
I

IVXLCDM

II

III

IV

V

VI

VII

VIII

IX

X

XI

XII

1

0123456789

2

3

4

COMPARISON OF SIMIO AND ARENA SIMULATION TOOLS

António Vieira(a), Luís Dias(b) , Guilherme Pereira(b), José Oliveira(b)

(a) (b) University of Minho, Campus Gualtar, 4710-057, Braga, Portugal.

(a) antonio6vieira@gmail.com, (b) luis.dias / guilherme.pereira / jose.oliveira @algoritmi.uminho.pt

KEYWORDS: Simulation, Arena, Simio

ABSTRACT
The purpose of this paper is to establish a

comparison between Simio and Arena, helping a vast
community of simulation practitioners to gain access to
advanced modelling capabilities to address complex
problems. Several aspects were compared, such as:
concept of simulation models, animation development,
modelling philosophies, Simio libraries and Arena
templates, concept of entities, interface of the tools and
Simio objects versus Arena blocks. The comparison
was consolidated through the analysis of two case
studies where the authors aimed to emphasize the way
each simulation tool addresses some important issues
related to model construction. The several compared
aspects indicate the many advantages of using the more
recent tool. Thus, this object-oriented tool appears to
have all the conditions to trigger a widespread paradigm
shift in the way practitioners build models.

1. INTRODUCTION
Simulation modelling is being widely used for

performance improvement of many systems (Hlupic,
2000, Hlupic and Paul, 1999). Consequently, the
number of simulation tools available is also increasing
and tools comparison becomes a required task. Yet,
“most of scientific works related to tools
comparison/reviews analyse only a small set of tools
and usually evaluating several parameters separately
avoiding to make a final judgement due to the
subjective nature of such task” (Dias et al., 2007). One
of such works was developed by Hlupic and Paul
(1999). The authors compared a set of simulation tools,
distinguishing between users of software for
educational purpose and users in industry. In his turn,
Hlupic (2000) developed “a survey of academic and
industrial users on the use of simulation software, which
was carried out in order to discover how the users are
satisfied with the simulation software they use and how
this software could be further improved”. Dias and
Pereira et al. (2007, 2011) compared a set of tools based
on popularity on the internet, scientific publications,
WSC (Winter Simulation Conference), social networks
and other sources. “Popularity should never be used
alone otherwise new tools, better than existing ones
would never get market place” (Dias et al., 2007).
However, a positive correlation may exist between
popularity and quality, since the best tools have a
greater chance of being more popular. The author’s
final classification indicated that the most popular tool

at the date was Arena. The only new tool on the ranking
was Simio which obtained a good classification,
meaning that this tool has good odds of becoming more
popular and widely used in the future.

The development of Simio and Arena simulation
tools was leaded by the same author: Dennis Pegden.
Thus, it is normal that there are some resemblances
between them. “However care is required to ensure that
your knowledge of Arena does not become a handicap
that prevents exploiting the full power of Simio”
(Pegden, 2013a). Dennis Pegden (2007) exposed a
comparison between the two tools with the purpose to
“help experienced Arena users transition from Arena to
the new Simio” (Pegden, 2013a). His white paper
focused mainly on exposing some differences in the
concepts of the two tools regarding: models, entities and
resources concepts, animation development and
modelling philosophies. Yet, some practical differences
from the two tools were not addressed. To that end, this
paper intends to compare both tools, taking into account
several relevant factors but also enlightening the
learning of Simio.

Chapter 2 presents a review over the analysed
literature. In chapter 3, a comparison over the two
simulation tools is made, regarding: general concepts,
interface of the tools and Simio objects and Arena
blocks. Lastly, two case studies are presented and
analysed in chapter 4. In the final chapter, the main
conclusions of the conducted work are drawn.

2. LITERATURE REVIEW

2.1. Arena
In 1993 SIMAN and CINEMA (simulation

languages) were combined into a single tool: Arena
(http://www.erlang.com.br/arena.asp). This tool is a simulation
environment consisting of module templates, built
around SIMAN language constructs, as well as other
facilities and the CINEMA animation package (Altiok
and Melamed, 2010). Thus, when an Arena model is
created it is implemented in SIMAN code which is then
compiled and run without any need to write
programming code. SIMAN consists of blocks and
elements. Blocks are basic logic constructs that
represent operations (e.g. seize block). Elements are
objects that represent facilities such as resources,
queues and tallies (Altiok and Melamed, 2010). In 1995
the first version of Arena for Windows 95 was released.
It was the first to run in 32-bit systems. From 2000 on,
after being acquired by Rockwell, the software received
a huge development boost and new versions, in

5

increasingly shorter time periods, were launched.
Nowadays, the software is considered the most popular
simulation tool in the world (Dias et al., 2007, Pereira et
al., 2011). Since Arena already has many years of
existence, a lot of published documents is available
(Altiok and Melamed, 2010, Kelton et al., 2002).
However, the same does not apply to Simio.

2.2. Simio
Simio, developed in 2007 (Vik et al., 2010), is

based on intelligent objects (Sturrock and Pegden, 2010,
Pegden, 2007, Pegden and Sturrock, 2011). These “are
built by modellers and then may be used in multiple
modelling projects. Objects can be stored in libraries
and easily shared” (Pegden, 2013b). Unlike other
object-oriented systems, in Simio there is no need to
write any programming code, since the process of
creating a new object is completely graphic (Pegden and
Sturrock, 2011, Pegden, 2007, Sturrock and Pegden,
2010). The activity of building an object in Simio is
identical to the activity of building a model. In fact
there is no difference between an object and a model
(Pegden, 2007, Pegden and Sturrock, 2011). A vehicle,
a customer or any other agent of a system are examples
of possible objects and, combining several of these, one
can represent the components of the system in analysis.
Thus, a Simio model “looks” like the real system
(Pegden and Sturrock, 2011, Pegden, 2007). This fact
can be very useful, particularly while presenting the
results to someone non-familiar to the concepts of
simulation.

In Simio, the model logic and animation are built
in a single step (Pegden and Sturrock, 2011, Pegden,
2007). This feature is very important, because it makes
the modelling process very intuitive (Pegden and
Sturrock, 2011). Moreover, the animation can also be
useful to reflect the changing state of the object
(Pegden, 2007). In addition to the usual 2D animation,
Simio also supports 3D animation as a natural part of
the modelling process (Sturrock and Pegden, 2010). To
switch between 2D and 3D views the user only needs to
press the 2 and 3 keys of the keyboard (Sturrock and
Pegden, 2010). Moreover, Simio provides a direct link
to Google Warehouse, a library of graphic symbols for
animating 3D objects (Sturrock and Pegden, 2010,
Pegden and Sturrock, 2011).

Simio offers two basic modes for executing
models: the interactive and the experimental modes. In
the first it is possible to watch the animated model
execute, which is useful for building and validating the
model. In the second, it is possible to define one or
more properties of the model that can be changed, in
order to see the impact on the system performance
(Sturrock and Pegden, 2010).

According to Pegden (2007): although Simio
incorporates a number of innovative features in pursuit
of this goal, “only time will tell if this tool has bridged
the many practical issues that must be addressed to
trigger a widespread paradigm shift in the way
practitioners build models” (Pegden, 2007).

Currently there are not many studies that use Simio
for modelling systems. Even so, it is possible to find
some studies that used this tool for other types of
problems. Akhtar et al. (2011) studied the role of
consanguineous marriages in causing congenital
defects. Li and Wang (2011) developed a micro
simulation model to evaluate the performance and
service level of a ticket office. Vik et al. (2010) used
Simio to model a logistic system design of a cement
plant. Brown and Sturrock (2009) also used this tool to
improve a set of production processes. Lastly, Kai et al.
(2011) used Simio to explore simulation of casualty
treatment in wartime.

3. COMPARISON OF THE TOOLS
This chapter first concentrates on different views

of the conceptual philosophy of both tools when
developing a simulation model. Thereafter, it explains
different approaches of both tools as far as the interface
with the user is concerned. Lastly, this chapter shows
how the behaviour of Simio objects could be addressed
with Arena blocks - and this corresponds to the
implementation issue, where the authors aim to analyse
the practical aspects of building simulation models.

3.1. General Concepts Comparison
• Simulation model concept: In Arena when a user
refers to his “model” he is referring to the Arena
simulation model. Yet, in Simio, a model is simply an
object that can be instantiated in other models.
• Animation development: In Arena a user animates
his model as a 2-step process: first he draws process
flows for the model, and then, in a separate area of the
same drawing space, he adds levels, animated routes
and others, that are linked back to the process flow
(Pegden, 2013a). On the contrary, in Simio, the user
drags objects to a drawing space. Since they represent
the physical components of the system (Pegden and
Sturrock, 2011, Pegden, 2007) the objects define both
the logic and the animation of the model. Thus,
modelling and animation are done as a single step
(Pegden, 2013a). Moreover, Simio provides a direct
link to Google Warehouse, a library of graphic symbols
for animating 3D objects (Sturrock and Pegden, 2010,
Pegden and Sturrock, 2011).
• Modelling philosophies: In Arena, a model is built
by using the process orientation paradigm. In this
philosophy, the user defines elements that hold the state
of the system, and build process flows using blocks that
perform actions on the elements. These blocks are
passive and are only activated by the arrival of an entity
(Pegden, 2013a). On the other hand, Simio is a multi-
paradigm modelling tool, in the sense that it supports
both object orientation and process orientation. In fact,
the ability to mix object-based and process modelling
within the same model is one of the unique and very
powerful features of Simio (Pegden, 2013a). This way,
users can use the faster capacities of the object
paradigm and the more flexible capacities of the process
orientation (Pegden, 2013a). Thus, a user builds object-

6

based models by thinking in terms of the physical
objects in the system (machines, conveyors, etc.). These
objects are placed in the Facility and interact with each
other based on their internal logic. The process
orientation is used in the Process panel in which the
user constructs Arena-like process flows (Pegden,
2013a). This processes are used to either customize the
behaviour of an existent object, or to create new object
definitions (Pegden, 2013a). However, there are some
differences between the terminology of the processes in
Simio and in Arena, in the sense that in the first a
process is comprised of steps, elements, and tokens that
flow through a process executing steps that alter the
state of one or more elements. Hence, steps are like
Arena blocks (Pegden, 2013a).
• Libraries versus templates: An Arena template is a
set of hierarchical blocks (modules) that can be placed
in process logic. In contrast, a Simio library is a
collection of object definitions for placing objects in the
facility. This defines a new library that can be used by
other models, and so on. Thus, Simio libraries and
Arena template panels share the basic notion of user-
defined library, but they differ in the modelling
orientation that they are designed to support (Pegden,
2013a).
• Entities concept: Entities in Arena are part of a
model of the system and their only purpose is to carry
information (attributes) and to execute a process. In fact
every entity in an Arena model must have exactly the
same attributes (Pegden, 2013a). In Simio, entities have
object definitions, thus have their own intelligent
behaviour and can make decisions, such as reject
requests, decide to take a rest, etc. Moreover, each
entity has a token that corresponds to it and executes a
process. Thus, an entity in Arena corresponds to a token
of Simio (Pegden, 2013a).

3.2. Interface

3.2.1. Arena
Arena possesses 2 other tools incorporated: Input

analyser and Output analyser. While the first fits a
distribution to a sample data, the latter is a tool for
analysing the data resulted from a simulation process.

There are 3 main regions that can be identified in
the main Arena window:

1) Project bar
Located on the left side, it contains several

templates that can be attached or detached to the Project
bar. Templates are a set of blocks pre-defined or user-
defined, i.e., a collection of modelling tools. From
those, basic process, advanced transfer and advanced
process stand out. More information on Arena templates
can be found at (Vieira, 2013).

To build a simulation model with Arena a user
needs to use modules from the above mentioned
templates. There are 2 types of modules: Flowchart
blocks and data modules (Garrido, 2009). The user can
places blocks on the model window and connect them
to form a flowchart that describes the system he is

modelling. Data modules are data in spreadsheet-like
format that enables the user to edit some information.

2) Model window flowchart view
This region is located on the right side of Arena. It

is the workspace for the simulation model and will
contain all the model graphics, flowcharts, animation,
and other drawings.

3) Model window spread sheet view
Located on the right-hand side and below the

flowchart view, it shows the model data and some
details of the blocks being used/selected.

3.2.2. Simio
In Simio there are 3 areas that are always visible

and can be seen in Figure 1: the ribbons, the browse
panel and the tabbed panel views. These areas are
described in more detail in (Vieira, 2013).

Figure 1: General view of Facility

The tabbed areas are divided in: Facility, Process,
Definitions, Data and Results. More information on the
panels can be found at (Vieira, 2013).

3.3. Objects versus Blocks
This comparison will be made by trying to model

the same behaviour of Simio objects of the Standard
library, resorting to some Arena blocks. The objects
belonging to the Standard library are:

Source: This object is responsible for creating
entities. Figure 2 illustrates a Source object.

Figure 2: Source object

This object is comprised by an output node, an
output buffer queue and the object itself. It is possible to
establish a comparison between this object and the
Create block of Arena, since both can define the entity
type, Interarrival times, number of entities per arrival,

7

maximum number of arrivals and the time offset until
the first arrival. However, in Simio it is possible to edit
many more properties like assign values to states, assign
add-on processes, make table references and state
assignments, change animation of created entities and
others. Figure 3 represents a Create block of Arena.

Figure 3: Create block

Sink: Figure 4 illustrates a Sink object. This object
is responsible for eliminating entities from the system.

Figure 4: Sink object

This object is comprised by an input node, an input
buffer queue and the object itself. The Dispose block of
Arena has the same goal of this object. The Simio
object also allows the definition of add-on processes,
state assignments and others. Figure 5 displays a
Dispose block.

Figure 5: Dispose block

Server: “The Server object can be used to model a
single server or a single processing center with multiple
identical servers, depending upon the capacity specified
for the processing station” (www.simio.com). Figure 6
shows a Server object which is comprised by an input
node, an input buffer queue, a processing station, an
output buffer queue, an output node and the object
itself.

Figure 6: Server object

The Process block of Arena has the same objective
of this object, since both model processes with a
determined processing time. In a Process block, the user
has to specify the type of process (e.g. seize, seize delay
release), the allocated resource, the processing time and
needs to assign the resource type. In a Server, this is

done in a more natural way, since the user does not need
to assign a specific type of resource to be seized.
Despite having the same goal, the Simio object allows a
user to edit a superior set of properties like secondary
resources, failures, state assignments, add-on processes,
and others. Figure 7 illustrates a Process block.

Figure 7: Process block

Workstation: The most complex object of the
Standard Library. It is similar to a Server except that it
models the processing station in far more detail, since
the latter is represented by an operation divided into 3
activities: setup, processing, and teardown. All the
entities moving through the Workstation will perform
each of these activities. Figure 8 illustrates a
Workstation object. It is not possible to establish a
comparison between this object and a single block of
Arena. In order to model this object, a great number of
blocks would have to be used.

Figure 8: Workstation object

Combiner: Matches multiple entities, groups them
into a batch, and then attaches the batched members to a
parent entity. Figure 9 illustrates a Combiner.

Figure 9: Combiner object

This object is comprised by a parent input node, a
member input node, a parent input buffer queue, a
member input buffer queue, a processing queue, an
output buffer queue, an output node and the object
itself. In Arena it is possible to model this behaviour by
using the blocks Match to synchronize the entities and
then, the Batch block to attach those entities together.
Nevertheless, in Simio there is the possibility to
visualize the member entities of a parent entity as they
travel through the model. Figure 10 illustrates the

8

addressed situation. In this image a tray (parent entity)
waits for 2 cakes (member entities) to be combined. The
cakes can be visualized through the creation of a batch
member queue for the tray entity.

Figure 10: Combiner example in Simio

The Combiner also offers the possibility to edit
properties like failures definition, add-on processes,
state assignments, secondary resources, capacity types
and others. Figure 11 displays the two blocks: Batch
and Match of Arena.

Figure 11: Match and batch blocks

Separator: Either separates batched members
from a parent entity, or makes copies of an entity.
Figure 12 illustrates a Separator object, which is
comprised by a main object, an input node, an input
buffer queue, a Processing queue, a parent output buffer
queue and a member output buffer queue.

Figure 12: Separator object

A comparison between this object and the Separate
block of Arena can be established. Apart from the
common goal of the object and the block, the first also
offers the possibility of editing further properties like
define failures, add-on processes, state assignments,
secondary resources, capacity types and others. Figure
13 illustrates a Separate Arena block.

Figure 13: Separate block

Resource: Generic object with capacity that can be
seized and released by other objects. Entities do not
pass through this object, unlike the previous ones. In
fact, the placement of this object on the Facility, only
intends to declare the existence of a resource type that
can be seized and released. In Arena, a user defines

resource types through the Resource data module, in
order to achieve the same behaviour. Despite this, in
Simio the concept of resources is quite different and
much more robust than in Arena, due to the fact that any
object can seize and release any other object. In this
object, a user can also define failures, add-on processes
among others. Figure 14 shows a Resource object.

Figure 14: Resource object

Vehicle: Used to model devices that follow a fixed
route (e.g. bus, train, etc.), or respond to dynamic
requests for pickups (e.g. taxi, AGV, etc.). Similarly to
the Resource object, the placement of this object on the
Facility only intends to declare the existence of a
vehicle type. Therefore this object is not connected to
any object and thus entities do not pass through it.
Figure 15 illustrates a Vehicle object.

Figure 15: Vehicle object

This object is comprised by a ride station queue
and the object itself. Arena also possesses the concept
of vehicles to transport entities though these cannot
follow fixed routes. Additionally, in Arena a transporter
can only transport an entity at a time, whilst in Simio
this can be done several entities at a time. To model
transports in Arena it is necessary to use the template
AdvancedTransfer, more specifically the blocks
Request, Transport and Free. This object also allows a
user to define failures, population number and others.
Figure 16 illustrates these blocks combined, in order to
model a transport.

Figure 16: Using Arena blocks to model a transport

Worker: Defines a moveable resource that may be
seized, released or used to transport entities between
nodes. In contrast to the Vehicle that supports a Routing

9

Type which can be on demand or fixed, the Worker
always operates on demand, i.e., the Worker always
waits for either a visit request or a transport request.
Additionally, unlike the Vehicle, the Worker has the
ability to follow a work schedule and the Worker
always assigns priority to seize visit requests over
transport requests. This object is comprised by a ride
station queue and the object itself. In Arena, the notion
of moveable resources does not exist. Figure 17 shows a
Worker object.

Figure 17: Worker object

BasicNode: Models a simple intersection between
multiple links and can also be used as input nodes of
objects. This object cannot model changes of
destination. In Arena, a block with a similar concept to
the nodes of Simio is the Station block. Figure 18 shows
a BasicNode object and Figure 19 illustrates a Station
block.

Figure 18: BasicNode object

Figure 19: Station block

TransferNode: Models a complex intersection for
travel mode. Unlike the previous object, this can model
changes of destination. Additionally, the TransferNode
can be used as output nodes of objects. Figure 20
illustrates a TransferNode object.

Figure 20: TransferNode object

Connector: Represents a simple zero-time travel
link between 2 nodes. In Arena, the same goal is
achieved by connecting 2 blocks, using the connect
option. Figure 21 displays this object connecting a
Source to a Sink.

Figure 21: Connector object

TimePath: Used to transfer entities between 2
nodes with a specified travel time. Figure 22 shows a
TimePath connecting a Source to a Sink.

Figure 22: TimePath object

In Arena, to model the same behaviour, it is
necessary to use the template AdvancedTransfer, more
specifically, the blocks Station and Route. Figure 23
illustrates an example of these blocks being used.

Figure 23: Using Arena blocks to model routes

Path: Represents links over which entities may
move independently, at their own speed rates. Figure 24
shows a Path object, connecting a Source to a Sink. In
Arena it is not possible to achieve the same behaviour
of this object.

10

Figure 24: Path object

Conveyor: Entities traveling on this kind of
connection do not “move“. Their movement is done by
a conveyor that can be accumulating or non-
accumulating. Figure 25 illustrates a Conveyor between
a Source and a Sink.

Figure 25: Conveyor object

In Arena, to model the same behaviour it is
necessary to use the AdvancedTransfer template, more
specifically, the blocks Station, Access and Convey.
Figure 26 illustrates a conveyor being modelled in
Arena.

Figure 26: Using Arena blocks to model conveyors

4. CASE STUDIES
This chapter intends to introduce two case studies

and analyse the way both simulation tools address the
same problem. First, using a basic example - then,
adapting it to the use of transports, which is a very
important aspect of the development of any simulation
model regarding the representation of a real operating
system.

4.1.1. Basic Problem
• Problem description: This problem consists on a
situation where trucks arrive at a factory and need to

unload its merchandise. Each truck is loaded with
malfunctioning TVs that have to be repaired by
repairmans. After a TV is repaired, it has to go to the
inspection, where the inspectors will evaluate its
condition. If the TV has no more defects, it goes to a
truck parked outside. The trucks wait for repaired TVs
and then leave the system.
• Basic problem in Arena: This system was
modelled using Arena. Figure 27 shows the developed
simulation model.

Figure 27: Basic problem in Arena

For modelling this system, two types of entities
were used: one to represent the trucks and another to
represent its merchandise. To create entity types, a user
needs to use the Data module Entity. The Create block
“Arrival of trucks” only creates entities of the type
truck. After the creation of a truck, the Separate block
“Material removal from the truck” is responsible for
separating the truck and its merchandise, though, the
merchandise will be animated with the same image as
the truck. Since this does not correspond to what is
intended, the Assign block “Update entities” updates
the image of the entity of the merchandise. After being
separated from its merchandise, the truck waits for the
repaired TVs on the Match block. Thus, the TVs need to
be repaired by the Process “Repair”. In this process, an
entity seizes a repairman, delays the allocation for a
specified process time correspondent to the time needed
to repair a TV and then releases the repairman, allowing
his allocation to another entity. When the reparation is
concluded, the TV follows to the “Inspection” process.
In it, an inspector is seized by an entity for a specified
process time and then is released, in order for the
inspector to be allocated to another entity. This process
evaluates whether or not the TV still has any defects.
Nearly 25% of the entities that pass through this
inspection fail on the test and thus, need to be repaired
again. This situation is modelled by the block Decide
“Problem?”. Before repeating the “Repair” process, the
image of a red ball is assigned to these entities. In the
Batch block, the fixed TVs that will go to a truck wait
until a specified value of TVs is reached. After the
number is reached, the truck leaves the system with the
merchandise, through the Dispose block.
• Basic problem in Simio: Figure 28 shows the
developed model in Simio.

By looking at the model developed in Simio, the
most notable difference to the same model developed in
Arena is the animation. Simio’s model is much more
realistic, in fact, it “looks” like the real system.
However, there are several more differences that will
now be addressed. Firstly, in Simio a user may associate
an array of symbols to an object. Thus, in this model

11

two symbols were associated to the TV: a regular TV
for TVs that haven’t been repaired or TVs with no
problems and a red TV for TVs with defects. Secondly,
the creation of an entity type is done by simply
dragging a ModelEntity object to the Facility. In this
case, two of these objects were dragged: the truck and
the TV. Another difference is the fact that in Arena, in
order to model the change of destination of TVs that
need to be repaired anew, the block Decide needs to be
used. Yet, in Simio, the same goal can be achieved by
adding a Path between the output node of the
“Inspection” and the input node of the “Repair” and
editing the respective probabilities of each destination.
Additionally, any object can perform state assignments
when entities enter or before leaving the object. In this
sense, when entities fail the inspection and need to be
repaired again, the Path connecting the two objects
assigns the symbol red TV to the image of the entity.
Lastly, in Simio only the Combiner object is necessary
to model the Match and Batch blocks. In fact, this
makes much sense, since the two blocks are used
together almost every time in Arena. The parent input
buffer queue displays the trucks waiting for the
merchandise and the member input buffer queue
displays the TVs waiting to be combined. When the
later reaches a specified number, the first truck of the
parent input buffer queue leaves the system through the
Sink.

Figure 28: Basic problem in Simio

4.1.2. Problem with Transports
• Problem description: This problem corresponds to
the previous one with the introduction of transports.
More specifically, in this case study, the merchandise
removal from the trucks that arrive at the system and the
loading of the trucks with repaired TVs is done with the
help of forklifts. Also, when a TV needs to be inspected
or to repeat the reparation process, it is placed on a
conveyor.
• Problem with transports in Arena: Figure 29
illustrates the developed model in Arena and Figure 30
shows the correspondent model animation.

As can be seen, the physical model is created
separately from the logical model.
• Problem with transports in Simio: Figure 31
shows the developed model in Simio.

As can be seen, the same model can be built using
a lower number of components. This is due to the fact
that, for instance, to model the Vehicles (forklifts) and
the Conveyors it is only necessary to drag the
correspondent objects to the Facility and edit their

properties. On the other hand, in Arena a great number
of blocks need to be used to achieve the same goal.

To develop the considered case studies in both
tools, the authors concluded the modelling in Simio was
done in a simpler, faster and more intuitive way.
Regarding the animation of the models, by examining
the figures related to the case studies, it is clear that
Simio models “look” like the real system. Lastly, there
are some systems that can be modelled in Simio and are
impracticable to achieve in Arena. Such a case can be
consulted in (Vieira, 2013).

Figure 29: Problem with transports in Arena

Figure 30: Animation of the problem with transports

Figure 31: Problem with transports in Simio

5. CONCLUSIONS
Simulation modelling is being widely used for

performance improvement of many systems (Hlupic,
2000, Hlupic and Paul, 1999). Hence, the comparison of
simulation tools becomes a required task. In this
context, Dias et al. (2007, 2011) compared a set of tools
based on the popularity of most commercial tools. The
author’s final classification indicated that the most
popular tool at the date was Arena and the only new
tool on the “top 20” was Simio, both developed by the
same authors: Dennis Pegden and David Sturrock.
Thus, it should be normal that there are some
resemblances between them. In this context, this paper
intended to compare both tools taking into account
several factors, such as: concepts of simulation model,
animation development, modelling philosophies, Simio
libraries versus Arena templates, entities concept,
interface of the tools and Simio objects versus Arena
blocks. Lastly, two case studies were addressed, in
order to analyse the way both problems should be
modelled on each tool.

Once the comparison of the tools was concluded,
several aspects can be highlighted. Firstly, the Arena
interface is simpler than Simio’s. Regarding published
documentation, Arena is highly more referenced than
Simio. However, the latter is a much more recent tool.

12

The most visible difference between the models of
Arena and Simio is the animation. Whilst in Arena the
animation is developed in a separated step of the
modelling, in Simio the modelling and the animation
are done as a single step and the direct link with Google
Warehouse makes the models very similar to the real
systems. Even so, there are more differences in the
systems modelling approach of each tool. Namely,
Arena uses the process orientation while Simio is a
multi-paradigm tool and its main feature is the ability to
model intelligent objects and everything in Simio is an
object. Consequently, Simio’s entities are objects with
their own intelligent behaviour and can make decisions,
reject requests, etc. Moreover, entities have tokens that
correspond to them and execute processes, while in
Arena the only purposes of entities is to carry
information (in their attributes) and to execute processes
(Pegden, 2013a). Thus, an entity in Arena is similar to a
token in Simio (Pegden, 2013a).

The comparison of objects in the Standard library
of Simio with the blocks in the Basic Process template
of Arena showed some resemblances between them, in
the sense that most Arena blocks can be modelled by a
correspondent Simio object, making it a very intuitive
tool to use for Arena users. However, there are cases, in
which the user needs to use a great number of blocks to
achieve the same goal of a single Simio object.
However, a great number of advantages of the Simio
objects are noted, like the possibility of assigning values
to states, add-on processes, arrays of animation, failures
and schedules without the need to create new objects.
Furthermore, some cases can be easily and quickly
modelled in Simio than in Arena, for instance the
utilization of conveyors or transports in Simio is
achieved by simply dragging the correspondent objects
to the Facility while in Arena a greater number of
blocks need to be used.

The development of the chosen case studies
showed that it is possible to model the same model of
Arena, in Simio. Nevertheless, it required less effort and
time to model the considered examples, in Simio.
Moreover, Simio model’s shape mimics the real
system’s layout, having required a lower abstraction
level to develop.

An example of a case study developed in Simio,
where it would be impracticable to model the same
system in Arena was also given.

The compared aspects indicate the many
advantages of using Simio. However, there are some
down-sides typical of a recent tool. For instance, in
Simio a user cannot create a clock to have a better
perspective of the simulation time passing. In Arena this
is very simple to add to a model. Another feature that
Arena possesses and Simio does not is the incorporated
tools: Input and Output Analyser. Also, at the date this
paper was prepared there were some features that were
not completely implemented (e.g. acceleration of
entities). Nevertheless, this object oriented tool appears
to have all the conditions to “trigger a widespread

paradigm shift in the way practitioners build models”
(Pegden, 2007).

ACKNOWLEDGEMENTS	
This work has been supported by FCT – Fundação para a Ciência e
Tecnologia in the scope of the project: PEst-OE/EEI/UI0319/2014.

REFERENCES
AKHTAR, N., NIAZI, M., MUSTAFA, F. & HUSSAIN, A. 2011. A

discrete event system specification (DEVS)-based model
of consanguinity. Journal of Theoretical Biology, 285,
103-112.

ALTIOK, T. & MELAMED, B. 2010. Simulation Modeling and
Analysis with ARENA, Elsevier Science.

BROWN, J. E. & STURROCK, D. 2009. Identifying Cost Reduction
and Performance Improvement Opportunities Through
Simulation. Proceedings of the 2009 Winter Simulation
Conference: M. D. Rossetti, R. R. Hill, B. Johansson, A.
Dunkin and R. G. Ingalls, eds.

DIAS, L., PEREIRA, G. & RODRIGUES, G. 2007. A Shortlist of the
Most Popular Discrete Simulation Tools. Simulation News
Europe, 17, 33-36.

GARRIDO, J. M. 2009. Object Oriented Simulation: A Modeling and
Programming Perspective, Springer-Verlag.

HLUPIC, V. Simulation software: an Operational Research Society
survey of academic and industrial users. Simulation
Conference, 2000. Proceedings. Winter, 2000 2000. 1676-
1683 vol.2.

HLUPIC, V. & PAUL, R. 1999. Guidelines for selection of
manufacturing simulation software. IIE Transactions, 31,
21-29.

KAI, Z., RUICHANG, W., JIE, N., XIAOFENG, Z. & HAIJIAN, D.
Using Simio for wartime casualty treatment simulation. IT
in Medicine and Education (ITME), 2011 International
Symposium on, 9-11 Dec. 2011 2011. 322-325.

KELTON, W. D., SADOWSKI, R. P. & SADOWSKI, D. A. 2002.
Simulation with Arena, McGraw-Hill School Education
Group.

LI, J. & WANG, L. Microscopic simulation on ticket office of large
scale railway passenger station. Advanced Forum on
Transportation of China (AFTC 2011), 7th, 22-22 Oct.
2011 2011. 41-47.

PEGDEN, C. D. Simio: A new simulation system based on intelligent
objects. Simulation Conference, 2007 Winter, 9-12 Dec.
2007 2007. 2293-2300.

PEGDEN, C. D. 2013a. An Introduction to Simio for Arena
Users. Simio. White paper. Available online
at: http://www.simio.com/resources/white-papers/For-
Arena-Users/An-Introduction-to-Simio-For-Arena-
Users.htm.

PEGDEN, C. D. 2013b. Intelligent objects: the future of simulation.
Simio. White paper. Available online at:
http://www.simio.com/resources/white-papers/Intelligen-
objects/Intelligent-Objects-The-Future-of-Simulation-
Page-1.htm.

PEGDEN, C. D. & STURROCK, D. T. Introduction to Simio.
Proceedings - Winter Simulation Conference, 2011
Phoenix, AZ. 29-38.

PEREIRA, G., DIAS, L., VIK, P. & OLIVEIRA, J. A. 2011. Discrete
simulation tools ranking: a commercial software packages
comparison based on popularity.

STURROCK, D. T. & PEGDEN, C. D. Recent innovations in Simio.
Proceedings - Winter Simulation Conference, 2010
Baltimore, MD. 21-31.

VIEIRA, A. 2013. Master Thesis. Micro simulation to evaluate the
impact of introducing pre-signals in traffic intersections.
Department of Production and Systems - University of
Minho.

VIK, P., DIAS, L., PEREIRA, G., JOS, #233, OLIVEIRA & ABREU,
R. 2010. Using simio for the specification of an integrated
automated weighing solution in a cement plant.
Proceedings of the Winter Simulation Conference.
Baltimore, Maryland: Winter Simulation Conference.

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

