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Preface

NASTEC (North-American Simulation Technology Conference) is a series of conferences
initiated by Eurosis after in-depth discussions with Dr. Mokhtar Beldjehem and North-American
simulationists, addressing issues regarding modeling and simulation (M&S). The first NASTEC
2008 is being held at Mc Gill University, Montreal, Canada, which is its birth place. It has attracted
simulationists, researchers and practitioners, attendees from academic, industry and government
agencies in an exchange of ideas and shared experiences. NASTEC aims to be the feast of
simulationists in North-America.

The intent of the NASTEC'2008 event is to nurture the spirit of cooperation and strive to improve
the quality of life in this global village through excellence in hybrid soft computing research and
education by engineering of next-generation intelligent hybrid soft computing systems for
modeling, simulation, software engineering, web computing and virtual reality systems at the
service and for the benefits of the humankind.

Computer simulation is being acknowledged as the “third leg” of scientific discovery and analysis,
along with theory and experimentation. Simulation technology aims at building the software digital
factory. The field of modeling and simulation in general has made significant progress; part of it is
reflected in the present proceedings volume. NASTEC 2008 was able to attract top-level and
forefront research; the field itself has brought along a number of new development, unheard of a
couple of years ago. The themes to be discussed this year center around novel issues in
connection with modeling and simulation: soft computing for modeling and simulation, simulation-
based software engineering, web computing and virtual reality systems. The program consists of
15 high-quality papers. Beyond these papers that have undergone a review process, NASTEC
2008 is proud to host three abstracts by Prof. Lotfi A. Zadeh the creator of fuzzy and soft
computing, invited talks by Prof. Johann Schumann from NASA Intelligent Systems Division, Prof.
JingTao Yao from the University of Regina, Prof. Peter Grogono from Concordia University, and
Prof. Brigitte Jumard from Concordia University.

We are grateful to a number of people without whom we would not have been able to put the
program together. They include our local program committee and international program
committee, which have done an excellent job: We got 4.5 reviews per paper on the average. We
would also like to thank many external reviewers who have helped “in the background,” and who
made sure that we stuck with our schedule. We are grateful to the large number of authors who
have considered NASTEC as the target for their work, and even though we could not
accommodate every submission, we hope that the reviews will be helpful to many people. Last,
but not least, we are indebted to the staff of Eurosis, Ecole Polytechnique de Montréal and Mc
Gill University for making this event a reality.

NASTEC’08 General Conference Chair
Mokhtar Beldjehem

Honorary Conference Chairs

Lotfi A. Zadeh

Ronald Yager

Madan Gupta
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Message from the Chairs

The organizing committee welcomes you to the 2008 North-American Simulation Technology
Conference (NASTEC 2008), held in Montreal, Canada, from August the 13th to August the 15th,
2008. This meeting, co-sponsored by the EUROSIS, is the first of a series of conferences dealing
with simulation technology.

The intent of the NASTEC'2008 event is to nurture the spirit of cooperation and strive to improve
the quality of life in this global village through excellence in hybrid soft computing research and
education by engineering of next-generation intelligent hybrid soft computing systems for
modeling, simulation, software engineering, web computing and virtual reality systems at the
service and for the benefits of the humankind.

Computer simulation is being acknowledged as the “third leg” of scientific discovery and analysis,
along with theory and experimentation. Ultimately, simulation technology aims at building the
cost-effective software digital factory.

The three-day program aims to extend and advance the use of modeling and simulation (M&S)
technologies in an informal setting arranged to encourage broad discussion about theory,
methodologies, best practices and results. Participants will hear, learn and discuss opportunities
and problems in using soft computing, simulation-based software engineering, web computing,
virtual reality, their synergies and interplays in connection with modeling and simulation
breakthroughs to the advancement of the simulation technology and related applications. To
promote interaction and discussion in the audience, sufficient time is allotted to presenters not
only to introduce their achievements, but also to engage in extended discussions with the
participants. Subjects of discussion include, but are not restricted to, examination of approaches
and results, the rationale underlying particular methodologies, experimental and theoretical
examinations, practical difficulties, insights, and extensions to other application areas.

We believe that NASTEC 2008 constitutes a seed for the upcoming NASTEC series: the quality
of accepted papers is still very high, evidencing the real interest and attractiveness of this
meeting and the relevance of this scientific and application area in the worldwide scene. This
conference will be held in parallel with the North American Simulation and Al in Games
Conference (GAMEON-NA). The organizers decided to adopt this structure due to their many
common aspects and shared technologies: the parallel organization will allow for more
interaction, networking and collaboration among the participants in the two events, and for cross-
fertilization of research ideas, more sharing of advanced knowledge and stimulating experiences.
We think you will find NASTEC 2008 a challenging and productive experience.

We hope that you will enjoy the feast of simulationists, the Montreal UNESCO City of Design, the
Island of Montreal, the Mc Gill University location, the culture, the food and the Mount Royal:
Montreal will be an exciting experience!

NASTEC'08 General Conference Chair
Mokhtar Beldjehem

Honorary Conference Chairs

Lotfi A. Zadeh

Ronald Yager

Madan Gupta
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GRANULAR COMPUTING:
A NEW PARADIGM IN INFORMATION PROCESSING

JingTao Yao
Department of Computer Science, University of Regina, Regina, Canada S4S 0A2
Email: jtyao@cs.uregina.ca
URL: http://www2.cs.uregina.ca/~jtyao

INTRODUCTION

Granular computing (GrC) has emerged as one of
the fastest growing information processing paradigm in
computational intelligence and human-centric systems.
It has been gaining popularity in the past ten years.
GrC is often loosely defined as an umbrella term to
cover any theories, methodologies, techniques, and tools
that make use of granules in complex problem solving.
As a new paradigm for the problem solving, GrC may
be viewed differently from philosophical, methodologi-
cal and application perspectives. In this talk, I will give
a brief introduction to granular computing and discuss
its present developments and research directions.

HISTORICAL VIEW OF GRANULAR COM-
PUTING

The concept of granular computing was initially called
information granularity or information granulation
related to the research of fuzzy sets in Zadeh’s early
paper (Zadeh 1979). The term granular computing first
appeared within literature in 1997 (Yao 2007).

Although the term granular computing is new, the ba-
sic notions and principles of GrC occur under various
forms in many disciplines and fields (Yao 2004, Zadeh
1997). Similar views are shared by research in belief
functions, artificial intelligence, cluster analysis, chunk-
ing, data compression, databases, decision trees, divide
and conquer, fuzzy logic, interval computing, machine
learning, structure programming, quantization, quotient
space theory, and rough set theory.

GRANULES, GRANULATION AND GRANU-
LAR RELATIONSHIPS

Granules, granulations and relationships are some of
the key issues in the study of GrC (Yao 2005).

A granule can be defined as any subset, class, object,
or cluster of a universe. These granules are composed
of finer granules that are drawn together by distin-
guishability, similarity, and functionality (Zadeh 1997).

A group of concepts or objects can be considered as a
granule by their spatial neighborhood, closeness, and
cohesion. Although granular computing is intended to
deal with imprecision, uncertainty and partial truth,
the granules may be of crisp or fuzzy format. A granule
may have different formats and meanings when used
in a particular model. For example, in a set-theoretic
setting, such as rough sets and cluster analysis, a
granule may be interpreted as a subset of a universal
set, while in structured programming, a granule can be
a program module (Yao 2004). Granules at the lowest
level are composed of elements or basic particles of
the particular model that is used. For instance, the
finest granules are words in an article universe. They
are formed with basic particles, i.e., letters. They may
be considered as singleton granules in some special cases.

Granulation involves the process of construction and
decomposition of granules (Yao 2005). It is an opera-
tion performed on granules. Construction involves the
process of forming a larger and higher level granule with
smaller and lower level granules that share similarity,
indistinguishability, and functionality. Decomposition
is the process of dividing a larger granule into smaller
and lower level granules. The former is a bottom-up
process. The latter is a top-down process. This defini-
tion is slightly different with the dictionary definitions
of granulation, the act or process of forming some-
thing into granules, i.e. decomposition of granulation.
Writing an article could be viewed as granulation.
The lower level granules, i.e., worlds, are constructed
into an article, a high-level granule. Granulation and
computation are two important and related issues of
granular computing research. Granulation deals with
the construction, interpretation, and representation of
granules. Computation deals with the computing and
reasoning with granules and granular structures.

Relationships amongst granules may be classified
into two types, interrelationship and intrarelationship.
Granulation, regardless of direction, is dealing with re-
lationships between granules. The relationship involved
in construction granulation is considered as an interre-
lationship and the decomposition granulation as an in-



trarelationship. Interrelationship is the basis of group-
ing small objects together. Granular computing involves
structured human thinking. A high-level granule repre-
sents a more abstract concept and a low-level a more
specific concept. The level of abstraction may be repre-
sented in terms of coarse and fine relationships.

SCHOOLS OF GRANULAR COMPUTING
RESEARCH

One of the important developments of granular
computing is the triarchic theory of granular com-
puting (Yao 2008). Instead of simply defining what
granular computing research is, one may understand
the scope of granular computing from the philosophical,
methodological and computational perspectives. The
philosophical perspective concerns structured thinking.
Granular computing combines analytical thinking for
decomposing a whole into parts and synthetic thinking
for integrating parts into a whole. It is important
to consider the conscious effects in thinking with
hierarchical structures when using granular computing.
The methodological perspective concerns structured
problem solving. The techniques for effective human
problem-solving, such as systematic approaches to
finding a solution, effective problem definition princi-
ples, and practical heuristics and strategies to check
solutions to a problem, builds major foundations to
granular computing. The computational perspective
concerns structured information processing. Granular
computing also focuses on the application of its theory
to knowledge-intensive systems.

Rough sets and fuzzy sets play important roles in
GrC development (Yao 2007). An important fuzzy
aspect in granular computing is to view granular
computing as human-centric intelligent systems.
Human-centered information processing was initiated
with the introduction of fuzzy sets. The insights have
led to the development of the granular computing
paradigm (Bargiela and Pedrycz 2008, Zadeh 1997).
Shifting from machine-centered approaches to human-
centered approaches is considered one of the trends in
GrC research. For example, one may integrate different
agents in which each pursues its own agenda, exploits its
environment, develops its own problem solving strategy
and establishes required communication strategies,
to form a more effective human-centered information
system (Bargiela and Pedrycz 2008).

Another school of thought is rough-granular computing.
One may form granules with different criteria from a
rough computing point of view (Skowron and Stepaniuk
2007).  Granules are constructed in computations
aiming at solving optimization tasks. General optimiza-
tion criterion based on the minimal length principle
may be used. In searching for optimal solutions, it

is necessary to construct many compound granules
using some specific operations, such as generalization,
specification or fusion (Skowron and Stepaniuk 2007).
The dominance-based rough set approach is another
representation of rough set-based GrC methodology.
This approach extends the classical rough set approach
by utilizing background knowledge about ordinal eval-
uations of objects and about monotonic relationships
between these evaluations (Slowinski 2008).

Other important granular computing research areas in-
clude interval computing, topology, rough logic, quo-
tient space, neural networks, fractal analysis, and quo-
tient space theory (Yao 2009).

FUTURE OF GRANULAR COMPUTING

In order to broaden and deepen the study of granu-
lar computing, one may focus on its foundations and
definitions. Important issues, such as the formalization
and understanding of granules, granulation, and gran-
ular relationships of various granular computing tech-
niques should be emphasized. Applying individual tech-
niques for real applications are essential. Communicat-
ing with other disciplines and adopting non-traditional
techniques to granular computing research will broaden,
enhance, and solidify granular computing research.
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Verification and Validation of Neuro-adaptive Aircraft Control Systems

Johann Schumann
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ABSTRACT

Traditional fixed-gain control has proven to be unsuc-
cessful to deal with complex changing systems such as
a damaged aircraft. Control systems, which use a neu-
ral network that can adapt toward changes in the plant,
have been actively investigated and test flown as they
offer many advantages. We will briefly introduce adap-
tive flight control and will discuss the specific challenges
for the verification and validation (V&V) of such sys-
tems. Since performance and safety guarantees cannot
be provided at development time, we have developed
novel tools and approaches to support V&V and cer-
tification, which use a Bayesian approach to monitor
sensitivity and performance (confidence) of the neural
network during flight.

INTRODUCTION

Adaptive control systems in aerospace applications have
numerous advantages: they can automatically fine-tune
system identification and accommodate for slow degra-
dation and catastrophic failures (e.g., a damaged wing
or a stuck rudder) alike. A variety of approaches for
adaptive controls, based upon self-learning computa-
tional models such as neural networks or fuzzy logic,
have been developed (e.g., Rysdyk and Calise (1998)).
Some are in actual use (e.g., in chemical industry) or
have been flight-tested (e.g., the NASA Intelligent Flight
Control System (IFCS, Bosworth and Williams-Hayes
(2007))). However, the acceptance of adaptive con-
trollers in aircraft and other safety-critical domains is
significantly challenged by the fact that methods and
tools for analysis and verification of such systems are
still in their infancy and no widely accepted V&V ap-
proach has been developed. Reliability of learning, per-
formance of convergence and prediction for a nonlinear
adaptive controller is hard to guarantee. The analysis of
traditional controllers, which have been augmented by
adaptive components require technically deep nonlinear
analysis methods.

Figure 1 shows the basic architecture of the adaptive
controllers developed within NASA’a IFCS project: pi-
lot stick commands 6,4 are mixed with the feedback,
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Figure 1: Basic IFCS Adaptive Control Architecture

current sensor readings 6 (e.g., airspeed, angle of attack,
altitude) to form the desired behavior of the aircraft.
Then, the controller calculates the necessary movements
of the control surfaces (e.g., rudder, ailerons). If the
aerodynamics of the aircraft changes radically (e.g., due
to a structural damage), there is a deviation between
desired and actual behavior of the aircraft. The neural
network is trained during flight (“online”) to minimize
this deviation. Different types of NNs (DCS, SigmaP1i,
and MLP) have been investigated within this project.

V&V AND CERTIFICATION ISSUES

Clearly, an adaptive aircraft controller is a highly safety-
critical component of aviation software, and therefore,
it has to undergo a rigorous V&V and certification pro-
cess. Due to the nonlinearity of adaptive controllers,
traditional linear analysis techniques and tools cannot
be used. Rather, more complex non-linear techniques
like Lyapunov stability analysis must be used. In gen-
eral, adaptive controllers require advanced learning al-
gorithms, which dynamically modify internal parame-
ters (e.g., weights). For such algorithms, no standard-
ized way of performing performance analysis and V&V
exists and certification authorities are very reluctant to
certify novel components, architectures, and software al-
gorithms.

For such learning algorithms, in general, the conver-
gence time cannot be bounded a priori and there is no
guarantee that the global optimum can be reached. The
estimation of safety and stability envelopes is strongly
related with the performance of the neural network. We
therefore have developed a number of tools, which dy-
namically (i.e., during flight) monitor the performance
and sensitivity of the neural network. Using a Bayesian
approach, these tools can provide statistical up-to-date
evidence on how the neural network is behaving. We
also have developed software V&V process guides to
support V&V of adaptive control systems.



PARAMETER SENSITIVITY ANALYSIS

The sensitivity of a controller with respect to input per-
turbations is an important performance metric for any
controller. In a neuro-adaptive system, the internal con-
trol parameters are changing while the system is in oper-
ation. We are therefore also interested in the parameter
sensitivity for the neural network. A statistical formula-
tion this provides sensitivity s and parameter confidence
0723. If we assume a Gaussian probability distributions
and the probability of the output of the neural network
as p(o|P,x) for output o with network parameters P
and inputs x, we can easily calculate sensitivity and pa-
rameter confidence for each parameter P.

sonsitivity wierror bar

s i

neuron number

Figure 2: Parameter sensitivity and confidence for DCS
(top) and Sigma-Pi (bottom) before and after training.

Fig. 2 (top) shows the sensitivity of the IFCS DCS ref-
erence vectors before (1) and after training (r). Small
circles correspond to high parameter confidence. The
bottom row shows the mean sensitivity and parameter
confidence (as error bars) for each of the 60 weights in
the Sigma-Pi IFCS network Schumann and Liu (2007).
Before training, all weights have similar sensitivity; af-
ter training, however, only 7 weights have consistently
high sensitivity, i.e., their value really contributes to the
output. This observation provides statistical evidence
that a dramatic reduction of the network size from 60
to 7 neurons was justified.

NETWORK CONFIDENCE

The Confidence Tool Gupta and Schumann (2004) pro-
duces a quality measure (confidence, 02) of the NN out-
put using a Bayesian approach. This tool has been de-
veloped for the IFCS Sigma-Pi adaptive controller ans
successful test flights on a NASA F-15 aircraft have been
carried out in early 2006. A similar performance met-
ric (validity index) has been defined for DCS Liu et al.
(2005). Figure 3(top) shows the control augmentation
signal that the NN produces to compensate for failure
(stuck stabilator surface).. o2 of the network output in-
creases substantially, indicating a large uncertainty in

the network output. Due to the online training of the
network, this uncertainty decreases very quickly. A sec-
ond and third pilot command (¢ = 11s, ¢t = 17s) shows
that the network has successfully adapted to handle this
failure situation (much smaller peaks in o2).
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Figure 3: Confidence value o over time (top) and pilot
doublet commands (bottom). Failure at ¢t = 1.5s.

CONCLUSIONS

Our Bayesian approach allows different models (e.g.
networks with different numbers of hidden units, or dif-
ferent network types such as multi-layer perceptrons,
Sigma-Pi, RBF, or DCS) to be compared using only the
training data. More generally, the Bayesian approach
provides an objective and principled framework for deal-
ing with the issues of model complexity.

In aeronautics, the performance of an aircraft is defined
in terms of its handling quality (e.g., the Cooper-Harper
rating). Current research aims to relate our performance
metric with the aircraft handling quality. With the real-
time availability of handling quality estimates, our val-
idation tools can be used to alert the pilot and provide
assistance/support to decision making.
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ABSTRACT

Evolutionary Computing and Artificial Life apply in-
sights from evolutionary biology to software applica-
tions. Our understanding of evolution is itself evolving.
Viewed in the light of modern evolutionary theories, the
assumptions of Evolutionary Computing and Artificial
Life are often naive and sometimes even wrong. How
does evolution really work? Can we exploit recent dis-
coveries to expand the possibilities of software? Can
software be truly creative?

BIOLOGY AND COMPUTATION

The idea of developing computer algorithms based on bi-
ological evolution has excited researchers since the early
days of computing. The first proposals were made in the
1950s, and several streams of evolutionary computing
(EC) emerged in the 1960s. Yet it is only in the last few
years that EC has demonstrated truly impressive per-
formance. Evolutionary programs have yielded walking
robots, high quality amplifiers, sensitive antennas, and
a wide range of more esoteric devices. In one field alone
— circuit design — EC techniques have reinvented sev-
eral circuits that were discovered and patented recently.
These successes have been due to a confluence of theory,
experience, and hardware developments.

In this paper, we use “EC” as an inclusive term for
a variety of particular stratdegies, such as genetic al-
gorithms, genetic programming, evolutionary program-
ming, and techniques based metaphorically on ants,
swarms, and weeds. EC is intended to be analogous
to Darwinian evolution, which we will refer to as Evolu-
tionary Biology (EB). As EC has evolved during the last
few years, so has our understanding of EB. Although the
basic principle of evolution — “survival of the fittest”,
in Spencer’s well-known aphorism — its implementation
is now known to be much more complex and interest-
ing than was previously thought. In summary, evolu-
tion requires a population of individuals that reproduce
with wvariation and an enwvironment that associates a
cost with reproduction.

In nature, fecundity is the only criterion for fitness. If
absurdly long tail-feathers help males to have more off-
spring, then males will have absurdly long tail-feathers.
EC introduces a fitness function: individuals are first

evaluated and only then allowed to reproduce. This re-
verses the natural order of events, in which the fitness
of an individual can be assessed only at the end of its
reproductive life. The fitness function transforms EC
from whimsical experimentation to useful engineering.

STRENGTHS AND WEAKNESSES

Viewed as a form of engineering, EB and EC share
strengths and weaknesses. The following quote is of-
ten used to argue that even Darwin had doubts about
the evolution of eyes (Darwin (1859)):

To suppose that the eye . . . could have been
formed by natural selection, seems, I freely
confess, absurd in the highest possible degree.

But this sentence is only the introduction to Darwin’s
argument showing how evolution should be expected to
produce eyes, concluding that

.. . the difficulty of believing that a perfect and
complex eye could be formed by natural selec-
tion . . . should not be considered subversive
to the theory.

The fossil record provides little evidence of evolving
eyes. Yet experiments suggest that the evolution of an
eye might require no more than 350,000 years — a blink
of an eye, so to speak, in evolutionary time (Nilsson and
Pelger (1994)). These experiments assume the existence
of a means of detecting light: we might object that dis-
covering a light detector that eyes can use seems to be
an even harder problem than evolving the eye. In fact,
early single-celled organisms discovered how to detect
light, using the gene Pax 6 and the protein rhodopsin.
All contemporary eyes are based on this gene and pro-
tein and are almost certainly adaptations of the first
light detectors.

From eyes and similar examples, it is easy to get the
impression that evolution leads to robust and adaptive
organisms. This is perhaps the main reason for the in-
terest in EC. It is certainly true that some organisms are
robust and adaptive. But evolution also builds quaint,
Rube Goldberg contraptions that just happen to work
in an environment that changes only slowly.

Even worse, evolution often leads to solutions that
would never be accepted by engineers. One example



will suffice (I will mention others in the talk). Again, it
concerns eyes. Our retinas are constructed inside-out:
the light receptors are behind the retina and the nerve
fibres to the brain are in the front. This is a consequence
of a simple, basic fact about evolution: change occurs
in small increments, and each increment must be better
than the previous. Big changes, temporary backward
moves, and redesign cannot occur. Squids were luck-
ier: their optical nerves are connected to the back of the
retina.

The products of EC sometimes have the same quirki-
ness as the results of EB. This function (Rooke (2002)),
evolved to produce an artistic image, is easily distin-
guishable from functions designed by people:!

cos (mul (div (div (pi, dist (mul
(0.703097, dist (div (0.777147, sin
(div (y, minus (-2.19658, cos (x))))),
cos (cos (sin (y))))), sin (y))),

cos (plus (cos (plus (atan (sin (cos
(x))), mul (x, x))), spiral ( (y,
0.418353)))), 0.494688)))

One problem that EC must address is how to combine
evolutionary strategies with good engineering practice.

FUTURE DIRECTIONS

Most work in EC is based on a very naive model of
EB. For many purposes, this clearly does not matter,
since EC has had striking successes. But EB is much
more interesting than the simple genotype to phenotype
mapping suggests, and I believe that there is much to be
gained by studying EB and incorporating its techniques
into EC. In this section, I briefly describe aspects of EB
and pose challenges (in italics) for EC.

When the genetic code was first discovered, biologists
assumed that each kind of organism would have its own
kind of genes and that a complex organism, such as
a person, would have hundreds of thousands of genes.
Both assumptions are now known to be quite wrong.
To a first approximation, all organisms have the same
genes. The genes that assemble the segments of a fruit
fly are the genes that assemble the backbones of ver-
tebrates. The genes that enable a bacterium to derive
energy from sugar are the same as the genes that we use
for the same purpose. Obviously, there are differences:
plants do not need genes for eyes. But the commonal-
ities are striking. EB achieves the software engineer’s
perennial dream of reuse. The same set of genes are
used to assemble an enormous variety of different bod-
ies. Can EC achieve software reuse by exploiting evolu-
tionary ideas?

Variation is obtained by gene switching networks that
control gene expression using both environmental fac-

IThis function should not be read as a criticism of Rooke’s
admirable work but rather as a typical example of the unpre-
dictability of evolution.
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tors and other genes. Evolution’s motto seems to be “if
it ain’t broke, don’t fix it”. Epistasis — interaction be-
tween genes — is the means by which EB obtains huge
variety from a relatively small set of genes. Can EC
exploit epistasis to build complex systems from simple
components?

Perhaps the biggest difference between EB and most EC
is that the genome controls all phases of the organism’s
life cycle. Our genome’s work starts when the fertilized
egg splits into two, then four, then eight cells. Later,
the same genome controls the varied functions of each of
the trillion or so cells in our adult bodies. The genomes
of other organisms perform even more astonishing tasks:
the genome that causes a larva to eat a leaf later tells the
butterfly how to find pollen. Can EC produce programs
that grow, learning as they do so?

There are similarities as well as differences between EC
and EB. Programming languages are sometimes criti-
cized for being fragile by comparison with biological ar-
tifacts. A misplaced comma can change the meaning of
a program, or make it fail altogether. But biology is no
different in this respect: a single error in the genome
may be fatal. The techniques that nature has evolved
to compensate for fragility follow good engineering prac-
tice, including redundant encoding, high fidelity copying
followed by error detection and correction, and storing
information in a stable and inactive molecule. Given
a simple but unreliable mechanism, can we use EC to
evolve an equivalent but highly reliable mechanism?
Finally, the languages used in EC systems such as Tierra
and Avida are based closely on programming languages.
Can we develop a language for EC that is biologically
inspired? 1 consider this to be the “grand challenge” of
EC.

CONCLUSION

Evolutionary computing is an exciting and growing field
with many significant successes to its credit. But its bi-
ological foundations have plenty of features waiting to
be understood and exploited, ensuring dramatic devel-
opments in the near future.
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TOWARD HUMAN LEVEL MACHINE INTELLIGENCE -- IS IT ACHIEVABLE?
THE NEED FOR A PARADIGM SHIFT

Lotfi A. Zadeh""

In the fifties of last century, the question "Can machines
think?" was an object of many spirited discussions and
debates. Exaggerated expectations were the norm, with no
exceptions. In an article "Thinking machines—a new field
in electrical engineering," published in January 1950, I began
with a sample of headlines of articles which appeared in the
popular press in the late forties. One of them read "Electric
brain capable of translating foreign languages is being
built." Today, half a century later, we have translation
software, but nothing that approaches the level of human
translation. In 1948, on the occasion of inauguration of
IBM's Mark 1relay computer, Howard Aiken, Director of
Harvard's Computation Laboratory, said "There is no
problem in applied mathematics that this computer cannot
solve." Today, there is no dearth of problems which cannot
be solved by any supercomputer. Exaggerated expectations
should be forgiven. As Jules Verne said at the turn of last
century, "Scientific progress is driven by exaggerated
expectations."

Where do we stand today? What can we expect in the
future?

Al was born in 1956. Today, half a century later, there is
much that Al can be proud of—but not in the realm of
human level machine intelligence. A telling benchmark is
summarization. We have software that can passably
summarize a class of documents but nothing that can
summarize miscellaneous articles, much less books. We
have humanoid robots but nothing that can compare in
agility with that of a four year old child. We can automate
driving a car in very light city traffic but there is nothing on
the horizon that could automate driving in Istanbul. Far too
often, we have to struggle with a dumb automated customer
service system which we are forced to use. Such experiences
make us keenly aware that human level machine intelligence
is an objective rather than reality.

In an article "A new direction in Al—toward a
computational theory of perceptions," Al Magazine, 2001, I
argued that, in large measure, the lack of significant progress
in many realms of human level machine intelligence is
attributable to Al's failure to develop a machinery for
dealing with perceptions. Underlying human level machine
intelligence are two remarkable human capabilities. First, the
capability to perform a wide variety of physical and mental
tasks, such as driving a car in heavy city traffic, without any
measurements and any computations. And second, the

" Dedicated to Peter Walley.

capability to reason, converse and make rational decisions in
an environment of imprecision, uncertainty, incompleteness
of information, partiality of truth and partiality of possibility.
A principal objective of human level intelligence is
mechanization of these remarkable human capabilities.

What is widely unrecognized is that mechanization of these
capabilities is beyond the reach of classical, Aristotelian,
bivalent logic. What is needed for this purpose is fuzzy
logic. Al's deep commitment to bivalent logic has impeded
its acceptance of fuzzy logic. In my view, achievement of
human level machine intelligence is infeasible without the
use of fuzzy logic.

What is fuzzy logic? What does it have to offer? There are
many misconceptions about fuzzy logic. The following
précis of fuzzy logic is intended to correct the
misconceptions. Fuzzy logic is not fuzzy. Basically, fuzzy
logic is a precise logic of imprecision and approximate
reasoning. In fact, fuzzy logic is much more than a logical
system. It has many facets. The principal facets are logical,
fuzzy-set-theoretic, epistemic and relational. Most of the
applications of fuzzy logic involve the concept of a linguistic
variable and the machinery of fuzzy if-then rules. The
formalism of linguistic variables and fuzzy if-then rules is
associated with the relational facet. The cornerstones of
fuzzy logic are graduation, granulation, precisiation and the
concept of a generalized constraint. Graduation should be
understood as an association of a concept with grades or
degrees.

In fuzzy logic, everything is or is allowed to be a matter of
degree or, equivalently, fuzzy. Furthermore, in fuzzy logic
everything is or is allowed to be granulated, with a granule
being a clump of attribute values drawn together by
indistinguishability, equivalence, proximity or functionality.
Graduated granulation or, equivalently, fuzzy granulation is
inspired by what humans employ to deal with complexity,
imprecision and uncertainty. Graduated granulation
underlies the concept of a linguistic variable. When Age, for
example, is treated as a linguistic variable, its granular
values may be young, middle-aged and old. The granular
values of Age are labels of fuzzy sets.

A concept which plays a pivotal role in fuzzy logic is that of
a generalized constraint, represented as X isr R, where X is
the constrained variable, R is the constraining relation and »
is an indexical variable which defines the modality of the
constraint, that is, its semantics. The principal generalized

! Department of EECS, University of California, Berkeley, CA 94720-1776; Telephone: 510-642-4959; Fax: 510-642-1712;
E-Mail: zadeh(@eecs.berkeley.edu . Research supported in part by ONR N00014-02-1-0294, BT Grant CT1080028046, Omron
Grant, Tekes Grant, Chevron Texaco Grant and the BISC Program of UC Berkeley.
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constraints are possibilistic, probabilistic and veristic. The
fundamental thesis of fuzzy logic is that information may be
represented as a generalized constraint. A consequence of
the fundamental thesis is that the meaning of a proposition,
p, may likewise be represented as a generalized constraint.
The concept of a generalized constraint serves as a basis for
representation of and computation with propositions drawn
from a natural language. This is the province of NL-
Computation—computation with information described in
natural language.

NL-Computation opens the gate to achievement of human
level machine intelligence. The validity of this assertion rests
on two basic facts. First, much of human knowledge, and
especially world knowledge, is described in natural
language. And second, a natural language is basically a
system for describing perceptions. What this implies is that
NL-Computation serves two major functions: (a) providing a
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conceptual framework and techniques for precisiation of
natural language in the context of human level machine
intelligence; and (b) providing a capability to compute with
natural language descriptions of perceptions. These
capabilities play essential roles in progression toward human
level machine intelligence.

In summary, achievement of human level machine
intelligence is beyond the reach of bivalent-logic-based tools
which Al has in its possession. What is needed for this
purpose is addition of concepts and techniques drawn from
fuzzy logic to AI’s armamentarium. However, what should
be stressed is that fuzzy logic is merely one of many tools
which are needed to achieve human level machine
intelligence. What is obvious is that achievement of human
level machine intelligence is a major challenge which will be
very hard to meet.
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ABSTRACT

In this paper, we will discuss interval-valued and in-
tuitionistic fuzzy sets as a model for grayscale images,
taking into account the uncertainty regarding the mea-
sured grayscale values, which in some cases is also re-
lated to the uncertainty regarding the spatial position
of an object in an image. We will demonstrate the prac-
tical potential of this image model by introducing an
interval-valued morphological theory and by illustrating
its application with some examples. The results show
that the uncertainty that is present during the image
capture not only can be modelled, but can also be prop-
agated such that the information regarding the uncer-
tainty is never lost.

INTRODUCTION

Images are among the most important information car-
riers in today’s world. This importance is not only due
to the simple fact that an image can contain an enor-
mous amount of relevant data, but also to the scientific
and technological achievements of the last decades. The
wide availability of image capturing devices and the easy
way to develop images and to make them public (e.g.
using the internet) has even enhanced this evolution.

Since their introduction, fuzzy set theory [30] and fuzzy
logic have given rise to many applications, also in image
processing. This is not a surprise, since uncertainty and
imprecision are encountered in many image processing
applications, e.g. to determine whether a pixel is an
edge-pixel or not or whether a pixel is contaminated
with noise or not [21, 22], or when measuring the degree
to which two images are similar to each other [26]. In
other cases, the theory is used as a tool to construct
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image processing operators. The latter typically oc-
curs in the field of mathematical morphology. The ba-
sic morphological operators dilation, erosion, opening
and closing constitute the fundamentals of this theory
[23], and transform an image into another image, us-
ing a structuring element. As an extension from binary
to grayscale morphology, different fuzzy morphological
models have been introduced [9, 18, 24]. These models
were based on the observation that, from a formal point
of view, grayscale images and fuzzy sets are modelled in
the same way, and consequently tools from fuzzy set the-
ory could be applied in the context of image processing.
However, it is only until quite recently that (extended)
fuzzy set theory has been used to model the uncertainty
that occurs with the image capture itself. In particular
the extensions based on interval-valued and intuitionis-
tic fuzzy set theory have very nice interpretations in the
context of image processing [3, 4, 19, 20].

The goal of this paper is to extensively discuss the poten-
tial of extended fuzzy set theory — in particular interval-
valued and intuitionistic fuzzy set theory — to model nu-
merical and spatial uncertainty, due to image capture,
in grayscale images (Section 2). In order to demonstrate
the applicability of this image model we will introduce
an interval-valued morphological theory, and we will il-
lustrate this theory with some examples (Section 3). We
end our paper with concluding remarks and directions
for future research (Section 4).

MODELLING THE UNCERTAINTY OF IM-
AGE CAPTURE

The interval-valued approach

The grayscale value of a pixel in a grayscale image in-
dicates the amount of black or white present at that
specific location in the image. All approaches to math-
ematical morphology use these values to transform the
original image. However, one always assumes that these



grayscale values are certain, although in practice, due
to the circumstances in which images are sometimes
captured, the measured values might be uncertain and
merely indicate a likely value of the image at a specific
position. The uncertainty regarding the grayscale value
is an immediate fact if one takes into account that any
device will round captured values up or down to the fi-
nite set of allowed values. The uncertainty grows if sev-
eral takes of an image reveal different grayscale values
for some pixels. This might be the case under identi-
cal recording circumstances, and will surely arise when
these circumstances change (e.g. a scenery that is illu-
minated by either a sunny or a cloudy sky; see Figure
1). Not only the recording circumstances can play a role
here. Indeed, pixels that belong to the edge of an ob-
ject might slightly shift position in different takes (e.g.
when the camera slightly shifts position; see also Figure
1). This could result in large differences in the measured
grayscale value of a specific pixel, and consequently in a
large uncertainty regarding the real value of that pixel,
i.e. for that specific spatial position in the image.

For all these reasons, it can be useful not to work with
grayscale values but with grayscale intervals, where the
interval represents the set to which the actual grayscale
value belongs. Such an interval will be small for a pixel
that belongs to a larger object in the image and that was
captured under more or less identical circumstances, but
will be large for a pixel that was captured under differ-
ent circumstances or that belongs to the edge of a larger
object in the image. In this way, the approach of using
intervals not only models uncertainty regarding the mea-
surement of values, but also regarding the measurement
of spatial positions.

Specifically in mathematical morphology, also regarding
the values of the pixels in the structuring element some
uncertainty might exist, even though it is chosen by the
user. Indeed, if one wants the structuring element to
reflect the importance or weight that is associated with
a pixel at a certain position w.r.t. the center of the
structuring element, one might not be completely sure
how to estimate that weight. The use of an interval with
likely values might be a solution in that case.

In the above context, grayscale images and/or struc-
turing elements are actually characterized by interval-
valued fuzzy sets. An interval-valued fuzzy set (IVFS)
corresponds to a mapping A from a universe U into
the class of closed intervals [u1,pe] C [0,1]. Thus,
A(u) = 11 (w), 2 ()] for every u € U. Tf iy (u) = piz(u)
for all u € U then the interval-valued fuzzy set reduces
to a classical fuzzy set. Interval-valued fuzzy sets have
been used successfully to implement Zadeh’s paradigm
of computing with words [17] and have become increas-
ingly important in applications of rule-based systems
and approximate reasoning [7, 10, 25].

The important thing here is that interval-valued fuzzy
set theory allows us to model the uncertainty regard-
ing the grayscale values. In the evolution of fuzzy mor-
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phology this is quite an important step, since we are
making the transfer from tool to model. Techniques and
tools from interval-valued fuzzy set theory can then be
used to construct a corresponding morphological model
and to define morphological operators that can process
interval-valued images. The potential of fuzzy set the-
ory is then fully used, i.e., the theory is employed both
as tool and as model.

Note that interval-valued representations also occur nat-
urally in several other image processing problems, e.g.
in inverse halftoning [6], and that they also occur in the
context of wavelets [5]. In a different context, not as a
model but rather as a tool, they have also proven to be
usefull in edge detection applications [2].

To visualize the place of interval-valued (and intuition-
istic) fuzzy morphologies in the field of mathematical
morphology, we have summarized several approaches in
Table 1, depending on the nature of the image and the
structuring element.

Table 1: Approaches to mathematical morphology.

| Image | Structuring element | Approach
binary binary binary morphology
grayscale binary grayscale morphology
(threshold approach)
grayscale grayscale grayscale morphology
(umbra approach)
+ fuzzy morphologies
interval interval interval-valued
fuzzy morphologies

To visualize the use of interval-valued fuzzy sets as an
image model, we discuss an example in Figures 1 and 2.
Figure 1 shows three different takes of the cameraman
image: a take with a cloudy sky, a take with a sunny sky
and a slightly distorted take. These different takes re-
veal that the measured grayscale value of several pixels
are uncertain. For the cloudy/sunny take the uncer-
tainty is due to the recording circumstances (resulting
in different grayscale values for the same pixel); for the
cloudy/distorted take the uncertainty is due to the un-
clear spatial position of the objects in the image (result-
ing in different grayscale values for mainly these pixels
that are on the edge of an object).

To take this uncertainty regarding the grayscale values
into account, we construct interval-valued representa-
tions of the cameraman image. Starting from the three
different takes (cloudy/sunny/distorted), we select for
every pixel the lowest grayscale value from the images,
resulting in the lower bounds of the grayscale intervals.
Similarly, we select for every pixel the highest grayscale
value from the images, resulting in the upper bounds of
the grayscale intervals. The image with the lower bound



values and the image with the upper bound values are
shown in Figure 2. The difference between the lower
bound and upper bound images is also shown. The in-
terpretation of this difference is quite nice: the higher
the difference for a certain pixel (i.e., the higher the
width of the correspoding interval, and the brighter the
pixel in the corresponding image), the higher the uncer-
tainty regarding that pixel. In this case, the interval-
valued representation takes both numerical and spa-
tial uncertainty into account. This example illustrates
the natural way in which the interval-valued approach
makes sense in image processing.

The intuitionistic approach

Other considerations can lead to other extensions of
fuzzy mathematical morphology. For example, given a
grayscale image, one can assign two separate [0,1]-valued
degrees (to the grayscale value of) every pixel, the first
one indicating the belief that the pixel has this specific
grayscale value and the second one reflecting the de-
gree of certainty that it differs from the given grayscale
value. Consequently, in such a model a pixel gets a spe-
cific grayscale value and is associated with two values.
In contrast to the previous model, the grayscale values
are fixed (i.e. no intervals occur), but the uncertainty
regarding the measured value is associated with a couple
of [0,1]-valued degrees.

The approach we just explained starts from the numeri-
cal point of view, i.e. we are trying to model the uncer-
tainty regarding measured grayscale values. However,
just as in the previous case, this approach can also be
looked at from a spatial point of view. Indeed, for a pixel
that belongs to the edge of an object there might be
quite a lot of uncertainty regarding its grayscale value,
depending on the fact whether the pixel actually is part
of the object or just belongs to the background of that
object. This spatial uncertainty, which is strongly con-
nected to the numerical uncertainty (i.e. the uncertainty
regarding the measured value), can also be modelled by
the two separate [0,1]-valued degrees mentioned above.
The latter of both points of view is the basis for the
works [3, 4], while we used the first point of view in [19].
Regardless from which viewpoint is chosen, using the
above approach we are actually considering intuitionis-
tic fuzzy sets [1]. Intuitionistic fuzzy sets (IFS) gener-
alize Zadeh’s original definition by defying the law of
the excluded middle which claims that if u belongs to
a degree i to a fuzzy set A then u does not belong to
A to the extent v = 1 — u. In IFS theory, the degrees
of membership and non-membership do not have to add
up to 1. Instead, IFS theory only requires that this pair
satisfies the inequality p+ v < 1.

Formally, a grayscale image A is in this context rep-
resented as a mapping from the universe U to the set
{(pt, V)| + v < 1}. Thus, A(u) = (u(u), v(u)) for every
ueU. Mv(u) =1—p(u) for all w € U then the intu-
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Figure 1: Different captures of the cameraman image:
top = take with cloudy sky, middle = take with sunny
sky, bottom = take with distortion.



Interval-valued
cloudy/sunny/distorted take of the cameraman image:
top = lower bounds, middle = upper bounds, bottom =
representation of the interval width. The uncertainty is
due to both numerical and spatial uncertainty.

Figure 2: representation of the
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itionistic fuzzy set reduces to a classical fuzzy set.
Intuitionistic fuzzy set theory also arises in image
processing from a different perspective, just as this is the
case for interval-valued fuzzy set theory (see the discus-
sion in the previous subsection). We refer to the works
[27, 28, 29] for some applications in which intuitionistic
fuzzy sets are used in the context of enhancement and
pattern recognition.

The equivalence between both approaches

The class of IVFS as well as the class of IFS can
be regarded as L-fuzzy sets (in some universe) where
L = (L,<p) represents a complete lattice; a complete
lattice is a partially ordered set in which every family
of elements has a supremum and infimum. An L-fuzzy
set A in U is characterized by an U — L mapping [14].
When L = [0, 1], L-fuzzy set theory reduces to classical
fuzzy set theory.

In case of IVFS the corresponding complete latice
(L', <y1) is defined by:

LT = {[z, y]|[z,y] € [0,1]},
[z1,y1]) <pr [z2,92] © 21 < 22 and y1 < yo.

Infimum and supremum of a set S = {[zs, ys] C [0,1]|s €
Is CN,} are given by A S = [inf, x5, inf, ys] and \/ S =
[sup, x5, sup, ys.

In case of IFS the corresponding complete latice
(L*,<p~) is defined by:

L* = {(z,y)|zx +y < 1},
(x1,11) <p+ (@2,y2) © 1 < z2 and y1 > yYo.

Infimum and supremum of a set S = {(zs,ys) € [0,1] X
[0,1]|s € Is C N} are given by A S = [inf, x5, sup, ys]
and \/ S = [sup, xs, infs ys].

Although the interval-valued approach (using grayscale
intervals) and the intuitionistic approach (using fixed
grayscale values, but associating them with additional
values expressing some confidence) seem to be com-
pletely different in the context of image processing, they
actually are exactly the same from a formal point of view
[10]. The correspondence between these two extensions
of fuzzy set theory is given by:

[xvy] = (33, 1- y)v

where [z,y] represents a closed interval in interval-
valued fuzzy set theory, and (z,1 — y) represents a cou-
ple of membership and non-membership degrees in in-
tuitionistic fuzzy set theory.

Since both approaches are identical, we can choose one
model for further exploration and development. In gen-
eral, there is a preference for the interval-valued model
because of its very natural interpretation, and because
of the fact that the input for this model, i.e. the in-
tervals of grayscale values, can directly result from the
image capture process.



APPLICATION OF INTERVAL-VALUED
FUZZY SET THEORY IN MATHEMATICAL
MORPHOLOGY

Since we have established interval-valued fuzzy set the-
ory (or, equivalently, intuitionistic fuzzy set theory) as a
model for grayscale images, the next challenge is to con-
struct other building stones to develop image processing
theories. In this paper, we focus on mathematical mor-
phology to illustrate this process.

Interval-valued fuzzy morphology

Binary morphology was developed to process binary im-
ages, and quite soon extended to grayscale morpholgy
by using the threshold approach [23] and the umbra ap-
proach [16]. Fuzzy morphology was an alternative ex-
tension, based on the extension of the underlying logical
framework of the morphological model, i.e. using fuzzy
logical operators as extensions of their binary counter-
parts [9, 18, 24].

This extension can also be realized in the case of
interval-valued fuzzy sets. The logical aspect of interval-
valued fuzzy set theory has already been largely inves-
tigated [8, 11, 12]. The richness of interval-valued fuzzy
logical operators immediately leads to a wide variety
of morphological models, depending on the choice of
the underlying conjunctor and implicator. In [19, 20]
we have developed a specific interval-valued morpho-
logical model. The corresponding dilation and erosion
are based on the following interval-valued Lukasiewicz-
operators: the so-called pessimistic t-norm

T4 (z,y) = [max(0, z14+y1 —1), max(0, x1+y2—1, x2+y1—1)],

and the so-called optimistic implicator

Iy (x,y) = [min(1, 1—z1 +y1, 1 —22+y2), min(1, 1—z1+ys2)],

with & = [z1,22] and y = [y1,92]. These operators
are adjoint and lead to several interesting properties in
mathematical morphology.

In order to simplify the expressions for the interval-
valued dilation and erosion, we will make the following
identifications regarding the grayscale image A and the
structuring element B, both modelled as interval-valued
fuzzy sets:

B(u —v)
Alu) =

[bl(u - U)’bQ(u - U)] = [ 7f’bg]7

[a1(u), az(u)] = [af; a3].

The following expressions can be derived for the interval-
valued fuzzy dilation D{,V and erosion E{V corresponding
with the above mentioned Lukasiewicz-operators, for all
vin U:

Dyy (A, B)(v) =

V [max(0,a¥ +b} —1), max(0,ay + by —1,a% + 0y —1)]
ueU
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E{,(A,B)(v) =
A [min(1,1+a¥ —bY,14+ay —bY), min(1, 1+ al — b})].
ueU

An edge detection application

Consider the following grayscale structuring element B:

0.5 0.8 0.5
B=1] 08 1 08
0.5 0.8 0.5

Note that, for simplicity, we use a certain structuring
element, i.e., a structuring element that can be repre-
sented as a classical fuzzy set; also note that the under-
lined element corresponds to the center of the structur-
ing element.

Consider the interval-valued representation of the
cloudy/sunny/distorted take of the cameraman image
as shown in Figure 2. Using the above structuring ele-
ment, we can perform the interval-valued dilation D{,V
and the interval-valued erosion E};,. These morpholog-
ical operators result in new interval-valued images, of
which we can display the lower bound image, the upper
bound image, and the difference between them (indi-
cating the uncertainty for every pixel). This is done in
Figure 3 for the dilation and in Figure 4 for the erosion.
We can take it one step further by taking the difference
between the dilated and eroded images. This difference
should result in an edge-image, just as in the case for
regular grayscale images. Note that the difference be-
tween two intervals [z1,x2] and [y, y2] is defined as the
interval ([12, 13]):

[36’1 - yzamaX(l’l —Y1,T2 — yz)]

The results are displayed in Figure 5, again together
with the difference between the lower bound edge-image
and the upper bound edge-image to visualize the uncer-
tainty regarding these results. One can see that the
lower bound edge-image contains nearly no informa-
tion (this image results from the difference between the
lower bound dilated image and the upper bound eroded
image), while the upper bound edge-image produces a
more interpretable image.

More specifically, we can make the following observa-
tions and conclusions regarding the edge-images. The
upper bound edge-image contains real edges and false
edges. In this case the false edges are mainly due to
the distorted take of the cameraman image. These false
edges are situated near the left and right border of the
image (lines) and near the lower part of the camera-
man contours (edges appear double, slightly shifted). At
the same time, we observe a high uncertainty regarding
these (real and false) edges. Knowing the “real” camera-
man image, we know that the uncertainty for the edges
near the left and right border and near the lower part of
the cameraman contours actually should result in a re-
jection of the edges, while this is not the case for (most



of) the other detected edges. Onme of the future chal-
lenges will be to make an automated decision about the
nature of the uncertainty, i.e., either due to numerical
uncertainty or either due to spatial uncertainty.

In any case, and this is an important conclusion, one
can observe that the uncertainty that was present in the
original representation of the cameraman image is prop-
agated through the (interval-valued) morphological op-
erators and the edge detection application. This means
that the information regarding the uncertainty is not
lost. On the contrary, it is fully taken into account and
can be used and exploited in further processing.

CONCLUDING REMARKS AND FUTURE
RESEARCH

In this paper we have discussed the important evolu-
tion of fuzzy set theory in the context of mathematical
morphology. Fuzzy set theory was introduced in this
field as a tool, used to construct alternative extensions
of binary morphology to grayscale morphology. It was
however until quite recently that extensions of fuzzy set
theory have allowed us to actually model uncertainty
that comes along with image capture — and modelling
uncertainty, that’s what fuzzy set theory is all about. In
particular, we have extensively discussed the interval-
valued and the intuitionistic approach. We have shown
that these theories cannot only be used as image models
but also allow the construction of corresponding math-
ematical morphologies, which lead to specific morpho-
logical operators and related applications such as edge
detection. Both aspects — the modelling and the con-
struction of morphologies — are important, since we need
operators to process grayscale images modelled using
interval-valued or intuitionistic fuzzy sets.

Future research will have to focus on the further de-
velopment of the morphological models. A thorough
theoretical study is a must, and should be accompanied
with a deep exploration of practical applications such
as edge detection, segmentation, etc. In particular, it
will be interesting to see how the uncertainty regarding
the measured grayscale values is propagated, and how
these results can be interpreted and used in practice. Of
course, the specific choice of the underlying morphologi-
cal model will be quite important, and should be clearly
motivated.
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ABSTRACT

We propose a novel computational granular unified
framework that is cognitively motivated for learning if-then
fuzzy weighted rules by using a hybrid neuro-fuzzy or fuzzy-
neuro possibilistic model appropriately crafted as a means to
automatically extract or learn fuzzy rules from only input-
output examples by integrating some useful concepts from
the human cognitive processes and adding some interesting
granular functionalities. This learning scheme uses an
exhaustive search over the fuzzy partitions of involved
variables, automatic fuzzy hypotheses generation,
formulation and testing, and approximation procedure of
Min-Max relational equations. The main idea is to start
learning from coarse fuzzy partitions of the involved
variables (both input and output) and proceed progressively
toward fine-grained partitions until finding the appropriate
partitions that fit the data. According to the complexity of
the problem at hand, it learns the whole structure of the
fuzzy system, i.e. conjointly appropriate fuzzy partitions,
appropriate fuzzy rules, their number and their associated
membership functions.

INTODUCTION AND MOTIVATIONS

A production system (or a rule-base) the core of a
knowledge-based (or a rule-based) system, is basically a
formalism for representing knowledge about any area of
problem-solving. A program written as a production system
is a collection of “production rules,” which takes the form of
“If Left-Hand-Side Then Right-Hand-Side.” Where Left-
Hand-Side corresponds to the condition part and Right-
Hand-Side corresponds to the action (or consequent) part.
Such a representation is highly modular, is uniform i.e. all
the knowledge of the system is expressed in the same format.
It is mentioned that the domain expertise is organized in
chunks, or equivalently granules of knowledge, and
subsequently each chunk can be learned as a production rule
which represents the expert’s answer to a “what if” situation.
This way of organizing knowledge in discrete chunks which
interact with each other for drawing conclusions by
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inference is very natural way of modeling human cognitive
processes (Newell and Simon 1972). In addition, the
flexibility, the compactness, the approximation capacity, the
expressiveness power, the non-linearity, and explicit
embedded management of uncertainty provided by a fuzzy
production rule make fuzzy production systems or fuzzy rule
based systems privileged and very attractive candidates when
compared with conventional rule-based systems. Fuzzy rules
attempts to capture the “rules-of-thumb” approach generally
used by domain experts for decision-making in complex
environments. However to determine the required
appropriate number of (fuzzy) rules and to elicit these rules
from the domain expert remains a knowledge engineering
challenge, especially for complex large scale problems for
conventional and fuzzy systems alike.

In solving problems the human starts from a coarse
description but if needed iterates and goes gradually to a
fine-grained description or in-depth details enabling more
understanding of the underlying problem until reaching a
point where one can effectively find a solution and so stops
and does not need any more details. At this point, an excess
of precision is not needed (is not necessary) because a
certain satisfying trade-off between precision (level of
details) and generality of description has been reached and is
sufficient and enough for finding a satisfactory approximate
solution to the specified problem.

Those problem-solving mechanisms are frequently used by
humans in modeling of and/or dealing with complex real
world problems. When dealing with practical real world
problems, there is an acute need for representing and
manipulating imprecision, as it seems that the human mind is
indeed conceptually somewhat fuzzy. Most of the time,
humans do not use precisely (or crisply) defined terms but at
the same time they do manage to communicate and resolve
problems effectively. Zadeh has proposed the adoption of
Approximate Reasoning (Zadeh 1971, 1979, 1984) and
recently Zadeh has suggested that the challenge now facing
Al is to produce systems exhibiting “common sense”
reasoning, rather than purely logical deduction only, and he
points to soft computing (Zadeh 2001).

When using the rich concept of fuzzy sets (Zadeh 1965,
1971) as a basis for possibility theory (Zedeh 1973, 1978)
the automatic learning of fuzzy systems using a data-driven
approach becomes a problem worth solving because a
solution would enable us to build faithfully reliable systems
in a more ergonomic convenient cost-effective fashion in
various ICTs ranging from diagnosis, modeling, simulation,



vision, pattern recognition, information retrieval, process
control to software engineering and so on.

On one hand, soft computing has been proposed by Zadeh
(Zadeh 1994) and according to him (Zadeh 2001)“It may be
argued that is soft computing rather than hard computing that
should be viewed as the foundation of Artificial Intelligence
(AI).” What is important to note is that soft computing not
just a mixture. Rather, it is a synergistic partnership or a
forum in which each of the partners contributes a distinct
methodology for addressing problems in its domain. In this
perspective, the principal constituent methodologies in soft
computing are complementary rather than competitive; in
particular synergy through hybridization ensures the
emergence of desirables properties. The possibility of
making fusion of the merits of each one for improved quality
is feasible. Since 1990, hybrid soft computing and in
particular hybrid fuzzy-neuro or neuro-fuzzy systems have
invaded the computer world and constitutes one of the most
exciting current topics of research (Beldjehem 1993; Yager
and Zadeh 1994; Sinha and Gupta 1999; Pal and Ghosh
2000; Gupta et al. 2002), the advances are also spectacular
due to its newness, perspectives and power. Numerical
multi-layered networks as well as fuzzy models have been
proved to be universal approximators. This has motivated
their development and adoption in a large spectrum of
successful industrial applications.

On the other hand, the concepts of granulation and
abstraction in a fuzzy set theory setting have long been
suggested by Zadeh (Zadeh 1976), his co-authors (Bellman
et al. 1966) and advocated by others in an Al (Hobs 1985;
Giumchglia et al. 1992) setting, in vision engineering (Marr
1982) setting, and in algorithm design (Foster 1992). It is
attracting intensive research too and has led to the
development of granular computing as an emerging
computing paradigm (Yao 2000; Pedrycz 2001; Liu et al.
2002). It has been recently revisited by Zadeh himself
(Zadeh 1998) who proposes retargeting it as a design
paradigm and/or a methodology in connection with and
under the “umbrella” of soft computing.

Bearing in mind that any workable model either mental
(human) or computational (machine) is necessarily only
abstraction and approximation of the reality, triangular
and/or trapezoidal membership functions (MFs) might be
used as they are in fact only approximation means to
represent data, concepts, objects, entities, relationships,
classes and even relations of the real world problems. Bell-
shaped and even free-form membership functions may be
used too. We consider that the granularity of a fuzzy
partition for a variable is of utmost importance as it reflects
the level of details (or resolution) required in describing such
a variable, whereas the overlapping is connected to the
inherent fuzziness in defining the boundaries between
classes (granules) of such a variable. Of course a granule is
also defined by a fuzzy set represented by a MF. Thus it
reflects too a gradual rather then abrupt membership of an
object to the class (granule).

The structure of the rest of the paper is as follows; in section
IT we introduce a new model based on a novel learning
design methodology. Section III describes the statement of
the learning problem including representation issues,
hypothesis generation, formulation and testing, learning
algorithm, learning by hybrid fuzzy-neuro Min-Max
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networks. The section IV is devoted to the formulation of the
learning problem including algorithmic issues of the learning
problem, resolution and approximation of a Min-Max
equations system, and the presentation of an abstract
computational model of a learning session. In section V we
conclude and give some perspectives for our future work.

A NOVEL LEARNING METHODOLOGY
Motivations for our learning methodology

Fuzzy logic (Zadeh 19965, 1971, 1973. 1979) may be
considered as a basis for knowledge and meaning
representation and is particularly suited for dealing with
natural language. We believe that it is the concept of
possibility/necessity distributions (Zadeh 1978), rather than
the truth, that will play the primary role in manipulating such
knowledge for the perspective of drawing conclusions.
Possibility theory (Zadeh 1978; Yager 1986; Dubois &
Prade 1988; Olaf 1998) provides a formal framework for
representing and dealing with ignorance, and uncertainties
prevalent in modeling real world problems in a flexible
computerized manner straightforwardly. However it is well
accepted that crafting manually fuzzy systems to resolve
complex large scale real-world problems is a difficult task
that is not always obvious for both the designer (the
knowledge-engineer) and the domain expert. This is due
partly to the cognitive limits of the human being (Miller
1956), but also to the difficulty of understanding the
intricacies of dimensionality and inherent complexities and
peculiarities of large scale real world problems. Not to
mention the lack of precision in the human-human
interaction and communication that affects significantly the
knowledge acquisition process during the tandem
knowledge-engineer/domain expert relationship.
Furthermore once it is undertaken it is labour-intensive,
costly, error prone, time-consuming, and done on a trial-and-
error basis in an adhoc manner and hence need to be totally
or partly automated. This is known as the knowledge
acquisition bottleneck problem or the Feigenbaum bottleneck
and is a common problem for all AI approaches. Soft
computing as an automated knowledge acquisition
methodology aims at remedying such a problem.

Various soft computing (SC) techniques have been used to
tackle this learning problem from various points of views.
However they are based on some idealizing assumptions and
no one adopts a holistic approach to resolve such a problem
globally, i.e, finding conjointly appropriate fuzzy partitions,
fine tuning the membership functions of the labels used in
the rules as well as identifying the structure of the fuzzy
system (both the required number of rules and rules
themselves explicitely) simultaneously. In practice the
required number of rules of the system is not known in
advance. Indeed learning fuzzy if-then rules is a difficult
multi-parameter optimization problem! We have previously
devised, developed, formally validated and deployed a
hybrid fuzzy-neuro system called Fennec (Beldjehem 1993,
1994, 2002, 2004, 2006, 2008) that was successfully applied
to a difficult problem of biomedical diagnosis on Proteins/
Biological Inflammatory Syndromes (B.L.S) as well as to a
complex handwriting pattern recognition problem. Based on
our previous work, we propose herein an integrated



framework to modify the model and extend its ability and
scope of applicability by integrating some useful concepts
from the human cognitive processes and adding some
interesting granular functionalities. The rational behind using
levels of granularity is obvious for the reader.

High level of details A

v

v

Low level of details

Figure 1 From a coarse fuzzy partition to a fine-grained
fuzzy partition

The basic ideas underlying our framework stems from the
following interesting remarks about human cognition: Let us
first focus our attention on the human problem solving
process. In solving problems the human starts from a coarse
description but if needed iterates and goes gradually to a
fine-grained description or in-depth details enabling more
understanding of the underlying problem until reaching a
point where one can effectively find a solution and so stops
and does not need any more details. At this point, an excess
of precision is not needed (is not necessary) because a
certain satisfying trade-offs between precision (level of
details) and generality of description has been reached and is
sufficient and enough for finding a satisfactory approximate
solution to the specified problem. Thus after each iteration
(increment) a gain of information is obtained enabling more
in-depth and more understanding of the underlying situation.
Thus, the human converges to a solution gradually by
leveraging the level of details. See Figure 1 for more details
in connections with a granular soft computing (GrSC)
setting. Low levels of details allow coarse or general
descriptions reflecting crude approximations whereas high
levels of details allow specific descriptions reflecting more
or less relatively precise approximations (crisps at the
extreme). It is appealing and convenient to mimic
mechanically or to emulate computationally such a cognitive
process in order to automatically build faithfully by learning
an appropriate “good” fuzzy system that exhibits both a high
accuracy and a good performance for any problem at hand.
This motivates us in building a learning system able to use
such abstraction and granulation mechanisms in a fashion
that is akin to the way humans achieve problem solving
process. In general the required level of details necessary in
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describing rules as well as the required number of rules for
solving a problem depends to the degree of complexity of the
problem at hand and are unknown and hence we propose to
detect and determine them by learning within our
framework.

THE STATEMENT OF THE LEARNING PROBLEM
Description of the Learning Process

The learning is parametric as well as structural. It has to deal
with the complexity of the problem and to discover
appropriate knowledge chunks, and approximation heuristics
for the problem at hand. Taking into account the degree of
complexity of the problem at hand as well as the empirical
knowledge contained in the training set, the learning
subsystem:

e Identify explicitly the appropriate fuzzy partition for
each variable by learning. They are used only as
references to generate fuzzy hypotheses. For each
variable the appropriate number of granules and the
slopes of which will be determined during learning. This
information could be either kept or thrown away once
the learning is completed without loss of information for
the system. As they constitutes only means for
generating appropriate membership functions of fuzzy
rules and are not used during inference.

¢ Find the appropriate membership functions for both the
antecedents and consequents of every potential rule that
is needed to model the problem at hand.

e  Ultimately, build the appropriate “good” collection of if-
then fuzzy rules (the rule base or knowledge base that
consists of a set of linguistic rules), that fits “best” the
data that consists of I/O pairs of the training set.

In order to build an automatic workable computational multi-

pass learning model some design assumptions are made:

e At each cycle for each input variable X; the system
generates dynamically a fuzzy partition of ¢ granules
(starting with ¢=2, and incrementing ¢ by 1 or 2 at each
cycle until reaching a satisfying point). This point
constitutes the stopping criterion of our learning
mechanism and it reflects too the accuracy level
required for the system. It is worth mentioning that
increasing ¢ alone does not affect the algorithmic
computational complexity of the learning process! It is
the number of input variables (n) of the system when it
is very large that affects it significantly. We assume to
have a reasonable value for n which is almost the case in
most classes of real world problems.

e An output variable may be deal with as an input one, but
for the sake of simplicity and programmability we
assume that a fuzzy partition is given (known a priori
for each output variable) and prepared cautiously by the
domain expert. As the domain expert is more faced with
the difficult problem of capturing relationships between
the combinations of inputs variable in relation with a
given output variable. In general, for a given output
variable the actions (or classes) are well categorized (the
number and names of granules are known) by the
domain expert even thought the slopes of associated
MFs have to be questioned during learning.



FORMULATION OF THE LEARNING PROBLEM
Hypothesis Generation, Formulation and Testing

How to characterize and to represent a fuzzy partition? What
operators are needed in manipulating a fuzzy partition?
During learning-time, only one operator is needed to create a
fuzzy partition having the required known granularity c. It is
the repartitioning operator. It consists to divide dynamically
during learning-time the universe of discourse into c¢
overlapping granules. It works from scratch, i.e., there is no
need for splitting, or fusion or expanding. A partition is used
as reference only and its granules do not necessarily
constitute MFs for actual rules as they are only used for
formulation of initial fuzzy hypotheses during the generation
by the systematic exhaustive search algorithm and they are
both scale-dependents and context-dependents. We have no
other assumption about the fuzzy partition and we are not
interested to argue in such matters like “good” partition. The
learning will be done at the rule level rather than at the
partition level and hence learning a “good” rule is indeed a
crucial issue of utmost importance. A fuzzy partition is
illustrated in Figure 2 (observe how the rightmost and the
leftmost granules are shaped); it is a parameterized family
(sequence) of membership functions that cover the universe
of discourse for every variable either input or output. It is
created dynamically by the execution of the repartitioning
operator of granularity equals to ¢ during learning-time. In
fact, it is obtained by superposition of two wave functions
defined over the same universe of discourse X ranging in the
interval [anpm, amax]. Thus, it is straightforward to extract
parameters of granules (MFs) from a given fuzzy partition,
as each granule may be considered as an indexed term of the
family (or sequence).

A Hai(x) Mai(X) Hac(X)

»
|

Amin ai ai dc Amax
Figure 2 A fuzzy partition of granularity c=5 thatis a
superposition of two wave functions.

A fuzzy partition is represented by vector of ¢ parameters,
where c is the granularity level. A fuzzy partition might be
thought of as a sequence of granules, each of which is
represented by an indexed term. This makes sense as they are
computed and manipulated easily like ordinary terms during
learning-time. In general as illustrated in Figure 2, every
value x of the universe of discourse corresponds to at most
two granules. A;, A, . .. A;... A, are just synthetic
linguistic labels interpreted by fuzzy sets of normalized MFs.
A fuzzy partition might be thought of as a synthetic alphabet
that the system create by learning for future hypotheses
generation. Thanks to this flexible scale-dependent
representation, regardless the range of the universe of
discourse of an input variable, the terms of the fuzzy
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partition sequence are explicitly expressed straightforwardly
as follows:

The first term (or granule)

(az_x)/(az_al)’ lf asx<a,

1 otherwise

My (x) :{

For i=2, 3. .. c-1, where c is the granularity of the partition
or the i-th term

(x— ai—l)/(ai —da;, )
i (x)=1(a,, —x)a,, —a,),

if a,_,<x<a,

i-1 —

lf ai <XSCI,—+1

0 otherwise
And finally the last term
(x - acfl ) /(ac - acfl )’ lf ac—l S X S ac'

Mg (X) = {

1 otherwise

Learning by Hybrid Min-Max Fuzzy-Neuro Network

Fuzzy rules attempts to capture the “rules-of-thumb”
approach generally used by domain experts for decision-
making. However it is well accepted that crafting manually
fuzzy systems to resolve complex large scale real-world
problems is a difficult task that is not always obvious for
both the designer (the knowledge-engineer) and the domain
expert. Fuzzy (weighted) rules have been advocated, used,
studied and interpreted by many authors (Zadeh 1971;
Cayrol et al. 1982; Dubois et al. 1988; Beldjehem 1993;
Yager 1996) and machine learned by Beldjehem (Beldjehem
1993). We will focus in dealing with a multi-input single-
output (MISO) system as any multiple-input multiple-output
(MIMO) system could be converted to a certain number of
MISO systems. Let us start with a model overview: As in
Beldjehem (Beldjehem 1993) we consider herein to design a
fuzzy-neural possibilistic network according to the scheme
Fuzzy to Neural (or to switch from fuzzy systems to neural
networks). We use fuzzy if-then weighted rules that are
herein of the control type instead of the classification type as
in (Beldjehem 1993, 1994, 2002, 2004, 2006, 2008) and
such a rule looks like:

If (X is Wi, cp) and (X, is Wy, Cy,) and (X3 is Wis, Ci3)
and (Xsis wys, i) Then Yy is Vi

cij 1s a weight that represents the grade of importance of " X;
is wij " in relation with the output Y. Thus, conversely the
weight a; =1- c; represents the grade of unimportance of
“Xj is wy”in relation with the same output Y.

Referring to Figure 3, we propose herein a feed-forward
fuzzy-neural possibilistic network. We begin with a brief
description of the model: two types of weights are associated
with the connections.



X1

X2 X3 X4 Xs

Figure 3 Schematic representation of the hybrid fuzzy-
neuro possibilistic Min-Max model used.

Type 1: Direct connections between input cells (X;) and
output cell (si) with only synthetic linguistic weights (wy;),
interpreted as labels of fuzzy sets, characterizing the
variations of the input cells ("X is wy; ") with the output cell
(s), in this case we have a=[0,0]=0. Thus (I1(Xj;wy) v 0)
= [1(Xj;wy;)- Thus the connection between a hidden cell and
output cell simply disappears from the graph allowing direct
connection.

Type 2: Connections between input cells (Xj) and output
cells (sy) via intermediate cells (Hyj), weights associated to
connections between input cells (Xj) and intermediate cells
(Hyj), are herein artificial or synthetic linguistic (wyj),
weights associated to connections between intermediate cells
(Hyj), and output cell (si) are herein numerical intervals (ay;
<([0,1]), instead of a scalar value ranging in the interval
[0,1]) (ay; € [0,1]).

wij are unknown artificial or synthetic linguistic weights and
ayj are unknown confidence interval that reflects a domain of
possible values of unimportance for the corresponding
connections. Thus providing much more flexibility for the
network.

A learning session starts with a “blank” fully connected
hybrid fuzzy-neuro network without a priori information
concerning the weights, i.e. the weights might be thought of
as “placeholders” only. Learning is parametric as well as
structural. Let us consider now cell activation for an arbitrary
output cell (sy), as illustrated in Figure 3, where only
connections used in activation of s, appear. From the
semantic point of view, such a figure reflects a neural
representation of an if-then fuzzy weighted rule of control
type. Let [1(Xj; wij) = Sup [wij N X|] be possibility measure
associated to fuzzy sets wy; and Xj. And let N(Xj; wy;) = Inf
[wij N Not X;] be necessity measure associated to fuzzy sets
wij and X; . In general our model is governed by the three
abstract fuzzy approximate equations as shown below.

(M
2
)

T = Ajepassy (11 (Xj»ij)v ay)
Nk = Nje1.23.5) (N(Xjawkj) \ akj)
i =M, ]

Observe that Maximum (v) limits lower amplitudes of
inputs, we have (I1(Xj; wkj) v ag) = ay if TI(Xj; wkj) <ay,
and amplifies higher ones (I1(Xj; wkj) v ay) = [1(X;; wkj), if
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[1I(Xj; wkj) = ay, so the Min-Max composition indicates a
somewhat excitatory character. It is worthwhile to notice that
Min-Max composition as containing Min and Max
operations is strongly nonlinear. Furthermore, such model
has been formally validated and it has been shown recently
(Beldjehem 2006, 2008) that Min-Max composition
preserves the value approximation property. Observe that
when ag = 1, the term [I(X;; wkj) v ag (respectively
N(Xj;wij) Vv ay ) is deleted in the application of Minimum
(A). Thus ensuring the interpretability and transparency of
the model. It is now clear that a, reflects a notion of
unimportance, we point out herein that it is strongly hard if
not impossible to make values assignment to grades of
unimportance in practical applications, we will propose a
mechanism to learn such grades of unimportance. Thus the
fuzzy-neuro possibilistic network might be thought of as a
transparent learning device of any non-linear mapping of
inputs into an output. Its has been proved too that Max-Min
composition preserves the value approximation property
(Papis 1991) in connections with fuzzy systems setting.

RESOLUTION OF THE LEARNING PROBLEM
The Learning Algorithm and Implementation Issues

During a learning session the same learning algorithm is
used for each output variable Y;. Let us briefly describe the
learning algorithm that is composed of many cycles, each of
which is executed as follows: For each output variable Y;
and for each granule belonging to the fuzzy partition that
corresponds to Y;. Iteratively, an initial fuzzy hypothesis
corresponds to a combination of certain number of MFs
(each of which corresponds to granule of an input variable)
is created (formed) by a systematic exhaustive search
procedure. Once a fuzzy hypothesis is formed it is loaded or
incorporated in the hybrid fuzzy-neuro network weights for
test purposes, its components (elements) will be adjusted to
fit the training data. Such hypothesis is considered as a
potential candidate to be a rule and then is questioned and
adjusted during learning by the means of a hybrid fuzzy-
neuro possibilistic network using a successive approximation
algorithm of systems of Min-Max relational equations. This
adjustment is repeated until finding the ones that minimize
the signal error. Hence another new combination is then
generated and we repeat the same procedure. Thus the
obtained adjusted hypotheses that minimize the cost over all
possible combinations and that were embedded in the
weights of the hybrid fuzzy-neuro possibilistic network are
kept in a temporary learning table.

The algorithm proceeds by increasing the granularity and
repeats the same cycle, until reaching a satisfying point. In
general the learning is stopped when either a certain level of
accuracy has been reached or it is impossible or it is
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