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ABSTRACT 

Multi Compartment Vehicle Routing Problem (MC-VRP) 

which is a generalised version of VRP is studied in this 

paper. MC-VRP has the particularity to allow transportation 

of inhomogeneous products on the same vehicle and is 

widely encountered in the food and petrol industries. 

Besides capacitated VRP characteristics, customers may 

order incompatible product families which must be 

transported separately into compartmented vehicles. An 

efficient optimization based on a Multi Start Iterated Local 

Search (MS-ILS) metaheuristic is proposed for this problem. 

Computed results are shown to be more competitive 

compared to the best known solutions from previous 

investigations in the literature. 

 

INTRODUCTION 

The Multi-Compartments Vehicle Routing Problem (MC-

VRP) is a generalization of VRP. This problem covers 

applications of real life such as petroleum, food and retail 

industries. As an extension of VRP, it is also NP-hard. MC-

VRP allows transporting heterogeneous or incompatible 

products in the same vehicle. In food industry distribution, 

compartments are sometimes dedicated to specific products 

types. 

Several variants were studied in research about MC-VRP. 

Most of the papers focused on petroleum distribution 

industries. Van der Bruggen et al. (1995) solve a large oil 

distribution problem involving, at an operational level, the 

resolution of routing problems for gas trucks with 

compartments. Their resolution methodology consists in 

three steps: (1) Customers assignment to depots, (2) 

Computation of delivery frequencies (3) Routes 

construction. They propose a heuristic which inserts 

customers with large demands and located far from depot in 

priority in routes construction. 

Avella et al. (2004) solved a periodic routing problem. A 

specific loading rule is applied to each tank which must be 

completely full or empty. They proposed a greedy-like 

heuristic and a set partitioning-based exact method for this 

problem. Periodic routing problem was also investigated by 

Cornillier et al. (2008) in a context of multi-period petrol 

station replenishment problem. Their goal consists of 

determining periodically the set of stations to deliver, the 

allocation of loads to compartments and vehicles routes. 

They developed an iterative heuristic which embeds a route 

packing procedure. In their study, contrary to Avella et al. 

(2004), visit dates and delivery amounts are not a-priori 

specified. 

Some recent works investigated in the field of food and 

groceries distribution. Chajakis and Guignard (2003) studied 

a distribution optimization problem dealing with 

convenience stores supplies. The objective is to find an 

assignment of customers (stores) to vehicles which satisfy 

all demands and keep the sum of delivery and cooling costs 

minimal. Considering two layouts of compartments 

structures, they proposed two integer programming models. 

Approximations were made based on Lagrangean 

Relaxation. 

El Fallahi et al. (2008) resolved a MC-VRP where each 

compartment is dedicated to one product in a food industry 

distribution application. In their study, they considered some 

specific compatibility rules between products and 

compartments for cross-contamination prevention reasons. 

Each compartment is dedicated to only one type or family of 

products. They developed two algorithms to tackle this 

specific problem: a tabu search (TS) and a memetic 

algorithm (MA). 

Mendoza et al. (2010) studied a particular case of MC-

VRP where customers’ demands are stochastic. The 

compatibility rule of one compartment / one product is taken 

into consideration as in El Fallahi et al. (2008). They 

developed a memetic algorithm based approach which 

proceeds in two phases. During the first phase, the algorithm 

applies a spare capacity strategy to solve the deterministic 

counterpart of the problem (MC-VRP) by reserving a 

fraction of the capacity on each compartment to respond to 

high demand realizations. The second part incorporates 

fluctuations in demands. 

Derigs et al. (2010) presented a global approach to solve 

MC-VRP. They took into account several specificities like 

the number of compartments, the compartments’ capacities 

and the incompatibilities between products and between 

products and compartments. They developed a solver suite 

of heuristic components which covers a broad range of 

alternative approaches for construction, local search, large 

neighborhood search and meta-heuristics. 

Our study is motivated by a specific VRP problem met in 

cattle food distribution. An application is found in a cattle 

food industry located in the North-East region of France, 
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their distribution policies require products separation into 

vehicle compartments. In order to avoid cross-

contamination, products mix is prohibited. Sometimes, a rule 

of products allocation to specific compartments is adopted. 

Especially, El Fallahi et al. (2008) investigated a problem 

found in food industry context. In their study, they took into 

account cross contamination and products allocation to 

compartments rules. The specific problem that they 

addressed is quite unexplored in the literature. In this paper, 

we will focus our research on developing an optimization 

method to tackle this problem. We will take into 

consideration the specific product allocation rule where, for 

each product, one compartment is a-priori assigned for 

packing. In the remainder, the paper will be structured as 

follows: problem formulation, our method description, 

computational results and conclusions and perspectives. 

 

PROBLEM FORMULATION 

MC-VRP is defined on a complete undirected network 

with a set of nodes N = {0, 1,…, n} including one depot 

(node 0) and a set N’ of n customers. Cost of travelling from 

location (customer) i to j is assumed to be symmetric (cij = 

cji). The set of costs is assumed to satisfy the triangle 

inequality. A set P = {1, 2,…, p} of p products are delivered 

from the depot by a fleet V = {1, 2, …, v} of identical 

vehicles partitioned into p compartments. A compartment p 

which is assigned to product p has a capacity Qp while each 

vehicle has a total capacity   p

t T

Q Q . Each customer 

orders at least one product. The quantity of an ordered 

product p by a customer i is denoted by qip such that 

0 ip pD Q . 

 

Specific assumptions 

 

o Any client global demand quantity fits 

vehicle capacity 

o Split deliveries to clients are not allowed 

o Fleet size is big enough to satisfy all 

deliveries 

o Load into a compartment concerns a full or 

a partial customer product order 

 

Decision variables 

1  if vehicle  visits arc ( , )

0  else

k i j
x
ijk

    

1  if vehicle  visits node or client 

0  else

k i
y

ik
 

 

Linear model 

,     

min ( )ij ijk
i j N k V

c x  
(1) 

 

Subject to 

 

  

1  'ik

k V

i Ny  
(2) 

0

  
k

k V

vy  (3) 

    

 ,ijk jik ik

j Nj N

x y i N k Vx  
(4) 

,   

1  , ', 2ijk

i j S

x S k V S N S  
(5) 

  

  ,ik ip p

i N

y D Q k V p P  
(6) 

 

Constraints from (2) to (5) are general VRP constraints. 

They specify that clients have to be visited once (2), impose 

respect of fleet capacity (3). The first part of equations (4) 

ensures routes connectivity: any vehicle k that enters node i 

must leave it. The second part of (4) forces each node to be 

entered and left the same number of times as the number of 

vehicles that visit it. Equations (5) are classical subtour 

elimination constraints which oblige all tours to start and 

end at the depot. Constraints (6) deal with products dispatch 

into compartments. It is imposed that their cumulative 

ordered quantity doesn’t violate corresponding compartment 

size limit. 

This model provides a formal description of the problem 

that we are studying. As MC-VRP is a generalization of 

VRP, it is obvious that its computational complexity is 

harder than VRP. For this reason, our exact resolution 

experiments based on this model were limited to small 

instances. In order to solve big size problems encountered in 

industries, we develop a metaheuristic approach. 

 

MULTI START ITERATED LOCAL SEARCH PROCEDURE 

A Multi Start Iterated Local Search Procedure (MSILS) 

has showed to be very competitive compared to some usual 

methods applied to VRP by Prins (2009). Besides its high 

performance, it has a simple design which makes it 

relatively easy to be implemented. It proceeds by restarting 

an Iterated Local Search Procedure (ILS) with different 

randomly generated initial solutions as illustrated in 

algorithm 1. This ILS metaheuristic performs by iteratively 

applying a perturbation method followed by a local search 

procedure to an initial solution. The general framework is 

based on iterating an ILS procedure by randomizing the 

subroutine which provides starting solutions to be improved. 

At each ILS iteration, an initial heuristic solution (Soln) is 

first improved by a local search method (LS). Iteratively, 

incumbent solution structure is attempted to be modified by 

a perturbation procedure (Perturb) followed by the 

application of a LS. In each ILS, number of attempts for 

solution improvements is limited. More specifically, each 

new iteration of Perturb and LS methods is run under the 

condition that a maximum number of iterations 

(MaxGlobalIter) is not violated. Also, after a number 

(MaxStuck) of unsuccessful attempts to improve current 

solution or in case of maximum number of LS iterations 

(MaxIter) is reached, a new ILS is started. The best solution 

(Soln*) computed by each ILS is compared with the best 

general solution (BestSoln) which is then updated when 

necessary. 
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Algorithm 1. General structure of MSILS 

1: Initialize BestSoln with a great value 

2: GlobalIter = 0 

3: Repeat 

4: // Inside this loop ILS procedure is repeated 

5: A randomized Clark and Wright heuristic generates 

Soln 

6: BestSoln = Soln* 

7: Soln* = Soln 

8: LS(Soln) 

9: Iter = 0 

10: Stuck = 0 

11: Repeat 
12: GlobalIter = GlobalIter + 1 

13: Iter = Iter + 1 

14: Perturb(Soln) 

15: LS(Soln) 

16: If Cost(Soln) < Cost(Soln*) Then 

17: Stuck = 0 

18: MaxPerturbationLevel = 1 

19: Soln* = Soln 

20: Else 

21: PerturbationLevel = Min ( PerturbationLevel 

+ 1, MaxPerturbationLevel) 

22: Stuck = Stuck + 1 

23: End if 
24: Until (Iter = MaxIter Or Stuck = MaxStuck Or 

GlobalIter = MaxGlobalIter) 

25: If Cost(Soln*) < Cost(BestSoln) Then 

26: BestSoln = Soln* 

27: End If 
28: Until (GlobalIter = MaxGlobalIter) 

Starting solution 

The parallel version of the Clarke and Wright savings 

heuristic (Clarke and Wright, 1964) is adapted to the 

specificity of the MC-VRP studied here. This method is a 

constructive heuristic which proceeds by first assigning each 

customer to a distinct route. Savings are computed by 

comparing the distance of the shortest route connecting each 

possible couple of customers to the sum of their individual 

distances to the depot. Then, a savings matrix is created and 

is sorted in descending order of savings values. Final routes 

are created by merging routes listed in savings matrix from 

the beginning to the end while checking new routes 

feasibility constraints. For multiple starts purpose, we 

randomize the Clarke and Wright by slightly disorganizing 

the sorting order of savings matrix. Strictly sorted saving 

values are divided into small groups of consecutive values. 

Into each group, initial order is randomly perturbated in 

order to obtain a randomized Clarke and Wright method. 

Local Search 

Local search procedure consists of exploring a solution 

neighborhood seeking for better solutions. The exploration 

mechanism is based on some specific moves to go from one 

solution to another in the search space around. Our local 

search procedure involves several well-known moves. Inter-

trip and intra-trip moves which operate transformation 

respectively on one and two trips are investigated. We refer 

to first improvement local search method to explore the 

solution space. Exploration is done by applying moves 

features successively to each customer in the same order as 

the trip sequence. The moves used in the search process are 

relocation, exchange and 2-Opt. 

Relocation move: This operator relocates a customer xi 

from an initial position to another one.  One or two trips may 

be involved. 

Exchange move: This type of move swaps customers xi 

and xj belonging to two distinct trips or the same route. 

2-Opt move: This move operates modification on two 

edges with no common node. Two different situations may 

be encountered. In case edges are part of a same route, the 

section from the node at the beginning of the first edge until 

the starting node of the second edge is inverted. Let’s 

consider a route A with the following sequence of customers 

{x1, … , xi, xi+1, xi+2, ..., xj, xj+1, xj+2, ... , xn}. We apply 2-Opt 

move on edges {xi, xi+1} and {xj, xj+1}. We thus obtain this 

new sequence {x1, … , xj, ..., xi+2, xi+1, xi, xj+1, xj+2, ... , xn} 

where subsequence from node xi to xj is inverted. When the 

edges are in different routes, the mechanism first splits both 

edges and connects the initial section of route A to the 

ending one of the route B and vice versa. Let’s consider two 

routes A and B, such that A = {x1, … , xi, xi+1, xi+2, ..., xj, xj+1, 

xj+2, ... , xn} and B = {y1, … , yi, yi+1, yi+2, ..., yj, yj+1, yj+2, ... , 

yn}. In order to apply 2-Opt move on edges {xi, xi+1} and {yj, 

yj+1}, we first divide them so that their respective extremities 

are disconnected. Afterwards, the remaining sections of 

routes A and B are reconnected in way that they are modified 

like this: A = {x1, … , xi, yj+1, yj+2, ... , yn} and B = {y1, … , 

yi, yi+1, yi+2, ..., yj, xi+1, xi+2, ..., xj, xj+1, xj+2, ... , xn}. 

Perturbation 

Perturbation procedure reduces probability of being 

trapped in local optima during the search process by 

diversifying solutions structures. It consists in applying one 

or a few random moves to a solution. Our perturbation 

method used exchange move on a couple of trips selected 

randomly and customers to be swapped are also randomly 

chosen. During exchange process, a customer from one trip 

is exchanged to another one. In the perturbation process, a 

random exchange move is attempted iteratively until a 

stopping condition (MaxPerturbationIteration). This 

condition is set to true if the maximum number of exchange 

move attempts is reached or an improved solution is 

obtained while applying perturbation movements. 

By default, a moderate level of perturbation is applied to a 

solution before calling local search for improvement. When 

local search fails to improve a perturbated solution, the level 

of perturbation is intensified in order to escape local 

optimum of the current neighborhood. As soon as new 

improvements are achieved, perturbation is reset to a 

moderate level. 

  
Algorithm 2. Perturbation 

1: Soln1= Soln 

2: Improve = false 

3: PerturbationLevel = 0 

4: Repeat 

5: PerturbationLevel = PerturbationLevel + 1 

6: PerturbationIteration = 0 

7: Repeat 
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8: PerturbationIteration = 

PerturbationIteration+1 

9: Pick up randomly two distinct trips (T1, T2) 

from Soln1 list of trips 

10: For each trip, pick up randomly two customers 

(C1, C2), one from each trip 

11: // Apply perturbation move 

12: Soln1 = Customers Exchange (C1, C2) 

13: If (Feasibilty (Soln1)) Then 

14: PerturbationMoveValid = true 

15: If (Cost(Soln1) < Cost(Soln)) Then  

16: Improve = true 

17: Soln = Soln1 

18: End If 
19: Else 
20: PerturbationMoveValid = false 

21: Soln1 = Soln 

22: End If 

23: Until (PerturbationMoveValid Or 

PerturbationIteration = MaxPerturbationIteration) 

24: Until (PerturbationLevel = MaxPerturbationLevel 

Or Improve) 

 

COMPUTATIONAL RESULTS 

For experimental purpose, our MS-ILS algorithm is coded 

in C++ and tested on a computer equipped with a dual core 

processor at 2.26 GHz and 2GB of RAM. As MC-VRP is a 

quite new problem, to the best of our knowledge, very few 

specific instances exist in literature. Kalkoff (2006) 

developed an instance generator capable to create MC-VRP 

instances according to predefined problem characteristics. El 

Fallahi et al. (2008) created two sets of modified 

Christofides VRP instances specially adapted to a MC-VRP 

with 2 compartments. One of the set of instances has been 

obtained by dividing the capacity of each vehicle and each 

customer request into two equal parts. This set is used for 

computation in this paper. MS-ILS results are compared to 

those computed by a tabu search and a memetic algorithm 

developed by El Fallahi et al. (2008). 

Parameters tuning 

A sensitivity analysis was made in order to find a 

compromise between solution quality and computation time. 

Mainly, the impact of the number of local search procedure 

iterations (MaxGlobalIter and MaxIter) on computation time 

is tracked. In order to make parameters tuning, we run tests 

on an adapted version of the first Christofides instance 

(vrnpc1). For example, we noticed that from a number of 

1500 local search iterations, there is very slight solution 

improvement for longer running time. Finally, parameters 

values are set in order to reach a good compromise between 

time cost and solution quality. The different parameters are 

set to the values indicated in Table 1. 

Results 

Compared to results found by El Fallahi et al. (2008) 

(Table 2) in the case of MC-VRP without split delivery, our 

MS-ILS brings better results. Their Tabu Search, which 

provides better average results than their Memetic 

Algorithm, is outperformed by approximately 2% (1.9% 

precisely). Computation time is 15.4% less than El Fallahi et 

al.’s reported time on our machine equipped with 2.26 GHz 

dual core processor. By the contrary, running time increased 

by 52.2% comparatively to their Memetic Algorithm while 

its results are improved by 2.7%. For any Christofides 

instance, MS-ILS performs at least as well as their Tabu 

Search. Individual results improvement varies from 0% to 

5.9% for TS and from 0% to 8.3%, which proves that MS-

ILS is strictly more competitive than El Fallahi et al. (2008) 

methods. 

 

CONCLUSION 

Through this paper, MC-VRP, a quite unexplored 

problem in VRP literature is investigated. We propose an 

efficient optimization method based on a Multi Start Iterated 

Local Search (MS-ILS) algorithm to solve it. Experiments 

have been conducted on modified Christofides instances. A 

comparative analysis is made between MS-ILS and the best 

known method developed by El Fallahi et al. (2008). They 

proposed a Tabu Search and a Memetic Algorithm to solve 

MC-VRP. MS-ILS developed here is shown to be strictly 

more competitive than each one of El Fallahi et al. (2008)’s 

best method. Their best algorithm in terms of solution 

quality, the Tabu Search, is outperformed by almost 2% by 

our metaheuristic. 

 

 

MS-ILS parameters 
MaxGlobalIter = 1600 MaxIter = 900 MaxStuck =400 

MaxPerturbationIteration = 50 MaxPerturbationLevel = 3  

Table 1: Metaheuristics parameters values 
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MS-ILS and ILS results 

File 

El Fallahi et al. (2008) MC-VRP 

(without splitting) 

MC-VRP (without 

splitting) Relative gain 

  MA TS ILS Multi Start ILS 

MS-ILS vs MA 

(El Fallahi) 

MS-ILS vs TS 

(El Fallahi) 

  Cost Time Cost Time Cost Cost Time Cost Time Cost Time 

vrpnc1 524.6 17.4 524.6 19.6 538.9 524.6 15.7 0.0% 9.8% 0.0% 19.9% 

vrpnc2 855.8 25.4 850 56.3 854.7 843.0 21.2 1.5% 16.5% 0.8% 62.3% 

vrpnc3 876.8 21.8 831.3 50.9 828.3 828.3 64.4 5.5% -195.4% 0.4% -26.5% 

vrpnc4 1089.6 93.9 1061.1 285.4 1049.0 1048.2 109.2 3.8% -16.3% 1.2% 61.7% 

vrpnc5 1389.6 115.9 1348.3 403.6 1330.2 1330.2 161.9 4.3% -39.7% 1.3% 59.9% 

vrpnc6 571.4 6.1 575.9 12.3 576.6 560.3 8.1 1.9% -32.8% 2.7% 34.1% 

vrpnc7 933 39.2 970.8 21.8 925.1 925.1 18.1 0.8% 53.8% 4.7% 17.0% 

vrpnc8 969.2 18.7 888.6 60.4 888.4 888.4 40.0 8.3% -113.9% 0.0% 33.8% 

vrpnc9 1230.9 98.7 1232.1 98.3 1198.1 1192.2 31.4 3.1% 68.2% 3.2% 68.1% 

vrpnc10 1520.1 140.2 1538.6 35.2 1448.2 1448.2 61.6 4.7% 56.1% 5.9% -75.0% 

vrpnc11 1046.1 47.8 1043.3 142.5 1042.1 1042.1 75.2 0.4% -57.3% 0.1% 47.2% 

vrpnc12 820.6 18.2 819.5 63.1 819.6 819.6 66.4 0.1% -264.8% 0.0% -5.2% 

vrpnc13 1547.4 76.4 1582.2 44.3 1544.7 1544.7 371.5 0.2% -386.3% 2.4% -738.6% 

vrpnc14 866.9 23.3 868.6 43.5 866.4 866.4 86.1 0.1% -269.5% 0.3% -97.9% 

Total 14242 743 14134.9 1337.2 13910.3 13861.3 1130.8 2.7% -52.2% 1.9% 15.4% 

Table 2: Comparison of results found by MS-ILS for MC-VRP without split deliveries El Fallahi et al.'s solutions 

 

REFERENCES 

Avella P, Boccia M, Sforza A (2004). “Solving a fuel 

delivery problem by heuristic and exact approaches”. 

Journal of Operational Research 152(1):170–179 

Chajakis E, Guignard M (2003). “Scheduling deliveries in 

vehicles with multiple compartments”. Journal Global 

Optimization 26(1):43–78 

Christofides N, Mingozzi A, Toth P (1979). “The vehicle 

routing problem”. In: Christofides N, Mingozzi A, Toth 

P, Sandi C (eds) Combinatorial optimization. Wiley, 

Chichester, pp 315–338 

Clarke G, Wright J (1964). “Scheduling of vehicles from a 

central depot to a number of delivery points”. Operations 

Research 12:568–581 

Cornillier F, Boctor F, Laporte G, Renaud J (2008). “A 

heuristic for the multi-period petrol station replenishment 

problem”. European Journal of Operational Research 

191(2):295–305 

Derigs U., Gottlieb J., Kalkoff J., Piesche M., Rothlauf F., 

Vogel U. (2010). “Vehicle routing with compartments: 

applications, modelling and heuristics”. OR Spectrum. 

doi:10.1007/s00291-010-0194-3 

El Fallahi A, Prins C, Wolfler Calvo R (2008). “A memetic 

algorithm and a tabu search for the multicompartment 

vehicle routing problem”. Computer & Operation 

Research 35(5):1725–1741 

Kalkoff J (2006). “Generierung von Benchmarks und 

empirische Analyse von Metaheuristiken für 

Tourenplanungsprobleme mit teilbaren Frachträumen”. 

Diplomarbeit, Lehrstuhl für Wirtschaftsinformatik I, 

Universität Mannheim 

Mendoza JE, Castanier B., Guéret C, Medaglia AL, Velasco, 

N (2010). “A memetic algorithm for the multi-

compartment vehicle routing problem with stochastic 

demands”. Computer & Operation Research 37(11):1886 

– 1898 

Prins, C. (2009). “A GRASP×Evolutionary local search 

hybrid for the vehicle routing problem”. In:Pereira 

FB,Tavares J, editors.Bio-inspired algorithms for the 

vehicle routing problem, studies in computational 

intelligence, vol.161. Berlin: Springer, p.35–53 

Van der Bruggen L, Gruson R, Salomon M (1995). 

“Reconsidering the distribution structure of gasoline 

products for a large oil company”. European Journal of 

Operational Research 81(3):460–473 

 

BIOGRAPHY 

Cadet David JOSEPH was born in Port-au-Prince, Haiti 

and graduated in industrial engineering program from 

Quisqueya University (Haiti) in 2008. After, he travelled to 

France where he successfully attended a master program in 

operations research proposed by Arts et Métiers ParisTech 

engineering school and University of Metz. From October 

2009, he is a Ph’D student at the Industrial System 

Optimization Laboratory (LOSI) of University of 

Technology of Troyes (France). The scope of his thesis is 

about vehicle routing problems optimization in the context 

of a food industry supply chain. 

129



130



131



132



133



134



135



136



137



138



139



140



141



142



143



144



145



146



147



148



149



150



151



152



153



154



155



156



157



158



159



160



161



162



163



164



165



166



167



168



169



170



171



172



173



174



175



176



177



178



179



180



181



182



183



184



185



186



187



188



189



190



191



192



193



194



195



196



197



198



199



200



201



202



203



204



205



206



207



208



209



210



211



212



213



214



215



216



217



218



219



220



221



222



223



224



225



226



227



228



229



230



231



232



233



234



235



236


