to take position in nearby build-
ings, how to inspect citizens that pass through the area
and so on (Figure 6). There is a movie called Black
Hawk Down that shows how complex may be an Incur-
sion.

In Operations Other Then War, the construction play
similar role. The goal in this kind of operation is to
help citizens oppressed by a local force, a guerrilla or
after a disaster.

Constructions became a problem because, as far as we
know, there is no available data showing the buildings
that compound the Brazilian marines training areas.
To overtake this difficult we made, by hand, a model
of each block of the urban training areas estimating an
average height based on the amount of houses, buildings
and other constructions on the block (Figure 7). The
results, despite the fact that are far from reality, was
accepted by the Brazilian Marines as a temporary
solution, making possible to the instructors to check
if the officers were taking correct actions during the
operation training.

49

Controle Elementos de Combate barque Comunicagbes Logistica Localidades Relatorios

1PelFE_A
1HE_A
2Turba_N
3Turba_N
36CCv_Z
26CCV_Z
16cCv_Z
PCCV Z
1Turba_N

2PeICDC_A
4Turba_N

Patrutha

Engajamento

Parar

(213216, 523440.0) (31405 533160/30 61 EM ANGAMENTO 10A3/03 06 4557 1

Figure 6: Incursion and OOTW interface modification
using Google Maps image to display city blocks.

With the demand for constructions other obstacles
arose, as terrain details, for instance. If we had trouble
with terrain details in Riverine Operations, the problem
now became even worst. In Riverine Operations the
terrain was open and mobility was only affected by
vegetation permissiveness, so a unit moving along the
jungle would have it’s velocity changing depending
on the vegetation and soil type. Now, with the in-
troduction of constructions, the lack of details about
streets and alleys makes the movement during game
almost impossible. It’s true that a lot of tools like Bing
and Google Maps have made incredible street details
of almost everywhere in the world. The problem is
that such tools do not provide other information like
elevation, soil, vegetation, hydrography and other geo-
referenced layers that the system need to work properly.

Other change that deserves to be mentioned here was
the necessity to model a new role in the simulation.
Until the development of OOTW the enemy was well
defined and lethal force was always used. Now, in most
cases where an OOTW simulation is requested we have
a role that is played not by enemy, but by unpleased
or oppressed groups of citizen that protest or try to
satisfy their basic necessities that the government
isn’t providing. The first approach was to use the
local citizens already modeled in Riverine Operations.
Despite the fact that in OOTW citizens have an entire
new behavior, that wasn’t an lost effort.

Most of the time, the riverine citizens are not taking
part in the conflict. But, in a particular case they do.
Guerrilla some times coerce local people and that is
very close to what happens in OOTW. The difference is
that when a riverine person is coerced by the guerrilla

they became part of it and the citizens in OOTW
don’t. In OOTW mostly of times people goals are
(requested by enemy forces, or to protest) to disturb the
order and make chaos in the neighborhood but they are
mostly not armed and don’t intent to engage the troops.

That brought to us the next improvement in the
Didactic Games System. The troops needed to restrain
the disorder caused by civilians, something we never
thought about during all this developing years due to
the well defined enemy behavior in the simulation: the
use of non-lethal weapons.

After some discussion we agreed that the best way to
insert non-lethal weapons in the simulation was to dis-
tinguish it from the lethal ones by the way it affects a
target. A surprising conclusion was that it’s not so dif-
ferent. The explanation is that when a enemy troop is
attacked by lethal weapons it receives casualties. How-
ever, when a mob receives a non-lethal attack it also
lose men, the difference is that instead of die, they run
away and may reorganize in other place after a while.
So, based in that conclusion we modeled the non-lethal
engagement using exactly the same engagement model
we use for lethal except for the fact that the term lethal-
ity, in this case, is named power of dispersion. Once a
mob lose a percentage of its members (meaning they run
away, not died), after some time, we “transfer” this mob
to a new position in the terrain near the enemy head-
quarters in order to simulate a reorganization. With
that idea we could insert non-lethal weapons and mobs
in the simulation with almost no cost.

all weapons

D

i=1

ACP = (qty(i)cad(i)disp(i))

Combat power equation used in non-lethal engagements.
Note that the equations is the same as the one presented
before expect for the fact that lethality was replaced by
dispersion (disp) to represent the power of dispersion of
the weapon when using non-lethal ammunition.

TURNING THE PROJECT TO THE WEB

During 2008 we have foreseen the possibility of using
web 2.0 tools to help to overcome some common
problems found during all this years of development.
The first problem was how to deal with 3D terrain
models of real world areas. We realize that this kind
of model would not only demand a detailed model of a
real area of the earth but also models of the structures
and units that act over this area.

Fortunately, in the same year, Google released the

50

BB Visualizacao SJD do GruCon
File Edit View

[J & Vegetacao
[[Cutvas de Nix

[0 & TrafChu

B forca especial
& navio

¥ TrafSec
I roda
£ lagarta
pe
& anfibio
B8 forca especial
& navio

[0 & Curvas Hipso
[] & Construcoes

[& Altimetria
< >

(729860, 27024)

Figure 7: Trafficability map displaying the adopted so-
lution of treating blocks instead of each construction.

Google earth API, which allow developers to display
data from Google Earth inside web page. So we choose
to use this API and got promising results.

Another issue was how to model troops communication
during the simulation with all its characteristics and
difficulties like statics, interferences and electronic
warfare. Again a solution was found in a web 2.0 tool.
In this case we choose to work with Team Speak SDK
that became popular in Brazil due to the Counter
Strike game, so it was a natural first choice. We also
considered that Skype could do the job.

The last problem we faced was related to an user’s
complain about the lack of ways of keeping track of
their units actions during the simulation. The goal of
keeping track of units is to permit debriefs where users
should be able to discuss wrong line of actions, propose
improvements or even show a great maneuver that all
other users should take notice. Our line of action in
this case was to create a micro blog account for each
unit where the units by itself post which actions were
taken in the simulation, producing a real time tracker
of all the simulation unit by unit. The tool chosen here
was Twitter.

A paper called REAL-TIME WARFARE SIMULA-
TION GOES WEB 2.0 was published in 2009 detailing
the whole experience. (Lyrio and Seixas 2009)

CONCLUSION

After fifteen years of development we were able to extend
the main idea of a simulation system to help training
marine officers in Amphibious Operations into a system
covering all the Brazilian Marine Corps assignments.
The system is capable of simulating climatic and as-
tronomical conditions, movement, communications, fire
support, aerial and anti-aerial support, logistics, engi-
neering, non-lethal weapons, electronic warfare, anti-
aerial, citizens, mobs, guerrilla, enticement, coercion,
endemic diseases and works with the following addi-
tional systems and libraries:

o Artificial Intelligence library M.A.R.E.
e Automatic Defense System
e Decision Making Tool to Military Planning

e Maneuver and Attrition Warfare Simulation Sys-
tem

e Command and Control Remotely Monitor System

e 3D Aerial Reconnaissance System

The first conclusion that we take from all this years
of development is that the correct choice of the archi-
tecture is fundamental. As we mentioned before, we
had to replace each of the three parts that compound
the Didactic Games System during along these years
in different times, and the choice of having this parts
independent from each other has made it possible with
just a few extra work.

We also learned that having a portable system is
important. As the news of the system success reached
different locations inside the Brazilian Navy, we received
requests to move the entire system to different loca-
tions with different hardware and software architectures.

Finally, and perhaps the most important lesson learned
is to know well your partners. Because they probably
don’t know about your development capability, they will
not be able to provide all necessary specifications. It’s
important to by familiarized with partner’s demands
and necessities in order to build a long and fruitful part-
nership.

REFERENCES

Campos D.V.; Seixas R., 2011. Command and Control:
A low cost framework to remotely monitor military
training. In Proceedings of Spring Simulation Multi-
conference - SpringSim’11, in Military Modeling and
Simulation Symposium - MMS.

Lyrio G. and Seixas R., 2004. Riverine Operations:
Modeling and Simulation. In Proceedings of Advanced

51

Simulation Technologies Conference - ASTC, in Mili-
tary, Government, and Aerospace Simulation Sympo-
stum. 33-39.

Lyrio G. and Seixas R., 2007. Modeling Agents for Real
Environment. In Proceedings of The North American
Sitmulation and Al in Games Conference. EUROSIS.

Lyrio G. and Seixas R., 2009. Real-Time Warfare Simu-
lation Goes Web 2.0, , , Georgia, USA, 2009. In Pro-

ceedings of The North American Simulation and Al
in Games Conference - GAMEON-NA. EUROSIS.

Savelli R.M.; Lyrio G.S.R., 2004. The Maneuver and
Attrition Warfare Simulation System. In Simpsio
de Pesquisa Operacional e Logstica da Marinha -
SPOLM 2004.

Seixas R.B.; Lauro A., 2003. A Decision-Making Tool
to Military Planning Process Based in Dynamic-Cost
Matrices. In Proceedings of Advanced Simulation
Technologies Conference - ASTC, in Military, Gov-
ernment, and Aerospace Simulation Symposium. 70—
75.

Seixas R.B. Mediano M. and Gattass M., 1999. Efficient
Line-of-Sight Algorithms for Real Terrain Data. In
11T Simpsio de Pesquisa Operacional e IV Simpsio de
Logstica da Marinha - SPOLM’99.

Wilbur G., 1995. Playing War: the Applicability of
Commercial Conflict Simulations to Military Intelli-
gence Training and Education. Master’s thesis, DIA
Joint Military Intelligence College, Bolling AFB, DC.

BIOGRAPHY

Roberto de Beauclair Seixas works with Research
and Development at Institute of Pure and Applied
Mathematics — IMPA. He got his Ph.D. degree in
Computer Science at Pontifical Catholic University
of Rio de Janeiro — (PUC-Rio), where he works with
the Computer Graphics Technology Group - TeCGraf.
Since 1999 at IMPA, he works as IT Manager and
project leader of technical-scientific multi institutional
projects. He also is advisor of Warfare Games Center
of the Brazilian Navy Marines Corps.

Gustavo Henrique Soares de Oliveria Lyrio works with
the Computer Graphics Technology Group - TecGraf.
He got his B.Sc. in Computer Engineering at Pontif-
ical Catholic University of Rio de Janeiro - PUC-Rio.
His interests include Computer Graphics and Warfare
Training Games. Currently he is developer of Warfare
Games Center of the Brazilian Navy Marines Corps.

EVALUATING GAMES ENGINES FOR INCORPORATION IN MILITARY
SIMULATION AND TRAINING

Jennifer L. Winner
Lumir Research Institute, Inc.
195 Bluff Ave
Grayslake, IL 60030
jennifer.winner.ctr@wpafb.af.mil

KEYWORDS
Game engines, modeling and simulation, instructional theory,
training effectiveness, distributed mission training

ABSTRACT

A game engine is a tool through which interactive, real-time
simulations can be created. Our interest in game engines is
motivated by the instructional needs of the United States Air
Force (USAF). In this paper we discuss our evaluation criteria
for incorporating game engines into pre-existing Air Force
distributed mission-training systems. Data availability, 3D
model correlation, and ground database integration are
primary considerations. If a game engine does not
accommodate these criteria as outlined above, it will most
likely not be considered for incorporation into Air Force
training systems as it would limit our ability to simulate a real
world environment. The remaining criteria add significant
value to the training environment and help to distinguish game
engines from one another.

INTRODUCTION

The level of interest in using gaming technology for training
purposes has increased substantially in recent decades, as
evidenced by the volume of literature on the topic. Recent
studies have shown that experienced video game players
exhibit heightened performance on visual perception tasks
(Castel, Pratt, & Drummond, 2005; Green & Bavelier, 2007,
Green & Bavelier, 2006; Green & Bavelier, 2003; Li, Polat,
Makous, & Bavelier, 2009) and, in simulated flight tasks,
performance which nears that achieved by pilots on stick and
rudder control and target identification and tracking tasks
(McKinley, Mclntire, & Funke, 2011). Gaming technology
has shown to be an effective means for training purposes,
including military-focused training (Chatham, 2011) and
general teamwork skills (Hussain, et al., 2007).

The documented effectiveness of game-based training is of
particular interest to the Air Force Research Laboratory. For
the 711"™ Human Performance Wing, Human Effectiveness
Directorate, Warfighter Readiness Research Division (711
HPW/RHA), research conducted in the Gaming Research
Integration for Learning Laboratory (GRILL) focuses on the
potential use of commercial off-the-shelf (COTS) game and
simulation engines for mission qualifying and continuation
training for the USAF. Game engines have potential to serve
as either as stand-alone training systems or as complementary

Stephen F. Nelson
Ball Aerospace
2875 Presidential Drive
Fairborn, OH 45324

sfnelson@ball.com

52

2Lt Rebecca L. Burditt
Capt Adam J. Pohl
Air Force Research Laboratory
Wright Patterson AFB, OH 45433
Rebecca.burditt@wpafb.af.mil
Adam.pohl@holloman.af.mil

extensions of existing high fidelity simulation and training
environments (Pohl & Walker, 2010). For example, one could
imagine a stand-alone system in which an individual pilot may
run through checklists and gain practice relating to specific
button functionality. Additionally, gaming technology could
be utilized to supplement the capabilities offered by high
fidelity simulator systems such as the Mobile Modular Display
for Advanced Research and Training (M2DART). The
M2DART provides high-fidelity simulation of a four-ship of
F-16 jets. Instructors wanting to simulate threat tactics could
utilize gaming technology and/or low-cost COTS simulation
technologies such as X-Plane® to effectively control red force
(enemy) roles in a training scenario. Use of these technologies
ensures that virtual red forces do not tie up a more costly,
high-fidelity simulator while still enabling trainees to fly
against a human pilot who can most realistically mimic threat
tactics and respond as the scenario unfolds. Additionally,
game engines such as CryEngine® can be utilized to enable
dynamic control of simulated friendly or red force ground
vehicles within air-to-ground training scenarios.

Our recent efforts have included the incorporation of COTS
game engines into networked training environments. One
such effort was undertaken as part of a large-scale distributed
training system display at the 2010 Interservice/Industry
Training Simulation and Education Conference (/ITSEC). A
second effort involves the linking of multiple off-the-shelf
technologies for a three-person training scenario for an
upcoming training effectiveness study (Winner & Voge,
2011). Through these efforts we have identified a number of
evaluation criteria relating to the selection of visual generation
and simulation and game control for use in Live, Virtual, and
Constructive (LVC) training environments. The purpose of
this paper is to communicate our initial evaluation criteria
related to the incorporation of game engines within currently
existing USAF training environments. Minimum and
preferred criteria, which effectively limit or enable game
engines to be incorporated into simulated training
environments, are specified when possible. In order to
provide context for discussion of these evaluation criteria, we
also summarize the overarching motivations relating to our
use of modeling and simulation and game engines.

DEFINITION OF A GAME ENGINE

Before we outline our evaluation criteria, it is important to
acknowledge that a game engine is any software that abstracts
the process of creating visuals and input to a video game
(Ward, 2008). A game engine is not a game in and of itself.

Rather it is a tool through which interactive real-time
simulations can be created. What is the difference between a
simulation and video game? In a broad sense, the only
difference between the two is their purpose. They are both
real time programs receiving input from a user and processing
responding output. We believe that both may be used in
concert to provide effective training for USAF training
audiences.

MOTIVATION FOR THE USE OF GAME ENGINES

Our interest in game engines is motivated by the
instructional needs of the USAF. The use of modeling and
simulation for training individual and team-level skills for the
USAF is not a new venture. However, game engines hold
great promise with regard to instruction due to their
controllability, high end visuals, inherently deployable nature,
and ability to simulate real world events convincingly in real
time.

Modeling and simulation and game engines enable training
capabilities like those discussed previously. At a higher level,
these technologies can support instructional methods specified
by learning theory, such as providing virtual learning
environments that enable individuals to work in realistic team
settings with necessary tools and information sources to
practice the problem solving skills required to successfully
complete their mission (Wilson, 1996). A review of the
relevant theory and literature related to instructional theory is
outside of the scope of this paper. It is important, however, to
summarize several of the concepts guiding the selection and
use of modeling and simulation for research within our
laboratory.

The Mission Essential Competency (MEC) process provides
the foundation for many of our efforts. The MECs are
“higher-order individual, team, and inter-team competencies
that a fully prepared pilot, crew, flight, operator, or team
requires for successful mission completion under adverse
conditions and in a non-permissive environment” (Colegrove
& Alliger, 2002). The outcomes of the MEC process
conducted for a given training audience provide the foundation
for the development of learning objectives and measures of
performance and are utilized in the assessment of training
capabilities for various simulation systems. Both scenario
design based on learning objectives and performance feedback
are essential for instruction. Although it is possible to have a
virtual environment that does not enable feedback (Melham et
al., 2009; Hays, 2006), feedback is essential for learning
(Singer & Howey, 2009). This focus on providing trainees
with feedback, along with the need to evaluate the
effectiveness of our training systems (Kirkpatrick, 1976;
1996), are the motivations behind our current efforts to
automatically conduct performance assessment in gaming
environments (Winner & Voge, 2011).

Our use of game engines is motivated by the need to provide
cost-effective, instructionally-sound training capabilities, yet
we acknowledge that these engines have evolved under vastly
different motivations, namely to provide entertaining and

53

profitable games to large audiences. Accordingly,
considerable effort is required to deliver scenarios based on
specified learning objectives, deliver feedback to trainees, and
to perform automated performance measurement. Although
we cannot expect a commercial game engine to come
equipped with these mission-specific components, we can
convey some evaluation criteria relevant to implementing
game engines within the context of the Air Force’s currently
existing simulation and training systems. The remainder of
this paper will focus on these criteria.

EVALUATION CRITERIA

The evaluation criteria outlined in this section evolved
through our experience incorporating game engines into
networked training environments. We acknowledge that these
criteria are unique to our purpose, which is to develop and
advance effective training capabilities for warfighters to
ensure that they are combat mission ready. The evaluation
criteria listed are preferred capabilities that an engine should
either posses, or should be capable of modification to
adequately address these criteria.

Data Availability

Within this framework of government simulation, there are
four common intercommunication protocols: Distributed
Interactive Simulation (DIS), High Level Architecture (HLA),
Test and Training Enabling Architecture (TENA), and
Common Image Generator Interface (CIGI). It is not important
that a game engine implements these protocols. Rather, it is
important that game engines expose certain information to
enable users to effectively join a game engine into a scenario.
Some examples of the data include: position, velocity,
rotation, velocity of rotation, acceleration, entity health, and
height of terrain for a given X,y location. Location data for
both shot origin and destination are needed. Ideally, building
position would also be available. Additionally, status
variables, such as whether an entity is smoking or on fire,
whether a player is crouching, prone, or standing, and whether
a vehicle has a running engine, would ideally be available. The
availability of this data has implications for the feasibility of
joining a game engine into a distributed simulation and, from
an instructional perspective, enables or hinders automated
performance measurement, the delivery of scenario feedback
and after action review to trainees.

3D Model Correlation

In distributed simulation and training environments, multiple
players have eyes on the same geographic area but may be
looking at that area through different simulation or game-
based systems (e.g, M2DART, CryEngine®). Players,
regardless of game or simulation system, who see an entity
(e.g. truck) as it travels across the terrain, should see the same
model (e.g. white, flatbed truck). Accordingly, there is a need
to easily convert OpenFlight models into a format to be
imported into any system or game engine used. It is important
to note that engineering teams in this domain often lack full-
time access to artists with the appropriate skill set. The ability

to use readily available models, especially OpenFlight models,
helps to address this issue.

Ground Database Integration

Digital Terrain Elevation Data (DTED) file format for
digital terrain elevation information is commonly used in
distributed simulation and training environments. A game
engine must be capable of instantiating real world terrain
based on this information and allow for the conversion of
internal coordinate systems to real world coordinate systems.
These databases exist at different levels of resolution. High
resolution databases can be correlated to a higher level of
accuracy. Also, the higher the resolution, the easier it is to
present the appropriate level of realism with respect to the
resolution of other models depicted in the simulated world.
Ideally, scenarios would not contain terrain at a significantly
lower resolution than that of the building models or objects
within the scene.

In addition to resolution requirements already discussed, the
training scenarios we utilize often require satellite imagery to
be overlaid onto the terrain. In an ideal world, game engines
would have the ability to enhance the visual appearance of the
imagery to account for its low resolution. As a pilot in a
training scenario decreases their altitude, we would hope that
the quality of the terrain visuals would not decrease.

Visual Detail

Depending on the selection of operating systems and other
factors, game engines generally support either OpenGL or
Direct3D (DirectX). Ideally, game engines would support
both options. The use of DirectX 11 enables advanced
rendering and lighting features (e.g., tessellation and per pixel
lighting) which may assist in providing highly immersive
training environments. The precise aims of the training will
determine how much visual detail is required; however,
engines which support both OpenGL and Direct3D would
provide the most flexibility for training purposes.

The availability of an API abstraction layer within the game
engine is of far greater importance than which type of API is
used. The abstraction layer allows for control over the visuals
of the game engine as it is running, and greatly increases the
ability to modify a game into an effective training tool. For
example, if one attempted to modify a flight simulator game to
function as the sensor view for a Remotely Piloted Aircraft
(RPA), the only way to modify the on-screen visuals would be
at the API level, either directly or through the game’s
abstraction layer.

Animation Control

The use of network protocols such as DIS and HLA has
implications for the smoothing ability requirements for game
engines used within these contexts. These protocols may not
give true location information for specific models at a refresh
rate as high as that of game engines. Accordingly, the location
updates received by the engine may result in a “jumpy”

54

movement of the model. Ideally, game engines would provide
a mechanism for dealing with this issue.

Specialized Visual Attributes

A number of specialized visual attributes are important for
training scenarios for various platforms. For example, the
ability to visualize infrared (IR) and night vision capabilities
accurately is an important component for RPA sensor operator
training. While IR visual modes can be imitated by changing
overlay colors on the display screen, accurate IR and night
vision modes require an engine to take into consideration
certain environmental variables as well as material encoding
aspects of models in the simulation. The ability to implement
IR and night vision modes in a realistic manner greatly
expands the training capability of a game engine. Shadows are
also meaningful in this training focus area and ideally would
be rendered at all viewing distances. The lack of particle
effects (e.g., dust trail behind a moving vehicle, smoke,
flames) takes away from the usefulness of an engine for
training. Like shadows, particle effects provide meaningful
information upon which some warfighters rely. Ideally, game
engines would accommodate the visual attributes outlined
above as well as any particle effects specified in the DIS
protocol.

Physics Engine

Most game engines are equipped with a physics engine
which provides realistic simulation of physical systems within
the gaming environment. Collision detection and collision
response, for example, are necessary to accurately simulate the
interaction between players, objects, and the gaming
environment itself. In the real-world, a soldier could not walk
through the solid wall of a building, nor would a bullet or
larger munition be able to escape the effects of gravity on the
projectile’s flight path, etc. The physics capabilities in a game
engine ensure that the same is true in the gaming environment.
To be considered a good candidate for use in military
simulation and training, a game engine should be able to
correctly interpret and simulate physics-bound behavior given
only the position and velocity of entities. 1deally, the less
information needed to translate the physics-based information
from the shared DIS environment into a candidate game
engine, the better. Essentially, a game engine should be able
to interpolate information from the DIS environment with
minimal external engineering work required.

Artificial Intelligence (AI) Capability

Artificial intelligence (AI) capabilities within gaming
technologies are key to enhancing the training environment
and improving training effectiveness. Computer-generated
entities which respond appropriately as a scenario unfold can
serve as either red (enemy) forces or blue (friendly) forces, or
as neutrals who simply complicate or add dimension to a
particular scenario. To be considered a candidate for use in
military training, a game engine must possess Al capabilities,
those Al capabilities must be easy to implement, and Al
behavior must be reasonably predictable.

Scenario Design

In the military training arena, creation of realistic scenarios
is of the utmost importance. In order to effectively equip
warfighters to perform in their operational/combat roles,
scenarios must reinforce the concepts and tasks which
correlate to that role’s required competencies (Symons,
France, Bell & Bennett, 2006). With regard to selection of
game engines, an engine should provide user-friendly tools
(e.g. flowcharts) for scenario editing and management. Within
the military training community, those who create the
scenarios are often experts in the training field but may not
possess software engineering expertise. Ideally, an engine’s
scripting capability would allow users to set specific
parameters for entity movement and timing within a scenario,
and have a mechanism through which to repeat or alter a
scenario for a given trainee of group of trainees as needed.

Audio

Audio capabilities of game engines are an important factor
in realistic training systems. The background audio of vehicle
engines and munitions, for example, provides valuable
feedback to the user. It is important that the audio capabilities
accurately represent directional audio and sound degradation.
The ability to easily modify audio attributes is important in
that it allows custom sounds to be easily added to the system.
Ideally, a game engine used in military training would also
support the DIS radio standard.

Internet Dependency and Digital Rights Management
(DRM)

Understandably, game engines often require internet
connectivity to complete updates, provide access to shared
resources, and for digital rights management functionality.
This is a significant problem for government entities that do
not have constant Internet access due to security restrictions.
Engines requiring an internet connection to authenticate for
each use are especially problematic. Government networks
are invariably subject to heightened security restrictions which
may render the use of internet dependent game engines
impossible on these networks.

Cost

Among the primary advantages of game-based training for
military applications is the ability to effectively train personnel
without the costs incurred by pulling personnel from their day-
to-day duties and paying travel expenses for trainees to
participate in live and simulated training exercises in various
locations. As such, cost is an important criterion in the
selection of gaming technologies. While the source code in an
Open Source game engine is available to the public free of
charge, a developmental license for another game engine may
range into the tens of thousands. A high cost developmental
license is not only cost prohibitive, but effectively negates one
of the key advantages of utilizing game engines for
simulation-based training.

55

Supportability

Supportability refers to the amount of technical information
and aid available to users and secondary developers through
the primary developer and/or user community. Web forums
and communities of practice are examples of such support.
Because Open Source projects are widely available at no cost,
they tend to have robust user communities that make changes
and updates to the system while a smaller faction of the user
group manages the project.

Supportability is also related to the openness of a particular
game engine. In closed projects, changes can be made only by
working with the developer, which can prove a slow and
expensive process. The downfall of an open engine, however,
is that such an engine is unlikely to be at the forefront of
gaming development without a company to back that
development with capital. As a result, some open engines may
lack modern features that enable ease of use. A balance in
supportability is found with an engine that is highly
controllable while also being a product supported by a major
company. When selecting an engine, it is important to balance
cost, time, technology needs, controllability needs, and the
desire for commercial entity involvement.

License Restrictions

License restrictions are a significant factor related to custom
application of game engines within simulation and training
environments. Although much of this work is being
conducted for government entities, many of those performing
the work are developing custom software for their defense
contracting employers. Accordingly, the selection of an
engine will be constrained by the license restrictions for the
engine, even though it has nothing to do with the scenario
generation capabilities the engine can offer.

CONCLUSIONS

Games and gaming technology constitute a burgeoning field
of research and are proving to be a valuable tool in effective
training both within and outside of the military context. In this
paper we outlined our motivations for use of modeling and
simulation and provided evaluation criteria for incorporation
of game engines into pre-existing Air Force distributed
mission-training systems. Data availability, 3D model
correlation, and ground database integration are primary
considerations. If a game engine does not accommodate these
criteria as outlined above, it will most likely not be considered
for incorporation into Air Force training systems as it would
limit our ability to simulate a real world environment. The
remaining criteria add significant value to the training
environment and help to distinguish game engines from one
another. By outlining these criteria, we hope to promote
dialogue with game engine developers regarding the
capabilities that make game engines viable options for use in
the Air Force distributed mission training environment.

Approved for Public Release; Distribution is Unlimited — Case
Number 88ABW-2011-3673

REFERENCES

Castel, A. D., Pratt, J., and Drummond, E. (2005). The effects
of action video game experience on the time course of
inhibition of return and the efficiency of visual search.
Acta Psychologica, 119, 217-230.

Chatham, R. E. (2011). After the revolution: Game-informed
training in the U.S. Military. In S. Tobias & J. D.
Fletcher (Eds.) Computer Games and Instruction (pp. 73-
99). Charolette, NC: Information Age Publishing, Inc.

Clarke, T. L. (1995). Distributed interactive simulation
systems for simulation and training in the aerospace
environment. Proceedings of the Conference for the
Society of Photo-Optical Instrumentation Engineers
(Critical Reviews of Optical Science and Technology,
Orlando, FL, Apr 19-20, 1995.

Colegrove, C. M., & Alliger, G. M. (2002). Mission Essential
Competencies: Defining combat mission readiness in a
novel way. Paper presented at the NATO RTO Studies,
Analysis and Simulation Panel (SAS) Symposium.
Brussels, Belgium.

Green, C. S. & Bavelier, D. (2007). Action-video-game
experience alters the spatial resolution of vision.
Psychological Science, 18(1), 88-94.

Green, C. S. & Bavelier, D. (2006). Effect of action video
games on the spatial distribution of visuospatial attention.
Journal of Experimental Psychology: Human Perception
and Performance, 32(6), 1465-1478.

Green, C. S. & Bavelier, D. (2003). Action video game
modifies visual selective attention. Nature, 423, 534-537.

Hays, R. T. (20006). The science of learning: A systems theory
approach. Boca Raton, FL: Brown Walker Press.

Hussain, T. S., Weil, S. A., Brunye’, T., Sidman, J., Ferguson,
W., & Alexander, A., (2007). Eliciting and evaluating
teamwork within a multi-player game-based training
environment. In H. F. O’Neil and R. S. Perez (Eds.)
Computer Games and Team and Individual Learning.
Elsevier Ltd.

Kirkpatrick, D. (1976). Evaluation of training. In R. L. Craid
(Ed.), Training and development handbook: A guide to
human resources development. New York, NY: McGraw-
Hill.

Kirkpatrick, D (1996). Revisiting Kirkpatrick’s fourlevel
model. Training and Development, 1, 54-57.

Li, R., Polat, U., Makous, W., and Bavelier, D. (2009).
Enhancing the contrast sensitivity function through action
video game training. Natural Neuroscience, 12, 549-551.

Milham, L., Carroll, M. B., Stanney, K., & Becker, W. (2009).
Training Systems Requirements Analysis. In D.
Schmorrow, J. Cohn & D. Nicholson (Eds.), The PSI
Handbook of Virtual Environments for Training and
Education: Developments for the Military and Beyond.
Volume 2: VE Components and Training Technologies
(pp 165-192). Westport, CT: Praeger Security
International.

McKinley, R. A., Mclntire, L. K., & Funke, M. A. (2011).
Operator selection for unmanned aerial systems:

56

Comparing video game players and pilots. Aviation,
Space, and Envrionmental Midicine, 82(6), 635-642.
Pohl, A. J., & Walker, J. C. (2010). Leveraging game
technology: When are games the answer? Military

Simulation & Training Magazine, 2/2010, 22-26.

Singer, M. & Howey, A. (2009). Enhancing virtual
environments to support training. In D. Schmorrow, J.
Cohn & D. Nicholsons (Eds.), The PSI Handbook of
Virtual Environments for Training and Education:
Developments for the Military and Beyond. Volume 2:
VE Components and Training Technologies (pp 407-421).
Westport, CT: Praeger Security International.

Symons, S., France, M., Bell, J., & Bennett, W., Jr. (2005).
Linking knowledge and skills to Mission Essential
Competency-based syllabus development for Distributed
Mission ~ Operations (AFRL-HE-AZ-TR-2006-0041,
ADAA453737). Mesa, AZ: Air Force Research Laboratory,
Warfighter Readiness Research Division.

Ward, Jeff (2008). What Is a Game Engine?

Retrieved on 24 June 2011 from
http://www.gamecareerguide.com/features/529/what
_is_a_game_.php.

Wilson, B. (1996). What is a constructivst learning
environment? In B. Wilson (Ed.), Constructivist learning
environments: Case studies in instructional design.
Englewood Cliffs, NJ: Educational Technology
Publications, Inc.

Winner, J. L., & Voge, D. J. (2011). Gaming Research
Integration for Learning Laboratory = (GRILL)
Performance Measurement Workshop. Mesa, AZ: Air
Force Research Laboratory, Warfighter Readiness
Research Division.

AUTHOR BIOGRAPHY

JENNIFER WINNER received her B.A. in Psychology from
Wright State University and an M.S. in Applied Psychology
from Arizona State University. Jennifer joined Lumir
Research Institute, Inc. in 2008, focusing on the measurement
of team performance in simulation and training environments.

STEPHEN NELSON received his Bachelor’s degree in
Game and Simulation Programming from DeVry University.
Stephen has supported the Gaming Research Integration for
Learning Laboratory (GRILL) since 2009.

2LT REBECCA BURDITT studied Behavioral Science at
the United States Air Force Academy. Since commissioning
in 2010, she has worked in support of the mission of the 711"
Human Performance Wing, Human Effectiveness Directorate,
Warfighter Readiness Research Division. 2Lt. Burditt is the
program lead for the GRILL.

CAPT ADAM POHL studied electrical engineering at
Embry-Riddle Aeronautical University while on a ROTC
scholarship. After commissioning in 2006 he attended the Air
Force Institute of Technology where he received his Masters
in Computer Engineering. He has been a system engineer for
the GRILL since 2008.

An Interactive Policy Simulator for Urban Dynamics

Terry Lyons

Dr. Jim Duggan

College of Engineering & Informatics,

National University of Ireland, Galway.

E-mail: {t.lyons4|james.duggan}@nuigalway.ie

KEYWORDS
Urban Dynamics, simulation, stock and flow, model
ABSTRACT

Urban Dynamics is a field of study which applies
mathematical modelling techniques to the system of a
city in order to quantitatively represent and analyse
its progression over time. The simulation of this
model allows stakeholders in the city to investigate
the interactions of the city’s components and the
consequences of decisions on the city’s advancement.

This project builds upon established research in this
field by creating a software system that simulates an
interactive Urban Dynamics Model, and presenting it
as a learning tool in the form of an educational game.
User’s decisions drive the simulation, affecting the
game’s outcome, with the city either prospering or
declining.

INTRODUCTION

The world around us is filled with complexities, with
innumerable macro and micro systems that define it.
As man has advanced, he has created his own
systems, introducing further complexity to the natural
world. These dynamic systems progress and evolve
over the course of time, always changing based on
the processes and interactions that drive them. The
pursuit of understanding the world around us is the
impetus for much of our scientific research. By
dividing the indefinitely large and detailed universe
into manageable, yet non-trivial systems, we can

57

hope to gain some insight into the natural and man-
made processes of our world. Systems Dynamics is a
field of computer science which seeks to provide
insight into such complex interacting systems,
simulation and
quantitative analysis. Originally developed by Jay
Forrester (Forrester 1958, 1961) for analysis of
commercial dynamics, it has been more recently

applied in a range of other human systems including

through formal mathematical

business (Sterman 2000) and epidemiology (Potash
et al. 2003, Tebbens et al. 2009).

Urban Dynamics (Forrester 1969) is an area of
research within the field of System Dynamics in
which study is conducted into the workings of an
urban area. A city is a complex dynamic system that
contains many heterogeneous, interacting
components including population, industry and
natural resources, which contribute to the working of
the city as a whole. Over the course of its lifetime, a
city will go through phases of growth and expansion,
maturation and decay. As it advances, each of its
processes will either promote or hamper the evolution
of the urban area as a whole, encouraging its
improvement, or forcing its decline.

The overall goal of this project is to create a flexible
Urban Dynamics research and education simulation
tool as a basis for exploring complex multi-sector
urban systems. This should provide an understanding
of a city’s workings and allow for the assessment of
various policy decisions, such as land zoning, natural
resource management and water conservation. It is
intended that the software system would support

experimentation and learning about Urban Dynamics
through the mode of an interactive computer game
front-end. The project goal is accomplishedthrough
the completion of three principal objectives (Fig./):

1. Development of a mathematical Solving Engine
for the simulation of Systems Dynamics models.

2. Design of an aggregate Urban Model, which
represents a city’s interactions and processes

3. Creation of an game-based
visualisation of the Urban Model, allowing users
to introduce change into the system and observe
its consequences.

interactive

/

/
1 Visua<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>